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Preface

It was with great pleasure that I accepted the invitation of Springer to edit
this book. My association with the vascular endothelium covers a large part of
my scientific career and, as with any good long-standing relationship, it has
had moments of great excitement and periods of laborious construction. It
has sometimes been difficult but has never given me cause for despondency.
Indeed, in the last quarter of a century, research on the vascular endothelium
has been very productive and its results have contributed, arguably more than
any others, to unravelling the mystery of cardiovascular disease, its origin,
its development, its complications and its prevention or treatment once it has
developed.

I am very happy that Annie Higgs agreed to join me in this task. Over the
years we have collaborated closely and, as always, she has shouldered the brunt
of the work and has made sure that things get done to everybody’s satisfaction.
We have also been fortunate in that the scientists who have made some of
the most significant contributions in the field agreed to write chapters; as
a result, we have produced two volumes which is a good representation of our
knowledge in early 2006. We are, however, aware that the field has expanded
beyond all expectation and that there may have been some oversight in the
covering of a specific area or some aspect of it. This is compounded by the
speed at which knowledge is being generated, with more than 4,100 papers
concerning the endothelium published in 2005.

These volumes are organised in such a way that the early chapters discuss the
structure, development and function of the normal vascular endothelium. The
subsequent chapters consider conditions that lead to disruption of vascular
physiology, while the later chapters deal with specific pathologies and their
treatment. The final chapter describes various gene-therapy strategies for the
treatment of vascular pathologies. Interestingly, although this field of research
can now be considered mature, it continues to generate a great deal of new
information at a time when some of its fruits are having a direct impact on
clinical medicine. This is clearly exemplified in the contents of most of the
chapters.

The concept of endothelial dysfunction, although mooted many years ago,
has come to the fore and has been very useful in defining a situation which may
exist long before the overt signs of vascular diseases can be identified. Although
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endothelial dysfunction is likely to comprise a variety of disturbances, it is
interesting that these days it is almost exclusively measured as a decrease
in nitric oxide (NO)-dependent vascular dilatation, either induced by suitable
pharmacological agonists or by increases in blood flow. Oxidative stress, which
is associated with the genesis of endothelial dysfunction, is a loose term used
to define an imbalance between the release of oxygen-derived free radicals and
the anti-oxidant systems of the body. Many years ago our work established that
reactive oxygen species are important in reducing the local concentrations of
both prostacyclin and NO. It is now clear that free radicals also affect other
homeostatic systems in the vasculature. However, many things remain to be
clarified, especially the origin of oxidative stress in early disease.

The absence of one of these mediators, in this case not NO, but prostacyclin,
has been discussed in the scientific and popular press for the past couple of
years. The reason is that it is very likely that the cardiovascular side effects
which have led to the withdrawal from the market of the anti-inflammatory
class of drugs known as COX II inhibitors are due to their inhibitory action on
the generation of prostacyclin by the vasculature, leading to a pro-thrombotic
situation. The fact that reducing prostacyclin formation in the vasculature
leads eventually to cardiovascular events validates the concept we proposed in
1976 that a balance between the generation of thromboxane A2 by the platelets
and prostacyclin by the vessel wall is significant in defining the pro- or anti-
thrombotic status of the cardiovascular system. Previously, the only evidence
available came from the action of low-dose aspirin which, by inhibiting platelet
thromboxane A2 without affecting prostacyclin, leads to an anti-thrombotic
situation. This raises the issue about the status of a cardiovascular system in
which both prostacyclin and thromboxane A2 are inhibited following long-
term administration of the classical COX I inhibitors, something which we are
only now beginning to address.

The above are just a few considerations that exemplify the problems and
challenges that occupy a great deal of our attention today. They show that the
vascular endothelium has moved a long way from the “cellophane wrapper”
described by early vascular biologists to being recognised as an organ with
a variety of functions, some of which, I am sure, remain to be defined. What
has yet to be discovered promises to be as exciting and rewarding as that which
we already know.

London, S. Moncada
March 2006
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Abstract In recent decades, it has become evident that the endothelium is by no means
a passive inner lining of blood vessels. This ‘organ’ with a large surface (∼350 m2) and
a comparatively small total mass (∼110 g) is actively involved in vital functions of the car-
diovascular system, including regulation of perfusion, fluid and solute exchange, haemosta-
sis and coagulation, inflammatory responses, vasculogenesis and angiogenesis. The present
chapter focusses on two central aspects of endothelial structure and function: (1) the het-
erogeneity in endothelial properties between species, organs, vessel classes and even within
individual vessels and (2) the composition and role of the molecular layer on the luminal
surface of endothelial cells. The endothelial lining of blood vessels in different organs differs
with respect to morphology and permeability and is classified as ‘continuous’, ‘fenestrat-
ed’ or ‘discontinuous’. Furthermore, the mediator release, antigen presentation or stress
responses of endothelial cells vary between species, different organs and vessel classes. Fi-
nally there are relevant differences even between adjacent endothelial cells, with some cells
exhibiting specific functional properties, e.g. as pacemaker cells for intercellular calcium
signals. Organ-specific structural and functional properties of the endothelium are marked
in the vascular beds of the lung and the brain. Pulmonary endothelium exhibits a high
constitutive expression of adhesion molecules which may contribute to the margination
of the large intravascular pool of leucocytes in the lung. Furthermore, the pulmonary mi-
crocirculation is less permeable to protein and water flux as compared to large pulmonary
vessels. Endothelial cells of the blood-brain barrier exhibit a specialised phenotype with
no fenestrations, extensive tight junctions and sparse pinocytotic vesicular transport. This
barrier allows a strict control of exchange of solutes and circulating cells between the plasma
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and the interstitial space. It was observed that average haematocrit levels in muscle cap-
illaries are much lower as compared to systemic haematocrit, and that flow resistance of
microvascular beds is higher than expected from in vitro studies of blood rheology. This
evidence stimulated the concept of a substantial layer on the luminal endothelial surface
(endothelial surface layer, ESL) with a thickness in the range of 0.5–1 μm. In comparison,
the typical thickness of the glycocalyx directly anchored in the endothelial plasma mem-
brane, as seen in electron micrographs, amounts to only about 50–100 μm. Therefore it
is assumed that additional components, e.g. adsorbed plasma proteins or hyaluronan, are
essential in constituting the ESL. Functional consequences of the ESL presence are not yet
sufficiently understood and acknowledged. However, it is evident that the thick endothelial
surface layer significantly impacts haemodynamic conditions, mechanical stresses acting
on red cells in microvessels, oxygen transport, vascular control, coagulation, inflammation
and atherosclerosis.

Keywords Heterogeneity · Blood-brain barrier · Pulmonary endothelium · Glycocalyx ·
Endothelial surface layer

1
Central Functional Role of the Endothelium

Fora long time, endothelial cellswere consideredasahomogeneouspopulation
of cells merely forming an inert barrier to separate the vascular space from
the interstitium. Florey (1966) challenged these beliefs, pointing out that the
endothelium was more than a sheet of nucleated cellophane. About 25 years
ago, theground-breaking investigationson the involvementof the endothelium
in regulating vascular smooth muscle tone and coagulation (Moncada et al.
1977; Furchgott 1983; Furchgott and Zawadzki 1980; Palmer et al. 1987, 1988)
stressed the fact that the endothelium is not a merely passive barrier. Situated at
the interface betweenblood and tissues, the endothelium plays a central role for
critical functions of the cardiovascular system, including regulation of vascular
tone, fluid and solute exchange, haemostasis and coagulation, inflammatory
responses, vasculogenesis and angiogenesis.

These functions reside in a comparatively ‘small organ’, albeit with a very
large active surface. Based on data established by Mall (1888) on anatomical
dimensions of the vascular system in the canine intestine, the total area of the
blood/endothelium interface in man can be estimated to be about 350 m2 (Pries
et al. 2000). Depending on the assumed endothelial thickness, this corresponds
to a total endothelial mass in the range of only about 110 g (for a thickness
of ∼0.3 μm).

The different functional aspects of the endothelium will be addressed in
chapters of this book including transport and exchange (R.D. Minshall et al.),
regulation of smooth muscle tone (chapters by Q.-K. Tran and H. Watanabe;
C.Dimitropoulouet al.;A.P.Davenport and J.J.Maguire;G.García-Cardeñaand
M.A. Gimbrone, Jr.) and control of haemostasis (J. Arnout et al.). Others will
deal with pathophysiological aspects of endothelial function such as hyperten-
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sion, atherosclerosis, inflammation (J.S. Pober et al.), cancer and metastasis,
vasculogenesis and angiogenesis (chapters by C. Fischer et al.; J.D. Erusalimsky
and D.J. Kurz).

2
Heterogeneity of Endothelial Cells

Endothelia differ on the basis of their intercellular junctions and can accord-
ingly be classified as ‘continuous’, ‘fenestrated’ or ‘discontinuous’ (Benett et al.
1959). In addition, endothelial cells may differ in terms of morphology, medi-
ator release, antigen presentation or stress responses. Endothelial phenotypes
not only differ between species and different organs, but also between con-
secutive vascular sections. For example, in the kidney, the endothelium is
fenestrated in peritubular capillaries, discontinuous in glomerular capillaries
and continuous in other regions (Risau 1995). Individual endothelial cells can
even differ from the immediately adjacent endothelium, e.g. pacemaker cells
that generate interendothelial calcium waves (Ying et al. 1996).

Two putative causes of this heterogeneity have been proposed and are cur-
rently a focus of intense study and controversial discussion. The genetic (in-
trinsic) hypothesis predicts that specific phenotypes are predetermined before
endothelial cells migrate from the mesoderm to their specific localisation
within the vascular system. This theory is supported by cell lineage studies
showing distinct embryonic origins for coronary endothelium and the endo-
cardium (Mikawa and Fischman 1992; Reese et al. 2002). Moreover, arterial and
venous endothelial cells express differing profiles of molecules of the ephrin,
neuropilin, notch and BMX family early in development, i.e. prior to the onset
of circulation and therefore independent of haemodynamic stress (Aird 2003;
le Noble et al. 2004).

In contrast, the environmental (extrinsic) hypothesis maintains that site-
specific properties of endothelial cells are governed by microenvironmental
factors such as soluble mediators, cell-cell and cell-matrix interactions, partial
pressures of oxygen or carbon dioxide, or mechanical forces. Plasticity of the
endothelium is suggested by transplantation studies in which endothelial cells
were shown to adapt to local environmental cues. For example, when avascu-
lar tissue from quail brain is transplanted into the coelomic activity of chick
embryos, the chickendothelial cells that vascularise thequail brain formacom-
petent blood-brain barrier, whereas when avascular embryonic quail coelomic
grafts are transplanted into embryonic chick brain, the chick endothelial cells
that invade the mesenchymal tissue grafts form leaky capillaries and venules
(Stewart and Wiley 1981). Implantation of astrocytes into the anterior chamber
of the eye or into the chick chorioallantoic membrane induces the formation of
tight, non-leakyvessels characteristic of the central nervous system(Janzer and
Raff 1987). Auricular blood vessels acquire a cardiac endothelial phenotype in
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the presence of ventricular myocytes (Aird et al. 1997). Moreover, plasticity of
endothelial cells is not restricted to organ-specific phenotypes but also applies
to arterial-venous differentiation. By implantation of quail arteries and veins
into chick embryos, it was shown that arterial endothelial cells can colonise
veins and vice versa, and can adapt their gene expression profile accordingly
(Moyon et al. 2001a; Othman-Hassan et al. 2001). Therefore, phenotypic het-
erogeneity of the endothelium is presumably the result of a combination of
genetic and environmental factors.

2.1
Heterogeneity Between Different Species

Although endothelia and their ability to react to chemical and physical stim-
uli are ancestral phenomena present in the different classes of vertebrates
(Miller and Vanhoutte 1986), endothelial phenotypes may vary considerably
between species in terms of ultrastructure (Rhodin 1968; Higashi et al. 2002),
metabolism (Kjellstrom et al. 1987) or signalling mechanisms (Miller and Van-
houtte 1986; Graier et al. 1996). In addition, endothelial cells from different
species are heterogeneous at the level of constitutive expression of intracellular
as well as cell surface molecules such as the B1 kinin receptor (Wohlfart et al.
1997), major histocompatibility complex class II antigens (Houser et al. 2004)
or selenoproteins (Miller et al. 2002). Like all forms of endothelial heterogene-
ity, interspecies variability may limit the uncritical transferability of findings
from animal experiments or animal cell culture systems to the human situa-
tion or vice versa. Moreover, in xenotransplantation, interspecies differences
not only contribute to acute vascular rejection reactions (Dorling 2003), but
physiological vascular functions within the graft may also differ from vascular
responses in the host tissue.

2.2
Heterogeneity Between Different Organs

2.2.1
Morphological Heterogeneity

Endothelial phenotypes within a single organism can be differentiated on the
basis of morphology and permeability, as illustrated in Fig. 1. In continuous
capillaries, luminal and abluminal plasma membranes fuse only at the tight
junctions, which represent the predominant pathway for the exchange of water,
glucose, urea and other hydrophilic molecules. Accordingly, the structure of
individual tight junctions is the major determinant of vascular permeability
in this type of endothelium and accounts, for example, for the tight blood-
brain barrier of the brain microcirculation (Ballabh et al. 2004). Fenestrated
capillaries are characterised by pores 50–60 nm in diameter which are sealed
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Fig. 1 Different types of endothelial cells, their distribution to different organs and specific
functional roles (bm, basal membrane; tj, tight junction; f, fenestrae; p, pores)

by a diaphragm. Consistent with their presence at sites of filtration, secretion,
and absorption, fenestrated capillaries are more permeable to low-molecular-
weight hydrophilic molecules and water (Adeagbo 1997).

Since fenestrated endothelium is located in close proximity to epithelia,
interaction between the two cell types has been proposed to trigger differen-
tiation and formation of fenestrae (Risau 1995). Accordingly, co-cultivation
of endothelial cells on extracellular matrix derived from a renal epithelial
cell line resulted in formation of diaphragmed fenestrations (Milici et al.
1985). Vascular endothelial growth factor (VEGF) may be a relevant paracrine
signal in this context. Typically, VEGF is highly expressed in epithelial cells
neighbouring fenestrated endothelia (Breier et al. 1992), and VEGF can rapidly
induce fenestrae in capillaries in vivo (Roberts and Palade 1995, 1997).

Discontinuouscapillaries exhibit large inter- and intracellulargaps0.1–1 μm
in diameter, which are commonly also referred to as fenestrae yet lack a di-
aphragm. The basal membrane is either absent or involved in the gaps, which
are not fixed structures, but can undergo dynamic changes. In hepatic sinu-
soids, endothelial gaps are clustered in sieve plates that control the exchange
of fluids, solutes and macromolecules between the sinusoid and the space of
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Disse (Braet and Wisse 2002). Treatment with actin filament-disrupting drugs
can induce a substantial and rapid increase in the number of gaps, indicating
regulation of the porosity of the endothelial lining by the actin cytoskeleton
(Braet et al. 1996). In addition, individual gaps can contract or dilate, depend-
ing on the calcium concentration within the liver sinusoidal endothelial cells.
Addition of a calcium ionophore induces contraction of endothelial gaps, but
chelators of extracellular calcium or calmodulin antagonists suppress the re-
sponse (Oda et al. 2000). Serotonin-induced contraction of gaps is associated
with phosphorylation of myosin light chain kinase, suggesting a crucial role of
the calcium-calmodulin-actomyosin cascade in the regulation of gap diameters
(Gatmaitan et al. 1996).

2.2.2
Specific Vascular Beds

In addition to morphological differences, endothelial phenotypes from differ-
ent sites of the vascularbedvary significantlywith respect toprotein expression
and cellular function and are highly adapted to the specific requirements of
the individual organ. In addition to the above-mentioned hepatic sinusoidal
endothelium, three prominent examples of such organ-specific differentiation
are discussed here, i.e. the pulmonary endothelium, the blood-brain barrier,
and the high endothelium present in postcapillary venules of peripheral lymph
nodes and Peyer’s patches.

2.2.2.1
Pulmonary Endothelium

The pulmonary microcirculation is unique in that it accommodates 100% of
the cardiac output, maintains a low pressure and resistance system, and fa-
cilitates exchange of blood gases with the ambient air. As with almost every
vascular bed, endothelial cells in the lung express a unique repertoire of genes
and gene products, including lung endothelial cell adhesion molecule-1 ex-
pressed exclusively in the pulmonary circulation (Zhu et al. 1991; Elble et al.
1997), endothelial-specific molecule-1 (Lassalle et al. 1996; Bechard et al. 2000)
and DANCE (developing arteries and neural crest EGF-like) (Jean et al. 2002)
present in lung, kidney and the gastrointestinal tract or the spleen, respec-
tively, or membrane dipeptidase, which is predominantly expressed in lung
and kidneys (Rajotte and Ruoslahti 1999). By infusion of radiolabelled anti-
bodies, Panes and co-workers (1995) determined regional differences in the
constitutive expression of intercellular adhesion molecule-1 (ICAM-1), which
mediates the adhesion of circulating leucocytes by binding to β2-integrins. Ra-
dioactivity in the lung exceeded values from other organs by more than 30-fold,
and even after correction for vascular surface area, ICAM-1 expression was
most prominent in the lung (Panes et al. 1995). Accordingly, ICAM-targeting



Normal Endothelium 7

can be applied successfully for drug delivery to the pulmonary endothelium
(Murciano et al. 2003). Similar to ICAM-1, expression of the adhesion molecule
P-selectin is highest in the lung as compared to other organs (Eppihimer et al.
1996) and is predominantly localised at microvascular bifurcations (Kuebler
et al. 1999). The vitronectin receptor αvβ3 integrin mediates adhesion of circu-
lating platelets (Gawaz et al. 1997), but its expression is generally considered to
be confined to proliferating and tumour vessels (Brooks et al. 1994). However,
in the lung, αvβ3 integrin is constitutively present on both the luminal and the
abluminal face of the microvascular endothelium (Singh et al. 2000). The high
constitutive expression of adhesion molecules on the pulmonary endothelium
may be closely linked to the large pool of intravascular leucocytes which are
physiologically marginated in pulmonary arterioles, venules and particularly
the dense capillary network of the lung (Kuebler et al. 1994, 1997). Considering
the high exchange rate between the alveolar space and the ambient environ-
ment, a pro-inflammatory endothelial phenotype in the lung may be regarded
as a phylogenetically beneficial defence mechanism (Kuebler and Goetz 2002).

In addition to the expression of surface markers, pulmonary endothelial
cells exhibit unique functional attributes, including signal transduction and
barrier properties. However, these functional differences exist not only be-
tween the endothelium of the pulmonary and the systemic circulation, but
also between different blood vessel types in the lung. Studies combining vas-
cular casting and electron microscopy suggest that lung macrovascular en-
dothelium is derived from the pulmonary truncus by angiogenesis, whereas
the microvascular endothelium is derived from blood islands formed through
vasculogenesis in the mesenchyme of the embryonic lung before the in-growth
of the pulmonary artery (deMello et al. 1997; deMello and Reid 2000). The spe-
cific phenotype of lung macro- and microvascular endothelial cells is even
preserved when cells are isolated and cultured under identical conditions. It
was shown that microvascular endothelial cells still express more vascular
endothelial (VE)-cadherin and less endothelial nitric oxide synthase (eNOS)
than endothelial cells isolated from the pulmonary artery (Stevens et al. 2001),
and both phenotypes can be differentiated based on the binding of various
lectins (King et al. 2004). These data support the notion that endothelial het-
erogeneity is not the sole result of environmental factors, but is also in part
attributable to programmed determinants. This heterogeneity is also evident
at the functional level. For example, infusion of the plant alkaloid thapsigar-
gin, which activates calcium entry through store-operated calcium channels,
causes perivascular oedema in pre- and postcapillary vessels, but does not al-
ter capillary barrier function (Chetham et al. 1999). Segmental measurements
of hydraulic conductivity confirmed that the pulmonary microcirculation is
more restrictive to protein and water flux than is the macrocirculation (Parker
and Yoshikawa 2002). Furthermore, lung microvascular endothelial cells grow
faster than their macrovascular counterparts (Stevens 2002). This site-specific
functional heterogeneity can be partly attributed to phenotypically distinct
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signal transduction cascades. As compared to lung macrovascular endothelial
cells, the magnitude of store-operated calcium entry is substantially reduced
in endothelial cells of the pulmonary microcirculation (Stevens et al. 1997;
Kelly et al. 1998). Furthermore, lung microvascular endothelial cells possess
an intrinsic capacity to preserve intracellular cyclic adenosine monophos-
phate (cAMP) concentrations (Stevens et al. 1999) which enhances their bar-
rier function (Stevens et al. 2001). The larger store-operated calcium response
in macrovascular cells may be functionally linked to a shorter coupling dis-
tance between the apical plasmalemma and the endoplasmic reticulum in
endothelial cells of the pulmonary artery as compared to lung microvascular
endothelial cells (King et al. 2004). Dynamic rearrangements of endothelial
microtubules and the actin cytoskeleton may control the intracellular distri-
bution of the endoplasmic reticulum and have therefore been implicated in
this scenario (Wu et al. 2001). Of note, the segmental distribution of growth
and permeability responses is exactly opposite in the bronchial circulation, in
which macrovascular endothelial cells grow faster and exhibit a more restric-
tive barrier function, illustrating again the site-specificity of the endothelial
phenotype (Moldobaeva and Wagner 2002).

2.2.2.2
Blood-Brain Barrier

The endothelium of the cerebral microvasculature at the interface between
bloodand the central nervous system(CNS) exhibits specificprotectiveproper-
ties that strictly regulate the infiltration of plasma components and circulating
cells (Fig. 2).

For this purpose, endothelial cells of the blood-brain barrier differ from
other endothelial phenotypes by the absence of fenestrations, the formation
of extensive tight junctions and sparse pinocycotic vesicular transport (Reese
and Karnovsky 1967; Brightman and Reese 1969). Tight junctions consist of
three integral membrane proteins, namely, claudin, occludin and junction ad-
hesion molecules, and several cytoplasmic accessory proteins including ZO-1,
ZO-2, ZO-3, cingulin and others. In endothelial tight junctions forming the
blood-brain barrier, claudins-1, -3 and -5 have been described (Morita et al.
1999; Liebner et al. 2000; Wolburg et al. 2003) as well as expression of occludin
(Papadopoulos et al. 2001), junctional adhesion molecule (JAM-1) and pe-
ripheral zonula occludens protein (ZO-1) (Dobrogowska and Vorbrodt 2004;
Vorbrodt and Dobrogowska 2004). Expression of occludin is much higher in
brain endothelial cells compared to non-neuronal tissues, suggesting that oc-
cludin may be a regulatory protein reducing paracellular permeability (Hirase
et al. 1997). This notion is supported by several facts. First, the expression of
occludin inversely correlates with the leak of contrast dye in human brain tu-
mours (Papadopoulos et al. 2001). Second, brain oedema formation following
intracarotid infusion of hyperosmotic arabinose solution is closely associated
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Fig. 2 Schematic drawing of the blood-brain barrier. Upper left panel: Perivascular astro-
cytic end feet forming “rosette”-like structures on the abluminal brain capillary surface.
Upper right panel: Enlarged view of transmembrane and associated intracellular proteins of
interendothelial tight junctions. Claudin, occludin and junctional adhesion molecule (JAM)
are the transmembrane proteins, and peripheral zonula occludens proteins (ZOs, cingulin
andothers) are cytoplasmicproteinswhich linkclaudin to thecytoskeleton.Lowerpanel: En-
larged view of important transport mechanisms of the blood-brain barrier. Na+-K+-ATPase
is predominantly localised at the abluminal membrane, but may also be present on the lumi-
nal surface (Manoonkitiwongsa et al. 2000). The Na+-independent glucose transporter Glut-
1 is expressed in ∼4-fold greater abundance on the abluminal as compared to the luminal
membrane (Farrell and Pardridge 1991). Na+-dependent (grey) and -independent (white)
transport systems regulate influx and efflux of amino acids (aa) across the blood-brain
barrier. Active efflux transport involves the sequential action of an energy-independent
carrier and an energy-dependent (black) transporter such as P-glycoprotein (Pgp)

with reduced expression of occludin and its spatial disorganisation from the
junctional complexes (Dobrogowska and Vorbrodt 2004). Third, differential
expression of occludin may also account for regional heterogeneities in the
function of the blood-nerve barrier.

Thedorsal root ganglionof theperipheral nervous systemconsists of anerve
fibre-rich area with a relatively tight blood-nerve barrier and a cell body-rich
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areawithconsiderable leakage.Ofnote, endothelial cells in the tightnervefibre-
rich area express occludin in addition to claudin-5, whereas those in the cell
body-rich area express claudin-5 but no occludin (Hirakawa et al. 2004). In ad-
dition to occludin, claudin-5 has been implicated in the regulation of paracellu-
lar conductance. Expression of claudin-5 in a renal epithelial cell line increased
transepithelial resistance fivefold and selectively decreased the permeability
to monovalent cations (Wen et al. 2004). Claudin-5-deficient mice have mor-
phologically normal brain microvessels with no signs of bleeding or oedema,
but a size-selective loosening of the blood-brain barrier against molecules
of less than 800 daltons (Nitta et al. 2003). However, in two inflammatory
disorders, experimental autoimmune encephalitis and human glioblastoma
multiforme, formation of brain oedema was solely associated with a selective
loss of claudin-3, whereas other tight junction proteins remained unchanged
(Wolburg et al. 2003). Hence, differential expression of tight junction molecules
may specifically regulate blood-brain barrier function in response to differ-
ent stimuli. Selective ion permeability may be mediated by different claudins
forming paracellular pores or channels (Tsukita et al. 2001). Likewise, removal
of single claudins may cause a size-dependent increase in permeability by ac-
tivation of mechanisms that mediate size-selective paracellular diffusion, e.g.
by association with occludin (Matter and Balda 2003).

The presence of a well-developed system of tight junctions is probably
responsible for the high degree of polarisation of the brain capillary endothe-
lium which is required for the directed transport of solutes between the blood
and the nervous system (Joo 1996). Biochemical studies of brain capillary
endothelial cells resulted in the identification of two plasma membrane frac-
tions, a light luminal fraction containing alkaline phosphatase and γ-glutamyl
transpeptidase, and a heavier abluminal fraction containing Na+-K+-ATPase
and 5′-nucleotidase (Betz et al. 1980). Whereas small lipophilic substances such
as O2 and CO2 easily diffuse across the blood-brain barrier, small polar solutes,
including the brain’s primary metabolic substrate glucose, require specific car-
riers. Brain capillary endothelial cells express high amounts of the sodium-
independent glucose transporter Glut-1 (Mueckler et al. 1985; Pardridge et al.
1990). Asymmetric distribution of Glut-1, as well as other cytoplasmic and
membrane-bound enzymatic processes, warrants energy-independent glucose
transport at the blood-brain barrier and thus allows the brain to meet its high
metabolic demand in the face of varying plasma glucose levels (Farrell and
Pardridge 1991; McAllister et al. 2001).

Brain capillary endothelial cells also exhibit an extensive set of amino acid
transporters, including the Na+-independent systems L and y+ for large neu-
tral and cationic amino acids (Stoll et al. 1993; Sanchez del Pino et al. 1995).
In addition, several Na+-dependent carriers such as system A (Betz and Gold-
stein 1978), system ASC (Hargreaves and Pardridge 1988), system N (Lee et al.
1998), and system Na+-LNAA (O’Kane and Hawkins 2003) facilitate the trans-
port of neutral amino acids at the blood-brain barrier. The exclusive location of
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these carriers in the abluminal membrane of brain endothelial cells may con-
tribute importantly to the maintenance of low amino acid concentrations in the
cerebrospinal fluid, which-with the exception of glutamine-are approximately
10% of those in plasma (McGale et al. 1977). Some of these Na+-dependent
transport systems are regulated by oxoproline, an intracellular product of γ-
glutamyl amino acids which are formed through the transfer of the γ-glutamyl
moiety from extracellular glutathione to acceptor amino acids at the luminal
membrane of the endothelium (Orlowski and Meister 1970). The γ-glutamyl
cycle may thus regulate the exit of amino acids from brain to blood, thereby
protecting the brain against elevated amino acid levels (Lee et al. 1996). Fur-
thermore, specific carriers mediate the efflux of potentially toxic metabolites
from the CNS. Active extrusion of glutamine and glutamate from the brain
via Na+-dependent transport systems on the abluminal membrane and fa-
cilitative transport on the luminal side may provide an essential mechanism
for removal of nitrogen and nitrogen-rich amino acids from brain (Lee et al.
1998). mdr1a P-glycoprotein is an energy-dependent efflux carrier at the lu-
minal membrane of brain endothelial cells which transports a wide variety of
low-molecular-weight molecules out of the brain to the circulation and confers
the multidrug-resistance phenotype on brain capillaries (Thiebaut et al. 1989).
Disruption of the mdr1a P-glycoprotein gene results in elevated drug levels in,
and decreased drug elimination from, the brain (Schinkel et al. 1994). Hence,
active efflux transporters play a major role in protecting the brain from xeno-
biotics and are currently a major target for interventional therapies aimed at
increasing drug delivery to the brain (Pardridge 2003).

Regulation of blood-brain barrier integrity is considered to depend on jux-
taposed astrocytes (Davson and Oldendorf 1967). The endfeet of astrocytic glia
form a lacework of fine lamellae closely apposed to the outer surface of the en-
dothelium. This structural arrangement facilitates astrocytic-endothelial com-
munication and warrants free diffusion between the endothelium and the brain
parenchyma (Kacem et al. 1998). In cell culture, cerebral endothelial cells lose
their blood-brain barrier characteristics, but maintain them when co-cultured
with astrocytes or in the presence of astrocyte-conditioned media (Prat et al.
2001; Abbott 2002). Transitory focal astrocyte loss in the inferior colliculus by
intraperitoneal administration of 3-chloropropanediol results in a loss of oc-
cludin, claudin-5andZO-1 fromthesitesof tight junctioncomplexeswhichcor-
related with focal vascular leak of high molecular weight markers (Willis et al.
2004). Tight junction protein expression returns when astrocytes repopulate
the lesion. In contrast, removal of astrocytes from a co-culture with brain en-
dothelial cells increases the permeability of the endothelial monolayer, yet does
not result in visible changes of the molecular composition of endothelial tight
junctions (Hamm et al. 2004). Although the reasons underlying these contra-
dicting results in vitro and in vivo remain to be elucidated, both studies suggest
that direct astrocyte-endothelial contact or paracrine release of short-range
diffusible factors by glial cells determine the cerebral endothelial phenotype.
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2.2.2.3
Endothelium of High Endothelial Venules

The lymphatic microvasculature plays a central role in the homing of naive B-
and T-lymphocytes, which emigrate from the blood through high endothelial
venules (HEVs) of peripheral lymphatic tissues and then recirculate through
efferent lymph and the thoracic duct back to blood (Gowans and Knight 1964;
Marchesi and Gowans 1964) until they find their cognate antigen (Cahill et al.
1976). HEVs of the peripheral lymph nodes facilitate this route of lympho-
cyte traffic by specific morphological and functional properties. The plump,
almost cuboidal endothelial cells are linked by discontinuous, ‘spot-welded’
tight junctions (Anderson and Shaw 1993), which presumably facilitate the
passage of large numbers of emigrating lymphocytes (Girard and Springer
1995). Most importantly, HEVs constitutively and exclusively express a group
of adhesion molecules facilitating lymphocyte homing. The first step of this
adhesion/emigration cascade is the tethering and rolling of naive T and B
lymphocytes along the wall of HEVs. This process is mediated by interaction
of L-selectin (CD62L) expressed on the lymphocyte with O-linked glycosy-
lated carbohydrate moieties (Warnock et al. 1998). These ligands, collectively
termed the peripheral lymph node addressin (PNAd), were identified by the
monoclonal antibody MECA-79, which stains all HEVs within lymphoid tis-
sues yet does not interact with postcapillary venules or large vessels in spleen,
thymus or non-lymphoid tissues (Streeter et al. 1988; Michie et al. 1993).
MECA-79 prevents lymphocyte adhesion to HEVs in vitro and inhibits lym-
phocyte emigration through HEVs in vivo (Streeter et al. 1988; Michie et al.
1993). L-selectin ligands in HEVs contain fucose, sialic acid and sulphate and
include several HEV glycoproteins such as glycosylation-dependent cell ad-
hesion molecule 1 (GlyCAM-1) (Lasky et al. 1992), CD34 (Baumheter et al.
1993) and mucosal addressin cell adhesion molecule 1 (MadCAM-1) (Berg
et al. 1993). None of these glycoproteins is specific for HEV, e.g. MadCAM-1
is expressed in cultured brain-derived endothelial cells (Berg et al. 1993),
and CD34 is widely expressed on endothelial cells in most organs (Puri et al.
1995). Therefore, binding of MECA-79 and L-selectin-mediated lymphocyte
homing crucially depend upon post-translational modifications of these gly-
coproteins.

Lymph node-specific sulphation (van Zante et al. 2003; Uchimura et al. 2004)
and O-linked glycosylation (Smith et al. 1996; Lowe 2002) of the carbohydrate
moieties are required for efficient binding of L-selectin, and the tissue-specific
role of glycosyl- and sulphotransferases is currently a topic of intense study.
In addition, some lymph node venules seem to express L-selectin ligands that
are not MECA-79 reactive (M’Rini et al. 2003; van Zante et al. 2003). HEVs
constitutively express the CC-chemokine ligand 21 (CCL21), which binds to
the CC chemokine receptor 7 (CCR7) on T cells, resulting in the activation of
T cell integrins, and thus facilitating firm arrest of rolling T cells (Campbell
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et al. 1998; Gunn et al. 1998; Stein et al. 2000). A second CCR7 agonist, CCL19,
is not expressed by HEVs, but by lymphatic endothelium and interstitial cells
in the lymph node. However, HEV may activate rolling T cells by transcytosis
and luminal expression of CCL19 (Baekkevold et al. 2001). Furthermore, HEV
expression of CXCL12 and interaction with CXCR4 may contribute to T and B
cell homing (Okada et al. 2002).

Interruption of afferent lymphatic flow results in partial loss of the charac-
teristic HEV morphology and vascular addressin expression, suggesting that
local environmental factors may at least partially regulate the specialisation of
the HEV phenotype (Mebius et al. 1991, 1993).

2.3
Heterogeneity Between Arterial and Venous Endothelium

Endothelial cells from arterial and venous vascular sites differ in terms of
morphology as well as function. Endothelial cells in terminal arterioles are
generally elongated, reaching a width-to-length ratio of 1:6.8 in rat tracheal
mucosa, whereas capillary (1:4.7) and particularly venular (1:2.4) endothe-
lial cells are rounder (McDonald 1994). Endothelial-dependent relaxations are
generally more pronounced in arteries than in corresponding veins (Seidel
and LaRochelle 1987). Since most veins respond well to nitrovasodilators, the
heterogeneity of endothelium-dependent responses appears to be determined
by the endothelium rather than by the smooth muscle (De Mey and Vanhoutte
1982). At the microvascular level, shear stress-induced, nitric oxide (NO)-
mediated dilatation is more pronounced in arterioles compared to venules of
the porcine epicardium (Kuo et al. 1991, 1993). This is consistent with a higher
basal expression of NO synthase in arteriolar vs venular endothelium (Nichols
et al. 1994). Leucocyte-endothelial interactions, on the other hand, are pre-
dominantly confined to the venular compartment (Cohnheim 1867) and only
present in arterioles in severe tissue injury (Mayrovitz et al. 1980).Anexception
is the pulmonary microcirculation, in which leucocyte rolling and adhesion
are not uncommon in arterioles, yet less pronounced than in venules (Kuebler
et al. 1994). The preferential venous distribution of leucocyte-endothelial in-
teractions was long attributed to higher flow velocities and thus to higher shear
rates in arterioles, preventing the binding of leucocyte adhesion molecules to
their endothelial ligands. Although high shear rates reduce leucocyte rolling
in venules, reduced shear rates do not cause leucocyte rolling in arterioles,
indicating that arteriolar and venular endothelial phenotypes differ with re-
spect to adhesion molecule expression (Ley and Gaehtgens 1991). Indeed, most
adhesion molecules, including P-selectin, E-selectin and ICAM-1, are found
to be exclusively or preferentially expressed on venular endothelium (Cotran
et al. 1986; McEver et al. 1989; Iigo et al. 1997).

Differences in haemodynamic factors were generally held responsible for
the development of these different phenotypes. In vitro studies suggest that
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endothelial ICAM-1 expression may be upregulated by reduced shear stress
(Nagel et al. 1994), a finding that is in accordance with the fact that pulmonary
arterioles have low shear rates, express ICAM-1 and show considerable inter-
action of circulating leucocytes with the endothelium (Kuebler et al. 1994; Sato
et al. 2000). The notion that haemodynamic factors govern the differential
arterial and venous endothelial phenotypes is also supported by the observa-
tion that endothelial cells of vein grafts transplanted into the arterial system
undergo morphological and cytoskeletal changes characteristic for arterial
endothelium (Yoshida and Sugimoto 1996). However, the recent discovery of
molecules that are specifically expressed in arterial or venous endothelial cells
during early development prior to the onset of circulation has challenged this
view.

Arterial endothelial cells of chick, mouse and zebrafish selectively ex-
press ephrin-B2 (Wang et al. 1998; Adams et al. 1999), neuropilin 1 (Herzog
et al. 2001), Bmx tyrosine kinase (Rajantie et al. 2001) and members of the
Notch signalling pathway including Notch 3, DLL4 and gridlock (Shutter et al.
2000; Zhong et al. 2000; Villa et al. 2001). Other gene products expressed
predominantly in arterial endothelium include tyrosine phosphatase-μ and
endothelial per-arylhydrocarbon receptor-nuclear translocator-SIM domain
protein-1 (EPAS-1) (Tian et al. 1997; Bianchi et al. 1999). On the other hand,
the ephrin-B2-receptor EphB4 is specific for the venous endothelium (Wang
et al. 1998; Gerety et al. 1999), and several other molecules-including neu-
ropilin 2 and the angiopoietin receptor tie-2-are preferentially expressed in
veins in avian embryos (Herzog et al. 2001; Moyon et al. 2001b). The fact that
these expression profiles are evident even before the output of the first em-
bryonic heart beat suggests that segment-specific expression of gene products
is genetically predetermined and may regulate arterial-venous differentia-
tion, patterning and cell fate (Wang et al. 1998; Torres-Vazquez et al. 2003).
Accordingly, cultured endothelial cells of arterial origin differ substantially
from those of the venous circulation and maintain phenotypical differences,
e.g. in protein synthesis in the absence of haemodynamic stress (Wagner
et al. 1988).

In spite of preset genetic programs, endothelial cells show a high degree
of plasticity and are able to adjust their genetic make-up, depending on local
haemodynamics (le Noble et al. 2005). This was recently demonstrated by
elegant flow manipulation experiments in the chick embryo yolk sac (le Noble
et al. 2004). After ligation of the right vitelline artery, part of the arterial
system was perfused in a retrograde manner, thus forming a new venular
tree. Arterial venularisation resulted in rapid downregulation of the arterial
markers ephrin-B2 and neuropilin 1, followed by a subsequent upregulation
of the venous markers neuropilin 2 and Tie-2. Hence, different segmental
endothelial phenotypes seem to originate from the combined effects of genetic
imprinting and endothelial plasticity in response to haemodynamic factors.
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2.4
Heterogeneity Between Adjacent Endothelial Cells

Recently, Ying and co-workers reported that even endothelial cells immedi-
ately adjacent to each other may exhibit differential signalling and functional
properties. Using fluorescence imaging in isolated-perfused lungs, they iden-
tified a specific subset of endothelial cells in pulmonary microvessels called
pacemaker cells (Fig. 3) with the unique ability to spontaneously generate os-
cillations of the intracellular calcium concentration (Kuebler et al. 2002; Ying
et al. 1996).

Calcium oscillations can be communicated to adjacent non-pacemaker cells,
thus generating interendothelial calcium waves travelling along the microvas-

Fig. 3 Pacemaker cells. Left panel: Sequential ratiometric images of a lung venular capillary
with endothelial cells loaded with the calcium-sensitive dye fura-2. A schematic drawing
(top left) outlines an endothelial pacemaker cell (white) located at the vessel bifurcation and
adjacent non-pacemaker cells (blue). Images taken at 10-s intervals and colour-coded for the
intracellular calcium concentration ([Ca2+]i) show the spontaneous generation of a calcium
oscillation in the pacemaker cell and its propagation along the vascular wall. Right panel:
Tracings of the intracellular calcium concentration ([Ca2+]i) in an endothelial pacemaker
(top) and an adjacent non-pacemaker cell (bottom). Calcium oscillations are synchronous
in both cells, but delayed by ∼10 s in non-pacemaker as compared to pacemaker cells. The
gap junction uncoupler heptanol blocks interendothelial propagation, but not generation
of pacemaker oscillations. Methods and experimental protocol as described in Kuebler et al.
(1999) and Ying et al. (1996)
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cular wall at a speed of approximately 5 μm/s. Pacemaker cells are preferen-
tially located at microvascular branch points. As compared to adjacent non-
pacemaker cells, they exhibit increased vesicular trafficking and expression
of P-selectin as well as a higher density of mitochondria (Kuebler et al. 1999;
Parthasarathi et al. 2002). However, the molecular basis underlying the unique
ability of pacemaker cells to generate calcium oscillations remains to be elu-
cidated. Of note, intercellular calcium waves are absent in lung capillaries of
rats with congestive heart failure, which are simultaneously characterised by
an impaired control of the vascular lumen (Kuebler 2005). Hence, pacemaker-
generated intercommunication between adjacent endothelial cells may play an
important role in co-ordinating spatial and temporal signalling in the lung
vasculature and homogenise changes in tone or permeability.

3
Glycocalyx and Endothelial Surface Layer

3.1
Endothelial Glycocalyx

About 60 years ago, Danielli (1940) and Chambers and Zweifach (1947) intro-
duced the concept of a thin non-cellular layer on the endothelial surface and in
the inter-endothelial clefts (endocapillary layer) to explain the results of stud-
ies on endothelial permeability. Since then, many studies have investigated
specific molecules residing in the endothelial membrane and have shown that
the endothelial plasma-membrane is decorated by a large variety of extracel-
lular domains of membrane-bound molecules. This coat includes glycolipids,
glycoproteins, and proteoglycans and constitutes the endothelial glycocalyx in
a strict sense (Fig. 4).

Most electron microscopic studies indicate the presence of a glycocalyx
with a thickness in the range of 20 nm (Luft 1966; Ito 1974). However, fixation
methods for electron microscopy are likely to lead to a collapse of gel-like
surface structures with a high water content (Sims and Horne 1993). This led
to the search for methods more capable of visualising the thickness of the
glycocalyx in situ (Baldwin and Winlove 1984; Sims et al. 1991; Clough and
Moffitt 1992; Rostgaard and Qvortrup 1997). The glycocalyx reported from
these studies showed an average thickness ranging from about 60 to 110 nm,
in line with the assumed length of typical glycoproteins and proteoglycans.

In these studies, larger projections into the vascular lumen (Baldwin and
Winlove 1984; Sims et al. 1991; Clough and Moffitt 1992) and filamentous plugs
composed of 20–40 filaments with a length of about 350 nm on the surface of
endothelial fenestrae (Rostgaard and Qvortrup 1997) were also reported. Such
structures may reflect hyaluronan (hyaluronic acid) anchored in the endothe-
lial plasma membrane, according the concept of Duling and co-workers (Henry
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and Duling 1999; Platts et al. 2003), or molecules bound reversibly and dynam-
ically to glycoproteins and proteoglycans of the glycocalyx (Pries et al. 2000).
While it is not possible based on the available information to distinguish be-
tween the different options, it appears helpful in order to avoid ambiguity and
confusion to restrict the term ‘endothelial glycocalyx’ to the glycolipids, gly-
coproteins, and proteoglycans which are integrated in the endothelial plasma
membrane (Pries et al. 2000; Hjalmarsson et al. 2004). In contrast, the much
thicker zone on the endothelial surface which exhibits mechanical and physico-
chemical properties which differ from those of the free-flowing plasma (which
includes the glycocalyx proper) was named the ‘endothelial surface layer’ (see
Sect. 3.2).

Prominent examples of molecular components of the glycocalyx are cell
adhesion molecules involved in immune reactions and inflammatory pro-
cesses, e.g. selectins and integrins (Springer 1990, 1995; Ley 1996; Esmon
et al. 1999; Pries et al. 2000; Hjalmarsson et al. 2004) and components of the
coagulation/fibrinolysis system, e.g. tissue factor or plasminogen (Shih and
Hajjar 1993; Rao and Pendurthi 1998). Despite the large amount of informa-
tion available on individual molecules, not much is known on the quantitative
composition of the glycocalyx, e.g. the relative number of different molecule
classes or the number of molecules per surface area. In a recent study, Squire
and co-workers (2001) used computer-assisted analysis of electron micrograph
images to analyse the structural arrangement of molecules in the glycocalyx.
They describe a three-dimensional fibrous meshwork with a fibre diameter of
about 10–12 nm and characteristic spacing between fibres of about 20 nm. They
also report that fibres may be arranged in clusters with a common inter-cluster
spacing of about 100 nm. According to a model analysis (Weinbaum et al. 2003),
this arrangement is in line with the barrier functions of the endothelium.

Probes like cationised ferritin, colloidal gold and a number of different
lectins have provided information on the distribution of specific chemical moi-
eties on the endothelial surface. Leabu et al. (1987) reported a rather homoge-
neous coating with cationic basic residues (e.g. amino groups) for rabbit aorta
and coronaries. In contrast, anionic sites were not distributed homogeneously.
About one-third of these were constituted by neuraminidase-cleavable sialic
acids. Results from critical electrolyte staining experiments indicated a major
contribution of carboxyl groups to surface charge while sulphate groups were
also present (Haldenby et al. 1994). Lectin binding experiments have demon-
strated the presence of a variety of saccharide components including sialyl [i.e.
N(O)-acetylneuramin (muramin) acid], mannosyl and galactosyl residues, as
well as N-acetylglucosamine and N-acetylgalactosamine (Milici and Porter
1991; Noble et al. 1996; Thurston et al. 1996).

Usually, the term ‘glycoprotein’ is reserved for those glycoconjugates in
which the carbohydrate side chains are short (about 2 to 15 sugar residues)
and branched (Montreuil et al. 1986; Leabu et al. 1987). Glycosylation of
proteins is a very regular event, and most of the known proteins at the en-
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dothelial surface (e.g. selectins, integrins, members of the immunoglobulin
superfamily, etc.) belong to this type. The carbohydrate components in this
extremely variable class of molecules are dominated by mannose, galactose,
N-acetylgalactosamine, glucose, N-acetylglucosamine and fucose, the charge
being provided mainly by sialyl residues.

In contrast, the more strictly defined class of proteoglycans is characterised
by long (about 200 sugar residues, stretched length about 80 nm) and un-
branched side chains. Of the proteoglycans associated with endothelial cells,
50%–90% are heparan sulphate proteoglycans (HSPGs) (Bauersachs et al. 1997;
Rosenberg et al. 1997) in which a varying number of heparan sulphate (HS) gly-
cosaminoglycan (GAG) side chains are attached to the core protein (Fig. 4). The
core proteins present at the luminal side of endothelial cells belong to the syn-
decan or glypican families. The transmembrane proteins syndecan-1, -2 and
-4 with molecular weights of 33, 23 and 22 kDa have a short, highly conserved
cytoplasmatic tail which contains four tyrosine residues at fixed positions
(Bernfield et al. 1992; Rosenberg et al. 1997) and may activate protein kinase
C upon homo-oligomerisation in a variety of cellular reactions. The variable
extracellular domain exhibits a dibasic cleavage site at which the proteoglycan
may be detached from the cell surface by proteases. GAG chains are attached
to 3–5 specific sites which mostly exhibit Ser-Gly(Ala)-X-Gly(Ala) motifs.

Glypicans 1 to 4 exhibit molecular weights ranging from 57 to 69 kDa and
are attached to the membrane by a glycosylphosphatidylinositol (GPI) anchor.
Therefore, they can be released from the endothelial surface by phospholipase

�
Fig. 4 The glycocalyx. Upper panel: Schematic drawing of typical components of the en-
dothelial glycocalyx. A glycoprotein and two types of heparan sulphate proteoglycans
(HSPG) belonging to the syndecan and glypican families are shown. Glycoproteins (e.g.
selectins, integrins, members of the immunoglobulin superfamily) are characterised by
short and branched carbohydrate side chains, while proteoglycans exhibit long unbranched
side chains. Lower panel: Protein core with a typical insertion sequence and basic structure
of the attached glycosaminoglycan chain. The multiple disaccharide units of this chain are
partially modified by specific epimerisation and sulphatation, resulting in typical sulphated
oligosaccharide motifs of the heparan sulphate type (lower half ) separated by unchanged
regions. The pentasaccharide shown represents the minimal specific binding site for an-
tithrombin III (ATIII), and is thuscrucial for theanticoagulatorypropertiesof theglycocalyx.
The stretched length of typical glycosaminoglycan side chains is in the order of 80 nm. The
red arrow shows a typical cleavage site for heparinase (heparin lyase, EC 4.2.2.7). Given at
the bottom is the basic structural unit of hyaluronic acid (stretched length up to several
micrometers) which also belongs to the glycosaminoglycan (GAG) family. Endothelial cells
produce hyaluronic acid (Suzuki et al. 2003), which may also be adsorbed from the plasma
(Saegusa et al. 2002) to endothelial surface receptors (McCourt et al. 1999; Nandi et al. 2000).
gly, glycine; ala, alanine; ser, serine; Xyl, xylose; Gal, galactose; GlcA, glucuronic acid; IdoA,
iduronic acid; IodA 2S, 2-O-sulphated iduronic acid; GlcNAc, N-acetylglucosamine; GlcNAc
6S, 6-O-sulphated N-acetylglucosamine; GlcNS 3S, 3-O-sulphated N-sulphated glucosamine;
GlcNS 3S 6S, 3-O- and 6-O-sulphated N-sulphated glucosamine
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activity. Their extracellular region, with 3–6 GAG attachment sites, has a com-
pact tertiary structure stabilised by 14 invariant cysteine residues (Rosenberg
et al. 1997). Based on the molecular weights and the corresponding number of
amino acids for the above-mentioned proteins (about 200 to 600), the stretched
length of the protein core would range from about 70 to 210 nm. Taking into
account the secondary and tertiary structures, the effective length of these
molecules is in the same range as the thickness of the glycocalyx as seen in the
electron microscope, i.e. 50–100 nm.

Glycosaminoglycansarebound to the respectiveattachment sites, preferably
with a typical tetrasaccharide (GlcA-Gal-Gal-Xyl) acceptor sequence. For syn-
decans, the specificity for HS is about 60%, the remaining sites being linked
to chondroitin sulphate (CS). The HS specificity of glypican is nearly 100%
(Rosenberg et al. 1997). Complex and not completely defined mechanisms in-
volving a number of highly specialised enzymes determine the structure of the
HS side chains. The process starts by the addition of a repetitive chain of about
100 disaccharide units (GlcA-GlcNAc) to the initial linkage tetrasaccharide.
Based on the number of saccharides, a length of about 80 nm can be estimated
for a typical HS side chain. The resulting copolymer is then modified by a com-
bination of epimerisation and sulphonisation, resulting in a large variety of HS
motifs with different functional properties.

The above-mentioned results indicate the presence of a fairly dense macro-
molecular coat on the endothelial surface with a thickness of about 50–100 nm,
consisting of numerous members of the very diverse class of glycoproteins and
a considerable amount of HSPGs (about 105–106 per cell). This coat is charac-
terised by a significant amount of negative charges at terminal sialyl residues
(glycoproteins) and in the sulphated domains of HS side chains (proteogly-
cans).

3.2
Endothelial Surface Layer

Experimental data on haematocrit levels in the microcirculation and on flow
resistance in microvessels led to the concept that the endothelial surface is
covered with a stationary layer (endothelial surface layer, ESL) which is much
thicker than the glycocalyx described above (Klitzman and Duling 1979; Kl-
itzman and Johnson 1982; Desjardins and Duling 1987; Duling and Desjardins
1987; Pries et al. 1990, 1994). In order to explain the observations, this layer
was assumed to exclude red cells and not to allow significant axial flow.

Measurementsof thevolumefractionof redbloodcells (‘micro-haematocrit’
or ‘tube haematocrit’, HT) in capillaries yielded values much lower than the re-
spective systemic haematocrit. For capillaries of the hamster cremaster muscle,
Klitzman and Duling (1979) reported HT values of only about 10% at a systemic
haematocrit (HSYS) of 53%, i.e. HT/HSYS = 0.19. This exceeds by far the haema-
tocrit reduction which is to be expected on the basis of the Fahraeus effect
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(Albrecht et al. 1979) which describes the relationship between the micro-
haematocrit, HT and the discharge haematocrit HD (which would be obtained
if the blood flowing through the tube was collected at the outflow end; Gold-
smith et al. 1989). The reduction of HT relative to HD results from the fact
that red cells preferentially travel in axial regions of the microvessels and thus
the mean red cell velocity (Vrbc) exceeds the mean blood velocity (Vmean).
According to experimental data, the HT/HD level for capillary-sized vessels at
typical discharge haematocrits varies between about 0.6 and 0.8 (Albrecht et al.
1979; Barbee and Cokelet 1971).

Thus the Fahraeus effect cannot explain the observed HT/HSYS levels if it
is assumed that the discharge haematocrit does not differ substantially from
the systemic haematocrit. Distribution of plasma flow and red cell flow in
microvascular networks leads to a reduction of mean discharge haematocrit
relative to the systemic haematocrit (network Fahraeus effect; Pries et al.
1986). However, this effect is relatively small. In contrast, a stationary layer
on the endothelial surface from which red cells are excluded could explain
much stronger reductions of micro-haematocrit values. Accordingly, Klitzman,
Duling and Desjardins (Klitzman and Duling 1979; Duling and Desjardins
1987) hypothesised that a slow-moving plasma layer with a thickness in the
order of 1–1.2 μm was responsible for the low capillary haematocrits observed
in their studies.

Additional evidence for the presence of a thick stationary layer on the en-
dothelial surface came frommeasurements andpredictionsofflowdistribution
and flow resistance in microvascular networks (Pries et al. 1990, 1994, 1997).
Mathematical flow models based on observed network structures were used
to predict flow velocities in individual vessel segments. If values for appar-
ent viscosity as derived from in vitro studies with blood-perfused glass tubes
(Pries et al. 1992) were used, the predictions did not agree with experimental
observations. However, experimental data could be reconciled with the theo-
retical predictions if a stationary plasma layer on the endothelial surface with
a thickness of about 1.1 μm was assumed (Pries et al. 1994). The same was true
for the comparison of experimental determinations of pressure drop across the
complete microvascular networks with respective model simulations (Fig. 5):
Based on in vitro viscosity findings, an overall pressure drop of only about
24 mmHg was predicted. Assuming the presence of a thick endothelial sur-
face layer (1.1 μm) the pressure drop increased to 54 mmHg, close to the
experimental value of 62 mmHg (Pries et al. 1994).

For both the haematocrit and the flow/resistance-based approach, it was
shown that discrepancies between experimental findings and theoretical ex-
pectations not assuming a thick endothelial surface layer could be reduced
by microinfusion of heparinase, which cleaves sugar side chains from pro-
teoglycans and thus partially degrades the cell-bound glycocalyx. Heparinase
treatment led to an increase of micro-haematocrit (Desjardins and Duling
1990) and to a decrease in microvascular flow resistance (Pries et al. 1997).
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Fig. 5 Pressure drop and flow resistance in microvascular networks. The schematic drawing
on the left shows the experimental set-up. Pressures were measured in the feeding arteriole
and the draining venule of the network. In addition, the volume flow into the network
was derived from flow velocity and diameter of the feeding arteriole to allow calculation
of flow resistance. The upper right panel gives values for pressure differences calculated
for three networks of the rat mesentery with a mathematical flow simulation using the
in vitro viscosity law (left bar) and the in vivo viscosity law (middle bar) including the
assumption of an endothelial surface layer. (Modified after Pries et al. 1994). The right bar
gives the mean pressure drop determined by micropuncture before and after microinfusion
of heparinase, which cleaves carbohydrate side chains from the glycocalyx. The lower right
panel shows changes in flow resistance (mean±SE) upon micro-infusion of fluids with
different osmolality (Pries et al. 1998b) and heparinase. The degradation of the endothelial
surface layer due to heparinase infusion led to a resistance decrease of up to about 20%.
According to model simulations, this corresponds to an average reduction in layer thickness
of about 0.55 μm (Pries et al. 1997). (Modified after Pries et al. 1997)
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These findings were consistent with a significant reduction in the thickness of
the endothelial surface layer by about 0.5–1 μm. Direct evidence for the pres-
ence of an ESL was obtained by experiments in which the free-flowing plasma
was fluorescently stained by fluorescein isothiocyanate (FITC)-dextran (Vink
and Duling 1996). In intravital investigations of hamster cremaster capillar-
ies, Vink and Duling found that the width of the labelled plasma column was
0.8–1.0 μm smaller than the diameter of the vessel (‘anatomical diameter’),
as judged from the estimated position of the endothelial cell surface. This
corresponds to a layer thickness of about 0.4–0.5 μm.

Recently, the introduction of microparticle image velocimetry (μPIV)
(Smith et al. 2003; Long et al. 2004) to intravital microscopy opened the pos-
sibility of directly assessing the hydrodynamically effective thickness of the
ESL in medium-sized microvessels (∼20–60 μm). For venules with diameters
between 30 and 50 μm the ESL thickness reported varied between about 0.5
and 0.8 μm. From the results of a clinical study with double tracer infusion
(indocyanine green, stained autologous erythrocytes), Rehm et al. (2001) es-
timated the pre-treatment total body volume of the ESL to be in the range of
720 ml. For a total endothelial surface area of about 350 m2, this corresponds
to an average layer thickness of about 2 μm, showing again that the ESL is
much thicker than the glycocalyx constituted by molecules directly bound to
the endothelial plasma membrane.

The presence of a thick layer on endothelial cells will have a powerful
effect on the microhaemodynamics at the endothelial surface. According to
the current concepts of the ESL, shear stress is transmitted to the endothelial
cell surface by the cell-bound molecules of the glycocalyx, while fluid shear
stresses on endothelial cell membranes are minimal (Secomb et al. 2001a). The
mechanotransduction in endothelial cells has been explained using a model
with two signalling pathways in response to fluid shear stress (Thi et al. 2004)
related to the torque effected on the endothelial cell via anchoring points of
the glycocalyx, and to focal adhesions and stress fibres.

The mechanical properties of the layer furthermore lead to a strong attenua-
tion of fast fluctuations in shear stress on the endothelial surface (Secomb et al.
2001a). The presence of the ESL tends to smooth the inner capillary surface
and thus reduces the importance of capillary irregularities for flow resistance.
It will also attenuate fast changes in shear forces experienced by red blood
cells traversing irregular capillaries (Secomb et al. 2002), which in turn may
increase red cell survival.

3.2.1
Composition of the Endothelial Surface Layer

Up to now, the precise chemical, structural and physical properties of the
endothelial surface layer are not known. However, the available studies contain
a number of observations which hint at certain properties and components:
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– The layer is substantially degraded by treatment with heparinase (Des-
jardins and Duling 1990; Pries et al. 1997; Vogel et al. 2000), indicating that
side chains of HS proteoglycans play a major role in the integrity of the ESL.

– The accessibility of the layer for macromolecules is substantially altered
by hyaluronidase treatment (Henry and Duling 1999), suggesting a central
involvement of hyaluronic acid in the ESL composition.

– The thickness of the layer is modified by changes in the plasma composition
due to infusion of artificial fluids (Vink and Duling 1996; Pries et al. 1998a;
Rehm et al. 2001; Long et al. 2004). Thus, components of the ESL seem to be
in a dynamic exchange with the free-flowing plasma.

– The layer excludes flowing red cells but not white cells or stationary red
cells (Vink and Duling 1996). After passage of a white cell, the layer recovers
after about 1 s.

– The difficulties in visualising the layer, e.g. by changes in the refractive index
together with theoretical analyses of its mechanical properties (Damiano
1998; Secomb et al. 1998; Weinbaum et al. 2003), indicate that the layer prob-
ably consists of a very dilute matrix with a concentration of macromolecules
not very much higher than that of free-flowing plasma.

These observations led to the generation of conceptual models for the com-
position of the ESL (Pries et al. 2000; Platts et al. 2003) which are represented
in Fig. 6. The further development and application of new experimental ap-
proaches, such as μPIV (Smith et al. 2003; Long et al. 2004), and new imaging

�
Fig. 6 Concepts for the composition of the endothelial surface layer. Left: The endothelial
surface layer with a total thickness of up to a micrometer is composed of two zones.
The glycocalyx proper, i.e. the comparatively thin (50–100 nm) region on the endothelial
surface is dominated by molecules (glycoproteins and proteoglycans) bound directly to
the endothelial plasma membrane. A much thicker layer, consisting of a complex three-
dimensional array of soluble plasma components possibly including a variety of proteins,
glycosaminoglycans and hyaluronan, is attached to the glycocalyx. Components of this layer
are dynamically exchanged with the flowing plasma. The thickness and composition of the
surface layer depend on the plasma composition, the local haemodynamic conditions and
the functional state of the endothelium (Modified according to Pries et al. 2000). Right:
A different concept was proposed by Duling and co-workers. Here, hyaluronan (hyaluronic
acid) produced in the endothelial plasma membrane, or bound to it, plays a more important
role. The entire layer is labelled ‘glycocalyx’ which, however, may exhibit different properties
at different distances from the endothelial cell. (Modified after Platts et al. 2003)
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techniques, such as multiphoton imaging and second harmonic imaging, are
needed to distinguish between the different concepts and, more importantly,
to allow an analysis of the dynamic changes in composition and properties of
the ESL in different functional states and pathophysiological conditions.

3.3
Physiological and Clinical Impact

The glycocalyx and ESL constitute the first line of the blood/tissue interface
and are thus involved in a substantial number of physiological and patho-
physiological processes (Pries et al. 2000), including many of the functionally
relevant aspects of the endothelium addressed in other chapters of this book.

These include:

– Transport along vessels due to the effects of the ESL on haematocrit and flow
resistance (Klitzman and Duling 1979; Desjardins and Duling 1987; 1990;
Pries et al. 1997)

– Mechanical stress on blood cells and the endothelium due to the damping
mechanical properties of the ESL (Damiano 1998; Secomb et al. 2001b; 2002;
Thi et al. 2004)

– Regulation of vascular tone due to the effect of the ESL on mechanosensi-
tivity of the endothelium (Secomb et al. 2001a; Thi et al. 2004)

– Exchange across the endothelium and control of tissue fluid content (oe-
dema) due to the central role of the ESL and the glycocalyx proper for
permeability of the vessel wall for different substances (Henry and Duling
1999; Squire et al. 2001; Dull et al. 2003; van den Berg et al. 2003; Ueda et al.
2004; Rehm et al. 2004)

– Coagulationdue to (1) thephysicochemical properties ofESLandglycocalyx
proper, (2) the presence of specific receptors and activators and (3) its
content of heparan sulphate proteoglycans (HSPGs) with anticoagulatory
potency (Benedict et al. 1994; Lijnen and Collen 1997; Platts and Duling
2004)

– Blood cell/endothelium interaction and inflammation due to the influence
it exerts on the presentation or accessibility of specific adhesion molecules
(Zhao et al. 2001; Mulivor and Lipowsky 2002; Constantinescu et al. 2003)

– Angiogenesis and angioadaptation due to the strong mutual interaction of
ESL and glycocalyx components, especially HSPGs, with the production,
localisation and activity of growth factors (Klagsbrun 1992; Brown et al.
1996; Sasaki et al. 1999; Iozzo and San Antonio 2001; Pieper et al. 2002)

– Cancer and metastasis due to the control the ESL exerts on angiogenesis
and on the interaction of embolised tumour cells with the endothelium
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Fig.7 The thickness of the endothelial surface can be reduced by experimental measures, e.g.
enzymatic treatment, but also in the context of pathophysiological events (e.g. inflammation
or accumulation of reactive oxygen species) as well as during therapeutic interventions (e.g.
infusion of artificial plasma replacement fluids). Reduced thickness of the ESL, in turn, will
have significant corollaries on haemodynamic and functional parameters. (Modified after
Pries et al. 1997)
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(Kishibe et al. 2000; Sanderson 2001; Liu et al. 2002; Kim et al. 2003; Qiao
et al. 2003; Xu et al. 2003; Reiland et al. 2004)

In turn, a number of physiological, pathophysiological and therapeutic mech-
anisms may influence the thickness, composition and integrity of the ESL
(Desjardins and Duling 1990; Adamson and Clough 1992; Ward and Donnelly
1993; Beresewicz et al. 1998; Pries et al. 1998a; Constantinescu et al. 2001;
Rehm et al. 2001; Platts et al. 2003; Platts and Duling 2004; Fig. 7). Such factors
include oxidised low-density lipoproteins, adenosine, growth factors (since,
for example, fibroblast growth factor-2 and transforming growth factor-β1 in-
crease the expression of HSPGs), hypoxia, ischaemia-reperfusion, changes in
plasma composition (for example, by infusion of artificial plasma replacement
fluids) and enzymes degrading ESL or glycocalyx components.
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Abstract Biology has revealed that form follows function or function creates the organ.
Translating this law at the cellular level, we may say that the ultrastructure follows function
or function creates the ultrastructure. The vascular endothelium is an accurate illustration
of this rule due to its numerous and many-sided functions carried out by highly specialised
cells, structurally equipped for their tasks. Occupying a strategic position between the blood
and tissues, the endothelial cell (EC) tightly monitors the transport of plasma molecules,
employing bidirectional receptor-mediated and receptor-independent transcytosis and en-
docytosis, regulates the vascular tone, synthesises and secretes a large variety of factors,
and is implicated in the regulation of cell cholesterol, lipid homeostasis, signal transduc-
tion, immunity, inflammation and haemostasis. Ultrastructurally, besides the common
set of organelles, the characteristic features of the ECs are the particularly high number
of vesicles (caveolae) endowed with numerous receptors, transendothelial channels, the
specialised plasma membrane microdomains of distinct chemistry, and characteristic in-
tercellular junctions. In addition, by virtue of their number (∼6 × 1013), aggregated mass
(∼1 kg), large surface area (∼7,000 m2) and distribution throughout the body, the ECs can
perform all the assumed functions. The vascular endothelium, with its broad spectrum of
paracrine, endocrine and autocrine functions, can be regarded as a multifunctional organ
and chief governor of body homeostasis. The ECs exists in a high-risk position. The cells
react progressively to aggressive factors, at first by modulation of the constitutive functions
(permeability, synthesis), followed by EC dysfunction (loss, impairment or new functions);
if the insults persist (in time or intensity), cell damage and death ultimately occur. In con-
clusion, the ECs are daring cells that have the functional–structural attributes to adapt to
the ever-changing surrounding milieu, to use innate mechanisms to confront and defend
against insults and to monitor and maintain the body’s homeostasis.

Keywords Endothelium · Ultrastructure · Functions · Transcytosis · Pathology

1
Introduction

Multicellular organisms operate on the principle of division of labour, a rigor-
ously controlled operation to assist the proper functioning of all cells, tissues
and organs. The cardiovascular system is the distributor of oxygen, nutrients,
hormones and other essential molecules throughout the body, and thus the
normal life of each and every cell crucially depends on the appropriate regu-
latory mechanisms that operate at the level of the blood vessels. Endothelial
cells (ECs) line all vessels, and constitute the only interface between the plasma
and the interstitial fluid as well as the underlying cells. Although distributed
throughout the body, the aggregated mass of all ECs is quite large, being equal
to that of the liver (∼1,000 g), and corresponding to a sizeable surface of
approximately 7,000 m2. The vascular endothelium is representative of the
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premise that the function creates the structure and that the structure supports
the function.

2
The Many Functions of the Endothelium Enable It
to Be Called the Chief Governor of Body Homeostasis

Due to their strategic position and large surface area, the ECs have assumed
a great variety of functions, including the control of exchanges of molecules
between the plasma and the interstitial fluid (transcytosis), the regulation
of vascular tone, the synthesis and secretion of various molecules, the pre-
sentation of histocompatibility antigens (immunity), the control of smooth
muscle cell (SMC) proliferation, and the maintenance of the proper balance
between pro- and anticoagulant factors that ensure the blood fluidity (Fig. 1).
Moreover, in response to various stimuli, ECs synthesise and release a large

Fig. 1 The endothelial cells (EC) (1) monitor transcytosis of plasma proteins via specific
receptors (e.g. ABP, albumin binding proteins), (2) maintain vascular tone by secreting
prostacyclin (PGI2), endothelium-derived hyperpolarising factor (EDHF), nitric oxide (NO)
and endothelin (ET1) that acts on the endothelin receptors (ETAR) of the smooth muscle
cell (SMC), as well as angiotensin-converting enzyme (ACE) that converts angiotensin I
(A1) to angiotensin II (A2) concomitantly with the inactivation of bradykinin (BK), (3)
synthesises components of the basal lamina (BL) and (4) is implicated in immunity, inflam-
mation and haemostasis. ATR, angiotensin I receptors; 5HT, 5-hydroxytryptamine; TGFβ1,
transforming growth factor; PAI-1, plasminogen activation inhibitor; × 15,000. (Reprinted
with permission from Simionescu et al. 2004)
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number of vasoactive substances, cytokines, adhesion molecules, endothelins
and other factors; therefore, the vascular endothelium is considered to be the
largest endocrine organ in the body. Given these complex activities, the vas-
cular endothelium as a whole can be regarded as a multifunctional organ that
has a broad spectrum of paracrine, endocrine and autocrine functions. The
numerous tasks of the ECs make them collectively the chief supervisor and
monitor of body homeostasis, being able to maintain the equilibrium between
the main body fluids (the plasma, interstitial fluid and lymph) and the proper
functioning of each cell under physiological conditions.

3
The Endothelial Cell Structure Supports the Cell Functions

The vascular endothelium is a type of simple squamous epithelium of meso-
dermal origin. The ECs are polygonal in shape (10–15 mm wide and 25–50 mm
long), generally orientated along the long axis of the vessels (due to the effect
of shear stress) and they number approximately 6 × 1013 cells for the entire
vasculature. Interposed between two different fluid compartments, the ECs
are polarized cells, having a luminal front facing the plasma and an ablu-
minal front, bathed by the interstitial fluid. The polarity is manifested by
a distinct protein composition of the apical and basolateral plasmalemma
(Muller and Gimbrone 1986) and the regulated secretion of molecules to ei-
ther the luminal or the abluminal blood front. The intercellular tight junctions
impede the diffusion of molecules between the apical and basolateral mem-
brane, thus contributing to the maintenance of cell polarity. The EC apical
plasmalemma expresses specific receptors for several plasma molecules, such
as vasoactive agents, hormones, procoagulant, anticoagulant and fibrinolytic
factors, carrier proteins and lipoproteins (Fig. 1). Although ECs were once
viewed as an inert cellophane barrier, progress in cell biology has led to the
discovery of characteristic EC structures—such as the plasmalemmal vesicles
(Palade 1953), currently named caveolae (small caves), and transendothelial
channels (Simionescu et al. 1975a)—and microdomains of the plasmalemma
(Simionescu et al. 1981) and numerous membrane receptors.

3.1
Plasma Membrane and Associated Structures

The endothelial plasmalemma is a complex mosaic of proteins, glycoproteins
and glycolipids embedded in a lipid bilayer. The ectodomains of the mem-
brane components form the glycocalyx (30–50 nm thick), made up primarily
of glycosaminoglycans, oligosaccharide moieties of glycoproteins and glycol-
ipids and sialoconjugates (for review see Simionescu 1979; A.R. Pries and
W.M. Kuebler, volume I). The blood–endothelial interface is composed of the
plasmalemma proper and the temporarily associated plasma proteins (im-
munoglobulin, fibrinogen, albumin, α-2-macroglobulin) as well as enzymes
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such as angiotensin-converting enzyme (ACE) and lipoprotein lipase (LPL),
whose distribution varies according to the vascular bed: i.e. ACE is well rep-
resented in lung capillaries, whereas LPL occurs in large vessel endothe-
lia (Simionescu 1991). The endothelial plasmalemma exhibits membrane-
associated microdomains, namely plasmalemmal vesicles, transendothelial
channels, fenestrae, coated pits and coated vesicles (Fig. 2). Among these,

Fig.2a–f Characteristic features of the vascular endothelium. a The thin capillary endothelial
cell (EC) accommodates a large number of vesicles open to the luminal front (vl), abluminal
front (va), or enclosed within the cytoplasm (vc). b, c It has transendothelial channels made
up of one or two caveolae (arrow heads); d diaphragmed fenestrae (arrows) in fenestrated
capillaries; e coated pits (cp); and f coated vesicles (cv). l, lumen; p, pericyte; bl, basal lamina.
a, b, c × 80,000; d × 50,000; e, f × 140,000. [Reprinted with permission from Simionescu 1991
(part a); Simionescu et al. 2002 (parts b and c)]
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caveolae are the most characteristic structure of the ECs; they appear in di-
rect continuity with either the luminal or abluminal plasma membrane, or
are enclosed within the cytoplasm (Fig. 2a). As in other cells, the chemical
composition of EC plasmalemma confers a net negative surface charge. Inter-
estingly, the membrane of caveolae, channels and their associated diaphragms
(lacking sulphate and/or sialate groups) are devoid of strong anionic sites,
a feature that led to the assumption that vesicles represent a preferential path-
way for the transport of plasma proteins, most of which are anionic (reviewed
in Simionescu and Simionescu 1991).

3.2
Endothelial Cell Organelles as Functional Instruments

Like all eukaryotic cells, the ECs are provided with the common set of or-
ganelles mostly gathered in the paranuclear zone. The Golgi complex, en-
doplasmic reticulum, mitochondria, multivesicular bodies, endosomes and
lysosomes and in particular caveolae are present in various numbers of copies
as a function of the state of the cell. A characteristic of non-capillary en-
dothelia are the Weibel–Palade bodies (WPB), which are membrane-bound
rod-shaped granules, 3–4 mm long, containing several parallel tubes (15 nm
diameter) embedded in a dense matrix (Weibel and Palade 1964). The role of
WPB is to store and discharge (when needed) the von Willebrand factor (vWF)
either to the plasma, or within the vessel wall where vWF has a major role in
inflammation.

These EC organelles are operational in the synthesis of basal lamina, ex-
tracellular matrix (collagen IV, fibronectin and proteoglycans), vWF, and re-
laxing and contracting factors such as NO, prostacyclins, endothelins and
angiotensin II (Fig. 1). These molecules are differentially sorted and secreted
to the luminal, abluminal, or both endothelial fronts. The EC synthetic capacity
is profoundly altered in pathological conditions.

3.2.1
Plasmalemmal Vesicles/Caveolae: Not One, but Many Classes

First described in ECs by Palade, plasmalemmal vesicles, a common feature
of many cell types, are particularly numerous in the vascular endothelium
(10,000–15,000/cell) and especially in capillary ECs (e.g. heart, lung, muscle),
with the exception of the brain capillaries (Palade 1953). One can safely assume
that the number of EC caveolae varies according to the vascular bed involved.
Caveolae appear as spherical vesicles (60–70 nm diameter), either in direct
continuity with the apical or basolateral plasmalemma (thus almost doubling
the EC surface) or free within the cytoplasm (Fig. 2); sometimes two or more
vesicles fuse together. The vesicles open to the EC surface through a neck
(10–40 nm diameter) often spanned by a thin (∼7 nm) diaphragm provided
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with a central knob. As detected by freeze-fracture technique of filipin-treated
ECs, the vesicular neck (and the fenestral opening) is surrounded by a peris-
tomal ring of sterols (Fig. 3), assumed to function in the phase separation and
the preservation of the sharp bend between the caveolae membrane and the
plasmalemma (Simionescu et al. 1983).

Caveolae are dynamic structures that in the process of transcytosis undergo
frequent fission and fusion with the plasmalemma. Molecules involved in the
vesicle formation, fission, docking and fusion with the target membrane are
the vesicular SNAP receptor (vSNARE), synaptobrevin (VAMP)-2, monomeric
and trimeric GTPases, annexins II and VI, N-ethyl maleimide-sensitive fusion
factor (NSF) and its attachment protein, SNAP (Schnitzer et al. 1995). In the fis-
sion process, the large GTPase, dynamin (also associated with clathrin-coated
vesicles), oligomerises around the neck of caveolae, a process that requires
GTP hydrolysis (Oh et al. 1998). The intracellular movement of caveolae is
facilitated by interaction with the cytoskeletal proteins, such as actin, myosin,
gelsolin, spectrin and dystrophin (Lisanti et al. 1994). For specific docking, the
endothelial caveolar VAMP-2 interacts with the complementary target mem-
brane tSNARE localised on the acceptor membranes (McIntosh and Schnitzer
1999).

Fig. 3 a,b Freeze-fracture image of a capillary endothelium depicting a the opening of
vesicles (v) to the plasmalemma and b the presence of rings of cholesterol (arrows) around
the vesicular neck as detected by incubation of cells with filipin, which forms specific
filipin-sterol complexes. a and b × 60,000. (Reprinted with permission from Simionescu
et al. 1983)
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Caveolae Constitute Chemically Distinct Microdomains of the EC Plasmalemma
Caveolins are the marker proteins of endothelial (and other) vesicles. Caveolin-
1 is a non-conventional membrane-spanning protein having both the N and C
termini towards the cytoplasm and a single hydrophobic region; it appears as
a highly ordered homo-oligomer of 14–16 monomers or, upon interaction with
caveolin-2, forms stable high-molecular-mass hetero-oligomers. Caveolin-1
binds many proteins via its scaffolding domain that acts as a “master regulator”
of signalling molecules and may also be the site that regulates cellular Ca2+

concentration and Ca2+-dependent signal transduction (Minshall et al. 2003).
Caveolin-1 binds cholesterol and is critical in the transport of cholesterol

from the site of synthesis to the plasmalemma. In addition, caveolin-1 is in-
volved in cholesterol efflux from the cells, a process that implies an association
between high-density lipoprotein (HDL) and SR-BI (scavenger receptor class B
type I), located in caveolae. Due to the dual function of SR-BI, caveolae are

Fig.4 Diagram depicting the main functions attributed to caveolae and the receptors present
in the caveolar membrane. Note the distribution of cholesterol (cho) around the caveolar
neck and the receptors for LDL (LDL-R), HDL (HDL-R), albumin (Alb-R), transferrin (Tf-R),
ceruloplasmin (CP-R), advance glycation end products (AGE-R), insulin (Ins-R)—termed
“life receptors” (essential in maintaining tissue homeostasis)—as well as IL1-R and p75-
R—named “death receptors” (involved in apoptosis). The distribution of anionic sites
is prevalent on the EC membrane, but not on the vesicle membrane. (Reprinted with
permission from Simionescu et al. 2002)
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also important sites for cholesterol uptake, a process regulated by caveolin-1
(reviewed in Razani et al. 2002).

Numerous receptors involved in the transport of plasma proteins and sig-
nalling have been identified within the caveolar membrane; they include re-
ceptors for plasma proteins (Fig. 4), epidermal growth factor (EGF), platelet-
derived growth factor (PDGF), endothelin, CD36, interleukin (IL)-1 and P75,
as well as G protein-coupled receptors and inositol triphosphate receptors
(reviewed in Simionescu et al. 2002; Schnitzer et al. 1995).

The lipid composition of caveolae consists mainly of cholesterol and sph-
ingolipids (sphingomyelin and glycosphingolipid). Cholesterol has a support
function in that it creates the frame into which other molecules are inserted.

We have found differences between the chemical composition of the cap-
illary EC plasma membrane and the caveolar membrane. In contrast to the
plasmalemma, the caveolae lack strong anionic sites (Fig. 5a) of low pKa, sialo-

Fig. 5 a,b Microdomains of different charges on the luminal and abluminal front of the en-
dothelial cells as revealed by decoration with cationised ferritin.a Note the even distribution
of anionic sites on the luminal plasma membrane (pm), the heavily labelled fenestral di-
aphragm (f ) and the absence of anionic sites on vesicles (v) and their diaphragms. b On the
abluminal front, the plasmalemma is similarly decorated (white arrow) and the vesicles (v)
lack anionic sites, but the abluminal front of fenestral diaphragms is devoid of anionic sites
(black arrows). l, lumen; bm, basement membrane; cv, coated vesicle; × 120,000. [Reprinted
with permission from Simionescu et al. 1981 (part a) and 1982 (part b)]
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conjugates and proteoglycans, and are enriched inN-acetylglucosaminyl and
galactosyl residues (Simionescu et al. 1982a); the aortic EC caveolae contain
a higher concentration of Ca2+-ATPase and some specific glycoproteins and
are enriched in palmitoleic and stearic acids (Gafencu et al. 1998).

Caveolae Represent a Functionally Distinct Microdomain Studies based on tracers
of various dimension, chemistry and shape (injected in vivo) have indicated
that a fraction of vesicles transport plasma molecules, operating either as sep-
arate shuttling units or as channels formed by one or more caveolae opening
simultaneously to the luminal and abluminal plasmalemma (Fig. 2b, c). For
the process of transendothelial transport, Simionescu coined the term “tran-
scytosis” in 1979, an appellation that was further extended to all epithelial
cells; the concept was broadened to indicate that the transcytotic mechanisms
imply fluid phase, non-specific adsorptive, or receptor-mediated transcytosis.
Employing native plasma molecules such as albumin or low-density lipopro-
teins (LDL), we have found that caveolae function in transcytosis of these
proteins across the ECs, employing either receptor-mediated, or receptor-
independent transcytosis. Interestingly, caveolae take up cholesterol-carrying
LDL via a dual process: by receptor-mediated endocytosis for use by the cell it-
self and by transcytosis for use by the underlying cells (reviewed in Simionescu
and Simionescu 1991).

Other vesicles that are present in close proximity or open to the intercel-
lular space constitutively contain platelet endothelial cell adhesion molecule
(PECAM) which, during leucocyte transmigration, establishes a homophilic
interaction with the PECAM expressed on the leucocyte membrane, thus as-
sisting cell diapedesis through the junction (reviewed in Dejana 2004).

Based on the above data, one can safely predict that, by virtue of their
distinct chemistry, caveolae comprise not one but several distinct classes,
with well-defined functions. One fraction of the caveolae is devised to carry
out endocytosis, others execute fluid phase, adsorptive or receptor-mediated
transcytosis, and others are implicated in cholesterol and lipid homeostasis,
signal transduction or leucocyte diapedesis.

3.2.2
Transendothelial Channels: A Close Relative of Caveolae

Vesicles fuse between themselves, so that sometimes a single, or a chain of
two or three, fused vesicles open simultaneously on both EC fronts to form
a channel that spans the cell (Fig. 2b,c), a feature common in fenestrated
capillaries but also demonstrated in continuous capillaries. The formation of
transendothelial channels may be facilitated by the high density of vesicles, the
extreme attenuation of the ECs and the existence of a large number of vesicles
open to both cell fronts (Simionescu et al. 1975a). It is assumed that channels
represent a highly dynamic structure, a transient, hydrophilic pathway that
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formsasanadaptation to temporary localneedsor in response toapathological
condition (e.g. ischaemia, inflammation).

3.2.3
Fenestrae: The Smallest Polarised Membrane Microdomain

Fenestrae are round openings (∼70 nm diameter) that connect the two EC
fronts. They may or may not be spanned by a diaphragm and are characteristic
of capillaries of the intestinal mucosa, pancreas, endocrine glands that are
termed fenestrated capillaries (Fig. 2d). The diaphragms are thin, lipid-free
structures provided with a central knob (15 nm) from which spokes radiate
and anchor into a polygonal rim with wedge-shaped spaces in between the
spokes (Bearer and Orci 1976). Diaphragms are lacking in liver sinusoids and
glomerular capillary ECs, whereas in adrenal cortex capillaries, diaphragmed
fenestrae coexist with large aperture-free openings.

Interestingly, the chemistry of the fenestral diaphragm varies on its two
aspects, namely the luminal face exposes heparan sulphate proteoglycans and
heparin (strong anionic residues) and receptors for wheat germ agglutinin
(choriocapillaries) (Pino 1986), whereas their abluminal facet is devoid of
anionic sites (Fig. 5a, b). Thus, the fenestrae represent the smallest polarised
subcellular component of the EC surface (Simionescu et al. 1982b).

Structural and biochemical data support the concept that vesicles, channels
and fenestrae are interrelated structures. Ultrastructurally, stages indicative
of fusion and fission of vesicles and the formation of channels are often seen;
fenestrae may be considered a collapsed channel. In addition, caveolae, chan-
nels and fenestrae have in common a ring of cholesterol at their openings and
an endothelium-specific structural protein, PV1 (a rod-like protein of 60 kDa),
reported to be involved in the formation of the diaphragm (Stan et al. 2004).

3.2.4
Uncoated and Coated Pits, Coated Vesicles

In addition to open vesicles, the EC plasmalemma is endowed with shallow
invaginations—the uncoated pits (Fig. 6b)—that by “en face” images of the EC
cytoplasmic surface appear to have a distinctive striated coat (Rothberg et al.
1992). The relationship between uncoated pits and caveolae, and whether they
represent vesicle precursors, is not yet known.

Coated pits and coated vesicles similar to those found in other epithelial
cells (∼120 nm diameter) have a geodesic basketwork of clathrin on their cy-
toplasmic aspect (Fig. 2e, f). With some exceptions (hepatic sinusoids, intesti-
nal, pancreatic and adrenal fenestrated capillaries), the frequency of coated
pits/coated vesicle in the EC is relatively small by comparison with the number
of caveolae. The coated vesicles are endowed with a high density of anionic
sites that contrast with that of the caveolae membrane and diaphragms.
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Fig. 6 a–c Junctions between neighbouring microvascular endothelial cells (EC) and some of
the constituent molecules. a Thin section of a capillary tight junction. b A capillary adherens
junction. c A freeze-fracture image of an arteriole EC gap junction (gj). Note in part b an
uncoated pit (up) and a vesicle (pv) spanned by a diaphragm (arrowhead). l, lumen; ss,
subendothelial space; p, pericyte; a, b × 180,000; c × 60,000. (Parts a and b reprinted with
permission from Simionescu 1991)

3.2.5
Cytoskeleton

Direct exposure of the ECs to the plasma requires continuous adaptation to the
ever-changing haemodynamic stress and blood pressure. In addition, the EC
has to respond rapidly to the chemical signals received either from the blood or
host tissue. These modulations of the EC are serviced, in part, by the contractile
cytoskeleton, whose major components are actin, myosin II, tropomyosin,
α-actinin and actin-binding proteins, such as fodrin, gelsolin, protein 4.1,
filamin, vinculin, talin, vimentin and non-muscle caldesmon, that represent
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a large proportion of the cell proteins (reviewed in Drenckhahn and Ness 1997).
All these cytoskeleton components operate, singly or in concert, for (1) the
adhesion of the EC to the substratum, (2) the integrity of intercellular junctions,
(3) the scaffolding of plasmalemma, (4) immobilisation of membrane proteins
and (5) changes of the cell shape in response to shear stress.

3.3
Intercellular Junctions: Cross-talk Between Cells

Along the cardiovascular system, adjacent ECs are connected by various types
of junctions, made up of intramembranous specific proteins linked to the
cytoskeleton proteins.

Endothelial junctions guarantee the separation between the blood and the
interstitial fluid, maintain the cell polarity and lining integrity, ensure contact
inhibition, and play a role in remodelling and angiogenesis.

In ECs, the main types of junctions are: (1) tight junctions (zonula oc-
cludens) that seal completely the intercellular spaces, (2) adherent junctions
(zonula adherens) that together with the former maintain the cell polarity
and integrity (Fig. 6a, b), and (3) gap (communicating) junctions (macula
communicans) (Fig. 6c). Syndesmos (complexus adhaerentes), an equivalent
of epithelial desmosomes, was detected in the lymphatic endothelium at the
level at which desmoplakin co-distributes with vascular endothelial (VE)-
cadherin/cadherin-5 (Schmelz and Franke 1993).

The molecules detected at the level of tight junctions are members of
the claudin family, occludin, junctional adhesion molecules, endothelial cell-
selective adhesion molecule (ESAM) and, on their cytoplasmic aspect, ZO-1
(zonula occludens-1), ZO-2 (zonula occludens-2), calcium/calmodulin-depen-
dent serine protein kinase, afadin, partitioning defective-3 (PAR3) and multi-
PDZ-domain protein-1 (MUPP1).

As for the molecules characteristic of adherens junctions, the EC expresses
VE-cadherin, which can be associated with VE-PTP (vascular endothelial pro-
tein tyrosine phosphatase), E-cadherin (in brain endothelium) and neuronal
N-cadherin which, because of its extra-junctional location, mediates binding
of ECs to pericytes and other neighbouring cells. Many components of the
tight and adherens junctions form complexes with catenins and associate with
cytoskeleton proteins, zyxin, moesin and others (reviewed in Dejana 2004).

The constituents of gap junctions are a family of proteins, connexins, of
which Co43, Co40 and Co37 have been identified in the EC. Clusters of 20-nm
(diameter) transmembrane hydrophilic channels (connexons) function in the
transfer of ions and small molecules between adjoining cells and warrant the
metabolic and electrotonic coupling between neighbouring ECs (homotypic
communication), as well as between ECs and the underlining SMCs (het-
erotypic communication). The organisation of EC junctions varies along the
vasculature. In large arteries, complex occluding, adherens and numerous gap
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junctions link the neighbouring ECs. In addition, ECs are in direct contact and
communication with the underlying SMCs via myoendothelial junctions that
are essential in the coupling and signal transmission between these cells; the
presence of gap junctions between SMCs ensures the transmission of signals
from one SMC to neighbouring SMCs, the result of which is the co-ordinated
response of the vessel wall to extravascular stimuli and the regulation of the
vascular tone. In veins, the composition of EC junctions is similar, but their
organisation is less elaborate and the frequency of gap junctions is lower
(Simionescu et al. 1975b).

Arterioles exhibit the most elaborate system of junctions, consisting of
a combination of occluding and intercalated gap junctions, an association that
ensures strong cell-to-cell adhesion, sealing of the intercellular spaces and
communication between cells; there are also myoendothelial junctions.

The capillary endothelium is characterised by the presence of occluding
junctions only; morphologically distinct gap junctions are absent.

Postcapillary venule ECs exhibit loosely organised tight junctions, of which
roughly 30% are open to a gap of approximately 60 nm. The existence of loosely
organised junctions, the presence of numerous mast cells along the venules and
the uncovering of high-affinity histamine receptors, principally localised in the
parajunctional regions of venular ECs (Heltianu et al. 1982), may account for
the rapid response of this segment of the vasculature to vasomediators, which
renders these vessels the preferential site for plasma and cell extravasation
(Fig. 7). Disruption of EC junctions has major effects on vascular homeostasis,
with severe consequences in vascular diseases.

4
Basal Lamina

The EC rests on a thin basal lamina, the molecules of which are synthesised and
secreted by the cells themselves. The chemical composition of the basal lamina
consists mainly of type IV and type V collagen, laminin, entactin (nidogen)
and heparan sulphate proteoglycans (Sage et al. 1983). The EC basal lamina
encloses the pericytes in capillaries and small venules, whereas in other vessels,
basal lamina separates the ECs from the underlying SMCs; however, focal
points of direct contact via myoendothelial junctions allow direct cross-talk
betweenECsandSMCs.Pericytes are smoothmuscle-like cellswrappedaround
the EC, having important metabolic, signalling and mechanical roles (Sims
2000). Pericytes exchange information with ECs by direct contact and/or by
releasing cytokines such as tumour necrosis factor (TNF)-β and other soluble
factors that are potent inhibitors of EC growth and promote vasoconstriction
by up-regulating endothelin-1 and down-regulating inducible NO synthesis
(Martin et al. 2000). Recent data demonstrate the role of pericytes in vascular
morphogenesis (Betsholtz et al. 2005). Pericyte alteration or degeneration is
linked directly to microangiopathies in diabetes, hypertension, microvascular
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Fig. 7 a Microvasculature of the hamster cheek pouch showing histamine-induced leakage
of plasma (arrows) at the level of postcapillary venules (pv) only. v, venules; a, arteriole.
b A similar area of the microvasculature stained with toluidine blue reveals the high density
of mast cells (arrows) bordering the venules. c Electron microscopy depicting the close
proximity of mast cells (MC) to a venule (V) and arteriole (A). SMC, smooth muscle cell;
RBC, red blood cell; f, fibroblast. a × 60; b × 120; c × 40,000. (Part b used with permission
from Antohe et al. 1989)
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vasculitis in the brain and retina, and possibly inappropriate calcification of
blood vessels.

5
Innate Phenotypic Heterogeneity of the Vascular Endothelium

Under the influence of the local environment and the specific needs of the
neighbouring cells, the apparently similar ECs have undergone segmental dif-
ferentiation expressed as a considerable site-specific phenotypic heterogeneity,
a feature that explains the varied cell response to normal or aggressive stimuli.

Endothelial Heterogeneity Along the Vasculature As a function of the vessel or
the tissue in which it resides, the structural-functional differentiation of the
EC consists of variation in shape, proliferative capacity, frequency of WPB,
response to vasoactive factors, expression of surface molecules, secretory ca-
pacity, reaction to changes in shear stress, organisation of junctions and basic
cellular constituents (frequency of caveolae, channels, fenestrae and their di-
aphragms). These dynamic modulations are expressed in large phenotypic
variants for the ECs of large vessels versus microvessels (arterioles, capillaries,
venules) and, among the latter, differences within the same class. For instance,
based on the EC structure, the capillaries have been classified as continu-
ous (having caveolae only, e.g. the heart and the majority of blood vessels),
fenestrated (provided with caveolae and diaphragmed fenestrae, e.g. visceral
organs) and discontinuous, characterised by the presence of caveolae and large
(∼100 nm) gaps (e.g. haematopoietic tissues and liver). In addition, signifi-
cant modulations exist within the same type of capillary endothelium, e.g.
there are subtypes of continuous capillaries, the extremes being at one end the
brain capillaries (with rare caveolae and very tight junctions) and at the other
end the myocardial capillaries (with a high number of caveolae and compar-
atively few tight intercellular junctions). Moreover, within the microvascular
endothelium, the intercellular sealing and the cell-to-cell communication is
more complex in arterioles than in capillaries and venules; the latter exhibit
loosely organised junctions, a feature that has great implications in patholog-
ical processes (inflammation, thrombosis).

There is also an antigenic heterogeneity of the vascular endothelium: cap-
illary ECs express major histocompatibility complex (MHC) classes I and II,
intercellular adhesion molecule (ICAM) and the monocyte/endothelial marker
OKM5, suggesting that capillaries are the site of antigen presentation and the
immune attack and response. By contrast, these molecules are almost unde-
tectable on large-vessel ECs that in turn express vWF and endothelial leucocyte
adhesion molecule-1 (ELAM-1) (Page et al. 1992).

Phenotypic Heterogeneity Within a Single EC Defines Differentiated Microdomains
In the capillary ECs, we have reported the presence of strong anionic sites
(heparan sulphate) on coated pits and the luminal aspect (only) of fenestral
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diaphragms, whereas they are almost absent on the membrane of caveolae and
theirdiaphragms. Incontrast, the caveolae, transendothelial channels and their
diaphragms are particularly rich in β-d-galactose and β-N-acetylglucosamine
(Simionescu et al. 1982b). The lung alveolar capillary ECs have a thin avesicular
zone and a vesicular zone, the former being postulated to be associated with
the gas exchanges.

The heterogeneity of ECs explains the blood vessel-specific reactivity and
pathology. Thus, lymphocytes emigrate from the vasculature only via the spe-
cialised high-endothelial venules (localised in lymphoid tissues), atheroscle-
rotic plaques develop in specific, arterial lesion-prone areas, vascular leakage
occurs in venules and thrombosis occurs in veins.

6
Endothelial Cell Receptors as Operational Tools

6.1
Receptors for Vasoactive Mediators

ECs have receptors for histamine (Antohe et al. 1986), serotonin (5HT) (She-
pro and Dunham 1986), bradykinin, thrombin (Haselton et al. 1992) and
leukotriene C4, and respond to these soluble mediators by retracting from one
another, thereby increasing the permeability of the monolayer. Upon binding
to the EC receptors, these mediators increase the cytosolic free calcium and
induce the contraction of the cytoskeleton and the opening of the intercellular
junctions in specific segments of the vasculature, i.e. postcapillary venules.

Histamine receptors (predominantly the H2 type) were reported on the ECs
of all microvessels, but their frequency is particularly high in postcapillary
venules (Heltianu et al 1982). As already stated in postcapillary venules, the
presence of histamine receptors, loose EC junctions (∼30%) and mast cells
explains the fast response of these vessels to insults such as inflammatory me-
diators. The mast cells lining the venules (Fig. 7b, c) secrete upon request his-
tamine and vasoactive substances contained within their cytoplasmic granules.
Moreover, the mast cell plasmalemma also expresses histamine H2 receptors
that modulate histamine release by negative feedback (Antohe et al 1989). In
the pathogenesis of atherosclerosis, the histamine/cytokine network regulates
inflammatory and immune responses.

6.2
Receptors for Plasma Proteins

6.2.1
Receptors for Metalloproteins

Receptors for transferrin, theplasma iron-carryingglycoprotein,weredetected
in brain capillaries functioning in receptor-mediated transcytosis of transfer-
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rin at the level of the blood–brain barrier (BBB). In the liver sinusoidal ECs,
transferrin receptors are restricted to coated pits. Data exist showing that the
iron-transferrin complexes are transcytosed across the EC in an intact form.
Transferrin is desialylated within the EC and released into the space of Disse
from where it is taken up via asialoglycoprotein receptors by the hepatocytes:
iron is retained by the cell and transferrin is recycled.

Receptors for ceruloplasmin, a multi-functional copper-containing glyco-
protein, are located in the coated pits and vesicles of the liver sinusoidal ECs.
The pathway of ceruloplasmin is similar to that of transferrin, being desialy-
lated within the EC and taken up by hepatocyte asialoglycoprotein receptors.

6.2.2
Insulin Receptors

Insulin receptors mediate the metabolic and growth action of insulin. Upon
binding to its receptors, insulin initiates a cascade of events and activates
multiple signalling pathways in the EC. In large vessel ECs, insulin is taken up
by receptor-mediated endocytosis, whereas in capillaries the intact molecule
is transported to the target cells by specific transcytotic receptors that also
represent a rate-limiting step of the process.

6.2.3
Receptors for Lipoproteins

Cholesterol-carrying lipoproteins (LDL) are taken up by the EC by receptor-
independent and receptor-mediated endocytosis and transcytosis. The LDL-
receptors (LDL-R) are localised in caveolae, coated pits and coated vesicles. ECs
are supplied by receptor-mediated endocytosis with the cholesterol needed for
their own use, a process that leads to down-regulation of endogenous biosyn-
thesis of cholesterol. Upon LDL binding, the LDL-R translocate preferentially
from the apical to the abluminal plasmalemma, a condition that facilitates
the transport of cholesterol-carrying LDL to the underlying cells and tissues
(Antohe et al 1999). ECs also possess scavenger receptors that take up oxidised
LDL from the circulation.

6.2.4
Receptors for Albumin

Receptors for albumin have been identified in the myocardium, lung, adipose
tissue and ECs of microvessels and large vessels. In the EC, the receptor com-
prises two proteins of approximately 18 and 31 kDa, is located in caveolae
and binds albumin specifically and with high affinity (Ghitescu et al. 1986).
An albumin receptor of a different molecular weight (60 kDa, albondin) was
also found in caveolae of continuous endothelia; its activation stimulates the
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Src protein tyrosine kinase signalling pathway, and this may regulate the tran-
scytosis of albumin across the ECs (Tiruppathi et al. 1997). The relationship
between the 18, 31 and 60 kDa peptides remains to be established.

Since albumin is the main plasma protein and the carrier of numerous
molecules (free fatty acids, thyroid and steroid hormones, bilirubin, bile acids,
drugs), the controlled transport of the protein to the right destination and
the correct concentration is a prerequisite for the normal functioning of all
tissues and, on a larger scale, body homeostasis. There are data to indicate that
albumin receptors may selectively discriminate between native and modified
albumin and between different ligands bound to albumin. Thus, we have sug-
gested a dual role for albumin receptors, namely as a “docking” protein that
recognises and carries molecules bound to albumin (e.g. free fatty acids) and
as a “transcytotic” receptor that binds and transports albumin across the EC
(Simionescu and Simionescu 1991).

7
Mechanisms of Endothelial Sorting of Molecules

The biochemical and functional attributes of the EC endows it with the abil-
ity to sort and direct permeant molecules to the right destination. Caveo-
lae, channels, coated pits and vesicles are equipped to take up and transport
macromolecules within the EC by endocytosis, or across the cell by transcy-
tosis, processes that are tightly regulated as a function of the state of the host
tissue. Some molecules are endocytosed to be used by the cell itself or to be re-
moved from the plasma, others are transcytosed to reach the underlying cells,
whereas others undergo both processes (Fig. 8). There is a precise destination
for any given molecule; caveolae are a common denominator in endocytosis
and transcytosis.

7.1
Endocytosis

In the EC, endocytosis occurs either via a non-specific (fluid phase or adsorp-
tive process) or by specific receptor-mediated mechanisms.

Non-specific fluid phase endocytosis is dependent on the plasma concen-
tration of a given molecule, whereas adsorptive endocytosis is characteristic
for molecules that bind electrostatically to the cell surface. The destination of
the endocytosed vesicles is dependent on the molecule involved, but generally
the endosomal/lysosomal compartment is the final destination.

Receptor-mediated endocytosis commonly involves specific binding sites
localised in coated pits/coated vesicles or caveolae that direct the molecules
to different stations before reaching the endosomal/lysosomal compartment;
this pathway applies to LDL, beta very low density lipoproteins (β-VLDL), in-
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Fig. 8 Diagrammatic representation of the mechanisms involved in the endothelial sorting
of macromolecules. Note that caveolae are involved both in endocytosis and transcytosis of
plasma molecules. (Reprinted with permission from Simionescu et al. 2002)

sulin and insulin growth factors, transferrin and ceruloplasmin (for review, see
Simionescu 2001). Lipoproteins are fully degraded in lysosomes, and the ensu-
ing cholesterol, amino acids and phospholipids are used for cell metabolism.
Native LDL is taken up by the arterial endothelium via coated pits and vesicles
that perform receptor-mediated endocytosis and by caveolae that function in
transcytosis. Both processes, especially transcytosis, are markedly enhanced
in hyperlipaemia, leading to progressive accumulation of modified LDL in
the subendothelium. Modified lipoproteins are removed from the circulation
by EC scavenger receptors (CD36, SREC and LOX-1) that contribute to the
preservation of plasma homeostasis (reviewed in Steinbrecher 1999). In age-
ing and diabetes, accumulated plasma advanced glycation end-product (AGE)
proteins are endocytosed by AGE-receptors (R-AGE), thus ensuring the plasma
clearance of these injurious proteins (Schmidt et al. 1994).

A special type of endocytosis regulates IgG plasma homeostasis. EC caveo-
lae take up IgG by fluid phase endocytosis and transport the molecule to the
endosomal compartment where, at low pH, IgG binds to the neonatal receptors
(FcRn). Then, via carrier vesicles, IgG is delivered either to the apical or basal
cell surface, whereas excess non-bound IgG is degraded within the lysosomal
compartment; as a result, IgG plasma homeostasis is continuously maintained
(Ghetie et al. 1996; Antohe et al. 2001). A new term, potocytosis, was pro-
posed for all endocytic activities that use the caveolae endo-membrane system
as vesicles for the sequestration and transport of small and large molecules
(reviewed in Mineo and Anderson 2001).
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7.2
Transcytosis

In simple terms, transcytosis signifies the bidirectional transport of macro-
molecules across the EC within a discrete compartmentalised organelle, the
caveolae. As in endocytosis, the mechanisms of transcytosis entail either a non-
specific fluid phase or adsorptive process or a specific receptor-mediated pro-
cess.

Non-specific fluid phase transcytosis implies uptake of a fraction of plasma
bycaveolae that shuttle across theECanddischarge thecontent to theabluminal
front. The rate of uptake depends on the size of the vesicle’s opening, solute
concentration and the steric competition. Adsorptive transcytosis entails an
electrostatic interaction between the permeant molecule and the vesicle carrier
in which the deciding factor is the distribution and density of the surface
charge. Because most plasma molecules are anionic and the vesicle membrane
is devoid of strong anionic sites, we consider the vesicles as devised to carry
plasma proteins.

By receptor-independent transcytosis of cholesterol-carrying LDL, to sup-
ply the cells of the vessel wall or the underlying cells, the shuttling caveolae
maintain the cholesterol homeostasis both in the plasma and in the surround-
ing cells and tissues.

Receptor-mediated transcytosis is a basic process shared by most epithelial
cells including the ECs. Specific transcytosis was demonstrated for (1) LDL in
arterial endothelium and lung capillaries, (2) transferrin in the microvessels of
thebrainand thebonemarrow, (3) ceruloplasmin in liver sinusoidal capillaries,
(4) insulin in aortic endothelium and (5) albumin in the lung, adipose tissue
and skeletal muscle endothelia (reviewed in Simionescu et al. 2002; Tuma and
Hubbard 2003).

As already stated, the caveolae are endowed with a large number of life
and death receptors that distinguish the cargo molecule. It is reasonable to
assume that the numerous receptors ascribed to caveolae are not functional in
all vesicles, sustaining the argument that there are several classes of caveolae,
each performing a specific task.

8
Changes of the Vascular Endothelium in Different Pathologies

Accumulated data have revealed that major pathological conditions such as
atherosclerosis, diabetes, Alzheimer’s disease (AD), inflammation, immune
and autoimmune diseases, hypertension, respiratory distress syndrome and
Fabry’s disease have in common a dysfunctional endothelium. Whether the EC
dysfunction is a primary (pathogenic) factor or a secondary (reactive) response
to various insults, i.e. whether the EC dysfunction is a direct cause or a sec-
ondary consequence of a disease, remains to be established for each condition.
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8.1
The Endothelial Cell Is the Key Player in All Stages of Atherosclerosis

Atherosclerosis, a continuous and progressive disorder of large and medium-
size arteries, can be conventionally regarded as having two consecutive stages
that differ in the type of cell and the altered mechanisms involved, and in the
various active factors. The pre-lesional stage entails a lipid disorder and a crit-
ical inflammatory process, whereas the lesional stage results in the formation
of a complex plaque; the ECs are implicated in both stages of atherogenesis, as
follows.

8.1.1
Changes in the Endothelium During the Pre-lesional Stage of Atherosclerosis

Initially, hyperlipaemia induces modulation of two constitutive functions of
the ECs, namely it increases the permeability (in particular for lipoproteins)
and enhances the cell biosynthetic activity (initially of basal lamina compo-
nents). The functional modifications that reflect the attempts of the cell to
adapt to the modified environment are well mirrored in the structural changes
of the EC (Simionescu et al. 1990; Simionescu 2004). The increase in per-
meability, as the initial event in atherogenesis, accompanied by the reduced

Fig. 9 Electron micrograph showing the accumulation under the endothelial cell (EC) of
numerous modified lipoproteins that appear as vesicles of various sizes (arrows) within the
meshes of the basal lamina (bl). l, lumen; × 22,000
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Fig. 10 Electron micrograph depicting diapedesis (arrow) of a monocyte (M) between two
arterial endothelial cells (EC). Note the hyperplasic basal lamina (bl) made up of 10–20 layers
(inset). l, lumen;× 10,000; inset, × 25,000. (Reprintedwithpermission fromSimionescuet al.
1996)

efflux of lipoproteins from the vessel wall, leads to the accumulation of modi-
fied and reassembled lipoproteins (MRL) within the subendothelium (Fig. 9).
Concurrently, the EC shifts to a secretory phenotype, characterised by an in-
creased number of biosynthetic organelles that correlates with the appearance
of a multilayer, hyperplasic basal lamina, sometimes consisting of 20–25 layers
(Fig. 10), in the meshes of which MRL accumulate in large numbers.

The ECs are afflicted on both fronts—on the luminal side by hyperlipaemia
and on the abluminal side by the accumulated MRL. These insults lead to
a dysfunctional endothelium and a multipart inflammatory process in which
the ECs express more or new adhesion molecules and synthesise factors [e.g.
monocyte chemoattractantprotein (MCP)-1] that attract and inducemigration
of plasma inflammatory cells such as T lymphocytes and monocytes to the
subendothelium (Fig. 10). Within the subendothelium, the monocytes become
activated macrophages that engulf MRL (via scavenger receptors) to become
macrophage-derived foam cells, which release cytokines and factors that affect
the ECs and induce migration of SMCs from the media to the intima.

8.1.2
Alterations in the Endothelium at the Lesional Stage of Atherosclerosis

Extensive hyperlipaemia amplifies the EC dysfunction, expressed by impair-
ment of NO bioavailability, alteration of procoagulant and anticoagulant syn-
thesis and secretion, increased secretion of matrix metalloproteinase (MMP)-1
and changes in the cross-talk with neighbouring SMCs. The result of this stage
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Fig.11 Electronmicrograph illustratinga late stageofhyperlipaemia inwhich the endothelial
cell (EC) is loaded with lipid droplets (ld) and lies on a hyperplasic basal lamina (bl). The
ECs have numerous apical and basal pseudopods (arrows). n, nucleus; l, lumen; × 14,000.
(Reprinted with permission from Simionescu et al. 1997)

is the formation of the complicated plaque made up of macrophage-derived
foam cells, SMC-derived foam cells, lymphocytes and mast cells, all embedded
in a hyperplasic extracellular matrix. With time, the ECs become progressively
loaded with lipid droplets, ultimately becoming EC-derived foam cells (Fig. 11)
that are vulnerable and susceptible to physical disruption.

Severe dyslipidaemia leads to EC injury and death; desquamation of ECs
exposes the subendothelial collagen and vWF that promote platelet adhesion,
activation, thrombus formation and the occlusion of the vessel’s lumen that
triggers the acute coronary syndromes (reviewed in Simionescu 2004).

8.2
Diabetes Induces Modifications of Endothelial Cells

Diabetes, a complex disease characterised by abnormalities of glucose home-
ostasis, is now considered to be a vascular disease due to the macro- and
microangiopathies that accompany this condition. Among the abnormalities
induced by hyperglycaemia are increased oxidative stress, non-enzymatic gly-
cosylation of proteins and increased accumulation of AGE-proteins and gly-
cated LDL in the circulation and within the subendothelium. EC dysfunction is
expressed by the increased plasma concentration of nitrites, nitrates, endothe-
lin I, vWF, tissue-type plasminogen activator, PAI-I and endothelial adhesion
molecules (i.e. E-selectin, ICAM I).
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8.2.1
Alterations of Large Vessel Endothelial Cells

Diabetes accelerates the early development and progression of plaque forma-
tion that develop in arterial lesion-prone areas, leading to rapid calcification. In
general, the sequence of events taking place in the aorta of diabetic animals is
largely similar to those found in hyperlipaemia, except that the alterations oc-
curat a faster rate.This isparticularly true in simultaneoushyperglycaemiaand
hyperlipaemia. Briefly, the aortic endothelium changes to a secretory pheno-
type, and within the multilayer basal lamina numerous MRL are entrapped. Ac-
cumulation of subendothelial foam cells (derived from macrophages, smooth
muscle cells and ultimately ECs) lead to a developed fibro-lipid plaque. By con-
trast, in coronary arteries under the continuous endothelium and proliferated
basal lamina, numerous SMCs form a fibro-muscular plaque. Interestingly, the
aortic endothelium maintains its integrity throughout the process of plaque
formation and only at very late stages do the ECs undergo apoptosis or necrosis.

8.2.2
Modifications of Capillary Endothelial Cells

Myocardial Capillaries In diabetes, a fraction of heart capillaries are partially
collapsed, the lumen narrows and a marked increase in the deposition of ex-
tracellular matrix impedes the diffusion of oxygen and transport of molecules

Fig. 12a–c Diabetes-induced alterations of capillaries. a A collapsed myocardial capillary
is surrounded by pericapillary hyperplasic matrix (pcs) that separates the vessel from the
neighbouring cardiomyocytes (cm). b Retinal capillaries with characteristic hyperplasic
basal lamina (bl) that houses a fragmented pericyte (arrows). c In glomerular capillaries, the
thickened basement membrane (gbm) contains numerous nodules (n). l, lumen. a × 14,000;
b × 20,000; c × 8,000 (Reprinted with permission from Simionescu et al. 1996)
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from the plasma to cardiomyocytes (Fig. 12a). In some locations, pericytes
show signs of damage and death.

Retinal capillary endothelial cells display a prominent biosynthetic appa-
ratus and a thickening of the basal lamina that entraps pericytes in various
stages of degeneration and death: Cell fragments appear dispersed within the
subendothelium (Fig. 12b).

Kidney, glomerular capillaries exhibit severe thickening of the glomerular
basement membrane that displays marked irregularities and large protruding
nodules (Fig. 12c).

8.3
Alterations of the Endothelium in Alzheimer’s Disease

The ultrastructural alterations of capillary ECs in AD consist of atrophy, swell-
ing, the presence of irregular nuclei, compromised morphology of tight junc-
tions, degeneration of pericytes and changes in mitochondrial density. The
capillary basal lamina exhibits consistent thickening and local disruption. All
these modifications impair the function of the BBB (reviewed in Farkas and
Luiten 2001). Accumulation of amyloid-β within the parenchyma or cerebral
vasculature and its interaction with the putative receptor (R-AGE) stimulate
molecular signalling that induces expression of EC adhesion molecules and
ensuing migration of circulating monocytes across the BBB (Giri et al. 2002).

9
Conclusion: Lessons from a Brave Cell

The multitude of functions of the vascular endothelium in physiological condi-
tions, along with its reactivity to aggressive factors in pathological conditions,
highlights the attributes and the ability of these cells to tolerate and adapt to
the surrounding milieu. It is remarkable that ECs have the innate mechanisms
to adjust, confront and counterbalance the insults coming from the plasma or
from neighbouring cells. The cells respond to aggressive factors by modula-
tion of constitutive functions, followed by EC dysfunction, and only ultimately
by cell damage and death. It is noteworthy that the ECs possess the complex
mechanisms aimed at maintaining their structural–functional integrity and
concurrently at protecting the cells of the tissues in which they reside and, on
a larger scale, of the entire organism.
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Abstract Our understanding of the regulation of vascular development has exploded over
the past decade. Prior to this time, our knowledge of vascular development was primarily
based on classic descriptive studies. The identification of stem cells, lineage markers, specific
growth factors and their receptors, and signalling pathways has facilitated a rapid expansion
in information regarding details of the mechanisms that govern development of the vascular
system.

Keywords Embryo · VEGF · Haemangioblasts ·
Endothelial determination and differentiation · Mural cells

1
Introduction

Endothelial cells (EC) derive from early precursors that proliferate and then co-
alesce to form complex vascular networks. During this developmental process,
EC precursors receive appropriate developmental signals, inducing expression
of specific genes and stimulating proliferation and migration. At the same
time, EC are able to direct differentiation of neighbouring tissues, including
cells that will form periendothelial vascular structures and the parenchyma
served by the developing vessels. The result is a quiescent tissue, finely tuned
to functional demands of nearby tissues. This review will describe funda-
mental steps of endothelial developmental processes as a pathway to the phe-
notypic diversity that is seen throughout the vascular system. In addition,
we will review the anomalies of endothelial development and the possibil-
ity of reactivation of developmental processes under situations of stress and
disease.

Differentiation of EC precursors is followed by formation of primitive en-
dothelial tubes, and development and maturation of a vascular network. These
processes involve changes in shape and adhesivity of EC and their precursors,
sprouting and splitting of primitive vascular tubules, and remodelling of ex-
isting vessels plus their investment with mural cells-vascular smooth muscle
cells (SMC) and pericytes.

Co-ordinated operation of numerous receptor-mediated signalling path-
ways and the activation of specific transcription factors are required for EC
differentiation. Expression of receptors for vascular endothelial growth factor
(VEGF)-A, which has been implicated in virtually all aspects of cardiovas-
cular system formation, including heart development, haematopoiesis, vas-
culogenesis, angiogenesis and endothelial survival (Zachary 2003), is consid-
ered a hallmark of endothelial development. However, VEGF-A signals must
be co-ordinated with many other intra- and extracellular messengers that
contribute to the development of structurally and functionally mature blood
vessels.
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2
Early Endothelial Precursors

Vasculogenesis is the differentiation and coalescence of mesodermal precursor
cells to form vessels, whereas angiogenesis involves the migration and division
of EC from pre-existing vessels to form new vasculature. The existence of the
haemangioblast, a common progenitor for endothelial and haematopoietic
lineages, was first postulated at the beginning of the last century, and it was
considered that separation of both lineages occurred in early stages of yolk sac
development. Contemporary findings, however, indicate a more complicated
differentiation pathway (summarised in Fig. 1).

Fig. 1 Timetable of endothelial differentiation. In the mouse embryo, major steps of en-
dothelial differentiation take place between embryonic day E6 and E10. Haemangioblasts
differentiate within the mesoderm of the primitive streak and migrate to the yolk sac where
they form blood islands that give rise to endothelium and primitive blood cells. Blood
islands fuse to form the extraembryonic vessels. Within the embryo, endothelial precur-
sors, presumably derived from similar haemangioblasts, differentiate to the endothelium
of large intraembryonic vessels. Through angiogenesis, this early endothelium is the origin
of the rest of the vasculature. Certain regions of the early endothelium are specialised into
the haemogenic endothelium, which is the source of definitive haematopoietic cells. Some
evidence suggests that endothelium and haematopoietic cells may be able to differentiate
into mural cells
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2.1
Haemangioblasts in the Yolk Sac

Haemangioblasts have recently been defined as a subpopulation of meso-
derm cells that originate in the posterior region of the primitive streak. They
co-express brachyury (also known as T) and VEGF-A receptor 2 (VEGFR-2;
Flk1 in mouse and KDR in human) genes, and are first detected at the mid-
streak stage of gastrulation (Huber et al. 2004). Thus, the earliest stages of
haemangioblast differentiation probably occur before their migration to the
extraembryonic mesoderm of the presumptive yolk sac (Fig. 2). Haeman-
gioblasts aggregate in presumptive blood islands (also known as mesodermal
cell masses or angioblastic cords) that appear in the extraembryonic meso-
derm between mouse embryonic day (E)7 and E7.5. Cells at the outer aspect

Fig. 2 a Schematic representation of a 7.0-day mouse embryo illustrating haemangioblast
development and migration to the yolk sac. The haemangioblast is a Bry+ and VEGFR-2+

cell derived from mesodermal Bry+ cells located in the region of the primitive streak (black).
Haemangioblasts migrate onto the yolk sac where they differentiate into haematopoietic
cells (H), EC and SMC. Adapted from Huber et al. (2004). b Representation of the spatial
distribution of VEGF-A and VEGFR-2 transcripts in an E7.75 embryo transversely sectioned
through the amnion. VEGF-A is present throughout the whole embryo, but is at higher levels
in the cephalic region (striped region) where the neural plate is developing. Conversely,
VEGFR-2 is also widely distributed but predominates caudally (dots) where EC precursors
arise in the region of the primitive streak. (Adapted from Hiratsuka et al. 2005)
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of the blood islands assume a spindle shape as they differentiate into EC,
whereas inner cells progressively lose their intercellular attachments as they
differentiate into primitive blood cells. Shortly thereafter, blood islands fuse
to form the first endothelial tubes. A three-dimensional network, the primary
vascular plexus, takes shape and then undergoes reorganisation, sprouting and
remodelling to form the large vitelline vessels. Remodelling is accompanied
by the recruitment and differentiation of vascular SMC (Drake and Fleming
2000).

At the three-somite stage, vascular development has spread throughout
the yolk sac, but primitive red blood cells remain restricted to the blood
islands of the proximal yolk sac, suggesting that there are haemangiogenic
and angiogenic regions within the yolk sac (McGrath et al. 2003). On the other
hand, the presence of cells giving rise to both endothelial and haematopoietic
lineages in the allantois, placenta and somitic tissue (Alvarez-Silva et al. 2003;
Finkelstein and Poole 2003), indicates that haemangioblasts could be far more
extensively dispersed than previously thought.

2.2
Development of Primitive Intraembryonic Vessels

Vasculogenesis and angiogenesis are regulated by the capacity of EC and their
precursors to adhere to each other and form new tubes. These cells can undergo
dramatic changes in their shape, and their plasma membranes can engage in
extensive protrusive activity with directionally oriented processes recognising
and contacting neighbouring EC precursors to form cord-like cellular assem-
blies. At the same time, EC flatten and assume the spindle shape characteristic
of differentiated EC. Tensional forces contribute to the creation of a single cell-
layered vascular lumen. Continued vascular fusion can combine neighbouring
small-calibre vessels into larger ones. The earliest intraembryonic endothelial
populations appear in regions fated to give rise to the heart before vasculo-
genesis. The quantity of these cells increases dramatically before the aortic
primordia first become discernible. Intraembryonic vasculogenesis is initiated
in the cranial region of E7.3 embryos. Bilateral aortic primordia become dis-
cernible by E7.8 and their fusion is completed by E8.3. The lateral vascular
networks are formed between E8.2 and E8.5. These early vascular channels de-
velop before links with the vitelline vessels are established (Drake and Fleming
2000).

2.3
The Haemogenic Endothelium

Groups of 25–100 rounded cells, possessing the same ultrastructural features
of primitive haematopoietic cells of the yolk sac blood islands (Tavian et al.
1996; Godin and Cumano 2002), are attached to the ventral luminal wall of
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Fig. 3 Schematic representation of the embryo at the level of the truncal aorta-gonad-
mesonephros (AGM). The area of haemogenic activity, including the aorta and subaortic
patches, is outlined. NT is the neural tube and CV is the cardinal vein. The enlargement of
the aortic region illustrates the intra-aortic clusters, which are restricted to the ventral part
(floor) of the vessel and exhibit CD45. The subaortic patches are found bilaterally. (Based
on Tavian et al. 1996)

the main arteries, aorta, omphalomesenteric and umbilical arteries (Fig. 3).
These cells, which exhibit haematopoietic markers, are only observed during
a brief stage in gestation (E9-11.5 in mice and ED30-40 in humans). This time
period coincides with the one in which multipotent definitive haematopoi-
etic stem cells can be isolated from the aorta-gonad-mesonephros (AGM)
region, defined as the region of the murine embryonic splanchnopleuric meso-
derm bounded by the dorsal aorta, gonadal ridge and pro/mesonephros. No
intra-aortic clusters are visible outside the AGM in the post-umbilical cau-
dal region of the embryo. Cytological features of the aortic floor, such as
the presence of “bottled-shaped” cells and the absence of a basal membrane,
suggest that cell migration can occur across this endothelium (Godin and
Cumano 2002). A special group of mesenchymal cells, the subaortic patches,
are located below the haematopoietic clusters, but their relationship with dif-
ferentiation of the intra-aortic clusters has still to be clarified (Fraser et al.
2003).
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3
Molecular Differentiation of EC

3.1
The Yolk Sac and Extraembryonic Vasculogenesis

Early haemangioblasts (Bry+/VEGFR-2+) apparently arise in the primitive
streak region; however, the yolk sac probably provides them with a suitable en-
vironment inducing divergence of primitive EC and primitive blood cells. The
yolk sac is composed of two cell layers, an extraembryonic mesodermal layer
and a visceral endoderm layer. Members of the GATA family of transcription
factors are important for mesodermal development. In mouse embryos, the
loss of GATA-1 leads to a qualitative defect in primitive erythroid cell differen-
tiation, whereas the loss of GATA-2 has a modest quantitative effect at the yolk
sac (Fujiwara et al. 2004). In later stages, definitive haematopoietic stem cells
are highly dependent on GATA-2, which is expressed in the aortic endothelium
and neighbouring mesenchymal cells (Ling et al. 2004).

The haematopoietically expressed homeobox (Hex) gene is transiently ex-
pressed in the nascent blood islands of the visceral yolk sac and later in
embryonic angioblasts and endocardium. Hex is required for the transition
from the definitive haemangioblast to a definitive haematopoietic stem cell,
and to a somewhat lesser extent, EC, since Hex−/− embryos can form some
vessels before they die at day 12 (Guo et al. 2003). Other transcription factors,
encoded by the stem cell leukaemia (SCL, also known as TAL-1) and LMO-2
genes, are essential for the development of both primitive erythropoiesis and
definitive haematopoiesis. SCL is expressed in the presumptive yolk sac re-
gion in the mid/late streak stage of mouse embryos, coincident with VEGFR-2,
and continues to be expressed in haemangioblasts, definitive haematopoietic
stem cells, some haematopoietic lineages and, at lower levels, in EC precursors
and some EC. Expression of SCL follows expression of VEGFR-2, and is not
detected in VEGFR-2−/− embryos (Ema et al. 2003). SCL−/− mouse embryos
contain no primitive or definitive haematopoietic cells in the yolk sac and die
around E10.5 because of defective embryonic haematopoiesis. Although these
embryos generate EC, suggesting that this transcription factor is only required
for blood cell commitment, they also show defective remodelling of primary
vascular networks (Gottgens et al. 2002).

Signalling from the endoderm is a critical early determinant of haematopoi-
etic and vascular development. Indian hedgehog (Ihh) but not Sonic hedgehog
(Shh) is expressed in thevisceral endodermofgastrulatingmouse embryos and
mature yolk sacs. Ihh alone is sufficient to activate embryonic haematopoiesis
and vasculogenesis in epiblasts in the absence of visceral endoderm (Dyer
et al. 2001), and Ihh−/− yolk sacs can form blood vessels, but they are fewer
in number and smaller, perhaps owing to their inability to undergo vascular
remodelling (Byrd et al. 2002).
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VEGF-A signalling is pivotal for vascular differentiation because its in-
hibition prevents vascular development from its beginning and consistently
inhibits tumour vascularisation. The VEGF ligand family includes VEGF-A,
VEGF-B, placenta growth factor (PlGF), VEGF-C and VEGF-D. VEGF-A in-
teracts with three tyrosine kinase receptors, VEGFR-1 (Flt1), VEGFR-2 and
VEGFR-3 (Flt4). VEGF-A function is required for development of the yolk
sac mesenchyme and recruitment of haematopoietic precursors to the yolk
sac, expansion of the primitive erythroid compartment, survival of primitive
erythrocytes, and angiogenic sprouting of blood vessels, but not for EC spec-
ification (Duan et al. 2003; Martin et al. 2004). The extraembryonic visceral
endoderm and the yolk sac mesodermal sheet are the first tissues to express
VEGF-A, and expression in the visceral endoderm seems to be necessary
and sufficient for normal development of the yolk sac vasculature (Damert
et al. 2002). In blood islands, outer EC are VEGFR-2+, whereas “core” cells,
representing the primitive haematopoietic lineage, are VEGFR-2− (Drake and
Fleming 2000) and CD41+ (Ferkowicz et al. 2003). Embryos lacking VEGF-A or
VEGFR-2 genes have few or no blood vessels (Shalaby et al. 1997). VEGFR-2−/−

mice do not develop yolk sac blood islands or blood vessels, and die between
E8.5 and E9.5, whereas VEGFR-1−/− die due to an overgrowth of vascular EC
and disorganisation of blood vessels.

Transforming growth factor-β1 (TGF-β1)/bone morphogenetic protein
(BMP) families of factors and their receptors are required for extraembryonic
vasculogenesis. BMP4 is secreted by extraembryonic mesoderm at the poste-
rior endof theprimitive streakand, inBMP4-nullmice that survivebeyondgas-
trulation, both haematopoiesis and vasculogenesis are greatly reduced. BMP4
acts through activation of the Smad/5 downstream signalling molecules, and
mice deficient in Smad1 or Smad5 also display defects in haematopoietic and
vascular development (Tremblay et al. 2001). Deficiency of retinoic acid synthe-
sis also generates embryos with multiple anomalies, including missing organ-
ised extraembryonic vessels in the yolk sac. Lack of retinoic acid leads to sup-
pression of TGF-β1 and fibronectin production in EC and downregulation of
VEGF-A, Ihh and fibroblast growth factor (FGF)-2 in visceral endoderm; these
changes are correlated with enhanced EC growth, decreased visceral endoderm
survival and lack of capillary plexus remodelling (Bohnsack et al. 2004).

3.2
Endothelial Differentiation in Embryoid Bodies

Under certain in vitro conditions, embryonic stem (ES) cells differentiate into
embryoid bodies (EB) that contain precursors for multiple lineages. Differen-
tiation of haematopoietic and endothelial lineages in this model parallels that
of the normal mouse (Feraud et al. 2003). Thus, Bry+ mesodermal progenitors
can originate blast colony-forming cells (BL-CFCs) expressing VEGFR-2 and
will grow blast colonies in response to VEGF-A (Faloon et al. 2000). Since
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blast colonies contain both haematopoietic and EC precursors, BL-CFCs are
postulated to represent the haemangioblast (Chung et al. 2002). In serum-free
conditions, ES cells develop only to the mesodermal stage. BMP4 is required
for the transition of ES cells to mesoderm, from mesoderm to VEGFR-2+ cells
and from VEGFR-2+ to SCL+ cells. VEGF-A then acts through VEGFR-2 to
expand SCL+ cells. TGF-β1 and activin A further modulate the expansion of
haematopoietic and EC lineages (Park et al. 2004). In addition, BMP-binding
endothelial cell precursor-derived regulator (BMPER) is specifically expressed
in VEGFR-2+ cells and directly interacts with BMP2, BMP4 and BMP6, and
antagonises Smad5 activation, possibly modulating local BMP activity during
EC differentiation (Moser et al. 2003).

BL-CFCs have provided a suitable model system to analyse the divergence
of haematopoietic and EC lineages in vitro. Initially, a subset of VEGFR-2+/
GATA-1+ mesodermal cells, representing the primitive erythroid lineage, loses
the capacity to give rise to EC (Fujimoto et al. 2001). The remaining VEGFR-2+/
GATA-1− cells express vascular endothelium (VE)-cadherin, the major compo-
nent of endothelial adherens junctions. A subset of VE-cadherin+ cells, giving
rise to definitive haematopoietic progenitors and to EC, probably represents
the “haemogenic” EC (Fujimoto et al. 2001). Primitive endothelial-like cells
derived from human ES cells also express platelet endothelial cell adhesion
molecule-1 (PECAM-1; CD31), but not CD45, and give rise to endothelial and
haematopoietic lineages (Wang et al. 2004a). Wild-type EB give rise to BL-CFCs
differentiating into endothelial and haematopoietic cells, but SCL−/− EB can
only differentiate into EC (Faloon et al. 2000).

VEGF-A regulates cellular properties required for migration, including in-
vasive activity, motility and adhesion/de-adhesion to matrix substrates. In
cystic EB, VEGF-A expression is both temporally and spatially correlated with
development of a vascular network. By contrast, EB derived from VEGF-A-null
ES cells contain PECAM-1-positive EC that do not form tubes. Addition of
VEGF-A partially rescues the formation of vascular networks in the VEGF-A-
null EB, whereas addition of FGF-2 results in increased EC proliferation but
does not rescue vascular morphogenesis (Ng et al. 2004).

3.3
Intraembryonic Differentiation of EC

Using mice embryos (E7.25-E7.75) in which the lacZ gene is driven under the
control of the endogenous VEGFR-2 promoter, EC precursors can be traced
as they migrate from the caudal to the cephalic region, where they are in-
corporated to the developing heart and aorta. EC precursors derived from
wild-type or VEGFR-2+/− mice rapidly move in a cephalic direction, whereas
cells derived from VEGFR-2+/− mice carrying a truncated VEGFR-1 migrate
very little. Direction of migration is correlated with sites of VEGF-A synthe-
sis, which is much higher in the cephalic than in the caudal region. VEGFR-1
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and VEGFR-2 are mainly expressed caudally (Fig. 2b), where both receptors
localise to the same cells. In vitro migration of embryo-derived VEGFR-2+

cells is stimulated both by VEGF-A and PlGF, a specific ligand for VEGFR-1
(Hiratsuka et al. 2005).

PECAM-1 is expressed by early endothelial precursors, first within the yolk
sac and then in aortic primordia at E7.8, whereas CD34, VE-cadherin, and Tie2
appear the next day. PECAM-1 expression is initially associated with the entire
cell surface, but later becomes localised to sites of cell-cell contact (Drake and
Fleming 2000). VE-cadherin promotes cell adhesion and is required for the
assembly of the yolk sac primary plexus and remodelling of embryonic blood
vessels (Bazzoni and Dejana 2004).

Cell clusters associated with the endothelial floor of the 5-week human em-
bryonic aorta express, among other molecules, the transcription factors SCL,
GATA-2, GATA-3 and Runx1 (Godin and Cumano 2002). The haemogenic en-
dothelium expresses GATA-2, c-KIT, tenascin C, VWF, VEGFR-2, PECAM-1,
CD34, endomucin, VEGFR-1, VEGFR-2, Flt3L, SCL, Tie2, VE-cadherin and
VEGF-A (Godin and Cumano 2002). Embryonic cells selected by surface ex-
pression of CD34 or CD31 yield myelo-lymphoid cells in culture, thus sup-
porting the haemogenic nature of intra-aortic clusters (Oberlin et al. 2002).
A transient population of cells expressing both CD45 and VE-cadherin proba-
bly represents an intermediate stage between EC and blood cells (Fraser et al.
2003). VEGFR-2+/CD34− cells persist in the para-aortic splanchnopleura or
subaortic patches until the disappearance of aorta-associated haematopoietic
cell clusters, and it is speculated that these cells represent the intraembry-
onic haemangioblastic precursor of haematopoietic and endothelial lineages
(Cortes et al. 1999).

The transcription factor Runx1 (also known as AML1 or CBFA2), a frequent
target of chromosome translocations in acute myeloid leukaemia, is first de-
tected in mesenchymal cells of the yolk sac at E7.5. Clusters of Runx1+ cells,
also expressing the pan-leucocyte marker CD45, can be detected inside the
aorta, vitelline and umbilical arteries (Fraser et al. 2003). Although Runx1-null
embryos show no dramatic defects in primitive erythropoiesis, they fail to
generate definitive haematopoietic lineage cells. Main EC and haematopoietic
differentiation markers are summarised in Fig. 4.

3.4
VEGF-A Transcription and Signalling in Differentiation of EC

Molecular responses to oxygen gradients contribute to the differentiation
and maintenance of the cardiovascular system. Hypoxia-sensitive genes in-
clude erythropoietin, transferrin and its receptor, VEGF-A and its receptors,
platelet-derived growth factor (PDGF)-B, FGF-2, and multiple genes encoding
glycolytic enzymes (Ramirez-Bergeron et al. 2004). Hypoxia-inducible factor
(HIF), consisting of HIF-1α (or HIF-2α) and aryl hydrocarbon receptor nuclear
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Fig. 4 Gene markers at different stages of endothelial and haematopoietic differentiation.
Development of these lineages requires the concerted action of many genes, but those
included in the chart have been shown to perform essential differentiation steps. Data were
collected from several references included in the text

translocator (ARNT, also known as HIF-1β) subunits, activates multiple genes
in response to oxygen deprivation. VEGF-Aexpression can be activated by HIF-
1α or HIF-2α, but only the latter can activate expression of VEGFR-2 (Elvert
et al. 2003). In differentiating ES cells, hypoxia accelerates the expression of
Bry, BMP4 and VEGFR-2, and proliferation of BL-CFCs (Ramirez-Bergeron
et al. 2004).

Other effectors, however, must be involved during early embryogenesis,
since oxygen is distributed by diffusion and its levels seem to be almost the
same throughout the embryo (Hiratsuka et al. 2005). Many transcriptional
regulators have been associated with VEGF-A expression under pathological
conditions, but few of them have been studied during embryonic development.
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Ets transcription factors could be involved in the control of VEGF-A and other
genes involved in angiogenesis, such as VEGFR-1, VEGFR-2, Tie1 and Tie2.
Ets-1 is highly expressed in the lateral mesoderm when VEGFR-2 starts to be
expressed in EC precursors, and HIF-2α co-operates with Ets-1 in activating
transcription of this receptor (Elvert et al. 2003). ErbB2, one of the receptors for
the family of epidermal growth factor (EGF) ligands, has also been implicated
as a positive modulator of VEGF-A expression (Loureiro et al. 2005).

Most biologically relevant VEGF-A signalling in EC is mediated via
VEGFR-2. Major pathways include survival signalling through phosphoinosi-
tide (PI)-3-kinase-dependent activation of the anti-apoptotic kinase Akt/pro-
tein kinase B (Zachary 2003). VEGFR-1 has a tenfold higher affinity for VEGF-
A than VEGFR-2 but with a much weaker tyrosine kinase activity. VEGFR-1 is
expressed as a full-length molecule in blood vessels and capillaries of devel-
oping organs, closely resembling the pattern of VEGFR-2 distribution, and as
a soluble form that consists of the extracellular domain. Since VEGFR-1 lacking
the tyrosine kinase domain is sufficient for normal development and angio-
genesis in mice (Hiratsuka et al. 2005), it has been suggested that VEGFR-1 may
function as a “decoy” receptor to negatively regulate VEGFR-2-mediated ac-
tions. Such a role is supported by increased VEGFR-2 tyrosine phosphorylation
in differentiated ES cell cultures lacking VEGFR-1 (Roberts et al. 2004).

4
Development of Mural Cells

Pericytes are the mural cells of capillaries and post-capillary venules, whereas
SMC are associated with arteries, arterioles and veins. Mural cells contribute
to the developing vascular wall through cell proliferation and production of
extracellular matrix components such as collagen, elastin and proteoglycans.
Most mural cells are of mesodermal origin, but unlike other tissues, a discrete
population of mural cell precursors cannot be distinguished in the developing
organism. SMC in the proximal aorta, aortic arch and pulmonary trunk are
derived from neural crest, whereas SMC in the coronary arteries are derived
from epicardium, and those in the descending aorta originate from mesoderm
and possibly from transdifferentiated endothelium (Mann et al. 2004). Various
clonal lines of multipotent, self-renewing cells called mesoangioblasts have
been isolated from embryonic dorsal aorta (Minasi et al. 2002).

In vitro experiments suggest that EC or EC precursors may give rise to mural
cells. Thus, VEGFR-2+ cells derived from ES cells can differentiate into both
endothelial and mural cells and can form capillary-like structures in vitro. The
samecells canalso incorporate intobloodvessels as eitherECorpericyteswhen
injected into chick embryos (Yamashita et al. 2000). SMC are also produced
from ES-derived BL-CFCs, and VEGFR-2+ cells retain the capacity to form this
phenotype after the time of haematopoietic cell formation (Ema et al. 2003).
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The absence of mural cells during vascular development results in endothe-
lial hyperplasia, abnormal EC shape, alteration of junctional proteins, in-
creased capillary diameter vessel dilation and microaneurysms, abnormal vas-
cular remodelling and increase of permeability. Affected embryos frequently
die from embryonic or perinatal haemorrhage (Hellstrom et al. 2001; Uemura
et al. 2002).

4.1
Regulation of Pericyte/SMC Phenotype

Understanding phenotypic regulation of SMC during development is particu-
larly important, since changes of SMC associated with diseased vascular tissue
partially recapitulate normal fetal and neonatal development. Different molec-
ular transitions occur during SMC differentiation, leading to the development
of the cytoskeleton, acquisition of contractile function and differentiation of
arterial and venous SMC. Transcripts for α-smooth muscle actin (α-SMA) and
SMα22, a calponin-related protein, are expressed in the developing dorsal aorta
at E9.5, in the umbilical vessels and other cephalic vessels at E10.5, and in most
vessels at E14.5. These genes, however, are also expressed in the early tubular
heart, myotome and skeletal muscles. A more specific marker, smooth muscle-
myosin heavy chain (SM-MHC), does not appear in the aorta until E10.5 (Li
et al. 1996). In the retina, mural cell precursors express NG2 proteoglycan (or
its human homologue, high molecular weight-melanoma associated antigen)
and α-SMA, whereas mature pericytes express NG2 and desmin. Calponin
and caldesmon, required for the contractile response, are markers of highly
differentiated SMC (Hughes and Chan-Ling 2004). Diversity of gene products
generated by alternative splicing can be enormous and is especially relevant
for development of different muscle phenotypes, e.g. the expression of differ-
ent smoothelin isoforms in vascular and visceral SMC (Rensen et al. 2002).
Tissue-specific alternative splicing characterises the differentiated vascular
SMC phenotype and is rapidly lost during vascular disease.

Little is known about the maturation of vascular SMC, but Notch3 (see
Sect. 6.4) and angiotensin receptor 2 (AT2) may be involved. In fetal blood
vessels, the AT2 receptor is expressed at late gestation but decreases to very
low levels in theadult. Levels of the regulatoryproteins calponinandcaldesmon
are below normal in the aorta of AT2−/− mice. Since AT2 is re-expressed in
vascular injury, it may have a role in late vascular remodelling; however, this
remains controversial (Perlegas et al. 2005).

Most SMC genes are under the control of the serum response factor (SRF)
that binds to a cis element known as a CArG box. The SM-MHC gene includes
three positive-acting CArG elements that are selectively required for the dif-
ferent SMC phenotypes. Mutation of an intronic CArG results in an arterial
phenotype, with complete silencing of SM-MHC expression in the aorta, com-
mon carotid arteries and the main trunks of subclavian arteries (Manabe and
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Owens 2001). Three CArG sites also present in the SMα22 promoter region
appear to be involved in vascular SMC differentiation (Ding et al. 2004). My-
ocardin and related molecules MRTF-A and MRTF-B are SRF co-activators
that are expressed in a subset of vascular and visceral SMC, usually preced-
ing expression of SMC-specific genes. Interfering with myocardin expression
results in embryonic death at E11.5 from a lack of vascular SMC. It has been
proposed that the reversible association of myocardin with SRF could be the
basis of the switch between muscle-specific and growth-regulated genes dur-
ing embryological and pathological SMC differentiation (Wang and Olson
2004).

4.2
Differentiation of Pericytes and SMC

Mural cells are expanded and recruited to angiogenic sprouts by proliferation
and migration (Beck and D’Amore 1997). Association of mural cells with
newly formed blood vessels appears to regulate EC proliferation, survival,
migration, differentiation and stability (Antonelli-Orlidge et al. 1989; Hirschi
et al. 1999). Differentiation of mesenchymal cell precursors (10T1/2 cells) into
pericytes is not only accompanied by the expression of α-SMA and NG2, but
also by the induction of VEGF-A (Hirschi et al. 1998; Darland and D’Amore
2001a). Vascular development is conveniently studied in the retinas of mice,
which are vascularised postnatally. In this model, a subset of pericytes was
shown to express VEGF-A, further supporting the observation that contact-
inducedpericytedifferentiation leads toa localised sourceofVEGF-A(Darland
et al. 2003) and other growth factors (see Sects. 4.2.3 and 4.2.4). Pericytes as
a source of a local survival factor may explain the regression of pericyte-
deficient vessels, and the prevention of regression by the administration of
VEGF-A. Conversely, pericytes suppress EC proliferation and migration in
vitro (Orlidge and D’Amore 1987; Sato and Rifkin 1989), possibly explaining
lesions observed in diabetic retinopathy (Hammes et al. 2002) and various
mouse mutants (Hellstrom et al. 2001), where the loss of pericytes precedes
retinal EC proliferation. These interactions between EC and mural cells are
critical to mural cell differentiation and vessel remodelling, and reflect the
collective activity of several signalling molecules, including those described in
the following sections.

4.2.1
S1P Phosphate and S1P Receptors

Sphingosine-1 (S1P) is a lipid mediator derived from sphingomyelin that can
signal through S1P receptors (S1P1-S1P5), a family of G protein-coupled recep-
tors also known as endothelial differentiation genes (EDG). These receptors
and sphingosine kinase are expressed in pre-vascularised embryonic tissues



Development of the Endothelium 85

and during vasculogenesis and angiogenesis (Allende et al. 2003). Exogenous
S1P or sphingosine, but not VEGF-A or FGF-2, can replace the requirement
for serum in promoting vasculogenesis in cultured allantois explants. In the
absence of S1P, failure of the cells to move, coupled with the continued pro-
liferation due to the mitogenic effects of VEGF-A, results in small vascular
networks with abnormally high cell numbers (Argraves et al. 2004).

The receptor S1P1 is highly expressed in EC and developing SMC, whereas
S1P2, is strongly expressed in adult SMC (Lockman et al. 2004). Mice lacking
S1P1 die around E12.5-E14.5 from severe haemorrhage, and exhibit incomplete
SMC ensheathment of dorsal aorta and large arteries. Endothelial-specific dele-
tion of S1P1 leads to a similar phenotype, whereas deletion targeted to vascular
SMC produces viable animals (Allende et al. 2003). Other receptors are prob-
ably involved, since S1P stimulates expression of multiple SMC differentiation
markers in primary SMC cultures and in 10T1/2 cells, through the activation
of an SRF co-factor (Lockman et al. 2004).

4.2.2
Wnts

Wnts are secreted glycoproteins that are likely to play an important role in
normal and pathologic angiogenesis and in neointimal hyperplasia (Goodwin
andD’Amore2002).ThreemajorWnt signallingpathwayshavebeen identified:
the canonical or β-catenin-dependent cascade, the Wnt/Ca++ pathway and the
planar cell polarity (PCP) pathway that co-ordinates polarisation of cells within
the plane of epithelial sheets (Huelsken and Behrens 2002).

EC and SMC in culture express components of the canonical pathway, in-
cluding the Frizzled (Fzd) receptors Fzd-1, Fzd-2 and Fzd-3. The mouse gene
Fzd5 is strongly expressed in theyolk sac afterE9.5, and theplacental bloodves-
sels as late as E10.5. Fzd5 ligands, Wnt5a and Wnt10b, are also expressed in the
early yolk sac. Homozygous Fzd5 knock-out mice are lethal, owing to defects
in the yolk sac vasculogenesis. Wnt2 is also a Fzd5 ligand, and Wnt2-deficient
embryos show placental defects suggesting its importance for vascular growth
during later stages of development (Ishikawa et al. 2001).

Engagement of Fzd receptors results in recruitment of dishevelled (Dvl),
which inhibits β-catenin phosphorylation. About 50% of Dvl2-deficient mice
die perinatally due to severe cardiovascular outflow tract defects that have been
related to alterations of neural crest (Hamblet et al. 2002). Dvl2, which medi-
ates both the canonical and PCP pathways, has recently been detected in the
cytoplasmof culturedEC(WechezakandCoan2005). SecretedFzd-relatedpro-
teins (FRP) compete with Fzd receptors for Wnt binding. The secreted Frizzled
FrzA (or sFRP-1) promotes EC migration and organization into capillary-like
structures (Ezan et al. 2004), probably explaining the reduction in size of ex-
perimental infarct in mice overexpressing this protein (Barandon et al. 2003).
In vitro experiments suggest that Wnt-1 is also co-localised with β-catenin
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in adherens junctions, probably accounting for the enhanced adhesiveness of
transfected EC (Wechezak and Coan 2003).

4.2.3
Platelet-Derived Growth Factors Family

The PDGF family of growth factors is composed of four different polypep-
tide chains: PDGF-A, PDGF-B, PDGF-C and PDGF-D, which form five dimeric
ligands. PDGF-B is secreted by vascular endothelium, PDGF-C by vascular
SMC and PDGF-D by adventitial fibroblasts, whereas the receptor PDGFR-β is
present in vascular mural cells (Hoch and Soriano 2003). Endothelial expres-
sion of PDGF-B occurs during vascular development and is downregulated
in quiescent EC. Thus, as development progresses, PDGF-B expression be-
comes restricted to short capillary segments probably representing angiogenic
sprouts. PDGFR-β is expressed by developing pericytes and SMC of arter-
ies/arterioles (Hellstrom et al. 2001).

The ability of EC from different sources to recruit presumptive mural cell
precursors is blocked by a neutralising antibody to PDGF-B (Hirschi et al.
1998), indicating that this ligand is a chemotactic, and perhaps survival, signal
for PDGFR-β-expressing pericyte/SMC progenitors. Mice lacking PDGF-B or
PDGFR-β die perinatally with extensive haemorrhaging, as a result of absence
of microvascular pericytes and subsequent microaneurysm formation and
capillary rupture (Hoch and Soriano 2003).

Deletion of the extracellular retention motif of PDGF-B by gene targeting
in mice results in defective pericyte investment in the microvasculature and
delayed formation of the renal glomerulus mesangium. In these mutants, per-
icytes appear partially detached and with processes directed away from the
vessels, suggesting that extracellular retention of PDGF-B may act to restrict
pericyte migration to the abluminal surface of microvessels (Lindblom et al.
2003).

4.2.4
Angiopoietins and the Tie Receptors

The twoendothelial-specific receptors,Tie1andTie2 (tyrosinekinase receptors
with immunoglobulin and EGF homology domains), are expressed in the
vascular system from the earliest embryonic stages and remain endothelial-
specific throughout adult life (Thurston 2003). Angiopoietins (Ang-1 to -4) are
the ligands for the Tie2 receptor, but the identity of the Tie1 ligand(s) remains
unknown. Ang-1 is expressed by perivascular cells during development and
in adult tissues. Ang-1 and -4 stimulate Tie2, whereas Ang-2 and -3 block
Ang-1-induced tyrosine phosphorylation of Tie2.
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4.2.4.1
Angiopoietin-1 and Tie2

Ang-1 consists of four alternatively spliced isoforms. The 1.5-kb isoform is
the activating ligand of Tie-2, whereas the smaller isoforms probably represent
dominant-negative regulatory molecules. Both Ang-1 and Tie2 knock-out mice
exhibit reduced embryonic pericyte/SMC formation and die with cardiac fail-
ure and haemorrhage. Initial phases of blood vessel formation occur normally,
but there is no remodelling, and vascular networks exhibit no hierarchical
organisation (Thurston 2003). Intravitreal Ang-1 injections to newborn mice
slightly accelerate the rate of vascular development and partially restore defects
induced in neonatal retinal vasculature by depletion of mural cells (Uemura
et al. 2002).

Endothelial loss of Tie2 expression correlates with EC apoptosis in haem-
orrhagic regions of the embryo (Jones et al. 2001), probably reflecting the
inactivation of the Akt survival pathway. Akt effects are mediated through
members of the FOXO subclass of forkhead transcription factors. Deletion of
FOXO1 (but not that of FOXO3a or 4) causes embryonic death on E10.5 be-
cause of incomplete vascular development (Hosaka et al. 2004). Since FOXO1
regulates EC apoptosis as well as many genes associated with vascular desta-
bilisation and remodelling (including Ang-2), Ang-1 blockade of the FOXO1
cascade promotes vessel stability (Daly et al. 2004).

Some familial forms of venous malformations, characterised by the for-
mation of low-resistance vessels with insufficient SMC investment, have been
associated with point mutations in the kinase domain of Tie2. The means by
which Tie2 mutation leads to these abnormal vessels is unclear (Morris et al.
2005).

4.2.4.2
Angiopoietin-2

Ang-2, produced by EC and stored in Weibel-Palade granules, binds Tie2 but
does not transduce a signal (Fiedler et al. 2004). Ang-2 controls EC quiescence
and responsiveness, probably by inhibition of Ang-1-mediated Tie2 activation.
Ang-2 is not essential for embryonic vascular development, but it is required
for subsequent postnatal vascular remodelling. Newborn pups lacking Ang-2
have the beginnings of a normal eye vasculature, with well-formed hyaloid
vessels. However, the hyaloid vasculature does not regress and the peripheral
retina remains avascular; this defect is not rescued by expression of Ang-
1 (Gale et al. 2002). Ang-2-null mice also exhibit defects in their lymphatic
vasculature,whichcanbe rescuedbyAng-1.MiceoverexpressingAng-2display
vascular anomalies similar to mice lacking Ang-1 (Thurston 2003). Availability
of VEGF-A appears to switch Ang-2 functions from anti- to pro-angiogenic. In
the pupillary membrane, Ang-2, in the presence of VEGF-A, promotes a rapid
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increase in capillary diameter, remodelling of the basal lamina and sprouting
of new blood vessels. By contrast, Ang-2, in the absence of VEGF-A, promotes
EC death and vessel regression (Lobov et al. 2002).

4.2.4.3
Tie1

Mice deficient in Tie1 die between E13.5 and E18.5, depending on the genetic
background. These embryos show signs of oedema, local haemorrhage and
microvessel rupture, but themajorbloodvessels appear intact (Thurston2003).
Tie1andTie2arealsoexpressed inhaematopoietic cells and theyare specifically
required during postnatal bone marrow haematopoiesis (Puri and Bernstein
2003).

4.2.5
Transforming Growth Factor-β1

Signalling by TGF-β1 family members occurs through a receptor complex
formed by two type I (also termed activin-receptor-like kinases, ALKs) and two
type II transmembrane serine/threonine kinases. In most cells, TGF-β1 signals
via a type II receptor and ALK5 to induce Smad2 and Smad3 phosphorylation,
whereas in EC, TGF-β1 also activates an ALK1-promoting Smad1/5 phospho-
rylation. Smad3 can be proangiogenic through stimulation of VEGF-A expres-
sion, whereas Smad2 can be antiangiogenic via thrombospondin-1 (TSP-1)
expression (Nakagawa et al. 2004). Thus, EC regulation of the various TGF-
β1 intracellular cascades remains to be elucidated. Effects of members of the
TGF-β1 superfamily are mediated through a consensus TGF-β1-controlling
element (TCE), which is common to regulatory regions of SMC-marker genes.
TCE-binding factors act as potent repressors of SMC differentiation marker
genes (Ding et al. 2004).

Mice lacking TGF-β1 show defects in the yolk sac vasculature, including
decreased vessel wall integrity, reduced contact between EC and mesenchymal
cells, and incomplete maturation of SMC. The yolk sac vessels are large and
leaky with abnormal endothelial adhesion. Mice lacking the TGF-β1 type II
receptor exhibit a similar vascular phenotype, with additional abnormalities
in other organ systems (Oshima et al. 1996). Conversely, diverse cell types,
including 10T1/2, a line of multipotent mesenchymal cells, murine ES cells
and rat neural crest stem cells, differentiate into SMC upon TGF-β1 treatment
(Mann et al. 2004). TGF-β1 is also involved in the inhibition of EC growth
induced by pericytes and SMC (Antonelli-Orlidge et al. 1989) and cord forma-
tion in EC and 10T1/2 co-cultures (Darland and D’Amore 2001b). EC, SMC
and 10T1/2 secrete latent TGF-β1 that is locally activated upon contact between
the EC and either SMC or 10T1/2 cells (Antonelli-Orlidge et al. 1989; Hirschi
et al. 1998). 10T1/2 cells engineered to form defective gap junctions cannot
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activate endogenous TGF-β1 but can respond to exogenous TGF-β1 (Hirschi
et al. 2003). Other members of the TGF-β1 family might also be involved in the
control of the SMC phenotype; however, their role during embryonic vascular
development has yet to be studied.

4.2.6
Interactions Between Signalling Cascades

Complex interactions exist between PDGF-B, Ang-1 and TGF-β1 (Fig. 5). In
mural cell precursors, PDGF-B upregulates Ang-1 and TGF-β1 expression, via
the PI3-kinase and PKC pathways for Ang-1 and the MAPK/ERK pathway for
TGF-β1. In addition, TGF-β1 partially inhibits endogenous Ang-1 expression
and completely blocks expression induced by PDGF-B. In EC, either Ang-1 or
TGF-β1 alone marginally downregulates PDGF-B expression, but a combina-
tion of these factors produces a much stronger downregulation (Nishishita and
Lin 2004).

S1PandPDGF-Bseemtoco-ordinateEC-mural cell interactions required for
development and stability of the vessel wall. In vitro, S1P potently stimulates
PDGF-A and -B chain messenger RNA (mRNA) and protein expression in
vascular SMC (Usui et al. 2004). On the other hand, PDGF-B acts on SMC to
stimulate S1P release, resulting in stimulation of cell migration via activation
of muscular S1P receptors in an autocrine/paracrine fashion (Hobson et al.
2001). More recent evidence suggests that PDGFR-β integrates a pre-formed
complex with the S1P1 receptor that, upon PDGF stimulation, is internalised
through endocytic vesicles and activates a MAPK cascade (Waters et al. 2005).

Fig. 5 Yolk sac vasculature of E10.5 mice that express single VEGF-A isoforms. Shown are
yolk sacs isolated from embryos of wild-type mice that express all three VEGF-A isoforms
and mice that express VEGF120 alone, VEGF164 alone or VEGF188 alone. Yolk sacs were
stained with anti-PECAM antisera to visualise the vasculature
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Pericyte growth and differentiation are differentially regulated by antago-
nistic signalling cascades involving FGF-2 and TGF-β1. FGF-2 markedly stim-
ulates pericyte growth, whereas its removal and/or the addition of TGF-β1
causes the withdrawal of pericytes from the growth cycle and the induction of
a contractile phenotype (Papetti et al. 2003).

5
Endothelium Morphogenesis

5.1
Angiogenic Sprouting

Angiogenic sprouting involves specialised endothelial tip cells that respond to
chemoattractant and repellent guidance cues. Tip cells display long filopodia
that sense extracellular VEGF-A gradients through VEGFR-2. Whereas tip cells
do not proliferate, activation of VEGFR-2 is interpreted differently by sprout
stalk cells, which are induced to proliferate (Gerhardt et al. 2003).

Different VEGF-A protein isoforms, VEGF120, VEGF164 and VEGF188,
have a different affinity for heparan sulphate proteoglycans (HSPG) and hep-
arin (Ng et al. 2001). This is the basis for the selective spatial distribution of
VEGF-A, a primary mechanism controlling directed EC migration and the vas-

Fig. 6 Factors involved in assembly and remodelling of the vessel wall
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cular pattern (Fig. 6). HSPG-binding properties have also been demonstrated
for a wide range of growth factors, including members of the FGF, TGF-β1,
EGF, insulin-like growth factor (IGF), PDGF-B, Wnt families and many other
chemokines and cytokines (Iozzo and San Antonio 2001).

5.2
Attraction and Repulsion of Angiogenic Sprouts

5.2.1
Patterning of the Embryonic Midline

Vessel formation takesplace throughout the embryonicdisc,with the exception
of the midline region surrounding the notochord, where no vessels grow during
the early stages of development. This vascular exclusion zone is not determined
by a lack of endothelial growth factors, but by notochordal production of the
BMP antagonists Chordin and Noggin, which provide strong inhibitory cues
(Reese et al. 2004). The neural tube, a localised source of VEGF-A, plays a role
in patterning the midline vasculature, since it recruits somite precursors that
develop into the perineural vascular plexus surrounding the developing brain
and spinal cord. Sprouts from this plexus do not invade the neural tissue until
later in development, suggesting that negative or repulsive cues also originate
from the neural tube (Hogan et al. 2004).

5.2.2
Semaphorins

Neuropilin 1 (NRP-1) and NRP-2 are related transmembrane receptors that
respond to two different extracellular ligands, class 3 semaphorins (SEMA3)
and VEGF164, which are competitive inhibitors of one another in binding and
in EC motility assays. Transgenic mice lacking both NRP-1 and NRP-2 die in
utero at E8.5 with avascular yolk sacs. NRP-1-null mice die between E11 and
E14 with cardiovascular and neuronal defects, whereas many NRP-2-deficient
mice survive to adulthood but show lymphatic and neurologic defects. Cardio-
vascular defects in NRP-1-null mice include transposition of great vessels and
persistent aorticopulmonary truncus (Takashima et al. 2002). NRP-1-deficient
mice exhibit a defect in tip cell guidance that leads to paucity of sprouting,
which in the presence of EC proliferation results in development of aneurys-
matic malformations (Gerhardt et al. 2004). A knock-in mouse expressing the
variant NRP-1Sema−, unreactive to semaphorin but retaining VEGF-A 165 re-
sponses, survives until birth and has normal cardiac outflow tracts, indicating
that semaphorin-NRP-1 signalling is not critical for embryonic viability (Gu
et al. 2003).

Semaphorins induce the association of NRPs with transmembrane proteins
of the plexin family such as plexinD1, which is expressed by most embryonic
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and adult vascular EC. PlexinD1-null embryos show severe defects of the car-
diac outflow tract and a deficiency of differentiated SMC in the developing
4th and 6th aortic arch arteries (Gitler et al. 2004). SEMA3E can bind di-
rectly to plexinD1 without intervention of a neuropilin. This property is not
shared by any of the other known SEMA3. In E10.5-E11.5 mouse embryos,
SEMA3E expression is localised to the somites, where it acts as a repulsive
cue for plexinD1-expressing EC of adjacent intersomitic vessels (Gu et al.
2005). SEMA3A signalling inhibits integrin-mediated adhesion to the ECM,
and no vascular remodelling is found in SEMA3A−/− embryos (Serini et al.
2003).

5.2.3
Netrins and Their Receptors

Netrins are guidancemolecules related to laminin.Two families ofnetrin recep-
tors are known, the deleted in colorectal cancer (DCC18) and UNC-5 families.
DCC18 receptors mediate attraction, while UNC-5 mediates repulsion (Mehlen
and Mazelin 2003). Receptor UNC-5B, selectively localised to arterial EC and
endothelial tips, controls filopodial activity. UNC-5B mutant embryos develop
a normal vascular plexus, but remodelling produces 40% more branching
points than in wild-type embryos. Mutants die around E12.5 with heart failure
probably resulting from increased peripheral resistance. Increased branching
is associated with a larger number of tip filopodial extensions, and reflects
the lack of UNC-5B negative regulation by netrin-1 stimulation. Intravitreal
injection of netrin-1 during retinal angiogenesis leads to a marked decrease in
filopodial extension (Lu et al. 2004).

5.2.4
Calcineurin/NFAT

Calcineurin, a protein phosphatase that is downstream of VEGFR-2, activates
the nuclear factor of activated T cells (NFATc1-c4). This pathway leads to the
transcriptional activation of various proangiogenic genes and can be counter-
balanced by upregulation of the Down syndrome critical region 1 (DSCR-1)
gene, a calcineurin inhibitor with antiangiogenic properties (Yao and Duh
2004). Signals transduced by Ca2+, calcineurin, and NFATc3/c4 promote the
proper anatomical patterning of the developing vascular system, as shown by
disorganised vascular growth in mice doubly mutant for the NFATc3 and c4
genes. In these mutants, intersomitic vessels ignore somitic or neural bound-
aries, suggesting that NFAT signalling normally prevents abnormal growth of
vessels into these tissues (Graef et al. 2001). EC show a low degree of NFATc4
expression, but perivascular mesenchyme typically expresses high levels of
NFATc4, reflecting its importance for recruitment of pericytes and SMC. Cal-
cineurin and NFATc1 direct neural crest stem cells to a SMC fate, whereas
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DSCR-1 decreases SMC differentiation. DSCR-1 and NFATc1 are upregulated in
response to TGF-β1, and expression of either calcineurin or NFATc1 mimics the
effects of TGF-β1 on neural crest stem cells, suggesting that TGF-β1-dependent
differentiation of SMC is mediated by calcineurin signalling (Mann et al. 2004).

6
Development of Arteries and Veins

Developmental remodelling includes structural and functional differentiation
of arteries and veins, and establishment of an organ-specific microvascular
network.Circulatorydynamicswere thought toplayamajor role inestablishing
these differences; however, it has been demonstrated recently that the identities
of arterial and venous endothelium are defined early in development, even
before the start of circulation (Wang et al. 1998). Ephrins and their receptors,
Eph, seem to be the earliest markers of arteriovenous differences, except for
the recent description of the apelin (APJ) receptor as an even earlier marker
for developing retinal veins (Saint-Geniez et al. 2003).

6.1
Ephrins and Eph Receptors

Eph, receptor tyrosine kinases that are typically activated by ligands an-
chored to the membrane of adjacent cells, regulate cellular adhesion, migration
or chemorepulsion, and tissue/cell boundary formation. Reverse signalling,
downstream of membrane-anchored ephrin ligands, can also occur. In all ver-
tebrates, ephrin-B2 is expressed in arterial EC, while its receptor, EphB4, is
expressed predominantly in venous EC. Ephrin-B2 also appears in perivas-
cular mesenchyme and developing mural cells (Wang et al. 1998). Ephrin-B1
is co-expressed with ephrin-B2 in EC, whereas EphB3 and ephrin-B3 are co-
expressed with EphB4 in venous EC. In the adult vasculature, expression of
ephrin-B2 and EphB4 extends into the smallest-diameter capillaries, suggest-
ing that they can also have arterial and venous identity (Shin et al. 2001).
Eph-ephrin signalling is the basis for endothelial propulsive and repulsive ac-
tivities that mediate EC guidance signals during angiogenesis, as well as the
positional control of EphB receptor- and ephrin-B ligand-expressing cells to-
wards each other. Forward EphB4 signals may direct EC in a repulsive manner
avoiding areas where ephrin-B2 is expressed, whereas promotion of EC mi-
gration may occur if ephrin-B2-expressing EC are activated by EphB4. These
propulsive and repulsive activities may also segregate EC from each other to
limit cellular intermingling and control arterio-venous positioning of cells
(Fuller et al. 2003).

Ephrin-B2 and EphB4 are also involved in mural cell development. Stromal
cells expressingephrin-B2support theproliferationofephrin-B2+ EC, suppress
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the proliferation of ephrin-B2 EC, promote vascular network formation and
induce the recruitment and proliferation of α-SMA+ cells. Conversely, stromal
cells expressing EphB4 inhibit vascular network formation, ephrin-B2+ EC
proliferation and α-SMA cell recruitment and proliferation (Zhang et al. 2001).

Targeted disruption of either ephrin-B2 or EphB4 results in embryonic
lethality at E11 and E9.5-10, respectively, due to defects in angiogenic re-
modelling of arteries and veins, and alterations of myocardial trabeculation.
Early vasculogenesis is also abnormal, since EphB4-deficient EB display de-
layed expression of VEGFR-2 (Wang et al. 2004b). The initial commitment of
ephrin-B2+ or EphB4+ EC could be the trigger for determining the arterial
or venous fate of developing vessels. However, determination of arterial or
venous fates probably requires the action of other upstream signals (see Sects.
6.2 and 6.5).

6.2
Hedgehog in Arteriogenesis

Hh proteins act as morphogens in many tissues during embryonic devel-
opment. Signalling requires the interaction of Hh protein with its receptor,
Patched-1 (Ptc1), leading to activation of a transcription factor, Gli, that in-
duces expression of downstream target genes including Ptc and Gli themselves.
Zebrafish embryos lacking Shh activity fail to express ephrin-B2a within their
blood vessels, and a similar failure occurs in embryos lacking VEGF-A or
Notch. In these embryos, ectopically expressed Shh induces ectopic formation
of ephrin-B2-expressing vessels (Lawson and Weinstein 2002). A determinant
role for Hh proteins in arteriogenesis of higher vertebrates has not been as
clearly demonstrated as in Zebrafish. However, in the murine corneal angio-
genesis assay, Shh produces large, branching vessels, whereas VEGF-A results
in capillaries of lesser lumenal calibre. Moreover, Shh is involved in arterio-
genesis during revascularisation of adult ischaemic tissues (Pola et al. 2003).

6.3
VEGF-A in Arteriogenesis

The association of peripheral nerves and expression of arterial markers during
development has led to the suggestion that neurally derived VEGF-A directs
arteriogenesis. Nerves express VEGF-A at a higher level than surrounding
mesenchymal tissue. Moreover, expression of ephrin-B2 can be induced in
embryonic EC by incubation with VEGF-A or co-culture with neurons or
Schwann cells. In these experiments, only 50% of EC cultures express the
arterial ephrin, suggesting that VEGF-A could represent a permissive inducing
signal rather than an instructive determinant of arterial identity (Mukouyama
et al. 2002). Since major receptors for VEGF-A are expressed on all EC, the
arteriogenic effect of this factorhasbeenascribed to the co-receptorNRP-1 that
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is preferentially expressed on arteries, whereas NRP-2 tends to be expressed in
veins/lymphatic vessels (Yuan et al. 2002).

Defective vascular development in mice expressing single VEGF-A isoforms
illustrates the complexity of VEGF-A signalling in arterial specification. In the
early developing retina, prior to mural cell differentiation, the arterial marker
ephrin-B2 is detected in about 50% of the retinal vessels, and NRP-1 shows
a similar distribution, being localised in retinal arterioles with very low ex-
pression in retinal venules. Arteries and veins develop normally in VEGF164/164

mice, but severe arterial defects accompanied by relatively normal veins and
capillaries appear in VEGF188/188 mice. VEGF120/120 mice show severe retinal
vascular defects, but 50% of early retinal vessels express ephrin-B2, suggesting
unimpaired arterial specification. After remodelling, however, arterial devel-
opment appears to lag behind venous development, suggesting that expression
of NRP-1 is not the only mechanism driving the arterial specificity of the
VEGF-A-response (Stalmans et al. 2002).

6.4
Notch Pathways

Notch receptor-ligand interaction results in proteolytic cleavage of the Notch
receptor,producingaC-terminal intracellular fragment (NotchIC) that translo-
cates to the nucleus. NotchIC binds to a transcriptional repressor, derepress-
ing or co-activating the expression of various lineage-specific genes. Since the
Notch cascade has a role in determining cell identities, it is probably involved
in the events distinguishing EC from mural cells, artery from vein, pulmonary
from systemic vessels, and large vessels from capillaries (Iso et al. 2003).

Several Notch pathway ligands and receptors are selectively localised in
EC and their supporting cells. Notch1−/− and Notch1+/−/Notch4−/− embryos
arrest early in development with severe defects in the yolk sac and embry-
onic vessels. The primary vascular plexus develops normally, but both small
capillaries and large vitelline collecting vessels fail to form, and embryonic
large blood vessels are severely malformed (Krebs et al. 2000). Constitutive
activation of Notch4 causes defects in vascular remodelling, whereas mice
deficient in Jagged1, one of the Notch ligands, die from haemorrhage early
during embryogenesis (Uyttendaele et al. 2001; Leong et al. 2002). Notch4
activation in EC promotes mesenchymal transformation, evidenced by down-
regulation of EC-specific proteins such as VE-cadherin, and upregulation of
mesenchymal proteins, such as α-SMA, fibronectin and PDGFR-β (Noseda
et al. 2004).

The Notch ligands, Jagged1, Jagged 2 and Dll4, as well as the receptors
Notch1, Notch3 and Notch4, are selectively expressed in arteries. Notch1 and
Notch4 are expressed in EC, whereas Notch3 is localised specifically to SMC
(Villa et al. 2001). Heterozygous deletion of Dll4 results in absence of well-
defined arterial vessels, including the internal carotid artery, although a rela-
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tively normal venous plexus is present. SMC coverage of large arterial vessels is
often lacking or markedly deficient (Gale et al. 2004). In Dll4−/− mice embryos,
EC do not express the arterial markers ephrin-B2, connexin37 and connexin40
(Duarte et al. 2004).

Effectors of the Notch cascade are also involved in arterial differentiation.
Loss of RBP-J (mammalian suppressor of hairless), one of the primary tran-
scriptional mediators, results in the production of arteriovenous malforma-
tions (AVM), including fusion of the dorsal aorta with the common cardinal
vein (Krebs et al. 2004). Hey1 and Hey2, two other targets of Notch signalling,
are preferentially expressed in embryonic arteries. Hey1−/−/Hey2−/− mice dis-
play a phenotype resembling that produced by Notch1 deficiency, including
defects in yolk sac vascular remodelling and lack of the arterial markers CD44,
neuropilin1 and ephrin-B2 (Fischer et al. 2004). In Zebrafish, Notch-induced
arterial differentiation is downstream of VEGF-A signalling (Lawson and We-
instein 2002). This is likely to be the case in mammals, since in vitro VEGF-
A stimulation upregulates Notch1 and Dll4 transcription (Liu et al. 2003).

In humans, mutations of the ligand Jagged 1 are associated with Alagille syn-
drome, a developmental disorder that includes vascular defects (Gridley 2003).
Cerebral cavernous malformation (CCM), a vascular malformation charac-
terised by thin-walled vascular cavities that haemorrhage, has been linked to
loss-of-function mutations in a locus termed CCM1. CCM1−/− mouse embryos
exhibit progressive dilatation of cephalic vessels, with marked enlargement
of the aorta and branchial arch arteries, downregulation of Dll4 and Notch4,
and lack of ephrin-B2 expression and SMC recruitment in arteries. Consistent
with the murine data, Notch4 is not detected in human cavernous lesions, and
is markedly reduced in brain arteries adjacent to the vascular malformations
(Whitehead et al. 2004).

Missense mutations in Notch3 have been implicated in a neurovascular
disorder known as cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADASIL), an arteriopathy that involves
regression of arterial vascular SMC. In mice, the absence of Notch3 function
is compatible with normal angiogenesis and remodelling, but arterial SMC is
severely affected and resembles venous SMC, both by its orientation and by
the lack of smoothelin (Domenga et al. 2004).

6.5
TGF-β1 Receptors

Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia charac-
terised by localised vascular malformations. Mutations in endoglinCD34(ENG,
CD105) have been linked to HHT type 1, whereas mutations in the gene coding
for ALK1 are associated with HHT type 2. ALK1, a receptor for TGF-B1 and ac-
tivins, is predominantly expressed in arterial capillary EC. In ALK1-null mice,
there is downregulation of ephrin-B2, loss of arterial-specific haematopoiesis,
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defects in development of mural cells, and arteriovenous malformations be-
tween major arteries and veins (Seki et al. 2003).

ENG is a component of the TGF-β1 receptor complex that is uniformly ex-
pressed in all vessels, including liver sinusoids (Jonker and Arthur 2002). The
most recent evidence indicates that ENG stimulates TGF-β1/ALK1-induced
Smad1/5 responses and indirectly inhibits the TGF-β1/ALK5 signalling path-
way, thereby promoting endothelial activation (Lebrin et al. 2004). The loss of
ALK1 or ENG does not disrupt de novo assembly of large vessels, but impairs
the ability to maintain the arterial and venous beds as distinct circuits during
remodelling (Sorensen et al. 2003). CD34 is a cell-surface glycoprotein that
is expressed on the surface of haematopoietic, as well as EC, but is normally
expressed at a much higher level on arterial endothelium. In early ALK1−/−

and ENG−/− embryos, CD34 is strongly expressed in venous vessels, suggesting
a progressive conversion of venous endothelium to arterial haemogenic en-
dothelium. The appearance of venous endothelial haematopoiesis could reflect
an intrinsic defect in definitive haematopoietic stem cells, which also express
ENG (Chen et al. 2002).

7
Concluding Remarks

The identification of a large number of growth factors and their signalling
pathways, in conjunction with observations of mice in which these molecules
have been genetically deleted, has provided an enormous body of information
regarding their roles in vascular development. These data have made it clear
that the formation of the vasculature is a highly complex process that involves
a large number of growth factors and cell-cell interactions. Although use of
knock-out mice has indicated a role for many factors, the precise role that
each molecule plays is not known. In particular, the contextual role of such
factors has not been elucidated concerning how the actions of a specific factor
are modified by the environment and/or by the presence of other factors.
Further, the tissue specificity of the various developmental pathways has not
been systematically studied. Thus, though there has been a virtual explosion of
knowledge regarding the development of the vascular system, many important
questions remain to be answered.
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Abstract An important function of the endothelium is to regulate the transport of liquid
and solutes across the semi-permeable vascular endothelial barrier. Two cellular pathways
controlling endothelial barrier function have been identified. The transcellular pathway
transports plasma proteins of the size of albumin or greater via the process of transcytosis
in vesicle carriers originating from cell surface caveolae. Specific signalling cues are able to
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induce the internalisation of caveolae and their movement to the basal side of the endothe-
lium. Caveolin-1, the primary structural protein required for the formation of caveolae, is
also important in regulating vesicle trafficking through the cell by controlling the activity
and localisation of signalling molecules that mediate vesicle fission, endocytosis, fusion
and finally exocytosis. An important function of the transcytotic pathways is to regulate
the delivery of albumin and immunoglobulins, thereby controlling tissue oncotic pressure
and host-defence. The paracellular pathway induced during inflammation is formed by
gaps between endothelial cells at the level of adherens and tight junctional complexes.
Paracellular permeability is increased by second messenger signalling pathways involving
Ca2+ influx via activation of store-operated channels, protein kinase Cα (PKCα), and Rho
kinase that together participate in the stimulation of myosin light chain phosphorylation,
actin-myosin contraction, and disruption of the junctions. In this review of the field, we
discuss the current understanding of the signalling pathways regulating paracellular and
transcellular endothelial permeability.

Keywords Caveolae · Transcytosis · Interendothelial junctions · Actin-myosin contraction

1
Permeability Pathways: Paracellular and Transcytosis

Transvascular exchange of molecules and fluid between the blood and in-
terstitial space is controlled by a monolayer of endothelial cells which lines
blood vessels, essentially forming a semi-permeable vascular barrier (Michel
and Curry 1999). Transport of plasma proteins (such as albumin) across the
vascular endothelial barrier can occur via two discrete structural features of
the endothelium: the paracellular pathway, consisting of the restrictive inter-
endothelial cell junctions (IEJ), and the transcellular pathway, consisting of
a highly mobile set of vesicles that shuttle across the endothelial barrier from
luminal-to-abluminal side (Fig. 1). Junctional permeability is regulated by
complexes present in IEJs, adherens junctions (AJs) and tight junctions (TJs),
and interactions of these complexes with the actin cytoskeleton (Lum and
Malik 1994). Junctional transport is increased in response to inflammatory
mediators-such as thrombin, bradykinin, vascular endothelial growth factor
(VEGF), platelet activating factor (PAF) and histamine-that “dilate” the in-
tercellular space, resulting in increased endothelial permeability to plasma
proteins and liquid (Lum and Malik 1994; Dvorak et al. 1995; Garcia et al. 1996;
Moy et al. 1996; Rabiet et al. 1996). However, in the absence of a pathological
insult, these junctions are normally impermeable to albumin and other plasma
proteins. Electron micrographic studies have shown that this pathway is closed
(restricted) and excludes macromolecule tracers (Milici et al. 1987; Predescu
andPalade1993;Predescuet al. 1994, 1997, 2004).The transportof albuminand
other macromolecules across the endothelium under normal circumstances
can be fully explained by transcytosis involving the plasma membrane vesic-
ular structures or caveolae (Predescu and Palade 1993; Schnitzer et al. 1994).
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Fig. 1 Endothelial cell transport pathways. The exchange of molecules and fluid occurs
through two distinct pathways. The paracellular pathway, comprising tight junctions (TJ)
and adherens junctions (AJ) between neighbouring cells, is normally a restrictive barrier
to macromolecular transport. VE-cadherin molecules form Ca2+-dependent homotypic
adhesions with VE-cadherin molecules in adjacent cells and are connected to the actin
cytoskeleton via the catenins. The transcellular pathway comprises membrane-attached and
cytosolic caveolae that transmigrate across the endothelium, delivering macromolecules
from the blood to the interstitium. Caveolae-mediated endocytosis of albumin, the primary
plasmamacromolecule, is initiatedbyalbumin-bindingproteingp60activationofSrc-family
kinases

The following sections will discuss in detail these pathways and their modes
of regulation.

1.1
Transcellular Permeability

Transcellular transport, or transcytosis, is the primary mechanism by which
albumin, lipids, steroid hormones, fat-soluble vitamins and other substances
that bind avidly to albumin cross the normally restrictive microvessel barrier
lined with continuous endothelia. Studies in microvascular endothelial cells
have identified specific interactions between the 60-kDa endothelial cell sur-
face albumin-binding glycoprotein, termed gp60, and caveolin-1, the primary
structural protein of caveolae (Tiruppathi et al. 1997; Minshall et al. 2000).
These interactions are required for albumin transport (Minshall et al. 2000,
2002; John et al. 2003). Signalling pathways activated by the association of gp60
with caveolin-1 are crucial in regulating albumin permeability in endothelial
cells via transcytosis (Tiruppathi et al. 1997, 2003; Minshall et al. 2000; Shaja-
han et al. 2004a, b). Endothelial cells also transport insulin and transferrin via
a transcellular mechanism; however, in contrast to albumin transport, trans-
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ferrin uptake relies on clathrin-coated pits (King and Johnson 1984; Goldberg
et al. 1987; Anderson 1991). Thus, studies during the last 20 years have estab-
lished that endothelial albumin transport is mediated primarily via caveolae
(Ghitescu et al. 1986; Milici et al. 1987; Predescu et al. 1994, 2004; Schnitzer
et al. 1994; Minshall et al. 2000; Vogel et al. 2001a; John et al. 2003; Tiruppathi
et al. 2003).

1.1.1
Albumin-Binding Proteins and Their Role in Transcytosis

A key event initiating the release of caveolae from the plasma membrane is
the binding of albumin to a set of defined albumin-binding proteins (ABPs)
(Tiruppathi et al. 1996, 1997; Schnitzer 1992; Schnitzer et al. 1988). These pro-
teins, as identified by ligand blotting and crosslinking studies, have molecular
weights of 18, 31, 60 and 75 kDa (Ghitescu et al. 1986; Ghinea et al. 1988, 1989;
Schnitzer et al. 1988, Siflinger-Birnboim et al. 1991; Schnitzer 1992; Antohe et
al. 1993; Tiruppathi et al. 1996; Predescu et al. 2002). Despite their potential
importance in albumin transport, their identity and function remain poorly
characterised. Some ABPs, specifically the 60-kDa (gp60) and 18-kDa forms,
are particularly abundant in lung microvascular endothelial cell membranes
(Tiruppathi et al. 1996; Schnitzer et al. 1992; Schnitzer and Bravo 1993). Func-
tional studies to date have primarily concentrated on gp60 because it has been
shown to bind native albumin and regulate transcellular albumin transport
(Schnitzer et al. 1988; Schnitzer 1992; Schnitzer and Oh 1994; Tiruppathi et al.
1996, 1997; Minshall et al. 2000; Vogel et al. 2001a, b; John et al. 2003). Al-
bumin binding to cell surface gp60 appears to be a crucial event signalling
caveolae-mediated endocytosis of albumin (Minshall et al. 2000). Vesicles con-
taining gp60-bound albumin as well as albumin in the fluid phase of vesicles
were shown to internalise and translocate to the basolateral membrane, where
they released their contents into the subendothelial space (Ghitescu et al. 1986;
Milici et al. 1987; Simionescu and Simionescu 1991; Vogel et al. 2001a, b).

In contrast to gp60, the 18- and 31-kDa polypeptides bind to conformation-
ally modified or denatured albumin forms (e.g. albumin-gold complex and
formaldehyde- or maleic anhydride-treated albumin) with a 1,000-fold greater
affinity than monomeric albumin (Schnitzer et al. 1992; Schnitzer and Bravo
1993; Schnitzer and Oh 1994). These proteins appear to be similar in their func-
tion to scavenger receptors on macrophages (Brown and Goldstein 1983) and
may transfer albumin to the acidic lysosomal compartment for degradation.
They are not likely to be important in transcytosis of albumin. Gp60 binding
to albumin avoids lysosomal degradation of albumin (Vogel et al. 2001a); how-
ever, the mechanism by which albumin bypasses lysosomes and degradation
is unclear.

Gp60 was initially characterised by its affinity to galactose-binding lectins,
Limax flavus agglutinin and Ricinus communis agglutinin, which in compe-
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tition assays inhibited albumin binding to rat fat tissue microvessel endothe-
lial cells (Schnitzer et al. 1988). Siflinger-Birnboim et al. (1991) showed that
R. communis agglutinin precipitated gp60 from bovine lung endothelial cell
membranes and, importantly, that it inhibited transendothelial albumin trans-
port. With the availability of anti-gp60 antibodies (Abs), studies have shown
that the Ab blocked albumin binding and albumin permeability in rat lung
microvascular bed (Schnitzer and Oh 1994). These results collectively point to
an important role of gp60 in the transendothelial transport of albumin.

Other studies addressing the role of gp60 in albumin transport have shown
that anti-gp60 Ab inhibited the specific binding of albumin to the endothelial
cell surface at 4°C and that activation of gp60 by Ab-induced crosslinking stim-
ulated albumin uptake and migration of vesicles to the basolateral membrane
(Fig. 2; Tiruppathi et al. 1996, 1997; Minshall et al. 2000; Vogel et al. 2001a;
John et al. 2003). These studies provide prima facie evidence of a potentially
important functional role of gp60 in activating endothelial permeability of
albumin by means of increasing transendothelial vesicle trafficking.

The Ab-induced crosslinking of gp60 shows that gp60 exhibits some in-
teresting features of an “albumin receptor”. Incubation of endothelial cells at
22°C with fluorescently tagged anti-gp60 Ab, followed by addition of a sec-
ondary Ab, resulted in formation of punctate structures resembling clusters of
gp60 in vesicles beneath the plasma membrane (Tiruppathi et al. 1997). This

Fig. 2 Gp60-mediated transendothelial transport is shown. 125I-Albumin transport was
measured in cultured microvascular endothelial cell monolayers grown to confluence on
Transwell filter inserts. The data show that albumin permeability is stimulated by gp60-
crosslinking (anti-gp60 Ab plus secondary Ab) and blocked by excess unlabelled albumin
or pretreatment of monolayers with anti-gp60 Ab to deplete cell surface gp60. These studies
indicate that albumin transport requires gp60activationand that themechanism is inconsis-
tentwithadiffusionmodeldue to leakage through junctions. (Modified fromJohnetal. 2003)
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membrane-receptor clustering phenomenon suggested that gp60, upon bind-
ing albumin, signals endocytosis in a receptor-dependent manner (Tiruppathi
et al. 1997; Minshall et al. 2000; John et al. 2003). Membrane gp60 clustering
increased the endocytosis of albumin as well as transendothelial albumin flux
(John et al. 2003). As predicted by the model in which budding of plasmalem-
mal vesicles should also carry with it fluid phase solutes (Simionescu and
Simionescu 1991), it was shown that gp60 clustering induced (1) endocyto-
sis and transport of horseradish peroxidase (Tiruppathi et al. 1996), a tracer
without any identified cell surface binding proteins, and (2) myeloperoxidase
which binds specifically to albumin (Tiruppathi et al. 2004). As proof of such
a mechanism operating in the intact microcirculation, Vogel et al. (2001a,
b) showed that gp60 activation is also capable of inducing active transport
of albumin across the continuous endothelial cell barrier of skeletal muscle
and pulmonary microvessels. These studies demonstrated that gp60 activation
increased transendothelial albumin transport, but did so without increasing
liquid permeability (as measured by vessel wall hydraulic conductivity) (Vogel
et al. 2001b). Thus, gp60 activation uncoupled hydraulic conductivity (which
occurs via the diffusive paracellular pathway) from the transcellular pathway
involving the back-and-forth shuttling of vesicles (Minshall et al. 2000).

Confocal imaging studies have further delineated the nature of this transcel-
lular pathway. Studies using fluorescent-tagged albumin and Cy3 fluorophore-
labelled anti-gp60 Ab showed that both probes were co-localised in vesicles
near the luminal plasma membrane (Minshall et al. 2000). Gp60 activation
increased transendothelial migration of water-soluble and lipophilic styryl
pyridinium dye-labelled vesicles [used as a marker of vesicle trafficking since
the dye fluorescence increased significantly when present at lipid-liquid inter-
faces; see Niles and Malik (1999)] (Minshall et al. 2000; Vogel et al. 2001b). Thus,
gp60 activates membrane trafficking and increases transendothelial albumin
permeability via the transcellular pathway.

1.1.2
Role of Caveolae in Mediating Endothelial Permeability via Transcytosis

Caveolae are cholesterol-rich and glycosphingolipid-rich membrane micro-
domains that function as mobile signalling platforms in the plasma mem-
brane. They are, in fact, a ubiquitous feature of endothelial cells, comprising
95% of cell surface vesicles and approximately 15% of total endothelial cell
volume (Predescu and Palade 1993). Caveolae released from the plasma mem-
brane by dynamin-dependent membrane fission (Schnitzer et al. 1996; Oh et al.
1998; Shajahan et al. 2004a) can have several fates (Nabi and Le 2003). What
determines whether a vesicle is destined to the basolateral membrane (the def-
inition of transcytosis), endosomal compartment or some other intracellular
organelle remains unknown.
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Caveolin-1, the 22-kDa protein that coats the cytoplasmic surface of cave-
olae, is the defining protein constituent of caveolae (Rothberg et al. 1992;
Kurzchalia et al. 1992). These characteristic flask-shaped caveolae structures
are absent in endothelial cells from caveolin-1 knockout mice (Drab et al.
2001; Razani et al. 2001; Zhao et al. 2002; Predescu et al. 2004), indicating the
importance of caveolin-1 in formation of the caveolar structure. Besides its
presumptive function as a transcytotic vesicle carrier, caveolin-1 regulates the
cholesterol content of caveolae (Smart et al. 1996). Caveolin-1 binds to choles-
terol and shuttles it from the endoplasmic reticulum to the plasma membrane
(Murata et al. 1995; Smart et al. 1996). However, the function of cholesterol in
these “cholesterol-rich membrane microdomains” is not clear. Endocytosis of
fluorescently taggedalbuminor cholera toxin subunitB (CTB) (anothermarker
of caveolae that binds to ganglioside GM1 enriched in caveolae; see Gilbert et al.
1999) in endothelial cells was blocked by filipin and methyl-β-cyclodextrin
(Minshall et al. 2000; John et al. 2003; Shajahan et al. 2004a), sterol-binding
agents that disassemble cholesterol-rich caveolae (Rothberg et al. 1990, 1992;
Schnitzer et al. 1994; Keller and Simons 1998).

Numerous signalling molecules [such as heterotrimeric and monomeric G
proteins, kinases, and endothelial nitric oxide (NO) synthase] are associated
with caveolin-1 (Li et al. 1996a; Okamoto et al. 1998; Anderson 1998; Murthy
and Makhlouf 2000; Minshall et al. 2000; Predescu et al. 2001). This associ-
ation may maintain these enzymes in a quiescent or inhibited state (Li et al.
1996a), although this has not been specified for all of the binding partners. One
functionof protein-protein interactions in caveolae may be that caveolin-1 con-
centrates signalling molecules, allowing their rapid activation upon demand by
post-translational protein modification, such as through phosphorylation or
dephosphorylation (Li et al. 1996b; Minshall et al. 2002, 2003). Thus, caveolin-1
through its regulation of protein-protein interactions functions as an organis-
ing protein in caveolae, enabling “fine-tuning” of endothelial signalling (Min-
shall et al. 2003; Gratton et al. 2004). The signalling responses controlled by
caveolin-1 include Ca2+ entry via specific plasma membrane channels (Lock-
wich et al. 2000) and activation of endothelial nitric oxide synthase (eNOS)
(Isshiki et al. 2002), Src family tyrosine kinases, and dynamin-2 (Minshall et al.
2000; Shajahan et al. 2004a, b).

Caveolin-1 self-assembles intooligomers that associatewith the cytoplasmic
face of cholesterol-rich plasma membrane microdomains (Anderson 1998).
Oligomerisation of caveolin-1 is required for formation of the characteristic
flask-shaped caveolar structure (Fernandez et al. 2002) and regulates caveolae-
mediated endocytosis, since caveolin oligomers stabilise caveolae at the plasma
membrane and engage the signalling machinery required for endocytosis of
caveolae (Nabi and Le 2003). Because caveolin-1 is the essential scaffolding
protein in caveolae, it has also been hypothesised to function as a “master-
regulator” of signalling molecules in caveolae (Okamoto et al. 1998; Anderson
1998; Minshall et al. 2002, 2003; Conner and Schmid 2003; Gratton et al. 2004).
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Transcytosis, the primary means of albumin transport across continuous
endothelia in the basal state (see Sect. 1.1), is the result of endocytosis (vesicle
budding and fission) at the apical membrane and exocytosis (membrane fusion
and release of vesicular contents) at the basolateral membrane (Tuma and
Hubbard 2003). The key signalling event regulating transcytosis is Src-induced
tyrosine phosphorylation of caveolin-1 and the GTPase dynamin-2, which
are required for the induction of endocytosis (Minshall et al. 2000; Shajahan
et al. 2004a, b, c). Caveolae release induced in this manner from the plasma
membrane is the first step in migration of vesicles to the basal membrane
(Schnitzer et al. 1996; Oh et al. 1998; Niles and Malik 1999; Minshall et al. 2000;
John et al. 2003). Caveolae that detach from the plasmalemma shuttle to the
basal membrane, where they fuse and release their contents (Ghitescu et al.
1986; Milici et al. 1987; Predescu et al. 1994, 1997; Minshall et al. 2000; Vogel
et al. 2001a).

1.1.3
Signalling Regulation of Caveolae-Mediated Transcytosis

The details of the signalling pathways that mediate release of caveolae from the
plasma membrane are incompletely understood, although it is clear that Src
phosphorylation of caveolin-1 and dynamin-2 are crucial initial steps in the
process (Minshall et al. 2003). These phosphorylation events are important, as
shown by the findings that phosphatase inhibition increased caveolar fission
while kinase inhibition decreased such fission (Parton et al. 1994; Mineo and
Anderson 2001; Shajahan et al. 2004a). Caveolin-1 is phosphorylated by Src
familykinases (Glenney1989)on tyrosine residue14 (Li et al. 1996b;Tiruppathi
et al. 1997; Shajahan et al. 2004a, b, c). Studies have demonstrated a causal
relationship between Src tyrosine kinase activity and release of caveolae from
the membrane (Parton et al. 1994; Tiruppathi et al. 1997; Minshall et al. 2000;
Conner and Schmid 2003; Shajahan et al. 2004a, b, c).

The heterotrimeric GTP-binding protein Gi, which binds to caveolin-1 (Li
et al. 1996a; Song et al. 1997; Okamoto et al. 1998; Minshall et al. 2000), appears
toplaya fundamental role in themechanismofcaveolae-mediated transcytosis.
We showed that caveolae-mediated endocytosis was pertussis toxin-sensitive
and Gαi-minigene peptide-sensitive (Minshall et al. 2000). Shajahan et al.
(2004b) demonstrated that Gβγ signalling of Src activation induced caveolae-
mediated transcytosis. ct-βARK expression, known to sequester Gβγ dimers
and block signalling (Drazner et al. 1997), prevented the gp60-induced activa-
tion of Src kinase and subsequent phosphorylation of caveolin-1 and dynamin-
2 (Shajahan et al. 2004b). In addition, ct-βARK expression blocked the Src
phosphorylation-dependent association between dynamin-2 and caveolin-1 at
the plasma membrane (Shajahan et al. 2004b), suggesting that Gβγ-dependent
Src activation helps to organise the endocytic machinery at the plasma mem-
brane. The cell-permeant peptide myristoylated (m)SIRK, which promotes
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Gβγ-dependent signalling in the absence of receptor stimulation or nucleotide
exchange (Goubaeva et al. 2003; Ghosh et al. 2003), also activated Src, resulting
in phosphorylation of dynamin-2 and caveolin-1, and internalisation of fluo-
rescent CTB (Alexa 488-CTB) by 75% in endothelial cells. mSIRK-induced Src
activation, phosphorylation of caveolin-1 and dynamin-2, and CTB endocy-
tosis were prevented by ct-βARK and the Src kinase inhibitor PP2 (Shajahan
et al. 2004b). These results together describe a model (Fig. 3) in which Gβγ is
essential for the activation of Src, and hence caveolae-mediated endocytosis.

As indicated, Src family tyrosine kinases stimulate caveolae-mediated endo-
cytosis of albumin by phosphorylating caveolin-1 and dynamin-2 in endothe-
lial cells (Tiruppathi et al. 1997; Minshall et al. 2000; Shajahan et al. 2004a,
b, c). Other studies have also reported that endocytosis via caveolae is criti-
cally dependent on stimulation of tyrosine kinase signalling (Parton et al. 1994;
Aoki et al. 1999; Chen and Norkin 1999; Liu and Anderson 1999; Pelkmans et al.
2002; Singh et al. 2003; Sharma et al. 2004). Src phosphorylation of caveolin-1 at
Tyr14 (Shajahan et al. 2004c; Aoki et al. 1999; Mastick et al. 1995; Li et al. 1996b;
Tiruppathi et al. 1996; Rizzo et al. 2003) is believed to signal caveolae-mediated
endocytosis (Minshall et al. 2000; Shajahan et al. 2004a, c; Aoki et al. 1999;
Sharma et al. 2004). Thus, coincident with endocytosis of albumin occurring

Fig. 3 Signalling mechanisms regulating caveolae-mediated endocytosis. Caveolae are the
primary vesicular transporters or “carriers” of albumin in endothelial cells. Gp60, an
albumin-binding protein, initiates the endocytosis of albumin by first associating with
caveolin-1 and subsequently through activation of Src-family tyrosine kinase signalling.
Caveolin-1 plays a central role, as it serves a scaffolding function for components of the
“caveolar release complex”-Gi/βγ, Src and dynamin-2-the signalling machinery responsi-
ble for endocytosis. Src-family kinases, activated by Gβγ subunits upon stimulation of Gi
(autophosphorylation of Y416), phosphorylate tyrosine residues on gp60, caveolin-1 Y14,
and dynamin Y231 and Y597. The caveolar release complex engaged by Src activation and
phosphorylation of caveolin-1 and dynamin-2 induces caveolar fission
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within 1 min after gp60 activation, caveolin-1 and dynamin-2 were tyrosine
phosphorylated at residues 14 and 231/597, respectively (Shajahan et al. 2004a,
b, c). In both cases, pretreatment of cells with Src kinase inhibitor PP1 or PP2
abolished phosphorylation. Dephosphorylation may also be involved in the
control of caveolae-mediated endocytosis. It is possible that protein tyrosine
phosphatases may dephosphorylate caveolin-1 and dynamin-2 in endothelial
cells. Csk, a negative regulator of Src, was shown to bind specifically to phos-
phorylated caveolin-1 (Cao et al. 2002), suggesting a mechanism of negative
feedback regulation.

The GTPase dynamin-2 mediates fission of caveolae from the plasma mem-
brane (Shajahan et al. 2004a, b; Oh et al. 1998; Henley et al. 1999; Conner and
Schmid 2003). Src phosphorylation of dynamin increases its GTPase activity,
assembly into oligomers (Ahn et al. 1999, 2002), and association with cave-
olin-1 at the plasma membrane (Kim and Bertics 2002; Shajahan et al. 2004a).
Interestingly, SV40-induced internalisation of caveolae was also shown to be
dependenton tyrosinekinase activity (ChenandNorkin1999) andrecruitment
of dynamin to the membrane (Pelkmans et al. 2002).

The functional importanceof theseevents incaveolae-mediatedendocytosis
was investigated in pulmonary microvessel endothelial cells stably expressing
non-Src phosphorylatable caveolin-1 or dynamin-2 mutants (Minshall et al.
2003; Shajahan et al. 2004a, c). Expression of either Y14F caveolin-1 or Y597F
dynamin-2 abolished albumin and CTB endocytosis (Shajahan et al. 2004a, c),
indicating Src phosphorylation of these residues is required for signalling
caveolae-mediated endocytosis. Association of caveolin and dynamin was also
increased when dynamin was phosphorylated at Y597 and reduced by the
non-phosphorylatable dynamin mutant (Shajahan et al. 2004a). This finding
suggests that Src phosphorylation of dynamin may enable its localisation to
caveolae, specifically the neck region, thereby “pinching” caveolae from the
membrane (Conner and Schmid 2003).

Sequestration of the Gβγ heterodimer has also been shown to inhibit en-
docytosis via clathrin-coated vesicles (Lin et al. 1998; Kim et al. 2003), in part
by interfering with actin polymerisation (Lin et al. 1998). Although the role of
actin in caveolae-mediatedendocytosis remainsunclear, both Src anddynamin
are known to participate in actin cytoskeletal remodelling by regulating cor-
tactin (McNiven et al. 2000; Cao et al. 2003; Krueger et al. 2003). It is therefore
possible that Src controls the function of actin or associated binding proteins
and thereby regulates caveolar movement along the actin filaments or micro-
tubule “tracks” (Krueger et al. 2003; Mundy et al. 2002; van Deurs et al. 2003).
This would be an additional control exerted by Src beyond Gβγ-dependent Src
activation and the subsequent phosphorylation of caveolin-1 and dynamin-2
(Shajahan et al. 2004a, b, c) described above.
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1.1.4
Endothelial Barrier Function: Adjustments in Caveolin-1 Knockout Mice

Caveolae-mediated endocytosis sets into motion the transport of plasma pro-
teins across the vascular endothelial barrier. It stands to reason from the
above-described role of caveolin-1 that deletion of the caveolin-1 gene (CAV1)
would result in the absence of plasmalemmal vesicles and inability to transport
albumin across the endothelium. Caveolin-1 knockout mice show uncontrolled
endothelial cell proliferation and lung fibrosis, increased NO production, im-
paired Ca2+ signalling and defective endocytosis of albumin (Zhao et al. 2002;
Drab et al. 2001; Razani et al. 2001; Schubert et al. 2002; Predescu et al. 2004).
These changes could be reversed by expression of caveolin-1 complementary
DNA (cDNA). Deletion of the CAV1 gene curiously was not lethal, suggest-
ing that compensatory mechanisms, such as increased junctional permeability
(Zhao et al. 2002; Schubert et al. 2002; Predescu et al. 2004), are responsible for
survival of these mice.

Ultrastructural analysis of microvessels in the caveolin-1 knockout mouse
model showed the absence of caveolae (Zhao et al. 2002; Drab et al. 2001;
Razani et al. 2001; Predescu et al. 2004) but the presence of fenestrae and larger
vesicular structures resembling vesicular-vacuolar organelles (VVOs) (Min-
shall et al. 2003). The assembly of these cellular structures apparently did not
require the presence of caveolin-1. Interestingly, somewhat larger (100–120 nm
diameter) uncoated vesicles resembling caveolae were present in endothelia of
certain vascular beds, albeit fewer in number than caveolae in wild-type mice
(Zhao et al. 2002; Drab et al. 2001; Razani et al. 2001; Predescu et al. 2004). This
finding indicates that there may be an additional pool of vesicles in endothelial
cells that are neither clathrin nor caveolin-1 coated. Recently, Kirkham and
co-workers (2005) described the presence of uncoated caveolin-independent
early endocytic vesicles in CAV1−/− mouse fibroblasts. These vesicle structures
contained GPI-linked proteins and internalised fluid phase markers, which
appeared to be the primary structures mediating CTB uptake in these cells.
However, their role in transendothelial transport remains to be elucidated.

Perhaps the most striking observation regarding the phenotype of CAV1−/−

mice was the fivefold increase in plasma NO level (Zhao et al. 2002). This
finding supports the hypothesis that caveolin-1 has a function in regulating
eNOS (Garcia-Cardena et al. 1997; Bucci et al. 2000; see below). The mecha-
nism of caveolin-1 regulation of caveolae-associated proteins such as eNOS is
not entirely clear, but it could be secondary to maintaining the correct lipid
composition and interactions with the kinase PKB/Akt (Liu et al. 2002).

Together, these observations are consistent with data showing an important
role of caveolin-1 in albumin transport, regulation of eNOS activity and cell
proliferation (Minshall et al. 2000; Bucci et al. 2000; Zhao et al. 2002). However,
the picture is far from complete. Additional studies are needed to determine
(1) precisely how caveolin-1 regulates endothelial barrier function, (2) the
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role of elevated NO levels as determined by eNOS-caveolin-1 interactions in
controlling endothelial barrier function and (3) the basis by which caveolin-1
keeps endothelial cells in a contact-inhibited state in order to maintain vessel
wall integrity.

1.2
Paracellular Permeability

Capillary endothelial cells form the primary barrier between the plasma and
interstitial fluid. Intercellular contacts between endothelial cells and cellu-
lar adhesion to the underlying subendothelial matrix are responsible for the
junctional barrier properties of endothelium. The manner in which certain
pathological conditions such acute lung injury (ALI) and other types of inflam-
matory diseases induce barrier dysfunction is not fully understood. Increased
endothelial permeability is the result of loss of contact between microvascu-
lar endothelial cells and weakening of their adhesion to the basement mem-
brane. Mediators elaborated during inflammation, such as thrombin, VEGF,
histamine, PAF and bradykinin, are key to the disruption of endothelial barrier
function by a direct action on the endothelium, which increases permeability
by opening intercellular junctions. We discuss below the current understand-
ingof the signallingmechanismsmediating increasedendothelial permeability
via the paracellular or IEJ pathway.

1.2.1
Endothelial Retraction and Disruption of Cell-Cell Junctions

The endothelium is the target of pro-inflammatory and thrombogenic media-
tors and growth factors, many of which have receptors in endothelial cells and
thus can directly affect endothelial permeability. These mediators are capable
of disrupting IEJs and increasing endothelial permeability, thus allowing the
passage of plasma proteins through IEJs. The inflammatory mediator throm-
bin results in increased endothelial permeability by causing endothelial cell
retraction and shape change (Vogel et al. 2000; Tiruppathi et al. 2003). The
signal transduction pathways that promote loss of barrier function involve
a complex series of signalling events leading ultimately to rapid and sustained
phosphorylation of myosin light chain (MLC) and simultaneous inhibition of
MLC-associated phosphatase, which functions to prevent dephosphorylation
of MLC and prolong the contractile response (Dudek and Garcia 2001; Tirup-
pathi et al. 2003; Birukova et al. 2004). Endothelial cell retraction is likely to be
precipitated by disruption of endothelial AJs secondary to the traction imposed
by actomyosin-mediated endothelial contractility (Sandoval et al. 2001; Tirup-
pathi et al. 2003). Phosphorylation of MLC by Ca2+/calmodulin-dependent
myosin light chain kinase (MLCK) is required for actomyosin interaction and
engagement of endothelial contractile apparatus. Filamentous actin within en-



Transport Across the Endothelium: Regulation of Endothelial Permeability 119

dothelial cells also associates with the cytoplasmic tail of the major AJ protein
vascular endothelial (VE)-cadherin (Dejana et al. 1999). Contractile force may
“unhinge” AJs, resulting in formation of IEJ gaps (Sandoval et al. 2001). These
gaps, induced by thrombin within minutes (Sandoval et al. 2001), provide
a plausible structural basis for increased paracellular permeability.

1.2.2
Role of Ca2+ Signalling in Mechanism of Increased Endothelial Permeability

The central role of Ca2+ signalling in mediating increased endothelial per-
meability is described in Fig. 4. Thrombin activates the GTP-binding protein
coupled receptor PAR-1 [thrombin-ligated proteinase activated receptor (PAR)
present in endothelial cells] (Tiruppathi et al. 2003; Vogel et al. 2000). The het-
erotrimeric GTP-binding protein Gq signals Ca2+ release from intracellular
stores, and the subsequent Ca2+-store depletion in turn signals Ca2+ entry
via specific plasma membrane channels (Tiruppathi et al. 2003; see below).
Upon PAR-1 activation, free Ca2+ in the cytosol binds to the Ca2+-binding
protein calmodulin; the Ca2+/calmodulin complex activates MLCK, which in-

Fig.4 Signalling functions of Ca2+, PKCα and Rho in the mechanism of increased endothelial
permeability. Activation of endothelial cell surface PAR-1 by thrombin results in inflamma-
tion/vascular leakage. Gq- and G12/13-coupled signalling mechanisms activated by thrombin
induce an elevation in intracellular Ca2+ and activation of PKCα and Rho GTPase. Crosstalk
between Gq and G12/13 signalling via PKCα is also an essential requirement for Rho and
Rho kinase activation. Phosphorylation of myosin light chain (MLC) by Ca2+/calmodulin
(CaM)-dependent myosin light chain kinase (MLCK) and inhibition of MLC phosphatase
via Rho kinase promote actin-myosin cross-bridge cycling, cell retraction and endothelial
barrier dysfunction
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duces phosphorylation of MLC (Dudek and Garcia 2001). In parallel with Gq,
the G12/13 G protein pathway-acting through cytoplasmic Rho GTPase and its
effector Rho kinase-inhibits MLC dephosphorylation (Birukova et al. 2004).
The combined effect of MLCK plus Rho kinase activity is to induce and to
maintain MLC phosphorylation, resulting in formation of actomyosin con-
tractile units (and actin stress fibres) that exert force on the IEJs, both the AJ
and TJ complexes (Sandoval et al. 2001; Dudek and Garcia 2001; Birukova et al.
2004). In addition, there is the likelihood that not only actin but microtubule
polymerisation is important in the mechanism of endothelial cell contractility
(Dudek and Garcia 2001); thus, for endothelial cells to increase their perme-
ability, there is likely to be crosstalk between multiple components of the cells’
contractile machinery.

The role of Ca2+ signalling in mediating increased endothelial permeabil-
ity is well established. Lum et al. (1989) showed-using bovine pulmonary
arterial endothelial cells (BPAEC)-that a thrombin-induced increase in 125I-
albumin permeability can be reduced by 50% by chelating intracellular Ca2+

([Ca2+]i) with quin-2. They showed that the increase in transendothelial al-
bumin permeability was also dependent on both intracellular Ca2+ release
and extracellular Ca2+ entry (Lum et al. 1989). Additionally, these authors
have shown a temporal relationship between the inositol (1,4,5)-trisphosphate
(IP3)-induced increase in [Ca2+]i and the increase in transendothelial albu-
min permeability using BPAEC monolayers (Lum et al. 1992). The thrombin-
induced increase in [Ca2+]i in endothelial cells is primarily the result of
activation of PAR-1 (Ellis et al. 1999). Other studies showed abrogation of
the thrombin-induced increase in lung microvascular permeability in PAR-1
knockout mice (Vogel et al. 2000). IP3 formation induced by thrombin ac-
tivation of PAR-1 is known to cause release of sequestered Ca2+ and elicit
Ca2+ entry via store-operated channels (SOC) (Tiruppathi et al. 2002, 2003).
Tiruppathi and associates have identified TRPC4 (transient receptor potential
channel 4) as an essential constituent of the SOC in the mouse lung (Tirup-
pathi et al. 2002). Their data obtained using TRPC4 knockout mice support
a causal relationship between Ca2+ entry via TRPC4 and elevated pulmonary
microvascular permeability (Tiruppathi et al. 2002). Thus, increased Ca2+ in-
flux leading to activation of endothelial retraction via actomyosin coupling
may be a fundamental underlying basis of increased vascular permeability in
vivo.

The increase in [Ca2+]i is alsocoupled toactivationofproteinkinaseC(PKC)
isoforms, specifically PKCα, which leads to activation of Ca2+/calmodulin-
dependent MLCK(Garcia et al. 1995; Wysolmerski and Lagunoff 1990), another
factor promoting actin-myosin interaction secondary to phosphorylation of
the 20-kDa MLC20 (Garcia et al. 1995). This process can facilitate cytoskele-
tal reorganisation and induce endothelial cell shape change (Lum and Malik
1994; Dudek and Garcia 2001). Studies have shown that in endothelial cells the
monomeric GTPase Rho can also contribute to mediating MLC20 phosphory-



Transport Across the Endothelium: Regulation of Endothelial Permeability 121

lation, thus leading to increased permeability (van Nieuw Amerongen et al.
1998, 2000; Vouret-Craviari et al. 1998; Holinstat et al. 2003).

Van Nieuw Amerongen et al. (1998) investigated mechanisms in endothe-
lial cells signalling responsible for increased endothelial permeability induced
by thrombin and histamine. Chelation of [Ca2+]i with BAPTA-AM (1,2-bis(2-
aminophenoxy) ethane-N,N,N ′,N ′-tetra-acetic acid) prevented the transient
histamine-induced increase in endothelial monolayer permeability, but not
the more prolonged thrombin-induced permeability increase, which depends
on extracellular Ca2+ influx. By contrast, the tyrosine kinase inhibitor genis-
tein and the RhoA inhibitor C3 transferase toxin given together prevented the
thrombin-induced increase in permeability (Dudek and Garcia 2001). These
studies have not implicated a role for PKCα activation in the mechanism of
increased endothelial permeability. This observation contradicts earlier stud-
ies by Lynch et al. (1990) and others (Lum et al. 1993, Tiruppathi et al. 1992).
Interestingly, recent findings in endothelial cells demonstrate that thrombin
induces rapid PKCα-dependent phosphorylation of Rho-GDP guanine nu-
cleotide dissociation inhibitor (GDI), and thereby facilitates Rho activation
(Mehta et al. 2001). PreventionofPKCαactivationabolished thrombin-induced
Rho activation-indicating the requirement for PKCα in the mechanism of Rho
activation in endothelial cells-and thereby increased endothelial permeability
(Holinstat et al. 2003). This crosstalk between the Rho and PKCα signalling
pathways appears to be mediated by the Rho exchange factor, p115RhoGEF
(Holinstat et al. 2003).

1.2.3
Caveolin-1 Regulation of Ca2+ Signalling:
Implication for Increased Paracellular Permeability

Several molecules involved in Ca2+ influx have been localised to caveolae,
including an IP3 receptor-like protein (Fujimoto et al. 1992), dihydropyridine-
sensitive Ca2+ channels (Jorgensen et al. 1989), a Ca2+ ATPase (Fujimoto 1993),
and TRP1 channels involved in capacitive Ca2+ entry (Lockwich et al. 2000).
Electron microscopy studies showed a population of caveolae in close prox-
imity with the endoplasmic reticulum (ER) (Sugi et al. 1982). The functional
importance of caveolae with regards to Ca2+ release and re-uptake was as-
sessed using the live cell Ca2+ sensor yellow cameleon (Isshiki et al. 2002).
Using fusion proteins of yellow cameleon and caveolin-1, which target the
Ca2+ indicator to the caveolae, it was demonstrated that caveolae are the pre-
ferred sites of Ca2+ entry upon ER Ca2+ store depletion, that is, SOC-dependent
Ca2+ entry. The capacitive or SOC Ca2+ entry model described by Anderson
and co-workers (Isshiki et al. 2002) suggests that caveolae function as organis-
ers of Ca2+ signalling, providing a mechanism for regulating the “on-off” state
of the Ca2+ signalling circuit that mediates increased endothelial permeability.
Caveolae are thus the key compartments involved in regulating store-operated
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Ca2+ entry. Ca2+ entering endothelial cells via caveolae may be a crucial factor
regulating endothelial permeability via the junctional pathway; however, this
question has not been extensively examined.

1.2.4
Regulation of Integrity of Inter-endothelial Junctions

Maintenance of cell shape, and thus integrity of the endothelial barrier, is the
result of integrated actions of the contractile and adhesive forces that couple
endothelial cells with each other and to the extracellular matrix (Dudek and
Garcia 2001). Actin-myosin motor activation regulates the contractile force
function of endothelial cells (Lum and Malik 1994). Endothelial AJs associate
with the actin cytoskeleton and link neighbouring cells through transmem-
brane VE-cadherin molecules, and thereby contribute to the intercellular ad-
hesive force (Fig. 5). VE-cadherins are located in intercellular AJs where they
are linked in the cytoplasm to β-, γ- and p120-catenins, which in turn link them
to α-catenin and the actin cytoskeleton (Lampugnani et al. 1995; Dejana 1996).
The five extracellular cadherin repeats are involved in mediating adhesion via
specific Ca2+-binding sites (Sivasankar et al. 2001). Cadherins in a single cell
oligomerise to form cis-oligomers and in adjacent cells to form trans-oligomers
(Dejana et al. 1999). The cadherin cytoplasmic domain contains two functional
sub-domains: juxtamembrane domain (JMD), a binding site for p120 catenin,
and the C-terminal domain (CTD), a binding site for β-catenin and plakoglobin
(or γ-catenin) that bind in a mutually exclusive manner (Dejana et al. 1999).
Plakoglobin or γ-catenin associates with α-catenin, an actin-binding protein
that links VE-cadherin to the actin cytoskeleton (Aberle et al. 1996).

Several lines of evidence now point to the essential role of VE-cadherin junc-
tions in regulating IEJ permeability (Corada et al. 1999; Dejana 1996; Gao et al.
2000). Thrombin induced VE-cadherin disassembly, and the resulting loss of
functional AJs, has been proposed as the basis of increased endothelial perme-
ability (Rabiet et al. 1996; Corada et al. 1999; Sandoval et al. 2001). Calphostin C,
a PKC inhibitor, prevented the thrombin-induced disorganisation of the VE-
cadherin complex (Rabiet et al. 1996; Sandoval et al. 2001), supporting the
role of PKC in mediating the permeability increase by a cadherin-dependent
mechanism. Recent studies have also shown that histamine-induced loss of
endothelial barrier function was associated with disassembly of VE-cadherin
junctions (i.e. cell-cell tethering) (Winteretal. 1999).TheroleofCa2+ andPKCα
signalling in junctional disassembly received detailed attention by Sandoval
et al. (2001), who studied the relationship between the level of cytosolic Ca2+

and increase in endothelial permeability. In this study, endothelial cells were
exposed to thapsigargin or thrombin at concentrations that resulted in similar
increases in [Ca2+]i. The rise in [Ca2+]i in both cases was secondary to release
of Ca2+ from intracellular stores and influx of extracellular Ca2+. To the same
degree, both agents decreased endothelial cell monolayer electrical resistance



Transport Across the Endothelium: Regulation of Endothelial Permeability 123

Fig. 5 Signalling of recovery of endothelial barrier function. Under normal physiological
conditions, adherens junctions (AJ) are intact and restrict leakage of macromolecules and
fluid into the tissue. AJ consist of VE-cadherin linked to β-, p120- and α-catenin, and
thereby connect to the actin cytoskeleton. The tight barrier property of the endothelium is
maintained by intracellular NO and cyclic adenosine monophosphate (cAMP). In response
to an inflammatory mediator (e.g. thrombin), signalling molecules such as Ca2+, PKCα
and Rho facilitate myosin phosphorylation, actin polymerisation, disruption of AJs and
gap formation between cells. Within 2 h of thrombin-stimulated disruption of endothelial
monolayers, barrier integrity is restored by the formation of Cdc42-dependent membrane
protrusions that fill the gaps between cells and re-establish interendothelial junctions. In
addition, sphingosine-1-phosphate and angiopoietin-1 facilitate barrier recovery following
injury and/or prevent barrier dysfunction (see text for details)

(a measure of endothelial cell shape change) and increased transendothe-
lial 125I-albumin permeability. Interestingly, thapsigargin induced activation
of PKCα and discontinuities in VE-cadherin junctions without formation of
actin stress fibres, whereas thrombin induced PKCα activation and similar
alterations in VE-cadherin junctions, but in association with actin stress fibre
formation. Both agents induced phosphorylation of VE-cadherin-associated
proteins, which was prevented by the PKC inhibitor calphostin C. Further,
thapsigargin failed to promote phosphorylation of MLC20, whereas throm-
bin induced MLC20 phosphorylation consistent with formation of actin stress
fibres. Calphostin C pretreatment also prevented disruption of VE-cadherin
junctions and decrease in transendothelial electrical resistance caused by both
agents. Thus, these findings collectively demonstrate that Ca2+ signalling is
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critical for activation of PKCα and disruption of VE-cadherin junctions, and
the Ca2+ signalling thereby mediates increased endothelial permeability.

In addition, the IP3-receptor antagonist 2-aminoethoxydiphenyl borate (2-
APB) was shown to prevent thrombin-induced ER-stored Ca2+ release, Ca2+

influx and thrombin-induced decrease in transendothelial resistance (i.e. IEJ
gap formation) in endothelial cells (Tiruppathi et al. 2003). This finding sup-
ports the concept that Ca2+ signalling is an essential determinant of increased
endothelial permeability via IEJ disassembly. Additionally, Tiruppathi et al.
(2001) showed that short-term exposure of human endothelial cells to tu-
mour necrosis factor (TNF)-α augmented the thrombin-induced increase in
endothelial permeability. This effect was not associated with increased IP3
generation in response to thrombin, but it was ascribed to increased SOC-
induced Ca2+ influx (Tiruppathi et al. 2001). These studies establish a causal
relationship between SOC Ca2+ influx and increased endothelial permeability
secondary to disassembly of AJs.

1.2.5
Role of RhoA in Endothelial Barrier Regulation

Thrombin stimulation of PAR-1 activates the heterotrimeric G proteins G12/13,
Gq and Gi (Tiruppathi et al. 2003). Gq in turn activates PLCβ, thus triggering
Ca2+ mobilisation from the endoplasmic reticulum, PKC activation and PKC’s
activation of downstream effectors such as Ca2+-regulated kinases and phos-
phatases. Both direct activation of G12/13 and its cross-activation by Gq may
activate the monomeric Rho GTPase, RhoA (Mehta et al. 2001; Holinstat et al.
2003). RhoA activity is controlled by its cycling between inactive GDP- and ac-
tive GTP-bound states (Birukova et al. 2004). Three different classes of proteins
are required for this cycling: (1) guanine nucleotide exchange factors (GEFs)
that stimulate GDP to GTP exchange, (2) GTPase-activating proteins (GAPs)
that stimulate GTP-hydrolysis, and (3) GDIs that bind and stabilise Rho-GDP
(Hall 1998). Others groups in addition to our own have shown that thrombin,
by activating RhoA, induces minute IEJ gaps that are responsible for the ob-
served increase invascularpermeability (Mehta et al. 2001;Holinstat et al. 2003;
Birukova et al. 2004). Formation of these gaps and loss of endothelial barrier
function occurred as the result of change in cell shape. RhoA, by activating its
downstream effector Rho kinase, prolonged actin-myosin driven contractile
forces that are transmitted to the endothelial AJ complex. This series of events
leads to the disruption of cell-cell adhesive forces, thus inducing IEJ gap for-
mation (Rabiet et al. 1996; Sandoval et al. 2001). Another mechanism of RhoA
regulation of endothelial cell shape and disruption of AJs is through its ability
to regulate [Ca2+

i]. RhoA may induce the translocation of the IP3R in order to
promote its association with TRP1 in the plasma membrane (Mehta et al. 2003).
Additionally, RhoA has been implicated in inducing SOC activation (Bird and
Putney 1993; Fasolato et al. 1993; Rosado and Sage 2000). This may occur by
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spatial reorganisation of actin filaments (a Rho-regulated phenomenon), thus
favouring Ca2+ entry via activation of TRPC channels (Mehta et al. 2003). Thus,
RhoA, by associating with IP3R and the TRP1 channel, facilitates Ca2+ entry
leading to disruption of AJs and an increase in endothelial permeability.

2
Mechanisms of Dysregulation of Endothelial Permeability in Inflammation

Tissue oedema, defined as fluid accumulation in the extravascular space, can
interfere with functions of organs, for example resulting in impaired gas ex-
change and hypoxaemia in lung oedema (as in acute respiratory distress syn-
drome or ALI) and cardiac impairment in myocardial oedema. When an organ
such as the lung fails to maintain fluid balance, liquid accumulates in the in-
terstitium and ultimately invades the alveolar airspaces. We focus below on
the role of the transcellular and paracellular permeability pathways in tissue
oedema formation.

2.1
Starling Forces Underlying Oedema Formation

2.1.1
Formation of Oedema

Oedema formation is defined by the Starling forces generated across the mi-
crovessel wall. The mathematical relationship between fluid filtration rate (Jv),
and transmural hydrostatic and oncotic pressures is

Jv = LpS
[(

Pc − Pi
)

− Φ
(
πc − πi

)]

where Φ is albumin reflection coefficient, S vessel surface area, Lp hydraulic
conductivity, P capillary hydrostatic pressure, π oncotic pressure, and sub-
scripts c and I refer to capillary and interstitial compartments. The term
(Pc − Pi) gives the transmural hydrostatic pressure gradient and the product
Φ(πc − πi) is the effective transmural oncotic pressure gradient; the difference
between these four forces defines the “driving pressure” for net fluid filtration
or reabsorption across the microvessel wall. A higher (Pc − Pi) favours fluid
filtration (increased Jv), whereas a higher Φ(πc − πi) favours fluid reabsorp-
tion. Normally, an equilibrium is achieved between fluid filtration and fluid
reabsorption at proximal and distal segments of capillaries, and little or no net
filtration occurs through capillary walls. The lymphatic system in most organs
maintains a negative interstitial pressure by continuously withdrawing fluid
from interstitium. Oedema develops when fluid filtration substantially exceeds
its reabsorption and the capacity of the lymphatic system to remove fluid from
the pulmonary interstitium.
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2.1.2
Role of Starling Forces in Oedema Formation

An elevated net driving pressure without a marked increase in permeability
underlies “pressure oedema” (i.e. oedema resulting from an increase in the
capillary hydrostatic pressure). Hydrostatic oedema, when it is not associ-
ated with frank barrier breakdown, is generally protein-poor, at least in early
stages of the syndrome, because the barrier properties tending to exclude large
molecules are preserved. In hydrostatic oedema, the ratio of plasma to alveolar
fluid protein concentration is usually less than 0.6 (Taylor and Parker 1985).
The critical capillary pressure for formation of oedema due strictly to elevated
hydrostatic pressure is a Pc above 25 mm Hg (Taylor and Parker 1985). Fluid
accumulation in tissues is minimised by “safety factors” that are activated
below this critical capillary pressure (see Sect. 3). The extravascular water con-
tent increases progressively as a result of the inability of these safety factors
to reduce the fluid filtration rate when capillary hydrostatic pressure increases
above the critical value. Most clinical manifestations of tissue oedema can be
understood in terms of changes in Starling forces across the microvessel wall.
A decrease in the plasma protein concentration, such as in hypoalbuminaemia,
reduces the transmural oncotic pressure difference, thus favouring increased
fluid filtration. In this case, the critical capillary pressure at which tissue begins
to gain water decreases in direct proportion to the reduction in plasma oncotic
pressure.

2.1.3
Causes of Increased Endothelial Permeability

IEJ rupture or breakdown underlies protein-rich oedema formation due to
the loss of the normal restrictive properties of the capillary endothelial bar-
rier (Mehta et al. 2004). Some evidence suggests that stimulation of protein
transport via a transcellular pathway could also contribute to formation of
protein-rich oedema fluid (van Nieuw Amerongen et al. 1998; Dvorak and
Feng 2001). An active transcellular albumin transport process involving vesic-
ular carriers is well established in pulmonary microvascular endothelial cells
(John et al. 2003). These carriers, which are caveolae, occupy a remarkably
high percentage (15%) of the endothelial cell volume (Predescu et al. 1997).
An important area of investigation is whether pathologic conditions can stim-
ulate transcytosis leading to protein-rich oedema fluid. For example, vesicular
transport was suggested to be involved in the hyperpermeability response of
the endothelium to VEGF by increasing the density of the otherwise rarely
seen endothelial channel-like structures called VVOs (vesicular-vacuolar or-
ganelles; Dvorak and Feng 2001). Additional studies are required to determine
if increased albumin permeability mediated by caveolae and the transcellular
transport pathway participate in the formation of protein-rich oedema.
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Vascular permeability can increase as a result of direct injury to endothelial
cells (Goodman et al. 2003), alterations in the dimensions of IEJs (the para-
cellular pathway) (Rabiet et al. 1996) or a combination of these factors (Lum
and Malik 1994). Figure 5 lists the primary intracellular signalling molecules
thought tomediate the increase in endothelialmonolayerpermeability induced
by thrombin, as well as the reversibility of the response. The figure also shows
the time course and magnitude of the change in normalised transendothe-
lial electrical resistance across a monolayer, indicating that recovery and re-
annealing mechanisms re-establish an intact and restrictive barrier (see Sect.
1.2). The increase in vascular permeability is operationally defined in the Star-
ling equation by an increased capillary filtration coefficient (Kf,c), which is
equivalent to the LpS term in the equation. An increase in the Kf,c corresponds
to decreased barrier resistance to the movement of liquid across the capillary
wall barrier. The albumin reflection coefficient (ΦAlb) describes the albumin
permeability of the vascular endothelial barrier and provides a quantitative
measure of protein permeability (Malik et al. 2000). In high-permeability pul-
monary oedema, the alveolar fluid protein concentration approximates the
plasma protein concentration (Flick and Matthay 2000). The increase in vas-
cular permeability shifts the relationship between Pc and extravascular water
content towards a lower Pc, indicating that oedema occurs at a reduced driving
pressure in the face of increased vascular permeability.

2.1.4
Mediators of Increased Endothelial Permeability

Vasoactive mediators such as thrombin, histamine, PAF, bradykinin and VEGF,
which are released during thrombosis and inflammation, increase endothelial
permeability by increasing [Ca2+]i, reactive oxygen species (ROS), and/or NO
levels (Tiruppathi et al. 2003; Lo et al. 1992; Kubes 1995). The endothelial
cell signalling mechanisms activated by vasoactive mediators are discussed in
detail in Sect. 2.2. Increased vascular pressure also stimulates an increase in
intracellular Ca2+ and ROS, thereby increasing permeability (Kuebler et al.
1999, 2002). Pro-inflammatory cytokines (interleukin-1β, TNF-α) released
from macrophages and polymorphonuclear leucocytes (PMN) as part of the
host defence against bacterial infection, and the bacterial product lipopolysac-
charide (LPS; endotoxin), produce severe vascular endothelial injury, increased
endothelial permeability and tissue oedema (Albelda et al. 1994; Horgan et al.
1991).

2.1.4.1
LPS, PMNs and Oxidants

The generation of oxidants by LPS has an important signalling function in
up-regulating the pro-inflammatory gene intercellular adhesion molecule 1
(ICAM1) in endothelial cells (Malik 1993; Rahman et al. 1999; Fan et al. 2002)
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whose protein product mediates stable ICAM-1-dependent endothelial adhe-
sivity and firm adhesion of PMN to the endothelium (Issekutz et al. 1999).
ICAM-1-dependent PMN binding to endothelial cells, and the subsequent
PMN activation (characterised by release of ROS and intracellular proteases),
are critical factors in the development of acute lung vascular injury (Albelda
et al. 1994; Horgan et al. 1991) and tissue oedema (Horgan et al. 1991; Lo et al.
1992), the hallmarks of ALI (Abraham 2003). Studies have focussed on the cel-
lular responses of the individual cell populations (i.e. PMN or endothelial cells)
and have emphasised the role of cytokines, chemokines and oxidants in the
pathogenesis of ALI (Abraham 2003). Although these studies have implicated
PMN activation in the mechanism of ALI (Abraham 2003; Azoulay et al. 2002),
little is known about the pathogenic role played by the PMN-endothelial cell
interaction in mediating endothelial injury, beyond the generally accepted con-
cept that PMN adhesion to the endothelium is a requirement for the induction
of vessel wall injury.

LPS-induced activation of the PMN NADPH (nicotine adenine diphospho-
nucleotide, reduced) oxidase complex and generation of PMN oxidants play
a critical role in promoting the activation of endothelial cells, a process which
includes the induction of endothelial hyperadhesivity by ICAM-1 expression
and induction of the LPS receptor Toll-like receptor 4 (TLR4) (Lo et al. 1993;
Fan et al. 2002). Furthermore, endothelial cell activation-as defined by the
activation of transcription factor nuclear factor (NF)-κB and resultant expres-
sion of ICAM-1, TLR4 and iNOS-is an essential requirement for the onset of
endothelial injury. Firm adhesion of PMN to endothelial cells involves both
ICAM-1 and CD11b/CD18, the ICAM-1 counter-receptor (Lo et al. 1992; Ma-
lik 1993). Thus, PMN NADPH oxidase-derived oxidant signalling induces not
only ICAM-1 expression in endothelial cells but also CD11b/CD18 expression
in PMN, which act in concert to promote the firm and stable adhesion of PMN
to endothelial cells (Lo et al. 1993). In addition, oxidant signalling, generated
by the PMN NADPH oxidase complex, up-regulates cell surface expression of
TLR2 on endothelial cells (Fan et al. 2003). This raises the interesting possibility
that oxidants, released by PMN, can activate the expression of TLR4 in endothe-
lial cells, and thereby increase the responsiveness of endothelial cells to LPS.

2.1.4.2
Nitric Oxide

It is generally thought that a basal level of NO, generated by eNOS, is required to
maintain endothelial integrity, while high levels of NO produced by inducible
NOS (iNOS) during inflammation, result in endothelial injury and loss of
barrier function (Kubes 1995; Cirino et al. 2003). Elevated NO levels stimulate
the expression of macrophage inflammatory protein 2 (Skidgel et al. 2002)
and react with superoxide to form peroxynitrite anion, a potent oxidant that
nitrates proteins and lipids, inducing cellular damage (Beckman 1996). NOS
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inhibitors, for example NG-monomethyl-l-arginine (l-NMMA), block LPS-
induced increase in lung injury (increase in lung wet/dry weight ratio) and
transcriptional activation of iNOS and interleukin (IL)-1β expression (Wang
et al. 1998). To assess the effect of NO-mediated nitration of albumin, Predescu
and colleagues (2002) examined the permeability properties of native albumin
vs nitrated albumin in the mouse lung and heart microcirculation. These
electron microscopy studies showed that nitrated-albumin extravasation was
two- to four-fold greater than that of native albumin. While both compounds
were found in plasmalemma vesicles (i.e. in the transcellular pathway), nitrated
albumin was also present in open interendothelial junctions (Predescu et al.
2002). Thus, high-output NO-induced vascular injury may be due to disruption
of AJs and increased paracellular permeability.

2.1.5
Role of Lymphatics in Tissue Fluid Homeostasis

Lymphatics are capable of removing excess extravascular fluid because of their
effectiveness as a pump. Lymphatic propulsion is determined by the intrinsic
contractilityof lymphatic vessels andbyunidirectional lymphatic valves (Malik
et al. 2000). The extent to which lymphatic insufficiency is a factor in the
mechanism of fluid accumulation is not clear. For example, in transplanted
organs such as the lung, there is no longer a functioning lymphatic drainage
system and this predisposes the lung to oedema; however, the increase in water
content is usually transient, and therefore transcellular protein permeability
in the reverse direction (tissue to blood) may help to maintain fluid balance
(Greitz 2002).

Newly accumulated oedema fluid initially distends the interstitial compart-
ment and then disrupts the interstitial protein lattice; proteolysis of interstitial
structural proteins may occur, leading to increased interstitial compliance
(Taylor and Parker 1985). Fluid that cannot be cleared by lymphatics accu-
mulates in the connective tissue; in the lungs, this occurs specifically in tissue
surrounding smaller vessels and bronchioles (Taylor 1981). The fluid then
migrates down the interstitial fluid pressure gradient to interstitial spaces. If
lymphatics in the connective tissue sheaths are unable to remove the excess
fluid, undrained fluid becomes compartmentalised and forms perivascular
cuffs. Normally the interstitial hydrostatic pressure in the lung is negative
value (i.e. a value in lungs of −9 mm Hg). Because of the low interstitial com-
pliance, excess fluid accumulation within the interstitium rapidly increases
tissue pressure to slightly positive values (Taylor and Parker 1985). In lungs,
the alveolar barrier breaks down at a pressure of 2 mm Hg, corresponding to
an increase in the interstitial fluid volume of 35%–50%; tissue pressure values
above this threshold will cause a precipitous alveolar oedema during which
alveoli are flooded in an “all-or-nothing” manner. Initially, the distribution of
alveolar flooding is patchy, but rapid severe flooding follows. The exact route by
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which fluid moves into the alveoli is not known. Fluid movement may involve
bulk flow through large epithelial pores or channels, or may be the result of
increased transport through intercellular pathways in respiratory epithelium
of terminal bronchioles (Flick and Matthay 2000). There is also the possibility
of epithelial injury involving detachment of epithelial cells from the underly-
ing matrix, resulting in movement of fluid directly into the alveoli (Flick and
Matthay 2000).

2.2
Role of “Safety Factors” in Tissue Fluid Homeostasis

Several safety factors protect against tissue oedema formation; these are (1)
a decrease in albumin exclusion volume, (2) the lymphatic system as a whole,
and (3) an increase in Pi. In high-pressure oedema, protein-poor fluid begins
to accumulate in the interstitial space by ultrafiltration. A decrease in the ex-
clusion volume for albumin (defined as volume of distribution for albumin)
becomes important in decreasing the interstitial protein concentration and
thereby decreasing πi. Such a decrease in πi, according to the Starling equa-
tion, reduces net fluid filtration and augments fluid reabsorption across the
microvessel wall. The lymph flow is capable of increasing by a large factor in re-
sponse to increased interstitial fluid volume. Lymph flow is actually dependent
on Pi, which in turn is a function of interstitial volume and compliance. Beyond
a critical fluid volume, lymph flow can no longer increase in proportion to the
increase in Pi. Until this maximal value is attained, lymphatic drainage tracks
the rate of oedema fluid formation and thereby limits fluid accumulation. An
increase in Pi also represents the short-term protective mechanism to limit
oedema formation. The low interstitial compliance in some organs such as
the lung reflects an unusually low interstitial volume (Malik et al. 2000). This
means that Pi undergoes a large rise for a relatively small increase in interstitial
volume; such an increase in Pi favours fluid reabsorption, and in this sense it
qualifies as an important safety factor.

3
Restoration of Endothelial Permeability

Mechanisms that strengthen the endothelial barrier (decrease permeabil-
ity) and facilitate barrier recovery following microvascular injury are poorly
understood. As depicted in Fig. 5, pro-inflammatory mediators disrupt AJs
within 5–10 min, preceding an increase in endothelial permeability (Sandoval
et al. 2001). AJs typically reform within 2 h, restoring AJ integrity and de-
creasing endothelial permeability. An important, unresolved question is how
endothelial AJ integrity is re-established. One mechanism of AJ re-annealing
may be the formation of actin-driven membrane protrusions that mediate



Transport Across the Endothelium: Regulation of Endothelial Permeability 131

initial cell-cell contact (Vasioukhin et al. 2000). Some understanding of the
signalling mechanisms responsible for AJ re-annealing can be derived from
the few examples of mediators which decrease endothelial permeability. The
barrier-enhancing effects of cyclic adenosine monophosphate (cAMP), NO,
sphingosine-1 phosphate (S1P) and angiopoietin-1 (Ang-1) are described in
the following sections. These barrier-restoring agents may in part activate Rho
GTPases (Rho, Rac and cdc42) which catalyse the reorganisation of the actin
cytoskeleton, initiating membrane ruffling and protrusion formation (lamel-
lipodia and filopodia) that eventually re-establish a connection to neighbour-
ing cells via tight and adherens junctions. Of the Rho family members, Cdc42
is activated 1 h after thrombin-induced disruption of IEJs (Kouklis et al. 2004),
suggesting that it plays a role in barrier recovery.

3.1
Cyclic Adenosine Monophosphate

An increase in the intracellular concentration of cAMP induced by agents such
as cholera toxin, forskolin and isoprenaline decreases pulmonary vascular
endothelial permeability (Stelzner et al. 1989) and inhibits the permeability-
increasing effects of thrombin (Minnear et al. 1989) and histamine (Carson
et al. 1989). This effect of cAMP is associated with an increase in the periph-
eral F-actin band, which enhances monolayer integrity (Stelzner et al. 1989)
and inhibition of F-actin reorganisation caused by thrombin and histamine
(Minnear et al. 1989; Carson et al. 1989; Patterson et al. 1994, 2000). cAMP
decreased endothelial permeability to small molecules (sucrose and inulin) to
a greater extent than to large molecules (ovalbumin and albumin), indicating it
primarily reduced transport through the paracellular pathway. The protective
effect of cAMP may be through the activation of protein kinase A (PKA) and
subsequent actin reorganisation that strengthens cell-cell and cell-matrix con-
tacts (Lum et al. 1999; Liu et al. 2001). Vasodilator-stimulated phosphoprotein
(VASP), a substrate of PKA, was recently shown to induce endothelial barrier
recovery (Comerford et al. 2002) by negatively regulating actin nucleation and
polymerisation (Harbeck et al. 2000).

3.2
Sphingosine-1-Phosphate

S1P, abioactive lipidwhich is storedandreleasedbyactivatedplatelets aswell as
other cells types (Spiegel and Merrill 1996), is involved in angiogenesis, wound
healing and tissue injury repair. S1P reversed a thrombin-mediated increase
in permeability by stimulating endothelial differentiation gene (Edg) receptor
activation (Edg-1 and Edg-3) followed by Gαi protein signalling, Rho kinase
and tyrosine kinase activation and actin reorganisation (Garcia et al. 2001).
S1P per se increased endothelial barrier integrity (transendothelial electrical
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resistance) by activating Rac and p21-associated kinase that increased cortical
actin assembly and recruitment of cofilin, an actin regulatory protein (Garcia
et al. 2001).

3.3
Angiopoietin-1

Activation of the endothelial-specific receptor tyrosine kinase Tie-2 with Ang-1
stabilises endothelial cell interactions with the extracellular matrix and en-
hances the integrity and restrictiveness of the endothelial barrier (Suri et al.
1996). Transgenic mice over-expressing Ang-1 or mice transduced with aden-
oviral vector containing Ang-1 were protected against the pro-inflammatory
mediators VEGF and PAF (Thurston et al. 1999, 2000). In addition, Ang-1 pre-
treatment of human vascular endothelial cells (HUVEC) blocked the increase
in endothelial monolayer permeability induced by either VEGF or thrombin
(Gamble et al. 2000). Thus, in addition to the pro-angiogenic role during em-
bryonic development, Ang-1 has barrier protective effects in vivo which are
mediated through the activation of Tie-2 (Suri et al. 1996).

3.4
Nitric Oxide

NO is an important regulator of endothelial permeability (Dimmeler et al. 1999;
Schubert et al. 2002). The mechanisms by which low levels of NO strengthen,
while high levels of NO injure, the vascular barrier are not clear (Connelly
et al. 2001). Some evidence suggests that NO can inhibit NF-κB activation and
reduce leucocyte adherence to the endothelium by decreasing the expression
of adhesion molecules, thereby blunting the inflammatory response (Cirino
et al. 2003; Tsao et al. 1996).

In vascular endothelial cells, eNOS is localised to caveolae where caveolin-1
functions as a negative regulator of eNOS activation (Garcia-Cardena et al.
1997; Ju et al. 1997; Michel et al. 1997). The importance of caveolin-1 as a reg-
ulator of eNOS activity was shown in caveolin-1 knockout mice (CAV1−/−;
Zhao et al. 2002). CAV1−/− mice exhibited plasma NO levels that were five-
fold higher than wild-type control mice (Zhao et al. 2002) and an increase in
endothelial permeability that was reduced by the eNOS inhibitor, NG-nitro-
l-arginine (l-NAME ; Schubert et al. 2002). In contrast, endothelial-specific
over-expression of caveolin-1 blocked eNOS activation and increased endothe-
lial permeability (Bauer et al. 2005), further indicating caveolin-1 negatively
regulates eNOS activity and that a basal level of NO is required to maintain a re-
strictive endothelial barrier. eNOS binds to caveolin-1 at residues aa 82–101,
the so-called caveolin scaffolding domain (Okamoto et al. 1998; Gratton et al.
2004). In response to agonist stimulation or mechanical forces such as shear
stress, increased intracellular Ca2+ or phosphorylation of eNOS Ser1179 by Akt
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uncouples eNOS from caveolin-1 and increases eNOS activity (Moncada et al.
1991; Dimmeler et al. 1999; Fulton et al. 1999, 2001; Gratton et al. 2004). Addi-
tional studies are needed to clarify the mechanisms that lead to a basal state of
eNOS activation and the resulting barrier protective effects of NO under these
conditions.

3.5
RhoGTPase Cdc42

Rho-family GTPases (Rho, Rac, Cdc42) are involved in the formation of mem-
brane protrusions (Hall 1998). These signalling intermediates are known to
induce the formation of lamellipodia (Rac) and filopodia (Cdc42) and thus
may contribute to re-establishing AJ integrity (Hall 1998; Kouklis et al. 2003).
As shown in Fig. 5, thrombin challenge induced the disassembly of AJs within
15 min, resulting in disruption of the endothelial barrier. This effect was re-
versed within 1–2 h after thrombin exposure. Kouklis et al. (2004) addressed
the possible role of monomeric GTPases in the re-assembly phase. Cell lysates
from naïve and thrombin-challenged cells were subjected to a pull-down assay
using the GST-PAK binding domain fusion protein (GST-PBD), which binds
specifically to activated Cdc42 and Rac1 (Benard et al. 1999). Only activated
Cdc42 (and not Rac) bound PBD in extracts at 1 h and 2 h after thrombin
exposure; i.e. at the times corresponding to re-establishment of AJ. In con-
trast, Cdc42 activation remained at the basal level in subconfluent, confluent
untreated, or 15 min thrombin-treated endothelial cells. Thus, the monomeric
GTPase Cdc42 is activated during the AJ re-assembly phase at 1–2 h after
thrombin exposure when the AJs re-anneal to restore endothelial permeabil-
ity. Kouklis et al. (2004) also showed that dominant-negative Cdc42 markedly
interfered with AJ re-assembly at this time, further indicating Cdc42 plays
a role in restoring endothelial permeability.

4
Concluding Remarks

The vascular endothelium functions as a semi-permeable barrier between the
vascular compartment and the interstitium. Integrity of the endothelial cell
monolayer is critical for preserving tissue homeostasis. Two general pathways
describe the movement of fluid, macromolecules and leucocytes into the inter-
stitium. The transcellular pathway utilises a gp60-activated, tyrosine kinase-
dependent caveolae transport process (transcytosis) that primarily transports
macromolecules across the barrier. Caveolin-1 knockout mice are providing
significant insight into the role of caveolae in endothelial barrier function in
that these mice, which lack the vesicle transport pathway, have to adapt or
compensate to some extent for the loss of caveolae by decreasing the integrity
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of the interendothelial junctions to allow protein transport via the paracel-
lular pathway. Fluid flux and PMN trafficking is thought to occur primarily
by the paracellular pathway in which gaps form between endothelial cells at
sites of active inflammation. Increased endothelial permeability in inflamma-
tory states such as in acute lung injury and sepsis is dependent on the shape
and configuration of pulmonary vascular endothelial cells, as determined by
alterations in F-actin organisation and interendothelial junctional integrity.
The increase in paracellular permeability is ultimately governed by activation
of intracellular second messenger pathways, Ca2+, PKC and Rho kinase that
stimulate and/or prolong myosin phosphorylation, actin-myosin contraction
and disruption of adherens junctions.

Starling forces govern fluid filtration from microvessels into the surround-
ing perimicrovascular interstitial space. The lymphatics collect the fluid and
protein in the interstitiumandreturn thefluidanddissolvedsolute to thevascu-
lar system. Pathophysiologic events and mediators that substantially perturb
the Starling forces culminate in pulmonary oedema. Further study of these
barrier-disruptive and barrier-protective mechanisms will provide insights
and strategies for effective drug delivery across the barrier, oedema clearance,
and the recovery of endothelial barrier properties.
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Abstract Elevations incytosolicCa2+ concentrationare theusual initial responseof endothe-
lial cells to hormonal and chemical transmitters and to changes in physical parameters, and
many endothelial functions are dependent upon changes in Ca2+ signals produced. En-
dothelial cell Ca2+ signalling shares similar features with other electrically non-excitable
cell types, but has features unique to endothelial cells. This chapter discusses the major
components of endothelial cell Ca2+ signalling.

Keywords Endothelial cells · Calcium · Calcium entry · Calmodulin · Nitric oxide

1
Introduction

The endothelium has physiologically and therapeutically gone far beyond
what its anatomical name would imply. It is now recognised as a multi-
functional organ responsible for various physiological processes including
the regulation of systemic and regional vascular tone, blood coagulation
states, cell-cell adhesion, wound healing, cellular proliferation and angiogen-
esis. The implications of endothelial dysfunction in many pathological states
have rendered modulation of endothelial functions a promising therapeutic
approach.

Elevations in cytosolic Ca2+ concentration ([Ca2+]i) are the usual initial
response of endothelial cells to hormonal and chemical transmitters and to
changes in physical parameters, and many endothelial functions are depen-
dent on changes in [Ca2+]i. Indeed, endothelial nitric oxide synthase (eNOS)
that is responsible for the production of nitric oxide from endothelial cells
has an absolute requirement for Ca2+-calmodulin (CaM) for activation (Bredt
and Snyder 1990) and appears to require Ca2+ entry to sustain an elevated
level of activity (Lin et al. 2000). Elevations in [Ca2+]i also play key roles in
the production of autacoids (Crutchley et al. 1983; Kruse et al. 1994), biosyn-
thesis of von Willebrand factor and tissue plasminogen activator, and con-
trol of intercellular permeability, cell proliferation and angiogenesis (Vischer
et al. 1998).

Endothelial cells are generally viewed as electrically non-excitable, lacking
functional voltage-gated Ca2+ channels. A major mode of Ca2+ entry in these
cells in response to both chemical and mechanical stimuli is the so-called ca-
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pacitative Ca2+ entry (CCE) or store-operated Ca2+ entry (SOCE), an entry
of extracellular Ca2+ following depletion of intracellular Ca2+ stores (Putney
1990). This mode of Ca2+ entry is most important in non-excitable cells but also
exists in all cell types. As in other cell types, one of the foci of attention in en-
dothelial cellCa2+ signalling is theyet-elusivemolecularnatureof SOCE. In this
regard, the roles of transient receptor potential channels (TRPCs) as candidates
of Ca2+ release-activated current (ICRAC), the prototypical current of SOCE, are
being extensively studied, and important factors that apparently regulate the
bulk SOCE signal have been increasingly recognised. Endothelial cells, how-
ever, possess properties that apparently have positioned their Ca2+ signalling
in a niche of its own. Among these are the multifunctional nature of endothelial
cells, their constant exposure to blood shear stress and the expression of eNOS.
This enzyme, in addition to its well-known role of producing the important
signalling molecule nitric oxide (NO), has recently been demonstrated to be
a major affector of the intracellular Ca2+-CaM network. This chapter discusses
the main components of endothelial cell Ca2+ signalling with an emphasis on
factors that regulate Ca2+ entry, and it attempts to put in perspective factors
that integrate endothelial Ca2+ signals in an intricate signalling environment.

2
Generation of Second Messengers that Release Ca2+

from Intracellular Ca2+ Stores

Elevations of intracellular Ca2+ in endothelial cells, as in other electrically
non-excitable cells, are generally biphasic, initiating with Ca2+ release from
intracellular Ca2+ stores and followed by Ca2+ entry from the extracellular
milieu. In principle, this can occur (1) upon receptor activation by physio-
logical agonists, (2) in response to mechanical stress on endothelial cells or
(3) following impairment of major Ca2+ uptake mechanisms of intracellular
Ca2+ stores. Experimentally, this can be achieved by treatment with physiolog-
ical agonists, exposure to fluid shear stress or other mechanical forces, treat-
ment with Ca2+ chelators to chelate Ca2+ leaking from the stores and prevent
store refilling, or treatment with inhibitors of the sarcoplasmic/endoplasmic
reticulum (ER) Ca2+-ATPase (SERCA) or Ca2+ ionophores. An initial com-
ponent of the responses to many physiological stimuli is the production of
second messengers that trigger the release of Ca2+ from intracellular Ca2+

stores.

2.1
Ligand Binding and Generation of Inositol 1,4,5-Trisphosphate

Ligand binding to G protein (guanine nucleotide-binding protein)-coupled re-
ceptors (GPCRs), which bind to the α-subunit of the G protein q subtype (Gαq)
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is perhaps the best-characterised physiological mechanism leading to the re-
lease of intracellular Ca2+ stores in many cell types, inositol 1,4,5-trisphosphate
(IP3) being the responsible second messenger (Berridge 1993). In endothe-
lial cells, binding to GPCRs by agonists such as bradykinin, angiotensin
II, serotonin and acetylcholine causes Gαq to switch from a GDP-bound to
a GTP-bound state, allowing the release of Gαq from the Gβγ dimer. The GTP-
bound Gαq subunit subsequently activates phosphoinositide phospholipase
(PL)C-β, which then hydrolyses the lipid precursor phosphatidylinositol-4,5-
bisphosphate (PIP2) to yield IP3 and diacylglycerol. The cellular response
to activation of the bradykinin receptor, however, consists of both pertussis
toxin-sensitive and pertussis toxin-insensitive components, implicating both
Gi and Gq proteins (Liao and Homcy 1993), the former not involving in-
creased production of IP3 (Lambert et al. 1986). Although the heterotrimeric
G proteins’ classic component that activates PLC-β is a Gα, the Gβγ dimer
has been shown to be capable of activating PLC-β equally well both in vitro
and in a number of cell types (Boyer et al. 1992; Camps et al. 1992). In ad-
dition, it was recently shown that the Gβγ dimer is capable of directly ac-
tivating the IP3 receptor, causing release of intracellular Ca2+ stores (Zeng
et al. 2003). These studies, conducted in a reconstituted system in rat pan-
creatic acinar cells, demonstrated that the Gβγ dimer activates IP3 receptors
and inhibits binding of IP3 to the receptor by allosterically modifying the
IP3 binding site or by binding directly to the IP3 binding sites. This is sup-
ported by the observation that the activation of the IP3 receptor by Gβγ was
abolished by heparin, a competitive inhibitor of IP3. These latter mechanisms
have yet to be demonstrated to operate in endothelial cells, although, given
the ubiquitous nature of heterotrimeric G proteins, they would be predicted
to do so.

On the other hand, binding to tyrosine kinase-linked receptors by growth
factors such as vascular endothelial growth factor, platelet-derived growth
factor, epidermal growth factor or antigens leads to autophosphorylation
and hence activation the receptor β subunits’ tyrosine residues, which bind
phosphoinositide-specific phospholipase C-γ1 via their SH2 domains (He et al.
1999; Meyer et al. 2003). In addition to the SH2 and SH3 domains unique to
the PLC-γ isozymes, PLC-γ also contains a C2 domain and two putative PH
domains. These are the features shared with β family members and serve as
a general mechanism in the hydrolysis of PIP2.

Mechanical stimuli to endothelial cells, such as high shear stress, also stim-
ulate increases in IP3 levels. Shear stress-induced increases in IP3 production
appear to be significantly long-lasting compared to that stimulated by agonists
(Prasad et al. 1993). Thus, IP3 levels upon shear stimulation remain elevated
for as long as 30 min following the onset of shear, although they eventually
subside. Increases in IP3 production are associated with decreases in phos-
phatidylinositol, phosphatidylethanolamine and phosphatidic acid, and with
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increases in diacylglycerol and free arachidonate (Bhagyalakshmi et al. 1992).
Due thepresenceofblood-borneagonists andgrowth factors, it is likely that the
effects of shear stress on IP3 production in endothelial cells are mechanistically
multifactorial in vivo.

2.2
Cyclic ADP-Ribose and Nicotinic Acid Adenine Dinucleotide Phosphate

In addition to IP3, two newer important second messengers have been found
to trigger release of intracellular Ca2+ stores in various cell types. These are
the pyridine nucleotide metabolites cyclic ADP-ribose (cADPR) and nicotinic
acid adenine dinucleotide phosphate (NAADP). cADPR was discovered in 1989
as a cyclised ADP-ribose having an N-glycosyl linkage between the anomeric
carbon of the terminal ribose unit and the N6-amino group of the adenine
moiety from sea urchin egg extract incubated with nicotinamide adenine din-
ucleotide (NAD)+ (Lee et al. 1989), a metabolite of which had previously been
shown to trigger release of intracellular Ca2+ stores (Clapper et al. 1987). The
enzyme responsible for cADPR synthesis is ADP-ribosyl cyclase, widespread
among mammalian tissues (Lee and Aarhus 1993). cADPR was found to release
Ca2+ from a ryanodine-sensitive pool, indicating that cADPR is an endogenous
modulator of the ryanodine receptors (Galione et al. 1991). In a variety of cell
types, cADPR can modulate the Ca2+-induced Ca2+ release mechanism, and
this has linked cADPR to modulation of ryanodine receptors. As discussed
later, the ryanodine receptors are Ca2+ release channels that are found pri-
marily in electrically excitable cells but also in endothelial cells (Sect. 4.1.1.2).
Interestingly, although the ryanodine receptor appears to be a final effector,
cADPR-triggered calcium release appears to have an absolute dependence on
CaM (Lee et al. 1995).

NAADP is synthesised also by ADP-ribosyl cyclase, the same enzyme re-
sponsible for the cyclisation of NAD to produce cADPR (Aarhus et al. 1995).
Produced by the same enzyme yet from two different substrates, which are
NAD and NADP respectively, cADPR and NAADP bear little structural re-
semblance to each other (Lee et al. 1989). They also possess different Ca2+

signalling properties. Pharmacologically, Ca2+ release triggered by NAADP is
insensitive to 8-amino-cADPR, an antagonist of the cADPR (Walseth and Lee
1993), and heparin, an antagonist of the IP3 receptors (Lee and Aarhus 1995).
From cell fractionation studies, the NAADP-sensitive Ca2+ stores in sea urchin
eggs appear to be physically separate from those sensitive to cADPR or IP3 (Lee
and Aarhus 1995), and they appear to possess a thapsigargin-insensitive Ca2+-
ATPase (Genazzani and Galione 1996). NAADP is a very potent Ca2+-releasing
messenger, being able to release Ca2+ stores at nanomolar concentrations
(Lee 2000).
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3
Intracellular Ca2+ Stores in Endothelial Cells

3.1
Endoplasmic Reticulum

The ER had been considered simply the cell’s main factory of protein synthesis
and modification until the early 1980s, when it was found that the second
messenger IP3 specifically releases Ca2+ from the ER (Berridge and Irvine
1984; Streb et al. 1983). It is now known that the main Ca2+ store in non-
muscle cells is the ER, while in muscle cells it is the sarcoplasmic reticulum.
The ER contains large amounts of Ca2+-binding proteins such as GRP 94, BiP
(GRP 78), RP 60 and calreticulin, each molecule of which is able to sequester
as many as 30 Ca2+ ions. Ca2+ concentration in the ER can therefore reach
the millimolar range (Macer and Koch 1988). The high concentration of Ca2+

in the ER is in fact important for many functions of this organelle, such as
vesicle trafficking, protein folding, release of stress signals and regulation of
cholesterol metabolism. In endothelial cells, it has been estimated that the
ER accounts for roughly 75% of the total intracellular Ca2+ reserve (Wood
and Gillespie 1998a). Extending like a net over the entire cytoplasm, the ER
is in virtually immediate contact with any intracellular Ca2+ signals or Ca2+

releasing factors (Lesh et al. 1993). The ER contributes greatly to the initiation
of important Ca2+ signals that are involved in most other vital functions of the
cell through Ca2+ uptake and release mechanisms to be discussed later.

3.2
Mitochondria

Mitochondria are the other important containers of intracellular Ca2+ in en-
dothelial cells, accounting for approximately 25% of the Ca2+ reserve. The
relative quantification of the Ca2+ storage capacity of the ER and mitochon-
dria in endothelial cells was made by comparing the total Ca2+ uptake into
permeabilised endothelial cells in the presence of inhibitors of mitochondria
or of the ER Ca2+-ATPase inhibitor thapsigargin (Wood and Gillespie 1998a).
Mechanisms mobilising mitochondrial Ca2+ have not been as fully investigated
in endothelial cells as in other cells. Mitochondrial Ca2+ uptake, 10–100 times
kinetically slower than mitochondrial Ca2+ efflux (Gunter and Pfeiffer 1990),
is believed to be mediated by a uniporter that facilitates the diffusion of Ca2+

down the electrochemical gradient across the mitochondrial membrane. Pre-
viously, mitochondria were simply considered as high-capacity, low-affinity
Ca2+ storage pools that serve in states of Ca2+ overload as a life-rescuing
mechanism by taking up the amount of Ca2+ that would otherwise overburden
the ER. Recent work, however, has shown that these organelles themselves
are excitable, capable of generating and conveying electrical and Ca2+ signals
(Ichas et al. 1997). Release of Ca2+ from mitochondria requires Ca2+ to be
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triggered and in turn plays a critical role in forming Ca2+ oscillation patterns
(Falcke et al. 1999). Thus, mitochondrial Ca2+ is released following the release
of Ca2+ from the ER. Mitochondrial Ca2+-induced Ca2+ release in endothelial
cells is triggered during IP3-induced Ca2+ mobilisation and amplifies the Ca2+

signals primarily emitted from the ER. Mitochondria appear in close associ-
ation with regions of the ER enriched in IP3 receptors and are particularly
responsive to IP3-induced increases in Ca2+. Each mitochondrial Ca2+ uptake
site faces multiple IP3 receptors, a concurrent activation of which is required
for optimal activation of mitochondrial Ca2+ uptake, and there seems to be
a synaptic way of transmission of Ca2+ signals between mitochondria and the
ER (Csordas et al. 1999). Ca2+ uptake by mitochondria can suppress the local
positive feedback effects of Ca2+ on the IP3 receptors, giving rise to subcel-
lular heterogeneity in IP3 sensitivity and IP3 receptor excitability (Hajnoczky
et al. 1999).

Cross-talk between mitochondrial and ER Ca2+ signals appears to be im-
portant in controlling the Ca2+ homeostasis of the cell in basal as well as in
stimulated conditions. Indeed, although Ca2+ refilling of both the ER and mi-
tochondria requires extracellular Ca2+, in the presence of an IP3-generating
agonist, Ca2+ refilling of the ER appears to depend on trans-mitochondria Ca2+

flux; this dependence does not seem to exist in the absence of an agonist (Malli
et al. 2005).

3.3
Mechano-sensitive Ca2+ Stores

Endothelial cells are subject to constant mechanical forces such as blood shear
stress and osmotic changes. Early studies in bovine aortic endothelial cells
showed that vacuum straining caused an increased in IP3 production, as de-
termined by immunoassays (Brophy et al. 1993). Based on this observation, it
was proposed that a mechano-sensitive PLC was responsible for the observed
effect, although direct PLC activity was not measured. Later studies in smooth
muscle cells also showed that IP3 levels were elevated upon stimulation of me-
chanical forces; this was associated with increases in PLC activity (Matsumoto
et al. 1995). There has also been a pharmacological hint that PLA2 might be
involved in Ca2+ release activated by osmotic swelling in human umbilical vein
endothelial cells, though the data suffered from the lack of specific blockers of
the enzyme (Oike et al. 1994). These studies in general indicate that mechani-
cal stimulation could trigger release of intracellular Ca2+ stores indirectly via
the activities of mechano-sensitive, membrane-bound enzymes that catalyse
the production of IP3. However, there is also evidence that mechanical stim-
ulation can directly activate Ca2+ release from internal stores in endothelial
cells. A volume-sensitive, IP3-insensitive Ca2+ store was proposed in a study
showing that release from internal Ca2+ stores was still observed in response to
hypotonic stress in endothelial cells permeabilised with saponin, a condition



152 Q.-K. Tran · H. Watanabe

that allowed a direct effect of osmotic swelling on the ER (Jena et al. 1997).
Interestingly, under these conditions, removal of external Ca2+ can rapidly
deplete internal Ca2+ stores, and high concentrations of gadolinium (Gd)3+

can block the Ca2+ release, suggesting that the inhibitory effects frequently
seen with Gd3+ on Ca2+ entry could be due in large part to its inhibition of
Ca2+ release in the first place and may have little to do with inhibition of the
transplasmalemmal Ca2+ influx itself. This volume-sensitive release was not
prevented by ruthenium red or prior stimulation with IP3, indicating that the
volume-sensitive storage site is distinct from mitochondria and from stores
sensitive to ryanodine or IP3. The store appears to possess Ca2+-ATPase as
a Ca2+ pump, since loading of Ca2+ into this pool was prevented by thapsigar-
gin. This is perhaps the best piece of evidence available that mechanical forces
can trigger Ca2+ release directly from intracellular organelles in endothelial
cells. However, follow-up work on the molecular element responsible for such
response is not available.

4
Ca2+ Channels in Endothelial Cells

4.1
Intracellular Ca2+ Channels

4.1.1
Ca2+ Release Channels on the ER

4.1.1.1
IP3 Receptors

IP3 receptors constitute the most clearly identified Ca2+ channels that pump
Ca2+ from the ER. First identified in mouse and rat cerebellum as a devel-
opmentally regulated phospho-glycoprotein, the Ca2+ channel P400 (Furuichi
et al. 1989; Mikoshiba et al. 1979), the IP3 receptors are now known to exist
in at least three isoforms (types 1, 2 and 3) in both animal and human cells
(Yamada et al. 1994; Yamamoto-Hino et al. 1994). Most cells have at least one
form of IP3 receptor, and many express all three. Structurally, the IP3 recep-
tor channels are tetramers composed of four subunits, each containing 2,700
residues and a single IP3-binding site. IP3-mediated Ca2+ release responses are
co-operative, indicating that several and perhaps all subunits are required to
bind IP3 for the channel to open (Meyer et al. 1988). A characteristic feature of
IP3 receptors is that they are regulated by both IP3 and Ca2+. High cytosolic
Ca2+ concentration is inhibitory to IP3 channel activity. How IP3 and Ca2+

interact to regulate IP3 channels is a challenging question to answer experi-
mentally, due largely to the lack of high time resolution analysis of the role of
IP3 and Ca2+ at the single channel level. The general consensus, however, is
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that IP3 regulates the effects of Ca2+ on the channel. A major model proposed
that IP3 channel opening depends on whether Ca2+ binds to the stimulatory
sites or inhibitory sites. Thus, high-affinity Ca2+ binding to the inhibitory sites
keeps the channels inactive under normal conditions, and IP3 reduces Ca2+

binding to the inhibitory sites by reducing their affinities for Ca2+ and thus
allowing Ca2+ binding to the stimulatory sites to predominate and the channel
to open (Mak et al. 1998).

Another feature of IP3 receptors is that they associate with a variety of
molecules in the cell, and with plasmalemmal channels. There is evidence for
a role of CaM in the regulation of IP3 channel function, although there is
significant controversy (reviewed in Taylor and Laude 2002). In addition, the
probability of the IP3 receptor opening is regulated by phosphorylation by non-
receptorproteinkinases,mostlyon thecytoplasmicdomainof thereceptor.The
IP3 receptor isoform identified in endothelial cells is approximately 260 kDa,
preferentially located at the perinuclear region, and both structurally and
functionally analogous to that detected in neuronal tissues (Bourguignon et al.
1994). IP3-induced Ca2+ release terminates even in the continued presence of
IP3, which could reflect rapid hydrolysis of IP3, feedback effects of cytoplasmic
and/or luminal Ca2+ on specific Ca2+ binding sites on the IP3 receptors/channel
complex, or intrinsic deactivation properties of IP3 receptors (Oldershaw and
Taylor 1993). In addition, IP3-induced Ca2+ release appears to depend on
cytosolic concentrations of monovalent cations. In permeabilised endothelial
cells, the ability of different ions to allow IP3-induced Ca2+ release was found to
be K+=Na+>Cs+>Rb+>>Co2+, suggesting that there is possibly a counter-ion
system that controls Ca2+ release (Wood and Gillespie 1998b). The rate of Ca2+

discharge from intracellular stores apparently contributes to the regulation of
cytosolic Ca2+ oscillations.

It should be emphasised that the ER, while being structurally and function-
ally the largest reservoir of cellular Ca2+, is not the only organelle housing the
IP3 receptors. Other organelles such as the Golgi apparatus, secretory vesicles
or other specialised membranes, may also function as IP3-sensitive Ca2+ stores.
A detailed discussion on these topics is beyond the scope of this chapter, and
the interested reader is referred to a recent review (Vermassen et al. 2004).

4.1.1.2
Ryanodine Receptors (RyRs)

Ryanodine receptors (RyRs) constitute another family of proteins responsible
for Ca2+ releasing channels. There is significant sequence homology between
the IP3 receptors and RyRs, most remarkable at the sequences that form the
channel’s pore (Mignery et al. 1989; Zhao et al. 1999). RyRs are found in a va-
riety of tissues, with the highest densities in striated muscles. Three isoforms
have been identified, namely RyR1, RyR2 and RyR3, predominantly in skeletal
muscle, cardiac tissue and striated muscle, respectively. RyRs have also been
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found in endothelial cells of porcine endocardium and thoracic aorta (Lesh
et al. 1993), and are more homologous to the cardiac isoform (RyR2) than to
the skeletal isoform. Prestimulation of rat aortic, human aortic, human umbil-
ical vein and bovine pulmonary endothelial cells with ryanodine significantly
reduced bradykinin-induced Ca2+ release, suggesting that the ryanodine re-
ceptors are functional in these cells (Wang et al. 1995; Ziegelstein et al. 1994).
Recent pharmacological evidence also supports the existence of RyRs in freshly
isolated rabbit aortic endothelial cells, where they appear to play a role in con-
junction with the Na+-Ca2+ exchanger in extrusion of cytoplasmic Ca2+ (Liang
et al. 2004). Molecular and structural characteristics of endothelial RyR chan-
nels, however, have not been determined, perhaps because IP3 receptors are
the predominant ER Ca2+ release channels in endothelial cells. Sequence ho-
mology between the endothelial isoform and the cardiac isoform suggests that
insights into endothelial RyRs can be predicted partly based on information
available for the cardiac RyR2, although the lack of functional voltage-gated
Ca2+ channels in endothelial cells could be a factor determining the difference
in RyR activity between the two tissues. From studies in non-endothelial tis-
sues, the activity of RyRs is known to depend on a number of factors, including
cytosolic and luminal Ca2+ concentrations, ATP and Mg2+, redox status of
the cell, cADPR, phosphorylation, and protein-protein interactions (Fill and
Copello 2002).

4.1.1.3
Ca2+ Leak

In addition to Ca2+ release through IP3 receptors and/or RyR channels, which
requires binding of a second messenger for their activation, ER luminal Ca2+

is slowly but spontaneously released into the cytosol via other mechanisms.
Under non-stimulated conditions, there is continuous Ca2+ leak from the ER.
This leak is normally compensated for by Ca2+ uptake mechanisms and there-
fore is not readily observed. It is when all other known mechanisms of Ca2+

release and uptake are inhibited that Ca2+ leak manifests itself. In endothelial
cells, 10-min incubation in Ca2+-free medium could deplete the bradykinin-
sensitive store by 60% (Paltauf-Doburzynska et al. 1999). In BHK-21 cells,
Ca2+ leak can still be observed in the presence of EGTA in nominally Ca2+-free
medium, thapsigargin, heparin and ruthenium red, and therefore appears to
be independent of the Ca2+-ATPase, the IP3 receptor and the ryanodine re-
ceptor (Hofer et al. 1996). In addition, basal Ca2+ leak in pancreatic acinar
cells is not inhibited by inhibitors of IP3 receptors, RyRs or the receptor for
NAADP (Lomax et al. 2002). The cytosolic ATP concentration has been shown
to regulate this Ca2+ leak from the ER. Thus, in permeabilised BHK-21 cells, the
rate of leak can increase approximately fourfold in response to an approximate
tenfold increase in ATP concentration (Hofer et al. 1996). In addition, Ca2+ leak
has been shown to be inhibited by Ni2+ (Wissing et al. 2002), suggesting that
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the leak process can be modulated by a Ca2+ channel. However, no Ca2+ leak
channel has actually been identified to date. In actuality, the physiological leak
is likely to be the result of many factors, including release via the IP3 receptor,
ryanodine receptors or both, as there is certainly a low level of agonists under
“resting” conditions.

4.1.2
ER Ca2+ Uptake Channels

A major ER surface protein is the SERCA, an ATP-dependent Ca2+ pump that
is responsible for the sequestration of cytosolic Ca2+. Three different SERCA
genes are known to be expressed in vertebrates, ATP2A1-3, which encode
for different protein isoforms of the SERCA pumps, including SERCA1a/b,
SERCA2a/b and SERCA3a/b/c/d. The SERCA1 Ca21-ATPase isoform is ex-
pressed in fast skeletal muscle. SERCA2a and SERCA2b are alternative splice
variants. SERCA2a is expressed in cardiac and slow skeletal muscle, while
SERCA2b is expressed in smooth muscle and is found on the ER of several
non-muscle cells together with SERCA3. In non-muscle cells, SERCA2b is the
“house-keeping” isoform, responsible for the sequestration of cytosolic Ca2+.
In endothelial cells, two isoforms have been found, SERCA2b and SERCA3. In
the majority of the cases, SERCA3 is found co-expressed with SERCA2b (Anger
et al. 1993). Interestingly, it has been demonstrated that acetylcholine-induced
Ca2+ signalling and endothelium-dependent relaxation of vascular smooth
muscle are severely impaired in knock-out mice deficient in the SERCA3 gene
(Liu et al. 1997). This suggests that the SERCA3 isoform can play a signifi-
cant role in sequestering cytosolic Ca2+, as does the SERCA2b isoform. In line
with this, freshly isolated human umbilical vein endothelial cells were found
to express only SERCA3 (Mountian et al. 1999).

The activity of the SERCA pump depends on its conformational changes
into two different states, termed E1 and E2. In the E1 state, the enzyme’s two
Ca2+-binding sites are of high affinity and face the cytoplasm. In the E2 state
the Ca2+-binding sites are of low affinity and face the luminal side. Either
cytosolic ATP or Ca2+ can bind first to the E1 conformation. The 2Ca2+-E1-
ATP form is phosphorylated to form 2Ca2+-E1-P. In this high-energy state, the
bound Ca2+ ions become occluded. Conversion to the low-energy intermediate
is accompanied by a major conformational change to 2Ca2+-E2-P whereby the
Ca2+-binding sites are converted to a low-affinity state and reorient towards the
luminal face. The cycle ends with the sequential release of Ca2+ and phosphate
and a major conformational change from the E2 to the E1 state (Wuytack
et al. 2002).

Under treatment with specific SERCA pump inhibitors such as thapsigargin,
dibenzohydroquinone (BHQ) or cyclopiazonic acid, ER Ca2+ leak is uncom-
pensated for and the ER is depleted. In a number of cell types, including
Dictyostelium and porcine aortic endothelial cells, CaM antagonists such as
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W-7 and calmidazolium at micromolar concentrations also can mobilise Ca2+

from thapsigargin-sensitive stores, an effect apparently independent of inhibi-
tion of a CaM-dependent enzyme (Groner and Malchow 1996; Watanabe et al.
1999). In contrast to the plasma membrane Ca2+ ATPase pumps, SERCA pumps
do not bind CaM, and CaM does not stimulate SERCA activity (Raeymaekers
et al. 1983; Wibo et al. 1981). The observed Ca2+-mobilising effects of CaM
antagonists therefore probably reflect direct inhibitory effects on the SERCA
pump rather than on CaM itself. Consistent with this, a more recent study has
demonstrated that these compounds inhibit in a similar manner the Ca2+ AT-
Pase activity of both sarcoplasmic reticulum vesicles and Ca2+ ATPase purified
from smooth muscle (Khan et al. 2000). Depleting the ER’s Ca2+ content by in-
hibiting theSERCApumpisnotassociatedwith increases in IP3 productionand
has served as a very useful approach to investigate intracellular Ca2+ signalling.

4.2
Transplasmalemmal Ca2+ Channels

Ca2+ entry into endothelial cells can occur via several different mechanisms:
(1) non-selective cation channels activated by a variety of agonists, inhibitors of
the SERCA pump, or shear stress, (2) more selective Ca2+ channels activated by
a store-operated mechanism, (3) a leak mechanism down the electro-chemical
gradient, or, (4) in principle, an exchange mechanism such as the Na+-Ca2+

exchanger. Experimentally, Ca2+ entry can also occur with Ca2+ ionophores.

4.2.1
Voltage-Dependent Ca2+ Channels

Endothelial cells are generally considered to be electrically non-excitable, al-
though voltage-dependent Ca2+ channels have been described in a few early
reports (Bossu et al. 1989, 1992). Most of the channels described were of low
conductance and are generally considered to be of little functional importance
(Himmel et al. 1993). Depolarisation of the plasma membrane would enhance
voltage-dependent Ca2+ entry. However, in endothelial cells, agonist-induced
Ca2+ entry is dramatically reduced by depolarisation of the plasma membrane
with high potassium solutions, in support of a lack of functional voltage-
dependent Ca2+ influx (Luckhoff and Busse 1990). In addition, inhibitors of
voltage-dependent Ca2+ channels like diltiazem and verapamil did not affect
agonist-induced Ca2+ entry in freshly isolated endothelial cells (Luckhoff and
Busse 1990; Yamamoto et al. 1995).

4.2.2
Non-selective Cation Channels

A large number of Ca2+ entry channels described in endothelial cells are non-
selective cation channels. Agonists such as thrombin, bradykinin, serotonin,
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ATP and endothelin-1 activate non-selective cation channels (Brauneis et al.
1992; Colden-Stanfield et al. 1990; Groschner et al. 1994; Popp and Gogelein
1992; Zhang et al. 1994b). Inhibitors of ER Ca2+ ATPase as well as IP3 applied
intracellularly, all of which deplete intracellular Ca2+ stores, also activate non-
selective cation channels (Gericke et al. 1993; Zhang et al. 1994a). Shear stress
activates a non-selective cation channel that appears to be more permeable to
divalent than to monovalent cation. Several groups suggested that shear stress
only activates Ca2+ channels in the presence of ATP, and therefore the Ca2+

entry was attributed to activation of the Ca2+-permeable purinoceptor P2X4
(Ando and Kamiya 1993; Davies 1995; Yamamoto et al. 2000). Other groups,
however, have shown that shear stress can activate Ca2+ entry in the absence of
any Ca2+-mobilising agonists (Helmlinger et al. 1995; Kanai et al. 1995; Kwan
et al. 2003; Yao et al. 2000). The basis of these discrepancies is still unclear.
Under resting condition, a leak of Ca2+ from the extracellular medium into
the cytosol has also been observed. Radio-isotopic measurements indicate that
45Ca leaks into resting endothelial cells at a rate of 16 pmol.10−6 cells.s−1 (Johns
et al. 1987).

4.2.3
TRPCs as Store-Operated Ca2+ Entry Channels

Ca2+ entry activated by emptying of intracellular stores, the so-called capaci-
tative or store-operated Ca2+ entry, is a most prevalent and important mode of
Ca2+ entry in vascular endothelial cells. Electrically, store-operated Ca2+ en-
try is typically represented by the so-called Ca2+ release-activated Ca2+ entry,
or ICRAC, initially described in mast cells (Hoth and Penner 1992). However,
despite intensive research, the molecular nature of the activated Ca2+ chan-
nels remains rather elusive. In this context, the mammalian homologues of
the Drosophila TRP (transient receptor potential) protein came as valuable
models for the influx channels. Trp is a Drosophila photoreceptor mutant in-
capable of maintaining a sustained potential in response to photostimulation
(Cosens and Manning 1969). The fact that these receptors use a PLC signalling
pathway gave the first hint that TRP might encode a component of the Ca2+

entry pathway (Hardie and Minke 1992, 1993). Light-induced phosphoinosi-
tide hydrolysis in Drosophila activates two classes of channels, one selective
for Ca2+ and absent in the transient receptor potential mutant TRP, the other
a non-selective cation channel that requires Ca2+ for activation. As well as
being a major charge carrier for the light-induced current, Ca2+ entry via
the TRP-dependent channels appears to be required for refilling IP3-sensitive
Ca2+ stores and for feedback regulation (light adaptation) of the transduction
cascade. Depletion of internal Ca2+ stores with the SERCA inhibitor thapsi-
gargin activates the TRP-dependent Ca2+ channels, suggesting that the TRP
channels could be responsible for the store-operated Ca2+ channels (SOCC)
(Vaca et al. 1994).
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After more than a decade since the recognition of the TRP protein as a po-
tential model for the Ca2+ entry channel, the TRP-related protein family in
humans now consists of more than 20 members, classified into 3 subfamilies:
the canonical TRP (TRPC) proteins, closest to the Drosophila TRP; the vanil-
loid TRP (TRPV), closely related to the vanilloid receptor; and TRPM proteins,
homologous to the tumour suppressor melastatin (Montell et al. 2002). Struc-
turally, the TRP channels consist of six predicted transmembrane-spanning
helices (TM1-6), cytoplasmic N- and C-termini and a pore region between
TM5 and TM6 (Clapham et al. 2001). Not all members of the three families
are store-operated, however. For several members, reports differ as to whether
they are store-operated, depending on the levels of expression and on the cell
types studied. For example, human TRP3 forms both IP3 receptor-dependent
and receptor-independent store-operated channels in lymphocytes (Vazquez
et al. 2001). Perhaps this is due to the actuality that many studies were only per-
formed in reconstituted systems (Parekh and Putney 2005). Endothelial cells
express most of the TRPC proteins; so far, six members of the TRPC family
have been reported in these cells (Freichel et al. 1999). Almost all of the TR-
PCs expressed in endothelial cells are activated by Ca2+ store depletion and/or
receptor activation. In particular, studies on transgenic mice have strongly
implicated TRPC4 in Ca2+ entry and endothelium-dependent vasodilatation
(Freichel et al. 2001). The TRPV4, very interestingly, is activated by different
types of stimuli, including arachidonic acid, anandamide, heat and changes in
cell volume. The TRPM expressed in endothelial cells, on the other hand, is
activated by intracellular Ca2+ and has been suggested to play a role in negative
feedback inhibition of all types of Ca2+ entry. Several TRP proteins might come
together to form a cluster of Ca2+ channels, a possibility that would explain
the functional involvement of nearly all the isoforms identified in Ca2+ entry
in endothelial cells (Nilius et al. 2003).

5
Types of Ca2+ Entry in Endothelial Cells

5.1
Store-Operated Ca2+ Entry

A quarter of a century ago, it was observed that intracellular Ca2+ stores
emptied by agonists are refilled very rapidly by application of extracellular
Ca2+ (Brading and Sneddon 1980; Casteels and Droogmans 1981). The rise
in intracellular Ca2+ concentration ([Ca2+]i), thus evoked in the presence of
extracellular Ca2+, consists of a transient component concurred or followed
by a large and sustained one. Under nominally Ca2+-free conditions, the re-
sponse is only a small and transient rise in [Ca2+]i, reflecting the release of
intracellular Ca2+ stores most commonly due to binding of IP3 to its receptor



Calcium Signalling in the Endothelium 159

(Berridge 1993; Streb et al. 1983); when extracellular Ca2+ is reintroduced in
the absence of the agonist, there is a large rise in [Ca2+]i, due to entry of Ca2+

from the extracellular medium. In endothelial cells and other non-excitable
cells, this latter signal is most commonly mediated by CCE, or SOCE, a model
put forward by Putney (1986, 1990), in which the opening of plasma mem-
brane Ca2+ entry channels follows emptying of intracellular Ca2+ stores by
IP3 or other signals that release Ca2+ (Petersen and Cancela 1999; Vaca and
Kunze 1995). The capacitative model was consolidated by the observation that
agents that act as inhibitors of the smooth ER Ca2+ ATPase, such as thapsigar-
gin, tert-butylhydroquinone and cyclopiazonic acid, which empty intracellular
Ca2+ stores without increasing IP3 production, could activate Ca2+ entry (Do-
lor et al. 1992; Thastrup et al. 1990). However, not until several years after
the inception of the capacitative Ca2+ entry model was SOCE first measured
electrically in mast cells as a “Ca2+ release-activated Ca2+ current” (ICRAC)
(Hoth and Penner 1992). This is a highly Ca2+-selective (PCa:PNa∼10:1), in-
wardly rectifying current through very low conductance channels that are
subject to feedback inhibition by intracellular Ca2+. So far, CRAC is still the
prototypical SOCE current. Shear stress also activates SOCE, presumably by
several combined mechanisms. Blood flow transfers blood-borne agonists to
the cell surface to activate PLC and increase IP3, while the permeability of
the cell membrane to extracellular Ca2+ increases upon exposure to blood
flow and shear stress activates heterotrimeric G proteins and small G pro-
teins, which participate in Ca2+ signalling. Recently, it has been proposed that
a mechano-sensitive non-selective cation channel might account for shear-
stimulated Ca2+ entry in rat aortic endothelial cells (Yao et al. 2000). This
channel has relative permeability ratios of PCa:PNa:PK=5:1:1 and is inhibited
by 8-Br-cGMP, suggesting that a protein kinase G-dependent mechanism is
involved.

5.2
Ca2+ Oscillations and Non-capacitative Ca2+ Entry

The first observation of Ca2+ oscillations in non-excitable cells was made
more than 30 years ago (Prince et al. 1972). In endothelial cells, it became
obvious some years later that agonist-induced oscillations occur at low-dose
agonist stimulation, whereas higher doses stimulate a sustained elevation in
[Ca2+]i (Jacob et al. 1988). It was proposed that the source of the oscillatory
Ca2+ signals was the IP3-sensitive Ca2+ stores and that the oscillations were
dependent on the fluctuating concentrations of IP3 produced by low concen-
trations of agonists (Berridge 1990; Meyer and Stryer 1988). Other models
for Ca2+ oscillations proposed that Ca2+ oscillations could occur in the ab-
sence of fluctuations in IP3 concentration, such that Ca2+ initially released
from IP3-sensitive stores in response to an external stimulus triggers release
of Ca2+ via an IP3-insensitive store based on Ca2+-induced Ca2+ release, which
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serves as the source of oscillations (Goldbeter et al. 1990). In either case,
refilling of IP3-sensitive Ca2+ stores requires entry of Ca2+ from the extra-
cellular space, and thus the oscillations could reflect oscillations in both the
release and uptake of Ca2+ stores and in the transmembrane influx of Ca2+.
The answer to this question was provided by the demonstration in endothe-
lial cells of large Ca2+ oscillations despite a constant influx rate measured by
the Mn2+ quenching approach (Jacob 1990). Later studies in nasal secretory
cells suggest that the transmembrane Ca2+ entry that occurs during, and thus
nurtures, Ca2+ oscillations is itself involved in the stimulation of oscillations
and is mechanistically not identical with capacitative Ca2+ entry (Shuttleworth
and Thompson 1996a, b). This was based primarily on the observation that
Ca2+ entry by the capacitative mechanism cannot be stimulated in nasal gland
cells exhibiting oscillatory Ca2+ signals. Further studies in human embryonic
kidney (HEK) 293 cells provided three main lines of evidence suggesting that
arachidonic acid is responsible for this non-capacitative Ca2+ entry mecha-
nism. Thus, exogenous administration of low concentrations of arachidonic
acid (3–8 μM) induces an entry of Ca2+ without any detectable depletion of in-
tracellular Ca2+ stores. The enzymatic machinery for arachidonic production
(e.g. a cytoplasmic phospholipase A2) is activated by low concentrations of ag-
onists. Furthermore, inhibition of arachidonic production prevents Ca2+ entry
thus triggered and yet has no effect on capacitative Ca2+ entry (Shuttleworth
1996; Shuttleworth and Thompson 1998). Evidence for a non-capacitative Ca2+

entry mechanism and mutual antagonism between the non-capacitative and
capacitative mechanisms has also come from other laboratories working on
different cell types (Broad et al. 1999; Luo et al. 2001; Moneer and Taylor
2002). The electrical current responsible for the arachidonate-regulated Ca2+

entry (IARC) has been recorded in HEK 293 cells overexpressing the mus-
carinic receptor M3. This current is similar to ICRAC in many aspects, but
is distinct in that it lacks the fast inactivation and the marked sensitivity to
extracellular pH that is characteristic of ICRAC. In addition, it is observed
even after maximal depletion of intracellular Ca2+ stores (Mignen and Shut-
tleworth 2000). In endothelial cells it was later shown that this type of Ca2+

entry exists; a Ca2+ entry current was measured in response to arachidonic
acid with similar properties to the IARC recorded in HEK 293 (Fiorio Pla and
Munaron 2001). The molecular nature of this non-capacitative Ca2+ entry
pathway is currently completely unknown. Of particular interest is a detailed
study in A7R5 smooth muscle cells demonstrating that NO produced by in-
trinsically expressed NO synthase mediates the reciprocal regulation between
non-capacitative and capacitative mechanisms (Moneer et al. 2003). Whether
endothelial cell Ca2+ oscillations in response to agonists such as histamine,
bradykinin or shear stress occur under this mechanism, and whether NO plays
a role in switching between the two entry modes for Ca2+ are currently the
subjects of investigation.
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6
Regulation of Store-Operated Ca2+ Entry

Since the non-capacitative mechanism is relatively new and little information
is available for its regulation in endothelial cells, this section only deals with
the more extensively studied SOCE mechanism. As with other non-excitable
cells, two major questions remain: the molecular nature of the Ca2+ entry
channels and the signal that links the release of intracellular Ca2+ stores to the
activation of the channels. As regards the molecular identity of store-operated
channels, the discovery of the Drosophila transient receptor potential (TRP)
gene as the candidate coding gene for an SOCE channel has led to a blooming
area of research and the increasingly expanding size of the TRP family (see
Sect. 4.2.3).

6.1
Models for the Activation of Store-Operated Ca2+ Entry

6.1.1
Ca2+ Influx Factor

The simplest explanation for the activation of SOCE is perhaps a soluble mes-
senger signal linking the empty stores and the membrane Ca2+ entry channels.
This was proposed soon after the capacitative Ca2+ entry model was put for-
ward (Putney 1990). A putative calcium influx factor (CIF) was proposed when
an extract of Jurkat lymphocytes-collected following store depletion by inhi-
bition of the SERCA pumps with thapsigargin under extracellular Ca2+-free
conditions-was able to activate Ca2+ entry in macrophages, astrocytoma cells
and fibroblasts (Randriamampita and Tsien 1993). The Ca2+ signals were in-
hibited significantly by econazole, an inhibitor of cytochrome P450 (CYP450),
suggesting that CYP450 metabolites might be CIF. The involvement of CYP450
in the generation of a second messenger mediating capacitative Ca2+ entry
was in fact observed in several previous studies (Alvarez et al. 1991; Mon-
tero et al. 1991, 1992). The CYP450 metabolite 5,6-epoxyeicosatrienoic acid
(5,6-EET) was later proposed to be CIF in astrocytes, being able to activate
Ca2+ entry at picomolar concentration (Rzigalinski et al. 1999). In endothelial
cells, thapsigargin- and bradykinin-stimulated Ca2+ entry is also inhibited by
CYP450 inhibitors (Takeuchi et al. 2003). Recent data in Xenopus oocytes have
further supported the presence of CIF in smooth muscle cells, using extracts
prepared from either mammalian cells in which intracellular Ca2+ stores were
deleted by thapsigargin, or yeast in which these stores had been genetically de-
pleted (Csutora et al. 1999). Studies on CIF in vascular smooth muscle cells also
showed fluctuating Ca2+ responses (Trepakova et al. 2000). There is currently
no study directly testing CIF prepared from endothelial cell extract.
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6.1.2
Conformational Coupling Model

This model proposes that information transfer from store depletion to the
plasma membrane is mediated by the IP3 receptor functioning as the go-
between of the two membrane systems. Previous versions of this model pro-
posed that the IP3 receptor would integrate in its cytoplasmic head informa-
tion that signals capacitative Ca2+ entry and then transmit this information to
the Ca2+ release-activated Ca2+ channels in the plasma membrane via direct
protein-protein interaction (Berridge 1995). A recently modified version of this
model proposes that IP3 may either act directly to stimulate a complex formed
by IP3 receptors located in a junctional zone and Ca2+ entry channels in the
plasma membrane, or IP3 could act indirectly by stimulating uncoupled IP3
receptors in the vicinity of the junctional zone to induce a localised depletion
of the ER store to switch on a store-operated mechanism. At physiological ag-
onist concentrations, the earliest Ca2+ response to receptor activation may be
the stimulation of entry, which is then responsible for charging up the internal
store to prime the IP3 receptors for the large-scale regenerative release of Ca2+

that occurs during each spike (Berridge 2004).
In support of this model, Ma et al. suggested that contact of the IP3 receptor

with the plasma membrane is required both for activation and for maintenance
of store-operated Ca2+ entry. Thus, 2-aminoethoxydiphenyl borate (APB), an
inhibitor of the IP3 receptor, almost completely blocked both agonist- and
thapsigargin-stimulated Ca2+ entry via TRP3 channels and SOC channels (Ma
et al. 2000). This inhibitor, however, while known to inhibit the IP3 receptor,
could very well be an inhibitor of the membrane channels, as suggested by
the fact that it could terminate almost immediately Ca2+ entry during its
course. Although these studies also demonstrated that 2-APB can prevent IP3
production rather quickly if added shortly before or together with the agonist,
this is not sufficient evidence to rule out a direct inhibitory effect on the influx
channels. Studies from the same group subsequently demonstrated that 2-APB
does not act on Ca2+ influx channels via inhibition of the IP3 receptor (Ma et al.
2001). The most compelling lines of evidence that these inhibitors may not
work specifically as IP3 receptor antagonists are that, in IP3 receptor-deficient
cells, xestospongin C, an IP3 receptor antagonist, still inhibits thapsigargin-
induced Ca2+ entry (Castonguay and Robitaille 2002), and that in A7R5 cells,
2-APB inhibits IP3-induced Ca2+ release without affecting 3[H]IP3 binding
to the IP3 receptor (Missiaen et al. 2001). Oka et al. also demonstrated that
xestospongin C inhibits DNP (dinitrophenol, an antigen)-induced Ca2+ entry,
but not thapsigargin-induced SOCE (Oka et al. 2002). In neurons, the same
compound is reported to empty ER Ca2+ stores, but does not inhibit IP3-
induced Ca2+ release, suggesting that xestospongin C functions as a SERCA
inhibitor rather than a specific IP3 receptor antagonist (Solovyova et al. 2002).
Furthermore, in ratbasophilic leukaemia (RBL)-1 cells, ICRAC activity is rapidly
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inhibited by extracellular 2-APB, whereas intracellular 2-APB is less effective
(Kukkonen et al. 2001). In the same line, 2-APB inhibits SOCE independently
of the IP3 receptor in human platelets and liver cells (Diver et al. 2001; Gregory
et al. 2001). Detailed studies by Putney and colleagues in three different cell
types also questioned the requirement for IP3 or IP3 receptor in the activation
of SOCE (Broad et al. 2001). In vascular endothelial cells, these inhibitors
have also been shown to inhibit both agonist- and thapsigargin-induced SOCE
(Bishara et al. 2002); however, these were not tested if they acted as direct
inhibitors of the Ca2+ entry channels. In addition, although there has been an
indication that TRP3 and the IP3 receptor interact, TRPC3 introduced into HEK
293 cells lacking all three isoforms of the IP3 receptor still targets to the plasma
membrane and forms functional Ca2+ channels (Wedel et al. 2003). Overall, it
is not clear whether IP3 receptor contact is responsible for activation of SOCE
in most instances. Neither is it clear whether continuous contact between the
IP3 receptor and the plasma membrane is necessary for maintenance of Ca2+

entry.

6.1.3
Vesicle Secretion-Like Model

The vesicle secretion-like model proposed that the transmission of information
from depleted intracellular stores resembles the secretion of vesicles to the
extracellular matrix. This model was based primarily on studies in smooth
muscle cells showing that stabilisation of the cortical actin network underneath
the plasma membrane inhibits the activation of SOCE (Patterson et al. 1999),
similar to findings in platelets (Rosado et al. 2000). Findings in support of this
model in endothelial cells came from studies showing that pharmacological
inhibition of vesicle transport can inhibit SOCE in corneal vascular endothelial
cells (Xie et al. 2002). This model, however, has not been proved to apply in
all cell types. In RBL-1 cells, this model has been seriously questioned with
respect to activation of ICRAC, the prototypical SOC current. In these studies,
none of the treatments previously shown in smooth muscle cells to affect SOCE
showed any effect on ICRAC in RBL-1 cells (Bakowski et al. 2001).

6.2
Factors that Regulate Ca2+ Entry

6.2.1
Ca2+ Store Content

It is obvious that the refilling status of the ER is an important determinant
of the Ca2+ entry signals. This seems natural, as a major function of SOCE is
to refill the ER, whose many important functions depend on its Ca2+ content
(see Sect. 2.1). In endothelial cells, SOCE is graded with the degree of store
depletion (Sedova et al. 2000).
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6.2.2
Membrane Potential

When the endothelial cell membrane is depolarised either by high K+ con-
centration or by the K+ channel blocker tetraethylammonium, Ca2+ entry in
response to ATP and bradykinin is significantly diminished, while the release of
Ca2+ from intracellular stores remains unaffected (Luckhoff and Busse 1990).
Membrane potential is determined in part by K+ and Cl− concentrations on
the two sides of the plasma membrane. Bradykinin and thapsigargin provoke
Cl− influxes that partly regulate Ca2+ entry (Tran et al. 1999), and Ca2+ influx
into endothelial cells in response to histamine and ATP is sensitive to Cl−

concentration (Hosoki and Iijima 1994). Further information on the role of
membrane potential on Ca2+ signalling in endothelial cells can be found in
a recent excellent review (Adams and Hill 2004).

6.2.3
Ca2+-Dependent Inactivation of Ca2+ Entry

Ca2+-dependent inactivation is a common feature of many Ca2+ channels. In
this mechanism, Ca2+ entering the cell acts in a negative feedback manner to
inhibit further influx of Ca2+ via the channel. For a detailed discussion on this
topic regarding Ca2+ entry channels, the reader is referred to a recent excellent
review (Parekh and Putney 2005).

6.2.4
Roles of Protein Kinases

A great number of protein kinases have been implicated in controlling the bulk
SOCE signal in a variety of cells. In endothelial cells, protein kinases, studied
mostly with the advent of different pharmacological kinase inhibitors, have
been reported to contribute to Ca2+ entry stimulated by a variety of stimuli
such as agonists and shear stress.

6.2.4.1
Tyrosine Kinase

Conceptually, for receptor tyrosine kinase signalling, autophosphorylation or
cross phosphorylation of β-subunits of the receptors is the first event linking
ligand binding to downstream cascades, among them activation of PLC-γ1 (see
Sect. 2.1). It would not be surprising that Ca2+ signals triggered by tyrosine
kinase receptors can be prevented by tyrosine kinase inhibitors. However, Ca2+

entry stimulated by non-tyrosine kinase receptor agonists such as bradykinin
and histamine, and even the SERCA inhibitor thapsigargin, can be significantly
inhibited by inhibitors of tyrosine kinase such as genistein and piceatannol
(Fleming and Busse 1997; Fleming et al. 1995). In other cell types, including
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platelets and fibroblasts, tyrosine kinase has been linked to the control of
SOCE (Lee et al. 1993; Sargeant et al. 1993). In fibroblasts, it has been suggested
that the non-receptor tyrosine kinase c-src can serve as a diffusible signal
linking store depletion and Ca2+ entry. These studies showed that bradykinin
activates c-src (Lee and Villereal 1996). Importantly, in fibroblasts derived from
src−/src− transgenic mice, Ca2+ entry stimulated by bradykinin or thapsigargin
is dramatically lower than in wild-type fibroblasts. The level of capacitative
Ca2+ entry in src−/src− cells is restored to nearly normal levels by transfecting
src−/src− cells with chicken c-src (Babnigg et al. 1997). The precise mechanism
by which c-src is linked to channel activation is unclear.

6.2.4.2
Myosin Light Chain Kinase (MLCK)

Myosin light chain kinase (MLCK) activation and the resultant phosphoryla-
tion of myosin light-chain (MLC) are key events in the initiation of smooth
muscle cell contraction. In endothelial cells, MLCK and MLC are present in
modest amounts (Garcia et al. 1997). Nevertheless, MLCK appears to play
important roles in endothelial cell biology, including calcium signalling, en-
dothelial barrier function, regulation of endothelium-derived relaxing factors
and cell-cell interaction (Norwood et al. 2000; Tran et al. 2000; Tran and Watan-
abe 2003; Watanabe et al. 2001).

The first observation of MLCK’s involvement in the regulation of Ca2+ entry
in endothelial cells was made in primary cultured porcine aortic endothelial
cells, where ML-9 and wortmannin, strong inhibitors of MLCK, completely in-
hibited the entry portion of the Ca2+ response provoked by both IP3-dependent
and IP3-independent mechanisms (Fig. 1a; Watanabe et al. 1996). A number
of MLCK inhibitors with different structures and specificities for MLCK, in-
cluding HA 1077, wortmannin, ML-5, ML-7 and ML-9, were later shown to
inhibit Ca2+ entry and MLC phosphorylation stimulated by bradykinin, thap-
sigargin and shear stress in these cells (Fig. 1b; Watanabe et al. 1998). These
effects were observed in studies using different sources of endothelial cells
(Norwood et al. 2000). MLCK is also implicated in agonist-induced Cl− influx
in endothelial cells (Tran et al. 1999). Involvement of MLCK in store-operated
Ca2+ entry in endothelial cells was further consolidated with the observation
that antisense oligonucleotides directed against the ATP-binding sequence
of MLCK attenuate bradykinin- and thapsigargin-stimulated Ca2+ entry. The
physiological impact of MLCK inhibition is demonstrated by a drastic reduc-
tion of agonist-stimulated NO production from primary cultured endothelial
cells (Fig. 1c), perhaps via blockade of SOCE, and of acetylcholine-stimulated
hyperpolarisation of endothelium-intact smooth muscle cells in mesenteric
arteries (Fig. 1d; Watanabe et al. 2001). Whether inhibition of MLCK affects
release from intracellular stores is controversial, based on different data from
different laboratories using different sources for endothelial cells (Norwood
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et al. 2000; Watanabe et al. 1996). Ion channels and gene expression, even in
the same cell type, are highly variable depending on cell isolation, culture
and growth conditions, and thus controversial data observed from different
endothelia with different methods of isolation and culture seems unavoid-
able (Tran and Watanabe 2003). In human platelets, wortmannin inhibited
significantly thrombin-induced Ca2+ entry and MLC phosphorylation with-
out affecting intracellular store release (Hashimoto et al. 1993), and in human
monocytes, MLCK inhibitors also inhibit Ca2+ entry but not Ca2+ release from
intracellular stores (Tran et al. 2001).

There is thus plenty of evidence for the involvement of MLCK in SOCE
in many cell types including human platelets, endothelial cells and human
monocytes. Similar observations have also been made in A7R5 smooth muscle
cells and HEK 293 cells (Q.K. Tran, personal observations). What, then, is the
precise mechanism whereby MLCK modulates Ca2+ entry? Since the inhibi-
tion of Ca2+ entry is well correlated with inhibition of MLC phosphorylation,
the simplest explanation that has been suggested is that MLCK inhibitors pre-
vent the reorganisation of the cytoskeleton around Ca2+ entry channels that
is associated with activation of Ca2+ entry (Fig. 1e, f; Watanabe et al. 1998).
Direct changes in the cytoskeleton have often been associated with changes
in SOCE signals, although the effects vary with the type and dose of pharma-
cological agent used (Holda and Blatter 1997; Patterson et al. 1999). Although
a clear change in cell morphology is not observed following treatment with
MLCK inhibitors, changes in acto-myosin complex formation could be pre-
dicted based on the observed changes in MLC phosphorylation. However,

�
Fig. 1 a–f MLCK as an important regulatory input for endothelial cell Ca2+ entry and
endothelium-dependent vasodilatation. a, b MLCK inhibition prevents Ca2+ entry stimu-
lated by agonist (a) or fluid flow (b). Primary porcine aortic endothelial cells loaded with
fura-2/AM (a, 2 μM) or indo-1/AM (b, 10 μM) were stimulated with bradykinin (a, 10 nM)
with (open circles) or without (closed circles) treatment with the specific MLCK inhibitor
ML-9 (100 μM) or exposed to fluid flow (b, 5 dynes/cm2) in the presence or absence of
ML-9 (100 μM) as indicated. Note the complete inhibition by ML-9 of the plateau phases
of Ca2+ entry stimulated by bradykinin or laminar fluid flow. (Reproduced from Watanabe
et al. 1996 and Watanabe et al. 1998, with permission). c, d MLCK inhibition prevents both
production of nitric oxide (c) and endothelium-dependent vasodilatation (d). Nitrite and
nitrate were detected using an HPLC system, and acetylcholine (Ach)-induced hyperpolari-
sation of smooth muscle cell membrane in rat mesenteric artery was measured as described
in Watanabe et al. (2001). Ach, acetylcholine; AS, antisense directed against the ATP-binding
domain of MLCK; BK, 10 nM bradykinin; TG, 1 μM thapsigargin; Wort, 100 μM wortmannin.
(Reproduced from Watanabe et al. 2001, with permission). e, f MLCK inhibition prevents
Ca2+ entry in correlation with phosphorylation of myosin light chain. ML-9 inhibits MLC
phosphorylation in a dose-dependent manner (e), which correlates with inhibition of Ca2+

entry (f). MLC-UP, MLC-P and MLC-PP, represent, respectively, un-phosphorylated, mono-
phosphorylated and di-phosphorylated myosin light chain. (Reproduced from Watanabe
et al. 1998, with permission)
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since actin and myosin do not bind transmembrane proteins, a direct link
between MLC and Ca2+ entry channels seemed unlikely. Recent studies in
pulmonary endothelial cells demonstrated that thapsigargin triggered a selec-
tive store-operated Ca2+ entry current in endothelial cells (ISOC), in addition
to a non-selective cation channels. This current contributed approximately
50% of the total thapsigargin-stimulated Ca2+ entry signal and was completely
inhibited by specific disruption of the spectrin-protein 4.1 interaction (Wu
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et al. 2001). Further studies suggested an interaction between protein 4.1 and
TRPC4 in pulmonary artery endothelial cells (Cioffi et al. 2003). Based on this
line of evidence, it is tempting to speculate that MLCK activation could be
linked to Ca2+ entry via the interaction between spectrin and protein 4.1, the
latter being capable of interacting directly with TRPC4, a candidate of SOCC
in endothelial cells. However, in the many studies described above, MLCK in-
hibitors almost completely blocked Ca2+ entry, while ISOC can contribute to
at most roughly 50% of the bulk SOCE signal. There are several possible ex-
planations for this. First, the observations that application of MLCK inhibitors
during Ca2+ entry abolishes the ion influx almost immediately, and that their
removal from the medium instantly restores Ca2+ entry, suggest that MLCK
inhibitors may affect membrane potential or may also have direct effects on
non-selective cation channels. Indeed, thapsigargin-induced Ba2+ and Sr2+ en-
try in endothelial cells and HEK 293 cells can be prevented completely by these
inhibitors (Q.K. Tran, personal observations). In addition, Mn2+ influx can
also be inhibited, albeit not completely, by MLCK inhibitors (Takahashi et al.
1997). Second, a link between cytoskeletal reorganisation and non-selective
cation channels in endothelial cells cannot be ruled out. Until the molecular
identity of non-selective cation channels in endothelial cells is clarified, this is
by no means a simple undertaking.

6.2.4.3
Protein Kinase G

Several groups have reported the involvement of PKG in SOCE in endothelial
cells. Yao and colleagues showed that stretch- and shear stress-activated Ca2+

channels in vascular endothelial cells are inhibited by active PKG (Yao et al.
2000; Kwan et al. 2000). This was attributed to an autocrine effect of NO, which
will be discussed in Sect. 7.1.

6.2.4.4
Protein Kinase C

Effects of PKC on SOCE appear to be cell-type specific. In thyroid cells and hu-
man neutrophils, phorbol ester was found to reduce receptor- or thapsigargin-
stimulated Ca2+ entry (Montero et al. 1994; Tornquist 1993), and PKC was
suggested to accelerate the inactivation of ICRAC in rat basophilic leukaemia
(RBL) cells and Jurkat T cells (Parekh and Penner 1995). In porcine aortic
endothelial cells, inhibitors of PKC such as bisindolylmaleimide I and stau-
rosporine appear to have little or no effect on SOCE stimulated by bradykinin
or thapsigargin (Watanabe et al. 1998); however, down-regulation of con-
ventional PKC isoforms by long-term treatment with phorbol ester reduces
agonist- and thapsigargin-evoked Ca2+ signals in bovine aortic endothelial
cells and HEK 293 cells (Q.K. Tran, personal observations).
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6.2.5
Mitochondria

Mitochondrial Ca2+ uptake can modulate SOCE signals either by affecting
the ER refilling process (see Sect. 2.2), or by generating subplasmalemmal
microdomains of low Ca2+ that sustain SOCE (Malli et al. 2003). In addition,
there has been some indication that mitochondrial Ca2+ uptake can stimulate
production of NO within mitochondria, an action that can affect SOCE (see
Sect. 7.1) and the ER stress response (Xu et al. 2004).

7
Endothelial Nitric Oxide Synthase and Ca2+ Signalling

7.1
Nitric Oxide and Endothelial Cell Ca2+ Signalling

Nitric oxide (NO) produced by eNOS is a potent vasodilator that relaxes smooth
muscle cells by increasing cytosolic cGMP (Moncada and Higgs 1993). eNOS
has an absolute requirement for Ca2+-CaM for its activation (Bredt and Snyder
1990), and Ca2+ entry appears to be required for sustained activation of the
enzyme (Lin et al. 2000). A significant amount of work has been done to test
the hypothesis that NO could act in a negative feedback manner to inhibit Ca2+

entry. In smooth muscle cells there appear to be several mechanisms by which
NO could act to inhibit Ca2+ entry. NO could inhibit L-type Ca2+ channels
directly, or do so indirectly by changing membrane potential via activation
of Ca2+-dependent K+ channels (Blatter and Wier 1994; Bolotina et al. 1994).
Both of these effects are apparently due to increases in cGMP concentrations.
In addition, NO may inhibit Ca2+ entry by promoting sarcoplasmic reticulum
Ca2+ uptake via SERCA activity. This was deduced from experiments in which
NO gas at low concentrations (10−10–10−6 M) reduced agonist-induced but not
thapsigargin-induced Ca2+ entry in smooth muscle cells and platelets (Cohen
et al. 1999; Trepakova et al. 1999). In endothelial cells, several groups have
reported inhibitory effects of NO on Ca2+ entry, and increased SERCA pump
activity by NO has also been suggested (Dedkova and Blatter 2002; Takeuchi
et al. 2004). In addition, high concentrations of NO appear to reduce eNOS
protein expression, due possibly to cleavage of the eNOS protein (Takeuchi
et al. 2004). Thus, there appears to be plenty of evidence for a negative feed-
back activity of NO on Ca2+ entry. However, a potential difficulty with many of
these results is that NO donors have been used at high concentrations, usually
in the high micromolar range. These doses are obviously non-physiological,
and the inhibitory effects of NO produced under physiological conditions on
Ca2+ entry in endothelial cells might be more subtle. Testing the effect of inhi-
bition of intrinsic NO production, e.g. by treatment with NG-nitro-l-arginine
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methyl ester (l-NAME), on Ca2+ entry would appear to be a more physiological
paradigm. Such reports are few and gave modest effects in endothelial cells as
compared to smooth muscle cells (Wang et al. 1996).

7.2
eNOS Affects Endothelial Cell Ca2+ Signalling
by Limiting Intracellular Calmodulin

The Ca2+-binding protein calmodulin (CaM) is a ubiquitous transducer of
intracellular Ca2+ signals in all cell types. It is involved in many cellular func-
tions via its many target proteins, including adenylyl cyclases and phosphodi-

�
Fig. 2 a–d Competition for limiting intracellular CaM as a novel coupling mechanism for
disparate CaM targets-the example of eNOS and the PMCA in endothelial cells is shown.
a Manipulation of eNOS phosphorylation and CaM binding: forskolin (FSK, 50 μM) and
3-isobutyl-1-methylxanthine (IBMX, 0.5 mM). Immunoblots of anti-eNOS immunoprecip-
itates were performed using anti-eNOS and anti-CaM antibodies, and those of whole cell
homogenates were performed using phospho-specific antibodies for Thr497 and Ser1179.
Columns represent densitometric values for immunoblots of control (cross-hatched) and
treated (filled) samples, respectively (n=5). Measurements are performed in the presence
of the NOS inhibitor l-NAME (100 μM). b Treatment to increase CaM binding to eNOS
results in substantial reduction in free Ca2+-CaM concentration in BAECs. Time courses of
free Ca2+-CaM (upper panel) and Ca2+ (lower panel) simultaneously determined in control
(open circles) and FSK/IBMX-treated cells (filled circles). Measurements are performed in
the presence of l-NAME (100 μM). c Enhanced CaM binding to eNOS is associated with
reduced responses of other CaM targets during SOCE. Concurrent measurements of Ca2+

i
(lower panel) and the response of BSCaM2, a FRET-based biosensor that is constructed
based on the CaM-binding domain of MLCK and that therefore functions as an analogue for
MLCK in terms of CaM binding (upper panel). ER Ca2+ stores are first emptied by thapsigar-
gin (TG, 1 μM) in Ca2+-free buffer and store-operated Ca2+ entry is triggered by the addition
of small amounts of Ca2+ and terminated by addition of 1 mM BAPTA. Following wash out
of BAPTA and addition of FSK-IBMX, which increases CaM binding to eNOS by roughly
threefold (Fig. 2a), subsequent similar SOCE signal evokes a significantly reduced response
of BSCaM2. All measurements are performed in the presence of the NOS inhibitor l-NAME
(100 μM). d Phosphorylation-dependent increases in CaM binding to eNOS are associated
with ∼40% reduction in the CaM-dependent activity of plasma membrane Ca2+-ATPase
(PMCA) in BAECs. Upper panel, protocol for in-cell determination of PMCA activity. PMCA
activity is reflected in the time course of Ca2+ extrusion following removal of extracellular
Ca2+ at peak Ca2+ entry in the absence of extracellular Na+. The Ca2+ extrusion time courses
of cells with similar Ca2+

i values at peak of Ca2+ entry are fitted to a monoexponential and
the τ values obtained are an inverse measure of PMCA activity. TGN, thapsigargin (1 μM);
Na+-free, cell buffer in which Na+ is replaced by equimolar N-methyl-d-glucamine. Lower
panel, PMCA activity in BAECs transfected with or without fluorescent CaM biosensors
in the presence (filled columns) or absence (cross-hatched columns) of pretreatment with
FSK-IBMX. BSCaM2 and BSCaM0.3, fluorescent CaM indicators with apparent Kd for CaM
∼2 nM and 0.3 nM, respectively. Asterisks indicate statistical significance. (Reproduced
from Tran et al. 2003, with permission)
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esterases (GuandCooper1999),numerousproteinkinases (NairnandPicciotto
1994), the protein phosphatase calcineurin (Aramburu et al. 2000), NO syn-
thase (Bredt and Snyder 1990), the plasma membrane Ca2+-ATPase (PMCA)
(Vincenzi and Larsen 1980), and several ion channels (Levitan 1999).

Up to 40% of the total cellular CaM is associated with proteins from which
it is virtually inseparable regardless of the free Ca2+ concentration, such as
phosphorylase kinase (Picton et al. 1983), inducible NO synthase (Cho et al.
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1992) and several unconventional myosins (Mooseker and Cheney 1995). The
available CaM concentration therefore is significantly smaller than the total
cellular CaM concentration.

In commercial bovine aortic endothelial cells (BAECs), eNOS can bind as
much as 25% of the total cellular CaM (Tran et al. 2003), and in primary
endothelial cells this number appears to be significantly higher (Q.K. Tran,
unpublished observations). This observation suggested that eNOS can con-
trol the intracellular Ca2+-CaM concentration via changes in its CaM binding
status. A key determinant of the CaM binding status of eNOS is the phospho-
rylation status of Thr497 (Thr495 in the human sequence) in the CaM-binding
domain. Under basal conditions, this residue is phosphorylated, which results
in apparently no CaM binding to the synthase. In response to Ca2+-elevating
agonists or Ca2+ ionophores, dephosphorylation of Thr497 is associated with
substantial increases in CaM binding to eNOS. As shown in Fig. 2a, treatment
with forskolin (FSK, 50 μM) and 3-isobutyl-1-methylxanthine (IBMX), which
dephosphorylates Thr497 eNOS and phosphorylates Ser1179, is associated with
a an approximately threefold increase in CaM binding to eNOS (Tran et al.
2003). Concurrent measurements of Ca2+ and Ca2+-CaM concentrations re-
vealed that this is associated with substantial reduction in the free intracellular
Ca2+-CaM concentration produced by ionomycin in BAECs (Fig. 2b; Tran et al.
2003). Experiments using the SOCE paradigm further demonstrate that the re-
sponse of a fluorescent CaM biosensor constructed based on the CaM-binding
domain of MLCK (BSCaM2, apparent Kd for CaM ∼2 nM) is substantially re-
duced following treatment that increases eNOS CaM binding, despite an SOCE
signal manipulated to be similar with that obtained under control conditions
(Fig. 2c; Q.K. Tran, unpublished data). Thus, the phosphorylation-dependent
increases in CaM binding to eNOS can substantially reduce the free intracel-
lular Ca2+-CaM produced in endothelial cells. The physiological aspect of this
effect is an associated approximate 40% reduction in the activity of the plasma
membrane Ca2+-ATPase (PMCA) in wild-type BAECs or BAECs expressing
BSCaM2 (Fig. 2d; Tran et al. 2003). Most importantly, this effect disappears in
cells in which intracellular CaM has been buffered with a very high-affinity
CaM binding protein BSCaM0.3 (apparent Kd for CaM ∼0.3 nM; Fig. 2d),
confirming that it is due to increased CaM buffering by eNOS. These effects
are totally independent of NO, as sufficient doses of l-NAME were applied
throughout, and have been confirmed in a reconstituted system, HEK 293 cells
expressing eNOS and CaM biosensors (Tran et al. 2005).

These studies have provided the first direct evidence that competition for
limiting CaM can be a general mechanism coupling the activities of CaM
targets in the cell. Further evidence in support of this mechanism later came
from studies in neurons, in which phosphorylation-dependent changes in the
CaM binding status of a novel CaM-binding protein can affect the functions of
calcineurin and L-type Ca2+ channels in similar manners in which eNOS affects
PMCA activity in endothelial cells (Rakhilin et al. 2004). In principle, the effects
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of limiting CaM on Ca2+ signalling can be pervasive; an excellent discussion
can be found in Persechini and Stemmer (2002). In endothelial cells, the effect
of eNOS to limit CaM availability apparently also affects SOCE. Indeed, while
PMCA activity is substantially inhibited in BAECs treated with FSK-IBMX,
which apparently accounts for the increased Ca2+ levels in ionomycin-treated
cells (Fig. 2b, lower panel; Tran et al. 2003), after treatment with FSK-IBMX,
higher extracellular Ca2+ is required to trigger an SOCE signal with a peak
similar to a previous one stimulated under control condition. The suppressed
PMCA activity appears to result in a more sustained Ca2+ response after the
peak (Fig. 2c; Q.K. Tran, unpublished data). In addition, CaM binding to the
more C-terminal CaM-binding site of TRPC1 has been suggested to regulate
Ca2+-dependent feedback inhibition of SOCE (Singh et al. 2002), and SOCE
in non-excitable RBL-1 cells is impaired either following over-expression of
a dominant-negative CaM mutant or following whole-cell dialysis with a CaM
inhibitory peptide (Moreau et al. 2005).

Not only can eNOS limit the magnitudes of CaM-binding responses of
proteins involved in Ca2+ signalling such as the PMCA and MLCK (BSCaM2 is
similar in its interaction with CaM to MLCK and therefore can be considered
as a target analogue of MLCK), it can also limit the CaM-binding time courses
of these targets due to differences in the kinetics of their interactions with CaM
(Tranet al. 2005). Indeed, invitro studies showed that eNOSbinds (Ca2+)4-CaM
with a Kd value of 0.2 nM and an association rate constant of approximately
1.3×105 M−1s−1. These values are respectively 10- and 100-fold smaller than
the corresponding values for the MLCK analogue BSCaM2. As a result, when
Ca2+ is added to a mixture of CaM, MLCK analogue and eNOS in vitro, a large
fluorescence transient is observed as (Ca2+)4-CaM is rapidly bound to the
analogue and then slowly captured by the higher-affinity synthase (Fig. 3a).

In vivo, a rapid and sustained increase in free Ca2+ concentration in cells ex-
pressing both the cytoplasmic MLCK analogue and membrane-targeted eNOS
only elicits a transient MLCK analogue response as opposed to a plateau re-
sponse in cells expressing only the MLCK analogue. Increased CaM binding
to eNOS with FSK-IBMX further enhances these effects (Fig. 3b). Transient
responses are not observed in cells co-expressing the fluorescent analogue and
a mutant T497D synthase unable to bind CaM (Tran et al. 2005). These data
clearly demonstrate that eNOS can limit both the magnitudes and time courses
of CaM responses of lower-affinity, less-abundant targets. The experimental
protocol used in these studies was intended to rapidly elevate the intracellular
free Ca2+ concentration to a sustained high level, allowing observation of the
redistribution of CaM between eNOS and the MLCK analogue in the absence
of potential complications associated with sub-maximal Ca2+ transients, espe-
cially spatial heterogeneity. A more detailed discussion of the situation during
transient Ca2+ signals can be found in Tran et al. (2005).
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8
Conclusions

This chapter has aimed to address the major components of Ca2+ signalling in
the endothelial cell. Due to space constraints, many important issues such as
spatial and temporal aspects of endothelial Ca2+ signals have been reluctantly
left out. Four stages of Ca2+ signalling in these cells can be summarised (Fig. 4):

1. Stimuli-ER Ca2+ depletion: Physiological agonists or mechanical stimuli can
deplete ER Ca2+ content by increasing IP3 production and activation of IP3
receptor, a process involving activation of trimeric G protein and activation
of phospholipase C; ER Ca2+ content can also be pharmacologically emptied
by inhibition of the ER Ca2+-ATPase.

2. ERCa2+ depletion-ActivationofCa2+ entry:Proposedcouplingmechanisms
(Fig. 4, diagonal box) include conformational coupling, Ca2+ influx factor
or vesicle secretion-like coupling. There are many regulatory inputs (Fig. 4,
large shaded arrow), including ER Ca2+ content, mitochondrial sequestra-
tion and interaction with ER, protein kinases such as MLCK and tyrosine
kinase (PTK), possibly NO, membrane potential, and Ca2+-dependent inac-
tivation. Ca2+ entry channels are being identified, represented by members
the transient receptor potential (TRP) protein family.

�
Fig. 3 a,b eNOS, as an abundant and high-affinity CaM-binding protein, can affect not only
the magnitudes but also the time courses of activities of other Ca2+-CaM targets in cells.
a In vitro (Ca2+)4-CaM redistribution kinetics in mixtures of eNOS and BSCaM2. Upper
time course: 250 nM BSCaM2, 250 nM eNOS and 450 nM CaM; Lower time course: 250 nM
BSCaM2, 1 μM eNOS and 1.1 μM CaM. The eNOS association rate constant (kf) and total
concentration (Et) values of 1.6×105 M−1s−1 and 230 nM (upper curve), and 1.1×105 M−1s−1,
1.1 μM (lower curve) were determined (Tran et al. 2005). In these calculations, the Kd values
for the (Ca2+)4-CaM complexes with eNOS and BSCaM2 were fixed at 0.2 and 1.4 nM.
Measured kf and kr values for BSCaM2 are 3.3×107 M−1s−1 and 0.06 s−1 (data not shown).
b The presence of eNOS limits both the magnitude and time course of BSCaM2 response in
cells. Upper panel: fractional response of the fluorescent CaM biosensor BSCaM2, a CaM-
binding analogue of MLCK, in HEK 293 cells expressing only the biosensor (open circles),
or co-expressing BSCaM2 and a fusion of bovine eNOS and the fluorescent protein DsRed2
after treatment with either FSK-IBMX (filled circles) or an equal volume of Me2SO4 (open
squares, vehicle medium for FSK-IBMX). A saturated indo-1 response, corresponding in
these cells to a free Ca2+ concentration above ∼4 μM, was produced by addition of 10 μM
ionomycin and 10 mM CaCl2, as indicated. Lower panel: indo-1 responses determined
concurrently. (Reproduced from Tran et al. 2005, with permission)
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Fig. 4 Several key components of endothelial cell Ca2+ signalling. See text (Sect. 8). BHQ,
dibenzohydroquinone; CPA, cyclopiazonic acid; ER, endoplasmic reticulum; G, trimeric G
proteins; IP3R, IP3 receptor; PIP2, phosphatidyl inositol 4,5-bisphosphate; PLC, phospholi-
pase C, IP3, inositol 1,4,5-trisphosphate; PMCA, plasma membrane Ca2+-ATPase; R, surface
receptor for agonists; TGN, thapsigargin

3. Transduction of intracellular Ca2+ signals: Calmodulin is the most impor-
tant transducer of Ca2+ signals. eNOS, being abundant and having high
affinity for CaM, can limit the available Ca2+-CaM for other CaM-binding
proteins involved in Ca2+ signalling. Competition for limiting CaM likely
represents a pervasive coupling mechanism (see Sect. 7.2).

4. Mechanisms for removal of cytoplasmic Ca2+: These comprise PMCA, the
ER Ca2+-ATPase, mitochondria and the Na+-Ca2+ exchange.
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In general, several aspects of endothelial cell Ca2+ signalling are distinct from
that in other non-excitable cells, including among other things the constant
exposure to shear stress and the presence of eNOS, which can substantially
affect the activities of other Ca2+ signalling components via its role as a dom-
inant affector of the intracellular CaM network. The signalling events from
ligand-receptor binding to activation of intracellular Ca2+ channels and store
depletion are fairly well clarified. Although many TRPC channels have been
identified with significant functional impact in endothelial cells, the search
for a clear identification of Ca2+ entry channels as well as their regulatory
mechanisms is still underway.
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Abstract Cyclooxygenase (COX) enzymes catalyse the biotransformation of arachidonic
acid to prostaglandins which subserve important functions in cardiovascular homeostasis.
Prostacyclin (PGI2) andprostaglandin (PG)E2,dominantproductsofCOXactivity inmacro-
and microvascular endothelial cells, respectively, in vitro, modulate the interaction of blood
cells with the vasculature and contribute to the regulation of blood pressure. COXs are
the target for inhibition by nonsteroidal anti-inflammatory drugs (NSAIDs—which include
those selective for COX-2) and for aspirin. Modulation of the interaction between COX
products of the vasculature and platelets underlies both the cardioprotection afforded by
aspirin and the cardiovascular hazard which characterises specific inhibitors of COX-2.

Keywords Endothelium · Vascular · Prostacyclin · Thromboxane · Cyclooxygenase
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1
Introduction

Arachidonic acid (AA) is a 20-carbon fatty acid containing four double bonds
(Δ 5, 8, 11, 14: C 20:4) that circulates in plasma in both free and esterified forms.
AA is derived from dietary linoleic and linolenic acids. It is esterified in the sn-2
position of phospholipids from which it is liberated by phospholipases (PL).
While these includePLA1,PLA2,PLCandPLD,acytosolicPLA2 hasaparticular
affinity forAAas a substrate for cleavage (Leslie 1997). PLA2shydrolyse the sn-2
ester bond of membrane phospholipids (particularly phosphatidyl choline and
phosphatidyl ethanolamine) with the release of arachidonate (Lin et al. 1992).
Multiple additional phospholipase A2s—group IIa secretory (sPLA2), group V
sPLA2, group VI calcium-independent (iPLA2) and group X sPLA2—have been
characterised. The cyclooxygenase (COX) enzyme utilizes AA as its preferred
substrate to catalyse the formation of prostaglandins (PGs) and thromboxane
(TX) (Fig. 1).

Fig. 1 The cyclooxygenase (COX) cascade: production and actions of prostaglandins and
thromboxane. Arachidonic acid (AA) is converted by cytosolic prostaglandin G/H syn-
thases, which have both COX and hydroperoxidase (HOX) activity, to the unstable in-
termediate prostaglandin H2 (PGH2). PGH2 is converted by tissue-specific isomerases to
multiple prostaglandins that activate specific cell-membrane receptors of the superfamily
of G protein-coupled receptors. Some of the tissues in which individual prostanoids exert
prominent effects are indicated. (Reproduced with permission from FitzGerald 2003)
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2
The COX Pathway

Although commonly referred to as COXs, the PG G/H synthases have two dis-
tinct enzyme activities, namely an endoperoxide synthase activity (COX) that
oxygenates and cyclises the unesterified precursor fatty acid, and a hydroper-
oxidase activity (HOX) that sequentially forms the cyclic endoperoxides G
(PGG) and H (PGH). PGG2 and PGH2 are chemically unstable, but are rapidly
transformed by the downstream prostaglandin isomerases to produce the var-
ious PGs (Fig. 1). The PGs are bisenoic products that contain two double
bonds, denoted by a subscript 2 (e.g. PGE2). They belong to the larger family
of products of AA termed eicosanoids as they contain 20 carbon atoms (Greek:
eikosi/εικωσι=20). Products formed from substrates with different numbers
of double bonds differ in their subscript. Thus, PGs formed from eicosapen-
taenoic acid (C20:5), which has one more double bond than arachidonic acid,
form PGE3. The isoeicosanoids, a family of free radical catalysed isomers, are
formed by non-enzymatic, direct peroxidation of AA in situ in cell membranes
(Pratico et al. 2004).

The COX enzyme exists in two forms—COX-1 and COX-2 (Smith et al.
1996)—and occurs as a dimer (Picot et al. 1994; Garavito et al. 1995; Loll
et al. 1995), monotopically inserted into the endoplasmic reticulum membrane.
Recent evidence suggests that COX-1 and COX-2 may also heterodimerize (Yu
et al. 2006). AA can access the active site in the body of the enzyme via
a hydrophobic tunnel from the endoplasmic reticulum-bound surface of the
enzyme. Access to the active site is more accommodating in COX-2, although
many of the key residues for catalysis are conserved between the two isoforms.
A side pocket in the tunnel affords the structural opportunity for the synthesis
of inhibitors which inhibit selectively COX-2 (Smith et al. 1996; FitzGerald and
Loll 2001). The crystal structures of COX-1 and COX-2 are similar, with a 61%
amino acid identity, and both enzymes have similar kinetics for AA (Smith
et al. 1996). COX-1 is localised predominantly to the endoplasmic reticulum,
whereas COX-2 is present in both the endoplasmic reticulum and the nuclear
membrane (Spencer et al. 1998). COX-1 and COX-2 may use different pools
of arachidonate that are mobilised in response to different cellular stimuli for
PG synthesis (Spencer et al. 1998) and may display differential affinity for
downstream synthases, at least in heterologous systems. These preferences
may be governed by spatiotemporal associations and quantitative provision of
substrate (Ueno et al. 2001). Traditionally, COX-1 is viewed as a constitutive
enzyme with housekeeping functions, such as gastric epithelial cytoprotection
and haemostasis, whereas COX-2 has been deemed inducible, particularly at
sites of inflammation. It is now apparent that this is an oversimplification
of biological reality. For example, expression of both enzymes (COX-1 and
COX-2) is evident in the brain and kidney (FitzGerald and Patrono 2001)
and both are upregulated in the synovia of inflamed joints (Iniguez et al.
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1998). Specifically, with reference to the present chapter, COX-2 is induced in
endothelial cells by laminar shear, suggesting haemodynamic induction of the
enzyme in endothelium in vivo (Topper et al. 1996).

2.1
Molecular Biology of COXs

The COX-1 gene is located on chromosome 9, whereas COX-2 is located on
chromosome 1 (Smith et al. 1996). Characteristic features of the COX-1 gene
are consistent with its being suitable for rapid transcription and messenger
RNA (mRNA) processing, thus producing a continuously transcribed, stable
message (Smith et al. 1996). This provides a constant level of enzyme in most
cell types to synthesise PGs responsible for homeostatic functions. In contrast,
the features of the COX-2 gene are those of an “immediate-early” gene that
is not always present, but is highly regulated—for example by cytokines or
mitogens. The COX-2 gene is smaller than that of COX-1, with exons 1 and 2
of COX-1 (containing the translation site and original peptide) condensed
into a single exon in COX-2. Additionally, the introns of COX-2 are smaller
than those of COX-1, and COX-2 has a TATA box promoter, which is lacking
in COX-1. Lastly, the mRNA of COX-2 contains long 3′ untranslated regions,
which exhibit several different polyadenylation signals and multiple “AUUUA”
instability sequences that act to mediate rapid degradation of the transcript.
Insight into the mechanisms which regulate expression of the COXs continues
to emerge. Thus, both post-transcriptional and post-translational mechanisms
appear to converge with transcriptional regulation in determining the altered
expression of COX-2 (Dixon 2004; Cok et al. 2003).

2.2
COX Expression in the Cardiovascular System

In cardiovascular tissues, COX-1 is constitutively expressed in cultured en-
dothelial (ECs) and vascular smooth muscle cells (VSMCs) under static con-
ditions in vitro, while the expression of COX-2 is increased by growth factors,
cytokines, phorbol esters and lipopolysaccharide in many cell types, includ-
ing those of the vasculature (Herschman 1996). Laminar shear upregulates
COX-2 expression in ECs in vitro (Topper et al. 1996), while disturbed shear,
designed to mimic the disordered laminar shear at sites of atherogenesis, fails
to have this effect. The offset kinetics of shear-induced COX-2 expression in
endothelial cells is unknown. Thus, it is perhaps unsurprising that COX-2 has
been variably detected in endothelial cells ex vivo after tissues have been har-
vested and stained for immunodetection or in situ analysis. Experiments in
humans suggest that COX-2 is the dominant source of PGI2 produced even
under physiological conditions (McAdam et al. 1999; Catella-Lawson et al.
1999). Expression of vascular COX-2 is elevated in response to injury in vivo
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(Connolly et al. 2002) and expression of both COX-1 and COX-2 is increased
in foam cells and in VSMC in atherosclerotic plaque (Schonbeck et al. 1999).

2.3
PG Isomerase/Synthases

Cell-specific isomerases and synthases occur in different tissues and determine
the terminalPGproduced—usuallyoneor twoproductsbyaparticular cell (see
Fig. 1). For example, prostacyclin synthase (PGIS) renders PGI2 the dominant
PG of macrovascular ECs (Gryglewski et al. 1986; Spisni et al. 1995). In contrast,
platelets produce TXA2 because TX synthase predominates in those cells. As
mentioned, the COX isoforms preferentially co-localise with a particular syn-
thase, at least in heterologous systems. Thus, COX-1 couples preferentially with
TXA2 and PGF synthases (Ueno et al. 2001) and the cytosolic PGE synthase
(PGES) isozymes (Tanioka et al. 2000). COX-2 preferentially couples with PGIS
(Ueno et al. 2001) and the microsomal PGES isozymes (Murakami et al. 2000),
which are also induced by cytokines and tumour promoters. Co-localisation of
the respective COX and PGES enzymes is evident in vivo during development
in zebrafish (Pini et al. 2005). However, this may not reflect completely the
situation in vivo. For example, both COX enzymes contribute to microsomal
PGE synthase (mPGES)-1-derived PGE2 in vivo (Cheng et al 2006).

2.4
Prostaglandin Receptors

PGs have short half-lives (seconds to minutes at physiological pH) and, as such,
act as autacoids at nearby membrane G protein-coupled receptors (GPCR),
rather than as circulating hormones (FitzGerald et al. 1981; Breyer et al. 2001).
While formed intracellularly, PGs may diffuse through cell membranes or
be actively transported (Bao et al. 2002) to activate membrane GPCRs. PGs
may also undergo active transport intracellularly for catabolism (Vezza et al.
2001). There are nine PG receptor subtypes which are conserved in mammals
from mouse to human: PGD2 receptors (D prostanoid (DP)1 and CRTH2 or
DP2), PGE2 receptor (EP; EP1, EP2, EP3 and EP4), the PGF2α receptor (FP),
the PGI2 receptor (IP) and the TXA2 receptor (TP) (Narumiya et al. 1999).
Each receptor is encoded by a separate gene, although splice variants of each
gene may occur, as exemplified amongst the EP3, FP and TP receptors in
which C terminal variants have been reported. All PGs act at GPCRs and
transduce their diverse responses through second messenger systems such as
adenylate cyclase or phospholipase C. All derive from an ancestral EP, with
the exception of the DP2, which is a member of the N-formyl-l-methionyl-
l-leucyl-l-phenylalanine (fMLP) receptor superfamily. PGs may also activate
nuclear receptors (Lim and Dey 2002). However, it remains speculative that
sufficient PG concentrations are attained in vivo to effect these responses
(Bell-Parikh et al. 2003).
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2.5
Prostacyclin

The final step in PGI2 synthesis is the isomerisation of PGH2 by PGIS. The gene
encoding PGIS, a cytochrome P450 haemoprotein, is approximately 70 kb long.
Expression of PGIS mRNA is upregulated by several cytokines and hormones
(e.g. oestrogen) and downregulated by acrolein (N. Volkel, personal commu-
nication). Peroxynitrite selectively inhibits PGIS by post-translational modi-
fication of the enzyme (Zou et al. 1997). PGI2 synthesis occurs most notably
in ECs and VSMCs (Moncada et al. 1976), but it also occurs in heart, kid-
ney, gastric mucosa, macrophages, lung, brain and small intestine. Inhibition
of urinary PGI2 metabolite (PGI-M) excretion by structurally distinct selec-
tive inhibitors of COX-2—rofecoxib and celecoxib—is indistinguishable from
that by structurally distinct mixed inhibitors—ibuprofen and indomethacin
(Catella-Lawson et al. 1999; McAdam et al. 1999). However, while this indicates
that COX-2 is likely to be the dominant source of endothelial PGI2 in vivo,
COX-1 may also contribute to EC biosynthesis. Selective inhibition of COX-2
in mice accelerates the response to a thrombogenic stimulus in vivo (Cheng
et al. 2006).

PGI2 has a double-ring structure; a cyclopentenone ring and a second ring
formed by an oxygen bridge between carbons 6 and 9 (Fig. 2). It is hydrol-

Fig. 2 Spontaneous hydrolysis of prostacyclin (PGI2) to form the 6-keto hydrolysis product
and enzymatic formation of the 2,3-dinor metabolite
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ysed non-enzymatically (t1/2=3 min) to the inactive 6-keto-PGF1α. The major
route of elimination of PGI2 is in the urine. Measurement of a major uri-
nary metabolite (Brash et al. 1983), such as 2,3 dinor 6-keto-PGF1α, provides
a time-integrated, non-invasive index of the total biosynthesis of PGI2 in vivo
(FitzGerald et al. 1983; Pratico et al. 2000a).

2.5.1
PGI2 Effects

Isolated from vascular tissue initially, PGI2 is a potent vasodilator and inhibitor
of platelet aggregation in vitro (Moncada et al. 1976; Moncada et al. 1977). It was
shown also to promote inflammation and regulate salt and water handling by
thekidney, suggestingapervasive role incardiovasculardysfunction (Moncada
and Vane 1978). The recognition of these properties prompted consideration
of the use of PGI2 or more stable analogues as therapeutic agents, initially
in patients with peripheral obstructive arterial disease (Szczeklik et al. 1979).
More recently, intravenous, oral and inhaled PGI2 analogues have established
a place in the therapy of pulmonary hypertension (Gibbs et al. 2004). PGI2
also appears to modulate the pulmonary response to viral infection. Overex-
pression of PGIS constrains the response to respiratory syncytial virus (RSV)
infection in mice, and weight loss, cytokine response and delayed viral clear-
ance in response to RSV are all exacerbated in mice lacking the IP (Hashimoto
et al. 2004).

Recently, interest has developed in the anti-oxidant effects of PGI2. Thus,
an analogue has been shown to modulate the oxidant stress caused by doxoru-
bicin in cardiomyocytes in vitro (Adderley and Fitzgerald 1999) and in vivo
(Dowd et al. 2001). Similarly, infusion of an analogue into patients with pul-
monary hypertension—a disease in which both platelet activation and oxidant
stress have been implicated—depressed isoprostane generation, but not TX
metabolite excretion (Robbins et al. 2005). Deletion of the IP exacerbates the
oxidant injury of ischaemia/reperfusion (Xiao et al. 2001). More recently, Egan
and colleagues (2004) have implicated loss of an antioxidant effect mediated
by the IP in the accelerated atherogenesis in female mice lacking both the
low-density lipoprotein (LDL) receptor and the IP (Egan et al. 2004). Indeed,
COX-2-derived PGI2 may contribute substantially to the antioxidant effects of
oestrogen in this model. Infusion of PGI2 reduces blood pressure, but paradox-
ically elevates renin (FitzGerald et al. 1979). Excretion of PGI-M is markedly
elevated in human pregnancy, a state of constitutive hypotension and ele-
vated renin. Interestingly, the elevation of PGI-M is less pronounced from the
first trimester in those destined to develop pregnancy-induced hypertension,
a low renin condition manifest typically in the late second or third trimester
(Fitzgerald et al. 1987).

Anti-mitogenic effects of PGI2 have been demonstrated in smooth muscle
cells in vitro (Zucker et al. 1998) and studies in mice deficient in the IP have
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demonstrated the antiproliferative effect of PGI2 in the response to vascular
injury (Cheng et al. 2002). Similarly, viral delivery of the PGIS enzyme ame-
liorates the response to vascular injury in rats, preventing intimal hyperplasia
following balloon carotid injury (Todaka et al. 1999). Finally, PGI2 enhances
reverse cholesterol transport from vascular cells in vitro by modulating choles-
terol ester hydrolase (Hajjar et al. 1982) and impairs cellular adhesion to the
vessel wall (Kobayashi et al. 2004). The antiproliferative effect of high-density
lipoprotein on VSMC in vitro is mediated via its apoE moiety that induces COX-
2-dependent PGI2, acting via the IP to inhibit cyclin A (Kothapalli et al. 2004).

2.5.2
The IP

A single prostanoid receptor, the IP, has been identified and cloned (Namba
et al. 1994; Boie et al. 1994). The human IP gene encodes a GPCR protein con-
sisting of 386 amino acid residues. It is located on chromosome 19 and spans
a total of 7 kb. The IP typically couples to Gs and thus elevates cyclic adenosine
monophosphate (cAMP). In addition, the IP may also couple to Gq and thus
activate phospholipase C. Elevated cAMP stimulates ATP-sensitive K+ chan-
nels to cause hyperpolarisation of the cell membrane and inhibit development
of contraction of vascular smooth muscle. Elevated cAMP levels also decrease
cytosolic Ca2+, inhibiting contractile machinery (Smyth and FitzGerald 2002).
Wilson and colleagues have demonstrated that the IP can undergo homod-
imerisation and heterodimerisation with the TP, with consequent alterations
in ligand affinity and signalling patterns (Wilson et al. 2004).

IP mRNA is abundantly expressed in mouse megakaryocytes and arterial
smooth muscle, consistent with the actions of PGI2 in the cardiovascular sys-
tem. In addition, IP mRNA can be found in the thymus, kidney, heart, liver,
spinal column and particularly in neurons of the dorsal root ganglion, indicat-
ing a role for the IP in the mediation of pain.

2.5.3
Studies in IP Transgenic Mice

IP knockout mice are viable, normotensive and reproduce normally (Murata
et al. 1997).Thesemice revealed the importanceof the IP inmediatingbothpain
and inflammation (Murata et al. 1997), properties shared with the EP1 and the
EP3 (Minami et al. 2001). Similarly, the IP, this time acting in concert with the
EP2 and EP4, contributes to joint inflammation in collagen-induced arthritis
in the mouse (Honda et al. 2006). As expected, IP knockout mice are more
sensitive to thrombogenic stimuli (Murata et al. 1997) and exhibit an increased
proliferative response to vascular injury and an augmentation in the attendant
platelet activation. This last phenotype is rescued by coincident deletion of
the TP (Cheng et al. 2002). Deletion of the IP elevates blood pressure on some
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backgrounds and increases the response to salt loading (Francois et al. 2005).
It is, in this phenotype, reminiscent of deletion of the EP2 and EP4 receptors
(Tilley et al. 1999; Audoly et al. 1999). However, consistent with its effect on
renin, deletion of the IP reduces blood pressure in hyper-reninaemic mice in
which the renal artery has been clipped (Fujino et al. 2004). More recently, the
atheroprotective effect of the IP has been demonstrated in both the apoE and
LDL knockout mouse models of atherosclerosis, where IP deletion accelerated
atherogenesis (Egan et al. 2004; Kobayashi et al. 2004). A synthesis of the
information in these papers suggests that acceleration of interactions between
neutrophils, platelets and the vessel wall and, in particular, the attendant
increase in oxidant stress, mediates the impact of IP deletion on initiation
and early development of atherogenesis. These observations are concordant
with the failure of turbulent shear stress in vitro to upregulate COX-2 in ECs
(Topper et al. 1996), mimicking the potential functional deficiency in COX-2-
derived PGI2 formation secondary to the disturbed laminar shear that pertains
at vascular sites prone to the initial development of atherosclerosis in humans.
Disruption of this pathway may contribute to the time-dependent increase in
cardiovascular hazard and risk transformation which appears to complicate
extended dosing with selective inhibitors of COX-2 (vide infra).

2.6
Thromboxane A2

The final step in the synthesis of TXA2 is the isomerisation of PGH2 to TXA2
by TX synthase (Needleman et al. 1976). The TX synthase gene is found on
chromosome 7 and spans greater than 150 kb with 13 exons (Tanabe et al.
1993). TXA2 is the principal metabolite of COX-1-derived metabolism of AA
in platelets (Hamberg et al. 1975). Either COX may generate TX as a princi-
pal product. Thus, COX-2 expressed in macrophages may contribute to TXA2
biosynthesis and has been speculated to contribute to the syndrome of aspirin
resistance (Patrignani 2003). Recently, Evangelista et al. (2006) have demon-
strated that de novo synthesis of COX-1 by platelets, at least in vitro, may
undermine the sustained and complete inhibition of platelet COX-1 derived
TxA2 by aspirin. In humans, TX synthase mRNA is found in platelets, lung,
placenta, kidney, spleen, thymus, prostate gland and peripheral blood leuco-
cytes. Similar to other enzymes in the AA biosynthetic cascade, TX synthase
is subject to mechanism-based inactivation (Fitzpatrick et al. 2004).

TXs have a six-member oxirane ring, differing from the cyclopentenone
ring in conventional PGs (Fig. 3). TXA2 breaks down non-enzymatically into
the stable inactive hydrolysis product, thromboxane B2 (TXB2) with a half-life
of roughly 30 s at physiological pH (Bhagwat et al. 1985). Urinary excretion of
products of the two major pathways of TX disposition (Roberts et al. 1977), 2,3
dinor TXB2 and 11-dehydro TXB2, reflect biosynthesis of TX in vivo (Lawson
et al. 1985; Catella et al. 1986).
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Fig. 3 Spontaneous hydrolysis of thromboxane A2 (TXA2) to form TXB2 and subsequent
metabolism to 11-dehydro- and 2,3-dinor-TXB2

2.6.1
TXA2 Effects

TXA2 activates platelets, but also acts to amplify the response to more potent
agonists, such as thrombin (FitzGerald 1991). TXA2 is a potent vasoconstrictor
(Dorn et al. 1987) and causes proliferation (Pakala et al. 1997) and hypertrophy
(Ali et al. 1993) of VSMC in vitro.

2.6.2
TXA2 Receptor

The human TXA2 receptor (TP) was the first receptor of the prostaglandin/ei-
cosanoid pathway to be cloned (Hirata et al. 1991). The human TP is derived
from a single gene located on chromosome 19 that spans 15 kb and has 3 exons
divided by 2 introns (Nusing et al. 1993). Splice variants occur of the human,
but not the mouse, TP that differ particularly in their cytoplasmic tails and
thus their subsequent G protein signalling specificities. TPα is probably the sole
isoform expressed as a protein in platelets (Habib et al. 1999). TPβ, originally
cloned from ECs, appears to limit angiogenesis in part by disrupting the
actions of vascular endothelial growth factor (VEGF) (Ashton and Ware 2004).
Additional to its natural ligands, TXA2 and PGH2, the TP can be ligated and
activated by infusion of the isoprostanes, iPF2α-III and iPE2-III in vivo (Audoly
et al. 2000). It is unknown whether sufficient endogenous concentrations of
these iPs, or indeedother lipidperoxidationproducts (Li et al 2006), accumulate
in settings of disease to activate the TP or other eicosanoid receptors (Kunapuli
et al. 1997). The TP isoforms can heterodimerise in vitro, increasing their
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affinity for activation by iPF2α-III. Heterodimerisation with the IP converts
classical Gq-dependent signalling to a preference for Gs. The TP can also signal
via G11, G12, G13 and the G protein/tissue transglutaminase, Gh (Warumiya
et al. 1999; Zhang et al. 2003).

TP mRNA is expressed in tissues rich in vasculature, such as the lung, kidney
and heart, as well as in thymus and spleen and in spinal chord. Immature
thymocytes express the TP at a density as high as that in platelets (Namba
et al. 1992). TP activation modulates acquired immunity in vivo by negatively
regulatingdendritic cell–Tcell interactions (Kabashimaet al. 2003).Anaturally
occurring mutation in the first intracellular loop of the TP is associated with
a mild bleeding disorder and platelet resistance to TP agonists (Hirata et al.
1996), while a polymorphism in the TP has been linked to bronchodilator
resistance in asthma (Unoki et al. 2000).

2.6.3
Studies in Transgenic Mice

Only the TPα isoform of the TP is expressed in mice. TP knockout mice
exhibit a mild bleeding tendency and are resistant to platelet aggregation by
TP agonists (Thomas et al. 1998). Similarly, deletion of TX synthase results in
a mild bleeding disorder and resistance to AA-induced sudden death (Yu et al.
2004). TP antagonism or deletion decreases the vascular proliferative response
tocatheter-induced injury in themouse,whiledirectedvascularoverexpression
of TPβ augments the response to injury (Cheng et al. 2002). Overexpression of
TPβ also results in a syndrome reminiscent of intrauterine growth retardation
(IUGR), probably secondary to placental ischaemia (Rocca et al. 2000), and
biosynthesis of TXA2 is markedly elevated in patients with severe pregnancy-
induced hypertension and with IUGR (Fitzgerald et al. 1990). TP antagonism
or deletion retards atherogenesis in murine models of atherosclerosis (Cayatte
et al. 2000; Egan et al. 2005). Finally, in addition to its effects on dendritic cell–T
lymphocyte interactions, deletion of the TP modulates the immune-mediated
inflammatory response to tissue transplantation (Thomas et al. 2003).

2.6.4
Pharmacologic Agents that Act at the TP

TP antagonists were developed by several companies and shown to be well
tolerated with a modest effect on cutaneous bleeding time and inhibition of
TP-dependent platelet aggregation ex vivo. Unfortunately, their introduction
into clinical trials coincided with the emergence of evidence for the efficacy of
low-dose aspirin in the secondary prevention of heart attack and stroke. Thus,
most programmes were abandoned for economic reasons—“a more expensive
aspirin”—particularly when two clinical trials failed to demonstrate superior-
ityofTPantagonistsover aspirin inpreventionofdelayedcardiovascular events
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or radiological evidence of restenosis in patients who underwent angioplasty.
However, the emergence of information suggesting that lipid peroxidation
products may activate TPs and that suppression of PGI2 may have adverse
cardiovascular consequences in vivo has renewed interest in this therapeutic
approach (Pratico et al. 2000a; Dogne et al. 2004; Morrow 2006). Thus, new
programmes of development are being considered where oxidant stress and
COX activation coincide, such as in the treatment of atherosclerosis and trans-
plant rejection, and in settings where the depression of PGI2 by even low doses
of aspirin (Clarke et al. 1991) may be undesirable. This would include the use
of antagonists as adjunctive cardioprotective therapy with selective inhibitors
of COX-2 or where pharmacodynamic interactions might preclude aspirin use
for cardioprotection, such as during chronic therapy with ibuprofen-like drugs
(Catella-Lawson et al. 2001). Molecules which share TP antagonism with other
properties, such as inhibition of TX synthase or antagonism of DP2, are also
under consideration (Ishizuka et al. 2003, 2004; Hanson et al. 2005).

2.7
Other Prominent Eicosanoids

2.7.1
PGD2

A major prostaglandin product of mast cells (Roberts et al. 1980), PGD2 is
released upon their activation due to allergic and other stimuli (Sladek et al.
1991). PGD2 is also a COX product in platelets, albeit a minor one. However,
albuminpossessesaPGDisomeraseactivityandcanenhancePGDformation in
platelets treated with TX synthase inhibitors (Patscheke 1985). PGD2 formation
is increased (along with other PGs) in platelets of TX synthase-deleted mice
(Yu et al. 2004). PGD2 acts on the DP1 via Gs to elevate platelet cAMP (Wright
et al. 1998). Expression of the DP2 is evident in eosinophils, basophils and T
lymphocytes, where its ligation results in an elevation in intracellular calcium
(Nagata and Hirai 2003). However, it is less potent than PGI2 and PGE2 as an
inhibitorofplatelet activation (Moncadaet al. 1977).Nonetheless, the relevance
of PGD2 to cardiovascular biology in vivo is largely unknown. The emergence
of selective agonists and antagonists for DP1 and DP2 and the availability of
mice lacking these receptors promise to clarify this situation.

2.7.2
PGE2

PGE2 mediates pain and inflammation as well as the febrile response (Hata
and Breyer 2004). Along with PGI2, it induces diuresis and natriuresis (Fleming
et al. 1998). PGE2 is thepredominantCOXproductofmicrovascular endothelial
cells in vitro (Gerritsen 1987) and like PGI2, is a dominantly product of COX-2
under physiological conditions in vivo (Murphey et al. 2004).



Eicosanoids and the Vascular Endothelium 201

PGE2 activates four receptor subtypes; EP1 and EP3 are coupled via Gq
to elevation of intracellular calcium while EP2 and EP4 signal predominantly
via Gs. Activation of these receptors by varied concentrations of PGE2 may ex-
ert contrasting biological effects—vasodilatation via EP2 and vasoconstriction
via EP1. Although much information has been derived from mice lacking these
receptors (Narumiya and FitzGerald 2001), the phenotypic response to gene
deletioncanbequite strikingly conditionedbygeneticbackground(Austinand
FitzGerald 1999). PGE2 may also activate other prostanoid receptors. Thus, low
concentrations of PGE2 activate platelets via EP3 and perhaps EP1, while higher
concentrations inhibit platelet aggregation by ligating the IP (Fabre et al. 2001).
Activation of EP3 receptors causes contraction of intestinal smooth muscle, in-
hibition of gastric acid secretion, increased gastric mucus secretion, inhibition
of lipolysis, inhibition of autonomic neurotransmitter release and stimulation
of contraction of the pregnant uterus (Narumiya and FitzGerald 2001). Both
EP1 and EP3 mediate the febrile response to administered lipopolysaccharide
and turpentine in mice, but do not contribute to the circadian variation in
body temperature (Oka et al. 2003), despite recent evidence that PGE2 may
contribute to regulation of the molecular clock (Tsuchiya et al. 2005). Both EP1
and EP3 receptors mediate vasoconstriction (Jadhav et al. 2004) and recently
the EP3 gene has been associated with a severe phenotype (i.e. progression
to surgery) of peripheral vascular disease, prompting development of an EP3
antagonist for this disease. Deletion of the EP4 delays closure of the ductus ar-
teriosus (Nguyen et al. 1997). Activation of the EP4 has been implicated in both
atherosclerotic plaque progression (Cipollone et al. 2004) and destabilisation
(Takayama et al. 2002).

2.7.3
PGF2α

Activation of vascular FP by PGF2α elevates blood pressure and induces VSMC
proliferation (Fujino et al. 2002). However, although FP-deficient mice have
nicelydelineated the roleof this receptor inparturition (NarumiyaandFitzGer-
ald 2001), little information is available as to its importance in vascular biology.
Variants of the FP have been described (Vielhauer et al. 2004).

3
COX Inhibitors

non-steroidal anti-inflammatory drugs (NSAIDs) and aspirin target the COX
enzymes for inhibition. The pharmacology of these drugs has been reviewed
elsewhere (Marnett et al. 1999; Patrono et al. 2004; Burke et al. 2005). Briefly,
NSAIDs are traditional competitive active site inhibitors that have a reversible
inhibitory effect on the enzymes, while aspirin irreversibly targets Ser529 close
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to the active site of the enzyme, obstructing access of the substrate, AA (Funk
et al. 1991). Aspirin reduces the secondary incidence of myocardial infarction
and stroke in men and women via inhibition of platelet COX-1-derived TXA2,
predominantly acting in the presystemic circulation (Pedersen and FitzGerald
1984). Low doses of aspirin used for cardioprotection (<100 mg/day) preferen-
tially inhibit COX-1, while higher, anti-inflammatory doses inhibit both COX
enzymes. A direct randomised comparison of the cardioprotective effects of
aspirin has not been performed, although indirect comparisons suggest an
inverse dose-related cardioprotective effect (Antithrombotic Trialists’ Collab-
oration 2002) and a direct, dose-related increase in adverse gastrointestinal
effects (Patrono et al. 2004). Aspirin is also effective in the primary preven-
tion of myocardial infarction in men and of stroke in women (Ridker et al.
2005; Physicians’ Health Study 1989). This apparent gender-specific distinc-
tion may merely reflect the relative incidence of myocardial infarction and
stroke amongst the sexes, with the impact of aspirin being detectable—when
the absolute incidence of any events is so low—only in the more prevalent
condition. Aspirin does not appear to differentially inhibit platelet function
in men vs women (Becker DM et al. 2006). In both cases, the small benefit is
offset by a roughly twofold increase in the incidence of serious gastrointestinal
bleeds (Patrono et al. 2004).

Given that TXA2 is only one of several platelet agonists, it is unsurprising
that some patients taking aspirin suffer myocardial infarction or stroke. Such
treatment failures have commonly been grouped in a syndrome of “aspirin
resistance” (Patrignani 2003; Mason et al. 2004). However, at present there is
little evidence that integrates some stable biochemical, genetic or functional
measurement of “resistance” to clinical outcome (Hennekens et al. 2004).

NSAIDs are used widely for relief of pain and inflammation, but gastroin-
testinal complications have limited their efficacy. These have been ascribed
to inhibition of COX-1-derived PGE2 and PGI2, which afford cytoprotection
in gastroduodenal endothelium, and predisposition to bleeding consequent
to inhibition of platelet COX-1-derived TXA2. The PGs which predominantly
mediate pain and inflammation (PGE2 and PGI2) are assumed to derive pre-
dominantly from COX-2, providing the rationale for development of specific
inhibitors of COX-2, such as the coxibs (FitzGerald and Patrono 2001).

While these drugs have never been tested to determine if they afford greater
(or less) efficacy than traditional (t)NSAIDs, two coxibs, rofecoxib and lu-
miracoxib, have been shown to result in a reduced incidence of serious adverse
gastrointestinal effects at doses which are equi-efficacious with tNSAIDs (Bom-
bardier et al. 2000; Schnitzer et al. 2004). However, five placebo-controlled trials
with three members of this class—valdecoxib, celecoxib and rofecoxib—have
demonstrated that they elevate the incidence of heart attack and stroke (Wong
et al. 2005). This appears to result from depression of COX-2-derived PGI2
without a concomitant effect on platelet TXA2, as mature platelets do not
contain COX-2 (McAdam et al. 1999; FitzGerald 2004). Selectivity for COX-2
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is relative rather than absolute, and some tNSAIDs, such as diclofenac and
meloxicam, exhibit selectivity (at least in vitro) similar to that of celecoxib, the
least selective of the purpose-designed COX-2 inhibitors. Placebo-controlled
trials have not been performed to assess the effects of such tNSAIDs on the
cardiovascular system.

A further complication with tNSAID therapy may result from drug–drug
interactions. Prior occupancy of the active site of platelet COX-1 by ibuprofen
prevents access of aspirin to afford the sustained inhibition of platelet TXA2
thought to be intrinsic to its property of cardioprotection (Catella-Lawson
et al. 2001). Some clinical evidence consistent with this interaction—which
probably involves similar drugs, such as flurbiprofen and indomethacin—has
emerged (Schnitzer et al. 2004). Epidemiological analysis of the impact of
ibuprofen alone suggests that it neither increases nor decreases the risk of
myocardial infarction (Garcia-Rodriguez et al. 2004). Naproxen, by contrast,
appears to afford some protection, albeit with a less pronounced signal than
for aspirin. This may reflect the variable pharmacokinetics of naproxen, which
in some, but not all, individuals sustains inhibition of TXA2 formation to re-
sult in platelet inhibition throughout the dosing interval (Capone et al. 2004).
Recently, evidence has emerged to suggest a similar pharmacodynamic in-
teraction between naproxen and low-dose aspirin as previously observed for
ibuprofen (Capone et al. 2005). Given the potential protective effect in some,
but not all, patients treated chronically with naproxen, the implications of such
an interaction would be less pronounced than for ibuprofen. Both ibuprofen
and naproxen preferentially inhibit COX-1 in vitro (FitzGerald and Patrono
2001), consistent with their failure to exhibit a cardiovascular hazard in epi-
demiological studies when they are used without the complicating feature of
co-therapy with aspirin.

Currently, rofecoxib and valdecoxib have been withdrawn from the mar-
ket and Celebrex is subject to substantial restriction in the United States. The
recognition of hazard for these drugs seems rational, given its biological plau-
sibility (FitzGerald 2003) and evidence of cardiovascular risk from structurally
distinct COX-2 inhibitors from placebo-controlled, randomised clinical trials.
Indeed, there is a remarkable congruence between the mechanistic data de-
rived from studies in humans and mice and the nature of the information
that has emerged from studies in large populations—both through pharmaco-
epidemiology and randomised clinical trials (Grosser et al. 2006).
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Abstract The vascular endothelium synthesises the vasodilator and anti-aggregatory media-
tor nitric oxide (NO) from l-arginine. This action is catalysed by the action of NO synthases,
of which two forms are present in the endothelium. Endothelial (e)NOS is highly regulated,
constitutively active and generates NO in response to shear stress and other physiological
stimuli. Inducible (i)NOS is expressed in response to immunological stimuli, is transcrip-
tionally regulated and, once activated, generates large amounts of NO that contribute to
pathological conditions. The physiological actions of NO include the regulation of vascu-
lar tone and blood pressure, prevention of platelet aggregation and inhibition of vascular
smooth muscle proliferation. Many of these actions are a result of the activation by NO of the
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soluble guanylate cyclase and consequent generation of cyclic guanosine monophosphate
(cGMP). An additional target of NO is the cytochrome c oxidase, the terminal enzyme in
the electron transport chain, which is inhibited by NO in a manner that is reversible and
competitive with oxygen. The consequent reduction of cytochrome c oxidase leads to the
release of superoxide anion. This may be an NO-regulated cell signalling system which,
under certain circumstances, may lead to the formation of the powerful oxidant species,
peroxynitrite, that is associated with a variety of vascular diseases.

Keywords Nitric oxide · eNOS · Guanylate cyclase · Cytochrome c oxidase · Mitochondria ·
Free radicals

1
Introduction

The release of nitric oxide (NO) by the vascular endothelium was first demon-
strated in 1987 (Palmer et al. 1987). Approximately 1 year later it was discov-
ered that endothelial NO was synthesised from the semi-essential amino acid
l-arginine (Palmer et al. 1988). These findings established the identity of the
so-called endothelium-derived relaxing factor (EDRF) discovered by Furchgott
and Zawadzki some 7–8 years earlier (Furchgott and Zawadzki 1980). Further-
more, they threw light on a disparate series of observations, made over more
than a decade, suggesting the existence of a widespread metabolic pathway
based on the conversion of l-arginine in the central nervous system and in
macrophages, and revealed the function of the soluble guanylate cyclase as an
intracellular receptor of the newly discovered endogenous ligand (Moncada
1989; Moncada et al. 1991).

Over the following 2 or 3 years the existence of the so-called l-arginine:NO
pathway (Moncada et al. 1989) was unequivocally established, playing myriad
physiological and pathophysiological roles in the cardiovascular system, the
central and peripheral nervous systems and in cellular defence. One of the
most extensively investigated areas is that of the role of NO in the vasculature.
Nitric oxide generated by the vascular endothelium is a major regulator of
vascular homeostasis, and changes in its bioavailability are now known to
play a role in the development of a number of clinical conditions in which
the function of the vascular system is impaired. Since more than 9,000 papers
have been written on NO and the vascular endothelium, it will be impossible
to do justice, within the constraints of this book, to all the authors that have
made significant contributions to the subject. This chapter will focus on what
we consider to be some still unresolved issues. For other aspects we refer the
reader to a number of excellent reviews of NO research that have appeared in
recent years (Alderton et al. 2001; Von der Leyen and Dzau 2001; Fleming and
Busse 2003; Sessa 2004).
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2
Nitric Oxide Synthase

Endothelial nitric oxide synthase (eNOS) is one of three isoforms of NO syn-
thase (NOS, EC 1.14.13.39). The isoforms were named after the tissue in
which they were first identified, i.e. endothelial, neuronal (nNOS) and in-
ducible (iNOS) for the macrophage enzyme which is induced by activation
with lipopolysaccharide plus interferon-γ. The classification of type III, I and
II is also used for the three isoforms, respectively. In the last 15 years, important
information has been generated about the functioning of NOS. The picture that
emerges is that of a highly regulated enzyme, the activity of which can be con-
trolled at different points, including gene expression, phosphorylation at var-
ious sites and regulated interactions with other proteins (Alderton et al. 2001;
Sessa 2004). The amino acid sequence of the enzyme, as well as its association
with other proteins, has been largely elucidated (Janssens et al. 1992; Marsden
et al. 1992; Nakane et al. 1993; Geller et al. 1993). The available crystal structure
of the oxygen domains of the inducible (Crane et al. 1997; Cubberley et al.
1997) and the endothelial enzymes (Raman et al. 1998; Fischmann et al. 1999)
has yielded information about the binding site of the substrate l-arginine, as
well as the function of important co-factors such as tetrahydrobiopterin (BH4;
Wei et al. 2002; Werner et al. 2003). Furthermore, increasing knowledge about
the molecular action of inhibitors of the enzyme is leading to the “design” of
selective compounds for the different isoforms, with characteristics in terms
of pharmacokinetics and pharmacodynamics increasingly tailored for their
intended use (Hobbs et al. 1999; Mete and Connolly 2003; Alderton et al. 2005).
Interestingly, the precise mechanism of the enzymic activity and the nature of
the product(s) it generates instead of NO, in addition to NO, or prior to NO
has been a matter of controversy. For example, nitroxyl anion (NO−) has been
proposed to be a product of NOS under certain conditions, particularly when
the substrate or co-factor concentrations are low (Schmidt et al. 1996; Adak
et al. 2000). The elucidation of the exact product has important implications
for the understanding of the physiological actions of NO as well as its potential
for initiating pathophysiology, as will be discussed later.

eNOS, which is constitutively active in the endothelial cell, was originally
identified in 1989 (Palmer and Moncada 1989) and cloned in 1992 (Janssens
et al. 1992; Marsden et al. 1992). Human eNOS is encoded by a gene located
on chromosome 7, and comprises 1,294 amino acids with a molecular weight
of 135 kDa (Lamas et al. 1992; Sessa et al. 1992; Marsden et al. 1993). iNOS,
which is induced in the endothelial and other cells following immunological
activation, is encoded by a gene located on chromosome 17, comprises 1,153
amino acids and has a molecular weight of 131 kDa (Geller et al. 1993; Sherman
et al. 1993; Charles et al. 1993).

The C-terminal portion of the NOS protein closely resembles cytochrome P-
450 reductase (Bredt et al. 1991), possesses many of the same co-factor binding
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sites, and basically performs the same functions. Consequently, this portion is
often referred to as the reductase domain (see Fig. 1). At the extreme C termi-
nus is an NADPH (nicotinamide adenine dinucleotide phosphate, reduced)-
binding region, which is conserved in all NOS and aligns perfectly with that of
cytochrome P-450 reductase. The NADPH binding site is followed, in turn, by
flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) consen-
sus sequences (Djordjevic et al. 1995).Unlike cytochromeP-450 reductase,NOS
is a self-sufficient enzyme in that the oxygenation of its substrate, l-arginine,
occurs at a haem-site in the N-terminal portion, termed the oxygenase domain,
of the protein. Stoichiometric amounts of haem are present in NOS and are
required for catalytic activity (White and Marletta 1992). Close to the haem
(catalytic) site is an l-arginine (substrate) binding site. Separation of the re-
ductase and oxygenase domains via limited proteolysis has enabled l-arginine
and BH4 binding sites to be localised to the oxygenase domain. Bridging the
reductase and oxygenase domains is a calmodulin-binding site, which acts as
a switch to regulate electron flow between the two regions (Abu Soud and
Stuehr 1993).

The co-factor requirementsofNOSarenotonly important inaidingcatalytic
activity, they are also obligatory in permitting the dimerisation of monomers
to form active proteins. The active, dimeric proteins possess all the co-factors
described above, and dimerisation of the monomeric proteins is promoted by
the presence of haem, BH4 and l-arginine (Baek et al. 1993). Specific to eNOS
is a consensus sequence for myristoylation/palmitoylation at its N terminus
which contributes to its particulate nature, unlike the cytosolic location of
nNOS and iNOS.

The Ca2+/calmodulin dependence of NOS was established early on (Knowles
et al. 1989; Bredt and Snyder 1990). Calmodulin is a ubiquitous small Ca2+-
binding protein that binds to eNOS—and many other target proteins—and
thus transduces the Ca2+ signal into a variety of actions (Aoyagi et al. 2003).
Ca2+/calmodulin dependence was the basis for an early classification of eNOS
and nNOS (Ca2+-dependent) and iNOS (Ca2+-independent). Now it is clear
that all three isoforms require Ca2+, with eNOS and nNOS having a much
greater requirement due to the presence in their calmodulin/FMN-binding

Fig. 1 Diagrammatic representation of eNOS. The oxidase and reductase domains are linked
by a calmodulin-binding domain. Myristoylation (Myr) and palmitoylation (Palm) sites are
shown, as well as autoinhibitory control elements (ACE)-1 and -2. Thr495 and Ser1177 , whose
dephosphorylation and phosphorylation are likely to be the most significant regulatory
steps in eNOS activation, are also indicated
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subdomain of an autoinhibitory control element (ACE) of approximately 50
amino acids which hinders the binding of calmodulin to its site (Salerno et al.
1997). This destabilises calmodulin binding at low intracellular Ca2+ [Ca2+]i,
thus increasing the requirement of the enzyme for Ca2+ for activation (Nishida
and Ortiz de Montellano 1999; Daff et al. 1999). A second autoinhibitory control
element (ACE-2) has been demonstrated at the C-terminus of the so-called
Ca2+-dependent isoforms; this has been claimed to act as a barrier to the
activation of eNOS by calmodulin binding and to be functionally disabled
by phosphorylation of Ser1179 (bovine; Ser1177, human) on enzyme activation
(Lane and Gross 2002).

2.1
Localisation of eNOS

In the early 1990s it was established that eNOS was mainly localised in the lumi-
nal membrane fraction of endothelial cells (Förstermann et al. 1991; Mitchell
et al. 1991; Pollock et al. 1991). More specifically, the localisation is in the cave-
olae, which are specialised plasmalemmal signal-transducing domains (Shaul
et al. 1996; Garcia-Cardena et al. 1996). Furthermore, eNOS was shown to in-
teract with caveolin-1 and caveolin-3 (coat proteins of caveolae) via a caveolin-
binding motif in the eNOS (Garcia-Cardena et al. 1996), and this interaction
has been reported to inhibit the activity of the enzyme and the generation of
NO (Bucci et al. 2000).

In addition, there is evidence that eNOS may also be sited in the Golgi ap-
paratus (Garcia-Cardena et al. 1996; Liu et al. 1997). Originally, the localisation
to the Golgi was assumed to be an inactive reservoir of immature eNOS on
its way to the plasmalemma or simply eNOS bound to internalised caveolae
(Govers et al. 2002; Jobin et al. 2003). More recently, however, specific mutagen-
esis studies targeting eNOS to different cellular locations have established that
eNOS located in the plasma membrane differs slightly from that in the Golgi,
for example in sensitivity to Ca2+ activation. The enzymes from both locations
are active and highly regulated (Fulton et al. 2004). The functional significance
of these observations, however, remains to be established, since it has been
shown that disruption of the Golgi apparatus does not affect NO-dependent
relaxation in some coronary arteries (Bauersachs et al. 1997).

The eNOS in its membrane localisation has been shown to be both perma-
nently myristoylated and reversibly palmitoylated (Pollock et al. 1992; Bus-
coni and Michel 1993; Liu et al. 1995). Site-directed mutagenesis studies have
demonstrated that myristoylation occurs at Gly2 and palmitoylation at Cys15

and Cys26 (Boutin 1997; Dunphy and Linder 1998). Both myristoylation and
palmitoylation are required for localisation of eNOS to the membrane (Liu et al.
1995; Robinson and Michel 1995). It is now known that myristoylation is re-
quired for targeting the eNOS to the membrane while palmitoylation stabilises
membrane association and targets the enzyme to the caveolae (Garcia-Cardena
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et al. 1996; Sowa et al. 1999; Prabhakar et al. 2000). Myristoylation alone results
in a tenfold enhancement in targeting of eNOS to the caveolae, and this can be
increased a further tenfold by palmitoylation of the enzyme (Shaul et al. 1996).

The process of palmitoylation/depalmitoylation appears to be necessary not
only for the cellular location of eNOS but also for its activity. Indeed, activation
of the enzyme seems to lead to its depalmitoylation and its translocation from
the caveolae to the cytosol (Michel et al. 1993; Robinson et al. 1995). Once the
agonist effect is terminated, the eNOS is re-palmitoylated and relocated to the
caveolae (Feron et al. 1998). This dynamic subcellular localisation appears to
involve the enzyme acyl-protein thioesterase 1 (APT 1), which regulates eNOS
depalmitoylation. Interestingly Ca2+/calmodulin activation of eNOS renders
the enzyme more susceptible to APT 1-catalysed depalmitoylation (Yeh et al.
1999). The precise function of eNOS trafficking, however, remains to be fully
clarified, since at present it appears to be more involved in terminating rather
than initiating the release of NO (Nedvetsky et al. 2002).

2.2
Up-regulation of eNOS

The eNOS gene has been extensively studied and shown to contain a promoter
region with multiple regulatory DNA sequences including shear stress re-
sponse elements (Marsden et al. 1993; Zhang et al. 1995; Karantzoulis-Fegaras
et al. 1999). Shear stress induces eNOS messenger RNA (mRNA) expression
via a transcriptional pathway (Uematsu et al. 1995), and the detailed mecha-
nism of this action has been described using mutagenesis studies (Ziegler et al.
1998; Silacci et al. 2000; Wedgwood et al. 2003; Davis et al. 2004). Other stimuli
that increase eNOS mRNA include chronic exercise (Kojda et al. 2001), vas-
cular endothelial growth factor (VEGF; Bouloumie et al. 1999), transforming
growth factor β (Inoue et al. 1995; Saura et al. 2002), lysophosphatidyl choline
(Zembowicz et al. 1995), statins (Hernandez-Perera et al. 1998) and oestrogens.

Oestrogens were originally shown to increase eNOS mRNA and activate
the enzyme (Weiner et al. 1994). More recently it was demonstrated that
ovariectomy in rats results in a decrease in eNOS protein and activity and
a simultaneous increase in the abundance of caveolin (Pelligrino et al. 2000).
A mechanistic link was thus established between these oestrogen-associated
divergent changes in the abundance of caveolin-1 and eNOS protein and eNOS
functional activity in cerebral arterioles (Xu et al. 2001). Much of the existing
evidence indicates that oestrogens activate eNOS via a Ca2+-dependent mech-
anism (Caulin-Glaser et al. 1997; Chambliss and Shaul 2002). However, other
Ca2+-independent mechanisms have also been claimed, including the promo-
tion by oestrogens of the association between eNOS and heat shock protein 90
(hsp90; Russell et al. 2000) or the reduction by oestrogens of the generation
of superoxide anion (O−

2), thus increasing the availability of NO (Barbacanne
et al. 1999).
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Free radicals and hydrogen peroxide (H2O2) have also been claimed to be
involved in the transcriptional regulation of eNOS by cyclosporin A (Lopez-
Ongil et al. 1998; Navarro-Antolin et al. 2000). In separate studies, H2O2 has
been shown to activate eNOS transcription (Cai et al. 2001; Cieslik et al. 2001).
Studies on lysophosphatidyl choline have suggested that eNOS is up-regulated
by an increased binding of the transcription factor Sp1 to its promoter region
via the action of a protein phosphatase 2A (pp2A; Cieslik et al. 2001). Whether
this is a mechanism involved in all forms of eNOS up-regulation remains to be
investigated.

Interestingly, immunological stimuli such as tumour necrosis factor 1α and
lipopolysaccharide decrease eNOS mRNA levels and stability (MacNaul and
Hutchinson1993;Rosenkranz-Weiss et al. 1994;Luetal. 1996).Theeffectsofox-
idised low-density lipoprotein (oxy-LDL)andhypoxiaoneNOSmRNAstability
remain controversial (Arnet et al. 1996; Govers and Rabelink 2001; Tai et al.
2004); however, it is of interest that statins have been shown to increase eNOS
mRNA stability and to prevent the down-regulation of eNOS mRNA induced
by oxy-LDL (Hernandez-Perera et al. 1998) and hypoxia (Laufs et al. 1997).

2.3
Activation of eNOS

In resting endothelial cells the scaffolding proteins caveolin-1 and caveolin-3
both bind to and inhibit eNOS (Bucci et al. 2000). Studies in caveolin-1 knock-
out animals showed a dramatic increase in plasma NO concentration, cell
proliferation and enhanced vasodilator responses, indicating that the absence
of caveolin-1 leads to increased eNOS activity (Razani et al. 2001; Zhao et al.
2002). Inaddition, eNOScan interactwithcalmodulin (Förstermannetal. 1991)
and hsp90 (Garcia-Cardena et al. 1998), both of which stimulate NOS activity.
Agonists that promote the production of NO, such as bradykinin, histamine
and VEGF, are associated with the recruitment of hsp90 to eNOS. hsp90 has
been shown to bind to eNOS in a Ca2+-independent manner (Garcia-Cardena
et al. 1998), to facilitate its dissociation from caveolin and to form a complex
with eNOS and calmodulin in endothelial cells, increasing the activity of the
enzyme (Gratton et al. 2000).

It was originally believed that the actions of agonists such as bradykinin and
acetylcholine were all dependent on increases in [Ca2+]i. Indeed, chelation of
extracellular Ca2+ or the presence of an antagonist of calmodulin abolishes
NO production in response to these agonists (Luckhoff et al. 1988; Busse and
Mulsch 1990). The mechanism of their activation has been largely elucidated,
since it is now known that they activate phospholipase C, leading to increases
in cytoplasmic Ca2+ and diacylglycerol. The increases in [Ca2+]i cause dis-
placement of the eNOS ACE-1, thus allowing calmodulin access to its binding
site on the enzyme. This results in an NADPH-dependent flow of electrons
from the reductase domain of one monomer of eNOS to the haem iron in the
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oxygenase domain of the other monomer (Siddhanta et al. 1996), initiating the
synthesis of NO.

Shear stress generated by blood flowing over the endothelial cell surface
is likely to be the most important activator of eNOS. Activation of eNOS by
shear stress was originally termed “Ca2+-independent”; however it is now
clear that when shear stress is applied there is an initial transient increase in
[Ca2+]i (Hoyer et al. 1998). Furthermore, shear stress-induced activation of
eNOS can be abolished by chelation of intracellular Ca2+. Thus, it has been
proposed that eNOS activation by shear stress actually requires Ca2+, but that
phosphorylation of the enzyme at certain sites enables it to be activated at
resting Ca2+ levels (Dimmeler et al. 1999).

Fluid shear stress has been found to result in stimulation of the phos-
phatidylinositol 3-kinase (PI3K) pathway, leading to the activation of serine
kinase Akt 1 which phosphorylates eNOS on Ser1177 (Ayajiki et al. 1996; Go et al.
1998; Dimmeler et al. 1999; Fulton et al. 1999). These original findings led to
the uncovering of a series of steps of phosphorylation and dephosphorylation.
Phosphorylation of the Ser1177 is now thought to remove the steric hindrance
caused by ACE-2, resulting in an increase in electron flux through the reduc-
tase domain of the enzyme and enhanced NO production (McCabe et al. 2000;
Lane and Gross 2002; Sessa 2004). Other sites of eNOS can be phosphorylated
and contribute to the regulation of the function of the enzyme; these include
Ser116 and Ser617 (bovine; Bauer et al. 2003; Boo and Jo 2003). While the conse-
quences of phosphorylation of Ser116 remain unclear, that of Ser617 modulates
eNOS activity. However, Ser1177 appears to be the main regulatory site, since
its mutation prevents Akt-mediated phosphorylation and the release of NO
(Dimmeler et al. 1999; Fulton et al. 1999; Luo et al. 2000).

Other protein kinases can also phosphorylate eNOS at Ser1177, for exam-
ple, in endothelial cells transfected with dominant-negative Akt constructs,
shear stress-dependent NO production was found to be dependent on protein
kinase A (PKA; Boo et al. 2002). PKA also phosphorylates Ser635 which is
located in the ACE-1 region of eNOS, rendering it able to produce NO contin-
uously in the absence of any changes in Ca2+ (Boo et al. 2003). In addition,
the AMP-activated protein kinase (AMPK), which is activated by metabolic
stress, phosphorylates Ser1177 in the presence of Ca2+/calmodulin, while it
phosphorylates Thr495 in the absence of Ca2+/calmodulin (Chen et al. 1999).
Phosphorylation of Thr495 (human; Thr497, bovine) in the calmodulin-binding
domain de-activates eNOS by hindering the binding of calmodulin (Fleming
et al. 2001). In the presence of stimuli that elevate endothelial [Ca2+]i, Thr495 is
dephosphorylated, enabling calmodulin to bind to eNOS. Dephosphorylation
of Thr495 precedes the phosphorylation of Ser1177 prior to eNOS activation
(Fleming et al. 2001; Harris et al. 2001).

Studies of phosphatases have added significance to the idea that phospho-
rylation and dephosphorylation of Thr495 and Ser1177 are likely to be two of
the most significant regulatory steps in eNOS activation. Thus, pp1 dephos-
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phorylates Thr495, and inhibition of this phosphatase results in hyperphos-
phorylation of Thr495 and inhibition of eNOS activity (Fleming et al. 2001). On
the other hand, pp2A dephosphorylates Ser1177, and inhibitors of this enzyme,
such as okadaic acid, increase eNOS activity two- to fourfold (Fisslthaler et al.
2000; Michell et al. 2001).

It is therefore evident that Ca2+-dependent and phosphorylation-dependent
mechanisms of activating eNOS are interrelated. Furthermore, different pat-
ternsof activationmayoccur, dependingon the stimulus. Several agonists, such
as VEGF (Fulton et al. 1999), oestrogen (Simoncini et al. 2000) and bradykinin
(Harris et al. 2001), activate eNOS through a Ca2+/calmodulin-dependent
mechanism but, at the same time, calmodulin activates CaM kinase II, which
may phosphorylate eNOS on Ser1177. Furthermore, binding of these agonists
to their receptors can also result in activation of the PI3K/Akt pathway, with
consequent phosphorylation of Ser1177. Thus, both Ca2+-dependent and Ca2+-
independent activation of eNOS results in phosphorylation at this site.

Other proteins also play a role in the regulation of eNOS activity. These in-
clude the C-terminal hsp70-interacting protein (CHIP), which forms part of the
eNOS complex and appears to play a role in its intracellular localisation (Jiang
et al. 2003), and dynamin-2, a proteinwhose associationwith eNOS both affects
the localisation of the enzyme and increases its activity (Cao et al. 2003). Two
additional proteins, NOS-interacting protein (NOSIP; Dedio et al. 2001) and
NOS traffic inducer protein (NOSTRIN; Zimmermann et al. 2002) have been
suggested to play a role in eNOS activity and/or subcellular localisation, based
on studies in transfected cells. These remain to be confirmed, however, in en-
dothelial cell studies. Ithasalsobeenshownthat eNOSbindsdirectlywithporin
(a voltage-dependent anion/cation channel), and it has been suggested that this
interaction may be important for regulating eNOS activity (Sun and Liao 2002).

eNOS has also been reported to be associated in unstimulated endothelial
cells to G protein-coupled receptors of bradykinin, angiotensin II and endothe-
lin. Dissociation is reported to occur on cell stimulation (Marrero et al. 1999).
Furthermore, the soluble guanylate cyclase, despite its name, has been found
in caveolae in close association with eNOS (Zabel et al. 2002). The nature and
implications of this interaction, which are potentially many if confirmed, how-
ever, await clarification. One possibility is that this interaction is controlled
by the hsp90, which interacts with both enzymes to form a complex (Venema
et al. 2003).

2.4
Inducible Nitric Oxide Synthase

iNOS was originally identified in macrophages and recognised as part of the
cytostatic and cytotoxic mechanisms that operate in these cells (Hibbs et al.
1990). Unlike eNOS, iNOS is mostly transcriptionally regulated and is not
normally produced in most cells (Förstermann et al. 1994; Morris and Billiar
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1994). Although the rank order of intrinsic activity of the isomers of NOS
per unit time is nNOS>iNOS>eNOS (Santolini et al. 2001), iNOS generates
100- to 1,000-fold more NO than eNOS (Morris and Billiar 1994; Nathan and
Xie 1994) since, once it is expressed in response to immunological stimuli,
its activity persists for many hours. The murine macrophage iNOS gene was
originally cloned in 1992 (Xie et al. 1992) and this was shortly followed by the
cloning of the human iNOS in hepatocytes (Geller et al. 1993; Chartrain et al.
1994) and chondrocytes (Charles et al. 1993). While eNOS is more than 90%
conserved between species (Lamas et al. 1992; Nishida et al. 1992; Janssens
et al. 1992; Marsden et al. 1992), human and murine iNOS show only 80%
amino acid sequence identity (Geller et al. 1993). The human and murine
iNOS promoters have limited similarity and, while iNOS expression in murine
cells is readily observed, its induction in human monocytes and macrophages
requires stringent conditions (Albina 1995; Vouldoukis et al. 1995).

In the early 1990s the induction of iNOS was demonstrated in vascular
endothelial cells and in the smooth muscle layer of the vasculature (Radomski
et al. 1990a; Knowles et al. 1990; Durante et al. 1991), and this was shown to be
responsible for the hypotension of septic shock (Kilbourn et al. 1990). iNOS
is now known to be expressed in almost every cell type, and its induction is
inhibited by glucocorticoids (Radomski et al. 1990a; Knowles et al. 1990). These
drugs have been shown to act at multiple levels to regulate iNOS expression
and NO generation, including decreased gene transcription, decreased mRNA
stability, reduced translation of mRNA and increased degradation of iNOS
protein (Walker et al. 1997; Matsumura et al. 2001; Korhonen et al. 2002).
Atherosclerosis is associated with increases in iNOS expression, and this has
been shown in humans to co-exist with a decrease in eNOS mRNA expression
in the endothelial cells overlying advanced atheromatous plaques (Wilcox et al.
1997; Fukuchi and Giaid 1999). This pattern of increased iNOS accompanied
by reduced eNOS has been reported in response to ischaemia (Azadzoi et al.
2004), hypercholesterolaemia (Kim et al. 2002) and reactive oxygen species
(ROS; Aliev et al. 1998).

3
Actions of Nitric Oxide in the Vascular System

3.1
Nitric Oxide and Vascular Tone

By far the most immediately demonstrable action of NO generated by the
vascular endothelium is the provision of a significant vasodilator tone in the
cardiovascular system, the absence of which leads to immediate vasoconstric-
tion of all vascular beds or to an increase in blood pressure in all species so
far tested. This mechanism was initially discovered and demonstrated using
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pharmacological inhibitors in animals (Rees et al. 1989) and humans (Val-
lance et al. 1989). Later experiments in eNOS−/− mice demonstrated that these
animals show a hypertensive phenotype (Huang et al. 1995). More recently,
the endothelial cell-specific overexpression of eNOS has been shown to reduce
blood pressure, further demonstrating the essential role of eNOS in blood
pressure regulation (Ohashi et al. 1998).

Although the increase in blood pressure, and especially the vasoconstriction
invascularbeds, that followspharmacological inhibitionofNOisdependenton
the withdrawal of the NO dilator tone, it has been argued that the hypertension
of eNOS−/− mice—which has been demonstrated in all reported experiments
in these animals (Stauss et al. 1999, 2000; Wagner et al. 2000b)—is probably
not due exclusively to lack of NO dilator tone. Other mechanisms have been
proposed related to actions of eNOS in the kidney and in the heart (Ortiz and
Garvin 2003). However, to date, the effects of eNOS on, for example, renin
release in the kidney (Kurtz and Wagner 1998; Shesely et al. 1996; Beierwaltes
et al. 2002) remain controversial and the clear effects that pharmacological
inhibition of NO has on medullary blood flow and sodium excretion in wild-
type animals (Mattson et al. 1997; Ortiz et al. 2001; Pallone and Mattson 2002)
are less clear when investigated in eNOS−/− mice (Ortiz and Garvin 2003).
There may be several reasons for these differences; however, a significant one
is that in both the kidney and the heart other NOS isoforms, such as nNOS
(Mattson and Bellehumeur 1996; Kurihara et al. 1998) and iNOS (Ahn et al.
1994), are present and generate NO that compensates for the lack of that
normally produced by eNOS.

In the heart, eNOS is expressed in the vascular endothelium and also in the
cardiomyocytes (for review see Massion et al. 2003) and the latter is likely to
play a role in cardiac contractility (Paulus and Shah 1999). Indeed, there is
evidence that stretch induces phosphorylation of Akt and eNOS, leading to the
generation of NO associated with an increase in Ca2+-spark frequency (Petroff
et al. 2001). nNOS has also been reported to be present in the mitochondria and
sarcoplasmic reticulum of cardiomyocytes (Kanai et al. 2001; Xu et al. 1999),
and the interplay between the NO generated by the two isoforms in myocardial
physiology remains unknown.

An additional complication in the interpretation of results in eNOS knock-
out animals relates to a potential phenotypic adaptation or adaptations which
most probably occur during different phases of development. These adapta-
tions may arise in the working of the heart and the kidney, and in other crucial
functions such as the modulation of cardiac vagal control and of responses to
sympathetic stimulation (Chowdhary and Townend 1999) and β-receptor acti-
vation (Balligand et al. 1993; Barouch et al. 2002). All of these have themselves
been claimed to be modulated by NO derived either from eNOS or from other
isoforms (Massion et al. 2003).

In eNOS−/− mice, while the acetylcholine response in large conductance
vessels is completely abolished (Rees et al. 2000; Brandes et al. 2000) and can
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be restored by gene transfer of eNOS in vitro (Scotland et al. 2002), the va-
sodilator response is maintained in the mesenteric (Rees et al. 2000) and other
resistance vascular beds (Sun et al. 1999; Ding et al. 2000; Scotland et al. 2001;
Huang et al. 2001). This “remaining” vasodilator response has been extensively
investigated and variously attributed to, among other things, prostaglandins
(Sun et al. 1999) or the elusive endothelium-derived hyperpolarising factor
(Huang et al. 2001). This is of particular interest since a gender difference
has been suggested. Agonist-induced NO-dependent dilations are greater in
females than in males (Huang et al. 1998), and the degree of hypertension is
greater in male than female eNOS−/− mice (Rees et al. 2000). Recent studies
on a double knock-out mouse (eNOS−/− and COX-1−/−), unable to generate
either NO or prostacyclin, show that in these animals there is indeed a com-
pensatory vasodilator mechanism, especially in female animals (Scotland et al.
2005), which still requires identification (Cohen 2005). It remains to be clarified
whether these differences between males and females are also true in humans,
in which case they may help to explain, at least in part, the reduced incidence
of cardiovascular disease in pre-menopausal women.

In summary, although multiple mechanisms have been ascribed to eNOS-
derived NO in the regulation of blood pressure and blood flow, and several
mediators have been suggested to play compensatory roles in its absence,
some important facts remain; first, the increase in blood pressure following
pharmacological inhibition of eNOS is immediate and resembles the response
of isolated strips of endothelium-containing vascular tissues in vitro, and
second, there do not seem to be compensatory mechanisms that are able
to down-regulate the blood pressure of animals treated long-term with NOS
inhibitors (Blot et al. 1994; Navarro et al. 1994). All the experiments reported,
without exception, concur that in eNOS−/− knock-out animals both males
and females are hypertensive, suggesting that any mechanisms that operate to
compensate for the lack of eNOS during intra- or extra-uterine development
are not sufficient to down-regulate the blood pressure. All these observations
single out the unique and crucial role of the continuous vasodilator tone
provided by the local generation of NO. It is therefore likely that adaptive or
compensatory mechanisms operate in conjunction with the NO dilator tone
rather than in its stead. In this respect, there is a great need, especially in in
vivo experiments, to differentiate between mechanisms which are modulated
directly by NO and those that are the result of the general systemic adaptation
to lack of its dilator tone.

3.2
Nitric Oxide and Platelets

Early studies revealed that the vascular endothelial cells possess a non-ei-
cosanoid platelet anti-aggregating and anti-adhesive principle that could be
explainedbyEDRF/NO(Azumaet al. 1986;Radomski et al. 1987a, b).Moreover,
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it was found that NO strongly synergised with prostacyclin as an inhibitor of
platelet aggregation, leading to the suggestion that an interaction between the
two compounds explained, at least in part, the non-thrombogenic properties
of vascular endothelium (Radomski et al. 1987c).

In the early 1990s, the l-arginine:NO pathway was discovered in platelets
and was suggested to act as a negative regulatory mechanism of platelet ag-
gregation (Radomski et al. 1990b, c; Malinski et al. 1993). Since then several
groups have described the molecular characteristics of the NOS in platelets
(Muruganandam and Mutus 1994; Chen and Mehta 1996; Wallerath et al. 1997;
Berkels et al. 1997), leading to the identification of an eNOS mRNA in human
and porcine platelets (Wallerath et al. 1997; Berkels et al. 1997).

In vivo, inhibition of NOS has been shown to shorten bleeding time in
healthy volunteers (Simon et al. 1995) and to increase platelet accumulation
in the vasculature of the rat (Stagliano et al. 1997). A study in which platelets
from wild-type or eNOS−/− mice were transfused into thrombocytopaenic
eNOS-deficient mice has suggested an independent significant role of platelet-
derived eNOS in the modulation of thrombus formation (Freedman et al. 1999).

Interesting developments in the last few years suggest that the eNOS in
platelets may be differentially regulated vis-à-vis the vascular endothelial en-
zyme, in terms of phosphorylation (Fleming et al. 2003), Ca2+ sensitivity
(Lantoine et al. 1995) and response to certain agonists such as insulin. Al-
though in platelets insulin increases eNOS activity, leading to the attenuation
of agonist-induced aggregation (Rao et al. 1990; Trovati et al. 1996), in the
vascular endothelium it seems to phosphorylate eNOS without an effect on
NO generation or endothelium-dependent relaxation (Fisslthaler et al. 2003;
Randiramboavonjy et al. 2004). Studies on the interaction between NO and
prostacyclin are also required, especially in relation to the decreased genera-
tionof eitherorbothmediatorsby thevascular endotheliumduringendothelial
dysfunction. Another relevant question is whether or not the mechanisms in-
volved in decreasing endothelial NO in oxidative stress affect NO generation
in platelets to a similar extent.

3.3
Nitric Oxide, Vascular Permeability and White Cells

It has long been known that NO modulates leucocyte adhesion to the micro-
circulation (Kubes et al. 1991). However, the mechanisms responsible for this
have not been elucidated and several possibilities remain open. These include
modulation of the expression of adhesion molecules such as P-selectin (Gau-
thier et al. 1994), E-selectin (De Caterina et al. 1995), vascular cell adhesion
molecule (Khan et al. 1996) and intercellular adhesion molecule (Biffl et al.
1996)—all of which have been shown to be down-regulated by NO—or the
possibility that NO protects cells from oxidative stress by interacting rapidly
with and scavenging O2

− (Gaboury et al. 1993).



226 S. Moncada · E. A. Higgs

Recent results using microvascular endothelial cells from eNOS−/− mice
indicate that the role of endothelial NO does not seem to be continuous and
tonic, since the simple absence of NO does not in itself lead to endothelial cell
activation, measured by the expression of several adhesion proteins. Instead,
NO seems to act as a counterbalance for signals that lead to its activation,
including the formation of ROS (Kuhlencordt et al. 2004).

Interestingly, NO has been suggested to play a role in maintaining mi-
crovascular integrity. Studies have shown that inhibition of eNOS increases
microvascular fluid and protein flux (Kubes 1995; Whittle 1997). The increase
in vascular permeability due to absence of NO seems to have two distinct
phases—an initial one which is white cell-independent and a latter one in
which white cells are clearly involved (Kanwar and Kubes 1995). Paradoxically,
however, increases in NO generation, even in the small amounts generated by
eNOS, have also been claimed to play a role in increasing vascular permeabil-
ity. This was demonstrated by (1) experiments in which VEGF, which activates
eNOS, increases vascular permeability in an NO-dependent manner (Feng et al.
1999), and (2) the way in which inhibition of eNOS by the administration of
a chimeric peptide related to caveolin is able to reduce local vascular leakage
(Bucci et al. 2000).

Thus, the role of eNOS in maintaining a homeostatic control of vascular per-
meability, and the way in which it modulates the early white cell-independent
and the later cell-dependent changes, remain to be elucidated. Those studies
crucially will have to clarify whether or not O2

− is generated physiologically by
the endothelium and, if so, under which circumstances it reduces the bioavail-
ability of NO and when, if at all, it interacts with NO, leading to the generation
of peroxynitrite (ONOO−). It also remains to be established when NO gener-
ated by other sources, specifically iNOS (Radomski et al. 1990a), comes into
play in the process of endothelial activation.

3.4
Nitric Oxide and Vascular Smooth Muscle Proliferation

Nitric oxide inhibits vascular smooth muscle proliferation (Garg and Hassid
1989), and in different models of vascular injury, in both animals and in man,
it has been shown that manipulations that increase NO, including transfection
of eNOS and administration of NO donors, down-regulate intimal hyperplasia
(Lablanche et al. 1997; Janssens et al. 1998; Varenne et al. 1998). Furthermore,
in eNOS−/− mice the response to vascular injury leads to intimal hyperplasia
which is significantly greater than that observed in wild-type controls (Moroi
et al. 1998). Thus, it is clear that exogenous and endogenous NO, including that
generated by eNOS, is able to control vascular smooth muscle proliferation
once it is activated by injurious stimuli. What remains unclear is whether,
under physiological conditions, NO generated by eNOS exerts a tonic control
on vascular smooth muscle proliferation, keeping it in a non-proliferative
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state. Studies in eNOS knock-out animals are likely to be complicated by the
fact that the hypertensive phenotype per se leads to vascular smooth muscle
proliferation.

3.5
Nitric Oxide and Angiogenesis

Nitric oxide derived from eNOS and iNOS has been shown to be involved
in angiogenesis (Jenkins et al. 1995; Kroll and Waltenberger 1998; Ziche and
Morbidelli 2000) and in capillary organisation (Papapetropoulos et al. 1997).
Furthermore, VEGF increases the production of NO via up-regulation of eNOS
(van der Zee et al. 1997; Hood et al. 1998), and this NO mediates the migratory
and proliferative activity of VEGF (Papapetropoulos et al. 1997; Ziche et al.
1997). The migratory properties of VEGF may be attributable to the activation
by NO of podokinesis and its dissolution of the extracellular matrix. Its anti-
apoptotic and vasodilator properties may also contribute to the angiogenic
actions of NO (Cooke 2003). Angiogenesis induced via VEGF-independent
mechanisms is also modulated by NO (Leibovich et al. 1994; Ziche et al. 1994;
Vodovotz et al. 1999) and conversely NO is able to induce transforming growth
factor (TGF)-β, which is also a potent angiogenic cytokine (Vodovotz et al.
1999).

4
Molecular Targets of the Action of Nitric Oxide

4.1
Soluble Guanylate Cyclase

Activation of the soluble guanylate cyclase is the main mechanism by which NO
produces vascular relaxation and inhibition of platelet aggregation (for review
see Denninger and Marletta 1999). Activation of the soluble guanylate cyclase
leads to an increase in cyclic guanosine monophosphate (cGMP), which in turn
decreases [Ca2+]i flux by inhibiting the flow through voltage-gated Ca2+ chan-
nels (Blatter and Wier 1994). cGMP also activates cGMP-dependent protein
kinases (Schlossmann and Hofmann 2005), in particular, protein kinase GI
(PKGI) which is present in vascular smooth muscle (Pfeifer et al. 1998). PKGI
phosphorylates proteins in the sarcoplasmic reticulum, including the Ca2+-
activated K+ channels (Sausbier et al. 2000), the 1,4,5 inositol trisphosphate
(IP3) receptor-associated cGMP kinase substrate (IRAG; Schlossmann et al.
2000) and phospholamban (Cornwell et al. 1991). Phosphorylation of these
proteins leads to the sequestration of Ca2+ in the sarcoplasmic reticulum, re-
duction of cytosolic Ca2+ and vascular relaxation (for review see Gewaltig and
Kojda 2002). Nitric oxide is also able to prevent Ca2+ flux directly by activat-
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ing Ca2+-dependent K+ channels through a mechanism independent of cGMP
(Bolotina et al. 1994).

In platelets, it has been shown that NO-dependent increases in cGMP also
result in a decrease in intracellular Ca2+ flux by a mechanism involving PKGI
(Massberg et al. 1999). This correlates with inhibition of the association of
fibrinogen with glycoprotein IIb/IIIa and with inhibition of platelet activation
(see Schwarz et al. 2001). Increases in cGMP can also increase intracellular
cyclic adenosine monophosphate (cAMP) indirectly by inhibiting phospho-
diesterase III (PDE III; Bowen and Haslam 1991). cAMP, which is the second
messenger for the actions of prostacyclin, is also associated with decreases in
Ca2+ flux (Geiger et al. 1994), thus explaining the synergism between NO and
prostacyclin in the platelet.

4.2
Protein S-Nitrosylation

S-Nitrosylation of proteins was identified in 1992 as a post-translational mod-
ification potentially involved in NO signalling (Stamler et al. 1992). Early on,
a wide variety of proteins, including serum albumin (Stamler et al. 1992),
haemoglobin β-subunits (Gow and Stamler 1998), ryanodine-sensitive cal-
cium release channels (Xu et al. 1998), N-methyl-d-aspartate (NMDA) recep-
tors (Choi and Lipton 2000), methionine adenosyl transferase (Perez-Mato
et al. 1999) and caspase-3 (Mannick et al. 1999) were identified as targets for
S-nitrosylation and a physiological function assigned to it. This list has been
extended to many other proteins which have been shown to be susceptible to
S-nitrosylation in vitro.

Early in vivo studies in this area were hampered by methodological dif-
ficulties; however, the biotin-switch method of Jaffrey et al. (2001) enabled
the identification of a number of proteins in the mouse brain that seem to be
S-nitrosylated physiologically in vivo, a process which only occurs in some
proteins and in specific cysteine groups, and is dependent on the expression
of nNOS. More recently, using a similar method, S-nitrosoproteins have been
identified in bovine vascular endothelial cells; these were generated not only
from exogenously added NO but also from endogenously generated NO, pre-
sumably from eNOS (Yang and Loscalzo 2005).

These results have provided evidence that specific S-nitrosylation may occur
in vivo and may play a physiological role, leading to a great deal of support for
this hypothesis (Hess et al. 2005). However, many questions remain, the most
important of which relates to the lack of a clear in vivo correlate of a significant
physiological function being modified by this process. Related to this is the lack
of understanding of the process of denitrosylation and, more importantly, the
precise mechanism by which it actually occurs, since NO itself is a very poor
nitrosating species (see Lane et al. 2001). Most of the evidence suggests that
S-nitrosylation depends on the formation of higher oxides of nitrogen such as
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NO2, N2O3 and ONOO− (Stamler and Hausladen 1998; Grisham et al. 1999;
Viner et al. 1999). In this respect, it is interesting that S-nitrosylated proteins
in endothelial cells are either in the mitochondria or localised close to them
(Frost et al. 2005; Yang and Loscalzo 2005), a site where NO/O2 interactions are
more likely to occur. This might be suggesting that S-nitrosylation is an early
response to oxidative stress (Clementi et al. 1998; Beltran et al. 2000) rather
than a physiological mechanism.

4.3
Cytochrome c Oxidase/Mitochondrial Effects

In the mid 1990s it was found that NO modulates the activity of the cy-
tochrome c oxidase, the terminal enzyme in the mitochondrial oxidative phos-
phorylation chain which catalyses the reduction of O2 to water (Cleeter et al.
1994; Brown and Cooper 1994; Schweizer and Richter 1994; see Fig. 2a). This
effect is reversible, in competition with O2, and takes place at concentrations
of NO likely to occur physiologically. Indeed, the affinity of the cytochrome c
oxidase for NO is greater than that for O2, such that, for example, at 30 μM O2
the IC50 of NO is 30 nM (Brown and Cooper 1994). Later it was demonstrated
in vascular endothelial cells that endogenous concentrations of NO modulate
cell respiration in an O2-dependent manner (Clementi et al. 1999) and that ex-
ogenous and endogenous NO reduces the consumption of oxygen in isolated
canine skeletal and cardiac muscle (Zhao et al. 1999). This led to the suggestion
that NO might, on the one hand, modulate cellular bioenergetics by regulating
O2 consumption (Brown 1999; Clementi et al. 1999) and on the other, through
inhibition of the cytochrome c oxidase, decrease electron flux through the
electron transport chain and favour the generation of O2

− (Poderoso et al. 1996;
Moncada and Erusalimsky 2002; see Fig. 2b). This, as will be discussed later,
can lead to the generation of ONOO− (see Fig. 2c). Furthermore, it is likely
that NO, by modulating O2 consumption in endothelial cell mitochondria,
plays a role in diverting O2 away from the endothelium, thus facilitating the
supply of O2 to the vascular smooth muscle (Poderoso et al. 1996; Hagen et al.
2003).

It has not yet been established whether the NO that inhibits cytochrome c
oxidase comes from an eNOS in an extramitochondrial localisation, from eNOS
localised to the mitochondria (Bates et al. 1995; Kobzik et al. 1995) or from
a different form of NOS present in the mitochondria (Ghafourifar and Richter
1997; Giulivi et al. 1998). Recent evidence from endothelial cells suggests that
eNOS is localised to the cytoplasmic faceof theoutermitochondrialmembrane,
where it binds in a manner unrelated to caveolin and therefore unlike the way
in which it binds to the outer membrane of the cell (Gao et al. 2004). A different
study has demonstrated a protein–protein interaction between mitochondrial
nNOS and the cytochrome c oxidase in nervous tissue (Persichini et al. 2005).
Both of these studies argue for the co-localisation of NOS with cytochrome c
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Fig.2a–c Nitric oxide and the electron transport chain. Electrons from NADH or FADH2 pass
along the electron transport chain. At cytochrome c oxidase (complex IV) they interact with
oxygen, and water is produced. a This part shows nitric oxide (NO) competing with oxygen
at the oxygen-binding site of cytochrome c oxidase. It is a physiological action which occurs
under normal conditions. In b, the balance between NO and oxygen is shifted in favour of
NO, which inhibits cytochrome c oxidase, leading to a reduction of the electron transport
chain. This facilitates the generation of superoxide anions (O2

−) which are subsequently
converted to hydrogen peroxide (H2O2) by superoxide dismutase (SOD). This activates the
defence system of the cell. In c, a prolonged increase in the generation of O2

− in the presence
of continuous NO results in the formation of peroxynitrite (ONOO−), leading to damage

oxidase, thus favouring the idea of tightly regulated control of this enzyme by
NO.

eNOS has also been implicated in mitochondrial biogenesis; interestingly,
however, this occurs not through an effect on oxidative phosphorylation, but
through an effect on the soluble guanylate cyclase (Nisoli et al. 2003). Calorie
restriction has recently been shown to induce eNOS expression and the for-
mation of cGMP in various tissues of the mouse; these effects were attenuated
in eNOS−/− animals. Thus, NO plays a role in the processes induced by calorie
restriction and may be involved in the extension of lifespan in mammals (Nisoli
et al. 2005).
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5
Nitric Oxide and Pathology

5.1
Changes in NO Generation or Activity in Vascular Pathology

Changes in NO generation have been associated with a number of condi-
tions and disease states in which the vasculature is compromised. These in-
clude atherosclerosis, hypercholesterolaemia, hypertension, hyperhomocys-
teinaemia, pulmonary hypertension, heart failure, smoking, diabetes, Ray-
naud’s syndrome and pre-eclampsia. The objective of this review is not to
discuss any of these conditions in detail; there are excellent reviews covering
those fields (Maxwell 2002; Barbato and Tzeng 2004) and some aspects are also
covered in this book (see J.S. Pober and W. Min; L.E. Spieker et al.; and P. Libby
et al., volume II). We will focus instead on the putative mechanisms that might
be involved in changes in the generation or actions of NO.

The early stages of a number of the above-mentioned conditions have in
common a specific pathophysiological feature, namely endothelial dysfunction
(see Stemerman 1981; Luscher et al. 1993). Because of the variety of functions
carried out by the vascular endothelium, endothelial dysfunction is likely to
include a number of abnormalities, both vascular and haemostatic. However,
at present the accepted definition is that of a reduction in endothelial NO,
which is measured as a decrease in endothelium-dependent vasodilatation
induced either by appropriate agonists (Schachinger et al. 2000) or by flow
(Neunteufl et al. 2000). Endothelial dysfunction described in this way occurs
prior to any other evidence of cardiovascular disease and can be detected in
subjects with a family history of essential hypertension or other risk factors
for atherosclerosis (Reddy et al. 1994; Taddei et al. 1996). Furthermore, it
has also been associated with smoking (Heitzer et al. 1996) and, in general, its
presence is predictive of cardiovascular disease (for review see Asselbergs et al.
2005). Although, as will be described later, decreases in NO formation by the
vascular endothelium prior to cardiovascular disease could be due to a variety
of reasons, current evidence indicates that the most likely mechanism for this
endothelial dysfunction is that of a reduced bioavailability of NO as a result of
its interaction with oxygen-derived species, specifically O2

−. The inactivation
of NO by O2

− is a component of what is called oxidative stress, a term used to
describe various deleterious processes resulting from an imbalance between
the anti-oxidant defences of tissues and excessive formation of ROS (Turrens
2003).

Although the possibility that free radical formation is involved in vascu-
lar damage was considered many years ago (Slater 1972), the discovery of
an association between free radical formation and the inactivation of both
prostacyclin and NO identified specific biochemical mechanisms responsible
for this action (see Moncada 2006). Interactions between NO and O2

− have been



232 S. Moncada · E. A. Higgs

claimed to regulate physiologically the concentrations of NO in the vasculature
and therefore to regulate the NO-dependent vasodilator tone. This proposal
remains controversial. Generation of O2

−, however, might occur very early dur-
ing pathological development in the vascular wall. Consequently, it has been
proposed, for example, that generation of O2

− might be involved in the tolerance
to nitroglycerin (Munzel et al. 1996)—a suggestion that also remains contro-
versial (Fung 2004)—as well as in the genesis of angiotensin II-dependent
hypertension (Rajagopalan et al. 1996). In this context, it has recently been
shown that transgenic mice which generate increased amounts of free radicals
from mitochondria have a hypertensive phenotype which can be reversed by
anti-oxidants (Bernal-Mizrachi et al. 2005).

The reaction between NO and O2
− also leads to the formation of ONOO−

(Beckman et al. 1990), a powerful oxidant species that has been implicated in
established conditions such as hypercholesterolaemia, diabetes and coronary
arterydisease (Greenacre and Ischiropoulos 2001).Vasculardiseaseofdifferent
origins is, in addition, associated with inflammation (Tracy 2002; Virdis and
Schiffrin2003),which isusually accompaniedby the inductionof iNOS. Indeed,
inflammatory stimuli such as endotoxin lipopolysaccharide and cytokines
induce iNOS inmanycells and tissuesaswell as in thevasculature.Theexcessive
production of NO that results from the induction of iNOS in the vasculature is
responsible for the profound hypotension and contributes to the tissue damage
of septic shock (see Vallance and Moncada 1993). The inducible form of NOS
has been identified in macrophages and smooth muscle of animal and human
blood vessels in atherosclerosis (Esaki et al. 1997; Buttery et al. 1996; Luoma
et al. 1998; De Meyer et al. 2000) and other vascular conditions (Wang et al.
2003; Nagareddy et al. 2005). In advanced atherosclerotic plaques from human
blood vessels, iNOS has been found to co-localise with nitrotyrosine, a marker
for the formation of ONOO− (Cromheeke et al. 1999). Interestingly, the use
of anti-oxidants improves endothelium-dependent vasodilatation in advanced
disease, both in the forearm and coronary arteries of patients with coronary
heart disease and diabetes (Levine et al. 1996; Ting et al. 1996; Solzbach et al.
1997).

While the low concentrations of NO generated by the constitutive eNOS
protect against atherosclerosis (by, among other things, promoting vasodilata-
tion, preventing leucocyte and platelet activation, preventing the expression of
adhesion molecules and inhibiting vascular smooth muscle cell proliferation),
it is evident that the higher concentrations generated by iNOS contribute to
atherosclerosis through a series of mechanisms which include increased oxida-
tion of low-density lipoprotein (LDL; Cromheeke et al. 1999), and activation of
macrophages (De Meyer et al. 2002). These apparent paradoxical actions of NO
have been described in other systems (Laszlo et al. 1994) and are supported by
recent studies with ApoE knock-out mice in which the concomitant knocking
out of eNOS leads to an increase in atherosclerosis (Kuhlencordt et al. 2001a)
while knocking out of iNOS reduces atherosclerosis (Kuhlencordt et al. 2001b).
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At what stage in the pathophysiological sequence of these conditions does
inactivation of NO by O2

− play a role? This is a particularly pertinent question,
since an early intervention may afford the greatest benefit in terms of pre-
venting vascular disease. The switch from the physiological role of NO to its
pathological actions seems to be closely related to oxidative stress. The process
probably starts by inactivation of NO and reduction of its bioavailability in
early disease, and progresses to the formation of pro-oxidant adjuncts, notably
ONOO−, which are generated when multiple mechanisms of ROS formation
are activated and which overwhelm the anti-oxidant defence of the vascular
wall.

5.1.1
The Origin of Free Radicals

There has been a great deal of research investigating the origin of O2
− in the

vasculature. So far, the activation of enzymes such as NADPH oxidases and
xanthine oxidase has been implicated, and substantial evidence now exists
showing that the activity as well as the expression of these enzymes can be
enhanced by pathological stimuli (see Cai and Harrison 2000; Mueller et al.
2005). In addition, vascular cytochrome P-450 enzymes that can generate O2

−

have been described (Fleming 2001), and their inhibition appears to improve
endothelium-dependent NO-mediated vasodilatation in patients with coro-
nary artery disease (Fichtlscherer et al. 2004).

Another potential source of O2
− is what has been called the uncoupled NO

synthases. Indeed, eNOS and iNOS have the capacity to generate O2
− under

specific circumstances of low l-arginine or low BH4 (see Stuehr et al. 2001;
Vasquez-Vivar et al. 1998). The uncoupling of eNOS has been demonstrated in
several pathological conditions such as diabetes, hypercholesterolaemia and
hypertension (Hink et al. 2001; Stroes et al. 1997; Landmesser et al. 2003).
Moreover, re-coupling of NOS has been successfully accomplished either by
using sepiapterin (Tiefenbacher et al. 1996) or by preventing oxidation of
BH4 (D’Uscio et al. 2003; Landmesser et al. 2003). Uncoupling of eNOS as
a result of depletion of both l-arginine and BH4 is not, however, likely to
be an early mechanism of O2 generation since, if such depletion does occur
in pathology, it is likely to result from drastic changes in the vasculature.
The uncoupling of eNOS as a result of changes in its association with hsp90
(Pritchard et al. 2001) or in the phosphorylation of Thr495 (Lin et al. 2003)
might be far more subtle and remains an intriguing possibility. Indeed, the
phosphorylation/dephosphorylation of Thr495 has been proposed to be an
intrinsic switch mechanism that determines whether eNOS generates NO or
O2

− (Lin et al. 2003). Although the relative roles of these mechanisms are at
present unknown, increasing emphasis is now placed on the redox balance of
the vessel wall, leading to the suggestion that there are a number of vascular
diseases in which this balance is disturbed, including heritable deficiency of the
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anti-oxidant enzymes catalase, haem oxygenase and glutathione peroxidases
(Leopold and Loscalzo 2005).

In the last few years, the generation of ROS from mitochondria has become
a focusof interest. Formanyyears it hasbeenbelieved that a small percentageof
the O2 being utilised by these organelles is not completely reduced to water and
escapes as O2

− (Chance et al. 1979). Although it is not clear whether this actually
occurs in endothelial cells in vivo, at physiological O2 concentrations there is
the possibility that the redox status of the mitochondrial respiratory chain is
determinant in the escape of electrons required to generate O2

− from O2. We
have recently shown that NO, by favouring the reduction of the cytochrome c
oxidase, is able to facilitate the release from mitochondria of O2

−, which is
subsequently converted into H2O2 with the resulting signalling consequences
(Palacios-Callender et al. 2004; see Fig. 2b). It is likely that such a mechanism,
which is an extension of the physiological action of NO on the cytochrome c
oxidase, might provide clues to the understanding of the early origins of
oxidative stress in the vasculature, specifically in endothelial cells. Recent
work has implicated the generation of mitochondrial ROS as initiators of
the signalling mechanisms involved in preconditioning (Kimura et al. 2005).
Moreover, it has been suggested that the release of H2O2 from mitochondria
as a signalling molecule occurs under conditions that do not change the redox
status of the cells (Go et al. 2004).

It has been known for some time that endothelial cells are highly glycolytic
(Mann et al. 2003). We have recently confirmed this observation and demon-
strated that the mitochondria of these cells, under the control of NO, seem
to act more as signalling organelles, regulating amongst other things the ac-
tivation of hypoxia-inducible factor-1 and AMP-activated protein kinase, the
latter via a ROS-dependent mechanism (Quintero et al. 2006). Thus, the release
of mitochondrial ROS may be dependent on a physiologically regulated pro-
cess, and its primary objective might also be physiological. We have suggested
that this may be to maintain a high anti-oxidant potential in these cells (see
Moncada and Higgs 2006). Whether an exaggeration of this mechanism may
be the initial inactivating mechanism of NO in early disease remains to be
established.

5.1.2
Mechanisms Involved in the Decreased Generation of Nitric Oxide

Several polymorphisms have been described in the eNOS promoter, although
none is situated within the binding site for known transcription factors (for
reviews see Wang and Wang 2000; Wattanapitayakul et al. 2001). The early
claimed association of some of these polymorphisms observed in intron 4
or 13 of the eNOS gene with essential hypertension (Nakayama et al. 1997;
Uwabo et al. 1998) has not been confirmed in other studies with populations
outside the original Japanese cohort (Benjafield and Morris 2000). A different
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polymorphism, in exon 7 (Glu298Asp) has also been claimed by studies in
different populations to be associated with essential hypertension (Miyamoto
et al. 1998), coronary artery disease (Hingorani et al. 1999) and myocardial
infarction (Shimasaki et al. 1998). However, this polymorphism does not seem
to be associated with changes in NO-dependent dilatation (Schneider et al.
2000). Thus, at this stage more research is required to clarify this question
and to investigate whether subtle changes in eNOS functioning which are
genetically determined become significant only in the presence of genetic
polymorphisms affecting the function of other systems, such as angiotensin II
(van Geel et al. 1998), or in conjunction with other acquired defects in NO
bioavailability or other risk factors such as smoking or advanced age.

Someyears ago, itwasobserved that anendogenous compound, asymmetric
dimethylarginine (ADMA), was a competitive inhibitor of the synthesis of NO
(Vallance et al. 1992) and it was speculated that this and related compounds
may act as endogenous regulators of the l-arginine:NO pathway in health and
disease. Since then, increases in plasma concentrations of this compound have
been identified in hypercholesterolaemic individuals (Boger et al. 1998) and
in other conditions associated with vascular disease such as diabetes (Fard
et al. 2000). ADMA has also been identified as an independent risk factor
and possible marker in patients with coronary artery disease (Lu et al. 2003).
Interestingly, the accumulation of ADMA in blood seems to be the result of
a dysfunction of the enzyme responsible for its conversion into l-citrulline.
This enzyme, dimethylarginine dimethylaminohydrolase (DDAH), is present
in the vascular endothelium (Leiper et al. 1999), and a correlation between
oxidised LDL and a decrease in DDAH activity has been described (Ito et al.
1999).Thishas led to the suggestion that accumulationofADMAresulting from
oxidative stress might play a role in endothelial dysfunction (Fliser 2005).

5.1.3
Replacing Nitric Oxide

It is generally accepted that protection against decreases in eNOS-derived NO
in the vasculature may prevent the development of vascular disease or treat it
once it is established. In this respect, the most often tried interventions relate to
the use of anti-oxidants (see Carr and Frei 2000) and the transfection of eNOS
to the vasculature (von der Leyen and Dzau 2001). Each of these interventions
has shown some promise in both animal experiments and humans.

There is an unexpected and highly interesting development related to the
effect of statins, which in the last few years have been shown to increase
production of endothelial NO both in animal and human endothelial cell
cultures as well as in animals in vivo. The mechanism(s) by which statins
might exert these actions is not clear at present; however, several putative
mechanisms have been claimed, including inhibition of the production of LDL
cholesterol (Dobrucki et al. 2001) or of mevalonate (Endres et al. 1998), both of
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which down-regulate the expression of eNOS. Other ways in which statins have
been shown to increase eNOS activity include the activation of Akt (Kureishi
et al. 2000), increasing the interaction of eNOS with hsp90 (Brouet et al. 2001),
increasing the synthesis of BH4 (Hattori et al. 2002), reducing oxidative stress
by decreasing O2

− generation by NADPH oxidase (Wagner et al. 2000a), and
decreasing the abundance of caveolin (Feron et al. 1999).

6
Conclusion

Nitric oxide generated by eNOS has been established as a key regulatory sig-
nalling molecule in the vasculature. Its discovery and the elucidation of the
myriad roles it plays have contributed greatly to the concept of the vascular
endothelium as an active metabolic organ. The details of many of the phys-
iological functions of NO remain to be clarified but, most importantly, its
paradoxical role as a pathophysiological agent is only now beginning to be
understood. Clarification of this latter role will no doubt throw light on the
origin of vascular disease, its prevention and its treatment.
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Abstract Angiotensins and kinins are endogenous peptides with diverse biological actions;
as such, they represent current and future targets of therapeutic intervention. The field of
angiotensin biology has changed significantly over the last 50 years. Our original under-
standing of the crucial role of angiotensin II in the regulation of vascular tone and electrolyte
homeostasis has been expanded to include the discovery of new angiotensins, their impor-
tant role in cardiovascular inflammation and the development of clinically useful synthesis
inhibitors and receptor antagonists. While less applied progress has been achieved in the
kinin field, there are continuous discoveries in bradykinin physiology and in the complexity
of kinin interactions with other proteins. The present review focuses on mechanisms and
interactions of angiotensins and kinins that deal specifically with vascular endothelium.

Keywords Angiotensin receptors · Bradykinin receptors · Angiotensin-converting enzyme
· Angiotensin receptor blockers · Angiotensin-converting enzyme inhibitors

1
Angiotensin

The octapeptide angiotensin (ANG) II (Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-
Phe8) stimulates the release of catecholamines from the adrenal medulla and
sympathetic nerve endings, increases sympathetic nervous system activity,
stimulates thirst and appetite, and regulates sodium and water homeosta-
sis by stimulating aldosterone release from the adrenal cortex (Luft et al.
1989; Mitchell and Navar 1989; Ferrario and Flack 1996). It regulates endothe-
lial function and stimulates inflammatory, proliferative, fibrotic and throm-
botic processes in the vasculature. It has potent effects on vascular tone, con-
stricts smooth muscle cells, regulates vascular cell growth, apoptosis, fibrosis,
matrix metalloproteinase production and extracellular matrix degradation
(Griendling et al. 1997; Tomita et al. 1998; Yoo et al. 1998). ANG IV, the (3–8)
hexapeptide fragment of ANG II (Swanson et al. 1992), and ANG-(1–7) can
be formed metabolically by peptidase or protease cleavage from either ANG II
or ANG I (Wright and Harding 1995). ANG IV interacts specifically with the
AT4R subtype (Harding et al. 1992).
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1.1
Synthesis

The biologically inactive decapeptide, ANG I, is the metabolic product of the
liver-synthesised angiotensinogen and the enzyme renin. ANG I has a half-life
of a few seconds, as it is quickly converted—mostly by angiotensin-converting
enzyme (ACE)—to the biologically active octapeptide, ANG II. Alternatively,
ANG I can be converted to the biologically active ANG-(1–7) by plasma or
neutral endopeptidases or to ANG-(1–9) by ACE2 and subsequently to ANG-
(1–7). ANG II can also be converted to ANG-(1–7) by plasma and neutral
endopeptidases or by prolyl carboxypeptidase or, more frequently, degraded
to inactive metabolites by various angiotensinases (Fig. 1).

Fig. 1 Synthesis and degradation of the major components of the renin-angiotensin (RAS)
and kallikrein-kinin (KKS) systems. Enzymes are in italics. ACE, angiotensin convert-
ing enzyme; AP, aminopeptidase P; AT(1–7)R, putative angiotensin (1–7) receptor; AT1R,
angiotensin type 1 receptor; AT2R, angiotensin type 2 receptor; BKB1R, bradykinin B1 re-
ceptor; BKB2R, bradykinin B2 type receptor; Brad, bradykinin; CBP-M, carboxypeptidase
M; CBP-N, carboxypeptidase N; HMWK, high molecular weight kininogen; LMWK, low
molecular weight kininogen; NEP, neutral endopeptidase; PEP, plasma endopeptidase; PK,
pre-kallikrein; PRCP, prolyl carboxypeptidase

1.2
Receptors

There are three subtypes of ANG receptors: type 1 (AT1R), type 2 (AT2R)
and type 4 (AT4R). AT1R are localised on cardiomyocytes, vascular smooth
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muscle and endothelial cells, nerve endings and conductive tissues. AT1R
are present and functionally active in fetal systemic arteries; the umbilical
circulation displays a greater responsiveness to ANG II than the systemic vas-
culature (Segar et al. 2001). Rodents express two AT1R (AT1RA and AT1RB)
receptor genes, whereas humans express only a single AT1R protein. AT2R
are present in endothelial and vascular smooth muscle cells (Nora et al.
1998) and in fibrous tissue of the heart (Regitz-Zagrosek et al. 1998). In
brain, AT2R have regenerative capabilities and are upregulated after global
cerebral ischaemia (Makino et al. 1996) and during tissue wound healing
(Viswanathan and Saavedra 1992). AT4R exhibit a broad distribution, includ-
ing in the adrenal gland, kidney, lung and heart. In the kidney, ANG IV in-
creases renal cortical blood flow and decreases Na+ transport in isolated renal
proximal tubules. In high concentrations, ANG IV activates AT1R and evokes
cardiovascular effects that can be inhibited with AT1R antagonists (Li et al.
1997a).

1.3
Receptor Antagonists

AT1R are selectively antagonised by biphenylimidazoles, such as losartan,
whereas tetrahydroimidazopyridines specifically inhibit AT2R (Ardaillou
1999). The AT2R is the first identified example of a G protein-coupled re-
ceptor which also acts as a receptor-specific antagonist. AT2R bind directly to
AT1R and thereby antagonise AT1R function (AbdAlla et al. 2001a). The AT1R
antagonists approved for use in hypertension by the U.S. Food and Drug Ad-
ministration (FDA) include losartan, valsartan, irbesartan, candesartan and
telmisartan. ACE inhibitors and AT1R blockers share a number of common
properties, including their ability to lower blood pressure. However, they have
different effects on the renin–angiotensinsystem (RAS), the fibrinolytic sys-
tem and the actions of bradykinin (BK). In animal models of atherosclerosis,
ACE inhibition is associated with a significant reduction in the surface area of
lesions, while no similar effect is evident following AT1R blockade. In the fib-
rinolytic system, both ACE inhibition and AT1R blockade are associated with
reduced aldosterone levels, although the effect is greater with ACE inhibition;
only ACE inhibition is associated with a reduction in plasminogen activation
inhibitor-1. By blocking the degradation of BK, ACE inhibitors potentiate the
ability of BK to reduce blood pressure and stimulate the release of tissue-type
plasminogen activator from the vasculature, an effect not seen with AT1R
blockers (Vaughan 2000). AT1R antagonists are as effective as ACE inhibitors
in improving the age-related decline in endothelium-derived hyperpolaris-
ing factor (EDHF)-mediated hyperpolarisation and relaxation; both AT1R and
ACE inhibitors may be useful in preventing endothelial dysfunction associated
with ageing (Kansui et al. 2002). Unlike ACE inhibitors, AT1R blockers (ARBs)
are not significantly associated with cough.
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1.4
Signalling

ANG II has an important role in cardiovascular regulation and electrolyte
balance. Endothelial AT1R modulate Na+/K+ ATPase activity; this and the
ANG II effect on the Na+/H+ exchanger are believed to be responsible for the
increased transendothelial Na+ flux (Muscella et al. 1999). ANG II modulates
the production of nitric oxide (NO) in the endothelium (Yan et al. 2003). It
stimulates NO release by activating endothelial NO synthase (eNOS) via en-
dothelial AT1R (Saito et al. 1996) and, occasionally (e.g. in porcine pulmonary
arterial endothelial cells) through AT4R (Hill-Kapturczak et al. 1999). This
stimulation of NO may be beneficial in counterbalancing the direct vasocon-
strictor effect of ANG II on the underlying smooth muscle cells (Luscher et al.
1992; Bayraktutan and Ulker 2003). ANG II suppresses endothelial [Ca2+]i, but
stimulates pericyte [Ca2+]i via AT1R. Conversely, acting through AT2R, ANG II
antagonises the AT1R-mediated endothelial [Ca2+]i suppression and vasocon-
striction (Rhinehart et al. 2003). Additionally, by stimulating the production
of reactive oxygen species (ROS) (Griendling et al. 1994), ANG II induces NO
degradation and inactivation (Sowers 2002). Endothelial AT1R are linked to
phospholipase C and phospholipase A2 activation (Pueyo et al. 1996). AT1R
blockers enhance endothelium-dependent relaxation in coronary artery dis-
ease (CAD). By a mechanism involving both BK and NO, candesartan improves
flow-dependent, endothelium-mediated vasodilatation in patients with CAD
(Hornig et al. 2003). Endothelial AT2R increase with age (Batenburg et al.
2004a) and exert an antiproliferative action (Stoll et al. 1995a). In the human
heart, AT2R stimulation dilates coronary arterioles via NO release. Endothelial
AT4R are G protein-coupled receptors (Riva and Galzin 1996) that induce va-
sodilatation by activating the NO–cyclic guanosine monophosphate (cGMP)
pathway (Patel et al. 1998). In the lung, AT4 activates eNOS to produce pul-
monary arterial vasorelaxation (Patel et al. 1998) through a Ca2+ release via
phospholipase C-phosphoinositol (PI)3-kinase signalling mechanisms (Chen
et al. 2000).

ANG II upregulates vascular endothelial growth factor (VEGF), which plays
a significant role inANGII-inducedhyperpermeability (Chuaet al. 1998).AT1R
mediate the stimulatory effects of ANG II on E-selectin expression and leuco-
cyte adhesion on endothelial cells (Grafe et al. 1997) and regulate endothelin-1
release by endothelial cells (Imai et al. 1992; Chua et al. 1993), without in-
fluencing circulating endothelin-1 levels (Ferri et al. 1999). Corticosteroids
upregulate ANG II receptors by synthesis of new receptor protein rather than
by alterations in receptor trafficking (Ullian et al. 1996).
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1.5
Effects

1.5.1
Haemostasis and Fibrinolysis

ACE inhibitors and AT1R antagonists exert antithrombotic actions by enhanc-
ing NO and prostacyclin release and attenuating ANG II actions (Buczko et al.
1999). ANG II modulates haemostasis and fibrinolysis by inducing the expres-
sion of plasminogen activator inhibitor-1 (PAI-1), via AT1R and a pathway
involving Rho/Rho kinase, cyclic adenosine monophosphate (cAMP) and ROS
(Kramer et al. 2002; Mehta et al. 2002). ANG II also upregulates tissue-type
plasminogen activator (t-PA) gene activity, but this may reflect autoregulation
in response to PAI-1 release. ANG IV also upregulates PAI-1 expression in
endothelial cells (Kerins et al. 1995; Mehta et al. 2002). AT1R blockers also
exert AT1R-independent anticoagulant effects by inhibiting cyclooxygenase
(COX)-2 and consequently inhibiting thromboxane-induced platelet aggrega-
tion (Li et al. 2000).

1.5.2
Apoptosis and Neovascularisation

The role of ANG II in endothelial cell apoptosis remains unclear (Ohashi et al.
2004). ANG II induces endothelial cell apoptosis via activation of the caspase
cascade, an effect completely blocked by NO (Dimmeler et al. 1997). ANG II,
via AT1R, also activates protein kinase (PK)C, increases Fas (Li et al. 1999a),
increases intracellular concentration of ceramide (Lehtonen et al. 1999) and
decreases bcl-2 protein expression via extracellular signal-regulated kinase
(ERK) phosphorylation (Dimmeler and Zeiher 2000), all of which may pro-
mote the development of apoptosis (Li et al. 1999b). On the other hand, ANG II
exerts antiapoptotic effects in endothelial cells by a mechanism involving PI3-
kinase/Akt activation, subsequent upregulation of survivin and suppression
of caspase-3 activity. ARBs also exhibit AT1R-independent anti-apoptotic ef-
fects via Akt/eNOS phosphorylation (Watanabe et al. 2005). ANG II potentiates
VEGF-induced endothelial cell proliferation and network formation by upreg-
ulating the kinase insert domain (KDR, Flk-1 or VEGFR2) receptor (Imanishi
et al. 2004). The growth modulating actions of ANG II depend on the type of
ANG receptor present on a given cell. Stimulation of AT2R may counterbalance
the effects of AT1R stimulation, and initiate tissue regenerative events or apop-
tosis. The antiproliferative actions of the AT2R offset the growth-promoting
effects mediated by the AT1R (Stoll et al. 1995b). Stimulation of AT2R inhibits
VEGF-induced endothelial cell migration and tube formation via activation
of a pertussis toxin (PTX)-sensitive G protein (Benndorf et al. 2003). It also
increases tyrosinephosphatase activity and functionally antagonises theAT1R-
induced superoxide formation (Sohn et al. 2000). Changes in AT2R expression
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may occur during treatment with ARBs, suggesting the existence of cross-talk
between AT1R and AT2R (De Paolis et al. 1999). In addition to ANG II, ANG IV
modulates the actions of basic fibroblast growth factor (bFGF) on endothelial
cells (Hall et al. 1995). Balloon injury increases AT4R binding in the media,
large neointima and re-endothelialised cell layer, suggesting a role for ANG IV
in the adaptive response and remodelling of the vascular wall following damage
(Moeller et al. 1999).

1.5.3
Fibrosis

ANG II stimulates transforming growth factor (TGF)-β1 production via PKC
and upregulates tissue inhibitor of metalloproteinase-1 (TIMP-1) gene ex-
pression in endothelial cells. The release of TGF-β1 or TIMP-1 by endothelial
cells may provide the initial trigger leading to cardiac fibrosis in angiotensin–
renin-dependent hypertension (Chua et al. 1994, 1996). Upregulation of TSP-1
by ANGII also leads to perivascular fibrosis in the heart (Chua et al. 1997).

1.5.4
Hypertrophy

The selective AT1R antagonist losartan, even at doses that reduce blood pres-
sure, only moderately induces regression of cardiovascular hypertrophy and
endothelial dysfunction in genetically hypertensive rats (Li et al. 1997b). AT1R
mediate myocyte hypertrophy, fibroblast proliferation, collagen synthesis,
smooth muscle cell growth, endothelial adhesion molecule expression and
catecholamine synthesis. AT1R are downregulated in cardiac failure as well as
in the hypertrophied transplanted heart, indicating that a 50% loss of AT1R
does not impede cardiac hypertrophy. In heart failure therapy, ARBs differ
from ACE inhibitors in that they lack the ability to inhibit the degradation of
BK (Regitz-Zagrosek et al. 1998).

1.5.5
Hypertension

ANG II—acting through AT1R—has been implicated in the pathophysiology of
hypertension and chronic renal failure (Dalmay et al. 2001; Delles et al. 2004).
Endothelial dysfunction occurs in large or smaller vessels, especially in the
presence of risk factors such as diabetes, smoking, dyslipidaemia and advanced
atherosclerosis. Treatment with ACE inhibitors, AT1R antagonists and calcium
channel blockers corrects small artery structure andendothelial dysfunction in
hypertensive patients (Schiffrin 2001). For example, endothelium-dependent
relaxation and the media/lumen ratio of resistance arteries of hypertensive
patients are normalised after 1 year of treatment with losartan but not with
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atenolol (Schiffrin et al. 2000, 2002). Endothelial function of the retinal vas-
culature is also impaired in early essential hypertension and is improved by
ARBs. Following myocardial infarction, AT1R blockade reduces ROS genera-
tion and protects the coronary arteries from endothelial dysfunction (Kuno
et al. 2002; Liu et al. 2002). Since both polymorphonuclear leucocytes (PMN)
and endothelial cells express AT1R, it is believed that AT1R blockers amelio-
rate endothelial injury, in part by inhibiting PMN adhesion to endothelial cells
(Ito et al. 2001). ANG II increases systemic blood pressure not only via direct
vasoconstriction, but also via release of aldosterone, leading to water and salt
retention. Kidney damage is also caused by elevations in intraglomerular pres-
sure, leading to mechanical damage of glomerular capillaries (Eiskjaer et al.
1992). In kidneys, AT2R activation causes endothelium-dependent vasodi-
latation via a cytochrome P450 pathway, possibly by epoxyeicosatrienoic acids
(EETs) (Arima et al. 1997; Takeuchi 1999), thus modulating the AT1R-mediated
vasoconstriction. Impaired function of renovascular AT2R may contribute to
the pathophysiology of hypertension (Arima 2003). Old spontaneously hyper-
tensive rats (SHR) exhibit reduced acetylcholine-induced relaxation, probably
due to diminished EDHF availability; losartan corrects this defect by increas-
ing NO availability (Maeso et al. 1998). Oestrogen exerts a vasoprotective
effect by upregulating AT2R expression in the kidney, resulting in increased
prostaglandin E2 and cGMP concentrations in the renal medulla, and eNOS
expression in cortical arteries (Baiardi et al. 2005).

1.5.6
Inflammation

ANG II is a potent proinflammatory agent that causes activation, chemotaxis
and proliferation of mononuclear cells and upregulation of proinflammatory
mediators, including cytokines and adhesion molecules. The proinflammatory
AT1R is found on endothelial cells and circulating blood cells, including PMN,
monocytes, T lymphocytes and platelets. The pro-oxidative effect of ANG II
is due to AT1R-mediated activation of NAD(P)H oxidase and is blocked by
ARBs. The expression of NAD(P)H oxidase subunit gp91-phox is critical for
ANG II-induced superoxide formation in endothelial cells (Griendling et al.
1994). Products include not only superoxide but also peroxynitrite, and coun-
teract the beneficial effect of ANG II-stimulated NO release (Pueyo et al. 1998).
Endothelial cell migration is pivotal for the maintenance of vessel wall integrity
and is stimulated by NO. ANG II inhibits endothelial cell motility by reduc-
ing NO availability via an AT1R- and ROS-dependent effect (Desideri et al.
2003). Conversely, as a compensatory signalling mechanism, small amounts
of hydrogen peroxide, also derived from NAD(P)H oxidase, elicit endothelial
NO production in response to ANG II (Cai et al. 2002). ANG II-derived ROS
induce P-selectin expression (Tayeh and Scicli 1998) and mobilisation on the
endothelial cell surface (Alvarez and Sanz 2001), as well as activation of nu-
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clear factor (NF)-κB and induction of redox-sensitive genes for endothelial
adhesion molecules, cytokines and chemokines (Phillips and Kagiyama 2002;
Costanzo et al. 2003). ANG II also downregulates nox4, while it markedly up-
regulates the nox-1 isoform in smooth muscle cells (Lassegue et al. 2001) and
regulates xanthine oxidase-mediated superoxide production (Mervaala et al.
2001).

AT1R mediate the ANG II-induced increase in VEGF in endothelial cells via
induction of hypoxia-inducible factor-1, resulting in vascular remodelling, in-
creased permeability and oedema formation (Tamarat et al. 2002). ARBs also
possess AT1R-independent anti-inflammatory effects (Kramer et al. 2002).
Oxidised low-density lipoprotein receptor (LOX-1) expression is also stimu-
lated by ANG II. Human coronary arterial endothelial cells possess abundant
LOX-1 receptors, which appear to mediate uptake of oxidised low-density
lipoprotein (ox-LDL) via AT1R activation, thus enhancing ox-LDL-mediated
injury (Li et al. 1999c). Conversely, peroxisome proliferator-activated recep-
tor-γ (PPARγ) activators (insulin sensitisers, e.g. the glitazones pioglitazone
and rosiglitazone) and peroxisome proliferator-activated receptor-α (PPARα)
activators (fibrates, e.g. fenofibrate) exhibit cardiovascular anti-inflammatory
and antioxidant properties and correct endothelial dysfunction induced by
ANG II (Diep et al. 2002).

1.5.7
Atherosclerosis

Disruption of the NO–ROS balance contributes to endothelial dysfunction and
leads to vascular injury and atherosclerosis. Endothelial, leucocyte and platelet
AT1R contribute to the development of hypercholesterolaemia and atheroscle-
rosis (Papademetriou 2002; Strawn and Ferrario 2002). AT1R blockers are
anti-atherosclerotic and reduceoxidative stress in the vessel wall (Rueckschloss
et al. 2002). Hypercholesterolaemia is associated with AT1R upregulation, en-
dothelial dysfunction and increased NAD(P)H oxidase-dependent superoxide
production (Warnholtz et al. 1999; Nickenig and Harrison 2002), which is pre-
vented by statin treatment through a mechanism that is independent of the
lipid-lowering effect of the drugs. Thus, ARBs may represent a novel approach
for the prevention of vascular dysfunction associated with hypercholestero-
laemia, independent of lipid-lowering and blood pressure-lowering interven-
tions (Wassmann et al. 2002). The recent observation of insulin resistance-
induced upregulation of AT1R expression could further explain the association
of insulin resistance with endothelial dysfunction and hypertension (Shinozaki
et al. 2004). Conversely, evidence from AT2R knockout mice suggests that AT2R
protect both heart and brain tissue from ischaemia (Iwai et al. 2004). Treatment
with an AT1R antagonist before vascular injury decreases neointima formation
in wild-type but not AT2R knockout mice, whereas treatment with an AT2R an-
tagonist before injury has no effect. These results suggest that AT2R-mediated
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ANG II signalling is not essential for the development of neointimal formation,
although it may modify it (Harada et al. 1999).

2
Bradykinin

Components of the kallikrein–kinin system (KKS) have been under investi-
gation since 1909, when a hypotensive factor was found in the urine and was
later identified as kallikrein. In 1949, Rocha e Silva and collaborators discov-
ered that blood containing the venom of Bothrops jararaca (South American
pit viper) caused slow contractions in an isolated preparation of guinea-pig
ileum, which was made refractory to the venom itself. They coined a name
derived from Greek for this active factor, using the word kinin (indicating
movement) with the prefix brady (indicating slow) to describe the slow effect
of the substance on the guinea-pig ileum (Beraldo and Rocha e Silva 1949).

2.1
Synthesis

There are two pathways that generate BK (Fig. 1). The simpler of the two
has two components: the enzyme, tissue kallikrein (Margolius 1998), secreted
by many cells (especially salivary glands, pancreatic exocrine gland, lung,
kidney, intestine, brain) and the substrate, low molecular weight kininogen
(LMWK), an α2-globulin synthesised in the liver (Muller-Esterl et al. 1985).
Tissue kallikrein digests LMWK to yield the decapeptide, lysyl-BK (kallidin).
The second pathway of BK formation is part of the intrinsic coagulation path-
way (Kaplan et al. 1998). BK is formed when plasma kallikrein acts on high
molecular weight kininogen (HMWK), which is synthesised and secreted from
the liver by alternative splicing of the same gene that encodes LMWK (Nakan-
ishi 1987). Tissue kallikrein prefers LMWK but is also capable of cleaving
HMWK, whereas plasma kallikrein cleaves HMWK exclusively. BK is subject
to rapid enzymatic degradation and has a plasma half-life of 10–50 s (Decarie
et al. 1996). It is metabolised by several peptidases (collectively known as kini-
nases). A plasma amino-peptidase named carboxypeptidase-N converts BK to
[des-Arg9]-BK and kallidin to [des-Arg10]-lysyl-BK. ACE is probably the most
important enzyme for degrading BK in the circulation (Erdos 1990a), while
neutral endopeptidase (NEP) (EC 3.4.24.11) appears to be the most important
enzyme for the degradation of BK in the airways (Frossard et al. 1990).

2.2
Receptors

At least two BK receptor subtypes (B1 or BKB1R and B2 or BKB2R) are recog-
nised, based on the rank order of potency of kinin agonists (Regoli and
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Barabe 1980). BKB1R demonstrate decreasing affinity for [des-Arg10]-lysyl-
BK>[des-Arg9]-BK = lysyl BK >> BK; BKB2R demonstrate decreasing affinity
for BK = lysyl-BK >> [des-Arg10]-lysyl-BK > [des-Arg9]-BK. BK and lysyl-BK
(kallidin) stimulate constitutively-producedBKB2R(VavrekandStewart1985),
whereas [des-Arg9]-BK or [des-Arg10]-lysyl-BK stimulate BKB1R (Regoli and
Barabe 1980), induced as a result of inflammation (Marceau et al. 1980). Both
BKB1R and BKB2R are G protein-coupled receptors primarily linked to phos-
pholipase C activation, and cause intracellular calcium mobilisation by inositol
1,4,5-trisphosphate. Unlike the BKB2R, BKB1R are resistant to desensitisation
and are not phosphorylated or internalised after agonist stimulation (Blaukat
et al. 1999).

2.3
Receptor Antagonists

There is significant interest in developing BKB1R antagonists as possible in-
terventions in chronic inflammation. There have been limited clinical trials of
a few BKB1R antagonists. Deltibant had some efficacy in closed head trauma,
but was not effective in septic shock (Fein et al. 1997). B-9340 was found to be
effective against vasodilatation in patients with heart failure (Witherow et al.
2001). A third antagonist, B-9870, is in the pre-clinical stage for the potential
treatment of lung cancer (Chan et al. 2002). One BKB1R agonist has been used
in patients with brain tumours to increase permeability of the blood–brain
barrier in order to increase penetration of chemotherapeutic drugs (Bartus
et al. 1996).

2.4
Signalling

Application of exogenous BK on human or animal tissues reproduces the four
classic signs of inflammation: redness, local heat, swelling and pain. Redness
and local heat are caused by local endothelium-dependent vasodilatation. The
stimulation of endothelial cells also results in increased microvascular per-
meability, which contributes to accumulation of protein-rich fluid from the
circulation (swelling). BK produces pain through stimulation of its receptors
in the sensory endings of non-myelinated afferent neurons and causes contrac-
tion of several types of smooth muscle preparations, including human bronchi,
colon and bladder. BK releases NO, prostaglandin (PG)I2 and PGE2 from en-
dothelial cells in a number of tissues (Jose et al. 1981), via the breakdown of
inositol lipids to inositol 1,4,5-trisphosphate (Derian and Moskowitz 1986).
Endothelium-dependent hyperpolarisation of smooth muscle cells appears to
be the principal mechanism involved in BK-induced relaxation of isolated
human coronary arterioles (Batenburg et al. 2004b).
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2.5
Effects

2.5.1
Neovascularisation

Daily administration of BK into sponge implants enhances basal sponge-
induced neovascularisation (Hu and Fan 1993). This effect is significantly po-
tentiated by interleukin (IL)-1α. The BK/IL-1α-induced neovascularisation is
abolished by the BKB1R antagonist [Leu8] des-Arg9-BK, but not by the BKB2R
antagonist Ac-d-Arg-[Hyp3, d-Phe7, Leu8]-BK, suggesting that blockade of
BKB1R may provide effective treatment for chronic inflammatory diseases. BK
promotes growth of endothelial cells from postcapillary venules (Morbidelli
et al. 1998) by upregulating c-Fos expression and potentiating the growth pro-
moting effect of FGF-2 via activation of the NOS pathway. Only the BKB1R
appear to be responsible for BK-induced proliferation, suggesting that these
receptors might be implicated in promoting angiogenesis (Parenti et al. 2001).
On the other hand, BKB2R-mediated angiogenesis occurs via recruitment of
inflammatory mediators, requires higher tissue levels of BK, does not involve
endothelial cell proliferation and is linked to phospholipase C activation. Like
VEGF, BK also induces angiogenesis via BKB2R-mediated transactivation of
KDR/Flk-1 accompanied by eNOS activation (Miura et al. 2003). The pro-
angiogenic effect of ACE inhibitors is mediated through BKB2R activation and
increased eNOS protein levels (Silvestre et al. 2001). BK antagonists stimulate
apoptosis in cancer by blocking intracellular increase of calcium and stimulat-
ing the mitogen-activated protein (MAP) kinase pathway to produce caspase
activation (Stewart 2003).

2.5.2
Hypertension

BK interacts with the RAS to stimulate renin gene expression (Yosipiv et al.
2001). BKB2R knockout mice overloaded with a high salt diet develop malig-
nant hypertension (Alfie et al. 1996), suppression of the RAS, abnormal kidney
development (El-Dahr et al. 2000) and cardiac impairment (Emanueli et al.
1999). The vasodilator response to BK is absent in BKB2R-null mice, suggest-
ing the importance of BKB2R in this action of BK (Berthiaume et al. 1997).
The damaging effects of salt overload in the heart implicate the AT1R, and it
is believed that the lack of BKB2R is responsible for failing to counterbalance
the AT1R action in BKB2R-null mice (Madeddu et al. 2000).

2.5.3
Inflammation

Inhibition of BKB2R with the non-peptide FR174657 or with the peptide icat-
ibant attenuates exudate formation in various models of cutaneous inflamma-
tion (Griesbacher and Legat 2000). BK stimulates leucocyte–endothelial cell
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interactions via a BKB2R-initiated, cytochrome P450 epoxygenase-, oxidant-
and PKC-mediated upregulation of cell adhesion molecule (e.g. P-selectin and
ICAM-1) expression (Tayeh and Scicli 1998; Shigematsu et al. 2002). BK also
produces venular protein leakage, an effect that is initiated by stimulation of
BKB2Rand involves cytochromeP450EandPKCactivation,oxidantgeneration
and cytoskeletal reorganisation. BK, acting through BKB2R, induces activation
of the Ras/Raf-1/ERK pathway, which initiates inhibitor of κB kinase (IKK)-α
and NF-κB activation, and ultimately induces COX-2 expression in a human
airway epithelial cell line (Chen et al. 2004). Synthesis of BK from HMWK also
results in the formation of a two-chain peptide (HKa, cleaved high molecu-
lar weight kininogen) which has been reported to bind the β2-integrin Mac-1
on PMN in a Zn2+-dependent manner and to exert anti-adhesive properties
through inhibitionof ICAM-1andMac-1binding (Chavakis et al. 2001). Locally
generated HKa can balance the BK-induced recruitment of leucocytes, thereby
providing a physiological feedback mechanism. Bacterial lipopolysaccharide-
induced BKB1R expression in the rat paw sensitises the rat paw to the oedema-
forming effect of [des-Arg9]-BK in a manner dependent on neutrophil influx,
local NF-κB activation and local formation of tumour necrosis factor (TNF)-α
and IL-1β (Passos et al. 2004). The KKS can be massively activated in bacterial
sepsis, with increased expression of peripheral BKB1R expression (Marceau
et al. 1998). BK antagonists might thus be able to antagonise the circulatory
and systemic components of sepsis. Deltibant, a BKB2R antagonist, has reached
clinical trials for sepsis but has not shown decisive benefits (Fein et al. 1997).
BKB1R have been implicated in nociception (Rupniak et al. 1997) and accumu-
lation of leucocytes in inflamed tissues (Perron et al. 1999). BKB1R-null mice
develop normally but show a drastic reduction in PMN infiltration at sites of
inflammation (Pesquero et al. 2000).

2.5.4
Diabetes

Infusion of BK and ACE inhibitors reduces the hyperglycaemia associated
with streptozotocin-induced insulin-dependent diabetes mellitus in rodents
(Rett et al. 1986). Chronic treatment of animals with a BKB1R antagonist pre-
vents streptozotocin-induced diabetes and reduces β cell damage (Zuccollo
et al. 1999). ACE inhibitors also improve insulin sensitivity in non-insulin-
dependent diabetes mellitus (Gans et al. 1991; Torlone et al. 1991), whereas
BKB2R antagonists reduce insulin sensitivity in normotensive rats (Kohlman
et al. 1995). ACE inhibitors improve sensitivity to insulin and other metabolic
end-points in animal models of type II diabetes (insulin resistant Zucker rats
and diabetic mice KK-Aγ); this is inhibited by icatibant (Wang et al. 2003), sup-
porting the idea that these effects are mediated by endogenous BK and ΒΚΒ2R
(Shiuchi et al. 2002). BK not only increases glucose uptake but also increases
in sulin secretion. Both in vitro (Yang and Hsu 1995) and in vivo (Mikrut et al.
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2001) studies have confirmed that BK stimulates insulin release and a reduction
in blood glucose levels, both of which were inhibited by HOE140, a selective
BKB2R antagonist. BK directly triggers GLUT4 and GLUT1 translocation to
increase the rate of glucose uptake in various cell types (Isami et al. 1996;
Rett et al. 1996; Kishi et al. 1998). The insulin receptor is a protein tyrosine
kinase that, when activated by insulin binding, undergoes rapid autophospho-
rylation and phosphorylates intracellular protein substrates such as insulin
receptor substrate-1 (IRS-1). Following tyrosine phosphorylation, IRS-1 acts
as docking protein for several molecules including PI3-kinase. BK and the
ACE inhibitor captopril increase insulin-stimulated tyrosine phosphorylation
of the insulin-receptor and IRS-1 in the liver and muscle of rats (Carvalho
et al. 1997). Aprotinin, an inhibitor of kallikrein, antagonises the exercise- or
hypoxia-induced increase in blood flow and glucose uptake in skeletal muscle
(Dietze et al. 1980).

2.6
Interactions with eNOS

Endothelial BKB2R co-immunoprecipitate with eNOS (Ju et al. 1998). BK stim-
ulation causes a transient rise in endothelial [Ca2+]i levels, followed by dephos-
phorylation of eNOS at Thr497, dissociation of eNOS from BKB2R and subse-
quent eNOS activation accompanied by phosphorylation of Ser617, Ser635 and
Ser1179 (Venema 2002). Additionally, BK stimulation of bovine aortic endothe-
lial cells causes dissociation of eNOS-Raf-1-ERK-Akt heterotrimeric complex,
leading to activation of ERK and phosphorylation of eNOS (Bernier et al.
2000). Sustained activation of eNOS by BK results in downregulation of eNOS
synthesis, whereas sustained inhibition of BK receptors results in an upregula-
tion of eNOS synthesis (Vaziri et al. 2005), suggesting an adaptive physiologic
response of eNOS expression mediated by BK-derived NO.

3
Angiotensin–BK Interactions

There are multiple levels of interaction between ANG II and BK. Both ANG II
and BK stimulate phosphoinositide turnover and pathways that generate Ca2+

(Ogino and Costa 1992). In sympathetically innervated tissues, ANG II and BK
facilitate the release of noradrenaline evoked by electrical stimulation (Starke
and Schumann 1972; Guimaraes et al. 1998; Boehm and Kubista 2002). The
two peptides also share common binding sites on ACE. Additionally, while
AT2R stimulate the production of BK in smooth muscle cells (Tsutsumi et al.
1999), BK stimulates renin gene activity (Yosipiv et al. 2001). Furthermore,
AT1R and BKB2R form heterodimers. ANG-(1–7) interacts with both BK and
ACE. Endothelial cells contain BKB2R, which potently stimulate production
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of NO. ANG II is a potent stimulus for vasoconstriction and vascular smooth
muscle hypertrophy, whereas NO has a vasodepressor effect and has been
shown to be an antiproliferative agent. In rats, AT2R stimulation induces a sys-
temic vasodilator response mediated by BK and NO that counterbalances the
vasoconstrictor action of ANG II via the AT1R (Carey et al. 2001). ANG II
infusion in BKB2R-null mice produces much stronger hypertension than in
wild-type, suggesting that the KKS selectively buffers the vasoconstrictor ac-
tivity of ANG II (Maly et al. 2001). In isolated rat hearts, inhibition of BKB2R
with HOE140 increases myocardial ischaemia/reperfusion injury, whereas in-
hibition of AT1R with losartan reduces it (Sato et al. 2000). AT1R knockout
mice exhibit activated KKS that ameliorates the severity of renal vascular dis-
ease (Tsuchida et al. 1999). In the developing kidney, there is much cross-talk
between the RAS and KKS. High salt load during gestation suppresses fetal RAS
and provokes abnormal renal development in the BKB2R knockout mouse (El-
Dahr et al. 2000). These interactions, along with the roles of ACE, cross-talk
between BK and ANG-(1–7) and the opposite effects of AT1R and AT2R acti-
vation, support the hypothesis of a counterbalance between the KKS and the
RAS.

3.1
Biosynthesis and Degradation

The first recognised important link between ANG II and BK was the discovery
that kininase II, a major BK-degrading enzyme, was indeed ACE, the enzyme
that catalyzes the formation of ANG II (Erdos and Yang 1967; Yang and Erdos
1967; Yang et al. 1971). ACE inhibitors exert their beneficial cardiovascular ef-
fects via the inhibition of both ANG II formation and BK breakdown. Recently,
a homologue of ACE, ACE2, has been recognised (Tipnis et al. 2000; Bernstein
2002; Crackower et al. 2002). ACE2 degrades ANG I by removing the carboxy
terminal lysine, making the peptide ANG-(1–9), which enhances arachidonic
acid release by BK and resensitises the BKB2R (Marcic et al. 1999; Bernstein
2002). The ACE2 product, ANG-(1–7), also acts as an ACE inhibitor (Tom
et al. 2001), and may stimulate BK release via AT2R. Recent studies indicate
that the enzyme prolylcarboxypeptidase, an ANG II-inactivating enzyme, is
a prekallikrein activator. The ability of prolylcarboxypeptidase to act in the
KKS and the RAS indicates a novel interaction between these two systems.
There is also evidence that the BK-potentiating effects of ACE inhibitors may
include a mechanism independent of BK hydrolysis, i.e. there may be ACE-
BKB2R cross-talk, resulting in BKB2R upregulation as well as direct activation
of BKB1R by ACE inhibitors (Busse and Fleming 1996; Minshall et al. 1997;
Benzing et al. 1999). The mechanism behind this phenomenon may require
ACE-BKB2R co-localisation on the endothelial cell membrane (Erdos et al.
1999; Marcic et al. 1999; Tom et al. 2003).



270 C. Dimitropoulou et al.

3.2
BK Interactions with Angiotensin (1–7)

3.2.1
Stimulation of BK Release by ANG-(1–7)

ANG-(1–7) was originally considered to be an inactive product of ANG II
metabolism because of its inability to mimic the vasoconstrictor or aldos-
terone-secreting actions of ANG II (Ferrario et al. 1991). It is now known
that ANG-(1–7) is a biologically active peptide with distinct and often op-
posite effects from those of ANG II (Ferrario et al. 1997). ANG-(1–7) elicits
prostaglandin production from astrocytes, smooth muscle and endothelial
cells (Jaiswal et al. 1992). In contrast to the vasoconstrictive effects of ANG II,
ANG-(1–7) is a vasodilator (Benter et al. 1995), relaxes coronary arterial rings
(Porsti et al. 1994), pial arterioles (Meng and Busija 1993) and mesenteric ar-
teries (Osei et al. 1993), and reduces blood pressure in SHR (Benter et al. 1995)
and renovascular hypertensive dogs (Nakamoto et al. 1995). These effects are
blocked by removal of endothelium or pretreatment with an NO synthase in-
hibitor (Porsti et al. 1994; Brosnihan et al. 1996). Moreover ANG-(1–7)-induced
relaxation is not affected by AT1R or AT2R blockade, but is attenuated by the
BKB2R antagonist HOE140, or prior exposure to the competitive nonselective
ATR antagonist [Sar1,Thr8]-ANGII (saralasin). These results suggest that the
biological activity of ANG-(1–7) is mediated through activation of another AT
receptor and that it involves release of vasoactive kinins (Porsti et al. 1994;
Brosnihan et al. 1996). In the presence of NO synthesis inhibitors, ANG-(1–7)
elicits an endothelium-dependent antagonism of ANG II, via activation of
AT2R and ANG-(1–7) receptors, in rats under normal or high sodium intake,
which is abolished by low sodium intake, suggesting that it may also serve as
a negative feedback towards ANG II in response to altered sodium intake (Roks
et al. 2004).

3.2.2
Potentiation of the Effects of BK by ANG-(1–7)

ThepotentiatingeffectofANG-(1–7)onBKwasfirstdescribed inconscious rats
(Paula et al. 1995); intravenous ANG-(1–7) potentiated—by two- to tenfold—
the vasodepressor response to BK. Similar results were obtained in normoten-
sive and hypertensive rats and isolated rat heart (Lima et al. 1997; Almeida et al.
2000). This response is specific to ANG-(1–7), since neither acetylcholine nor
sodium nitroprusside—or prostaglandins—augment BK-induced relaxation
(Li et al. 1997c), and involves BKB2R and a novel ATR (i.e. not AT1R or AT2R)
in an endothelium-dependent manner (Tallant et al. 1997). The ACE inhibitor
lisinopril enhances BK-induced vasodilatation, but abolishes the synergistic
action of ANG-(1–7) on BK. ANG-(1–7) also reduces the degradation of 125I-
[Tyr]-BK and the appearance of the BK-(1–7) and BK-(1–5) metabolites by
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inhibiting ACE activity with an IC50 of 650 nM, supporting the idea that ANG-
(1–7) acts as a local synergistic modulator of kinin-induced vasodilatation by
inhibiting ACE and releasing NO (Li et al. 1997c). The ANG-(1–7)-dependent
release of NO from endothelial cells is attenuated by NO synthase inhibition
or the BKB2R antagonist icatibant (HOE140) and is associated with very low
concomitant production of superoxide (Heitsch et al. 2001). This potentiating
effect, which is present in Wistar rats and SHR (Paula et al. 1995; Lima et al.
1997; Almeida et al. 2000), has been shown to disappear in arterioles of the
mesenteric arteriolar bed of diabetic rats and is restored by chronic but not
acute insulin treatment (Oliveira et al. 2002, 2003). Infusion of the ANG-(1–7)
antagonist A-779 does not modify the ANG II pressor effect or the inhibition of
ANG I metabolism by captopril. However, A-779 reduces the potentiating effect
of captopril on the hypotensive effect of BK (Maia et al. 2004), demonstrat-
ing that endogenous ANG-(1–7), or an ANG-(1–7)-related peptide (or both)
plays an important role in the BK potentiation by ACE inhibitors through
a mechanism not dependent upon inhibition of the ACE hydrolytic activity.
The mechanisms behind the BK potentiating activity of ANG-(1–7) appear
complex and involve receptor-mediated facilitation of NO (Li et al. 1997c;
Almeida et al. 2000; Heitsch et al. 2001) and prostaglandin release (Paula et al.
1995; Aparecida Oliveira et al. 1999; Almeida et al. 2000; Fernandes et al. 2001),
endothelium derived hyperpolarising factor (Fernandes et al. 2001), ACE in-
hibition (Li et al. 1997c; Tom et al. 2001) and binding of ANG-(1–7) to ACE to
facilitate the cross-talk between ACE and BKB2R (Deddish et al. 2002; Tsutsumi
et al. 1999).

3.2.3
Resensitisation of BK Receptors by ANG-(1–7)

ANG-(1–7) indirectly resensitises B2 receptors via induction of a cross-talk
between the BKB2R and ACE on plasma membranes without having a direct
effect on the BKB2R and BK hydrolysis (Deddish et al. 2002).

3.3
BK Interactions with Angiotensin Type 2 Receptors

It has been suggested that some of the beneficial effects of AT2R stimulation
may be mediated through the BK/NO cascade.

3.3.1
BK and AT2R: Mediated NO Release

Evidence for the interaction between ANG II and BK at the level of the ATR was
recognised by the finding that formation of nitrite in response to angiotensin
peptides is due to the activation of kinin production (Seyedi et al. 1995).
The RAS stimulates renal BK production and cGMP formation through the
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AT2R; inhibition of renin, not of AT1R, decreases renal BK levels during salt
depletion (Siragy et al. 1996). Furthermore, in stroke-prone SHR, infusion
of ANG II increases aortic cGMP content, an effect inhibited by either AT2R
blockade, NO-synthesis inhibition or BKB2R blockade (Gohlke et al. 1998) and
suggesting that stimulation of AT2R releases BK and NO (Seyedi et al. 1995; Liu
et al. 1997; Gohlke et al. 1998; Henrion et al. 2001). Mice overexpressing AT2R
exhibit an attenuated pressor response to ANG II infusion; pretreatment with
an AT2R antagonist, a BKB2R antagonist or an NO synthase inhibitor restored
the pressor response to ANG II. ANG II produces a paradoxical decrease in
bloodpressure afterAT1Rblockade, suggesting that selectiveAT2Rstimulation
has a vasodepressor effect, which is associated with an endothelium-dependent
increase in cGMP and activation of the KKS (Tsutsumi et al. 1999).

3.3.2
BK and AT2R: Mediated Flow-Dependent Vasodilatation

BK is thought to be a primary mediator of ANG II-induced flow-dependent va-
sodilatation, since blockade of BKB2R reduces the dilator response to flow
(Bergaya et al. 2001; Katada and Majima 2002). Inhibition of AT2R with
PD123319 reduces flow-induced dilatation in wild-type (TK+/+) mice, but not
in tissue kallikrein-deficient mice (TK−/−). Combining PD123319 with the
BKB2R antagonist HOE140 has no additional effect on AT2R blockade alone
in TK+/+ arteries (Bergaya et al. 2004). Furthermore, HOE140 reduces the re-
sponse to flow in AT2R+/+, but not in AT2R−/− mice. AT2R also stimulate NO
production by two alternative pathways: through the BKB2R and by direct
stimulation of NO and cGMP, as demonstrated in BKB2R-null mice (Abadir
et al. 2003).

3.3.3
BK and AT2R: Mediated Effects on the Myocardium

BK exerts cardioprotective actions which are mediated via BKB2R (Dendorfer
et al. 1999). In a rat model of chronic heart failure, left ventricular remodelling
and cardiac function were improved by blockade of AT1R (Liu et al. 1997).
This effect was inhibited by treatment with an AT2R antagonist and also, in
part, by treatment with a BKB2R antagonist. Following regional myocardial
ischaemia in pigs, infarct size was reduced by AT1R blockade, and this re-
duction was abolished by pretreatment with the AT2R antagonist PD123319
and by BKB2R blockade (Jalowy et al. 1998). Reduction of perivascular fibrosis
by overexpressing cardiac AT2R after pressure overload was abolished after
BKB2R blockade or NO synthase inhibition, suggesting that the inhibition of
perivascular fibrosis by stimulation of myocyte AT2R was BK/NO-dependent
(Kurisu et al. 2003).
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3.4
BK Interactions with Angiotensin Type 1 Receptors

Although ANG II stimulates AT2R to release NO, and indirectly BK, there is
additional evidence that there also is an interaction between AT1R and the
BKB2R (Schmaier 2003). Following myocardial infarction in rats, either ACE
inhibitors or AT1R antagonists prevent remodelling of the left ventricle (Li
et al. 1997c), and this effect is blocked by BKB2R inhibition.

3.4.1
Modulation of BK Levels by Angiotensin Peptides

Canine cardiac interstitial fluid (ISF) BK levels increase during ANG I and
ANG-(1–7), but not ANG II, infusions. ANG I binding to the active site of ACE
and neutral endopeptidases, combined with the formation of large amounts of
ANG-(1–7) with its inhibitory effects on ACE, could provide a mechanism for
the increase of ISF BK (Wei et al. 2002).

3.4.2
Upregulation of BK Type 2 Receptors

Infusion of ANG II results in the upregulation of BKB2R messenger RNA
(mRNA) levels (Kintsurashvili et al. 2001).TargeteddisruptionofAT1ARresults
in decreased expression of BKB2R, thus implicating a role for the ATA1AR in
modulating the expression of BKB2R. ANG II stimulates BKB2R expression
at the transcriptional level via activation of the p42/p44MAPK pathway, since
selective inhibition of the p42/p44MAPK blocks the ANG II-induced increase
in BKB2R expression, whereas inhibition of the p38MAPK pathway does not
(Tan et al. 2004).

3.4.3
Angiotensin–BK Receptor Heterodimerisation

AT1R communicate with BKB2R and form stable heterodimers, which activate
Gαq and Gαi proteins in response to ANG II stimulation. Heterodimerisation
also results in a change in the endocytic pathways of both receptors (AbdAlla
et al. 2000). Heterodimerisation between AT1R and BKB2R occurs in platelets
and omental vessels in pre-eclamptic women (AbdAlla et al. 2001b). This in-
teraction results in a four- to five-fold increase in protein levels of the BKB2R.
AT2R also bind AT1R to form additional heterodimers that antagonise AT1R
function. BKB2R, BKB1R and AT1R are linked to Gαi and Gαq, but with differ-
ent physiological functions, suggesting that signalling may occur outside the
classic G protein interactions. EP24.15, a widely distributed cytosolic enzyme,
which can degrade ANG I and II and BK and which is identified as a putative
soluble ANG II binding protein (Kiron and Soffer 1989), associates with AT1R
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and BKB2R both at the plasma membrane and after receptor internalisation.
This association suggests a possible mechanism for endosomal disposition of
ligand that may facilitate receptor recycling (Shivakumar et al. 2004).

4
Angiotensin Converting Enzyme (ACE)

4.1
Expression

ACE, an ectoenzyme anchored to the plasma membrane with the bulk of its
mass exposed to the extracellular surface of the cell (Corvol et al. 1995), is
a key enzyme of the RAS. ACE was originally identified (Skeggs et al. 1956)
as a “hypertensin-converting enzyme”. A soluble form of ACE is also present
in serum and other body fluids; however, it is the tissue-bound form of ACE
that is proposed to control both blood pressure and renal function (Esther
et al. 1997). Through its actions on ANG I and BK, ACE regulates the balance
between the RAS and the KKS and has an important role in vascular tone
and blood pressure regulation. The primary specificity of ACE is to cleave car-
boxyterminal dipeptides from oligopeptide substrates with a free C terminus
in the absence of a penultimate proline residue. It is via this action that ACE
hydrolyses both ANG I and BK (Skeggs et al. 1956; Yang et al. 1970; Corvol
et al. 1995). In addition to acting on ANG II and BK, ACE is also able to act as
an endopeptidase on certain substrates which are amidated at the C termini
by cleaving a C terminal dipeptide amide. ACE can also cleave a C terminal
tripeptide amide from substance P and luteinising hormone-releasing hor-
mone (LHRH). ACE exists in two distinct forms. The somatic form of ACE is
present on the endothelial surface of all vessels examined to date and on the
brush-border membranes of the kidney, intestine, placenta and choroid plexus.
The germinal form, found exclusively in testis, plays a crucial role in fertility
(Turner and Hooper 2002). Somatic ACE (Mr 180,000) is composed of two
homologous domains, the (NH2) N-domain and the (COOH) C-domain, each
of which contains an active site (Soubrier et al. 1988). Each domain contains
the typical zinc-binding motif (His-Glu-X-X-His) found in many zinc pepti-
dases. In this motif, the two histidines represent two of the zinc ligands, with
the third being a glutamate residue on the C-terminal side of the motif. Thus,
ACE is classified as a member of the M2 gluzincin family. The two domains
of somatic ACE differ in substrate specificity; for example, the N-domain hy-
drolyses the Trp3-Ser4 bond of LHRH much faster than does the C-domain.
The haemoregulatory peptide N-acetyl-Ser-Asp-Lys-Pro is the most specific
substrate identified to date for the N-domain (Rousseau et al. 1995), but a sub-
strate specific for the C-domain has not yet been found. The two domains
hydrolyse ANG I and BK at a comparable rate, although the C-domain requires
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high concentrations of Cl− for optimal activity, a property that seems to be
conferred by a single arginine residue (Arg1098) in this domain (Liu et al. 2001).
Germinal ACE (Mr 100,000) contains a single catalytic site corresponding to
the C-domain of somatic ACE (Ehlers et al. 1989). The somatic and germinal
forms of ACE mRNA are transcribed from the same gene using alternative
promoters (Hubert et al. 1991).

Recently, two groups (Donoghue et al. 2000; Tipnis et al. 2000) reported data
on the first known homologue of ACE, which they termed ACE2 and ACEH,
respectively. This enzyme, now commonly referred to as ACE2, has many
similarities to ACE. ACE2 is a type I integral membrane peptidase showing
40% identity and 61% similarity with ACE and conserving the critical active
site residues. Like germinal ACE, ACE2 contains a single catalytic domain.
Also similar to ACE, ACE2 is expressed in endothelial cells; however, its basal
expression is restricted to heart, kidney and testis (Donoghue et al. 2000;
Tipnis et al. 2000). ACE2 does display some differences from ACE; it functions
exclusivelyasacarboxypeptidase,hydrolysingeitheraromaticorbasic residues
from the C-terminus and preferring a prolyl residue in the P1 position (Turner
and Hooper 2002; Vickers et al. 2002). ACE2 hydrolyses both ANG I and ANG II
but not BK. ACE2 cleaves ANG I to a nonapeptide ANG-(1–9) and directly
converts ANG II to ANG-(1–7) (Iyer et al. 2000; Lemos et al. 2002; Ren et al.
2002; Turner and Hooper 2002). Kinetically, ACE2 is a 100-fold faster degrading
enzymeofANGII toANG-(1–7) thanprolylcarboxypeptidase (Odyaet al. 1978;
Vickers et al. 2002). Although it does not degrade BK, it degrades [des-Arg9]-
BKat its carboxy terminal amino acid (Donoghue et al. 2000). To date, ACE2 has
proved to be insensitive to all ACE inhibitors. ACE2 is thought to remove the C-
terminal residue from three other vasoactive peptides, neurotensin, kinetensin
(a neurotensin-related peptide) and [des-Arg9]-BK. ACE2 also acts on apelin-
13 and apelin-36, peptides with high catalytic efficiency (Vickers et al. 2002).
Although the role of the apelins is not fully elucidated, systemic administration
of apelin-13 promotes hypotension in rats (Tatemoto et al. 2001). Despite
their homologous catalytic domains, ACE2 and ACE are biochemically and
pharmacologically distinct. It has been suggested that both ACE and ACE2 are
involved in blood pressure regulation (Danilczyk et al. 2003).

4.2
Molecular Regulation

The primary structure of ACE was revealed by protein sequencing of human
kidney ACE followed by complementary DNA (cDNA) cloning in endothelial
cell libraries (Soubrier et al. 1988). The mouse ACE enzyme has a high overall
homology with human ACE (Bernstein et al. 1989). In human endothelial cells,
ACE is encoded by a 4.3-kb mRNA species. The coding sequence comprises
1,306 residues, including a signal peptide of 29 amino acids (Costerousse et al.
1992). In addition to the membrane-bound form, ACE exists as a soluble pro-
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tein. A membrane-associated protease, the ACE secretase, acts on both ACE
isozymes to liberate the soluble forms that circulate in the serum and other
body fluids (Ramchandran and Sen 1995). The soluble form of ACE circu-
lates in plasma at the relatively high concentration of 10−9 M, although the
plasma enzyme is considered physiologically less important for the processing
of peptides in the circulation than the membrane-bound endothelial enzyme
(Alhenc-Gelas et al. 1983; Erdos 1990b). Plasma ACE levels vary widely between
individuals; however, when measured repeatedly in a given subject, levels re-
main remarkably constant (Alhenc-Gelas et al. 1983, 1991). A study of plasma
ACE levels in nuclear families revealed intrafamilial correlations between ge-
netically related members, with the genetic analysis suggesting that a major
gene effect was responsible for a large part of the inter-individual variability
in plasma ACE levels (Cambien et al. 1988). This has been confirmed after
the cloning of ACE DNA where an insertion-deletion polymorphism, located
in an intron of the ACE gene, was discovered, and it was recognised that this
polymorphism was associated with differences in the concentration of ACE in
plasma (Rigat et al. 1990). Homozygotes for the insertion (II) have lower serum
ACE levels than those homozygotes for the deletion (DD); heterozygotes (ID)
have intermediate levels. The molecular mechanisms involved in the genetic
control of ACE expression as well as the physiological consequences of this
regulation are still being investigated.

To determine whether local vascular production of ANG II is necessary for
the normal regulation of blood pressure, a line of genetically altered mice lack-
ing endothelial ACE was developed using targeted homologous recombination
to separate the transcriptional control of somatic ACE from its endogenous
promoter, by substituting control to the albumin promoter (Cole et al. 2002).
Thesemice, termedACE.3, expressACE in the liverbutnot in the lung, the aorta
or any vascular structure. Liver ACE appeared to compensate for the lack of en-
dothelial ACE expression, so that ACE.3−/− mice have normal levels of plasma
ANG II, normal blood pressure levels, normal response to ACE inhibitors and
normal renal function. Conversely, mice lacking all ACE presented a pheno-
type of approximately 35 mmHg lower blood pressure than control animals
(Krege et al. 1995; Esther et al. 1996). Despite having all other compensatory
systems intact, these mice cannot effectively compensate and maintain their
blood pressure. Similarly, decreased blood pressure was observed in mice lack-
ing angiotensinogen (Tanimoto et al. 1994), renin (Yanai et al. 2000) or both
isoforms of the AT1R (Oliverio et al. 1998; Tsuchida et al. 1998). In all these
animals, the RAS proved to be vital for blood pressure regulation.

ACE-like proteins have been identified in lower organisms, such as Dro-
sophila (Brakebusch et al. 1994; Williams et al. 1996), indicating that it is an
evolutionary-conserved protein that also shows an overall sequence homology
of 80%–90% across mammalian species (Santhamma et al. 2004). This evolu-
tionary conservation of ACE, along with its widespread distribution in many
organs within a species, suggests that it plays a bigger role than just its role in
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the RAS (Santhamma et al. 2004). The abnormal phenotype of ACE knockout
mice further supports this notion.

4.3
Inhibitors

Inhibition of tissue ACE decreases ANG II, oxidative stress and ANG II-induced
inflammation. BK formation is also increased, resulting in increased NO and
prostacyclin, which have anti-inflammatory, antithrombotic and vasorelaxant
actions (Dzau 2001). Tissue ACE inhibition has therefore emerged as an im-
portant therapeutic target for treating cardiovascular disease. In addition to
hypertension and congestive heart failure, ACE inhibitors are effective in the
treatment of coronary heart disease (Dzau et al. 2002) and myocardial infarc-
tion (Mukae et al. 2000). ACE inhibitors interfere with the metabolism of both
ANG I and BK.

The first ACE inhibitors were developed from the venom on the South
American pit viper, B. jararaca (Ferreira et al. 1970). Ferreira and colleagues
described a mixture of peptides extracted from this venom as BK potenti-
ating factor (BPF) (Ferreira et al. 1970). Further observations revealed that
these peptides inhibited a converting enzyme responsible for cleaving ANG I
and catalysing the degradation and inactivation of BK, and reduced blood
pressure (Davis and Freeman 1982). The first marketed ACE inhibitor was
the nonapeptide BPF9a, or teprotide, an effective, parenterally administered,
competitive inhibitor of ACE, with a short half-life in vivo (Antonaccio and
Cushman 1981). The first orally active ACE inhibitor, captopril, was designed
based on the hypothesis that ACE and carboxypeptidase A were structurally
similar and functioned via comparable mechanisms (Cushman et al. 1980).
Captopril is a very potent ACE inhibitor, partly due to the sulphydryl moiety
present in its structure, which binds tightly to the zinc ion of ACE (Cushman
et al. 1978). However, the sulphydryl moiety was also responsible for many of
the side-effects associated with the use of captopril, such as skin rash and loss
of taste (Cushman et al. 1978; Todd and Heel 1986).

Non-thiol ACE inhibitors were subsequently developed (the first one being
enalapril) with the additional expectation that the removal of the sulphydryl
group would result in a drug with longer duration of action, since the sulphur of
captopril easily undergoes oxidation and disulphide exchange reaction (Patch-
ett 1984). Enalapril is an orally active precursor that is rapidly metabolised to
the active compound, enalaprilat, a very potent ACE inhibitor (Sweet 1983).
Although many ACE inhibitors are now available, there is continuing uncer-
tainty about the mechanism of their therapeutic benefit and the effect of ACE
inhibition on ANG II levels (Campbell et al. 2004). Some patients on ACE
inhibitors fail to show reduced ANG II levels, leading to the proposal that alter-
nate enzymes such as chymase may convert ANG I to ANG II (Dell’Italia and
Husain 2002). However, work in both mice with reduced ACE gene expression
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and in lisinopril-treated mice indicates that ACE is the predominant pathway
of ANG II formation (Campbell et al. 2004). The persistence of measurable
levels of ANG II in mice with reduced ACE gene expression or ACE inhibition
indicates that non-ACE enzymes contribute to ANG II formation in the ab-
sence of ACE. Better understanding of the role of non-ACE enzymes in ANG II
formation will help clarify the mechanism of the therapeutic effects of ACE
inhibition.

4.4
ACE as an Index of Endothelial Function

Pulmonary vascular endothelial enzymatic processes may be altered as a pre-
quel to morphological or clinical signs of lung dysfunction (Orfanos et al.
1999). In the lung, ACE is uniformly distributed along the luminal surface of
the endothelial cells and thus could serve as index of tissue integrity (Orfanos
et al. 1994). There are several reports of estimates of ACE activity in vitro using
endogenous or synthetic substrates (Soffer et al. 1974; Ryan et al. 1977, 1978;
Cushman et al. 1978). Synthetic substrates for ACE show low affinity for com-
pounds other than ACE and yield products that are easily separated from the
parent compound when hydrolysed by ACE. The synthetic substrate, benzoyl-
Phe-Ala-Pro (BPAP) is a specific substrate for blood, lung and urine ACE (Ryan
et al. 1978). In thepresenceofACE,BPAP is converted tobenzoyl-phenylalanine
and alanyl-proline. BPAP is extensively metabolised during a single transpul-
monary passage in various animal models (Catravas and Gillis 1981; Dobuler
et al. 1982; Pitt and Lister 1983). Pulmonary ACE activity thus measured de-
creases in various forms of lung injury, and these changes occur before changes
in other structural or clinical parameters (Dobuler et al. 1982; McCormick
et al. 1987; Orfanos et al. 2000a, b; McCloud et al. 2004a, b). Several studies
from our laboratory and others suggest a complex role of endothelium-bound
ACE in the pathogenesis of acute lung injury (Dobuler et al. 1982; Hilgenfeldt
et al. 1987; McCormick et al. 1987; Orfanos et al. 2000a). Downregulation of
endothelium-bound ACE activity may be a response mediated by overproduc-
tion of peroxynitrite, hydroxyl radicals and other reactive oxygen and reactive
nitrogen species, aimed at reducing oxidant stress to the tissue. This decrease
in ACE would allow time for the re-establishment of an anti-inflammatory
environment and promote vascular protection and lung repair.
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Abstract In humans, the endothelins (ETs) comprise a family of three 21-amino-acid pep-
tides, ET-1, ET-2 and ET-3. ET-1 is synthesised from a biologically inactive precursor, Big
ET-1, by an unusual hydrolysis of the Trp21-Val22 bond by the endothelin converting enzyme
(ECE-1). In humans, there are four isoforms (ECE-1a-d) derived from a single gene by the
action of alternative promoters. Structurally, they differ only in the amino acid sequence of
the extreme N-terminus. A second enzyme, ECE-2, also exists as four isoforms and differs
from ECE-1 in requiring an acidic pH for optimal activity. Human chymase can also cleave
Big ET-1 to ET-11-31, which is cleaved, in turn, to the mature peptide as an alternative
pathway. ET-1 is the principal isoform in the human cardiovascular system and remains
one of the most potent constrictors of human vessels discovered. ET-1 is unusual in being
released from a dual secretory pathway. The peptide is continuously released from vascular
endothelial cells by the constitutive pathway, producing intense constriction of the underly-
ing smooth muscle and contributing to the maintenance of endogenous vascular tone. ET-1
is also released from endothelial cell-specific storage granules (Weibel-Palade bodies) in
response to external stimuli. ETs mediate their action by activating two G protein-coupled
receptor sub-types, ETA and ETB. Two therapeutic strategies have emerged to oppose the
actions of ET-1, namely inhibition of the synthetic enzyme by combined ECE/neutral en-
dopeptidase inhibitors such as SLV306, and receptor antagonists such as bosentan. The ET
system is up-regulated in atherosclerosis, and ET antagonists may be of benefit in reducing
blood pressure in essential hypertension. Bosentan, the first ET antagonist approved for
clinical use, represents a significant new therapeutic strategy in the treatment of pulmonary
arterial hypertension (PAH).

Keywords Endothelin converting enzyme · Receptors · Atherosclerosis ·
Essential hypertension · Pulmonary arterial hypertension

1
Introduction

The existence of a peptidic endothelium-derived constricting factor was pro-
posed 20 years ago by Hickey et al. (1985). A trypsin-sensitive factor from
cultured bovine endothelial cells was isolated, but the structure was not de-
termined. In 1988, Yanagisawa and colleagues identified the structure of en-
dothelin (now called endothelin-1 or ET-1) as a 21-amino-acid peptide (Fig. 1).
In a remarkable paper in Nature, they showed that the synthetic peptide had
potent constrictor activity (Yanagisawa et al. 1988), which stimulated a con-
siderable amount of interest, with over 18,000 papers on the subject published
to date. By analysis of the ET-1 gene, two further members of the family,
endothelin-2 (ET-2) and endothelin-3 (ET-3), were identified (Inoue et al.
1989), together with two receptor sub-types, ETA (Arai et al. 1990) and ETB
(Sakurai et al. 1990). Subsequently, novel enzymes responsible for ET synthe-
sis from its precursor-those enzymes being endothelin converting enzyme-1
(ECE-1) (Takahashi et al. 1993; Xu et al. 1994) and ECE-2 (Emoto and Yanagi-
sawa 1995)-were identified.

The aim of this chapter is to focus on ET peptides, receptors and converting
enzymes in the human vascular endothelium and their role in the pathophys-
iology of atherosclerosis, pulmonary arterial and essential hypertension.
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Fig. 1 Structure of ET peptides and their precursors. The site of action of the endothelin con-
verting enzyme (ECE) is indicated with an arrow. (Modified from Davenport and Maguire
2002)

2
Endothelins and Sarafotoxins

2.1
ET-1 and Big ET-1

The structure of ET-1 is unique amongst the mammalian bioactive peptides in
possessing not one but two intramolecular disulphide bonds between cysteine
residues cross-linked at positions 1 and 15 and 3 and 11 (Fig. 1). ET-1 is one
of the few peptides in which the crystal structure has been solved. Residues at
positions 10, 17, 18 and 21 are crucial for binding (Janes et al. 1994).

ET-1 is the principal isoform in the human cardiovascular system and
remains the most potent constrictor of human vessels discovered. ET-1 is un-
usual amongst the mammalian bioactive peptides in being released from a dual
secretory pathway (Russell et al. 1998a, b; Davenport and Russell 2001). The
peptide is continuously released from vascular endothelial cells by the constitu-
tive pathway, producing intense constriction of the underlying smooth muscle
and contributing to the maintenance of endogenous vascular tone (Haynes
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and Webb 1994). The peptide is also released from endothelial cell-specific
storage granules (Weibel-Palade bodies) in response to external physiologi-
cal or perhaps pathophysiological stimuli, producing further vasoconstriction
(Russell et al. 1998a, b; Davenport and Russell 2001). Thus, ET-1 functions
as a locally released, rather than circulating, hormone and concentrations are
comparatively low in plasma and other tissues.

2.2
ET-2 and Big ET-2

ET-2 differs by only two amino acids from ET-1, and despite the relatively large
Leu-to-Trp substitution at position 6, this has little or no effect on the binding
affinity (Fig. 1). Although ET-2 is as potent a vasoconstrictor as ET-1 (Maguire
and Davenport 1995), the peptide has been less extensively studied than ET-1.
ET-2 messenger RNA (mRNA) (O’Reilly et al. 1992, 1993) and ET-2 peptide
(Plumpton et al. 1993, 1996a) have been detected in the human cardiovascular
system. Both ET-2 mRNA (O’Reilly et al. 1993) and the precursor Big ET-2
have been detected in the cytoplasm of endothelial cells (Howard et al. 1992),
suggesting that the peptide may also be released locally from endothelial
cells and contributes to maintaining tone. In support of this hypothesis, Big
ET-2 levels are higher in normal human plasma than Big ET-1 (Matsumoto
et al. 1994). Using a specific enzyme-linked immunosorbent assay (ELISA)
that does not cross-react with ET-1, plasma levels of ET-2 are detectable that
give an average value in 40 volunteers of 0.9±0.03 pmol/l. ET-2 has also been
identified in failing hearts from humans (Plumpton et al. 1993). However, the
precise physiological or pathophysiological role of this isoform remains to be
discovered.

2.3
ET-3 and Big ET-3

Endothelial cells do not synthesise ET-3, but the mature peptide and Big ET-3
are detectable in plasma (Matsumoto et al. 1994) and other tissues including
heart (Plumpton et al. 1996b) and brain (Takahashi et al. 1991). The adrenal
gland may also be a source of Big ET-3 (Davenport et al. 1996). Antisera to
this precursor stained secretory cells of the medulla, although mature ET-3
was not detected within homogenates of adrenal tissue. If released, further
processing of Big ET-3 could occur within the vasculature by smooth muscle
cells (Davenport et al. 1998a), and the adrenals may be a source of the ET-3
that can be detected in human plasma.

ET-3 is unique in that it is the only endogenous isoform that distinguishes
between the two endothelin receptors. It has the same affinity at the ETB
receptor as ET-1 but, at physiological concentrations, has little or no affinity
for the ETA sub-type. In humans, ETA receptors predominate in the human
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vasculature, and the low density of ETB receptors (<15%) present on the
smoothmuscle of the vasculature contribute little to vasoconstriction (Maguire
and Davenport 1995). ETB receptors are the principal sub-type in the kidney,
localising to non-vascular tissues. Evidence is emerging that the ETB sub-type
functions as a clearing receptor to remove ET from the circulation. Blockade of
the ETB receptor results in a rise in circulating immunoreactive ET. Blockade
of the ETB receptor by receptor antagonists results in a corresponding rise in
circulating levelsofET-3 (Plumptonetal. 1996b).ET-3mayplayabeneficial role
in human disease by activating endothelial ETB receptors to release opposing
vasodilators, thus limiting unwanted vasoconstriction.

2.4
Sarafotoxins

The only peptides with a high degree of sequence similarity to the endothelins
are the sarafotoxins, a family of four (S6a, S6b, S6c, S6d) 21-amino-acid pep-
tides that was discovered in the venom of a snake, Atractaspis engaddensis, that
has evolved to immobilise larger mammalian prey. In humans, symptoms of
envenomation include a rapid rise in blood pressure consistent with systemic
vasoconstriction, with changes in ECG consistent with coronary vasoconstric-
tion or direct inotropic actions on the heart (Kurnik et al. 1999). Sarafotoxin
S6c is used as a moderately selective ETB agonist.

3
Endothelin Synthesis

3.1
Endothelin Converting Enzyme-1 (ECE-1)

Following the removal of the signal sequence from pre-proendothelin-1 (a 212-
amino-acid peptide, the initial product of the ET-1 gene), the resulting proen-
dothelin is cleaved by the enzyme furin to yield the 38-amino-acid peptide Big
ET-1. ET-1 is synthesised from Big ET-1 by an unusual hydrolysis of Trp21-Val22

(Fig. 1) catalysed by ECEs, rather than the more frequent Arg-Arg or Arg-Lys
as in other peptide precursors (Turner and Murphy 1996).

mRNA encoding ECE-1 is widely distributed in homogenates of human
tissue (Rossi et al. 1995; Valdenaire et al. 1995; Schweizer et al. 1997). In humans
andothermammals, there are four isoformsofECE-1 (ECE-1a-d), derived from
a single gene by the action of alternative promoters. Structurally, they differ
only in the amino acid sequence of the extreme N-terminus (Shimada et al.
1995a, b; Valdenaire et al. 1995; Turner et al. 1998). mRNA encoding all four
isoforms has been detected in cultured human umbilical vein endothelial cells,
whereas ECE-1a was the only isoform not detected in cultured human smooth
muscle cells (Valdenaire et al. 1999). These sequence differences have been
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exploited to generate site-directed antisera to the deduced amino acids in the
N-terminus of human ECE-1a (ECE-1β2-16), ECE-1b1-16, ECE-1c (ECE-1α(2-16))
and ECE-1d1-14. These antisera have been extensively characterised and used
to compare their cellular distribution in human tissues (Mockridge et al. 1998;
Russell et al. 1998a, c).

ECE-1c (also called ECE-1α) consists of 754 amino acids in man, and
mRNA encoding the protein has been shown to predominate in human tissues
(Schweizer et al. 1997). These studies revealed unexpected anomalies, so that
levels of mRNA encoding ECE-1 were relatively low in human brain compared
with peripheral tissues such as the lungs. In agreement with the molecular
studies, measurement of protein levels showed ECE-1 to be the most abundant
isoform in microsomal fractions prepared from homogenates of a number of
human tissues (Mockridge et al. 1998). In the heart, levels of ECE-1 measured
by competition ELISAn were 0.9±0.3 and 0.4±0.1 pmol/g wet weight in the atria
and ventricles, respectively. These levels are comparatively low, reflecting the
localisation of the enzyme to the endothelium, which represents only a small
proportion of the cell type within the heart.

ECE-1a (also called ECE-1β) is a 758-amino-acid enzyme in humans and,
with ECE-1c, has been detected in human umbilical vein and coronary artery
endothelial cells (Russell et al. 1998a, c). However, the concentration of ECE-
1a in these tissues was below the level for detection by competition ELISA,
suggesting that ECE-1c was the predominant isoform. ECE-1b is a 770-amino-
acid protein that is identical to ECE-1c, except for an additional 17 amino
acids at the N-terminus, replacing the first methionine of ECE-1c. ECE-1b
complementary DNA (cDNA) has only been identified in humans (Schweizer
et al. 1997). Intense immunoreactivity was localised within renal and pul-
monary epithelial cells with lower levels of staining displayed by perivascular
astrocytes and neuronal processes in the cerebral cortex from the brain. In
diseased vessels, ECE-1b antisera stained macrophages infiltrating atheroscle-
rotic plaques within coronary arteries. These results suggest that ECE-1b may
also be expressed in normal and diseased human tissue (Davenport and Kuc
2000). ECE-1d comprises 767 amino acids, and mRNA encoding it was detected
in all human tissues examined (Valdenaire et al. 1999).

The physiological significance of multiple ECE isoforms in human tissue is
unclear. All isoforms have the same kinetic rate constants for cleaving Big ET-1
when expressed in cell lines and would be expected to synthesise comparable
amounts of the mature peptide. It is possible that the isoforms may occupy
different compartments within the same cell. When artificially expressed in
CHO cells, all four isoforms are present intracellularly but with varying degrees
of expression on the cell surface, with ECE-1d not expressed (Valdenaire et al.
1999). A second possibility is that expression may vary according to cell type:
This may account for the particularly intense staining with antisera to ECE-
1b in epithelial cells, whereas endothelial cell staining was difficult to detect
(Davenport and Kuc 2000).
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3.1.1
Distribution of ECE-1 in Human Endothelium

ET-1, together with its precursor Big ET-1, is the predominant isoform synthe-
sised and released from the human endothelium (Fig. 2). The mature peptide
has been localised in endothelial cells of all human vessels examined, includ-

Fig. 2 Schematic model of ET-1 in the human cardiovascular system. Within endothelial
cells, two distinct exocytic pathways transport ET-1 to the cell surface. ET-1, synthesised by
ECE-1/ECE-2, is continuously released via the constitutive pathway, contributing to vascular
tone. ET-1 is also synthesised by ECE-1 and stored in Weibel-Palade bodies until released
following an external physiological or pathophysiological stimulus (regulated pathway) to
produce further vasoconstriction. Following release, ET-1 interacts with ETA receptors that
predominate on the smooth muscle. In some, but not all, human vessels, a small population
of ETB receptors can also mediate constriction. Activation of endothelial ETB receptors by
ET-1 limits the constrictor response by the release of vasodilators (NO). Non-vascular ETB
receptors in, for example, kidney and lungs may remove ET-1 from the circulation, as well
as having a beneficial role in limiting any rise in ET-1 resulting from ETA receptor blockade.
Some Big ET-1 escapes conversion by endothelial cell ECE. This circulating precursor is
converted to ET-1 at target sites by smooth muscle ECE that can be blocked by peptidase
inhibitors
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ing large conduit and small resistance vessels (Hemsen et al. 1991; Howard
et al. 1992; Ashby et al. 1995; Plumpton et al. 1996b). Conservation of the C-
terminus has permitted the development of antisera which can cross-react with
all ECE enzymes discovered to date in human tissue. Davenport et al. (1998a, b)
used site-directed antisera raised against the C-terminus of mammalian ECE-1
(bECE-1744-758; XU et al. 1994), which also cross-reacted with the C-terminus
of the deduced amino-acid sequence of bovine ECE-2 (Emoto and Yanagisawa
1995) that has four identical amino acids to ECE-1 at the extreme C-terminus.
Using these antisera, Davenport et al. (1998b) showed that immunoreactive
ECE had a ubiquitous distribution in human endothelial cells lining large con-
duit and smaller resistance vessels within cardiac, adrenal, respiratory and
brain tissue. This pattern of staining in the vascular endothelium paralleled
that of its substrate, Big ET-1, and its product, the mature ET peptide.

3.1.2
Localisation of ECE-1 in Endothelial Cells

TheprocessingofBigET-1 toET-1hasbeenattributed toactivityofoneormore
converting enzymes that are located mainly on the plasma membrane or within
intracellular compartments. Initial studies using endothelial cells isolated from
animal tissues (Harrison et al. 1995; Takahashi et al. 1995; Barnes et al. 1996;
1998) or transformed endothelial cell lines (Waxman et al. 1994) suggested
that ECE activity is localised to the cell surface and the enzyme acts mainly
in a post-secretory processing role. However, the co-localisation of the mature
peptide and Big ET-1 within endothelial cells implies that at least some ECE
activity is located intracellularly. Evidence from a number of different studies
demonstrated ECE is either primarily expressed or has predominant activity
within intracellular compartments (Gui et al. 1993; Xu et al. 1994; Davenport
et al. 1998a; Russell et al. 1998a, b, c). Davenport et al. (1998a) compared
the ability of permeabilised and non-permeabilised human endothelial cells
to convert Big ET-1 to the mature peptide and found that about 85% of ECE
activity was located in intracellular compartments. ECE-like immunoreactivity
was visualised by scanning electron microscopy on the surface of the plasma
membrane of cultured endothelial cells (Russell et al. 1998a) as well as enface
preparations of human coronary artery.

The sub-cellular expression of Big ET-1, ECE-1c and ECE-1a was com-
pared with von Willebrand factor, a marker of Weibel-Palade bodies, in human
endothelial cells that had been permeabilised to allow access of antisera to sub-
cellular structures. The resulting cells were optically sectioned using confocal
microscopy. In agreement with the results of the scanning electron microscopy,
only moderate levels of ECE-1c were detected over the plasma membrane.
ECE-1c and ECE-1a, together with Big ET-1, were found to co-localise with
von Willebrand factor in the Weibel-Palade bodies. Co-localisation of ECE iso-
forms to Weibel-Palade bodies was confirmed by immunoelectron microscopy
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in ultra-thin sections of human coronary artery. These numerous rod-shaped
structures, about 0.2 μm in diameter and 2–3 μm in length, are located be-
neath the plasma membrane and are specific to endothelial cells. Stimulation
by the calcium ionophore released ET-1 from cultured human umbilical vein
endothelial cells (HUVECs). These results suggest that ET-1 is synthesised by
the regulated pathway and released in response to external stimuli (Fig. 2;
Russell et al. 1998a).

Intense staining with antisera to ECE was also discovered in smaller punc-
tate vesicles, establishing that ET is also synthesised via the constitutive secre-
tory pathway (Fig. 2). These results are in agreement with the ultrastructural
localisation of the mature peptide in human coronary artery. Quantitative im-
munoelectron microscopy revealed the presence of ET-like immunoreactivity
in the secretory vesicles as well as the Weibel-Palade bodies (Russell et al.
1998b). The combined results demonstrate that ET is released from human
endothelial cells via two distinct pathways. Thus, ET is continuously trans-
ported in and released from secretory vesicles by the constitutive secretory
pathway, contributing to the maintenance of normal vascular tone. Contin-
uous release from this pathway accounts for the rise in the concentration of
plasma ET following systemic administration of ET receptor antagonists in
volunteers (Plumpton 1996a). In addition, ET stored in Weibel-Palade bodies
may be released following a physiological or pathophysiological stimulus by
the regulated pathway, to cause additional local vasoconstriction (Russell and
Davenport 1999b).

3.2
Endothelin Converting Enzyme-2 (ECE-2)

ECE-2 is a membrane-bound metalloprotease with 59% homology with bovine
ECE-1 (Emoto and Yanagisawa 1995). However, the enzyme has distinct bio-
chemical properties: The optimum pH for ECE-2 activity in cleaving Big ET-1
to the mature peptide is acidic (5.5) compared with a neutral range for ECE-1.
ECE-2 is 250-fold more sensitive to phosphoramidon than ECE-1. Like ECE-1,
four isoforms have been identified that differ in their N-terminus and may
reflect differences in the types of cell expressing the protein. In bovine tis-
sues, mRNA encoding ECE-2a-1 and ECE-2a-2 isoforms is abundant in the
periphery, including liver, kidney, adrenal gland and endothelial cells, whereas
ECE-2b-1 and ECE-2b-2 are restricted to the brain, perhaps functioning in
neural tissue (Ikeda et al. 2002).

In humans, ECE-2 as well as ECE-1 is present in endothelial cells, including
coronary arteries (Davenport and Kuc 2000; Russell and Davenport 1999b).
Confocal microscopy, using antisera that would cross-react with all ECE-2
isoforms, revealed staining within secretory vesicles (Fig. 2), suggesting a role
in processing Big ET-1 whilst in transit to the cell surface via the constitutive
secretory pathway. No staining was detected in storage granules. In agreement
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with this intracellular localization, ECE activity with an acid pH optimum in
sub-cellular fractions of endothelial cells was inhibited by low concentrations
of phosphoramidon (Russell et al. 1998b, c).

The precise physiological or pathophysiological role of ECE-2 in human
endothelium remains to be established but may be related to the enzyme
requiring an acidic pH for activity. Emoto and Yanagisawa (1995) predicted
that the enzyme would be restricted to the acidified environment of the trans-
Golgi network or vesicles of the secretory pathway. In human endothelial cells,
ECE-2-like immunoreactivity is localised to secretory vesicles (Russell and
Davenport 1999a), suggesting that ECE-2 could contribute to synthesis of ET
under physiological conditions. Alternatively, synthesis of ET-1 by ECE-2 may
become more important under pathophysiological conditions in which the
cellular pH is reduced, such as ischaemic heart disease where intracellular
pH values of 5.8 have been detected in hearts subjected to global ischaemia
(Docherty et al. 1997), and a correlation between myocardial ischaemia and
increased plasma levels of ET is now well established (Tonnessen et al. 1993;
Cohn 1996). The increased severity of developmental defects observed when
both ECE-2 and ECE-1 are knocked out implies a role in synthesising ET-1
duringdevelopment (Yanagisawaetal. 2000).ECE-2alsocleavesotherpeptides,
including the vasodilator bradykinin. The brain of ECE-2 knockout mice has
significantly higher levels of beta amyloid but the significance of this to humans
is not yet clear (Eckman et al. 2003).

3.3
Alternative Pathways for ET Synthesis: ET-11-31 and Chymase

ECE isoforms may not be the only enzymes synthesising ET-1. Human chy-
mase, a chymotrypsin-like serine protease, can cleave Big ET-1 to yield a novel
31-amino-acid peptide, ET-11-31 (Nakano et al. 1997). In human vessels in vitro,
including coronary arteries (Maguire et al. 2001; Maguire and Davenport 2004),
ET-11-31 does not bind to ET receptors at physiological concentrations but is
converted by enzymatic activity to ET-1, measured by radioimmunoassay in
the bathing medium, to cause potent vasoconstriction. Whilst the selective
ECE inhibitor PD159790 blocks the conversion of Big ET-1 in human vessels as
expected, the compound has no effect on ET-11-31 vasoconstriction, indicating
that ET-1 formation is via an alternative pathway. Thus, in human vessels, Big
ET-1 can be converted directly to ET-1 by ECE or to ET-11-31 by chymase, with
the resulting ET-11-31 subsequently converted to ET-1 by uncharacterised en-
zymes that could include neutral endopeptidase (NEP) (D’Orleans-Juste et al.
2003).

Atpresent, therearenospecificchymase inhibitors toproveconclusively that
the chymostatin-sensitive enzyme is chymase and not another serine protease
such as cathepsin G. However, a similar role for chymase has been proposed in
the processing of angiotensin I to angiotensin II in human arteries (Takai et al.
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1999) and heart (Katugampola and Davenport 2002). Mast cells are a major
source of chymase and are found, for example, in umbilical cords in close
proximity to the vessels that are particularly responsive to Big ET-1 (Takeji et al.
2000; Maguire and Davenport 2004). They are present in human atherosclerotic
lesions, with the number and degree of degranulation increasing as the lesions
develop. If chymase proves to be an alternative synthetic enzyme for ET-1 in
vivo then, in those cardiovascular diseases in which plasma ET levels are raised,
an alternative therapeutic strategy to ET receptor antagonism may require the
dual inhibition of both ECE and chymase.

4
Endothelin Receptors

4.1
ETA and ETB Subtypes

Endothelins mediate their action by two sub-types of receptor (Davenport
2002) isolated and cloned from mammalian tissues, ETA (Arai et al. 1990)
and ETB (Sakurai et al. 1990). Both sub-types belong to class 1 (Family A or
rhodopsin-like), the most numerous of the G protein-coupled (GPC) seven-
transmembrane-spanning family of receptors, which are also the major targets
for nearly half of all currently available drugs, including many cardiovascu-
lar agents such as β-blockers and angiotensin II receptor antagonists. The
ETB receptor is characterised by an unusually long N-terminus that can be
cleaved by a metalloprotease to remove the first 64 amino acids while still re-
taining ET-1 binding. There are two separate ligand interaction sub-domains
on each endothelin receptor. The extracellular loops, particularly between
transmembrane-spanning domains 4–6, determine selectivity. The amino acid
sequences of ETA receptors also differ between humans and other species, for
example by 9% between human and rat ETA receptors and by 12% for the
ETB. These may contribute to differences in efficacy and potency of selective
agonists and antagonists (Davenport 2002).

The existence of further sub-types in mammals is unlikely. Following com-
pletion of 99% of the human genome, bioinformatics has been applied to
identify most, if not all, of the remaining genes that potentially could encode
the remaining unliganded receptors (Foord et al. 2005; Maguire and Davenport
2005). It is accepted that these have all been artificially expressed in artificial
cell lines and screened against libraries of existing transmitters but no further
receptors have been identified that might bind endothelin peptides.

Previous studies have suggested that different ETB receptors may be present
on endothelial versus smooth muscle cells. In detailed studies in ETB receptor
knockout mice, both the direct constrictor responses and indirect vasodilata-
tion by the ETB agonist sarafotoxin S6c were abolished as expected (Mizuguchi
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et al. 1997). In agreement, a highly detailed binding study was unable to dis-
tinguish between ETB receptors expressed by human isolated endothelial cells
compared with smooth muscle cells in culture (Flynn et al. 1998). In human
tissue, both ETA- and ETB-selective radiolabelled ligands bound with a single
affinity and Hill slopes close to unity (Molenaar et al. 1992, 1993; Davenport
1997; Davenport et al. 1994, 1998c). Similarly, competition studies using unla-
belled ligandsprovidednoevidence for further sub-types (PeterandDavenport
1995, 1996; Kuc et al. 1995; Russell and Davenport 1996).

4.2
Receptor Mutations

Disruption of genes encoding ET-1, ET-3, ETA, ETB, ECE-1 and ECE-2 have
shown that, in addition to a role in cardiovascular regulation, the ET system is
essential for correct embryonic neural crest development, a completely novel
finding for GPC receptors (Kurihara et al. 2001).

4.2.1
ETA/ET-1 Mutations and Knockouts

ET-1-deficient homozygous mice die at birth of respiratory failure secondary
to severe craniofacial and cardiovascular abnormalities. Surprisingly, ET-1+/−

heterozygousmice,whichproduce lower levels ofET-1 thanwild-typemice, de-
velop an elevated blood pressure (Kurihara et al. 1994). One explanation is that
lower circulating ET levels may result in reduced activation of vasodilator ETB
receptors on endothelial cells. Remarkably, ETA receptor and ECE-1 knockout
mice have similar morphological abnormalities (Clouthier et al. 1998; Hosoda
et al. 1994; Yanagisawa et al. 1998), implying the ETA/ET-1 signalling system is
essential for cardiovascular and craniofacial development.

4.2.2
ETB/ET-3 Mutations and Knockouts

Homozygote ETB knockout mice exhibit a different and non-overlapping phe-
notype to ETA-deficient animals; they are viable at birth, and can survive for
up to 8 weeks but display aganglionic megacolon as a result of absence of gan-
glion neurons, together with a pigmentary disorder in their coats (Kurihara
et al. 2001). This is a result of the failure of enteric nervous system precursors
and neural crest-derived epidermal melanoblasts to colonise the intestine and
skin. ET-3 knockouts display an identical phenotype (Kurihara et al. 2001).
Intriguingly, heterozygous knockout of ETB (but not ETA) receptors causes
hypertension, consistent with a role in clearing ETs from the circulation.

A similar phenotype is observed in ‘spotting lethal’ rats that have a nat-
urally occurring 301-bp deletion of the ETB gene, resulting in a lack of ETB
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expression, elevation of plasma ET levels and aganglionic megacolon. ETB
deficiency caused early onset of renal impairment characterised by reduced
sodium excretion and decreased glomerular filtration rate (Hocher et al. 2001;
Taylor et al. 2003). This animal is used as a model of Hirschsprung disease,
a multigenetic disorder, where one of the causative genes includes mutations
in ETB receptor expression (Tanaka et al. 1998).

4.3
Splice Variants of ET Receptors

4.3.1
Splice Variants of ETA Receptors

The human ETB receptor gene has been proposed to give rise to at least three
alternatively spliced ETA receptor transcripts, corresponding to deletion of
exon 3 (producing a protein with two membrane-spanning domains), exon 4
(producingaproteinwith threemembrane-spanningdomains) andexon3plus
exon 4 (producing a protein lacking the third and fourth domain; Miyamoto
et al. 1996; Bourgeois et al. 1997). Although alternative transcripts were identi-
fied in human tissues including lung, aorta and atrium, the truncated receptors
when expressed in COS cell lines did not bind ET-1 (Miyamoto et al. 1996),
suggesting a mechanism for limiting ETA receptor expression. For example,
mRNA encoding the putative truncated receptor with the deletion of exon 3
plus 4 was more abundant than the wild-type in human melanoma cell lines
and melanoma tissue (Zhang et al. 1998).

4.3.2
Splice Variants of ETB Receptors

Alternative splice variants of ETB receptors have been reported, but to date
these variants show little or no change in binding characteristics and their
physiological or pathophysiological significance is unclear.

4.4
ET Ligands

4.4.1
Endogenous and Synthetic Agonists

ET receptors are unusual in being isolated and cloned before the discovery of
sub-type selectiveantagonists.The twosub-typeswereoriginallydistinguished
and continue to be classified by their rank order of affinity for the endogenous
peptides: ET-3 typically displays at least two orders of magnitude lower affinity
for the ETA receptor than ET-1, whereas both peptides are equipotent at the
ETB receptor (Tables 1 and 2).
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Table 1 Properties of ETA receptors, agonists and antagonists

Receptor ETA

Structural information 7TM

Human, 427 aa Adachi et al. (1991)

Rat 426 aa Lin et al. (1991)

Mouse 427 aa

Agonists Selective: none with high affinity

Agonist potencies ET-1 = ET-2 > S6b >> ET-3

(human coronary artery)

Antagonist potencies BQ123 (pA2 6.9–7.4) Ihara et al. (1992a)

FR139317 (7.3–7.9) Aramori et al. (1993)

PD156707 (8–8.7) [CI1020] Doherty et al. (1995)

SB234551 (9) Ohlstein et al. (1998)

L754142 (7.7–8.7) Williams et al. (1995)

BMS182874 (6.2) Stein et al. (1994)

A127722 (9–10.5) [Atrasentan] Opgenorth et al. (1996)

TBC11251 (8.0) [Sitaxsentan] Wu et al. (1997)

LU127043 (7.3) Raschack et al. (1995)

LU135252 [Darusentan] Münter et al. (1996)

Radioligand assays Human, rat and porcine heart; A10 smooth muscle cells

Radioligands [125I]-ET-1 (Kd = 0.01–5 nM) Davenport (1997)

[125I]-PD151242 (0.5 nM) Davenport et al. (1994)

[125I]-PD164333 (0.2 nM) Davenport et al. (1998c)

[3H]-BQ123 (3.2 nM) Ihara et al. (1995)

Names of antagonists that have undergone clinical trials are given in square brackets

4.4.2
Peptide and Non-peptide ETA Antagonists

A selective ETA receptor agonist with comparable potency to ET-1 has not been
discovered, although a peptide agonist with two orders of magnitude lower
potency has been reported (Langlois et al. 2003). Antagonists are currently
classified as ETA-selective, ETB-selective or mixed antagonists that display
similar affinity for both receptor sub-types. The most highly selective (by
4–5 orders of magnitude) peptide antagonists for the ETA receptors are the
cyclic pentapeptide, BQ123 (Ihara et al. 1992a) and the modified linear peptide
FR139317 (Aramori et al. 1993). A linear tetrapeptide analogue of FR139317,
[125I]-PD151242 binds with sub-nanomolar affinity to the ETA receptor and
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Table 2 Properties of ETB receptors, agonists and antagonists

Receptor ETB

Structural information 7TM

Human 442 aa Nakamuta et al. (1991)

Rat 441 aa Sakurai et al. (1990)

Mouse 442 aa Baynash et al. (1994)

Agonists Selective

[Ala1,3,11,15]ET-1 Saeki et al. (1991)

BQ3020 Ihara et al. (1992b)

IRL1620 Takai et al. (1992)

S6c Williams et al. (1991)

Agonist potencies ET-1 = ET-2 = ET-3 = S6b (rat glomeruli)

Antagonist potencies IRL2500 (pA2 7.8) Balwierczak et al. (1995)

RES7011 (6.0) Tanaka et al. (1994)

BQ788 (6.9) Ishikawa et al. (1994)

Ro468443 (pA2 8.1) Clozel and Breu (1996)

A192621 (8.1) Von Geldern et al. (1999)

Radioligand assays Brain, lung, placenta and kidney

Radioligands [125I]-ET-1 (Kd = 0. 01–5 nM) Davenport (1997)

[125I]-BQ3020 (0.1 nM) Ihara et al. (1992b)

[125I]-[Ala1,3,11,15]ET-1 (0.2 nM) Molenaar et al. (1992)

[125I]-IRL1620 (0.02 nM) Watakabe et al. (1992)

has about 10,000-fold selectivity for this sub-type in human and animal tissues.
A non-peptide ETA-selective ligand, [125I]-PD164333 (Davenport et al. 1998c)
also binds with comparable affinity. A number of non-peptide ETA antagonists
(Table 1; Davenport and Battistini 2002) are in clinical development with good
oral bioavailability and some may cross the blood-brain barrier. The majority
of these are more potent, with pA2 values of up to 10 compared with 7–8 for
the peptides BQ123 or FR139317, but are less selective for the ETA versus the
ETB receptor (Table 1).

4.4.3
Peptide and Non-peptide ETB Antagonists

Sarafotoxin S6c is widely used as an ETB selective agonist, displaying over
200,000-fold selectivity in rat tissues (Williams et al. 1991), but is much less
selective in human tissues, reflecting species differences in the receptors (Rus-
sell and Davenport 1996). The truncated, linear synthetic analogues BQ3020
([Ala11,15]Ac-ET-1(6-21)) and IRL1620 [Suc-(Glu9, Ala11,15)-ET-1(8-21)] are the
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most widely used selective synthetic agonists to characterise ETB receptors.
Both peptides can be radiolabelled to produce [125I]-BQ3020 (Molenaar et al.
1992)and[125I]-IRL1620 (Watakabeetal. 1992).Bothbindwithsub-nanomolar
affinity, with at least 1,500-fold selectivity for this sub-type over the ETA recep-
tor (Table 2). Fewpeptideornon-peptideETB antagonists havebeendeveloped,
reflecting the lack of clinical need for this type of compound. They are less
potent than ETA antagonists and display lower selectivity (usually only 1–2
orders of magnitude) for the ETB sub-type (Table 2).

4.4.4
Mixed ETA/ETB Antagonists

The distinction between antagonists that are ETA selective and those that
block both ETA and ETB receptors is not precise, but generally the former
display greater than 100-fold selectivity for the ETA subtype and the latter less
than 100-fold. Bosentan (Tracleer) is the only ET antagonist currently in the
clinic and has been approved for pulmonary artery hypertension (Sect. 5.2).
This remarkable milestone in ET biology was achieved within 12 years of the
discovery of the peptide.

5
Physiological and Pathophysiological Role

5.1
ET-1: The Universal Vasoconstrictor?

ET receptors are widely expressed in all human vessels (Davenport and Rus-
sell 2001), consistent with the physiological role of ET-1 as a ubiquitous, po-
tent, long-lasting, endothelium-derived vasoactive peptide, contributing to the
maintenance of normal vascular tone. A number of these features are unusual,
if not unique, to the ET system in the human vasculature. First, in contrast to
other vasoconstrictors where responses can be variable with a number of indi-
viduals not responding, a large conduit or small resistance human vessel from
either central or peripheral vascular beds that does not respond to ET-1 has
yet to be reported. The maximal constrictor response in human vessels pro-
duced by ET-1 is unsurpassed by any other constrictor, including compounds
with more recently discovered vasoactivity such as urotensin II (Maguire and
Davenport 2002, 2005). The time course for ET-1-induced vasoconstriction is
unusually long lasting and can be sustained for many hours, a profile consis-
tent with vasospasm observed in a number of pathophysiological conditions.
Importantly, however, ET antagonists are able to fully reverse an established
constrictor response (Pierre and Davenport 1999). The decrease in vascular
resistance produced by infusion of ET antagonists in normotensive volunteers
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has established that ET has a physiological role in humans, contributing to vas-
cular tone (Haynes and Webb 1994; Haynes et al. 1996; Plumpton et al. 1995).
In contrast, antagonists to other vasoconstrictors, such as angiotensin II, have
little or no effect on blood pressure in normotensive individuals.

5.1.1
Smooth Muscle ETA Receptors

In human vessels (Fig. 2), the ET receptors located on vascular smooth muscle
cells are mainly (>85%) of the ETA sub-type (Davenport et al. 1995a, b; Russell
et al. 1997) and are the principal sub-type mediating vasoconstriction (Dav-
enport and Maguire 1994). A small population (<15%) of ETB receptors are
present in some human vessels (Davenport et al. 1993, 1995a, b, c; Bacon and
Davenport 1996); this has been confirmed by electron microscope autoradio-
graphy (Russell et al. 1997). Sarafotoxin S6c (an ETB agonist in animals) does
cause vasoconstriction in a small number of human vessels but these responses
are variable, occurring in less than 50% of individuals and, while potent, the
magnitude of the response is much less than that to ET-1 (Davenport and
Maguire 1994). However, little or no response to the endogenous agonist ET-3
has been detected in human vessels. Furthermore, ETA-selective antagonists
cause parallel and rightward shifts of the ET-1 concentration response curves
in these vessels, with no portion of the curve resistant to ETA blockade (Dav-
enport and Maguire 1994; Maguire and Davenport 1995; Maguire et al. 1997a).

While ETA receptors present on smooth muscle cells are mainly responsible
for constriction in humans, in other animals this can vary depending on the
species and vascular bed. For example, ET-1 mediates contraction only via ETA
receptors in rat aorta, by ETB receptors in rabbit saphenous vein, but by both
sub-types in porcine coronary artery (Davenport and Maguire 1994).

In the human brain (cortex) about 90% of the ET receptors are of the ETB
sub-type (Harlandet al. 1995, 1998) andare localised toneural regionspredom-
inately on glial cells and to a lesser extent on neurons. ETA receptors are present
in high densities, localised to the cerebral vasculature and leptomeninges with
lower but detectable expression in grey and white matter. Smooth muscle cells
in both large arteries and small cerebral vessels only express the ETA sub-
type (Adner et al. 1994; Yu et al. 1995; Lucas et al. 1996; Harland et al. 1995,
1998; Pierre and Davenport 1995, 1998a, 1999). ET-1 potently constricts basilar
arteries (Papadopoulos et al. 1990). The small pial arteries are exceptionally
sensitive to ET-1 (Hardebo et al. 1989; Thorin et al. 1998; Pierre and Dav-
enport 1998a, 1999) and, together with arterioles penetrating into the brain,
play a major role in the maintenance of cerebral blood flow (autoregulation).
Immunoreactive ET and ECE are present in the vascular endothelium of these
vessels (Davenport et al. 1998b), which in the brain are also regulated by the
release of vasoactive agents released from astrocytes that send processes to
terminate upon the smooth muscle.
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In normal human brain, while intense ECE staining was also detected in
astrocytes including astrocytic processes (Davenport et al. 1998b), staining
for ET was not detected (Giaid et al. 1991). However, intense ET staining was
detected in reactive astrocytes surrounding metastases (Zhang and Olsson
1995) and following viral infections (Ma et al. 1994) as well as in rat perivas-
cular astrocytic processes in an animal model of ischaemia (Gajkowska and
Mossakowski 1995). These results suggest that ET-1 released from endothelial
and reactive perivascular astrocytes may be involved in the genesis or main-
tenance of cerebrovascular disorders, such as the delayed vasospasm leading
to cerebral ischaemia seen after aneurysmal subarachnoid haemorrhage, and
could contribute to ischaemic core volume in stroke. Importantly, ET-1 does
not normally cross the blood-brain barrier (Johnström et al. 2005). However,
in these conditions the barrier may be compromised, and ET-1 synthesised
in the periphery could be an additional source affecting both the (1) vascu-
lar receptors mediating cerebrovasospasm and (2) neural receptors mediating
the increase in intracellular free calcium (Morton and Davenport 1992) that
initiates the pathophysiological processes leading to neuronal death. ETA re-
ceptors may also have a role at the blood brain-barrier. Ligand binding (Yamaga
et al. 1995) and functional evidence suggest that human brain endothelial cells
isolated from the capillaries (diameter ∼10 μm) that form the blood-brain bar-
rier and larger microvessels, express ETA receptors linked to phospholipase C
and inositol trisphosphate accumulation (Stanimirovic et al. 1994; Spatz et al.
1997). ET-1 acting via this sub-type has been proposed to increase capillary
permeability leading to oedema (Purkiss et al. 1994).

5.1.2
Endothelial ETB Receptors

ETB receptors are present on the endothelial cells (Fig. 2). Some of the ET-1
released from the endothelium may feed back onto these receptors to re-
lease endothelium-derived relaxing factors such as nitric oxide, prostacyclin
or an endothelium-derived hyperpolarizing factor, opposing the constrictor
response. In humans, infusion of low doses of ET-1 (Kiowski et al. 1991) into
the brachial artery in vivo causes an initial reduction in forearm blood flow
consistent with the peptides binding to ETB receptors to cause vasodilatation.
High concentrations of ET-3 also cause vasodilatation (Haynes et al. 1995). In
agreement, blocking ETB receptors with a selective antagonist, BQ788, causes
vasoconstriction (Verhaar et al. 1998), since the constrictor actions of ET-1 on
the underlying smooth muscle are unopposed. In vitro studies have examined
a wider range of vascular beds. ETB-mediated relaxation was reported in iso-
lated preconstricted temporal and cerebral arteries (Lucas et al. 1996; Nilsson
et al. 1997) but not in some peripheral vessels including internal mammary
(Seo et al. 1994), radial (Liu et al. 1996), conduit or resistance coronary arteries
(Pierre and Davenport 1995, 1998a, b) and small omental arteries (Riezebos
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et al. 1994). It is unclear if these results reflect heterogeneity in ETB dilator
responses within vessels from different vascular beds.

Staining for ECE was also detected within endocardial endothelial cells
lining the ventricle, a second major source of cardiac ET-1 (Plumpton 1996a).
ET-1 is a potent positive inotropic agent, acting directly on heart muscle
(Moravec et al. 1989; Davenport et al. 1989). Synthesis of ET-1 by ECE within
the endocardial endothelial cells may not only modulate the inotropic state of
the heart but also exert effects on the conducting system in close proximity to
endocardial cells.

5.1.3
ETB Clearing Receptors

Systemic blockade of ETB receptors results in a significant rise in circulating
ET-1 (Plumpton et al. 1996b). This is not simply the result of occupancy of
vascular receptors by the antagonist and displacement of ET-1, since ET-3 levels
are also significantly elevated.Human lungs containoneof thehighestdensities
of ET receptors, with a high proportion of the ETB sub-type (McKay et al. 1991;
Henry et al. 1990; Marciniak et al. 1992; Knott et al. 1995; Russell and Davenport
1996). The human kidney is also rich in ETB receptors (comprising 70% in both
cortex and medulla) expressed by endothelial cells, tubules and collecting
ducts, whereas most ETA receptors are localised to vascular smooth muscle of
arteries and veins as well as intra-renal resistance vessels (Karet et al. 1993;
Davenport et al. 1994; Maguire et al. 1994). The presence of mRNA encoding
ET-1 and the detection of the peptide and its precursor by high-pressure liquid
chromatography and radioimmunoassay (Karet and Davenport 1993, 1996)
established that ET-1 was synthesised within the kidney. ET-1 functions as
a locally acting renal peptide with two main actions, vasoconstriction via ETA
receptors and natriuresis, via the ETB sub-type (Nambi et al. 1992).

In addition to these roles, the ETB sub-type in rat lung and kidney have
been proposed to function as clearing receptors (Fig. 2), removing ET-1 from
the circulation (Fukuroda et al. 1994; Gasic et al. 1992). Dynamic imaging
using positron emission tomography in the living animal showed that [18F]-
ET-1 rapidly accumulated in the lung, kidney and liver but only low levels
were detected in the heart. Infusion of an ETB-selective antagonist, BQ788, just
before administration of the [18F]-ET-1, blocked binding of the radioligand
to ETB receptors in the kidney and lungs as expected. Under ETB blockade,
[18F]-ET-1 was now able to bind to ETA receptors in the heart, revealing the
importance of the ETB sub-type in clearing ET-1 from the circulation, thus
protecting cardiac tissue from the potentially deleterious action of the circu-
lating peptide. Infusion of the antagonist 30 min after injecting [18F]-ET-1 did
not displace the ligand, consistent with internalisation of the ligand-receptor
complex (Johnström et al. 2005). It is likely that ETB receptors present on en-
dothelial cells in the lungs and kidney are responsible for removing circulating
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ET-1. In agreement, mice where the ETB receptor has been selectively knocked
out in endothelial cells (but not, for example, in epithelial cells), ETB receptor
density in ETB-rich tissues such as lungs was significantly reduced but plasma
concentrations of ET were elevated fourfold (Kelland et al. 2004).

5.2
Pulmonary Arterial Hypertension (PAH)

The first ET antagonist to receive FDA approval for clinical use was bosentan,
andthis compoundwasalso thefirstorallyactivedrug treatment forpulmonary
arterial hypertension (PAH). This condition is characterised by hypertrophy of
the small pulmonary arterioles, increasing vascular resistance and ultimately
right ventricular heart failure. Overexpression of ET-1 in this condition leads to
endothelial cell dysfunction and inflammation, with the peptide acting as a co-
mitogen for smooth muscle cells contributing to vascular hypertrophy as well
as fibrosis mediated via transforming growth factor-β (Clozel and Salloukh
2005).

In human lungs, ETA receptors are present on resistance vessels and pre-
dominate in conduit arteries, comprising 90% of the ET receptors expressed
by the medial layer from the main pulmonary artery. ETA receptors are also
present on lung parenchyma, submucosal glands, airway smooth muscle and
epithelial cells. Synthesis and release of ET-1 from the pulmonary vascular
endothelium is thought to cause constriction of pulmonary arteries, predom-
inantly via the ETA sub-type (Hay et al. 1993; Maguire and Davenport 1995),
although McCulloch et al. (1996) have proposed a significant contribution of
ETB receptors in resistance arteries (150–200 μm in diameter). ETB receptors
are localised to airway smooth muscle, with lower levels in parenchyma, airway
submucosal glands and small conduit arteries (Russell and Davenport 1995).
In the bronchus, the constrictor action of the peptide released from epithelia
and diffusing onto the underlying airway smooth muscle is via ETB receptors
(Adner et al. 1996; Takahashi et al. 1997; Hay et al. 1998) although Fukuroda
et al. (1994) detected an ETA component. Thus PAH may require blockade of
both sub-types by a mixed antagonist such as bosentan.

The initial clinical trials with bosentan of 3–7 months duration reported
improvements in patients with idiopathic PAH in exercise capacity and haemo-
dynamics, and delayed clinical worsening (Channick et al. 2001; Rubin et al.
2002). Longer-term studies are currently following up these patients. Impor-
tantly, the survival of WHO class III patients treated with bosentan after 3 years
was at least as good as those treated with intravenous epoprostenol (prosta-
cyclin). The median predicted survival for these patients is under 3 years,
but with bosentan treatment, 3-year survival was nearly 90% (Sitbon et al.
2003, 2004). Bosentan represents a significant new therapeutic strategy in
PAH. Other emerging clinical indications include connective tissue disease,
particularly systemic sclerosis (included as a subset in the original trials) and
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associated digital ulcers, HIV-associated PAH and, more speculatively, in liver
disease, including portal hypertension (Clozel and Salloukh 2005).

5.3
Essential Hypertension

The potent constrictor actions of ET-1 in humans (Sect. 5.1), combined with
endothelial cell dysfunction and a reduction in nitric oxide, suggest a role for
ET-1 in essential hypertension. Lowering blood pressure by about 10 mmHg in
such patients has proven benefits in reducing the risk of cardiovascular disease.
In vitro, ET antagonists display desirable properties of anti-hypertensive drugs
in dilating human isolated arteriole resistance and venous capacitance vessels.
In vivo, systemic infusion of ET-1 to produce 30- to 50-fold rises in circulating
peptide in healthy volunteers causes a 5–10 mmHg increase in mean blood
pressure (Vierhapper et al. 1990; Pernow et al. 1996). Hypertensive patients
display increasedvenoconstrictor responses toET-1 (Haynes et al. 1994). In two
cases of malignant haemangioendothelioma, a condition in which endothelial
cell proliferation occurs, blood pressure and ET-1 levels were elevated. Both
of these parameters were reduced towards normal levels on removal of the
tumour (Yokokawa et al. 1991).

As proof of principle that ET-1 may contribute to hypertension in some
individuals, in a study with nearly 300 hypertensive patients, the ETA/ETB an-
tagonist bosentan at the highest dose tested resulted in a 10-mmHg reduction
in systolic blood pressure, although a number of side-effects were reported,
including liver function abnormalities. The ETA selective antagonist darusen-
tan (LU135252), in a multicentre trial of about 400 patients, produced similar
reductions in diastolic (8.3 mmHg) and systolic (11.3 mmHg) pressure (Nakov
et al. 2002). Salt sensitivity, in which hypertension is exacerbated by high salt
intake is common in African-Americans. Intriguingly, hypertensive African-
Americans have enhanced ETA-dependent vascular tone compared with white
patients, suggesting that ETA antagonists would be particularly beneficial in
the former ethnic group (Campia et al. 2004). ETA antagonists are also highly
effective in lowering blood pressure in hypertensive patients with chronic re-
nal failure (Goddard et al. 2004). Targeting the ET system has potential in the
treatment of hypertension, particularly when associated with salt-sensitivity
and target organ damage.

5.4
Atherosclerosis

In patients with atherosclerosis, studies have shown a consistent pattern of
raised plasma levels of immunoreactive ET (Table 3). Tissue levels of ET-1
mRNA (Winkles et al. 1993), the mature peptide and Big ET-1 are significantly
increased within the wall of human vessels containing atherosclerotic lesions
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Table 3 Changes in the ET system in human atherosclerosis

Coronary arteries Cell type Pathology Reference

Advanced plaques MSMC ETA Bacon et al. (1995)

ISMC ETA↓
MAC ETB

Advanced plaques ET-1↑, Bacon et al. (1996)

Big ET-1↑
Advanced plaques MSMC ETA Katugampola et al. (2002)

ISMC ETA↓ Kuc and Davenport (2000)

Early lesions ISMC, EC ECE↑ Hai et al. (2004)

Advanced plaques MAC, EC ECE↑ Hai et al. (2004)

Carotid atherosclerosis ISMC/MSMC Intimal: Migdalis et al. (2000)

+type II diabetes medial

thickness↑
Plasma

Atherosclerosis Systemic ET↑ Lerman et al. (1991)

Coronary atherosclerosis Coronary ET↑ Lerman et al. (1995)

Systemic ET↑
Carotid plaques ET↑ Kalogeropoulou et al. (2002)

+type II diabetes

Carotid plaques Systemic ET↑ Migdalis et al. (2000)

+type II diabetes

Carotid plaques Systemic ET↑ Minami et al. (2001)

+essential hypertension

Atherosclerosis Systemic ET↑ Perfetto et al. (1988)

+NIDDM

EC, endothelial cell; ISMC, intimal smooth muscle cell; MAC, macrophage; MSMC, medial
smooth muscle cell; ;NIDDM, non-insulin-dependent diabetes mellitus

(Bacon et al. 1996). Most of the immunoreactive ET-1 is confined to infiltrating
macrophages of the lesion and not the smooth muscle.

About 1 in 4 molecules of Big ET-1 synthesised within endothelial cells
escapes conversion and is released to circulate in the plasma, where it may be
cleaved to ET-1 by smooth muscle ECE. Big ET-1 could function as a long-range
signalling molecule. Infusion of Big ET-1 into volunteers causes pronounced
vasoconstriction by local conversion to ET-1 by a phosphoramidon-sensitive
ECE (Plumpton et al. 1995). Since most endothelial ECE is intra-cellular, con-
version is predominantly via smooth muscle ECE. In agreement with the pres-
ence of ECE on smooth muscle, Big ET-1 constricts human vessels denuded of
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endothelium (Mombouli et al. 1993; Maguire et al. 1997b; Maguire and Dav-
enport 1998a) which can be inhibited by phosphoramidon but not thiorphan
(Maguire et al. 1997a; Rizzi et al. 1998) and PD159790, a selective inhibitor of
ECE-1 (Maguire et al. 1999). In atherosclerosis, smooth muscle ECE activity
is up-regulated, increasing the amount of ET-1 synthesised at the site of the
lesion. In endothelium-denuded human coronary arteries, the response to Big
ET-1 was significantly enhanced in vessels containing atherosclerotic lesions
with a corresponding increase in mature ET formed in the bathing medium,
compared with non-diseased arteries. There were no differences in responses
of arteries from either group to ET-1, demonstrating up-regulation of ECE
activity rather than an augmented response of the arteries to ET-1 (Maguire
and Davenport 1998a).

Minamino et al. (1997) reported that ECE-1 immunoreactivity was present
in both smooth muscle cells and macrophages in two human coronary atherec-
tomy samples. Particularly intense staining for ECE-1b, ECE-1c and ECE-2 iso-
forms was detected within infiltrating macrophages of atherosclerotic plaques
from human coronary arteries. Lower levels of staining were also visualised in
smooth muscle within the intimal thickening and thinned medial layer (Dav-
enport and Kuc 2000). Macrophages, in addition to smooth muscle ECE, may
locally increase conversion of Big ET-1 in the vessel wall.

ETA receptors predominate in the media of atherosclerotic coronary ar-
teries but are down-regulated (together with ETB receptors) in the intimal
smooth muscle (Bacon et al. 1996; Katugampola et al. 2002). In agreement
with ETA receptors being the major sub-type present on smooth muscle, ETA
antagonists also fully reverse ET-1 induced vasoconstriction in diseased ves-
sels (Maguire and Davenport 1998b). ETB receptor expression is increased in
atherosclerotic coronary arteries (Dagassan et al. 1996), but this is due to ETB
receptors localised to infiltrating macrophages and the increase in endothe-
lial cells associated with neovascularisation. Smooth muscle ETB receptors
may have limited physiological or pathophysiological importance in mediat-
ing vasoconstriction.

6
Conclusions

Endothelin-1 remains one of the most powerful vasoconstrictors discovered,
and overproduction of this peptide following endothelial cell dysfunction con-
tributes to pathophysiological processes including vascular hypertrophy, cell
proliferation, fibrosis and inflammation, making this system a particularly at-
tractive drug target. The first ET antagonist approved for clinical use, bosentan,
has proved successful in the treatment of PAH. Considered together, bosentan,
ETA-selective antagonists, and combined neutral endopeptidase/endothelin
converting enzyme (NEP/ECE) inhibitors-which continue in clinical trials-
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represent a new therapeutic strategy to the clinicians’ armamentarium and
may find other clinical applications.

Acknowledgements Supported by grants from the British Heart Foundation

References

Adachi M, Yang YY, Furuichi Y, Miyamoto C (1991) Cloning and characterization of cDNA
encoding human A-type endothelin receptor. Biochem Biophys Res Commun 180:1265–
1272

Adner M, Jansen I, Edvinsson L (1994) Endothelin-A receptors mediate contraction in
human cerebral, meningeal and temporal arteries. J Auton Nerv Syst 49 Suppl:S117–121

Adner M, Cardell LO, Sjoberg T, Ottosson A, Edvinsson L (1996) Contractile endothelin-B
(ETB) receptors in human small bronchi. Eur Respir J 9:351–355

Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S (1990) Cloning and expression of a cDNA
encoding an endothelin receptor. Nature 348:730–7322

Aramori I, Nirei H, Shoubo M, Sogabe K, Nakamura K, Kojo H, Notsu Y, Ono T, Nakan-
ishi S (1993) Subtype selectivity of a novel endothelin antagonist, FR139317, for the
two endothelin receptors in transfected Chinese hamster ovary cells. Mol Pharmacol
43:127–131

Ashby MJ, Plumpton C, Teale P, Kuc RE, Houghton E, Davenport AP (1995) Analysis of
endogenous human endothelin peptides by high-performance liquid chromatography
and mass spectrometry. J Cardiovasc Pharmacol 26 Suppl 3:S247–249

Bacon CR, Davenport AP (1996) Endothelin receptors in human coronary artery and aorta.
Br J Pharmacol 117:986–992

BaconCR,CaryNR,DavenportAP(1995)Distributionof endothelin receptors inatheroscle-
rotic human coronary arteries. J Cardiovasc Pharmacol 26 Suppl 3:439–444

Bacon CR, Cary NR, Davenport AP (1996) Endothelin peptide and receptors in human
atherosclerotic coronary artery and aorta. Circ Res 79:794–801

Balwierczak JL, Bruseo CW, DelGrande D, Jeng AY, Savage P, Shetty SS (1995) Characteriza-
tion of a potent and selective endothelin-B receptor antagonist, IRL 2500. J Cardiovasc
Pharmacol 26 Suppl 3:S393–396

BarnesK,ShimadaK,TakahashiM,TanzawaK,TurnerAJ (1996)Metallopeptidase inhibitors
induce an up-regulation of endothelin-converting enzyme levels and its redistribution
from the plasma membrane to an intracellular compartment. J Cell Sci 109:919–928

Barnes K, Brown C, Turner AJ (1998) Endothelin-converting enzyme: ultrastructural local-
ization and its recycling from the cell surface. Hypertension 31:3–9

BaynashAG,HosodaK,GiaidA,Richardson JA,EmotoN,HammerRE,YanagisawaM(1994)
Interaction of endothelin-3 with endothelin-B receptor is essential for development of
epidermal melanocytes and enteric neurons. Cell 79:1277–1285

Bourgeois C, Robert B, Rebourcet R, Mondon F, Mignot TM, Duc-Goiran P, Ferre F (1997)
Endothelin-1 and ETA receptor expression in vascular smooth muscle cells from human
placenta: a new ETA receptor messenger ribonucleic acid is generated by alternative
splicing of exon 3. J Clin Endocrinol Metab 82:3116–3123

Campia U, Cardillo C, Panza JA (2004) Ethnic differences in the vasoconstrictor activity of
endogenous endothelin-1 in hypertensive patients. Circulation 109:3191–3195



Endothelin 319

Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF, Badesch DB, Roux S,
Rainisio M, Bodin F, Rubin LJ (2001) Effects of the dual endothelin-receptor antagonist
bosentan in patients with pulmonary hypertension: a randomised placebo-controlled
study. Lancet 358:1119–1123

Clouthier DE, Hosoda K, Richardson JA, Williams SC, Yanagisawa H, Kuwaki T, Kumada M,
HammerRE,YanagisawaM(1998)Cranial andcardiacneural crest defects in endothelin-
A receptor-deficient mice. Development 125:813–824

Clozel M, Breu V (1996) The role of ETB receptors in normotensive and hypertensive rats
as revealed by the non-peptide selective ETB receptor antagonist Ro 46–8443. FEBS Lett
383:42–45

Clozel M, Salloukh H (2005) Role of endothelin in fibrosis and anti-fibrotic potential of
bosentan. Ann Med 37:2–12

Cohn JN (1996) Is there a role for endothelin in the natural history of heart failure? Circu-
lation 94:604–606

D’Orleans-Juste P, Plante M, Honore JC, Carrier E, Labonte J (2003) Synthesis and degrada-
tion of endothelin-1. Can J Physiol Pharmacol 81:503–510

Dagassan PH, Breu V, Clozel M, Kunzli A, Vogt P, Turina M, Kiowski W, Clozel JP (1996)
Up-regulation of endothelin-B receptors in atherosclerotic human coronary arteries.
J Cardiovasc Pharmacol 27:147–153

Davenport A (1997) Distribution of endothelin receptors. In: Huggins JP, Pelton JT (eds)
Endothelin in biology and medicine. CRC Press, New York, pp 45–68

Davenport AP (2002) International Union of Pharmacology. XXIX. Update on endothelin
receptor nomenclature. Pharmacol Rev 54:219–226

Davenport AP, Battistini B (2002) Classification of endothelin receptors and antagonists in
clinical development. Clin Sci (Lond) 103 Suppl 48:1S–3S

Davenport AP, Kuc RE (2000) Cellular expression of isoforms of endothelin-converting
enzyme-1 (ECE-1c, ECE-1b and ECE-1a) and endothelin-converting enzyme-2. J Car-
diovasc Pharmacol 36:S12–14

Davenport AP, Maguire JJ (1994) Is endothelin-induced vasoconstriction mediated only by
ETA receptors in humans? Trends Pharmacol Sci 15:9–11

Davenport AP, Maguire JJ (2002) Of mice and men: advances in endothelin research and
first antagonist gains FDA approval. Trends Pharmacol Sci 23:155–157

Davenport AP, Russell FD (2001) Endothelin converting enzymes and endothelin receptor
localisation in human tissues. In: Warner TD (ed) Endothelin and its inhibitors. (Hand-
book of experimental pharmacology, vol 152) Springer, Heidelberg Berlin New York, pp
209–237

Davenport AP, Nunez DJ, Hall JA, Kaumann AJ, Brown MJ (1989) Autoradiographical lo-
calization of binding sites for porcine [125I]endothelin-1 in humans, pigs, and rats:
functional relevance in humans. J Cardiovasc Pharmacol 13 Suppl 5:S166–S170

Davenport AP, O’Reilly G, Molenaar P, Maguire JJ, Kuc RE, Sharkey A, Bacon CR, Ferro A
(1993) Human endothelin receptors characterized using reverse transcriptase-poly-
merase chain reaction, in situ hybridization, and subtype-selective ligands BQ123 and
BQ3020: evidence for expression of ETB receptors in human vascular smooth muscle.
J Cardiovasc Pharmacol 22 Suppl 8:S22–25

Davenport AP, Kuc RE, Fitzgerald F, Maguire JJ, Berryman K, Doherty AM (1994) [125I]-
PD151242: a selective radioligand for human ETA receptors. Br J Pharmacol 111:4–6

Davenport AP, Kuc RE, Maguire JJ, Harland SP (1995a) ETA receptors predominate in the
human vasculature and mediate constriction. J Cardiovasc Pharmacol 26 Suppl 3:S265–
267



320 A. P. Davenport · J. J. Maguire

Davenport AP, O’Reilly G, Kuc RE (1995b) Endothelin ETA and ETB mRNA and receptors
expressed by smooth muscle in the human vasculature: majority of the ETA sub-type.
Br J Pharmacol 114:1110–1116

Davenport AP, Hoskins SL, Kuc RE, Plumpton C (1996) Differential distribution of endothe-
lin peptides and receptors in human adrenal gland. Histochem J 28:779–789

Davenport AP, Kuc RE, Mockridge JW (1998a) Endothelin-converting enzyme in the human
vasculature: evidence for differential conversion of big endothelin-3 by endothelial and
smooth-muscle cells. J Cardiovasc Pharmacol 31 Suppl 1:S1–3

Davenport AP, Kuc RE, Plumpton C, Mockridge JW, Barker PJ, Huskisson NS (1998b)
Endothelin-converting enzyme in human tissues. Histochem J 30:359–374

Davenport AP, Kuc RE, Ashby MJ, Patt WC, Doherty AM (1998c) Characterization of [125I]-
PD164333, an ETA selective non-peptide radiolabelled antagonist, in normal and dis-
eased human tissues. Br J Pharmacol 123:223–230

Docherty JC, Gunter HE, Kuzio B, Shoemaker L, Yang L, Deslauriers R (1997) Effects of
cromakalim and glibenclamide on myocardial high energy phosphates and intracellular
pH during ischemia-reperfusion: 31P NMR studies. J Mol Cell Cardiol 29:1665–1673

Doherty AM, Patt WC, Edmunds JJ, Berryman KA, Reisdorph BR, Plummer MS, Shahri-
pour A, Lee C, Cheng XM, Walker DM, et al (1995) Discovery of a novel series of orally
active non-peptide endothelin-A (ETA) receptor-selective antagonists. J Med Chem
38:1259–1263

Eckman EA, Watson M, Marlow L, Sambamurti K, Eckman CB (2003) Alzheimer’s disease
beta-amyloid peptide is increased in mice deficient in endothelin-converting enzyme.
J Biol Chem 278:2081–2084

Emoto N, Yanagisawa M (1995) Endothelin-converting enzyme-2 is a membrane-bound,
phosphoramidon-sensitive metalloprotease with acidic pH optimum. J Biol Chem
270:15262–15268

Flynn MA, Haleen SJ, Welch KM, Cheng XM, Reynolds EE (1998) Endothelin B receptors
on human endothelial and smooth-muscle cells show equivalent binding pharmacology.
J Cardiovasc Pharmacol 32:106–116

Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M, Harmar AJ
(2005) International Union of Pharmacology. XLVI. G protein-coupled receptor list.
Pharmacol Rev 57:279–288

Fukuroda T, Kobayashi M, Ozaki S, Yano M, Miyauchi T, Onizuka M, Sugishita Y, Goto K,
Nishikibe M (1994) Endothelin receptor subtypes in human versus rabbit pulmonary
arteries. J Appl Physiol 76:1976–1982

Gajkowska B, Mossakowski MJ (1995) Localization of endothelin in the blood-brain inter-
phase in rat hippocampus after global cerebral ischemia. Folia Neuropathol 33:221–230

Gasic S, Wagner OF, Vierhapper H, Nowotny P, Waldhausl W (1992) Regional hemodynamic
effects and clearance of endothelin-1 in humans: renal and peripheral tissues may
contribute to the overall disposal of the peptide. J Cardiovasc Pharmacol 19:176–180

Giaid A, Gibson SJ, Herrero MT, Gentleman S, Legon S, Yanagisawa M, Masaki T, IbrahimNB,
Roberts GW, Rossi ML, et al (1991) Topographical localisation of endothelin mRNA and
peptide immunoreactivity in neurones of the human brain. Histochemistry 95:303–314

Goddard J, Johnston NR, Hand MF, Cumming AD, Rabelink TJ, Rankin AJ, Webb DJ (2004)
Endothelin-A receptor antagonism reduces blood pressure and increases renal blood
flow in hypertensive patients with chronic renal failure: a comparison of selective and
combined endothelin receptor blockade. Circulation 109:1186–1193

Gui G, Xu D, Emoto N, Yanagisawa M (1993) Intracellular localization of membrane-bound
endothelin-converting enzyme from rat lung. J Cardiovasc Pharmacol 22 Suppl 8:S53–56



Endothelin 321

Hai E, Ikura Y, Naruko T, Shirai N, Yoshimi N, Kayo S, Sugama Y, Fujino H, Ohsawa M,
Tanzawa K, Yokota T, Ueda M (2004) Alterations of endothelin-converting enzyme
expression in early and advanced stages of human coronary atherosclerosis. Int J Mol
Med 13:649–654

Hardebo JE, Kahrstrom J, Owman C, Salford LG (1989) Endothelin is a potent constrictor
of human intracranial arteries and veins. Blood Vessels 26:249–253

Harland SP, Kuc RE, Pickard JD, Davenport AP (1995) Characterization of endothelin re-
ceptors in human brain cortex, gliomas, and meningiomas. J Cardiovasc Pharmacol 26
Suppl 3:S408–411

Harland SP, Kuc RE, Pickard JD, Davenport AP (1998) Expression of endothelin(A) receptors
in human gliomas and meningiomas, with high affinity for the selective antagonist
PD156707. Neurosurgery 43:890–898; discussion 898–899

Harrison VJ, Barnes K, Turner AJ, Wood E, Corder R, Vane JR (1995) Identification of
endothelin 1 and big endothelin 1 in secretory vesicles isolated from bovine aortic
endothelial cells. Proc Natl Acad Sci U S A 92:6344–6348

Hay DW, Henry PJ, Goldie RG (1993) Endothelin and the respiratory system. Trends Phar-
macol Sci 14:29–32

HayDW,LuttmannMA,PullenMA,NambiP(1998)Functional andbindingcharacterization
of endothelin receptors in human bronchus: evidence for a novel endothelin B receptor
subtype? J Pharmacol Exp Ther 284:669–677

Haynes WG, Webb DJ (1994) Contribution of endogenous generation of endothelin-1 to
basal vascular tone. Lancet 344:852–854

Haynes WG, Hand MF, Johnstone HA, Padfield PL, Webb DJ (1994) Direct and sympa-
thetically mediated venoconstriction in essential hypertension. Enhanced responses to
endothelin-1. J Clin Invest 94:1359–1364

Haynes WG, Strachan FE, Webb DJ (1995) Endothelin ETA and ETB receptors cause vaso-
constriction of human resistance and capacitance vessels in vivo. Circulation 92:357–363

Haynes WG, Ferro CJ, O’Kane KP, Somerville D, Lomax CC, Webb DJ (1996) Systemic en-
dothelin receptor blockade decreases peripheral vascular resistance and blood pressure
in humans. Circulation 93:1860–1870

Hemsen A, Gillis C, Larsson O, Haegerstrand A, Lundberg JM (1991) Characterization,
localization and actions of endothelins in umbilical vessels and placenta of man. Acta
Physiol Scand 143:395–404

Henry PJ, Rigby PJ, Self GJ, Preuss JM, Goldie RG (1990) Relationship between endothelin-1
binding site densities and constrictor activities in human and animal airway smooth
muscle. Br J Pharmacol 100:786–792

Hickey KA, Rubanyi G, Paul RJ, Highsmith RF (1985) Characterization of a coronary vaso-
constrictor produced by cultured endothelial cells. Am J Physiol 248:C550–556

Hocher B, Dembowski C, Slowinski T, Friese ST, Schwarz A, Siren AL, Neumayer HH,
Thone-Reineke C, Bauer C, Nafz B, Ehrenreich H (2001) Impaired sodium excretion,
decreased glomerular filtration rate and elevated blood pressure in endothelin receptor
type B deficient rats. J Mol Med 78:633–641

Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A, Yanagisawa M
(1994) Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene
produce megacolon associated with spotted coat color in mice. Cell 79:1267–1276

Howard PG, Plumpton C, Davenport AP (1992) Anatomical localization and pharmaco-
logical activity of mature endothelins and their precursors in human vascular tissue.
J Hypertens 10:1379–1386



322 A. P. Davenport · J. J. Maguire

Ihara M, Noguchi K, Saeki T, Fukuroda T, Tsuchida S, Kimura S, Fukami T, Ishikawa K,
Nishikibe M, Yano M (1992a) Biological profiles of highly potent novel endothelin an-
tagonists selective for the ETA receptor. Life Sci 50:247–255

Ihara M, Saeki T, Fukuroda T, Kimura S, Ozaki S, Patel AC, Yano M (1992b) A novel
radioligand [125I]BQ-3020 selective for endothelin (ETB) receptors. Life Sci 51:PL47–52

Ihara M, Yamanaka R, Ohwaki K, Ozaki S, Fukami T, Ishikawa K, Towers P, Yano M (1995)
[3H]BQ-123, a highly specific and reversible radioligand for the endothelin ETA receptor
subtype. Eur J Pharmacol 274:1–6

Ikeda S, Emoto N, Alimsardjono H, Yokoyama M, Matsuo M (2002) Molecular isolation and
characterization of novel four subisoforms of ECE-2. Biochem Biophys Res Commun
293:421–426

Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T (1989) The
human endothelin family: three structurally and pharmacologically distinct isopeptides
predicted by three separate genes. Proc Natl Acad Sci U S A 86:2863–2867

Ishikawa K, Ihara M, Noguchi K, Mase T, Mino N, Saeki T, Fukuroda T, Fukami T, Ozaki S,
Nagase T, et al (1994) Biochemical and pharmacological profile of a potent and selective
endothelin B-receptor antagonist, BQ-788. Proc Natl Acad Sci U S A 91:4892–4896

Janes RW, Peapus DH, Wallace BA (1994) The crystal structure of human endothelin. Nat
Struct Biol 1:311–319

Johnström P, Fryer TD, Richards HK, Harris NG, Barret O, Clark JC, Pickard JD, Daven-
port AP (2005) Positron emission tomography using 18F-labelled endothelin-1 reveals
prevention of binding to cardiac receptors owing to tissue-specific clearance by ET B
receptors in vivo. Br J Pharmacol 144:115–122

Kalogeropoulou K, Mortzos G, Migdalis I, Velentzas C, Mikhailidis DP, Georgiadis E, Cor-
dopatis P (2002) Carotid atherosclerosis in type 2 diabetes mellitus: potential role of
endothelin-1, lipoperoxides, and prostacyclin. Angiology 53:279–285

Karet FE, Davenport AP (1993) Human kidney: endothelin isoforms detected by HPLC with
radioimmunoassay and receptor subtypes detected using ligands BQ123 and BQ3020.
J Cardiovasc Pharmacol 22 Suppl 8:S29–33

Karet FE, Davenport AP (1996) Localization of endothelin peptides in human kidney. Kidney
Int 49:382–387

Karet FE, Kuc RE, Davenport AP (1993) Novel ligands BQ123 and BQ3020 characterize
endothelin receptor subtypes ETA and ETB in human kidney. Kidney Int 44:36–42

Katugampola SD, Davenport AP (2002) Radioligand binding reveals chymase as the pre-
dominant enzyme for mediating tissue conversion of angiotensin I in the normal human
heart. Clin Sci (Lond) 102:15–21

Katugampola SD, Kuc RE, Maguire JJ, Davenport AP (2002) G-protein-coupled receptors in
human atherosclerosis: comparison of vasoconstrictors (endothelin and thromboxane)
with recently de-orphanized. Clin Sci (Lond) 2002 103 Suppl 48:171S–175S

Kelland NF, Bagnall AJ, Gulliver-Sloan FH, Kuc RE, Maguire JJ, Davenport AP, Gray GA,
Kotelevtsev YV, Webb DJ (2004) Clearance of circulating endothelin-1 is mediated by the
endothelial cell endothelin B receptor.
http://www.pa2online.org/Vol2Issue4abst022P.html.

Kiowski W, Luscher TF, Linder L, Buhler FR (1991) Endothelin-1-induced vasoconstric-
tion in humans. Reversal by calcium channel blockade but not by nitrovasodilators or
endothelium-derived relaxing factor. Circulation 83:469–475

Knott PG, D’Aprile AC, Henry PJ, Hay DW, Goldie RG (1995) Receptors for endothelin-1 in
asthmatic human peripheral lung. Br J Pharmacol 114:1–3



Endothelin 323

Kuc RE, Davenport AP (2000) Endothelin-A-receptors in human aorta and pulmonary
arteries are downregulated in patients with cardiovascular disease: an adaptive response
to increased levels of endothelin-1? J Cardiovasc Pharmacol 36:S377–379

Kuc RE, Karet FE, Davenport AP (1995) Characterization of peptide and nonpeptide antag-
onists in human kidney. J Cardiovasc Pharmacol 26 Suppl 3:S373–375

Kurihara H, Kurihara Y Yazaki Y (2001) Lessons from gene deletion in the endothelin
system. In: Warner TD (ed) Endothelin and its inhibitors. (Handbook of experimental
pharmacology, vol 152) Springer, Heidelberg Berlin New York, pp 141–154

Kurihara Y, Kurihara H, Suzuki H, Kodama T, Maemura K, Nagai R, Oda H, Kuwaki T,
Cao WH, Kamada N, et al (1994) Elevated blood pressure and craniofacial abnormalities
in mice deficient in endothelin-1. Nature 368:703–710

Kurnik D, Haviv Y, Kochva E (1999) A snake bite by the burrowing asp, Atractaspis engad-
densis. Toxicon 37:223–227

Langlois C, Letourneau M, Lampron P, St-Hilaire V, Fournier A (2003) Development of
agonists of endothelin-1 exhibiting selectivity towards ETA receptors. Br J Pharmacol
139:616–622

Lerman A, Edwards BS, Hallett JW, Heublein DM, Sandberg SM, Burnett JC Jr (1991)
Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl
J Med 325:997–1001

Lerman A, Holmes DR Jr, Bell MR, Garratt KN, Nishimura RA, Burnett JC Jr (1995) Endothe-
lin in coronary endothelial dysfunction and early atherosclerosis in humans. Circulation
92:2426–2431

Lin HY, Kaji EH, Winkel GK, Ives HE, Lodish HF (1991) Cloning and functional expression of
a vascular smooth muscle endothelin 1 receptor. Proc Natl Acad Sci U S A 88:3185–3189

Liu JJ, Chen JR, Buxton BF (1996) Unique response of human arteries to endothelin B
receptor agonist and antagonist. Clin Sci (Lond) 90:91–96

Lucas GA, White LR, Juul R, Cappelen J, Aasly J, Edvinsson L (1996) Relaxation of human
temporal artery by endothelin ETB receptors. Peptides 17:1139–1144

Ma KC, Nie XJ, Hoog A, Olsson Y, Zhang WW (1994) Reactive astrocytes in viral infections
of the human brain express endothelin-like immunoreactivity. J Neurol Sci 126:184–192

Maguire J, Davenport AP (2004) Alternative pathway to endothelin-converting enzyme for
the synthesis of endothelin in human blood vessels. J Cardiovasc Pharmacol 44 Suppl
1:S27–29

Maguire J, Davenport AP (2005) Regulation of vascular reactivity by established and emerg-
ing GPC receptors. Trends Pharmacol Sci 26:448–454

Maguire JJ,DavenportAP(1995)ETAreceptor-mediatedconstrictor responses toendothelin
peptides in human blood vessels in vitro. Br J Pharmacol 115:191–197

Maguire JJ, Davenport AP (1998a) Increased response to big endothelin-1 in atherosclerotic
human coronary artery: functional evidence for up-regulation of endothelin-converting
enzyme activity in disease. Br J Pharmacol 125:238–240

Maguire JJ, Davenport AP (1998b) PD156707: a potent antagonist of endothelin-1 in human
diseased coronary arteries and vein grafts. J Cardiovasc Pharmacol 31 Suppl 1:S239–240

Maguire JJ, Davenport AP (2002) Is urotensin-II the new endothelin? Br J Pharmacol
137:579–588

Maguire JJ, Kuc RE, O’Reilly G, Davenport AP (1994) Vasoconstrictor endothelin receptors
characterized in human renal artery and vein in vitro. Br J Pharmacol 113:49–54

Maguire JJ, Kuc RE, Davenport AP (1997a) Affinity and selectivity of PD156707, a novel
nonpeptide endothelin antagonist, for human ET(A) and ET(B) receptors. J Pharmacol
Exp Ther 280:1102–1108



324 A. P. Davenport · J. J. Maguire

Maguire JJ, Johnson CM, Mockridge JW, Davenport AP (1997b) Endothelin converting
enzyme (ECE) activity in human vascular smooth muscle. Br J Pharmacol 122:1647–
1654

Maguire JJ, Ahn K, Davenport AP (1999) Inhibition of big endothelin-1 (BIG ET-1) responses
in endothelium-denuded human coronary artery by the selective endothelin-converting
enzyme-1 (ECE-1) inhibitor PD159790. Br J Clin Pharmacol 126:193P

Maguire JJ, Kuc RE, Davenport AP (2001) Vasoconstrictor activity of novel endothelin
peptide, ET-1(1–31), in human mammary and coronary arteries in vitro. Br J Pharmacol
134:1360–1366

Marciniak SJ, Plumpton C, Barker PJ, Huskisson NS, Davenport AP (1992) Localization of
immunoreactive endothelin and proendothelin in the human lung. Pulm Pharmacol
5:175–182

Matsumoto H, Suzuki N, Kitada C, Fujino M (1994) Endothelin family peptides in human
plasma and urine: their molecular forms and concentrations. Peptides 15:505–510

McCulloch KM, Docherty CC, Morecroft I, MacLean MR (1996) EndothelinB receptor-
mediated contraction in human pulmonary resistance arteries. Br J Pharmacol 119:1125–
1130

McKay KO, Black JL, Diment LM, Armour CL (1991) Functional and autoradiographic
studies of endothelin-1 and endothelin-2 in human bronchi, pulmonary arteries, and
airway parasympathetic ganglia. J Cardiovasc Pharmacol 17 Suppl 7:S206–209

Migdalis IN, Kalogeropoulou K, Iiopoulou V, Varvarigos N, Karmaniolas KD, Mortzos G,
Cordopatis P (2000) Progression of carotid atherosclerosis and the role of endothelin in
diabetic patients. Res Commun Mol Pathol Pharmacol 108:27–37

Minami S, Yamano S, Yamamoto Y, Sasaki R, Nakashima T, Takaoka M, Hashimoto T
(2001) Associations of plasma endothelin concentration with carotid atherosclerosis and
asymptomaticcerebrovascular lesions inpatientswithessentialhypertension.Hypertens
Res 24:663–670

Minamino T, Kurihara H, Takahashi M, Shimada K, Maemura K, Oda H, Ishikawa T,
Uchiyama T, Tanzawa K, Yazaki Y (1997) Endothelin-converting enzyme expression in
the rat vascular injury model and human coronary atherosclerosis. Circulation 95:221–
230

Miyamoto Y, Yoshimasa T, Arai H, Takaya K, Ogawa Y, Itoh H, Nakao K (1996) Alterna-
tive RNA splicing of the human endothelin-A receptor generates multiple transcripts.
Biochem J 313:795–801

Mizuguchi T, Nishiyama M, Moroi K, Tanaka H, Saito T, Masuda Y, Masaki T, de Wit D,
Yanagisawa M, Kimura S (1997) Analysis of two pharmacologically predicted endothe-
lin B receptor subtypes by using the endothelin B receptor gene knockout mouse. Br
J Pharmacol 120:1427–1430

Mockridge JW, Kuc RE, Huskisson NS, Barker PJ, Davenport AP (1998) Characterization of
site-directed antisera against endothelin-converting enzymes. J Cardiovasc Pharmacol
31 Suppl 1:S35–37

Molenaar P, Kuc RE, Davenport AP (1992) Characterization of two new ETB selective radi-
oligands, [125I]-BQ3020 and [125I]-[Ala1,3,11,15]ET-1 in human heart. Br J Pharmacol
107:637–639

Molenaar P, O’Reilly G, Sharkey A, Kuc RE, Harding DP, Plumpton C, Gresham GA, Daven-
port AP (1993) Characterization and localization of endothelin receptor subtypes in the
human atrioventricular conducting system and myocardium. Circ Res 72:526–538

Mombouli JV, Le SQ, Wasserstrum N, Vanhoutte PM (1993) Endothelins 1 and 3 and big
endothelin-1 contract isolated human placental veins. J Cardiovasc Pharmacol 22 Suppl
8:S278–281



Endothelin 325

Moravec CS, Reynolds EE, Stewart RW, Bond M (1989) Endothelin is a positive inotropic
agent in human and rat heart in vitro. Biochem Biophys Res Commun 159:14–18

Morton AJ, Davenport AP (1992) Cerebellar neurons and glia respond differentially to
endothelins and sarafotoxin S6b. Brain Res 581:299–306

Münter K, Hergenröder S, Unger L, Kirchengast M (1996) Oral treatment with an ETA
receptor antagonist inhibits neointima formation induced endothelial injury. Pharm
Pharmacol Lett 6:90–92

Nakamuta M, Takayanagi R, Sakai Y, Sakamoto S, Hagiwara H, Mizuno T, Saito Y, Hirose S,
Yamamoto M, Nawata H (1991) Cloning and sequence analysis of a cDNA encoding hu-
mannon-selective typeof endothelin receptor.BiochemBiophysResCommun177:34–39

Nakano A, Kishi F, Minami K, Wakabayashi H, Nakaya Y, Kido H (1997) Selective conver-
sion of big endothelins to tracheal smooth muscle-constricting 31-amino acid-length
endothelins by chymase from human mast cells. J Immunol 159:1987–1992

Nakov R, Pfarr E, Eberle S (2002) Darusentan: an effective endothelinA receptor antagonist
for treatment of hypertension. Am J Hypertens 15:583–589

Nambi P, Pullen M, Wu HL, Aiyar N, Ohlstein EH, Edwards RM (1992) Identification of
endothelin receptor subtypes in human renal cortex and medulla using subtype-selective
ligands. Endocrinology 131:1081–1086

Nilsson T, Cantera L, Adner M, Edvinsson L (1997) Presence of contractile endothelin-A and
dilatory endothelin-B receptors in human cerebral arteries. Neurosurgery 40:346–351;
discussion 351–353

O’Reilly G, Charnock-Jones DS, Davenport AP, Cameron IT, Smith SK (1992) Presence of
messenger ribonucleic acid for endothelin-1, endothelin-2, and endothelin-3 in human
endometrium and a change in the ratio of ETA and ETB receptor subtype across the
menstrual cycle. J Clin Endocrinol Metab 75:1545–1549

O’Reilly G, Charnock-Jones DS, Morrison JJ, Cameron IT, Davenport AP, Smith SK (1993)
Alternatively spliced mRNAs for human endothelin-2 and their tissue distribution.
Biochem Biophys Res Commun 193:834–840

Ohlstein EH, Nambi P, Hay DW, Gellai M, Brooks DP, Luengo J, Xiang JN, Elliott JD (1998)
Nonpeptide endothelin receptor antagonists. XI. Pharmacological characterization of SB
234551, a high-affinity and selective nonpeptide ETA receptor antagonist. J Pharmacol
Exp Ther 286:650–656

Opgenorth TJ, Adler AL, Calzadilla SV, Chiou WJ, Dayton BD, Dixon DB, Gehrke LJ, Her-
nandez L, Magnuson SR, Marsh KC, Novosad EI, Von Geldern TW, Wessale JL, Winn M,
Wu-Wong JR (1996) Pharmacological characterization of A-127722: an orally active and
highly potent ETA-selective receptor antagonist. J Pharmacol Exp Ther 276:473–481

Papadopoulos SM, Gilbert LL, Webb RC, D’Amato CJ (1990) Characterization of contractile
responses to endothelin in human cerebral arteries: implications for cerebral vasospasm.
Neurosurgery 26:810–815

Perfetto F, Tarquini R, Tapparini L, Tarquini B (1998) Influence of non-insulin-dependent di-
abetes mellitus on plasma endothelin-1 levels in patients with advanced atherosclerosis.
J Diabetes Complications 12:187–192

PernowJ,KaijserL, Lundberg JM,AhlborgG(1996)Comparablepotent coronary constrictor
effects of endothelin-1 and big endothelin-1 in humans. Circulation 94:2077–2082

Peter MG, Davenport AP (1995) Selectivity of [125I]-PD151242 for human, rat and porcine
endothelin ETA receptors in the heart. Br J Pharmacol 114:297–302

Peter MG, Davenport AP (1996) Characterization of the endothelin receptor selective ago-
nist, BQ3020 and antagonists BQ123, FR139317, BQ788, 50235, Ro462005 and bosentan
in the heart. Br J Pharmacol 117:455–462



326 A. P. Davenport · J. J. Maguire

Pierre LN, Davenport AP (1995) Autoradiographic study of endothelin receptors in human
cerebral arteries. J Cardiovasc Pharmacol 26 Suppl 3:S326–328

Pierre LN, Davenport AP (1998a) Relative contribution of endothelin A and endothelin B
receptors to vasoconstriction in small arteries from human heart and brain. J Cardiovasc
Pharmacol 31 Suppl 1:S74–76

Pierre LN, Davenport AP (1998b) Endothelin receptor subtypes and their functional rele-
vance in human small coronary arteries. Br J Pharmacol 124:499–506

Pierre LN, Davenport AP (1999) Blockade and reversal of endothelin-induced constriction
in pial arteries from human brain. Stroke 30:638–643

Plumpton C, Champeney R, Ashby MJ, Kuc RE, Davenport AP (1993) Characterization of en-
dothelin isoforms in human heart: endothelin-2 demonstrated. J Cardiovasc Pharmacol
22 Suppl 8:S26–28

Plumpton C, Haynes WG, Webb DJ, Davenport AP (1995) Phosphoramidon inhibition of
the in vivo conversion of big endothelin-1 to endothelin-1 in the human forearm. Br
J Pharmacol 116:1821–1828

Plumpton C, Ashby MJ, Kuc RE, O’Reilly G, Davenport AP (1996a) Expression of endothelin
peptides and mRNA in the human heart. Clin Sci (Lond) 90:37–46

Plumpton C, Ferro CJ, Haynes WG, Webb DJ, Davenport AP (1996b) The increase in hu-
man plasma immunoreactive endothelin but not big endothelin-1 or its C-terminal
fragment induced by systemic administration of the endothelin antagonist TAK-044. Br
J Pharmacol 119:311–314

Purkiss JR, West D, Wilkes LC, Scott C, Yarrow P, Wilkinson GF, Boarder MR (1994) Stimula-
tion of phospholipase C in cultured microvascular endothelial cells from human frontal
lobe by histamine, endothelin and purinoceptor agonists. Br J Pharmacol 111:1041–1046

Raschack M, Unger L, Riechers H, Klinge D (1995) Receptor selectivity of endothelin
antagonists and prevention of vasoconstriction and endothelin-induced sudden death.
J Cardiovasc Pharmacol 26 Suppl 3:S397–399

Riezebos J, Watts IS, Vallance PJ (1994) Endothelin receptors mediating functional responses
in human small arteries and veins. Br J Pharmacol 111:609–615

Rizzi A, Calo G, Battistini B, Regoli D (1998) Contractile activity of endothelins and their
precursors in human umbilical artery and vein: identification of distinct endothelin-
converting enzyme activities. J Cardiovasc Pharmacol 31 Suppl 1:S58–61

Rossi GP, Albertin G, Franchin E, Sacchetto A, Cesari M, Palu G, Pessina AC (1995) Expres-
sion of the endothelin-converting enzyme gene in human tissues. Biochem Biophys Res
Commun 211:249–253

Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, Pulido T, Frost A, Roux S,
Leconte I, Landzberg M, Simonneau G (2002) Bosentan therapy for pulmonary arterial
hypertension. N Engl J Med 346:896–903

Russell FD, Davenport AP (1995) Characterization of endothelin receptors in the human
pulmonary vasculature using bosentan, SB209670, and 97–139. J Cardiovasc Pharmacol
26 Suppl 3:S346–347

Russell FD, Davenport AP (1996) Characterization of the binding of endothelin ETB selective
ligands in human and rat heart. Br J Pharmacol 119:631–636

Russell FD, Davenport AP (1999a) Secretory pathways in endothelin synthesis. Br J Phar-
macol 126:391–398

Russell FD,DavenportAP(1999b)Evidence for intracellular endothelin-convertingenzyme-
2 expression in cultured human vascular endothelial cells. Circ Res 84:891–896

Russell FD, Skepper JN, Davenport AP (1997) Detection of endothelin receptors in human
coronary artery vascular smooth muscle cells but not endothelial cells by using electron
microscope autoradiography. J Cardiovasc Pharmacol 29:820–826



Endothelin 327

Russell FD, Skepper JN, Davenport AP (1998a) Human endothelial cell storage granules:
a novel intracellular site for isoforms of the endothelin-converting enzyme. Circ Res
83:314–321

Russell FD, Skepper JN, Davenport AP (1998b) Evidence using immunoelectron microscopy
for regulated and constitutive pathways in the transport and release of endothelin.
J Cardiovasc Pharmacol 31:424–430

Russell FD, Skepper JN, Davenport AP (1998c) Endothelin peptide and converting enzymes
in human endothelium. J Cardiovasc Pharmacol 31 Suppl 1:S19–S21

Saeki T, Ihara M, Fukuroda T, Yamagiwa M, Yano M (1991) [Ala1,3,11,15]endothelin-1
analogs with ETB agonistic activity. Biochem Biophys Res Commun 179:286–292

Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, Masaki T (1990) Cloning
of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor.
Nature 348:732–735

Schweizer A, Valdenaire O, Nelbock P, Deuschle U, Dumas Milne Edwards JB, Stumpf JG,
Loffler BM (1997) Human endothelin-converting enzyme (ECE-1): three isoforms with
distinct subcellular localizations. Biochem J 328:871–877

SeoB,OemarBS, SiebenmannR, vonSegesserL, LuscherTF (1994)BothETAandETBrecep-
tors mediate contraction to endothelin-1 in human blood vessels. Circulation 89:1203–
1208

Shimada K, Matsushita Y, Wakabayashi K, Takahashi M, Matsubara A, Iijima Y, Tanzawa K
(1995a) Cloning and functional expression of human endothelin-converting enzyme
cDNA. Biochem Biophys Res Commun 207:807–812

Shimada K, Takahashi M, Ikeda M, Tanzawa K (1995b) Identification and characterization
of two isoforms of an endothelin-converting enzyme-1. FEBS Lett 371:140–144

Sitbon O, Badesch DB, Channick RN, Frost A, Robbins IM, Simonneau G, Tapson VF,
Rubin LJ (2003) Effects of the dual endothelin receptor antagonist bosentan in patients
with pulmonary arterial hypertension: a 1-year follow-up study. Chest 124:247–254

Sitbon O, Gressin V, Speich R, Macdonald PS, Opravil M, Cooper DA, Fourme T, Humbert M,
Delfraissy JF, Simonneau G (2004) Bosentan for the treatment of human immunodefi-
ciency virus-associated pulmonary arterial hypertension. Am J Respir Crit Care Med
170:1212–1217

Spatz M, Kawai N, Merkel N, Bembry J, McCarron RM (1997) Functional properties of
cultured endothelial cells derived from large microvessels of human brain. Am J Physiol
272:C231–239

Stanimirovic DB, Yamamoto T, Uematsu S, Spatz M (1994) Endothelin-1 receptor binding
and cellular signal transduction in cultured human brain endothelial cells. J Neurochem
62:592–601

Stein PD, Hunt JT, Floyd DM, Moreland S, Dickinson KE, Mitchell C, Liu EC, Webb ML,
Murugesan N, Dickey J, et al (1994) The discovery of sulfonamide endothelin antagonists
and the development of the orally active ETA antagonist 5-(dimethylamino)-N-(3,4-
dimethyl-5-isoxazolyl)-1-naphthalenesulf onamide. J Med Chem 37:329–331

Takahashi K, Ghatei MA, Jones PM, Murphy JK, Lam HC, O’Halloran DJ, Bloom SR (1991)
Endothelin in human brain and pituitary gland: presence of immunoreactive endothelin,
endothelin messenger ribonucleic acid, and endothelin receptors. J Clin Endocrinol
Metab 72:693–699

Takahashi M, Matsushita Y, Iijima Y, Tanzawa K (1993) Purification and characterization of
endothelin-converting enzyme from rat lung. J Biol Chem 268:21394–21398

Takahashi M, Fukuda K, Shimada K, Barnes K, Turner AJ, Ikeda M, Koike H, Yamamoto Y,
Tanzawa K (1995) Localization of rat endothelin-converting enzyme to vascular en-
dothelial cells and some secretory cells. Biochem J 311:657–665



328 A. P. Davenport · J. J. Maguire

Takahashi T, Barnes PJ, Kawikova I, Yacoub MH, Warner TD, Belvisi MG (1997) Contraction
of human airway smooth muscle by endothelin-1 and IRL 1620: effect of bosentan. Eur
J Pharmacol 324:219–222

Takai M, Umemura I, Yamasaki K, Watakabe T, Fujitani Y, Oda K, Urade Y, Inui T, Yama-
mura T, Okada T (1992) A potent and specific agonist, Suc-[Glu9,Ala11,15]-endothelin-
1(8–21), IRL 1620, for the ETB receptor. Biochem Biophys Res Commun 184:953–959

Takai S, Jin D, Sakaguchi M, Miyazaki M (1999) Chymase-dependent angiotensin II forma-
tion in human vascular tissue. Circulation 100:654–658

Takeji T, Nakaya Y, Kamada M, Maeda K, Saijo Y, Mitani R, Irahara M, Aono T (2000) Effect
of a novel vasoconstrictor endothelin-1 (1–31) on human umbilical artery. Biochem
Biophys Res Commun 270:622–624

Tanaka H, Moroi K, Iwai J, Takahashi H, Ohnuma N, Hori S, Takimoto M, Nishiyama M,
Masaki T, Yanagisawa M, Sekiya S, Kimura S (1998) Novel mutations of the endothelin B
receptor gene in patients with Hirschsprung’s disease and their characterization. J Biol
Chem 273:11378–11383

Tanaka T, Tsukuda E, Nozawa M, Nonaka H, Ohno T, Kase H, Yamada K, Matsuda Y (1994)
RES-701–1, a novel, potent, endothelin type B receptor-selective antagonist of microbial
origin. Mol Pharmacol 45:724–730

Taylor TA, Gariepy CE, Pollock DM, Pollock JS (2003) Gender differences in ET and NOS
systems in ETB receptor-deficient rats: effect of a high salt diet. Hypertension 41:657–662

Thorin E, Nguyen TD, Bouthillier A (1998) Control of vascular tone by endogenous endo-
thelin-1 in human pial arteries. Stroke 29:175–180

Tonnessen T, Naess PA, Kirkeboen KA, Offstad J, Ilebekk A, Christensen G (1993) Endothelin
is released from the porcine coronary circulation after short-term ischemia. J Cardiovasc
Pharmacol 22 Suppl 8:S313–316

Turner AJ, Murphy LJ (1996) Molecular pharmacology of endothelin converting enzymes.
Biochem Pharmacol 51:91–102

Turner AJ, Barnes K, Schweizer A, Valdenaire O (1998) Isoforms of endothelin-converting
enzyme: why and where? Trends Pharmacol Sci 19:483–486

ValdenaireO,RohrbacherE,MatteiMG(1995)Organizationof thegene encoding thehuman
endothelin-converting enzyme (ECE-1). J Biol Chem 270:29794–29798

Valdenaire O, Lepailleur-Enouf D, Egidy G, Thouard A, Barret A, Vranckx R, Tougard C,
Michel JB (1999)A fourth isoformof endothelin-convertingenzyme (ECE-1) is generated
from an additional promoter molecular cloning and characterization. Eur J Biochem
264:341–349

VerhaarMC,StrachanFE,NewbyDE,CrudenNL,KoomansHA,RabelinkTJ,WebbDJ(1998)
Endothelin-A receptor antagonist-mediated vasodilatation is attenuated by inhibition
of nitric oxide synthesis and by endothelin-B receptor blockade. Circulation 97:752–756

Vierhapper H, Wagner O, Nowotny P, Waldhausl W (1990) Effect of endothelin-1 in man.
Circulation 81:1415–1418

von Geldern TW, Tasker AS, Sorensen BK, Winn M, Szczepankiewicz BG, Dixon DB,
Chiou WJ, Wang L, Wessale JL, Adler A, Marsh KC, Nguyen B, Opgenorth TJ (1999)
Pyrrolidine-3-carboxylic acids as endothelin antagonists. 4. Side chain conformational
restriction leads to ET(B) selectivity. J Med Chem 42:3668–3678

Watakabe T, Urade Y, Takai M, Umemura I, Okada T (1992) A reversible radioligand specific
for the ETB receptor: [125I]Tyr13-Suc-[Glu9,Ala11,15]-endothelin-1(8–21), [125I]IRL
1620. Biochem Biophys Res Commun 185:867–873

Waxman L, Doshi KP, Gaul SL, Wang S, Bednar RA, Stern AM (1994) Identification and
characterization of endothelin converting activity from EAHY 926 cells: evidence for the
physiologically relevant human enzyme. Arch Biochem Biophys 308:240–253



Endothelin 329

Williams DL Jr, Jones KL, Pettibone DJ, Lis EV, Clineschmidt BV (1991) Sarafotoxin S6c:
an agonist which distinguishes between endothelin receptor subtypes. Biochem Biophys
Res Commun 175:556–561

Williams DL Jr, Murphy KL, Nolan NA, O’Brien JA, Pettibone DJ, Kivlighn SD, Krause SM,
Lis EV Jr, Zingaro GJ, Gabel RA, et al (1995) Pharmacology of L-754,142, a highly potent,
orally active, nonpeptidyl endothelin antagonist. J Pharmacol Exp Ther 275:1518–1526

Winkles JA, Alberts GF, Brogi E, Libby P (1993) Endothelin-1 and endothelin receptor
mRNA expression in normal and atherosclerotic human arteries. Biochem Biophys Res
Commun 191:1081–1088

Wu C, Chan MF, Stavros F, Raju B, Okun I, Mong S, Keller KM, Brock T, Kogan TP, Dixon RA
(1997) Discovery of TBC11251, a potent, long acting, orally active endothelin receptor-
A selective antagonist. J Med Chem 40:1690–1697

Xu D, Emoto N, Giaid A, Slaughter C, Kaw S, deWit D, Yanagisawa M (1994) ECE-1:
a membrane-bound metalloprotease that catalyzes the proteolytic activation of big
endothelin-1. Cell 78:473–485

Yamaga S, Tsutsumi K, Niwa M, Kitagawa N, Anda T, Himeno A, Khalid H, Taniyama K,
Shibata S (1995) Endothelin receptor in microvessels isolated from human meningiomas:
quantification with radioluminography. Cell Mol Neurobiol 15:327–340

Yanagisawa H, Yanagisawa M, Kapur RP, Richardson JA, Williams SC, Clouthier DE, de
Wit D, Emoto N, Hammer RE (1998) Dual genetic pathways of endothelin-mediated
intercellular signaling revealed by targeted disruption of endothelin converting enzyme-
1 gene. Development 125:825–836

Yanagisawa H, Hammer RE, Richardson JA, Emoto N, Williams SC, Takeda S, Clouthier DE,
Yanagisawa M (2000) Disruption of ECE-1 and ECE-2 reveals a role for endothelin-
converting enzyme-2 in murine cardiac development. J Clin Invest 105:1373–1382

Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K,
MasakiT (1988)Anovelpotentvasoconstrictorpeptideproducedbyvascular endothelial
cells. Nature 332:411–415

Yokokawa K, Tahara H, Kohno M, Murakawa K, Yasunari K, Nakagawa K, Hamada T,
Otani S, Yanagisawa M, Takeda T (1991) Hypertension associated with endothelin-
secreting malignant hemangioendothelioma. Ann Intern Med 114:213–215

Yu JC, Pickard JD, Davenport AP (1995) Endothelin ETA receptor expression in human
cerebrovascular smooth muscle cells. Br J Pharmacol 116:2441–2446

Zhang M, Olsson Y (1995) Reactions of astrocytes and microglial cells around hematoge-
nous metastases of the human brain. Expression of endothelin-like immunoreactivity
in reactive astrocytes and activation of microglial cells. J Neurol Sci 134:26–32

Zhang YF, Jeffery S, Burchill SA, Berry PA, Kaski JC, Carter ND (1998) Truncated human
endothelin receptor A produced by alternative splicing and its expression in melanoma.
Br J Cancer 78:1141–1146



Subject Index

α catenin 122
β catenin 122
γ catenin 122

acetylcholine 223
actin
– α-SMA 83
– α-smooth muscle 83
adenylate cyclase 193
adhesion 118
adhesion molecules 225
adrenal gland 298, 302, 303
albumin 107
albumin-gold complex 110
aldosterone 256
ALI 128
allantois 75, 85
AMP-activated protein

kinase 234
Ang-1 131
angioadaptation 26
angiogenesis 26, 73, 75, 227
angiopoietin 86
angiotensin I 304
angiotensin II 221, 304, 305
angiotensin converting enzyme

(ACE) 274
angiotensinogen 257
anti-oxidant 195, 235
aorta-gonad-mesonephros
– AGM 76
apelin 93
arachidonic acid (AA) 190
artery 76
– aorta 76
– aortic primordia 75
– intra-aortic clusters 76
– omphalomesenteric 76
– subaortic patches 76

– umbilical 76
arthritis 196
aspirin 197
asthma 199
astrocytes 11, 300
asymmetric dimethylarginine

(ADMA) 235
atherogenesis 195
atherosclerosis 197, 222, 231
– endothelin 296
Atractaspis engaddensis 299
autoinhibitory control element

(ACE) 217

basal lamina 46, 54, 62, 63, 65, 66
– hyperplasic basal lamina 63
– modified and reassembled lipoproteins

60, 63, 65
beta amyloid 304
bioavailability of NO 231
bleeding time 225
blood islands 74, 75, 78
blood pressure 196, 201
blood–endothelial interface 44
– α-2-macroglobulin 44
– albumin 44, 58, 59, 61
– angiotensin-converting enzyme 45
– associated plasma proteins 44
– fibrinogen 44
– immunoglobulin 44
– lipoprotein lipase 45
– N-acetylglucosaminyl and galactosyl

residues 50
– proteoglycans 46, 50, 51, 54
– sialoconjugates 44
– strong anionic 46, 49, 51, 56, 61
body homeostasis 43, 44, 59
bone morphogenetic protein
– BMP 78



332 Subject Index

– BMP4 78
brachyury 74
bradykinin 219, 304
brain
– endothelin converting enzyme-1

(ECE-1) 300

[Ca2+]i 120
Ca2+ 156
– agonists 147
– mechanical stress 147
– shear stress 147
– voltage-dependent 156
Ca2+ channel
– cation 157
– diltiazem 156
– monovalent 157
– non-selective 156
– purinoceptor 157
– verapamil 156
Ca2+ entry 146, 147, 157, 160, 169
– IARC 160
– ICRAC 157
– arachidonate-regulated 160
– arachidonic acid 160
– Ca2+ release-activated 157
– Ca2+ uptake 169
– negative feedback 169
– NO 169
– non-capacitative 160
– non-selective 157
– store-operated 147, 157
– transient receptor potential

(TRP) 157
– TRP-related 158
Ca2+ leak 154
– ATP concentration 154
– Ca2+ channel 155
– Ca2+-free medium 154
– Ni2+ 154
Ca2+ oscillation 159
– agonist-induced 159
– Ca2+-induced Ca2+ release 159
– IP3 159
Ca2+ signalling 174
– Ca2+ depletion 174
– Ca2+ entry 174
Ca2+-CaM 169
cadherin 79
– VE-cadherin 79

calcineurin 92
calcium (Ca2+) 219
– Ca2+ flux 227
calcium influx factor
– CIF 161
– CYP450 161
– econazole 161
calcium oscillations 15
caldesmon 83
calmodulin (CaM) 119, 170, 176, 216
– availability 173
– Ca2+-binding protein 170
– CaM biosensor 172
– CaM-binding protein 172
– competition 172, 176
– eNOS 172
– kinetics 173
– limiting 172, 176
– MLCK 173
– phosphorylation 172
– PMCA 172
– SOCE 173
– transduction 176
calphostin C 123
calponin 83
cAMP 131
capillary endothelial cells 46, 49, 51,

56, 57, 65, 66
– continuous 50, 56, 58, 65
– discontinuous 56
– fenestrated 50, 51, 56
capillary types 4
cardiomyocytes 223
cardiovascular disease 231
cardiovascular dysfunction 195
cathepsin G 304
caveolae 217
caveolin-1 217
caveolin-3 217
CD11b/CD18 128
CD34 97
CD41 78
cdc42 131
cell respiration 229
cells 146
– non-excitable 146
cellular bioenergetics 229
cGMP-dependent protein kinases 227
– protein kinase GI (PKGI) 227



Subject Index 333

changes of the vascular endothelium in
different pathologies 61

– Alzheimer’s disease 61, 66
– atherosclerosis 57, 61–63
– diabetes 54, 60, 61, 64, 65
– lesional stage 63
– pre-lesional stage 62
channels 108, 125
– store-operated 108
– TRPC 125
cholera toxin 113
cholesterol 113
chordin 91
chymase 304, 305
claudin-5 10
coagulation 26
conductivity
– hydraulic 112
confocal
– imaging 112
confocal microscopy
– endothelin 303
conformational coupling 162
– Ca2+ entry 162
– Ca2+ release 162
– IP3 receptors 162
contraction 108
– actin-myosin 108
coronary artery disease 232
coxibs 202
– celecoxib 202
– lumiracoxib 202
– rofecoxib 202
– valdecoxib 202
Csk 116
ct-βARK 114
CTD 122
cyclic adenosine monophosphate

(cAMP) 196, 228
cyclic endoperoxides 191
cyclic guanosine monophosphate

(cGMP) 227
cyclooxygenase (COX) 190, 260
– COX-1 191
– COX-2 191
cytochrome c oxidase 229
cytochrome P-450

reductase 215

DANCE 6

dephosphorylation 220
depletion Ca2+-store 119
desmin 83
diabetes 231
dimethylarginine

dimethylaminohydrolase (DDAH)
235

dynamin-2 113
dysfunction 118
– barrier 118

Edg 131
EDHF 262
endocytosis 108
endoglin 96
endoplasmic reticulum 150
– Ca2+ reserve 150
– Ca2+ store 150
– Ca2+ uptake 150
– IP3 receptors 151
endothelial cell 42–44, 46, 49–53,

56–65
– coated/uncoated pits 45, 51, 56,

58–60
– coated/uncoated vesicles 45, 51,

58, 59
– cytoskeleton 52, 53, 57
– dysfunction 42, 61, 63, 64, 66
– endothelin converting enzyme-1

(ECE-1) 302
– endothelin converting enzyme-2

(ECE-2) 303
– fenestrae 45, 51, 56
– functions 42–44, 62, 66
– membrane microdomains 42
– organelles 42, 46, 63
– plasma membrane 42, 44, 46, 49
– plasmalemmal vesicles/caveolae 44
– transendothelial channels 42, 44, 45,

50, 57
– ultrastructure 42
– vesicles/caveolae 46
endothelial cell dysfunction 42, 61, 63,

64, 66
endothelial cell receptors for 57
– albumin 50, 58, 59, 61
– insulin 58, 60, 61
– lipoproteins 44, 58–60
– metalloproteins 57
– plasma proteins 49, 57, 61



334 Subject Index

– vasoactive mediators 57
endothelial nitric oxide synthase (eNOS)

113, 128, 147, 169, 172, 177, 215
– Ca2+-CaM concentration 172
– Ca2+-CaM network 147
– CaM availability 173
– CaM binding 172
– CaM buffering 172
– CaM network 177
– competition 172
– dominant affector 177
– eNOS−/− mice 223
– kinetics 173
– localisation 217
– major affector 147
– MLCK 173
– myristoylation 216
– nitric oxide 169
– palmitoylation 216
– phosphorylation 172
– polymorphisms 234
– reconstituted 172
– SOCE 173
– Thr497 172
– time courses 173
– transfection 235
endothelin
– Big ET-1 297–305
– Big ET-2 298
– Big ET-3 298
– coronary artery 300, 302–304
– ELISA 298, 300
– endothelin-2 298
– endothelin-3 298
– endothelin1-31 304
– ETA receptor 305
– ETB receptor 305
– ischaemia 304
– macrophage 300
– renal artery 300
– resistance artery 302
endothelin converting enzyme-1

(ECE-1) 296, 299
– distribution 301
– ELISA 300
– immunocytochemistry 302
– mRNA 299
endothelin converting enzyme-2

(ECE-2) 296, 301, 303, 304
– inhibitor 303

– knock-out mouse 304
endothelium 107, 146
– multifunctional 146
endothelium-derived hyperpolarising

factor 224
environmental factors 3
Eph 93
ephrin-B2 14
ephrins 93
epiblasts 77
ER
– Ca2+ release 152
– Ca2+-ATPase 152
– osmotic swelling 152
– volume-sensitive 152
erythropoietin 80
exocytosis 108
extracellular matrix 46, 64
– hyperplasia 64
extraembryonic mesoderm 74

Fahraeus effect 21
fenestrae 117
fibrosis
– lung 117
filipin 113
flavin adenine dinucleotide 216
flavin mononucleotide 216
fluid
– interstitial 118
fluid phase 110
fluorescence imaging 15
forkhead transcription factors 87
free radicals 219
functional modifications 62
– hyperglycaemia 64, 65
– hyperlipaemia 60, 62, 63, 65
– inflammatory process 62, 63
fusion 108

G protein 147
– Gαq 148
– Gαγ 148
G proteins 113
– heterotrimeric 113
– monomeric 113
Gβγ 114
Gαi 114
G12/13 120
Gi 114



Subject Index 335

Gq 119
GAPs 124
GATA 77, 80
GDI 121
GEFs 124
gene 117
– caveolin-1 117
genetic factors 3
glucocorticoids 222
glycolysis 234
glycoprotein 17
glycosaminoglycan (GAG) 18
glypican 18
gp60 109
GST-PAK 133
GTPase 114

haem 216
haemangioblast 73–75, 77, 79
haematocrit 20
haematopoietically expressed homeobox
– (Hex) 77
haemogenic endothelium 75
haemoglobic endothelium
– intra-aortic clusters 76
– subaortic patches 76
heart 223
– endothelin converting enzyme-2 304
– endothelin-2 298
– endothelin-3 298
– endothelium converting enzyme-1

(ECE-1) 300
– sarafotoxin 299
heart attack 199
heart failure 231
heat shock protein 90 218
heparan sulphate (HS) 18
heparan sulphate proteoglycans

(HSPGs) 18
heparinase 24
histamine 219
histamine receptors 54, 57
HMWK 264
homing 12
host-defence 108
hyaluronic acid 24
hydrogen peroxide (H2O2) 219
hypercholesterolaemia 222, 231
hyperhomocysteinaemia 231
hypertension 223, 231

hypoxia 80
hypoxia-inducible factor-1 234

125I-albumin 120
ICAM-1 6, 127
icatibant 266
inducible nitric oxide synthase

(iNOS) 215
inflammation 26, 108, 195
inflammatory mediators 108
– bradykinin 108
– histamine 108
– platelet activating factor 108
– thrombin 108
– vascular endothelial growth

factor 108
influx 108
– Ca2+ 108
iNOS 128
– induction 222
insulin 109
– secretion 267
– sensitivity 267
integrins 18
interactions 113
– protein-protein 113
intercellular endothelial junctions

53, 56, 57
– adherent junctions

(zonula adherens) 53
– gap (communicating) junctions

(macula communicans) 53, 54
– tight junctions (zonula occludens)

44, 53, 54, 56, 66
intercellular junctions 42
internalisation 116
– SV40-induced 116
intimal hyperplasia 226
intracellular Ca2+ stores 148
IP deletion 197
IP knockout 196
IP3 120, 148
– second messenger 148
IP3 receptors 152, 153
– Ca2+ 153
– Golgi apparatus 153
– high-affinity 153
– IP3-induced 153
– perinuclear 153
– secretory vesicles 153



336 Subject Index

– subunits 152
– tetramers 152

JMD 122
junctional complexes 108
– adherens 108
– tight 108

Kf,c 127
kallikrein 264
kidney
– endothelin-1 299, 301, 303
kidney, glomerular capillaries 66
knock-out 224
knockout mice 113
– caveolin-1 113

l-arginine 215
L-selectin 12
leucocyte-endothelial interactions 13
lifespan 230
LMO-2 77
LMWK 264
losartan 258
low-density lipoprotein (LDL) 197, 232
lung microvascular bed 111
lymphatic tissues 12
lymphocytes 12

macrophage-derived foam cells 63, 64
macrophages 221
malformation
– cerebral cavernous 96
– venous 87
mast cells 54, 57, 64
master-regulator 113
matrix 118
– subendothelial 118
mechanical forces 151
– Ca2+ release 151
– Ca2+ stores 151
– osmotic 151
– shear stress 151
mechanism of endothelial sorting

of molecules 59
– endocytosis 42, 58–61
– receptor-mediated and receptor-

independent endocytosis 58, 60
– receptor-mediated and receptor-

independent transcytosis
42, 50, 57, 61

– receptor-mediated endocytosis 59
– transcytosis 42, 43, 47, 50, 57–61
– transport of plasma molecules

42, 50, 61
membrane 112, 114
– apical 114
– basolateral membrane 112
membrane fission 112
– dynamin-dependent 112
membrane microdomains 112
– cholesterol-rich 112
– glycosphingolipid-rich 112
mesoangioblast 82
methyl-β-cyclodextrin 113
microdomains 113
microhaemodynamics 23
microparticle image velocimetry

(μPIV) 23
microtubule 120
microvascular flow resistance 21
microvascular networks 21
microvessels 15
mitochondria 150, 223
– Ca2+ oscillation 151
– Ca2+ overload 150
– Ca2+ release 151
– Ca2+ reserve 150
– Ca2+ uptake 150
– excitable 150
– mitochondrial biogenesis 230
MLCK 118, 165
– barrier function 165
– bradykinin 165
– calcium signalling 165
– Cl− influx 165
– cytoskeleton 166
– endothelial cells 165
– endothelium-derived relaxing

factors 165
– HEK 293 cells 168
– ML-5 165
– ML-7 165
– ML-9 165
– MLC phosphorylation 166
– Mn2+ influx 168
– monocytes 166
– protein 4.1 167
– spectrin 167
– thapsigargin 165
– TRPC4 168



Subject Index 337

myocardial capillaries 56, 65
myocardin 84
myosin 83
myosin light chain 118

NADPH 216
NADPH oxidase 128
NADPH oxidases 233
netrin 92
neuronal (nNOS) 215
neuropilin 91
neuropilin 1 14
neutral endopeptidase 304
NF-κB 128
NG2 proteoglycan 83
nitric oxide 13, 259
nitric oxide (NO) synthase 13, 113
– endothelial 113
nitroglycerin 232
nitrosating species 228
nitrotyrosine 232
nitroxyl anion (NO−) 215
noggin 91
non-steroidal anti-inflammatory drugs

(NSAIDs) 201
– diclofenac 203
– flurbiprofen 203
– ibuprofen 194, 203
– indomethacin 194, 203
– meloxicam 203
– naproxen 203
NOS traffic inducer protein

(NOSTRIN) 221
NOS-interacting protein

(NOSIP) 221
Notch 95
notochord 91

occludin 8
oedema 126
– protein-rich 126
oestrogen 194, 218
oncotic pressure 108
oxidative phosphorylation

chain 229
oxidative stress 225, 229
oxidised LDL 235

P-selectin 7
p115RhoGEF 121

p120-catenins 122
pain 200
PAR-1 119
pathology 57
pathway 107
– transcellular 107
pericytes 53, 54, 66, 72, 82, 84
peroxynitrite (ONOO−) 194, 226
phase 110
phosphatase 114, 118
– MLC-associated 118
phosphatase 220
phosphorylation 108, 215
– myosin light chain 108
– Ser1177 220
– Thr495 220
PKA 131
PKCα 108
placenta 75
placenta growth factor
– P1GF 78
plasmalemma 114
platelet 224
– aggregation 201, 225
platelet endothelial cell adhesion

molecule-1 (PECAM-1) 79
platelet-derived growth factors

(PDGF) 86
platelets 193
PMN 128
polarized cells 44
pre-eclampsia 231
pregnancy 195
pressure 108
primary vascular plexus 75
primitive streak 74
prostacyclin 225
prostacyclin synthase 193
prostaglandins (PGs) 190, 224
prostanoid receptor 196
protein 113
– scaffolding 113
protein kinase C 168
– bradykinin 168
– endothelial cells 168
– SOCE 168
protein kinases 164
– Ca2+ entry 164
– genistein 164
– tyrosine kinase 164



338 Subject Index

proteoglycans 18, 24
pulmonary hypertension 231

Rac 131
Raynaud’s syndrome 231
reactive oxygen species (ROS) 222, 259
renin 257
repeats 122
– cadherin 122
retinal capillary 66
retinoic acid 78
retraction 118
– endothelial cell 118
Rho GTPase 120
Rho kinase 108
RhoA 124
Runx1 80
ryanodine receptors 153
– endothelial 154
– isoforms 153
– non-endothelial 154

S-nitrosylation 228
S1P 131
sarafotoxin 299
– endothelin agonist 299
sarcoplasmic/endoplasmic reticulum

Ca2+-ATPase (SERCA)
– Ca2+-binding sites 155
– calmidazolium 156
– CaM antagonists 155
– conformational changes 155
– high-energy state 155
– house-keeping 155
– isoforms 155
– low-affinity state 155
– non-muscle 155
– thapsigargin 155
– W-7 156
second messenger 149
– Ca2+-releasing 149
– cADPR 149
– NAADP 149
selectins 18
semaphorin 91
septic shock 222
SERCA 155
serine kinase Akt 1 220
shear rates 13
shear stress 13, 148, 192, 197, 218

– IP3 148
signalling molecules 108
signalling pathways 108
– second messenger 108
Smad1 78
Smad5 78
smoking 231
smooth muscle cell (SMC) 43, 53, 54,

63, 65, 75, 83
smooth muscle proliferation 226
SOC 120
SOCE 147, 159
– Ca2+ release-activated Ca2+

current 159
– capacitative 159
– shear stress 159
– thapsigargin 159
– transient receptor potential

channel 147
soluble guanylate cyclase 221
somitic tissue 75
sphingosine-1
– S1P 84
sprouting 90
Src 113
statins 219
stem cell leukaemia
– SCL 77, 80
– TAL-1 77
stem cells 78
– haematopoietic 76, 77, 97
store-operated Ca2+ entry 158
stress fibres 120
stroke 199
studies 121
– electron microscopy 121
superoxide anion (O−

2) 218
syndecan 18

telangiectasia
– hereditary haemorrhagic 96
thapsigargin 123, 155, 159
thromboxane (TX) 190
thromboxane A2 193
thromboxane A2 receptor (TP) 198
thromboxane synthase 193
thromboxane synthase

inhibitors 200
Tie1 86
Tie2 86, 132



Subject Index 339

tight junctions 8
TLR2 128
TLR4 128
TNF-α 124
transendothelial electrical

resistance 123
transferrin 80, 109
transforming growth factor

(TGF)-β 227
transforming growth factor-β1
– (TGF-β1) 78, 88
transport 107
TRP 158
– canonical 158
– TRP1 121
– TRP3 158
– TRPC 158
– TRPC4 120, 158
– TRPM 158
– vanilloid 158
tyrosine kinase 116

vascular barrier 108
– semi-permeable 108
vascular endothelial growth factor

VEGF 72, 218
vascular endothelium 42, 44, 46, 56,

61, 66

– differentiated microdomains 56
– large vessel endothelial cells 45, 56,

58, 65
– phenotypic heterogeneity 56
vascular permeability 226
vascular smooth muscle cell 72, 195
– proliferation 201
vascular tone 26, 256
vasculogenesis 73, 75
vasoconstriction 222
VASP 131
VEGF-A receptor 2
– Flk1 74
– KDR 74
– VEGFR-2 74, 77, 78
vesicle carriers 107
vesicle fission 108
vesicle trafficking 108
vitelline vessels 75
vitronectin 7
von Willebrand factor 46, 56, 64
VVOs 117

Wnts 85

xanthine oxidase 233

yolk sac 73–75, 77



HEP (2006) 176/I
© Springer-Verlag Berlin Heidelberg 2006

Publisher’s Erratum to
The Vascular Endothelium I:
Transport Across the Endothelium:
Regulation of Endothelial Permeability
R. D. Minshall · A. B. Malik (�)

Department of Pharmacology (m/c 868), University of Illinois, 835 S. Wolcott Avenue,
Chicago IL, 60612, USA
abmalik@uic.edu

The publisher inserted an incorrect figure as Fig. 4 on page 119.
The correct figure is given below.
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Fig.4 Signalling functions of Ca2+, PKCα and Rho in the mechanism of increased endothelial
permeability. Activation of endothelial cell surface PAR-1 by thrombin results in inflamma-
tion/vascular leakage. Gq- and G12/13-coupled signalling mechanisms activated by thrombin
induce an elevation in intracellular Ca2+ and activation of PKCα and Rho GTPase. Crosstalk
between Gq and G12/13 signalling via PKCα is also an essential requirement for Rho and
Rho kinase activation. Phosphorylation of myosin light chain (MLC) by Ca2+/calmodulin
(CaM)-dependent myosin light chain kinase (MLCK) and inhibition of MLC phosphatase
via Rho kinase promote actin-myosin cross-bridge cycling, cell retraction and endothelial
barrier dysfunction
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