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TO TEACHERS: About This Book

Statistics is the science of data. Introduction to the Practice of Statistics (IPS)
is an introductory text based on this principle. We present the most-used
methods of basic statistics in a way that emphasizes working with data

and mastering statistical reasoning. IPS is elementary in mathematical level
but conceptually rich in statistical ideas and serious in its aim to help students
think about data and use statistical methods with understanding.

Some schematic history will help place IPS in the universe of texts for a first
course in statistics for students from a variety of disciplines. Traditional texts
were almost entirely devoted to methods of inference, with quick coverage of
means, medians, and histograms as a preliminary. No doubt this reflected the
fact that inference is the only part of statistics that has a mathematical the-
ory behind it. Several innovative books aimed at nontraditional audiences pio-
neered a broader approach that paid more attention to design of samples and
experiments, the messiness of real data, and discussion of real-world statisti-
cal studies and controversies. All were written by widely known statisticians
whose main business was not writing textbooks. The Nature of Statistics (Wal-
lis and Roberts) has passed away, but Statistics (Freedman and collaborators)
and Statistics: Concepts and Controversies (Moore) remain alive and well. None
of these books tried to meet the needs of a typical first course because their au-
diences did not need full coverage of standard statistical methods.

IPS was the first book to successfully combine attention to broader content
and reasoning with comprehensive presentation of the most-used statistical
methods. It reflects the consensus among statisticians—even stronger now
than when the first edition appeared—concerning the content of an introduc-
tion to our discipline. This consensus is expressed in a report from the joint
curriculum committee of the American Statistical Association and the Mathe-
matical Association of America1 and in discussions in leading journals.2 IPS
has been successful for several reasons:

1. IPS examines the nature of modern statistical practice at a level suitable for
beginners. Attention to data analysis and data production as well as to prob-
ability and inference is “new” only in the world of textbooks. Users of sta-
tistical methods have always paid attention to all of these. Contemporary
research in statistics, driven by advances in computing, puts more empha-
sis on sophisticated “looking at data” and on data-analytic ways of thinking.
Formal inference remains important and receives careful treatment, but it
appears as part of a larger picture.

2. IPS has a logical overall progression, so data analysis and data production
strengthen the presentation of inference rather than stand apart from it. We
stress that data analysis is an essential preliminary to inference because in-
ference requires clean data. The most useful “goodness of fit” procedure, for
example, is the normal quantile plot presented in Chapter 1 and used fre-
quently in the inference chapters. We emphasize that when you do formal
statistical inference, you are acting as if your data come from properly ran-
domized data production. We use random samples and experimental ran-
domization to motivate the need for probability as a language for inference.

xv
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3. IPS presents data analysis as more than a collection of techniques for ex-
ploring data. We integrate techniques with discussion of systematic ways of
thinking about data. We also work hard to make data-analytic thinking ac-
cessible to beginners by presenting a series of simple principles: always plot
your data; look for overall patterns and deviations from them; when look-
ing at the overall pattern of a distribution for one variable, consider shape,
center, and spread; for relations between two variables, consider form, di-
rection, and strength; always ask whether a relationship between variables
is influenced by other variables lurking in the background. Inference is sim-
ilarly treated as more than a collection of methods. We warn students about
pitfalls in clear cautionary discussions—about regression and correlation,
experiments, sample surveys, confidence intervals, and significance tests.
Our goal throughout IPS is to present principles and techniques together
in a way that is accessible to beginners and lays a foundation for students
who will go on to more advanced study.

4. IPS integrates discussion of techniques, reasoning, and practice using real
examples to drive the exposition. Students learn the technique of least-
squares regression and how to interpret the regression slope. But they also
learn the conceptual ties between regression and correlation, the impor-
tance of looking for influential observations (always plot your data), and to
beware of averaged data and the restricted-range effect.

5. IPS is aware of current developments both in statistical science and in teach-
ing statistics. For example, the first edition already favored the version of
the two-sample t procedures that does not assume equal population vari-
ances and discussed the great difference in robustness between standard
tests for means and for variances. In the fourth edition, we introduced the
modified (“plus four”) confidence intervals for proportions that are shown
by both computational studies3 and theory4 to be superior to the stan-
dard intervals for all but very large samples. Brief optional “Beyond the
Basics” sections give quick overviews of topics such as density estimation,
scatterplot smoothers, nonlinear regression, and data mining. Chapter 16
on resampling methods offers an extended introduction to one of the most
important recent advances in statistical methodology.

The title of the book expresses our intent to introduce readers to statistics
as it is used in practice. Statistics in practice is concerned with gaining under-
standing from data; it focuses on problem solving rather than on methods that
may be useful in specific settings. A text cannot fully imitate practice because
it must teach specific methods in a logical order and must use data that are not
the reader’s own. Nonetheless, our interest and experience in applying statistics
have influenced the nature of IPS in several ways.

Statistical Thinking Statistics is interesting and useful because it pro-
vides strategies and tools for using data to gain insight into real problems. As
the continuing revolution in computing automates the details of doing calcu-
lations and making graphs, an emphasis on statistical concepts and on insight
from data becomes both more practical for students and teachers and more im-
portant for users who must supply what is not automated. No student should
complete a first statistics course, for example, without a firm grasp of the dis-
tinction between observational studies and experiments and of why random-
ized comparative experiments are the gold standard for evidence of causation.
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We have seen many statistical mistakes, but few have involved simply getting
a calculation wrong. We therefore ask students to learn to explore data, always
starting with plots, to think about the context of the data and the design of the
study that produced the data, the possible influence of wild observations on
conclusions, and the reasoning that lies behind standard methods of inference.
Users of statistics who form these habits from the beginning are well prepared
to learn and use more advanced methods.

Data Data are numbers with a context, as we say in “To Students: What Is
Statistics?” A newborn who weighs 10.3 pounds is a big baby, and the birth
weight could not plausibly be 10.3 ounces or 10.3 kilograms. Because context
makes numbers meaningful, our examples and exercises use real data with real
contexts that we briefly describe. Calculating the mean of five numbers is arith-
metic, not statistics. We hope that the presence of background information,
even in exercises intended for routine drill, will encourage students to always
consider the meaning of their calculations as well as the calculations them-
selves. Note in this connection that a calculation or a graph or “reject H0” is
rarely a full answer to a statistical problem. We strongly encourage requiring
students always to state a brief conclusion in the context of the problem. This
helps build data sense as well as the communication skills that employers value.

Mathematics Although statistics is a mathematical science, it is not a
field of mathematics and should not be taught as if it were. A fruitful math-
ematical theory (based on probability, which is a field of mathematics) un-
derlies some parts of basic statistics, but by no means all. The distinction be-
tween observation and experiment, for example, is a core statistical idea that
is ignored by the theory.5 Mathematically trained teachers, rightly resisting a
formula-based approach, sometimes identify conceptual understanding with
mathematical understanding. When teaching statistics, we must emphasize
statistical ideas and recognize that mathematics is not the only vehicle for
conceptual understanding. IPS requires only the ability to read and use equa-
tions without having each step parsed. We require no algebraic derivations, let
alone calculus. Because this is a statistics text, it is richer in ideas and requires
more thought than the low mathematical level suggests.

Calculators and Computers Statistical calculations and graphics
are in practice automated by software. We encourage instructors to use soft-
ware of their choice or a graphing calculator that includes functions for both
data analysis and basic inference. IPS includes some topics that reflect the
dominance of software in practice, such as normal quantile plots and the ver-
sion of the two-sample t procedures that does not require equal variances.
Several times we display the output of multiple software systems for the same
problem. The point is that a student who knows the basics can interpret almost
any output. Students like this reassurance, and it helps focus their attention
on understanding rather than reading output.

Judgment Statistics in practice requires judgment. It is easy to list the
mathematical assumptions that justify use of a particular procedure, but not
so easy to decide when the procedure can be safely used in practice. Because
judgment develops through experience, an introductory course should present
clear guidelines and not make unreasonable demands on the judgment of



xviii
•

TO TEACHERS: About This Book

students. We have given guidelines—for example, on using the t procedures
for comparing two means but avoiding the F procedures for comparing two
variances—that we follow ourselves. Similarly, many exercises require stu-
dents to use some judgment and (equally important) to explain their choices
in words. Many students would prefer to stick to calculating, and many statis-
tics texts allow them to. Requiring more will do them much good in the long
run.

Teaching Experiences We have successfully used IPS in courses
taught to quite diverse student audiences. For general undergraduates from
mixed disciplines, we cover Chapters 1 to 8 and Chapter 9, 10, or 12, omit-
ting all optional material. For a quantitatively strong audience—sophomores
planning to major in actuarial science or statistics—we move more quickly.
We add Chapters 10 and 11 to the core material in Chapters 1 to 8 and include
most optional content. We de-emphasize Chapter 4 (probability) because these
students will take a probability course later in their program, though we make
intensive use of software for simulating probabilities as well as for statisti-
cal analysis. The third group we teach contains beginning graduate students
in such fields as education, family studies, and retailing. These mature but
sometimes quantitatively unprepared students read the entire text (Chapters
11 and 13 lightly), again with reduced emphasis on Chapter 4 and some parts
of Chapter 5. In all cases, beginning with data analysis and data production
(Part I) helps students overcome their fear of statistics and builds a sound base
for studying inference. We find that IPS can be flexibly adapted to quite varied
audiences by paying attention to our clear designation of some material as
optional and by varying the chapters assigned.

The Sixth Edition: What’s New?

• Co-author We are delighted to welcome Professor Bruce Craig to the Intro-
duction to the Practice of Statistics author team. Bruce is currently Director
of the Statistical Consulting Service at Purdue University and is an outstand-
ing teacher. His vast experience consulting and collaborating with individu-
als who use statistical methods in their work provides him with perspective
on the field of statistics that resonates with the approach of this text.

• Ethics Chapter 3 now contains a new section (3.4) on ethics. We believe that
this topic is a very important part of the undergraduate curriculum and that
a course in statistics is an ideal forum to stimulate thought and discussion
about ethical issues.

• Text Organization Logistic Regression, previously treated in Chapter 16,
now appears in Chapter 14. Similarly, Bootstrap Methods and Permutation
Tests has moved to Chapter 16. This change is in line with the increasing
importance of logistic regression in statistical practice. In response to sug-
gestions from current IPS users, we have moved the material on data analysis
for two-way tables from Chapter 9 back to Chapter 2 (Section 2.5). In addi-
tion, the large sample confidence procedures are now the featured methods
for one and two proportions in Chapter 9, and the plus-four have been moved
to Beyond the Basics sections, a more appropriate location. The table of con-
tents follows what we consider to be the best ordering of the topics from a
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pedagogical point of view. However, the text chapters are generally written
to enable instructors to teach the material in the order they prefer.

• Design A new design incorporates colorful, revised figures throughout to
aid students’ understanding of text material. Photographs related to chap-
ter examples and exercises make connections to real-life applications and
provide a visual context for topics.

• Exercises and Examples Exercises and examples are labeled to help in-
structors and students easily identify key topics and application areas. The
number of total exercises has increased by 15%. Approximately half the total
exercises are new or revised to reflect current data and a variety of topics.
IPS examples and exercises cover a wide range of application areas. An ap-
plication index is provided for instructors to easily select and assign content
related to specific fields.

• Use Your Knowledge Exercises Short exercises designed to reinforce key
concepts now appear throughout each chapter. These exercises are listed,
with page numbers, at the end of each section for easy reference.

• Look Back At key points in the text Look Back margin notes direct theLOOK BACK
reader to the first explanation of a topic, providing page numbers for easy
reference.

In addition to the new Sixth Edition enhancements, IPS has retained the suc-
cessful pedagogical features from previous editions:

• Caution Warnings in the text, signaled by a caution icon, help students avoidCAUTION

!
common errors and misconceptions.

• Challenge Exercises More challenging exercises are signaled with an icon.

C
H

ALLENG
E

Challenge exercises are varied: some are mathematical, some require open-
ended investigation, and so on.

• Applets Applet icons are used throughout the text to signal where related,AP
PLET

interactive statistical applets can be found on the text Web site (www.
whfreeman.com/ips6e) and CD-ROM.

• Statistics in Practice Formerly found at the opening of each chapter, these
accounts by professionals who use statistics on the job are now located on
the IPS Web site and CD-ROM.

• CrunchIt! Statistical Software Developed by Webster West of Texas A&M
University, CrunchIt! is an easy-to-use program for students and offers capa-
bilities well beyond those needed for a first course. CrunchIt! output, along
with other statistical software output, is integrated throughout the text.
Access to CrunchIt! is available online through an access-code–protected
Web site. Access codes are available in every new copy of IPS 6e or can be
purchased online.
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Media and Supplements

For Students

NEW!

portals.bfwpub.com/ips6e (Access code required. Available packaged with
Introduction to the Practice of Statistics, Sixth Edition, or for purchase on-
line.) StatsPortal is the digital gateway to IPS 6e, designed to enrich the course
and enhance students’ study skills through a collection of Web-based tools.
StatsPortal integrates a rich suite of diagnostic, assessment, tutorial, and en-
richment features, enabling students to master statistics at their own pace. It
is organized around three main teaching and learning components:

• Interactive eBook offers a complete and customizable online version of the
text, fully integrated with all the media resources available with IPS 6e. The
eBook allows students to quickly search the text, highlight key areas, and add
notes about what they’re reading. Similarly, instructors can customize the
eBook to add, hide, and reorder content, add their own material, and high-
light key text for students.

• Resources organizes all the resources for IPS 6e into one location for stu-
dents’ ease of use. These resources include the following:

• StatTutor Tutorials offer over 150 audio-multimedia tutorials tied
directly to the textbook, including videos, applets, and animations.

• Statistical Applets are 16 interactive applets to help students master key
statistical concepts.

• CrunchIt! Statistical Software allows users to analyze data from any
Internet location. Designed with the novice user in mind, the software is
not only easily accessible but also easy to use. CrunchIt! offers all the
basic statistical routines covered in the introductory statistics courses.
CrunchIt! statistical software is available via an access-code protected
Web site. Access codes are available in every new copy of IPS 6e or can be
purchased online.

• Stats@Work Simulations put students in the role of statistical
consultants, helping them better understand statistics interactively within
the context of real-life scenarios. Students are asked to interpret and
analyze data presented to them in report form, as well as to interpret
current event news stories. All tutorials are graded and offer helpful hints
and feedback.

• EESEE Case Studies developed by The Ohio State University Statistics
Department provide students with a wide variety of timely, real examples
with real data. Each case study is built around several thought-provoking
questions that make students think carefully about the statistical issues
raised by the stories. EESEE case studies are available via an access-
code-protected Web site. Access codes are available in every new copy of
IPS 6e or can be purchased online.
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• Podcast Chapter Summary provides students with an audio version of
chapter summaries to download and review on an mp3 player.

• Data Sets are available in ASCII, Excel, JMP, Minitab, TI, SPSS, and
S-Plus formats.

• Online Tutoring with SMARTHINKING is available for homework help
from specially trained, professional educators.

• Student Study Guide with Selected Solutions includes explanations of
crucial concepts and detailed solutions to key text problems with
step-by-step models of important statistical techniques.

• Statistical Software Manuals for TI-83/84, Minitab, Excel, JMP, and
SPSS provide instruction, examples, and exercises using specific
statistical software packages.

• Interactive Table Reader allows students to use statistical tables
interactively to seek the information they need.

Resources (instructors only)

• Instructor’s Guide with Full Solutions includes worked-out solutions
to all exercises, teaching suggestions, and chapter comments.

• Test Bank contains complete solutions for textbook exercises.

• Lecture PowerPoint slides offer a detailed lecture presentation of
statistical concepts covered in each chapter of IPS.

• Assignments organizes assignments and guides instructors through an easy-
to-create assignment process providing access to questions from the Test
Bank, Web Quizzes, and Exercises from IPS 6e. The Assignment Center en-
ables instructors to create their own assignments from a variety of question
types for self-graded assignments. This powerful assignment manager al-
lows instructors to select their preferred policies in regard to scheduling,
maximum attempts, time limitations, feedback, and more!

Online Study Center: www.whfreeman.com/osc/ips6e
(Access code required. Available for purchase online.) In addition to all the
offerings available on the Companion Web site, the OSC offers:

• StatTutor Tutorials

• Stats@Work Simulations

• Study Guide with Selected Solutions

• Statistical Software Manuals

Companion Web site: www.whfreeman.com/ips6e
Seamlessly integrates topics from the text. On this open-access Web site, stu-
dents can find the following:

• Interactive Statistical Applets that allow students to manipulate data and
see the corresponding results graphically.

www.whfreeman.com/osc/ips6e
www.whfreeman.com/ips6e
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• Data Sets in ASCII, Excel, JMP, Minitab, TI, SPSS, and S-Plus formats.

• Interactive Exercises and Self-Quizzes to help students prepare for tests.

• Optional Companion Chapters 14, 15, 16, and 17, covering logistic
regression, nonparametric tests, bootstrap methods and permutation tests,
and statistics for quality control and capability.

• Supplementary Exercises for every chapter.

Interactive Student CD-ROM Included with every new copy of
IPS, the CD contains access to the companion chapters, applets, and data sets
also found on the Companion Web site.

Special Software Packages Student versions of JMP, Minitab,
S-PLUS, and SPSS are available on a CD-ROM packaged with the textbook.
This software is not sold separately and must be packaged with a text or a
manual. Contact your W. H. Freeman representative for information or visit
www.whfreeman.com.

NEW! SMARTHINKING Online Tutoring (access code required)
W. H. Freeman and Company is partnering with SMARTHINKING to provide
students with free online tutoring and homework help from specially trained,
professional educators. Twelve-month subscriptions are available for packag-
ing with IPS.

Printed Study Guide prepared by Michael A. Fligner of The Ohio
State University offers students explanations of crucial concepts in each sec-
tion of IPS, plus detailed solutions to key text problems and stepped-through
models of important statistical techniques. ISBN 1-4292-1473-2

For Instructors

The Instructor’s Web site www.whfreeman.com/ips6e requires user registra-
tion as an instructor and features all the student Web materials plus:

• Instructor version of EESEE (Electronic Encyclopedia of Statistical
Examples and Exercises), with solutions to the exercises in the student
version and CrunchIt! statistical software.

• Instructor’s Guide, including full solutions to all exercises in .pdf format.

• PowerPoint slides containing all textbook figures and tables.

• Lecture PowerPoint slides offering a detailed lecture presentation of statis-
tical concepts covered in each chapter of IPS.

• Full answers to the Supplementary Exercises on the student Web site.

Instructor’s Guide with Solutions by Darryl Nester, Bluffton Uni-
versity. This printed guide includes full solutions to all exercises and provides
video and Internet resources and sample examinations. It also contains brief
discussions of the IPS approach for each chapter. ISBN 1-4292-1472-4

www.whfreeman.com
www.whfreeman.com/ips6e
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Test Bank by Brian Macpherson, University of Manitoba. The test bank
contains hundreds of multiple-choice questions to generate quizzes and tests.
Available in print as well as electronically on CD-ROM (for Windows and Mac),
where questions can be downloaded, edited, and resequenced to suit the in-
structor’s needs.
Printed Version, ISBN 1-4292-1471-6
Computerized (CD) Version, ISBN 1-4292-1859-2

Enhanced Instructor’s Resource CD-ROM Allows instructors
to search and export (by key term or chapter) all the material from the student
CD, plus:

• All text images and tables

• Statistical applets and data sets

• Instructor’s Guide with full solutions

• PowerPoint files and lecture slides

• Test bank files

ISBN 1-4292-1503-8

Course Management Systems W. H. Freeman and Company pro-
vides courses for Blackboard, WebCT (Campus Edition and Vista), and Angel
course management systems. They are completely integrated courses that you
can easily customize and adapt to meet your teaching goals and course objec-
tives. On request, Freeman also provides courses for users of Desire2Learn and
Moodle. Visit www.bfwpub.com/lmc for more information.

i-clicker is a new two-way radio-frequency classroom response solution de-i clicker
veloped by educators for educators. University of Illinois physicists Tim Stelzer,
Gary Gladding, Mats Selen, and Benny Brown created the i-clicker system af-
ter using competing classroom response solutions and discovering they were
neither classroom-appropriate nor student-friendly. Each step of i-clicker’s de-
velopment has been informed by teaching and learning. i-clicker is superior to
other systems from both pedagogical and technical standpoints. To learn more
about packaging i-clicker with this textbook, please contact your local sales rep
or visit www.iclicker.com.

www.bfwpub.com/lmc
www.iclicker.com


TO STUDENTS: What Is Statistics?

Statistics is the science of collecting, organizing, and interpreting numeri-
cal facts, which we call data. We are bombarded by data in our everyday
lives. The news mentions imported car sales, the latest poll of the presi-

dent’s popularity, and the average high temperature for today’s date. Advertise-
ments claim that data show the superiority of the advertiser’s product. All sides
in public debates about economics, education, and social policy argue from
data. A knowledge of statistics helps separate sense from nonsense in the flood
of data.

The study and collection of data are also important in the work of many
professions, so training in the science of statistics is valuable preparation
for a variety of careers. Each month, for example, government statistical of-
fices release the latest numerical information on unemployment and inflation.
Economists and financial advisors, as well as policymakers in government and
business, study these data in order to make informed decisions. Doctors must
understand the origin and trustworthiness of the data that appear in medical
journals. Politicians rely on data from polls of public opinion. Business deci-
sions are based on market research data that reveal consumer tastes. Engineers
gather data on the quality and reliability of manufactured products. Most areas
of academic study make use of numbers, and therefore also make use of the
methods of statistics.

Understanding from Data

The goal of statistics is to gain understanding from data. To gain understanding,
we often operate on a set of numbers—we average or graph them, for example.
But we must do more, because data are not just numbers; they are numbers
that have some context that helps us understand them.

You read that low birth weight is a major reason why infant mortality in
the United States is higher than in most other advanced nations. The report
goes on to say that 7.8% of children born in the United States have low birth
weight, and that 13.4% of black infants have low birth weight.1 To make sense
of these numbers you must know what counts as low birth weight (less than
2500 grams, or 5.5 pounds) and have some feeling for the weights of babies.
You probably recognize that 5.5 pounds is small, that 7.5 pounds (3400 grams)
is about average, and that 10 pounds (4500 grams) is a big baby.

Another part of the context is the source of the data. How do we know that
7.8% of American babies have low birth weight or that the average weight of
newborns is about 3400 grams? The data come from the National Center for
Health Statistics, a government office to which the states report information
from all birth certificates issued each month. These are the most complete data
available about births in the United States.

When you do statistical problems—even straightforward textbook prob-
lems—don’t just graph or calculate. Think about the context and state your
conclusions in the specific setting of the problem. As you are learning how to
do statistical calculations and graphs, remember that the goal of statistics is
not calculation for its own sake but gaining understanding from numbers. The

xxv
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calculations and graphs can be automated by a calculator or software, but you
must supply the understanding. This book presents only the most common spe-
cific procedures for statistical analysis. A thorough grasp of the principles of
statistics will enable you to quickly learn more advanced methods as needed.
Always keep in mind, however, that a fancy computer analysis carried out
without attention to basic principles will often produce elaborate nonsense. As
you read, seek to understand the principles, as well as the necessary details of
methods and recipes.

The Rise of Statistics

Historically, the ideas and methods of statistics developed gradually as society
grew interested in collecting and using data for a variety of applications. The
earliest origins of statistics lie in the desire of rulers to count the number of in-
habitants or measure the value of taxable land in their domains. As the physical
sciences developed in the seventeenth and eighteenth centuries, the importance
of careful measurements of weights, distances, and other physical quantities
grew. Astronomers and surveyors striving for exactness had to deal with varia-
tion in their measurements. Many measurements should be better than a sin-
gle measurement, even though they vary among themselves. How can we best
combine many varying observations? Statistical methods that are still impor-
tant were invented to analyze scientific measurements.

By the nineteenth century, the agricultural, life, and behavioral sciences also
began to rely on data to answer fundamental questions. How are the heights
of parents and children related? Does a new variety of wheat produce higher
yields than the old, and under what conditions of rainfall and fertilizer? Can
a person’s mental ability and behavior be measured just as we measure height
and reaction time? Effective methods for dealing with such questions devel-
oped slowly and with much debate.2

As methods for producing and understanding data grew in number and so-
phistication, the new discipline of statistics took shape in the twentieth century.
Ideas and techniques that originated in the collection of government data, in
the study of astronomical or biological measurements, and in the attempt to
understand heredity or intelligence came together to form a unified “science of
data.” That science of data—statistics—is the topic of this text.

The Organization of This Book

Part I of this book, called “Looking at Data,” concerns data analysis and data
production. The first two chapters deal with statistical methods for organizing
and describing data. These chapters progress from simpler to more complex
data. Chapter 1 examines data on a single variable; Chapter 2 is devoted to re-
lationships among two or more variables. You will learn both how to examine
data produced by others and how to organize and summarize your own data.
These summaries will be first graphical, then numerical, and then, when ap-
propriate, in the form of a mathematical model that gives a compact descrip-
tion of the overall pattern of the data. Chapter 3 outlines arrangements (called
“designs”) for producing data that answer specific questions. The principles
presented in this chapter will help you to design proper samples and experi-
ments and to evaluate such investigations in your field of study.
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Part II, consisting of Chapters 4 to 8, introduces statistical inference—
formal methods for drawing conclusions from properly produced data. Sta-
tistical inference uses the language of probability to describe how reliable
its conclusions are, so some basic facts about probability are needed to un-
derstand inference. Probability is the subject of Chapters 4 and 5. Chapter 6,
perhaps the most important chapter in the text, introduces the reasoning of
statistical inference. Effective inference is based on good procedures for pro-
ducing data (Chapter 3), careful examination of the data (Chapters 1 and 2),
and an understanding of the nature of statistical inference as discussed in
Chapter 6. Chapters 7 and 8 describe some of the most common specific meth-
ods of inference for drawing conclusions about means and proportions from
one and two samples.

The five shorter chapters in Part III introduce somewhat more advanced
methods of inference, dealing with relations in categorical data, regression and
correlation, and analysis of variance. Supplement chapters, available on the
book-companion CD and Web site, present additional statistical topics.

What Lies Ahead

Introduction to the Practice of Statistics is full of data from many different areas
of life and study. Many exercises ask you to express briefly some understanding
gained from the data. In practice, you would know much more about the back-
ground of the data you work with and about the questions you hope the data
will answer. No textbook can be fully realistic. But it is important to form the
habit of asking, “What do the data tell me?” rather than just concentrating on
making graphs and doing calculations.

You should have some help in automating many of the graphs and calcu-
lations. You should certainly have a calculator with basic statistical functions.
Look for key words such as “two-variable statistics” or “regression” when you
shop for a calculator. More advanced (and more expensive) calculators will do
much more, including some statistical graphs. You may be asked to use soft-
ware as well. There are many kinds of statistical software, from spreadsheets
to large programs for advanced users of statistics. The kind of computing avail-
able to learners varies a great deal from place to place—but the big ideas of
statistics don’t depend on any particular level of access to computing.

Because graphing and calculating are automated in statistical practice, the
most important assets you can gain from the study of statistics are an under-
standing of the big ideas and the beginnings of good judgment in working with
data. Ideas and judgment can’t (at least yet) be automated. They guide you in
telling the computer what to do and in interpreting its output. This book tries
to explain the most important ideas of statistics, not just teach methods. Some
examples of big ideas that you will meet are “always plot your data,” “random-
ized comparative experiments,” and “statistical significance.”

You learn statistics by doing statistical problems. Practice, practice, prac-
tice. Be prepared to work problems. The basic principle of learning is persis-
tence. Being organized and persistent is more helpful in reading this book than
knowing lots of math. The main ideas of statistics, like the main ideas of any
important subject, took a long time to discover and take some time to master.
The gain will be worth the pain.
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CHAPTER

11Looking at Data—
Distributions

Students planning a referendum on college fees. See Example 1.1.

1.1 Displaying Distributions
with Graphs

1.2 Describing Distributions
with Numbers

1.3 Density Curves and Normal
Distributions

Introduction
Statistics is the science of learning from data. Data are
numerical facts. Here is an example of a situation where
students used the results of a referendum to convince
their university Board of Trustees to make a decision.
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E Students vote for service learning scholarships. According to the
National Service-Learning Clearinghouse: “Service-learning is a teaching
and learning strategy that integrates meaningful community service with
instruction and reflection to enrich the learning experience, teach civic re-
sponsibility, and strengthen communities.”1 University of Illinois at Urbana–
Champaign students decided that they wanted to become involved in this
national movement. They proposed a $15.00 per semester Legacy of Service
and Learning Scholarship fee. Each year, $10.00 would be invested in an
endowment and $5.00 would be used to fund current-use scholarships. In a
referendum, students voted 3785 to 2977 in favor of the proposal. On April 11,
2006, the university Board of Trustees approved the proposal. Approximately
$370,000 in current-use scholarship funds will be generated each year, and
with the endowment, it is expected that in 20 years there will be more than a
million dollars per year for these scholarships.

1
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To learn from data, we need more than just the numbers. The numbers in
a medical study, for example, mean little without some knowledge of the goals
of the study and of what blood pressure, heart rate, and other measurements
contribute to those goals. That is, data are numbers with a context, and we
need to understand the context if we are to make sense of the numbers. On
the other hand, measurements from the study’s several hundred subjects are
of little value to even the most knowledgeable medical expert until the tools
of statistics organize, display, and summarize them. We begin our study of
statistics by mastering the art of examining data.

Variables
Any set of data contains information about some group of individuals. The in-
formation is organized in variables.

INDIVIDUALS AND VARIABLES

Individuals are the objects described in a set of data. Individuals are
sometimes people. When the objects that we want to study are not
people, we often call them cases.

A variable is any characteristic of an individual. A variable can take dif-
ferent values for different individuals.

•
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E 1.2 Data for students in a statistics class. Figure 1.1 shows part of a
data set for students enrolled in an introductory statistics class. Each row
gives the data on one student. The values for the different variables are in the
columns. This data set has eight variables. ID is an identifier for each student.
Exam1, Exam2, Homework, Final, and Project give the points earned, out of
a total of 100 possible, for each of these course requirements. Final grades
are based on a possible 200 points for each exam and the final, 300 points for
Homework, and 100 points for Project. TotalPoints is the variable that gives
the composite score. It is computed by adding 2 times Exam1, Exam2, and
Final, 3 times Homework plus 1 times Project. Grade is the grade earned in
the course. This instructor used cut-offs of 900, 800, 700, etc. for the letter
grades.

FIGURE 1.1 Spreadsheet for
Example 1.2.
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The display in Figure 1.1 is from an Excel spreadsheet. Most statisticalspreadsheet
software packages use similar spreadsheets and many are able to import Excel
spreadsheets.

USE YOUR KNOWLEDGE
1.1 Read the spreadsheet. Refer to Figure 1.1. Give the values of the

variables Exam1, Exam2, and Final for the student with ID equal to
104.

1.2 Calculate the grade. A student whose data do not appear on the
spreadsheet scored 88 on Exam1, 85 on Exam2, 77 for Homework, 90
on the Final, and 80 on the Project. Find TotalPoints for this student
and give the grade earned.

Spreadsheets are very useful for doing the kind of simple computations that
you did in Exercise 1.2. You can type in a formula and have the same compu-
tation performed for each row.

Note that the names we have chosen for the variables in our spreadsheet
do not have spaces. For example, we could have used the name “Exam 1” for
the first exam score rather than Exam1. In many statistical software pack-
ages, however, spaces are not allowed in variable names. For this reason, when
creating spreadsheets for eventual use with statistical software, it is best to
avoid spaces in variable names. Another convention is to use an underscore ( )
where you would normally use a space. For our data set, we could use Exam 1,
Exam 2, and Final Exam.

In practice, any set of data is accompanied by background information that
helps us understand the data. When you plan a statistical study or explore data
from someone else’s work, ask yourself the following questions:

1. Why? What purpose do the data have? Do we hope to answer some specific
questions? Do we want to draw conclusions about individuals other than
those for whom we actually have data?

2. Who? What individuals do the data describe? How many individuals ap-
pear in the data?

3. What? How many variables do the data contain? What are the exact defi-
nitions of these variables? Some variables have units. Weights, for example,
might be recorded in pounds, in thousands of pounds, or in kilograms. For
these kinds of variables, you need to know the unit of measurement.
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E 1.3 Individuals and variables. The data set in Figure 1.1 was constructed
to keep track of the grades for students in an introductory statistics course.
The individuals are the students in the class. There are 8 variables in this data
set. These include an identifier for each student and scores for the various
course requirements. There are no units for ID and grade. The other variables
all have “points” as the unit.

Some variables, like gender and college major, simply place individuals into
categories. Others, like height and grade point average, take numerical values
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for which we can do arithmetic. It makes sense to give an average salary for
a company’s employees, but it does not make sense to give an “average” gen-
der. We can, however, count the numbers of female and male employees and
do arithmetic with these counts.

CATEGORICAL AND QUANTITATIVE VARIABLES

A categorical variable places an individual into one of two or more
groups or categories.

A quantitative variable takes numerical values for which arithmetic op-
erations such as adding and averaging make sense.

The distribution of a variable tells us what values it takes and how often
it takes these values.
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E 1.4 Variables for students in a statistics course. Suppose the data for
the students in the introductory statistics class were also to be used to study
relationships between student characteristics and success in the course. For
this purpose, we might want to use a data set like the spreadsheet in Fig-
ure 1.2. Here, we have decided to focus on the TotalPoints and Grade as the
outcomes of interest. Other variables of interest have been included: Gender,
PrevStat (whether or not the student has taken a statistics course previously),
and Year (student classification as first, second, third, or fourth year). ID is a
categorical variable, total points is a quantitative variable, and the remaining
variables are all categorical.

FIGURE 1.2 Spreadsheet for
Example 1.4.

In our example, the possible values for the grade variable are A, B, C, D, and
F. When computing grade point averages, many colleges and universities trans-
late these letter grades into numbers using A = 4, B = 3, C = 2, D = 1, and
F = 0. The transformed variable with numeric values is considered to be quan-
titative because we can average the numerical values across different courses
to obtain a grade point average.

Sometimes, experts argue about numerical scales such as this. They ask
whether or not the difference between an A and a B is the same as the dif-
ference between a D and an F. Similarly, many questionnaires ask people to
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respond on a 1 to 5 scale with 1 representing strongly agree, 2 representing
agree, etc. Again we could ask about whether or not the five possible values
for this scale are equally spaced in some sense. From a practical point of view,
the averages that can be computed when we convert categorical scales such as
these to numerical values frequently provide a very useful way to summarize
data.

USE YOUR KNOWLEDGE
1.3 Apartment rentals. A data set lists apartments available for students

to rent. Information provided includes the monthly rent, whether or
not cable is included free of charge, whether or not pets are allowed,
the number of bedrooms, and the distance to the campus. Describe
the individuals or cases in the data set, give the number of variables,
and specify whether each variable is categorical or quantitative.

Measurement: know your variables
The context of data includes an understanding of the variables that are re-
corded. Often the variables in a statistical study are easy to understand: height
in centimeters, study time in minutes, and so on. But each area of work also
has its own special variables. A psychologist uses the Minnesota Multiphasic
Personality Inventory (MMPI), and a physical fitness expert measures “VO2
max,” the volume of oxygen consumed per minute while exercising at your
maximum capacity. Both of these variables are measured with special instru-instrument
ments. VO2 max is measured by exercising while breathing into a mouthpiece
connected to an apparatus that measures oxygen consumed. Scores on the
MMPI are based on a long questionnaire, which is also an instrument. Part of
mastering your field of work is learning what variables are important and how
they are best measured. Because details of particular measurements usually
require knowledge of the particular field of study, we will say little about them.

Be sure that each variable really does measure what you want it to. A poor

CAUTION

! choice of variables can lead to misleading conclusions. Often, for example, the
rate at which something occurs is a more meaningful measure than a simplerate
count of occurrences.
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E 1.5 Accidents for passenger cars and motorcycles. The government’s
Fatal Accident Reporting System says that 27,102 passenger cars were in-
volved in fatal accidents in 2002. Only 3339 motorcycles had fatal accidents
that year.2 Does this mean that motorcycles are safer than cars? Not at all—
there are many more cars than motorcycles, so we expect cars to have a
higher count of fatal accidents.

A better measure of the dangers of driving is a rate, the number of fatal
accidents divided by the number of vehicles on the road. In 2002, passenger
cars had about 21 fatal accidents for each 100,000 vehicles registered. There
were about 67 fatal accidents for each 100,000 motorcycles registered. The
rate for motorcycles is more than three times the rate for cars. Motorcycles
are, as we might guess, much more dangerous than cars.
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1.1 Displaying Distributions with Graphs
Statistical tools and ideas help us examine data in order to describe their main
features. This examination is called exploratory data analysis. Like an ex-exploratory data analysis
plorer crossing unknown lands, we want first to simply describe what we see.
Here are two basic strategies that help us organize our exploration of a set of
data:

• Begin by examining each variable by itself. Then move on to study the rela-
tionships among the variables.

• Begin with a graph or graphs. Then add numerical summaries of specific as-
pects of the data.

We will follow these principles in organizing our learning. This chapter presents
methods for describing a single variable. We will study relationships among
several variables in Chapter 2. Within each chapter, we will begin with graphi-
cal displays, then add numerical summaries for more complete description.

Graphs for categorical variables
The values of a categorical variable are labels for the categories, such as “fe-
male” and “male.” The distribution of a categorical variable lists the categories
and gives either the count or the percent of individuals who fall in each cate-
gory. For example, how well educated are 30-something young adults? Here is
the distribution of the highest level of education for people aged 25 to 34 years:3

Education Count (millions) Percent

Less than high school 4.6 12.1
High school graduate 11.6 30.5
Some college 7.4 19.5
Associate degree 3.3 8.7
Bachelor’s degree 8.6 22.6
Advanced degree 2.5 6.6

Are you surprised that only 29.2% of young adults have at least a bachelor’s
degree?

The graphs in Figure 1.3 display these data. The bar graph in Figure 1.3(a)bar graph
quickly compares the sizes of the six education groups. The heights of the bars
show the percents in the six categories. The pie chart in Figure 1.3(b) helpspie chart
us see what part of the whole each group forms. For example, the “Bachelor’s”
slice makes up 22.6% of the pie because 22.6% of young adults have a bachelor’s
degree but no higher degree. We have moved that slice out to call attention to
it. Because pie charts lack a scale, we have added the percents to the labels for
the slices. Pie charts require that you include all the categories that make up a

CAUTION

! whole. Use them only when you want to emphasize each category’s relation to the
whole. Bar graphs are easier to read and are also more flexible. For example,
you can use a bar graph to compare the numbers of students at your college
majoring in biology, business, and political science. A pie chart cannot make
this comparison because not all students fall into one of these three majors.
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FIGURE 1.3 (a) Bar graph of the educational attainment of people aged 25 to 34 years.
(b) Pie chart of the education data, with bachelor’s degree holders emphasized.

USE YOUR KNOWLEDGE
1.4 Read the pie chart. Refer to Figure 1.3(b). What percent of young

adults have either an associate degree or a bachelor’s degree?

Bar graphs and pie charts help an audience grasp a distribution quickly.
They are, however, of limited use for data analysis because it is easy to under-
stand data on a single categorical variable, such as highest level of education,
without a graph. We will move on to quantitative variables, where graphs are
essential tools.

Data analysis in action: don’t hang up on me
Many businesses operate call centers to serve customers who want to place an
order or make an inquiry. Customers want their requests handled thoroughly.
Businesses want to treat customers well, but they also want to avoid wasted
time on the phone. They therefore monitor the length of calls and encourage
their representatives to keep calls short. Here is an example of the difficulties
this policy can cause.
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E 1.6 Individuals and variables for the customer service center. We
have data on the length of all 31,492 calls made to the customer service cen-
ter of a small bank in a month. Table 1.1 displays the lengths of the first 80
calls. The file for the complete data set is eg01-004, which you can find on the
text CD and Web site.4

Take a look at the data in Table 1.1. The numbers are meaningless without
some background information. The individuals are calls made to the bank’s
call center. The variable recorded is the length of each call. The units are
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TABLE 1.1

Service times (seconds) for calls to a customer service center

77 289 128 59 19 148 157 203
126 118 104 141 290 48 3 2
372 140 438 56 44 274 479 211
179 1 68 386 2631 90 30 57

89 116 225 700 40 73 75 51
148 9 115 19 76 138 178 76

67 102 35 80 143 951 106 55
4 54 137 367 277 201 52 9

700 182 73 199 325 75 103 64
121 11 9 88 1148 2 465 25

•

seconds. We see that the call lengths vary a great deal. The longest call lasted
2631 seconds, almost 44 minutes. More striking is that 8 of these 80 calls
lasted less than 10 seconds. What’s going on?

Figure 1.4 is a histogram of the lengths of all 31,492 calls. We did not plot
the few lengths greater than 1200 seconds (20 minutes). As expected, the graph
shows that most calls last between about a minute and 5 minutes, with some
lasting much longer when customers have complicated problems. More strik-
ing is the fact that 7.6% of all calls are no more than 10 seconds long. It turned
out that the bank penalized representatives whose average call length was too
long—so some representatives just hung up on customers in order to bring
their average length down. Neither the customers nor the bank were happy
about this. The bank changed its policy, and later data showed that calls under
10 seconds had almost disappeared.
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7.6% of all calls
are ≤ 10 seconds long

FIGURE 1.4 The distribution of
call lengths for 31,492 calls to a
bank’s customer service center,
for Example 1.6. The data show a
surprising number of very short
calls. These are mostly due to
representatives deliberately
hanging up in order to bring
down their average call length.
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The extreme values of a distribution are in the tails of the distribution. Thetails
high values are in the upper, or right, tail and the low values are in the lower,
or left, tail. The overall pattern in Figure 1.4 is made up of the many moderate
call lengths and the long right tail of more lengthy calls. The striking departure
from the overall pattern is the surprising number of very short calls in the left
tail.

Our examination of the call center data illustrates some important
principles:

• After you understand the background of your data (individuals, variables,
units of measurement), the first thing to do is almost always plot your data.

• When you look at a plot, look for an overall pattern and also for any striking
departures from the pattern.

We now turn to the kinds of graphs that are used to describe the distribu-
tion of a quantitative variable. We will explain how to make the graphs by hand,
because knowing this helps you understand what the graphs show. However,
making graphs by hand is so tedious that software is almost essential for effec-
tive data analysis unless you have just a few observations.

Stemplots
A stemplot (also called a stem-and-leaf plot) gives a quick picture of the shape of
a distribution while including the actual numerical values in the graph. Stem-
plots work best for small numbers of observations that are all greater than 0.

STEMPLOT

To make a stemplot:

1. Separate each observation into a stem consisting of all but the final
(rightmost) digit and a leaf, the final digit. Stems may have as many dig-
its as needed, but each leaf contains only a single digit.

2. Write the stems in a vertical column with the smallest at the top, and
draw a vertical line at the right of this column.

3. Write each leaf in the row to the right of its stem, in increasing order
out from the stem.

•

E
X

A
M

P
L

E 1.7 Literacy of men and women. The Islamic world is attracting in-
creased attention in Europe and North America. Table 1.2 shows the percent
of men and women at least 15 years old who were literate in 2002 in the major
Islamic nations. We omitted countries with populations less than 3 million.
Data for a few nations, such as Afghanistan and Iraq, are not available.5

To make a stemplot of the percents of females who are literate, use the first
digits as stems and the second digits as leaves. Algeria’s 60% literacy rate, for
example, appears as the leaf 0 on the stem 6. Figure 1.5 shows the steps in
making the plot.
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TABLE 1.2

Literacy rates (percent) in Islamic nations

Female Male Female Male
Country percent percent Country percent percent

Algeria 60 78 Morocco 38 68
Bangladesh 31 50 Saudi Arabia 70 84
Egypt 46 68 Syria 63 89
Iran 71 85 Tajikistan 99 100
Jordan 86 96 Tunisia 63 83
Kazakhstan 99 100 Turkey 78 94
Lebanon 82 95 Uzbekistan 99 100
Libya 71 92 Yemen 29 70
Malaysia 85 92

(b)(a) (c)

2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 8 7 8
8 8 8
9 9
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FIGURE 1.5 Making a stemplot
of the data in Example 1.7.
(a) Write the stems. (b) Go
through the data and write each
leaf on the proper stem. For
example, the values on the 8
stem are 86, 82, and 85 in the
order of the table. (c) Arrange
the leaves on each stem in order
out from the stem. The 8 stem
now has leaves 2 5 6.

•

The overall pattern of the stemplot is irregular, as is often the case when there
are only a few observations. There do appear to be two clusters of countries.
The plot suggests that we might ask what explains the variation in literacy. For
example, why do the three central Asian countries (Kazakhstan, Tajikistan,
and Uzbekistan) have very high literacy rates?

cluster

USE YOUR KNOWLEDGE
1.5 Make a stemplot. Here are the scores on the first exam in an intro-

ductory statistics course for 30 students in one section of the course:

80 73 92 85 75 98 93 55 80 90 92 80 87 90 72
65 70 85 83 60 70 90 75 75 58 68 85 78 80 93

Use these data to make a stemplot. Then use the stemplot to describe
the distribution of the first-exam scores for this course.
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When you wish to compare two related distributions, a back-to-back stem-
plot with common stems is useful. The leaves on each side are ordered out from

back-to-back stemplot

the common stem. Here is a back-to-back stemplot comparing the distributions
of female and male literacy rates in the countries of Table 1.2.
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The values on the left are the female percents, as in Figure 1.5, but ordered out
from the stem from right to left. The values on the right are the male percents.
It is clear that literacy is generally higher among males than among females in
these countries.

Stemplots do not work well for large data sets, where each stem must hold a

CAUTION

! large number of leaves. Fortunately, there are two modifications of the basic
stemplot that are helpful when plotting the distribution of a moderate num-
ber of observations. You can double the number of stems in a plot by splitting
each stem into two: one with leaves 0 to 4 and the other with leaves 5 throughsplitting stems
9. When the observed values have many digits, it is often best to trim the num-trimming
bers by removing the last digit or digits before making a stemplot. You must use
your judgment in deciding whether to split stems and whether to trim, though
statistical software will often make these choices for you. Remember that the
purpose of a stemplot is to display the shape of a distribution. If a stemplot has
fewer than about five stems, you should usually split the stems unless there are
few observations. If there are many stems with no leaves or only one leaf, trim-
ming will reduce the number of stems. Here is an example that makes use of
both of these modifications.
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E 1.8 Stemplot for length of service calls. Return to the 80 customer ser-
vice call lengths in Table 1.1. To make a stemplot of this distribution, we first
trim the call lengths to tens of seconds by dropping the last digit. For example,
56 seconds trims to 5 and 143 seconds trims to 14. (We might also round to
the nearest 10 seconds, but trimming is faster than rounding if you must do
it by hand.)

We can then use tens of seconds as our leaves, with the digits to the left
forming stems. This gives us the single-digit leaves that a stemplot requires.
For example, 56 trimmed to 5 becomes leaf 5 on the 0 stem; 143 trimmed to
14 becomes leaf 4 on the 1 stem.

Because we have 80 observations, we split the stems. Thus, 56 trimmed to
5 becomes leaf 5 on the second 0 stem, along with all leaves 5 to 9. Leaves
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FIGURE 1.6 Stemplot from
Minitab of the 80 call lengths in
Table 1.1, for Example 1.8. The
software has trimmed the data
by removing the last digit. It has
also split stems and listed the
highest observations apart from
the plot.

•

0 to 4 go on the first 0 stem. Figure 1.6 is a stemplot of these data made by
software. The software automatically did what we suggest: trimmed to tens
of seconds and split stems. To save space, the software also listed the largest
values as “HI” rather than create stems all the way up to 26. The stemplot
shows the overall pattern of the distribution, with many short to moderate
lengths and some very long calls.

Histograms
Stemplots display the actual values of the observations. This feature makes
stemplots awkward for large data sets. Moreover, the picture presented by a
stemplot divides the observations into groups (stems) determined by the num-
ber system rather than by judgment. Histograms do not have these limitations.
A histogram breaks the range of values of a variable into classes and displayshistogram
only the count or percent of the observations that fall into each class. You
can choose any convenient number of classes, but you should always choose
classes of equal width. Histograms are slower to construct by hand than stem-
plots and do not display the actual values observed. For these reasons we prefer
stemplots for small data sets. The construction of a histogram is best shown
by example. Any statistical software package will of course make a histogram
for you.
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E 1.9 Distribution of IQ scores. You have probably heard that the distribu-
tion of scores on IQ tests is supposed to be roughly “bell-shaped.” Let’s look
at some actual IQ scores. Table 1.3 displays the IQ scores of 60 fifth-grade
students chosen at random from one school.6

1. Divide the range of the data into classes of equal width. The scores in Table
1.3 range from 81 to 145, so we choose as our classes
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TABLE 1.3

IQ test scores for 60 randomly chosen fifth-grade students

145 139 126 122 125 130 96 110 118 118
101 142 134 124 112 109 134 113 81 113
123 94 100 136 109 131 117 110 127 124
106 124 115 133 116 102 127 117 109 137
117 90 103 114 139 101 122 105 97 89
102 108 110 128 114 112 114 102 82 101

•

75 ≤ IQ score < 85

85 ≤ IQ score < 95

...

145 ≤ IQ score < 155

Be sure to specify the classes precisely so that each individual falls into
exactly one class. A student with IQ 84 would fall into the first class, but
IQ 85 falls into the second.

2. Count the number of individuals in each class. These counts are called fre-
quencies, and a table of frequencies for all classes is a frequency table.

Class Count Class Count

75 to 84 2 115 to 124 13
85 to 94 3 125 to 134 10
95 to 104 10 135 to 144 5
105 to 114 16 145 to 154 1

3. Draw the histogram. First, on the horizontal axis mark the scale for the
variable whose distribution you are displaying. That’s IQ score. The scale
runs from 75 to 155 because that is the span of the classes we chose. The
vertical axis contains the scale of counts. Each bar represents a class. The
base of the bar covers the class, and the bar height is the class count. There
is no horizontal space between the bars unless a class is empty, so that its
bar has height zero. Figure 1.7 is our histogram. It does look roughly “bell-
shaped.”

frequency
frequency table

Large sets of data are often reported in the form of frequency tables when
it is not practical to publish the individual observations. In addition to the fre-
quency (count) for each class, we may be interested in the fraction or percent
of the observations that fall in each class. A histogram of percents looks just
like a frequency histogram such as Figure 1.7. Simply relabel the vertical scale
to read in percents. Use histograms of percents for comparing several distribu-
tions that have different numbers of observations.
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FIGURE 1.7 Histogram of the
IQ scores of 60 fifth-grade
students, for Example 1.9.

USE YOUR KNOWLEDGE
1.6 Make a histogram. Refer to the first-exam scores from Exercise 1.5.

Use these data to make a histogram using classes 50–59, 60–69, etc.
Compare the histogram with the stemplot as a way of describing this
distribution. Which do you prefer for these data?

Our eyes respond to the area of the bars in a histogram. Because the classes
are all the same width, area is determined by height and all classes are fairly
represented. There is no one right choice of the classes in a histogram. Too few
classes will give a “skyscraper” graph, with all values in a few classes with tall
bars. Too many will produce a “pancake” graph, with most classes having one
or no observations. Neither choice will give a good picture of the shape of the
distribution. You must use your judgment in choosing classes to display the
shape. Statistical software will choose the classes for you. The software’s choice
is often a good one, but you can change it if you want.

You should be aware that the appearance of a histogram can change when you

CAUTION

!
change the classes. Figure 1.8 is a histogram of the customer service call lengths
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FIGURE 1.8 The “default”
histogram produced by software
for the call lengths in Example
1.6. This choice of classes hides
the large number of very short
calls that is revealed by the
histogram of the same data in
Figure 1.4.
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that are also displayed in Figure 1.4. It was produced by software with no spe-
cial instructions from the user. The software’s “default” histogram shows the
overall shape of the distribution, but it hides the spike of very short calls by
lumping all calls of less than 100 seconds into the first class. We produced Fig-
ure 1.4 by asking for smaller classes after Table 1.1 suggested that very short
calls might be a problem. Software automates making graphs, but it can’t re-
place thinking about your data. The histogram function in the One-Variable Sta-

AP
PLET

tistical Calculator applet on the text CD and Web site allows you to change the
number of classes by dragging with the mouse, so that it is easy to see how the
choice of classes affects the histogram.

USE YOUR KNOWLEDGE
1.7 Change the classes in the histogram. Refer to the first-exam scores

from Exercise 1.5 and the histogram you produced in Exercise 1.6.
Now make a histogram for these data using classes 40–59, 60–79, and
80–100. Compare this histogram with the one that you produced in
Exercise 1.6.

1.8 Use smaller classes. Repeat the previous exercise using classes 55–
59, 60–64, 65–69, etc.

Although histograms resemble bar graphs, their details and uses are dis-
tinct. A histogram shows the distribution of counts or percents among the
values of a single variable. A bar graph compares the size of different items.
The horizontal axis of a bar graph need not have any measurement scale but
simply identifies the items being compared. Draw bar graphs with blank space
between the bars to separate the items being compared. Draw histograms with
no space, to indicate that all values of the variable are covered. Some spread-

CAUTION

! sheet programs, which are not primarily intended for statistics, will draw his-
tograms as if they were bar graphs, with space between the bars. Often, you can
tell the software to eliminate the space to produce a proper histogram.

Examining distributions
Making a statistical graph is not an end in itself. The purpose of the graph is to
help us understand the data. After you make a graph, always ask, “What do I
see?” Once you have displayed a distribution, you can see its important features
as follows.

EXAMINING A DISTRIBUTION

In any graph of data, look for the overall pattern and for striking devi-
ations from that pattern.

You can describe the overall pattern of a distribution by its shape, cen-
ter, and spread.

An important kind of deviation is an outlier, an individual value that falls
outside the overall pattern.
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In Section 1.2, we will learn how to describe center and spread numerically.
For now, we can describe the center of a distribution by its midpoint, the value
with roughly half the observations taking smaller values and half taking larger
values. We can describe the spread of a distribution by giving the smallest and
largest values. Stemplots and histograms display the shape of a distribution in
the same way. Just imagine a stemplot turned on its side so that the larger val-
ues lie to the right. Some things to look for in describing shape are:

• Does the distribution have one or several major peaks, called modes? A dis-modes
tribution with one major peak is called unimodal.unimodal

• Is it approximately symmetric or is it skewed in one direction? A distribution
is symmetric if the values smaller and larger than its midpoint are mirrorsymmetric
images of each other. It is skewed to the right if the right tail (larger values)skewed
is much longer than the left tail (smaller values).

Some variables commonly have distributions with predictable shapes. Many
biological measurements on specimens from the same species and sex—lengths
of bird bills, heights of young women—have symmetric distributions. Money
amounts, on the other hand, usually have right-skewed distributions. There
are many moderately priced houses, for example, but the few very expensive
mansions give the distribution of house prices a strong right-skew.

•

•

E
X

A
M

P
L

E 1.10 Examine the histogram. What does the histogram of IQ scores (Fig-
ure 1.7) tell us? Shape: The distribution is roughly symmetric with a single
peak in the center. We don’t expect real data to be perfectly symmetric, so we
are satisfied if the two sides of the histogram are roughly similar in shape and
extent. Center: You can see from the histogram that the midpoint is not far
from 110. Looking at the actual data shows that the midpoint is 114. Spread:
The spread is from 81 to 145. There are no outliers or other strong deviations
from the symmetric, unimodal pattern.

The distribution of call lengths in Figure 1.8, on the other hand, is strongly
skewed to the right. The midpoint, the length of a typical call, is about 115
seconds, or just under 2 minutes. The spread is very large, from 1 second to
28,739 seconds.

The longest few calls are outliers. They stand apart from the long right tail
of the distribution, though we can’t see this from Figure 1.8, which omits the
largest observations. The longest call lasted almost 8 hours—that may well be
due to equipment failure rather than an actual customer call.

USE YOUR KNOWLEDGE
1.9 Describe the first-exam scores. Refer to the first-exam scores from

Exercise 1.5. Use your favorite graphical display to describe the shape,
the center, and the spread of these data. Are there any outliers?
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Dealing with outliers
In data sets smaller than the service call data, you can spot outliers by looking
for observations that stand apart (either high or low) from the overall pattern
of a histogram or stemplot. Identifying outliers is a matter for judgment. Look

CAUTION

! for points that are clearly apart from the body of the data, not just the most ex-
treme observations in a distribution. You should search for an explanation for
any outlier. Sometimes outliers point to errors made in recording the data. In
other cases, the outlying observation may be caused by equipment failure or
other unusual circumstances.

•

•
E

X
A

M
P

L
E 1.11 Semiconductor wires. Manufacturing an electronic component re-

quires attaching very fine wires to a semiconductor wafer. If the strength of
the bond is weak, the component may fail. Here are measurements on the
breaking strength (in pounds) of 23 connections:7

0 0 550 750 950 950 1150 1150
1150 1150 1150 1250 1250 1350 1450 1450
1450 1550 1550 1550 1850 2050 3150

Figure 1.9 is a histogram of these data. We expect the breaking strengths
of supposedly identical connections to have a roughly symmetric overall pat-
tern, showing chance variation among the connections. Figure 1.9 does show
a symmetric pattern centered at about 1250 pounds—but it also shows three
outliers that stand apart from this pattern, two low and one high.

The engineers were able to explain all three outliers. The two low outliers
had strength 0 because the bonds between the wire and the wafer were not
made. The high outlier at 3150 pounds was a measurement error. Further
study of the data can simply omit the three outliers. One immediate finding
is that the variation in breaking strength is too large—550 pounds to 2050
pounds when we ignore the outliers. The process of bonding wire to wafer
must be improved to give more consistent results.
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FIGURE 1.9 Histogram of a
distribution with both low and
high outliers, for Example 1.11.
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Time plots
Whenever data are collected over time, it is a good idea to plot the observations
in time order. Displays of the distribution of a variable that ignore time order, such

CAUTION

! as stemplots and histograms, can be misleading when there is systematic change
over time.

TIME PLOT

A time plot of a variable plots each observation against the time at which
it was measured. Always put time on the horizontal scale of your plot and
the variable you are measuring on the vertical scale. Connecting the data
points by lines helps emphasize any change over time.

•
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E 1.12 Water from the Mississippi River. Table 1.4 lists the volume of wa-
ter discharged by the Mississippi River into the Gulf of Mexico for each year
from 1954 to 2001.8 The units are cubic kilometers of water—the Mississippi
is a big river. Both graphs in Figure 1.10 describe these data. The histogram
in Figure 1.10(a) shows the distribution of the volume discharged. The his-
togram is symmetric and unimodal, with center near 550 cubic kilometers.
We might think that the data show just chance year-to-year fluctuation in
river level about its long-term average.

Figure 1.10(b) is a time plot of the same data. For example, the first point
lies above 1954 on the “Year” scale at height 290, the volume of water dis-
charged by the Mississippi in 1954. The time plot tells a more interesting story

TABLE 1.4

Yearly discharge of the Mississippi River (in cubic kilometers
of water)

Year Discharge Year Discharge Year Discharge Year Discharge

1954 290 1966 410 1978 560 1990 680
1955 420 1967 460 1979 800 1991 700
1956 390 1968 510 1980 500 1992 510
1957 610 1969 560 1981 420 1993 900
1958 550 1970 540 1982 640 1994 640
1959 440 1971 480 1983 770 1995 590
1960 470 1972 600 1984 710 1996 670
1961 600 1973 880 1985 680 1997 680
1962 550 1974 710 1986 600 1998 690
1963 360 1975 670 1987 450 1999 580
1964 390 1976 420 1988 420 2000 390
1965 500 1977 430 1989 630 2001 580
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FIGURE 1.10 (a) Histogram of the volume of water discharged by the Mississippi River
over the 48 years from 1954 to 2001, for Example 1.12. Data are from Table 1.4. (b) Time
plot of the volume of water discharged by the Mississippi River for the years 1954 to 2001.
The line shows the trend toward increasing river flow, a trend that cannot be seen in the
histogram in Figure 1.10(a).

•

than the histogram. There is a great deal of year-to-year variation, but there is
also a clear increasing trend over time. That is, there is a long-term rise in the
volume of water discharged. The line on the graph is a “trend line” calculated
from the data to describe this trend. The trend reflects climate change: rainfall
and river flows have been increasing over most of North America.

trend

Many interesting data sets are time series, measurements of a variabletime series
taken at regular intervals over time. Government, economic, and social data
are often published as time series. Some examples are the monthly unem-
ployment rate and the quarterly gross domestic product. Weather records, the
demand for electricity, and measurements on the items produced by a manu-
facturing process are other examples of time series. Time plots can reveal the
main features of a time series.

BEYOND THE BASICS

Decomposing Time Series*

When you examine a time plot, again look first for overall patterns and then for
striking deviations from those patterns. Here are two important types of overall
patterns to look for in a time series.

*“Beyond the Basics” sections briefly discuss supplementary topics. Your software may make
some of these topics available to you. For example, the results plotted in Figures 1.11 to 1.13
come from the Minitab statistical software.
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TREND AND SEASONAL VARIATION

A trend in a time series is a persistent, long-term rise or fall.

A pattern in a time series that repeats itself at known regular intervals of
time is called seasonal variation.

Because many economic time series show strong seasonal variation, govern-
ment agencies often adjust for this variation before releasing economic data.
The data are then said to be seasonally adjusted. Seasonal adjustment helpsseasonally adjusted
avoid misinterpretation. A rise in the unemployment rate from December to
January, for example, does not mean that the economy is slipping. Unemploy-
ment almost always rises in January as temporary holiday help is laid off and
outdoor employment in the North drops because of bad weather. The season-
ally adjusted unemployment rate reports an increase only if unemployment
rises more than normal from December to January.

•

•
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E 1.13 Gasoline prices. Figure 1.11 is a time plot of the average retail price
of regular gasoline each month for the years 1990 to 2003.9 The prices are not
seasonally adjusted. You can see the upward spike in prices due to the 1990
Iraqi invasion of Kuwait, the drop in 1998 when an economic crisis in Asia
reduced demand for fuel, and rapid price increases in 2000 and 2003 due to
instability in the Middle East and OPEC production limits. These deviations
are so large that overall patterns are hard to see.

There is nonetheless a clear trend of increasing price. Much of this trend
just reflects inflation, the rise in the overall price level during these years. In
addition, a close look at the plot shows seasonal variation, a regular rise and
fall that recurs each year. Americans drive more in the summer vacation sea-
son, so the price of gasoline rises each spring, then drops in the fall as demand
goes down.
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FIGURE 1.11 Time plot of the
average monthly price of regular
gasoline from 1990 to 2003, for
Example 1.13.
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FIGURE 1.12 Time plot of
gasoline prices with a trend line
and seasonal variation added.
These are overall patterns
extracted from the data by
software.

Statistical software can help us examine a time series by “decomposing”
the data into systematic patterns, such as trends and seasonal variation, and
the residuals that remain after we remove these patterns. Figure 1.12 super-
imposes the trend and seasonal variation on the time plot of gasoline prices.
The red line shows the increasing trend. The seasonal variation appears as the
colored line that regularly rises and falls each year. This is an average of the
seasonal pattern for all the years in the original data, automatically extracted
by software.

The trend and seasonal variation in Figure 1.12 are overall patterns in the
data. Figure 1.13 is a plot of what remains when we subtract both the trend and
the seasonal variation from the original data. That is, Figure 1.13 emphasizes
the deviations from the pattern. In the case of gasoline prices, the deviations
are large (as much as 30 cents both up and down). It is clear that we can’t use
trend and seasonal variation to predict gasoline prices at all accurately.
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FIGURE 1.13 The residuals that
remain when we subtract both
trend and seasonal variation
from monthly gasoline prices.
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SECTION 1.1 Summary

A data set contains information on a collection of individuals. Individuals may
be people, animals, or things. The data for one individual make up a case. For
each individual, the data give values for one or more variables. A variable de-
scribes some characteristic of an individual, such as a person’s height, gender,
or salary.

Some variables are categorical and others are quantitative. A categorical vari-
able places each individual into a category, such as male or female. A quanti-
tative variable has numerical values that measure some characteristic of each
individual, such as height in centimeters or annual salary in dollars.

Exploratory data analysis uses graphs and numerical summaries to describe
the variables in a data set and the relations among them.

The distribution of a variable tells us what values it takes and how often it takes
these values.

Bar graphs and pie charts display the distributions of categorical variables.
These graphs use the counts or percents of the categories.

Stemplots and histograms display the distributions of quantitative variables.
Stemplots separate each observation into a stem and a one-digit leaf. His-
tograms plot the frequencies (counts) or the percents of equal-width classes
of values.

When examining a distribution, look for shape, center, and spread and for
clear deviations from the overall shape.

Some distributions have simple shapes, such as symmetric or skewed. The
number of modes (major peaks) is another aspect of overall shape. Not all
distributions have a simple overall shape, especially when there are few
observations.

Outliers are observations that lie outside the overall pattern of a distribution.
Always look for outliers and try to explain them.

When observations on a variable are taken over time, make a time plot that
graphs time horizontally and the values of the variable vertically. A time plot
can reveal trends or other changes over time.

SECTION 1.1 Exercises
For Exercises 1.1 to 1.2, see page 3; for Exercise 1.3, see
page 5; for Exercise 1.4, see page 7; for Exercise 1.5, see page
10; for Exercise 1.6, see page 14; for Exercises 1.7 and 1.8,
see page 15; and for Exercise 1.9, see page 16.

1.10 Survey of students. A survey of students in an
introductory statistics class asked the following
questions: (a) age; (b) do you like to dance? (yes,
no); (c) can you play a musical instrument (not
at all, a little, pretty well); (d) how much did you
spend on food last week? (e) height; (f) do you like
broccoli? (yes, no). Classify each of these variables
as categorical or quantitative and give reasons for
your answers.

1.11 What questions would you ask? Refer to the
previous exercise. Make up your own survey
questions with at least six questions. Include at
least two categorical variables and at least two
quantitative variables. Tell which variables are
categorical and which are quantitative. Give reasons
for your answers.

1.12 Study habits of students. You are planning a
survey to collect information about the study
habits of college students. Describe two categorical
variables and two quantitative variables that you
might measure for each student. Give the units of
measurement for the quantitative variables.
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1.13 Physical fitness of students. You want to measure
the “physical fitness” of college students. Describe
several variables you might use to measure
fitness. What instrument or instruments does
each measurement require?

1.14 Choosing a college or university. Popular
magazines rank colleges and universities on
their “academic quality” in serving undergraduate
students. Describe five variables that you would
like to see measured for each college if you were
choosing where to study. Give reasons for each of
your choices.

1.15 Favorite colors. What is your favorite color?
One survey produced the following summary of
responses to that question: blue, 42%; green, 14%;
purple, 14%; red, 8%; black, 7%; orange, 5%; yellow,
3%; brown, 3%; gray, 2%; and white, 2%.10 Make a
bar graph of the percents and write a short summary
of the major features of your graph.

1.16 Least-favorite colors. Refer to the previous
exercise. The same study also asked people about
their least-favorite color. Here are the results:
orange, 30%; brown, 23%; purple, 13%; yellow, 13%;
gray, 12%; green, 4%; white, 4%; red, 1%; black, 0%;
and blue, 0%. Make a bar graph of these percents
and write a summary of the results.

1.17 Ages of survey respondents. The survey about
color preferences reported the age distribution of
the people who responded. Here are the results:

Age group (years) 1–18 19–24 25–35 36–50 51–69 70 and over
Count 10 97 70 36 14 5

(a) Add the counts and compute the percents for
each age group.

(b) Make a bar graph of the percents.

(c) Describe the distribution.

(d) Explain why your bar graph is not a histogram.

1.18 Garbage. The formal name for garbage is
“municipal solid waste.” The table at the top of
the next column gives a breakdown of the materials
that made up American municipal solid waste.11

(a) Add the weights for the nine materials given,
including “Other.” Each entry, including the total, is
separately rounded to the nearest tenth. So the sum
and the total may differ slightly because of roundoff
error.

Weight
Material (million tons) Percent of total

Food scraps 25.9 11.2
Glass 12.8 5.5
Metals 18.0 7.8
Paper, paperboard 86.7 37.4
Plastics 24.7 10.7
Rubber, leather, textiles 15.8 6.8
Wood 12.7 5.5
Yard trimmings 27.7 11.9
Other 7.5 3.2

Total 231.9 100.0

(b) Make a bar graph of the percents. The graph
gives a clearer picture of the main contributors to
garbage if you order the bars from tallest to shortest.

(c) If you use software, also make a pie chart of the
percents. Comparing the two graphs, notice that it
is easier to see the small differences among “Food
scraps,” “Plastics,” and “Yard trimmings” in the bar
graph.

1.19 Spam. Email spam is the curse of the Internet.
Here is a compilation of the most common types of
spam:12

Type of spam Percent

Adult 14.5
Financial 16.2
Health 7.3
Leisure 7.8
Products 21.0
Scams 14.2

Make two bar graphs of these percents, one with
bars ordered as in the table (alphabetical) and the
other with bars in order from tallest to shortest.
Comparisons are easier if you order the bars by
height. A bar graph ordered from tallest to shortest
bar is sometimes called a Pareto chart, after
the Italian economist who recommended this
procedure.

1.20 Women seeking graduate and professional
degrees. The table on the next page gives the
percents of women among students seeking various
graduate and professional degrees:13

(a) Explain clearly why we cannot use a pie chart to
display these data.

(b) Make a bar graph of the data. (Comparisons are
easier if you order the bars by height.)
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Degree Percent female

Master’s in business administration 39.8
Master’s in education 76.2
Other master of arts 59.6
Other master of science 53.0
Doctorate in education 70.8
Other PhD degree 54.2
Medicine (MD) 44.0
Law 50.2
Theology 20.2

1.21 An aging population. The population of the United
States is aging, though less rapidly than in other
developed countries. Here is a stemplot of the
percents of residents aged 65 and over in the 50
states, according to the 2000 census. The stems
are whole percents and the leaves are tenths of a
percent.
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(a) There are two outliers: Alaska has the lowest
percent of older residents, and Florida has the
highest. What are the percents for these two states?

(b) Ignoring Alaska and Florida, describe the shape,
center, and spread of this distribution.

1.22 Split the stems. Make another stemplot of the
percent of residents aged 65 and over in the states
other than Alaska and Florida by splitting stems 8
to 15 in the plot from the previous exercise. Which
plot do you prefer? Why?

1.23 Diabetes and glucose. People with diabetes must
monitor and control their blood glucose level. The
goal is to maintain “fasting plasma glucose” between
about 90 and 130 milligrams per deciliter (mg/dl).
Here are the fasting plasma glucose levels for 18
diabetics enrolled in a diabetes control class, five
months after the end of the class:14

141 158 112 153 134 95 96 78 148
172 200 271 103 172 359 145 147 255

Make a stemplot of these data and describe the
main features of the distribution. (You will want to
trim and also split stems.) Are there outliers? How
well is the group as a whole achieving the goal for
controlling glucose levels?

1.24 Compare glucose of instruction and control
groups. The study described in the previous exercise
also measured the fasting plasma glucose of 16
diabetics who were given individual instruction on
diabetes control. Here are the data:

128 195 188 158 227 198 163 164
159 128 283 226 223 221 220 160

Make a back-to-back stemplot to compare the class
and individual instruction groups. How do the
distribution shapes and success in achieving the
glucose control goal compare?

1.25 Vocabulary scores of seventh-grade students.
Figure 1.14 displays the scores of all 947 seventh-
grade students in the public schools of Gary,
Indiana, on the vocabulary part of the Iowa Test of
Basic Skills.15 Give a brief description of the overall
pattern (shape, center, spread) of this distribution.
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FIGURE 1.14 Histogram of the Iowa Test of Basic Skills
vocabulary scores of seventh-grade students in Gary, Indiana,
for Exercise 1.25.

1.26 Shakespeare’s plays. Figure 1.15 is a histogram of
the lengths of words used in Shakespeare’s plays.
Because there are so many words in the plays, we
use a histogram of percents. What is the overall
shape of this distribution? What does this shape say
about word lengths in Shakespeare? Do you expect
other authors to have word length distributions of
the same general shape? Why?
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FIGURE 1.15 Histogram of lengths of words used in
Shakespeare’s plays, for Exercise 1.26.

1.27 College tuition and fees. Jeanna plans to attend
college in her home state of Massachusetts. She
looks up the tuition and fees for all 56 four-year
colleges in Massachusetts (omitting art schools and
other special colleges). Figure 1.16 is a histogram of
the data. For state schools, Jeanna used the in-state
tuition. What is the most important aspect of the
overall pattern of this distribution? Why do you
think this pattern appears?

1.28 Tornado damage. The states differ greatly in the
kinds of severe weather that afflict them. Table 1.5
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FIGURE 1.16 Histogram of the tuition and fees charged by
four-year colleges in Massachusetts, for Exercise 1.27.

shows the average property damage caused by
tornadoes per year over the period from 1950 to
1999 in each of the 50 states and Puerto Rico.16

(To adjust for the changing buying power of the
dollar over time, all damages were restated in 1999
dollars.)

(a) What are the top five states for tornado damage?
The bottom five?

(b) Make a histogram of the data, by hand or
using software, with classes “0 ≤ damage < 10,”
“10 ≤ damage < 20,” and so on. Describe the shape,
center, and spread of the distribution. Which states

TABLE 1.5

Average property damage per year due to tornadoes

Damage Damage Damage
State ($millions) State ($millions) State ($millions)

Alabama 51.88 Louisiana 27.75 Ohio 44.36
Alaska 0.00 Maine 0.53 Oklahoma 81.94
Arizona 3.47 Maryland 2.33 Oregon 5.52
Arkansas 40.96 Massachusetts 4.42 Pennsylvania 17.11
California 3.68 Michigan 29.88 Puerto Rico 0.05
Colorado 4.62 Minnesota 84.84 Rhode Island 0.09
Connecticut 2.26 Mississippi 43.62 South Carolina 17.19
Delaware 0.27 Missouri 68.93 South Dakota 10.64
Florida 37.32 Montana 2.27 Tennessee 23.47
Georgia 51.68 Nebraska 30.26 Texas 88.60
Hawaii 0.34 Nevada 0.10 Utah 3.57
Idaho 0.26 New Hampshire 0.66 Vermont 0.24
Illinois 62.94 New Jersey 2.94 Virginia 7.42
Indiana 53.13 New Mexico 1.49 Washington 2.37
Iowa 49.51 New York 15.73 West Virginia 2.14
Kansas 49.28 North Carolina 14.90 Wisconsin 31.33
Kentucky 24.84 North Dakota 14.69 Wyoming 1.78
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may be outliers? (To understand the outliers, note
that most tornadoes in largely rural states such as
Kansas cause little property damage. Damage to
crops is not counted as property damage.)

(c) If you are using software, also display the
“default” histogram that your software makes when
you give it no instructions. How does this compare
with your graph in (b)?

1.29
AP

PLET

Use an applet for the tornado damage
data. The One-Variable Statistical Calculator

applet on the text CD and Web site will make
stemplots and histograms. It is intended mainly
as a learning tool rather than as a replacement
for statistical software. The histogram function
is particularly useful because you can change the
number of classes by dragging with the mouse. The
tornado damage data from Table 1.5 are available
in the applet. Choose this data set and go to the
“Histogram” tab.

(a) Sketch the default histogram that the applet
first presents. If the default graph does not have
nine classes, drag it to make a histogram with nine
classes and sketch the result. This should agree with
your histogram in part (b) of the previous exercise.

(b) Make a histogram with one class and also a
histogram with the greatest number of classes that
the applet allows. Sketch the results.

(c) Drag the graph until you find the histogram that
you think best pictures the data. How many classes
did you choose? Sketch your final histogram.

1.30 Carbon dioxide from burning fuels. Burning fuels
in power plants or motor vehicles emits carbon
dioxide (CO2), which contributes to global warming.
Table 1.6 displays CO2 emissions per person from
countries with population at least 20 million.17

(a) Why do you think we choose to measure
emissions per person rather than total CO2

emissions for each country?

(b) Display the data of Table 1.6 in a graph. Describe
the shape, center, and spread of the distribution.
Which countries are outliers?

1.31 California temperatures. Table 1.7 contains
data on the mean annual temperatures (degrees
Fahrenheit) for the years 1951 to 2000 at two
locations in California: Pasadena and Redding.18

Make time plots of both time series and compare
their main features. You can see why discussions of
climate change often bring disagreement.

1.32 What do you miss in the histogram? Make
a histogram of the mean annual temperatures

TABLE 1.6

Carbon dioxide emissions (metric tons per person)

Country CO2 Country CO2

Algeria 2.3 Mexico 3.7
Argentina 3.9 Morocco 1.0
Australia 17.0 Myanmar 0.2
Bangladesh 0.2 Nepal 0.1
Brazil 1.8 Nigeria 0.3
Canada 16.0 Pakistan 0.7
China 2.5 Peru 0.8
Columbia 1.4 Tanzania 0.1
Congo 0.0 Philippines 0.9
Egypt 1.7 Poland 8.0
Ethiopia 0.0 Romania 3.9
France 6.1 Russia 10.2
Germany 10.0 Saudi Arabia 11.0
Ghana 0.2 South Africa 8.1
India 0.9 Spain 6.8
Indonesia 1.2 Sudan 0.2
Iran 3.8 Thailand 2.5
Iraq 3.6 Turkey 2.8
Italy 7.3 Ukraine 7.6
Japan 9.1 United Kingdom 9.0
Kenya 0.3 United States 19.9
Korea, North 9.7 Uzbekistan 4.8
Korea, South 8.8 Venezuela 5.1
Malaysia 4.6 Vietnam 0.5

TABLE 1.7

Mean annual temperatures (◦F) in two
California cities

Mean Temperature Mean Temperature

Year Pasadena Redding Year Pasadena Redding

1951 62.27 62.02 1976 64.23 63.51
1952 61.59 62.27 1977 64.47 63.89
1953 62.64 62.06 1978 64.21 64.05
1954 62.88 61.65 1979 63.76 60.38
1955 61.75 62.48 1980 65.02 60.04
1956 62.93 63.17 1981 65.80 61.95
1957 63.72 62.42 1982 63.50 59.14
1958 65.02 64.42 1983 64.19 60.66
1959 65.69 65.04 1984 66.06 61.72
1960 64.48 63.07 1985 64.44 60.50
1961 64.12 63.50 1986 65.31 61.76
1962 62.82 63.97 1987 64.58 62.94
1963 63.71 62.42 1988 65.22 63.70
1964 62.76 63.29 1989 64.53 61.50
1965 63.03 63.32 1990 64.96 62.22
1966 64.25 64.51 1991 65.60 62.73
1967 64.36 64.21 1992 66.07 63.59
1968 64.15 63.40 1993 65.16 61.55
1969 63.51 63.77 1994 64.63 61.63
1970 64.08 64.30 1995 65.43 62.62
1971 63.59 62.23 1996 65.76 62.93
1972 64.53 63.06 1997 66.72 62.48
1973 63.46 63.75 1998 64.12 60.23
1974 63.93 63.80 1999 64.85 61.88
1975 62.36 62.66 2000 66.25 61.58
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at Pasadena for the years 1951 to 2000. (Data
appear in Table 1.7.) Describe the distribution of
temperatures. Then explain why this histogram
misses very important facts about temperatures in
Pasadena.

1.33 CAUTION

! Change the scale of the axis. The
impression that a time plot gives depends on

the scales you use on the two axes. If you stretch
the vertical axis and compress the time axis, change
appears to be more rapid. Compressing the vertical
axis and stretching the time axis make change
appear slower. Make two more time plots of the data
for Pasadena in Table 1.7, one that makes mean
temperature appear to increase very rapidly and one
that shows only a slow increase. The moral of this
exercise is: pay close attention to the scales when you
look at a time plot.

1.34 Fish in the Bering Sea. “Recruitment,” the addition
of new members to a fish population, is an important
measure of the health of ocean ecosystems. Here are
data on the recruitment of rock sole in the Bering
Sea between 1973 and 2000:19

Recruitment Recruitment
Year (millions) Year (millions)

1973 173 1987 4700
1974 234 1988 1702
1975 616 1989 1119
1976 344 1990 2407
1977 515 1991 1049
1978 576 1992 505
1979 727 1993 998
1980 1411 1994 505
1981 1431 1995 304
1982 1250 1996 425
1983 2246 1997 214
1984 1793 1998 385
1985 1793 1999 445
1986 2809 2000 676

(a) Make a graph to display the distribution of rock
sole recruitment, then describe the pattern and any
striking deviations that you see.

(b) Make a time plot of recruitment and describe
its pattern. As is often the case with time series
data, a time plot is needed to understand what is
happening.

1.35 Thinness in Asia. Asian culture does not emphasize
thinness, but young Asians are often influenced
by Western culture. In a study of concerns about
weight among young Korean women, researchers
administered the Drive for Thinness scale (a
questionnaire) to 264 female college students in

Seoul, South Korea.20 Drive for Thinness measures
excessive concern with weight and dieting and fear
of weight gain. Roughly speaking, a score of 15 is
typical of Western women with eating disorders but
is unusually high (90th percentile) for other Western
women. Graph the data and describe the shape,
center, and spread of the distribution of Drive for
Thinness scores for these Korean students. Are there
any outliers?

1.36 C
H

ALLENG
E Acidity of rainwater. Changing the choice

of classes can change the appearance of a
histogram. Here is an example in which a small
shift in the classes, with no change in the number of
classes, has an important effect on the histogram.
The data are the acidity levels (measured by pH)
in 105 samples of rainwater. Distilled water has pH
7.00. As the water becomes more acidic, the pH
goes down. The pH of rainwater is important to
environmentalists because of the problem of acid
rain.21

4.33 4.38 4.48 4.48 4.50 4.55 4.59 4.59
4.61 4.61 4.75 4.76 4.78 4.82 4.82 4.83
4.86 4.93 4.94 4.94 4.94 4.96 4.97 5.00
5.01 5.02 5.05 5.06 5.08 5.09 5.10 5.12
5.13 5.15 5.15 5.15 5.16 5.16 5.16 5.18
5.19 5.23 5.24 5.29 5.32 5.33 5.35 5.37
5.37 5.39 5.41 5.43 5.44 5.46 5.46 5.47
5.50 5.51 5.53 5.55 5.55 5.56 5.61 5.62
5.64 5.65 5.65 5.66 5.67 5.67 5.68 5.69
5.70 5.75 5.75 5.75 5.76 5.76 5.79 5.80
5.81 5.81 5.81 5.81 5.85 5.85 5.90 5.90
6.00 6.03 6.03 6.04 6.04 6.05 6.06 6.07
6.09 6.13 6.21 6.34 6.43 6.61 6.62 6.65
6.81

(a) Make a histogram of pH with 14 classes, using
class boundaries 4.2, 4.4, . . . , 7.0. How many modes
does your histogram show? More than one mode
suggests that the data contain groups that have
different distributions.

(b) Make a second histogram, also with 14 classes,
using class boundaries 4.14, 4.34, . . . , 6.94. The
classes are those from (a) moved 0.06 to the left.
How many modes does the new histogram show?

(c) Use your software’s histogram function to make
a histogram without specifying the number of
classes or their boundaries. How does the software’s
default histogram compare with those in (a) and
(b)?

1.37 C
H

ALLENG
E Identify the histograms. A survey of a large

college class asked the following questions:

1. Are you female or male? (In the data, male = 0,
female = 1.)
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2. Are you right-handed or left-handed? (In the
data, right = 0, left = 1.)

3. What is your height in inches?

4. How many minutes do you study on a typical
weeknight?

Figure 1.17 shows histograms of the student
responses, in scrambled order and without scale
markings. Which histogram goes with each variable?
Explain your reasoning.

(b)(a)

(c) (d)

FIGURE 1.17 Match each histogram with its variable, for
Exercise 1.37.

1.38 Sketch a skewed distribution. Sketch a histogram
for a distribution that is skewed to the left. Suppose
that you and your friends emptied your pockets of
coins and recorded the year marked on each coin.
The distribution of dates would be skewed to the
left. Explain why.

1.39 Oil wells. How much oil the wells in a given field will
ultimately produce is key information in deciding
whether to drill more wells. Here are the estimated
total amounts of oil recovered from 64 wells in the
Devonian Richmond Dolomite area of the Michigan
basin, in thousands of barrels:22

21.7 53.2 46.4 42.7 50.4 97.7 103.1 51.9
43.4 69.5 156.5 34.6 37.9 12.9 2.5 31.4
79.5 26.9 18.5 14.7 32.9 196.0 24.9 118.2
82.2 35.1 47.6 54.2 63.1 69.8 57.4 65.6
56.4 49.4 44.9 34.6 92.2 37.0 58.8 21.3
36.6 64.9 14.8 17.6 29.1 61.4 38.6 32.5
12.0 28.3 204.9 44.5 10.3 37.7 33.7 81.1
12.1 20.1 30.5 7.1 10.1 18.0 3.0 2.0

Graph the distribution and describe its main
features.

1.40 The density of the earth. In 1798 the English
scientist Henry Cavendish measured the density of
the earth by careful work with a torsion balance.
The variable recorded was the density of the earth
as a multiple of the density of water. Here are
Cavendish’s 29 measurements:23

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29
5.58 5.65 5.57 5.53 5.62 5.29 5.44 5.34
5.79 5.10 5.27 5.39 5.42 5.47 5.63 5.34
5.46 5.30 5.75 5.68 5.85

Present these measurements graphically by either
a stemplot or a histogram and explain the reason
for your choice. Then briefly discuss the main
features of the distribution. In particular, what is
your estimate of the density of the earth based on
these measurements?

1.41 Time spent studying. Do women study more than
men? We asked the students in a large first-year
college class how many minutes they studied on a
typical weeknight. Here are the responses of random
samples of 30 women and 30 men from the class:

Women Men

180 120 180 360 240 90 120 30 90 200
120 180 120 240 170 90 45 30 120 75
150 120 180 180 150 150 120 60 240 300
200 150 180 150 180 240 60 120 60 30
120 60 120 180 180 30 230 120 95 150
90 240 180 115 120 0 200 120 120 180

(a) Examine the data. Why are you not surprised
that most responses are multiples of 10 minutes? We
eliminated one student who claimed to study 30,000
minutes per night. Are there any other responses
you consider suspicious?

(b) Make a back-to-back stemplot of these data.
Report the approximate midpoints of both groups.
Does it appear that women study more than men (or
at least claim that they do)?

1.42 Guinea pigs. Table 1.8 gives the survival times in
days of 72 guinea pigs after they were injected with
tubercle bacilli in a medical experiment.24 Make a
suitable graph and describe the shape, center, and
spread of the distribution of survival times. Are
there any outliers?

1.43 Grades and self-concept. Table 1.9 presents data
on 78 seventh-grade students in a rural midwestern
school.25 The researcher was interested in the
relationship between the students’ “self-concept”
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TABLE 1.8

Survival times (days) of guinea pigs in a
medical experiment

43 45 53 56 56 57 58 66 67 73
74 79 80 80 81 81 81 82 83 83
84 88 89 91 91 92 92 97 99 99

100 100 101 102 102 102 103 104 107 108
109 113 114 118 121 123 126 128 137 138
139 144 145 147 156 162 174 178 179 184
191 198 211 214 243 249 329 380 403 511
522 598

and their academic performance. The data we give
here include each student’s grade point average
(GPA), score on a standard IQ test, and gender,
taken from school records. Gender is coded as F for
female and M for male. The students are identified
only by an observation number (OBS). The missing
OBS numbers show that some students dropped out
of the study. The final variable is each student’s score
on the Piers-Harris Children’s Self-Concept Scale, a
psychological test administered by the researcher.

(a) How many variables does this data set contain?
Which are categorical variables and which are
quantitative variables?

(b) Make a stemplot of the distribution of GPA, after
rounding to the nearest tenth of a point.

TABLE 1.9

Educational data for 78 seventh-grade students

OBS GPA IQ Gender Self-concept OBS GPA IQ Gender Self-concept

001 7.940 111 M 67 043 10.760 123 M 64
002 8.292 107 M 43 044 9.763 124 M 58
003 4.643 100 M 52 045 9.410 126 M 70
004 7.470 107 M 66 046 9.167 116 M 72
005 8.882 114 F 58 047 9.348 127 M 70
006 7.585 115 M 51 048 8.167 119 M 47
007 7.650 111 M 71 050 3.647 97 M 52
008 2.412 97 M 51 051 3.408 86 F 46
009 6.000 100 F 49 052 3.936 102 M 66
010 8.833 112 M 51 053 7.167 110 M 67
011 7.470 104 F 35 054 7.647 120 M 63
012 5.528 89 F 54 055 0.530 103 M 53
013 7.167 104 M 54 056 6.173 115 M 67
014 7.571 102 F 64 057 7.295 93 M 61
015 4.700 91 F 56 058 7.295 72 F 54
016 8.167 114 F 69 059 8.938 111 F 60
017 7.822 114 F 55 060 7.882 103 F 60
018 7.598 103 F 65 061 8.353 123 M 63
019 4.000 106 M 40 062 5.062 79 M 30
020 6.231 105 F 66 063 8.175 119 M 54
021 7.643 113 M 55 064 8.235 110 M 66
022 1.760 109 M 20 065 7.588 110 M 44
024 6.419 108 F 56 068 7.647 107 M 49
026 9.648 113 M 68 069 5.237 74 F 44
027 10.700 130 F 69 071 7.825 105 M 67
028 10.580 128 M 70 072 7.333 112 F 64
029 9.429 128 M 80 074 9.167 105 M 73
030 8.000 118 M 53 076 7.996 110 M 59
031 9.585 113 M 65 077 8.714 107 F 37
032 9.571 120 F 67 078 7.833 103 F 63
033 8.998 132 F 62 079 4.885 77 M 36
034 8.333 111 F 39 080 7.998 98 F 64
035 8.175 124 M 71 083 3.820 90 M 42
036 8.000 127 M 59 084 5.936 96 F 28
037 9.333 128 F 60 085 9.000 112 F 60
038 9.500 136 M 64 086 9.500 112 F 70
039 9.167 106 M 71 087 6.057 114 M 51
040 10.140 118 F 72 088 6.057 93 F 21
041 9.999 119 F 54 089 6.938 106 M 56
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(c) Describe the shape, center, and spread of the
GPA distribution. Identify any suspected outliers
from the overall pattern.

(d) Make a back-to-back stemplot of the rounded
GPAs for female and male students. Write a brief
comparison of the two distributions.

1.44 Describe the IQ scores. Make a graph of the
distribution of IQ scores for the seventh-grade
students in Table 1.9. Describe the shape, center,
and spread of the distribution, as well as any
outliers. IQ scores are usually said to be centered at
100. Is the midpoint for these students close to 100,
clearly above, or clearly below?

1.45 Describe the self-concept scores. Based on a
suitable graph, briefly describe the distribution of
self-concept scores for the students in Table 1.9. Be
sure to identify any suspected outliers.

1.46 The Boston Marathon. Women were allowed to
enter the Boston Marathon in 1972. The following

table gives the times (in minutes, rounded to the
nearest minute) for the winning women from 1972
to 2006.

Year Time Year Time Year Time Year Time

1972 190 1981 147 1990 145 1999 143
1973 186 1982 150 1991 144 2000 146
1974 167 1983 143 1992 144 2001 144
1975 162 1984 149 1993 145 2002 141
1976 167 1985 154 1994 142 2003 145
1977 168 1986 145 1995 145 2004 144
1978 165 1987 146 1996 147 2005 145
1979 155 1988 145 1997 146 2006 143
1980 154 1989 144 1998 143

Make a graph that shows change over time.
What overall pattern do you see? Have times
stopped improving in recent years? If so, when did
improvement end?

1.2 Describing Distributions with Numbers
Interested in a sporty car? Worried that it may use too much gas? The Environ-
mental Protection Agency lists most such vehicles in its “two-seater” or “mini-
compact” categories. Table 1.10 gives the city and highway gas mileage for cars
in these groups.26 (The mileages are for the basic engine and transmission com-
bination for each car.) We want to compare two-seaters with minicompacts and
city mileage with highway mileage. We can begin with graphs, but numerical
summaries make the comparisons more specific.

A brief description of a distribution should include its shape and numbers
describing its center and spread. We describe the shape of a distribution based
on inspection of a histogram or a stemplot. Now we will learn specific ways to
use numbers to measure the center and spread of a distribution. We can cal-
culate these numerical measures for any quantitative variable. But to interpret
measures of center and spread, and to choose among the several measures we
will learn, you must think about the shape of the distribution and the mean-
ing of the data. The numbers, like graphs, are aids to understanding, not “the
answer” in themselves.

Measuring center: the mean
Numerical description of a distribution begins with a measure of its center or
average. The two common measures of center are the mean and the median.
The mean is the “average value” and the median is the “middle value.” These
are two different ideas for “center,” and the two measures behave differently.
We need precise recipes for the mean and the median.
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TABLE 1.10

Fuel economy (miles per gallon) for 2004 model vehicles

Two-Seater Cars Minicompact Cars

Model City Highway Model City Highway

Acura NSX 17 24 Aston Martin Vanquish 12 19
Audi TT Roadster 20 28 Audi TT Coupe 21 29
BMW Z4 Roadster 20 28 BMW 325CI 19 27
Cadillac XLR 17 25 BMW 330CI 19 28
Chevrolet Corvette 18 25 BMW M3 16 23
Dodge Viper 12 20 Jaguar XK8 18 26
Ferrari 360 Modena 11 16 Jaguar XKR 16 23
Ferrari Maranello 10 16 Lexus SC 430 18 23
Ford Thunderbird 17 23 Mini Cooper 25 32
Honda Insight 60 66 Mitsubishi Eclipse 23 31
Lamborghini Gallardo 9 15 Mitsubishi Spyder 20 29
Lamborghini Murcielago 9 13 Porsche Cabriolet 18 26
Lotus Esprit 15 22 Porsche Turbo 911 14 22
Maserati Spyder 12 17
Mazda Miata 22 28
Mercedes-Benz SL500 16 23
Mercedes-Benz SL600 13 19
Nissan 350Z 20 26
Porsche Boxster 20 29
Porsche Carrera 911 15 23
Toyota MR2 26 32

THE MEAN x

To find the mean x of a set of observations, add their values and divide
by the number of observations. If the n observations are x1, x2, . . . , xn,
their mean is

x = x1 + x2 + · · · + xn

n

or, in more compact notation,

x = 1
n

∑
xi

The
∑

(capital Greek sigma) in the formula for the mean is short for “add
them all up.” The bar over the x indicates the mean of all the x-values. Pro-
nounce the mean x̄ as “x-bar.” This notation is so common that writers who are
discussing data use x̄, ȳ, etc. without additional explanation. The subscripts on
the observations xi are just a way of keeping the n observations separate. They
do not necessarily indicate order or any other special facts about the data.
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E 1.14 Highway mileage for two-seaters. The mean highway mileage for
the 21 two-seaters in Table 1.10 is

x = x1 + x2 + · · · + xn

n

= 24 + 28 + 28 + · · · + 32
21

= 518
21

= 24.7 miles per gallon

In practice, you can key the data into your calculator and hit the x̄ key.

USE YOUR KNOWLEDGE
1.47 Find the mean. Here are the scores on the first exam in an introduc-

tory statistics course for 10 students:

80 73 92 85 75 98 93 55 80 90

Find the mean first-exam score for these students.

The data for Example 1.14 contain an outlier: the Honda Insight is a hy-
brid gas-electric car that doesn’t belong in the same category as the 20 gasoline-
powered two-seater cars. If we exclude the Insight, the mean highway mileage
drops to 22.6 mpg. The single outlier adds more than 2 mpg to the mean high-
way mileage. This illustrates an important weakness of the mean as a measure
of center: the mean is sensitive to the influence of a few extreme observations.CAUTION

! These may be outliers, but a skewed distribution that has no outliers will also
pull the mean toward its long tail. Because the mean cannot resist the influence
of extreme observations, we say that it is not a resistant measure of center.resistant measure
A measure that is resistant does more than limit the influence of outliers. Its
value does not respond strongly to changes in a few observations, no matter
how large those changes may be. The mean fails this requirement because we
can make the mean as large as we wish by making a large enough increase in
just one observation.

Measuring center: the median
We used the midpoint of a distribution as an informal measure of center in the
previous section. The median is the formal version of the midpoint, with a spe-
cific rule for calculation.

THE MEDIAN M

The median M is the midpoint of a distribution. Half the observations
are smaller than the median and the other half are larger than the me-
dian. Here is a rule for finding the median:

1. Arrange all observations in order of size, from smallest to largest.
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2. If the number of observations n is odd, the median M is the center ob-
servation in the ordered list. Find the location of the median by counting
(n + 1)/2 observations up from the bottom of the list.

3. If the number of observations n is even, the median M is the mean of
the two center observations in the ordered list. The location of the me-
dian is again (n + 1)/2 from the bottom of the list.

Note that the formula (n + 1)/2 does not give the median, just the location
of the median in the ordered list. Medians require little arithmetic, so they are
easy to find by hand for small sets of data. Arranging even a moderate number
of observations in order is tedious, however, so that finding the median by hand
for larger sets of data is unpleasant. Even simple calculators have an x button,
but you will need computer software or a graphing calculator to automate find-
ing the median.

•

•

E
X

A
M

P
L

E 1.15 Find the median. To find the median highway mileage for 2004
model two-seater cars, arrange the data in increasing order:

13 15 16 16 17 19 20 22 23 23 23 24 25 25 26 28 28 28 29 32 66

Be sure to list all observations, even if they repeat the same value. The me-
dian is the bold 23, the 11th observation in the ordered list. You can find the
median by eye—there are 10 observations to the left and 10 to the right. Or
you can use the recipe (n + 1)/2 = 22/2 = 11 to locate the median in the list.

What happens if we drop the Honda Insight? The remaining 20 cars have
highway mileages

13 15 16 16 17 19 20 22 23 23 23 24 25 25 26 28 28 28 29 32

Because the number of observations n = 20 is even, there is no center ob-
servation. There is a center pair—the bold pair of 23s have 9 observations to
their left and 9 to their right. The median M is the mean of the center pair,
which is 23. The recipe (n + 1)/2 = 21/2 = 10.5 for the position of the me-
dian in the list says that the median is at location “ten and one-half,” that is,
halfway between the 10th and 11th observations.

You see that the median is more resistant than the mean. Removing the
Honda Insight did not change the median at all. Even if we mistakenly enter
the Insight’s mileage as 660 rather than 66, the median remains 23. The very
high value is simply one observation to the right of center. The Mean and Me-
dian applet on the text CD and Web site is an excellent way to compare the

AP
PLET

resistance of M and x. See Exercises 1.75 to 1.77 for use of this applet.

USE YOUR KNOWLEDGE
1.48 Find the median. Here are the scores on the first exam in an intro-

ductory statistics course for 10 students:

80 73 92 85 75 98 93 55 80 90

Find the median first-exam score for these students.
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Mean versus median
The median and mean are the most common measures of the center of a distri-
bution. The mean and median of a symmetric distribution are close together.
If the distribution is exactly symmetric, the mean and median are exactly the
same. In a skewed distribution, the mean is farther out in the long tail than
is the median. The endowment for a college or university is money set aside
and invested. The income from the endowment is usually used to support vari-
ous programs. The distribution of the sizes of the endowments of colleges and
universities is strongly skewed to the right. Most institutions have modest en-
dowments, but a few are very wealthy. The median endowment of colleges and
universities in a recent year was $70 million—but the mean endowment was
over $320 million. The few wealthy institutions pulled the mean up but did not
affect the median. Don’t confuse the “average” value of a variable (the mean) with

CAUTION

! its “typical” value, which we might describe by the median.
We can now give a better answer to the question of how to deal with out-

liers in data. First, look at the data to identify outliers and investigate their
causes. You can then correct outliers if they are wrongly recorded, delete them
for good reason, or otherwise give them individual attention. The three out-
liers in Figure 1.9 (page 17) can all be dropped from the data once we discover
why they appear. If you have no clear reason to drop outliers, you may want
to use resistant methods, so that outliers have little influence over your con-
clusions. The choice is often a matter for judgment. The government’s fuel
economy guide lists the Honda Insight with the other two-seaters in Table
1.10. We might choose to report median rather than mean gas mileage for all
two-seaters to avoid giving too much influence to one car model. In fact, we
think that the Insight doesn’t belong, so we will omit it from further analysis
of these data.

Measuring spread: the quartiles
A measure of center alone can be misleading. Two nations with the same me-
dian family income are very different if one has extremes of wealth and poverty
and the other has little variation among families. A drug with the correct mean
concentration of active ingredient is dangerous if some batches are much too
high and others much too low. We are interested in the spread or variability of
incomes and drug potencies as well as their centers. The simplest useful nu-
merical description of a distribution consists of both a measure of center
and a measure of spread.

We can describe the spread or variability of a distribution by giving several
percentiles. The median divides the data in two; half of the observations are
above the median and half are below the median. We could call the median the
50th percentile. The upper quartile is the median of the upper half of the data.quartile
Similarly, the lower quartile is the median of the lower half of the data. With
the median, the quartiles divide the data into four equal parts; 25% of the data
are in each part.

We can do a similar calculation for any percent. The pth percentile of apercentile
distribution is the value that has p percent of the observations fall at or be-
low it. To calculate a percentile, arrange the observations in increasing order
and count up the required percent from the bottom of the list. Our definition
of percentiles is a bit inexact because there is not always a value with exactly p
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percent of the data at or below it. We will be content to take the nearest obser-
vation for most percentiles, but the quartiles are important enough to require
an exact rule.

THE QUARTILES Q1 AND Q3

To calculate the quartiles:

1. Arrange the observations in increasing order and locate the median
M in the ordered list of observations.

2. The first quartile Q1 is the median of the observations whose posi-
tion in the ordered list is to the left of the location of the overall median.

3. The third quartile Q3 is the median of the observations whose posi-
tion in the ordered list is to the right of the location of the overall median.

•

•
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20 gasoline-powered two-seater cars, arranged in increasing order, are

13 15 16 16 17 19 20 22 23 23 | 23 24 25 25 26 28 28 28 29 32

The median is midway between the center pair of observations. We have
marked its position in the list by |. The first quartile is the median of the 10
observations to the left of the position of the median. Check that its value is
Q1 = 18. Similarly, the third quartile is the median of the 10 observations to
the right of the |. Check that Q3 = 27.

When there is an odd number of observations, the median is the unique
center observation, and the rule for finding the quartiles excludes this center
value. The highway mileages of the 13 minicompact cars in Table 1.10 are (in
order)

19 22 23 23 23 26 26 27 28 29 29 31 32

The median is the bold 26. The first quartile is the median of the 6 observa-
tions falling to the left of this point in the list, Q1 = 23. Similarly, Q3 = 29.

We find other percentiles more informally if we are working without soft-
ware. For example, we take the 90th percentile of the 13 minicompact mileages
to be the 12th in the ordered list, because 0.90 × 13 = 11.7, which we round to
12. The 90th percentile is therefore 31 mpg.

USE YOUR KNOWLEDGE
1.49 Find the quartiles. Here are the scores on the first-exam in an intro-

ductory statistics course for 10 students:

80 73 92 85 75 98 93 55 80 90

Find the quartiles for these first-exam scores.
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E 1.17 Results from software. Statistical software often provides sev-
eral numerical measures in response to a single command. Figure 1.18 dis-
plays such output from the CrunchIt! and Minitab software for the highway
mileages of two-seater cars (without the Honda Insight).

Both tell us that there are 20 observations and give the mean, median,
quartiles, and smallest and largest data values. Both also give other measures,
some of which we will meet soon. CrunchIt! is basic online software that of-
fers no choice of output. Minitab allows you to choose the descriptive mea-
sures you want from a long list.

The quartiles from CrunchIt! agree with our values from Example 1.16.
But Minitab’s quartiles are a bit different. For example, our rule for hand cal-
culation gives first quartile Q1 = 18. Minitab’s value is Q1 = 17.5. There are
several rules for calculating quartiles, which often give slightly different values.
The differences are always small. For describing data, just report the values that
your software gives.

CAUTION

!

(a)

(b)

FIGURE 1.18 Numerical
descriptions of the highway gas
mileage of two-seater cars from
software, for Example 1.17. (a)
CrunchIt! (b) Minitab.

The five-number summary and boxplots
In Section 1.1, we used the smallest and largest observations to indicate the
spread of a distribution. These single observations tell us little about the distri-
bution as a whole, but they give information about the tails of the distribution
that is missing if we know only Q1, M, and Q3. To get a quick summary of both
center and spread, combine all five numbers.
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THE FIVE-NUMBER SUMMARY

The five-number summary of a set of observations consists of the small-
est observation, the first quartile, the median, the third quartile, and the
largest observation, written in order from smallest to largest. In symbols,
the five-number summary is

Minimum Q1 M Q3 Maximum

These five numbers offer a reasonably complete description of center and
spread. The five-number summaries for highway gas mileages are

13 18 23 27 32

for two-seaters and

19 23 26 29 32

for minicompacts. The median describes the center of the distribution; the
quartiles show the spread of the center half of the data; the minimum and
maximum show the full spread of the data.

USE YOUR KNOWLEDGE
1.50 Find the five-number summary. Here are the scores on the first

exam in an introductory statistics course for 10 students:

80 73 92 85 75 98 93 55 80 90

Find the five-number summary for these first-exam scores.

The five-number summary leads to another visual representation of a distri-
bution, the boxplot. Figure 1.19 shows boxplots for both city and highway gas
mileages for our two groups of cars.
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FIGURE 1.19 Boxplots of the
highway and city gas mileages
for cars classified as two-seaters
and as minicompacts by the
Environmental Protection
Agency.
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BOXPLOT

A boxplot is a graph of the five-number summary.

• A central box spans the quartiles Q1 and Q3.

• A line in the box marks the median M.

• Lines extend from the box out to the smallest and largest observations.

When you look at a boxplot, first locate the median, which marks the center
of the distribution. Then look at the spread. The quartiles show the spread of
the middle half of the data, and the extremes (the smallest and largest observa-
tions) show the spread of the entire data set.

USE YOUR KNOWLEDGE
1.51 Make a boxplot. Here are the scores on the first exam in an introduc-

tory statistics course for 10 students:

80 73 92 85 75 98 93 55 80 90

Make a boxplot for these first-exam scores.

Boxplots are particularly effective for comparing distributions as we did in
Figure 1.19. We see at once that city mileages are lower than highway mileages.
The minicompact cars have slightly higher median gas mileages than the two-
seaters, and their mileages are markedly less variable. In particular, the low
gas mileages of the Ferraris and Lamborghinis in the two-seater group pull the
group minimum down.

The 1.5 × IQR rule for suspected outliers
Look again at the 80 service center call lengths in Table 1.1 (page 8). Figure 1.6
(page 12) is a stemplot of their distribution. You can check that the five-number
summary is

1 54.5 103.5 200 2631

There is a clear outlier, a call lasting 2631 seconds, more than twice the length
of any other call. How shall we describe the spread of this distribution? The
smallest and largest observations are extremes that do not describe the spread
of the majority of the data. The distance between the quartiles (the range of the
center half of the data) is a more resistant measure of spread. This distance is
called the interquartile range.

THE INTERQUARTILE RANGE IQR

The interquartile range IQR is the distance between the first and third
quartiles,

IQR = Q3 − Q1
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For our data on service call lengths, IQR = 200 − 54.5 = 145.5. The quartiles
and the IQR are not affected by changes in either tail of the distribution. They
are therefore resistant, because changes in a few data points have no further ef-
fect once these points move outside the quartiles. However, no single numerical

CAUTION

! measure of spread, such as IQR, is very useful for describing skewed distribu-
tions. The two sides of a skewed distribution have different spreads, so one
number can’t summarize them. We can often detect skewness from the five-
number summary by comparing how far the first quartile and the minimum
are from the median (left tail) with how far the third quartile and the maxi-
mum are from the median (right tail). The interquartile range is mainly used
as the basis for a rule of thumb for identifying suspected outliers.

THE 1.5 × IQR RULE FOR OUTLIERS

Call an observation a suspected outlier if it falls more than 1.5 × IQR
above the third quartile or below the first quartile.
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E 1.18 Outliers for call length data. For the call length data in Table 1.1,

1.5 × IQR = 1.5 × 145.5 = 218.25

Any values below 54.5 − 218.25 = −163.75 or above 200 + 218.25 = 418.25
are flagged as possible outliers. There are no low outliers, but the 8 longest
calls are flagged as possible high outliers. Their lengths are

438 465 479 700 700 951 1148 2631

Statistical software often uses the 1.5 × IQR rule. For example, the stem-
plot in Figure 1.6 lists these 8 observations separately. Boxplots drawn by soft-
ware are often modified boxplots that plot suspected outliers individually.
Figure 1.20 is a modified boxplot of the call length data. The lines extend out
from the central box only to the smallest and largest observations that are not
flagged by the 1.5 × IQR rule. The 8 largest call lengths are plotted as individ-
ual points, though 2 of them are identical and so do not appear separately.

modified boxplot

0 500 1000 1500 2000 2500

Call length (seconds)

FIGURE 1.20 Modified boxplot
of the call lengths in Table 1.1,
for Example 1.18.
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The distribution of call lengths is very strongly skewed. We may well decide
that only the longest call is truly an outlier in the sense of deviating from the
overall pattern of the distribution. The other 7 calls are just part of the long
right tail. The 1.5 × IQR rule does not remove the need to look at the distri-
bution and use judgment. It is useful mainly to call our attention to unusual
observations.

USE YOUR KNOWLEDGE
1.52 Find the IQR. Here are the scores on the first exam in an introductory

statistics course for 10 students:

80 73 92 85 75 98 93 55 80 90

Find the interquartile range and use the 1.5 × IQR rule to check for
outliers. How low would the lowest score need to be for it to be an
outlier according to this rule?

The stemplot in Figure 1.6 and the modified boxplot in Figure 1.20 tell us
much more about the distribution of call lengths than the five-number sum-
mary or other numerical measures. The routine methods of statistics compute
numerical measures and draw conclusions based on their values. These meth-
ods are very useful, and we will study them carefully in later chapters. But they
cannot be applied blindly, by feeding data to a computer program, because sta-
tistical measures and methods based on them are generally meaningful only for

CAUTION

! distributions of sufficiently regular shape. This principle will become clearer as
we progress, but it is good to be aware at the beginning that quickly resorting to
fancy calculations is the mark of a statistical amateur. Look, think, and choose
your calculations selectively.

Measuring spread: the standard deviation
The five-number summary is not the most common numerical description of a
distribution. That distinction belongs to the combination of the mean to mea-
sure center and the standard deviation to measure spread. The standard devi-
ation measures spread by looking at how far the observations are from their
mean.

THE STANDARD DEVIATION s

The variance s2 of a set of observations is the average of the squares of
the deviations of the observations from their mean. In symbols, the vari-
ance of n observations x1, x2, . . . , xn is

s2 = (x1 − x)2 + (x2 − x)2 + · · · + (xn − x)2

n − 1

or, in more compact notation,

s2 = 1
n − 1

∑
(xi − x)2
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The standard deviation s is the square root of the variance s2:

s =
√

1
n − 1

∑
(xi − x)2

The idea behind the variance and the standard deviation as measures of
spread is as follows: The deviations xi − x display the spread of the values xi

about their mean x. Some of these deviations will be positive and some nega-
tive because some of the observations fall on each side of the mean. In fact, the
sum of the deviations of the observations from their mean will always be zero.
Squaring the deviations makes them all positive, so that observations far from
the mean in either direction have large positive squared deviations. The vari-
ance is the average squared deviation. Therefore, s2 and s will be large if the
observations are widely spread about their mean, and small if the observations
are all close to the mean.
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E 1.19 Metabolic rate. A person’s metabolic rate is the rate at which the
body consumes energy. Metabolic rate is important in studies of weight gain,
dieting, and exercise. Here are the metabolic rates of 7 men who took part in
a study of dieting. (The units are calories per 24 hours. These are the same
calories used to describe the energy content of foods.)

1792 1666 1362 1614 1460 1867 1439

Enter these data into your calculator or software and verify that

x = 1600 calories s = 189.24 calories

Figure 1.21 plots these data as dots on the calorie scale, with their mean
marked by an asterisk (∗). The arrows mark two of the deviations from the
mean. If you were calculating s by hand, you would find the first deviation as

x1 − x = 1792 − 1600 = 192

Exercise 1.70 asks you to calculate the seven deviations, square them, and find
s2 and s directly from the deviations. Working one or two short examples by
hand helps you understand how the standard deviation is obtained. In prac-
tice you will use either software or a calculator that will find s from keyed-in
data. The two software outputs in Figure 1.18 both give the variance and stan-
dard deviation for the highway mileage data.

1300 1400 1500

deviation = –161 deviation = 192

1600 1700 1800 1900
Metabolic rate

x = 1439 x = 1792x
_

= 1600

FIGURE 1.21 Metabolic rates for seven men, with the mean (∗) and the deviations of two
observations from the mean, for Example 1.19.
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USE YOUR KNOWLEDGE
1.53 Find the variance and the standard deviation. Here are the scores

on the first exam in an introductory statistics course for 10 students:

80 73 92 85 75 98 93 55 80 90

Find the variance and the standard deviation for these first-exam
scores.

The idea of the variance is straightforward: it is the average of the squares
of the deviations of the observations from their mean. The details we have just
presented, however, raise some questions.

Why do we square the deviations?

• First, the sum of the squared deviations of any set of observations from their
mean is the smallest that the sum of squared deviations from any number
can possibly be. This is not true of the unsquared distances. So squared de-
viations point to the mean as center in a way that distances do not.

• Second, the standard deviation turns out to be the natural measure of spread
for a particularly important class of symmetric unimodal distributions, the
Normal distributions. We will meet the Normal distributions in the next sec-
tion. We commented earlier that the usefulness of many statistical proce-
dures is tied to distributions of particular shapes. This is distinctly true of
the standard deviation.

Why do we emphasize the standard deviation rather than the variance?

• One reason why is that s, not s2, is the natural measure of spread for Normal
distributions.

• There is also a more general reason to prefer s to s2. Because the variance
involves squaring the deviations, it does not have the same unit of measure-
ment as the original observations. The variance of the metabolic rates, for
example, is measured in squared calories. Taking the square root remedies
this. The standard deviation s measures spread about the mean in the origi-
nal scale.

Why do we average by dividing by n − 1 rather than n in calculating the variance?

• Because the sum of the deviations is always zero, the last deviation can be
found once we know the other n − 1. So we are not averaging n unrelated
numbers. Only n − 1 of the squared deviations can vary freely, and we average
by dividing the total by n − 1.

• The number n − 1 is called the degrees of freedom of the variance or stan-degrees of freedom
dard deviation. Many calculators offer a choice between dividing by n and
dividing by n − 1, so be sure to use n − 1.

Properties of the standard deviation
Here are the basic properties of the standard deviation s as a measure of
spread.
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PROPERTIES OF THE STANDARD DEVIATION
• s measures spread about the mean and should be used only when the

mean is chosen as the measure of center.

• s = 0 only when there is no spread. This happens only when all ob-
servations have the same value. Otherwise, s > 0. As the observations
become more spread out about their mean, s gets larger.

• s, like the mean x, is not resistant. A few outliers can make s very large.

USE YOUR KNOWLEDGE
1.54 A standard deviation of zero. Construct a data set with 5 cases that

has a variable with s = 0.

The use of squared deviations renders s even more sensitive than x to a few

CAUTION

! extreme observations. For example, dropping the Honda Insight from our list
of two-seater cars reduces the mean highway mileage from 24.7 mpg to 22.6
mpg. It cuts the standard deviation more than half, from 10.8 mpg with the
Insight to 5.3 mpg without it. Distributions with outliers and strongly skewed
distributions have large standard deviations. The number s does not give much
helpful information about such distributions.

Choosing measures of center and spread
How do we choose between the five-number summary and x and s to describe
the center and spread of a distribution? Because the two sides of a strongly
skewed distribution have different spreads, no single number such as s de-
scribes the spread well. The five-number summary, with its two quartiles and
two extremes, does a better job.

CHOOSING A SUMMARY

The five-number summary is usually better than the mean and standard
deviation for describing a skewed distribution or a distribution with
strong outliers. Use x and s only for reasonably symmetric distributions
that are free of outliers.

•

E
X

A
M

P
L

E 1.20 Standard deviation as a measure of risk. A central principle in
the study of investments is that taking bigger risks is rewarded by higher re-
turns, at least on the average over long periods of time. It is usual in finance
to measure risk by the standard deviation of returns, on the grounds that in-
vestments whose returns vary a lot from year to year are less predictable and
therefore more risky than those whose returns don’t vary much. Compare, for
example, the approximate mean and standard deviation of the annual percent
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returns on American common stocks and U.S. Treasury bills over the period
from 1950 to 2003:

Investment Mean return Standard deviation

Common stocks 13.2% 17.6%
Treasury bills 5.0% 2.9%

Stocks are risky. They went up more than 13% per year on the average during
this period, but they dropped almost 28% in the worst year. The large stan-
dard deviation reflects the fact that stocks have produced both large gains and
large losses. When you buy a Treasury bill, on the other hand, you are lend-
ing money to the government for one year. You know that the government will
pay you back with interest. That is much less risky than buying stocks, so (on
the average) you get a smaller return.

Are x and s good summaries for distributions of investment returns? Fig-
ure 1.22 displays stemplots of the annual returns for both investments. (Be-
cause stock returns are so much more spread out, a back-to-back stemplot
does not work well. The stems in the stock stemplot are tens of percents; the
stems for bills are percents. The lowest returns are −28% for stocks and 0.9%
for bills.) You see that returns on Treasury bills have a right-skewed distribu-
tion. Convention in the financial world calls for x and s because some parts
of investment theory use them. For describing this right-skewed distribution,
however, the five-number summary would be more informative.
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FIGURE 1.22 Stemplots of
annual returns for stocks and
Treasury bills, 1950 to 2003, for
Example 1.20. (a) Stock returns,
in whole percents. (b) Treasury
bill returns, in percents and
tenths of a percent.

Remember that a graph gives the best overall picture of a distribution. Numer-

CAUTION

! ical measures of center and spread report specific facts about a distribution, but
they do not describe its entire shape. Numerical summaries do not disclose the
presence of multiple modes or gaps, for example. Always plot your data.
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Changing the unit of measurement
The same variable can be recorded in different units of measurement. Ameri-
cans commonly record distances in miles and temperatures in degrees Fahren-
heit, while the rest of the world measures distances in kilometers and
temperatures in degrees Celsius. Fortunately, it is easy to convert numerical
descriptions of a distribution from one unit of measurement to another. This
is true because a change in the measurement unit is a linear transformation of
the measurements.

LINEAR TRANSFORMATIONS

A linear transformation changes the original variable x into the new
variable xnew given by an equation of the form

xnew = a + bx

Adding the constant a shifts all values of x upward or downward by the
same amount. In particular, such a shift changes the origin (zero point)
of the variable. Multiplying by the positive constant b changes the size
of the unit of measurement.
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E 1.21 Change the units.

(a) If a distance x is measured in kilometers, the same distance in miles is

xnew = 0.62x

For example, a 10-kilometer race covers 6.2 miles. This transformation
changes the units without changing the origin—a distance of 0 kilometers
is the same as a distance of 0 miles.

(b) A temperature x measured in degrees Fahrenheit must be reexpressed in
degrees Celsius to be easily understood by the rest of the world. The trans-
formation is

xnew = 5
9

(x − 32) = −160
9

+ 5
9

x

Thus, the high of 95◦F on a hot American summer day translates into
35◦C. In this case

a = −160
9

and b = 5
9

This linear transformation changes both the unit size and the origin of
the measurements. The origin in the Celsius scale (0◦C, the temperature
at which water freezes) is 32◦ in the Fahrenheit scale.

Linear transformations do not change the shape of a distribution. If measure-
ments on a variable x have a right-skewed distribution, any new variable xnew
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obtained by a linear transformation xnew = a + bx (for b > 0) will also have a
right-skewed distribution. If the distribution of x is symmetric and unimodal,
the distribution of xnew remains symmetric and unimodal.

Although a linear transformation preserves the basic shape of a distri-
bution, the center and spread will change. Because linear changes of mea-
surement scale are common, we must be aware of their effect on numerical
descriptive measures of center and spread. Fortunately, the changes follow a
simple pattern.
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E 1.22 Use scores to find the points. In an introductory statistics course,

homework counts for 300 points out of a total of 1000 possible points for all
course requirements. During the semester there were 12 homework assign-
ments and each was given a grade on a scale of 0 to 100. The maximum to-
tal score for the 12 homework assignments is therefore 1200. To convert the
homework scores to final grade points, we need to convert the scale of 0 to
1200 to a scale of 0 to 300. We do this by multiplying the homework scores
by 300/1200. In other words, we divide the homework scores by 4. Here are
the homework scores and the corresponding final grade points for 5 students:

Student 1 2 3 4 5
Score 1056 1080 900 1164 1020
Points 264 270 225 291 255

These two sets of numbers measure the same performance on homework
for the course. Since we obtained the points by dividing the scores by 4, the
mean of the points will be the mean of the scores divided by 4. Similarly, the
standard deviation of points will be the standard deviation of the scores di-
vided by 4.

USE YOUR KNOWLEDGE
1.55 Calculate the points for a student. Use the setting of Example 1.22

to find the points for a student whose score is 950.

Here is a summary of the rules for linear transformations:

EFFECT OF A LINEAR TRANSFORMATION

To see the effect of a linear transformation on measures of center and
spread, apply these rules:

• Multiplying each observation by a positive number b multiplies both
measures of center (mean and median) and measures of spread (in-
terquartile range and standard deviation) by b.
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• Adding the same number a (either positive or negative) to each ob-
servation adds a to measures of center and to quartiles and other per-
centiles but does not change measures of spread.

In Example 1.22, when we converted from score to points, we described the
transformation as dividing by 4. The multiplication part of the summary of the
effect of a linear transformation applies to this case because division by 4 is
the same as multiplication by 0.25. Similarly, the second part of the summary
applies to subtraction as well as addition because subtraction is simply the ad-
dition of a negative number.

The measures of spread IQR and s do not change when we add the same
number a to all of the observations because adding a constant changes the loca-
tion of the distribution but leaves the spread unaltered. You can find the effect
of a linear transformation xnew = a + bx by combining these rules. For example,
if x has mean x, the transformed variable xnew has mean a + bx.

SECTION 1.2 Summary

A numerical summary of a distribution should report its center and its spread
or variability.

The mean x and the median M describe the center of a distribution in different
ways. The mean is the arithmetic average of the observations, and the median
is their midpoint.

When you use the median to describe the center of the distribution, describe
its spread by giving the quartiles. The first quartile Q1 has one-fourth of the
observations below it, and the third quartile Q3 has three-fourths of the ob-
servations below it.

The interquartile range is the difference between the quartiles. It is the spread
of the center half of the data. The 1.5 × IQR rule flags observations more than
1.5 × IQR beyond the quartiles as possible outliers.

The five-number summary consisting of the median, the quartiles, and the
smallest and largest individual observations provides a quick overall descrip-
tion of a distribution. The median describes the center, and the quartiles and
extremes show the spread.

Boxplots based on the five-number summary are useful for comparing several
distributions. The box spans the quartiles and shows the spread of the central
half of the distribution. The median is marked within the box. Lines extend
from the box to the extremes and show the full spread of the data. In a modified
boxplot, points identified by the 1.5 × IQR rule are plotted individually.

The variance s2 and especially its square root, the standard deviation s, are
common measures of spread about the mean as center. The standard deviation
s is zero when there is no spread and gets larger as the spread increases.

A resistant measure of any aspect of a distribution is relatively unaffected by
changes in the numerical value of a small proportion of the total number of
observations, no matter how large these changes are. The median and quartiles
are resistant, but the mean and the standard deviation are not.
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The mean and standard deviation are good descriptions for symmetric distri-
butions without outliers. They are most useful for the Normal distributions in-
troduced in the next section. The five-number summary is a better exploratory
summary for skewed distributions.

Linear transformations have the form xnew = a + bx. A linear transformation
changes the origin if a �= 0 and changes the size of the unit of measurement
if b > 0. Linear transformations do not change the overall shape of a distribu-
tion. A linear transformation multiplies a measure of spread by b and changes
a percentile or measure of center m into a + bm.

Numerical measures of particular aspects of a distribution, such as center and
spread, do not report the entire shape of most distributions. In some cases, par-
ticularly distributions with multiple peaks and gaps, these measures may not
be very informative.

SECTION 1.2 Exercises
For Exercise 1.47, see page 32; for Exercise 1.48, see page
33; for Exercise 1.49, see page 35; for Exercises 1.50, see
page 37; for Exercise 1.51, see page 38; for Exercise 1.52, see
page 40; for Exercise 1.53, see page 42; for Exercise 1.54, see
page 43; and for Exercise 1.55, see page 46.

1.56 Longleaf pine trees. The Wade Tract in Thomas
County, Georgia, is an old-growth forest of longleaf
pine trees (Pinus palustris) that has survived in
a relatively undisturbed state since before the
settlement of the area by Europeans. A study
collected data about 584 of these trees.27 One of
the variables measured was the diameter at breast
height (DBH). This is the diameter of the tree at 4.5
feet and the units are centimeters (cm). Only trees
with DBH greater than 1.5 cm were sampled. Here
are the diameters of a random sample of 40 of these
trees:

10.5 13.3 26.0 18.3 52.2 9.2 26.1 17.6 40.5 31.8
47.2 11.4 2.7 69.3 44.4 16.9 35.7 5.4 44.2 2.2

4.3 7.8 38.1 2.2 11.4 51.5 4.9 39.7 32.6 51.8
43.6 2.3 44.6 31.5 40.3 22.3 43.3 37.5 29.1 27.9

(a) Find the five-number summary for these data.

(b) Make a boxplot.

(c) Make a histogram.

(d) Write a short summary of the major features of
this distribution. Do you prefer the boxplot or the
histogram for these data?

1.57 Blood proteins in children from Papua New
Guinea. C-reactive protein (CRP) is a substance
that can be measured in the blood. Values increase
substantially within 6 hours of an infection and

reach a peak within 24 to 48 hours after. In adults,
chronically high values have been linked to an
increased risk of cardiovascular disease. In a study
of apparently healthy children aged 6 to 60 months
in Papua New Guinea, CRP was measured in 90
children.28 The units are milligrams per liter (mg/l).
Here are the data from a random sample of 40 of
these children:

0.00 3.90 5.64 8.22 0.00 5.62 3.92 6.81 30.61 0.00
73.20 0.00 46.70 0.00 0.00 26.41 22.82 0.00 0.00 3.49
0.00 0.00 4.81 9.57 5.36 0.00 5.66 0.00 59.76 12.38

15.74 0.00 0.00 0.00 0.00 9.37 20.78 7.10 7.89 5.53

(a) Find the five-number summary for these data.

(b) Make a boxplot.

(c) Make a histogram.

(d) Write a short summary of the major features of
this distribution. Do you prefer the boxplot or the
histogram for these data?

1.58 C
H

ALLENG
E Transform the blood proteins values.

Refer to the previous exercise. With strongly
skewed distributions such as this, we frequently
reduce the skewness by taking a log transformation.
We have a bit of a problem here, however, because
some of the data are recorded as 0.00 and the
logarithm of zero is not defined. For this variable,
the value 0.00 is recorded whenever the amount
of CRP in the blood is below the level that the
measuring instrument is capable of detecting. The
usual procedure in this circumstance is to add a
small number to each observation before taking
the logs. Transform these data by adding 1 to each
observation and then taking the logarithm. Use the
questions in the previous exercise as a guide to your
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analysis and prepare a summary contrasting this
analysis with the one that you performed in the
previous exercise.

1.59 C
H

ALLENG
E Vitamin A deficiency in children from

Papua New Guinea. In the Papua New
Guinea study that provided the data for the previous
two exercises, the researchers also measured serum
retinol. A low value of this variable can be an
indicator of vitamin A deficiency. Below are the data
on the same sample of 40 children from this study.
The units are micromoles per liter (μmol/l).

1.15 1.36 0.38 0.34 0.35 0.37 1.17 0.97 0.97 0.67
0.31 0.99 0.52 0.70 0.88 0.36 0.24 1.00 1.13 0.31
1.44 0.35 0.34 1.90 1.19 0.94 0.34 0.35 0.33 0.69
0.69 1.04 0.83 1.11 1.02 0.56 0.82 1.20 0.87 0.41

Analyze these data. Use the questions in the previous
two exercises as a guide.

1.60 Luck and puzzle solving. Children in a psychology
study were asked to solve some puzzles and were
then given feedback on their performance. Then
they were asked to rate how luck played a role
in determining their scores.29 This variable was
recorded on a 1 to 10 scale with 1 corresponding to
very lucky and 10 corresponding to very unlucky.
Here are the scores for 60 children:

1 10 1 10 1 1 10 5 1 1 8 1 10 2 1
9 5 2 1 8 10 5 9 10 10 9 6 10 1 5
1 9 2 1 7 10 9 5 10 10 10 1 8 1 6

10 1 6 10 10 8 10 3 10 8 1 8 10 4 2

Use numerical and graphical methods to describe
these data. Write a short report summarizing your
work.

1.61 College tuition and fees. Figure 1.16 (page 25) is
a histogram of the tuition and fees charged by the
56 four-year colleges in the state of Massachusetts.
Here are those charges (in dollars), arranged in
increasing order:

4,123 4,186 4,324 4,342 4,557 4,884 5,397 6,129
6,963 6,972 8,232 13,584 13,612 15,500 15,934 16,230

16,696 16,700 17,044 17,500 18,550 18,750 19,145 19,300
19,410 19,700 19,700 19,910 20,234 20,400 20,640 20,875
21,165 21,302 22,663 23,550 24,324 25,840 26,965 27,522
27,544 27,904 28,011 28,090 28,420 28,420 28,900 28,906
28,950 29,060 29,338 29,392 29,600 29,624 29,630 29,875

Find the five-number summary and make a boxplot.
What distinctive feature of the histogram do

these summaries miss? Remember that numerical
summaries are not a substitute for looking at the
data.

1.62 Outliers in percent of older residents. The
stemplot in Exercise 1.21 (page 24) displays the
distribution of the percents of residents aged 65
and over in the 50 states. Stemplots help you find
the five-number summary because they arrange the
observations in increasing order.

(a) Give the five-number summary of this
distribution.

(b) Does the 1.5 × IQR rule identify Alaska and
Florida as suspected outliers? Does it also flag any
other states?

1.63 Tornados and property damage. Table 1.5 (page
25) shows the average property damage caused by
tornadoes over a 50-year period in each of the states.
The distribution is strongly skewed to the right.

(a) Give the five-number summary. Explain why you
can see from these five numbers that the distribution
is right-skewed.

(b) A histogram or stemplot suggests that a few
states are outliers. Show that there are no suspected
outliers according to the 1.5 × IQR rule. You see
once again that a rule is not a substitute for plotting
your data.

(c) Find the mean property damage. Explain why
the mean and median differ so greatly for this
distribution.

1.64 Carbon dioxide emissions. Table 1.6 (page 26)
gives carbon dioxide (CO2) emissions per person
for countries with population at least 20 million.
The distribution is strongly skewed to the right. The
United States and several other countries appear to
be high outliers.

(a) Give the five-number summary. Explain why
this summary suggests that the distribution is
right-skewed.

(b) Which countries are outliers according to the
1.5 × IQR rule? Make a stemplot or histogram of the
data. Do you agree with the rule’s suggestions about
which countries are and are not outliers?

1.65 Median versus mean for net worth. A report on the
assets of American households says that the median
net worth of households headed by someone aged
less than 35 years is $11,600. The mean net worth
of these same young households is $90,700.30 What
explains the difference between these two measures
of center?
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1.66 Mean versus median for oil wells. Exercise 1.39
(page 28) gives data on the total oil recovered from
64 wells. Your graph in that exercise shows that the
distribution is clearly right-skewed.

(a) Find the mean and median of the amounts
recovered. Explain how the relationship between
the mean and the median reflects the shape of the
distribution.

(b) Give the five-number summary and explain
briefly how it reflects the shape of the distribution.

1.67 Mean versus median. A small accounting firm
pays each of its five clerks $35,000, two junior
accountants $80,000 each, and the firm’s owner
$320,000. What is the mean salary paid at this firm?
How many of the employees earn less than the
mean? What is the median salary?

1.68 Be careful about how you treat the zeros. In
computing the median income of any group, some
federal agencies omit all members of the group who
had no income. Give an example to show that the
reported median income of a group can go down
even though the group becomes economically better
off. Is this also true of the mean income?

1.69 How does the median change? The firm in
Exercise 1.67 gives no raises to the clerks and junior
accountants, while the owner’s take increases to
$455,000. How does this change affect the mean?
How does it affect the median?

1.70 Metabolic rates. Calculate the mean and standard
deviation of the metabolic rates in Example 1.19
(page 41), showing each step in detail. First find the
mean x̄ by summing the 7 observations and dividing
by 7. Then find each of the deviations xi − x and
their squares. Check that the deviations have sum 0.
Calculate the variance as an average of the squared
deviations (remember to divide by n − 1). Finally,
obtain s as the square root of the variance.

1.71 C
H

ALLENG
E Hurricanes and losses. A discussion of

extreme weather says: “In most states,
hurricanes occur infrequently. Yet, when a hurricane
hits, the losses can be catastrophic. Average annual
losses are not a meaningful measure of damage
from rare but potentially catastrophic events.”31

Why is this true?

1.72 Distributions for time spent studying. Exercise
1.41 (page 28) presented data on the nightly study
time claimed by first-year college men and women.
The most common methods for formal comparison
of two groups use x̄ and s to summarize the data.

We wonder if this is appropriate here. Look at your
back-to-back stemplot from Exercise 1.41, or make
one now if you have not done so.

(a) What kinds of distributions are best summarized
by x̄ and s? It isn’t easy to decide whether small data
sets with irregular distributions fit the criteria. We
will learn a better tool for making this decision in
the next section.

(b) Each set of study times appears to contain a
high outlier. Are these points flagged as suspicious
by the 1.5 × IQR rule? How much does removing the
outlier change x̄ and s for each group? The presence
of outliers makes us reluctant to use the mean and
standard deviation for these data unless we remove
the outliers on the grounds that these students were
exaggerating.

1.73 The density of the earth. Many standard statistical
methods that you will study in Part II of this book
are intended for use with distributions that are
symmetric and have no outliers. These methods
start with the mean and standard deviation, x̄
and s. Two examples of scientific data for which
standard methods should work well are the pH
measurements in Exercise 1.36 (page 27) and
Cavendish’s measurements of the density of the
earth in Exercise 1.40 (page 28).

(a) Summarize each of these data sets by giving x̄
and s.

(b) Find the median for each data set. Is the median
quite close to the mean, as we expect it to be in these
examples?

1.74 IQ scores. Many standard statistical methods that
you will study in Part II of this book are intended for
use with distributions that are symmetric and have
no outliers. These methods start with the mean and
standard deviation, x̄ and s. For example, standard
methods would typically be used for the IQ and GPA
data in Table 1.9 (page 29).

(a) Find x̄ and s for the IQ data. In large populations,
IQ scores are standardized to have mean 100 and
standard deviation 15. In what way does the
distribution of IQ among these students differ from
the overall population?

(b) Find the median IQ score. It is, as we expect,
close to the mean.

(c) Find the mean and median for the GPA data. The
two measures of center differ a bit. What feature of
the data (see your stemplot in Exercise 1.43 or make
a new stemplot) explains the difference?
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1.75
AP

PLET

Mean and median for two observations.
The Mean and Median applet allows you to

place observations on a line and see their mean
and median visually. Place two observations on the
line, by clicking below it. Why does only one arrow
appear?

1.76
AP

PLET

Mean and median for three observations.
In the Mean and Median applet, place three

observations on the line by clicking below it, two
close together near the center of the line and one
somewhat to the right of these two.

(a) Pull the single rightmost observation out to the
right. (Place the cursor on the point, hold down
a mouse button, and drag the point.) How does
the mean behave? How does the median behave?
Explain briefly why each measure acts as it does.

(b) Now drag the rightmost point to the left as far as
you can. What happens to the mean? What happens
to the median as you drag this point past the other
two (watch carefully)?

1.77
AP

PLET

Mean and median for five observations.
Place five observations on the line in the

Mean and Median applet by clicking below it.

(a) Add one additional observation without
changing the median. Where is your new point?

(b) Use the applet to convince yourself that when
you add yet another observation (there are now
seven in all), the median does not change no matter
where you put the seventh point. Explain why this
must be true.

1.78 Hummingbirds and flowers. Different varieties
of the tropical flower Heliconia are fertilized by
different species of hummingbirds. Over time,
the lengths of the flowers and the form of the
hummingbirds’ beaks have evolved to match each
other. Here are data on the lengths in millimeters
of three varieties of these flowers on the island of
Dominica:32

H. bihai

47.12 46.75 46.81 47.12 46.67 47.43 46.44 46.64
48.07 48.34 48.15 50.26 50.12 46.34 46.94 48.36

H. caribaea red

41.90 42.01 41.93 43.09 41.47 41.69 39.78 40.57
39.63 42.18 40.66 37.87 39.16 37.40 38.20 38.07
38.10 37.97 38.79 38.23 38.87 37.78 38.01

H. caribaea yellow

36.78 37.02 36.52 36.11 36.03 35.45 38.13 37.1
35.17 36.82 36.66 35.68 36.03 34.57 34.63

Make boxplots to compare the three distributions.
Report the five-number summaries along with your
graph. What are the most important differences
among the three varieties of flower?

1.79 Compare the three varieties of flowers. The
biologists who collected the flower length data in
the previous exercise compared the three Heliconia
varieties using statistical methods based on x̄ and s.

(a) Find x̄ and s for each variety.

(b) Make a stemplot of each set of flower lengths.
Do the distributions appear suitable for use of x̄ and
s as summaries?

1.80 C
H

ALLENG
E Effects of logging in Borneo.

“Conservationists have despaired over
destruction of tropical rainforest by logging,
clearing, and burning.” These words begin a report
on a statistical study of the effects of logging in
Borneo. Researchers compared forest plots that
had never been logged (Group 1) with similar plots
nearby that had been logged 1 year earlier (Group
2) and 8 years earlier (Group 3). All plots were 0.1
hectare in area. Here are the counts of trees for plots
in each group:33

Group 1: 27 22 29 21 19 33 16 20 24 27 28 19
Group 2: 12 12 15 9 20 18 17 14 14 2 17 19
Group 3: 18 4 22 15 18 19 22 12 12

Give a complete comparison of the three
distributions, using both graphs and numerical
summaries. To what extent has logging affected the
count of trees? The researchers used an analysis
based on x̄ and s. Explain why this is reasonably
well justified.

1.81 C
H

ALLENG
E Running and heart rate. How does regular

running affect heart rate? The RUNNERS
data set, described in detail in the Data Appendix,
contains heart rates for four groups of people:

Sedentary females

Sedentary males

Female runners (at least 15 miles per week)

Male runners (at least 15 miles per week)

The heart rates were measured after 6 minutes of
exercise on a treadmill. There are 200 subjects in
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each group. Give a complete comparison of the
four distributions, using both graphs and numerical
summaries. How would you describe the effect of
running on heart rate? Is the effect different for men
and women?

The WORKERS data set, described in the Data Appendix,
contains the sex, level of education, and income of 71,076
people between the ages of 25 and 64 who were employed
full-time in 2001.

The boxplots in Figure 1.23 compare the distributions of
income for people with five levels of education. This figure is
a variation on the boxplot idea: because large data sets often
contain very extreme observations, the lines extend from the
central box only to the 5th and 95th percentiles.
Exercises 1.82 to 1.84 concern these data.
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FIGURE 1.23 Boxplots comparing the distributions of
income for employed people aged 25 to 64 years with five
different levels of education. The lines extend from the
quartiles to the 5th and 95th percentiles.

1.82 Income for people with bachelor’s degrees. The
data include 14,959 people whose highest level of
education is a bachelor’s degree.

(a) What is the position of the median in the
ordered list of incomes (1 to 14,959)? From the
boxplot, about what is the median income of people
with a bachelor’s degree?

(b) What is the position of the first and third
quartiles in the ordered list of incomes for these
people? About what are the numerical values of Q1

and Q3?

(c) You answered (a) and (b) from a boxplot that
omits the lowest 5% and the highest 5% of incomes.

Explain why leaving out these values has only a very
small effect on the median and quartiles.

1.83 Find the 5th and 95th percentiles. About what are
the positions of the 5th and 95th percentiles in the
ordered list of incomes of the 14,959 people with
a bachelor’s degree? Incomes outside this range
do not appear in the boxplot. About what are the
numerical values of the 5th and 95th percentiles
of income? (For comparison, the largest income
among all 14,959 people was $481,720. That one
person made this much tells us less about the group
than does the 95th percentile.)

1.84 How does income change with education? Write
a brief description of how the distribution of income
changes with the highest level of education reached.
Be sure to discuss center, spread, and skewness.
Give some specifics read from the graph to back up
your statements.

1.85 C
H

ALLENG
E Shakespeare’s plays. Look at the histogram

of lengths of words in Shakespeare’s plays,
Figure 1.15 (page 25). The heights of the bars tell
us what percent of words have each length. What is
the median length of words used by Shakespeare?
Similarly, what are the quartiles? Give the five-
number summary for Shakespeare’s word lengths.

1.86 C
H

ALLENG
E Create a data set. Create a set of 5 positive

numbers (repeats allowed) that have median
10 and mean 7. What thought process did you use
to create your numbers?

1.87 Create another data set. Give an example of a
small set of data for which the mean is larger than
the third quartile.

1.88 C
H

ALLENG
E Deviations from the mean sum to zero.

Use the definition of the mean x̄ to show that
the sum of the deviations xi − x̄ of the observations
from their mean is always zero. This is one reason
why the variance and standard deviation use squared
deviations.

1.89 C
H

ALLENG
E A standard deviation contest. This is a

standard deviation contest. You must choose
four numbers from the whole numbers 0 to 20, with
repeats allowed.

(a) Choose four numbers that have the smallest
possible standard deviation.

(b) Choose four numbers that have the largest
possible standard deviation.

(c) Is more than one choice possible in either (a)
or (b)? Explain.



1.3 Density Curves and Normal Distributions
•

53

1.90 Does your software give incorrect answers? This
exercise requires a calculator with a standard
deviation button or statistical software on a
computer. The observations

20,001 20,002 20,003

have mean x = 20,002 and standard deviation s = 1.
Adding a 0 in the center of each number, the next
set becomes

200,001 200,002 200,003

The standard deviation remains s = 1 as more
0s are added. Use your calculator or computer to
calculate the standard deviation of these numbers,
adding extra 0s until you get an incorrect answer.
How soon did you go wrong? This demonstrates
that calculators and computers cannot handle an
arbitrary number of digits correctly.

1.91 Guinea pigs. Table 1.8 (page 29) gives the survival
times of 72 guinea pigs in a medical study. Survival
times—whether of cancer patients after treatment or
of car batteries in everyday use—are almost always
right-skewed. Make a graph to verify that this is
true of these survival times. Then give a numerical
summary that is appropriate for such data. Explain
in simple language, to someone who knows no
statistics, what your summary tells us about the
guinea pigs.

1.92 Weight gain. A study of diet and weight gain
deliberately overfed 16 volunteers for eight weeks.
The mean increase in fat was x̄ = 2.39 kilograms
and the standard deviation was s = 1.14 kilograms.
What are x̄ and s in pounds? (A kilogram is 2.2
pounds.)

1.93 Compare three varieties of flowers. Exercise
1.78 reports data on the lengths in millimeters of
flowers of three varieties of Heliconia. In Exercise
1.79 you found the mean and standard deviation
for each variety. Starting from the x- and s-values in
millimeters, find the means and standard deviations
in inches. (A millimeter is 1/1000 of a meter. A meter
is 39.37 inches.)

1.94 C
H

ALLENG
E The density of the earth. Henry Cavendish

(see Exercise 1.40, page 28) used x̄ to

summarize his 29 measurements of the density
of the earth.

(a) Find x and s for his data.

(b) Cavendish recorded the density of the earth as
a multiple of the density of water. The density of
water is almost exactly 1 gram per cubic centimeter,
so his measurements have these units. In American
units, the density of water is 62.43 pounds per cubic
foot. This is the weight of a cube of water measuring
1 foot (that is, 30.48 cm) on each side. Express
Cavendish’s first result for the earth (5.50 g/cm3) in
pounds per cubic foot. Then find x̄ and s in pounds
per cubic foot.

1.95 Guinea pigs. Find the quintiles (the 20th, 40th,
60th, and 80th percentiles) of the guinea pig survival
times in Table 1.8 (page 29). For quite large sets of
data, the quintiles or the deciles (10th, 20th, 30th,
etc. percentiles) give a more detailed summary than
the quartiles.

1.96 C
H

ALLENG
E Changing units from inches to

centimeters. Changing the unit of length
from inches to centimeters multiplies each length
by 2.54 because there are 2.54 centimeters in an
inch. This change of units multiplies our usual
measures of spread by 2.54. This is true of IQR
and the standard deviation. What happens to the
variance when we change units in this way?

1.97 A different type of mean. The trimmed mean is
a measure of center that is more resistant than the
mean but uses more of the available information
than the median. To compute the 10% trimmed
mean, discard the highest 10% and the lowest 10%
of the observations and compute the mean of the
remaining 80%. Trimming eliminates the effect
of a small number of outliers. Compute the 10%
trimmed mean of the guinea pig survival time data in
Table 1.8 (page 29). Then compute the 20% trimmed
mean. Compare the values of these measures with
the median and the ordinary untrimmed mean.

1.98 C
H

ALLENG
E Changing units from centimeters to

inches. Refer to Exercise 1.56. Change
the measurements from centimeters to inches by
multiplying each value by 0.39. Answer the questions
from the previous exercise and explain the effect of
the transformation on these data.

1.3 Density Curves and Normal Distributions
We now have a kit of graphical and numerical tools for describing distributions.
What is more, we have a clear strategy for exploring data on a single quantita-
tive variable:
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1. Always plot your data: make a graph, usually a stemplot or a histogram.

2. Look for the overall pattern and for striking deviations such as outliers.

3. Calculate an appropriate numerical summary to briefly describe center and
spread.

Technology has expanded the set of graphs that we can choose for Step 1. It
is possible, though painful, to make histograms by hand. Using software, clever
algorithms can describe a distribution in a way that is not feasible by hand, by
fitting a smooth curve to the data in addition to or instead of a histogram. The
curves used are called density curves. Before we examine density curves in
detail, here is an example of what software can do.

•

•

E
X

A
M

P
L

E 1.23 Density curves of pH and survival times. Figure 1.24 illustrates
the use of density curves along with histograms to describe distributions.34

Figure 1.24(a) shows the distribution of the acidity (pH) of rainwater, from
Exercise 1.36 (page 27). That exercise illustrates how the choice of classes can
change the shape of a histogram. The density curve and the software’s default
histogram agree that the distribution has a single peak and is approximately
symmetric.

Figure 1.24(b) shows a strongly skewed distribution, the survival times of
guinea pigs from Table 1.8 (page 29). The histogram and density curve agree
on the overall shape and on the “bumps” in the long right tail. The density
curve shows a higher peak near the single mode of the distribution. The his-
togram divides the observations near the mode into two classes, thus reduc-
ing the peak.

Rainwater pH values

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 0 100 200 300 400 500 600

Survival time (days)

(a) (b)

FIGURE 1.24 (a) The distribution of pH values measuring the acidity of 105 samples of
rainwater, for Example 1.23. The roughly symmetric distribution is pictured by both a
histogram and a density curve. (b) The distribution of the survival times of 72 guinea pigs
in a medical experiment, for Example 1.23. The right-skewed distribution is pictured by
both a histogram and a density curve.
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In general, software that draws density curves describes the data in a way
that is less arbitrary than choosing classes for a histogram. A smooth density
curve is, however, an idealization that pictures the overall pattern of the data
but ignores minor irregularities as well as any outliers. We will concentrate, not
on general density curves, but on a special class, the bell-shaped Normal curves.

Density curves
One way to think of a density curve is as a smooth approximation to the ir-
regular bars of a histogram. Figure 1.25 shows a histogram of the scores of all
947 seventh-grade students in Gary, Indiana, on the vocabulary part of the Iowa
Test of Basic Skills. Scores of many students on this national test have a very
regular distribution. The histogram is symmetric, and both tails fall off quite
smoothly from a single center peak. There are no large gaps or obvious out-
liers. The curve drawn through the tops of the histogram bars in Figure 1.25 is
a good description of the overall pattern of the data.

2 4 6
Grade equivalent vocabulary score

8 10 12 2 4 6
Grade equivalent vocabulary score

8 10 12

(a) (b)

FIGURE 1.25 (a) The distribution of Iowa Test vocabulary scores for Gary, Indiana,
seventh-graders. The shaded bars in the histogram represent scores less than or equal to
6.0. The proportion of such scores in the data is 0.303. (b) The shaded area under the
Normal density curve also represents scores less than or equal to 6.0. This area is 0.293,
close to the true 0.303 for the actual data.

•

E
X

A
M

P
L

E 1.24 Vocabulary scores. In a histogram, the areas of the bars represent
either counts or proportions of the observations. In Figure 1.25(a) we have
shaded the bars that represent students with vocabulary scores 6.0 or lower.
There are 287 such students, who make up the proportion 287/947 = 0.303
of all Gary seventh-graders. The shaded bars in Figure 1.25(a) make up pro-
portion 0.303 of the total area under all the bars. If we adjust the scale so that
the total area of the bars is 1, the area of the shaded bars will be 0.303.

In Figure 1.25(b), we have shaded the area under the curve to the left
of 6.0. Adjust the scale so that the total area under the curve is exactly 1.
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Areas under the curve then represent proportions of the observations. That is,
area = proportion. The curve is then a density curve. The shaded area under
the density curve in Figure 1.25(b) represents the proportion of students with
score 6.0 or lower. This area is 0.293, only 0.010 away from the histogram re-
sult. You can see that areas under the density curve give quite good approxi-
mations of areas given by the histogram.

DENSITY CURVE

A density curve is a curve that

• is always on or above the horizontal axis and

• has area exactly 1 underneath it.

A density curve describes the overall pattern of a distribution. The area
under the curve and above any range of values is the proportion of all
observations that fall in that range.

The density curve in Figure 1.25 is a Normal curve. Density curves, like dis-
tributions, come in many shapes. Figure 1.26 shows two density curves, a sym-
metric Normal density curve and a right-skewed curve. A density curve of an
appropriate shape is often an adequate description of the overall pattern of a
distribution. Outliers, which are deviations from the overall pattern, are not
described by the curve.

Median and mean
Mean

Median

(a) (b)

FIGURE 1.26 (a) A symmetric density curve with its mean and median marked. (b) A
right-skewed density curve with its mean and median marked.

Measuring center and spread for density curves
Our measures of center and spread apply to density curves as well as to actual
sets of observations, but only some of these measures are easily seen from the
curve. A mode of a distribution described by a density curve is a peak point of
the curve, the location where the curve is highest. Because areas under a den-
sity curve represent proportions of the observations, the median is the point
with half the total area on each side. You can roughly locate the quartiles by
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dividing the area under the curve into quarters as accurately as possible by eye.
The IQR is then the distance between the first and third quartiles. There are
mathematical ways of calculating areas under curves. These allow us to locate
the median and quartiles exactly on any density curve.

What about the mean and standard deviation? The mean of a set of obser-
vations is their arithmetic average. If we think of the observations as weights
strung out along a thin rod, the mean is the point at which the rod would bal-
ance. This fact is also true of density curves. The mean is the point at which the
curve would balance if it were made out of solid material. Figure 1.27 illustrates
this interpretation of the mean. We have marked the mean and median on the
density curves in Figure 1.26. A symmetric curve, such as the Normal curve in
Figure 1.26(a), balances at its center of symmetry. Half the area under a sym-
metric curve lies on either side of its center, so this is also the median. For a
right-skewed curve, such as that shown in Figure 1.26(b), the small area in the
long right tail tips the curve more than the same area near the center. The mean
(the balance point) therefore lies to the right of the median. It is hard to locate
the balance point by eye on a skewed curve. There are mathematical ways of
calculating the mean for any density curve, so we are able to mark the mean as
well as the median in Figure 1.26(b). The standard deviation can also be calcu-
lated mathematically, but it can’t be located by eye on most density curves.

FIGURE 1.27 The mean of a
density curve is the point at
which it would balance.

MEDIAN AND MEAN OF A DENSITY CURVE

The median of a density curve is the equal-areas point, the point that
divides the area under the curve in half.

The mean of a density curve is the balance point, at which the curve
would balance if made of solid material.

The median and mean are the same for a symmetric density curve. They
both lie at the center of the curve. The mean of a skewed curve is pulled
away from the median in the direction of the long tail.

A density curve is an idealized description of a distribution of data. For
example, the symmetric density curve in Figure 1.25 is exactly symmetric,
but the histogram of vocabulary scores is only approximately symmetric. We
therefore need to distinguish between the mean and standard deviation of the
density curve and the numbers x and s computed from the actual observations.
The usual notation for the mean of an idealized distribution is μ (the Greekmean μ

letter mu). We write the standard deviation of a density curve as σ (the Greekstandard deviation σ

letter sigma).
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Normal distributions
One particularly important class of density curves has already appeared in Fig-
ures 1.25 and 1.26(a). These density curves are symmetric, unimodal, and bell-
shaped. They are called Normal curves, and they describe Normal distribu-Normal curves
tions. All Normal distributions have the same overall shape. The exact density
curve for a particular Normal distribution is specified by giving its mean μ and
its standard deviation σ . The mean is located at the center of the symmetric
curve and is the same as the median. Changing μ without changing σ moves
the Normal curve along the horizontal axis without changing its spread. The
standard deviation σ controls the spread of a Normal curve. Figure 1.28 shows
two Normal curves with different values of σ . The curve with the larger stan-
dard deviation is more spread out.

μ

σ

σ

μ

FIGURE 1.28 Two Normal curves, showing the mean μ and standard deviation σ .

The standard deviation σ is the natural measure of spread for Normal dis-
tributions. Not only do μ and σ completely determine the shape of a Normal
curve, but we can locate σ by eye on the curve. Here’s how. As we move out in
either direction from the center μ, the curve changes from falling ever more
steeply

to falling ever less steeply

The points at which this change of curvature takes place are located at distance
σ on either side of the mean μ. You can feel the change as you run your finger
along a Normal curve, and so find the standard deviation. Remember that μ

and σ alone do not specify the shape of most distributions, and that the shape
of density curves in general does not reveal σ . These are special properties of
Normal distributions.

There are other symmetric bell-shaped density curves that are not Normal.
The Normal density curves are specified by a particular equation. The height
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of the density curve at any point x is given by

1

σ
√

2π
e− 1

2 (
x−μ
σ )2

We will not make direct use of this fact, although it is the basis of mathemat-
ical work with Normal distributions. Notice that the equation of the curve is
completely determined by the mean μ and the standard deviation σ .

Why are the Normal distributions important in statistics? Here are three
reasons. First, Normal distributions are good descriptions for some distribu-
tions of real data. Distributions that are often close to Normal include scores on
tests taken by many people (such as the Iowa Test of Figure 1.25), repeated care-
ful measurements of the same quantity, and characteristics of biological pop-
ulations (such as lengths of baby pythons and yields of corn). Second, Normal
distributions are good approximations to the results of many kinds of chance
outcomes, such as tossing a coin many times. Third, and most important, we
will see that many statistical inference procedures based on Normal distribu-
tions work well for other roughly symmetric distributions. HOWEVER . . . even
though many sets of data follow a Normal distribution, many do not. Most in-

CAUTION

! come distributions, for example, are skewed to the right and so are not Nor-
mal. Non-Normal data, like non-Normal people, not only are common but are
sometimes more interesting than their Normal counterparts.

The 68–95–99.7 rule
Although there are many Normal curves, they all have common properties.
Here is one of the most important.

THE 68–95–99.7 RULE

In the Normal distribution with mean μ and standard deviation σ :

• Approximately 68% of the observations fall within σ of the mean μ.

• Approximately 95% of the observations fall within 2σ of μ.

• Approximately 99.7% of the observations fall within 3σ of μ.

Figure 1.29 illustrates the 68–95–99.7 rule. By remembering these three
numbers, you can think about Normal distributions without constantly mak-
ing detailed calculations.
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E 1.25 Heights of young women. The distribution of heights of young
women aged 18 to 24 is approximately Normal with mean μ = 64.5 inches
and standard deviation σ = 2.5 inches. Figure 1.30 shows what the 68–95–
99.7 rule says about this distribution.

Two standard deviations is 5 inches for this distribution. The 95 part of
the 68–95–99.7 rule says that the middle 95% of young women are between
64.5 − 5 and 64.5 + 5 inches tall, that is, between 59.5 inches and 69.5 inches.
This fact is exactly true for an exactly Normal distribution. It is approximately
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0–1–2–3 1 2 3

99.7% of data

95% of data

68% of data

FIGURE 1.29 The 68–95–99.7
rule for Normal distributions.

•

true for the heights of young women because the distribution of heights is
approximately Normal.

The other 5% of young women have heights outside the range from 59.5
to 69.5 inches. Because the Normal distributions are symmetric, half of these
women are on the tall side. So the tallest 2.5% of young women are taller than
69.5 inches.

64.56259.557 67 69.5 72

68%

99.7%

95%

Height (inches)

FIGURE 1.30 The 68–95–99.7
rule applied to the heights of
young women, for Example 1.25.

Because we will mention Normal distributions often, a short notation is
helpful. We abbreviate the Normal distribution with mean μ and standard de-
viation σ as N(μ,σ). For example, the distribution of young women’s heightsN(μ,σ)
is N(64.5, 2.5).

USE YOUR KNOWLEDGE
1.99 Test scores. Many states have programs for assessing the skills of

students in various grades. The Indiana Statewide Testing for Edu-
cational Progress (ISTEP) is one such program.35 In a recent year
76,531 tenth-grade Indiana students took the English/language arts
exam. The mean score was 572 and the standard deviation was 51.
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Assuming that these scores are approximately Normally distributed,
N(572, 51), use the 68–95–99.7 rule to give a range of scores that in-
cludes 95% of these students.

1.100 Use the 68–95–99.7 rule. Refer to the previous exercise. Use the 68–
95–99.7 rule to give a range of scores that includes 99.7% of these
students.

Standardizing observations
As the 68–95–99.7 rule suggests, all Normal distributions share many proper-
ties. In fact, all Normal distributions are the same if we measure in units of size
σ about the mean μ as center. Changing to these units is called standardizing.
To standardize a value, subtract the mean of the distribution and then divide
by the standard deviation.

STANDARDIZING AND z-SCORES

If x is an observation from a distribution that has mean μ and standard
deviation σ , the standardized value of x is

z = x − μ

σ

A standardized value is often called a z-score.

A z-score tells us how many standard deviations the original observation
falls away from the mean, and in which direction. Observations larger than the
mean are positive when standardized, and observations smaller than the mean
are negative.

•
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E 1.26 Find some z-scores. The heights of young women are approximately
Normal with μ = 64.5 inches and σ = 2.5 inches. The z-score for height is

z = height − 64.5
2.5

A woman’s standardized height is the number of standard deviations by
which her height differs from the mean height of all young women. A woman
68 inches tall, for example, has z-score

z = 68 − 64.5
2.5

= 1.4

or 1.4 standard deviations above the mean. Similarly, a woman 5 feet (60
inches) tall has z-score

z = 60 − 64.5
2.5

= −1.8

or 1.8 standard deviations less than the mean height.
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USE YOUR KNOWLEDGE
1.101 Find the z-score. Consider the ISTEP scores (see Exercise 1.99),

which we can assume are approximately Normal, N(572, 51). Give
the z-score for a student who received a score of 600.

1.102 Find another z-score. Consider the ISTEP scores, which we can as-
sume are approximately Normal, N(572, 51). Give the z-score for a
student who received a score of 500. Explain why your answer is neg-
ative even though all of the test scores are positive.

We need a way to write variables, such as “height” in Example 1.25, that
follow a theoretical distribution such as a Normal distribution. We use capital
letters near the end of the alphabet for such variables. If X is the height of a
young woman, we can then shorten “the height of a young woman is less than
68 inches” to “X < 68.” We will use lowercase x to stand for any specific value
of the variable X.

We often standardize observations from symmetric distributions to ex-
press them in a common scale. We might, for example, compare the heights of
two children of different ages by calculating their z-scores. The standardized
heights tell us where each child stands in the distribution for his or her age
group.

Standardizing is a linear transformation that transforms the data into the
standard scale of z-scores. We know that a linear transformation does not
change the shape of a distribution, and that the mean and standard devia-
tion change in a simple manner. In particular, the standardized values for any
distribution always have mean 0 and standard deviation 1.

If the variable we standardize has a Normal distribution, standardizing does
more than give a common scale. It makes all Normal distributions into a sin-
gle distribution, and this distribution is still Normal. Standardizing a variable
that has any Normal distribution produces a new variable that has the standard
Normal distribution.

THE STANDARD NORMAL DISTRIBUTION

The standard Normal distribution is the Normal distribution N(0, 1)

with mean 0 and standard deviation 1.

If a variable X has any Normal distribution N(μ, σ ) with mean μ and
standard deviation σ , then the standardized variable

Z = X − μ

σ

has the standard Normal distribution.

Normal distribution calculations
Areas under a Normal curve represent proportions of observations from that
Normal distribution. There is no formula for areas under a Normal curve. Cal-
culations use either software that calculates areas or a table of areas. The table
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and most software calculate one kind of area: cumulative proportions. A cu-cumulative proportion
mulative proportion is the proportion of observations in a distribution that lie
at or below a given value. When the distribution is given by a density curve, the
cumulative proportion is the area under the curve to the left of a given value.
Figure 1.31 shows the idea more clearly than words do.

Cumulative proportion 
at x = area under curve
to the left of x.

x

FIGURE 1.31 The cumulative
proportion for a value x is the
proportion of all observations
from the distribution that are
less than or equal to x. This is the
area to the left of x under the
Normal curve.

The key to calculating Normal proportions is to match the area you want
with areas that represent cumulative proportions. Then get areas for cumula-
tive proportions either from software or (with an extra step) from a table. The
following examples show the method in pictures.
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E 1.27 The NCAA standard for SAT scores. The National Collegiate Ath-
letic Association (NCAA) requires Division I athletes to get a combined score
of at least 820 on the SAT Mathematics and Verbal tests to compete in their
first college year. (Higher scores are required for students with poor high
school grades.) The scores of the 1.4 million students in the class of 2003
who took the SATs were approximately Normal with mean 1026 and stan-
dard deviation 209. What proportion of all students had SAT scores of at
least 820?

Here is the calculation in pictures: the proportion of scores above 820 is
the area under the curve to the right of 820. That’s the total area under the
curve (which is always 1) minus the cumulative proportion up to 820.

= –

820 820

area right of 820 = total area − area left of 820

0.8379 = 1 − 0.1621
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•
That is, the proportion of all SAT takers who would be NCAA qualifiers is
0.8379, or about 84%.

There is no area under a smooth curve and exactly over the point 820. Con-
sequently, the area to the right of 820 (the proportion of scores > 820) is the
same as the area at or to the right of this point (the proportion of scores ≥ 820).
The actual data may contain a student who scored exactly 820 on the SAT. That
the proportion of scores exactly equal to 820 is 0 for a Normal distribution is a
consequence of the idealized smoothing of Normal distributions for data.

•
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E 1.28 NCAA partial qualifiers. The NCAA considers a student a “partial

qualifier” eligible to practice and receive an athletic scholarship, but not to
compete, if the combined SAT score is at least 720. What proportion of all
students who take the SAT would be partial qualifiers? That is, what propor-
tion have scores between 720 and 820? Here are the pictures:

= –

820 820720 720

area between
720 and 820

= area left of 820 − area left of 720

0.0905 = 0.1621 − 0.0716

About 9% of all students who take the SAT have scores between 720 and 820.

How do we find the numerical values of the areas in Examples 1.27 and 1.28?
If you use software, just plug in mean 1026 and standard deviation 209. Then
ask for the cumulative proportions for 820 and for 720. (Your software will
probably refer to these as “cumulative probabilities.” We will learn in Chap-
ter 4 why the language of probability fits.) If you make a sketch of the area you
want, you will never go wrong.

You can use the Normal Curve applet on the text CD and Web site to find
AP

PLET

Normal proportions. The applet is more flexible than most software—it will
find any Normal proportion, not just cumulative proportions. The applet is an
excellent way to understand Normal curves. But, because of the limitations of
Web browsers, the applet is not as accurate as statistical software.

If you are not using software, you can find cumulative proportions for Nor-
mal curves from a table. That requires an extra step, as we now explain.

Using the standard Normal table
The extra step in finding cumulative proportions from a table is that we must
first standardize to express the problem in the standard scale of z-scores. This
allows us to get by with just one table, a table of standard Normal cumulative
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proportions. Table A in the back of the book gives cumulative proportions for
the standard Normal distribution. Table A also appears on the inside front
cover. The pictures at the top of the table remind us that the entries are cumu-
lative proportions, areas under the curve to the left of a value z.
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E 1.29 Find the proportion from z. What proportion of observations on a
standard Normal variable Z take values less than 1.47?

Solution: To find the area to the left of 1.47, locate 1.4 in the left-hand col-
umn of Table A, then locate the remaining digit 7 as .07 in the top row. The
entry opposite 1.4 and under .07 is 0.9292. This is the cumulative proportion
we seek. Figure 1.32 illustrates this area.

Table entry: area = 0.9292.

 z = 1.47

FIGURE 1.32 The area under a
standard Normal curve to the
left of the point z = 1.47 is
0.9292, for Example 1.29. Table A
gives areas under the standard
Normal curve.

Now that you see how Table A works, let’s redo the NCAA Examples 1.27 and
1.28 using the table.
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E 1.30 Find the proportion from x. What proportion of all students who
take the SAT have scores of at least 820? The picture that leads to the answer is
exactly the same as in Example 1.27. The extra step is that we first standardize
in order to read cumulative proportions from Table A. If X is SAT score, we
want the proportion of students for which X ≥ 820.

1. Standardize. Subtract the mean, then divide by the standard deviation, to
transform the problem about X into a problem about a standard Normal Z:

X ≥ 820

X − 1026
209

≥ 820 − 1026
209

Z ≥ −0.99

2. Use the table. Look at the pictures in Example 1.27. From Table A, we see
that the proportion of observations less than −0.99 is 0.1611. The area to
the right of −0.99 is therefore 1 − 0.1611 = 0.8389. This is about 84%.
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The area from the table in Example 1.30 (0.8389) is slightly less accurate
than the area from software in Example 1.27 (0.8379) because we must round
z to two places when we use Table A. The difference is rarely important in
practice.
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E 1.31 Proportion of partial qualifiers. What proportion of all students
who take the SAT would be partial qualifiers in the eyes of the NCAA? That
is, what proportion of students have SAT scores between 720 and 820? First,
sketch the areas, exactly as in Example 1.28. We again use X as shorthand for
an SAT score.

1. Standardize.

720 ≤ X < 820
720 − 1026

209
≤ X − 1026

209
<

820 − 1026
209

−1.46 ≤ Z < −0.99

2. Use the table.

area between −1.46 and −0.99 = (area left of −0.99) − (area left of −1.46)

= 0.1611 − 0.0721 = 0.0890

As in Example 1.28, about 9% of students would be partial qualifiers.

Sometimes we encounter a value of z more extreme than those appearing in
Table A. For example, the area to the left of z = −4 is not given directly in the
table. The z-values in Table A leave only area 0.0002 in each tail unaccounted
for. For practical purposes, we can act as if there is zero area outside the range
of Table A.

USE YOUR KNOWLEDGE
1.103 Find the proportion. Consider the ISTEP scores, which are approx-

imately Normal, N(572, 51). Find the proportion of students who
have scores less than 600. Find the proportion of students who have
scores greater than or equal to 600. Sketch the relationship between
these two calculations using pictures of Normal curves similar to the
ones given in Example 1.27.

1.104 Find another proportion. Consider the ISTEP scores, which are
approximately Normal, N(572, 51). Find the proportion of students
who have scores between 600 and 650. Use pictures of Normal
curves similar to the ones given in Example 1.28 to illustrate your
calculations.

Inverse Normal calculations
Examples 1.25 to 1.29 illustrate the use of Normal distributions to find the pro-
portion of observations in a given event, such as “SAT score between 720 and
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820.” We may instead want to find the observed value corresponding to a given
proportion.

Statistical software will do this directly. Without software, use Table A back-
ward, finding the desired proportion in the body of the table and then reading
the corresponding z from the left column and top row.
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E 1.32 How high for the top 10%? Scores on the SAT Verbal test in re-
cent years follow approximately the N(505, 110) distribution. How high must
a student score in order to place in the top 10% of all students taking the SAT?

Again, the key to the problem is to draw a picture. Figure 1.33 shows that
we want the score x with area above it 0.10. That’s the same as area below x
equal to 0.90.

Statistical software has a function that will give you the x for any cumula-
tive proportion you specify. The function often has a name such as “inverse
cumulative probability.” Plug in mean 505, standard deviation 110, and cu-
mulative proportion 0.9. The software tells you that x = 645.97. We see that
a student must score at least 646 to place in the highest 10%.

Without software, first find the standard score z with cumulative propor-
tion 0.9, then “unstandardize” to find x. Here is the two-step process:

1. Use the table. Look in the body of Table A for the entry closest to 0.9. It
is 0.8997. This is the entry corresponding to z = 1.28. So z = 1.28 is the
standardized value with area 0.9 to its left.

2. Unstandardize to transform the solution from z back to the original x scale.
We know that the standardized value of the unknown x is z = 1.28. So x
itself satisfies

x − 505
110

= 1.28

Solving this equation for x gives

x = 505 + (1.28)(110) = 645.8

This equation should make sense: it finds the x that lies 1.28 standard
deviations above the mean on this particular Normal curve. That is the

Area = 0.90

Area = 0.10

x = 505
z = 0

x = ?
z = 1.28

FIGURE 1.33 Locating the
point on a Normal curve with
area 0.10 to its right, for Example
1.32. The result is x = 646, or
z = 1.28 in the standard scale.
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“unstandardized” meaning of z = 1.28. The general rule for unstandardiz-
ing a z-score is

x = μ + zσ

USE YOUR KNOWLEDGE
1.105 What score is needed to be in the top 5%? Consider the ISTEP

scores, which are approximately Normal, N(572, 51). How high a
score is needed to be in the top 5% of students who take this exam?

1.106 Find the score that 60% of students will exceed. Consider the
ISTEP scores, which are approximately Normal, N(572, 51). Sixty
percent of the students will score above x on this exam. Find x.

Normal quantile plots
The Normal distributions provide good descriptions of some distributions of
real data, such as the Gary vocabulary scores. The distributions of some other
common variables are usually skewed and therefore distinctly non-Normal.
Examples include economic variables such as personal income and gross sales
of business firms, the survival times of cancer patients after treatment, and the
service lifetime of mechanical or electronic components. While experience can
suggest whether or not a Normal distribution is plausible in a particular case,
it is risky to assume that a distribution is Normal without actually inspecting
the data.

A histogram or stemplot can reveal distinctly non-Normal features of a
distribution, such as outliers (the breaking strengths in Figure 1.9, page 17),
pronounced skewness (the survival times in Figure 1.24(b), page 54), or gaps
and clusters (the Massachusetts college tuitions in Figure 1.16, page 25). If the
stemplot or histogram appears roughly symmetric and unimodal, however, we
need a more sensitive way to judge the adequacy of a Normal model. The most
useful tool for assessing Normality is another graph, the Normal quantileNormal quantile plot
plot.

Here is the basic idea of a Normal quantile plot. The graphs produced by
software use more sophisticated versions of this idea. It is not practical to make
Normal quantile plots by hand.

1. Arrange the observed data values from smallest to largest. Record what per-
centile of the data each value occupies. For example, the smallest observa-
tion in a set of 20 is at the 5% point, the second smallest is at the 10% point,
and so on.

2. Do Normal distribution calculations to find the values of z corresponding to
these same percentiles. For example, z = −1.645 is the 5% point of the stan-
dard Normal distribution, and z = −1.282 is the 10% point. We call these
values of Z Normal scores.Normal scores

3. Plot each data point x against the corresponding Normal score. If the data
distribution is close to any Normal distribution, the plotted points will lie
close to a straight line.
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Any Normal distribution produces a straight line on the plot because stan-
dardizing turns any Normal distribution into a standard Normal distribution.
Standardizing is a linear transformation that can change the slope and inter-
cept of the line in our plot but cannot turn a line into a curved pattern.

USE OF NORMAL QUANTILE PLOTS

If the points on a Normal quantile plot lie close to a straight line, the plot
indicates that the data are Normal. Systematic deviations from a straight
line indicate a non-Normal distribution. Outliers appear as points that
are far away from the overall pattern of the plot.

Figures 1.34 to 1.36 are Normal quantile plots for data we have met earlier.
The data x are plotted vertically against the corresponding standard Normal
z-score plotted horizontally. The z-score scale extends from −3 to 3 because al-
most all of a standard Normal curve lies between these values. These figures
show how Normal quantile plots behave.

granularity
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E 1.33 Breaking strengths are Normal. Figure 1.34 is a Normal quantile
plot of the breaking strengths in Example 1.11 (page 17). Lay a transparent
straightedge over the center of the plot to see that most of the points lie close
to a straight line. A Normal distribution describes these points quite well.
The only substantial deviations are short horizontal runs of points. Each run
represents repeated observations having the same value—there are five mea-
surements at 1150, for example. This phenomenon is called granularity. It is
caused by the limited precision of the measurements and does not represent
an important deviation from Normality.
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FIGURE 1.34 Normal quantile
plot of the breaking strengths of
wires bonded to a semiconductor
wafer, for Example 1.33. This
distribution has a Normal shape
except for outliers in both tails.
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The high outlier at 3150 pounds lies above the line formed by the center of
the data—it is farther out in the high direction than we expect Normal data
to be.

The two low outliers at 0 lie below the line—they are suspiciously far out
in the low direction. Compare Figure 1.34 with the histogram of these data
in Figure 1.9 (page 17).
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E 1.34 Survival times are not Normal. Figure 1.35 is a Normal quantile

plot of the guinea pig survival times from Table 1.8 (page 29). Figure 1.24(b)
(page 54) shows that this distribution is strongly skewed to the right.

To see the right-skewness in the Normal quantile plot, draw a line through
the leftmost points, which correspond to the smaller observations. The larger
observations fall systematically above this line. That is, the right-of-center ob-
servations have larger values than in a Normal distribution. In a right-skewed
distribution, the largest observations fall distinctly above a line drawn through
the main body of points. Similarly, left-skewness is evident when the smallest
observations fall below the line. Unlike Figure 1.34, there are no individual
outliers.
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FIGURE 1.35 Normal quantile
plot of the survival times of
guinea pigs in a medical
experiment, for Example 1.34.
This distribution is skewed to
the right.
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E 1.35 Acidity of rainwater is approximately Normal. Figure 1.36 is a
Normal quantile plot of the 105 acidity (pH) measurements of rainwater from
Exercise 1.36 (page 27). Histograms don’t settle the question of approximate
Normality of these data, because their shape depends on the choice of classes.
The Normal quantile plot makes it clear that a Normal distribution is a good
description—there are only minor wiggles in a generally straight-line pattern.

As Figure 1.36 illustrates, real data almost always show some departure
from the theoretical Normal model. When you examine a Normal quantile plot,
look for shapes that show clear departures from Normality. Don’t overreact to

CAUTION

!
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FIGURE 1.36 Normal quantile
plot of the acidity (pH) values of
105 samples of rainwater, for
Example 1.35. This distribution
is approximately Normal.

minor wiggles in the plot. When we discuss statistical methods that are based
on the Normal model, we will pay attention to the sensitivity of each method
to departures from Normality. Many common methods work well as long as
the data are approximately Normal and outliers are not present.

BEYOND THE BASICS

Density Estimation

A density curve gives a compact summary of the overall shape of a distribu-
tion. Many distributions do not have the Normal shape. There are other fami-
lies of density curves that are used as mathematical models for various distri-
bution shapes. Modern software offers a more flexible option, illustrated by the
two graphs in Figure 1.24 (page 54). A density estimator does not start withdensity estimator
any specific shape, such as the Normal shape. It looks at the data and draws a
density curve that describes the overall shape of the data. Density estimators
join stemplots and histograms as useful graphical tools for exploratory data
analysis.

SECTION 1.3 Summary

The overall pattern of a distribution can often be described compactly by a den-
sity curve. A density curve has total area 1 underneath it. Areas under a density
curve give proportions of observations for the distribution.

The mean μ (balance point), the median (equal-areas point), and the quartiles
can be approximately located by eye on a density curve. The standard devia-
tion σ cannot be located by eye on most density curves. The mean and median
are equal for symmetric density curves, but the mean of a skewed curve is lo-
cated farther toward the long tail than is the median.
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The Normal distributions are described by bell-shaped, symmetric, unimodal
density curves. The mean μ and standard deviation σ completely specify the
Normal distribution N(μ, σ ). The mean is the center of symmetry, and σ is the
distance from μ to the change-of-curvature points on either side.

To standardize any observation x, subtract the mean of the distribution and
then divide by the standard deviation. The resulting z-score z = (x − μ)/σ says
how many standard deviations x lies from the distribution mean. All Normal
distributions are the same when measurements are transformed to the stan-
dardized scale. In particular, all Normal distributions satisfy the 68–95–99.7
rule.

If X has the N(μ, σ ) distribution, then the standardized variable Z = (X − μ)/σ

has the standard Normal distribution N(0, 1). Proportions for any Normal
distribution can be calculated by software or from the standard Normal table
(Table A), which gives the cumulative proportions of Z < z for many values
of z.

The adequacy of a Normal model for describing a distribution of data is best
assessed by a Normal quantile plot, which is available in most statistical
software packages. A pattern on such a plot that deviates substantially from a
straight line indicates that the data are not Normal.

SECTION 1.3 Exercises
For Exercises 1.99 and 1.100, see pages 60 and 61; for
Exercises 1.101 and 1.102, see page 62; for Exercises 1.103
and 1.104, see page 66; and for Exercises 1.105 and 1.106,
see page 68.

1.107 Sketch some density curves. Sketch density
curves that might describe distributions with the
following shapes:

(a) Symmetric, but with two peaks (that is, two
strong clusters of observations).

(b) Single peak and skewed to the right.

1.108 A uniform distribution. If you ask a computer to
generate “random numbers” between 0 and 1, you
will get observations from a uniform distribution.
Figure 1.37 graphs the density curve for a uniform
distribution. Use areas under this density curve to
answer the following questions.

0 1

FIGURE 1.37 The density curve of a uniform distribution,
for Exercise 1.108.

(a) Why is the total area under this curve equal
to 1?

(b) What proportion of the observations lie below
0.35?

(c) What proportion of the observations lie
between 0.35 and 0.65?

1.109 Use a different range for the uniform
distribution. Many random number generators
allow users to specify the range of the random
numbers to be produced. Suppose that you specify
that the outcomes are to be distributed uniformly
between 0 and 4. Then the density curve of the
outcomes has constant height between 0 and 4,
and height 0 elsewhere.

(a) What is the height of the density curve between
0 and 4? Draw a graph of the density curve.

(b) Use your graph from (a) and the fact that
areas under the curve are proportions of outcomes
to find the proportion of outcomes that are less
than 1.

(c) Find the proportion of outcomes that lie
between 0.5 and 2.5.

1.110 Find the mean, the median, and the quartiles.
What are the mean and the median of the uniform
distribution in Figure 1.37? What are the quartiles?

1.111 Three density curves. Figure 1.38 displays three
density curves, each with three points marked on
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A B C

(b)

A B C

(c)

A BC

(a)

FIGURE 1.38 Three density curves, for Exercise 1.111.

it. At which of these points on each curve do the
mean and the median fall?

1.112 Length of pregnancies. The length of human
pregnancies from conception to birth varies
according to a distribution that is approximately
Normal with mean 266 days and standard deviation
16 days. Draw a density curve for this distribution
on which the mean and standard deviation are
correctly located.

1.113
AP

PLET

Use the Normal Curve applet. The
68–95–99.7 rule for Normal distributions is

a useful approximation. You can use the Normal
Curve applet on the text CD and Web site to see
how accurate the rule is. Drag one flag across the
other so that the applet shows the area under the
curve between the two flags.

(a) Place the flags one standard deviation on either
side of the mean. What is the area between these
two values? What does the 68–95–99.7 rule say this
area is?

(b) Repeat for locations two and three standard
deviations on either side of the mean. Again
compare the 68–95–99.7 rule with the area given
by the applet.

1.114 Pregnancies and the 68–95–99.7 rule. The
length of human pregnancies from conception
to birth varies according to a distribution that is
approximately Normal with mean 266 days and
standard deviation 16 days. Use the 68–95–99.7
rule to answer the following questions.

(a) Between what values do the lengths of the
middle 95% of all pregnancies fall?

(b) How short are the shortest 2.5% of all
pregnancies? How long do the longest 2.5%
last?

1.115 Horse pregnancies are longer. Bigger animals
tend to carry their young longer before birth.
The length of horse pregnancies from conception
to birth varies according to a roughly Normal
distribution with mean 336 days and standard
deviation 3 days. Use the 68–95–99.7 rule to answer
the following questions.

(a) Almost all (99.7%) horse pregnancies fall in
what range of lengths?

(b) What percent of horse pregnancies are longer
than 339 days?

1.116 Binge drinking survey. One reason that Normal
distributions are important is that they describe
how the results of an opinion poll would vary if
the poll were repeated many times. About 20%
of college students say they are frequent binge
drinkers. Think about taking many randomly
chosen samples of 1600 students. The proportions
of college students in these samples who say
they are frequent binge drinkers will follow the
Normal distribution with mean 0.20 and standard
deviation 0.01. Use this fact and the 68–95–99.7
rule to answer these questions.

(a) In many samples, what percent of samples give
results above 0.2? Above 0.22?

(b) In a large number of samples, what range
contains the central 95% of proportions of students
who say they are frequent binge drinkers?

1.117 Heights of women. The heights of women aged
20 to 29 are approximately Normal with mean 64
inches and standard deviation 2.7 inches. Men
the same age have mean height 69.3 inches with
standard deviation 2.8 inches. What are the z-
scores for a woman 6 feet tall and a man 6 feet
tall? What information do the z-scores give that the
actual heights do not?

1.118
AP

PLET

Use the Normal Curve applet. Use the
Normal Curve applet for the standard

Normal distribution to say how many standard
deviations above and below the mean the quartiles
of any Normal distribution lie.

1.119 Acidity of rainwater. The Normal quantile plot
in Figure 1.36 (page 71) shows that the acidity
(pH) measurements for rainwater samples in
Exercise 1.36 are approximately Normal. How
well do these scores satisfy the 68–95–99.7 rule?
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To find out, calculate the mean x̄ and standard
deviation s of the observations. Then calculate
the percent of the 105 measurements that fall
between x̄ − s and x̄ + s and compare your result
with 68%. Do the same for the intervals covering
two and three standard deviations on either side
of the mean. (The 68–95–99.7 rule is exact for any
theoretical Normal distribution. It will hold only
approximately for actual data.)

1.120 Find some proportions. Using either Table A or
your calculator or software, find the proportion of
observations from a standard Normal distribution
that satisfies each of the following statements. In
each case, sketch a standard Normal curve and
shade the area under the curve that is the answer
to the question.

(a) Z < 1.65

(b) Z > 1.65

(c) Z > −0.76

(d) −0.76 < Z < 1.65

1.121 Find more proportions. Using either Table A or
your calculator or software, find the proportion of
observations from a standard Normal distribution
for each of the following events. In each case,
sketch a standard Normal curve and shade the area
representing the proportion.

(a) Z ≤ −1.9

(b) Z ≥ −1.9

(c) Z > 1.55

(d) −1.9 < Z < 1.55

1.122 Find some values of z. Find the value z of a
standard Normal variable Z that satisfies each of
the following conditions. (If you use Table A, report
the value of z that comes closest to satisfying the
condition.) In each case, sketch a standard Normal
curve with your value of z marked on the axis.

(a) 25% of the observations fall below z.

(b) 35% of the observations fall above z.

1.123 Find more values of z. The variable Z has a
standard Normal distribution.

(a) Find the number z that has cumulative
proportion 0.85.

(b) Find the number z such that the event Z > z
has proportion 0.40.

1.124 Find some values of z. The Wechsler Adult
Intelligence Scale (WAIS) is the most common
“IQ test.” The scale of scores is set separately for
each age group and is approximately Normal with
mean 100 and standard deviation 15. People with
WAIS scores below 70 are considered mentally
retarded when, for example, applying for Social
Security disability benefits. What percent of adults
are retarded by this criterion?

1.125 High IQ scores. The Wechsler Adult Intelligence
Scale (WAIS) is the most common “IQ test.” The
scale of scores is set separately for each age group
and is approximately Normal with mean 100 and
standard deviation 15. The organization MENSA,
which calls itself “the high IQ society,” requires a
WAIS score of 130 or higher for membership. What
percent of adults would qualify for membership?

There are two major tests of readiness for college, the ACT
and the SAT. ACT scores are reported on a scale from 1 to 3.
The distribution of ACT scores for more than 1 million
students in a recent high school graduating class was
roughly Normal with mean μ = 20.8 and standard
deviation σ = 4.8. SAT scores are reported on a scale from
400 to 1600. The SAT scores for 1.4 million students in the
same graduating class were roughly Normal with mean
μ = 1026 and standard deviation σ = 209. Exercises 1.126
to 1.135 are based on this information.

1.126 Compare an SAT score with an ACT score.
Tonya scores 1320 on the SAT. Jermaine scores 28
on the ACT. Assuming that both tests measure the
same thing, who has the higher score? Report the
z-scores for both students.

1.127 Make another comparison. Jacob scores 17 on
the ACT. Emily scores 680 on the SAT. Assuming
that both tests measure the same thing, who has
the higher score? Report the z-scores for both
students.

1.128 Find the ACT equivalent. Jose scores 1380 on the
SAT. Assuming that both tests measure the same
thing, what score on the ACT is equivalent to Jose’s
SAT score?

1.129 Find the SAT equivalent. Maria scores 29 on
the ACT. Assuming that both tests measure the
same thing, what score on the SAT is equivalent to
Maria’s ACT score?

1.130 Find the SAT percentile. Reports on a student’s
ACT or SAT usually give the percentile as well as the
actual score. The percentile is just the cumulative
proportion stated as a percent: the percent of all
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scores that were lower than this one. Tonya scores
1320 on the SAT. What is her percentile?

1.131 Find the ACT percentile. Reports on a student’s
ACT or SAT usually give the percentile as well as the
actual score. The percentile is just the cumulative
proportion stated as a percent: the percent of all
scores that were lower than this one. Jacob scores
17 on the ACT. What is his percentile?

1.132 How high is the top 10%? What SAT scores make
up the top 10% of all scores?

1.133 How low is the bottom 20%? What SAT scores
make up the bottom 20% of all scores?

1.134 Find the ACT quartiles. The quartiles of any
distribution are the values with cumulative
proportions 0.25 and 0.75. What are the quartiles
of the distribution of ACT scores?

1.135 Find the SAT quintiles. The quintiles of any
distribution are the values with cumulative
proportions 0.20, 0.40, 0.60, and 0.80. What
are the quintiles of the distribution of SAT scores?

1.136 Proportion of women with high cholesterol. Too
much cholesterol in the blood increases the risk
of heart disease. Young women are generally less
afflicted with high cholesterol than other groups.
The cholesterol levels for women aged 20 to 34
follow an approximately Normal distribution with
mean 185 milligrams per deciliter (mg/dl) and
standard deviation 39 mg/dl.36

(a) Cholesterol levels above 240 mg/dl demand
medical attention. What percent of young women
have levels above 240 mg/dl?

(b) Levels above 200 mg/dl are considered
borderline high. What percent of young women
have blood cholesterol between 200 and 240 mg/dl?

1.137 Proportion of men with high cholesterol.
Middle-aged men are more susceptible to high
cholesterol than the young women of the previous
exercise. The blood cholesterol levels of men aged
55 to 64 are approximately Normal with mean
222 mg/dl and standard deviation 37 mg/dl. What
percent of these men have high cholesterol (levels
above 240 mg/dl)? What percent have borderline
high cholesterol (between 200 and 240 mg/dl)?

1.138 Diagnosing osteoporosis. Osteoporosis is a
condition in which the bones become brittle due
to loss of minerals. To diagnose osteoporosis, an
elaborate apparatus measures bone mineral density

(BMD). BMD is usually reported in standardized
form. The standardization is based on a population
of healthy young adults. The World Health
Organization (WHO) criterion for osteoporosis
is a BMD 2.5 standard deviations below the
mean for young adults. BMD measurements in a
population of people similar in age and sex roughly
follow a Normal distribution.

(a) What percent of healthy young adults have
osteoporosis by the WHO criterion?

(b) Women aged 70 to 79 are of course not young
adults. The mean BMD in this age is about −2 on
the standard scale for young adults. Suppose that
the standard deviation is the same as for young
adults. What percent of this older population has
osteoporosis?

1.139 Length of pregnancies. The length of human
pregnancies from conception to birth varies
according to a distribution that is approximately
Normal with mean 266 days and standard deviation
16 days.

(a) What percent of pregnancies last less than 240
days (that’s about 8 months)?

(b) What percent of pregnancies last between 240
and 270 days (roughly between 8 months and 9
months)?

(c) How long do the longest 20% of pregnancies
last?

1.140 C
H

ALLENG
E Quartiles for Normal distributions. The

quartiles of any distribution are the values
with cumulative proportions 0.25 and 0.75.

(a) What are the quartiles of the standard Normal
distribution?

(b) Using your numerical values from (a), write
an equation that gives the quartiles of the N(μ, σ )

distribution in terms of μ and σ .

(c) The length of human pregnancies from
conception to birth varies according to a
distribution that is approximately Normal with
mean 266 days and standard deviation 16 days.
Apply your result from (b): what are the quartiles of
the distribution of lengths of human pregnancies?

1.141 C
H

ALLENG
E IQR for Normal distributions. Continue

your work from the previous exercise. The
interquartile range IQR is the distance between the
first and third quartiles of a distribution.

(a) What is the value of the IQR for the standard
Normal distribution?
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(b) There is a constant c such that IQR = cσ for
any Normal distribution N(μ, σ ). What is the value
of c?

1.142 C
H

ALLENG
E Outliers for Normal distributions.

Continue your work from the previous two
exercises. The percent of the observations that are
suspected outliers according to the 1.5 × IQR rule
is the same for any Normal distribution. What is
this percent?

1.143 Heart rates of runners. Figure 1.39 is a Normal
quantile plot of the heart rates of the 200 male
runners in the study described in Exercise 1.81
(page 51). The distribution is close to Normal. How
can you see this? Describe the nature of the small
deviations from Normality that are visible in the
plot.
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FIGURE 1.39 Normal quantile plot of the heart rates of 200
male runners, for Exercise 1.143.

1.144 Carbon dioxide emissions. Figure 1.40 is a
Normal quantile plot of the emissions of carbon
dioxide (CO2) per person in 48 countries, from
Table 1.6 (page 26). In what way is this distribution
non-Normal? Comparing the plot with Table 1.6,
which countries would you call outliers?

1.145 Electrical meters. The distance between two
mounting holes is important to the performance
of an electrical meter. The manufacturer measures
this distance regularly for quality control purposes,
recording the data as thousandths of an inch more
than 0.600 inches. For example, 0.644 is recorded
as 44. Figure 1.41 is a Normal quantile plot of
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FIGURE 1.40 Normal quantile plot of CO2 emissions in 48
countries, for Exercise 1.144.
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FIGURE 1.41 Normal quantile plot of distance between
mounting holes, for Exercise 1.145.

the distances for the last 90 electrical meters
measured.37 Is the overall shape of the distribution
approximately Normal? Why does the plot have a
“stair-step” appearance?

1.146 C
H

ALLENG
E Four Normal quantile plots. Figure 1.42

shows four Normal quantile plots for data
that you have seen before, without scales for the
variables plotted. In scrambled order, they are:

1. The IQ scores in the histogram of Figure 1.7
(page 14).
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FIGURE 1.42 Four Normal quantile plots, for Exercise 1.146.

2. The tuition and fee charges of Massachusetts
colleges in the histogram of Figure 1.16 (page 25).

3. The highway gas mileages of two-seater cars,
including the Honda Insight, from Table 1.10 (page
31).

4. The 80 customer service call lengths from Table
1.1, displayed in the stemplot of Figure 1.6 (page
12).

Which Normal quantile plot goes with each data
set? Explain the reasons for your choices.

The remaining exercises for this section require the use of
software that will make Normal quantile plots.

1.147 Density of the earth. We expect repeated
careful measurements of the same quantity to
be approximately Normal. Make a Normal quantile
plot for Cavendish’s measurements in Exercise 1.40
(page 28). Are the data approximately Normal? If
not, describe any clear deviations from Normality.

1.148 Three varieties of flowers. The study of tropical
flowers and their hummingbird pollinators
(Exercise 1.78, page 51) measured lengths for
three varieties of Heliconia flowers. We expect that
such biological measurements will have roughly
Normal distributions.

(a) Make Normal quantile plots for each of the
three flower varieties. Which distribution is closest
to Normal?

(b) The other two distributions show the same
kind of mild deviation from Normality. In what
way are these distributions non-Normal?

1.149 Logging in Borneo. The study of the effects of
logging on tree counts in the Borneo rain forest
(Exercise 1.80, page 51) used statistical methods
that are based on Normal distributions. Make
Normal quantile plots for each of the three groups
of forest plots. Are the three distributions roughly
Normal? What are the most prominent deviations
from Normality that you see?

1.150 Use software to generate some data. Use
software to generate 100 observations from the
standard Normal distribution. Make a histogram
of these observations. How does the shape of
the histogram compare with a Normal density
curve? Make a Normal quantile plot of the data.
Does the plot suggest any important deviations
from Normality? (Repeating this exercise several
times is a good way to become familiar with how
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histograms and Normal quantile plots look when
data actually are close to Normal.)

1.151 Use software to generate more data. Use
software to generate 100 observations from the
uniform distribution described in Exercise 1.108.

Make a histogram of these observations. How does
the histogram compare with the density curve in
Figure 1.37? Make a Normal quantile plot of your
data. According to this plot, how does the uniform
distribution deviate from Normality?

CHAPTER 1 Exercises

1.152 Park space and population. Below are data on
park and open space in several U.S. cities with
high population density.38 In this table, population
is reported in thousands of people, and park and
open space is called open space, with units of
acres.

City Population Open space

Baltimore 651 5,091
Boston 589 4,865
Chicago 2,896 11,645
Long Beach 462 2,887
Los Angeles 3,695 29,801
Miami 362 1,329
Minneapolis 383 5,694
New York 8,008 49,854
Oakland 399 3,712
Philadelphia 1,518 10,685
San Francisco 777 5,916
Washington, D.C. 572 7,504

(a) Make a bar graph for population. Describe
what you see in the graph.

(b) Do the same for open space.

(c) For each city, divide the open space by
population. This gives rates: acres of open space
per thousand residents.

(d) Make a bar graph of the rates.

(e) Redo the bar graph that you made in part
(d) by ordering the cities by their open space to
population rate.

(f) Which of the two bar graphs in (d) and (e) do
you prefer? Give reasons for your answer.

1.153 Compare two Normal curves. In Exercise 1.99,
we worked with the distribution of ISTEP scores
on the English/language arts portion of the exam
for tenth-graders. We used the fact that the
distribution of scores for the 76,531 students who
took the exam was approximately N(572, 51).
These students were classified in a variety of ways,
and summary statistics were reported for these
different subgroups. When classified by gender,

the scores for the women are approximately
N(579, 49), and the scores for the men are
approximately N(565, 55). Figure 1.43 gives the
Normal density curves for these two distributions.
Here is a possible description of these data:
women score about 14 points higher than men on
the ISTEP English/language arts exam. Critically
evaluate this statement and then write your own
summary based on the distributions displayed in
Figure 1.43.

400 450 500 550 600 650 700 750

FIGURE 1.43 Normal density curves for ISTEP scores of
women and men, for Example 1.53.

1.154 Leisure time for college students. You want to
measure the amount of “leisure time” that college
students enjoy. Write a brief discussion of two
issues:

(a) How will you define “leisure time”?

(b) How will you measure leisure time?

1.155 Biological clocks. Many plants and animals
have “biological clocks” that coordinate activities
with the time of day. When researchers looked
at the length of the biological cycle in the plant
Arabidopsis by measuring leaf movements, they
found that the length of the cycle is not always 24
hours. Further study discovered that cycle length
changes systematically with north-south location.
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TABLE 1.11

Biological clock cycle lengths for a plant species in different locations

23.89 23.72 23.74 24.35 25.05 24.56 23.69 22.33 23.79 22.12
25.39 23.08 25.64 23.98 25.84 25.46 24.37 24.13 24.40 24.74
24.44 24.82 23.56 24.96 24.21 23.85 24.57 23.44 23.64 24.23
24.01 24.58 25.57 23.73 24.11 23.21 25.08 24.03 24.62 23.51
23.21 23.41 23.69 22.97 24.65 24.65 24.29 23.89 25.08 23.89
24.95 23.09 23.21 24.66 23.88 25.33 24.38 24.68 25.34 25.22
23.45 23.39 25.43 23.16 23.95 23.25 24.72 24.89 24.88 24.71
23.58 25.98 24.28 24.25 23.16 24.19 27.22 23.77 26.21 24.33
24.34 24.89 24.32 24.14 24.00 23.48 25.81 24.99 24.18 22.73
24.18 23.95 24.48 23.89 24.24 24.96 24.58 24.29 24.31 23.64
23.87 23.68 24.87 23.00 23.48 24.26 23.34 25.11 24.69 24.97
24.64 24.49 23.61 24.07 26.60 24.91 24.76 25.09 26.56 25.13
24.81 25.63 25.63 24.69 24.41 23.79 22.88 22.00 23.33 25.12
24.00 24.31 23.03 24.51 28.55 22.96 23.61 24.72 24.04 25.18
24.30 24.22 24.39 24.73 24.68 24.14 24.57 24.42 25.62

Table 1.11 contains cycle lengths for 149 locations
around the world.39 Describe the distribution of
cycle lengths with a histogram and numerical
summaries. In particular, how much variation is
there among locations?

1.156 Product preference. Product preference depends
in part on the age, income, and gender of the
consumer. A market researcher selects a large
sample of potential car buyers. For each consumer,
she records gender, age, household income, and
automobile preference. Which of these variables
are categorical and which are quantitative?

1.157 Distance-learning courses. The 222 students
enrolled in distance-learning courses offered by
a college ranged from 18 to 64 years of age. The
mode of their ages was 19. The median age was
31.40 Explain how this can happen.

1.158 Internet service. Late in 2003, there were 77.4
million residential subscribers to Internet service
in the United States. The numbers of subscribers
claimed by the top 10 providers of service were as
follows.41 (There is some doubt about the accuracy
of these claims.)

Service Subscribers Service Subscribers
provider (millions) provider (millions)

America Online 24.7 SBC 3.1
MSN 8.7 Verizon 2.1
United Online 5.2 Cox 1.8
EarthLink 5.0 Charter 1.5
Comcast 4.9 BellSouth 1.3

Display these data in a graph. How many
subscribers do the many smaller providers have?
Add an “Other” entry in your graph. Business

people looking at this graph see an industry that
offers opportunities for larger companies to take
over.

1.159 Weights are not Normal. The heights of people
of the same sex and similar ages follow Normal
distributions reasonably closely. Weights, on the
other hand, are not Normally distributed. The
weights of women aged 20 to 29 have mean 141.7
pounds and median 133.2 pounds. The first and
third quartiles are 118.3 pounds and 157.3 pounds.
What can you say about the shape of the weight
distribution? Explain your reasoning.

1.160 What graph would you use? What type of graph
or graphs would you plan to make in a study of
each of the following issues?

(a) What makes of cars do students drive? How
old are their cars?

(b) How many hours per week do students study?
How does the number of study hours change
during a semester?

(c) Which radio stations are most popular with
students?

(d) When many students measure the concentra-
tion of the same solution for a chemistry course
laboratory assignment, do their measurements
follow a Normal distribution?

1.161 Household size and household income. Rich
and poor households differ in ways that go
beyond income. Figure 1.44 displays histograms
that compare the distributions of household
size (number of people) for low-income and
high-income households in 2002.42 Low-income
households had incomes less than $15,000, and
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FIGURE 1.44 The distributions
of household size for households
with incomes less than $15,000
(left) and households with
incomes of at least $100,000
(right), for Exercise 1.161.

high-income households had incomes of at least
$100,000.

(a) About what percent of each group of
households consisted of two people?

(b) What are the important differences between
these two distributions? What do you think
explains these differences?

1.162 Spam filters. A university department installed
a spam filter on its computer system. During a
21-day period, 6693 messages were tagged as
spam. How much spam you get depends on what
your online habits are. Here are the counts for
some students and faculty in this department
(with log-in IDs changed, of course):

ID Count ID Count ID Count ID Count

AA 1818 BB 1358 CC 442 DD 416
EE 399 FF 389 GG 304 HH 251
II 251 JJ 178 KK 158 LL 103

All other department members received fewer than
100 spam messages. How many did the others
receive in total? Make a graph and comment on
what you learn from these data.

1.163 Two distributions. If two distributions have
exactly the same mean and standard deviation,
must their histograms have the same shape? If
they have the same five-number summary, must
their histograms have the same shape? Explain.

1.164 By-products from DDT. By-products from the
pesticide DDT were major threats to the survival
of birds of prey until use of DDT was banned at
the end of 1972. Can time plots show the effect of
the ban? Here are two sets of data for bald eagles
nesting in the forests of northwestern Ontario.43

The data set below gives the mean number of
young per breeding area.

Year 1966 1967 1968 1969 1970 1971 1972 1973
Young 1.26 0.73 0.89 0.84 0.54 0.60 0.54 0.78

Year 1974 1975 1976 1977 1978 1979 1980 1981
Young 0.46 0.77 0.86 0.96 0.82 0.98 0.93 1.12

The following data are measurements of the
chemical DDE (the by-product of DDT that most
threatens birds of prey) from bald eagle eggs in the
same area of Canada. These are in parts per million
(ppm). There are often several measurements per
year.

Year 1967 1967 1968 1971 1971 1972 1976
DDE 44 95 121 125 95 87 13.3

Year 1976 1976 1976 1976 1977 1977 1980
DDE 16.4 50.4 59.8 56.4 0.6 23.8 16.6

Year 1980 1980 1981 1981 1981
DDE 14.5 24.0 7.8 48.2 53.4

Make time plots of eagle young and of mean DDE
concentration in eggs. How does the effect of
banning DDT appear in your plots?
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1.165 Babe Ruth and Mark McGwire. Babe Ruth hit 60
home runs in 1927, a record that stood until Mark
McGwire hit 70 in 1998. A proper comparison of
Ruth and McGwire should include their historical
context. Here are the number of home runs by
the major league leader for each year in baseball
history, 1876 to 2003, in order from left to right.
Make a time plot. (Be sure to add the scale of
years.)

5 3 4 9 6 7 7 10 27 11 11 17 14 20 14 16 13
19 18 17 13 11 15 25 12 16 16 13 10 9 12 10 12 9
10 21 14 19 19 24 12 12 11 29 54 59 42 41 46 39 47
60 54 46 56 46 58 48 49 36 49 46 58 35 43 37 36 34
33 28 44 51 40 54 47 42 37 47 49 51 52 44 47 46 41
61 49 45 49 52 49 44 44 49 45 48 40 44 36 38 38 52
46 48 48 31 39 40 43 40 40 49 42 47 51 44 43 46 43
50 52 58 70 65 50 73 57 47

(a) Describe the effect of World War II (1942 to
1945 seasons).

(b) Ruth led in the 11 years in boldface between
1918 and 1931. McGwire led in the 5 boldface
years between 1987 and 1999. Briefly compare the
achievements of Ruth and McGwire in the context
of their times.

1.166 Barry Bonds. The single-season home run record
was broken by Barry Bonds of the San Francisco
Giants in 2001, when he hit 73 home runs. Here
are Bonds’s home run totals from 1986 (his first
year) to 2003:

16 25 24 19 33 25 34 46 37
33 42 40 37 34 49 73 46 45

Make a stemplot of these data. Bonds’s record
year is a high outlier. How do his career mean and
median number of home runs change when we
drop the record 73? What general fact about the
mean and median does your result illustrate?

1.167 C
H

ALLENG
E Norms for reading scores. Raw scores

on behavioral tests are often transformed
for easier comparison. A test of reading ability has
mean 75 and standard deviation 10 when given
to third-graders. Sixth-graders have mean score
82 and standard deviation 11 on the same test.
To provide separate “norms” for each grade, we
want scores in each grade to have mean 100 and
standard deviation 20.

(a) What linear transformation will change third-
grade scores x into new scores xnew = a + bx that
have the desired mean and standard deviation?
(Use b > 0 to preserve the order of the scores.)

(b) Do the same for the sixth-grade scores.

(c) David is a third-grade student who scores 78
on the test. Find David’s transformed score. Nancy
is a sixth-grade student who scores 78. What is her
transformed score? Who scores higher within his
or her grade?

(d) Suppose that the distribution of scores in each
grade is Normal. Then both sets of transformed
scores have the N(100, 20) distribution. What
percent of third-graders have scores less than 78?
What percent of sixth-graders have scores less
than 78?

1.168 Damage caused by tornados. The average
damage caused by tornadoes in the states (Table
1.5, page 25) and the estimated amount of oil
recovered from different oil wells (Exercise 1.39,
page 28) both have right-skewed distributions.
Choose one of these data sets. Make a Normal
quantile plot. How is the skewness of the
distribution visible in the plot? Based on the
plot, which observations (if any) would you call
outliers?

1.169 Proportions older than 65. We know that the
distribution of the percents of state residents over
65 years of age has a low outlier (Alaska) and a high
outlier (Florida). The stemplot in Exercise 1.21
(page 24) looks unimodal and roughly symmetric.

(a) Sketch what a Normal quantile plot would
look like for a distribution that is Normal except
for two outliers, one in each direction.

(b) If your software includes Normal quantile
plots, make a plot of the percent-over-65 data and
discuss what you see.

1.170 Returns on stocks. Returns on common stocks
are “heavy tailed.” That is, they have more values
far from the center in both the low and the high
tails than a Normal distribution would have.
However, average returns for many individual
stocks over longer periods of time become more
Normal.

(a) Sketch the appearance of a Normal quantile
plot for a distribution having roughly Normal
center and heavy tails. Explain the reasoning
behind your sketch.

(b) The data include the annual returns for the
years 1950 to 2003, pictured in the stemplot in
Figure 1.22(a). If your software allows, make
a Normal quantile plot of these returns. Is the
distribution clearly heavy tailed? Are there other
clear deviations from Normality?
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1.171 Use software to generate some data. Most
statistical software packages have routines for
generating values of variables having specified
distributions. Use your statistical software to
generate 25 observations from the N(20, 5)

distribution. Compute the mean and standard
deviation x and s of the 25 values you obtain.
How close are x and s to the μ and σ of the
distribution from which the observations were
drawn? Repeat 19 more times the process of
generating 25 observations from the N(20, 5)

distribution and recording x and s. Make a
stemplot of the 20 values of x and another
stemplot of the 20 values of s. Make Normal
quantile plots of both sets of data. Briefly describe
each of these distributions. Are they symmetric
or skewed? Are they roughly Normal? Where are
their centers? (The distributions of measures like
x and s when repeated sets of observations are
made from the same theoretical distribution will
be very important in later chapters.)

1.172 Distribution of income. Each March, the Bureau
of Labor Statistics collects detailed information
about more than 50,000 randomly selected
households. The WORKERS data set contains

data on 71,076 people from the March 2002
survey. All of these people were between 25 and 64
years of age and worked throughout the year. The
Data Appendix describes this data set in detail.
Describe the distribution of incomes for these
people. Use graphs and numbers, and briefly state
your main findings. Because this is a very large
randomly selected sample, your results give a good
description of incomes for all working Americans
aged 25 to 64.

1.173 SAT mathematics scores and grade point
averages. The CSDATA data set described in
the Data Appendix contains information on 234
computer science students. We are interested
in comparing the SAT Mathematics scores and
grade point averages of female students with those
of male students. Make two sets of side-by-side
boxplots to carry out these comparisons. Write a
brief discussion of the male-female comparisons.
Then make Normal quantile plots of grade point
averages and SAT Math scores separately for men
and women. Which students are clear outliers?
Which of the four distributions are approximately
Normal if we ignore outliers?
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Do large breeds of dogs have shorter lives? See Example 2.1.

2.1 Scatterplots

2.2 Correlation

2.3 Least-Squares Regression

2.4 Cautions about Correlation
and Regression

2.5 Data Analysis for Two-Way
Tables

2.6 The Question of Causation

Introduction
In Chapter 1 we learned to use graphical and numerical
methods to describe the distribution of a single variable.
Many of the interesting examples of the use of statistics
involve relationships between pairs of variables. Learn-
ing ways to describe relationships with graphical and
numerical methods is the focus of this chapter.
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E Large breeds of dogs have shorter lives. Purebred dogs from
breeds that are large tend to have shorter life spans than purebred dogs
from breeds that are small. For example, one study found that miniature
poodles lived an average of 9.3 years while Great Danes lived an average of
only 4.6 years.1 Irish wolfhounds have sometimes been referred to by the
nickname “the heartbreak breed” because of their short life span relative to
other breeds.2

We are particularly interested in situations where two variables are related
in some way. To study relationships, we measure both variables on the same
individuals or cases.

83
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USE YOUR KNOWLEDGE
2.1 Relationship between first test and final exam. You want to study

the relationship between the score on the first test and the score on
the final exam for the 35 students enrolled in an elementary statistics
class. Who are the individuals for your study?

We use the term associated to describe the relationship between two vari-
ables, such as breed and life span in Example 2.1. Here is another example
where two variables are associated.

•
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E 2.2 Size and price of a coffee beverage. You visit a local Starbucks to
buy a Mocha Frappuccino c©. The barista explains that this blended coffee
beverage comes in three sizes and asks if you want a Tall, a Grande, or a Venti.
The prices are $3.15, $3.65, and $4.15, respectively. There is a clear associa-
tion between the size of the Mocha Frappuccino and its price.

ASSOCIATION BETWEEN VARIABLES

Two variables measured on the same cases are associated if knowing the
value of one of the variables tells you something about the values of the
other variable that you would not know without this information.

In the Mocha Frappuccino example, knowing the size tells you the exact
price, so the association here is very strong. Many statistical associations, how-
ever, are simply overall tendencies that allow exceptions. Although smokers on
the average die earlier than nonsmokers, some people live to 90 while smoking
three packs a day. Knowing that a person smokes tells us that the person is in a
group of people who are more likely to die at a younger age than people in the
group of nonsmokers. The association here is much weaker than the one in the
Mocha Frappuccino example.

Examining relationships
When you examine the relationship between two or more variables, first ask
the preliminary questions that are familiar from Chapter 1:

• What individuals or cases do the data describe?

• What variables are present? How are they measured?

• Which variables are quantitative and which are categorical?



Introduction
•

85

•

•

E
X

A
M

P
L

E 2.3 Cases and variable types. In Example 2.1 the cases are dog breeds.
The type of dog breed is a categorical variable, and the average life span is a
quantitative variable. In Example 2.2 the cases are the containers of coffee.
Size is a categorical variable with values Tall, Grande, and Venti. Price is a
quantitative variable.

USE YOUR KNOWLEDGE
2.2 Suppose we used breed size? Suppose that for the dog breed example

we were able to obtain some measure of average size for each of the
breeds. If we replaced type of dog breed with the average breed size,
how would this change the explanation in Example 2.3?

2.3 Replace names by ounces. In the Mocha Frappuccino example,
the variable size is categorical, with Tall, Grande, and Venti as the
possible values. Suppose you converted these values to the number of
ounces: Tall is 12 ounces, Grande is 16 ounces, and Venti is 24 ounces.
For studying the relationship between ounces and price, describe the
cases and the variables, and state whether each is quantitative or
categorical.

When you examine the relationship between two variables, a new question
becomes important:

• Is your purpose simply to explore the nature of the relationship, or do you
hope to show that one of the variables can explain variation in the other?
That is, are some of the variables response variables and others explanatory
variables?

RESPONSE VARIABLE, EXPLANATORY VARIABLE

A response variable measures an outcome of a study. An explanatory
variable explains or causes changes in the response variables.

It is easiest to identify explanatory and response variables when we actually
set values of one variable in order to see how it affects another variable.

•
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E 2.4 Beer drinking and blood alcohol levels. How does drinking beer af-
fect the level of alcohol in our blood? The legal limit for driving in most states
is 0.08%. Student volunteers at Ohio State University drank different num-
bers of cans of beer. Thirty minutes later, a police officer measured their blood
alcohol content. Number of beers consumed is the explanatory variable, and
percent of alcohol in the blood is the response variable.
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When you don’t set the values of either variable but just observe both vari-
ables, there may or may not be explanatory and response variables. Whether
there are depends on how you plan to use the data.
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E 2.5 Student loans. A college student aid officer looks at the findings of the
National Student Loan Survey. She notes data on the amount of debt of re-
cent graduates, their current income, and how stressful they feel about col-
lege debt. She isn’t interested in predictions but is simply trying to understand
the situation of recent college graduates.

A sociologist looks at the same data with an eye to using amount of debt
and income, along with other variables, to explain the stress caused by college
debt. Now amount of debt and income are explanatory variables, and stress
level is the response variable.

In many studies, the goal is to show that changes in one or more explanatory
variables actually cause changes in a response variable. But many explanatory-
response relationships do not involve direct causation. The SAT scores of high
school students help predict the students’ future college grades, but high SAT
scores certainly don’t cause high college grades.

Some of the statistical techniques in this chapter require us to distinguish
explanatory from response variables; others make no use of this distinction.
You will often see explanatory variables called independent variables andindependent variable
response variables called dependent variables. The idea behind this lan-dependent variable
guage is that response variables depend on explanatory variables. Because
the words “independent” and “dependent” have other meanings in statistics
that are unrelated to the explanatory-response distinction, we prefer to avoid
those words.

Most statistical studies examine data on more than one variable. Fortu-
nately, statistical analysis of several-variable data builds on the tools used for
examining individual variables. The principles that guide our work also remain
the same:

• Start with a graphical display of the data.

• Look for overall patterns and deviations from those patterns.

• Based on what you see, use numerical summaries to describe specific aspects
of the data.

2.1 Scatterplots
The most useful graph for displaying the relationship between two quantitative
variables is a scatterplot.

SCATTERPLOT

A scatterplot shows the relationship between two quantitative variables
measured on the same individuals. The values of one variable appear
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on the horizontal axis, and the values of the other variable appear on the
vertical axis. Each individual in the data appears as the point in the plot
fixed by the values of both variables for that individual.

Always plot the explanatory variable, if there is one, on the horizontal
axis (the x axis) of a scatterplot. As a reminder, we usually call the explan-
atory variable x and the response variable y. If there is no explanatory-
response distinction, either variable can go on the horizontal axis.
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E 2.6 SAT scores. More than a million high school seniors take the SAT col-

lege entrance examination each year. We sometimes see the states “rated” by
the average SAT scores of their seniors. For example, Illinois students average
1179 on the SAT, which looks better than the 1038 average of Massachusetts
students. Rating states by SAT scores makes little sense, however, because av-
erage SAT score is largely explained by what percent of a state’s students take
the SAT. The scatterplot in Figure 2.1 allows us to see how the mean SAT score
in each state is related to the percent of that state’s high school seniors who
take the SAT.3

Each point on the plot represents a single individual—that is, a single
state. Because we think that the percent taking the exam influences mean
score, percent taking is the explanatory variable and we plot it horizontally.
For example, 20% of West Virginia high school seniors take the SAT, and
their mean score is 1032. West Virginia appears as the point (20, 1032) in the
scatterplot, above 20 on the x axis and to the right of 1032 on the y axis.

We see at once that state average SAT score is closely related to the percent
of students who take the SAT. Illinois has a high mean score, but only 11%
of Illinois seniors take the SAT. In Massachusetts, on the other hand, 82% of
seniors take the exam.
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FIGURE 2.1 State mean SAT
scores plotted against the
percent of high school seniors in
each state who take the SAT
exams, for Example 2.6. The
point for West Virginia (20%
take the SAT, mean score 1032) is
highlighted.
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Interpreting scatterplots
To look more closely at a scatterplot such as Figure 2.1, apply the strategies of
exploratory analysis learned in Chapter 1.

EXAMINING A SCATTERPLOT

In any graph of data, look for the overall pattern and for striking devi-
ations from that pattern.

You can describe the overall pattern of a scatterplot by the form, direc-
tion, and strength of the relationship.

An important kind of deviation is an outlier, an individual value that falls
outside the overall pattern of the relationship.

Figure 2.1 shows an interesting form: there are two distinct clusters ofclusters
states. In one cluster, more than half of high school seniors take the SAT, and
the mean scores are low. Fewer than 40% of seniors in states in the other cluster
take the SAT—fewer than 20% in most of these states—and these states have
higher mean scores.

Clusters in a graph suggest that the data describe several distinct kinds of
individuals. The two clusters in Figure 2.1 do in fact describe two distinct sets of
states. There are two common college entrance examinations, the SAT and the
ACT. Each state tends to prefer one or the other. In ACT states (the left cluster
in Figure 2.1), most students who take the SAT are applying to selective out-of-
state colleges. This select group performs well. In SAT states (the right cluster),
many seniors take the SAT, and this broader group has a lower mean score.

There are no clear outliers in Figure 2.1, but each cluster does include a state
whose mean SAT score is lower than we would expect from the percent of its
students who take the SAT. These points are West Virginia in the cluster of ACT
states and the District of Columbia (a city rather than a state) in the cluster of
SAT states.

The relationship in Figure 2.1 also has a clear direction: states in which a
higher percent of students take the SAT tend to have lower mean scores. This
is true both between the clusters and within each cluster. This is a negative as-
sociation between the two variables.

POSITIVE ASSOCIATION, NEGATIVE ASSOCIATION

Two variables are positively associated when above-average values of
one tend to accompany above-average values of the other and below-
average values also tend to occur together.

Two variables are negatively associated when above-average values of
one accompany below-average values of the other, and vice versa.

When a scatterplot shows distinct clusters, it is often useful to describe the
overall pattern separately within each cluster. The form of the relationship in
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the ACT states is roughly linear. That is, the points roughly follow a straightlinear relationship
line. The strength of a relationship in a scatterplot is determined by how closely
the points follow a clear form. The linear pattern among the ACT states is mod-
erately strong because the points show only modest scatter about the straight-
line pattern. In summary, the ACT states in Figure 2.1 show a moderately strong
negative linear relationship. The cluster of SAT states shows a much weaker re-
lationship between percent taking the SAT and mean SAT score.

USE YOUR KNOWLEDGE
2.4 Make a scatterplot. In our Mocha Frappuccino example, the 12-

ounce drink costs $3.15, the 16-ounce drink costs $3.65, and the 24-
ounce drink costs $4.15. Explain which variable should be used as the
explanatory variable and make a scatterplot. Describe the scatterplot
and the association between these two variables.

Adding categorical variables to scatterplots
The Census Bureau groups the states into four broad regions, named Midwest,
Northeast, South, and West. We might ask about regional patterns in SAT exam
scores. Figure 2.2 repeats part of Figure 2.1, with an important difference. We
have plotted only the Northeast and Midwest groups of states, using the plot
symbol “e” for the northeastern states and the symbol “m” for the midwestern
states.
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FIGURE 2.2 State mean SAT
scores and percent taking the
SAT for the northeastern states
(plot symbol “e”) and the
midwestern states (plot
symbol “m”).

The regional comparison is striking. The 9 northeastern states are all SAT
states—in fact, at least 70% of high school graduates in each of these states take
the SAT. The 12 midwestern states are mostly ACT states. In 10 of these states,
the percent taking the SAT is between 4% and 11%. One midwestern state is
clearly an outlier within the region. Indiana is an SAT state (63% take the SAT)
that falls close to the northeastern cluster. Ohio, where 28% take the SAT, also
lies outside the midwestern cluster.
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In dividing the states into regions, we introduced a third variable into the
scatterplot. “Region” is a categorical variable that has four values, although we
plotted data from only two of the four regions. The two regions are displayed
by the two different plotting symbols.4

CATEGORICAL VARIABLES IN SCATTERPLOTS

To add a categorical variable to a scatterplot, use a different plot color
or symbol for each category.

More examples of scatterplots
Experience in examining scatterplots is the foundation for more detailed study
of relationships among quantitative variables. Here is an example with a pat-
tern different from that in Figure 2.1.
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E 2.7 The Trans-Alaska Oil Pipeline. The Trans-Alaska Oil Pipeline is a
tube formed from 1/2-inch-thick steel that carries oil across 800 miles of
sensitive arctic and subarctic terrain. The pipe and the welds that join pipe
segments were carefully examined before installation. How accurate are field
measurements of the depth of small defects? Figure 2.3 compares the results
of measurements on 100 defects made in the field with measurements of the
same defects made in the laboratory.5 We plot the laboratory results on the x
axis because they are a standard against which we compare the field results.

What is the overall pattern of this scatterplot? There is a positive linear
association between the two variables. This is what we expect from two mea-
surements of the same quantity. If field and laboratory measurements agree,
the points will all fall on the y = x line drawn on the plot, except for small ran-
dom variations in the measurements. In fact, we see that the points for larger
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FIGURE 2.3 Depths of small
defects in pipe for the
Trans-Alaska Oil Pipeline,
measured in the field and in the
laboratory, for Example 2.7. If
the two measurements were the
same, the points would lie on the
y = x line that is drawn on the
graph.
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defects fall systematically below this line. That is, the field measurements are
too small compared with the laboratory results as a standard. This is an im-
portant finding that can be used to adjust future field measurements.

Another part of the overall pattern is that the strength of the linear rela-
tionship decreases as the size of the defects increases. Field data show more
variation (vertical spread in the plot) for large defect sizes than for small sizes.
An increase in the spread in a response variable as the size of the response in-
creases is a common pattern. It implies that predictions of the response based
on the overall pattern will be less accurate for large responses.

Did you notice a fine point of graphing technique? Because both x and y
measure the same thing, the graph is square and the same scales appear on
both axes.

Some scatterplots appear quite different from the cloud of points in Figure
2.1 and the linear pattern in Figure 2.3. This is true, for example, in experiments
in which measurements of a response variable are taken at a few selected levels
of the explanatory variable. The following example illustrates the use of scat-
terplots in this setting.
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E 2.8 Predators and prey. Here is one way in which nature regulates the
size of animal populations: high population density attracts predators, who
remove a higher proportion of the population than when the density of the
prey is low. One study looked at kelp perch and their common predator, the
kelp bass. The researcher set up four large circular pens on sandy ocean bot-
tom in southern California. He chose young perch at random from a large
group and placed 10, 20, 40, and 60 perch in the four pens. Then he dropped
the nets protecting the pens, allowing bass to swarm in, and counted the
perch left after 2 hours. Here are data on the proportions of perch eaten in
four repetitions of this setup:6

Perch Proportion killed

10 0.0 0.1 0.3 0.3
20 0.2 0.3 0.3 0.6
40 0.075 0.3 0.6 0.725
60 0.517 0.55 0.7 0.817

The scatterplot in Figure 2.4 displays the results of this experiment. Be-
cause number of perch in a pen is the explanatory variable, we plot it horizon-
tally as the x variable. The proportion of perch eaten by bass is the response
variable y. Notice that there are two identical responses in the 10-perch group
and also in the 20-perch group. These pairs of observations occupy the same
points on the plot, so we use a different symbol for points that represent two
observations. Most software does not alert you to repeated values in your data
when making scatterplots. This can affect the impression the plot creates, es-
pecially when there are just a few points.

The vertical spread of points above each pen size shows the variation in
proportions of perch eaten by bass. To see the overall pattern behind this

CAUTION

!
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FIGURE 2.4 Data from an
experiment in ecology;
proportion of perch eaten by
bass plotted against the number
of perch present, for Example
2.8. The lines connect the mean
responses (triangles) for each
group.
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variation, plot the mean response for each pen size. In Figure 2.4, these means
are marked by triangles and joined by line segments. There is a clear positive
association between number of prey present and proportion eaten by preda-
tors. Moreover, the relationship is not far from linear.

BEYOND THE BASICS

Scatterplot Smoothers

A scatterplot provides a complete picture of the relationship between two quan-
titative variables. A complete picture is often too detailed for easy interpreta-
tion, so we try to describe the plot in terms of an overall pattern and deviations
from that pattern. Though we can often do this by eye, more systematic meth-
ods of extracting the overall pattern are helpful. This is called smoothing asmoothing
scatterplot. Example 2.9 suggests how to proceed when we are plotting a re-
sponse variable y against an explanatory variable x. We smoothed Figure 2.4 by
averaging the y-values separately for each x-value. Though not all scatterplots
have many y-values at the same value of x, as did Figure 2.4, modern software
provides scatterplot smoothers that form an overall pattern by looking at the
y-values for points in the neighborhood of each x-value. Smoothers use resis-
tant calculations, so they are not affected by outliers in the plot.
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E 2.9 Dummies in motorcycle crashes. Crash a motorcycle into a wall. The
rider, fortunately, is a dummy with an instrument to measure acceleration
(change of velocity) mounted in its head. Figure 2.5 plots the acceleration of
the dummy’s head against time in milliseconds.7 Acceleration is measured in
g’s, or multiples of the acceleration due to gravity at the earth’s surface. The
motorcycle approaches the wall at a constant speed (acceleration near 0). As
it hits, the dummy’s head snaps forward and decelerates violently (negative
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FIGURE 2.5 Smoothing a
scatterplot, for Example 2.9.
Time plot of the acceleration of
the head of a crash dummy as a
motorcycle hits a wall, with the
overall pattern calculated by a
scatterplot smoother.

•

acceleration reaching more than 100 g’s), then snaps back again (up to 75 g’s)
and wobbles a bit before coming to rest.

The scatterplot has a clear overall pattern, but it does not obey a simple
form such as linear. Moreover, the strength of the pattern varies, from quite
strong at the left of the plot to weaker (much more scatter) at the right. A
scatterplot smoother deals with this complexity quite effectively and draws a
line on the plot to represent the overall pattern.

Categorical explanatory variables
Scatterplots display the association between two quantitative variables. To dis-
play a relationship between a categorical explanatory variable and a quantita-
tive response variable, make a side-by-side comparison of the distributions of
the response for each category. We have already met some tools for such com-
parisons:

• A back-to-back stemplot compares two distributions. See the comparison of
literacy rates (the quantitative response) for females and males (two cate-
gories) on page 11.

• Side-by-side boxplots compare any number of distributions. See the compar-
ison of gas mileage (the quantitative response) for minicompact and two-
seater cars on the highway and in the city (four categories) in Figure 1.19
(page 37).

You can also use a type of scatterplot to display the association between
a categorical explanatory variable and a quantitative response. Suppose, for
example, that the prey-predator study of Example 2.8 had compared four
species of prey rather than four densities of prey. The plot in Figure 2.4 re-
mains helpful if we mark the prey species as A, B, C, and D at equal intervals
on the horizontal axis in place of the count of perch per pen. A graph of the
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mean or median responses at the four locations still shows the overall nature
of the relationship.

Many categorical variables, like prey species or type of car, have no natural
order from smallest to largest. In such situations we cannot speak of a positive
or negative association with the response variable. If the mean responses in our
plot increase as we go from left to right, we could make them decrease by writ-
ing the categories in the opposite order. The plot simply presents a side-by-side
comparison of several distributions. The categorical variable labels the distri-
butions. Some categorical variables do have a least-to-most order, however. We
can then speak of the direction of the association between the categorical ex-
planatory variable and the quantitative response. Look again at the boxplots of
income by level of education in Figure 1.23, on page 52. Although the Census
Bureau records education in categories, such as “did not graduate from high
school,” the categories have an order from less education to more education.
The boxes in Figure 1.23 are arranged in order of increasing education. They
show a positive association between education and income: people with more
education tend to have higher incomes.

SECTION 2.1 Summary

To study relationships between variables, we must measure the variables on the
same group of individuals or cases.

If we think that a variable x may explain or even cause changes in another vari-
able y, we call x an explanatory variable and y a response variable.

A scatterplot displays the relationship between two quantitative variables.
Mark values of one variable on the horizontal axis (x axis) and values of the
other variable on the vertical axis (y axis). Plot each individual’s data as a point
on the graph.

Always plot the explanatory variable, if there is one, on the x axis of a scatter-
plot. Plot the response variable on the y axis.

Plot points with different colors or symbols to see the effect of a categorical
variable in a scatterplot.

In examining a scatterplot, look for an overall pattern showing the form, direc-
tion, and strength of the relationship, and then for outliers or other deviations
from this pattern.

Form: Linear relationships, where the points show a straight-line pattern, are
an important form of relationship between two variables. Curved relationships
and clusters are other forms to watch for.

Direction: If the relationship has a clear direction, we speak of either positive
association (high values of the two variables tend to occur together) or nega-
tive association (high values of one variable tend to occur with low values of
the other variable).

Strength: The strength of a relationship is determined by how close the points
in the scatterplot lie to a simple form such as a line.

To display the relationship between a categorical explanatory variable and a
quantitative response variable, make a graph that compares the distributions
of the response for each category of the explanatory variable.



Section 2.1 Exercises
•

95

SECTION 2.1 Exercises
For Exercise 2.1, see page 84; for Exercises 2.2 and 2.3, see
page 85; and for Exercise 2.4, see page 89.

2.5 Average temperatures. Here are the average
temperatures in degrees for Lafayette, Indiana,
during the months of February through May:

Month February March April May
Temperature (degrees F) 30 41 51 62

(a) Explain why month should be the explanatory
variable for examining this relationship.

(b) Make a scatterplot and describe the relationship.

2.6 Relationship between first test and final exam.
How strong is the relationship between the score on
the first test and the score on the the final exam in
an elementary statistics course? Here are data for
eight students from such a course:

First-test score 153 144 162 149 127 118 158 153
Final-exam score 145 140 145 170 145 175 170 160

(a) Which variable should play the role of the
explanatory variable in describing this relationship?

(b) Make a scatterplot and describe the relationship.

(c) Give some possible reasons why this relationship
is so weak.

2.7 Relationship between second test and final
exam. Refer to the previous exercise. Here are the
data for the second test and the final exam for the
same students:

Second-test score 158 162 144 162 136 158 175 153
Final-exam score 145 140 145 170 145 175 170 160

(a) Explain why you should use the second-test
score as the explanatory variable.

(b) Make a scatterplot and describe the relationship.

(c) Why do you think the relationship between
the second-test score and the final-exam score is
stronger than the relationship between the first-test
score and the final-exam score?

2.8 Add an outlier to the plot. Refer to the previous
exercise. Add a ninth student whose scores on the
second test and final exam would lead you to classify
the additional data point as an outlier. Highlight
the outlier on your scatterplot and describe the
performance of the student on the second exam and

final exam and why that leads to the conclusion that
the result is an outlier. Give a possible reason for the
performance of this student.

2.9 Explanatory and response variables. In each
of the following situations, is it more reasonable
to simply explore the relationship between the
two variables or to view one of the variables as an
explanatory variable and the other as a response
variable? In the latter case, which is the explanatory
variable and which is the response variable?

(a) The weight of a child and the age of the child
from birth to 10 years.

(b) High school English grades and high school
math grades.

(c) The rental price of apartments and the number
of bedrooms in the apartment.

(d) The amount of sugar added to a cup of coffee
and how sweet the coffee tastes.

(e) The student evaluation scores for an instructor
and the student evaluation scores for the course.

2.10 Parents’ income and student loans. How well does
the income of a college student’s parents predict how
much the student will borrow to pay for college? We
have data on parents’ income and college debt for a
sample of 1200 recent college graduates. What are
the explanatory and response variables? Are these
variables categorical or quantitative? Do you expect
a positive or negative association between these
variables? Why?

2.11 Reading ability and IQ. A study of reading ability
in schoolchildren chose 60 fifth-grade children
at random from a school. The researchers had
the children’s scores on an IQ test and on a test of
reading ability.8 Figure 2.6 (on page 96) plots reading
test score (response) against IQ score (explanatory).

(a) Explain why we should expect a positive
association between IQ and reading score for
children in the same grade. Does the scatterplot
show a positive association?

(b) A group of four points appear to be outliers. In
what way do these children’s IQ and reading scores
deviate from the overall pattern?

(c) Ignoring the outliers, is the association between
IQ and reading scores roughly linear? Is it very
strong? Explain your answers.

2.12 Treasury bills and common stocks. What is the
relationship between returns from buying Treasury
bills and returns from buying common stocks? The
stemplots in Figure 1.22 (page 44) show the two
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FIGURE 2.6 IQ and reading test scores for 60 fifth-grade
children, for Exercise 2.11.

individual distributions of percent returns. To see
the relationship, we need a scatterplot. Figure 2.7
plots the annual returns on stocks for the years 1950
to 2003 against the returns on Treasury bills for the
same years.
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FIGURE 2.7 Percent return on Treasury bills and common
stocks for the years 1950 to 2003, for Exercise 2.12.

(a) The best year for stocks during this period was
1954. The worst year was 1974. About what were
the returns on stocks in those two years?

(b) Treasury bills are a measure of the general level
of interest rates. The years around 1980 saw very

high interest rates. Treasury bill returns peaked in
1981. About what was the percent return that year?

(c) Some people say that high Treasury bill returns
tend to go with low returns on stocks. Does such a
pattern appear clearly in Figure 2.7? Does the plot
have any clear pattern?

2.13 Can children estimate their reading ability? The
main purpose of the study cited in Exercise 2.11
was to ask whether schoolchildren can estimate
their own reading ability. The researchers had the
children’s scores on a test of reading ability. They
asked each child to estimate his or her reading level,
on a scale from 1 (low) to 5 (high). Figure 2.8 is a
scatterplot of the children’s estimates (response)
against their reading scores (explanatory).
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FIGURE 2.8 Reading test scores for 60 fifth-grade children
and the children’s estimates of their own reading levels, for
Exercise 2.13.

(a) What explains the “stair-step” pattern in the
plot?

(b) Is there an overall positive association between
reading score and self-estimate?

(c) There is one clear outlier. What is this child’s
self-estimated reading level? Does this appear to
over- or underestimate the level as measured by the
test?

2.14 Literacy of men and women. Table 1.2 (page 10)
shows the percent of men and women at least 15
years old who were literate in 2002 in the major
Islamic nations for which data were available. Make
a scatterplot of these data, taking male literacy as
the explanatory variable. Describe the direction,
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form, and strength of the relationship. Are there any
identical observations that plot as the same point?
Are there any clear outliers?

2.15 Small falcons in Sweden. Often the percent of an
animal species in the wild that survive to breed again
is lower following a successful breeding season. This
is part of nature’s self-regulation, tending to keep
population size stable. A study of merlins (small
falcons) in northern Sweden observed the number
of breeding pairs in an isolated area and the percent
of males (banded for identification) who returned
the next breeding season. Here are data for nine
years:9

Pairs 28 29 29 29 30 32 33 38 38
Percent 82 83 70 61 69 58 43 50 47

(a) Why is the response variable the percent of males
that return rather than the number of males that
return?

(b) Make a scatterplot. To emphasize the pattern,
also plot the mean response for years with 29 and
38 breeding pairs and draw lines connecting the
mean responses for the six values of the explanatory
variable.

(c) Describe the pattern. Do the data support
the theory that a smaller percent of birds survive
following a successful breeding season?

2.16 City and highway gas mileage. Table 1.10 (page
31) gives the city and highway gas mileages for
minicompact and two-seater cars. We expect a
positive association between the city and highway
mileages of a group of vehicles. We have already
seen that the Honda Insight is a different type of car,
so omit it as you work with these data.

(a) Make a scatterplot that shows the relationship
between city and highway mileage, using city
mileage as the explanatory variable. Use different
plotting symbols for the two types of cars.

(b) Interpret the plot. Is there a positive association?
Is the form of the plot roughly linear? Is the form
of the relationship similar for the two types of car?
What is the most important difference between the
two types?

2.17 Social rejection and pain. We often describe our
emotional reaction to social rejection as “pain.” A
clever study asked whether social rejection causes
activity in areas of the brain that are known to be
activated by physical pain. If it does, we really do
experience social and physical pain in similar ways.
Subjects were first included and then deliberately

excluded from a social activity while increases in
blood flow in their brains were measured. After each
activity, the subjects filled out questionnaires that
assessed how excluded they felt.

Below are data for 13 subjects.10 The explanatory
variable is “social distress” measured by each
subject’s questionnaire score after exclusion relative
to the score after inclusion. (So values greater than 1
show the degree of distress caused by exclusion.) The
response variable is activity in the anterior cingulate
cortex, a region of the brain that is activated by
physical pain.

Social Brain Social Brain
Subject distress activity Subject distress activity

1 1.26 −0.055 8 2.18 0.025
2 1.85 −0.040 9 2.58 0.027
3 1.10 −0.026 10 2.75 0.033
4 2.50 −0.017 11 2.75 0.064
5 2.17 −0.017 12 3.33 0.077
6 2.67 0.017 13 3.65 0.124
7 2.01 0.021

Plot brain activity against social distress. Describe
the direction, form, and strength of the relationship,
as well as any outliers. Do the data suggest that
brain activity in the “pain” region is directly related
to the distress from social exclusion?

2.18 Biological clocks. Many plants and animals have
“biological clocks” that coordinate activities with the
time of day. When researchers looked at the length
of the biological cycles in the plant Arabidopsis by
measuring leaf movements, they found that the
length of the cycle is not always 24 hours. The
researchers suspected that the plants adapt their
clocks to their north-south position. Plants don’t
know geography, but they do respond to light, so the
researchers looked at the relationship between the
plants’ cycle lengths and the length of the day on
June 21 at their locations. The data file has data on
cycle length and day length, both in hours, for 146
plants.11 Plot cycle length as the response variable
against day length as the explanatory variable. Does
there appear to be a positive association? Is it a
strong association? Explain your answers.

2.19 Business revenue and team value in the NBA.
Management theory says that the value of a business
should depend on its operating income, the income
produced by the business after taxes. (Operating
income excludes income from sales of assets and
investments, which don’t reflect the actual business.)
Total revenue, which ignores costs, should be less
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TABLE 2.1

NBA teams as businesses

Value Revenue Income
Team ($millions) ($millions) ($millions)

Los Angeles Lakers 447 149 22.8
New York Knicks 401 160 13.5
Chicago Bulls 356 119 49.0
Dallas Mavericks 338 117 −17.7
Philadelphia 76ers 328 109 2.0
Boston Celtics 290 97 25.6
Detroit Pistons 284 102 23.5
San Antonio Spurs 283 105 18.5
Phoenix Suns 282 109 21.5
Indiana Pacers 280 94 10.1
Houston Rockets 278 82 15.2
Sacramento Kings 275 102 −16.8
Washington Wizards 274 98 28.5
Portland Trail Blazers 272 97 −85.1
Cleveland Cavaliers 258 72 3.8
Toronto Raptors 249 96 10.6
New Jersey Nets 244 94 −1.6
Utah Jazz 239 85 13.8
Miami Heat 236 91 7.9
Minnesota

Timberwolves 230 85 6.9
Memphis Grizzlies 227 63 −19.7
Denver Nuggets 218 75 7.9
New Orleans Hornets 216 80 21.9
Los Angeles Clippers 208 72 15.9
Atlanta Hawks 202 78 −8.4
Orlando Magic 199 80 13.1
Seattle Supersonics 196 70 2.4
Golden State Warriors 188 70 7.8
Milwaukee Bucks 174 70 −15.1

important. Table 2.1 shows the values, operating
incomes, and revenues of an unusual group of
businesses: the teams in the National Basketball
Association (NBA).12 Professional sports teams are
generally privately owned, often by very wealthy
individuals who may treat their team as a source of
prestige rather than as a business.

(a) Plot team value against revenue. There are
several outliers. Which teams are these, and in what
way are they outliers? Is there a positive association
between value and revenue? Is the pattern roughly
linear?

(b) Now plot value against operating income. Are
the same teams outliers? Does revenue or operating
income better predict the value of an NBA team?

2.20 Two problems with feet. Metatarsus adductus (call
it MA) is a turning in of the front part of the foot that
is common in adolescents and usually corrects itself.
Hallux abducto valgus (call it HAV) is a deformation
of the big toe that is not common in youth and often
requires surgery. Perhaps the severity of MA can
help predict the severity of HAV. Table 2.2 gives data

TABLE 2.2

Two measurements of foot deformities

HAV MA HAV MA HAV MA
angle angle angle angle angle angle

28 18 21 15 16 10
32 16 17 16 30 12
25 22 16 10 30 10
34 17 21 7 20 10
38 33 23 11 50 12
26 10 14 15 25 25
25 18 32 12 26 30
18 13 25 16 28 22
30 19 21 16 31 24
26 10 22 18 38 20
28 17 20 10 32 37
13 14 18 15 21 23
20 20 26 16

on 38 consecutive patients who came to a medical
center for HAV surgery.13 Using X-rays, doctors
measured the angle of deformity for both MA
and HAV. They speculated that there is a positive
association—more serious MA is associated with
more serious HAV.

(a) Make a scatterplot of the data in Table 2.2.
(Which is the explanatory variable?)

(b) Describe the form, direction, and strength of the
relationship between MA angle and HAV angle. Are
there any clear outliers in your graph?

(c) Do you think the data confirm the doctors’
speculation?

2.21 Body mass and metabolic rate. Metabolic rate,
the rate at which the body consumes energy, is
important in studies of weight gain, dieting, and
exercise. The table below gives data on the lean body
mass and resting metabolic rate for 12 women and
7 men who are subjects in a study of dieting. Lean
body mass, given in kilograms, is a person’s weight
leaving out all fat. Metabolic rate is measured in
calories burned per 24 hours, the same calories

Subject Sex Mass Rate Subject Sex Mass Rate

1 M 62.0 1792 11 F 40.3 1189
2 M 62.9 1666 12 F 33.1 913
3 F 36.1 995 13 M 51.9 1460
4 F 54.6 1425 14 F 42.4 1124
5 F 48.5 1396 15 F 34.5 1052
6 F 42.0 1418 16 F 51.1 1347
7 M 47.4 1362 17 F 41.2 1204
8 F 50.6 1502 18 M 51.9 1867
9 F 42.0 1256 19 M 46.9 1439

10 M 48.7 1614
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TABLE 2.3

World record times for the 10,000-meter run

Men Women

Record Time Record Time Record Time
year (seconds) year (seconds) year (seconds)

1912 1880.8 1962 1698.2 1967 2286.4
1921 1840.2 1963 1695.6 1970 2130.5
1924 1835.4 1965 1659.3 1975 2100.4
1924 1823.2 1972 1658.4 1975 2041.4
1924 1806.2 1973 1650.8 1977 1995.1
1937 1805.6 1977 1650.5 1979 1972.5
1938 1802.0 1978 1642.4 1981 1950.8
1939 1792.6 1984 1633.8 1981 1937.2
1944 1775.4 1989 1628.2 1982 1895.3
1949 1768.2 1993 1627.9 1983 1895.0
1949 1767.2 1993 1618.4 1983 1887.6
1949 1761.2 1994 1612.2 1984 1873.8
1950 1742.6 1995 1603.5 1985 1859.4
1953 1741.6 1996 1598.1 1986 1813.7
1954 1734.2 1997 1591.3 1993 1771.8
1956 1722.8 1997 1587.8
1956 1710.4 1998 1582.7
1960 1698.8 2004 1580.3

used to describe the energy content of foods. The
researchers believe that lean body mass is an
important influence on metabolic rate.

(a) Make a scatterplot of the data, using different
symbols or colors for men and women.

(b) Is the association between these variables
positive or negative? What is the form of the
relationship? How strong is the relationship? Does
the pattern of the relationship differ for women and
men? How do the male subjects as a group differ
from the female subjects as a group?

2.22 Fuel consumption and speed. How does the
fuel consumption of a car change as its speed
increases? Below are data for a British Ford Escort.
Speed is measured in kilometers per hour, and fuel
consumption is measured in liters of gasoline used
per 100 kilometers traveled.14

Speed Fuel used Speed Fuel used
(km/h) (liters/100 km) (km/h) (liter/100 km)

10 21.00 90 7.57
20 13.00 100 8.27
30 10.00 110 9.03
40 8.00 120 9.87
50 7.00 130 10.79
60 5.90 140 11.77
70 6.30 150 12.83
80 6.95

(a) Make a scatterplot. (Which variable should go
on the x axis?)

(b) Describe the form of the relationship. In what
way is it not linear? Explain why the form of the
relationship makes sense.

(c) It does not make sense to describe the variables
as either positively associated or negatively
associated. Why not?

(d) Is the relationship reasonably strong or quite
weak? Explain your answer.

2.23 World records for the 10K. Table 2.3 shows the
progress of world record times (in seconds) for the
10,000-meter run up to mid-2004.15 Concentrate on
the women’s world record times. Make a scatterplot
with year as the explanatory variable. Describe the
pattern of improvement over time that your plot
displays.

2.24 C
H

ALLENG
E How do icicles grow? How fast do icicles

grow? Japanese researchers measured the
growth of icicles in a cold chamber under various
conditions of temperature, wind, and water flow.16

Table 2.4 contains data produced under two sets of
conditions. In both cases, there was no wind and the
temperature was set at −11◦C. Water flowed over the
icicle at a higher rate (29.6 milligrams per second)
in Run 8905 and at a slower rate (11.9 mg/s) in Run
8903.
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TABLE 2.4

Growth of icicles over time

Run 8903 Run 8905

Time Length Time Length Time Length Time Length
(min) (cm) (min) (cm) (min) (cm) (min) (cm)

10 0.6 130 18.1 10 0.3 130 10.4
20 1.8 140 19.9 20 0.6 140 11.0
30 2.9 150 21.0 30 1.0 150 11.9
40 4.0 160 23.4 40 1.3 160 12.7
50 5.0 170 24.7 50 3.2 170 13.9
60 6.1 180 27.8 60 4.0 180 14.6
70 7.9 70 5.3 190 15.8
80 10.1 80 6.0 200 16.2
90 10.9 90 6.9 210 17.9

100 12.7 100 7.8 220 18.8
110 14.4 110 8.3 230 19.9
120 16.6 120 9.6 240 21.1

(a) Make a scatterplot of the length of the icicle in
centimeters versus time in minutes, using separate
symbols for the two runs.

(b) Write a careful explanation of what your plot
shows about the growth of icicles.

2.25 Records for men and women in the 10K. Table
2.3 shows the progress of world record times (in
seconds) for the 10,000-meter run for both men and
women.

(a) Make a scatterplot of world record time against
year, using separate symbols for men and women.
Describe the pattern for each sex. Then compare the
progress of men and women.

(b) Women began running this long distance later
than men, so we might expect their improvement
to be more rapid. Moreover, it is often said that
men have little advantage over women in distance
running as opposed to sprints, where muscular
strength plays a greater role. Do the data appear to
support these claims?

2.26 Worms and plant growth. To demonstrate the
effect of nematodes (microscopic worms) on plant
growth, a botanist introduces different numbers of
nematodes into 16 planting pots. He then transplants
a tomato seedling into each pot. Here are data on the
increase in height of the seedlings (in centimeters)
14 days after planting:17

Nematodes Seedling growth

0 10.8 9.1 13.5 9.2
1,000 11.1 11.1 8.2 11.3
5,000 5.4 4.6 7.4 5.0

10,000 5.8 5.3 3.2 7.5

(a) Make a scatterplot of the response variable
(growth) against the explanatory variable (nematode
count). Then compute the mean growth for each
group of seedlings, plot the means against the
nematode counts, and connect these four points
with line segments.

(b) Briefly describe the conclusions about the
effects of nematodes on plant growth that these data
suggest.

2.27 Mutual funds. Fidelity Investments, like other
large mutual funds companies, offers many “sector
funds” that concentrate their investments in narrow
segments of the stock market. These funds often rise
or fall by much more than the market as a whole.
We can group them by broader market sector to
compare returns. Here are percent total returns for
23 Fidelity “Select Portfolios” funds for the year
2003, a year in which stocks rose sharply:18

Market sector Fund returns (percent)

Consumer 23.9 14.1 41.8 43.9 31.1
Financial services 32.3 36.5 30.6 36.9 27.5
Technology 26.1 62.7 68.1 71.9 57.0 35.0 59.4
Natural resources 22.9 7.6 32.1 28.7 29.5 19.1

(a) Make a plot of total return against market
sector (space the four market sectors equally on the
horizontal axis). Compute the mean return for each
sector, add the means to your plot, and connect the
means with line segments.

(b) Based on the data, which of these market sectors
were the best places to invest in 2003? Hindsight is
wonderful.
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(c) Does it make sense to speak of a positive or
negative association between market sector and
total return?

2.28 C
H

ALLENG
E Mutual funds in another year. The data for

2003 in the previous exercise make sector
funds look attractive. Stocks rose sharply in 2003,
after falling sharply in 2002 (and also in 2001 and
2000). Let’s look at the percent returns for both 2003
and 2002 for these same 23 funds. Here they are:

2002 2003 2002 2003 2002 2003
return return return return return return

−17.1 23.9 −0.7 36.9 −37.8 59.4
−6.7 14.1 −5.6 27.5 −11.5 22.9

−21.1 41.8 −26.9 26.1 −0.7 36.9
−12.8 43.9 −42.0 62.7 64.3 32.1
−18.9 31.1 −47.8 68.1 −9.6 28.7
−7.7 32.3 −50.5 71.9 −11.7 29.5

−17.2 36.5 −49.5 57.0 −2.3 19.1
−11.4 30.6 −23.4 35.0

Do a careful graphical analysis of these data: side-
by-side comparison of the distributions of returns
in 2002 and 2003 and also a description of the
relationship between the returns of the same funds
in these two years. What are your most important
findings? (The outlier is Fidelity Gold Fund.)

2.2 Correlation
A scatterplot displays the form, direction, and strength of the relationship be-
tween two quantitative variables. Linear (straight-line) relations are particu-
larly important because a straight line is a simple pattern that is quite common.
We say a linear relationship is strong if the points lie close to a straight line, and
weak if they are widely scattered about a line. Our eyes are not good judges of
how strong a relationship is. The two scatterplots in Figure 2.9 depict exactly
the same data, but the plot on the right is drawn smaller in a large field. The
plot on the left seems to show a stronger relationship. Our eyes can be fooled
by changing the plotting scales or the amount of white space around the cloud
of points in a scatterplot.19 We need to follow our strategy for data analysis by
using a numerical measure to supplement the graph. Correlation is the measure
we use.
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FIGURE 2.9 Two scatterplots of the same data. The linear pattern in the plot on the right
appears stronger because of the surrounding space.



102
•

CHAPTER 2 • Looking at Data—Relationships

The correlation r
We have data on variables x and y for n individuals. Think, for example, of mea-
suring height and weight for n people. Then x1 and y1 are your height and your
weight, x2 and y2 are my height and my weight, and so on. For the ith individ-
ual, height xi goes with weight yi. Here is the definition of correlation.

CORRELATION

The correlation measures the direction and strength of the linear rela-
tionship between two quantitative variables. Correlation is usually writ-
ten as r.

Suppose that we have data on variables x and y for n individuals. The
means and standard deviations of the two variables are x and sx for the
x-values, and y and sy for the y-values. The correlation r between x and y
is

r = 1
n − 1

∑ (
xi − x

sx

)(
yi − y

sy

)

As always, the summation sign
∑

means “add these terms for all the in-
dividuals.” The formula for the correlation r is a bit complex. It helps us see
what correlation is but is not convenient for actually calculating r. In practice
you should use software or a calculator that finds r from keyed-in values of two
variables x and y. Exercise 2.29 asks you to calculate a correlation step-by-step
from the definition to solidify its meaning.

The formula for r begins by standardizing the observations. Suppose, for
example, that x is height in centimeters and y is weight in kilograms and that
we have height and weight measurements for n people. Then x and sx are the
mean and standard deviation of the n heights, both in centimeters. The value

xi − x
sx

is the standardized height of the ith person, familiar from Chapter 1. The stan-
dardized height says how many standard deviations above or below the mean
a person’s height lies. Standardized values have no units—in this example, they
are no longer measured in centimeters. Standardize the weights also. The cor-
relation r is an average of the products of the standardized height and the stan-
dardized weight for the n people.

Properties of correlation
The formula for correlation helps us see that r is positive when there is a pos-
itive association between the variables. Height and weight, for example, have
a positive association. People who are above average in height tend to also be
above average in weight. Both the standardized height and the standardized
weight for such a person are positive. People who are below average in height
tend also to have below-average weight. Then both standardized height and
standardized weight are negative. In both cases, the products in the formula
for r are mostly positive and so r is positive. In the same way, we can see that
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r is negative when the association between x and y is negative. More detailed
study of the formula gives more detailed properties of r. Here is what you need
to know in order to interpret correlation:

• Correlation makes no use of the distinction between explanatory and re-
sponse variables. It makes no difference which variable you call x and which
you call y in calculating the correlation.

• Correlation requires that both variables be quantitative, so that it makes sense

CAUTION

! to do the arithmetic indicated by the formula for r. We cannot calculate a cor-
relation between the incomes of a group of people and what city they live in,
because city is a categorical variable.

• Because r uses the standardized values of the observations, r does not change
when we change the units of measurement of x, y, or both. Measuring height
in inches rather than centimeters and weight in pounds rather than kilo-
grams does not change the correlation between height and weight. The cor-
relation r itself has no unit of measurement; it is just a number.

• Positive r indicates positive association between the variables, and negative
r indicates negative association.

• The correlation r is always a number between −1 and 1. Values of r near 0
indicate a very weak linear relationship. The strength of the relationship in-
creases as r moves away from 0 toward either −1 or 1. Values of r close to −1
or 1 indicate that the points lie close to a straight line. The extreme values
r = −1 and r = 1 occur only when the points in a scatterplot lie exactly along
a straight line.

• Correlation measures the strength of only the linear relationship between
two variables. Correlation does not describe curved relationships between vari-

CAUTION

! ables, no matter how strong they are.

• Like the mean and standard deviation, the correlation is not resistant: r is

CAUTION

! strongly affected by a few outlying observations. Use r with caution when out-
liers appear in the scatterplot.

The scatterplots in Figure 2.10 illustrate how values of r closer to 1 or −1
correspond to stronger linear relationships. To make the essential meaning of r
clear, the standard deviations of both variables in these plots are equal and the
horizontal and vertical scales are the same. In general, it is not so easy to guess
the value of r from the appearance of a scatterplot. Remember that chang-
ing the plotting scales in a scatterplot may mislead our eyes, but it does not
change the standardized values of the variables and therefore cannot change
the correlation. To explore how extreme observations can influence r, use the
Correlation and Regression applet available on the text CD and Web site.
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E 2.10 Scatterplots and correlations. The real data we have examined also
illustrate the behavior of correlation.

Figure 2.1 (page 87), despite the clusters, shows a quite strong negative
linear association between the percent of a state’s high school seniors who
take the SAT exam and their mean SAT score. The correlation is r = −0.877.

Figure 2.3 (page 90) shows a strong positive linear association between
the two measurements of defect depth. The correlation is r = 0.944. That the
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Correlation r = 0

Correlation r = 0.5

Correlation r = 0.9 Correlation r = –0.99

Correlation r = –0.7

Correlation r = –0.3

FIGURE 2.10 How the
correlation r measures the
direction and strength of a linear
association.

•

pattern doesn’t follow the y = x line drawn on the graph doesn’t matter—
correlation measures closeness to whatever line describes the data, not to a
line that we specify in advance.

Figure 2.7 (page 96) shows a very weak relationship between returns on
Treasury bills and on common stocks. We expect a small negative r, and cal-
culation gives r = −0.113.

The correlation between time and acceleration for the motorcycle crash
data graphed in Figure 2.5 (page 93) is r = 0.296. Because the relationship is
not at all linear, r provides no useful information. Always plot your data before
calculating common statistical measures such as correlation.

CAUTION

!

Finally, remember that correlation is not a complete description of two-
variable data, even when the relationship between the variables is linear. You
should give the means and standard deviations of both x and y along with the
correlation. (Because the formula for correlation uses the means and standard
deviations, these measures are the proper choices to accompany a correlation.)
Conclusions based on correlations alone may require rethinking in the light of
a more complete description of the data.
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E 2.11 Scoring of figure skating in the Olympics. Until a scandal at the
2002 Olympics brought change, figure skating was scored by judges on a
scale from 0.0 to 6.0. The scores were often controversial. We have the scores
awarded by two judges, Pierre and Elena, to many skaters. How well do they
agree? We calculate that the correlation between their scores is r = 0.9. But
the mean of Pierre’s scores is 0.8 point lower than Elena’s mean.

These facts do not contradict each other. They are simply different kinds
of information. The mean scores show that Pierre awards lower scores than
Elena. But because Pierre gives every skater a score about 0.8 point lower than
Elena, the correlation remains high. Adding the same number to all values of
either x or y does not change the correlation. If both judges score the same
skaters, the competition is scored consistently because Pierre and Elena agree
on which performances are better than others. The high r shows their agree-
ment. But if Pierre scores some skaters and Elena others, we must add 0.8
points to Pierre’s scores to arrive at a fair comparison.

SECTION 2.2 Summary

The correlation r measures the direction and strength of the linear (straight
line) association between two quantitative variables x and y. Although you can
calculate a correlation for any scatterplot, r measures only linear relationships.

Correlation indicates the direction of a linear relationship by its sign: r > 0 for
a positive association and r < 0 for a negative association.

Correlation always satisfies −1 ≤ r ≤ 1 and indicates the strength of a relation-
ship by how close it is to −1 or 1. Perfect correlation, r = ±1, occurs only when
the points lie exactly on a straight line.

Correlation ignores the distinction between explanatory and response vari-
ables. The value of r is not affected by changes in the unit of measurement of
either variable. Correlation is not resistant, so outliers can greatly change the
value of r.

SECTION 2.2 Exercises
2.29 Coffee prices and deforestation. Coffee is a

leading export from several developing countries.
When coffee prices are high, farmers often clear
forest to plant more coffee trees. Here are data
for five years on prices paid to coffee growers in
Indonesia and the rate of deforestation in a national
park that lies in a coffee-producing region:20

Price Deforestation
(cents per pound) (percent)

29 0.49
40 1.59
54 1.69
55 1.82
72 3.10

(a) Make a scatterplot. Which is the explanatory
variable? What kind of pattern does your plot show?

(b) Find the correlation r step-by-step. That is,
find the mean and standard deviation of the two
variables. Then find the five standardized values for
each variable and use the formula for r. Explain how
your value for r matches your graph in (a).

(c) Now enter these data into your calculator or
software and use the correlation function to find r.
Check that you get the same result as in (b).

2.30 First test and final exam. In Exercise 2.6 you
looked at the relationship between the score on
the first test and the score on the final exam in
an elementary statistics course. The data for eight
students from such a course are presented in the
following table.
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First-test score 153 144 162 149 127 118 158 153
Final-exam score 145 140 145 170 145 175 170 160

(a) Find the correlation between these two variables.

(b) In Exercise 2.6 we noted that the relationship
between these two variables is weak. Does
your calculation of the correlation support this
statement? Explain your answer.

2.31 Second test and final exam. Refer to the previous
exercise. Here are the data for the second test and
the final exam for the same students:

Second-test score 158 162 144 162 136 158 175 153
Final-exam score 145 140 145 170 145 175 170 160

(a) Find the correlation between these two variables.

(b) In Exercise 2.7 we noted that the relationship
between these two variables is stronger than
the relationship between the two variables in
the previous exercise. How do the values of the
correlations that you calculated support this
statement? Explain your answer.

2.32 The effect of an outlier. Refer to the previous
exercise. Add a ninth student whose scores on
the second test and final exam would lead you
to classify the additional data point as an outlier.
Recalculate the correlation with this additional case
and summarize the effect it has on the value of the
correlation.

2.33 The effect of a different point. Examine the data
in Exercise 2.31 and add a ninth student who has
low scores on the second test and the final exam, and
fits the overall pattern of the other scores in the data
set. Calculate the correlation and compare it with
the correlation that you calculated in Exercise 2.31.
Write a short summary of your findings.

2.34 Perch and bass. Figure 2.4 (page 92) displays the
positive association between number of prey (perch)
present in an area and the proportion eaten by
predators (bass).

(a) Do you think the correlation between these
variables is closest to r = 0.1, r = 0.6, or r = 0.9?
Explain the reason for your guess.

(b) Calculate the correlation. Was your guess
correct?

2.35 IQ and reading scores. Figure 2.6 (page 96) displays
the positive association between the IQ scores of
fifth-grade students and their reading scores. Do
you think the correlation between these variables is

closest to r = 0.1, r = 0.6, or r = 0.9? Explain the
reason for your guess.

2.36 C
H

ALLENG
E Mutual funds. Mutual fund reports often

give correlations to describe how the prices
of different investments are related. You look at the
correlations between three Fidelity funds and the
Standard & Poor’s 500 stock index, which describes
stocks of large U.S. companies. The three funds are
Dividend Growth (stocks of large U.S. companies),
Small Cap Stock (stocks of small U.S. companies),
and Emerging Markets (stocks in developing
countries). For 2003, the three correlations are
r = 0.35, r = 0.81, and r = 0.98.21

(a) Which correlation goes with each fund? Explain
your answer.

(b) The correlations of the three funds with the
index are all positive. Does this tell you that stocks
went up in 2003? Explain your answer.

2.37 Coffee prices in dollars or euros. Coffee is
currently priced in dollars. If it were priced in
euros, and the dollar prices in Exercise 2.29 were
translated into the equivalent prices in euros, would
the correlation between coffee price and percent
deforestation change? Explain your answer.

2.38 Mutual funds. Exercise 2.28 (page 101) gives data
on the returns from 23 Fidelity “sector funds” in
2002 (a down-year for stocks) and 2003 (an up-year).

(a) Make a scatterplot if you did not do so in
Exercise 2.28. Fidelity Gold Fund, the only fund
with a positive return in both years, is an extreme
outlier.

(b) To demonstrate that correlation is not resistant,
find r for all 23 funds and then find r for the 22
funds other than Gold. Explain from Gold’s position
in your plot why omitting this point makes r more
negative.

2.39 NBA teams. Table 2.1 (page 98) gives the values of
the 29 teams in the National Basketball Association,
along with their total revenues and operating
incomes. You made scatterplots of value against
both explanatory variables in Exercise 2.19.

(a) Find the correlations of team value with revenue
and with operating income. Do you think that the
two values of r provide a good first comparison of
what the plots show about predicting value?

(b) Portland is an outlier in the plot of value against
income. How does r change when you remove
Portland? Explain from the position of this point
why the change has the direction it does.
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2.40 Correlations measure strong and weak linear
associations. Your scatterplots for Exercises 2.18
(page 97) and 2.24 (Table 2.4, page 100) illustrate
a quite weak linear association and a very strong
linear association. Find the correlations that go
with these plots. It isn’t surprising that a laboratory
experiment on physical behavior (the icicles) gives
a much stronger correlation than field data on
living things (the biological clock). How strong a
correlation must be to interest scientists depends on
the field of study.

2.41 Heights of people who date each other. A student
wonders if tall women tend to date taller men than do
short women. She measures herself, her dormitory
roommate, and the women in the adjoining rooms;
then she measures the next man each woman dates.
Here are the data (heights in inches):

Women (x) 66 64 66 65 70 65
Men (y) 72 68 70 68 71 65

(a) Make a scatterplot of these data. Based on the
scatterplot, do you expect the correlation to be
positive or negative? Near ±1 or not?

(b) Find the correlation r between the heights of the
men and women.

(c) How would r change if all the men were 6 inches
shorter than the heights given in the table? Does the
correlation tell us whether women tend to date men
taller than themselves?

(d) If heights were measured in centimeters rather
than inches, how would the correlation change?
(There are 2.54 centimeters in an inch.)

(e) If every woman dated a man exactly 3 inches
taller than herself, what would be the correlation
between male and female heights?

2.42 An interesting set of data. Make a scatterplot of
the following data.

x 1 2 3 4 10 10
y 1 3 3 5 1 11

Use your calculator to show that the correlation is
about 0.5. What feature of the data is responsible
for reducing the correlation to this value despite a
strong straight-line association between x and y in
most of the observations?

2.43
AP

PLET

CAUTION

! Use the applet. You are going to
use the Correlation and Regression

applet to make different scatterplots with 10 points
that have correlation close to 0.8. Many patterns
can have the same correlation. Always plot your data
before you trust a correlation.

(a) Stop after adding the first 2 points. What is the
value of the correlation? Why does it have this value
no matter where the 2 points are located?

(b) Make a lower-left to upper-right pattern of 10
points with correlation about r = 0.8. (You can drag
points up or down to adjust r after you have 10
points.) Make a rough sketch of your scatterplot.

(c) Make another scatterplot, this time with 9 points
in a vertical stack at the left of the plot. Add one point
far to the right and move it until the correlation is
close to 0.8. Make a rough sketch of your scatterplot.

(d) Make yet another scatterplot, this time with 10
points in a curved pattern that starts at the lower
left, rises to the right, then falls again at the far right.
Adjust the points up or down until you have a quite
smooth curve with correlation close to 0.8. Make a
rough sketch of this scatterplot also.

2.44 Gas mileage and speed. Exercise 2.22 (page 99)
gives data on gas mileage against speed for a small
car. Make a scatterplot if you have not already done
so, then find the correlation r. Explain why r is close
to zero despite a strong relationship between speed
and gas used.

2.45 City and highway gas mileage. Table 1.10 (page
31) gives the city and highway gas mileages for
21 two-seater cars, including the Honda Insight
gas-electric hybrid car.

(a) Make a scatterplot of highway mileage y against
city mileage x for all 21 cars. There is a strong
positive linear association. The Insight lies far from
the other points. Does the Insight extend the linear
pattern of the other cars, or is it far from the line
they form?

(b) Find the correlation between city and highway
mileages both without and with the Insight. Based
on your answer to (a), explain why r changes in this
direction when you add the Insight.

2.46
AP

PLET

CAUTION

! Use the applet. Go to the Correlation
and Regression applet. Click on the

scatterplot to create a group of 10 points in the
lower-left corner of the scatterplot with a strong
straight-line negative pattern (correlation about
−0.9).

(a) Add one point at the upper left that is in line
with the first 10. How does the correlation change?
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(b) Drag this last point down until it is opposite the
group of 10 points. How small can you make the
correlation? Can you make the correlation positive?
A single outlier can greatly strengthen or weaken
a correlation. Always plot your data to check for
outlying points.

2.47 What is the correlation? Suppose that women
always married men 2 years older than themselves.
Draw a scatterplot of the ages of 5 married couples,
with the wife’s age as the explanatory variable. What
is the correlation r for your data? Why?

2.48 C
H

ALLENG
E High correlation does not mean that

the values are the same. Investment
reports often include correlations. Following a
table of correlations among mutual funds, a report
adds, “Two funds can have perfect correlation, yet
different levels of risk. For example, Fund A and
Fund B may be perfectly correlated, yet Fund A
moves 20% whenever Fund B moves 10%.” Write
a brief explanation, for someone who knows no
statistics, of how this can happen. Include a sketch
to illustrate your explanation.

2.49 Student ratings of teachers. A college newspaper
interviews a psychologist about student ratings of
the teaching of faculty members. The psychologist
says, “The evidence indicates that the correlation
between the research productivity and teaching
rating of faculty members is close to zero.” The
paper reports this as “Professor McDaniel said that
good researchers tend to be poor teachers, and vice
versa.” Explain why the paper’s report is wrong.
Write a statement in plain language (don’t use the
word “correlation”) to explain the psychologist’s
meaning.

2.50 What’s wrong? Each of the following statements
contains a blunder. Explain in each case what is
wrong.

(a) “There is a high correlation between the gender
of American workers and their income.”

(b) “We found a high correlation (r = 1.09) between
students’ ratings of faculty teaching and ratings
made by other faculty members.”

(c) “The correlation between planting rate and yield
of corn was found to be r = 0.23 bushel.”

2.51 C
H

ALLENG
E IQ and GPA. Table 1.9 (page 29) reports data

on 78 seventh-grade students. We expect a
positive association between IQ and GPA. Moreover,
some people think that self-concept is related
to school performance. Examine in detail the
relationships between GPA and the two explanatory
variables IQ and self-concept. Are the relationships
roughly linear? How strong are they? Are there
unusual points? What is the effect of removing these
points?

2.52 C
H

ALLENG
E Effect of a change in units. Consider again

the correlation r between the speed of a car
and its gas consumption, from the data in Exercise
2.22 (page 99).

(a) Transform the data so that speed is measured
in miles per hour and fuel consumption in gallons
per mile. (There are 1.609 kilometers in a mile and
3.785 liters in a gallon.) Make a scatterplot and
find the correlation for both the original and the
transformed data. How did the change of units
affect your results?

(b) Now express fuel consumption in miles per
gallon. (So each value is 1/x if x is gallons per mile.)
Again make a scatterplot and find the correlation.
How did this change of units affect your results?

(Lesson: The effects of a linear transformation of
the form xnew = a + bx are simple. The effects of a
nonlinear transformation are more complex.)

2.3 Least-Squares Regression
Correlation measures the direction and strength of the linear (straight-line) re-
lationship between two quantitative variables. If a scatterplot shows a linear
relationship, we would like to summarize this overall pattern by drawing a line
on the scatterplot. A regression line summarizes the relationship between two
variables, but only in a specific setting: when one of the variables helps explain
or predict the other. That is, regression describes a relationship between an ex-
planatory variable and a response variable.
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REGRESSION LINE

A regression line is a straight line that describes how a response vari-
able y changes as an explanatory variable x changes. We often use a re-
gression line to predict the value of y for a given value of x. Regression,
unlike correlation, requires that we have an explanatory variable and a
response variable.
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E 2.12 Fidgeting and fat gain. Does fidgeting keep you slim? Some people

don’t gain weight even when they overeat. Perhaps fidgeting and other “nonex-
ercise activity” (NEA) explains why—the body might spontaneously increase
nonexercise activity when fed more. Researchers deliberately overfed 16
healthy young adults for 8 weeks. They measured fat gain (in kilograms)
and, as an explanatory variable, increase in energy use (in calories) from
activity other than deliberate exercise—fidgeting, daily living, and the like.
Here are the data:22

NEA increase (cal) −94 −57 −29 135 143 151 245 355
Fat gain (kg) 4.2 3.0 3.7 2.7 3.2 3.6 2.4 1.3

NEA increase (cal) 392 473 486 535 571 580 620 690
Fat gain (kg) 3.8 1.7 1.6 2.2 1.0 0.4 2.3 1.1

Figure 2.11 is a scatterplot of these data. The plot shows a moderately
strong negative linear association with no outliers. The correlation is r =
−0.7786. People with larger increases in nonexercise activity do indeed gain
less fat. A line drawn through the points will describe the overall pattern well.
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FIGURE 2.11 Fat gain after 8
weeks of overeating, plotted
against the increase in
nonexercise activity over the
same period, for Example 2.12.
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Fitting a line to data
When a scatterplot displays a linear pattern, we can describe the overall pattern
by drawing a straight line through the points. Of course, no straight line passes
exactly through all of the points. Fitting a line to data means drawing a linefitting a line
that comes as close as possible to the points. The equation of a line fitted to the
data gives a compact description of the dependence of the response variable y
on the explanatory variable x.

STRAIGHT LINES

Suppose that y is a response variable (plotted on the vertical axis) and x
is an explanatory variable (plotted on the horizontal axis). A straight line
relating y to x has an equation of the form

y = b0 + b1x

In this equation, b1 is the slope, the amount by which y changes when
x increases by one unit. The number b0 is the intercept, the value of y
when x = 0.
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E 2.13 Regression line for fat gain. Any straight line describing the nonex-
ercise activity data has the form

fat gain = b0 + (b1 × NEA increase)

In Figure 2.12 we have drawn the regression line with the equation

fat gain = 3.505 − (0.00344 × NEA increase)
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FIGURE 2.12 A regression line
fitted to the nonexercise activity
data and used to predict fat gain
for an NEA increase of 400
calories.
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The figure shows that this line fits the data well. The slope b1 = −0.00344 tells
us that fat gained goes down by 0.00344 kilogram for each added calorie of
NEA.

The slope b1 of a line y = b0 + b1x is the rate of change in the response y as
the explanatory variable x changes. The slope of a regression line is an impor-
tant numerical description of the relationship between the two variables. For
Example 2.13, the intercept, b0 = 3.505 kilograms, is the estimated fat gain if
NEA does not change when a person overeats.

USE YOUR KNOWLEDGE
2.53 Plot the data with the line. Make a sketch of the data in Example 2.12

and plot the line

fat gain = 4.505 − (0.00344 × NEA increase)

on your sketch. Explain why this line does not give a good fit to the
data.

Prediction
We can use a regression line to predict the response y for a specific value of theprediction
explanatory variable x.
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E 2.14 Prediction for fat gain. Based on the linear pattern, we want to pre-
dict the fat gain for an individual whose NEA increases by 400 calories when
she overeats. To use the fitted line to predict fat gain, go “up and over” on the
graph in Figure 2.12. From 400 calories on the x axis, go up to the fitted line
and over to the y axis. The graph shows that the predicted gain in fat is a bit
more than 2 kilograms.

If we have the equation of the line, it is faster and more accurate to sub-
stitute x = 400 in the equation. The predicted fat gain is

fat gain = 3.505 − (0.00344 × 400) = 2.13 kilograms

The accuracy of predictions from a regression line depends on how much
scatter about the line the data show. In Figure 2.12, fat gains for similar in-
creases in NEA show a spread of 1 or 2 kilograms. The regression line summa-
rizes the pattern but gives only roughly accurate predictions.

USE YOUR KNOWLEDGE
2.54 Predict the fat gain. Use the regression equation in Example 2.13 to

predict the fat gain for a person whose NEA increases by 600 calories.
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E 2.15 Is this prediction reasonable? Can we predict the fat gain for some-
one whose nonexercise activity increases by 1500 calories when she overeats?
We can certainly substitute 1500 calories into the equation of the line. The
prediction is

fat gain = 3.505 − (0.00344 × 1500) = −1.66 kilograms

That is, we predict that this individual loses fat when she overeats. This pre-
diction is not trustworthy. Look again at Figure 2.12. An NEA increase of 1500
calories is far outside the range of our data. We can’t say whether increases
this large ever occur, or whether the relationship remains linear at such ex-
treme values. Predicting fat gain when NEA increases by 1500 calories extrap-
olates the relationship beyond what the data show.

EXTRAPOLATION

Extrapolation is the use of a regression line for prediction far outside
the range of values of the explanatory variable x used to obtain the line.
Such predictions are often not accurate.

USE YOUR KNOWLEDGE
2.55 Would you use the regression equation to predict? Consider the

following values for NEA increase: −400, 200, 500, 1000. For each, de-
cide whether you would use the regression equation in Example 2.13
to predict fat gain or whether you would be concerned that the predic-
tion would not be trustworthy because of extrapolation. Give reasons
for your answers.

Least-squares regression
Different people might draw different lines by eye on a scatterplot. This is es-
pecially true when the points are widely scattered. We need a way to draw a
regression line that doesn’t depend on our guess as to where the line should
go. No line will pass exactly through all the points, but we want one that is as
close as possible. We will use the line to predict y from x, so we want a line that
is as close as possible to the points in the vertical direction. That’s because the
prediction errors we make are errors in y, which is the vertical direction in the
scatterplot.

The line in Figure 2.12 predicts 2.13 kilograms of fat gain for an increase
in nonexercise activity of 400 calories. If the actual fat gain turns out to be 2.3
kilograms, the error is

error = observed gain − predicted gain

= 2.3 − 2.13 = 0.17 kilograms
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Errors are positive if the observed response lies above the line, and negative if
the response lies below the line. We want a regression line that makes these pre-
diction errors as small as possible. Figure 2.13 illustrates the idea. For clarity,
the plot shows only three of the points from Figure 2.12, along with the line,
on an expanded scale. The line passes below two of the points and above one
of them. The vertical distances of the data points from the line appear as ver-
tical line segments. A “good” regression line makes these distances as small as
possible. There are many ways to make “as small as possible” precise. The most
common is the least-squares idea. The line in Figures 2.12 and 2.13 is in fact the
least-squares regression line.

–150 –100 –50 0 50

2.5

3.0

3.5

4.0

4.5

Nonexercise activity (calories)

Fa
t g

ai
n 

(k
ilo

gr
am

s)

Error = 3.0 – 3.7
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FIGURE 2.13 The least-squares
idea: make the errors in
predicting y as small as possible
by minimizing the sum of their
squares.

LEAST-SQUARES REGRESSION LINE

The least-squares regression line of y on x is the line that makes the
sum of the squares of the vertical distances of the data points from the
line as small as possible.

Here is the least-squares idea expressed as a mathematical problem. We rep-
resent n observations on two variables x and y as

(x1, y1), (x2, y2), . . . , (xn, yn)

If we draw a line y = b0 + b1x through the scatterplot of these observations,
the line predicts the value of y corresponding to xi as ŷi = b0 + b1xi. We write
ŷ (read “y-hat”) in the equation of a regression line to emphasize that the line
gives a predicted response ŷ for any x. The predicted response will usually not
be exactly the same as the actually observed response y. The method of least
squares chooses the line that makes the sum of the squares of these errors as
small as possible. To find this line, we must find the values of the intercept b0
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and the slope b1 that minimize∑
(error)2 =

∑
(yi − b0 − b1xi)

2

for the given observations xi and yi. For the NEA data, for example, we must
find the b0 and b1 that minimize

(−94 − b0 − 4.2b1)
2 + (−57 − b0 − 3.0b1)

2 + · · · + (690 − b0 − 1.1b1)
2

These values are the intercept and slope of the least-squares line.
You will use software or a calculator with a regression function to find the

equation of the least-squares regression line from data on x and y. We will there-
fore give the equation of the least-squares line in a form that helps our under-
standing but is not efficient for calculation.

EQUATION OF THE LEAST-SQUARES REGRESSION LINE

We have data on an explanatory variable x and a response variable y for
n individuals. The means and standard deviations of the sample data are
x and sx for x and y and sy for y, and the correlation between x and y is
r. The equation of the least-squares regression line of y on x is

ŷ = b0 + b1x

with slope

b1 = r
sy

sx

and intercept

b0 = y − b1x
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E 2.16 Check the calculations. Verify from the data in Example 2.12 that
the mean and standard deviation of the 16 increases in NEA are

x = 324.8 calories and sx = 257.66 calories

The mean and standard deviation of the 16 fat gains are

y = 2.388 kg and sy = 1.1389 kg

The correlation between fat gain and NEA increase is r = −0.7786. The least-
squares regression line of fat gain y on NEA increase x therefore has slope

b1 = r
sy

sx
= −0.7786

1.1389
257.66

= −0.00344 kg per calorie

and intercept

b0 = y − b1x = 2.388 − (−0.00344)(324.8)

= 3.505 kg
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The equation of the least-squares line is

ŷ = 3.505 − 0.00344x

When doing calculations like this by hand, you may need to carry extra decimal
places in the preliminary calculations to get accurate values of the slope and
intercept. Using software or a calculator with a regression function eliminates
this worry.

CAUTION

!

Interpreting the regression line
The slope b1 = −0.00344 kilograms per calorie in Example 2.16 is the change
in fat gain as NEA increases. The units “kilograms of fat gained per calorie of
NEA” come from the units of y (kilograms) and x (calories). Although the cor-
relation does not change when we change the units of measurement, the equa-
tion of the least-squares line does change. The slope in grams per calorie would
be 1000 times as large as the slope in kilograms per calorie, because there are
1000 grams in a kilogram. The small value of the slope, b1 = −0.00344, does not
mean that the effect of increased NEA on fat gain is small—it just reflects the
choice of kilograms as the unit for fat gain. The slope and intercept of the least-

CAUTION

! squares line depend on the units of measurement—you can’t conclude anything
from their size.

The expression b1 = rsy/sx for the slope says that, along the regression line,
a change of one standard deviation in x corresponds to a change of r stan-
dard deviations in y. When the variables are perfectly correlated (r = 1 or
r = −1), the change in the predicted response ŷ is the same (in standard de-
viation units) as the change in x. Otherwise, when −1 < r < 1, the change in ŷ
is less than the change in x. As the correlation grows less strong, the prediction
ŷ moves less in response to changes in x.

The least-squares regression line always passes through the point (x, y)
on the graph of y against x. Check that when you substitute x = 324.8 into the
equation of the regression line in Example 2.16, the result is ŷ = 2.388, equal to
the mean of y. So the least-squares regression line of y on x is the line with slope
rsy/sx that passes through the point (x, y). We can describe regression entirely
in terms of the basic descriptive measures x, sx, y, sy, and r. If both x and y are
standardized variables, so that their means are 0 and their standard deviations
are 1, then the regression line has slope r and passes through the origin.

Figure 2.14 displays the basic regression output for the nonexercise activity
data from two statistical software packages. Other software produces very sim-
ilar output. You can find the slope and intercept of the least-squares line, calcu-
lated to more decimal places than we need, in both outputs. The software also
provides information that we do not yet need, including some that we trimmed
from Figure 2.14. Part of the art of using software is to ignore the extra informa-
tion that is almost always present. Look for the results that you need. Once you
understand a statistical method, you can read output from almost any software.

Correlation and regression
Least-squares regression looks at the distances of the data points from the
line only in the y direction. So the two variables x and y play different roles in
regression.
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FIGURE 2.14 Regression results
for the nonexercise activity data
from two statistical software
packages. Other software
produces similar output.

CAUTION

!
•
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E 2.17 The universe is expanding. Figure 2.15 is a scatterplot of data that
played a central role in the discovery that the universe is expanding. They are
the distances from the earth of 24 spiral galaxies and the speed at which these
galaxies are moving away from us, reported by the astronomer Edwin Hubble
in 1929.23 There is a positive linear relationship, r = 0.7842. More distant
galaxies are moving away more rapidly. Astronomers believe that there is in
fact a perfect linear relationship, and that the scatter is caused by imperfect
measurements.

The two lines on the plot are the two least-squares regression lines. The
regression line of velocity on distance is solid. The regression line of distance
on velocity is dashed. Although there is only one correlation between velocity
and distance, regression of velocity on distance and regression of distance on
velocity give different lines. In doing regression, you must choose which variable
is explanatory.
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FIGURE 2.15 Hubble’s data on
the velocity and distance of 24
galaxies, for Example 2.17. The
lines are the least-squares
regression lines of velocity on
distance (solid) and of distance
on velocity (dashed).

Even though the correlation r ignores the distinction between explanatory
and response variables, there is a close connection between correlation and re-
gression. We saw that the slope of the least-squares line involves r. Another con-
nection between correlation and regression is even more important. In fact, the
numerical value of r as a measure of the strength of a linear relationship is best
interpreted by thinking about regression. Here is the fact we need.

r2 IN REGRESSION

The square of the correlation, r2, is the fraction of the variation in the
values of y that is explained by the least-squares regression of y on x.

The correlation between NEA increase and fat gain for the 16 subjects in
Example 2.12 is r = −0.7786. Because r2 = 0.606, the straight-line relationship
between NEA and fat gain explains about 61% of the vertical scatter in fat gains
in Figure 2.12. When you report a regression, give r2 as a measure of how suc-
cessfully the regression explains the response. Both software outputs in Figure
2.14 include r2, either in decimal form or as a percent. When you see a corre-
lation, square it to get a better feel for the strength of the association. Perfect
correlation (r = −1 or r = 1) means the points lie exactly on a line. Then r2 = 1
and all of the variation in one variable is accounted for by the linear relation-
ship with the other variable. If r = −0.7 or r = 0.7, r2 = 0.49 and about half the
variation is accounted for by the linear relationship. In the r2 scale, correlation
±0.7 is about halfway between 0 and ±1.

USE YOUR KNOWLEDGE
2.56 What fraction of the variation is explained? Consider the following

correlations: −0.9, −0.5, −0.3, 0, 0.3, 0.5, and 0.9. For each, give the
fraction of the variation in y that is explained by the least-squares re-
gression of y on x. Summarize what you have found from performing
these calculations.
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The use of r2 to describe the success of regression in explaining the response
y is very common. It rests on the fact that there are two sources of variation in
the responses y in a regression setting. Figure 2.16 gives a rough visual picture
of the two sources. The first reason for the variation in fat gains is that there is a
relationship between fat gain y and increase in NEA x. As x increases from −94
calories to 690 calories among the 16 subjects, it pulls fat gain y with it along
the regression line in the figure. The linear relationship explains this part of the
variation in fat gains.
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FIGURE 2.16 Explained and
unexplained variation in
regression. As x increases, it pulls
y with it along the line. That is
the variation explained by the
regression. The scatter of the
data points above and below the
line, suggested by the dashed
segments, is not explained by the
regression.

The fat gains do not lie exactly on the line, however, but are scattered above
and below it. This is the second source of variation in y, and the regression line
tells us nothing about how large it is. The vertical dashed lines in Figure 2.16
show a rough average for the spread in y when we fix a value of x. We use r2

to measure variation along the line as a fraction of the total variation in the
fat gains. In Figure 2.16, about 61% of the variation in fat gains among the 16
subjects is due to the straight-line tie between y and x. The remaining 39% is
vertical scatter in the observed responses remaining after the line has fixed the
predicted responses.

*Understanding r2

Here is a more specific interpretation of r2. The fat gains y in Figure 2.16 range
from 0.4 kilograms to 4.2 kilograms. The variance of these responses, a mea-
sure of how variable they are, is

variance of observed values y = 1.297

Much of this variability is due to the fact that as x increases from −94 calories to
690 calories it pulls height y along with it. If the only variability in the observed
responses were due to the straight-line dependence of fat gain on NEA, the ob-
served gains would lie exactly on the regression line. That is, they would be the
same as the predicted gains ŷ. We can compute the predicted gains by substitut-

*This explanation is optional reading.
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ing the NEA values for each subject into the equation of the least-squares line.
Their variance describes the variability in the predicted responses. The result is

variance of predicted values ŷ = 0.786

This is what the variance would be if the responses fell exactly on the line, that
is, if the linear relationship explained 100% of the observed variation in y. Be-
cause the responses don’t fall exactly on the line, the variance of the predicted
values is smaller than the variance of the observed values. Here is the fact we
need:

r2 = variance of predicted values ŷ
variance of observed values y

= 0.786
1.297

= 0.606

This fact is always true. The squared correlation gives the variance the re-
sponses would have if there were no scatter about the least-squares line as a
fraction of the variance of the actual responses. This is the exact meaning of
“fraction of variation explained” as an interpretation of r2.

These connections with correlation are special properties of least-squares
regression. They are not true for other methods of fitting a line to data. One
reason that least squares is the most common method for fitting a regression
line to data is that it has many convenient special properties.

BEYOND THE BASICS

Transforming Relationships

How is the weight of an animal’s brain related to the weight of its body? Figure
2.17 is a scatterplot of brain weight against body weight for 96 species of mam-
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FIGURE 2.17 Scatterplot of
brain weight against body
weight for 96 species of
mammals.
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mals.24 The line is the least-squares regression line for predicting brain weight
from body weight. The outliers are interesting. We might say that dolphins and
humans are smart, hippos are dumb, and African elephants are just big. That’s
because dolphins and humans have larger brains than their body weights sug-
gest, hippos have smaller brains, and the elephant is much heavier than any
other mammal in both body and brain.

•
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E 2.18 Brain weight and body weight. The plot in Figure 2.17 is not very

satisfactory. Most mammals are so small relative to elephants and hippos that
their points overlap to form a blob in the lower-left corner of the plot. The
correlation between brain weight and body weight is r = 0.86, but this is mis-
leading. If we remove the elephant, the correlation for the other 95 species is
r = 0.50. Figure 2.18 is a scatterplot of the data with the four outliers removed
to allow a closer look at the other 92 observations. We can now see that the
relationship is not linear. It bends to the right as body weight increases.

Biologists know that data on sizes often behave better if we take logarithms
before doing more analysis. Figure 2.19 plots the logarithm of brain weight
against the logarithm of body weight for all 96 species. The effect is almost
magical. There are no longer any extreme outliers or very influential observa-
tions. The pattern is very linear, with correlation r = 0.96. The vertical spread
about the least-squares line is similar everywhere, so that predictions of brain
weight from body weight will be about equally precise for any body weight (in
the log scale).
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FIGURE 2.18 Scatterplot of
brain weight against body
weight for mammals, with
outliers removed, for
Example 2.18.

Example 2.18 shows that transforming data by applying a function suchtransforming
as the logarithm can greatly simplify statistical analysis. Transforming data is
common in statistical practice. There are systematic principles that describe
how transformations behave and guide the search for transformations that
will, for example, make a distribution more Normal or a curved relationship
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FIGURE 2.19 Scatterplot of the
logarithm of brain weight
against the logarithm of body
weight for 96 species of
mammals, for Example 2.18.

more linear. You can read about these principles in the extra material entitled
Transforming Relationships available on the text CD and Web site.

SECTION 2.3 Summary

A regression line is a straight line that describes how a response variable y
changes as an explanatory variable x changes.

The most common method of fitting a line to a scatterplot is least squares. The
least-squares regression line is the straight line ŷ = b0 + b1x that minimizes
the sum of the squares of the vertical distances of the observed y-values from
the line.

You can use a regression line to predict the value of y for any value of x by sub-
stituting this x into the equation of the line. Extrapolation beyond the range
of x-values spanned by the data is risky.

The slope b1 of a regression line ŷ = b0 + b1x is the rate at which the predicted
response ŷ changes along the line as the explanatory variable x changes. Specif-
ically, b1 is the change in ŷ when x increases by 1. The numerical value of the
slope depends on the units used to measure x and y.

The intercept b0 of a regression line ŷ = b0 + b1x is the predicted response ŷ
when the explanatory variable x = 0. This prediction is of no statistical use un-
less x can actually take values near 0.

The least-squares regression line of y on x is the line with slope b1 = rsy/sx and
intercept b0 = y − b1x. This line always passes through the point (x, y).

Correlation and regression are closely connected. The correlation r is the
slope of the least-squares regression line when we measure both x and y in
standardized units. The square of the correlation r2 is the fraction of the vari-
ance of one variable that is explained by least-squares regression on the other
variable.
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SECTION 2.3 Exercises
For Exercises 2.53 and 2.54, see page 111; for Exercise 2.55,
see page 112; and for Exercise 2.56, see page 117.

2.57 The regression equation. The equation of a least-
squares regression line is y = 10 + 5x.

(a) What is the value of y for x = 5?

(b) If x increases by one unit, what is the
corresponding increase in y?

(c) What is the intercept for this equation?

2.58 First test and final exam. In Exercise 2.6 you
looked at the relationship between the score on
the first test and the score on the final exam in an
elementary statistics course. Here are data for eight
students from such a course:

First-test score 153 144 162 149 127 118 158 153
Final-exam score 145 140 145 170 145 175 170 160

(a) Plot the data with the first-test scores on the x
axis and the final-exam scores on the y axis.

(b) Find the least-squares regression line for
predicting the final-exam score using the first-test
score.

(c) Graph the least-squares regression line on your
plot.

2.59 Second test and final exam. Refer to the previous
exercise. Here are the data for the second test and
the final exam for the same students:

Second-test score 158 162 144 162 136 158 175 153
Final-exam score 145 140 145 170 145 175 170 160

(a) Plot the data with the second-test scores on the
x axis and the final-exam scores on the y axis.

(b) Find the least-squares regression line for
predicting the final-exam score using the second-
test score.

(c) Graph the least-squares regression line on your
plot.

2.60 The effect of an outlier. Refer to the previous
exercise. Add a ninth student whose scores on
the second test and final exam would lead you
to classify the additional data point as an outlier.
Recalculate the least-squares regression line with
this additional case and summarize the effect it has
on the least-squares regression line.

2.61 The effect of a different point. Examine the data
in Exercise 2.31 and add a ninth student who has
low scores on the second test and the final exam,
and fits the overall pattern of the other scores in the
data set. Recalculate the least-squares regression
line with this additional case and summarize the
effect it has on the least-squares regression line.

2.62 Revenue and value of NBA teams. Table 2.1 (page
98) gives the values of the 29 teams in the National
Basketball Association, along with their operating
incomes and revenues. Plots and correlations show
that revenue predicts team value much better than
does operating income. The least-squares regression
line for predicting value from revenue is

value = 21.4 + (2.59 × revenue)

(a) What is the slope of this line? Express in simple
language what the slope says about the relationship
of value to revenue.

(b) The Los Angeles Lakers are the NBA’s most
valuable team, valued at $447 million, with $149
million in revenue. Use the line to predict the value
of the Lakers from their revenue. What is the error
in this prediction?

(c) The correlation between revenue and team value
is r = 0.9265. What does the correlation say about
the success of the regression line in predicting the
values of the 29 teams?

2.63 Water discharged by the Mississippi River. Figure
1.10(b) (page 19) is a time plot of the volume of
water discharged by the Mississippi River for the
years 1954 to 2001. Water volume is recorded in
cubic kilometers. The trend line on the plot is the
least-squares regression line. The equation of this
line is

water discharged = −7792 + (4.2255 × year)

(a) How much (on the average) does the volume of
water increase with each passing year?

(b) What does the equation say about the volume
of water flowing out of the Mississippi in the year
1780? Why is this extrapolation clearly nonsense?

(c) What is the predicted volume discharged in 1990
(round to the nearest cubic kilometer)? What is the
prediction error for 1990?

(d) Can you see evidence of the great floods of
1973 and 1993, even on the plot of annual water
discharged? Explain.

2.64 CAUTION

! Perch and bass. Example 2.8 (page 91) gives
data from an experiment in ecology.

Figure 2.4 is the scatterplot of proportion of perch
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eaten by bass against the number of perch in a
pen before the bass were let in. There is a roughly
linear pattern. The least-squares line for predicting
proportion eaten from initial count of perch is

proportion eaten = 0.120 + (0.0086 × count)

(a) When 10 more perch are added to a pen, what
happens to the proportion that are eaten (according
to the line)? Explain your answer.

(b) If there are no perch in a pen, what proportion
does the line predict will be eaten? Explain why this
prediction is nonsense. What is wrong with using
the regression line to predict y when x = 0? You
see that the intercept, though it is needed to draw the
line, may have no statistical interpretation if x = 0 is
outside the range of the data.

2.65 Progress in math scores. Every few years, the
National Assessment of Educational Progress asks
a national sample of eighth-graders to perform the
same math tasks. The goal is to get an honest picture
of progress in math. Here are the last few national
mean scores, on a scale of 0 to 500:25

Year 1990 1992 1996 2000 2003 2005
Score 263 268 272 273 278 279

(a) Make a time plot of the mean scores, by hand.
This is just a scatterplot of score against year. There
is a slow linear increasing trend.

(b) Find the regression line of mean score on time
step-by-step. First calculate the mean and standard
deviation of each variable and their correlation (use
a calculator with these functions). Then find the
equation of the least-squares line from these. Draw
the line on your scatterplot. What percent of the
year-to-year variation in scores is explained by the
linear trend?

(c) Now use software or the regression function on
your calculator to verify your regression line.

2.66 The Trans-Alaska Oil Pipeline. Figure 2.3 (page 90)
plots field measurements on the depth of 100 small
defects in the Trans-Alaska Oil Pipeline against
laboratory measurements of the same defects.
Drawing the y = x line on the graph shows that field
measurements tend to be too low for larger defect
depths.

(a) Find the equation of the least-squares regression
line for predicting field measurement from
laboratory measurement. Make a scatterplot with
this line drawn on it. How does the least-squares
line differ from the y = x line?

(b) What is the slope of the y = x line? What is the
slope of the regression line? Say in simple language
what these slopes mean.

2.67 Social exclusion and pain. Exercise 2.17 (page
97) gives data from a study that shows that social
exclusion causes “real pain.” That is, activity in the
area of the brain that responds to physical pain goes
up as distress from social exclusion goes up. Your
scatterplot in Exercise 2.17 shows a moderately
strong linear relationship.

(a) What is the equation of the least-squares
regression line for predicting brain activity from
social distress score? Make a scatterplot with this
line drawn on it.

(b) On your plot, show the “up and over” lines that
predict brain activity for social distress score 2.0.
Use the equation of the regression line to get the
predicted brain activity level. Verify that it agrees
with your plot.

(c) What percent of the variation in brain activity
among these subjects is explained by the straight-
line relationship with social distress score?

2.68 Problems with feet. Your scatterplot in Exercise
2.20 (page 98) suggests that the severity of the
mild foot deformity called MA can help predict the
severity of the more serious deformity called HAV.
Table 2.2 (page 98) gives data for 38 young patients.

(a) Find the equation of the least-squares regression
line for predicting HAV angle from MA angle. Add
this line to the scatterplot you made in Exercise
2.20.

(b) A new patient has MA angle 25 degrees. What
do you predict this patient’s HAV angle to be?

(c) Does knowing MA angle allow doctors to predict
HAV angle accurately? Explain your answer from
the scatterplot, then calculate a numerical measure
to support your finding.

2.69 Growth of icicles. Table 2.4 (page 100) gives data
on the growth of icicles at two rates of water flow.
You examined these data in Exercise 2.24. Use least-
squares regression to estimate the rate (centimeters
per minute) at which icicles grow at these two flow
rates. How does flow rate affect growth?

2.70 Mutual funds. Exercise 2.28 (page 101) gives the
returns of 23 Fidelity “sector funds” for the years
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2002 and 2003. These mutual funds invest in narrow
segments of the stock market. They often rise faster
than the overall market in up-years, such as 2003,
and fall faster than the market in down-years,
such as 2002. A scatterplot shows that Fidelity
Gold Fund—the only fund that went up in 2002—
is an outlier. In Exercise 2.38, you showed that
this outlier has a strong effect on the correlation.
The least-squares line, like the correlation, is not
resistant.

(a) Find the equations of two least-squares lines for
predicting 2003 return from 2002 return, one for
all 23 funds and one omitting Fidelity Gold Fund.
Make a scatterplot with both lines drawn on it. The
two lines are very different.

(b) Starting with the least-squares idea, explain why
adding Fidelity Gold Fund to the other 22 funds
moves the line in the direction that your graph
shows.

2.71 Stocks and Treasury bills. The scatterplot in
Figure 2.7 (page 96) suggests that returns on
common stocks may be somewhat lower in years
with high interest rates. Here is part of the output
from software for the regression of stock returns on
the Treasury bill returns for the same years:

Stock = 16.639318 - 0.67974913 Tbill

Sample size: 54

R (correlation coefficient) = -0.113

R-sq = 0.01275773

Estimate of error standard deviation: 17.680649

If you knew the return on Treasury bills for next
year, do you think you could predict the return on
stocks quite accurately? Use both the scatterplot in
Figure 2.7 and a number from the regression output
to justify your answer.

2.72 Icicle growth. Find the mean and standard
deviation of the times and icicle lengths for the
data on Run 8903 in Table 2.4 (page 100). Find the
correlation between the two variables. Use these
five numbers to find the equation of the regression
line for predicting length from time. Verify that
your result agrees with that in Exercise 2.69. Use
the same five numbers to find the equation of the
regression line for predicting the time an icicle has
been growing from its length. What units does the
slope of each of these lines have?

2.73 Metabolic rate and lean body mass. Compute the
mean and the standard deviation of the metabolic
rates and lean body masses in Exercise 2.21 (page
98) and the correlation between these two variables.
Use these values to find the slope of the regression

line of metabolic rate on lean body mass. Also find
the slope of the regression line of lean body mass on
metabolic rate. What are the units for each of the
two slopes?

2.74 IQ and self-concept. Table 1.9 (page 29) reports
data on 78 seventh-grade students. We want to know
how well each of IQ score and self-concept score
predicts GPA using least-squares regression. We also
want to know which of these explanatory variables
predicts GPA better. Give numerical measures that
answer these questions, and explain your answers.

2.75 Heights of husbands and wives. The mean height
of American women in their early twenties is about
64.5 inches and the standard deviation is about 2.5
inches. The mean height of men the same age is
about 68.5 inches, with standard deviation about
2.7 inches. If the correlation between the heights
of husbands and wives is about r = 0.5, what is
the equation of the regression line of the husband’s
height on the wife’s height in young couples? Draw
a graph of this regression line. Predict the height of
the husband of a woman who is 67 inches tall.

2.76 C
H

ALLENG
E A property of the least-squares regression

line. Use the equation for the least- squares
regression line to show that this line always passes
through the point (x, y).

2.77 Icicle growth. The data for Run 8903 in Table 2.4
(page 100) describe how the length y in centimeters
of an icicle increases over time x. Time is measured
in minutes.

(a) What are the numerical values and units
of measurement for each of x, sx, y, sy, and the
correlation r between x and y?

(b) There are 2.54 centimeters in an inch. If
we measure length y in inches rather than in
centimeters, what are the new values of y, sy, and
the correlation r?

(c) If we measure length y in inches rather than in
centimeters, what is the new value of the slope b1

of the least-squares line for predicting length from
time?

2.78 Predict final-exam scores. In Professor Friedman’s
economics course the correlation between the
students’ total scores before the final examination
and their final-examination scores is r = 0.55. The
pre-exam totals for all students in the course have
mean 270 and standard deviation 30. The final-exam
scores have mean 70 and standard deviation 9.
Professor Friedman has lost Julie’s final exam but
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knows that her total before the exam was 310. He
decides to predict her final-exam score from her
pre-exam total.

(a) What is the slope of the least-squares regression
line of final-exam scores on pre-exam total scores in
this course? What is the intercept?

(b) Use the regression line to predict Julie’s final-
exam score.

(c) Julie doesn’t think this method accurately
predicts how well she did on the final exam.
Calculate r2 and use the value you get to argue
that her actual score could have been much higher
or much lower than the predicted value.

2.79 C
H

ALLENG
E Class attendance and grades. A study of

class attendance and grades among first-year
students at a state university showed that in general
students who attended a higher percent of their
classes earned higher grades. Class attendance
explained 16% of the variation in grade index
among the students. What is the numerical value of
the correlation between percent of classes attended
and grade index?

2.80 C
H

ALLENG
E Pesticide decay. Fenthion is a pesticide used

to control the olive fruit fly. There are
government limits on the amount of pesticide
residue that can be present in olive products.
Because the pesticide decays over time, producers
of olive oil might simply store the oil until the
fenthion has decayed. The simple exponential decay
model says that the concentration C of pesticide
remaining after time t is

C = C0e−kt

where C0 is the initial concentration and k is a
constant that determines the rate of decay. This
model is a straight line if we take the logarithm of
the concentration:

log C = log C0 − kt

(The logarithm here is the natural logarithm, not
the common logarithm with base 10.) Here are data
on the concentration (milligrams of fenthion per
kilogram of oil) in specimens of Greek olive oil:26

Days stored Concentration

28 0.99 0.99 0.96 0.95 0.93
84 0.96 0.94 0.91 0.91 0.90

183 0.89 0.87 0.86 0.85 0.85
273 0.87 0.86 0.84 0.83 0.83
365 0.83 0.82 0.80 0.80 0.79

(a) Plot the natural logarithm of concentration
against days stored. Notice that there are several
pairs of identical data points. Does the pattern
suggest that the model of simple exponential decay
describes the data reasonably well, at least over this
interval of time? Explain your answer.

(b) Regress the logarithm of concentration on
time. Use your result to estimate the value of the
constant k.

2.81 C
H

ALLENG
E The decay product is toxic. Unfortunately,

the main product of the decay of the pesticide
fenthion is fenthion sulfoxide, which is also toxic.
Here are data on the total concentration of fenthion
and fenthion sulfoxide in the same specimens of
olive oil described in the previous exercise:

Days stored Concentration

28 1.03 1.03 1.01 0.99 0.99
84 1.05 1.04 1.00 0.99 0.99

183 1.03 1.02 1.01 0.98 0.98
273 1.07 1.06 1.03 1.03 1.02
365 1.06 1.02 1.01 1.01 0.99

(a) Plot concentration against days stored. Your
software may fill the available space in the plot,
which in this case hides the pattern. Try a plot with
vertical scale from 0.8 to 1.2. Be sure your plot takes
note of the pairs of identical data points.

(b) What is the slope of the least-squares line for
predicting concentration of fenthion and fenthion
sulfoxide from days stored? Explain why this value
agrees with the graph.

(c) What do the data say about the idea of reducing
fenthion in olive oil by storing the oil before selling
it?

2.4 Cautions about Correlation
and Regression
Correlation and regression are among the most common statistical tools. They
are used in more elaborate form to study relationships among many variables, a
situation in which we cannot see the essentials by studying a single scatterplot.
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We need a firm grasp of the use and limitations of these tools, both now and as
a foundation for more advanced statistics.

Residuals
A regression line describes the overall pattern of a linear relationship between
an explanatory variable and a response variable. Deviations from the over-
all pattern are also important. In the regression setting, we see deviations by
looking at the scatter of the data points about the regression line. The verti-
cal distances from the points to the least-squares regression line are as small
as possible in the sense that they have the smallest possible sum of squares.
Because they represent “left-over” variation in the response after fitting the
regression line, these distances are called residuals.

RESIDUALS

A residual is the difference between an observed value of the response
variable and the value predicted by the regression line. That is,

residual = observed y − predicted y

= y − ŷ

•

•
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E 2.19 Residuals for fat gain. Example 2.12 (page 109) describes measure-
ments on 16 young people who volunteered to overeat for 8 weeks. Those
whose nonexercise activity (NEA) spontaneously rose substantially gained
less fat than others. Figure 2.20(a) is a scatterplot of these data. The pattern
is linear. The least-squares line is

fat gain = 3.505 − (0.00344 × NEA increase)

One subject’s NEA rose by 135 calories. That subject gained 2.7 kilograms
of fat. The predicted gain for 135 calories is

ŷ = 3.505 − (0.00344 × 135) = 3.04 kg

The residual for this subject is therefore

residual = observed y − predicted y

= y − ŷ

= 2.7 − 3.04 = −0.34 kg

Most regression software will calculate and store residuals for you.

USE YOUR KNOWLEDGE
2.82 Find the predicted value and the residual. Another individual in

the NEA data set has NEA increase equal to 143 calories and fat gain
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FIGURE 2.20 (a) Scatterplot of fat gain versus increase in nonexercise activity, with the
least-squares line, for Example 2.19. (b) Residual plot for the regression displayed in Figure
2.20(a). The line at y = 0 marks the mean of the residuals.

equal to 3.2 kg. Find the predicted value of fat gain for this individual
and then calculate the residual. Explain why this residual is negative.

Because the residuals show how far the data fall from our regression line,
examining the residuals helps assess how well the line describes the data.
Although residuals can be calculated from any model fitted to the data, the
residuals from the least-squares line have a special property: the mean of the
least-squares residuals is always zero.

USE YOUR KNOWLEDGE
2.83 Find the sum of the residuals. Here are the 16 residuals for the NEA

data rounded to two decimal places:

0.37 −0.70 0.10 −0.34 0.19 0.61 −0.26 −0.98
1.64 −0.18 −0.23 0.54 −0.54 −1.11 0.93 −0.03

Find the sum of these residuals. Note that the sum is not exactly zero
because of roundoff error.

You can see the residuals in the scatterplot of Figure 2.20(a) by looking at the
vertical deviations of the points from the line. The residual plot in Figure 2.20(b)
makes it easier to study the residuals by plotting them against the explanatory
variable, increase in NEA.



128
•

CHAPTER 2 • Looking at Data—Relationships

RESIDUAL PLOTS

A residual plot is a scatterplot of the regression residuals against the
explanatory variable. Residual plots help us assess the fit of a regression
line.

Because the mean of the residuals is always zero, the horizontal line at zero
in Figure 2.20(b) helps orient us. This line (residual = 0) corresponds to the fit-
ted line in Figure 2.20(a). The residual plot magnifies the deviations from the
line to make patterns easier to see. If the regression line catches the overall pat-
tern of the data, there should be no pattern in the residuals. That is, the residual
plot should show an unstructured horizontal band centered at zero. The resid-
uals in Figure 2.20(b) do have this irregular scatter.

You can see the same thing in the scatterplot of Figure 2.20(a) and the resid-
ual plot of Figure 2.20(b). It’s just a bit easier in the residual plot. Deviations
from an irregular horizontal pattern point out ways in which the regression
line fails to catch the overall pattern. For example, if the overall pattern in the
scatterplot is curved rather than straight, the residuals will magnify the curved
pattern, moving up and down rather than straight across. Exercise 2.86 is an
example of this. Here is a different kind of example.
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E 2.20 Patterns in the Trans-Alaska Oil Pipeline residuals. Figure 2.3
(page 90) plots field measurements on the depth of 100 small defects in the
Trans-Alaska Oil Pipeline against laboratory measurements of the same de-
fects. The y = x line on the graph shows that field measurements tend to be
too low for larger defect depths. The least-squares regression line for predict-
ing field result from lab result, unlike the y = x line, goes through the center
of the points. Figure 2.21 is the residual plot for these data.

Although the horizontal line at zero does go through the middle of the
points, the residuals are more spread out both above and below the line as we
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FIGURE 2.21 Residual plot for
the regression of field
measurements of Alaska pipeline
defects on laboratory
measurements of the same
defects, for Example 2.20.
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move to the right. The field measurements are more variable as the true defect
depth measured in the lab increases. There is indeed a straight-line pattern,
but the regression line doesn’t catch the important fact that the variability of
field measurements increases with defect depth. The scatterplot makes this
clear, and the residual plot magnifies the picture.

Outliers and influential observations
When you look at scatterplots and residual plots, look for striking individual
points as well as for an overall pattern. Here is an example of data that contain
some unusual cases.

•
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E 2.21 Diabetes and blood sugar. People with diabetes must manage their
blood sugar levels carefully. They measure their fasting plasma glucose (FPG)
several times a day with a glucose meter. Another measurement, made at reg-
ular medical checkups, is called HbA. This is roughly the percent of red blood
cells that have a glucose molecule attached. It measures average exposure to
glucose over a period of several months. Table 2.5 gives data on both HbA and
FPG for 18 diabetics five months after they had completed a diabetes educa-
tion class.27

Because both FPG and HbA measure blood glucose, we expect a positive
association. The scatterplot in Figure 2.22 shows a surprisingly weak relation-
ship, with correlation r = 0.4819. The line on the plot is the least-squares re-
gression line for predicting FPG from HbA. Its equation is

ŷ = 66.4 + 10.41x

It appears that one-time measurements of FPG can vary quite a bit among
people with similar long-term levels, as measured by HbA.

Two unusual cases are marked in Figure 2.22. Subjects 15 and 18 are un-
usual in different ways. Subject 15 has dangerously high FPG and lies far from
the regression line in the y direction. Subject 18 is close to the line but far out

TABLE 2.5

Two measures of glucose level in diabetics

HbA FPG HbA FPG HbA FPG
Subject (%) (mg/ml) Subject (%) (mg/ml) Subject (%) (mg/ml)

1 6.1 141 7 7.5 96 13 10.6 103
2 6.3 158 8 7.7 78 14 10.7 172
3 6.4 112 9 7.9 148 15 10.7 359
4 6.8 153 10 8.7 172 16 11.2 145
5 7.0 134 11 9.4 200 17 13.7 147
6 7.1 95 12 10.4 271 18 19.3 255
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FIGURE 2.22 Scatterplot of
fasting plasma glucose against
HbA (which measures long-term
blood glucose), with the
least-squares line, for Example
2.21.

in the x direction. The residual plot in Figure 2.23 confirms that Subject 15 has
a large residual and that Subject 18 does not.

Points that are outliers in the x direction, like Subject 18, can have a strong
influence on the position of the regression line. Least-squares lines make the
sum of squares of the vertical distances to the points as small as possible. A
point that is extreme in the x direction with no other points near it pulls the
line toward itself.
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FIGURE 2.23 Residual plot for
the regression of FPG on HbA.
Subject 15 is an outlier in y.
Subject 18 is an outlier in x that
may be influential but does not
have a large residual.

OUTLIERS AND INFLUENTIAL OBSERVATIONS IN REGRESSION

An outlier is an observation that lies outside the overall pattern of the
other observations. Points that are outliers in the y direction of a scat-
terplot have large regression residuals, but other outliers need not have
large residuals.
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An observation is influential for a statistical calculation if removing it
would markedly change the result of the calculation. Points that are out-
liers in the x direction of a scatterplot are often influential for the least-
squares regression line.

Influence is a matter of degree—how much does a calculation change when
we remove an observation? It is difficult to assess influence on a regression line
without actually doing the regression both with and without the suspicious ob-
servation. A point that is an outlier in x is often influential. But if the point hap-
pens to lie close to the regression line calculated from the other observations,
then its presence will move the line only a little and the point will not be in-
fluential. The influence of a point that is an outlier in y depends on whether
there are many other points with similar values of x that hold the line in place.
Figures 2.22 and 2.23 identify two unusual observations. How influential are
they?
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E 2.22 Influential observations. Subjects 15 and 18 both influence the cor-
relation between FPG and HbA, in opposite directions. Subject 15 weakens
the linear pattern; if we drop this point, the correlation increases from r =
0.4819 to r = 0.5684. Subject 18 extends the linear pattern; if we omit this
subject, the correlation drops from r = 0.4819 to r = 0.3837.

To assess influence on the least-squares line, we recalculate the line leav-
ing out a suspicious point. Figure 2.24 shows three least-squares lines. The
solid line is the regression line of FPG on HbA based on all 18 subjects. This
is the same line that appears in Figure 2.22. The dotted line is calculated from
all subjects except Subject 18. You see that point 18 does pull the line down
toward itself. But the influence of Subject 18 is not very large—the dotted and
solid lines are close together for HbA values between 6 and 14, the range of
all except Subject 18.
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FIGURE 2.24 Three regression
lines for predicting FPG from
HbA, for Example 2.22. The solid
line uses all 18 subjects. The
dotted line leaves out Subject 18.
The dashed line leaves out
Subject 15. “Leaving one out”
calculations are the surest way to
assess influence.
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The dashed line omits Subject 15, the outlier in y. Comparing the solid and
dashed lines, we see that Subject 15 pulls the regression line up. The influence
is again not large, but it exceeds the influence of Subject 18.

The best way to see how points that are extreme in x can influence the re-
gression line is to use the Correlation and Regression applet on the text CD and

AP
PLET

Web site. As Exercise 2.102 demonstrates, moving one point can pull the line
to almost any position on the graph.

We did not need the distinction between outliers and influential observa-
tions in Chapter 1. A single large salary that pulls up the mean salary x for a
group of workers is an outlier because it lies far above the other salaries. It is
also influential because the mean changes when it is removed. In the regres-
sion setting, however, not all outliers are influential. Because influential obser-
vations draw the regression line toward themselves, we may not be able to spot
them by looking for large residuals.

Beware the lurking variable
Correlation and regression are powerful tools for measuring the association be-
tween two variables and for expressing the dependence of one variable on the
other. These tools must be used with an awareness of their limitations. We have
seen that:

• Correlation measures only linear association, and fitting a straight line makes
sense only when the overall pattern of the relationship is linear. Always plot
your data before calculating.

• Extrapolation (using a fitted model far outside the range of the data that we
used to fit it) often produces unreliable predictions.

• Correlation and least-squares regression are not resistant. Always plot your
data and look for potentially influential points.

Another caution is even more important: the relationship between two vari-
ables can often be understood only by taking other variables into account. Lurk-
ing variables can make a correlation or regression misleading.

LURKING VARIABLE

A lurking variable is a variable that is not among the explanatory or
response variables in a study and yet may influence the interpretation of
relationships among those variables.
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E 2.23 High school math and success in college. Is high school math the
key to success in college? A College Board study of 15,941 high school grad-
uates found a strong correlation between how much math minority students
took in high school and their later success in college. News articles quoted
the head of the College Board as saying that “math is the gatekeeper for suc-
cess in college.”28 Maybe so, but we should also think about lurking variables.
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Minority students from middle-class homes with educated parents no doubt
take more high school math courses. They also are more likely to have a stable
family, parents who emphasize education and can pay for college, and so on.
These students would succeed in college even if they took fewer math courses.
The family background of the students is a lurking variable that probably ex-
plains much of the relationship between math courses and college success.
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E 2.24 Imports and spending for health care. Figure 2.25 displays a
strong positive linear association. The correlation between these variables
is r = 0.9749. Because r2 = 0.9504, regression of y on x will explain 95% of
the variation in the values of y.

The explanatory variable in Figure 2.25 is the dollar value of goods im-
ported into the United States in the years between 1990 and 2001. The re-
sponse variable is private spending on health in the same years. There is
no economic relationship between these variables. The strong association is
due entirely to the fact that both imports and health spending grew rapidly
in these years. The common year for each point is a lurking variable. Any
two variables that both increase over time will show a strong association.
This does not mean that one variable explains or influences the other. In this
example, the scatterplot and correlation are correct as exercises in following
recipes, but they shed no light on any real situation.
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FIGURE 2.25 The relationship
between private spending on
health and the value of goods
imported in the same year, for
Example 2.24.

Correlations such as that in Example 2.24 are sometimes called “nonsense
correlations.” The correlation is real. What is nonsense is the suggestion that
the variables are directly related so that changing one of the variables causes
changes in the other. The question of causation is important enough to merit
separate treatment in Section 2.6. For now, just remember that an association
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between two variables x and y can reflect many types of relationship among x,
y, and one or more lurking variables.

ASSOCIATION DOES NOT IMPLY CAUSATION

An association between an explanatory variable x and a response vari-
able y, even if it is very strong, is not by itself good evidence that changes
in x actually cause changes in y.

Lurking variables sometimes create a correlation between x and y, as in
Examples 2.23 and 2.24. They can also hide a true relationship between x and
y, as the following example illustrates.
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E 2.25 Overcrowding and indoor toilets. A study of housing conditions
and health in the city of Hull, England, measured a large number of vari-
ables for each of the wards into which the city is divided. Two of the variables
were an index x of overcrowding and an index y of the lack of indoor toilets.
Because x and y are both measures of inadequate housing, we expect a high
correlation. Yet the correlation was only r = 0.08. How can this be? Inves-
tigation disclosed that some poor wards were dominated by public housing.
These wards had high values of x but low values of y because public hous-
ing always includes indoor toilets. Other poor wards lacked public housing,
and in these wards high values of x were accompanied by high values of y.
Because the relationship between x and y differed in the two types of wards,
analyzing all wards together obscured the nature of the relationship.29

Figure 2.26 shows in simplified form how groups formed by a categorical
lurking variable, as in the housing example, can make the correlation r mislead-
ing. The groups appear as clusters of points in the scatterplot. There is a strong
relationship between x and y within each of the clusters. In fact, r = 0.85 and
r = 0.91 in the two clusters. However, because similar values of x correspond
to quite different values of y in the two clusters, x alone is of little value for
predicting y. The correlation for all points displayed is therefore low: r = 0.14.

y

x

FIGURE 2.26 This scatterplot
has a low r even though there is
a strong correlation within each
of the two clusters.
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This example is another reminder to plot the data rather than simply calculate
numerical measures such as the correlation.

Beware correlations based on averaged data
Regression or correlation studies sometimes work with averages or other mea-
sures that combine information from many individuals. For example, if we plot
the average height of young children against their age in months, we will see a
very strong positive association with correlation near 1. But individual children
of the same age vary a great deal in height. A plot of height against age for in-
dividual children will show much more scatter and lower correlation than the
plot of average height against age.

A correlation based on averages over many individuals is usually higher than

CAUTION

! the correlation between the same variables based on data for individuals. This fact
reminds us again of the importance of noting exactly what variables a statistical
study involves.

The restricted-range problem
A regression line is often used to predict the response y to a given value x of
the explanatory variable. Successful prediction does not require a cause-and-
effect relationship. If both x and y respond to the same underlying unmeasured
variables, x may help us predict y even though x has no direct influence on y.
For example, the scores of SAT exams taken in high school help predict college
grades. There is no cause-and-effect tie between SAT scores and college grades.
Rather, both reflect a student’s ability and knowledge.

How well do SAT scores, perhaps with the help of high school grades, predict
college GPA? We can use the correlation r and its square to get a rough answer.
There is, however, a subtle difficulty.
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E 2.26 SAT scores and GPA. Combining several studies for students grad-
uating from college since 1980, the College Board reports these correlations
between explanatory variables and the overall GPA of college students:

SAT Math High school SAT plus
and Verbal grades grades

r = 0.36 r = 0.42 r = 0.52

Because 0.522 = 0.27, we see that SAT scores plus students’ high school
records explain about 27% of the variation in GPA among college students.

The subtle problem? Colleges differ greatly in the range of students they
attract. Almost all students at Princeton have high SAT scores and did well in
high school. At Generic State College, most students are in the middle range
of SAT scores and high school performance. Both sets of students receive the
full spread of grades. We suspect that if Princeton admitted weaker students
they would get lower grades, and that the typical Princeton student would
get very high grades at Generic State. This is the restricted-range problem: the
data do not contain information on the full range of both explanatory and
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response variables. When data suffer from restricted range, r and r2 are lower
than they would be if the full range could be observed.

Thus, r = 0.52 understates the actual ability of SAT scores and high school
grades to predict college GPA. One investigator found 21 colleges that en-
rolled the full range of high school graduates. Sure enough, for these colleges,
r = 0.65.30

CAUTION

!

Did you notice that the correlations in Example 2.26 involve more than
one explanatory variable? It is common to use several explanatory variables
together to predict a response. This is called multiple regression. Each r in the
example is a multiple correlation coefficient, whose square is the proportion
of variation in the response explained by the multiple regression. Chapter 11
introduces multiple regression.

BEYOND THE BASICS

Data Mining

Chapters 1 and 2 of this book are devoted to the important aspect of statis-
tics called exploratory data analysis (EDA). We use graphs and numerical sum-
maries to examine data, searching for patterns and paying attention to striking
deviations from the patterns we find. In discussing regression, we advanced to
using the pattern we find (in this case, a linear pattern) for prediction.

Suppose now that we have a truly enormous data base, such as all purchases
recorded by the cash register scanners of a national retail chain during the past
week. Surely this treasure chest of data contains patterns that might guide busi-
ness decisions. If we could see clearly the types of activewear preferred in large
California cities and compare the preferences of small Midwest cities—right
now, not at the end of the season—we might improve profits in both parts of
the country by matching stock with demand. This sounds much like EDA, and
indeed it is. Exploring really large data bases in the hope of finding useful pat-
terns is called data mining. Here are some distinctive features of data mining:data mining

• When you have 100 gigabytes of data, even straightforward calculations and
graphics become impossibly time-consuming. So efficient algorithms are
very important.

• The structure of the data base and the process of storing the data (the fash-
ionable term is data warehousing), perhaps by unifying data scattered across
many departments of a large corporation, require careful consideration.

• Data mining requires automated tools that work based on only vague queries
by the user. The process is too complex to do step-by-step as we have done in
EDA.

All of these features point to the need for sophisticated computer science
as a basis for data mining. Indeed, data mining is often thought of as a part of
computer science. Yet many statistical ideas and tools—mostly tools for dealing
with multidimensional data, not the sort of thing that appears in a first statis-
tics course—are very helpful. Like many modern developments, data mining
crosses the boundaries of traditional fields of study.
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Do remember that the perils we associate with blind use of correlation and
regression are yet more perilous in data mining, where the fog of an immense
data base prevents clear vision. Extrapolation, ignoring lurking variables, and
confusing association with causation are traps for the unwary data miner.

SECTION 2.4 Summary

You can examine the fit of a regression line by plotting the residuals, which are
the differences between the observed and predicted values of y. Be on the look-
out for points with unusually large residuals and also for nonlinear patterns
and uneven variation about the line.

Also look for influential observations, individual points that substantially
change the regression line. Influential observations are often outliers in the x
direction, but they need not have large residuals.

Correlation and regression must be interpreted with caution. Plot the data to
be sure that the relationship is roughly linear and to detect outliers and influ-
ential observations.

Lurking variables may explain the relationship between the explanatory and
response variables. Correlation and regression can be misleading if you ignore
important lurking variables.

We cannot conclude that there is a cause-and-effect relationship between two
variables just because they are strongly associated. High correlation does not
imply causation.

A correlation based on averages is usually higher than if we used data for
individuals. A correlation based on data with a restricted range is often lower
than would be the case if we could observe the full range of the variables.

SECTION 2.4 Exercises
For Exercise 2.82, see page 126; for Exercise 2.83, see
page 127.

2.84 Price and ounces. In Example 2.2 (page 84)
and Exercise 2.3 (page 85) we examined the
relationship between the price and the size of a
Mocha Frappuccino c©. The 12-ounce Tall drink
costs $3.15, the 16-ounce Grande is $3.65, and the
24-ounce Venti is $4.15.

(a) Plot the data and describe the relationship.
(Explain why you should plot size in ounces on the
x axis.)

(b) Find the least-squares regression line for
predicting the price using size. Add the line to your
plot.

(c) Draw a vertical line from the least-squares line
to each data point. This gives a graphical picture
of the residuals.

(d) Find the residuals and verify that they sum to
zero.

(e) Plot the residuals versus size. Interpret this
plot.

2.85 Average monthly temperatures. Here are the
average monthly temperatures for Chicago, Illinois:

Month 1 2 3 4 5 6
Temperature (◦F) 21.0 25.4 37.2 48.6 58.9 68.6

Month 7 8 9 10 11 12
Temperature (◦F) 73.2 71.7 64.4 52.8 40.0 26.6

In this table, months are coded as integers,
with January corresponding to 1 and December
corresponding to 12.

(a) Plot the data with month on the x axis
and temperature on the y axis. Describe the
relationship.
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(b) Find the least-squares regression line and add
it to the plot. Does the line give a good fit to the
data? Explain your answer.

(c) Calculate the residuals and plot them versus
month. Describe the pattern and explain what
the residual plot tells you about the relationship
between temperature and month in Chicago.

(d) Do you think you would find a similar pattern
if you plotted the same kind of data for another
city?

(e) Would your answer to part (d) change if the
other city was Melbourne, Australia? Explain why
or why not.

2.86 Fuel consumption and speed. Exercise 2.22
(page 99) gives data on the fuel consumption y of a
car at various speeds x. The relationship is strongly
curved: fuel used decreases with increasing speed at
low speeds, then increases again as higher speeds
are reached. The equation of the least-squares
regression line for these data is

ŷ = 11.058 − 0.01466x

The residuals, in the same order as the
observations, are

10.09 2.24 −0.62 −2.47 −3.33 −4.28 −3.73 −2.94
−2.17 −1.32 −0.42 0.57 1.64 2.76 3.97

(a) Make a scatterplot of the observations and
draw the regression line on your plot. The line is a
poor description of the curved relationship.

(b) Check that the residuals have sum zero (up to
roundoff error).

(c) Make a plot of the residuals against the values
of x. Draw a horizontal line at height zero on
your plot. The residuals show the same pattern
about this line as the data points show about the
regression line in the scatterplot in (a).

2.87 Growth of infants in Egypt. A study of nutrition
in developing countries collected data from the
Egyptian village of Nahya. Here are the mean
weights (in kilograms) for 170 infants in Nahya
who were weighed each month during their first
year of life:31

Age (months) 1 2 3 4 5 6 7 8 9 10 11 12
Weight (kg) 4.3 5.1 5.7 6.3 6.8 7.1 7.2 7.2 7.2 7.2 7.5 7.8

(a) Plot weight against time.

(b) A hasty user of statistics enters the data into
software and computes the least-squares line
without plotting the data. The result is

The regression equation is
weight = 4.88 + 0.267 age

Plot this line on your graph. Is it an acceptable
summary of the overall pattern of growth?
Remember that you can calculate the least-squares
line for any set of two-variable data. It’s up to you
to decide if it makes sense to fit a line.

(c) Fortunately, the software also prints out the
residuals from the least-squares line. In order of
age along the rows, they are

−0.85 −0.31 0.02 0.35 0.58 0.62
0.45 0.18 −0.08 −0.35 −0.32 −0.28

Verify that the residuals have sum zero (except for
roundoff error). Plot the residuals against age and
add a horizontal line at zero. Describe carefully the
pattern that you see.

2.88 Pesticide in olive oil. Exercise 2.80 gives data
on the concentration of the pesticide fenthion in
Greek olive oil that has been stored for various
lengths of time. The exponential decay model used
to describe how concentration decreases over time
proposes a curved relationship between storage
time and concentration. Do the residuals from
fitting a regression line show a curved pattern? The
least-squares line for predicting concentration is

ŷ = 0.965 − 0.00045x

(a) The first batch of olive oil was stored for 28
days and had fenthion concentration 0.99 mg/kg.
What is the predicted concentration for this batch?
What is the residual?

(b) The residuals, arranged as in the data table in
Exercise 2.88, are:

Days stored Residual

28 0.0378 0.0378 0.0078 −0.0022 −0.0222
84 0.0329 0.0129 −0.0171 −0.0171 −0.0271

183 0.0072 −0.0128 −0.0228 −0.0328 −0.0328
273 0.0275 0.0175 −0.0025 −0.0125 −0.0125
365 0.0286 0.0186 −0.0014 −0.0014 −0.0114

Check that your residual from (a) agrees (up to
roundoff error) with the value 0.0378 given here.
Verify that the residuals sum to zero (again up to
roundoff error).
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(c) Make a residual plot. Is a curved pattern
visible? Is the curve very strong? (Software often
makes the pattern hard to see because it fills the
entire plot area. Try a plot with vertical scale from
−0.1 to 0.1.)

2.89 Effect of using means. Your plot for Exercise
2.87 shows that the increase of the mean weight of
children in Nahya is very linear during the first 5
months of life. The correlation of age and weight
is r = 0.9964 for the first 5 months. Weight in these
data is the mean for 170 children. Explain why the
correlation between age and weight for the 170
individual children would surely be much smaller.

2.90 A test for job applicants. Your company gives
a test of cognitive ability to job applicants before
deciding whom to hire. Your boss has asked you to
use company records to see if this test really helps
predict the performance ratings of employees.
Explain carefully to your boss why the restricted-
range problem may make it difficult to see a strong
relationship between test scores and performance
ratings.

2.91 C
H

ALLENG
E CAUTION

! A lurking variable. The effect of a
lurking variable can be surprising

when individuals are divided into groups. In recent
years, the mean SAT score of all high school
seniors has increased. But the mean SAT score has
decreased for students at each level of high school
grades (A, B, C, and so on). Explain how grade
inflation in high school (the lurking variable) can
account for this pattern. A relationship that holds
for each group within a population need not hold for
the population as a whole. In fact, the relationship
can even change direction.

2.92 C
H

ALLENG
E Another example. Here is another example

of the group effect cautioned about in
the previous exercise. Explain how as a nation’s
population grows older mean income can go down
for workers in each age group, yet still go up for all
workers.

2.93 Basal metabolic rate. Careful statistical studies
often include examination of potential lurking
variables. This was true of the study of the
effect of nonexercise activity (NEA) on fat gain
(Example 2.12, page 109), our lead example in
Section 2.3. Overeating may lead our bodies
to spontaneously increase NEA (fidgeting and
the like). Our bodies might also spontaneously
increase their basal metabolic rate (BMR), which
measures energy use while resting. If both energy
uses increased, regressing fat gain on NEA alone

would be misleading. Here are data on BMR and
fat gain for the same 16 subjects whose NEA we
examined earlier:

BMR increase (cal) 117 352 244 −42 −3 134 136 −32
Fat gain (kg) 4.2 3.0 3.7 2.7 3.2 3.6 2.4 1.3

BMR increase (cal) −99 9 −15 −70 165 172 100 35
Fat gain (kg) 3.8 1.7 1.6 2.2 1.0 0.4 2.3 1.1

The correlation between NEA and fat gain is
r = −0.7786. The slope of the regression line for
predicting fat gain from NEA is b1 = −0.00344
kilogram per calorie. What are the correlation and
slope for BMR and fat gain? Explain why these
values show that BMR has much less effect on fat
gain than does NEA.

2.94 Gas chromatography. Gas chromatography is
a technique used to detect very small amounts
of a substance, for example, a contaminant in
drinking water. Laboratories use regression to
calibrate such techniques. The data below show
the results of five measurements for each of four
amounts of the substance being investigated.32 The
explanatory variable x is the amount of substance
in the specimen, measured in nanograms (ng),
units of 10−9 gram. The response variable y is the
reading from the gas chromatograph.

Amount (ng) Response

0.25 6.55 7.98 6.54 6.37 7.96
1.00 29.7 30.0 30.1 29.5 29.1
5.00 211 204 212 213 205

20.00 929 905 922 928 919

(a) Make a scatterplot of these data. The
relationship appears to be approximately linear,
but the wide variation in the response values makes
it hard to see detail in this graph.

(b) Compute the least-squares regression line of y
on x, and plot this line on your graph.

(c) Now compute the residuals and make a plot
of the residuals against x. It is much easier to
see deviations from linearity in the residual plot.
Describe carefully the pattern displayed by the
residuals.

2.95 Golf scores. The following table presents the golf
scores of 11 members of a women’s golf team in
two rounds of tournament play.
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Player 1 2 3 4 5 6 7 8 9 10 11

Round 1 89 90 87 95 86 81 105 83 88 91 79
Round 2 94 85 89 89 81 76 89 87 91 88 80

(a) Plot the data with the Round 1 scores on the x
axis and the Round 2 scores on the y axis. There is
a generally linear pattern except for one potentially
influential observation. Circle this observation on
your graph.

(b) Here are the equations of two least-squares
lines. One of them is calculated from all 11
data points and the other omits the influential
observation.

ŷ = 20.49 + 0.754x

ŷ = 50.01 + 0.410x

Draw both lines on your scatterplot. Which line
omits the influential observation? How do you
know this?

2.96 Climate change. Drilling down beneath a lake in
Alaska yields chemical evidence of past changes in
climate. Biological silicon, left by the skeletons of
single-celled creatures called diatoms, measures
the abundance of life in the lake. A rather complex
variable based on the ratio of certain isotopes
relative to ocean water gives an indirect measure
of moisture, mostly from snow. As we drill down,
we look farther into the past. Here are data from
2300 to 12,000 years ago:33

Isotope Silicon Isotope Silicon Isotope Silicon
(%) (mg/g) (%) (mg/g) (%) (mg/g)

−19.90 97 −20.71 154 −21.63 224
−19.84 106 −20.80 265 −21.63 237
−19.46 118 −20.86 267 −21.19 188
−20.20 141 −21.28 296 −19.37 337

(a) Make a scatterplot of silicon (response)
against isotope (explanatory). Ignoring the outlier,
describe the direction, form, and strength of the
relationship. The researchers say that this and
relationships among other variables they measured
are evidence for cyclic changes in climate that are
linked to changes in the sun’s activity.

(b) The researchers single out one point: “The open
circle in the plot is an outlier that was excluded
in the correlation analysis.” Circle this outlier
on your graph. What is the correlation with and
without this point? The point strongly influences
the correlation.

(c) Is the outlier also strongly influential for the
regression line? Calculate and draw on your graph
two regression lines, and discuss what you see.

2.97 City and highway gas mileage. Table 1.10 (page
31) gives the city and highway gas mileages for
21 two-seater cars, including the Honda Insight
gas-electric hybrid car. In Exercise 2.45 you
investigated the influence of the Insight on the
correlation between city and highway mileage.

(a) Make a scatterplot of highway mileage
(response) against city mileage (explanatory)
for all 21 cars.

(b) Use software or a graphing calculator to find
the regression line for predicting highway mileage
from city mileage and also the 21 residuals for this
regression. Make a residual plot with a horizontal
line at zero. (The “stacks” in the plot are due to the
fact that mileage is measured only to the nearest
mile per gallon.)

(c) Which car has the largest positive residual?
The largest negative residual?

(d) The Honda Insight, an extreme outlier, does
not have the largest residual in either direction.
Why is this not surprising?

2.98 Stride rate of runners. Runners are concerned
about their form when racing. One measure of
form is the stride rate, the number of steps taken
per second. As running speed increases, the stride
rate should also increase. In a study of 21 of the best
American female runners, researchers measured
the stride rate for different speeds. The following
table gives the speeds (in feet per second) and the
mean stride rates for these runners:34

Speed 15.86 16.88 17.50 18.62 19.97 21.06 22.11
Stride rate 3.05 3.12 3.17 3.25 3.36 3.46 3.55

(a) Plot the data with speed on the x axis and stride
rate on the y axis. Does a straight line adequately
describe these data?

(b) Find the equation of the regression line of
stride rate on speed. Draw this line on your plot.

(c) For each of the speeds given, obtain the
predicted value of the stride rate and the residual.
Verify that the residuals add to zero.

(d) Plot the residuals against speed. Describe the
pattern. What does the plot indicate about the
adequacy of the linear fit? Are there any potentially
influential observations?
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2.99 City and highway gas mileage. Continue your
work in Exercise 2.97. Find the regression line
for predicting highway mileage from city mileage
for the 20 two-seater cars other than the Honda
Insight. Draw both regression lines on your
scatterplot. Is the Insight very influential for the
least-squares line? (Look at the position of the
lines for city mileages between 10 and 30 MPG,
values that cover most cars.) What explains your
result?

2.100 Stride rate and running speed. Exercise 2.98
gives data on the mean stride rate of a group of
21 elite female runners at various running speeds.
Find the correlation between speed and stride rate.
Would you expect this correlation to increase or
decrease if we had data on the individual stride
rates of all 21 runners at each speed? Why?

2.101
AP

PLET

CAUTION

! Use the applet. It isn’t easy to guess
the position of the least-squares line

by eye. Use the Correlation and Regression applet
to compare a line you draw with the least-squares
line. Click on the scatterplot to create a group of
15 to 20 points from lower left to upper right with
a clear positive straight-line pattern (correlation
around 0.7). Click the “Draw line” button and use
the mouse to draw a line through the middle of
the cloud of points from lower left to upper right.
Note the “thermometer” that appears above the
plot. The red portion is the sum of the squared
vertical distances from the points in the plot to the
least-squares line. The green portion is the “extra”
sum of squares for your line—it shows by how
much your line misses the smallest possible sum
of squares.

(a) You drew a line by eye through the middle of
the pattern. Yet the right-hand part of the bar is
probably almost entirely green. What does that tell
you?

(b) Now click the “Show least-squares line” box. Is
the slope of the least-squares line smaller (the new
line is less steep) or larger (line is steeper) than
that of your line? If you repeat this exercise several
times, you will consistently get the same result. The
least-squares line minimizes the vertical distances of
the points from the line. It is not the line through the
“middle” of the cloud of points. This is one reason
why it is hard to draw a good regression line by
eye.

2.102
AP

PLET

Use the applet. Go to the Correlation and
Regression applet. Click on the scatterplot

to create a group of 10 points in the lower-left

corner of the scatterplot with a strong straight-line
pattern (correlation about −0.9). In Exercise 2.46
you started here to see that correlation r is not
resistant. Now click the “Show least-squares line”
box to display the regression line.

(a) Add one point at the upper left that is far from
the other 10 points but exactly on the regression
line. Why does this outlier have no effect on the
line even though it changes the correlation?

(b) Now drag this last point down until it is
opposite the group of 10 points. You see that one
end of the least-squares line chases this single
point, while the other end remains near the middle
of the original group of 10. What makes the last
point so influential?

2.103 Education and income. There is a strong positive
correlation between years of education and income
for economists employed by business firms. (In
particular, economists with doctorates earn more
than economists with only a bachelor’s degree.)
There is also a strong positive correlation between
years of education and income for economists
employed by colleges and universities. But when
all economists are considered, there is a negative
correlation between education and income. The
explanation for this is that business pays high
salaries and employs mostly economists with
bachelor’s degrees, while colleges pay lower
salaries and employ mostly economists with
doctorates. Sketch a scatterplot with two groups of
cases (business and academic) that illustrates how
a strong positive correlation within each group and
a negative overall correlation can occur together.
(Hint: Begin by studying Figure 2.26.)

2.104 Dangers of not looking at a plot. Table 2.6
presents four sets of data prepared by the
statistician Frank Anscombe to illustrate the
dangers of calculating without first plotting the
data.35

(a) Without making scatterplots, find the
correlation and the least-squares regression line
for all four data sets. What do you notice? Use the
regression line to predict y for x = 10.

(b) Make a scatterplot for each of the data sets and
add the regression line to each plot.

(c) In which of the four cases would you be
willing to use the regression line to describe the
dependence of y on x? Explain your answer in each
case.
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TABLE 2.6

Four data sets for exploring correlation and regression

Data Set A

x 10 8 13 9 11 14 6 4 12 7 5
y 8.04 6.95 7.58 8.81 8.33 9.96 7.24 4.26 10.84 4.82 5.68

Data Set B

x 10 8 13 9 11 14 6 4 12 7 5
y 9.14 8.14 8.74 8.77 9.26 8.10 6.13 3.10 9.13 7.26 4.74

Data Set C

x 10 8 13 9 11 14 6 4 12 7 5
y 7.46 6.77 12.74 7.11 7.81 8.84 6.08 5.39 8.15 6.42 5.73

Data Set D

x 8 8 8 8 8 8 8 8 8 8 19
y 6.58 5.76 7.71 8.84 8.47 7.04 5.25 5.56 7.91 6.89 12.50

2.5 Data Analysis for Two-Way Tables
When we study relationships between two variables, one of the first questions
we ask is whether each variable is quantitative or categorical. For two quantita-LOOK BACK

quantitative and
categorical variables,
page 4

tive variables, we use a scatterplot to examine the relationship, and we fit a line
to the data if the relationship is approximately linear. If one of the variables is
quantitative and the other is categorical, we can use the methods in Chapter 1
to describe the distribution of the quantitative variable for each value of the
categorical variable. This leaves us with the situation where both variables are
categorical. In this section we discuss methods for studying these relationships.

Some variables—such as gender, race, and occupation—are inherently cate-
gorical. Other categorical variables are created by grouping values of a quanti-
tative variable into classes. Published data are often reported in grouped form
to save space. To describe categorical data, we use the counts (frequencies) or
percents (relative frequencies) of individuals that fall into various categories.

The two-way table
A key idea in studying relationships between two variables is that both variables
must be measured on the same individuals or cases. When both variables are
categorical, the raw data are summarized in a two-way table that gives countstwo-way table
of observations for each combination of values of the two categorical variables.
Here is an example.

•

E
X

A
M

P
L

E 2.27 Binge drinking by college students. Alcohol abuse has been de-
scribed by college presidents as the number one problem on campus, and it is
an important cause of death in young adults. How common is it? A survey of
17,096 students in U.S. four-year colleges collected information on drinking
behavior and alcohol-related problems.36 The researchers defined “frequent
binge drinking” as having five or more drinks in a row three or more times in
the past two weeks. Here is the two-way table classifying students by gender
and whether or not they are frequent binge drinkers:
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•

Two-way table for frequent binge drinking and gender

Gender

Frequent binge drinker Men Women

Yes 1630 1684
No 5550 8232

We see that there are 1630 male students who are frequent binge drinkers and
5550 male students who are not.

USE YOUR KNOWLEDGE
2.105 Read the table. How many female students are binge drinkers? How

many are not?

For the binge-drinking example, we could view gender as an explanatory
variable and frequent binge drinking as a response variable. This is why we
put gender in the columns (like the x axis in a regression) and frequent binge
drinking in the rows (like the y axis in a regression). We call binge drinking the
row variable because each horizontal row in the table describes the drinkingrow and

column variables behavior. Gender is the column variable because each vertical column de-
scribes one gender group. Each combination of values for these two variables
is called a cell. For example, the cell corresponding to women who are notcell
frequent binge drinkers contains the number 8232. This table is called a 2 × 2
table because there are 2 rows and 2 columns.

To describe relationships between two categorical variables, we compute
different types of percents. Our job is easier if we expand the basic two-way
table by adding various totals. We illustrate the idea with our binge-drinking
example.

•

•

E
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L

E 2.28 Add the margins to the table. We expand the table in Example 2.27
by adding the totals for each row, for each column, and the total number of
all of the observations. Here is the result:

Two-way table for frequent binge drinking and gender

Gender

Frequent binge drinker Men Women Total

Yes 1,630 1,684 3,314
No 5,550 8,232 13,782

Total 7,180 9,916 17,096

In this study there are 7180 male students. The total number of binge
drinkers is 3314 and the total number of individuals in the study is 17,096.
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USE YOUR KNOWLEDGE
2.106 Read the margins of the table. How many women are subjects in

the binge-drinking study? What is the total number of students who
are not binge drinkers?

In this example, be sure that you understand how the table is obtained from
the raw data. Think about a data file with one line per subject. There would be

CAUTION

!
17,096 lines or records in this data set. In the two-way table, each individual is
counted once and only once. As a result, the sum of the counts in the table is the
total number of individuals in the data set. Most errors in the use of categorical-
data methods come from a misunderstanding of how these tables are constructed.

Joint distribution
We are now ready to compute some proportions that help us understand the
data in a two-way table. Suppose that we are interested in the men who are
binge drinkers. The proportion of these is simply 1630 divided by 17,096, or
0.095. We would estimate that 9.5% of college students are male frequent binge
drinkers. For each cell, we can compute a proportion by dividing the cell entry
by the total sample size. The collection of these proportions is the joint distri-joint distribution
bution of the two categorical variables.

•

•
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E 2.29 The joint distribution. For the binge-drinking example, the joint
distribution of binge drinking and gender is

Joint distribution of frequent binge drinking and gender

Gender

Frequent binge drinker Men Women

Yes 0.095 0.099
No 0.325 0.482

Because this is a distribution, the sum of the proportions should be 1. For this
example the sum is 1.001. The difference is due to roundoff error.

USE YOUR KNOWLEDGE
2.107 Explain the computation. Explain how the entry for the women

who are not binge drinkers in Example 2.29 is computed from the
table in Example 2.28.

From the joint distribution we see that the proportions of men and women
frequent binge drinkers are similar in the population of college students. For
the men we have 9.5%; the women are slightly higher at 9.9%. Note, how-
ever, that the proportion of women who are not frequent binge drinkers is also
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higher than the proportion of men. One reason for this is that there are more
women in the sample than men. To understand this set of data we will need to
do some additional calculations. Let’s look at the distribution of gender.

Marginal distributions
When we examine the distribution of a single variable in a two-way table, we
are looking at a marginal distribution. There are two marginal distributions,marginal distribution
one for each categorical variable in the two-way table. They are very easy to
compute.

•

•
E

X
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L
E 2.30 The marginal distribution of gender. Look at the table in Example

2.28. The total numbers of men and women are given in the bottom row,
labeled “Total.” Our sample has 7180 men and 9916 women. To find the
marginal distribution of gender we simply divide these numbers by the total
sample size, 17,096. The marginal distribution of gender is

Marginal distribution of gender

Men Women

Proportion 0.420 0.580

Note that the proportions sum to 1; there is no roundoff error.

Often we prefer to use percents rather than proportions. Here is the marginal
distribution of gender described with percents:

Marginal distribution of gender

Men Women

Percent 42.0% 58.0%

Which form do you prefer?
The other marginal distribution for this example is the distribution of binge

drinking.

•

•
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E 2.31 The marginal distribution in percents. Here is the marginal distri-
bution of the frequent-binge-drinking variable (in percents):

Marginal distribution of
frequent binge drinking

Yes No

Percent 19.4% 80.6%
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USE YOUR KNOWLEDGE
2.108 Explain the marginal distribution. Explain how the marginal dis-

tribution of frequent binge drinking given in Example 2.31 is com-
puted from the entries in the table given in Example 2.28.

Each marginal distribution from a two-way table is a distribution for a
single categorical variable. We can use a bar graph or a pie chart to displayLOOK BACK

bar graphs and pie
charts, page 6

such a distribution. For our two-way table, we will be content with numeri-
cal summaries: for example, 58% of these college students are women, and
19.4% of the students are frequent binge drinkers. When we have more rows
or columns, the graphical displays are particularly useful.

Describing relations in two-way tables
The table in Example 2.29 contains much more information than the two
marginal distributions of gender alone and frequent binge drinking alone.
We need to do a little more work to examine the relationship. Relationships
among categorical variables are described by calculating appropriate percents
from the counts given. What percents do you think we should use to describe
the relationship between gender and frequent binge drinking?

•

•
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E 2.32 Women who are frequent binge drinkers. What percent of the
women in our sample are frequent binge drinkers? This is the count of the
women who are frequent binge drinkers as a percent of the number of women
in the sample:

1684
9916

= 0.170 = 17.0%

USE YOUR KNOWLEDGE
2.109 Find the percent. Show that the percent of men who are frequent

binge drinkers is 22.7%.

Recall that when we looked at the joint distribution of gender and binge
drinking, we found that among all college students in the sample, 9.5% were
male frequent binge drinkers and 9.9% were female frequent binge drinkers.
The percents are fairly similar because the counts for these two groups, 1630
and 1684, are close. The calculations that we just performed, however, give us a
different view. When we look separately at women and men, we see that the pro-
portions of frequent binge drinkers are somewhat different, 17.0% for women
versus 22.7% for men.

Conditional distributions
In Example 2.32 we looked at the women alone and examined the distribution
of the other categorical variable, frequent binge drinking. Another way to say



2.5 Data Analysis for Two-Way Tables
•

147

this is that we conditioned on the value of gender being female. Similarly, we
can condition on the value of gender being male. When we condition on the
value of one variable and calculate the distribution of the other variable, we
obtain a conditional distribution. Note that in Example 2.32 we calculatedconditional distribution
only the percent for frequent binge drinking. The complete conditional distri-
bution gives the proportions or percents for all possible values of the condition-
ing variable.
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E 2.33 Conditional distribution of binge drinking for women. For
women, the conditional distribution of the binge-drinking variable in terms
of percents is

Conditional distribution of binge
drinking for women

Yes No

Percent 17.0% 83.0%

Note that we have included the percents for both of the possible values, Yes
and No, of the binge-drinking variable. These percents sum to 100%.

USE YOUR KNOWLEDGE
2.110 A conditional distribution. Perform the calculations to show that

the conditional distribution of binge drinking for men is

Conditional distribution of binge
drinking for men

Yes No

Percent 22.7% 77.3%

Comparing the conditional distributions (Example 2.33 and Exercise 2.110)
reveals the nature of the association between gender and frequent binge drink-
ing. In this set of data the men are more likely to be frequent binge drinkers
than the women.

Bar graphs can help us to see relationships between two categorical vari-
ables. No single graph (such as a scatterplot) portrays the form of the relation-
ship between categorical variables, and no single numerical measure (such as
the correlation) summarizes the strength of an association. Bar graphs are flex-
ible enough to be helpful, but you must think about what comparisons you
want to display. For numerical measures, we must rely on well-chosen percents
or on more advanced statistical methods.37
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A two-way table contains a great deal of information in compact form. Making
that information clear almost always requires finding percents. You must decide
which percents you need. Of course, we prefer to use software to compute the

CAUTION

!
joint, marginal, and conditional distributions.
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E 2.34 Software output. Figure 2.27 gives computer output for the data
in Example 2.27 using SPSS, Minitab, and SAS. There are minor variations
among software packages, but these are typical of what is usually produced.
Each cell in the 2 × 2 table has four entries. These are the count (the num-
ber of observations in the cell), the conditional distributions for rows and
columns, and the joint distribution. Note that all of these are expressed as
percents rather than proportions. Marginal totals and distributions are given
in the rightmost column and the bottom row.

Most software packages order the row and column labels numerically or al-
phabetically. In general, it is better to use words rather than numbers for the
column labels. This sometimes involves some additional work but it avoids the
kind of confusion that can result when you forget the real values associated
with each numerical value. You should verify that the entries in Figure 2.27
correspond to the calculations that we performed in Examples 2.29 to 2.33. In
addition, verify the calculations for the conditional distributions of gender for
each value of the frequent-binge-drinking variable.

Simpson’s paradox
As is the case with quantitative variables, the effects of lurking variables can
strongly influence relationships between two categorical variables. Here is an
example that demonstrates the surprises that can await the unsuspecting con-
sumer of data.

FIGURE 2.27 Computer output
for the binge-drinking study in
Example 2.34. (continued)
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FIGURE 2.27 (Continued)
Computer output for the
binge-drinking study in
Example 2.34.
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E 2.35 Flight delays. Air travelers would like their flights to arrive on time.
Airlines collect data on on-time arrivals and report them to the government.
Following are one month’s data for flights from two western cities for two
airlines:

Alaska Airlines America West

On time 718 5534
Delayed 74 532

Total 792 6066

Alaska Airlines is delayed 9.3% (74/792) of the time, and America West is
delayed only 8.8% (532/6066) of the time. It seems that you should choose
America West to minimize delays.

Some cities are more likely to have delays than others, however. If we con-
sider which city the flights left from in our analysis, we obtain a more complete
picture of the two airlines’ on-time flights.
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E 2.36 Is there a difference between Los Angeles and Phoenix? Here
are the data broken down by which city each flight left from.38 Check that
the entries in the original two-way table are just the sums of the city entries
in this table.

Los Angeles Phoenix

On time Delayed Total On time Delayed Total

Alaska Airlines 497 62 559 221 12 233
America West 694 117 811 4840 415 5255

Alaska Airlines beats America West for flights from Los Angeles: only
11.1% (62/559) delayed compared with 14.4% (117/811) for America West.
Alaska Airlines wins again for flights from Phoenix, with 5.2% (12/233) de-
layed versus 7.9% (415/5255). So Alaska Airlines is the better choice for both
Los Angeles and Phoenix.

The city of origin for each flight is a lurking variable when we compare the
late-flight percents of the two airlines. When we ignore the lurking variable,
America West seems better, even though Alaska Airlines does better for each
city. How can Alaska Airlines do better for both cities, yet do worse overall? Let’s
look at the data. Seventy-one percent (559/792) of Alaska Airlines flights are
from Los Angeles, where there are more delays for both airlines. On the other
hand, 87% of the America West flights are from Phoenix, where there are few
delays. The original two-way table, which did not take account of the city of origin

CAUTION

!
for each flight, was misleading. This example illustrates Simpson’s paradox.
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SIMPSON’S PARADOX

An association or comparison that holds for all of several groups can re-
verse direction when the data are combined to form a single group. This
reversal is called Simpson’s paradox.

The lurking variables in Simpson’s paradox are categorical. That is, they
break the observations into groups, such as the city of origin for the airline
flights. Simpson’s paradox is an extreme form of the fact that observed associa-
tions can be misleading when there are lurking variables.

CAUTION

!

The perils of aggregation
The flight data in Example 2.36 are given in a three-way table that reports thethree-way table
frequencies of each combination of levels of three categorical variables: city,
airline, and delayed or not. We present a three-way table as two or more two-
way tables, one for each level of the third variable. In Example 2.36, there is a
separate table of airline versus delayed or not for each city. We can obtain the
original two-way table by adding the corresponding entries in these tables. This
is called aggregating the data. Aggregation has the effect of ignoring the cityaggregation
variable, which then becomes a lurking variable. Conclusions that seem obvious

CAUTION

! when we look only at aggregated data can become debatable when we examine
lurking variables.

SECTION 2.5 Summary

A two-way table of counts organizes data about two categorical variables. Val-
ues of the row variable label the rows that run across the table, and values of
the column variable label the columns that run down the table. Two-way tables
are often used to summarize large amounts of data by grouping outcomes into
categories.

The joint distribution of the row and column variables is found by dividing
the count in each cell by the total number of observations.

The row totals and column totals in a two-way table give the marginal dis-
tributions of the two variables separately. It is clearer to present these distri-
butions as percents of the table total. Marginal distributions do not give any
information about the relationship between the variables.

To find the conditional distribution of the row variable for one specific value
of the column variable, look only at that one column in the table. Find each
entry in the column as a percent of the column total.

There is a conditional distribution of the row variable for each column in the
table. Comparing these conditional distributions is one way to describe the as-
sociation between the row and the column variables. It is particularly useful
when the column variable is the explanatory variable. When the row variable
is explanatory, find the conditional distribution of the column variable for each
row and compare these distributions.
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Bar graphs are a flexible means of presenting categorical data. There is no sin-
gle best way to describe an association between two categorical variables.

We present data on three categorical variables in a three-way table, printed as
separate two-way tables for each level of the third variable. A comparison be-
tween two variables that holds for each level of a third variable can be changed
or even reversed when the data are aggregated by summing over all levels of
the third variable. Simpson’s paradox refers to the reversal of a comparison
by aggregation. It is an example of the potential effect of lurking variables on
an observed association.

SECTION 2.5 Exercises
For Exercise 2.105, see page 143; for Exercises 2.106 and
2.107, see page 144; for Exercises 2.108 and 2.109, see page
146; and for Exercise 2.110, see page 147.

2.111 Full-time and part-time college students. The
Census Bureau provides estimates of numbers of
people in the United States classified in various
ways.39 Let’s look at college students. The following
table gives us data to examine the relation between
age and full-time or part-time status. The numbers
in the table are expressed as thousands of U.S.
college students.

U.S. college students by age and status

Status

Age Full-time Part-time

15–19 3388 389
20–24 5238 1164
25–34 1703 1699
35 and over 762 2045

(a) What is the U.S. Census Bureau estimate of the
number of full-time college students aged 15 to 19?

(b) Give the joint distribution of age and status for
this table.

(c) What is the marginal distribution of age?
Display the results graphically.

(d) What is the marginal distribution of status?
Display the results graphically.

2.112 Condition on age. Refer to the previous exercise.
Find the conditional distribution of status for each
of the four age categories. Display the distributions
graphically and summarize their differences and
similarities.

2.113 Condition on status. Refer to the previous two
exercises. Compute the conditional distribution of

age for each of the two status categories. Display
the distributions graphically and write a short
paragraph describing the distributions and how
they differ.

2.114 Enrollment of recent high school graduates. The
table below gives some census data concerning the
enrollment status of recent high school graduates
aged 16 to 24 years.40 The table entries are in
thousands of students.

Enrollment and gender

Status Men Women

Two-year college, full-time 890 969
Two-year college, part-time 340 403
Four-year college, full-time 2897 3321
Four-year college, part-time 249 383
Graduate school 306 366
Vocational school 160 137

(a) How many male recent high school graduates
aged 16 to 24 years were enrolled full-time in
two-year colleges?

(b) Give the marginal distribution of gender for
these students. Display the results graphically.

(c) What is the marginal distribution of status for
these students? Display the results graphically.

2.115 Condition on status. Refer to the previous
exercise. Find the conditional distribution of
gender for each status. Describe the distributions
graphically and write a short summary comparing
the major features of these distributions.

2.116 Condition on gender. Refer to the previous two
exercises. Find the conditional distribution of
status for each gender. Describe the distributions
graphically and write a short summary comparing
the major features of these distributions.
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2.117 Complete the table. Here are the row and column
totals for a two-way table with two rows and two
columns:

a b 200
c d 200

200 200 400

Find two different sets of counts a, b, c, and d
for the body of the table that give these same
totals. This shows that the relationship between
two variables cannot be obtained from the two
individual distributions of the variables.

2.118 Construct a table with no association. Construct
a 3 × 3 table of counts where there is no apparent
association between the row and column variables.

2.119 Survey response rates. A market research firm
conducted a survey of companies in its state. They
mailed a questionnaire to 300 small companies,
300 medium-sized companies, and 300 large
companies. The rate of nonresponse is important
in deciding how reliable survey results are. Here
are the data on response to this survey:

Response

Size of company Yes No Total

Small 175 125 300
Medium 145 155 300
Large 120 180 300

(a) What was the overall percent of nonresponse?

(b) Describe how nonresponse is related to the
size of the business. (Use percents to make your
statements precise.)

(c) Draw a bar graph to compare the nonresponse
percents for the three size categories.

(d) Using the total number of responses as a base,
compute the percent of responses that come from
each of small, medium, and large businesses.

(e) The sampling plan was designed to obtain
equal numbers of responses from small, medium,
and large companies. In preparing an analysis
of the survey results, do you think it would
be reasonable to proceed as if the responses
represented companies of each size equally?

2.120 Career plans of young women and men. A study
of the career plans of young women and men sent

questionnaires to all 722 members of the senior
class in the College of Business Administration at
the University of Illinois. One question asked which
major within the business program the student
had chosen.41 Here are the data from the students
who responded:

Gender

Major Female Male

Accounting 68 56
Administration 91 40
Economics 5 6
Finance 61 59

(a) Describe the differences between the
distributions of majors for women and men
with percents, with a graph, and in words.

(b) What percent of the students did not respond
to the questionnaire? The nonresponse weakens
conclusions drawn from these data.

2.121 Treatment for cocaine addiction. Cocaine
addiction can be difficult to overcome. Since
addicts derive pleasure from the drug, one
proposed aid is to provide an antidepressant
drug. A 3-year study with 72 chronic cocaine
users compared an antidepressant drug called
desipramine with lithium and a placebo. (Lithium
is a standard drug to treat cocaine addiction. A
placebo is a tablet with no effects that tastes and
looks like the antidepressant drug. It is used so
that the effect of being in the study but not taking
the antidepressant drug can be seen.) One-third
of the subjects, chosen at random, received each
treatment.42 Here are the results:

Cocaine relapse?

Treatment Yes No

Desipramine 10 14
Lithium 18 6
Placebo 20 4

Compare the effectiveness of the three treatments
in preventing relapse. Use percents and draw a bar
graph. Write a brief summary of your conclusions.
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2.6 The Question of Causation
In many studies of the relationship between two variables, the goal is to estab-
lish that changes in the explanatory variable cause changes in the response
variable. Even when a strong association is present, the conclusion that this
association is due to a causal link between the variables is often hard to find.
What ties between two variables (and others lurking in the background) can
explain an observed association? What constitutes good evidence for causa-
tion? We begin our consideration of these questions with a set of examples.
In each case, there is a clear association between an explanatory variable x
and a response variable y. Moreover, the association is positive whenever the
direction makes sense.
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E 2.37 Observed associations. Here are some examples of observed asso-
ciation between x and y:

1. x = mother’s body mass index
y = daughter’s body mass index

2. x = amount of the artificial sweetener saccharin in a rat’s diet
y = count of tumors in the rat’s bladder

3. x = a student’s SAT score as a high school senior
y = a student’s first-year college grade point average

4. x = monthly flow of money into stock mutual funds
y = monthly rate of return for the stock market

5. x = whether a person regularly attends religious services
y = how long the person lives

6. x = the number of years of education a worker has
y = the worker’s income

Explaining association: causation
Figure 2.28 shows in outline form how a variety of underlying links between
variables can explain association. The dashed double-arrow line represents
an observed association between the variables x and y. Some associations

x y x y
?

?

x y

zz

Causation Common response Confounding
(b)(a) (c)

FIGURE 2.28 Some possible
explanations for an observed
association. The dashed
double-arrow lines show an
association. The solid arrows
show a cause-and-effect link. The
variable x is explanatory, y is a
response variable, and z is a
lurking variable.
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are explained by a direct cause-and-effect link between these variables. The
first diagram in Figure 2.28 shows “x causes y” by a solid arrow running from
x to y.

Items 1 and 2 in Example 2.37 are examples of direct causation. Thinking
about these examples, however, shows that “causation” is not a simple idea.
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E 2.38 Body mass index of mothers and daughters. A study of Mexican
American girls aged 9 to 12 years recorded body mass index (BMI), a mea-
sure of weight relative to height, for both the girls and their mothers. People
with high BMI are overweight or obese. The study also measured hours of
television, minutes of physical activity, and intake of several kinds of food.
The strongest correlation (r = 0.506) was between the BMI of daughters and
the BMI of their mothers.43

Body type is in part determined by heredity. Daughters inherit half their
genes from their mothers. There is therefore a direct causal link between the
BMI of mothers and daughters. Yet the mothers’ BMIs explain only 25.6%
(that’s r2 again) of the variation among the daughters’ BMIs. Other factors,
such as diet and exercise, also influence BMI. Even when direct causation
is present, it is rarely a complete explanation of an association between two
variables.

CAUTION

!

The best evidence for causation comes from experiments that actually
change x while holding all other factors fixed. If y changes, we have good reason
to think that x caused the change in y.
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E 2.39 Saccharin and bladder tumors in rats. Experiments show that
large amounts of saccharin—about 5% of the entire diet—cause bladder tu-
mors in rats. Should we avoid saccharin as a replacement for sugar in food?
Rats are not people. Although we can’t experiment with people, studies of
people who consume different amounts of saccharin fail to find an associa-
tion between saccharin and bladder tumors.44 Even well-established causal
relations may not generalize to other settings.

CAUTION

!

Explaining association: common response
“Beware the lurking variable” is good advice when thinking about an asso-
ciation between two variables. The second diagram in Figure 2.28 illustrates
common response. The observed association between the variables x and y iscommon response
explained by a lurking variable z. Both x and y change in response to changes
in z. This common response creates an association even though there may be
no direct causal link between x and y.

The third and fourth items in Example 2.37 illustrate how common response
can create an association.
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E 2.40 SAT scores and college grades. Students who are smart and who
have learned a lot tend to have both high SAT scores and high college grades.
The positive correlation is explained by this common response to students’
ability and knowledge.
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E 2.41 Stock market performance and investments in mutual funds.

There is a strong positive correlation between how much money individu-
als add to mutual funds each month and how well the stock market does
the same month. Is the new money driving the market up? The correlation
may be explained in part by common response to underlying investor sen-
timent: when optimism reigns, individuals send money to funds and large
institutions also invest more. The institutions would drive up prices even if
individuals did nothing. In addition, what causation there is may operate in
the other direction: when the market is doing well, individuals rush to add
money to their mutual funds.45

Explaining association: confounding
We noted in Example 2.38 that inheritance no doubt explains part of the asso-
ciation between the body mass indexes (BMIs) of daughters and their mothers.
Can we use r or r2 to say how much inheritance contributes to the daughters’
BMIs? No. It may well be that mothers who are overweight also set an example
of little exercise, poor eating habits, and lots of television. Their daughters
pick up these habits to some extent, so the influence of heredity is mixed up
with influences from the girls’ environment. We call this mixing of influences
confounding.

CONFOUNDING

Two variables are confounded when their effects on a response variable
cannot be distinguished from each other. The confounded variables may
be either explanatory variables or lurking variables.

When many variables interact with each other, confounding of several vari-
ables often prevents us from drawing conclusions about causation. The third
diagram in Figure 2.28 illustrates confounding. Both the explanatory variable
x and the lurking variable z may influence the response variable y. Because x is
confounded with z, we cannot distinguish the influence of x from the influence
of z. We cannot say how strong the direct effect of x on y is. In fact, it can be
hard to say if x influences y at all.

The last two associations in Example 2.37 (Items 5 and 6) are explained in
part by confounding.
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E 2.42 Religion and a long life. Many studies have found that people who
are active in their religion live longer than nonreligious people. But people
who attend church or mosque or synagogue also take better care of them-
selves than nonattenders. They are less likely to smoke, more likely to exer-
cise, and less likely to be overweight. The effects of these good habits are con-
founded with the direct effects of attending religious services.
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E 2.43 Education and income. It is likely that more education is a cause of

higher income—many highly paid professions require advanced education.
However, confounding is also present. People who have high ability and come
from prosperous homes are more likely to get many years of education than
people who are less able or poorer. Of course, people who start out able and
rich are more likely to have high earnings even without much education. We
can’t say how much of the higher income of well-educated people is actually
caused by their education.

Many observed associations are at least partly explained by lurking vari-
ables. Both common response and confounding involve the influence of a lurk-
ing variable (or variables) z on the response variable y. The distinction between
these two types of relationship is less important than the common element, the
influence of lurking variables. The most important lesson of these examples is
one we have already emphasized: even a very strong association between
two variables is not by itself good evidence that there is a cause-and-effect
link between the variables.

Establishing causation
How can a direct causal link between x and y be established? The best method—
indeed, the only fully compelling method—of establishing causation is to
conduct a carefully designed experiment in which the effects of possible lurk-
ing variables are controlled. Chapter 3 explains how to design convincing
experiments.

Many of the sharpest disputes in which statistics plays a role involve ques-
tions of causation that cannot be settled by experiment. Does gun control
reduce violent crime? Does living near power lines cause cancer? Has “out-
sourcing” work to overseas locations reduced overall employment in the United
States? All of these questions have become public issues. All concern associa-
tions among variables. And all have this in common: they try to pinpoint cause
and effect in a setting involving complex relations among many interacting
variables. Common response and confounding, along with the number of po-
tential lurking variables, make observed associations misleading. Experiments
are not possible for ethical or practical reasons. We can’t assign some people
to live near power lines or compare the same nation with and without strong
gun controls.
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E 2.44 Power lines and leukemia. Electric currents generate magnetic
fields. So living with electricity exposes people to magnetic fields. Living
near power lines increases exposure to these fields. Really strong fields
can disturb living cells in laboratory studies. Some people claim that the
weaker fields we experience if we live near power lines cause leukemia
in children.

It isn’t ethical to do experiments that expose children to magnetic fields.
It’s hard to compare cancer rates among children who happen to live in more
and less exposed locations because leukemia is rare and locations vary in
many ways other than magnetic fields. We must rely on studies that compare
children who have leukemia with children who don’t.

A careful study of the effect of magnetic fields on children took five years
and cost $5 million. The researchers compared 638 children who had leukemia
and 620 who did not. They went into the homes and actually measured the
magnetic fields in the children’s bedrooms, in other rooms, and at the front
door. They recorded facts about nearby power lines for the family home and
also for the mother’s residence when she was pregnant. Result: no evidence
of more than a chance connection between magnetic fields and childhood
leukemia.46

“No evidence” that magnetic fields are connected with childhood leukemia
doesn’t prove that there is no risk. It says only that a careful study could not find
any risk that stands out from the play of chance that distributes leukemia cases
across the landscape. Critics continue to argue that the study failed to measure
some lurking variables, or that the children studied don’t fairly represent all
children. Nonetheless, a carefully designed study comparing children with and
without leukemia is a great advance over haphazard and sometimes emotional
counting of cancer cases.

•

•

E
X

A
M

P
L

E 2.45 Smoking and lung cancer. Despite the difficulties, it is sometimes
possible to build a strong case for causation in the absence of experiments.
The evidence that smoking causes lung cancer is about as strong as nonex-
perimental evidence can be.

Doctors had long observed that most lung cancer patients were smokers.
Comparison of smokers and similar nonsmokers showed a very strong associ-
ation between smoking and death from lung cancer. Could the association be
due to common response? Might there be, for example, a genetic factor that
predisposes people both to nicotine addiction and to lung cancer? Smoking
and lung cancer would then be positively associated even if smoking had no
direct effect on the lungs. Or perhaps confounding is to blame. It might be
that smokers live unhealthy lives in other ways (diet, alcohol, lack of exer-
cise) and that some other habit confounded with smoking is a cause of lung
cancer. How were these objections overcome?

Let’s answer this question in general terms: What are the criteria for estab-
lishing causation when we cannot do an experiment?
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• The association is strong. The association between smoking and lung cancer
is very strong.

• The association is consistent. Many studies of different kinds of people in
many countries link smoking to lung cancer. That reduces the chance that a
lurking variable specific to one group or one study explains the association.

• Higher doses are associated with stronger responses. People who smoke more
cigarettes per day or who smoke over a longer period get lung cancer more
often. People who stop smoking reduce their risk.

• The alleged cause precedes the effect in time. Lung cancer develops after years
of smoking. The number of men dying of lung cancer rose as smoking became
more common, with a lag of about 30 years. Lung cancer kills more men than
any other form of cancer. Lung cancer was rare among women until women
began to smoke. Lung cancer in women rose along with smoking, again with
a lag of about 30 years, and has now passed breast cancer as the leading cause
of cancer death among women.

• The alleged cause is plausible. Experiments with animals show that tars from
cigarette smoke do cause cancer.

Medical authorities do not hesitate to say that smoking causes lung cancer.
The U.S. surgeon general states that cigarette smoking is “the largest avoidable
cause of death and disability in the United States.”47 The evidence for causa-
tion is overwhelming—but it is not as strong as the evidence provided by well-
designed experiments.

SECTION 2.6 Summary

Some observed associations between two variables are due to a cause-and-
effect relationship between these variables, but others are explained by lurk-
ing variables.

The effect of lurking variables can operate through common response if
changes in both the explanatory and response variables are caused by changes
in lurking variables. Confounding of two variables (either explanatory or lurk-
ing variables) means that we cannot distinguish their effects on the response
variable.

That an association is due to causation is best established by an experiment
that changes the explanatory variable while controlling other influences on the
response.

In the absence of experimental evidence, be cautious in accepting claims of
causation. Good evidence of causation requires a strong association that ap-
pears consistently in many studies, a clear explanation for the alleged causal
link, and careful examination of possible lurking variables.

SECTION 2.6 Exercises
2.122 Online courses. Many colleges offer online

versions of some courses that are also taught in
the classroom. It often happens that the students
who enroll in the online version do better than

the classroom students on the course exams.This
does not show that online instruction is more
effective than classroom teaching, because the
kind of people who sign up for online courses are
often quite different from the classroom students.
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Suggest some student characteristics that you think
could be confounded with online versus classroom.
Use a diagram like Figure 2.28(c) (page 154) to
illustrate your ideas.

2.123 Marriage and income. Data show that men
who are married, and also divorced or widowed
men, earn quite a bit more than men who have
never been married. This does not mean that a
man can raise his income by getting married.
Suggest several lurking variables that you think
are confounded with marital status and that help
explain the association between marital status
and income. Use a diagram like Figure 2.28(c) to
illustrate your ideas.

2.124 CEO compensation and layoffs. “Based on
an examination of twenty-two companies that
announced large layoffs during 1994, Downs found
a strong (.31) correlation between the size of the
layoffs and the compensation of the CEOs.”48 This
correlation is probably explained by common
response to a lurking variable, the size of the
company as measured by its number of employees.
Explain how common response could create the
observed correlation. Use a diagram like Figure
2.28(b) to illustrate your explanation.

2.125 Exercise and self-confidence. A college fitness
center offers an exercise program for staff members
who choose to participate. The program assesses
each participant’s fitness, using a treadmill test, and
also administers a personality questionnaire. There
is a moderately strong positive correlation between
fitness score and score for self-confidence. Is this
good evidence that improving fitness increases
self-confidence? Explain why or why not.

2.126 C
H

ALLENG
E Health and income. An article entitled

“The Health and Wealth of Nations” says:
“The positive correlation between health and
income per capita is one of the best-known
relations in international development. This
correlation is commonly thought to reflect a
causal link running from income to health. . . .

Recently, however, another intriguing possibility
has emerged: that the health-income correlation is
partly explained by a causal link running the other
way—from health to income.”49

Explain how higher income in a nation can
cause better health. Then explain how better health
can cause higher national income. There is no
simple way to determine the direction of the link.

2.127 Music and academic performance. The
Kalamazoo (Michigan) Symphony once advertised

a “Mozart for Minors” program with this statement:
“Question: Which students scored 51 points higher
in verbal skills and 39 points higher in math?
Answer: Students who had experience in music.”50

In fact, good academic performance and early
exposure to classical music are in part common
responses to lurking variables. What background
information about students could explain the
association? Use a diagram like Figure 2.28(b) to
show the situation.

2.128 Coaching for the SAT. A study finds that high
school students who take the SAT, enroll in an SAT
coaching course, and then take the SAT a second
time raise their SAT Mathematics scores from
a mean of 521 to a mean of 561.51 What factors
other than “taking the course causes higher scores”
might explain this improvement?

2.129 Computer chip manufacturing and miscar-
riages. A study showed that women who work in
the production of computer chips have abnormally
high numbers of miscarriages. The union claimed
that exposure to chemicals used in production
caused the miscarriages. Another possible
explanation is that these workers spend most
of their work time standing up. Illustrate these
relationships in a diagram like those in Figure
2.28.

2.130 Hospital size and length of stay. A study shows
that there is a positive correlation between the size
of a hospital (measured by its number of beds x)
and the median number of days y that patients
remain in the hospital. Does this mean that you
can shorten a hospital stay by choosing a small
hospital? Use a diagram like those in Figure 2.28
to explain the association.

2.131 Watching TV and low grades. Children who
watch many hours of television get lower grades
in school on the average than those who watch
less TV. Explain clearly why this fact does not
show that watching TV causes poor grades. In
particular, suggest some other variables that may
be confounded with heavy TV viewing and may
contribute to poor grades.

2.132 Artificial sweeteners. People who use artificial
sweeteners in place of sugar tend to be heavier
than people who use sugar. Does this mean that
artificial sweeteners cause weight gain? Give a
more plausible explanation for this association.
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2.133 Exercise and mortalty. A sign in a fitness center
says, “Mortality is halved for men over 65 who walk
at least 2 miles a day.”

(a) Mortality is eventually 100% for everyone.
What do you think “mortality is halved” means?

(b) Assuming that the claim is true, explain why
this fact does not show that exercise causes lower
mortality.

2.134 Self-esteem and work performance. People who
do well tend to feel good about themselves. Perhaps
helping people feel good about themselves will help
them do better in their jobs and in life. Raising self-
esteem became for a time a goal in many schools
and companies. Can you think of explanations for
the association between high self-esteem and good
performance other than “self-esteem causes better
work”?

CHAPTER 2 Exercises

2.135 Graduation rates. One of the factors used
to evaluate undergraduate programs is the
proportion of incoming students who graduate.
This quantity, called the graduation rate, can be
predicted by other variables such as the SAT or
ACT scores and the high school record of the
incoming students. One of the components that
U.S. News & World Report uses when evaluating
colleges is the difference between the actual
graduation rate and the rate predicted by a
regression equation.52 In this chapter, we call this
quantity the residual. Explain why the residual is
a better measure to evaluate college graduation
rates than the raw graduation rate.

2.136 C
H

ALLENG
E Eating fruits and vegetables and

smoking. The Centers for Disease
Prevention and Control (CDC) Behavioral Risk
Factor Surveillance System (BRFSS) collects data
related to health conditions and risk behaviors.53

Aggregated data by state are in the BRFSS data
set described in the Data Appendix. Figure 2.29 is
really a plot of two of the BRFSS variables. Fruits
& Vegetables is the percent of adults in the state
who report eating at least five servings of fruits
and vegetables per day; Smoking is the percent
who smoke every day. Table 2.7 (on page 162)
gives the data for this exercise.

(a) Describe the relationship between Fruits &
Vegetables and Smoking. Explain why you might
expect this type of association.

(b) Find the correlation between the two variables.

(c) For Utah, 22.1% eat at least five servings of
fruits and vegetables per day and 8.5% smoke
every day. Find Utah on the plot and describe its
position relative to the other states.

(d) For California, the percents are 28.9% for
Fruits & Vegetables and 9.8% for Smoking. Find
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FIGURE 2.29 Fruits & Vegetables versus Smoking with
least-squares regression line, for Exercise 2.136.

California on the plot and describe its position
relative to the other states.

(e) Pick your favorite state and write a short
summary of its position relative to states that you
would consider to be similar. Then use Table 2.7
to determine if your idea is supported by the data.
Summarize your results.

2.137 C
H

ALLENG
E Eating fruits and vegetables and

education. Refer to the previous exercise.
The BRFSS data set contains a variable called
EdCollege, the proportion of adults who have
completed college.

(a) Plot the data with FruitVeg5 on the x axis
and EdCollege on the y axis. Describe the overall
pattern of the data.

(b) Add the least-squares regression line to your
plot. Does the line give a summary of the overall
pattern? Explain your answer.
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TABLE 2.7

Fruit and vegetable consumption and smoking

Fruits & Vegetables Smoking Fruits & Vegetables Smoking
State (percent) (percent) State (percent) (percent)

Alabama 20.1 18.8 Montana 24.7 14.5
Alaska 24.8 18.8 Nebraska 20.2 16.1
Arizona 23.7 13.7 Nevada 22.5 16.6
Arkansas 21.0 18.1 New Hampshire 29.1 15.4
California 28.9 9.8 New Jersey 25.9 12.8
Colorado 24.5 13.5 New Mexico 21.5 14.6
Connecticut 27.4 12.4 New York 26.0 14.6
Delaware 21.3 15.5 North Carolina 22.5 17.1
Florida 26.2 15.2 North Dakota 21.8 15.0
Georgia 23.2 16.4 Ohio 22.6 17.6
Hawaii 24.5 12.1 Oklahoma 15.7 19.0
Idaho 23.2 13.3 Oregon 25.9 13.4
Illinois 24.0 14.2 Pennsylvania 23.9 17.9
Indiana 22.0 20.8 Rhode Island 26.8 15.3
Iowa 19.5 16.1 South Carolina 21.2 17.0
Kansas 19.9 13.6 South Dakota 20.5 13.8
Kentucky 16.8 23.5 Tennessee 26.5 20.4
Louisiana 20.2 16.4 Texas 22.6 13.2
Maine 28.7 15.9 Utah 22.1 8.5
Maryland 28.7 13.4 Vermont 30.8 14.4
Massachusetts 28.6 13.5 Virginia 26.2 15.3
Michigan 22.8 16.7 Washington 25.2 12.5
Minnesota 24.5 14.9 West Virginia 20.0 21.3
Mississippi 16.5 18.6 Wisconsin 22.2 15.9
Missouri 22.6 18.5 Wyoming 21.8 16.3

(c) Pick out a few states and use their position in
the graph to write a short summary of how they
compare with other states.

(d) Can you conclude that earning a college
degree will cause you to eat five servings of fruits
and vegetables per day? Explain your answer.

2.138 Predicting text pages. The editor of a statistics
text would like to plan for the next edition. A key
variable is the number of pages that will be in the
final version. Text files are prepared by the authors
using a word processor called LATEX, and separate
files contain figures and tables. For the previous
edition of the text, the number of pages in the
LATEX files can easily be determined, as well as the
number of pages in the final version of the text.
The table presents the data.

(a) Plot the data and describe the overall pattern.

(b) Find the equation of the least-squares
regression line and add the line to your plot.

(c) Find the predicted number of pages for the
next edition if the number of LATEX pages is 62.

Chapter 1 2 3 4 5 6 7 8 9 10 11 12 13

LATEX pages 77 73 59 80 45 66 81 45 47 43 31 46 26
Text pages 99 89 61 82 47 68 87 45 53 50 36 52 19

(d) Write a short report for the editor explaining to
her how you constructed the regression equation
and how she could use it to estimate the number
of pages in the next edition of the text.

2.139 C
H

ALLENG
E Points scored in women’s basketball

games. Use the Internet to find the scores
for the past season’s women’s basketball team at a
college of your choice. Is there a relationship
between the points scored by your chosen
team and the points scored by the opponent?
Summarize the data and write a report on your
findings.

2.140 C
H

ALLENG
E Look at the data for men. Refer to the

previous exercise. Analyze the data for the
men’s team from the same college and compare
your results with those for the women.
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2.141 Endangered animals and habitat. Endangered
animal species often live in isolated patches of
habitat. If the population size in a patch varies
a lot (due to weather, for example), the species
is more likely to disappear from that patch in
a bad year. Here is a general question: Is there
less variation in population size when a patch
of habitat has more diverse vegetation? If so,
maintaining habitat diversity can help protect
endangered species.

A researcher measured the variation over time
in the population of a cricket species in 45 habitat
patches. He also measured the diversity of each
patch.54 He reported his results by giving the
least-squares equation

population variation = 84.4 − 0.13 × diversity

along with the fact that r2 = 0.34. Do these results
support the idea that more diversity goes with less
variation in population size? Is the relationship
very strong or only moderately strong?

2.142 Stock prices and earnings. In the long run,
the price of a company’s stock ought to parallel
changes in the company’s earnings. Table 2.8 gives
data on the annual growth rates in earnings and in
stock prices (both in percent) for major industry
groups as set by Standard & Poor’s.55

(a) Make a graph showing how earnings growth
explains growth in stock price. Does it appear to
be true that (on the average in the long run) stock
price growth parallels earnings growth?

(b) What percent of the variation in stock price
growth among industry groups can be explained
by the linear relationship with earnings growth?

(c) If stock prices exactly followed earnings, the
slope of the least-squares line for predicting price

growth from earnings growth would be 1. Explain
why. What is the slope of the least-squares line for
these data?

(d) What is the correlation between earnings
growth and price growth? If we had data on all of
the individual companies in these 20 industries,
would the correlation be higher or lower? Why?

2.143 C
H

ALLENG
E Monkey calls. The usual way to study the

brain’s response to sounds is to have
subjects listen to “pure tones.” The response
to recognizable sounds may differ. To compare
responses, researchers anesthetized macaque
monkeys. They fed pure tones and also monkey
calls directly to their brains by inserting electrodes.
Response to the stimulus was measured by the
firing rate (electrical spikes per second) of neurons
in various areas of the brain. Table 2.9 (on page
164) contains the responses for 37 neurons.56

(a) One notable finding is that responses to
monkey calls are generally stronger than responses
to pure tones. Give a numerical measure that
supports this finding.

(b) Make a scatterplot of monkey call response
against pure tone response (explanatory variable).
Find the least-squares line and add it to your
plot. Mark on your plot the point with the largest
residual (positive or negative) and also a point
that is an outlier in the x direction.

(c) How influential are each of these points for
the correlation r?

(d) How influential are each of these points for
the regression line?

2.144 C
H

ALLENG
E Plywood strength. How strong is a

building material such as plywood? To
be specific, support a 24-inch by 2-inch strip

TABLE 2.8

Percent growth in stock price and earnings for industry groups

Earnings Price Earnings Price
Industry growth (%) growth (%) Industry growth (%) growth (%)

Auto 3.3 2.9 Oil: international 7.7 7.7
Banks 8.6 6.5 Oil equipment/services 10.1 10.8
Chemicals 6.6 3.1 Railroad 6.6 6.6
Computers 10.2 5.3 Retail: food 6.9 6.9
Drugs 11.3 10.0 Retail: department stores 10.1 9.5
Electrical equipment 8.5 8.2 Soft drinks 12.7 12.0
Food 7.6 6.5 Steel −1.0 −1.6
Household products 9.7 10.1 Tobacco 12.3 11.7
Machinery 5.1 4.7 Utilities: electric 2.8 1.4
Oil: domestic 7.4 7.3 Utilities: gas 5.2 6.2
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TABLE 2.9

Neuron response to tones and monkey calls

Tone Call Tone Call Tone Call Tone Call

474 500 145 42 71 134 35 103
256 138 141 241 68 65 31 70
241 485 129 194 59 182 28 192
226 338 113 123 59 97 26 203
185 194 112 182 57 318 26 135
174 159 102 141 56 201 21 129
176 341 100 118 47 279 20 193
168 85 74 62 46 62 20 54
161 303 72 112 41 84 19 66
150 208

of plywood at both ends and apply force in the
middle until the strip breaks. The modulus of
rupture (MOR) is the force needed to break the
strip. We would like to be able to predict MOR
without actually breaking the wood. The modulus
of elasticity (MOE) is found by bending the
wood without breaking it. Both MOE and MOR
are measured in pounds per square inch. Here
are data for 32 specimens of the same type of
plywood:57

MOE MOR MOE MOR MOE MOR

2,005,400 11,591 1,720,930 10,232 1,558,770 11,565
1,166,360 8,542 1,355,960 8,395 2,212,310 15,317
1,842,180 12,750 1,411,210 10,654 1,747,010 11,794
2,088,370 14,512 1,842,630 10,223 1,791,150 11,413
1,615,070 9,244 1,984,690 13,499 2,535,170 13,920
1,938,440 11,904 2,181,910 12,702 1,355,720 9,286
2,047,700 11,208 1,559,700 11,209 1,646,010 8,814
2,037,520 12,004 2,372,660 12,799 1,472,310 6,326
1,774,850 10,541 1,580,930 12,062 1,488,440 9,214
1,457,020 10,314 1,879,900 11,357 2,349,090 13,645
1,959,590 11,983 1,594,750 8,889

Can we use MOE to predict MOR accurately? Use
the data to write a discussion of this question.

2.145 Distribution of the residuals. Some statistical
methods require that the residuals from a
regression line have a Normal distribution.
The residuals for the nonexercise activity example
are given in Exercise 2.83 (page 127). Is their
distribution close to Normal? Make a Normal
quantile plot to find out.

2.146 Asian culture and thinness. Asian culture does
not emphasize thinness, but young Asians are
often influenced by Western culture. In a study
of concerns about weight among young Korean
women, researchers administered the Drive for

Thinness scale (a questionnaire) to 264 female
college students in Seoul, South Korea. This scale
measures excessive concern with weight and
dieting and fear of weight gain. In Exercise 1.35
(page 27), you examined the distribution of Drive
for Thinness scores among these college women.
The study looked at several explanatory variables.
One was “Body Dissatisfaction,” also measured by
a questionnaire. Use the data set for this example
for your work.

(a) Make a scatterplot of Drive for Thinness
(response) against Body Dissatisfaction. The
appearance of the plot is a result of the fact that
both variables take only whole-number values.
Such variables are common in the social and
behavioral sciences.

(b) Add the least-squares line to your plot. The
line shows a linear relationship. How strong is
this relationship? Body Dissatisfaction was more
strongly correlated with Drive for Thinness than
any of the other explanatory variables examined.
Rather weak relationships are common in social
and behavioral sciences, because individuals vary
a great deal. Using several explanatory variables
together improves prediction of the response. This
is multiple regression, discussed in Chapter 11.

2.147 Solar heating panels and gas consumption.
To study the energy savings due to adding solar
heating panels to a house, researchers measured
the natural-gas consumption of the house for
more than a year, then installed solar panels and
observed the natural-gas consumption for almost
two years. The explanatory variable x is degree-
days per day during the several weeks covered by
each observation, and the response variable y is
gas consumption (in hundreds of cubic feet) per
day during the same period. Figure 2.30 plots y
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FIGURE 2.30 The regression of
residential natural-gas
consumption on heating
degree-days before and after
installation of solar heating
panels, for Exercise 2.147.

against x, with separate symbols for observations
taken before and after the installation of the solar
panels.58 The least-squares regression lines were
computed separately for the before and after data
and are drawn on the plot. The regression lines
are

Before: ŷ = 1.089 + 0.189x

After: ŷ = 0.853 + 0.157x

(a) Does the scatterplot suggest that a straight
line is an appropriate description of the
relationship between degree-days and natural-
gas consumption? Do any individual observations
appear to have large residuals or to be highly
influential?

(b) About how much additional natural gas was
consumed per day for each additional degree-day
before the panels were added? After the panels
were added?

(c) The daily average temperature during January
in this location is about 30◦, which corresponds
to 35 degree-days per day. Use the regression
lines to predict daily gas usage for a day with 35
degree-days before and after installation of the
panels.

(d) The Energy Information Agency says that
natural gas cost consumers about $1.20 per 100
cubic feet in the fall of 2003. At this rate, how
much money do the solar panels save in the 31
days of January?

2.148 Running speed and stride rate. The following
table gives data on the relationship between
running speed (feet per second) and stride rate
(steps taken per second) for elite female runners.59

Speed 15.86 16.88 17.50 18.62 19.97 21.06 22.11
Stride rate 3.05 3.12 3.17 3.25 3.36 3.46 3.55

Here are the corresponding data from the same
source for male runners:

Speed 15.86 16.88 17.50 18.62 19.97 21.06 22.11
Stride rate 2.92 2.98 3.03 3.11 3.22 3.31 3.41

(a) Plot the data for both groups on one graph
using different symbols to distinguish between the
points for females and those for males.

(b) Suppose now that the data came to you
without identification as to gender. Compute the
least-squares line from all of the data and plot it
on your graph.

(c) Compute the residuals from this line for each
observation. Make a plot of the residuals against
speed. How does the fact that the data come from
two distinct groups show up in the residual plot?

2.149 C
H

ALLENG
E Marine bacteria and X-rays. Expose

marine bacteria to X-rays for time periods
from 1 to 15 minutes. Here are the number of
surviving bacteria (in hundreds) on a culture plate
after each exposure time:60

Time Count Time Count Time Count

1 355 6 106 11 36
2 211 7 104 12 32
3 197 8 60 13 21
4 166 9 56 14 19
5 142 10 38 15 15
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Theory suggests that the relationship between
time and the logarithm of the count of surviving
bacteria is linear.

(a) Find the regression line of count on time and
make plots of the data and the residuals. In what
way is this relationship nonlinear?

(b) Repeat your work for the regression of
the logarithm of count on time. Make a
numerical comparison of the linearity of the
two relationships.

2.150 C
H

ALLENG
E Wood flakes as a building material.

Wood scientists are interested in replacing
solid-wood building material by less expensive
products made from wood flakes. They collected
the following data to examine the relationship
between the length (in inches) and the strength
(in pounds per square inch) of beams made from
wood flakes:61

Length 5 6 7 8 9 10 11 12 13 14
Strength 446 371 334 296 249 254 244 246 239 234

(a) Make a scatterplot that shows how the length
of a beam affects its strength.

(b) Describe the overall pattern of the plot. Are
there any outliers?

(c) Fit a least-squares line to the entire set of data.
Graph the line on your scatterplot. Does a straight
line adequately describe these data?

(d) The scatterplot suggests that the relation
between length and strength can be described
by two straight lines, one for lengths less than 9
inches and another for lengths 9 inches or greater.
Fit least-squares lines to these two subsets of the
data, and draw the lines on your plot. Do they
describe the data adequately? What question
would you now ask the wood experts?

2.151 Global investing. One reason to invest abroad
is that markets in different countries don’t move
in step. When American stocks go down, foreign
stocks may go up. So an investor who holds both
bears less risk. That’s the theory. Now we read:
“The correlation between changes in American
and European share prices has risen from 0.4
in the mid-1990s to 0.8 in 2000.”62 Explain to
an investor who knows no statistics why this
fact reduces the protection provided by buying
European stocks.

2.152 Stock prices in Europe and the U.S. The same
article that claims that the correlation between

changes in stock prices in Europe and the United
States was 0.8 in 2000 goes on to say: “Crudely,
that means that movements on Wall Street can
explain 80% of price movements in Europe.” Is
this true? What is the correct percent explained if
r = 0.8?

2.153 Firefighters and fire damage. Someone says,
“There is a strong positive correlation between the
number of firefighters at a fire and the amount
of damage the fire does. So sending lots of
firefighters just causes more damage.” Explain
why this reasoning is wrong.

2.154 C
H

ALLENG
E Midterm-exam scores and final-exam

scores. We expect that students who do
well on the midterm exam in a course will usually
also do well on the final exam. Gary Smith of
Pomona College looked at the exam scores of all
346 students who took his statistics class over
a 10-year period.63 The least-squares line for
predicting final-exam score from midterm-exam
score was ŷ = 46.6 + 0.41x.

Octavio scores 10 points above the class mean
on the midterm. How many points above the
class mean do you predict that he will score on
the final? (Hint: What is the predicted final-exam
score for the class mean midterm score x?) This
is an example of regression to the mean, the
phenomenon that gave “regression” its name:
students who do well on the midterm will on the
average do less well on the final, but still above the
class mean.)

2.155 SAT scores and grade point averages. Can we
predict college grade point average from SAT
scores and high school grades? The CSDATA
data set described in the Data Appendix contains
information on this issue for a large group of
computer science students. We will look only at
SAT Mathematics scores as a predictor of later
college GPA, using the variables SATM and GPA
from CSDATA. Make a scatterplot, obtain r and r2,
and draw on your plot the least-squares regression
line for predicting GPA from SATM. Then write
a brief discussion of the ability of SATM alone
to predict GPA. (In Chapter 11 we will see how
combining several explanatory variables improves
our ability to predict.)

2.156 University degrees in Asia. Asia has become
a major competitor of the United States and
Western Europe in education as well as economics.
Following are counts of first university degrees in
science and engineering in the three regions:64
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Region

United Western
Field States Europe Asia

Engineering 61,941 158,931 280,772
Natural science 111,158 140,126 242,879
Social science 182,166 116,353 236,018

Direct comparison of counts of degrees would
require us to take into account Asia’s much
larger population. We can, however, compare the
distribution of degrees by field of study in the three
regions. Do this using calculations and graphs,
and write a brief summary of your findings.

2.157 C
H

ALLENG
E Motivation to participate in volunteer

service. A study examined patterns
and characteristics of volunteer service for
young people from high school through early
adulthood.65 Here are some data that can be used
to compare males and females on participation
in unpaid volunteer service or community service
and motivation for participation:

Participants

Motivation

Strictly Court-
Gender voluntary ordered Other Nonparticipants

Men 31.9% 2.1% 6.3% 59.7%
Women 43.7% 1.1% 6.5% 48.7%

Note that the percents in each row sum to 100%.
Graphically compare the volunteer service profiles
for men and women. Describe any differences that
are striking.

2.158 C
H

ALLENG
E Look at volunteers only. Refer to the

previous exercise. Recompute the table
for volunteers only. To do this, take the entries
for each motivation and divide by the percent of
volunteers. Do this separately for each gender.
Verify that the percents sum to 100% for each
gender. Give a graphical summary to compare the
motivation of men and women who are volunteers.
Compare this with your summary in the previous
exercise, and write a short paragraph describing
similarities and differences in these two views of
the data.

2.159 An example of Simpson’s paradox. Mountain
View University has professional schools in

business and law. Here is a three-way table
of applicants to these professional schools,
categorized by gender, school, and admission
decision:66

Business Law

Admit Admit

Gender Yes No Gender Yes No

Male 400 200 Male 90 110
Female 200 100 Female 200 200

(a) Make a two-way table of gender by admission
decision for the combined professional schools by
summing entries in the three-way table.

(b) From your two-way table, compute separately
the percents of male and female applicants
admitted. Male applicants are admitted to
Mountain View’s professional schools at a higher
rate than female applicants.

(c) Now compute separately the percents of male
and female applicants admitted by the business
school and by the law school.

(d) Explain carefully, as if speaking to a skeptical
reporter, how it can happen that Mountain View
appears to favor males when this is not true within
each of the professional schools.

2.160 Construct an example with four schools. Refer
to the previous exercise. Make up a similar table
for a hypothetical university having four different
schools that illustrates the same point. Carefully
summarize your table with the appropriate
percents.

2.161 C
H

ALLENG
E Class size and class level. A university

classifies its classes as either “small”
(fewer than 40 students) or “large.” A dean sees
that 62% of Department A’s classes are small,
while Department B has only 40% small classes.
She wonders if she should cut Department A’s
budget and insist on larger classes. Department A
responds to the dean by pointing out that classes
for third- and fourth-year students tend to be
smaller than classes for first- and second-year
students. The three-way table below gives the
counts of classes by department, size, and student
audience. Write a short report for the dean that
summarizes these data. Start by computing the
percents of small classes in the two departments,
and include other numerical and graphical
comparisons as needed. The following table
presents the numbers of classes to be analyzed.
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Department A Department B

Year Large Small Total Large Small Total

First 2 0 2 18 2 20
Second 9 1 10 40 10 50
Third 5 15 20 4 16 20
Fourth 4 16 20 2 14 16

2.162 Sexual imagery in magazine ads. In what ways
do advertisers in magazines use sexual imagery
to appeal to youth? One study classified each of
1509 full-page or larger ads as “not sexual” or
“sexual,” according to the amount and style of the
clothing of the male or female model in the ad.
The ads were also classified according to the target
readership of the magazine.67 Here is the two-way
table of counts:

Magazine readership

Model clothing Women Men General interest Total

Not sexual 351 514 248 1113
Sexual 225 105 66 396

Total 576 619 314 1509

(a) Summarize the data numerically and
graphically.

(b) All of the ads were taken from the March,
July, and November issues of six magazines in
one year. Discuss how this fact influences your
interpretation of the results.

2.163 Age of the intended readership. The ads in the
study described in the previous exercise were
also classified according to the age group of the
intended readership. Here is a summary of the
data:

Magazine readership
age group

Model clothing Young adult Mature adult

Not sexual (percent) 72.3% 76.1%
Sexual (percent) 27.7% 23.9%

Number of ads 1006 503

Using parts (a) and (b) of the previous exercise
as a guide, analyze these data and write a report
summarizing your work.

2.164 Identity theft. A study of identity theft looked
at how well consumers protect themselves from
this increasingly prevalent crime. The behaviors
of 61 college students were compared with
the behaviors of 59 nonstudents.68 One of the
questions was “When asked to create a password,
I have used either my mother’s maiden name, or
my pet’s name, or my birth date, or the last four
digits of my social security number, or a series of
consecutive numbers.” For the students, 22 agreed
with this statement while 30 of the nonstudents
agreed.

(a) Display the data in a two-way table and
analyze the data. Write a short summary of your
results.

(b) The students in this study were junior
and senior college students from two sections
of a course in Internet marketing at a large
northeastern university. The nonstudents were a
group of individuals who were recruited to attend
commercial focus groups on the West Coast
conducted by a lifestyle marketing organization.
Discuss how the method of selecting the subjects
in this study relates to the conclusions that can be
drawn from it.

2.165 C
H

ALLENG
E Athletes and gambling. A survey of

student athletes that asked questions about
gambling behavior classified students according
to the National Collegiate Athletic Association
(NCAA) division.69 For male student athletes, the
percents who reported wagering on collegiate
sports are given here along with the numbers of
respondents in each division:

Division I II III

Percent 17.2% 21.0% 24.4%
Number 5619 2957 4089

(a) Analyze the data. Give details and a short
summary of your conclusion.

(b) The percents in the table above are given in
the NCAA report, but the numbers of male student
athletes in each division who responded to the
survey question are estimated based on other
information in the report. To what extent do you
think this has an effect on the results?

(c) Some student athletes may be reluctant to
provide this kind of information, even in a survey
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where there is no possibility that they can be
identified. Discuss how this fact may affect your
conclusions.

2.166 C
H

ALLENG
E Health conditions and risk behaviors.

The data set BRFSS described in the
Data Appendix gives several variables related to

health conditions and risk behaviors as well as
demographic information for the 50 states and the
District of Columbia. Pick at least three pairs of
variables to analyze. Write a short report on your
findings.
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A magazine article says that men need Pilates exercise more than women. Read the
Introduction to learn more.

3.1 Design of Experiments

3.2 Sampling Design

3.3 Toward Statistical Inference

3.4 Ethics

Introduction
In Chapters 1 and 2 we learned some basic tools of
data analysis. We used graphs and numbers to describe
data. When we do exploratory data analysis, we rely
heavily on plotting the data. We look for patterns that suggest interesting con- exploratory data analysis
clusions or questions for further study. However, exploratory analysis alone can

CAUTION

!rarely provide convincing evidence for its conclusions, because striking patterns
we find in data can arise from many sources.

Anecdotal data
It is tempting to simply draw conclusions from our own experience, making
no use of more broadly representative data. A magazine article about Pilates
says that men need this form of exercise even more than women. The arti-
cle describes the benefits that two men received from taking Pilates classes.
A newspaper ad states that a particular brand of windows are “considered to
be the best” and says that “now is the best time to replace your windows and
doors.” These types of stories, or anecdotes, sometimes provide quantitative
data. However, this type of data does not give us a sound basis for drawing
conclusions.

171
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ANECDOTAL EVIDENCE

Anecdotal evidence is based on haphazardly selected individual cases,
which often come to our attention because they are striking in some way.
These cases need not be representative of any larger group of cases.

USE YOUR KNOWLEDGE
3.1 Final Fu. Your friends are big fans of “Final Fu,” MTV2’s martial arts

competition. To what extent do you think you can generalize your
preferences for this show to all students at your college?

3.2 Describe an example. Find an example from some recent experience
where anecdotal evidence is used to draw a conclusion that is not jus-
tified. Describe the example and explain why it cannot be used in this
way.

3.3 Preference for Jolt Cola. Jamie is a hard-core computer program-
mer. He and all his friends prefer Jolt Cola (caffeine equivalent to two
cups of coffee) to either Coke or Pepsi (caffeine equivalent to less than
one cup of coffee).1 Explain why Jamie’s experience is not good evi-
dence that most young people prefer Jolt to Coke or Pepsi.

3.4 Automobile seat belts. When the discussion turns to the pros and
cons of wearing automobile seat belts, Herman always brings up the
case of a friend who survived an accident because he was not wear-
ing a seat belt. The friend was thrown out of the car and landed on
a grassy bank, suffering only minor injuries, while the car burst into
flames and was destroyed. Explain briefly why this anecdote does not
provide good evidence that it is safer not to wear seat belts.

Available data
Occasionally, data are collected for a particular purpose but can also serve as
the basis for drawing sound conclusions about other research questions. We
use the term available data for this type of data.available data

AVAILABLE DATA

Available data are data that were produced in the past for some other
purpose but that may help answer a present question.

The library and the Internet can be good sources of available data. Because
producing new data is expensive, we all use available data whenever possible.
However, the clearest answers to present questions often require that data be
produced to answer those specific questions. Here are two examples:
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E 3.1 Causes of death. If you visit the National Center for Health Statistics
Web site, www.cdc.gov/nchs, you will learn that accidents are the most com-
mon cause of death among people aged 20 to 24, accounting for over 40%
of all deaths. Homicide is next, followed by suicide. AIDS ranks seventh, be-
hind heart disease and cancer, at 1% of all deaths. The data also show that it
is dangerous to be a young man: the overall death rate for men aged 20 to 24
is three times that for women, and the death rate from homicide is more than
five times higher among men.
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E 3.2 Math skills of children. At the Web site of the National Center for Ed-

ucation Statistics, nces.ed.gov/nationsreportcard/mathematics, you will
find full details about the math skills of schoolchildren in the latest National
Assessment of Educational Progress (Figure 3.1). Mathematics scores have
slowly but steadily increased since 1990. All racial/ethnic groups, both men
and women, and students in most states are getting better in math.

Many nations have a single national statistical office, such as Statistics
Canada (www.statcan.ca) or Mexico’s INEGI (www.inegi.gob.mx). More than
70 different U.S. agencies collect data. You can reach most of them through
the government’s FedStats site (www.fedstats.gov).

USE YOUR KNOWLEDGE
3.5 Find some available data. Visit the Internet and find an example of

available data that is interesting to you. Explain how the data were
collected and what questions the study was designed to answer.

A survey of college athletes is designed to estimate the percent who gamble.
Do restaurant patrons give higher tips when their server repeats their order
carefully? The validity of our conclusions from the analysis of data collected
to address these issues rests on a foundation of carefully collected data. In this
chapter, we will develop the skills needed to produce trustworthy data and to
judge the quality of data produced by others. The techniques for producing data
we will study require no formulas, but they are among the most important ideas
in statistics. Statistical designs for producing data rely on either sampling or
experiments.

Sample surveys and experiments
How have the attitudes of Americans, on issues ranging from abortion to work,
changed over time? Sample surveys are the usual tool for answering questions
like these.

www.cdc.gov/nchs
www.statcan.ca
www.inegi.gob.mx
www.fedstats.gov
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FIGURE 3.1 The Web sites of
government statistical offices are
prime sources of data. Here is the
home page of the National
Assessment of Educational
Progress.
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E 3.3 The General Social Survey. One of the most important sample sur-
veys is the General Social Survey (GSS) conducted by the NORC, a national
organization for research and computing affiliated with the University of
Chicago.2 The GSS interviews about 3000 adult residents of the United States
every second year.

The GSS selects a sample of adults to represent the larger population of allsample
population English-speaking adults living in the United States. The idea of sampling is to

study a part in order to gain information about the whole. Data are often pro-
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duced by sampling a population of people or things. Opinion polls, for example,
report the views of the entire country based on interviews with a sample of
about 1000 people. Government reports on employment and unemployment
are produced from a monthly sample of about 60,000 households. The quality
of manufactured items is monitored by inspecting small samples each hour or
each shift.

USE YOUR KNOWLEDGE
3.6 Find a sample survey. Use the Internet or some printed material

to find an example of a sample survey that interests you. Describe
the population, how the sample was collected, and some of the
conclusions.

In all of our examples, the expense of examining every item in the popu-
lation makes sampling a practical necessity. Timeliness is another reason for
preferring a sample to a census, which is an attempt to contact every individ-census
ual in the entire population. We want information on current unemployment
and public opinion next week, not next year. Moreover, a carefully conducted
sample is often more accurate than a census. Accountants, for example, sample
a firm’s inventory to verify the accuracy of the records. Attempting to count
every last item in the warehouse would be not only expensive but inaccurate.
Bored people do not count carefully.

If conclusions based on a sample are to be valid for the entire population,
a sound design for selecting the sample is required. Sampling designs are the
topic of Section 3.2.

A sample survey collects information about a population by selecting and
measuring a sample from the population. The goal is a picture of the popula-
tion, disturbed as little as possible by the act of gathering information. Sample
surveys are one kind of observational study.

OBSERVATION VERSUS EXPERIMENT

In an observational study we observe individuals and measure vari-
ables of interest but do not attempt to influence the responses.

In an experiment we deliberately impose some treatment on individuals
and we observe their responses.

USE YOUR KNOWLEDGE
3.7 Cell phones and brain cancer. One study of cell phones and the risk

of brain cancer looked at a group of 469 people who have brain can-
cer. The investigators matched each cancer patient with a person of
the same sex, age, and race who did not have brain cancer, then asked
about use of cell phones.3 Result: “Our data suggest that use of hand-
held cellular telephones is not associated with risk of brain cancer.”
Is this an observational study or an experiment? Why? What are the
explanatory and response variables?
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3.8 Violent acts on prime-time TV. A typical hour of prime-time televi-
sion shows three to five violent acts. Linking family interviews and po-
lice records shows a clear association between time spent watching
TV as a child and later aggressive behavior.4

(a) Explain why this is an observational study rather than an experi-
ment. What are the explanatory and response variables?

(b) Suggest several lurking variables describing a child’s home life
that may be related to how much TV he or she watches. Explain
why this makes it difficult to conclude that more TV causes more
aggressive behavior.

An observational study, even one based on a statistical sample, is a poor way
to determine what will happen if we change something. The best way to see
the effects of a change is to do an intervention—where we actually impose theintervention
change. When our goal is to understand cause and effect, experiments are the
only source of fully convincing data.
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E 3.4 Child care and behavior. A study of child care enrolled 1364 infants
in 1991 and planned to follow them through their sixth year in school. Twelve
years later, the researchers published an article finding that “the more time
children spent in child care from birth to age four-and-a-half, the more adults
tended to rate them, both at age four-and-a-half and at kindergarten, as
less likely to get along with others, as more assertive, as disobedient, and
as aggressive.”5

What can we conclude from this study? If parents choose to use child care,
are they more likely to see these undesirable behaviors in their children?
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E 3.5 Is there a cause and effect relationship? Example 3.4 describes an
observational study. Parents made all child care decisions and the study did
not attempt to influence them. A summary of the study stated, “The study au-
thors noted that their study was not designed to prove a cause and effect re-
lationship. That is, the study cannot prove whether spending more time in
child care causes children to have more problem behaviors.”6 Perhaps em-
ployed parents who use child care are under stress and the children react to
their parents’ stress. Perhaps single parents are more likely to use child care.
Perhaps parents are more likely to place in child care children who already
have behavior problems.

We can imagine an experiment that would remove these difficulties. From
a large group of young children, choose some to be placed in child care and
others to remain at home. This is an experiment because the treatment (child
care or not) is imposed on the children. Of course, this particular experiment
is neither practical nor ethical.
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In Examples 3.4 and 3.5, we say that the effect of child care on behavior
is confounded with (mixed up with) other characteristics of families who useconfounded
child care. Observational studies that examine the effect of a single variable
on an outcome can be misleading when the effects of the explanatory variable
are confounded with those of other variables. Because experiments allow us
to isolate the effects of specific variables, we generally prefer them. Here is an
example.
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E 3.6 A dietary behavior experiment. An experiment was designed to ex-
amine the effect of a 30-minute instructional session in a Food Stamp of-
fice on the dietary behavior of low-income women.7 A group of women were
randomly assigned to either the instructional session or no instruction. Two
months later, data were collected on several measures of their behavior.

Experiments usually require some sort of randomization, as in this example.
We begin the discussion of statistical designs for data collection in Section 3.1
with the principles underlying the design of experiments.

USE YOUR KNOWLEDGE
3.9 Software for teaching biology. An educational software company

wants to compare the effectiveness of its computer animation for
teaching cell biology with that of a textbook presentation. The com-
pany tests the biological knowledge of each of a group of first-year
college students, then randomly divides them into two groups. One
group uses the animation, and the other studies the text. The company
retests all the students and compares the increase in understanding
of cell biology in the two groups. Is this an experiment? Why or why
not? What are the explanatory and response variables?

3.10 Find an experiment. Use the Internet or some printed material to
find an example of an experiment that interests you. Describe how the
experiment was conducted and some of the conclusions.

Statistical techniques for producing data are the foundation for formal
statistical inference, which answers specific questions with a known de-statistical inference
gree of confidence. In Section 3.3, we discuss some basic ideas related to
inference.

Should an experiment or sample survey that could possibly provide interest-
ing and important information always be performed? How can we safeguard
the privacy of subjects in a sample survey? What constitutes the mistreatment
of people or animals who are studied in an experiment? These are questions of
ethics. In Section 3.4, we address ethical issues related to the design of studiesethics
and the analysis of data.
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3.1 Design of Experiments
A study is an experiment when we actually do something to people, animals,
or objects in order to observe the response. Here is the basic vocabulary of
experiments.

EXPERIMENTAL UNITS, SUBJECTS, TREATMENT

The individuals on which the experiment is done are the experimental
units. When the units are human beings, they are called subjects. A spe-
cific experimental condition applied to the units is called a treatment.

Because the purpose of an experiment is to reveal the response of one vari-
able to changes in other variables, the distinction between explanatory and re-
sponse variables is important. The explanatory variables in an experiment are
often called factors. Many experiments study the joint effects of several fac-factors
tors. In such an experiment, each treatment is formed by combining a specific
value (often called a level) of each of the factors.level of a factor
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E 3.7 Are smaller class sizes better? Do smaller classes in elementary
school really benefit students in areas such as scores on standard tests, stay-
ing in school, and going on to college? We might do an observational study
that compares students who happened to be in smaller and larger classes
in their early school years. Small classes are expensive, so they are more
common in schools that serve richer communities. Students in small classes
tend to also have other advantages: their schools have more resources, their
parents are better educated, and so on. Confounding makes it impossible to
isolate the effects of small classes.

The Tennessee STAR program was an experiment on the effects of class
size. It has been called “one of the most important educational investiga-
tions ever carried out.” The subjects were 6385 students who were beginning
kindergarten. Each student was assigned to one of three treatments: regular
class (22 to 25 students) with one teacher, regular class with a teacher and a
full-time teacher’s aide, and small class (13 to 17 students). These treatments
are levels of a single factor, the type of class. The students stayed in the same
type of class for four years, then all returned to regular classes. In later years,
students from the small classes had higher scores on standard tests, were less
likely to fail a grade, had better high school grades, and so on. The benefits
of small classes were greatest for minority students.8

Example 3.7 illustrates the big advantage of experiments over observational
studies. In principle, experiments can give good evidence for causation.
In an experiment, we study the specific factors we are interested in, while con-
trolling the effects of lurking variables. All the students in the Tennessee STAR
program followed the usual curriculum at their schools. Because students were
assigned to different class types within their schools, school resources and fam-
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ily backgrounds were not confounded with class type. The only systematic dif-
ference was the type of class. When students from the small classes did better
than those in the other two types, we can be confident that class size made the
difference.

•

•

E
X

A
M

P
L

E 3.8 Repeated exposure to advertising. What are the effects of repeated
exposure to an advertising message? The answer may depend both on the
length of the ad and on how often it is repeated. An experiment investigated
this question using undergraduate students as subjects. All subjects viewed a
40-minute television program that included ads for a digital camera. Some
subjects saw a 30-second commercial; others, a 90-second version. The same
commercial was shown either 1, 3, or 5 times during the program.

This experiment has two factors: length of the commercial, with 2 levels,
and repetitions, with 3 levels. The 6 combinations of one level of each factor
form 6 treatments. Figure 3.2 shows the layout of the treatments. After view-
ing, all of the subjects answered questions about their recall of the ad, their
attitude toward the camera, and their intention to purchase it. These are the
response variables.9

Factor B
Repetitions

1 time

1

4

3 times

2

5

5 times

3

690
seconds

30
secondsFactor A

LengthFIGURE 3.2 The treatments in
the study of advertising, for
Example 3.8. Combining the
levels of the two factors forms six
treatments.

Example 3.8 shows how experiments allow us to study the combined effects
of several factors. The interaction of several factors can produce effects that
could not be predicted from looking at the effects of each factor alone. Perhaps
longer commercials increase interest in a product, and more commercials also
increase interest, but if we both make a commercial longer and show it more
often, viewers get annoyed and their interest in the product drops. The two-
factor experiment in Example 3.8 will help us find out.

USE YOUR KNOWLEDGE
3.11 Food for a trip to the moon. Storing food for long periods of time is

a major challenge for those planning for human space travel beyond
the moon. One problem is that exposure to radiation decreases the
length of time that food can be stored. One experiment examined the
effects of nine different levels of radiation on a particular type of fat,
or lipid.10 The amount of oxidation of the lipid is the measure of the
extent of the damage due to the radiation. Three samples are exposed
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to each radiation level. Give the experimental units, the treatments,
and the response variable. Describe the factor and its levels. There are
many different types of lipids. To what extent do you think the results
of this experiment can be generalized to other lipids?

3.12 Learning how to draw. A course in computer graphics technology re-
quires students to learn multiview drawing concepts. This topic is tra-
ditionally taught using supplementary material printed on paper. The
instructor of the course believes that a Web-based interactive drawing
program will be more effective in increasing the drawing skills of the
students.11 The 50 students who are enrolled in the course will be ran-
domly assigned to either the paper-based instruction or the Web-based
instruction. A standardized drawing test will be given before and af-
ter the instruction. Explain why this study is an experiment and give
the experimental units, the treatments, and the response variable. De-
scribe the factor and its levels. To what extent do you think the results
of this experiment can be generalized to other settings?

Comparative experiments
Laboratory experiments in science and engineering often have a simple design
with only a single treatment, which is applied to all of the experimental units.
The design of such an experiment can be outlined as

Treatment −→ Observe response

For example, we may subject a beam to a load (treatment) and measure its de-
flection (observation). We rely on the controlled environment of the laboratory
to protect us from lurking variables. When experiments are conducted in the
field or with living subjects, such simple designs often yield invalid data. That
is, we cannot tell whether the response was due to the treatment or to lurking
variables. A medical example will show what can go wrong.
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E 3.9 Gastric freezing. “Gastric freezing” is a clever treatment for ulcers in
the upper intestine. The patient swallows a deflated balloon with tubes at-
tached, then a refrigerated liquid is pumped through the balloon for an hour.
The idea is that cooling the stomach will reduce its production of acid and so
relieve ulcers. An experiment reported in the Journal of the American Medi-
cal Association showed that gastric freezing did reduce acid production and
relieve ulcer pain. The treatment was safe and easy and was widely used for
several years. The design of the experiment was

Gastric freezing −→ Observe pain relief

The gastric freezing experiment was poorly designed. The patients’ re-
sponse may have been due to the placebo effect. A placebo is a dummy
treatment. Many patients respond favorably to any treatment, even a placebo.
This may be due to trust in the doctor and expectations of a cure or simply
to the fact that medical conditions often improve without treatment. The
response to a dummy treatment is the placebo effect.

placebo effect
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A later experiment divided ulcer patients into two groups. One group was
treated by gastric freezing as before. The other group received a placebo treat-
ment in which the liquid in the balloon was at body temperature rather than
freezing. The results: 34% of the 82 patients in the treatment group improved,
but so did 38% of the 78 patients in the placebo group. This and other prop-
erly designed experiments showed that gastric freezing was no better than a
placebo, and its use was abandoned.12

The first gastric freezing experiment gave misleading results because the ef-
fects of the explanatory variable were confounded with the placebo effect. We
can defeat confounding by comparing two groups of patients, as in the second
gastric freezing experiment. The placebo effect and other lurking variables now
operate on both groups. The only difference between the groups is the actual
effect of gastric freezing. The group of patients who received a sham treatment
is called a control group, because it enables us to control the effects of outsidecontrol group
variables on the outcome. Control is the first basic principle of statistical design
of experiments. Comparison of several treatments in the same environment is
the simplest form of control.

Uncontrolled experiments in medicine and the behavioral sciences can be dom-

CAUTION

! inated by such influences as the details of the experimental arrangement, the se-
lection of subjects, and the placebo effect. The result is often bias.

BIAS

The design of a study is biased if it systematically favors certain out-
comes.

An uncontrolled study of a new medical therapy, for example, is biased in fa-
vor of finding the treatment effective because of the placebo effect. It should not
surprise you to learn that uncontrolled studies in medicine give new therapies a
much higher success rate than proper comparative experiments. Well-designed
experiments usually compare several treatments.

USE YOUR KNOWLEDGE
3.13 Does using statistical software improve exam scores? An instruc-

tor in an elementary statistics course wants to know if using a new
statistical software package will improve students’ final-exam scores.
He asks for volunteers and about half of the class agrees to work with
the new software. He compares the final-exam scores of the students
who used the new software with the scores of those who did not. Dis-
cuss possible sources of bias in this study.

Randomization
The design of an experiment first describes the response variable or vari-experiment design
ables, the factors (explanatory variables), and the layout of the treatments,
with comparison as the leading principle. Figure 3.2 illustrates this aspect of
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the design of a study of response to advertising. The second aspect of design
is the rule used to assign the experimental units to the treatments. Compari-
son of the effects of several treatments is valid only when all treatments are
applied to similar groups of experimental units. If one corn variety is planted
on more fertile ground, or if one cancer drug is given to more seriously ill
patients, comparisons among treatments are meaningless. Systematic differ-
ences among the groups of experimental units in a comparative experiment
cause bias. How can we assign experimental units to treatments in a way that
is fair to all of the treatments?

Experimenters often attempt to match groups by elaborate balancing acts.
Medical researchers, for example, try to match the patients in a “new drug”
experimental group and a “standard drug” control group by age, sex, physical
condition, smoker or not, and so on. Matching is helpful but not adequate—
there are too many lurking variables that might affect the outcome. The experi-
menter is unable to measure some of these variables and will not think of others
until after the experiment. Some important variables, such as how advanced a
cancer patient’s disease is, are so subjective that an experimenter might bias
the study by, for example, assigning more advanced cancer cases to a promis-
ing new treatment in the unconscious hope that it will help them.

The statistician’s remedy is to rely on chance to make an assignment that does
not depend on any characteristic of the experimental units and that does not rely
on the judgment of the experimenter in any way. The use of chance can be com-
bined with matching, but the simplest design creates groups by chance alone.
Here is an example.
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E 3.10 Cell phones and driving. Does talking on a hands-free cell phone
distract drivers? Undergraduate students “drove” in a high-fidelity driving
simulator equipped with a hands-free cell phone. The car ahead brakes: how
quickly does the subject respond? Twenty students (the control group) simply
drove. Another 20 (the experimental group) talked on the cell phone while
driving.

This experiment has a single factor (cell phone use) with two levels. The
researchers must divide the 40 student subjects into two groups of 20. To do
this in a completely unbiased fashion, put the names of the 40 students in a
hat, mix them up, and draw 20. These students form the experimental group
and the remaining 20 make up the control group. Figure 3.3 outlines the de-
sign of this experiment.13

The use of chance to divide experimental units into groups is called
randomization. The design in Figure 3.3 combines comparison and ran-randomization

Random
allocation

Group 1
20 students

Group 2
20 students

Treatment 1
Drive

Treatment 2
Drive and talk

Compare
brake time

FIGURE 3.3 Outline of a
randomized comparative
experiment, for Example 3.10.
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domization to arrive at the simplest randomized comparative design. This
“flowchart” outline presents all the essentials: randomization, the sizes of the
groups and which treatment they receive, and the response variable. There are,
as we will see later, statistical reasons for generally using treatment groups
about equal in size.

USE YOUR KNOWLEDGE
3.14 Diagram the drawing experiment. Refer to Exercise 3.12 (page 180).

Draw a diagram similar to Figure 3.3 that describes the computer
graphics drawing experiment.

3.15 Diagram the food for Mars experiment. Refer to Exercise 3.11 (page
179). Draw a diagram similar to Figure 3.3 that describes the food for
space travel experiment.

Randomized comparative experiments
The logic behind the randomized comparative design in Figure 3.3 is as follows:

• Randomization produces two groups of subjects that we expect to be similar
in all respects before the treatments are applied.

• Comparative design helps ensure that influences other than the cell phone
operate equally on both groups.

• Therefore, differences in average brake reaction time must be due either to
talking on the cell phone or to the play of chance in the random assignment
of subjects to the two groups.

That “either-or” deserves more comment. We cannot say that any differ-
ence in the average reaction times of the experimental and control groups
is caused by talking on the cell phone. There would be some difference even
if both groups were treated the same, because the natural variability among
people means that some react faster than others. Chance can assign the faster-
reacting students to one group or the other, so that there is a chance difference
between the groups. We would not trust an experiment with just one subject in
each group, for example. The results would depend too much on which group
got lucky and received the subject with quicker reactions. If we assign many
students to each group, however, the effects of chance will average out. There
will be little difference in the average reaction times in the two groups unless
talking on the cell phone causes a difference. “Use enough subjects to reduce
chance variation” is the third big idea of statistical design of experiments.

PRINCIPLES OF EXPERIMENTAL DESIGN

The basic principles of statistical design of experiments are

1. Compare two or more treatments. This will control the effects of
lurking variables on the response.

2. Randomize—use impersonal chance to assign experimental units to
treatments.
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3. Repeat each treatment on many units to reduce chance variation in
the results.

We hope to see a difference in the responses so large that it is unlikely to hap-
pen just because of chance variation. We can use the laws of probability, which
give a mathematical description of chance behavior, to learn if the treatment
effects are larger than we would expect to see if only chance were operating. If
they are, we call them statistically significant.

STATISTICAL SIGNIFICANCE

An observed effect so large that it would rarely occur by chance is called
statistically significant.

You will often see the phrase “statistically significant” in reports of investi-
gations in many fields of study. It tells you that the investigators found good
evidence for the effect they were seeking. The cell phone study, for example,
reported statistically significant evidence that talking on a cell phone increases
the mean reaction time of drivers when the car in front of them brakes.

How to randomize
The idea of randomization is to assign subjects to treatments by drawing names
from a hat. In practice, experimenters use software to carry out randomiza-
tion. Most statistical software will choose 20 out of a list of 40 at random, for
example. The list might contain the names of 40 human subjects. The 20 cho-
sen form one group, and the 20 that remain form the second group. The Simple
Random Sample applet on the text CD and Web site makes it particularly easyAP

PLET

to choose treatment groups at random.
You can randomize without software by using a table of random digits.

Thinking about random digits helps you to understand randomization even
if you will use software in practice. Table B at the back of the book and on the
back endpaper is a table of random digits.

RANDOM DIGITS

A table of random digits is a list of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
that has the following properties:

1. The digit in any position in the list has the same chance of being any
one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

2. The digits in different positions are independent in the sense that the
value of one has no influence on the value of any other.

You can think of Table B as the result of asking an assistant (or a computer)
to mix the digits 0 to 9 in a hat, draw one, then replace the digit drawn, mix
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again, draw a second digit, and so on. The assistant’s mixing and drawing saves
us the work of mixing and drawing when we need to randomize. Table B begins
with the digits 19223950340575628713. To make the table easier to read, the
digits appear in groups of five and in numbered rows. The groups and rows
have no meaning—the table is just a long list of digits having the properties 1
and 2 described above.

Our goal is to use random digits for experimental randomization. We need
the following facts about random digits, which are consequences of the basic
properties 1 and 2:

• Any pair of random digits has the same chance of being any of the 100 pos-
sible pairs: 00, 01, 02, . . . , 98, 99.

• Any triple of random digits has the same chance of being any of the 1000 pos-
sible triples: 000, 001, 002, .. . , 998, 999.

• . . .and so on for groups of four or more random digits.
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E 3.11 Randomize the students. In the cell phone experiment of Example
3.10, we must divide 40 students at random into two groups of 20 students
each.

Step 1: Label. Give each student a numerical label, using as few digits as pos-
sible. Two digits are needed to label 40 students, so we use labels

01, 02, 03, . . . , 39, 40

It is also correct to use labels 00 to 39 or some other choice of 40 two-
digit labels.

Step 2: Table. Start anywhere in Table B and read two-digit groups. Suppose
we begin at line 130, which is

69051 64817 87174 09517 84534 06489 87201 97245

The first 10 two-digit groups in this line are

69 05 16 48 17 87 17 40 95 17

Each of these two-digit groups is a label. The labels 00 and 41 to 99
are not used in this example, so we ignore them. The first 20 labels
between 01 and 40 that we encounter in the table choose students for
the experimental group. Of the first 10 labels in line 130, we ignore
four because they are too high (over 40). The others are 05, 16, 17, 17,
40, and 17. The students labeled 05, 16, 17, and 40 go into the exper-
imental group. Ignore the second and third 17s because that student
is already in the group. Run your finger across line 130 (and continue
to the following lines) until you have chosen 20 students. They are the
students labeled

05, 16, 17, 40, 20, 19, 32, 04, 25, 29,
37, 39, 31, 18, 07, 13, 33, 02, 36, 23

You should check at least the first few of these. These students form
the experimental group. The remaining 20 are the control group.
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As Example 3.11 illustrates, randomization requires two steps: assign labels
to the experimental units and then use Table B to select labels at random. Be
sure that all labels are the same length so that all have the same chance to be
chosen. Use the shortest possible labels—one digit for 9 or fewer individuals,
two digits for 10 to 100 individuals, and so on. Don’t try to scramble the labels
as you assign them. Table B will do the required randomizing, so assign labels
in any convenient manner, such as in alphabetical order for human subjects.
You can read digits from Table B in any order—along a row, down a column,
and so on—because the table has no order. As an easy standard practice, we
recommend reading along rows.

It is easy to use statistical software or Excel to randomize. Here are the
steps:

Step 1: Label. The first step, assigning labels to the experimental units, is sim-
ilar to the procedure we described above. One difference, however, is
that we are not restricted to using numerical labels. Any system where
each experimental unit has a unique label identifier will work.

Step 2: Use the computer. Once we have the labels, we then create a data file
with the labels and generate a random number for each label. In Excel,
this can be done with the RAND() function. Finally, we sort the entire
data set based on the random numbers. Groups are formed by selecting
units in order from the sorted list.

This process is essentially the same as writing the labels on a deck of cards,
shuffling the cards, and dealing them out one at a time.
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E 3.12 Using software for randomization. Let’s do a randomization sim-
ilar to the one we did in Example 3.11, but this time using Excel. Here we will
use 10 experimental units. We will assign 5 to the treatment group and 5 to
the control group. We first create a data set with the numbers 1 to 10 in the
first column. See Figure 3.4(a). Then we use RAND() to generate 10 random
numbers in the second column. See Figure 3.4(b). Finally, we sort the data set
based on the numbers in the second column. See Figure 3.4(c). The first 5 la-
bels (8, 5, 9, 4, and 6) are assigned to the experimental group. The remaining
5 labels (3, 10, 7, 2, and 1) correspond to the control group.

(a) (b) (c)

FIGURE 3.4 Randomization of
10 experimental units using a
computer, for Example 3.12.
(a) Labels. (b) Random numbers.
(c) Sorted list of labels.
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When all experimental units are allocated at random among all treatments,
as in Example 3.11, the experimental design is completely randomized. Com-completely randomized

design pletely randomized designs can compare any number of treatments. The treat-
ments can be formed by levels of a single factor or by more than one factor.
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E 3.13 Randomization of the TV commercial experiment. Figure 3.2
(page 179) displays six treatments formed by the two factors in an experi-
ment on response to a TV commercial. Suppose that we have 150 students
who are willing to serve as subjects. We must assign 25 students at random
to each group. Figure 3.5 outlines the completely randomized design.

To carry out the random assignment, label the 150 students 001 to 150.
(Three digits are needed to label 150 subjects.) Enter Table B and read three-
digit groups until you have selected 25 students to receive Treatment 1 (a 30-
second ad shown once). If you start at line 140, the first few labels for Treat-
ment 1 subjects are 129, 048, and 003.

Continue in Table B to select 25 more students to receive Treatment 2 (a
30-second ad shown 3 times). Then select another 25 for Treatment 3 and so
on until you have assigned 125 of the 150 students to Treatments 1 through 5.
The 25 students who remain get Treatment 6. The randomization is straight-
forward, but very tedious to do by hand. We recommend the Simple Random
Sample applet. Exercise 3.35 shows how to use the applet to do the random-
ization for this example.

AP
PLET

Random
allocation

Compare
response

Group 1
25 subjects

Group 2
25 subjects

Group 3
25 subjects

Group 4
25 subjects

Group 5
25 subjects

Group 6
25 subjects

Treatment 1
30 sec 1 time

Treatment 2
30 sec 3 times

Treatment 3
30 sec 5 times

Treatment 4
90 sec 1 time

Treatment 5
90 sec 3 times

Treatment 6
90 sec 5 times

FIGURE 3.5 Outline of a
completely randomized design
comparing six treatments, for
Example 3.13.

USE YOUR KNOWLEDGE
3.16 Do the randomization. Use computer software to carry out the ran-

domization in Example 3.13.
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Cautions about experimentation
The logic of a randomized comparative experiment depends on our ability
to treat all the experimental units identically in every way except for the ac-
tual treatments being compared. Good experiments therefore require careful
attention to details. For example, the subjects in the second gastric freezing
experiment (Example 3.9) all got the same medical attention during the study.
Moreover, the study was double-blind—neither the subjects themselves nordouble-blind
the medical personnel who worked with them knew which treatment any sub-
ject had received. The double-blind method avoids unconscious bias by, for
example, a doctor who doesn’t think that “just a placebo” can benefit a patient.

Many—perhaps most—experiments have some weaknesses in detail. The en-

CAUTION

! vironment of an experiment can influence the outcomes in unexpected ways.
Although experiments are the gold standard for evidence of cause and effect,
really convincing evidence usually requires that a number of studies in differ-
ent places with different details produce similar results. Here are some brief
examples of what can go wrong.
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E 3.14 Placebo for a marijuana experiment. A study of the effects of
marijuana recruited young men who used marijuana. Some were randomly
assigned to smoke marijuana cigarettes, while others were given placebo
cigarettes. This failed: the control group recognized that their cigarettes were
phony and complained loudly. It may be quite common for blindness to fail
because the subjects can tell which treatment they are receiving.14
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E 3.15 Knock out genes. To study genetic influence on behavior, experi-
menters “knock out” a gene in one group of mice and compare their behavior
with that of a control group of normal mice. The results of these experiments
often don’t agree as well as hoped, so investigators did exactly the same ex-
periment with the same genetic strain of mice in Oregon, Alberta (Canada),
and New York. Many results were very different.15 It appears that small dif-
ferences in the lab environments have big effects on the behavior of the mice.
Remember this the next time you read that our genes control our behavior.

The most serious potential weakness of experiments is lack of realism. Thelack of realism
subjects or treatments or setting of an experiment may not realistically dupli-
cate the conditions we really want to study. Here is an example.
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E 3.16 Layoffs and feeling bad. How do layoffs at a workplace affect the
workers who remain on the job? Psychologists asked student subjects to
proofread text for extra course credit, then “let go” some of the workers (who
were actually accomplices of the experimenters). Some subjects were told
that those let go had performed poorly (Treatment 1). Others were told that
not all could be kept and that it was just luck that they were kept and others
let go (Treatment 2). We can’t be sure that the reactions of the students are
the same as those of workers who survive a layoff in which other workers
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•
lose their jobs. Many behavioral science experiments use student subjects in
a campus setting. Do the conclusions apply to the real world?

Lack of realism can limit our ability to apply the conclusions of an experi-
ment to the settings of greatest interest. Most experimenters want to general-
ize their conclusions to some setting wider than that of the actual experiment.
Statistical analysis of an experiment cannot tell us how far the results will gen-

CAUTION

! eralize to other settings. Nonetheless, the randomized comparative experiment,
because of its ability to give convincing evidence for causation, is one of the
most important ideas in statistics.

Matched pairs designs
Completely randomized designs are the simplest statistical designs for exper-
iments. They illustrate clearly the principles of control, randomization, and
repetition. However, completely randomized designs are often inferior to more
elaborate statistical designs. In particular, matching the subjects in various
ways can produce more precise results than simple randomization.

The simplest use of matching is a matched pairs design, which comparesmatched pairs design
just two treatments. The subjects are matched in pairs. For example, an exper-
iment to compare two advertisements for the same product might use pairs of
subjects with the same age, sex, and income. The idea is that matched subjects
are more similar than unmatched subjects, so that comparing responses within
a number of pairs is more efficient than comparing the responses of groups of
randomly assigned subjects. Randomization remains important: which one of
a matched pair sees the first ad is decided at random. One common variation
of the matched pairs design imposes both treatments on the same subjects, so
that each subject serves as his or her own control. Here is an example.
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E 3.17 Matched pairs for the cell phone experiment. Example 3.10 de-
scribes an experiment on the effects of talking on a cell phone while driving.
The experiment compared two treatments, driving in a simulator and driv-
ing in the simulator while talking on a hands-free cell phone. The response
variable is the time the driver takes to apply the brake when the car in front
brakes suddenly. In Example 3.10, 40 student subjects were assigned at ran-
dom, 20 students to each treatment. This is a completely randomized design,
outlined in Figure 3.3. Subjects differ in driving skill and reaction times. The
completely randomized design relies on chance to create two similar groups
of subjects.

In fact, the experimenters used a matched pairs design in which all sub-
jects drove both with and without using the cell phone. They compared each
individual’s reaction times with and without the phone. If all subjects drove
first with the phone and then without it, the effect of talking on the cell phone
would be confounded with the fact that this is the first run in the simula-
tor. The proper procedure requires that all subjects first be trained in using
the simulator, that the order in which a subject drives with and without the
phone be random, and that the two drives be on separate days to reduce the
chance that the results of the second treatment will be influenced by the first
treatment.
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The completely randomized design uses chance to decide which 20 sub-
jects will drive with the cell phone. The other 20 drive without it. The matched
pairs design uses chance to decide which 20 subjects will drive first with and
then without the cell phone. The other 20 drive first without and then with the
phone.

Block designs
The matched pairs design of Example 3.17 uses the principles of comparison
of treatments, randomization, and repetition on several experimental units.
However, the randomization is not complete (all subjects randomly assigned
to treatment groups) but restricted to assigning the order of the treatments for
each subject. Block designs extend the use of “similar subjects” from pairs to
larger groups.

BLOCK DESIGN

A block is a group of experimental units or subjects that are known be-
fore the experiment to be similar in some way that is expected to affect
the response to the treatments. In a block design, the random assign-
ment of units to treatments is carried out separately within each block.

Block designs can have blocks of any size. A block design combines the
idea of creating equivalent treatment groups by matching with the principle of
forming treatment groups at random. Blocks are another form of control. They
control the effects of some outside variables by bringing those variables into
the experiment to form the blocks. Here are some typical examples of block
designs.
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E 3.18 Blocking in a cancer experiment. The progress of a type of cancer
differs in women and men. A clinical experiment to compare three therapies
for this cancer therefore treats sex as a blocking variable. Two separate ran-
domizations are done, one assigning the female subjects to the treatments
and the other assigning the male subjects. Figure 3.6 outlines the design of
this experiment. Note that there is no randomization involved in making up
the blocks. They are groups of subjects who differ in some way (sex in this
case) that is apparent before the experiment begins.
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E 3.19 Blocking in an agriculture experiment. The soil type and fertility
of farmland differ by location. Because of this, a test of the effect of tillage
type (two types) and pesticide application (three application schedules) on
soybean yields uses small fields as blocks. Each block is divided into six plots,
and the six treatments are randomly assigned to plots separately within each
block.
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Subjects

Men Group 2

Group 3

Group 1

Therapy 2

Therapy 3

Therapy 1

Random
assignment

Compare
survival

Women Group 2

Group 3

Group 1

Therapy 2

Therapy 3

Therapy 1

Random
assignment

Compare
survival

FIGURE 3.6 Outline of a block
design, for Example 3.18. The
blocks consist of male and
female subjects. The treatments
are three therapies for cancer.
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E 3.20 Blocking in an education experiment. The Tennessee STAR class
size experiment (Example 3.7) used a block design. It was important to com-
pare different class types in the same school because the children in a school
come from the same neighborhood, follow the same curriculum, and have the
same school environment outside class. In all, 79 schools across Tennessee
participated in the program. That is, there were 79 blocks. New kindergarten
students were randomly placed in the three types of class separately within
each school.

Blocks allow us to draw separate conclusions about each block, for example,
about men and women in the cancer study in Example 3.18. Blocking also al-
lows more precise overall conclusions because the systematic differences be-
tween men and women can be removed when we study the overall effects of
the three therapies. The idea of blocking is an important additional principle
of statistical design of experiments. A wise experimenter will form blocks based
on the most important unavoidable sources of variability among the experi-
mental units. Randomization will then average out the effects of the remaining
variation and allow an unbiased comparison of the treatments.

SECTION 3.1 Summary

In an experiment, one or more treatments are imposed on the experimental
units or subjects. Each treatment is a combination of levels of the explanatory
variables, which we call factors.

The design of an experiment refers to the choice of treatments and the manner
in which the experimental units or subjects are assigned to the treatments.

The basic principles of statistical design of experiments are control, random-
ization, and repetition.

The simplest form of control is comparison. Experiments should compare two
or more treatments in order to prevent confounding the effect of a treatment
with other influences, such as lurking variables.
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Randomization uses chance to assign subjects to the treatments. Random-
ization creates treatment groups that are similar (except for chance variation)
before the treatments are applied. Randomization and comparison together
prevent bias, or systematic favoritism, in experiments.

You can carry out randomization by giving numerical labels to the experimen-
tal units and using a table of random digits to choose treatment groups.

Repetition of the treatments on many units reduces the role of chance vari-
ation and makes the experiment more sensitive to differences among the
treatments.

Good experiments require attention to detail as well as good statistical design.
Many behavioral and medical experiments are double-blind. Lack of realism
in an experiment can prevent us from generalizing its results.

In addition to comparison, a second form of control is to restrict randomization
by forming blocks of experimental units that are similar in some way that is
important to the response. Randomization is then carried out separately within
each block.

Matched pairs are a common form of blocking for comparing just two treat-
ments. In some matched pairs designs, each subject receives both treatments
in a random order. In others, the subjects are matched in pairs as closely as
possible, and one subject in each pair receives each treatment.

SECTION 3.1 Exercises
For Exercises 3.1 to 3.4, see page 172; for Exercise 3.5, see
page 173; for Exercises 3.6 and 3.7, see page 175; for
Exercise 3.8, see page 176; for Exercises 3.9 and 3.10, see
page 177; for Exercises 3.11 and 3.12, see pages 179 and
180; for Exercise 3.13, see page 181; for Exercises 3.14 and
3.15, see page 183; and for Exercise 3.16, see page 187.

3.17 What is needed? Explain what is deficient in each
of the following proposed experiments and explain
how you would improve the experiment.

(a) Two forms of a lab exercise are to be compared.
There are 10 rows in the classroom. Students who
sit in the first 5 rows of the class are given the first
form, and students who sit in the last 5 rows are
given the second form.

(b) The effectiveness of a leadership program for
high school students is evaluated by examining the
change in scores on a standardized test of leadership
skills.

(c) An innovative method for teaching introductory
biology courses is examined by using the traditional
method in the fall zoology course and the new
method in the spring botany course.

3.18 What is wrong? Explain what is wrong with each
of the following randomization procedures and

describe how you would do the randomization
correctly.

(a) A list of 50 subjects is entered into a computer
file and then sorted by last name. The subjects are
assigned to five treatments by taking the first 10
subjects for Treatment 1, the next 10 subjects for
Treatment 2, and so forth.

(b) Eight subjects are to be assigned to two
treatments, four to each. For each subject, a coin
is tossed. If the coin comes up heads, the subject is
assigned to the first treatment; if the coin comes up
tails, the subject is assigned to the second treatment.

(c) An experiment will assign 80 rats to four
different treatment conditions. The rats arrive from
the supplier in batches of 20 and the treatment lasts
two weeks. The first batch of 20 rats is randomly
assigned to one of the four treatments, and data
for these rats are collected. After a one-week break,
another batch of 20 rats arrives and is assigned to
one of the three remaining treatments. The process
continues until the last batch of rats is given the
treatment that has not been assigned to the three
previous batches.

3.19 Evaluate a new teaching method. A teaching
innovation is to be evaluated by randomly assigning
students to either the traditional approach or
the new approach. The change in a standardized
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test score is the response variable. Explain how
this experiment should be done in a double-blind
fashion.

3.20 Can you change attitudes toward binge drinking?
A experiment designed to change attitudes about
binge drinking is to be performed using college
students as subjects. Discuss some variables that
you might use if you were to use a block design for
this experiment.

3.21 Compost tea. Compost tea is rich in micro-
organisms that help plants grow. It is made by
soaking compost in water.16 Design a comparative
experiment that will provide evidence about whether
or not compost tea works for a particular type of
plant that interests you. Be sure to provide all details
regarding your experiment, including the response
variable or variables that you will measure.

3.22 C
H

ALLENG
E Measuring water quality in streams

and lakes. Water quality of streams and
lakes is an issue of concern to the public. Although
trained professionals typically are used to take
reliable measurements, many volunteer groups
are gathering and distributing information based
on data that they collect.17 You are part of a
team to train volunteers to collect accurate water
quality data. Design an experiment to evaluate the
effectiveness of the training. Write a summary of
your proposed design to present to your team. Be
sure to include all of the details that they will need
to evaluate your proposal.

For each of the experimental situations described in
Exercises 3.23 to 3.25, identify the experimental units or
subjects, the factors, the treatments, and the response
variables.

3.23 How well do pine trees grow in shade? Ability
to grow in shade may help pines in the dry forests
of Arizona resist drought. How well do these pines
grow in shade? Investigators planted pine seedlings
in a greenhouse in either full light or light reduced
to 5% of normal by shade cloth. At the end of the
study, they dried the young trees and weighed them.

3.24 Will the students do more exercise and eat
better? Most American adolescents don’t eat well
and don’t exercise enough. Can middle schools
increase physical activity among their students? Can
they persuade students to eat better? Investigators
designed a “physical activity intervention” to
increase activity in physical education classes and
during leisure periods throughout the school day.

They also designed a “nutrition intervention” that
improved school lunches and offered ideas for
healthy home-packed lunches. Each participating
school was randomly assigned to one of the
interventions, both interventions, or no intervention.
The investigators observed physical activity and
lunchtime consumption of fat.

3.25 Refusals in telephone surveys. How can we reduce
the rate of refusals in telephone surveys? Most
people who answer at all listen to the interviewer’s
introductory remarks and then decide whether
to continue. One study made telephone calls to
randomly selected households to ask opinions about
the next election. In some calls, the interviewer gave
her name, in others she identified the university she
was representing, and in still others she identified
both herself and the university. For each type of
call, the interviewer either did or did not offer to
send a copy of the final survey results to the person
interviewed. Do these differences in the introduction
affect whether the interview is completed?

3.26 Does aspirin prevent strokes and heart attacks?
The Bayer Aspirin Web site claims that “Nearly
five decades of research now link aspirin to the
prevention of stroke and heart attacks.” The most
important evidence for this claim comes from
the Physicians’ Health Study, a large medical
experiment involving 22,000 male physicians. One
group of about 11,000 physicians took an aspirin
every second day, while the rest took a placebo. After
several years the study found that subjects in the
aspirin group had significantly fewer heart attacks
than subjects in the placebo group.

(a) Identify the experimental subjects, the factor
and its levels, and the response variable in the
Physicians’ Health Study.

(b) Use a diagram to outline a completely
randomized design for the Physicians’ Health
Study.

(c) What does it mean to say that the aspirin group
had “significantly fewer heart attacks”?

3.27 Chronic tension headaches. Doctors identify
“chronic tension-type headaches” as headaches
that occur almost daily for at least six months. Can
antidepressant medications or stress management
training reduce the number and severity of these
headaches? Are both together more effective
than either alone? Investigators compared four
treatments: antidepressant alone, placebo alone,
antidepressant plus stress management, and placebo
plus stress management. Outline the design of the
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experiment. The headache sufferers named below
have agreed to participate in the study. Use software
or Table B at line 151 to randomly assign the subjects
to the treatments.

Anderson Archberger Bezawada Cetin Cheng
Chronopoulou Codrington Daggy Daye Engelbrecht
Guha Hatfield Hua Kim Kumar
Leaf Li Lipka Lu Martin
Mehta Mi Nolan Olbricht Park
Paul Rau Saygin Shu Tang
Towers Tyner Vassilev Wang Watkins
Xu

3.28 Smoking marijuana and willingness to work.
How does smoking marijuana affect willingness to
work? Canadian researchers persuaded people who
used marijuana to live for 98 days in a “planned
environment.” The subjects earned money by
weaving belts. They used their earnings to pay for
meals and other consumption and could keep any
money left over. One group smoked two potent
marijuana cigarettes every evening. The other group
smoked two weak marijuana cigarettes. All subjects
could buy more cigarettes but were given strong or
weak cigarettes, depending on their group. Did the
weak and strong groups differ in work output and
earnings?18

(a) Outline the design of this experiment.

(b) Here are the names of the 20 subjects. Use
software or Table B at line 101 to carry out the
randomization your design requires.

Becker Brifcani Chen Crabill Cunningham
Dicklin Fein Gorman Knapp Lucas
McCarty Merkulyeva Mitchell Ponder Roe
Saeed Seele Truong Wayman Woodley

3.29 Eye cataracts. Eye cataracts are responsible for
over 40% of blindness worldwide. Can drinking tea
regularly slow the growth of cataracts? We can’t
experiment on people, so we use rats as subjects.
Researchers injected 21 young rats with a substance
that causes cataracts. One group of the rats also
received black tea extract; a second group received
green tea extract; and a third got a placebo, a
substance with no effect on the body. The response
variable was the growth of cataracts over the next
six weeks. Yes, both tea extracts did slow cataract
growth.19

(a) Outline the design of this experiment.

(b) Use software or Table B, starting at line 120, to
assign rats to treatments.

3.30 Guilt among workers who survive a layoff.
Workers who survive a layoff of other employees at
their location may suffer from “survivor guilt.” A
study of survivor guilt and its effects used as subjects
90 students who were offered an opportunity to
earn extra course credit by doing proofreading.
Each subject worked in the same cubicle as
another student, who was an accomplice of the
experimenters. At a break midway through the
work, one of three things happened:

Treatment 1: The accomplice was told to leave;
it was explained that this was because she per-
formed poorly.

Treatment 2: It was explained that unforeseen cir-
cumstances meant there was only enough work
for one person. By “chance,” the accomplice was
chosen to be laid off.

Treatment 3: Both students continued to work af-
ter the break.

The subjects’ work performance after the break was
compared with performance before the break.20

(a) Outline the design of this completely
randomized experiment.

(b) If you are using software, randomly assign the
90 students to the treatments. If not, use Table B
at line 153 to choose the first four subjects for
Treatment 1.

3.31 Diagram the exercise and eating experiment.
Twenty-four public middle schools agree to
participate in the experiment described in Exercise
3.24. Use a diagram to outline a completely
randomized design for this experiment. Then
do the randomization required to assign schools to
treatments. If you use Table B, start at line 160.

3.32 Price cuts on athletic shoes. Stores advertise price
reductions to attract customers. What type of price
cut is most attractive? Market researchers prepared
ads for athletic shoes announcing different levels
of discounts (20%, 40%, 60%, or 80%). The student
subjects who read the ads were also given “inside
information” about the fraction of shoes on sale
(25%, 50%, 75%, or 100%). Each subject then rated
the attractiveness of the sale on a scale of 1 to 7.21

(a) There are two factors. Make a sketch like Figure
3.2 (page 179) that displays the treatments formed
by all combinations of levels of the factors.

(b) Outline a completely randomized design using
96 student subjects. Use software or Table B at line
111 to choose the subjects for the first treatment.
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3.33 Treatment of clothing fabrics. A maker of fabric
for clothing is setting up a new line to “finish” the
raw fabric. The line will use either metal rollers
or natural-bristle rollers to raise the surface of the
fabric; a dyeing cycle time of either 30 minutes
or 40 minutes; and a temperature of either 150◦

or 175◦ Celsius. An experiment will compare all
combinations of these choices. Four specimens
of fabric will be subjected to each treatment and
scored for quality.

(a) What are the factors and the treatments? How
many individuals (fabric specimens) does the
experiment require?

(b) Outline a completely randomized design for
this experiment. (You need not actually do the
randomization.)

3.34
AP

PLET

Use the simple random sample applet.
You can use the Simple Random Sample

applet to choose a treatment group at random once
you have labeled the subjects. Example 3.11 (page
185) uses Table B to choose 20 students from a
group of 40 for the treatment group in a study of the
effect of cell phones on driving. Use the applet to
choose the 20 students for the experimental group.
Which students did you choose? The remaining 20
students make up the control group.

3.35
AP

PLET

Use the simple random sample applet.
The Simple Random Sample applet allows

you to randomly assign experimental units to more
than two groups without difficulty. Example 3.13
(page 187) describes a randomized comparative
experiment in which 150 students are randomly
assigned to six groups of 25.

(a) Use the applet to randomly choose 25 out of 150
students to form the first group. Which students are
in this group?

(b) The population hopper now contains the
125 students that were not chosen, in scrambled
order. Click “Sample” again to choose 25 of these
remaining students to make up the second group.
Which students were chosen?

(c) Click “Sample” three more times to choose the
third, fourth, and fifth groups. Don’t take the time to
write down these groups. Check that there are only
25 students remaining in the population hopper.
These subjects get Treatment 6. Which students are
they?

3.36 C
H

ALLENG
E Effectiveness of price discounts. Experi-

ments with more than one factor allow
insight into interactions between the factors. A study

of the attractiveness of advertised price discounts
had two factors: percent of all goods on sale (25%,
50%, 75%, or 100%) and whether the discount was
stated precisely as 60% off or as a range, 50% to 70%
off. Subjects rated the attractiveness of the sale on a
scale of 1 to 7. Figure 3.7 shows the mean ratings for
the eight treatments formed from the two factors.22

Based on these results, write a careful description
of how percent on sale and precise discount versus
range of discounts influence the attractiveness of a
sale.

1

2

3

4

5

25 50 75 100
Percent of goods on sale

M
ea

n 
at

tr
ac

ti
ve

ne
ss

 s
co

re

Precise
Range

FIGURE 3.7 Mean responses to eight treatments in an
experiment with two factors, showing interaction between
the factors, for Exercise 3.36.

3.37 C
H

ALLENG
E Health benefits of bee pollen. “Bee pollen

is effective for combating fatigue, depression,
cancer, and colon disorders.” So says a Web site that
offers the pollen for sale. We wonder if bee pollen
really does prevent colon disorders. Here are two
ways to study this question. Explain why the first
design will produce more trustworthy data.

1. Find 400 women who do not have colon disorders.
Assign 200 to take bee pollen capsules and the other
200 to take placebo capsules that are identical in
appearance. Follow both groups for 5 years.

2. Find 200 women who take bee pollen regularly.
Match each with a woman of the same age, race, and
occupation who does not take bee pollen. Follow
both groups for 5 years.

3.38 Treatment of pain for cancer patients. Health
care providers are giving more attention to relieving
the pain of cancer patients. An article in the journal
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Cancer surveyed a number of studies and concluded
that controlled-release morphine tablets, which
release the painkiller gradually over time, are more
effective than giving standard morphine when the
patient needs it.23 The “methods” section of the
article begins: “Only those published studies that
were controlled (i.e., randomized, double blind,
and comparative), repeated-dose studies with CR
morphine tablets in cancer pain patients were
considered for this review.” Explain the terms in
parentheses to someone who knows nothing about
medical trials.

3.39 Saint-John’s-wort and depression. Does the herb
Saint-John’s-wort relieve major depression? Here
are some excerpts from the report of a study of this
issue.24 The study concluded that the herb is no
more effective than a placebo.

(a) “Design: Randomized, double-blind, placebo-
controlled clinical trial.. . .” Explain the meaning of
each of the terms in this description.

(b) “Participants .. .were randomly assigned to
receive either Saint-John’s-wort extract (n = 98)
or placebo (n = 102). . . . The primary outcome
measure was the rate of change in the Hamilton
Rating Scale for Depression over the treatment
period.” Based on this information, use a diagram
to outline the design of this clinical trial.

3.40 The Monday effect on stock prices. Puzzling but
true: stocks tend to go down on Mondays. There
is no convincing explanation for this fact. A recent
study looked at this “Monday effect” in more detail,
using data on the daily returns of stocks on several
U.S. exchanges over a 30-year period. Here are some
of the findings:

To summarize, our results indicate that the well-
known Monday effect is caused largely by the Mondays
of the last two weeks of the month. The mean Monday
return of the first three weeks of the month is, in gen-
eral, not significantly different from zero and is gener-
ally significantly higher than the mean Monday return
of the last two weeks. Our finding seems to make it
more difficult to explain the Monday effect.25

A friend thinks that “significantly” in this article
has its plain English meaning, roughly “I think this
is important.” Explain in simple language what
“significantly higher” and “not significantly different
from zero” actually tell us here.

3.41 Five-digit zip codes and delivery time of mail.
Does adding the five-digit postal zip code to an
address really speed up delivery of letters? Does
adding the four more digits that make up “zip + 4”

speed delivery yet more? What about mailing a letter
on Monday, Thursday, or Saturday? Describe the
design of an experiment on the speed of first-class
mail delivery. For simplicity, suppose that all letters
go from you to a friend, so that the sending and
receiving locations are fixed.

3.42
AP

PLET

Use the simple random sample applet.
The Simple Random Sample applet can

demonstrate how randomization works to create
similar groups for comparative experiments.
Suppose that (unknown to the experimenters)
the 20 even-numbered students among the 40
subjects for the cell phone study in Example 3.11
(page 185) have fast reactions, and that the odd-
numbered students have slow reactions. We would
like the experimental and control groups to contain
similar numbers of the fast reactors. Use the applet
to choose 10 samples of size 20 from the 40 students.
(Be sure to click “Reset” after each sample.) Record
the counts of even-numbered students in each of
your 10 samples. You see that there is considerable
chance variation but no systematic bias in favor of
one or the other group in assigning the fast-reacting
students. Larger samples from larger populations
will on the average do a better job of making the two
groups equivalent.

3.43 Does oxygen help football players? We often see
players on the sidelines of a football game inhaling
oxygen. Their coaches think this will speed their
recovery. We might measure recovery from intense
exercise as follows: Have a football player run 100
yards three times in quick succession. Then allow
three minutes to rest before running 100 yards again.
Time the final run. Because players vary greatly in
speed, you plan a matched pairs experiment using
20 football players as subjects. Describe the design
of such an experiment to investigate the effect of
inhaling oxygen during the rest period. Why should
each player’s two trials be on different days? Use
Table B at line 140 to decide which players will get
oxygen on their first trial.

3.44 Carbon dioxide in the atmosphere. The
concentration of carbon dioxide (CO2) in the
atmosphere is increasing rapidly due to our use
of fossil fuels. Because plants use CO2 to fuel
photosynthesis, more CO2 may cause trees and
other plants to grow faster. An elaborate apparatus
allows researchers to pipe extra CO2 to a 30-meter
circle of forest. We want to compare the growth in
base area of trees in treated and untreated areas to
see if extra CO2 does in fact increase growth. We can
afford to treat 3 circular areas.26
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(a) Describe the design of a completely randomized
experiment using 6 well-separated 30-meter circular
areas in a pine forest. Sketch the forest area with
the 6 circles and carry out the randomization your
design calls for.

(b) Regions within the forest may differ in soil
fertility. Describe a matched pairs design using three
pairs of circles that will reduce the extra variation
due to different fertility. Sketch the forest area with
the new arrangement of circles and carry out the
randomization your design calls for.

3.45 C
H

ALLENG
E Calcium and the bones of young girls.

Calcium is important to the bone develop-
ment of young girls. To study how the bodies of
young girls process calcium, investigators used the
setting of a summer camp. Calcium was given in
Hawaiian Punch at either a high or a low level.
The camp diet was otherwise the same for all girls.
Suppose that there are 50 campers.

(a) Outline a completely randomized design for this
experiment.

(b) Describe a matched pairs design in which
each girl receives both levels of calcium (with a
“washout period” between). What is the advantage
of the matched pairs design over the completely
randomized design?

(c) The same randomization can be used in different
ways for both designs. Label the subjects 01 to 50.
You must choose 25 of the 50. Use Table B at line
110 to choose just the first 5 of the 25. How are
the 25 subjects chosen treated in the completely
randomized design? How are they treated in the
matched pairs design?

3.46 C
H

ALLENG
E Random digits. Table B is a table of random

digits. Which of the following statements are
true of a table of random digits, and which are false?
Explain your answers.

(a) There are exactly four 0s in each row of 40 digits.

(b) Each pair of digits has chance 1/100 of being 00.

(c) The digits 0000 can never appear as a group,
because this pattern is not random.

3.47 Vitamin C for ultramarathon runners. An
ultramarathon, as you might guess, is a footrace
longer than the 26.2 miles of a marathon. Runners
commonly develop respiratory infections after
an ultramarathon. Will taking 600 milligrams of
vitamin C daily reduce these infections? Researchers
randomly assigned ultramarathon runners to receive
either vitamin C or a placebo. Separately, they also
randomly assigned these treatments to a group of
nonrunners the same age as the runners. All subjects
were watched for 14 days after the big race to see if
infections developed.27

(a) What is the name for this experimental design?

(b) Use a diagram to outline the design.

(c) The report of the study said:

Sixty-eight percent of the runners in the placebo group
reported the development of symptoms of upper res-
piratory tract infection after the race; this was sig-
nificantly more than that reported by the vitamin C–
supplemented group (33%).

Explain to someone who knows no statistics why
“significantly more” means there is good reason to
think that vitamin C works.

3.2 Sampling Design
A political scientist wants to know what percent of college-age adults consider
themselves conservatives. An automaker hires a market research firm to learn
what percent of adults aged 18 to 35 recall seeing television advertisements
for a new sport utility vehicle. Government economists inquire about average
household income. In all these cases, we want to gather information about a
large group of individuals. We will not, as in an experiment, impose a treatment
in order to observe the response. Also, time, cost, and inconvenience forbid
contacting every individual. In such cases, we gather information about only
part of the group—a sample—in order to draw conclusions about the whole.
Sample surveys are an important kind of observational study.sample survey
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POPULATION AND SAMPLE

The entire group of individuals that we want information about is called
the population.

A sample is a part of the population that we actually examine in order
to gather information.

Notice that “population” is defined in terms of our desire for knowledge. If
we wish to draw conclusions about all U.S. college students, that group is our
population even if only local students are available for questioning. The sample
is the part from which we draw conclusions about the whole. The design of asample design
sample survey refers to the method used to choose the sample from the popu-
lation.
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E 3.21 The Reading Recovery program. The Reading Recovery (RR) pro-
gram has specially trained teachers work one-on-one with at-risk first-grade
students to help them learn to read. A study was designed to examine the
relationship between the RR teachers’ beliefs about their ability to mo-
tivate students and the progress of the students whom they teach.28 The
National Data Evaluation Center (NDEC) Web site (www.ndec.us) says that
there are 13,823 RR teachers. The researchers send a questionnaire to a
random sample of 200 of these. The population consists of all 13,823 RR
teachers, and the sample is the 200 that were randomly selected.

Unfortunately, our idealized framework of population and sample does not
exactly correspond to the situations that we face in many cases. In Example
3.21, the list of teachers was prepared at a particular time in the past. It is very
likely that some of the teachers on the list are no longer working as RR teachers
today. New teachers have been trained in RR methods and are not on the list.
In spite of these difficulties, we still view the list as the population. Also, we do
not expect to get a response from every teacher in our random sample. We may
have out-of-date addresses for some who are still working as RR teachers, and
some teachers may choose not to respond to our survey questions.

In reporting the results of a sample survey it is important to include all
details regarding the procedures used. Follow-up mailings or phone calls to
those who do not initially respond can help increase the response rate. The
proportion of the original sample who actually provide usable data is called
the response rate and should be reported for all surveys. If only 150 of theresponse rate
teachers who were sent questionnaires provided usable data, the response rate
would be 150/200, or 75%.

USE YOUR KNOWLEDGE
3.48 Job satisfaction in Mongolian universities. A educational research

team wanted to examine the relationship between faculty partici-
pation in decision making and job satisfaction in Mongolian public

www.ndec.us
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universities. They are planning to randomly select 300 faculty mem-
bers from a list of 2500 faculty members in these universities. The
Job Descriptive Index (JDI) will be used to measure job satisfaction,
and the Conway Adaptation of the Alutto-Belasco Decisional Partici-
pation Scale will be used to measure decision participation. Describe
the population and the sample for this study. Can you determine the
response rate?

3.49 Taxes and forestland usage. A study was designed to assess the
impact of taxes on forestland usage in part of the Upper Wabash
River Watershed in Indiana.29 A survey was sent to 772 forest owners
from this region and 348 were returned. Consider the population, the
sample, and the response rate for this study. Describe these based on
the information given and indicate any additional information that
you would need to give a complete answer.

Poor sample designs can produce misleading conclusions. Here is an
example.
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E 3.22 Sampling pieces of steel. A mill produces large coils of thin steel
for use in manufacturing home appliances. The quality engineer wants to
submit a sample of 5-centimeter squares to detailed laboratory examination.
She asks a technician to cut a sample of 10 such squares. Wanting to provide
“good” pieces of steel, the technician carefully avoids the visible defects in the
coil material when cutting the sample. The laboratory results are wonderful
but the customers complain about the material they are receiving.

Online opinion polls are particularly vulnerable to bias because the sample
who respond are not representative of the population at large. Here is an
example that also illustrates how the results of such polls can be manipulated.
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E 3.23 The American Family Association. The American Family Associa-
tion (AFA) is a conservative group that claims to stand for “traditional fam-
ily values.” It regularly posts online poll questions on its Web site—just click
on a response to take part. Because the respondents are people who visit this
site, the poll results always support AFA’s positions. Well, almost always. In
2004, AFA’s online poll asked about the heated issue of allowing same-sex mar-
riage. Soon, email lists and social-network sites favored mostly by young lib-
erals pointed to the AFA poll. Almost 850,000 people responded, and 60% of
them favored legalization of same-sex marriage. AFA claimed that homosex-
ual rights groups had skewed its poll.

As the AFA poll illustrates, you can’t always trust poll results. People who
take the trouble to respond to an open invitation are not representative of the
entire adult population. That’s true of regular visitors to AFA’s site, of the ac-
tivists who made a special effort to vote in the marriage poll, and of the people
who bother to respond to write-in, call-in, or online polls in general.
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In both Examples 3.22 and 3.23, the sample was selected in a manner that
guaranteed that it would not be representative of the entire population. These
sampling schemes display bias, or systematic error, in favoring some parts of
the population over others. Online polls use voluntary response samples, a par-
ticularly common form of biased sample.

VOLUNTARY RESPONSE SAMPLE

A voluntary response sample consists of people who choose them-
selves by responding to a general appeal. Voluntary response samples
are biased because people with strong opinions, especially negative opin-
ions, are most likely to respond.

The remedy for bias in choosing a sample is to allow impersonal chance
to do the choosing, so that there is neither favoritism by the sampler (as in
Example 3.22) nor voluntary response (as in Example 3.23). Random selection
of a sample eliminates bias by giving all individuals an equal chance to be cho-
sen, just as randomization eliminates bias in assigning experimental subjects.

Simple random samples
The simplest sampling design amounts to placing names in a hat (the popula-
tion) and drawing out a handful (the sample). This is simple random sampling.

SIMPLE RANDOM SAMPLE

A simple random sample (SRS) of size n consists of n individuals from
the population chosen in such a way that every set of n individuals has
an equal chance to be the sample actually selected.

Each treatment group in a completely randomized experimental design is
an SRS drawn from the available experimental units. We select an SRS by
labeling all the individuals in the population and using software or a table of
random digits to select a sample of the desired size, just as in experimental ran-
domization. Notice that an SRS not only gives each individual an equal chance
to be chosen (thus avoiding bias in the choice) but gives every possible sample
an equal chance to be chosen. There are other random sampling designs that
give each individual, but not each sample, an equal chance. One such design,
systematic random sampling, is described in Exercise 3.64.
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E 3.24 Spring break destinations. A campus newspaper plans a major ar-
ticle on spring break destinations. The authors intend to call a few randomly
chosen resorts at each destination to ask about their attitudes toward groups
of students as guests. Here are the resorts listed in one city. The first step is
to label the members of this population as shown.
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01 Aloha Kai 08 Captiva 15 Palm Tree 22 Sea Shell
02 Anchor Down 09 Casa del Mar 16 Radisson 23 Silver Beach
03 Banana Bay 10 Coconuts 17 Ramada 24 Sunset Beach
04 Banyan Tree 11 Diplomat 18 Sandpiper 25 Tradewinds
05 Beach Castle 12 Holiday Inn 19 Sea Castle 26 Tropical Breeze
06 Best Western 13 Lime Tree 20 Sea Club 27 Tropical Shores
07 Cabana 14 Outrigger 21 Sea Grape 28 Veranda

Now enter Table B, and read two-digit groups until you have chosen three
resorts. If you enter at line 185, Banana Bay (03), Palm Tree (15), and Cabana
(07) will be called.

Most statistical software will select an SRS for you, eliminating the need for
Table B. The Simple Random Sample applet on the text CD and Web site is a

AP
PLET

convenient way to automate this task.
Excel can do the job in a way similar to what we used when we randomized

experimental units to treatments in designed experiments. There are four steps:

1. Create a data set with all of the elements of the population in the first
column.

2. Assign a random number to each element of the population; put these in the
second column.

3. Sort the data set by the random number column.

4. The simple random sample is obtained by taking elements in the sorted list
until the desired sample size is reached.

We illustrate the procedure with a simplified version of Example 3.24.
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E 3.25 Select a random sample. Suppose that the population from Example
3.24 is only the first two rows of the display given there:

Aloha Kai Captiva Palm Tree Sea Shell
Anchor Down Casa del Mar Radisson Silver Beach

Note that we do not need the numerical labels to identify the individuals in
the population. Suppose that we want to select a simple random sample of
three resorts from this population. Figure 3.8(a) gives the spreadsheet with
the population names. The random numbers generated by the RAND() func-
tion are given in the second column in Figure 3.8(b). The sorted data set is
given in Figure 3.8(c). We have added a third column to the speadsheet to in-
dicate which resorts were selected for our random sample. They are Captiva,
Radisson, and Silver Beach.
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(a) (b) (c)

FIGURE 3.8 Selection of a simple random sample of resorts, for Example 3.25.

USE YOUR KNOWLEDGE
3.50 Ringtones for cell phones. You decide to change the ringtones for

your cell phone by choosing 2 from a list of the 10 most popular ring-
tones.30 Here is the list:

Super Mario Brothers Theme Sexy Love Ms. New Booty Ridin’ Rims
I Write Sins Not Tragedies Gasolina My Humps The Pink Panther
Down Agarrala

Select your two ringtones using a simple random sample.

3.51 Listen to three songs. The walk to your statistics class takes about 10
minutes, about the amount of time needed to listen to three songs on
your iPod. You decide to take a simple random sample of songs from
a Billboard list of Rock Songs.31 Here is the list:

Miss Murder Animal I Have Become Steady, As She Goes Dani California
The Kill (Bury Me) Original Fire When You Were Young MakeD—Sure
Vicarious The Diary of Jane

Select the three songs for your iPod using a simple random sample.

Stratified samples
The general framework for designs that use chance to choose a sample is a prob-
ability sample.

PROBABILITY SAMPLE

A probability sample is a sample chosen by chance. We must know
what samples are possible and what chance, or probability, each pos-
sible sample has.
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Some probability sampling designs (such as an SRS) give each member of
the population an equal chance to be selected. This may not be true in more
elaborate sampling designs. In every case, however, the use of chance to select
the sample is the essential principle of statistical sampling.

Designs for sampling from large populations spread out over a wide area are
usually more complex than an SRS. For example, it is common to sample im-
portant groups within the population separately, then combine these samples.
This is the idea of a stratified sample.

STRATIFIED RANDOM SAMPLE

To select a stratified random sample, first divide the population into
groups of similar individuals, called strata. Then choose a separate SRS
in each stratum and combine these SRSs to form the full sample.

Choose the strata based on facts known before the sample is taken. For
example, a population of election districts might be divided into urban, subur-
ban, and rural strata. A stratified design can produce more exact information
than an SRS of the same size by taking advantage of the fact that individuals
in the same stratum are similar to one another. Think of the extreme case in
which all individuals in each stratum are identical: just one individual from
each stratum is then enough to completely describe the population. Strata for
sampling are similar to blocks in experiments. We have two names because the
idea of grouping similar units before randomizing arose separately in sampling
and in experiments.
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E 3.26 A stratified sample of dental claims. A dentist is suspected of de-
frauding insurance companies by describing some dental procedures incor-
rectly on claim forms and overcharging for them. An investigation begins by
examining a sample of his bills for the past three years. Because there are
five suspicious types of procedures, the investigators take a stratified sample.
That is, they randomly select bills for each of the five types of procedures
separately.

Multistage samples
Another common means of restricting random selection is to choose the sample
in stages. This is common practice for national samples of households or
people. For example, data on employment and unemployment are gathered
by the government’s Current Population Survey, which conducts interviews in
about 60,000 households each month. The cost of sending interviewers to the
widely scattered households in an SRS would be too high. Moreover, the gov-
ernment wants data broken down by states and large cities. The Current Popu-
lation Survey therefore uses a multistage sampling design. The final samplemultistage sample
consists of clusters of nearby households that an interviewer can easily visit.
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Most opinion polls and other national samples are also multistage, though in-
terviewing in most national samples today is done by telephone rather than in
person, eliminating the economic need for clustering. The Current Population
Survey sampling design is roughly as follows:32

Stage 1. Divide the United States into 2007 geographical areas called Primary
Sampling Units, or PSUs. PSUs do not cross state lines. Select a
sample of 754 PSUs. This sample includes the 428 PSUs with the
largest population and a stratified sample of 326 of the others.

Stage 2. Divide each PSU selected into smaller areas called “blocks.” Stratify
the blocks using ethnic and other information and take a stratified
sample of the blocks in each PSU.

Stage 3. Sort the housing units in each block into clusters of four nearby units.
Interview the households in a probability sample of these clusters.

Analysis of data from sampling designs more complex than an SRS takes
us beyond basic statistics. But the SRS is the building block of more elaborate
designs, and analysis of other designs differs more in complexity of detail than
in fundamental concepts.

Cautions about sample surveys
Random selection eliminates bias in the choice of a sample from a list of the
population. Sample surveys of large human populations, however, require
much more than a good sampling design.33 To begin, we need an accurate and
complete list of the population. Because such a list is rarely available, most
samples suffer from some degree of undercoverage. A sample survey of house-
holds, for example, will miss not only homeless people but prison inmates and
students in dormitories. An opinion poll conducted by telephone will miss the
6% of American households without residential phones. The results of national
sample surveys therefore have some bias if the people not covered—who most
often are poor people—differ from the rest of the population.

A more serious source of bias in most sample surveys is nonresponse, which
occurs when a selected individual cannot be contacted or refuses to cooperate.
Nonresponse to sample surveys often reaches 50% or more, even with careful
planning and several callbacks. Because nonresponse is higher in urban areas,
most sample surveys substitute other people in the same area to avoid favoring
rural areas in the final sample. If the people contacted differ from those who are
rarely at home or who refuse to answer questions, some bias remains.

UNDERCOVERAGE AND NONRESPONSE

Undercoverage occurs when some groups in the population are left out
of the process of choosing the sample.

Nonresponse occurs when an individual chosen for the sample can’t be
contacted or does not cooperate.
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E 3.27 Nonresponse in the Current Population Survey. How bad is non-
response? The Current Population Survey (CPS) has the lowest nonresponse
rate of any poll we know: only about 4% of the households in the CPS sample
refuse to take part and another 3% or 4% can’t be contacted. People are more
likely to respond to a government survey such as the CPS, and the CPS con-
tacts its sample in person before doing later interviews by phone.

The General Social Survey (Figure 3.9) is the nation’s most important so-
cial science research survey. The GSS also contacts its sample in person, and
it is run by a university. Despite these advantages, its most recent survey had
a 30% rate of nonresponse.

What about polls done by the media and by market research and opinion-
polling firms? We don’t know their rates of nonresponse, because they won’t
say. That itself is a bad sign. The Pew Research Center for People and the Press
designed a careful telephone survey and published the results: out of 2879
households called, 1658 were never at home, refused, or would not finish the
interview. That’s a nonresponse rate of 58%.34

FIGURE 3.9 Part of the subject index for the General Social Survey (GSS). The GSS has
assessed attitudes on a wide variety of topics since 1972. Its continuity over time makes the
GSS a valuable source for studies of changing attitudes.

Most sample surveys, and almost all opinion polls, are now carried out
by telephone. This and other details of the interview method can affect the
results.
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has asked about belief in God for many years. In response to the statement
“I never doubt the existence of God,” subjects are asked to choose from the
responses

completely agree mostly agree mostly disagree completely disagree

In 1990, subjects were interviewed in person and were handed a card with
the four responses on it. In 1991, the poll switched to telephone interviews.
In 1990, 60% said “completely agree,” in line with earlier years. In 1991, 71%
completely agreed. The increase is probably explained by the effect of hearing
“completely agree” read first by the interviewer.35

The behavior of the respondent or of the interviewer can cause responseresponse bias
bias in sample results. Respondents may lie, especially if asked about illegal or
unpopular behavior. The race or sex of the interviewer can influence responses
to questions about race relations or attitudes toward feminism. Answers to
questions that ask respondents to recall past events are often inaccurate be-
cause of faulty memory. For example, many people “telescope” events in the
past, bringing them forward in memory to more recent time periods. “Have you
visited a dentist in the last 6 months?” will often elicit a “Yes” from someone
who last visited a dentist 8 months ago.36
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E 3.29 Overreporting of voter behavior. “One of the most frequently ob-
served survey measurement errors is the overreporting of voting behavior.”37

People know they should vote, so those who didn’t vote tend to save face by
saying that they did. Here are the data from a typical sample of 663 people
after an election:

What they said:

I voted I didn’t

What they did: Voted 358 13
Didn’t vote 120 172

You can see that 478 people (72%) said that they voted, but only 371 people
(56%) actually did vote.

The wording of questions is the most important influence on the answerswording of questions
given to a sample survey. Confusing or leading questions can introduce strong
bias, and even minor changes in wording can change a survey’s outcome. Here
are some examples.
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E 3.30 The form of the question is important. In response to the ques-
tion “Are you heterosexual, homosexual, or bisexual?” in a social science re-
search survey, one woman answered, “It’s just me and my husband, so bisex-
ual.” The issue is serious, even if the example seems silly: reporting about sex-
ual behavior is difficult because people understand and misunderstand sexual
terms in many ways.

How do Americans feel about government help for the poor? Only 13%
think we are spending too much on “assistance to the poor,” but 44% think we
are spending too much on “welfare.” How do the Scots feel about the move-
ment to become independent from England? Well, 51% would vote for “inde-
pendence for Scotland,” but only 34% support “an independent Scotland sep-
arate from the United Kingdom.” It seems that “assistance to the poor” and
“independence” are nice, hopeful words. “Welfare” and “separate” are nega-
tive words.38

The statistical design of sample surveys is a science, but this science is only
part of the art of sampling. Because of nonresponse, response bias, and the dif-
ficulty of posing clear and neutral questions, you should hesitate to fully trust
reports about complicated issues based on surveys of large human populations.
Insist on knowing the exact questions asked, the rate of nonresponse, and the date

CAUTION

!
and method of the survey before you trust a poll result.

SECTION 3.2 Summary

A sample survey selects a sample from the population of all individuals about
which we desire information. We base conclusions about the population on
data about the sample.

The design of a sample refers to the method used to select the sample from the
population. Probability sampling designs use impersonal chance to select a
sample.

The basic probability sample is a simple random sample (SRS). An SRS gives
every possible sample of a given size the same chance to be chosen.

Choose an SRS by labeling the members of the population and using a table
of random digits to select the sample. Software can automate this process.

To choose a stratified random sample, divide the population into strata,
groups of individuals that are similar in some way that is important to the re-
sponse. Then choose a separate SRS from each stratum and combine them to
form the full sample.

Multistage samples select successively smaller groups within the population
in stages, resulting in a sample consisting of clusters of individuals. Each stage
may employ an SRS, a stratified sample, or another type of sample.

Failure to use probability sampling often results in bias, or systematic errors in
the way the sample represents the population. Voluntary response samples, in
which the respondents choose themselves, are particularly prone to large bias.
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In human populations, even probability samples can suffer from bias due to
undercoverage or nonresponse, from response bias due to the behavior of
the interviewer or the respondent, or from misleading results due to poorly
worded questions.

SECTION 3.2 Exercises
For Exercises 3.48 and 3.49, see pages 198 and 199; and for
Exercises 3.50 and 3.51, see page 202.

3.52 What’s wrong? Explain what is wrong in each of
the following scenarios.

(a) The population consists of all individuals
selected in a simple random sample.

(b) In a poll of an SRS of residents in a local
community, respondents are asked to indicate
the level of their concern about the dangers of
dihydrogen monoxide, a substance that is a major
component of acid rain and in its gaseous state
can cause severe burns. (Hint: Ask a friend who
is majoring in chemistry about this substance or
search the Internet for information about it.)

(c) Students in a class are asked to raise their hands
if they have cheated on an exam one or more times
within the past year.

3.53 What’s wrong? Explain what is wrong with each
of the following random selection procedures and
explain how you would do the randomization
correctly.

(a) To determine the reading level of an introductory
statistics text, you evaluate all of the written material
in the third chapter.

(b) You want to sample student opinions about a
proposed change in procedures for changing majors.
You hand out questionnaires to 100 students as they
arrive for class at 7:30 A.M.

(c) A population of subjects is put in alphabetical
order and a simple random sample of size 10 is
taken by selecting the first 10 subjects in the list.

3.54 Importance of students as customers. A
committee on community relations in a college
town plans to survey local businesses about
the importance of students as customers. From
telephone book listings, the committee chooses
150 businesses at random. Of these, 73 return the
questionnaire mailed by the committee. What is
the population for this sample survey? What is the
sample? What is the rate (percent) of nonresponse?

3.55 Popularity of news personalities. A Gallup Poll
conducted telephone interviews with 1001 U.S.

adults aged 18 and over on July 24–27, 2006. One
of the questions asked whether the respondents had
a favorable or an unfavorable opinion of 17 news
personalities. Diane Sawyer received the highest
rating, with 80% of the respondents giving her a
favorable rating.39

(a) What is the population for this sample survey?
What was the sample size?

(b) The report on the survey states that 8% of the
respondents either never heard of Sawyer or had
no opinion about her. When they included only
those who provided an opinion, Sawyer’s approval
percent rose to 88% and she was still at the top
of the list. Charles Gibson, on the other hand,
was ranked eighth on the original list, with a 55%
favorable rating. When only those providing an
opinion were counted, his rank rose to second,
with 87% approving. Discuss the advantages and
disadvantages of the two different ways of reporting
the approval percent. State which one you prefer
and why.

3.56 Identify the populations. For each of the following
sampling situations, identify the population as
exactly as possible. That is, say what kind of
individuals the population consists of and say
exactly which individuals fall in the population. If
the information given is not complete, complete the
description of the population in a reasonable way.

(a) A college has changed its core curriculum and
wants to obtain detailed feedback information from
the students during each of the first 12 weeks of the
coming semester. Each week, a random sample of 5
students will be selected to be interviewed.

(b) The American Community Survey (ACS) will
replace the census “long form” starting with the 2010
census. The main part of the ACS contacts 250,000
addresses by mail each month, with follow-up by
phone and in person if there is no response. Each
household answers questions about their housing,
economic, and social status.

(c) An opinion poll contacts 1161 adults and asks
them, “Which political party do you think has better
ideas for leading the country in the twenty-first
century?”

3.57 Interview residents of apartment complexes.
You are planning a report on apartment living in
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a college town. You decide to select 5 apartment
complexes at random for in-depth interviews with
residents. Select a simple random sample of 5 of the
following apartment complexes. If you use Table B,
start at line 137.

Ashley Oaks Country View Mayfair Village
Bay Pointe Country Villa Nobb Hill
Beau Jardin Crestview Pemberly Courts
Bluffs Del-Lynn Peppermill
Brandon Place Fairington Pheasant Run
Briarwood Fairway Knolls Richfield
Brownstone Fowler Sagamore Ridge
Burberry Franklin Park Salem Courthouse
Cambridge Georgetown Village Manor
Chauncey Village Greenacres Waterford Court
Country Squire Lahr House Williamsburg

3.58 Using GIS to identify mint field conditions. A
Geographic Information System (GIS) is to be used
to distinguish different conditions in mint fields.
Ground observations will be used to classifiy regions
of each field as either healthy mint, diseased mint, or
weed-infested mint. The GIS divides mint-growing
areas into regions called pixels. An experimental
area contains 200 pixels. For a random sample
of 25 pixels, ground measurements will be made
to determine the status of the mint, and these
observations will be compared with information
obtained by the GIS. Select the random sample. If

you use Table B, start at line 112 and choose only
the first 5 pixels in the sample.

3.59
AP

PLET

Use the simple random sample applet.
After you have labeled the individuals in

a population, the Simple Random Sample applet
automates the task of choosing an SRS. Use the
applet to choose the sample in the previous exercise.

3.60
AP

PLET

Use the simple random sample applet.
There are approximately 371 active telephone

area codes covering Canada, the United States, and
some Caribbean areas. (More are created regularly.)
You want to choose an SRS of 25 of these area codes
for a study of available telephone numbers. Label
the codes 001 to 371 and use the Simple Random
Sample applet to choose your sample. (If you use
Table B, start at line 120 and choose only the first 5
codes in the sample.)

3.61 Census tracts. The Census Bureau divides the
entire country into “census tracts” that contain
about 4000 people. Each tract is in turn divided into
small “blocks,” which in urban areas are bounded by
local streets. An SRS of blocks from a census tract is
often the next-to-last stage in a multistage sample.
Figure 3.10 shows part of census tract 8051.12, in
Cook County, Illinois, west of Chicago. The 44 blocks
in this tract are divided into three “block groups.”
Group 1 contains 6 blocks numbered 1000 to 1005;
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FIGURE 3.10 Census blocks in
Cook County, Illinois, for
Exercises 3.61 and 3.63. The
outlined area is a block group.
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Group 2 (outlined in Figure 3.10) contains 12 blocks
numbered 2000 to 2011; Group 3 contains 26 blocks
numbered 3000 to 3025. Use Table B, beginning at
line 135, to choose an SRS of 5 of the 44 blocks in
this census tract. Explain carefully how you labeled
the blocks.

3.62 Repeated use of Table B. In using Table B
repeatedly to choose samples or do randomization
for experiments, you should not always begin at the
same place, such as line 101. Why not?

3.63 A stratified sample. Exercise 3.61 asks you to
choose an SRS of blocks from the census tract
pictured in Figure 3.10. You might instead choose
a stratified sample of one block from the 6 blocks
in Group 1, two from the 12 blocks in Group 2, and
three from the 26 blocks in Group 3. Choose such a
sample, explaining carefully how you labeled blocks
and used Table B.

3.64 Systematic random samples. Systematic random
samples are often used to choose a sample of
apartments in a large building or dwelling units
in a block at the last stage of a multistage sample.
An example will illustrate the idea of a systematic
sample. Suppose that we must choose 4 addresses
out of 100. Because 100/4 = 25, we can think of the
list as four lists of 25 addresses. Choose 1 of the first
25 at random, using Table B. The sample contains
this address and the addresses 25, 50, and 75 places
down the list from it. If 13 is chosen, for example,
then the systematic random sample consists of the
addresses numbered 13, 38, 63, and 88.

(a) A study of dating among college students wanted
a sample of 200 of the 9000 single male students on
campus. The sample consisted of every 45th name
from a list of the 9000 students. Explain why the
survey chooses every 45th name.

(b) Use Table B at line 125 to choose the starting
point for this systematic sample.

3.65 C
H

ALLENG
E Systematic random samples versus simple

random samples. The previous exercise
introduces systematic random samples. Explain
carefully why a systematic random sample does give
every individual the same chance to be chosen but
is not a simple random sample.

3.66 Random digit telephone dialing. An opinion
poll in California uses random digit dialing to
choose telephone numbers at random. Numbers
are selected separately within each California area
code. The size of the sample in each area code is
proportional to the population living there.

(a) What is the name for this kind of sampling
design?

(b) California area codes, in rough order from north
to south, are

530 707 916 209 415 925 510 650 408 831 805 559 760
661 818 213 626 323 562 709 310 949 909 858 619

Another California survey does not call numbers
in all area codes but starts with an SRS of 10 area
codes. Choose such an SRS. If you use Table B, start
at line 122.

3.67 Stratified samples of forest areas. Stratified
samples are widely used to study large areas of
forest. Based on satellite images, a forest area in
the Amazon basin is divided into 14 types. Foresters
studied the four most commercially valuable types:
alluvial climax forests of quality levels 1, 2, and 3,
and mature secondary forest. They divided the area
of each type into large parcels, chose parcels of each
type at random, and counted tree species in a 20-
by 25-meter rectangle randomly placed within each
parcel selected. Here is some detail:

Forest type Total parcels Sample size

Climax 1 36 4
Climax 2 72 7
Climax 3 31 3
Secondary 42 4

Choose the stratified sample of 18 parcels. Be sure
to explain how you assigned labels to parcels. If you
use Table B, start at line 140.

3.68 Select club members to go to a convention. A club
has 30 student members and 10 faculty members.
The students are

Abel Fisher Huber Moran Reinmann
Carson Golomb Jimenez Moskowitz Santos
Chen Griswold Jones Neyman Shaw
David Hein Kiefer O’Brien Thompson
Deming Hernandez Klotz Pearl Utts
Elashoff Holland Liu Potter Vlasic

and the faculty members are

Andrews Fernandez Kim Moore Rabinowitz
Besicovitch Gupta Lightman Phillips Yang
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The club can send 5 students and 3 faculty members
to a convention and decides to choose those who will
go by random selection. Select a stratified random
sample of 5 students and 3 faculty members.

3.69 C
H

ALLENG
E Stratified samples for alcohol attitudes.
At a party there are 30 students over age 21

and 20 students under age 21. You choose at random
3 of those over 21 and separately choose at random
2 of those under 21 to interview about attitudes
toward alcohol. You have given every student at the
party the same chance to be interviewed: what is
that chance? Why is your sample not an SRS?

3.70 Stratified samples for accounting audits.
Accountants use stratified samples during audits
to verify a company’s records of such things as
accounts receivable. The stratification is based on
the dollar amount of the item and often includes
100% sampling of the largest items. One company
reports 5000 accounts receivable. Of these, 100
are in amounts over $50,000; 500 are in amounts
between $1000 and $50,000; and the remaining 4400
are in amounts under $1000. Using these groups as
strata, you decide to verify all of the largest accounts
and to sample 5% of the midsize accounts and 1%
of the small accounts. How would you label the two
strata from which you will sample? Use Table B,
starting at line 115, to select the first 5 accounts
from each of these strata.

3.71 Nonresponse in telephone surveys. A common
form of nonresponse in telephone surveys is “ring-
no-answer.” That is, a call is made to an active
number but no one answers. The Italian National
Statistical Institute looked at nonresponse to a
government survey of households in Italy during
the periods January 1 to Easter and July 1 to August
31. All calls were made between 7 and 10 P.M.,
but 21.4% gave “ring-no-answer” in one period
versus 41.5% “ring-no-answer” in the other period.40

Which period do you think had the higher rate
of no answers? Why? Explain why a high rate of
nonresponse makes sample results less reliable.

3.72 The sampling frame. The list of individuals from
which a sample is actually selected is called the
sampling frame. Ideally, the frame should list every
individual in the population, but in practice this is
often difficult. A frame that leaves out part of the
population is a common source of undercoverage.

(a) Suppose that a sample of households in a
community is selected at random from the telephone
directory. What households are omitted from this
frame? What types of people do you think are

likely to live in these households? These people will
probably be underrepresented in the sample.

(b) It is usual in telephone surveys to use random
digit dialing equipment that selects the last four
digits of a telephone number at random after being
given the area code and the exchange (the first
three digits). Which of the households that you
mentioned in your answer to (a) will be included in
the sampling frame by random digit dialing?

3.73 The Excite Poll. The Excite Poll can be found
online at poll.excite.com. The question appears
on the screen, and you simply click buttons to vote
“Yes,” “No,” “Not sure,” or “Don’t care.” On July 22,
2006, the question was “Do you agree or disagree
with proposed legislation that would discontinue
the U.S. penny coin?” In all, 631 said “Yes,” another
564 said “No,” and the remaining 65 indicated that
they were not sure.

(a) What is the sample size for this poll?

(b) Compute the percent of responses in each of the
possible response categories.

(c) Discuss the poll in terms of the population and
sample framework that we have studied in this
chapter.

3.74 Survey questions. Comment on each of the
following as a potential sample survey question.
Is the question clear? Is it slanted toward a desired
response?

(a) “Some cell phone users have developed brain
cancer. Should all cell phones come with a warning
label explaining the danger of using cell phones?”

(b) “Do you agree that a national system of health
insurance should be favored because it would
provide health insurance for everyone and would
reduce administrative costs?”

(c) “In view of escalating environmental
degradation and incipient resource depletion,
would you favor economic incentives for recycling
of resource-intensive consumer goods?”

3.75 Use of a budget surplus. In 2000, when the federal
budget showed a large surplus, the Pew Research
Center asked two questions of random samples of
adults. Both questions stated that Social Security
would be “fixed.” Here are the uses suggested for the
remaining surplus:

Should the money be used for a tax cut, or should it be
used to fund new government programs?
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Should the money be used for a tax cut, or should it
be spent on programs for education, the environment,
health care, crime-fighting and military defense?

One of these questions drew 60% favoring a tax
cut; the other, only 22%. Which wording pulls
respondents toward a tax cut? Why?

3.76 C
H

ALLENG
E How many children are in your family?

A teacher asks her class, “How many children
are there in your family, including yourself?” The
mean response is about 3 children. According to
the 2000 census, families that have children average
1.86 children. Why is a sample like this biased
toward higher outcomes?

3.77 C
H

ALLENG
E Bad survey questions. Write your own

examples of bad sample survey questions.

(a) Write a biased question designed to get one
answer rather than another.

(b) Write a question that is confusing, so that it is
hard to answer.

3.78 C
H

ALLENG
E Economic attitudes of Spaniards. Spain’s

Centro de Investigaciones Sociológicos
carried out a sample survey on the economic
attitudes of Spaniards.41 Of the 2496 adults
interviewed, 72% agreed that “Employees with
higher performance must get higher pay.” On the
other hand, 71% agreed that “Everything a society
produces should be distributed among its members
as equally as possible and there should be no major
differences.” Use these conflicting results as an
example in a short explanation of why opinion polls
often fail to reveal public attitudes clearly.

3.3 Toward Statistical Inference
A market research firm interviews a random sample of 2500 adults. Result:
66% find shopping for clothes frustrating and time-consuming. That’s the truth
about the 2500 people in the sample. What is the truth about the almost 220
million American adults who make up the population? Because the sample was
chosen at random, it’s reasonable to think that these 2500 people represent the
entire population fairly well. So the market researchers turn the fact that 66%
of the sample find shopping frustrating into an estimate that about 66% of all
adults feel this way. That’s a basic move in statistics: use a fact about a sample
to estimate the truth about the whole population. We call this statistical infer-statistical inference
ence because we infer conclusions about the wider population from data on
selected individuals. To think about inference, we must keep straight whether
a number describes a sample or a population. Here is the vocabulary we use.

PARAMETERS AND STATISTICS

A parameter is a number that describes the population. A parameter is
a fixed number, but in practice we do not know its value.

A statistic is a number that describes a sample. The value of a statistic
is known when we have taken a sample, but it can change from sample
to sample. We often use a statistic to estimate an unknown parameter.
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E 3.31 Attitudes toward shopping. Are attitudes toward shopping chang-
ing? Sample surveys show that fewer people enjoy shopping than in the
past. A survey by the market research firm Yankelovich Clancy Shulman
asked a nationwide random sample of 2500 adults if they agreed or dis-
agreed that “I like buying new clothes, but shopping is often frustrating and
time-consuming.” Of the respondents, 1650, or 66%, said they agreed.42 The
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proportion of the sample who agree is

p̂ = 1650
2500

= 0.66 = 66%

The number p̂ = 0.66 is a statistic. The corresponding parameter is the pro-
portion (call it p) of all adult U.S. residents who would have said “Agree” if
asked the same question. We don’t know the value of the parameter p, so we
use the statistic p̂ to estimate it.

USE YOUR KNOWLEDGE
3.79 Sexual harassment of college students. A recent survey of 2036 un-

dergraduate college students aged 18 to 24 reports that 62% of college
students say they have encountered some type of sexual harassment
while at college.43 Describe the sample and the population for this
setting.

3.80 Web polls. If you connect to the Web site worldnetdaily.com/polls/,
you will be given the opportunity to give your opinion about a differ-
ent question of public interest each day. Can you apply the ideas about
populations and samples that we have just discussed to this poll? Ex-
plain why or why not.

Sampling variability
If Yankelovich took a second random sample of 2500 adults, the new sample
would have different people in it. It is almost certain that there would not be ex-
actly 1650 positive responses. That is, the value of the statistic p̂ will vary from
sample to sample. This basic fact is called sampling variability: the value of asampling variability
statistic varies in repeated random sampling. Could it happen that one random
sample finds that 66% of adults find clothes shopping frustrating and a second
random sample finds that only 42% feel this way? Random samples eliminate
bias from the act of choosing a sample, but they can still be wrong because of
the variability that results when we choose at random. If the variation when we
take repeat samples from the same population is too great, we can’t trust the
results of any one sample.

We are saved by the second great advantage of random samples. The first
advantage is that choosing at random eliminates favoritism. That is, random
sampling attacks bias. The second advantage is that if we take lots of ran-
dom samples of the same size from the same population, the variation from
sample to sample will follow a predictable pattern. All of statistical inference
is based on one idea: to see how trustworthy a procedure is, ask what
would happen if we repeated it many times.

To understand why sampling variability is not fatal, we ask, “What would
happen if we took many samples?” Here’s how to answer that question:

• Take a large number of samples from the same population.

• Calculate the sample proportion p̂ for each sample.

• Make a histogram of the values of p̂.
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• Examine the distribution displayed in the histogram for shape, center, and
spread, as well as outliers or other deviations.

In practice it is too expensive to take many samples from a large population
such as all adult U.S. residents. But we can imitate many samples by using ran-
dom digits. Using random digits from a table or computer software to imitate
chance behavior is called simulation.simulation

•
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E 3.32 Simulate a random sample. We will simulate drawing simple ran-

dom samples (SRSs) of size 100 from the population of all adult U.S. resi-
dents. Suppose that in fact 60% of the population find clothes shopping time-
consuming and frustrating. Then the true value of the parameter we want
to estimate is p = 0.6. (Of course, we would not sample in practice if we al-
ready knew that p = 0.6. We are sampling here to understand how sampling
behaves.)

We can imitate the population by a table of random digits, with each en-
try standing for a person. Six of the ten digits (say 0 to 5) stand for people
who find shopping frustrating. The remaining four digits, 6 to 9, stand for
those who do not. Because all digits in a random number table are equally
likely, this assignment produces a population proportion of frustrated shop-
pers equal to p = 0.6. We then imitate an SRS of 100 people from the pop-
ulation by taking 100 consecutive digits from Table B. The statistic p̂ is the
proportion of 0s to 5s in the sample.

Here are the first 100 entries in Table B with digits 0 to 5 highlighted:

19223 95034 05756 28713 96409 12531 42544 82853
73676 47150 99400 01927 27754 42648 82425 36290
45467 71709 77558 00095

There are 64 digits between 0 and 5, so p̂ = 64/100 = 0.64. A second SRS
based on the second 100 entries in Table B gives a different result, p̂ = 0.55.
The two sample results are different, and neither is equal to the true popula-
tion value p = 0.6. That’s sampling variability.

Sampling distributions
Simulation is a powerful tool for studying chance. Now that we see how simu-
lation works, it is faster to abandon Table B and to use a computer programmed
to generate random numbers.
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E 3.33 Take many random samples. Figure 3.11 illustrates the process of
choosing many samples and finding the sample proportion p̂ for each one.
Follow the flow of the figure from the population at the left, to choosing an
SRS and finding the p̂ for this sample, to collecting together the p̂’s from many
samples. The histogram at the right of the figure shows the distribution of the
values of p̂ from 1000 separate SRSs of size 100 drawn from a population with
p = 0.6.
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FIGURE 3.11 The results of many SRSs have a regular pattern. Here, we draw 1000 SRSs
of size 100 from the same population. The population proportion is p = 0.60. The
histogram shows the distribution of the 1000 sample proportions.
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FIGURE 3.12 The distribution of sample proportions for 1000 SRSs of size 2500 drawn
from the same population as in Figure 3.11. The two histograms have the same scale. The
statistic from the larger sample is less variable.

•

Of course, Yankelovich interviewed 2500 people, not just 100. Figure 3.12 is
parallel to Figure 3.11. It shows the process of choosing 1000 SRSs, each of
size 2500, from a population in which the true proportion is p = 0.6. The 1000
values of p̂ from these samples form the histogram at the right of the figure.
Figures 3.11 and 3.12 are drawn on the same scale. Comparing them shows
what happens when we increase the size of our samples from 100 to 2500.
These histograms display the sampling distribution of the statistic p̂ for two
sample sizes.

SAMPLING DISTRIBUTION

The sampling distribution of a statistic is the distribution of values
taken by the statistic in all possible samples of the same size from the
same population.
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Strictly speaking, the sampling distribution is the ideal pattern that would
emerge if we looked at all possible samples of size 100 from our population. A
distribution obtained from a fixed number of trials, like the 1000 trials in Fig-
ure 3.11, is only an approximation to the sampling distribution. We will see
that probability theory, the mathematics of chance behavior, can sometimes
describe sampling distributions exactly. The interpretation of a sampling dis-
tribution is the same, however, whether we obtain it by simulation or by the
mathematics of probability.

We can use the tools of data analysis to describe any distribution. Let’s apply
those tools to Figures 3.11 and 3.12.

• Shape: The histograms look Normal. Figure 3.13 is a Normal quantile plot
of the values of p̂ for our samples of size 100. It confirms that the distribution
in Figure 3.11 is close to Normal. The 1000 values for samples of size 2500
in Figure 3.12 are even closer to Normal. The Normal curves drawn through
the histograms describe the overall shape quite well.
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FIGURE 3.13 Normal quantile
plot of the sample proportions in
Figure 3.11. The distribution is
close to Normal except for some
granularity due to the fact that
sample proportions from a
sample of size 100 can take only
values that are multiples of 0.01.
Because a plot of 1000 points is
hard to read, this plot presents
only every 10th value.

• Center: In both cases, the values of the sample proportion p̂ vary from sample
to sample, but the values are centered at 0.6. Recall that p = 0.6 is the true
population parameter. Some samples have a p̂ less than 0.6 and some greater,
but there is no tendency to be always low or always high. That is, p̂ has no
bias as an estimator of p. This is true for both large and small samples. (Want
the details? The mean of the 1000 values of p̂ is 0.598 for samples of size 100
and 0.6002 for samples of size 2500. The median value of p̂ is exactly 0.6 for
samples of both sizes.)

• Spread: The values of p̂ from samples of size 2500 are much less spread out
than the values from samples of size 100. In fact, the standard deviations are
0.051 for Figure 3.11 and 0.0097, or about 0.01, for Figure 3.12.

Although these results describe just two sets of simulations, they reflect facts
that are true whenever we use random sampling.
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USE YOUR KNOWLEDGE
3.81 Effect of sample size on the sampling distribution. You are plan-

ning a study and are considering taking an SRS of either 200 or 400
observations. Explain how the sampling distribution would differ for
these two scenarios.

Bias and variability
Our simulations show that a sample of size 2500 will almost always give an
estimate p̂ that is close to the truth about the population. Figure 3.12 illustrates
this fact for just one value of the population proportion, but it is true for any
population. Samples of size 100, on the other hand, might give an estimate of
50% or 70% when the truth is 60%.

Thinking about Figures 3.11 and 3.12 helps us restate the idea of bias when
we use a statistic like p̂ to estimate a parameter like p. It also reminds us that
variability matters as much as bias.

BIAS AND VARIABILITY

Bias concerns the center of the sampling distribution. A statistic used to
estimate a parameter is unbiased if the mean of its sampling distribu-
tion is equal to the true value of the parameter being estimated.

The variability of a statistic is described by the spread of its sampling
distribution. This spread is determined by the sampling design and the
sample size n. Statistics from larger probability samples have smaller
spreads.

We can think of the true value of the population parameter as the bull’s-eye
on a target, and of the sample statistic as an arrow fired at the bull’s-eye. Bias
and variability describe what happens when an archer fires many arrows at the
target. Bias means that the aim is off, and the arrows land consistently off the
bull’s-eye in the same direction. The sample values do not center about the pop-
ulation value. Large variability means that repeated shots are widely scattered
on the target. Repeated samples do not give similar results but differ widely
among themselves. Figure 3.14 shows this target illustration of the two types
of error.

Notice that small variability (repeated shots are close together) can accom-
pany large bias (the arrows are consistently away from the bull’s-eye in one di-
rection). And small bias (the arrows center on the bull’s-eye) can accompany
large variability (repeated shots are widely scattered). A good sampling scheme,
like a good archer, must have both small bias and small variability. Here’s how
we do this.

MANAGING BIAS AND VARIABILITY

To reduce bias, use random sampling. When we start with a list of
the entire population, simple random sampling produces unbiased
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estimates—the values of a statistic computed from an SRS neither con-
sistently overestimate nor consistently underestimate the value of the
population parameter.

To reduce the variability of a statistic from an SRS, use a larger sample.
You can make the variability as small as you want by taking a large
enough sample.

High bias, low variability
(a)

Low bias, high variability
(b) 

High bias, high variability

(c)

The ideal: low bias, low variability

(d)

FIGURE 3.14 Bias and
variability in shooting arrows at
a target. Bias means the archer
systematically misses in the same
direction. Variability means that
the arrows are scattered.

In practice, Yankelovich takes only one sample. We don’t know how close
to the truth an estimate from this one sample is because we don’t know what
the truth about the population is. But large random samples almost always give
an estimate that is close to the truth. Looking at the pattern of many samples
shows that we can trust the result of one sample. The Current Population Sur-
vey’s sample of 60,000 households estimates the national unemployment rate
very accurately. Of course, only probability samples carry this guarantee. The
American Family Association’s voluntary response sample (Example 3.23, page
199) is worthless even though 850,000 people responded. Using a probability
sampling design and taking care to deal with practical difficulties reduce bias
in a sample. The size of the sample then determines how close to the popula-
tion truth the sample result is likely to fall. Results from a sample survey usu-
ally come with a margin of error that sets bounds on the size of the likely error.margin of error
The margin of error directly reflects the variability of the sample statistic, so it
is smaller for larger samples. We will describe the details in later chapters.
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Sampling from large populations
Yankelovich’s sample of 2500 adults is only about 1 out of every 90,000 adults
in the United States. Does it matter whether we sample 1-in-100 individuals in
the population or 1-in-90,000?

POPULATION SIZE DOESN’T MATTER

The variability of a statistic from a random sample does not depend on
the size of the population, as long as the population is at least 100 times
larger than the sample.

Why does the size of the population have little influence on the behavior of
statistics from random samples? To see why this is plausible, imagine sampling
harvested corn by thrusting a scoop into a lot of corn kernels. The scoop doesn’t
know whether it is surrounded by a bag of corn or by an entire truckload. As
long as the corn is well mixed (so that the scoop selects a random sample), the
variability of the result depends only on the size of the scoop.

The fact that the variability of sample results is controlled by the size of the
sample has important consequences for sampling design. An SRS of size 2500
from the 220 million adult residents of the United States gives results as precise
as an SRS of size 2500 from the 665,000 adult inhabitants of San Francisco.
This is good news for designers of national samples but bad news for those who
want accurate information about the citizens of San Francisco. If both use an
SRS, both must use the same size sample to obtain equally trustworthy results.

Why randomize?
Why randomize? The act of randomizing guarantees that the results of analyz-
ing our data are subject to the laws of probability. The behavior of statistics is
described by a sampling distribution. The form of the distribution is known,
and in many cases is approximately Normal. Often the center of the distribu-
tion lies at the true parameter value, so that the notion that randomization
eliminates bias is made more precise. The spread of the distribution describes
the variability of the statistic and can be made as small as we wish by choosing
a large enough sample. In a randomized experiment, we can reduce variability
by choosing larger groups of subjects for each treatment.

These facts are at the heart of formal statistical inference. Later chapters will
have much to say in more technical language about sampling distributions and
the way statistical conclusions are based on them. What any user of statistics
must understand is that all the technical talk has its basis in a simple question:
What would happen if the sample or the experiment were repeated many times?
The reasoning applies not only to an SRS but also to the complex sampling de-
signs actually used by opinion polls and other national sample surveys. The
same conclusions hold as well for randomized experimental designs. The de-
tails vary with the design but the basic facts are true whenever randomization
is used to produce data.

Remember that proper statistical design is not the only aspect of a good
sample or experiment. The sampling distribution shows only how a statistic
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varies due to the operation of chance in randomization. It reveals nothing about
CAUTION

! possible bias due to undercoverage or nonresponse in a sample, or to lack of real-
ism in an experiment. The actual error in estimating a parameter by a statistic
can be much larger than the sampling distribution suggests. What is worse,
there is no way to say how large the added error is. The real world is less or-
derly than statistics textbooks imply.

BEYOND THE BASICS

Capture-Recapture Sampling

Sockeye salmon return to reproduce in the river where they were hatched four
years earlier. How many salmon survived natural perils and heavy fishing to
make it back this year? How many mountain sheep are there in Colorado? Are
migratory songbird populations in North America decreasing or holding their
own? These questions concern the size of animal populations. Biologists ad-
dress them with a special kind of repeated sampling, called capture-recapture
sampling.

•

•
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E 3.34 Estimate the number of least flycatchers. You are interested in
the number of least flycatchers migrating along a major route in the north-
central United States. You set up “mist nets” that capture the birds but do not
harm them. The birds caught in the net are fitted with a small aluminum leg
band and released. Last year you banded and released 200 least flycatchers.
This year you repeat the process. Your net catches 120 least flycatchers, 12 of
which have tags from last year’s catch.

The proportion of your second sample that have bands should estimate the
proportion in the entire population that are banded. So if N is the unknown
number of least flycatchers, we should have approximately

proportion banded in sample = proportion banded in population

12
120

= 200
N

Solve for N to estimate that the total number of flycatchers migrating while
your net was up this year is approximately

N = 200 × 120
12

= 2000

The capture-recapture idea extends the use of a sample proportion to esti-
mate a population proportion. The idea works well if both samples are SRSs
from the population and the population remains unchanged between samples.
In practice, complications arise because, for example, some of the birds tagged
last year died before this year’s migration. Variations on capture-recapture
samples are widely used in wildlife studies and are now finding other applica-
tions. One way to estimate the census undercount in a district is to consider
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the census as “capturing and marking” the households that respond. Census
workers then visit the district, take an SRS of households, and see how many
of those counted by the census show up in the sample. Capture-recapture esti-
mates the total count of households in the district. As with estimating wildlife
populations, there are many practical pitfalls. Our final word is as before: the
real world is less orderly than statistics textbooks imply.

SECTION 3.3 Summary

A number that describes a population is a parameter. A number that can be
computed from the data is a statistic. The purpose of sampling or experimen-
tation is usually inference: use sample statistics to make statements about un-
known population parameters.

A statistic from a probability sample or randomized experiment has a sam-
pling distribution that describes how the statistic varies in repeated data pro-
duction. The sampling distribution answers the question “What would happen
if we repeated the sample or experiment many times?” Formal statistical infer-
ence is based on the sampling distributions of statistics.

A statistic as an estimator of a parameter may suffer from bias or from high
variability. Bias means that the center of the sampling distribution is not equal
to the true value of the parameter. The variability of the statistic is described by
the spread of its sampling distribution. Variability is usually reported by giving
a margin of error for conclusions based on sample results.

Properly chosen statistics from randomized data production designs have no
bias resulting from the way the sample is selected or the way the experimental
units are assigned to treatments. We can reduce the variability of the statistic
by increasing the size of the sample or the size of the experimental groups.

SECTION 3.3 Exercises
For Exercises 3.79 and 3.80, see page 213; and for Exercise
3.81, see page 217.

3.82 What’s wrong? State what is wrong in each of the
following scenarios.

(a) A sampling distribution describes the
distribution of some characteristic in a population.

(b) A statistic will have a large amount of bias
whenever it has high variability.

(c) The variability of a statistic based on a small
sample from a population will be the same as
the variability of a large sample from the same
population.

3.83 Describe the population and the sample. For each
of the following situations, describe the population
and the sample.

(a) A survey of 17,096 students in U.S. four-year
colleges reported that 19.4% were binge drinkers.

(b) In a study of work stress, 100 restaurant workers
were asked about the impact of work stress on their
personal lives.

(c) A tract of forest has 584 longleaf pine trees. The
diameters of 40 of these trees were measured.

3.84 Bias and variability. Figure 3.15 (on page 222)
shows histograms of four sampling distributions of
statistics intended to estimate the same parameter.
Label each distribution relative to the others as high
or low bias and as high or low variability.

3.85 Opinions of Hispanics. A New York Times News
Service article on a poll concerned with the opinions
of Hispanics includes this paragraph:

The poll was conducted by telephone from July 13
to 27, with 3,092 adults nationwide, 1,074 of whom
described themselves as Hispanic. It has a margin
of sampling error of plus or minus three percent-
age points for the entire poll and plus or minus four
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Population parameter
(a)

Population parameter
(c)

Population parameter
(b)

Population parameter
(d)

FIGURE 3.15 Determine which of these sampling
distributions displays high or low bias and high or low
variability, for Exercise 3.84.

percentage points for Hispanics. Sample sizes for most
Hispanic nationalities, like Cubans or Dominicans,
were too small to break out the results separately.44

(a) Why is the “margin of sampling error” larger for
Hispanics than for all 3092 respondents?

(b) Why would a very small sample size prevent a
responsible news organization from breaking out
results for Cubans?

3.86 Gallup Canada polls. Gallup Canada bases its polls
of Canadian public opinion on telephone samples of
about 1000 adults, the same sample size as Gallup
uses in the United States. Canada’s population is
about one-ninth as large as that of the United States,
so the percent of adults that Gallup interviews in
Canada is nine times as large as in the United States.
Does this mean that the margin of error for a Gallup
Canada poll is smaller? Explain your answer.

3.87 Real estate ownership. An agency of the federal
government plans to take an SRS of residents in each
state to estimate the proportion of owners of real
estate in each state’s population. The populations
of the states range from less than 500,000 people in
Wyoming to about 35 million in California.

(a) Will the variability of the sample proportion
vary from state to state if an SRS of size 2000 is
taken in each state? Explain your answer.

(b) Will the variability of the sample proportion
change from state to state if an SRS of 1/10 of 1%
(0.001) of the state’s population is taken in each
state? Explain your answer.

3.88 The health care system in Ontario. The Ministry
of Health in the Canadian province of Ontario
wants to know whether the national health care
system is achieving its goals in the province. The
ministry conducted the Ontario Health Survey,
which interviewed a probability sample of 61,239
adults who live in Ontario.45

(a) What is the population for this sample survey?
What is the sample?

(b) The survey found that 76% of males and 86%
of females in the sample had visited a general
practitioner at least once in the past year. Do you
think these estimates are close to the truth about the
entire population? Why?

The remaining exercises demonstrate the idea of a sampling
distribution. Sampling distributions are the basis for
statistical inference. We strongly recommend doing some of
these exercises.

3.89
AP

PLET

Use the probability applet. The Probability
applet simulates tossing a coin, with the

advantage that you can choose the true long-term
proportion, or probability, of a head. Example 3.33
discusses sampling from a population in which
proportion p = 0.6 (the parameter) find shopping
frustrating. Tossing a coin with probability p = 0.6
of a head simulates this situation: each head is a
person who finds shopping frustrating, and each
tail is a person who does not. Set the “Probability
of heads” in the applet to 0.6 and the number of
tosses to 25. This simulates an SRS of size 25 from
this population. By alternating between “Toss” and
“Reset” you can take many samples quickly.

(a) Take 50 samples, recording the number of heads
in each sample. Make a histogram of the 50 sample
proportions (count of heads divided by 25). You
are constructing the sampling distribution of this
statistic.
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(b) Another population contains only 20% who
approve of legal gambling. Take 50 samples of size
25 from this population, record the number in each
sample who approve, and make a histogram of the
50 sample proportions. How do the centers of your
two histograms reflect the differing truths about the
two populations?

3.90 C
H

ALLENG
E Use the statistical software for

simulations. Statistical software can speed
simulations. We are interested in the sampling
distribution of the proportion p̂ of people who find
shopping frustrating in an SRS from a population
in which proportion p find shopping frustrating.
Here, p is a parameter and p̂ is a statistic used to
estimate p. We will see in Chapter 5 that “binomial”
is the key word to look for in the software menus.
For example, in CrunchIt! go to “Simulate data” in
the “Data” menu, and choose “Binomial.”

(a) Set n = 50 and p = 0.6 and generate 100
binomial observations. These are the counts for 100
SRSs of size 50 when 60% of the population finds
shopping frustrating. Save these counts and divide
them by 50 to get values of p̂ from 100 SRSs. Make
a stemplot of the 100 values of p̂.

(b) Repeat this process with p = 0.3, representing
a population in which only 30% of people find
shopping frustrating. Compare your two stemplots.
How does changing the parameter p affect the center
and spread of the sampling distribution?

(c) Now generate 100 binomial observations with
n = 200 and p = 0.6. This simulates 100 SRSs,
each of size 200. Obtain the 100 sample proportions
p̂ and make a stemplot. Compare this with your
stemplot from (a). How does changing the sample
size n affect the center and spread of the sampling
distribution?

3.91 Use Table B for a simulation. We can construct
a sampling distribution by hand in the case of a
very small sample from a very small population.
The population contains 10 students. Here are their
scores on an exam:

Student 0 1 2 3 4 5 6 7 8 9

Score 82 62 80 58 72 73 65 66 74 62

The parameter of interest is the mean score, which is
69.4. The sample is an SRS of n = 4 students drawn
from this population. The students are labeled 0 to 9
so that a single random digit from Table B chooses
one student for the sample.

(a) Use Table B to draw an SRS of size 4 from this
population. Write the four scores in your sample
and calculate the mean x of the sample scores. This
statistic is an estimate of the population parameter.

(b) Repeat this process 9 more times. Make a histo-
gram of the 10 values of x. You are constructing
the sampling distribution of x. Is the center of
your histogram close to 69.4? (Ten repetitions
give only a crude approximation to the sampling
distribution. If possible, pool your work with that of
other students—using different parts of Table B—to
obtain several hundred repetitions and make a
histogram of the values of x. This histogram is a
better approximation to the sampling distribution.)

3.92
AP

PLET

Use the simple random sample applet.
The Simple Random Sample applet can

illustrate the idea of a sampling distribution. Form
a population labeled 1 to 100. We will choose an
SRS of 10 of these numbers. That is, in this exercise,
the numbers themselves are the population, not just
labels for 100 individuals. The mean of the whole
numbers 1 to 100 is 50.5. This is the parameter, the
mean of the population.

(a) Use the applet to choose an SRS of size 10.
Which 10 numbers were chosen? What is their
mean? This is a statistic, the sample mean x.

(b) Although the population and its mean 50.5
remain fixed, the sample mean changes as we take
more samples. Take another SRS of size 10. (Use the
“Reset” button to return to the original population
before taking the second sample.) What are the 10
numbers in your sample? What is their mean? This
is another value of x.

(c) Take 8 more SRSs from this same population
and record their means. You now have 10 values
of the sample mean x from 10 SRSs of the same
size from the same population. Make a histogram
of the 10 values and mark the population mean
50.5 on the horizontal axis. Are your 10 sample
values roughly centered at the population value? (If
you kept going forever, your x-values would form
the sampling distribution of the sample mean; the
population mean would indeed be the center of this
distribution.)

3.93 Analyze simple random samples. The CSDATA
data set contains the college grade point averages
(GPAs) of all 224 students in a university entering
class who planned to major in computer science.
This is our population. Statistical software can take
repeated samples to illustrate sampling variability.
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(a) Using software, describe this population with
a histogram and with numerical summaries. In
particular, what is the mean GPA in the population?
This is a parameter.

(b) Choose an SRS of 20 members from this
population. Make a histogram of the GPAs in the
sample and find their mean. The sample mean is a
statistic. Briefly compare the distributions of GPA in
the sample and in the population.

(c) Repeat the process of choosing an SRS of size
20 four more times (five in all). Record the five
histograms of your sample GPAs. Does it seem
reasonable to you from this small trial that an SRS
will usually produce a sample that is generally
representative of the population?

3.94 Simulate the sampling distribution of the mean.
Continue the previous exercise, using software to
illustrate the idea of a sampling distribution.

(a) Choose 20 more SRSs of size 20 in addition
to the 5 you have already chosen. Don’t make
histograms of these latest samples—just record the
mean GPA for each sample. Make a histogram of
the 25 sample means. This histogram is a rough
approximation to the sampling distribution of the
mean.

(b) One sign of bias would be that the distribution
of the sample means was systematically on one side
of the true population mean. Mark the population

mean GPA on your histogram of the 25 sample
means. Is there a clear bias?

(c) Find the mean and standard deviation of your
25 sample means. We expect that the mean will
be close to the true mean of the population. Is
it? We also expect that the standard deviation of
the sampling distribution will be smaller than the
standard deviation of the population. Is it?

3.95 Toss a coin. Coin tossing can illustrate the idea
of a sampling distribution. The population is all
outcomes (heads or tails) we would get if we tossed
a coin forever. The parameter p is the proportion
of heads in this population. We suspect that p is
close to 0.5. That is, we think the coin will show
about one-half heads in the long run. The sample
is the outcomes of 20 tosses, and the statistic p̂ is
the proportion of heads in these 20 tosses (count of
heads divided by 20).

(a) Toss a coin 20 times and record the value of p̂.

(b) Repeat this sampling process 9 more times.
Make a stemplot of the 10 values of p̂. You are
constructing the sampling distribution of p̂. Is
the center of this distribution close to 0.5? (Ten
repetitions give only a crude approximation to the
sampling distribution. If possible, pool your work
with that of other students to obtain several hundred
repetitions and make a histogram of the values of p̂.)

3.4 Ethics
The production and use of data, like all human endeavors, raise ethical ques-
tions. We won’t discuss the telemarketer who begins a telephone sales pitch
with “I’m conducting a survey.” Such deception is clearly unethical. It enrages
legitimate survey organizations, which find the public less willing to talk with
them. Neither will we discuss those few researchers who, in the pursuit of pro-
fessional advancement, publish fake data. There is no ethical question here—
faking data to advance your career is just wrong. It will end your career when
uncovered. But just how honest must researchers be about real, unfaked data?
Here is an example that suggests the answer is “More honest than they often
are.”
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E 3.35 Provide all of the critical information. Papers reporting scien-
tific research are supposed to be short, with no extra baggage. Brevity can
allow the researchers to avoid complete honesty about their data. Did they
choose their subjects in a biased way? Did they report data on only some of
their subjects? Did they try several statistical analyses and report only the
ones that looked best? The statistician John Bailar screened more than 4000
medical papers in more than a decade as consultant to the New England
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Journal of Medicine. He says, “When it came to the statistical review, it was
often clear that critical information was lacking, and the gaps nearly always
had the practical effect of making the authors’ conclusions look stronger than
they should have.”46 The situation is no doubt worse in fields that screen pub-
lished work less carefully.

The most complex issues of data ethics arise when we collect data from
people. The ethical difficulties are more severe for experiments that impose
some treatment on people than for sample surveys that simply gather infor-
mation. Trials of new medical treatments, for example, can do harm as well
as good to their subjects. Here are some basic standards of data ethics that
must be obeyed by any study that gathers data from human subjects, whether
sample survey or experiment.

BASIC DATA ETHICS

The organization that carries out the study must have an institutional
review board that reviews all planned studies in advance in order to pro-
tect the subjects from possible harm.

All individuals who are subjects in a study must give their informed con-
sent before data are collected.

All individual data must be kept confidential. Only statistical sum-
maries for groups of subjects may be made public.

The law requires that studies funded by the federal government obey these
principles. But neither the law nor the consensus of experts is completely clear
about the details of their application.

Institutional review boards
The purpose of an institutional review board is not to decide whether a pro-
posed study will produce valuable information or whether it is statistically
sound. The board’s purpose is, in the words of one university’s board, “to pro-
tect the rights and welfare of human subjects (including patients) recruited to
participate in research activities.” The board reviews the plan of the study and
can require changes. It reviews the consent form to be sure that subjects are
informed about the nature of the study and about any potential risks. Once
research begins, the board monitors its progress at least once a year.

The most pressing issue concerning institutional review boards is whether
their workload has become so large that their effectiveness in protecting sub-
jects drops. When the government temporarily stopped human-subject re-
search at Duke University Medical Center in 1999 due to inadequate protection
of subjects, more than 2000 studies were going on. That’s a lot of review work.
There are shorter review procedures for projects that involve only minimal
risks to subjects, such as most sample surveys. When a board is overloaded,
there is a temptation to put more proposals in the minimal-risk category to
speed the work.
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USE YOUR KNOWLEDGE
The exercises in this section on Ethics are designed to help you think about
the issues that we are discussing and to formulate some opinions. In general
there are no wrong or right answers but you need to give reasons for your
answers.

3.96 Do these proposals involve minimal risk? You are a member of your
college’s institutional review board. You must decide whether several
research proposals qualify for lighter review because they involve only
minimal risk to subjects. Federal regulations say that “minimal risk”
means the risks are no greater than “those ordinarily encountered in
daily life or during the performance of routine physical or psycholog-
ical examinations or tests.” That’s vague. Which of these do you think
qualifies as “minimal risk”?

(a) Draw a drop of blood by pricking a finger in order to measure
blood sugar.

(b) Draw blood from the arm for a full set of blood tests.

(c) Insert a tube that remains in the arm, so that blood can be drawn
regularly.

3.97 Who should be on an institutional review board? Government reg-
ulations require that institutional review boards consist of at least five
people, including at least one scientist, one nonscientist, and one per-
son from outside the institution. Most boards are larger, but many
contain just one outsider.

(a) Why should review boards contain people who are not scientists?

(b) Do you think that one outside member is enough? How would you
choose that member? (For example, would you prefer a medical
doctor? A member of the clergy? An activist for patients’ rights?)

Informed consent
Both words in the phrase “informed consent” are important, and both can be
controversial. Subjects must be informed in advance about the nature of a study
and any risk of harm it may bring. In the case of a sample survey, physical harm
is not possible. The subjects should be told what kinds of questions the survey
will ask and about how much of their time it will take. Experimenters must tell
subjects the nature and purpose of the study and outline possible risks. Sub-
jects must then consent in writing.

•

E
X

A
M

P
L

E 3.36 Who can give informed consent? Are there some subjects who
can’t give informed consent? It was once common, for example, to test new
vaccines on prison inmates who gave their consent in return for good-behavior
credit. Now we worry that prisoners are not really free to refuse, and the law
forbids most medical experiments in prisons.

Very young children can’t give fully informed consent, so the usual proce-
dure is to ask their parents. A study of new ways to teach reading is about to
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start at a local elementary school, so the study team sends consent forms
home to parents. Many parents don’t return the forms. Can their children
take part in the study because the parents did not say “No,” or should we
allow only children whose parents returned the form and said “Yes”?

What about research into new medical treatments for people with mental
disorders? What about studies of new ways to help emergency room patients
who may be unconscious or have suffered a stroke? In most cases, there is
not time even to get the consent of the family. Does the principle of informed
consent bar realistic trials of new treatments for unconscious patients?

These are questions without clear answers. Reasonable people differ
strongly on all of them. There is nothing simple about informed consent.47

The difficulties of informed consent do not vanish even for capable subjects.
Some researchers, especially in medical trials, regard consent as a barrier to
getting patients to participate in research. They may not explain all possible
risks; they may not point out that there are other therapies that might be bet-
ter than those being studied; they may be too optimistic in talking with patients
even when the consent form has all the right details. On the other hand, men-
tioning every possible risk leads to very long consent forms that really are bar-
riers. “They are like rental car contracts,” one lawyer said. Some subjects don’t
read forms that run five or six printed pages. Others are frightened by the large
number of possible (but unlikely) disasters that might happen and so refuse
to participate. Of course, unlikely disasters sometimes happen. When they do,
lawsuits follow and the consent forms become yet longer and more detailed.

Confidentiality
Ethical problems do not disappear once a study has been cleared by the review
board, has obtained consent from its subjects, and has actually collected data
about the subjects. It is important to protect the subjects’ privacy by keeping all
data about individuals confidential. The report of an opinion poll may say what
percent of the 1500 respondents felt that legal immigration should be reduced.
It may not report what you said about this or any other issue.

Confidentiality is not the same as anonymity. Anonymity means that sub-anonymity
jects are anonymous—their names are not known even to the director of the
study. Anonymity is rare in statistical studies. Even where anonymity is possi-
ble (mainly in surveys conducted by mail), it prevents any follow-up to improve
nonresponse or inform subjects of results.

Any breach of confidentiality is a serious violation of data ethics. The best
practice is to separate the identity of the subjects from the rest of the data
at once. Sample surveys, for example, use the identification only to check on
who did or did not respond. In an era of advanced technology, however, it is
no longer enough to be sure that each individual set of data protects people’s
privacy. The government, for example, maintains a vast amount of information
about citizens in many separate data bases—census responses, tax returns, So-
cial Security information, data from surveys such as the Current Population
Survey, and so on. Many of these data bases can be searched by computers
for statistical studies. A clever computer search of several data bases might be
able, by combining information, to identify you and learn a great deal about
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you even if your name and other identification have been removed from the
data available for search. A colleague from Germany once remarked that “fe-
male full professor of statistics with PhD from the United States” was enough
to identify her among all the citizens of Germany. Privacy and confidentiality
of data are hot issues among statisticians in the computer age.
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E 3.37 Data collected by the government. Citizens are required to give

information to the government. Think of tax returns and Social Security con-
tributions. The government needs these data for administrative purposes—to
see if we paid the right amount of tax and how large a Social Security benefit
we are owed when we retire. Some people feel that individuals should be able
to forbid any other use of their data, even with all identification removed. This
would prevent using government records to study, say, the ages, incomes, and
household sizes of Social Security recipients. Such a study could well be vital
to debates on reforming Social Security.

USE YOUR KNOWLEDGE
3.98 How can we obtain informed consent? A researcher suspects that

traditional religious beliefs tend to be associated with an authoritar-
ian personality. She prepares a questionnaire that measures author-
itarian tendencies and also asks many religious questions. Write a
description of the purpose of this research to be read by subjects in
order to obtain their informed consent. You must balance the con-
flicting goals of not deceiving the subjects as to what the question-
naire will tell about them and of not biasing the sample by scaring
off religious people.

3.99 Should we allow this personal information to be collected? In
which of the circumstances below would you allow collecting per-
sonal information without the subjects’ consent?

(a) A government agency takes a random sample of income tax re-
turns to obtain information on the average income of people in
different occupations. Only the incomes and occupations are re-
corded from the returns, not the names.

(b) A social psychologist attends public meetings of a religious
group to study the behavior patterns of members.

(c) A social psychologist pretends to be converted to membership in
a religious group and attends private meetings to study the be-
havior patterns of members.

Clinical trials
Clinical trials are experiments that study the effectiveness of medical treat-
ments on actual patients. Medical treatments can harm as well as heal, so clin-
ical trials spotlight the ethical problems of experiments with human subjects.
Here are the starting points for a discussion:
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• Randomized comparative experiments are the only way to see the true effects
of new treatments. Without them, risky treatments that are no better than
placebos will become common.

• Clinical trials produce great benefits, but most of these benefits go to future
patients. The trials also pose risks, and these risks are borne by the subjects
of the trial. So we must balance future benefits against present risks.

• Both medical ethics and international human rights standards say that “the
interests of the subject must always prevail over the interests of science and
society.”

The quoted words are from the 1964 Helsinki Declaration of the World Med-
ical Association, the most respected international standard. The most outra-
geous examples of unethical experiments are those that ignore the interests of
the subjects.
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E 3.38 The Tuskegee study. In the 1930s, syphilis was common among
black men in the rural South, a group that had almost no access to medi-
cal care. The Public Health Service Tuskegee study recruited 399 poor black
sharecroppers with syphilis and 201 others without the disease in order to
observe how syphilis progressed when no treatment was given. Beginning in
1943, penicillin became available to treat syphilis. The study subjects were
not treated. In fact, the Public Health Service prevented any treatment until
word leaked out and forced an end to the study in the 1970s.

The Tuskegee study is an extreme example of investigators following their
own interests and ignoring the well-being of their subjects. A 1996 review
said, “It has come to symbolize racism in medicine, ethical misconduct in hu-
man research, paternalism by physicians, and government abuse of vulnera-
ble people.” In 1997, President Clinton formally apologized to the surviving
participants in a White House ceremony.48

Because “the interests of the subject must always prevail,” medical treat-
ments can be tested in clinical trials only when there is reason to hope that
they will help the patients who are subjects in the trials. Future benefits aren’t
enough to justify experiments with human subjects. Of course, if there is al-
ready strong evidence that a treatment works and is safe, it is unethical not to
give it. Here are the words of Dr. Charles Hennekens of the Harvard Medical
School, who directed the large clinical trial that showed that aspirin reduces
the risk of heart attacks:

There’s a delicate balance between when to do or not do a randomized trial.
On the one hand, there must be sufficient belief in the agent’s potential to jus-
tify exposing half the subjects to it. On the other hand, there must be sufficient
doubt about its efficacy to justify withholding it from the other half of subjects
who might be assigned to placebos.49

Why is it ethical to give a control group of patients a placebo? Well, we know
that placebos often work. What is more, placebos have no harmful side effects.
So in the state of balanced doubt described by Dr. Hennekens, the placebo
group may be getting a better treatment than the drug group. If we knew which
treatment was better, we would give it to everyone. When we don’t know, it is
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ethical to try both and compare them. Here are some harder questions about
placebos, with arguments on both sides.
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E 3.39 Is it ethical to use a placebo? You are testing a new drug. Is it eth-
ical to give a placebo to a control group if an effective drug already exists?

Yes: The placebo gives a true baseline for the effectiveness of the new drug.
There are three groups: new drug, best existing drug, and placebo. Every clin-
ical trial is a bit different, and not even genuinely effective treatments work
in every setting. The placebo control helps us see if the study is flawed so that
even the best existing drug does not beat the placebo. Sometimes the placebo
wins, so the doubt needed to justify its use is present. Placebo controls are
ethical except for life-threatening conditions.

No: It isn’t ethical to deliberately give patients an inferior treatment. We don’t
know whether the new drug is better than the existing drug, so it is ethical to
give both in order to find out. If past trials showed that the existing drug is
better than a placebo, it is no longer right to give patients a placebo. After all,
the existing drug includes the placebo effect. A placebo group is ethical only
if the existing drug is an older one that did not undergo proper clinical trials
or doesn’t work well or is dangerous.

USE YOUR KNOWLEDGE
3.100 Is this study ethical? Researchers on aging proposed to investigate

the effect of supplemental health services on the quality of life of
older people. Eligible patients on the rolls of a large medical clinic
were to be randomly assigned to treatment and control groups. The
treatment group would be offered hearing aids, dentures, transporta-
tion, and other services not available without charge to the control
group. The review board felt that providing these services to some
but not other persons in the same institution raised ethical ques-
tions. Do you agree?

3.101 Should the treatments be given to everyone? Effective drugs for
treating AIDS are very expensive, so most African nations cannot af-
ford to give them to large numbers of people. Yet AIDS is more com-
mon in parts of Africa than anywhere else. Several clinical trials are
looking at ways to prevent pregnant mothers infected with HIV from
passing the infection to their unborn children, a major source of HIV
infections in Africa. Some people say these trials are unethical be-
cause they do not give effective AIDS drugs to their subjects, as would
be required in rich nations. Others reply that the trials are looking for
treatments that can work in the real world in Africa and that they
promise benefits at least to the children of their subjects. What do
you think?

Behavioral and social science experiments
When we move from medicine to the behavioral and social sciences, the direct
risks to experimental subjects are less acute, but so are the possible benefits to
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the subjects. Consider, for example, the experiments conducted by psycholo-
gists in their study of human behavior.
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E 3.40 Personal space. Psychologists observe that people have a “personal
space” and get annoyed if others come too close to them. We don’t like
strangers to sit at our table in a coffee shop if other tables are available,
and we see people move apart in elevators if there is room to do so. Ameri-
cans tend to require more personal space than people in most other cultures.
Can violations of personal space have physical, as well as emotional, effects?

Investigators set up shop in a men’s public rest room. They blocked off
urinals to force men walking in to use either a urinal next to an experi-
menter (treatment group) or a urinal separated from the experimenter (con-
trol group). Another experimenter, using a periscope from a toilet stall, mea-
sured how long the subject took to start urinating and how long he kept at
it.50

This personal space experiment illustrates the difficulties facing those who
plan and review behavioral studies.

• There is no risk of harm to the subjects, although they would certainly ob-
ject to being watched through a periscope. What should we protect subjects
from when physical harm is unlikely? Possible emotional harm? Undignified
situations? Invasion of privacy?

• What about informed consent? The subjects in Example 3.40 did not even
know they were participating in an experiment. Many behavioral experi-
ments rely on hiding the true purpose of the study. The subjects would change
their behavior if told in advance what the investigators were looking for. Sub-
jects are asked to consent on the basis of vague information. They receive
full information only after the experiment.

The “Ethical Principles” of the American Psychological Association require
consent unless a study merely observes behavior in a public place. They allow
deception only when it is necessary to the study, does not hide information that
might influence a subject’s willingness to participate, and is explained to sub-
jects as soon as possible. The personal space study (from the 1970s) does not
meet current ethical standards.

We see that the basic requirement for informed consent is understood dif-
ferently in medicine and psychology. Here is an example of another setting with
yet another interpretation of what is ethical. The subjects get no information
and give no consent. They don’t even know that an experiment may be sending
them to jail for the night.
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E 3.41 Domestic violence. How should police respond to domestic-violence
calls? In the past, the usual practice was to remove the offender and order
him to stay out of the household overnight. Police were reluctant to make
arrests because the victims rarely pressed charges. Women’s groups argued
that arresting offenders would help prevent future violence even if no charges
were filed. Is there evidence that arrest will reduce future offenses? That’s a
question that experiments have tried to answer.
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A typical domestic-violence experiment compares two treatments: arrest the
suspect and hold him overnight, or warn the suspect and release him. When
police officers reach the scene of a domestic-violence call, they calm the par-
ticipants and investigate. Weapons or death threats require an arrest. If the
facts permit an arrest but do not require it, an officer radios headquarters for
instructions. The person on duty opens the next envelope in a file prepared in
advance by a statistician. The envelopes contain the treatments in random or-
der. The police either arrest the suspect or warn and release him, depending
on the contents of the envelope. The researchers then watch police records
and visit the victim to see if the domestic violence reoccurs.

The first such experiment appeared to show that arresting domestic-
violence suspects does reduce their future violent behavior. As a result of
this evidence, arrest has become the common police response to domestic
violence.

The domestic-violence experiments shed light on an important issue of pub-
lic policy. Because there is no informed consent, the ethical rules that govern
clinical trials and most social science studies would forbid these experiments.
They were cleared by review boards because, in the words of one domestic-
violence researcher, “These people became subjects by committing acts that al-
low the police to arrest them. You don’t need consent to arrest someone.”

SECTION 3.4 Summary

Approval of an institutional review board is required for studies that involve
human or animals as subjects.

Human subjects must give informed consent if they are to participate in ex-
periments.

Data on human subjects must be kept confidential.

SECTION 3.4 Exercises
For Exercises 3.96 and 3.97, see page 226; for Exercises 3.98
and 3.99, see page 228; and for Exercises 3.100 and 3.101,
see page 230.

3.102 What is wrong? Explain what is wrong in each of
the following scenarios.

(a) Clinical trials are always ethical as long as they
randomly assign patients to the treatments.

(b) The job of an institutional review board is
complete when they decide to allow a study to be
conducted.

(c) A treatment that has no risk of physical harm
to subjects is always ethical.

3.103 Serving as an experimental subject for extra
credit. Students taking Psychology 001 are
required to serve as experimental subjects.
Students in Psychology 002 are not required

to serve, but they are given extra credit if they
do so. Students in Psychology 003 are required
either to sign up as subjects or to write a term
paper. Serving as an experimental subject may be
educational, but current ethical standards frown
on using “dependent subjects” such as prisoners
or charity medical patients. Students are certainly
somewhat dependent on their teachers. Do you
object to any of these course policies? If so, which
ones, and why?

3.104 Informed consent to take blood samples.
Researchers from Yale, working with medical
teams in Tanzania, wanted to know how common
infection with the AIDS virus is among pregnant
women in that country. To do this, they planned to
test blood samples drawn from pregnant women.

Yale’s institutional review board insisted that
the researchers get the informed consent of each
woman and tell her the results of the test. This
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is the usual procedure in developed nations. The
Tanzanian government did not want to tell the
women why blood was drawn or tell them the
test results. The government feared panic if many
people turned out to have an incurable disease
for which the country’s medical system could not
provide care. The study was canceled. Do you think
that Yale was right to apply its usual standards for
protecting subjects?

3.105 The General Social Survey. One of the most
important nongovernment surveys in the United
States is the National Opinion Research Center’s
General Social Survey. The GSS regularly monitors
public opinion on a wide variety of political and
social issues. Interviews are conducted in person
in the subject’s home. Are a subject’s responses to
GSS questions anonymous, confidential, or both?
Explain your answer.

3.106 Anonymity and confidentiality in health
screening. Texas A&M, like many universities,
offers free screening for HIV, the virus that causes
AIDS. The announcement says, “Persons who sign
up for the HIV Screening will be assigned a number
so that they do not have to give their name.” They
can learn the results of the test by telephone, still
without giving their name. Does this practice offer
anonymity or just confidentiality?

3.107 Anonymity and confidentiality in mail
surveys. Some common practices may appear
to offer anonymity while actually delivering only
confidentiality. Market researchers often use mail
surveys that do not ask the respondent’s identity
but contain hidden codes on the questionnaire that
identify the respondent. A false claim of anonymity
is clearly unethical. If only confidentiality is
promised, is it also unethical to say nothing about
the identifying code, perhaps causing respondents
to believe their replies are anonymous?

3.108 Use of stored blood. Long ago, doctors drew a
blood specimen from you as part of treating minor
anemia. Unknown to you, the sample was stored.
Now researchers plan to use stored samples from
you and many other people to look for genetic
factors that may influence anemia. It is no longer
possible to ask your consent. Modern technology
can read your entire genetic makeup from the
blood sample.

(a) Do you think it violates the principle of
informed consent to use your blood sample if your
name is on it but you were not told that it might be
saved and studied later?

(b) Suppose that your identity is not attached. The
blood sample is known only to come from (say) “a
20-year-old white female being treated for anemia.”
Is it now OK to use the sample for research?

(c) Perhaps we should use biological materials
such as blood samples only from patients who have
agreed to allow the material to be stored for later
use in research. It isn’t possible to say in advance
what kind of research, so this falls short of the usual
standard for informed consent. Is it nonetheless
acceptable, given complete confidentiality and the
fact that using the sample can’t physically harm
the patient?

3.109 Testing vaccines. One of the most important goals
of AIDS research is to find a vaccine that will
protect against HIV. Because AIDS is so common
in parts of Africa, that is the easiest place to test a
vaccine. It is likely, however, that a vaccine would
be so expensive that it could not (at least at first) be
widely used in Africa. Is it ethical to test in Africa
if the benefits go mainly to rich countries? The
treatment group of subjects would get the vaccine,
and the placebo group would later be given the
vaccine if it proved effective. So the actual subjects
would benefit—it is the future benefits that would
go elsewhere. What do you think?

3.110 Political polls. The presidential election campaign
is in full swing, and the candidates have hired
polling organizations to take regular polls to find
out what the voters think about the issues. What
information should the pollsters be required to
give out?

(a) What does the standard of informed consent
require the pollsters to tell potential respondents?

(b) The standards accepted by polling organiza-
tions also require giving respondents the name and
address of the organization that carries out the
poll. Why do you think this is required?

(c) The polling organization usually has a
professional name such as “Samples Incorporated,”
so respondents don’t know that the poll is being
paid for by a political party or candidate. Would
revealing the sponsor to respondents bias the
poll? Should the sponsor always be announced
whenever poll results are made public?

3.111 Should poll results be made public? Some
people think that the law should require that all
political poll results be made public. Otherwise, the
possessors of poll results can use the information
to their own advantage. They can act on the
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information, release only selected parts of it,
or time the release for best effect. A candidate’s
organization replies that they are paying for the
poll in order to gain information for their own use,
not to amuse the public. Do you favor requiring
complete disclosure of political poll results?
What about other private surveys, such as market
research surveys of consumer tastes?

3.112 The 2000 census. The 2000 census long form
asked 53 detailed questions, for example:

Do you have COMPLETE plumbing facilities in this
house, apartment, or mobile home; that is, 1) hot and

and cold piped water, 2) a flush toilet, and 3) a bath-
tub or shower?

The form also asked your income in dollars,
broken down by source, and whether any
“physical, mental, or emotional condition” causes
you difficulty in “learning, remembering, or
concentrating.” Some members of Congress
objected to these questions, even though Congress
had approved them.

Give brief arguments on both sides of the debate
over the long form: the government has legitimate
uses for such information, but the questions seem
to invade people’s privacy.

CHAPTER 3 Exercises

3.113 Select a random sample of workers. The
WORKERS data set contains information about
14,959 people aged 25 to 64 whose highest level of
education is a bachelor’s degree.

(a) In order to select an SRS of these people, how
would you assign labels?

(b) Use Table B at line 185 to choose the first 3
members of the SRS.

3.114 Cash bonuses for the unemployed. Will cash
bonuses speed the return to work of unemployed
people? The Illinois Department of Employment
Security designed an experiment to find out. The
subjects were 10,065 people aged 20 to 54 who
were filing claims for unemployment insurance.
Some were offered $500 if they found a job within
11 weeks and held it for at least 4 months. Others
could tell potential employers that the state would
pay the employer $500 for hiring them. A control
group got neither kind of bonus.51

(a) Suggest a few response variables of interest to
the state and outline the design of the experiment.

(b) How will you label the subjects for random
assignment? Use Table B at line 167 to choose the
first 3 subjects for the first treatment.

3.115 Name the designs. What is the name for each of
these study designs?

(a) A study to compare two methods of preserving
wood started with boards of southern white pine.
Each board was ripped from end to end to form
two edge-matched specimens. One was assigned
to Method A; the other to Method B.

(b) A survey on youth and smoking contacted by
telephone 300 smokers and 300 nonsmokers, all
14 to 22 years of age.

(c) Does air pollution induce DNA mutations in
mice? Starting with 40 male and 40 female mice,
20 of each sex were housed in a polluted industrial
area downwind from a steel mill. The other 20
of each sex were housed at an unpolluted rural
location 30 kilometers away.

3.116 Prostate treatment study using Canada’s
national health records. A large observational
study used records from Canada’s national health
care system to compare the effectiveness of two
ways to treat prostate disease. The two treatments
are traditional surgery and a new method that
does not require surgery. The records described
many patients whose doctors had chosen one or
the other method. The study found that patients
treated by the new method were significantly more
likely to die within 8 years.52

(a) Further study of the data showed that this
conclusion was wrong. The extra deaths among
patients who received the new treatment could
be explained by lurking variables. What lurking
variables might be confounded with a doctor’s
choice of surgical or nonsurgical treatment?

(b) You have 300 prostate patients who are willing
to serve as subjects in an experiment to compare
the two methods. Use a diagram to outline the
design of a randomized comparative experiment.

3.117 Price promotions and consumers’
expectations. A researcher studying the effect
of price promotions on consumers’ expectations
makes up two different histories of the store price
of a hypothetical brand of laundry detergent for
the past year. Students in a marketing course
view one or the other price history on a computer.
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Some students see a steady price, while others
see regular promotions that temporarily cut the
price. Then the students are asked what price they
would expect to pay for the detergent. Is this study
an experiment? Why? What are the explanatory
and response variables?

3.118 What type of study? What is the best way
to answer each of the questions below: an
experiment, a sample survey, or an observational
study that is not a sample survey? Explain your
choices.

(a) Are people generally satisfied with how things
are going in the country right now?

(b) Do college students learn basic accounting
better in a classroom or using an online course?

(c) How long do your teachers wait on the average
after they ask their class a question?

3.119 Choose the type of study. Give an example of a
question about college students, their behavior, or
their opinions that would best be answered by

(a) a sample survey.

(b) an observational study that is not a sample
survey.

(c) an experiment.

3.120 Compare the burgers. Do consumers prefer
the taste of a cheeseburger from McDonald’s or
from Wendy’s in a blind test in which neither
burger is identified? Describe briefly the design
of a matched pairs experiment to investigate this
question. How will you use randomization?

3.121 Bicycle gears. How does the time it takes a bicycle
rider to travel 100 meters depend on which gear
is used and how steep the course is? It may be,
for example, that higher gears are faster on the
level but lower gears are faster on steep inclines.
Discuss the design of a two-factor experiment
to investigate this issue, using one bicycle with
three gears and one rider. How will you use
randomization?

3.122 C
H

ALLENG
E Design an experiment. The previous two

exercises illustrate the use of statistically
designed experiments to answer questions that
arise in everyday life. Select a question of interest
to you that an experiment might answer and
carefully discuss the design of an appropriate
experiment.

3.123 C
H

ALLENG
E Design a survey. You want to investigate

the attitudes of students at your school

about the faculty’s commitment to teaching.
The student government will pay the costs of
contacting about 500 students.

(a) Specify the exact population for your study;
for example, will you include part-time students?

(b) Describe your sample design. Will you use a
stratified sample?

(c) Briefly discuss the practical difficulties that
you anticipate; for example, how will you contact
the students in your sample?

3.124 Compare two doses of a drug. A drug
manufacturer is studying how a new drug behaves
in patients. Investigators compare two doses: 5
milligrams (mg) and 10 mg. The drug can be
administered by injection, by a skin patch, or
by intravenous drip. Concentration in the blood
after 30 minutes (the response variable) may
depend both on the dose and on the method of
administration.

(a) Make a sketch that describes the treatments
formed by combining dosage and method. Then
use a diagram to outline a completely randomized
design for this two-factor experiment.

(b) “How many subjects?” is a tough issue. We
will explain the basic ideas in Chapter 6. What can
you say now about the advantage of using larger
groups of subjects?

3.125 Discolored french fries. Few people want to
eat discolored french fries. Potatoes are kept
refrigerated before being cut for french fries
to prevent spoiling and preserve flavor. But
immediate processing of cold potatoes causes
discoloring due to complex chemical reactions.
The potatoes must therefore be brought to
room temperature before processing. Design an
experiment in which tasters will rate the color and
flavor of french fries prepared from several groups
of potatoes. The potatoes will be fresh picked or
stored for a month at room temperature or stored
for a month refrigerated. They will then be sliced
and cooked either immediately or after an hour at
room temperature.

(a) What are the factors and their levels, the
treatments, and the response variables?

(b) Describe and outline the design of this
experiment.

(c) It is efficient to have each taster rate fries from
all treatments. How will you use randomization in
presenting fries to the tasters?
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3.126 Would the results be different for men and
women? The drug that is the subject of the
experiment in Exercise 3.124 may behave
differently in men and women. How would
you modify your experimental design to take this
into account?

3.127 C
H

ALLENG
E Informed consent. The requirement that

human subjects give their informed consent
to participate in an experiment can greatly reduce
the number of available subjects. For example, a
study of new teaching methods asks the consent
of parents for their children to be randomly
assigned to be taught by either a new method
or the standard method. Many parents do not
return the forms, so their children must continue
to be taught by the standard method. Why is it
not correct to consider these children as part of
the control group along with children who are
randomly assigned to the standard method?

3.128 C
H

ALLENG
E Two ways to ask sensitive questions.

Sample survey questions are usually
read from a computer screen. In a Computer
Aided Personal Interview (CAPI), the interviewer
reads the questions and enters the responses.
In a Computer Aided Self Interview (CASI), the
interviewer stands aside and the respondent reads
the questions and enters responses. One method
almost always shows a higher percent of subjects
admitting use of illegal drugs. Which method?
Explain why.

3.129 Your institutional review board. Your college or
university has an institutional review board that
screens all studies that use human subjects. Get
a copy of the document that describes this board
(you can probably find it online).

(a) According to this document, what are the
duties of the board?

(b) How are members of the board chosen? How
many members are not scientists? How many
members are not employees of the college? Do
these members have some special expertise, or are
they simply members of the “general public”?

3.130 Use of data produced by the government.
Data produced by the government are often
available free or at low cost to private users. For
example, satellite weather data produced by the
U.S. National Weather Service are available free
to TV stations for their weather reports and to

anyone on the Web. Opinion 1: Government data
should be available to everyone at minimal cost.
European governments, on the other hand, charge
TV stations for weather data. Opinion 2: The
satellites are expensive, and the TV stations are
making a profit from their weather services, so
they should share the cost. Which opinion do you
support, and why?

3.131 Should we ask for the consent of the parents?
The Centers for Disease Control and Prevention,
in a survey of teenagers, asked the subjects if they
were sexually active. Those who said “Yes” were
then asked,

How old were you when you had sexual intercourse
for the first time?

Should consent of parents be required to ask
minors about sex, drugs, and other such issues, or
is consent of the minors themselves enough? Give
reasons for your opinion.

3.132 A theft experiment. Students sign up to be
subjects in a psychology experiment. When
they arrive, they are told that interviews are
running late and are taken to a waiting room.
The experimenters then stage a theft of a valuable
object left in the waiting room. Some subjects
are alone with the thief, and others are in pairs—
these are the treatments being compared. Will the
subject report the theft? The students had agreed
to take part in an unspecified study, and the true
nature of the experiment is explained to them
afterward. Do you think this study is ethically OK?

3.133 A cheating experiment. A psychologist conducts
the following experiment: she measures the
attitude of subjects toward cheating, then
has them play a game rigged so that winning
without cheating is impossible. The computer
that organizes the game also records—unknown
to the subjects—whether or not they cheat. Then
attitude toward cheating is retested. Subjects
who cheat tend to change their attitudes to find
cheating more acceptable. Those who resist the
temptation to cheat tend to condemn cheating
more strongly on the second test of attitude. These
results confirm the psychologist’s theory. This
experiment tempts subjects to cheat. The subjects
are led to believe that they can cheat secretly
when in fact they are observed. Is this experiment
ethically objectionable? Explain your position.
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Annie Duke, professional poker player, with a large stack of chips at the World
Series of Poker. See Example 4.2 to learn more about probability and Texas hold ’em.

4.1 Randomness

4.2 Probability Models

4.3 Random Variables

4.4 Means and Variances
of Random Variables

4.5 General Probability Rules

Introduction
The reasoning of statistical inference rests on asking,
“How often would this method give a correct answer
if I used it very many times?” When we produce data
by random sampling or randomized comparative experi-
ments, the laws of probability answer the question
“What would happen if we did this many times?” Games
of chance like Texas hold ’em are exciting because the
outcomes are determined by the rules of probability.

4.1 Randomness
Toss a coin, or choose an SRS. The result can’t be predicted in advance, because

LOOK BACK
sampling
distributions,
page 214

the result will vary when you toss the coin or choose the sample repeatedly.
But there is nonetheless a regular pattern in the results, a pattern that emerges
clearly only after many repetitions. This remarkable fact is the basis for the idea
of probability.
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E 4.1 Toss a coin 5000 times. When you toss a coin, there are only two pos-
sible outcomes, heads or tails. Figure 4.1 shows the results of tossing a coin
5000 times twice. For each number of tosses from 1 to 5000, we have plot-
ted the proportion of those tosses that gave a head. Trial A (solid line) be-
gins tail, head, tail, tail. You can see that the proportion of heads for Trial
A starts at 0 on the first toss, rises to 0.5 when the second toss gives a head,
then falls to 0.33 and 0.25 as we get two more tails. Trial B, on the other hand,
starts with five straight heads, so the proportion of heads is 1 until the sixth
toss.

The proportion of tosses that produce heads is quite variable at first. Trial
A starts low and Trial B starts high. As we make more and more tosses, how-
ever, the proportions of heads for both trials get close to 0.5 and stay there. If
we made yet a third trial at tossing the coin a great many times, the propor-
tion of heads would again settle down to 0.5 in the long run. We say that 0.5
is the probability of a head. The probability 0.5 appears as a horizontal line
on the graph.
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FIGURE 4.1 The proportion of
tosses of a coin that give a head
varies as we make more tosses.
Eventually, however, the
proportion approaches 0.5, the
probability of a head. This figure
shows the results of two trials of
5000 tosses each.

The Probability applet on the text Web site animates Figure 4.1. It allows
AP

PLET

you to choose the probability of a head and simulate any number of tosses of
a coin with that probability. Try it. You will see that the proportion of heads
gradually settles down close to the chosen probability. Equally important, you
will also see that the proportion in a small or moderate number of tosses can
be far from the probability. Probability describes only what happens in the longCAUTION

! run. Most people expect chance outcomes to show more short-term regularity
than is actually true.
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E 4.2 Texas hold ’em. In the card game Texas hold ’em, each player is dealt
two cards. After a round of betting, three “community” cards, which can be
used by any player, are dealt, followed by another round of betting. Then two
additional community cards are dealt, with a round of betting after each. The
best poker hand wins. The last community card turned is called the river. Sup-
pose that you are dealt an ace and a king. The probability that you will get
another ace or king by the river, that is, after the five community cards are
dealt, is about 0.5. This means that about half of the time that you hold these
cards, you will finish with a hand that has at least a pair of kings or a pair of
aces.

The language of probability
“Random” in statistics is not a synonym for “haphazard” but a description
of a kind of order that emerges in the long run. We often encounter the un-
predictable side of randomness in our everyday experience, but we rarely see
enough repetitions of the same random phenomenon to observe the long-term
regularity that probability describes. You can see that regularity emerging in
Figure 4.1. In the very long run, the proportion of tosses that give a head is 0.5.
This is the intuitive idea of probability. Probability 0.5 means “occurs half the
time in a very large number of trials.”

RANDOMNESS AND PROBABILITY

We call a phenomenon random if individual outcomes are uncertain but
there is nonetheless a regular distribution of outcomes in a large number
of repetitions.

The probability of any outcome of a random phenomenon is the propor-
tion of times the outcome would occur in a very long series of repetitions.

Real coins have bumps and imperfections that make the probability of heads
a little different from 0.5. The probability might be 0.499999 or 0.500002. We
call a coin fair if the probability of heads is exactly 0.5. For our study of prob-fair coin
ability in this chapter, we will assume that we know the actual values of proba-
bilities. Thus, we assume things like fair coins, even though we know that real
coins are not exactly fair. We do this to learn what kinds of outcomes we are
likely to see when we make such assumptions. When we study statistical infer-
ence in later chapters, we look at the situation from the opposite point of view:
given that we have observed certain outcomes, what can we say about the prob-
abilities that generated these outcomes?

USE YOUR KNOWLEDGE
4.1 Use Table B. We can use the random digits in Table B in the back of

the text to simulate tossing a fair coin. Start at line 109 and read the
numbers from left to right. If the number is 0, 1, 2, 3, or 4, you will
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say that the coin toss resulted in a head; if the number is a 5, 6, 7, 8,
or 9, the outcome is tails. Use the first 20 random digits on line 109
to simulate 20 tosses of a fair coin. What is the actual proportion of
heads in your simulated sample? Explain why you did not get exactly
10 heads.

Probability describes what happens in very many trials, and we must actu-
ally observe many trials to pin down a probability. In the case of tossing a coin,
some diligent people have in fact made thousands of tosses.
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E 4.3 Many tosses of a coin. The French naturalist Count Buffon (1707–
1788) tossed a coin 4040 times. Result: 2048 heads, or proportion 2048/4040 =
0.5069 for heads.

Around 1900, the English statistician Karl Pearson heroically tossed a coin
24,000 times. Result: 12,012 heads, a proportion of 0.5005.

While imprisoned by the Germans during World War II, the South African
statistician John Kerrich tossed a coin 10,000 times. Result: 5067 heads, pro-
portion of heads 0.5067.

Thinking about randomness
That some things are random is an observed fact about the world. The out-
come of a coin toss, the time between emissions of particles by a radioactive
source, and the sexes of the next litter of lab rats are all random. So is the out-
come of a random sample or a randomized experiment. Probability theory is
the branch of mathematics that describes random behavior. Of course, we can
never observe a probability exactly. We could always continue tossing the coin,
for example. Mathematical probability is an idealization based on imagining
what would happen in an indefinitely long series of trials.

The best way to understand randomness is to observe random behavior—
not only the long-run regularity but the unpredictable results of short runs. You
can do this with physical devices such as coins and dice, but software simula-
tions of random behavior allow faster exploration. As you explore randomness,
remember:

• You must have a long series of independent trials. That is, the outcome ofindependence
one trial must not influence the outcome of any other. Imagine a crooked
gambling house where the operator of a roulette wheel can stop it where she
chooses—she can prevent the proportion of “red” from settling down to a
fixed number. These trials are not independent.

• The idea of probability is empirical. Simulations start with given probabili-
ties and imitate random behavior, but we can estimate a real-world probabil-
ity only by actually observing many trials.

• Nonetheless, simulations are very useful because we need long runs of tri-
als. In situations such as coin tossing, the proportion of an outcome often
requires several hundred trials to settle down to the probability of that out-
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come. The kinds of physical random devices suggested in the exercises are
too slow for this. Short runs give only rough estimates of a probability.

The uses of probability
Probability theory originated in the study of games of chance. Tossing dice,
dealing shuffled cards, and spinning a roulette wheel are examples of deliberate
randomization. In that respect, they are similar to random sampling. Although
games of chance are ancient, they were not studied by mathematicians until
the sixteenth and seventeenth centuries. It is only a mild simplification to say
that probability as a branch of mathematics arose when seventeenth-century
French gamblers asked the mathematicians Blaise Pascal and Pierre de Fer-
mat for help. Gambling is still with us, in casinos and state lotteries. We will
make use of games of chance as simple examples that illustrate the principles
of probability.

Careful measurements in astronomy and surveying led to further advances
in probability in the eighteenth and nineteenth centuries because the results
of repeated measurements are random and can be described by distributions
much like those arising from random sampling. Similar distributions appear in
data on human life span (mortality tables) and in data on lengths or weights in
a population of skulls, leaves, or cockroaches.1 Now, we employ the mathemat-
ics of probability to describe the flow of traffic through a highway system, the
Internet, or a computer processor; the genetic makeup of individuals or popu-
lations; the energy states of subatomic particles; the spread of epidemics or ru-
mors; and the rate of return on risky investments. Although we are interested
in probability because of its usefulness in statistics, the mathematics of chance
is important in many fields of study.

SECTION 4.1 Summary

A random phenomenon has outcomes that we cannot predict but that nonethe-
less have a regular distribution in very many repetitions.

The probability of an event is the proportion of times the event occurs in many
repeated trials of a random phenomenon.

SECTION 4.1 Exercises
For Exercise 4.1, see page 239.

4.2 Is music playing on the radio? Turn on your
favorite music radio station 10 times at least 10
minutes apart. Each time record whether or not
music is playing. Calculate the number of times
music is playing divided by 10. This number is an
estimate of the probability that music is playing
when you turn on this station. It is also an estimate
of the proportion of time that music is playing on
this station.

4.3 Wait 5 seconds between each observation. Refer
to the previous exercise. Explain why you would not

want to wait only 5 seconds between each time you
turn the radio station on.

4.4 Winning at craps. The game of craps starts with a
“come-out” roll where the shooter rolls a pair of dice.
If the total is 7 or 11, the shooter wins immediately
(there are ways that the shooter can win on later
rolls if other numbers are rolled on the come-out
roll). Roll a pair of dice 25 times and estimate the
probability that the shooter wins immediately on
the come-out roll. For a pair of perfectly made dice,
the probability is 0.2222.

4.5 The color of candy. It is reasonable to think that
packages of M&M’s Milk Chocolate Candies are
filled at the factory with candies chosen at random
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from the very large number produced. So a package
of M&M’s contains a number of repetitions of a
random phenomenon: choosing a candy at random
and noting its color. What is the probability that
an M&M’s Milk Chocolate Candy is green? To find
out, buy one or more packs. How many candies did
you examine? How many were green? What is your
estimate of the probability that a randomly chosen
candy is green?

4.6 Side effects of eyedrops. You go to the doctor and
she prescribes a medicine for an eye infection that
you have. Suppose that the probability of a serious
side effect from the medicine is 0.00001. Explain in
simple terms what this number means.

4.7
AP

PLET

Simulate free throws. The basketball player
Shaquille O’Neal makes about half of his free

throws over an entire season. Use Table B or the
Probability applet to simulate 100 free throws shot
independently by a player who has probability 0.5
of making each shot.

(a) What percent of the 100 shots did he hit?

(b) Examine the sequence of hits and misses. How
long was the longest run of shots made? Of shots
missed? (Sequences of random outcomes often
show runs longer than our intuition thinks likely.)

4.8
AP

PLET

Use the Probability applet. The idea of
probability is that the proportion of heads in

many tosses of a balanced coin eventually gets close
to 0.5. But does the actual count of heads get close
to one-half the number of tosses? Let’s find out. Set
the “Probability of heads” in the Probability applet to
0.5 and the number of tosses to 40. You can extend
the number of tosses by clicking “Toss” again to get
40 more. Don’t click “Reset” during this exercise.

(a) After 40 tosses, what is the proportion of heads?
What is the count of heads? What is the difference
between the count of heads and 20 (one-half the
number of tosses)?

(b) Keep going to 120 tosses. Again record the
proportion and count of heads and the difference
between the count and 60 (half the number of
tosses).

(c) Keep going. Stop at 240 tosses and again at 480
tosses to record the same facts. Although it may
take a long time, the laws of probability say that
the proportion of heads will always get close to 0.5
and also that the difference between the count of
heads and half the number of tosses will always
grow without limit.

4.9
AP

PLET

A question about dice. Here is a question
that a French gambler asked the mathemati-

cians Fermat and Pascal at the very beginning of
probability theory: what is the probability of getting
at least one six in rolling four dice? The Law of
Large Numbers applet allows you to roll several dice
and watch the outcomes. (Ignore the title of the
applet for now.) Because simulation—just like real
random phenomena—often takes very many trials
to estimate a probability accurately, let’s simplify
the question: is this probability clearly greater than
0.5, clearly less than 0.5, or quite close to 0.5? Use
the applet to roll four dice until you can confidently
answer this question. You will have to set “Rolls” to
1 so that you have time to look at the four up-faces.
Keep clicking “Roll dice” to roll again and again.
How many times did you roll four dice? What
percent of your rolls produced at least one six?

4.2 Probability Models
The idea of probability as a proportion of outcomes in very many repeated
trials guides our intuition but is hard to express in mathematical form. A de-
scription of a random phenomenon in the language of mathematics is called a
probability model. To see how to proceed, think first about a very simple ran-probability model
dom phenomenon, tossing a coin once. When we toss a coin, we cannot know
the outcome in advance. What do we know? We are willing to say that the out-
come will be either heads or tails. Because the coin appears to be balanced,
we believe that each of these outcomes has probability 1/2. This description of
coin tossing has two parts:

• A list of possible outcomes

• A probability for each outcome
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This two-part description is the starting point for a probability model. We will
begin by describing the outcomes of a random phenomenon and then learn
how to assign probabilities to the outcomes.

Sample spaces
A probability model first tells us what outcomes are possible.

SAMPLE SPACE

The sample space S of a random phenomenon is the set of all possible
outcomes.

The name “sample space” is natural in random sampling, where each pos-
sible outcome is a sample and the sample space contains all possible samples.
To specify S, we must state what constitutes an individual outcome and then
state which outcomes can occur. We often have some freedom in defining the
sample space, so the choice of S is a matter of convenience as well as correct-
ness. The idea of a sample space, and the freedom we may have in specifying
it, are best illustrated by examples.
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E 4.4 Sample space for tossing a coin. Toss a coin. There are only two pos-
sible outcomes, and the sample space is

S = {heads, tails}
or, more briefly, S = {H, T}.
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E 4.5 Sample space for random digits. Let your pencil point fall blindly
into Table B of random digits. Record the value of the digit it lands on. The
possible outcomes are

S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
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E 4.6 Sample space for tossing a coin four times. Toss a coin four times
and record the results. That’s a bit vague. To be exact, record the results of
each of the four tosses in order. A typical outcome is then HTTH. Counting
shows that there are 16 possible outcomes. The sample space S is the set of
all 16 strings of four H’s and T’s.

Suppose that our only interest is the number of heads in four tosses. Now
we can be exact in a simpler fashion. The random phenomenon is to toss a
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coin four times and count the number of heads. The sample space contains
only five outcomes:

S = {0, 1, 2, 3, 4}
This example illustrates the importance of carefully specifying what con-

stitutes an individual outcome.

Although these examples seem remote from the practice of statistics, the
connection is surprisingly close. Suppose that in conducting an opinion poll
you select four people at random from a large population and ask each if he
or she favors reducing federal spending on low-interest student loans. The an-
swers are “Yes” or “No.” The possible outcomes—the sample space—are exactly
as in Example 4.4 if we replace heads by “Yes” and tails by “No.” Similarly, the
possible outcomes of an SRS of 1500 people are the same in principle as the
possible outcomes of tossing a coin 1500 times. One of the great advantages of
mathematics is that the essential features of quite different phenomena can be
described by the same mathematical model.

USE YOUR KNOWLEDGE
4.10 When do you study? A student is asked on which day of the week he

or she spends the most time studying. What is the sample space?

The sample spaces described above all correspond to categorical variables
where we can list all of the possible values. Other sample spaces correspond to
quantitative variables. Here is an example.
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E 4.7 Using software. Most statistical software has a function that will gen-
erate a random number between 0 and 1. The sample space is

S = {all numbers between 0 and 1}
This S is a mathematical idealization. Any specific random number genera-
tor produces numbers with some limited number of decimal places so that,
strictly speaking, not all numbers between 0 and 1 are possible outcomes. For
example, Minitab generates random numbers like 0.736891, with six decimal
places. The entire interval from 0 to 1 is easier to think about. It also has the
advantage of being a suitable sample space for different software systems that
produce random numbers with different numbers of digits.

USE YOUR KNOWLEDGE
4.11 Sample space for heights. You record the height in inches of a ran-

domly selected student. What is the sample space?

A sample space S lists the possible outcomes of a random phenomenon. To
complete a mathematical description of the random phenomenon, we must
also give the probabilities with which these outcomes occur.
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The true long-term proportion of any outcome—say, “exactly 2 heads in four
tosses of a coin”—can be found only empirically, and then only approximately.
How then can we describe probability mathematically? Rather than immedi-
ately attempting to give “correct” probabilities, let’s confront the easier task of
laying down rules that any assignment of probabilities must satisfy. We need to
assign probabilities not only to single outcomes but also to sets of outcomes.

EVENT

An event is an outcome or a set of outcomes of a random phenomenon.
That is, an event is a subset of the sample space.
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E 4.8 Exactly 2 heads in four tosses. Take the sample space S for four

tosses of a coin to be the 16 possible outcomes in the form HTHH. Then “ex-
actly 2 heads” is an event. Call this event A. The event A expressed as a set of
outcomes is

A = {HHTT, HTHT, HTTH, THHT, THTH, TTHH}

In a probability model, events have probabilities. What properties must any
assignment of probabilities to events have? Here are some basic facts about any
probability model. These facts follow from the idea of probability as “the long-
run proportion of repetitions on which an event occurs.”

1. Any probability is a number between 0 and 1. Any proportion is a number
between 0 and 1, so any probability is also a number between 0 and 1. An
event with probability 0 never occurs, and an event with probability 1 occurs
on every trial. An event with probability 0.5 occurs in half the trials in the
long run.

2. All possible outcomes together must have probability 1. Because every
trial will produce an outcome, the sum of the probabilities for all possible
outcomes must be exactly 1.

3. If two events have no outcomes in common, the probability that one or
the other occurs is the sum of their individual probabilities. If one event
occurs in 40% of all trials, a different event occurs in 25% of all trials, and
the two can never occur together, then one or the other occurs on 65% of all
trials because 40% + 25% = 65%.

4. The probability that an event does not occur is 1 minus the probability
that the event does occur. If an event occurs in (say) 70% of all trials, it
fails to occur in the other 30%. The probability that an event occurs and the
probability that it does not occur always add to 100%, or 1.

Probability rules
Formal probability uses mathematical notation to state Facts 1 to 4 more con-
cisely. We use capital letters near the beginning of the alphabet to denote events.
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If A is any event, we write its probability as P(A). Here are our probability facts
in formal language. As you apply these rules, remember that they are just an-
other form of intuitively true facts about long-run proportions.

PROBABILITY RULES

Rule 1. The probability P(A) of any event A satisfies 0 ≤ P(A) ≤ 1.

Rule 2. If S is the sample space in a probability model, then P(S) = 1.

Rule 3. Two events A and B are disjoint if they have no outcomes in
common and so can never occur together. If A and B are disjoint,

P(A or B) = P(A) + P(B)

This is the addition rule for disjoint events.

Rule 4. The complement of any event A is the event that A does not oc-
cur, written as Ac. The complement rule states that

P(Ac) = 1 − P(A)

You may find it helpful to draw a picture to remind yourself of the mean-
ing of complements and disjoint events. A picture like Figure 4.2 that shows
the sample space S as a rectangular area and events as areas within S is called
a Venn diagram. The events A and B in Figure 4.2 are disjoint because theyVenn diagram
do not overlap. As Figure 4.3 shows, the complement Ac contains exactly the
outcomes that are not in A.

S

BA

FIGURE 4.2 Venn diagram
showing disjoint events A and B.
Disjoint events have no common
outcomes.

A Ac

FIGURE 4.3 Venn diagram
showing the complement Ac of
an event A. The complement
consists of all outcomes that are
not in A.
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E 4.9 Cell phones and accidents. Some states are considering laws that
will ban the use of cell phones while driving because they believe that the
ban will reduce phone-related car accidents. One study classified these types
of accidents by the day of the week when they occurred.2 For this example,
we use the values from this study as our probability model. Here are the
probabilities:

Day Sun. Mon. Tues. Wed. Thur. Fri. Sat.

Probability 0.03 0.19 0.18 0.23 0.19 0.16 0.02

Each probability is between 0 and 1. The probabilities add to 1 because these
outcomes together make up the sample space S. Our probability model cor-
responds to picking a phone-related accident at random and asking on what
day of the week it occurred.

Let’s use the probability rules 3 and 4 to find some probabilities of events for
days when phone-related accidents occur.
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E 4.10 Accidents on weekends. What is the probability that an accident
occurs on a weekend, that is, Saturday or Sunday? Because an accident can
occur on Saturday or Sunday but it cannot occur on both days of the week,
these two events are disjoint. Using Rule 3, we find

P(Saturday or Sunday) = P(Saturday) + P(Sunday)

= 0.02 + 0.03 = 0.05

The chance that an accident occurs on a Saturday or Sunday is 5%. Sup-
pose we want to find the probability that a phone-related accident occurs on a
weekday.
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E 4.11 Use the complement rule. To solve this problem, we could use Rule
3 and add the probabilities for Monday, Tuesday, Wednesday, Thursday, and
Friday. However, it is easier to use the probability that we already calculated
for weekends and Rule 4. The event that the accident occurs on a weekday
is the complement of the event that the accident occurs on a weekend. Using
our notation for events, we have

P(weekday) = 1 − P(weekend)

= 1 − 0.05 = 0.95

We see that 95% of phone-related accidents occur on weekdays.
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USE YOUR KNOWLEDGE
4.12 Phone-related accidents on Monday or Friday. Find the probability

that a phone-related accident occurred on a Monday or a Friday.

4.13 Not on Wednesday. Find the probability that a phone-related acci-
dent occurred on a day other than a Wednesday.

Assigning probabilities: finite number of outcomes
The individual outcomes of a random phenomenon are always disjoint. So the
addition rule provides a way to assign probabilities to events with more than
one outcome: start with probabilities for individual outcomes and add to get
probabilities for events. This idea works well when there are only a finite (fixed
and limited) number of outcomes.

PROBABILITIES IN A FINITE SAMPLE SPACE

Assign a probability to each individual outcome. These probabilities
must be numbers between 0 and 1 and must have sum 1.

The probability of any event is the sum of the probabilities of the out-
comes making up the event.
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E 4.12 Benford’s law. Faked numbers in tax returns, payment records, in-
voices, expense account claims, and many other settings often display pat-
terns that aren’t present in legitimate records. Some patterns, like too many
round numbers, are obvious and easily avoided by a clever crook. Others are
more subtle. It is a striking fact that the first digits of numbers in legitimate
records often follow a distribution known as Benford’s law. Here it is (note
that a first digit can’t be 0):3

First digit 1 2 3 4 5 6 7 8 9

Probability 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

Benford’s law

Benford’s law usually applies to the first digits of the sizes of similar quanti-
ties, such as invoices, expense account claims, and county populations. Investi-
gators can detect fraud by comparing the first digits in records such as invoices
paid by a business with these probabilities.

•

E
X

A
M

P
L

E 4.13 Find some probabilities for Benford’s law. Consider the events

A = {first digit is 1}
B = {first digit is 6 or greater}
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From the table of probabilities,

P(A) = P(1) = 0.301

P(B) = P(6) + P(7) + P(8) + P(9)

= 0.067 + 0.058 + 0.051 + 0.046 = 0.222

Note that P(B) is not the same as the probability that a first digit is strictly
greater than 6. The probability P(6) that a first digit is 6 is included in “6 or
greater” but not in “greater than 6.”

USE YOUR KNOWLEDGE
4.14 Benford’s law. Using the probabilities for Benford’s law, find the

probability that a first digit is anything other than 1.

4.15 Use the addition rule. Use the addition rule with the probabilities
for the events A and B from Example 4.13 to find the probability that
a first digit is either 1 or 6 or greater.

Be careful to apply the addition rule only to disjoint events.

•
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E 4.14 Apply the addition rule to Benford’s law. Check that the proba-
bility of the event C that a first digit is odd is

P(C) = P(1) + P(3) + P(5) + P(7) + P(9) = 0.609

The probability

P(B or C) = P(1) + P(3) + P(5) + P(6) + P(7) + P(8) + P(9) = 0.727

is not the sum of P(B) and P(C), because events B and C are not disjoint. Out-
comes 7 and 9 are common to both events.

Assigning probabilities: equally likely outcomes
Assigning correct probabilities to individual outcomes often requires long ob-
servation of the random phenomenon. In some circumstances, however, we
are willing to assume that individual outcomes are equally likely because of
some balance in the phenomenon. Ordinary coins have a physical balance that
should make heads and tails equally likely, for example, and the table of ran-
dom digits comes from a deliberate randomization.
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E 4.15 First digits that are equally likely. You might think that first digits
are distributed “at random” among the digits 1 to 9 in business records. The 9
possible outcomes would then be equally likely. The sample space for a single
digit is

S = {1, 2, 3, 4, 5, 6, 7, 8, 9}
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Because the total probability must be 1, the probability of each of the 9 out-
comes must be 1/9. That is, the assignment of probabilities to outcomes is

First digit 1 2 3 4 5 6 7 8 9

Probability 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

The probability of the event B that a randomly chosen first digit is 6 or
greater is

P(B) = P(6) + P(7) + P(8) + P(9)

= 1
9

+ 1
9

+ 1
9

+ 1
9

= 4
9

= 0.444

Compare this with the Benford’s law probability in Example 4.13. A crook
who fakes data by using “random” digits will end up with too many first digits
6 or greater and too few 1s and 2s.

In Example 4.15 all outcomes have the same probability. Because there are
9 equally likely outcomes, each must have probability 1/9. Because exactly 4
of the 9 equally likely outcomes are 6 or greater, the probability of this event
is 4/9. In the special situation where all outcomes are equally likely, we have a
simple rule for assigning probabilities to events.

EQUALLY LIKELY OUTCOMES

If a random phenomenon has k possible outcomes, all equally likely,
then each individual outcome has probability 1/k. The probability of
any event A is

P(A) = count of outcomes in A
count of outcomes in S

= count of outcomes in A
k

Most random phenomena do not have equally likely outcomes, so the gen-
eral rule for finite sample spaces is more important than the special rule for
equally likely outcomes.

USE YOUR KNOWLEDGE
4.16 Possible outcomes for rolling a die. A die has six sides with 1 to 6

“spots” on the sides. Give the probability distribution for the six pos-
sible outcomes that can result when a perfect die is rolled.
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Independence and the multiplication rule
Rule 3, the addition rule for disjoint events, describes the probability that one
or the other of two events A and B will occur in the special situation when A
and B cannot occur together because they are disjoint. Our final rule describes
the probability that both events A and B occur, again only in a special situation.
More general rules appear in Section 4.5, but in our study of statistics we will
need only the rules that apply to special situations.

Suppose that you toss a balanced coin twice. You are counting heads, so two
events of interest are

A = {first toss is a head}
B = {second toss is a head}

The events A and B are not disjoint. They occur together whenever both tosses
give heads. We want to compute the probability of the event {A and B} that both
tosses are heads. The Venn diagram in Figure 4.4 illustrates the event {A and B}
as the overlapping area that is common to both A and B.

The coin tossing of Buffon, Pearson, and Kerrich described in Example 4.3
makes us willing to assign probability 1/2 to a head when we toss a coin. So

P(A) = 0.5

P(B) = 0.5

What is P(A and B)? Our common sense says that it is 1/4. The first coin will give
a head half the time and then the second will give a head on half of those trials,
so both coins will give heads on 1/2 × 1/2 = 1/4 of all trials in the long run. This
reasoning assumes that the second coin still has probability 1/2 of a head after
the first has given a head. This is true—we can verify it by tossing two coins
many times and observing the proportion of heads on the second toss after the
first toss has produced a head. We say that the events “head on the first toss” and
“head on the second toss” are independent. Here is our final probability rule.

THE MULTIPLICATION RULE FOR INDEPENDENT EVENTS

Rule 5. Two events A and B are independent if knowing that one oc-
curs does not change the probability that the other occurs. If A and B
are independent,

P(A and B) = P(A)P(B)

This is the multiplication rule for independent events.

A and B
S

BA B

FIGURE 4.4 Venn diagram
showing the event {A and B}.
This event consists of outcomes
common to A and B.
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Our definition of independence is rather informal. We will make this infor-
mal idea precise in Section 4.5. In practice, though, we rarely need a precise
definition of independence, because independence is usually assumed as part
of a probability model when we want to describe random phenomena that seem
to be physically unrelated to each other. Here is an example of independence.
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E 4.16 Coins do not have memory. Because a coin has no memory and
most coin tossers cannot influence the fall of the coin, it is safe to assume
that successive coin tosses are independent. For a balanced coin this means
that after we see the outcome of the first toss, we still assign probability 1/2
to heads on the second toss.

USE YOUR KNOWLEDGE
4.17 Two tails in two tosses. What is the probability of obtaining two tails

on two tosses of a fair coin?

Here is an example of a situation where there are dependent events.
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E 4.17 Dependent events in cards. The colors of successive cards dealt
from the same deck are not independent. A standard 52-card deck contains
26 red and 26 black cards. For the first card dealt from a shuffled deck, the
probability of a red card is 26/52 = 0.50 because the 52 possible cards are
equally likely. Once we see that the first card is red, we know that there are
only 25 reds among the remaining 51 cards. The probability that the second
card is red is therefore only 25/51 = 0.49. Knowing the outcome of the first
deal changes the probabilities for the second.

USE YOUR KNOWLEDGE
4.18 The probability of a second ace. A deck of 52 cards contains 4 aces,

so the probability that a card drawn from this deck is an ace is 4/52. If
we know that the first card drawn is an ace, what is the probability that
the second card drawn is also an ace? Using the idea of independence,
explain why this probability is not 4/52.

Here is another example of a situation where events are dependent.
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E 4.18 Taking a test twice. If you take an IQ test or other mental test twice
in succession, the two test scores are not independent. The learning that oc-
curs on the first attempt influences your second attempt. If you learn a lot,
then your second test score might be a lot higher than your first test score.
This phenomenon is called a carry-over effect.
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When independence is part of a probability model, the multiplication rule
applies. Here is an example.
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E 4.19 Mendel’s peas. Gregor Mendel used garden peas in some of the ex-
periments that revealed that inheritance operates randomly. The seed color of
Mendel’s peas can be either green or yellow. Two parent plants are “crossed”
(one pollinates the other) to produce seeds. Each parent plant carries two
genes for seed color, and each of these genes has probability 1/2 of being
passed to a seed. The two genes that the seed receives, one from each par-
ent, determine its color. The parents contribute their genes independently of
each other.

Suppose that both parents carry the G and the Y genes. The seed will be
green if both parents contribute a G gene; otherwise it will be yellow. If M is
the event that the male contributes a G gene and F is the event that the female
contributes a G gene, then the probability of a green seed is

P(M and F) = P(M)P(F)

= (0.5)(0.5) = 0.25

In the long run, 1/4 of all seeds produced by crossing these plants will be
green.

The multiplication rule applies only to independent events; you cannot use it if

CAUTION

! events are not independent. Here is a distressing example of misuse of the mul-
tiplication rule.
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E 4.20 Sudden infant death syndrome. Sudden infant death syndrome
(SIDS) causes babies to die suddenly (often in their cribs) with no explana-
tion. Deaths from SIDS have been greatly reduced by placing babies on their
backs, but as yet no cause is known.

When more than one SIDS death occurs in a family, the parents are some-
times accused. One “expert witness” popular with prosecutors in England
told juries that there is only a 1 in 73 million chance that two children in
the same family could have died naturally. Here’s his calculation: the rate of
SIDS in a nonsmoking middle-class family is 1 in 8500. So the probability of
two deaths is

1
8500

× 1
8500

= 1
72,250,000

Several women were convicted of murder on this basis, without any direct
evidence that they had harmed their children.

As the Royal Statistical Society said, this reasoning is nonsense. It assumes
that SIDS deaths in the same family are independent events. The cause of
SIDS is unknown: “There may well be unknown genetic or environmental fac-
tors that predispose families to SIDS, so that a second case within the family
becomes much more likely.”4 The British government decided to review the
cases of 258 parents convicted of murdering their babies.
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The multiplication rule P(A and B) = P(A)P(B) holds if A and B are indepen-
dent but not otherwise. The addition rule P(A or B) = P(A) + P(B) holds if A
and B are disjoint but not otherwise. Resist the temptation to use these simple
formulas when the circumstances that justify them are not present. You must
also be certain not to confuse disjointness and independence. Disjoint events can-

CAUTION

! not be independent. If A and B are disjoint, then the fact that A occurs tells us
that B cannot occur—look again at Figure 4.2. Unlike disjointness or comple-
ments, independence cannot be pictured by a Venn diagram, because it involves
the probabilities of the events rather than just the outcomes that make up the
events.

Applying the probability rules
If two events A and B are independent, then their complements Ac and Bc are
also independent and Ac is independent of B. Suppose, for example, that 75% of
all registered voters in a suburban district are Republicans. If an opinion poll
interviews two voters chosen independently, the probability that the first is a
Republican and the second is not a Republican is (0.75)(0.25) = 0.1875. The
multiplication rule also extends to collections of more than two events, pro-
vided that all are independent. Independence of events A, B, and C means that
no information about any one or any two can change the probability of the re-
maining events. The formal definition is a bit messy. Fortunately, independence
is usually assumed in setting up a probability model. We can then use the mul-
tiplication rule freely, as in this example.

By combining the rules we have learned, we can compute probabilities for
rather complex events. Here is an example.
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E 4.21 HIV testing. Many people who come to clinics to be tested for HIV,
the virus that causes AIDS, don’t come back to learn the test results. Clin-
ics now use “rapid HIV tests” that give a result in a few minutes. Applied
to people who have no HIV antibodies, one rapid test has probability about
0.004 of producing a false-positive (that is, of falsely indicating that antibod-
ies are present).5 If a clinic tests 200 people who are free of HIV antibodies,
what is the probability that at least one false-positive will occur?

It is reasonable to assume as part of the probability model that the test
results for different individuals are independent. The probability that the test
is positive for a single person is 0.004, so the probability of a negative result
is 1 − 0.004 = 0.996 by the complement rule. The probability of at least one
false-positive among the 200 people tested is therefore

P(at least one positive) = 1 − P(no positives)

= 1 − P(200 negatives)

= 1 − 0.996200

= 1 − 0.4486 = 0.5514

The probability is greater than 1/2 that at least one of the 200 people will test
positive for HIV, even though no one has the virus.
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SECTION 4.2 Summary

A probability model for a random phenomenon consists of a sample space S
and an assignment of probabilities P.

The sample space S is the set of all possible outcomes of the random phe-
nomenon. Sets of outcomes are called events. P assigns a number P(A) to an
event A as its probability.

The complement Ac of an event A consists of exactly the outcomes that are not
in A. Events A and B are disjoint if they have no outcomes in common. Events
A and B are independent if knowing that one event occurs does not change the
probability we would assign to the other event.

Any assignment of probability must obey the rules that state the basic proper-
ties of probability:

Rule 1. 0 ≤ P(A) ≤ 1 for any event A.

Rule 2. P(S) = 1.

Rule 3. Addition rule: If events A and B are disjoint, then P(A or B) = P(A) +
P(B).

Rule 4. Complement rule: For any event A, P(Ac) = 1 − P(A).

Rule 5. Multiplication rule: If events A and B are independent, then
P(A and B) = P(A)P(B).

SECTION 4.2 Exercises
For Exercises 4.10 and 4.11, see page 244; for Exercises 4.12
and 4.13, see page 248; for Exercises 4.14 and 4.15, see page
249; for Exercise 4.16, see page 250; and for Exercises 4.17
and 4.18, see page 252.

4.19 Evaluating Web page designs. You are a Web page
designer and you set up a page with five different
links. A user of the page can click on one of the links
or he or she can leave that page. Describe the sample
space for the outcome of a visitor to your Web page.

4.20 Record the length of time spent on the page.
Refer to the previous exercise. You also decide to
measure the length of time a visitor spends on your
page. Give the sample space for this measure.

4.21 Distribution of blood types. All human blood can
be “ABO-typed” as one of O, A, B, or AB, but the
distribution of the types varies a bit among groups
of people. Here is the distribution of blood types for
a randomly chosen person in the United States:

Blood type A B AB O

U.S. probability 0.40 0.11 0.04 ?

(a) What is the probability of type O blood in the
United States?

(b) Maria has type B blood. She can safely receive
blood transfusions from people with blood types
O and B. What is the probability that a randomly
chosen American can donate blood to Maria?

4.22 Blood types in China. The distribution of blood
types in China differs from the U.S. distribution
given in the previous exercise:

Blood type A B AB O

China probability 0.27 0.26 0.12 0.35

Choose an American and a Chinese at random,
independently of each other. What is the probability
that both have type O blood? What is the probability
that both have the same blood type?

4.23 Are the probabilities legitimate? In each of the
following situations, state whether or not the given
assignment of probabilities to individual outcomes
is legitimate, that is, satisfies the rules of probability.
If not, give specific reasons for your answer.
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(a) Choose a college student at random and
record gender and enrollment status: P(female
full-time) = 0.46, P(female part-time) = 0.54,
P(male full-time) = 0.44, P(male part-time) = 0.56.

(b) Deal a card from a shuffled deck: P(clubs) =
12/52, P(diamonds) = 12/52, P(hearts) = 12/52,
P(spades) = 16/52.

(c) Roll a die and record the count of spots on the
up-face: P(1) = 1/3, P(2) = 1/6, P(3) = 0, P(4) = 1/3,
P(5) = 1/6, P(6) = 0.

4.24 French and English in Canada. Canada has two
official languages, English and French. Choose a
Canadian at random and ask, “What is your mother
tongue?” Here is the distribution of responses,
combining many separate languages from the broad
Asian/Pacific region:6

Language English French Asian/Pacific Other

Probability ? 0.23 0.07 0.11

(a) What probability should replace “?” in the
distribution?

(b) What is the probability that a Canadian’s mother
tongue is not English?

4.25 Education levels of young adults. Choose a young
adult (age 25 to 34 years) at random. The probability
is 0.12 that the person chosen did not complete high
school, 0.31 that the person has a high school
diploma but no further education, and 0.29 that the
person has at least a bachelor’s degree.

(a) What must be the probability that a randomly
chosen young adult has some education beyond
high school but does not have a bachelor’s degree?

(b) What is the probability that a randomly chosen
young adult has at least a high school education?

4.26 Spam topics. A majority of email messages are now
“spam.” Choose a spam email message at random.
Here is the distribution of topics:7

Topic Adult Financial Health Leisure Products Scams

Probability 0.145 0.162 0.073 0.078 0.210 0.142

(a) What is the probability that a spam email does
not concern one of these topics?

(b) Corinne is particularly annoyed by spam
offering “adult” content (that is, pornography) and
scams. What is the probability that a randomly
chosen spam email falls into one or the other of
these categories?

4.27 C
H

ALLENG
E Loaded dice. There are many ways to

produce crooked dice. To load a die so that
6 comes up too often and 1 (which is opposite 6)
comes up too seldom, add a bit of lead to the filling
of the spot on the 1 face. Because the spot is solid
plastic, this works even with transparent dice. If a
die is loaded so that 6 comes up with probability 0.2
and the probabilities of the 2, 3, 4, and 5 faces are
not affected, what is the assignment of probabilities
to the six faces?

4.28 Race in the census. The 2000 census allowed
each person to choose from a long list of races.
That is, in the eyes of the Census Bureau, you
belong to whatever race you say you belong to.
“Hispanic/Latino” is a separate category; Hispanics
may be of any race. If we choose a resident of the
United States at random, the 2000 census gives these
probabilities:

Hispanic Not Hispanic

Asian 0.000 0.036
Black 0.003 0.121
White 0.060 0.691
Other 0.062 0.027

Let A be the event that a randomly chosen American
is Hispanic, and let B be the event that the person
chosen is white.

(a) Verify that the table gives a legitimate
assignment of probabilities.

(b) What is P(A)?

(c) Describe Bc in words and find P(Bc) by the
complement rule.

(d) Express “the person chosen is a non-Hispanic
white” in terms of events A and B. What is the
probability of this event?

4.29 Rh blood types. Human blood is typed as O, A, B, or
AB and also as Rh-positive or Rh-negative. ABO type
and Rh-factor type are independent because they
are governed by different genes. In the American
population, 84% of people are Rh-positive. Use the
information about ABO type in Exercise 4.21 to give
the probability distribution of blood type (ABO and
Rh) for a randomly chosen person.
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4.30 Are the events independent? Exercise 4.28
assigns probabilities for the ethnic background
of a randomly chosen resident of the United States.
Let A be the event that the person chosen is Hispanic,
and let B be the event that he or she is white. Are
events A and B independent? How do you know?

4.31 Roulette. A roulette wheel has 38 slots, numbered
0, 00, and 1 to 36. The slots 0 and 00 are colored
green, 18 of the others are red, and 18 are black. The
dealer spins the wheel and at the same time rolls a
small ball along the wheel in the opposite direction.
The wheel is carefully balanced so that the ball is
equally likely to land in any slot when the wheel
slows. Gamblers can bet on various combinations of
numbers and colors.

(a) What is the probability that the ball will land in
any one slot?

(b) If you bet on “red,” you win if the ball lands in a
red slot. What is the probability of winning?

(c) The slot numbers are laid out on a board on
which gamblers place their bets. One column of
numbers on the board contains all multiples of 3,
that is, 3, 6, 9, .. . , 36. You place a “column bet” that
wins if any of these numbers comes up. What is
your probability of winning?

4.32 Winning the lottery. A state lottery’s Pick 3 game
asks players to choose a three-digit number, 000
to 999. The state chooses the winning three-digit
number at random, so that each number has
probability 1/1000. You win if the winning number
contains the digits in your number, in any order.

(a) Your number is 456. What is your probability of
winning?

(b) Your number is 212. What is your probability of
winning?

4.33 PINs. The personal identification numbers (PINs)
for automatic teller machines usually consist of
four digits. You notice that most of your PINs have
at least one 0, and you wonder if the issuers use
lots of 0s to make the numbers easy to remember.
Suppose that PINs are assigned at random, so that
all four-digit numbers are equally likely.

(a) How many possible PINs are there?

(b) What is the probability that a PIN assigned at
random has at least one 0?

4.34 Universal blood donors. People with type O-
negative blood are universal donors. That is, any
patient can receive a transfusion of O-negative

blood. Only 7% of the American population have
O-negative blood. If 10 people appear at random to
give blood, what is the probability that at least 1 of
them is a universal donor?

4.35 Disappearing Internet sites. Internet sites often
vanish or move, so that references to them can’t be
followed. In fact, 13% of Internet sites referenced
in papers in major scientific journals are lost within
two years after publication.8 If a paper contains
seven Internet references, what is the probability
that all seven are still good two years later? What
specific assumptions did you make in order to
calculate this probability?

4.36 Random digit dialing. Most sample surveys use
random digit dialing equipment to call residential
telephone numbers at random. The telephone-
polling firm Zogby International reports that the
probability that a call reaches a live person is 0.2.9

Calls are independent.

(a) A polling firm places 5 calls. What is the
probability that none of them reaches a person?

(b) When calls are made to New York City, the
probability of reaching a person is only 0.08. What
is the probability that none of 5 calls made to New
York City reaches a person?

4.37 Is this calculation correct? Government data show
that 6% of the American population are at least
75 years of age and that about 51% are women.
Explain why it is wrong to conclude that because
(0.06)(0.51) = 0.0306 about 3% of the population
are women aged 75 or over.

4.38 Colored dice. Here’s more evidence that our
intuition about chance behavior is not very accurate.
A six-sided die has four green and two red faces, all
equally probable. Psychologists asked students to
say which of these color sequences is most likely to
come up at the beginning of a long set of rolls of this
die:

RGRRR
RGRRRG
GRRRRR

More than 60% chose the second sequence.10 What
is the correct probability of each sequence?

4.39 Random walks and stock prices. The “random
walk” theory of securities prices holds that price
movements in disjoint time periods are independent
of each other. Suppose that we record only whether
the price is up or down each year, and that the
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probability that our portfolio rises in price in any
one year is 0.65. (This probability is approximately
correct for a portfolio containing equal dollar
amounts of all common stocks listed on the New
York Stock Exchange.)

(a) What is the probability that our portfolio goes
up for 3 consecutive years?

(b) If you know that the portfolio has risen in price
2 years in a row, what probability do you assign to
the event that it will go down next year?

(c) What is the probability that the portfolio’s value
moves in the same direction in both of the next 2
years?

4.40 C
H

ALLENG
E Axioms of probability. Show that any

assignment of probabilities to events that
obeys Rules 2 and 3 on page 246 automatically
obeys the complement rule (Rule 4). This implies
that a mathematical treatment of probability can
start from just Rules 1, 2, and 3. These rules are
sometimes called axioms of probability.

4.41 C
H

ALLENG
E Independence of complements. Show that

if events A and B obey the multiplication rule,
P(A and B) = P(A)P(B), then A and the complement
Bc of B also obey the multiplication rule, P(A and
Bc) = P(A)P(Bc). That is, if events A and B are
independent, then A and Bc are also independent.
(Hint: Start by drawing a Venn diagram and noticing
that the events “A and B” and “A and Bc” are disjoint.)

Mendelian inheritance. Some traits of plants and animals
depend on inheritance of a single gene. This is called
Mendelian inheritance, after Gregor Mendel (1822–1884).
Exercises 4.42 to 4.45 are based on the following
information about Mendelian inheritance of blood type.

Each of us has an ABO blood type, which describes
whether two characteristics called A and B are present.
Every human being has two blood type alleles (gene forms),
one inherited from our mother and one from our father.
Each of these alleles can be A, B, or O. Which two we inherit

determines our blood type. The following table shows what
our blood type is for each combination of two alleles:

Alleles inherited Blood type

A and A A
A and B AB
A and O A
B and B B
B and O B
O and O O

We inherit each of a parent’s two alleles with probability 0.5.
We inherit independently from our mother and father.

4.42 Blood types of children. Hannah and Jacob both
have alleles A and B.

(a) What blood types can their children have?

(b) What is the probability that their next child has
each of these blood types?

4.43 Parents with alleles B and O. Nancy and David
both have alleles B and O.

(a) What blood types can their children have?

(b) What is the probability that their next child has
each of these blood types?

4.44 Two children. Jennifer has alleles A and O. José has
alleles A and B. They have two children. What is the
probability that both children have blood type A?
What is the probability that both children have the
same blood type?

4.45 Three children. Jasmine has alleles A and O. Joshua
has alleles B and O.

(a) What is the probability that a child of these
parents has blood type O?

(b) If Jasmine and Joshua have three children, what
is the probability that all three have blood type O?
What is the probability that the first child has blood
type O and the next two do not?

4.3 Random Variables
Sample spaces need not consist of numbers. When we toss a coin four times, we
can record the outcome as a string of heads and tails, such as HTTH. In statis-
tics, however, we are most often interested in numerical outcomes such as the
count of heads in the four tosses. It is convenient to use a shorthand notation:
Let X be the number of heads. If our outcome is HTTH, then X = 2. If the next
outcome is TTTH, the value of X changes to X = 1. The possible values of X are
0, 1, 2, 3, and 4. Tossing a coin four times will give X one of these possible val-
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ues. Tossing four more times will give X another and probably different value.
We call X a random variable because its values vary when the coin tossing is
repeated.

RANDOM VARIABLE

A random variable is a variable whose value is a numerical outcome of
a random phenomenon.

We usually denote random variables by capital letters near the end of the
alphabet, such as X or Y . Of course, the random variables of greatest interest
to us are outcomes such as the mean x of a random sample, for which we will
keep the familiar notation.11 As we progress from general rules of probability
toward statistical inference, we will concentrate on random variables. When a
random variable X describes a random phenomenon, the sample space S just
lists the possible values of the random variable. We usually do not mention S
separately. There remains the second part of any probability model, the assign-
ment of probabilities to events. There are two main ways of assigning proba-
bilities to the values of a random variable. The two types of probability models
that result will dominate our application of probability to statistical inference.

Discrete random variables
We have learned several rules of probability but only one method of assign-
ing probabilities: state the probabilities of the individual outcomes and assign
probabilities to events by summing over the outcomes. The outcome probabil-
ities must be between 0 and 1 and have sum 1. When the outcomes are numeri-
cal, they are values of a random variable. We will now attach a name to random
variables having probability assigned in this way.12

DISCRETE RANDOM VARIABLE

A discrete random variable X has a finite number of possible values.
The probability distribution of X lists the values and their probabilities:

Value of X x1 x2 x3 · · · xk

Probability p1 p2 p3 · · · pk

The probabilities pi must satisfy two requirements:

1. Every probability pi is a number between 0 and 1.

2. p1 + p2 + · · · + pk = 1.

Find the probability of any event by adding the probabilities pi of the
particular values xi that make up the event.
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E 4.22 Grade distributions. North Carolina State University posts the grade
distributions for its courses online.13 Students in one section of English 210
in the spring 2006 semester received 31% A’s, 40% B’s, 20% C’s, 4% D’s, and
5% F’s. Choose an English 210 student at random. To “choose at random”
means to give every student the same chance to be chosen. The student’s
grade on a four-point scale (with A = 4) is a random variable X.

The value of X changes when we repeatedly choose students at random,
but it is always one of 0, 1, 2, 3, or 4. Here is the distribution of X:

Value of X 0 1 2 3 4

Probability 0.05 0.04 0.20 0.40 0.31

The probability that the student got a B or better is the sum of the proba-
bilities of an A and a B. In the language of random variables,

P(X ≥ 3) = P(X = 3) + P(X = 4)

= 0.40 + 0.31 = 0.71

USE YOUR KNOWLEDGE
4.46 Will the course satisfy the requirement? Refer to Example 4.22.

Suppose that a grade of D or F in English 210 will not count as satis-
fying a requirement for a major in linguistics. What is the probability
that a randomly selected student will not satisfy this requirement?
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FIGURE 4.5 Probability
histograms for (a) random digits
1 to 9 and (b) Benford’s law. The
height of each bar shows the
probability assigned to a single
outcome.
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We can use histograms to show probability distributions as well as distri-
butions of data. Figure 4.5 displays probability histograms that compare theprobability histogram
probability model for random digits for business records (Example 4.15) with
the model given by Benford’s law (Example 4.12). The height of each bar shows
the probability of the outcome at its base. Because the heights are probabili-
ties, they add to 1. As usual, all the bars in a histogram have the same width.
So the areas also display the assignment of probability to outcomes. Think of
these histograms as idealized pictures of the results of very many trials. The
histograms make it easy to quickly compare the two distributions.
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E 4.23 Number of heads in four tosses of a coin. What is the probabil-

ity distribution of the discrete random variable X that counts the number of
heads in four tosses of a coin? We can derive this distribution if we make two
reasonable assumptions:

• The coin is balanced, so it is fair and each toss is equally likely to give H
or T.

• The coin has no memory, so tosses are independent.

The outcome of four tosses is a sequence of heads and tails such as HTTH.
There are 16 possible outcomes in all. Figure 4.6 lists these outcomes along
with the value of X for each outcome. The multiplication rule for independent
events tells us that, for example,

P(HTTH) = 1
2

× 1
2

× 1
2

× 1
2

= 1
16

Each of the 16 possible outcomes similarly has probability 1/16. That is, these
outcomes are equally likely.

The number of heads X has possible values 0, 1, 2, 3, and 4. These values
are not equally likely. As Figure 4.6 shows, there is only one way that X = 0
can occur: namely, when the outcome is TTTT. So

P(X = 0) = 1
16

= 0.0625

The event {X = 2} can occur in six different ways, so that

P(X = 2) = count of ways X = 2 can occur
16

= 6
16

= 0.375

We can find the probability of each value of X from Figure 4.6 in the same
way. Here is the result:

Value of X 0 1 2 3 4

Probability 0.0625 0.25 0.375 0.25 0.0625
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X = 0 X = 1 X = 2 X = 3 X = 4

FIGURE 4.6 Possible outcomes
in four tosses of a coin, for
Example 4.23. The outcomes are
arranged by the values of the
random variable X, the number
of heads.

Figure 4.7 is a probability histogram for the distribution in Example 4.23.
The probability distribution is exactly symmetric. The probabilities (bar
heights) are idealizations of the proportions after very many tosses of four
coins. The actual distribution of proportions observed would be nearly sym-
metric but is unlikely to be exactly symmetric.
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FIGURE 4.7 Probability
histogram for the number of
heads in four tosses of a coin.
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E 4.24 Probability of at least two heads. Any event involving the number
of heads observed can be expressed in terms of X, and its probability can be
found from the distribution of X. For example, the probability of tossing at
least two heads is

P(X ≥ 2) = 0.375 + 0.25 + 0.0625 = 0.6875

The probability of at least one head is most simply found by use of the com-
plement rule:

P(X ≥ 1) = 1 − P(X = 0)

= 1 − 0.0625 = 0.9375

Recall that tossing a coin n times is similar to choosing an SRS of size n from
a large population and asking a yes-or-no question. We will extend the results
of Example 4.23 when we return to sampling distributions in the next chapter.

USE YOUR KNOWLEDGE
4.47 Two tosses of a fair coin. Find the probability distribution for the

number of heads that appear in two tosses of a fair coin.
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Continuous random variables
When we use the table of random digits to select a digit between 0 and 9, the
result is a discrete random variable. The probability model assigns probability
1/10 to each of the 10 possible outcomes. Suppose that we want to choose a
number at random between 0 and 1, allowing any number between 0 and 1 as
the outcome. Software random number generators will do this. You can visu-
alize such a random number by thinking of a spinner (Figure 4.8) that turns
freely on its axis and slowly comes to a stop. The pointer can come to rest any-
where on a circle that is marked from 0 to 1. The sample space is now an entire
interval of numbers:

S = {all numbers x such that 0 ≤ x ≤ 1}
How can we assign probabilities to events such as {0.3 ≤ x ≤ 0.7}? As in

the case of selecting a random digit, we would like all possible outcomes to be
equally likely. But we cannot assign probabilities to each individual value of x
and then sum, because there are infinitely many possible values. Instead, we
use a new way of assigning probabilities directly to events—as areas under a
density curve. Any density curve has area exactly 1 underneath it, correspond-
ing to total probability 1.

3
4

1
4

1
2

0

FIGURE 4.8 A spinner that
generates a random number
between 0 and 1.
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E 4.25 Uniform random numbers. The random number generator will
spread its output uniformly across the entire interval from 0 to 1 as we allow
it to generate a long sequence of numbers. The results of many trials are rep-
resented by the density curve of a uniform distribution. This density curve
appears in red in Figure 4.9. It has height 1 over the interval from 0 to 1, and
height 0 everywhere else. The area under the density curve is 1: the area of
a square with base 1 and height 1. The probability of any event is the area
under the density curve and above the event in question.

As Figure 4.9(a) illustrates, the probability that the random number gen-
erator produces a number X between 0.3 and 0.7 is

P(0.3 ≤ X ≤ 0.7) = 0.4

uniform distribution
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0 0.3 0.7 1

Area = 0.4

P(0.3 ≤ X ≤ 0.7)

0 0.5 0.8 1

P(X ≤ 0.5 or X > 0.8)

Area = 0.2Area = 0.5

(a) (b)

Height = 1
FIGURE 4.9 Assigning
probabilities for generating
a random number between 0
and 1, for Example 4.25. The
probability of any interval of
numbers is the area above the
interval and under the density
curve.

•

because the area under the density curve and above the interval from 0.3 to
0.7 is 0.4. The height of the density curve is 1, and the area of a rectangle is the
product of height and length, so the probability of any interval of outcomes
is just the length of the interval.

Similarly,

P(X ≤ 0.5) = 0.5

P(X > 0.8) = 0.2

P(X ≤ 0.5 or X > 0.8) = 0.7

Notice that the last event consists of two nonoverlapping intervals, so the total
area above the event is found by adding two areas, as illustrated by Figure
4.9(b). This assignment of probabilities obeys all of our rules for probability.

Probability as area under a density curve is a second important way of as-
signing probabilities to events. Figure 4.10 illustrates this idea in general form.
We call X in Example 4.25 a continuous random variable because its values are
not isolated numbers but an entire interval of numbers.

Area = P(A)

Event A

FIGURE 4.10 The probability
distribution of a continuous
random variable assigns
probabilities as areas under a
density curve. The total area
under any density curve is 1.



4.3 Random Variables
•

265

USE YOUR KNOWLEDGE
4.48 Find the probability. For the uniform distribution described in Ex-

ample 4.25, find the probability that X is between 0.1 and 0.4.

CONTINUOUS RANDOM VARIABLE

A continuous random variable X takes all values in an interval of num-
bers. The probability distribution of X is described by a density curve.
The probability of any event is the area under the density curve and
above the values of X that make up the event.

The probability model for a continuous random variable assigns probabil-
ities to intervals of outcomes rather than to individual outcomes. In fact, all
continuous probability distributions assign probability 0 to every indi-
vidual outcome. Only intervals of values have positive probability. To see that
this is true, consider a specific outcome such as P(X = 0.8) in the context of
Example 4.25. The probability of any interval is the same as its length. The
point 0.8 has no length, so its probability is 0.

Although this fact may seem odd, it makes intuitive, as well as mathemat-
ical, sense. The random number generator produces a number between 0.79
and 0.81 with probability 0.02. An outcome between 0.799 and 0.801 has prob-
ability 0.002. A result between 0.799999 and 0.800001 has probability 0.000002.
You see that as we approach 0.8, the probability gets closer to 0. To be consis-
tent, the probability of outcome exactly equal to 0.8 must be 0. Because there is
no probability exactly at X = 0.8, the two events {X > 0.8} and {X ≥ 0.8} have
the same probability. We can ignore the distinction between > and ≥ when find-
ing probabilities for continuous (but not discrete) random variables.

Normal distributions as probability distributions
The density curves that are most familiar to us are the Normal curves. Because
any density curve describes an assignment of probabilities, Normal distribu-
tions are probability distributions. Recall that N(μ, σ ) is our shorthand for the
Normal distribution having mean μ and standard deviation σ . In the language
of random variables, if X has the N(μ, σ ) distribution, then the standardized
variable

Z = X − μ

σ

is a standard Normal random variable having the distribution N(0, 1).
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E 4.26 Cheating. Students are reluctant to report cheating by other stu-
dents. A sample survey puts this question to an SRS of 400 undergraduates:
“You witness two students cheating on a quiz. Do you go to the professor?”
Suppose that, if we could ask all undergraduates, 12% would answer “Yes.”14

The proportion p = 0.12 is a parameter that describes the population of
all undergraduates. The proportion p̂ of the sample who answer “Yes” is a
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statistic used to estimate p. The statistic p̂ is a random variable because re-
peating the SRS would give a different sample of 400 undergraduates and a
different value of p̂. We will see in the next chapter that p̂ has approximately
the N(0.12, 0.016) distribution. The mean 0.12 of this distribution is the same
as the population parameter because p̂ is an unbiased estimate of p. The stan-
dard deviation is controlled mainly by the size of the sample.

What is the probability that the survey result differs from the truth about
the population by more than 2 percentage points? Because p = 0.12, the sur-
vey misses by more than 2 percentage points if p̂ < 0.10 or p̂ > 0.14. Figure
4.11 shows this probability as an area under a Normal density curve. You can
find it by software or by standardizing and using Table A. Let’s start with the
complement rule,

P( p̂ < 0.10 or p̂ > 0.14) = 1 − P(0.10 ≤ p̂ ≤ 0.14)

From Table A,

P(0.10 ≤ p̂ ≤ 0.14) = P
(

0.10 − 0.12
0.016

≤ p̂ − 0.12
0.016

≤ 0.14 − 0.12
0.016

)
= P(−1.25 ≤ Z ≤ 1.25)

= 0.8944 − 0.1056 = 0.7888

The probability we seek is therefore 1 − 0.7888 = 0.2112. About 21% of
sample results will be off by more than 2 percentage points. The arrange-
ment of this calculation is familiar from our earlier work with Normal dis-
tributions. Only the language of probability is new.

Area = 0.7888

p̂ = 0.10 p̂ = 0.12 p̂ = 0.14

FIGURE 4.11 Probability in
Example 4.26 as area under a
Normal density curve.

We began this chapter with a general discussion of the idea of probability
and the properties of probability models. Two very useful specific types of prob-
ability models are distributions of discrete and continuous random variables.
In our study of statistics we will employ only these two types of probability
models.
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SECTION 4.3 Summary

A random variable is a variable taking numerical values determined by the
outcome of a random phenomenon. The probability distribution of a random
variable X tells us what the possible values of X are and how probabilities are
assigned to those values.

A random variable X and its distribution can be discrete or continuous.

A discrete random variable has finitely many possible values. The probability
distribution assigns each of these values a probability between 0 and 1 such that
the sum of all the probabilities is exactly 1. The probability of any event is the
sum of the probabilities of all the values that make up the event.

A continuous random variable takes all values in some interval of numbers.
A density curve describes the probability distribution of a continuous random
variable. The probability of any event is the area under the curve and above the
values that make up the event.

Normal distributions are one type of continuous probability distribution.

You can picture a probability distribution by drawing a probability histogram
in the discrete case or by graphing the density curve in the continuous case.

SECTION 4.3 Exercises
For Exercise 4.46, see page 260; for Exercise 4.47, see page
262; and for Exercise 4.48, see page 265.

4.49 Discrete or continuous. In each of the following
situations decide if the random variable is discrete
or continuous and give a reason for your answer.

(a) Your Web page has five different links and a user
can click on one of the links or can leave the page.
You record the length of time that a user spends
on the Web page before clicking one of the links or
leaving the page.

(b) The number of hits on your Web page.

(c) The yearly income of a visitor to your Web page.

4.50 Texas hold ’em. The game of Texas hold ’em starts
with each player receiving two cards. Here is the
probability distribution for the number of aces in
two-card hands:

Number of aces 0 1 2

Probability 0.559 0.382 0.059

(a) Verify that this assignment of probabilities
satisfies the requirement that the sum of the
probabilities for a discrete distribution must be 1.

(b) Make a probability histogram for this
distribution.

(c) What is the probability that a hand contains at
least one ace? Show two different ways to calculate
this probability.

4.51 Spell-checking software. Spell-checking software
catches “nonword errors,” which result in a string
of letters that is not a word, as when “the” is typed
as “teh.” When undergraduates are asked to write
a 250-word essay (without spell-checking), the
number X of nonword errors has the following
distribution:

Value of X 0 1 2 3 4

Probability 0.1 0.3 0.3 0.2 0.1

(a) Sketch the probability distribution for this
random variable.

(b) Write the event “at least one nonword error” in
terms of X. What is the probability of this event?

(c) Describe the event X ≤ 2 in words. What is its
probability? What is the probability that X < 2?

4.52 Length of human pregnancies. The length of
human pregnancies from conception to birth varies
according to a distribution that is approximately
Normal with mean 266 days and standard deviation
16 days. Call the length of a randomly chosen
pregnancy Y .
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(a) Make a sketch of the density curve for this
random variable.

(b) What is P(Y > 300)?

4.53 Owner-occupied and rented housing units. How
do rented housing units differ from units occupied
by their owners? Here are the distributions of the
number of rooms for owner-occupied units and
renter-occupied units in San Jose, California:15

Rooms 1 2 3 4 5

Owned 0.003 0.002 0.023 0.104 0.210
Rented 0.008 0.027 0.287 0.363 0.164

Rooms 6 7 8 9 10

Owned 0.224 0.197 0.149 0.053 0.035
Rented 0.093 0.039 0.013 0.003 0.003

Make probability histograms of these two
distributions, using the same scales. What are
the most important differences between the
distributions for owner-occupied and rented housing
units?

4.54 Households and families in government data.
In government data, a household consists of all
occupants of a dwelling unit, while a family consists
of two or more persons who live together and are
related by blood or marriage. So all families form
households, but some households are not families.
Here are the distributions of household size and of
family size in the United States:

Number of persons 1 2 3 4 5 6 7

Household probability 0.27 0.33 0.16 0.14 0.06 0.03 0.01
Family probability 0 0.44 0.22 0.20 0.09 0.03 0.02

Make probability histograms for these two discrete
distributions, using the same scales. What are the
most important differences between the sizes of
households and families?

4.55 Find the probabilities. Let the random variable
X be the number of rooms in a randomly chosen
owner-occupied housing unit in San Jose, California.
Exercise 4.53 gives the distribution of X.

(a) Express “the unit has 6 or more rooms” in terms
of X. What is the probability of this event?

(b) Express the event {X > 6} in words. What is its
probability?

(c) What important fact about discrete random
variables does comparing your answers to (a) and
(b) illustrate?

4.56 Tossing two dice. Some games of chance rely on
tossing two dice. Each die has six faces, marked
with 1, 2, . . . , 6 spots called pips. The dice used in
casinos are carefully balanced so that each face is
equally likely to come up. When two dice are tossed,
each of the 36 possible pairs of faces is equally likely
to come up. The outcome of interest to a gambler
is the sum of the pips on the two up-faces. Call this
random variable X.

(a) Write down all 36 possible pairs of faces.

(b) If all pairs have the same probability, what must
be the probability of each pair?

(c) Write the value of X next to each pair of faces
and use this information with the result of (b) to give
the probability distribution of X. Draw a probability
histogram to display the distribution.

(d) One bet available in craps wins if a 7 or an 11
comes up on the next roll of two dice. What is the
probability of rolling a 7 or an 11 on the next roll?

(e) Several bets in craps lose if a 7 is rolled. If any
outcome other than 7 occurs, these bets either win
or continue to the next roll. What is the probability
that anything other than a 7 is rolled?

4.57 C
H

ALLENG
E Nonstandard dice. Nonstandard dice can

produce interesting distributions of
outcomes. You have two balanced, six-sided dice.
One is a standard die, with faces having 1, 2, 3,
4, 5, and 6 spots. The other die has three faces
with 0 spots and three faces with 6 spots. Find the
probability distribution for the total number of spots
Y on the up-faces when you roll these two dice.

4.58 C
H

ALLENG
E Dungeons & Dragons. Role-playing games

like Dungeons & Dragons use many different
types of dice, usually having either 4, 6, 8, 10, 12, or
20 sides. Roll a balanced 8-sided die and a balanced
6-sided die and add the spots on the up-faces. Call
the sum X. What is the probability distribution of
the random variable X?

4.59 Foreign-born residents of California. The Census
Bureau reports that 27% of California residents
are foreign-born. Suppose that you choose three
Californians at random, so that each has probability
0.27 of being foreign-born and the three are
independent of each other. Let the random variable
W be the number of foreign-born people you chose.
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(a) What are the possible values of W?

(b) Look at your three people in order. There are
eight possible arrangements of foreign (F) and
domestic (D) birth. For example, FFD means the
first two are foreign-born and the third is not. All
eight arrangements are equally likely. What is the
probability of each one?

(c) What is the value of W for each arrangement in
(b)? What is the probability of each possible value of
W? (This is the distribution of a Yes/No response for
an SRS of size 3. In principle, the same idea works
for an SRS of any size.)

4.60 Select the members of a student advisory board.
Weary of the low turnout in student elections, a
college administration decides to choose an SRS
of three students to form an advisory board that
represents student opinion. Suppose that 40% of
all students oppose the use of student fees to fund
student interest groups, and that the opinions of the
three students on the board are independent. Then
the probability is 0.4 that each opposes the funding
of interest groups.

(a) Call the three students A, B, and C. What is the
probability that A and B support funding and C
opposes it?

(b) List all possible combinations of opinions that
can be held by students A, B, and C. (Hint: There are
eight possibilities.) Then give the probability of each
of these outcomes. Note that they are not equally
likely.

(c) Let the random variable X be the number of
student representatives who oppose the funding of
interest groups. Give the probability distribution
of X.

(d) Express the event “a majority of the advisory
board opposes funding” in terms of X and find its
probability.

4.61 Uniform random numbers. Let X be a random
number between 0 and 1 produced by the idealized
uniform random number generator described in
Example 4.25 and Figure 4.9. Find the following
probabilities:

(a) P(X < 0.4)

(b) P(X ≤ 0.4)

(c) What important fact about continuous random
variables does comparing your answers to (a) and
(b) illustrate?

4.62 Find the probabilities. Let the random variable X
be a random number with the uniform density curve
in Figure 4.9. Find the following probabilities:

(a) P(X ≥ 0.35)

(b) P(X = 0.35)

(c) P(0.35 < X < 1.35)

(d) P(0.15 ≤ X ≤ 0.25 or 0.8 ≤ X ≤ 0.9)

(e) The probability that X is not in the interval 0.3
to 0.7.

4.63 Uniform numbers between 0 and 2. Many random
number generators allow users to specify the range
of the random numbers to be produced. Suppose
that you specify that the range is to be all numbers
between 0 and 2. Call the random number generated
Y . Then the density curve of the random variable Y
has constant height between 0 and 2, and height 0
elsewhere.

(a) What is the height of the density curve between
0 and 2? Draw a graph of the density curve.

(b) Use your graph from (a) and the fact that
probability is area under the curve to find P(Y ≤ 1.5).

(c) Find P(0.6 < Y < 1.7).

(d) Find P(Y ≥ 0.9).

4.64 The sum of two uniform random numbers.
Generate two random numbers between 0 and 1
and take Y to be their sum. Then Y is a continuous
random variable that can take any value between 0
and 2. The density curve of Y is the triangle shown
in Figure 4.12.

(a) Verify by geometry that the area under this curve
is 1.

(b) What is the probability that Y is less than
1? (Sketch the density curve, shade the area that
represents the probability, then find that area. Do
this for (c) also.)

(c) What is the probability that Y is less than 1.5?

0 1 2

Height = 1

FIGURE 4.12 The density curve for the sum Y of two
random numbers, for Exercise 4.64.
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4.65 How many close friends? How many close friends
do you have? Suppose that the number of close
friends adults claim to have varies from person to
person with mean μ = 9 and standard deviation
σ = 2.5. An opinion poll asks this question of an SRS
of 1100 adults. We will see in the next chapter that
in this situation the sample mean response x has
approximately the Normal distribution with mean 9
and standard deviation 0.075. What is P(8 ≤ x ≤ 10),
the probability that the statistic x estimates the
parameter μ to within ±1?

4.66 Normal approximation for a sample proportion.
A sample survey contacted an SRS of 663 registered
voters in Oregon shortly after an election and asked
respondents whether they had voted. Voter records

show that 56% of registered voters had actually
voted. We will see in the next chapter that in this
situation the proportion p̂ of the sample who voted
has approximately the Normal distribution with
mean μ = 0.56 and standard deviation σ = 0.019.

(a) If the respondents answer truthfully, what is
P(0.52 ≤ p̂ ≤ 0.60)? This is the probability that the
statistic p̂ estimates the parameter 0.56 within plus
or minus 0.04.

(b) In fact, 72% of the respondents said they had
voted ( p̂ = 0.72). If respondents answer truthfully,
what is P( p̂ ≥ 0.72)? This probability is so small that
it is good evidence that some people who did not
vote claimed that they did vote.

4.4 Means and Variances
of Random Variables
The probability histograms and density curves that picture the probability dis-
tributions of random variables resemble our earlier pictures of distributions of
data. In describing data, we moved from graphs to numerical measures such as
means and standard deviations. Now we will make the same move to expand
our descriptions of the distributions of random variables. We can speak of the
mean winnings in a game of chance or the standard deviation of the randomly
varying number of calls a travel agency receives in an hour. In this section we
will learn more about how to compute these descriptive measures and about
the laws they obey.

The mean of a random variable
The mean x of a set of observations is their ordinary average. The mean of a
random variable X is also an average of the possible values of X, but with an
essential change to take into account the fact that not all outcomes need be
equally likely. An example will show what we must do.
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E 4.27 The Tri-State Pick 3 lottery. Most states and Canadian provinces
have government-sponsored lotteries. Here is a simple lottery wager, from the
Tri-State Pick 3 game that New Hampshire shares with Maine and Vermont.
You choose a three-digit number, 000 to 999. The state chooses a three-digit
winning number at random and pays you $500 if your number is chosen.
Because there are 1000 three-digit numbers, you have probability 1/1000 of
winning. Taking X to be the amount your ticket pays you, the probability
distribution of X is

Payoff X $0 $500

Probability 0.999 0.001
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What is your average payoff from many tickets? The ordinary average of
the two possible outcomes $0 and $500 is $250, but that makes no sense as the
average because $500 is much less likely than $0. In the long run you receive
$500 once in every 1000 tickets and $0 on the remaining 999 of 1000 tickets.
The long-run average payoff is

$500
1

1000
+ $0

999
1000

= $0.50

or fifty cents. That number is the mean of the random variable X. (Tickets cost
$1, so in the long run the state keeps half the money you wager.)

If you play Tri-State Pick 3 several times, we would as usual call the mean
of the actual amounts you win x. The mean in Example 4.27 is a different
quantity—it is the long-run average winnings you expect if you play a very
large number of times.

USE YOUR KNOWLEDGE
4.67 Find the mean of the probability distribution. You toss a fair coin.

If the outcome is heads, you win $1.00; if the outcome is tails, you win
nothing. Let X be the amount that you win in a single toss of a coin.
Find the probability distribution of this random variable and its mean.

Just as probabilities are an idealized description of long-run proportions,
the mean of a probability distribution describes the long-run average outcome.
We can’t call this mean x, so we need a different symbol. The common symbol
for the mean of a probability distribution is μ, the Greek letter mu. We usedmean μ

μ in Chapter 1 for the mean of a Normal distribution, so this is not a new no-
tation. We will often be interested in several random variables, each having a
different probability distribution with a different mean. To remind ourselves
that we are talking about the mean of X, we often write μX rather than simply
μ. In Example 4.27, μX = $0.50. Notice that, as often happens, the mean is not
a possible value of X. You will often find the mean of a random variable X called
the expected value of X. This term can be misleading, for we don’t necessarilyexpected value
expect one observation on X to be close to its expected value.

The mean of any discrete random variable is found just as in Example 4.27.
It is an average of the possible outcomes, but a weighted average in which each
outcome is weighted by its probability. Because the probabilities add to 1, we
have total weight 1 to distribute among the outcomes. An outcome that occurs
half the time has probability one-half and gets one-half the weight in calculat-
ing the mean. Here is the general definition.

MEAN OF A DISCRETE RANDOM VARIABLE

Suppose that X is a discrete random variable whose distribution is

Value of X x1 x2 x3 · · · xk

Probability p1 p2 p3 · · · pk
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To find the mean of X, multiply each possible value by its probability,
then add all the products:

μX = x1p1 + x2p2 + · · · + xkpk

=
∑

xipi

•
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E 4.28 The mean of equally likely first digits. If first digits in a set of data

all have the same probability, the probability distribution of the first digit X
is then

First digit X 1 2 3 4 5 6 7 8 9

Probability 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

The mean of this distribution is

μX = 1 × 1
9

+ 2 × 1
9

+ 3 × 1
9

+ 4 × 1
9

+ 5 × 1
9

+ 6 × 1
9

+ 7 × 1
9

+ 8 × 1
9

+ 9 × 1
9

= 45 × 1
9

= 5

Suppose the random digits in Example 4.28 had a different probability dis-
tribution. In Example 4.12 (page 248) we described Benford’s law as a proba-
bility distribution that describes first digits of numbers in many real situations.
Let’s calculate the mean for Benford’s law.

•

E
X

A
M

P
L

E 4.29 The mean of first digits following Benford’s law. Here is the dis-
tribution of the first digit for data that follow Benford’s law. We use the letter
V for this random variable to distinguish it from the one that we studied in
Example 4.28. The distribution of V is

First digit V 1 2 3 4 5 6 7 8 9

Probability 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

The mean of V is

μV = (1)(0.301) + (2)(0.176) + (3)(0.125) + (4)(0.097) + (5)(0.079)

+ (6)(0.067) + (7)(0.058) + (8)(0.051) + (9)(0.046)

= 3.441
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The mean reflects the greater probability of smaller first digits under Ben-
ford’s law than when first digits 1 to 9 are equally likely.

Figure 4.13 locates the means of X and V on the two probability histograms.
Because the discrete uniform distribution of Figure 4.13(a) is symmetric, the
mean lies at the center of symmetry. We can’t locate the mean of the right-
skewed distribution of Figure 4.13(b) by eye—calculation is needed.

What about continuous random variables? The probability distribution of a
continuous random variable X is described by a density curve. Chapter 1 (page
57) showed how to find the mean of the distribution: it is the point at which the
area under the density curve would balance if it were made out of solid mate-
rial. The mean lies at the center of symmetric density curves such as the Normal
curves. Exact calculation of the mean of a distribution with a skewed density
curve requires advanced mathematics.16 The idea that the mean is the balance
point of the distribution applies to discrete random variables as well, but in the
discrete case we have a formula that gives us this point.
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�V = 3.441

FIGURE 4.13 Locating the
mean of a discrete random
variable on the probability
histogram for (a) digits between
1 and 9 chosen at random;
(b) digits between 1 and 9
chosen from records that obey
Benford’s law.

Statistical estimation and the law of large numbers
We would like to estimate the mean height μ of the population of all Ameri-
can women between the ages of 18 and 24 years. This μ is the mean μX of the
random variable X obtained by choosing a young woman at random and mea-
suring her height. To estimate μ, we choose an SRS of young women and use
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the sample mean x to estimate the unknown population mean μ. In the lan-
guage of Section 3.3 (page 212), μ is a parameter and x is a statistic. StatisticsLOOK BACK

sampling
distributions,
page 214

obtained from probability samples are random variables because their values
vary in repeated sampling. The sampling distributions of statistics are just the
probability distributions of these random variables.

It seems reasonable to use x to estimate μ. An SRS should fairly represent
the population, so the mean x of the sample should be somewhere near the
mean μ of the population. Of course, we don’t expect x to be exactly equal to μ,
and we realize that if we choose another SRS, the luck of the draw will probably
produce a different x.

If x is rarely exactly right and varies from sample to sample, why is it
nonetheless a reasonable estimate of the population mean μ? We gave one an-
swer in Section 3.4: x is unbiased and we can control its variability by choosing
the sample size. Here is another answer: if we keep on adding observations to
our random sample, the statistic x is guaranteed to get as close as we wish to
the parameter μ and then stay that close. We have the comfort of knowing
that if we can afford to keep on measuring more women, eventually we will
estimate the mean height of all young women very accurately. This remarkable
fact is called the law of large numbers. It is remarkable because it holds for any
population, not just for some special class such as Normal distributions.

LAW OF LARGE NUMBERS

Draw independent observations at random from any population with fi-
nite mean μ. Decide how accurately you would like to estimate μ. As the
number of observations drawn increases, the mean x of the observed val-
ues eventually approaches the mean μ of the population as closely as you
specified and then stays that close.

The behavior of x is similar to the idea of probability. In the long run, the pro-
portion of outcomes taking any value gets close to the probability of that value,
and the average outcome gets close to the distribution mean. Figure 4.1 (page
238) shows how proportions approach probability in one example. Here is an
example of how sample means approach the distribution mean.
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E 4.30 Heights of young women. The distribution of the heights of all
young women is close to the Normal distribution with mean 64.5 inches
and standard deviation 2.5 inches. Suppose that μ = 64.5 were exactly true.
Figure 4.14 shows the behavior of the mean height x of n women chosen
at random from a population whose heights follow the N(64.5, 2.5) distribu-
tion. The graph plots the values of x as we add women to our sample. The first
woman drawn had height 64.21 inches, so the line starts there. The second
had height 64.35 inches, so for n = 2 the mean is

x = 64.21 + 64.35
2

= 64.28

This is the second point on the line in the graph.
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FIGURE 4.14 The law of large
numbers in action. As we take
more observations, the sample
mean always approaches the
mean of the population.

•

At first, the graph shows that the mean of the sample changes as we take
more observations. Eventually, however, the mean of the observations gets
close to the population mean μ = 64.5 and settles down at that value. The
law of large numbers says that this always happens.

USE YOUR KNOWLEDGE
4.68 Use the Law of Large Numbers applet. The Law of Large Numbers

applet animates a graph like Figure 4.14. Use it to better understand
the law of large numbers by making a similar graph.

AP
PLET

The mean μ of a random variable is the average value of the variable in two
senses. By its definition, μ is the average of the possible values, weighted by
their probability of occurring. The law of large numbers says that μ is also the
long-run average of many independent observations on the variable. The law
of large numbers can be proved mathematically starting from the basic laws of
probability.

Thinking about the law of large numbers
The law of large numbers says broadly that the average results of many inde-
pendent observations are stable and predictable. The gamblers in a casino may
win or lose, but the casino will win in the long run because the law of large
numbers says what the average outcome of many thousands of bets will be. An
insurance company deciding how much to charge for life insurance and a fast-
food restaurant deciding how many beef patties to prepare also rely on the fact
that averaging over many individuals produces a stable result. It is worth the
effort to think a bit more closely about so important a fact.
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The “law of small numbers” Both the rules of probability and the law of
large numbers describe the regular behavior of chance phenomena in the long
run. Psychologists have discovered that our intuitive understanding of random-
ness is quite different from the true laws of chance.17 For example, most people
believe in an incorrect “law of small numbers.” That is, we expect even short
sequences of random events to show the kind of average behavior that in fact
appears only in the long run.

Some teachers of statistics begin a course by asking students to toss a coin
50 times and bring the sequence of heads and tails to the next class. The teacher
then announces which students just wrote down a random-looking sequence
rather than actually tossing a coin. The faked tosses don’t have enough “runs”
of consecutive heads or consecutive tails. Runs of the same outcome don’t look
random to us but are in fact common. For example, the probability of a run of
three or more consecutive heads or tails in just 10 tosses is greater than 0.8.18

The runs of consecutive heads or consecutive tails that appear in real coin toss-
ing (and that are predicted by the mathematics of probability) seem surprising
to us. Because we don’t expect to see long runs, we may conclude that the coin
tosses are not independent or that some influence is disturbing the random be-
havior of the coin.

•

•

E
X

A
M

P
L

E 4.31 The “hot hand” in basketball. Belief in the law of small numbers
influences behavior. If a basketball player makes several consecutive shots,
both the fans and her teammates believe that she has a “hot hand” and is more
likely to make the next shot. This is doubtful. Careful study suggests that runs
of baskets made or missed are no more frequent in basketball than would be
expected if each shot were independent of the player’s previous shots. Baskets
made or missed are just like heads and tails in tossing a coin. (Of course, some
players make 30% of their shots in the long run and others make 50%, so a
coin-toss model for basketball must allow coins with different probabilities
of a head.) Our perception of hot or cold streaks simply shows that we don’t
perceive random behavior very well.19

Our intuition doesn’t do a good job of distinguishing random behavior from

CAUTION

! systematic influences. This is also true when we look at data. We need statisti-
cal inference to supplement exploratory analysis of data because probability cal-
culations can help verify that what we see in the data is more than a random
pattern.

How large is a large number? The law of large numbers says that the actual
mean outcome of many trials gets close to the distribution mean μ as more tri-
als are made. It doesn’t say how many trials are needed to guarantee a mean
outcome close to μ. That depends on the variability of the random outcomes.
The more variable the outcomes, the more trials are needed to ensure that the
mean outcome x is close to the distribution mean μ. Casinos understand this:
the outcomes of games of chance are variable enough to hold the interest of
gamblers. Only the casino plays often enough to rely on the law of large num-
bers. Gamblers get entertainment; the casino has a business.
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BEYOND THE BASICS

More Laws of Large Numbers

The law of large numbers is one of the central facts about probability. It helps
us understand the mean μ of a random variable. It explains why gambling casi-
nos and insurance companies make money. It assures us that statistical esti-
mation will be accurate if we can afford enough observations. The basic law
of large numbers applies to independent observations that all have the same
distribution. Mathematicians have extended the law to many more general set-
tings. Here are two of these.

Is there a winning system for gambling? Serious gamblers often follow a
system of betting in which the amount bet on each play depends on the out-
come of previous plays. You might, for example, double your bet on each spin of
the roulette wheel until you win—or, of course, until your fortune is exhausted.
Such a system tries to take advantage of the fact that you have a memory even
though the roulette wheel does not. Can you beat the odds with a system based
on the outcomes of past plays? No. Mathematicians have established a stronger
version of the law of large numbers that says that, if you do not have an infinite
fortune to gamble with, your long-run average winnings μ remain the same as
long as successive trials of the game (such as spins of the roulette wheel) are
independent.

What if observations are not independent? You are in charge of a process
that manufactures video screens for computer monitors. Your equipment mea-
sures the tension on the metal mesh that lies behind each screen and is critical
to its image quality. You want to estimate the mean tension μ for the process
by the average x of the measurements. Alas, the tension measurements are not
independent. If the tension on one screen is a bit too high, the tension on the
next is more likely to also be high. Many real-world processes are like this—the
process stays stable in the long run, but observations made close together are
likely to be both above or both below the long-run mean. Again the mathemati-
cians come to the rescue: as long as the dependence dies out fast enough as we
take measurements farther and farther apart in time, the law of large numbers
still holds.

Rules for means
You are studying flaws in the painted finish of refrigerators made by your firm.
Dimples and paint sags are two kinds of surface flaw. Not all refrigerators have
the same number of dimples: many have none, some have one, some two, and
so on. You ask for the average number of imperfections on a refrigerator. The
inspectors report finding an average of 0.7 dimples and 1.4 sags per refrigera-
tor. How many total imperfections of both kinds (on the average) are there on
a refrigerator? That’s easy: if the average number of dimples is 0.7 and the aver-
age number of sags is 1.4, then counting both gives an average of 0.7 + 1.4 = 2.1
flaws.

In more formal language, the number of dimples on a refrigerator is a ran-
dom variable X that varies as we inspect one refrigerator after another. We
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know only that the mean number of dimples is μX = 0.7. The number of paint
sags is a second random variable Y having mean μY = 1.4. (As usual, the sub-
scripts keep straight which variable we are talking about.) The total number
of both dimples and sags is another random variable, the sum X + Y . Its mean
μX+Y is the average number of dimples and sags together. It is just the sum of
the individual means μX and μY . That’s an important rule for how means of
random variables behave.

Here’s another rule. The crickets living in a field have mean length 1.2
inches. What is the mean in centimeters? There are 2.54 centimeters in an
inch, so the length of a cricket in centimeters is 2.54 times its length in inches.
If we multiply every observation by 2.54, we also multiply their average by 2.54.
The mean in centimeters must be 2.54 × 1.2, or about 3.05 centimeters. More
formally, the length in inches of a cricket chosen at random from the field is a
random variable X with mean μX . The length in centimeters is 2.54X, and this
new random variable has mean 2.54μX .

The point of these examples is that means behave like averages. Here are the
rules we need.

RULES FOR MEANS

Rule 1. If X is a random variable and a and b are fixed numbers, then

μa+bX = a + bμX

Rule 2. If X and Y are random variables, then

μX+Y = μX + μY
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E 4.32 Sales of cars, trucks, and SUVs. Linda is a sales associate at a large
auto dealership. At her commission rate of 25% of gross profit on each vehicle
she sells, Linda expects to earn $350 for each car sold and $400 for each truck
or SUV sold. Linda motivates herself by using probability estimates of her
sales. For a sunny Saturday in April, she estimates her car sales as follows:

Cars sold 0 1 2 3

Probability 0.3 0.4 0.2 0.1

Linda’s estimate of her truck or SUV sales is

Vehicles sold 0 1 2

Probability 0.4 0.5 0.1

Take X to be the number of cars Linda sells and Y the number of trucks or
SUVs. The means of these random variables are
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μX = (0)(0.3) + (1)(0.4) + (2)(0.2) + (3)(0.1)

= 1.1 cars

μY = (0)(0.4) + (1)(0.5) + (2)(0.1)

= 0.7 trucks or SUVs

Linda’s earnings, at $350 per car and $400 per truck or SUV, are

Z = 350X + 400Y

Combining Rules 1 and 2, her mean earnings are

μZ = 350μX + 400μY

= (350)(1.1) + (400)(0.7) = $665

This is Linda’s best estimate of her earnings for the day. It’s a bit unusual for
individuals to use probability estimates, but they are a common tool for busi-
ness planners.

The probabilities in Example 4.32 are personal probabilities that describepersonal probability
Linda’s informed opinion about her sales in the coming weekend. Although per-
sonal probabilities need not be based on observing many repetitions of a ran-
dom phenomenon, they must obey the rules of probability if they are to make
sense. Personal probability extends the usefulness of probability models to one-
time events, but remember that they are subject to the follies of human opinion.
Overoptimism is common: 40% of college students think that they will eventu-
ally reach the top 1% in income.

USE YOUR KNOWLEDGE
4.69 Find μY . The random variable X has mean μX = 10. If Y = 15 + 8X,

what is μY?

4.70 Find μW . The random variable U has mean μU = 20 and the random
variable V has mean μV = 20. If W = 0.5U + 0.5V, find μW.

The variance of a random variable
The mean is a measure of the center of a distribution. A basic numerical de-
scription requires in addition a measure of the spread or variability of the dis-
tribution. The variance and the standard deviation are the measures of spread
that accompany the choice of the mean to measure center. Just as for the mean,
we need a distinct symbol to distinguish the variance of a random variable from
the variance s2 of a data set. We write the variance of a random variable X as
σ 2

X . Once again the subscript reminds us which variable we have in mind. The
definition of the variance σ 2

X of a random variable is similar to the definition of
the sample variance s2 given in Chapter 1. That is, the variance is an average
value of the squared deviation (X − μX)2 of the variable X from its mean μX . As
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for the mean, the average we use is a weighted average in which each outcome
is weighted by its probability in order to take account of outcomes that are not
equally likely. Calculating this weighted average is straightforward for discrete
random variables but requires advanced mathematics in the continuous case.
Here is the definition.

VARIANCE OF A DISCRETE RANDOM VARIABLE

Suppose that X is a discrete random variable whose distribution is

Value of X x1 x2 x3 · · · xk

Probability p1 p2 p3 · · · pk

and that μX is the mean of X. The variance of X is

σ 2
X = (x1 − μX)2p1 + (x2 − μX)2p2 + · · · + (xk − μX)2pk

=
∑

(xi − μX)2pi

The standard deviation σX of X is the square root of the variance.
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E 4.33 Find the mean and the variance. In Example 4.32 we saw that the
number X of cars that Linda hopes to sell has distribution

Cars sold 0 1 2 3

Probability 0.3 0.4 0.2 0.1

We can find the mean and variance of X by arranging the calculation in the
form of a table. Both μX and σ 2

X are sums of columns in this table.

xi pi xipi (xi − μX)2pi

0 0.3 0.0 (0 − 1.1)2(0.3) = 0.363
1 0.4 0.4 (1 − 1.1)2(0.4) = 0.004
2 0.2 0.4 (2 − 1.1)2(0.2) = 0.162
3 0.1 0.3 (3 − 1.1)2(0.1) = 0.361

μX = 1.1 σ 2
X = 0.890

We see that σ 2
X = 0.89. The standard deviation of X is σX = √

0.89 = 0.943.
The standard deviation is a measure of the variability of the number of cars
Linda sells. As in the case of distributions for data, the standard deviation of
a probability distribution is easiest to understand for Normal distributions.
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USE YOUR KNOWLEDGE
4.71 Find the variance and the standard deviation. The random variable

X has the following probability distribution:

Value of X 0 2

Probability 0.5 0.5

Find the variance σ 2
X and the standard deviation σX for this random

variable.

Rules for variances and standard deviations
What are the facts for variances that parallel Rules 1 and 2 for means? The mean
of a sum of random variables is always the sum of their means, but this addition

CAUTION

! rule is true for variances only in special situations. To understand why, take X to
be the percent of a family’s after-tax income that is spent and Y the percent that
is saved. When X increases, Y decreases by the same amount. Though X and Y
may vary widely from year to year, their sum X + Y is always 100% and does
not vary at all. It is the association between the variables X and Y that prevents
their variances from adding. If random variables are independent, this kind of
association between their values is ruled out and their variances do add. Two
random variables X and Y are independent if knowing that any event involvingindependence
X alone did or did not occur tells us nothing about the occurrence of any event
involving Y alone. Probability models often assume independence when the
random variables describe outcomes that appear unrelated to each other. You
should ask in each instance whether the assumption of independence seems
reasonable.

When random variables are not independent, the variance of their sum de-
pends on the correlation between them as well as on their individual variances.correlation
In Chapter 2, we met the correlation r between two observed variables mea-
sured on the same individuals. We defined (page 102) the correlation r as an
average of the products of the standardized x and y observations. The correla-
tion between two random variables is defined in the same way, once again using
a weighted average with probabilities as weights. We won’t give the details—it
is enough to know that the correlation between two random variables has the
same basic properties as the correlation r calculated from data. We use ρ, the
Greek letter rho, for the correlation between two random variables. The corre-
lation ρ is a number between −1 and 1 that measures the direction and strength
of the linear relationship between two variables. The correlation between two
independent random variables is zero.

Returning to family finances, if X is the percent of a family’s after-tax income
that is spent and Y the percent that is saved, then Y = 100 − X. This is a perfect
linear relationship with a negative slope, so the correlation between X and Y is
ρ = −1. With the correlation at hand, we can state the rules for manipulating
variances.
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RULES FOR VARIANCES AND STANDARD DEVIATIONS

Rule 1. If X is a random variable and a and b are fixed numbers, then

σ 2
a+bX = b2σ 2

X

Rule 2. If X and Y are independent random variables, then

σ 2
X+Y = σ 2

X + σ 2
Y

σ 2
X−Y = σ 2

X + σ 2
Y

This is the addition rule for variances of independent random vari-
ables.

Rule 3. If X and Y have correlation ρ, then

σ 2
X+Y = σ 2

X + σ 2
Y + 2ρσXσY

σ 2
X−Y = σ 2

X + σ 2
Y − 2ρσXσY

This is the general addition rule for variances of random variables.

To find the standard deviation, take the square root of the variance.

Because a variance is the average of squared deviations from the mean, mul-

CAUTION

! tiplying X by a constant b multiplies σ 2
X by the square of the constant. Adding a

constant a to a random variable changes its mean but does not change its vari-
ability. The variance of X + a is therefore the same as the variance of X. Because
the square of −1 is 1, the addition rule says that the variance of a difference
of independent random variables is the sum of the variances. For independent
random variables, the difference X − Y is more variable than either X or Y alone
because variations in both X and Y contribute to variation in their difference.

As with data, we prefer the standard deviation to the variance as a measure
of the variability of a random variable. Rule 2 for variances implies that standard

CAUTION
! deviations of independent random variables do not add. To combine standard de-

viations, use the rules for variances. For example, the standard deviations of 2X
and −2X are both equal to 2σX because this is the square root of the variance
4σ 2

X .
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E 4.34 Payoff in the Tri-State Pick 3 lottery. The payoff X of a $1 ticket in
the Tri-State Pick 3 game is $500 with probability 1/1000 and 0 the rest of the
time. Here is the combined calculation of mean and variance:

xi pi xipi (xi − μX)2pi

0 0.999 0 (0 − 0.5)2(0.999) = 0.24975
500 0.001 0.5 (500 − 0.5)2(0.001) = 249.50025

μX = 0.5 σ 2
X = 249.75
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The mean payoff is 50 cents. The standard deviation is

σX = √
249.75 = $15.80.

It is usual for games of chance to have large standard deviations because large
variability makes gambling exciting.

If you buy a Pick 3 ticket, your winnings are W = X − 1 because the dollar
you paid for the ticket must be subtracted from the payoff. Let’s find the mean
and variance for this random variable.

•

•
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E 4.35 Winnings in the Tri-State Pick 3 lottery. By the rules for means,

the mean amount you win is

μW = μX − 1 = −$0.50

That is, you lose an average of 50 cents on a ticket. The rules for variances
remind us that the variance and standard deviation of the winnings W = X − 1
are the same as those of X. Subtracting a fixed number changes the mean but
not the variance.

Suppose now that you buy a $1 ticket on each of two different days. The
payoffs X and Y on the two tickets are independent because separate drawings
are held each day. Your total payoff is X + Y . Let’s find the mean and standard
deviation for this payoff.
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E 4.36 Two tickets. The mean for the payoff for the two tickets is

μX+Y = μX + μY = $0.50 + $0.50 = $1.00

Because X and Y are independent, the variance of X + Y is

σ 2
X+Y = σ 2

X + σ 2
Y = 249.75 + 249.75 = 499.5

The standard deviation of the total payoff is

σX+Y = √
499.5 = $22.35

This is not the same as the sum of the individual standard deviations, which
is $15.80 + $15.80 = $31.60. Variances of independent random variables add;
standard deviations do not.

When we add random variables that are correlated, we need to use the cor-
relation for the calculation of the variance, but not for the calculation of the
mean. Here is an example.
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E 4.37 The SAT Math score and the SAT Verbal score are dependent.
Scores on the Mathematics part of the SAT college entrance exam in a recent
year had mean 519 and standard deviation 115. Scores on the Verbal part of
the SAT had mean 507 and standard deviation 111. What are the mean and
standard deviation of total SAT score?20

Think of choosing one student’s scores at random. Expressed in the lan-
guage of random variables,

SAT Math score X μX = 519 σX = 115

SAT Verbal score Y μY = 507 σY = 111

The total score is X + Y . The mean is easy:

μX+Y = μX + μY = 519 + 507 = 1026

The variance and standard deviation of the total cannot be computed from
the information given. SAT Verbal and Math scores are not independent, be-
cause students who score high on one exam tend to score high on the other
also. Therefore, Rule 2 does not apply. We need to know ρ, the correlation
between X and Y , to apply Rule 3.

The correlation between SAT Math and Verbal scores was ρ = 0.71. By
Rule 3,

σ 2
X+Y = σ 2

X + σ 2
Y + 2ρσXσY

= (115)2 + (111)2 + (2)(0.71)(115)(111)

= 43,672

The variance of the sum X + Y is greater than the sum of the variances σ 2
X + σ 2

Y
because of the positive correlation between SAT Math scores and SAT Verbal
scores. That is, X and Y tend to move up together and down together, which
increases the variability of their sum. Find the standard deviation from the
variance,

σX+Y =
√

43,672 = 209

Total SAT scores had mean 1026 and standard deviation 209.

There are situations where we need to combine several of our rules to find
means and standard deviations. Here is an example.
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E 4.38 Investing in Treasury bills and an index fund. Zadie has invested
20% of her funds in Treasury bills and 80% in an “index fund” that represents
all U.S. common stocks. The rate of return of an investment over a time period
is the percent change in the price during the time period, plus any income
received. If X is the annual return on T-bills and Y the annual return on stocks,
the portfolio rate of return is

R = 0.2X + 0.8Y
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The returns X and Y are random variables because they vary from year to
year. Based on annual returns between 1950 and 2003, we have

X = annual return on T-bills μX = 5.0% σX = 2.9%

Y = annual return on stocks μY = 13.2% σY = 17.6%

Correlation between X and Y ρ = −0.11

Stocks had higher returns than T-bills on the average, but the standard devi-
ations show that returns on stocks varied much more from year to year. That
is, the risk of investing in stocks is greater than the risk for T-bills because
their returns are less predictable.

For the return R on Zadie’s portfolio of 20% T-bills and 80% stocks,

R = 0.2X + 0.8Y

μR = 0.2μX + 0.8μY

= (0.2 × 5.0) + (0.8 × 13.2) = 11.56%

To find the variance of the portfolio return, combine Rules 1 and 3. Use the
fact that, for example, the variance of 0.2X is (0.2)2 times the variance of X.
Also use the fact that changing scales does not change the correlation, so that
the correlation between 0.2X and 0.8Y is the same as the correlation between
X and Y .

σ 2
R = σ 2

0.2X + σ 2
0.8Y + 2ρσ0.2Xσ0.8Y

= (0.2)2σ 2
X + (0.8)2σ 2

Y + 2ρ(0.2 × σX)(0.8 × σY )

= (0.2)2(2.9)2 + (0.8)2(17.6)2 + (2)(−0.11)(0.2 × 2.9)(0.8 × 17.6)

= 196.786

σR = √
196.786 = 14.03%

The portfolio has a smaller mean return than an all-stock portfolio, but it is
also less risky. That’s why Zadie put some funds into Treasury bills.

SECTION 4.4 Summary

The probability distribution of a random variable X, like a distribution of data,
has a mean μX and a standard deviation σX.

The law of large numbers says that the average of the values of X observed in
many trials must approach μ.

The mean μ is the balance point of the probability histogram or density curve.
If X is discrete with possible values xi having probabilities pi, the mean is the
average of the values of X, each weighted by its probability:

μX = x1p1 + x2p2 + · · · + xkpk

The variance σ2
X is the average squared deviation of the values of the variable

from their mean. For a discrete random variable,

σ 2
X = (x1 − μ)2p1 + (x2 − μ)2p2 + · · · + (xk − μ)2pk
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The standard deviation σX is the square root of the variance. The standard de-
viation measures the variability of the distribution about the mean. It is easiest
to interpret for Normal distributions.

The mean and variance of a continuous random variable can be computed from
the density curve, but to do so requires more advanced mathematics.

The means and variances of random variables obey the following rules. If a and
b are fixed numbers, then

μa+bX = a + bμX

σ 2
a+bX = b2σ 2

X

If X and Y are any two random variables having correlation ρ, then

μX+Y = μX + μY

σ 2
X+Y = σ 2

X + σ 2
Y + 2ρσXσY

σ 2
X−Y = σ 2

X + σ 2
Y − 2ρσXσY

If X and Y are independent, then ρ = 0. In this case,

σ 2
X+Y = σ 2

X + σ 2
Y

σ 2
X−Y = σ 2

X + σ 2
Y

To find the standard deviation, take the square root of the variance.

SECTION 4.4 Exercises
For Exercise 4.67, see page 271; for Exercise 4.68, see page
275; for Exercises 4.69 and 4.70, see page 279; and for
Exercise 4.71, see page 281.

4.72 Mean of the distribution for the number of
aces. In Exercise 4.50 you examined the probability
distribution for the number of aces when you are
dealt two cards in the game of Texas hold ’em.
Let X represent the number of aces in a randomly
selected deal of two cards in this game. Here is the
probability distribution for the random variable X:

Value of X 0 1 2

Probability 0.559 0.382 0.059

Find μX , the mean of the probability distribution of
X.

4.73 Mean of the grade distribution. Example 4.22
gives the distribution of grades (A = 4, B = 3, and so

on) in English 210 at North Carolina State University
as

Value of X 0 1 2 3 4

Probability 0.05 0.04 0.20 0.40 0.31

Find the average (that is, the mean) grade in this
course.

4.74 Mean of the distributions of errors. Typographical
and spelling errors can be either “nonword errors”
or “word errors.” A nonword error is not a real word,
as when “the” is typed as “teh.” A word error is a
real word, but not the right word, as when “lose” is
typed as “loose.” When undergraduates are asked
to write a 250-word essay (without spell-checking),
the number of nonword errors has the following
distribution:

Errors 0 1 2 3 4

Probability 0.1 0.3 0.3 0.2 0.1
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The number of word errors has this distribution:

Errors 0 1 2 3

Probability 0.4 0.3 0.2 0.1

What are the mean numbers of nonword errors and
word errors in an essay?

4.75 Means of the numbers of rooms in housing units.
How do rented housing units differ from units
occupied by their owners? Exercise 4.53 (page 268)
gives the distributions of the number of rooms for
owner-occupied units and renter-occupied units
in San Jose, California. Find the mean number
of rooms for both types of housing unit. How
do the means reflect the differences between the
distributions that you found in Exercise 4.53?

4.76 Find the mean of the sum. Figure 4.12 (page 269)
displays the density curve of the sum Y = X1 + X2 of
two independent random numbers, each uniformly
distributed between 0 and 1.

(a) The mean of a continuous random variable is
the balance point of its density curve. Use this fact
to find the mean of Y from Figure 4.12.

(b) Use the same fact to find the means of X1 and X2.
(They have the density curve pictured in Figure 4.9,
page 264.) Verify that the mean of Y is the sum of
the mean of X1 and the mean of X2.

4.77 Standard deviations of numbers of rooms in
housing units. Which of the two distributions
of room counts appears more spread out in the
probability histograms you made in Exercise 4.53
(page 268)? Why? Find the standard deviation for
both distributions. The standard deviation provides
a numerical measure of spread.

4.78 The effect of correlation. Find the mean and
standard deviation of the total number of errors
(nonword errors plus word errors) in an essay if
the error counts have the distributions given in
Exercise 4.74 and

(a) the counts of nonword and word errors are
independent.

(b) students who make many nonword errors
also tend to make many word errors, so that the
correlation between the two error counts is 0.4.

4.79 Means and variances of sums. The rules for means
and variances allow you to find the mean and
variance of a sum of random variables without first
finding the distribution of the sum, which is usually
much harder to do.

(a) A single toss of a balanced coin has either 0 or 1
head, each with probability 1/2. What are the mean
and standard deviation of the number of heads?

(b) Toss a coin four times. Use the rules for means
and variances to find the mean and standard
deviation of the total number of heads.

(c) Example 4.23 (page 261) finds the distribution
of the number of heads in four tosses. Find the mean
and standard deviation from this distribution. Your
results in (b) and (c) should agree.

4.80 C
H

ALLENG
E Toss a 4-sided die twice. Role-playing

games like Dungeons & Dragons use many
different types of dice. Suppose that a four-sided
die has faces marked 1, 2, 3, 4. The intelligence of
a character is determined by rolling this die twice
and adding 1 to the sum of the spots. The faces are
equally likely and the two rolls are independent.
What is the average (mean) intelligence for such
characters? How spread out are their intelligences,
as measured by the standard deviation of the
distribution?

4.81 A mechnanical assembly. A mechanical assembly
(Figure 4.15) consists of a rod with a bearing
on each end. The three parts are manufactured
independently, and all vary a bit from part to part.
The length of the rod has mean 12 centimeters
(cm) and standard deviation 0.004 millimeters
(mm). The length of a bearing has mean 2 cm and
standard deviation 0.001 mm. What are the mean
and standard deviation of the total length of the
assembly?

Bearing Rod Bearing

FIGURE 4.15 Sketch of a mechanical assembly, for
Exercise 4.81.

4.82 Sums of Normal random variables. Continue
your work in the previous exercise. Dimensions
of mechanical parts are often roughly Normal.
According to the 68–95–99.7 rule, 95% of rods have
lengths within ±d1 of 12 cm and 95% of bearings
have lengths within ±d2 of 2 cm.

(a) What are the values of d1 and d2? These are often
called the “natural tolerances” of the parts.

(b) Statistical theory says that any sum of
independent Normal random variables has a
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Normal distribution. So the total length of the
assembly is roughly Normal. What is the natural
tolerance for the total length? It is not d1 + 2d2,
because standard deviations don’t add.

4.83 Will you assume independence? In which of the
following games of chance would you be willing
to assume independence of X and Y in making a
probability model? Explain your answer in each
case.

(a) In blackjack, you are dealt two cards and
examine the total points X on the cards (face cards
count 10 points). You can choose to be dealt another
card and compete based on the total points Y on all
three cards.

(b) In craps, the betting is based on successive rolls
of two dice. X is the sum of the faces on the first roll,
and Y the sum of the faces on the next roll.

4.84 Transform the distribution of heights from
centimeters to inches. A report of the National
Center for Health Statistics says that the heights
of 20-year-old men have mean 176.8 centimeters
(cm) and standard deviation 7.2 cm. There are 2.54
centimeters in an inch. What are the mean and
standard deviation in inches?

4.85 C
H

ALLENG
E What happens when the correlation

is 1? We know that variances add if the
random variables involved are uncorrelated (ρ = 0),
but not otherwise. The opposite extreme is perfect
positive correlation (ρ = 1). Show by using the
general addition rule for variances that in this case
the standard deviations add. That is, σX+Y = σX + σY

if ρXY = 1.

4.86 C
H

ALLENG
E A random variable with given mean and

standard deviation. Here is a simple way
to create a random variable X that has mean μ and
standard deviation σ : X takes only the two values
μ − σ and μ + σ , each with probability 0.5. Use the
definition of the mean and variance for discrete
random variables to show that X does have mean μ

and standard deviation σ .

Insurance. The business of selling insurance is based on
probability and the law of large numbers. Consumers buy
insurance because we all face risks that are unlikely but
carry high cost. Think of a fire destroying your home. So we
form a group to share the risk: we all pay a small amount,
and the insurance policy pays a large amount to those few of
us whose homes burn down. The insurance company sells
many policies, so it can rely on the law of large numbers.
Exercises 4.87 to 4.90 explore aspects of insurance.

4.87 Fire insurance. An insurance company looks at the
records for millions of homeowners and sees that
the mean loss from fire in a year is μ = $300 per
person. (Most of us have no loss, but a few lose their
homes. The $300 is the average loss.) The company
plans to sell fire insurance for $300 plus enough
to cover its costs and profit. Explain clearly why
it would be stupid to sell only 10 policies. Then
explain why selling thousands of such policies is a
safe business.

4.88 Mean and standard deviation for 10 and for
12 policies. In fact, the insurance company sees
that in the entire population of homeowners, the
mean loss from fire is μ = $300 and the standard
deviation of the loss is σ = $400. What are the
mean and standard deviation of the average loss
for 10 policies? (Losses on separate policies are
independent.) What are the mean and standard
deviation of the average loss for 12 policies?

4.89 Life insurance. According to the current
Commissioners’ Standard Ordinary mortality table,
adopted by state insurance regulators in December
2002, a 25-year-old man has these probabilities of
dying during the next five years:21

Age at death 25 26 27 28 29

Probability 0.00039 0.00044 0.00051 0.000057 0.00060

(a) What is the probability that the man does not
die in the next five years?

(b) An online insurance site offers a term insurance
policy that will pay $100,000 if a 25-year-old man
dies within the next 5 years. The cost is $175 per
year. So the insurance company will take in $875
from this policy if the man does not die within
five years. If he does die, the company must pay
$100,000. Its loss depends on how many premiums
were paid, as follows:

Age at death 25 26 27 28 29

Loss $99,825 $99,650 $99,475 $99,300 $99,125

What is the insurance company’s mean cash intake
from such polices?

4.90 Risk for one versus thousands of life insurance
policies. It would be quite risky for you to insure
the life of a 25-year-old friend under the terms
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of Exercise 4.89. There is a high probability that
your friend would live and you would gain $875
in premiums. But if he were to die, you would
lose almost $100,000. Explain carefully why selling
insurance is not risky for an insurance company
that insures many thousands of 25-year-old men.

Portfolio analysis. Here are the means, standard
deviations, and correlations for the annual returns from
three Fidelity mutual funds for the 10 years ending in
February 2004.22 Because there are three random variables,
there are three correlations. We use subscripts to show
which pair of random variables a correlation refers to.

W = annual return on 500 Index Fund

X = annual return on Investment Grade Bond Fund

Y = annual return on Diversified International Fund

μW = 11.12% σW = 17.46%

μX = 6.46% σX = 4.18%

μY = 11.10% σY = 15.62%

Correlations
ρWX = −0.22 ρWY = 0.56 ρXY = −0.12

Exercises 4.91 to 4.93 make use of these historical data.

4.91 Investing in a mix of U.S. stocks and foreign
stocks. Many advisers recommend using roughly
20% foreign stocks to diversify portfolios of U.S.
stocks. You see that the 500 Index (U.S. stocks) and
Diversified International (foreign stocks) Funds had
almost the same mean returns. A portfolio of 80%
500 Index and 20% Diversified International will
deliver this mean return with less risk. Verify this by
finding the mean and standard deviation of returns
on this portfolio. (Example 4.38, page 284, shows

how to find the mean and standard deviation for the
portfolio.)

4.92 The effect of correlation. Diversification works
better when the investments in a portfolio have
small correlations. To demonstrate this, suppose
that returns on 500 Index Fund and Diversified
International Fund had the means and standard
deviations we have given but were uncorrelated
(ρWY = 0). Show that the standard deviation of a
portfolio that combines 80% 500 Index with 20%
Diversified International is then smaller than your
result from the previous exercise. What happens to
the mean return if the correlation is 0?

4.93 A portfolio with three investments. Portfolios
often contain more than two investments. The rules
for means and variances continue to apply, though
the arithmetic gets messier. A portfolio containing
proportions a of 500 Index Fund, b of Investment
Grade Bond Fund, and c of Diversified International
Fund has return R = aW + bX + cY . Because a,
b, and c are the proportions invested in the three
funds, a + b + c = 1. The mean and variance of the
portfolio return R are

μR = aμW + bμX + cμY

σ 2
R = a2σ 2

W + b2σ 2
X + c2σ 2

Y + 2abρWXσWσX

+ 2acρWYσWσY + 2bcρXYσXσY

A basic well-diversified portfolio has 60% in 500
Index, 20% in Investment Grade Bond, and 20% in
Diversified International. What are the (historical)
mean and standard deviation of the annual returns
for this portfolio? What does an investor gain by
choosing this diversified portfolio over 100% U.S.
stocks? What does the investor lose (at least in this
time period)?

4.5 General Probability Rules*
Our study of probability has concentrated on random variables and their distri-
butions. Now we return to the laws that govern any assignment of probabilities.
The purpose of learning more laws of probability is to be able to give probabil-
ity models for more complex random phenomena. We have already met and
used five rules.

*This section extends the rules of probability discussed in Section 4.2. This material is not
needed for understanding the statistical methods in later chapters. It can therefore be omitted
if desired.
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RULES OF PROBABILITY

Rule 1. 0 ≤ P(A) ≤ 1 for any event A

Rule 2. P(S) = 1

Rule 3. Addition rule: If A and B are disjoint events, then

P(A or B) = P(A) + P(B)

Rule 4. Complement rule: For any event A,

P(Ac) = 1 − P(A)

Rule 5. Multiplication rule: If A and B are independent events, then

P(A and B) = P(A)P(B)

General addition rules
Probability has the property that if A and B are disjoint events, then P(A or B) =
P(A) + P(B). What if there are more than two events, or if the events are not
disjoint? These circumstances are covered by more general addition rules for
probability.

UNION

The union of any collection of events is the event that at least one of the
collection occurs.

S

A

B

C

FIGURE 4.16 The addition
rule for disjoint events:
P(A or B or C) =
P(A) + P(B) + P(C) when events
A, B, and C are disjoint.

For two events A and B, the union is the event {A or B} that A or B or both oc-
cur. From the addition rule for two disjoint events we can obtain rules for more
general unions. Suppose first that we have several events—say, A, B, and C—
that are disjoint in pairs. That is, no two can occur simultaneously. The Venn
diagram in Figure 4.16 illustrates three disjoint events. The addition rule for
two disjoint events extends to the following law:
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ADDITION RULE FOR DISJOINT EVENTS

If events A, B, and C are disjoint in the sense that no two have any out-
comes in common, then

P(one or more of A, B, C) = P(A) + P(B) + P(C)

This rule extends to any number of disjoint events.

•
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E 4.39 Probabilities as areas. Generate a random number X between 0 and

1. What is the probability that the first digit after the decimal point will be
odd? The random number X is a continuous random variable whose density
curve has constant height 1 between 0 and 1 and is 0 elsewhere. The event
that the first digit of X is odd is the union of five disjoint events. These events
are

0.10 ≤ X < 0.20

0.30 ≤ X < 0.40

0.50 ≤ X < 0.60

0.70 ≤ X < 0.80

0.90 ≤ X < 1.00

Figure 4.17 illustrates the probabilities of these events as areas under the den-
sity curve. Each area is 0.1. The union of the five therefore has probability
equal to the sum, or 0.5. As we should expect, a random number is equally
likely to begin with an odd or an even digit.

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 4.17 The probability
that the first digit after the
decimal point of a random
number is odd is the sum of the
probabilities of the 5 disjoint
events shown. See Example 4.39.
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USE YOUR KNOWLEDGE
4.94 Probability that you roll a 3 or a 5. If you roll a die, the probability

of each of the six possible outcomes (1, 2, 3, 4, 5, 6) is 1/6. What is the
probability that you roll a 3 or a 5?

If events A and B are not disjoint, they can occur simultaneously. The prob-
ability of their union is then less than the sum of their probabilities. As Figure
4.18 suggests, the outcomes common to both are counted twice when we add
probabilities, so we must subtract this probability once. Here is the addition
rule for the union of any two events, disjoint or not.

A and B
S

BAFIGURE 4.18 The union of two
events that are not disjoint. The
general addition rule says that
P(A or B) = P(A) + P(B) −
P(A and B).

GENERAL ADDITION RULE FOR UNIONS OF TWO EVENTS

For any two events A and B,

P(A or B) = P(A) + P(B) − P(A and B)

If A and B are disjoint, the event {A and B} that both occur has no outcomes
in it. This empty event is the complement of the sample space S and must have
probability 0. So the general addition rule includes Rule 3, the addition rule for
disjoint events.
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E 4.40 The general addition rule. Deborah and Matthew are anxiously
awaiting word on whether they have been made partners of their law
firm. Deborah guesses that her probability of making partner is 0.7 and that
Matthew’s is 0.5. (These are personal probabilities reflecting Deborah’s
assessment of chance.) This assignment of probabilities does not give us
enough information to compute the probability that at least one of the two
is promoted. In particular, adding the individual probabilities of promotion
gives the impossible result 1.2. If Deborah also guesses that the probability
that both she and Matthew are made partners is 0.3, then by the addition rule
for unions

P(at least one is promoted) = 0.7 + 0.5 − 0.3 = 0.9

The probability that neither is promoted is then 0.1 by the complement rule.
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USE YOUR KNOWLEDGE
4.95 Probability that your roll is even or greater than 4. If you roll a die,

the probability of each of the six possible outcomes (1, 2, 3, 4, 5, 6) is
1/6. What is the probability that your roll is even or greater than 4?

Venn diagrams are a great help in finding probabilities for unions because
you can just think of adding and subtracting areas. Figure 4.19 shows some
events and their probabilities for Example 4.40. What is the probability that
Deborah is promoted and Matthew is not? The Venn diagram shows that this
is the probability that Deborah is promoted minus the probability that both are
promoted, 0.7 − 0.3 = 0.4. Similarly, the probability that Matthew is promoted
and Deborah is not is 0.5 − 0.3 = 0.2. The four probabilities that appear in the
figure add to 1 because they refer to four disjoint events whose union is the
entire sample space.

Dc and Mc

0.1

D and Mc

0.4

D and M
0.3

Dc and M
0.2

D = Deborah is made partner
M = Matthew is made partner

FIGURE 4.19 Venn diagram
and probabilities for Example
4.40.

Conditional probability
The probability we assign to an event can change if we know that some other
event has occurred. This idea is the key to many applications of probability.
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E 4.41 Probability of being dealt an ace. Slim is a professional poker
player. He stares at the dealer, who prepares to deal. What is the probability
that the card dealt to Slim is an ace? There are 52 cards in the deck. Because
the deck was carefully shuffled, the next card dealt is equally likely to be any
of the cards that Slim has not seen. Four of the 52 cards are aces. So

P(ace) = 4
52

= 1
13

This calculation assumes that Slim knows nothing about any cards already
dealt. Suppose now that he is looking at 4 cards already in his hand, and that
one of them is an ace. He knows nothing about the other 48 cards except that
exactly 3 aces are among them. Slim’s probability of being dealt an ace given
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what he knows is now

P(ace | 1 ace in 4 visible cards) = 3
48

= 1
16

Knowing that there is 1 ace among the 4 cards Slim can see changes the prob-
ability that the next card dealt is an ace.

The new notation P(A | B) is a conditional probability. That is, it gives theconditional probability
probability of one event (the next card dealt is an ace) under the condition that
we know another event (exactly 1 of the 4 visible cards is an ace). You can read
the bar | as “given the information that.”

USE YOUR KNOWLEDGE
4.96 The probability of another ace. Suppose two of the four cards in

Slim’s hand are aces. What is the probability that the next card dealt
to him is an ace?

In Example 4.41 we could find probabilities because we are willing to use an
equally likely probability model for a shuffled deck of cards. Here is an example
based on data.
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E 4.42 College course grades. Students at the University of New Harmony
received 10,000 course grades last semester. Table 4.1 breaks down these
grades by which school of the university taught the course. The schools are
Liberal Arts, Engineering and Physical Sciences, and Health and Human Ser-
vices. (Table 4.1 is based closely on grade distributions at an actual university,
simplified a bit for clarity.23)

It is common knowledge that college grades are lower in engineering and
the physical sciences (EPS) than in liberal arts and social sciences. Consider
the two events

A = the grade comes from an EPS course

B = the grade is below a B

TABLE 4.1

Grades awarded at a university, by school

Grade level

A B Below B Total

Liberal Arts 2,142 1,890 2,268 6,300
Engineering and Physical Sciences 368 432 800 1,600
Health and Human Services 882 630 588 2,100

Total 3,392 2,952 3,656 10,000
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There are 10,000 grades, of which 3656 are below B. Choosing at random
gives each grade an equal chance, so the probability of choosing a grade be-
low a B is

P(B) = 3, 656
10,000

= 0.3656

To find the conditional probability that a grade is below a B, given the in-
formation that it comes from the EPS school, look only at the “Engineering
and Physical Sciences” row. The EPS grades are all in this row, so the infor-
mation given says that only this row is relevant. The conditional probability
is

P(B | A) = 800
1600

= 0.5

The conditional probability that a grade is below a B, given that we know it
comes from an EPS course, is much higher than the probability for a ran-
domly chosen grade.

It is easy to confuse probabilities and conditional probabilities involving the

CAUTION

! same events. For example, Table 4.1 says that

P(A) = 1600
10,000

= 0.16

P(A and B) = 800
10,000

= 0.08

P(B | A) = 800
1600

= 0.5

Be sure you understand how we found these three results. There is a relation-
ship among these three probabilities. The probability that a grade is both from
EPS and below a B is the product of the probabilities that it is from EPS and
that it is below a B, given that it is from EPS. That is,

P(A and B) = P(A) × P(B | A)

= 1600
10,000

× 800
1600

= 800
10,000

= 0.08 (as before)

Try to think your way through this in words: First, the grade is from EPS; then,
given that it is from EPS, it is below B. We have just discovered the fundamental
multiplication rule of probability.

MULTIPLICATION RULE

The probability that both of two events A and B happen together can be
found by

P(A and B) = P(A)P(B | A)
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Here P(B | A) is the conditional probability that B occurs, given the in-
formation that A occurs.

USE YOUR KNOWLEDGE
4.97 Select a grade from the population. Refer to Table 4.1 and consider

selecting a single grade from this population.

(a) What is the probability that the grade is from Health and Human
Services?

(b) What is the probability that the grade is an A?

(c) What is the probability that the grade is an A, given that it is from
Health and Human Services?

(d) Explain why your answers to (b) and (c) are not the same.

•

•
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E 4.43 Downloading music from the Internet. The multiplication rule is
just common sense made formal. For example, 29% of Internet users down-
load music files, and 67% of downloaders say they don’t care if the music is
copyrighted.24 So the percent of Internet users who download music (event
A) and don’t care about copyright (event B) is 67% of the 29% who download,
or

(0.67)(0.29) = 0.1943 = 19.43%

The multiplication rule expresses this as

P(A and B) = P(A) × P(B | A)

= (0.29)(0.67) = 0.1943
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E 4.44 Probability of a favorable draw. Slim is still at the poker table. At
the moment, he wants very much to draw two diamonds in a row. As he sits
at the table looking at his hand and at the upturned cards on the table, Slim
sees 11 cards. Of these, 4 are diamonds. The full deck contains 13 diamonds
among its 52 cards, so 9 of the 41 unseen cards are diamonds. To find Slim’s
probability of drawing two diamonds, first calculate

P(first card diamond) = 9
41

P(second card diamond | first card diamond) = 8
40

Slim finds both probabilities by counting cards. The probability that the
first card drawn is a diamond is 9/41 because 9 of the 41 unseen cards are
diamonds. If the first card is a diamond, that leaves 8 diamonds among the 40
remaining cards. So the conditional probability of another diamond is 8/40.
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The multiplication rule now says that

P(both cards diamonds) = 9
41

× 8
40

= 0.044

Slim will need luck to draw his diamonds.

USE YOUR KNOWLEDGE
4.98 The probability that the next two cards are diamonds. In the set-

ting of Exercise 4.44, suppose Slim sees 25 cards and the only dia-
monds are the 3 in his hand. What is the probability that the next 2
cards dealt to Slim will be diamonds? This outcome would give him 5
cards from the same suit, a hand that is called a flush.

If P(A) and P(A and B) are given, we can rearrange the multiplication rule
to produce a definition of the conditional probability P(B | A) in terms of un-
conditional probabilities.

DEFINITION OF CONDITIONAL PROBABILITY

When P(A) > 0, the conditional probability of B given A is

P(B | A) = P(A and B)

P(A)

Be sure to keep in mind the distinct roles in P(B | A) of the event B whose prob-

CAUTION

! ability we are computing and the event A that represents the information we are
given. The conditional probability P(B | A) makes no sense if the event A can
never occur, so we require that P(A) > 0 whenever we talk about P(B | A).
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E 4.45 A conditional probability. What is the conditional probability that
a grade at the University of New Harmony is an A, given that it comes from
a liberal arts course? We see from Table 4.1 that

P(liberal arts course) = 6300
10,000

= 0.63

P(A grade and liberal arts course) = 2142
10,000

= 0.2142

The definition of conditional probability therefore says that

P(A grade | liberal arts course) = P(A grade and liberal arts course)

P(liberal arts course)

= 0.2142
0.63

= 0.34
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Note that this agrees with the result obtained from the “Liberal Arts” row of
Table 4.1:

P(A grade | liberal arts course) = 2142
6300

= 0.34

USE YOUR KNOWLEDGE
4.99 Find the conditional probability. Refer to Table 4.1. What is the

conditional probability that a grade is a B, given that it comes from
Engineering and Physical Sciences? Find the answer by dividing two
numbers from Table 4.1 and using the multiplication rule according
to the method in Example 4.45.

General multiplication rules
The definition of conditional probability reminds us that in principle all proba-
bilities, including conditional probabilities, can be found from the assignment
of probabilities to events that describe random phenomena. More often, how-
ever, conditional probabilities are part of the information given to us in a prob-
ability model, and the multiplication rule is used to compute P(A and B). This
rule extends to more than two events.

The union of a collection of events is the event that any of them occur. Here
is the corresponding term for the event that all of them occur.

INTERSECTION

The intersection of any collection of events is the event that all of the
events occur.

To extend the multiplication rule to the probability that all of several events
occur, the key is to condition each event on the occurrence of all of the pre-
ceding events. For example, the intersection of three events A, B, and C has
probability

P(A and B and C) = P(A)P(B | A)P(C | A and B)
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E 4.46 High school athletes and professional careers. Only 5% of male
high school basketball, baseball, and football players go on to play at the col-
lege level. Of these, only 1.7% enter major league professional sports. About
40% of the athletes who compete in college and then reach the pros have a
career of more than 3 years.25 Define these events:

A = {competes in college}
B = {competes professionally}
C = {pro career longer than 3 years}
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What is the probability that a high school athlete competes in college and then
goes on to have a pro career of more than 3 years? We know that

P(A) = 0.05

P(B | A) = 0.017

P(C | A and B) = 0.4

The probability we want is therefore

P(A and B and C) = P(A)P(B | A)P(C | A and B)

= 0.05 × 0.017 × 0.4 = 0.00034

Only about 3 of every 10,000 high school athletes can expect to compete in
college and have a professional career of more than 3 years. High school
students would be wise to concentrate on studies rather than on unrealistic
hopes of fortune from pro sports.

Tree diagrams
Probability problems often require us to combine several of the basic rules into
a more elaborate calculation. Here is an example that illustrates how to solve
problems that have several stages.
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E 4.47 Online chat rooms. Online chat rooms are dominated by the young.
Teens are the biggest users. If we look only at adult Internet users (aged 18
and over), 47% of the 18 to 29 age group chat, as do 21% of the 30 to 49 age
group and just 7% of those 50 and over. To learn what percent of all Internet
users participate in chat, we also need the age breakdown of users. Here it is:
29% of adult Internet users are 18 to 29 years old (event A1), another 47% are
30 to 49 (event A2), and the remaining 24% are 50 and over (event A3).26

What is the probability that a randomly chosen user of the Internet par-
ticipates in chat rooms (event C)? To find out, use the tree diagram in Figure
4.20 to organize your thinking. Each segment in the tree is one stage of the
problem. Each complete branch shows a path through the two stages. The
probability written on each segment is the conditional probability of an In-
ternet user following that segment, given that he or she has reached the node
from which it branches.

Starting at the left, an Internet user falls into one of the three age groups.
The probabilities of these groups

P(A1) = 0.29 P(A2) = 0.47 P(A3) = 0.24

mark the leftmost branches in the tree. Conditional on being 18 to 29 years
old, the probability of participating in chat is P(C | A1) = 0.47. So the condi-
tional probability of not participating is

P(Cc | A1) = 1 − 0.47 = 0.53

tree diagram
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Age
0.47

Cc

C
Probability

0.1363*

0.1537

0.0987*

0.3713

0.0168*

0.2232

Cc

C

Cc

C

Chat?

0.21

0.53

0.79

0.07

0.93

Internet
user

0.29

0.47

0.24

A1

A3

A2

FIGURE 4.20 Tree diagram for
Example 4.47. The probability
P(C) is the sum of the
probabilities of the three
branches marked with
asterisks (∗).

•

These conditional probabilities mark the paths branching out from the
A1 node in Figure 4.20. The other two age group nodes similarly lead to two
branches marked with the conditional probabilities of chatting or not. The
probabilities on the branches from any node add to 1 because they cover all
possibilities, given that this node was reached.

There are three disjoint paths to C, one for each age group. By the addi-
tion rule, P(C) is the sum of their probabilities. The probability of reaching C
through the 18 to 29 age group is

P(C and A1) = P(A1)P(C | A1)

= 0.29 × 0.47 = 0.1363

Follow the paths to C through the other two age groups. The probabilities of
these paths are

P(C and A2) = P(A2)P(C | A2) = (0.47)(0.21) = 0.0987

P(C and A3) = P(A3)P(C | A3) = (0.24)(0.07) = 0.0168

The final result is

P(C) = 0.1363 + 0.0987 + 0.0168 = 0.2518

About 25% of all adult Internet users take part in chat rooms.

It takes longer to explain a tree diagram than it does to use it. Once you have
understood a problem well enough to draw the tree, the rest is easy. Tree dia-
grams combine the addition and multiplication rules. The multiplication rule
says that the probability of reaching the end of any complete branch is the prod-
uct of the probabilities written on its segments. The probability of any outcome,
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such as the event C that an adult Internet user takes part in chat rooms, is then
found by adding the probabilities of all branches that are part of that event.

USE YOUR KNOWLEDGE
4.100 Draw a tree diagram. Refer to Slim’s chances of a flush in Exer-

cise 4.98. Draw a tree diagram to describe the outcomes for the two
cards that he will be dealt. At the first stage, his draw can be a dia-
mond or a non-diamond. At the second stage, he has the same pos-
sible outcomes but the probabilities are different.

Bayes’s rule
There is another kind of probability question that we might ask in the context
of thinking about online chat. What percent of adult chat room participants are
aged 18 to 29?

•
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E 4.48 Conditional versus unconditional probabilities. In the notation
of Example 4.47 this is the conditional probability P(A1 | C). Start from the
definition of conditional probability and then apply the results of Example 4.47:

P(A1 | C) = P(A1 and C)

P(C)

= 0.1363
0.2518

= 0.5413

Over half of adult chat room participants are between 18 and 29 years old.
Compare this conditional probability with the original information (uncon-
ditional) that 29% of adult Internet users are between 18 and 29 years old.
Knowing that a person chats increases the probability that he or she is young.

We know the probabilities P(A1), P(A2), and P(A3) that give the age dis-
tribution of adult Internet users. We also know the conditional probabilities
P(C | A1), P(C | A2), and P(C | A3) that a person from each age group chats.
Example 4.47 shows how to use this information to calculate P(C). The method
can be summarized in a single expression that adds the probabilities of the
three paths to C in the tree diagram:

P(C) = P(A1)P(C | A1) + P(A2)P(C | A2) + P(A3)P(C | A3)

In Example 4.48 we calculated the “reverse” conditional probability P(A1 | C).
The denominator 0.2518 in that example came from the expression just above.
Put in this general notation, we have another probability law.

BAYES’S RULE

Suppose that A1, A2, . . . , Ak are disjoint events whose probabilities are
not 0 and add to exactly 1. That is, any outcome is in exactly one of these
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events. Then if C is any other event whose probability is not 0 or 1,

P(Ai | C) = P(C | Ai)P(Ai)

P(C | A1)P(A1) + P(C | A2)P(A2) + · · · + P(Ak)P(C | Ak)

The numerator in Bayes’s rule is always one of the terms in the sum that
makes up the denominator. The rule is named after Thomas Bayes, who
wrestled with arguing from outcomes like C back to the Ai in a book published
in 1763. It is far better to think your way through problems like Examples 4.47
and 4.48 rather than memorize these formal expressions.

Independence again
The conditional probability P(B | A) is generally not equal to the unconditional
probability P(B). That is because the occurrence of event A generally gives us
some additional information about whether or not event B occurs. If knowing
that A occurs gives no additional information about B, then A and B are inde-
pendent events. The formal definition of independence is expressed in terms of
conditional probability.

INDEPENDENT EVENTS

Two events A and B that both have positive probability are independent
if

P(B | A) = P(B)

This definition makes precise the informal description of independence
given in Section 4.2. We now see that the multiplication rule for independent
events, P(A and B) = P(A)P(B), is a special case of the general multiplication
rule, P(A and B) = P(A)P(B | A), just as the addition rule for disjoint events is a
special case of the general addition rule.

SECTION 4.5 Summary

The complement Ac of an event A contains all outcomes that are not in A. The
union {A or B} of events A and B contains all outcomes in A, in B, or in both
A and B. The intersection {A and B} contains all outcomes that are in both A
and B, but not outcomes in A alone or B alone.

The conditional probability P(B | A) of an event B, given an event A, is defined
by

P(B | A) = P(A and B)

P(A)

when P(A) > 0. In practice, conditional probabilities are most often found from
directly available information.
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The essential general rules of elementary probability are

Legitimate values: 0 ≤ P(A) ≤ 1 for any event A

Total probability 1: P(S) = 1

Complement rule: P(Ac) = 1 − P(A)

Addition rule: P(A or B) = P(A) + P(B) − P(A and B)

Multiplication rule: P(A and B) = P(A)P(B | A)

If A and B are disjoint, then P(A and B) = 0. The general addition rule for
unions then becomes the special addition rule, P(A or B) = P(A) + P(B).

A and B are independent when P(B | A) = P(B). The multiplication rule for
intersections then becomes P(A and B) = P(A)P(B).

In problems with several stages, draw a tree diagram to organize use of the
multiplication and addition rules.

SECTION 4.5 Exercises
For Exercise 4.94, see page 292; for Exercise 4.95, see page
293; for Exercise 4.96, see page 294; for Exercise 4.97, see
page 296; for Exercise 4.98, see page 297; for Exercise 4.99,
see page 298; and for Exercise 4.100, see page 301.

4.101 Binge drinking and gender. In a college
population, students are classified by gender and
whether or not they are frequent binge drinkers.
Here are the probabilities:

Men Women

Binge drinker 0.11 0.12
Not binge drinker 0.32 0.45

(a) Verify that the sum of the probabilities is 1.

(b) What is the probability that a randomly
selected student is not a binge drinker?

(c) What is the probability that a randomly selected
male student is not a binge drinker?

(d) Explain why your answers to (b) and (c) are
different. Use language that would be understood
by someone who has not studied the material in
this chapter.

4.102 Find some probabilities. Refer to the previous
exercise.

(a) Find the probability that a randomly selected
student is a male binge drinker, and find the
probability that a randomly selected student is a
female binge drinker.

(b) Find the probability that a student is a binge
drinker, given that the student is male, and find the
probability that a student is a binge drinker, given
that the student is female.

(c) Your answer for part (a) gives a higher
probability for females, while your answer for
part (b) gives a higher probability for males.
Interpret your answers in terms of the question
of whether there are gender differences in binge-
drinking behavior. Decide which comparison you
prefer and explain the reasons for your preference.

4.103 Attendance at 2-year and 4-year colleges. In a
large national population of college students, 61%
attend 4-year institutions and the rest attend 2-year
institutions. Males make up 44% of the students in
the 4-year institutions and 41% of the students in
the 2-year institutions.

(a) Find the four probabilities for each
combination of gender and type of institution in
the following table. Be sure that your probabilities
sum to 1.

Men Women

4-year institution
2-year institution

(b) Consider randomly selecting a female student
from this population. What is the probability that
she attends a 4-year institution?
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4.104 Draw a tree diagram. Refer to the previous
exercise. Draw a tree diagram to illustrate the
probabilities in a situation where you first identify
the type of institution attended and then identify
the gender of the student.

4.105 Draw a different tree diagram for the same
setting. Refer to the previous two exercises. Draw
a tree diagram to illustrate the probabilities in a
situation where you first identify the gender of the
student and then identify the type of institution
attended. Explain why the probabilities in this tree
diagram are different from those that you used in
the previous exercise.

4.106 Education and income. Call a household
prosperous if its income exceeds $100,000. Call the
household educated if the householder completed
college. Select an American household at random,
and let A be the event that the selected household
is prosperous and B the event that it is educated.
According to the Current Population Survey,
P(A) = 0.138, P(B) = 0.261, and the probability
that a household is both prosperous and educated
is P(A and B) = 0.082. What is the probability
P(A or B) that the household selected is either
prosperous or educated?

4.107 Find a conditional probability. In the setting
of the previous exercise, what is the conditional
probability that a household is prosperous, given
that it is educated? Explain why your result shows
that events A and B are not independent.

4.108 Draw a Venn diagram. Draw a Venn diagram
that shows the relation between the events A and
B in Exercise 4.106. Indicate each of the following
events on your diagram and use the information in
Exercise 4.106 to calculate the probability of each
event. Finally, describe in words what each event
is.

(a) {A and B}
(b) {Ac and B}
(c) {A and Bc}
(d) {Ac and Bc}

4.109 Sales of cars and light trucks. Motor vehicles sold
to individuals are classified as either cars or light
trucks (including SUVs) and as either domestic or
imported. In a recent year, 69% of vehicles sold
were light trucks, 78% were domestic, and 55%
were domestic light trucks. Let A be the event that
a vehicle is a car and B the event that it is imported.

Write each of the following events in set notation
and give its probability.

(a) The vehicle is a light truck.

(b) The vehicle is an imported car.

4.110 Income tax returns. In 2004, the Internal Revenue
Service received 312,226,042 individual tax returns.
Of these, 12,757,005 reported an adjusted gross
income of at least $100,000, and 240,128 reported
at least $1 million.27 If you know that a randomly
chosen return shows an income of $100,000 or
more, what is the conditional probability that the
income is at least $1 million?

4.111 Conditional probabilities and independence.
Using the information in Exercise 4.109, answer
these questions.

(a) Given that a vehicle is imported, what is the
conditional probability that it is a light truck?

(b) Are the events “vehicle is a light truck” and
“vehicle is imported” independent? Justify your
answer.

4.112 Job offers. Julie is graduating from college. She
has studied biology, chemistry, and computing
and hopes to work as a forensic scientist applying
her science background to crime investigation.
Late one night she thinks about some jobs she has
applied for. Let A, B, and C be the events that Julie
is offered a job by

A = the Connecticut Office of the
Chief Medical Examiner

B = the New Jersey Division of Criminal Justice

C = the federal Disaster Mortuary Operations
Response Team

Julie writes down her personal probabilities for
being offered these jobs:

P(A) = 0.7 P(B) = 0.5 P(C) = 0.3

P(A and B) = 0.3 P(A and C) = 0.1

P(B and C) = 0.1 P(A and B and C) = 0

Make a Venn diagram of the events A, B, and C. As
in Figure 4.19 (page 293), mark the probabilities of
every intersection involving these events and their
complements. Use this diagram for Exercises 4.113
to 4.115.

4.113 Find the probability of at least one offer. What
is the probability that Julie is offered at least one
of the three jobs?
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4.114 Find the probability of another event. What
is the probability that Julie is offered both the
Connecticut and New Jersey jobs, but not the
federal job?

4.115 Find a conditional probability. If Julie is offered
the federal job, what is the conditional probability
that she is also offered the New Jersey job? If
Julie is offered the New Jersey job, what is the
conditional probability that she is also offered the
federal job?

4.116 Academic degrees and gender. Here are the
projected numbers (in thousands) of earned
degrees in the United States in the 2010–2011
academic year, classified by level and by the sex of
the degree recipient:28

Bachelor’s Master’s Professional Doctorate

Female 933 402 51 26
Male 661 260 44 26

(a) Convert this table to a table giving the
probabilities for selecting a degree earned and
classifying the recipient by gender and the degree
by the levels given above.

(b) If you choose a degree recipient at random,
what is the probability that the person you choose
is a woman?

(c) What is the conditional probability that you
choose a woman, given that the person chosen
received a professional degree?

(d) Are the events “choose a woman” and “choose
a professional degree recipient” independent? How
do you know?

4.117 Find some probabilities. The previous exercise
gives the projected number (in thousands) of
earned degrees in the United States in the 2010–
2011 academic year. Use these data to answer the
following questions.

(a) What is the probability that a randomly chosen
degree recipient is a man?

(b) What is the conditional probability that the
person chosen received a bachelor’s degree, given
that he is a man?

(c) Use the multiplication rule to find the
probability of choosing a male bachelor’s degree
recipient. Check your result by finding this
probability directly from the table of counts.

Working. In the language of government statistics, you are
“in the labor force” if you are available for work and either
working or actively seeking work. The unemployment rate
is the proportion of the labor force (not of the entire
population) who are unemployed. Here are data from the
Current Population Survey for the civilian population aged
25 years and over. The table entries are counts in thousands
of people.29 Exercises 4.118 to 4.121 concern these data.

Total In labor
Highest education population force Employed

Did not finish high school 28,021 12,623 11,552
High school but no college 59,844 38,210 36,249
Some college, but no 46,777 33,928 32,429

bachelor’s degree
College graduate 51,568 40,414 39,250

4.118 Find the unemployment rates. Find the
unemployment rate for people with each level
of education. How does the unemployment rate
change with education? Explain carefully why
your results show that level of education and being
employed are not independent.

4.119 Conditional probabilities and independence.

(a) What is the probability that a randomly chosen
person 25 years of age or older is in the labor force?

(b) If you know that the person chosen is a college
graduate, what is the conditional probability that
he or she is in the labor force?

(c) Are the events “in the labor force” and “college
graduate” independent? How do you know?

4.120 Find some conditional probabilities. You know
that a person is employed. What is the conditional
probability that he or she is a college graduate? You
know that a second person is a college graduate.
What is the conditional probability that he or she
is employed?

4.121 C
H

ALLENG
E A lurking variable. Beware the lurking

variable. The low labor force participation
rate of people who did not finish high school is
explained by the confounding of education level
with a variable that lurks behind the “aged 25 years
and over” restriction for these data. Explain this
confounding.

4.122 C
H

ALLENG
E Gender and majors. The probability that

a randomly chosen student at the University
of New Harmony is a woman is 0.62. The
probability that the student is studying education
is 0.17. The conditional probability that the
student is a woman, given that the student is
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studying education, is 0.8. What is the conditional
probability that the student is studying education,
given that she is a woman?

4.123 Spelling errors. As explained in Exercise 4.74
(page 286), spelling errors in a text can be either
nonword errors or word errors. Nonword errors
make up 25% of all errors. A human proofreader
will catch 90% of nonword errors and 70% of
word errors. What percent of all errors will the
proofreader catch? (Draw a tree diagram to
organize the information given.)

4.124 C
H

ALLENG
E Mathematics degrees and gender. Of

the 16,071 degrees in mathematics given
by U.S. colleges and universities in a recent year,
73% were bachelor’s degrees, 21% were master’s
degrees, and the rest were doctorates. Moreover,
women earned 48% of the bachelor’s degrees, 42%
of the master’s degrees, and 29% of the doctorates.30

You choose a mathematics degree at random and
find that it was awarded to a woman. What is the
probability that it is a bachelor’s degree?

Genetic counseling. Conditional probabilities and Bayes’s
rule are a basis for counseling people who may have genetic
defects that can be passed to their children. Exercises 4.125
to 4.129 concern genetic counseling settings.

4.125 Albinism. People with albinism have little pigment
in their skin, hair, and eyes. The gene that governs
albinism has two forms (called alleles), which
we denote by a and A. Each person has a pair
of these genes, one inherited from each parent.
A child inherits one of each parent’s two alleles,
independently with probability 0.5. Albinism is
a recessive trait, so a person is albino only if the
inherited pair is aa.

(a) Beth’s parents are not albino but she has an
albino brother. This implies that both of Beth’s
parents have type Aa. Why?

(b) Which of the types aa, Aa, AA could a child
of Beth’s parents have? What is the probability of
each type?

(c) Beth is not albino. What are the conditional
probabilities for Beth’s possible genetic types,
given this fact? (Use the definition of conditional
probability.)

4.126 Find some conditional probabilities. Beth knows
the probabilities for her genetic types from part (c)
of the previous exercise. She marries Bob, who is
albino. Bob’s genetic type must be aa.

(a) What is the conditional probability that a child
of Beth and Bob is non-albino if Beth has type Aa?

What is the conditional probability of a non-albino
child if Beth has type AA?

(b) Beth and Bob’s first child is non-albino. What
is the conditional probability that Beth is a carrier,
type Aa?

4.127 Cystic fibrosis. Cystic fibrosis is a lung disorder
that often results in death. It is inherited but
can be inherited only if both parents are carriers
of an abnormal gene. In 1989, the CF gene that
is abnormal in carriers of cystic fibrosis was
identified. The probability that a randomly chosen
person of European ancestry carries an abnormal
CF gene is 1/25. (The probability is less in other
ethnic groups.) The CF20m test detects most but
not all harmful mutations of the CF gene. The test
is positive for 90% of people who are carriers. It is
(ignoring human error) never positive for people
who are not carriers. Jason tests positive. What is
the probability that he is a carrier?

4.128 Use Bayes’s rule. Refer to the previous exercise.
Jason knows that he is a carrier of cystic fibrosis.
His wife, Julianne, has a brother with cystic
fibrosis, which means the probability is 2/3 that
she is a carrier. If Julianne is a carrier, each child
she has with Jason has probability 1/4 of having
cystic fibrosis. If she is not a carrier, her children
cannot have the disease. Jason and Julianne have
one child, who does not have cystic fibrosis. This
information reduces the probability that Julianne
is a carrier. Use Bayes’s rule to find the conditional
probability that Julianne is a carrier, given that she
and Jason have one child who does not have cystic
fibrosis.

4.129 Muscular dystrophy. Muscular dystrophy is
an incurable muscle-wasting disease. The most
common and serious type, called DMD, is caused
by a sex-linked recessive mutation. Specifically:
women can be carriers but do not get the disease; a
son of a carrier has probability 0.5 of having DMD;
a daughter has probability 0.5 of being a carrier.
As many as 1/3 of DMD cases, however, are due to
spontaneous mutations in sons of mothers who are
not carriers. Toni has one son, who has DMD.

In the absence of other information, the
probability is 1/3 that the son is the victim of
a spontaneous mutation and 2/3 that Toni is a
carrier. There is a screening test called the CK test
that is positive with probability 0.7 if a woman is a
carrier and with probability 0.1 if she is not. Toni’s
CK test is positive. What is the probability that she
is a carrier?
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4.130 Toss a pair of dice two times. Consider tossing
a pair of fair dice two times. For each of the
following pairs of events, tell whether they are
disjoint, independent, or neither.

(a) A = 7 on the first roll, B = 6 or less on the first
roll.

(b) A = 7 on the first roll, B = 6 or less on the
second roll.

(c) A = 6 or less on the second roll, B = 5 or less
on the first roll.

(d) A = 6 or less on the second roll, B = 5 or less
on the second roll.

4.131 Find the probabilities. Refer to the previous
exercise. Find the probabilities for each event.

4.132 Some probability distributions. Here is a
probability distribution for a random variable X:

Value of X 1 2 3

Probability 0.2 0.6 0.2

(a) Find the mean and standard deviation for this
distribution.

(b) Construct a different probability distribution
with the same possible values, the same mean,
and a larger standard deviation. Show your work
and report the standard deviation of your new
distribution.

(c) Construct a different probability distribution
with the same possible values, the same mean,
and a smaller standard deviation. Show your work
and report the standard deviation of your new
distribution.

4.133 A fair bet at craps. Almost all bets made at
gambling casinos favor the house. In other words,
the difference between the amount bet and the
mean of the distribution of the payoff is a positive
number. An exception is “taking the odds” at the
game of craps, a bet that a player can make under
certain circumstances. The bet becomes available
when a shooter throws a 4, 5, 6, 8, 9, or 10 on
the initial roll. This number is called the “point”;
when a point is rolled, we say that a point has been
established. If a 4 is the point, an odds bet can be
made that wins if a 4 is rolled before a 7 is rolled.
The probability of winning this bet is 0.5 and the

payoff for a $10 bet is $20. The same probability
of winning and payoff apply for an odds bet on a
10. For an initial roll of 5 or 9, the odds bet has
a winning probability of 2/3 and the payoff for a
$10 bet is $15. Similarly, when the initial roll is 6
or 8, the odds bet has a winning probability of 5/6
and the payoff for a $10 bet is $12. Find the mean
of the payoff distribution for each of these bets.
Then confirm that the bets are fair by showing
that the difference between amount bet and the
mean of the distribution of the payoff is zero.

4.134 An ancient Korean drinking game. An ancient
Korean drinking game involves a 14-sided die.
The players roll the die in turn and must submit
to whatever humiliation is written on the up-face:
something like “Keep still when tickled on face.”
Six of the 14 faces are squares. Let’s call them A, B,
C, D, E, and F for short. The other eight faces are
triangles, which we will call 1, 2, 3, 4, 5, 6, 7, and
8. Each of the squares is equally likely. Each of
the triangles is also equally likely, but the triangle
probability differs from the square probability.
The probability of getting a square is 0.72. Give the
probability model for the 14 possible outcomes.

4.135 Wine tasters. Two wine tasters rate each wine
they taste on a scale of 1 to 5. From data on their
ratings of a large number of wines, we obtain the
following probabilities for both tasters’ ratings of
a randomly chosen wine:

Taster 2

Taster 1 1 2 3 4 5

1 0.03 0.02 0.01 0.00 0.00
2 0.02 0.07 0.06 0.02 0.01
3 0.01 0.05 0.25 0.05 0.01
4 0.00 0.02 0.05 0.20 0.02
5 0.00 0.01 0.01 0.02 0.06

(a) Why is this a legitimate assignment of
probabilities to outcomes?

(b) What is the probability that the tasters agree
when rating a wine?

(c) What is the probability that Taster 1 rates a
wine higher than 3? What is the probability that
Taster 2 rates a wine higher than 3?

4.136 Profits from an investment. Rotter Partners is
planning a major investment. The amount of profit
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X is uncertain but a probabilistic estimate gives
the following distribution (in millions of dollars):

Profit 1 1.5 2 4 10

Probability 0.4 0.2 0.2 0.1 0.1

(a) Find the mean profit μX and the standard
deviation σX of the profit.

(b) Rotter Partners owes its source of capital a fee
of $200,000 plus 10% of the profits X. So the firm
actually retains

Y = 0.9X − 0.2

from the investment. Find the mean and standard
deviation of Y .

4.137 Prizes for grocery store customers. A grocery
store gives its customers cards that may win them
a prize when matched with other cards. The back
of the card announces the following probabilities
of winning various amounts if a customer visits
the store 10 times:

Amount $1000 $250 $100 $10

Probability 1/10,000 1/1000 1/100 1/20

(a) What is the probability of winning nothing?

(b) What is the mean amount won?

(c) What is the standard deviation of the amount
won?

4.138 C
H

ALLENG
E SAT scores. The College Board finds that

the distribution of students’ SAT scores
depends on the level of education their parents
have. Children of parents who did not finish high
school have SAT Math scores X with mean 445
and standard deviation 106. Scores Y of children
of parents with graduate degrees have mean 566
and standard deviation 109. Perhaps we should
standardize to a common scale for equity. Find
positive numbers a, b, c, and d such that a + bX
and c + dY both have mean 500 and standard
deviation 100.

4.139 C
H

ALLENG
E Lottery tickets. Joe buys a ticket in the

TriState Pick 3 lottery every day, always
betting on 956. He will win something if the
winning number contains 9, 5, and 6 in any order.
Each day, Joe has probability 0.006 of winning,

and he wins (or not) independently of other days
because a new drawing is held each day. What
is the probability that Joe’s first winning ticket
comes on the 20th day?

4.140 C
H

ALLENG
E Slot machines. Slot machines are now

video games, with winning determined
by electronic random number generators. In the
old days, slot machines were like this: you pull
the lever to spin three wheels; each wheel has 20
symbols, all equally likely to show when the wheel
stops spinning; the three wheels are independent
of each other. Suppose that the middle wheel has 8
bells among its 20 symbols, and the left and right
wheels have 1 bell each.

(a) You win the jackpot if all three wheels show
bells. What is the probability of winning the
jackpot?

(b) What is the probability that the wheels stop
with exactly 2 bells showing?

The following exercises require familiarity with the material
presented in the optional Section 4.5.

4.141 Higher education at 2-year and 4-year institu-
tions. The following table gives the counts of
U.S. institutions of higher education classified as
public or private and as 2-year or 4-year:31

Public Private

2-year 639 1894
4-year 1061 622

Convert the counts to probabilities and summarize
the relationship between these two variables using
conditional probabilities.

4.142 Odds bets at craps. Refer to the odds bets at
craps in Exercise 4.133. Suppose that whenever
the shooter has an initial roll of 4, 5, 6, 8, 9, or 10,
you take the odds. Here are the probabilities for
these initial rolls:

Point 4 5 6 8 9 10

Probability 3/36 4/36 5/36 5/36 4/36 3/36

Draw a tree diagram with the first stage showing
the point rolled and the second stage showing
whether the point is again rolled before a 7 is
rolled. Include a first-stage branch showing the
outcome that a point is not established. In this
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case, the amount bet is zero and the distribution
of the winnings is the special random variable
that has P(X = 0) = 1. For the combined betting
system where the player always makes a $10 odds
bet when it is available, show that the game is fair.

4.143 Weights and heights of children adjusted for
age. The idea of conditional probabilities has
many interesting applications, including the idea
of a conditional distribution. For example, the
National Center for Health Statistics produces
distributions for weight and height for children
while conditioning on other variables. Visit the
Web site cdc.gov/growthcharts/ and describe the
different ways that weight and height distributions
are conditioned on other variables.

4.144 Wine tasting. In the setting of Exercise 4.135,
Taster 1’s rating for a wine is 3. What is the
conditional probability that Taster 2’s rating is
higher than 3?

4.145 Internet usage patterns of students and other
adults. Students have different patterns of
Internet use than other adults. Among adult
Internet users, 4.1% are full-time students and
another 2.9% are part-time students. Students
are much more likely to access the Internet from
someplace other than work or home: 58% of
full-time students do so, as do 30% of part-time
students, but only 21% of other users do so.32

What percent of all adult users reach the Internet
from someplace other than home or work?

4.146 An interesting case of independence.
Independence of events is not always obvious.
Toss two balanced coins independently. The four
possible combinations of heads and tails in order
each have probability 0.25. The events

A = head on the first toss

B = both tosses have the same outcome

may seem intuitively related. Show that
P(B | A) = P(B), so that A and B are in fact
independent.

4.147 Find some conditional probabilities. Choose a
point at random in the square with sides 0 ≤ x ≤ 1
and 0 ≤ y ≤ 1. This means that the probability
that the point falls in any region within the square
is the area of that region. Let X be the x coordinate
and Y the y coordinate of the point chosen. Find
the conditional probability P(Y < 1/2 | Y > X).
(Hint: Sketch the square and the events Y < 1/2
and Y > X.)

4.148 C
H

ALLENG
E Sample surveys for sensitive issues. It is

difficult to conduct sample surveys on
sensitive issues because many people will not
answer questions if the answers might embarrass
them. Randomized response is an effective
way to guarantee anonymity while collecting
information on topics such as student cheating
or sexual behavior. Here is the idea. To ask a
sample of students whether they have plagiarized
a term paper while in college, have each student
toss a coin in private. If the coin lands heads
and they have not plagiarized, they are to answer
“No.” Otherwise, they are to give “Yes” as their
answer. Only the student knows whether the
answer reflects the truth or just the coin toss, but
the researchers can use a proper random sample
with follow-up for nonresponse and other good
sampling practices.

Suppose that in fact the probability is 0.3
that a randomly chosen student has plagiarized a
paper. Draw a tree diagram in which the first stage
is tossing the coin and the second is the truth
about plagiarism. The outcome at the end of each
branch is the answer given to the randomized-
response question. What is the probability of a
“No” answer in the randomized-response poll?
If the probability of plagiarism were 0.2, what
would be the probability of a “No” response on
the poll? Now suppose that you get 39% “No”
answers in a randomized-response poll of a large
sample of students at your college. What do you
estimate to be the percent of the population who
have plagiarized a paper?
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The heights of young women are approximately Normal. See Example 5.1.

5.1 Sampling Distributions
for Counts and Proportions

5.2 The Sampling Distribution
of a Sample MeanIntroduction

Statistical inference draws conclusions about a popula-
tion or process on the basis of data. The data are sum-
marized by statistics such as means, proportions, and the slopes of least-
squares regression lines. When the data are produced by random sampling
or randomized experimentation, a statistic is a random variable that obeys the
laws of probability theory. Sampling distributions of statistics provide the link
between probability and data. A sampling distribution shows how a statistic
would vary in repeated data production. That is, a sampling distribution is a
probability distribution that answers the question “What would happen if we
did this many times?” The sampling distribution tells us about the results we

LOOK BACK
sampling distribution,
page 215

are likely to see if, for example, we survey a sample of 2000 college students. In
Section 3.3 we simulated a large number of random samples to illustrate the
idea of a sampling distribution.

311
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THE DISTRIBUTION OF A STATISTIC

A statistic from a random sample or randomized experiment is a ran-
dom variable. The probability distribution of the statistic is its sampling
distribution.

Probability distributions also play a second role in statistical inference. Any
quantity that can be measured for each member of a population is described
by the distribution of its values for all members of the population. This is the
context in which we first met distributions, as density curves that provide mod-LOOK BACK

density curves,
page 56

els for the overall pattern of data. Imagine choosing one individual at random
from the population. The results of repeated choices have a probability distri-
bution that is the distribution of the population.
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E 5.1 Heights of young women. The distribution of heights of women be-
tween the ages of 18 and 24 is approximately Normal with mean 64.5 inches
and standard deviation 2.5 inches. Select a woman at random and measure
her height. The result is a random variable X. We don’t know the height of a
randomly chosen woman, but we do know that in repeated sampling X will
have the same N(64.5, 2.5) distribution that describes the pattern of heights
in the entire population. We call N(64.5, 2.5) the population distribution.

POPULATION DISTRIBUTION

The population distribution of a variable is the distribution of its values
for all members of the population. The population distribution is also the
probability distribution of the variable when we choose one individual
at random from the population.

The population of all women between the ages of 18 and 24 actually exists,
so that we can in principle draw an SRS from it. Sometimes our populationLOOK BACK

SRS, page 200 of interest does not actually exist. For example, suppose we are interested in
studying final-exam scores in a statistics course. We have the scores for the
37 students in the course this semester. For the purposes of statistical infer-
ence, we might want to consider these 37 students as part of a hypothetical
population of similar students who would take this course. In this sense, these
students represent not only themselves but also a larger population of similar
students. The key idea is to think of the observations that you have as coming
from a population with a probability distribution.

To progress from discussing probability as a topic in itself to probability
as a foundation for inference, we start by studying the sampling distributions
of some common statistics. In each case, the sampling distribution depends
on both the population distribution and the way we collect the data from the
population.
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5.1 Sampling Distributions for Counts
and Proportions
We begin our study of sampling distributions with the simplest case of a ran-
dom variable, where there are only two possible outcomes. Here is an example.

•

•
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E 5.2 Parents put too much pressure on their children. A sample survey
asks 2000 college students whether they think that parents put too much pres-
sure on their children. We would like to view the responses of these students
as representative of a larger population of students who hold similar beliefs.
That is, we will view the responses of the sampled students as an SRS from a
population.

When there are only two possible outcomes for a random variable, we can
summarize the results by giving the count for one of the possible outcomes. We
let n represent the sample size and we use X to represent the random variable
that gives the count for the outcome of interest.
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E 5.3 The random variable of interest. In our sample survey of college
students, n = 2000 and X is the number of students who think that parents
put too much pressure on their children. Suppose X = 840. The random vari-
able of interest is X and its value is 840.

In our example, we chose the random variable X to be the number of stu-
dents who think that parents put too much pressure on their children. We could
have chosen X to be the number of students who do not think that parents put
too much pressure on their children. The choice is yours. Often we make the
choice based on how we would like to describe the results in a written sum-
mary. Which choice do you prefer in this example?

To interpret the meaning of the random variable X in this setting, we need
to know the sample size n. The conclusion we would draw about student opin-
ions in our survey would be quite different if we had observed X = 840 from a
sample of size n = 1000.

When a random variable has two possible outcomes, we can use the samplesample proportion
proportion, p̂ = X/n, as a summary.
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E 5.4 The sample proportion. The sample proportion of students surveyed
who think that parents put too much pressure on their children is

p̂ = 840
2000

= 0.42
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USE YOUR KNOWLEDGE
5.1 Use of the Internet to find a place to live. A poll of 1500 college stu-

dents asked whether or not they had used the Internet to find a place
to live sometime within the past year. There were 525 students who
answered “Yes”; the other 975 answered “No.”

(a) What is n?

(b) Choose one of the two possible outcomes to define the random
variable, X. Give a reason for your choice.

(c) What is the value of X?

(d) Find the sample proportion, p̂.

5.2 Seniors who have taken a statistics course. In a random sample
of 200 senior students from your college, 40% reported that they had
taken a statistics course. Give n, X, and p̂ for this setting.

Sample counts and sample proportions are common statistics. This section
describes their sampling distributions.

The binomial distributions for sample counts
The distribution of a count X depends on how the data are produced. Here is
a simple but common situation.

THE BINOMIAL SETTING

1. There are a fixed number n of observations.

2. The n observations are all independent.

3. Each observation falls into one of just two categories, which for con-
venience we call “success” and “failure.”

4. The probability of a success, call it p, is the same for each observation.

Think of tossing a coin n times as an example of the binomial setting. Each
toss gives either heads or tails. The outcomes of successive tosses are indepen-
dent. If we call heads a success, then p is the probability of a head and remains
the same as long as we toss the same coin. The number of heads we count is a
random variable X. The distribution of X, and more generally of the count of
successes in any binomial setting, is completely determined by the number of
observations n and the success probability p.

BINOMIAL DISTRIBUTIONS

The distribution of the count X of successes in the binomial setting is
called the binomial distribution with parameters n and p. The parame-
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ter n is the number of observations, and p is the probability of a success
on any one observation. The possible values of X are the whole numbers
from 0 to n. As an abbreviation, we say that X is B(n, p).

The binomial distributions are an important class of discrete probability
distributions. Later in this section we will learn how to assign probabilities to
outcomes and how to find the mean and standard deviation of binomial distri-
butions. The most important skill for using binomial distributions is the ability

CAUTION

!
to recognize situations to which they do and don’t apply.
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E 5.5 Two binomial examples.

(a) Genetics says that children receive genes from their parents indepen-
dently. Each child of a particular pair of parents has probability 0.25 of
having type O blood. If these parents have 3 children, the number who
have type O blood is the count X of successes in 3 independent trials
with probability 0.25 of a success on each trial. So X has the B(3, 0.25)

distribution.

(b) Engineers define reliability as the probability that an item will perform its
function under specific conditions for a specific period of time. Replace-
ment heart valves made of animal tissue, for example, have probability
0.77 of performing well for 15 years.1 The probability of failure is there-
fore 0.23. It is reasonable to assume that valves in different patients fail
(or not) independently of each other. The number of patients in a group
of 500 who will need another valve replacement within 15 years has the
B(500, 0.23) distribution.

USE YOUR KNOWLEDGE
5.3 Toss a coin. Toss a fair coin 20 times. Give the distribution of X, and

the number of heads that you observe.

5.4 Genetics and blood types. Genetics says that children receive genes
from their parents independently. Suppose each child of a particular
pair of parents has probability 0.25 of having type O blood. If these
parents have 4 children, what is the distribution of the number who
have type O blood? Explain your answer.

Binomial distributions in statistical sampling
The binomial distributions are important in statistics when we wish to make
inferences about the proportion p of “successes” in a population. Here is a typ-
ical example.
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E 5.6 Audits of financial records. The financial records of businesses may
be audited by state tax authorities to test compliance with tax laws. It is too
time-consuming to examine all sales and purchases made by a company dur-
ing the period covered by the audit. Suppose the auditor examines an SRS of
150 sales records out of 10,000 available. One issue is whether each sale was
correctly classified as subject to state sales tax or not. Suppose that 800 of the
10,000 sales are incorrectly classified. Is the count X of misclassified records
in the sample a binomial random variable?

Choosing an SRS from a population is not quite a binomial setting. Removing
one record in Example 5.6 changes the proportion of bad records in the remain-
ing population, so the state of the second record chosen is not independent of
the first. Because the population is large, however, removing a few items has a
very small effect on the composition of the remaining population. Successive
inspection results are very nearly independent. The population proportion of
misclassified records is

p = 800
10,000

= 0.08

If the first record chosen is bad, the proportion of bad records remaining is
799/9999 = 0.079908. If the first record is good, the proportion of bad records
left is 800/9999 = 0.080008. These proportions are so close to 0.08 that for
practical purposes we can act as if removing one record has no effect on the
proportion of misclassified records remaining. We act as if the count X of
misclassified sales records in the audit sample has the binomial distribution
B(150, 0.08).

Populations like that described in Example 5.6 often contain a relatively
small number of items with very large values. An SRS taken from such a popu-
lation will likely include very few items of this type. Therefore, it is common to
use a stratified sample in settings like this. Strata are defined based on dollarLOOK BACK

stratified sample,
page 203

value, and within each stratum, an SRS is taken. The results are then combined
to obtain an estimate for the entire population.

SAMPLING DISTRIBUTION OF A COUNT

A population contains proportion p of successes. If the population is
much larger than the sample, the count X of successes in an SRS of size
n has approximately the binomial distribution B(n, p).

The accuracy of this approximation improves as the size of the popula-
tion increases relative to the size of the sample. As a rule of thumb, we
will use the binomial sampling distribution for counts when the popula-
tion is at least 20 times as large as the sample.

Finding binomial probabilities: software and tables
We will later give a formula for the probability that a binomial random variable
takes any of its values. In practice, you will rarely have to use this formula for
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calculations. Some calculators and most statistical software packages calculate
binomial probabilities.
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E 5.7 The probability of exactly 10 misclassified sales records. In the
audit setting of Example 5.6, what is the probability that the audit finds ex-
actly 10 misclassified sales records? What is the probability that the audit
finds no more than 10 misclassified records? Figure 5.1 shows the output
from one statistical software system. You see that if the count X has the
B(150, 0.08) distribution,

P(X = 10) = 0.106959 P(X ≤ 10) = 0.338427

It was easy to request these calculations in the software’s menus. The out-
put supplies more decimal places than we need and uses labels that may not
be helpful (for example, “Probability Density Function” when the distribu-
tion is discrete, not continuous). But, as usual with software, we can ignore
distractions and find the results we need.

FIGURE 5.1 Binomial
probabilities: output from the
Minitab statistical software, for
Example 5.7.

If you do not have suitable computing facilities, you can still shorten the
work of calculating binomial probabilities for some values of n and p by looking
up probabilities in Table C in the back of this book. The entries in the table
are the probabilities P(X = k) of individual outcomes for a binomial random
variable X.
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E 5.8 The probability histogram. Suppose that the audit in Example 5.6
chose just 15 sales records. What is the probability that no more than 1 of the
15 is misclassified? The count X of misclassified records in the sample has ap-
proximately the B(15, 0.08) distribution. Figure 5.2 is a probability histogram
for this distribution. The distribution is strongly skewed. Although X can take
any whole-number value from 0 to 15, the probabilities of values larger than
5 are so small that they do not appear in the histogram.
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FIGURE 5.2 Probability
histogram for the binomial
distribution with n = 15 and
p = 0.08, for Example 5.8.

•

We want to calculate

P(X ≤ 1) = P(X = 0) + P(X = 1)

when X has the B(15, 0.08) distribution. To use Table C for this calculation,
look opposite n = 15 and under p = 0.08. This part of the table appears at the
left. The entry opposite each k is P(X = k). Blank entries are 0 to four decimal
places, so we have omitted them here. You see that

P(X ≤ 1) = P(X = 0) + P(X = 1)

= 0.2863 + 0.3734 = 0.6597

About two-thirds of all samples will contain no more than 1 bad record.
In fact, almost 29% of the samples will contain no bad records. The sample
of size 15 cannot be trusted to provide adequate evidence about misclassified
sales records. A larger number of observations is needed.

p

n k .08

15 0 .2863
1 .3734
2 .2273
3 .0857
4 .0223
5 .0043
6 .0006
7 .0001
8
9

The values of p that appear in Table C are all 0.5 or smaller. When the prob-
ability of a success is greater than 0.5, restate the problem in terms of the num-
ber of failures. The probability of a failure is less than 0.5 when the probability
of a success exceeds 0.5. When using the table, always stop to ask whether you
must count successes or failures.
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E 5.9 She makes 75% of her free throws. Corinne is a basketball player
who makes 75% of her free throws over the course of a season. In a key game,
Corinne shoots 12 free throws and misses 5 of them. The fans think that she
failed because she was nervous. Is it unusual for Corinne to perform this
poorly?

To answer this question, assume that free throws are independent with
probability 0.75 of a success on each shot. (Studies of long sequences of free
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throws have found no evidence that they are dependent, so this is a reason-
able assumption.) Because the probability of making a free throw is greater
than 0.5, we count misses in order to use Table C. The probability of a miss is
1 − 0.75, or 0.25. The number X of misses in 12 attempts has the B(12, 0.25)

distribution.
We want the probability of missing 5 or more. This is

P(X ≥ 5) = P(X = 5) + P(X = 6) + · · · + P(X = 12)

= 0.1032 + 0.0401 + · · · + 0.0000 = 0.1576

Corinne will miss 5 or more out of 12 free throws about 16% of the time, or
roughly one of every six games. While below her average level, this perfor-
mance is well within the range of the usual chance variation in her shooting.

USE YOUR KNOWLEDGE
5.5 Find the probabilities.

(a) Suppose X has the B(4, 0.3) distribution. Use software or Table C
to find P(X = 0) and P(X ≥ 3).

(b) Suppose X has the B(4, 0.7) distribution. Use software or Table C
to find P(X = 4) and P(X ≤ 1).

(c) Explain the relationship between your answers to parts (a) and (b)
of this exercise.

Binomial mean and standard deviation
If a count X has the B(n, p) distribution, what are the mean μX and the standard
deviation σX? We can guess the mean. If Corinne makes 75% of her free throws,
the mean number made in 12 tries should be 75% of 12, or 9. That’s μX when
X is B(12, 0.75). Intuition suggests more generally that the mean of the B(n, p)

distribution should be np. Can we show that this is correct and also obtain a
short formula for the standard deviation? Because binomial distributions are
discrete probability distributions, we could find the mean and variance by us-
ing the definitions in Section 4.4. Here is an easier way.LOOK BACK

means and variances
of random variables,
page 270

A binomial random variable X is the count of successes in n independent
observations that each have the same probability p of success. Let the random
variable Si indicate whether the ith observation is a success or failure by taking
the values Si = 1 if a success occurs and Si = 0 if the outcome is a failure. The Si

are independent because the observations are, and each Si has the same simple
distribution:

Outcome 1 0

Probability p 1 − p

From the definition of the mean of a discrete random variable, we know that

LOOK BACK
mean and variance of
a discrete random
variable, page 271

the mean of each Si is
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μS = (1)(p) + (0)(1 − p) = p

Similarly, the definition of the variance shows that σ 2
S = p(1 − p). Because each

Si is 1 for a hit and 0 for a miss, to find the total number of hits X we add the
Si’s:

X = S1 + S2 + · · · + Sn

Apply the addition rules for means and variances to this sum. To find the mean
of X we add the means of the Si’s:

μX = μS1 + μS2 + · · · + μSn

= nμS = np

Similarly, the variance is n times the variance of a single S, so that

σ 2
X = np(1 − p)

The standard deviation σX is the square root of the variance. Here is the result.

BINOMIAL MEAN AND STANDARD DEVIATION

If a count X has the binomial distribution B(n, p), then

μX = np

σX = √
np(1 − p)

•
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E 5.10 The Helsinki Heart Study. The Helsinki Heart Study asked whether
the anticholesterol drug gemfibrozil reduces heart attacks. In planning such
an experiment, the researchers must be confident that the sample sizes are
large enough to enable them to observe enough heart attacks. The Helsinki
study planned to give gemfibrozil to about 2000 men aged 40 to 55 and a
placebo to another 2000. The probability of a heart attack during the five-
year period of the study for men this age is about 0.04. What are the mean
and standard deviation of the number of heart attacks that will be observed
in one group if the treatment does not change this probability?

There are 2000 independent observations, each having probability p =
0.04 of a heart attack. The count X of heart attacks has the B(2000, 0.04)

distribution, so that

μX = np = (2000)(0.04) = 80

σX = √
np(1 − p) = √

(2000)(0.04)(0.96) = 8.76

The expected number of heart attacks is large enough to permit conclusions
about the effectiveness of the drug. In fact, there were 84 heart attacks among
the 2035 men actually assigned to the placebo, quite close to the mean. The
gemfibrozil group of 2046 men suffered only 56 heart attacks. This is evidence
that the drug does reduce the chance of a heart attack.
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Sample proportions
What proportion of a company’s sales records have an incorrect sales tax clas-
sification? What percent of adults favor stronger laws restricting firearms? In
statistical sampling we often want to estimate the proportion p of “successes”
in a population. Our estimator is the sample proportion of successes:

p̂ = count of successes in sample
size of sample

= X
n

Be sure to distinguish between the proportion p̂ and the count X. The count takes

CAUTION

! whole-number values between 0 and n, but a proportion is always a number be-
tween 0 and 1. In the binomial setting, the count X has a binomial distribution.
The proportion p̂ does not have a binomial distribution. We can, however, do
probability calculations about p̂ by restating them in terms of the count X and
using binomial methods.

•
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E 5.11 Do you like buying clothes? A sample survey asks a nationwide
random sample of 2500 adults if they agree or disagree that “I like buying new
clothes, but shopping is often frustrating and time-consuming.” Suppose that
60% of all adults would agree if asked this question. What is the probability
that the sample proportion who agree is at least 58%?

The count X who agree has the binomial distribution B(2500, 0.6). The
sample proportion p̂ = X/2500 does not have a binomial distribution, be-
cause it is not a count. We can translate any question about a sample pro-
portion p̂ into a question about the count X. Because 58% of 2500 is 1450,

P( p̂ ≥ 0.58) = P(X ≥ 1450)

= P(X = 1450) + P(X = 1451) + · · · + P(X = 2500)

This is a rather elaborate calculation. We must add more than 1000 binomial
probabilities. Software tells us that P( p̂ ≥ 0.58) = 0.9802. Because some soft-
ware packages cannot handle an n as large as 2500, we need another way to
do this calculation.

As a first step, find the mean and standard deviation of a sample proportion.LOOK BACK
rules for means,
page 278

rules for variances,
page 282

We know the mean and standard deviation of a sample count, so apply the rules
from Section 4.4 for the mean and variance of a constant times a random vari-
able. Here is the result.

MEAN AND STANDARD DEVIATION OF A SAMPLE PROPORTION

Let p̂ be the sample proportion of successes in an SRS of size n drawn
from a large population having population proportion p of successes.
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The mean and standard deviation of p̂ are

μp̂ = p

σp̂ =
√

p(1 − p)

n

The formula for σp̂ is exactly correct in the binomial setting. It is approx-
imately correct for an SRS from a large population. We will use it when the
population is at least 20 times as large as the sample.
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E 5.12 The mean and the standard deviation. The mean and standard
deviation of the proportion of the survey respondents in Example 5.11 who
find shopping frustrating are

μp̂ = p = 0.6

σp̂ =
√

p(1 − p)

n
=

√
(0.6)(0.4)

2500
= 0.0098

USE YOUR KNOWLEDGE
5.6 Find the mean and the standard deviation. If we toss a fair coin 100

times, the number of heads is a random variable that is binomial.

(a) Find the mean and the standard deviation of the sample propor-
tion.

(b) Is your answer to part (a) the same as the mean and the standard
deviation of the sample count? Explain your answer.

The fact that the mean of p̂ is p states in statistical language that the sample
proportion p̂ in an SRS is an unbiased estimator of the population proportion p.
When a sample is drawn from a new population having a different value of theLOOK BACK

unbiased statistic,
page 217

population proportion p, the sampling distribution of the unbiased estimator
p̂ changes so that its mean moves to the new value of p. We observed this fact
empirically in Section 3.4 and have now verified it from the laws of probability.

The variability of p̂ about its mean, as described by the variance or standard
deviation, gets smaller as the sample size increases. So a sample proportion
from a large sample will usually lie quite close to the population proportion p.
We observed this in the simulation experiment on page 214 in Section 3.3. Now
we have discovered exactly how the variability decreases: the standard devia-
tion is

√
p(1 − p)/n. The

√
n in the denominator means that the sample size must

CAUTION

!
be multiplied by 4 if we wish to divide the standard deviation in half.

Normal approximation for counts and proportions
Using simulation, we discovered in Section 3.4 that the sampling distribution
of a sample proportion p̂ is close to Normal. Now we know that the distribu-
tion of p̂ is that of a binomial count divided by the sample size n. This seems
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at first to be a contradiction. To clear up the matter, look at Figure 5.3. This
is a probability histogram of the exact distribution of the proportion of frus-
trated shoppers p̂, based on the binomial distribution B(2500, 0.6). There are
hundreds of narrow bars, one for each of the 2501 possible values of p̂. Most
have probabilities too small to show in a graph. The probability histogram looks
very Normal! In fact, both the count X and the sample proportion p̂ are approx-
imately Normal in large samples.
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FIGURE 5.3 Probability
histogram of the sample
proportion p̂ based on a
binomial count with n = 2500
and p = 0.6. The distribution is
very close to Normal.

NORMAL APPROXIMATION FOR COUNTS AND PROPORTIONS

Draw an SRS of size n from a large population having population pro-
portion p of successes. Let X be the count of successes in the sample and
p̂ = X/n be the sample proportion of successes. When n is large, the sam-
pling distributions of these statistics are approximately Normal:

X is approximately N(np,
√

np(1 − p))

p̂ is approximately N

(
p,

√
p(1 − p)

n

)

As a rule of thumb, we will use this approximation for values of n and p
that satisfy np ≥ 10 and n(1 − p) ≥ 10.

These Normal approximations are easy to remember because they say that p̂
and X are Normal, with their usual means and standard deviations. Whether or
not you use the Normal approximations should depend on how accurate your
calculations need to be. For most statistical purposes great accuracy is not re-
quired. Our “rule of thumb” for use of the Normal approximations reflects this
judgment.
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The accuracy of the Normal approximations improves as the sample size n
increases. They are most accurate for any fixed n when p is close to 1/2, and
least accurate when p is near 0 or 1. You can compare binomial distributions
with their Normal approximations by using the Normal Approximation to Bino-
mial applet. This applet allows you to change n or p while watching the effect on

AP
PLET

the binomial probability histogram and the Normal curve that approximates it.

pSRS size n

SRS size n
SRS size n

p (1 – p)
n

Mean p

Values of p
Population

proportion p

p

p

FIGURE 5.4 The sampling
distribution of a sample
proportion p̂ is approximately
Normal with mean p and
standard deviation

√
p(1 − p)/n.

Figure 5.4 summarizes the distribution of a sample proportion in a form
that emphasizes the big idea of a sampling distribution. Sampling distributions
answer the question “What would happen if we took many samples from the
same population?”

• Keep taking random samples of size n from a population that contains pro-
portion p of successes.

• Find the sample proportion p̂ for each sample.

• Collect all the p̂’s and display their distribution.

That’s the sampling distribution of p̂.
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E 5.13 Compare the Normal approximation with the exact calculation.
Let’s compare the Normal approximation for the calculation of Example 5.11
with the exact calculation from software. We want to calculate P( p̂ ≥ 0.58)

when the sample size is n = 2500 and the population proportion is p = 0.6.
Example 5.12 shows that

μp̂ = p = 0.6

σp̂ =
√

p(1 − p)

n
= 0.0098

Act as if p̂ were Normal with mean 0.6 and standard deviation 0.0098. The
approximate probability, as illustrated in Figure 5.5, is

P( p̂ ≥ 0.58) = P
(

p̂ − 0.6
0.0098

≥ 0.58 − 0.6
0.0098

)
.= P(Z ≥ −2.04) = 0.9793

That is, about 98% of all samples have a sample proportion that is at least
0.58. Because the sample was large, this Normal approximation is quite ac-
curate. It misses the software value 0.9802 by only 0.0009.
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Probability = 0.9793

p =
z = – 2.04

0.58
FIGURE 5.5 The Normal
probability calculation for
Example 5.13.
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E 5.14 Using the Normal appoximation. The audit described in Example
5.6 examined an SRS of 150 sales records for compliance with sales tax laws.
In fact, 8% of all the company’s sales records have an incorrect sales tax clas-
sification. The count X of bad records in the sample has approximately the
B(150, 0.08) distribution.

According to the Normal approximation to the binomial distributions, the
count X is approximately Normal with mean and standard deviation

μX = np = (150)(0.08) = 12

σX = √
np(1 − p) = √

(150)(0.08)(0.92)

= 3.3226

The Normal approximation for the probability of no more than 10 misclassi-
fied records is the area to the left of X = 10 under the Normal curve. Using
Table A,

P(X ≤ 10) = P
(

X − 12
3.3226

≤ 10 − 12
3.3226

)
.= P(Z ≤ −0.60) = 0.2743

Software tells us that the actual binomial probability that no more than 10 of
the records in the sample are misclassified is P(X ≤ 10) = 0.3384. The Normal
approximation is only roughly accurate. Because np = 12, this combination
of n and p is close to the border of the values for which we are willing to use
the approximation.

The distribution of the count of bad records in a sample of 15 is distinctly
non-Normal, as Figure 5.2 showed. When we increase the sample size to 150,
however, the shape of the binomial distribution becomes roughly Normal.
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Misclassified records in sample

2 4 6 8 18 20 22 24

FIGURE 5.6 Probability
histogram and Normal
approximation for the binomial
distribution with n = 150 and
p = 0.08, for Example 5.14.

Figure 5.6 displays the probability histogram of the binomial distribution with
the density curve of the approximating Normal distribution superimposed.
Both distributions have the same mean and standard deviation, and both the
area under the histogram and the area under the curve are 1. The Normal
curve fits the histogram reasonably well. Look closely: the histogram is slightly
skewed to the right, a property that the symmetric Normal curve can’t match.

USE YOUR KNOWLEDGE
5.7 Use the Normal approximation. Suppose we toss a fair coin 100

times. Use the Normal approximation to find the probability that the
sample proportion is

(a) between 0.4 and 0.6. (b) between 0.45 and 0.55.

The continuity correction*
Figure 5.7 illustrates an idea that greatly improves the accuracy of the Normal
approximation to binomial probabilities. The binomial probability P(X ≤ 10)

is the area of the histogram bars for values 0 to 10. The bar for X = 10 actually
extends from 9.5 to 10.5. Because the discrete binomial distribution puts prob-
ability only on whole numbers, the probabilities P(X ≤ 10) and P(X ≤ 10.5) are
the same. The Normal distribution spreads probability continuously, so these
two Normal probabilities are different. The Normal approximation is more ac-
curate if we consider X = 10 to extend from 9.5 to 10.5, matching the bar in
the probability histogram.

The event {X ≤ 10} includes the outcome X = 10. Figure 5.7 shades the area
under the Normal curve that matches all the histogram bars for outcomes 0 to

*This material can be omitted if desired.
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2 4 6 8 10 12 14 16 18 20 22 24
Misclassified records in sample

FIGURE 5.7 Area under the
Normal approximation curve for
the probability in Example 5.14.

10, bounded on the right not by 10, but by 10.5. So P(X ≤ 10) is calculated as
P(X ≤ 10.5). On the other hand, P(X < 10) excludes the outcome X = 10, so
we exclude the entire interval from 9.5 to 10.5 and calculate P(X ≤ 9.5) from
the Normal table. Here is the result of the Normal calculation in Example 5.14
improved in this way:

P(X ≤ 10) = P(X ≤ 10.5)

= P
(

X − 12
3.3226

≤ 10.5 − 12
3.3226

)
.= P(Z ≤ −0.45) = 0.3264

The improved approximation misses the binomial probability by only 0.012.
Acting as though a whole number occupies the interval from 0.5 below to 0.5
above the number is called the continuity correction to the Normal approxi-continuity correction
mation. If you need accurate values for binomial probabilities, try to use soft-
ware to do exact calculations. If no software is available, use the continuity
correction unless n is very large. Because most statistical purposes do not re-
quire extremely accurate probability calculations, we do not emphasize use of
the continuity correction.

Binomial formula*
We can find a formula for the probability that a binomial random variable takes
any value by adding probabilities for the different ways of getting exactly that
many successes in n observations. Here is the example we will use to show the
idea.

*The formula for binomial probabilities is useful in many settings, but we will not need it in
our study of statistical inference. This section can therefore be omitted if desired.
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E 5.15 Blood types of children. Each child born to a particular set of par-
ents has probability 0.25 of having blood type O. If these parents have 5 chil-
dren, what is the probability that exactly 2 of them have type O blood?

The count of children with type O blood is a binomial random variable X
with n = 5 tries and probability p = 0.25 of a success on each try. We want
P(X = 2).

Because the method doesn’t depend on the specific example, we will use “S”
for success and “F” for failure. In Example 5.15, “S” would stand for type O
blood. Do the work in two steps.

Step 1: Find the probability that a specific 2 of the 5 tries give successes, say
the first and the third. This is the outcome SFSFF. The multiplication
rule for independent events tells us that

P(SFSFF) = P(S)P(F)P(S)P(F)P(F)

= (0.25)(0.75)(0.25)(0.75)(0.75)

= (0.25)2(0.75)3

Step 2: Observe that the probability of any one arrangement of 2 S’s and 3 F’s
has this same probability. That’s true because we multiply together 0.25
twice and 0.75 three times whenever we have 2 S’s and 3 F’s. The prob-
ability that X = 2 is the probability of getting 2 S’s and 3 F’s in any ar-
rangement whatsoever. Here are all the possible arrangements:

SSFFF SFSFF SFFSF SFFFS FSSFF
FSFSF FSFFS FFSSF FFSFS FFFSS

There are 10 of them, all with the same probability. The overall proba-
bility of 2 successes is therefore

P(X = 2) = 10(0.25)2(0.75)3 = 0.2637

The pattern of this calculation works for any binomial probability. To use
it, we need to be able to count the number of arrangements of k successes in n
observations without actually listing them. We use the following fact to do the
counting.

BINOMIAL COEFFICIENT

The number of ways of arranging k successes among n observations is
given by the binomial coefficient(

n
k

)
= n!

k! (n − k)!
for k = 0, 1, 2, . . . , n.
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The formula for binomial coefficients uses the factorial notation. The fac-factorial
torial n! for any positive whole number n is

n! = n × (n − 1) × (n − 2) × · · · × 3 × 2 × 1

Also, 0! = 1. Notice that the larger of the two factorials in the denominator of a
binomial coefficient will cancel much of the n! in the numerator. For example,
the binomial coefficient we need for Example 5.15 is(

5
2

)
= 5!

2! 3!

= (5)(4)(3)(2)(1)

(2)(1) × (3)(2)(1)

= (5)(4)

(2)(1)
= 20

2
= 10

This agrees with our previous calculation.

The notation
(

n
k

)
is not related to the fraction

n
k

. A helpful way to remember

CAUTION

! its meaning is to read it as “binomial coefficient n choose k.” Binomial coeffi-
cients have many uses in mathematics, but we are interested in them only as an

aid to finding binomial probabilities. The binomial coefficient
(

n
k

)
counts the

number of ways in which k successes can be distributed among n observations.
The binomial probability P(X = k) is this count multiplied by the probability
of any specific arrangement of the k successes. Here is the formula we seek.

BINOMIAL PROBABILITY

If X has the binomial distribution B(n, p) with n observations and prob-
ability p of success on each observation, the possible values of X are
0, 1, 2, . . . , n. If k is any one of these values, the binomial probability is

P(X = k) =
(

n
k

)
pk(1 − p)n−k

Here is an example of the use of the binomial probability formula.
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E 5.16 Using the binomial probability formula. The number X of mis-
classified sales records in the auditor’s sample in Example 5.8 has the
B(15, 0.08) distribution. The probability of finding no more than 1 misclassi-
fied record is

P(X ≤ 1) = P(X = 0) + P(X = 1)

=
(

15
0

)
(0.08)0(0.92)15 +

(
15
1

)
(0.08)1(0.92)14

= 15!
0! 15! (1)(0.2863) + 15!

1! 14! (0.08)(0.3112)
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= (1)(1)(0.2863) + (15)(0.08)(0.3112)

= 0.2863 + 0.3734 = 0.6597

The calculation used the facts that 0! = 1 and that a0 = 1 for any number
a �= 0. The result agrees with that obtained from Table C in Example 5.8.

USE YOUR KNOWLEDGE
5.8 A bent coin. A coin is slightly bent, and as a result the probability of

a head is 0.52. Suppose that you toss the coin four times.

(a) Use the binomial formula to find the probability of 3 or more
heads.

(b) Compare your answer with the one that you would obtain if the
coin were fair.

SECTION 5.1 Summary

A count X of successes has the binomial distribution B(n, p) in the binomial
setting: there are n trials, all independent, each resulting in a success or a fail-
ure, and each having the same probability p of a success.

Binomial probabilities are most easily found by software. There is an exact
formula that is practical for calculations when n is small. Table C contains bi-
nomial probabilities for some values of n and p. For large n, you can use the
Normal approximation.

The binomial distribution B(n, p) is a good approximation to the sampling dis-
tribution of the count of successes in an SRS of size n from a large popula-
tion containing proportion p of successes. We will use this approximation when
the population is at least 20 times larger than the sample.

The mean and standard deviation of a binomial count X and a sample pro-
portion of successes p̂ = X/n are

μX = np μp̂ = p

σX = √
np(1 − p) σp̂ =

√
p(1 − p)

n

The sample proportion p̂ is therefore an unbiased estimator of the population
proportion p.

The Normal approximation to the binomial distribution says that if X is a
count having the B(n, p) distribution, then when n is large,

X is approximately N(np,
√

np(1 − p))

p̂ is approximately N

(
p,

√
p(1 − p)

n

)
We will use these approximations when np ≥ 10 and n(1 − p) ≥ 10. The conti-
nuity correction improves the accuracy of the Normal approximations.
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The exact binomial probability formula is

P(X = k) =
(

n
k

)
pk(1 − p)n−k

where the possible values of X are k = 0, 1, . . . , n. The binomial probability for-
mula uses the binomial coefficient(

n
k

)
= n!

k! (n − k)!
Here the factorial n! is

n! = n × (n − 1) × (n − 2) × · · · × 3 × 2 × 1

for positive whole numbers n and 0! = 1. The binomial coefficient counts the
number of ways of distributing k successes among n trials.

SECTION 5.1 Exercises
For Exercises 5.1 and 5.2, see page 314; for Exercises 5.3
and 5.4, see page 315; for Exercise 5.5, see page 319; for
Exercise 5.6, see page 322; for Exercise 5.7, see page 326;
and for Exercise 5.8, see page 330.

Most binomial probability calculations required in these
exercises can be done by using Table C or the Normal
approximation. Your instructor may request that you use
the binomial probability formula or software. In exercises
requiring the Normal approximation, you should use the
continuity correction if you studied that topic.

5.9 What is wrong? Explain what is wrong in each of
the following scenarios.

(a) If you toss a fair coin three times and a head
appears each time, then the next toss is more likely
to be a tail than a head.

(b) If you toss a fair coin three times and a head
appears each time, then the next toss is more likely
to be a head than a tail.

(c) p̂ is one of the parameters for a binomial
distribution.

5.10 What is wrong? Explain what is wrong in each of
the following scenarios.

(a) In the binomial setting X is a proportion.

(b) The variance for a binomial count is√
p(1 − p)/n.

(c) The Normal approximation to the binomial
distribution is always accurate when n is greater
than 1000.

5.11 Should you use the binomial distribution? In
each situation below, is it reasonable to use a

binomial distribution for the random variable X?
Give reasons for your answer in each case. If a
binomial distribution applies, give the values of n
and p.

(a) A poll of 200 college students asks whether or
not you are usually irritable in the morning. X is the
number who reply that they are usually irritable in
the morning.

(b) You toss a fair coin until a head appears. X is
the count of the number of tosses that you make.

(c) Most calls made at random by sample surveys
don’t succeed in talking with a live person. Of calls
to New York City, only 1/12 succeed. A survey calls
500 randomly selected numbers in New York City. X
is the number that reach a live person.

5.12 Should you use the binomial distribution? In
each situation below, is it reasonable to use a
binomial distribution for the random variable X?
Give reasons for your answer in each case.

(a) A random sample of students in a fitness study.
X is the mean systolic blood pressure of the sample.

(b) A manufacturer of running shoes picks a
random sample of the production of shoes each day
for a detailed inspection. Today’s sample of 20 pairs
of shoes includes 1 pair with a defect.

(c) A nutrition study chooses an SRS of college
students. They are asked whether or not they usually
eat at least five servings of fruits or vegetables per
day. X is the number who say that they do.

5.13 Typographic errors. Typographic errors in a
text are either nonword errors (as when “the” is
typed as “teh”) or word errors that result in a real
but incorrect word. Spell-checking software will
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catch nonword errors but not word errors. Human
proofreaders catch 70% of word errors. You ask a
fellow student to proofread an essay in which you
have deliberately made 10 word errors.

(a) If the student matches the usual 70% rate, what
is the distribution of the number of errors caught?
What is the distribution of the number of errors
missed?

(b) Missing 4 or more out of 10 errors seems a
poor performance. What is the probability that a
proofreader who catches 70% of word errors misses
4 or more out of 10?

5.14 Visits to Web sites. What kinds of Web sites do
males aged 18 to 34 visit most often? Pornographic
sites take first place, but about 50% of male Internet
users in this age group visit an auction site such as
eBay at least once a month.2 Interview a random
sample of 15 male Internet users aged 18 to 34.

(a) What is the distribution of the number who have
visited an online auction site in the past month?

(b) What is the probability that at least 8 of the 15
have visited an auction site in the past month?

5.15 Typographic errors. Return to the proofreading
setting of Exercise 5.13.

(a) What is the mean number of errors caught?
What is the mean number of errors missed? You
see that these two means must add to 10, the total
number of errors.

(b) What is the standard deviation σ of the number
of errors caught?

(c) Suppose that a proofreader catches 90% of
word errors, so that p = 0.9. What is σ in this
case? What is σ if p = 0.99? What happens to the
standard deviation of a binomial distribution as the
probability of a success gets close to 1?

5.16 Visits to Web sites. Suppose that 50% of male
Internet users aged 18 to 34 have visited an auction
site at least once in the past month.

(a) If you interview 15 at random, what is the mean
of the count X who have visited an auction site?
What is the mean of the proportion p̂ in your sample
who have visited an auction site?

(b) Repeat the calculations in (a) for samples of
size 150 and 1500. What happens to the mean count
of successes as the sample size increases? What
happens to the mean proportion of successes?

5.17 C
H

ALLENG
E Typographic errors. In the proofreading

setting of Exercise 5.13, what is the smallest

number of misses m with P(X ≥ m) no larger than
0.05? You might consider m or more misses as
evidence that a proofreader actually catches fewer
than 70% of word errors.

5.18 Attitudes toward drinking and behavior
studies. Some of the methods in this section
are approximations rather than exact probability
results. We have given rules of thumb for safe use of
these approximations.

(a) You are interested in attitudes toward drinking
among the 75 members of a fraternity. You choose
30 members at random to interview. One question
is “Have you had five or more drinks at one time
during the last week?” Suppose that in fact 30% of
the 75 members would say “Yes.” Explain why you
cannot safely use the B(30, 0.3) distribution for the
count X in your sample who say “Yes.”

(b) The National AIDS Behavioral Surveys found
that 0.2% (that’s 0.002 as a decimal fraction) of
adult heterosexuals had both received a blood
transfusion and had a sexual partner from a group
at high risk of AIDS. Suppose that this national
proportion holds for your region. Explain why you
cannot safely use the Normal approximation for the
sample proportion who fall in this group when you
interview an SRS of 1000 adults.

5.19 Random digits. Each entry in a table of random
digits like Table B has probability 0.1 of being a 0,
and digits are independent of each other.

(a) What is the probability that a group of five digits
from the table will contain at least one 5?

(b) What is the mean number of 5s in lines 40 digits
long?

5.20
AP

PLET

Use the Probability applet. The Probability
applet simulates tosses of a coin. You can

choose the number of tosses n and the probability
p of a head. You can therefore use the applet to
simulate binomial random variables.

The count of misclassified sales records
in Example 5.8 (page 317) has the binomial
distribution with n = 15 and p = 0.08. Set these
values for the number of tosses and probability
of heads in the applet. Table C shows that the
probability of getting a sample with exactly 0
misclassified records is 0.2863. This is the long-run
proportion of samples with exactly 1 bad record.
Click “Toss” and “Reset” repeatedly to simulate 25
samples. Record the number of bad records (the
count of heads) in each of the 25 samples. What
proportion of the 25 samples had exactly 0 bad
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records? Remember that probability tells us only
what happens in the long run.

5.21 Inheritance of blood types. Children inherit their
blood type from their parents, with probabilities
that reflect the parents’ genetic makeup. Children of
Juan and Maria each have probability 1/4 of having
blood type A and inherit independently of each
other. Juan and Maria plan to have 4 children; let X
be the number who have blood type A.

(a) What are n and p in the binomial distribution of
X?

(b) Find the probability of each possible value
of X, and draw a probability histogram for this
distribution.

(c) Find the mean number of children with type A
blood, and mark the location of the mean on your
probability histogram.

5.22 The ideal number of children. “What do you
think is the ideal number of children for a family
to have?” A Gallup Poll asked this question of 1016
randomly chosen adults. Almost half (49%) thought
two children was ideal.3 Suppose that p = 0.49 is
exactly true for the population of all adults. Gallup
announced a margin of error of ±3 percentage
points for this poll. What is the probability that the
sample proportion p̂ for an SRS of size n = 1016
falls between 0.46 and 0.52? You see that it is likely,
but not certain, that polls like this give results that
are correct within their margin of error. We will say
more about margins of error in Chapter 6.

5.23 Visiting a casino and betting on college sports. A
Gallup Poll finds that 30% of adults visited a casino
in the past 12 months, and that 6% bet on college
sports.4 These results come from a random sample
of 1011 adults. For an SRS of size n = 1011:

(a) What is the probability that the sample
proportion p̂ is between 0.28 and 0.32 if the
population proportion is p = 0.30?

(b) What is the probability that the sample
proportion p̂ is between 0.04 and 0.08 if the
population proportion is p = 0.06?

(c) How does the probability that p̂ falls within
±0.02 of the true p change as p gets closer to 0?

5.24 How do the results depend on the sample size?
Return to the Gallup Poll setting of Exercise 5.22.
We are supposing that the proportion of all adults
who think that two children is ideal is p = 0.49.
What is the probability that a sample proportion
p̂ falls between 0.46 and 0.52 (that is, within ±3

percentage points of the true p) if the sample is an
SRS of size n = 300? Of size n = 5000? Combine
these results with your work in Exercise 5.22 to
make a general statement about the effect of larger
samples in a sample survey.

5.25 C
H

ALLENG
E A college alcohol study. The Harvard

College Alcohol Study finds that 67% of
college students support efforts to “crack down
on underage drinking.” The study took a sample
of almost 15,000 students, so the population
proportion who support a crackdown is very close
to p = 0.67.5 The administration of your college
surveys an SRS of 200 students and finds that 140
support a crackdown on underage drinking.

(a) What is the sample proportion who support a
crackdown on underage drinking?

(b) If in fact the proportion of all students on your
campus who support a crackdown is the same as
the national 67%, what is the probability that the
proportion in an SRS of 200 students is as large
or larger than the result of the administration’s
sample?

(c) A writer in the student paper says that support
for a crackdown is higher on your campus than
nationally. Write a short letter to the editor
explaining why the survey does not support this
conclusion.

5.26 C
H

ALLENG
E How large a sample is needed? The

changing probabilities you found in
Exercises 5.22 and 5.24 are due to the fact that
the standard deviation of the sample proportion
p̂ gets smaller as the sample size n increases. If
the population proportion is p = 0.49, how large a
sample is needed to reduce the standard deviation
of p̂ to σp̂ = 0.004? (The 68–95–99.7 rule then says
that about 95% of all samples will have p̂ within 0.01
of the true p.)

5.27 A test for ESP. In a test for ESP (extrasensory
perception), the experimenter looks at cards that
are hidden from the subject. Each card contains
either a star, a circle, a wave, or a square. As the
experimenter looks at each of 20 cards in turn, the
subject names the shape on the card.

(a) If a subject simply guesses the shape on each
card, what is the probability of a successful guess on
a single card? Because the cards are independent,
the count of successes in 20 cards has a binomial
distribution.

(b) What is the probability that a subject correctly
guesses at least 10 of the 20 shapes?
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(c) In many repetitions of this experiment with a
subject who is guessing, how many cards will the
subject guess correctly on the average? What is
the standard deviation of the number of correct
guesses?

(d) A standard ESP deck actually contains 25
cards. There are five different shapes, each of which
appears on 5 cards. The subject knows that the
deck has this makeup. Is a binomial model still
appropriate for the count of correct guesses in one
pass through this deck? If so, what are n and p? If
not, why not?

5.28 Admitting students to college. A selective college
would like to have an entering class of 950 students.
Because not all students who are offered admission
accept, the college admits more than 950 students.
Past experience shows that about 75% of the
students admitted will accept. The college decides
to admit 1200 students. Assuming that students
make their decisions independently, the number
who accept has the B(1200, 0.75) distribution. If
this number is less than 950, the college will admit
students from its waiting list.

(a) What are the mean and the standard deviation
of the number X of students who accept?

(b) The college does not want more than 950
students. What is the probability that more than 950
will accept?

(c) If the college decides to increase the number of
admission offers to 1300, what is the probability
that more than 950 will accept?

5.29 C
H

ALLENG
E Is the ESP result better than guessing?

When the ESP study of Exercise 5.27
discovers a subject whose performance appears
to be better than guessing, the study continues at
greater length. The experimenter looks at many
cards bearing one of five shapes (star, square, circle,
wave, and cross) in an order determined by random
numbers. The subject cannot see the experimenter
as he looks at each card in turn, in order to avoid any
possible nonverbal clues. The answers of a subject
who does not have ESP should be independent
observations, each with probability 1/5 of success.
We record 900 attempts.

(a) What are the mean and the standard deviation
of the count of successes?

(b) What are the mean and standard deviation of the
proportion of successes among the 900 attempts?

(c) What is the probability that a subject without
ESP will be successful in at least 24% of 900
attempts?

(d) The researcher considers evidence of ESP to be
a proportion of successes so large that there is only
probability 0.01 that a subject could do this well or
better by guessing. What proportion of successes
must a subject have to meet this standard? (Example
1.32 shows how to do an inverse calculation for the
Normal distribution that is similar to the type
required here.)

5.30 C
H

ALLENG
E Scuba-diving trips. The mailing list of an

agency that markets scuba-diving trips to the
Florida Keys contains 60% males and 40% females.
The agency calls 30 people chosen at random from
its list.

(a) What is the probability that 20 of the 30 are
men? (Use the binomial probability formula.)

(b) What is the probability that the first woman is
reached on the fourth call? (That is, the first 4 calls
give MMMF.)

5.31 Checking for problems with a sample survey.
One way of checking the effect of undercoverage,
nonresponse, and other sources of error in a sample
survey is to compare the sample with known
demographic facts about the population. The 2000
census found that 23,772,494 of the 209,128,094
adults (aged 18 and over) in the United States called
themselves “Black or African American.”

(a) What is the population proportion p of blacks
among American adults?

(b) An opinion poll chooses 1200 adults at random.
What is the mean number of blacks in such samples?
(Explain the reasoning behind your calculation.)

(c) Use a Normal approximation to find the
probability that such a sample will contain 100
or fewer blacks. Be sure to check that you can safely
use the approximation.

5.32 C
H

ALLENG
E Show that these facts are true. Use the

definition of binomial coefficients to show
that each of the following facts is true. Then restate
each fact in words in terms of the number of
ways that k successes can be distributed among n
observations.

(a)
(

n
n

)
= 1 for any whole number n ≥ 1.

(b)
(

n
n − 1

)
= n for any whole number n ≥ 1.

(c)
(

n
k

)
=

(
n

n − k

)
for any n and k with k ≤ n.
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5.33 Multiple-choice tests. Here is a simple probability
model for multiple-choice tests. Suppose that each
student has probability p of correctly answering
a question chosen at random from a universe of
possible questions. (A strong student has a higher p
than a weak student.) The correctness of an answer
to a question is independent of the correctness of
answers to other questions. Jodi is a good student
for whom p = 0.85.

(a) Use the Normal approximation to find the
probability that Jodi scores 80% or lower on a
100-question test.

(b) If the test contains 250 questions, what is the
probability that Jodi will score 80% or lower?

(c) How many questions must the test contain in
order to reduce the standard deviation of Jodi’s
proportion of correct answers to half its value for a
100-item test?

(d) Laura is a weaker student for whom p = 0.75.
Does the answer you gave in (c) for the standard
deviation of Jodi’s score apply to Laura’s standard
deviation also?

5.34 Tossing a die. You are tossing a balanced die that
has probability 1/6 of coming up 1 on each toss.

Tosses are independent. We are interested in how
long we must wait to get the first 1.

(a) The probability of a 1 on the first toss is 1/6.
What is the probability that the first toss is not a 1
and the second toss is a 1?

(b) What is the probability that the first two tosses
are not 1s and the third toss is a 1? This is the
probability that the first 1 occurs on the third toss.

(c) Now you see the pattern. What is the probability
that the first 1 occurs on the fourth toss? On the fifth
toss?

5.35 C
H

ALLENG
E The geometric distribution. Generalize

your work in Exercise 5.34. You have
independent trials, each resulting in a success
or a failure. The probability of a success is p on
each trial. The binomial distribution describes the
count of successes in a fixed number of trials. Now
the number of trials is not fixed; instead, continue
until you get a success. The random variable Y is
the number of the trial on which the first success
occurs. What are the possible values of Y? What is
the probability P(Y = k) for any of these values?
(Comment: The distribution of the number of
trials to the first success is called a geometric
distribution.)

5.2 The Sampling Distribution
of a Sample Mean
Counts and proportions are discrete random variables that describe categor-
ical data. The statistics most often used to describe quantitative data, on the
other hand, are continuous random variables. The sample mean, percentiles,
and standard deviation are examples of statistics based on quantitative data.
Statistical theory describes the sampling distributions of these statistics. In this
section we will concentrate on the sample mean. Because sample means are
just averages of observations, they are among the most common statistics.

•

E
X

A
M

P
L

E 5.17 Sample means are approximately Normal. Figure 5.8 illustrates
two striking facts about the sampling distribution of a sample mean. Figure
5.8(a) displays the distribution of customer service call lengths for a bank ser-
vice center for a month. There are more than 30,000 calls in this population.6

(We omitted a few extreme outliers, calls that lasted more than 20 minutes.)
The distribution is extremely skewed to the right. The population mean is
μ = 173.95 seconds.

Table 1.1 (page 8) contains the lengths of a sample of 80 calls from this
population. The mean of these 80 calls is x = 196.6 seconds. If we take more
samples of size 80, we will get different values of x. To find the sampling
distribution of x, take many random samples of size 80 and calculate x
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FIGURE 5.8 (a) The distribution of lengths of all customer service calls received by a bank
in a month. (b) The distribution of the sample means x for 500 random samples of size 80
from this population. The scales and histogram classes are exactly as in Figure 5.8(a).

•

for each sample. Figure 5.8(b) is the distribution of the values of x for 500
samples. The scales and choice of classes are exactly the same as in Figure
5.8(a), so that we can make a direct comparison.

The sample means are much less spread out than the individual call
lengths. What is more, the distribution in Figure 5.8(b) is roughly symmetric
rather than skewed. The Normal quantile plot in Figure 5.9 confirms that the
distribution is close to Normal.
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FIGURE 5.9 Normal quantile
plot of the 500 sample means in
Figure 5.8(b). The distribution is
close to Normal.

This example illustrates two important facts about sample means that we
will discuss in this section.
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FACTS ABOUT SAMPLE MEANS

1. Sample means are less variable than individual observations.

2. Sample means are more Normal than individual observations.

These two facts contribute to the popularity of sample means in statistical
inference.

The mean and standard deviation of x
The sample mean x from a sample or an experiment is an estimate of the mean
μ of the underlying population, just as a sample proportion p̂ is an estimate
of a population proportion p. The sampling distribution of x is determined by
the design used to produce the data, the sample size n, and the population
distribution.

Select an SRS of size n from a population, and measure a variable X on each
individual in the sample. The n measurements are values of n random variables
X1, X2, . . . , Xn. A single Xi is a measurement on one individual selected at ran-
dom from the population and therefore has the distribution of the population.
If the population is large relative to the sample, we can consider X1, X2, . . . , Xn

to be independent random variables each having the same distribution. This is
our probability model for measurements on each individual in an SRS.

The sample mean of an SRS of size n is

x = 1
n

(X1 + X2 + · · · + Xn)

If the population has mean μ, then μ is the mean of the distribution of each
observation Xi. The addition rule for means of random variables,LOOK BACK

addition rule for
means, page 278 μx = 1

n
(μX1 + μX2 + · · · + μXn)

= 1
n

(μ + μ + · · · + μ) = μ

That is, the mean of x is the same as the mean of the population. The sample
mean x is therefore an unbiased estimator of the unknown population mean
μ.

The observations are independent, so the addition rule for variances also
applies:LOOK BACK

addition rule for
variances, page 282 σ 2

x =
(

1
n

)2

(σ 2
X1

+ σ 2
X2

+ · · · + σ 2
Xn

)

=
(

1
n

)2

(σ 2 + σ 2 + · · · + σ 2)

= σ 2

n

Just as in the case of a sample proportion p̂, the variability of the sampling dis-
tribution of a sample mean decreases as the sample size grows. Because the
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standard deviation of x is σ/
√

n, it is again true that the standard deviation of
the statistic decreases in proportion to the square root of the sample size. Here
is a summary of these facts.

MEAN AND STANDARD DEVIATION OF A SAMPLE MEAN

Let x be the mean of an SRS of size n from a population having mean μ

and standard deviation σ . The mean and standard deviation of x are

μx = μ

σx = σ√
n

How accurately does a sample mean x estimate a population mean μ? Be-
cause the values of x vary from sample to sample, we must give an answer in
terms of the sampling distribution. We know that x is an unbiased estimator
of μ, so its values in repeated samples are not systematically too high or too
low. Most samples will give an x-value close to μ if the sampling distribution
is concentrated close to its mean μ. So the accuracy of estimation depends on
the spread of the sampling distribution.

•
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E 5.18 Standard deviations for sample means of service call lengths.
The standard deviation of the population of service call lengths in Figure 5.8(a)
is σ = 184.81 seconds. The length of a single call will often be far from the
population mean. If we choose an SRS of 20 calls, the standard deviation of
their mean length is

σx = 184.81√
20

= 41.32 seconds

Averaging over more calls reduces the variability and makes it more likely that
x is close to μ. Our sample size of 80 calls is 4 times 20, so the standard devi-
ation will be half as large:

σx = 184.81√
80

= 20.66 seconds

USE YOUR KNOWLEDGE
5.36 Find the mean and the standard deviation of the sampling distri-

bution. You take an SRS of size 25 from a population with mean 200
and standard deviation 10. Find the mean and standard deviation of
the sampling distribution of your sample mean.

5.37 The effect of increasing the sample size. In the setting of the previ-
ous exercise, repeat the calculations for a sample size of 100. Explain
the effect of the increase on the sample mean and standard deviation.
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The central limit theorem
We have described the center and spread of the probability distribution of a
sample mean x, but not its shape. The shape of the distribution of x depends on
the shape of the population distribution. Here is one important case: if the pop-
ulation distribution is Normal, then so is the distribution of the sample mean.

SAMPLING DISTRIBUTION OF A SAMPLE MEAN

If a population has the N(μ, σ ) distribution, then the sample mean x of
n independent observations has the N(μ, σ/

√
n) distribution.

This is a somewhat special result. Many population distributions are not
Normal. The service call lengths in Figure 5.8(a), for example, are strongly
skewed. Yet Figures 5.8(b) and 5.9 show that means of samples of size 80 are
close to Normal. One of the most famous facts of probability theory says that,
for large sample sizes, the distribution of x is close to a Normal distribution.
This is true no matter what shape the population distribution has, as long as
the population has a finite standard deviation σ . This is the central limit the-central limit theorem
orem. It is much more useful than the fact that the distribution of x is exactly
Normal if the population is exactly Normal.

CENTRAL LIMIT THEOREM

Draw an SRS of size n from any population with mean μ and finite
standard deviation σ . When n is large, the sampling distribution of the
sample mean x is approximately Normal:

x is approximately N
(

μ,
σ√
n

)
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E 5.19 How close will the sample mean be to the population mean?
With the Normal distribution to work with, we can better describe how ac-
curately a random sample of 80 calls estimates the mean length of all the
calls in the population. The population standard deviation for the more than
30,000 calls in the population of Figure 5.8(a) is σ = 184.81 seconds. From
Example 5.18 we know σx = 20.66 seconds. By the 95 part of the 68–95–99.7
rule, 95% of all samples will have mean x within two standard deviations of
μ, that is, within ±41.32 seconds of μ.

LOOK BACK
68–95–99.7 rule,
page 59

USE YOUR KNOWLEDGE
5.38 Use the 68–95–99.7 rule. You take an SRS of size 100 from a pop-

ulation with mean 200 and standard deviation 10. According to the
central limit theorem, what is the approximate sampling distribution
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of the sample mean? Use the 95 part of the 68–95–99.7 rule to describe
the variability of this sample mean.

For the sample size of n = 80 in Example 5.19, the sample mean is not very
accurate. The population is very spread out, so the sampling distribution of x
is still quite variable.

•
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E 5.20 How can we reduce the standard deviation? In the setting of

Example 5.19, if we want to reduce the standard deviation of x by a factor of
4, we must take a sample 16 times as large, n = 16 × 80, or 1280. Then

σx = 184.81√
1280

= 5.165 seconds

For samples of size 1280, 95% of the sample means will be within twice 5.165,
or 10.33 seconds, of the population mean μ.

USE YOUR KNOWLEDGE
5.39 The effect of increasing the sample size. In the setting of Exer-

cise 5.38, suppose we increase to the sample size to 400. Use the 95
part of the 68–95–99.7 rule to describe the variability of this sample
mean. Compare your results with those you found in Exercise 5.38.

Example 5.20 reminds us that if the population is very spread out, the
√

n in
the standard deviation of x implies that even large samples will not estimate the
population mean accurately. But the big point of the example is that the central
limit theorem allows us to use Normal probability calculations to answer ques-
tions about sample means even when the population distribution is not Nor-
mal. How large a sample size n is needed for x to be close to Normal depends
on the population distribution. More observations are required if the shape of
the population distribution is far from Normal. Even for the very skewed call
length population, however, samples of size 80 are large enough. Here is a more
detailed example.

exponential distribution
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E 5.21 The central limit theorem in action. Figure 5.10 shows the cen-
tral limit theorem in action for another very non-Normal population. Fig-
ure 5.10(a) displays the density curve of a single observation, that is, of the
population. The distribution is strongly right-skewed, and the most proba-
ble outcomes are near 0. The mean μ of this distribution is 1, and its stan-
dard deviation σ is also 1. This particular continuous distribution is called
an exponential distribution. Exponential distributions are used as models
for how long an electronic component will last and for the time required to
serve a customer or repair a machine.

Figures 5.10(b), (c), and (d) are the density curves of the sample means of
2, 10, and 25 observations from this population. As n increases, the shape be-
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10
(a)

10
 (c)

10
(b)

10
(d)

FIGURE 5.10 The central
limit theorem in action: the
distribution of sample means
from a strongly non-Normal
population becomes more
Normal as the sample size
increases. (a) The distribution of
1 observation. (b) The
distribution of x for 2
observations. (c) The distribution
of x for 10 observations. (d) The
distribution of x for 25
observations.

•

comes more Normal. The mean remains at μ = 1, but the standard deviation
decreases, taking the value 1/

√
n. The density curve for 10 observations is still

somewhat skewed to the right but already resembles a Normal curve having
μ = 1 and σ = 1/

√
10 = 0.32. The density curve for n = 25 is yet more Nor-

mal. The contrast between the shapes of the population distribution and of
the distribution of the mean of 10 or 25 observations is striking.

The Central Limit Theorem applet animates Figure 5.10. You can slide the
AP

PLET

sample size n from 1 to 100 and watch both the exact density curve of x and the
Normal approximation. As you increase n, the two curves move closer together.

•

E
X

A
M

P
L

E 5.22 Preventive maintenance on an air-conditioning unit. The time
X that a technician requires to perform preventive maintenance on an air-
conditioning unit is governed by the exponential distribution whose density
curve appears in Figure 5.10(a). The mean time is μ = 1 hour and the stan-
dard deviation is σ = 1 hour. Your company operates 70 of these units. What
is the probability that their average maintenance time exceeds 50 minutes?

The central limit theorem says that the sample mean time x (in hours)
spent working on 70 units has approximately the Normal distribution with
mean equal to the population mean μ = 1 hour and standard deviation

σ√
70

= 1√
70

= 0.12 hour
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0.83 1

FIGURE 5.11 The exact
distribution (dashed) and the
Normal approximation from the
central limit theorem (solid) for
the average time needed to
maintain an air conditioner, for
Example 5.22.

•

The distribution of x is therefore approximately N(1, 0.12). Figure 5.11 shows
this Normal curve (solid) and also the actual density curve of x (dashed).

Because 50 minutes is 50/60 of an hour, or 0.83 hour, the probability we
want is P(x > 0.83). A Normal distribution calculation gives this probability
as 0.9222. This is the area to the right of 0.83 under the solid Normal curve in
Figure 5.11. The exactly correct probability is the area under the dashed den-
sity curve in the figure. It is 0.9294. The central limit theorem Normal approx-
imation is off by only about 0.007.

USE YOUR KNOWLEDGE
5.40 Find a probability. Refer to the example above. Find the probability

that the mean time spent working on 70 units is less than 1.1 hours.

•

•
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E 5.23 Convert the results to the total maintenance time. In Example
5.22 what can we say about the total maintenance time for 70 units? Accord-
ing to the central limit theorem

P(x > 0.83) = 0.9222

We know that the sample mean is the total maintenance time divided by 70, so
the event {x > 0.83} is the same as the event {70x > 70(0.83)}. We can say that
the probability is 0.9222 that the total maintenance time is 70(0.83) = 58.1
hours or greater.

Figure 5.12 summarizes the facts about the sampling distribution of x in a
way that emphasizes the big idea of a sampling distribution.

• Keep taking random samples of size n from a population with mean μ.

• Find the sample mean x for each sample.

• Collect all the x’s and display their distribution.
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xSRS size n

SRS size n
SRS size n

n

Values of x

Population
mean     and

standard deviation

x

x Mean

μ
σ

σ

μ

FIGURE 5.12 The sampling
distribution of a sample mean x
has mean μ and standard
deviation σ/

√
n. The distribution

is Normal if the population
distribution is Normal; it is
approximately Normal for large
samples in any case.

That’s the sampling distribution of x. Sampling distributions are the key to
understanding statistical inference. Keep this figure in mind as you go forward.

A few more facts
The central limit theorem is the big fact of this section. Here are three useful
smaller facts related to our topic.

The Normal approximation for sample proportions and counts is an
example of the central limit theorem. This is true because a sample propor-
tion can be thought of as a sample mean. Recall the idea that we used to find
the mean and variance of a binomial random variable X. We wrote the count
X as a sum

X = S1 + S2 + · · · + Sn

of random variables Si that take the value 1 if a success occurs on the ith trial
and the value 0 otherwise. The variables Si take only the values 0 and 1 and are
far from Normal. The proportion p̂ = X/n is the sample mean of the Si and, like
all sample means, is approximately Normal when n is large.

The fact that the sample mean of an SRS from a Normal population has a
Normal distribution is a special case of a more general fact: any linear com-
bination of independent Normal random variables is also Normally dis-
tributed. That is, if X and Y are independent Normal random variables and aLOOK BACK

rules for means,
page 278

rules for variances,
page 282

and b are any fixed numbers, aX + bY is also Normally distributed, and so it
is for any number of Normal variables. In particular, the sum or difference of
independent Normal random variables has a Normal distribution. The mean
and standard deviation of aX + bY are found as usual from the addition rules
for means and variances. These facts are often used in statistical calculations.
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E 5.24 Who will win? Tom and George are playing in the club golf tourna-
ment. Their scores vary as they play the course repeatedly. Tom’s score X has
the N(110, 10) distribution, and George’s score Y varies from round to round
according to the N(100, 8) distribution. If they play independently, what is
the probability that Tom will score lower than George and thus do better
in the tournament? The difference X − Y between their scores is Normally
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distributed, with mean and variance

μX−Y = μX − μY = 110 − 100 = 10

σ 2
X−Y = σ 2

X + σ 2
Y = 102 + 82 = 164

Because
√

164 = 12.8, X − Y has the N(10, 12.8) distribution. Figure 5.13 il-
lustrates the probability computation:

P(X < Y) = P(X − Y < 0)

= P
(

(X − Y) − 10
12.8

<
0 − 10
12.8

)
= P(Z < −0.78) = 0.2177

Although George’s score is 10 strokes lower on the average, Tom will have the
lower score in about one of every five matches.

Probability = 0.2177

x – y = 0
z = –0.78

Tom wins George wins
FIGURE 5.13 The Normal
probability calculation for
Example 5.24.

More general versions of the central limit theorem say that the distri-
bution of a sum or average of many small random quantities is close to
Normal. This is true even if the quantities are not independent (as long as they
are not too highly correlated) and even if they have different distributions (as
long as no single random quantity is so large that it dominates the others). The
central limit theorem suggests why the Normal distributions are common mod-
els for observed data. Any variable that is a sum of many small influences will
have approximately a Normal distribution.

BEYOND THE BASICS

Weibull Distributions

Our discussion of sampling distributions has concentrated on the binomial
model for count data and the Normal model for quantitative variables. These
models are important in statistical practice, but simplicity also contributes to
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their popularity. The parameters p in the binomial model and μ in the Normal
model are easy to understand. To estimate them from data we use statistics p̂
and x that are also easy to understand and that have simple sampling distribu-
tions.

There are many other probability distributions that are used to model data
in various circumstances. The time that a product, such as a computer disk
drive, lasts before failing rarely has a Normal distribution. Another class of con-
tinuous distributions, the Weibull distributions, is often used to model time toWeibull distributions
failure. For engineers studying the reliability of products, Weibull distributions
are more common than Normal distributions.

•
E

X
A

M
P

L
E 5.25 Weibull density curves. Figure 5.14 shows the density curves of

three members of the Weibull family. Each describes a different type of dis-
tribution for the time to failure of a product.

1. The top curve in Figure 5.14 is a model for infant mortality. Many of these
products fail immediately. If they do not fail at once, then most last a long
time. The manufacturer tests these products and ships only the ones that
do not fail immediately.

2. The middle curve in Figure 5.14 is a model for early failure. These products
do not fail immediately, but many fail early in their lives after they are in
the hands of customers. This is disastrous—the product or the process that
makes it must be changed at once.

Time

Time

Time

FIGURE 5.14 Density curves for
three members of the Weibull
family of distributions, for
Example 5.25.
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3. The bottom curve in Figure 5.14 is a model for old-age wearout. Most of
these products fail only when they begin to wear out, and then many fail
at about the same age.

A manufacturer certainly wants to know to which of these classes a new
product belongs. To find out, engineers operate a random sample of products
until they fail. From the failure time data we can estimate the parameter (called
the “shape parameter”) that distinguishes among the three Weibull distribu-
tions in Figure 5.14. The shape parameter has no simple definition like that of
a population proportion or mean, and it cannot be estimated by a simple statis-
tic such as p̂ or x.

Two things save the situation. First, statistical theory provides general ap-
proaches for finding good estimates of any parameter. These general methods
not only tell us how to use p̂ and x in the binomial and Normal settings but also
tell us how to estimate the Weibull shape parameter. Second, modern software
can calculate the estimate from data even though there is no algebraic formula
that we can write for the estimate. Statistical practice often relies on both math-
ematical theory and methods of computation more elaborate than the ones we
will meet in this book. Fortunately, big ideas such as sampling distributions
carry over to more complicated situations.7

SECTION 5.2 Summary

The sample mean x of an SRS of size n drawn from a large population with
mean μ and standard deviation σ has a sampling distribution with mean and
standard deviation

μx = μ

σx = σ√
n

The sample mean x is therefore an unbiased estimator of the population mean
μ and is less variable than a single observation.

Linear combinations of independent Normal random variables have Normal
distributions. In particular, if the population has a Normal distribution, so does
x.

The central limit theorem states that for large n the sampling distribution of
x is approximately N(μ, σ/

√
n) for any population with mean μ and finite stan-

dard deviation σ .

SECTION 5.2 Exercises
For Exercises 5.36 and 5.37, see page 338; for Exercise 5.38,
see page 339; for Exercise 5.39, see page 340; and for
Exercise 5.40, see page 342.

5.41 What is wrong? Explain what is wrong in each of
the following scenarios.

(a) If the standard deviation of a population is 10,
then the variance of the mean for an SRS of 20
observations from this population will be 10/

√
20.

(b) When taking SRS’s from a population, larger
sample sizes will have larger standard deviations.

(c) The mean of a sampling distribution changes
when the sample size changes.
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5.42 Songs on an iPod. An iPod has about 10,000 songs.
The distribution of the play time for these songs is
highly skewed. Assume that the standard deviation
for the population is 300 seconds.

(a) What is the standard deviation of the average
time when you take an SRS of 10 songs from this
population?

(b) How many songs would you need to sample
if you wanted the standard deviation of x to be 30
seconds?

5.43 A grinding machine for auto axles. An automatic
grinding machine in an auto parts plant prepares
axles with a target diameter μ = 40.135 millimeters
(mm). The machine has some variability, so
the standard deviation of the diameters is
σ = 0.003 mm. A sample of 4 axles is inspected
each hour for process control purposes, and records
are kept of the sample mean diameter. If the process
mean is exactly equal to the target value, what will
be the mean and standard deviation of the numbers
recorded?

5.44 Play times for songs on an iPod. Averages
of several measurements are less variable than
individual measurements. Suppose the true mean
duration of the play time for the songs in the iPod
of Exercise 5.42 is 350 seconds.

(a) Sketch on the same graph the two Normal
curves, for sampling a single song and for the mean
of 10 songs.

(b) What is the probability that the sample mean
differs from the population mean by more than 19
seconds when only 1 song is sampled?

(c) How does the probability that you calculated in
part (b) change for the mean of an SRS of 10 songs?

5.45 Axle diameters. Averages are less variable than
individual observations. Suppose that the axle
diameters in Exercise 5.43 vary according to a
Normal distribution. In that case, the mean x of an
SRS of axles also has a Normal distribution.

(a) Make a sketch of the Normal curve for a single
axle. Add the Normal curve for the mean of an SRS
of 4 axles on the same sketch.

(b) What is the probability that the diameter of a
single randomly chosen axle differs from the target
value by 0.006 mm or more?

(c) What is the probability that the mean diameter
of an SRS of 4 axles differs from the target value by
0.006 mm or more?

5.46 Lightning strikes. The number of lightning strikes
on a square kilometer of open ground in a year
has mean 6 and standard deviation 2.4. (These
values are typical of much of the United States.)
Counts of strikes on separate areas are independent.
The National Lightning Detection Network uses
automatic sensors to watch for lightning in an area
of 10 square kilometers.

(a) What are the mean and standard deviation of
the total number of lightning strikes observed?

(b) What are the mean and standard deviation of
the mean number of strikes per square kilometer?

5.47 C
H

ALLENG
E Cholesterol levels of teenagers. A study of

the health of teenagers plans to measure the
blood cholesterol level of an SRS of 13- to 16-year
olds. The researchers will report the mean x from
their sample as an estimate of the mean cholesterol
level μ in this population.

(a) Explain to someone who knows no statistics
what it means to say that x is an “unbiased” estimator
of μ.

(b) The sample result x is an unbiased estimator of
the population truth μ no matter what size SRS the
study chooses. Explain to someone who knows no
statistics why a large sample gives more trustworthy
results than a small sample.

5.48 ACT scores of high school seniors. The scores
of high school seniors on the ACT college entrance
examination in 2003 had mean μ = 20.8 and
standard deviation σ = 4.8. The distribution of
scores is only roughly Normal.

(a) What is the approximate probability that a single
student randomly chosen from all those taking the
test scores 23 or higher?

(b) Now take an SRS of 25 students who took the
test. What are the mean and standard deviation of
the sample mean score x of these 25 students?

(c) What is the approximate probability that the
mean score x of these students is 23 or higher?

(d) Which of your two Normal probability
calculations in (a) and (c) is more accurate? Why?

5.49 Gypsy moths threaten oak and aspen trees. The
gypsy moth is a serious threat to oak and aspen
trees. A state agriculture department places traps
throughout the state to detect the moths. When traps
are checked periodically, the mean number of moths
trapped is only 0.5, but some traps have several
moths. The distribution of moth counts is discrete
and strongly skewed, with standard deviation 0.7.
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(a) What are the mean and standard deviation of
the average number of moths x in 50 traps?

(b) Use the central limit theorem to find the
probability that the average number of moths in 50
traps is greater than 0.6.

5.50 Grades in an English course. North Carolina
State University posts the grade distributions for its
courses online.8 Students in one section of English
210 in the spring 2006 semester received 31% A’s,
40% B’s, 20% C’s, 4% D’s, and 5% F’s.

(a) Using the common scale A = 4, B = 3, C = 2,
D = 1, F = 0, take X to be the grade of a randomly
chosen English 210 student. Use the definitions of
the mean (page 271) and standard deviation (page
280) for discrete random variables to find the mean
μ and the standard deviation σ of grades in this
course.

(b) English 210 is a large course. We can take the
grades of an SRS of 50 students to be independent
of each other. If x is the average of these 50 grades,
what are the mean and standard deviation of x?

(c) What is the probability P(X ≥ 3) that a randomly
chosen English 210 student gets a B or better? What
is the approximate probability P(x ≥ 3) that the
grade for 50 randomly chosen English 210 students
is B or better?

5.51 Diabetes during pregnancy. Sheila’s doctor is
concerned that she may suffer from gestational
diabetes (high blood glucose levels during
pregnancy). There is variation both in the actual
glucose level and in the blood test that measures
the level. A patient is classified as having gestational
diabetes if the glucose level is above 140 milligrams
per deciliter (mg/dl) one hour after a sugary drink is
ingested. Sheila’s measured glucose level one hour
after ingesting the sugary drink varies according to
the Normal distribution with μ = 125 mg/dl and
σ = 10 mg/dl.

(a) If a single glucose measurement is made, what
is the probability that Sheila is diagnosed as having
gestational diabetes?

(b) If measurements are made instead on 3 separate
days and the mean result is compared with the
criterion 140 mg/dl, what is the probability that
Sheila is diagnosed as having gestational diabetes?

5.52 A lottery payoff. A $1 bet in a state lottery’s Pick
3 game pays $500 if the three-digit number you
choose exactly matches the winning number, which
is drawn at random. Here is the distribution of the
payoff X:

Payoff X $0 $500

Probability 0.999 0.001

Each day’s drawing is independent of other
drawings.

(a) What are the mean and standard deviation of X?

(b) Joe buys a Pick 3 ticket twice a week. What
does the law of large numbers say about the average
payoff Joe receives from his bets?

(c) What does the central limit theorem say about
the distribution of Joe’s average payoff after 104 bets
in a year?

(d) Joe comes out ahead for the year if his average
payoff is greater than $1 (the amount he spent each
day on a ticket). What is the probability that Joe
ends the year ahead?

5.53 Defining a high glucose reading. In Exercise
5.51, Sheila’s measured glucose level one hour
after ingesting the sugary drink varies according to
the Normal distribution with μ = 125 mg/dl and
σ = 10 mg/dl. What is the level L such that there is
probability only 0.05 that the mean glucose level of
3 test results falls above L for Sheila’s glucose level
distribution?

5.54 Flaws in carpets. The number of flaws per square
yard in a type of carpet material varies with mean
1.5 flaws per square yard and standard deviation 1.3
flaws per square yard. This population distribution
cannot be Normal, because a count takes only
whole-number values. An inspector studies 200
square yards of the material, records the number
of flaws found in each square yard, and calculates
x, the mean number of flaws per square yard
inspected. Use the central limit theorem to find the
approximate probability that the mean number of
flaws exceeds 2 per square yard.

5.55 Weights of airline passengers. In response to
the increasing weight of airline passengers, the
Federal Aviation Administration told airlines to
assume that passengers average 190 pounds in the
summer, including clothing and carry-on baggage.
But passengers vary: the FAA gave a mean but not a
standard deviation. A reasonable standard deviation
is 35 pounds. Weights are not Normally distributed,
especially when the population includes both men
and women, but they are not very non-Normal. A
commuter plane carries 25 passengers. What is the
approximate probability that the total weight of the
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passengers exceeds 5200 pounds? (Hint: To apply
the central limit theorem, restate the problem in
terms of the mean weight.)

5.56 Risks and insurance. The idea of insurance is
that we all face risks that are unlikely but carry
high cost. Think of a fire destroying your home.
So we form a group to share the risk: we all pay a
small amount, and the insurance policy pays a large
amount to those few of us whose homes burn down.
An insurance company looks at the records for
millions of homeowners and sees that the mean loss
from fire in a year is μ = $250 per house and that
the standard deviation of the loss is σ = $1000. (The
distribution of losses is extremely right-skewed:
most people have $0 loss, but a few have large
losses.) The company plans to sell fire insurance for
$250 plus enough to cover its costs and profit.

(a) Explain clearly why it would be unwise to sell
only 12 policies. Then explain why selling many
thousands of such policies is a safe business.

(b) If the company sells 10,000 policies, what is the
approximate probability that the average loss in a
year will be greater than $275?

5.57 Returns on common stocks. The distribution
of annual returns on common stocks is roughly
symmetric, but extreme observations are more
frequent than in a Normal distribution. Because the
distribution is not strongly non-Normal, the mean
return over even a moderate number of years is close
to Normal. Annual real returns on the Standard &
Poor’s 500 stock index over the period 1871 to
2004 have varied with mean 9.2% and standard
deviation 20.6%. Andrew plans to retire in 45 years
and is considering investing in stocks. What is
the probability (assuming that the past pattern of
variation continues) that the mean annual return on
common stocks over the next 45 years will exceed
15%? What is the probability that the mean return
will be less than 5%?

5.58 Holes in engine blocks. A hole in an engine
block is 2.5 centimeters (cm) in diameter. Shafts
manufactured to go through this hole must have
0.024 cm clearance for unforced fit. That is, shaft
diameter cannot exceed 2.476 cm. The shafts vary in
diameter according to the Normal distribution with
mean 2.45 cm and standard deviation 0.01 cm.

(a) What percent of shafts will fit into the hole?

(b) Redo the problem assuming that the hole
diameter also varies, independently of the shaft
diameter, following the Normal distribution with
mean 2.5 cm and standard deviation 0.01 cm. You

must find the probability that the hole diameter
exceeds the shaft diameter by at least 0.024 cm.

5.59 Treatment of cotton fabrics. “Durable press”
cotton fabrics are treated to improve their recovery
from wrinkles after washing. Unfortunately, the
treatment also reduces the strength of the fabric. The
breaking strength of untreated fabric is Normally
distributed with mean 57 pounds and standard
deviation 2.2 pounds. The same type of fabric
after treatment has Normally distributed breaking
strength with mean 30 pounds and standard
deviation 1.6 pounds.9 A clothing manufacturer
tests 6 specimens of each fabric. All 12 strength
measurements are independent.

(a) What is the probability that the mean breaking
strength of the 6 untreated specimens exceeds 50
pounds?

(b) What is the probability that the mean breaking
strength of the 6 untreated specimens is at least
25 pounds greater than the mean strength of the 6
treated specimens?

5.60 Advertisements and brand image. Many
companies place advertisements to improve the
image of their brand rather than to promote specific
products. In a randomized comparative experiment,
business students read ads that cited either the Wall
Street Journal or the National Enquirer for important
facts about a fictitious company. The students then
rated the trustworthiness of the source on a 7-point
scale. Suppose that in the population of all students
scores for the Journal have mean 4.8 and standard
deviation 1.5, while scores for the Enquirer have
mean 2.4 and standard deviation 1.6.10

(a) There are 28 students in each group. Although
individual scores are discrete, the mean score for a
group of 28 will be close to Normal. Why?

(b) What are the means and standard deviations of
the sample mean scores y for the Journal group and
x for the Enquirer group?

(c) We can take all 56 scores to be independent
because students are not told each other’s scores.
What is the distribution of the difference y − x
between the mean scores in the two groups?

(d) Find P(y − x ≥ 1).

5.61 C
H

ALLENG
E Treatment and control groups. The two

previous exercises illustrate a common
setting for statistical inference. This exercise gives
the general form of the sampling distribution needed
in this setting. We have a sample of n observations
from a treatment group and an independent sample
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of m observations from a control group. Suppose
that the response to the treatment has the N(μX, σX)

distribution and that the response of control subjects
has the N(μY , σY) distribution. Inference about the
difference μY − μX between the population means
is based on the difference y − x between the sample
means in the two groups.

(a) Under the assumptions given, what is the
distribution of y? Of x?

(b) What is the distribution of y − x?

5.62 C
H

ALLENG
E Investments in two funds. Linda invests her

money in a portfolio that consists of 70%
Fidelity 500 Index Fund and 30% Fidelity Diversified
International Fund. Suppose that in the long run
the annual real return X on the 500 Index Fund has
mean 9% and standard deviation 19%, the annual
real return Y on the Diversified International Fund
has mean 11% and standard deviation 17%, and the
correlation between X and Y is 0.6.

(a) The return on Linda’s portfolio is R =
0.7X + 0.3Y . What are the mean and standard
deviation of R?

(b) The distribution of returns is typically roughly
symmetric but with more extreme high and low
observations than a Normal distribution. The
average return over a number of years, however, is
close to Normal. If Linda holds her portfolio for 20

years, what is the approximate probability that her
average return is less than 5%?

(c) The calculation you just made is not overly
helpful, because Linda isn’t really concerned about
the mean return R. To see why, suppose that her
portfolio returns 12% this year and 6% next year. The
mean return for the two years is 9%. If Linda starts
with $1000, how much does she have at the end of
the first year? At the end of the second year? How
does this amount compare with what she would
have if both years had the mean return, 9%? Over
20 years, there may be a large difference between
the ordinary mean R and the geometric mean, which
reflects the fact that returns in successive years
multiply rather than add.

5.63 Concrete blocks and mortar. You are building a
wall from precast concrete blocks. Standard “8 inch”
blocks are 7 5

8 inches high to allow for a 3
8 inch layer

of mortar under each row of blocks. In practice, the
height of a block-plus-mortar row varies according
to a Normal distribution with mean 8 inches and
standard deviation 0.1 inch. Heights of successive
rows are independent. Your wall has four rows of
blocks. What is the distribution of the height of the
wall? What is the probability that the height differs
from the design height of 32 inches by more than
half an inch?

CHAPTER 5 Exercises

5.64 C
H

ALLENG
E The effect of sample size on the standard

deviation. Assume that the standard
deviation in a very large population is 100.

(a) Calculate the standard deviation for the sample
mean for samples of size 1, 4, 25, 100, 250, 500,
1000, and 5000.

(b) Graph your results with the sample size on the
x axis and the standard deviation on the y axis.

(c) Summarize the relationship between the sample
size and the standard deviation that you showed in
your graph.

5.65 Auto accidents. The probability that a randomly
chosen driver will be involved in an accident
in the next year is about 0.2. This is based on
the proportion of millions of drivers who have
accidents. “Accident” includes things like crumpling
a fender in your own driveway, not just highway
accidents. Carlos, David, Jermaine, Ramon, and
Scott are college students who live together in an
off-campus apartment. Last year, 3 of the 5 had

accidents. What is the probability that 3 or more of
5 randomly chosen drivers have an accident in the
same year? Why does your calculation not apply to
drivers like the 5 students?

5.66 C
H

ALLENG
E SAT scores. Example 4.37 (page 284) notes

that the total SAT scores of high school
seniors in a recent year had mean μ = 1026 and
standard deviation σ = 209. The distribution of
SAT scores is roughly Normal.

(a) Julie scored 1110. If scores have a Normal
distribution, what percentile of the distribution is
this?

(b) Now consider the mean x of the scores of
80 randomly chosen students. If x = 1110, what
percentile of the sampling distribution of x is this?

(c) Which of your calculations, (a) or (b), is less
accurate because SAT scores do not have an exactly
Normal distribution? Explain your answer.
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5.67 Carpooling. Although cities encourage carpooling
to reduce traffic congestion, most vehicles carry
only one person. For example, 70% of vehicles on
the roads in the Minneapolis–St. Paul metropolitan
area are occupied by just the driver.

(a) If you choose 12 vehicles at random, what is the
probability that more than half (that is, 7 or more)
carry just one person?

(b) If you choose 80 vehicles at random, what is
the probability that more than half (that is, 41 or
more) carry just one person?

5.68 Common last names. The Census Bureau says
that the 10 most common names in the United
States are (in order) Smith, Johnson, Williams,
Jones, Brown, Davis, Miller, Wilson, Moore, and
Taylor. These names account for 5.6% of all U.S.
residents. Out of curiosity, you look at the authors
of the textbooks for your current courses. There
are 12 authors in all. Would you be surprised if
none of the names of these authors were among
the 10 most common? Give a probability to support
your answer and explain the reasoning behind your
calculation.

5.69 Benford’s law. It is a striking fact that the first
digits of numbers in legitimate records often follow
a distribution known as Benford’s law. Here it is:

First digit 1 2 3 4 5 6 7 8 9

Proportion 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

Fake records usually have fewer first digits 1, 2,
and 3. What is the approximate probability, if
Benford’s law holds, that among 1000 randomly
chosen invoices there are 560 or fewer in amounts
with first digit 1, 2, or 3?

5.70 Genetics of peas. According to genetic theory, the
blossom color in the second generation of a certain
cross of sweet peas should be red or white in a
3:1 ratio. That is, each plant has probability 3/4 of
having red blossoms, and the blossom colors of
separate plants are independent.

(a) What is the probability that exactly 9 out of 12
of these plants have red blossoms?

(b) What is the mean number of red-blossomed
plants when 120 plants of this type are grown from
seeds?

(c) What is the probability of obtaining at least 80
red-blossomed plants when 120 plants are grown
from seeds?

5.71 The weight of a dozen eggs. The weight of
the eggs produced by a certain breed of hen is
Normally distributed with mean 65 grams (g) and
standard deviation 5 g. If cartons of such eggs
can be considered to be SRSs of size 12 from the
population of all eggs, what is the probability that
the weight of a carton falls between 755 and 830 g?

5.72 Losses of British aircraft in World War II. Serving
in a bomber crew in World War II was dangerous.
The British estimated that the probability of an
aircraft loss due to enemy action was 1/20 for
each mission. A tour of duty for British airmen
in Bomber Command was 30 missions. What is
the probability that an airman would complete a
tour of duty without being on an aircraft lost from
enemy action?

5.73 A survey of college women. A sample survey
interviews an SRS of 280 college women. Suppose
(as is roughly true) that 70% of all college women
have been on a diet within the last 12 months. What
is the probability that 75% or more of the women
in the sample have been on a diet?

5.74 Plastic caps for motor oil containers. A machine
fastens plastic screw-on caps onto containers of
motor oil. If the machine applies more torque
than the cap can withstand, the cap will break.
Both the torque applied and the strength of the
caps vary. The capping-machine torque has the
Normal distribution with mean 7.0 inch-pounds
and standard deviation 0.9 inch-pounds. The cap
strength (the torque that would break the cap)
has the Normal distribution with mean 10.1 inch-
pounds and standard deviation 1.2 inch-pounds.

(a) Explain why it is reasonable to assume that the
cap strength and the torque applied by the machine
are independent.

(b) What is the probability that a cap will break
while being fastened by the capping machine?

5.75 Colors of cashmere sweaters. The unique colors
of the cashmere sweaters your firm makes result
from heating undyed yarn in a kettle with a dye
liquor. The pH (acidity) of the liquor is critical for
regulating dye uptake and hence the final color.
There are 5 kettles, all of which receive dye liquor
from a common source. Past data show that pH
varies according to a Normal distribution with
μ = 4.25 and σ = 0.135. You use statistical process
control to check the stability of the process. Twice
each day, the pH of the liquor in each kettle is
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measured, each time giving a sample of size 5.
The mean pH x is compared with “control limits”
given by the 99.7 part of the 68–95–99.7 rule for
Normal distributions, namely, μx ± 3σx. What are
the numerical values of these control limits for x?

5.76 C
H

ALLENG
E Learning a foreign language. Does

delaying oral practice hinder learning a
foreign language? Researchers randomly assigned
25 beginning students of Russian to begin speaking
practice immediately and another 25 to delay
speaking for 4 weeks. At the end of the semester
both groups took a standard test of comprehension
of spoken Russian. Suppose that in the population
of all beginning students, the test scores for early
speaking vary according to the N(32, 6) distribution
and scores for delayed speaking have the N(29, 5)

distribution.

(a) What is the sampling distribution of the mean
score x in the early-speaking group in many
repetitions of the experiment? What is the sampling
distribution of the mean score y in the delayed-
speaking group?

(b) If the experiment were repeated many times,
what would be the sampling distribution of the
difference y − x between the mean scores in the two
groups?

(c) What is the probability that the experiment
will find (misleadingly) that the mean score for
delayed speaking is at least as large as that for early
speaking?

5.77 C
H

ALLENG
E Summer employment of college students.

Suppose (as is roughly true) that 88% of
college men and 82% of college women were
employed last summer. A sample survey interviews
SRSs of 400 college men and 400 college women.
The two samples are of course independent.

(a) What is the approximate distribution of
the proportion p̂F of women who worked last
summer? What is the approximate distribution of
the proportion p̂M of men who worked?

(b) The survey wants to compare men and women.
What is the approximate distribution of the
difference in the proportions who worked, p̂M − p̂F?
Explain the reasoning behind your answer.

(c) What is the probability that in the sample a
higher proportion of women than men worked last
summer?

5.78 Income of working couples. A study of working
couples measures the income X of the husband
and the income Y of the wife in a large number
of couples in which both partners are employed.
Suppose that you knew the means μX and μY and
the variances σ 2

X and σ 2
Y of both variables in the

population.

(a) Is it reasonable to take the mean of the total
income X + Y to be μX + μY? Explain your answer.

(b) Is it reasonable to take the variance of the total
income to be σ 2

X + σ 2
Y ? Explain your answer.

5.79 C
H

ALLENG
E A random walk. A particle moves along

the line in a random walk. That is, the
particle starts at the origin (position 0) and moves
either right or left in independent steps of length 1.
If the particle moves to the right with probability
0.6, its movement at the ith step is a random
variable Xi with distribution

P(Xi = 1) = 0.6

P(Xi = −1) = 0.4

The position of the particle after k steps is the sum
of these random movements,

Y = X1 + X2 + · · · + Xk

Use the central limit theorem to find the
approximate probability that the position of
the particle after 500 steps is at least 200 to the
right.
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Undergraduate student loan debt has been increasing steadily during the past
decade. Is the debt becoming too much of a burden upon graduation? Example 6.4
discusses the average debt of undergraduate borrowers.

6.1 Estimating with Confidence

6.2 Tests of Significance

6.3 Use and Abuse of Tests

6.4 Power and Inference
as a Decision

Introduction
Statistical inference draws conclusions about a popula-
tion or process based on sample data. It also provides a
statement, expressed in terms of probability, of how
much confidence we can place in our conclusions. Al-
though there are many specific recipes for inference,
there are only a few general types of statistical inference. This chapter intro-
duces the two most common types: confidence intervals and tests of significance.

Because the underlying reasoning for these types of inference remains the
same across different settings, this chapter considers a single simple setting:
inference about the mean of a Normal population whose standard deviation is
known. Later chapters will present the recipes for inference in other situations.
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In this setting, we can address questions like:

• What is the average loan debt among undergraduate borrowers?

• What is the average miles per gallon (mpg) for a hybrid car?

• Is the average cholesterol level of undergraduate women at your university
below the national average?

Overview of Inference
The purpose of statistical inference is to draw conclusions from data. We have
already examined data and arrived at conclusions many times. Formal infer-
ence emphasizes substantiating our conclusions by probability calculations.
Probability allows us to take chance variation into account. Here is an example.
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E 6.1 Clustering of trees in a forest. The Wade Tract in Thomas County,
Georgia, is an old-growth forest of longleaf pine trees (Pinus palustris) that
has survived in a relatively undisturbed state since before the settlement of
the area by Europeans. Foresters who study these trees are interested in how
the trees are distributed in the forest. Is there some sort of clustering, result-
ing in regions of the forest with more trees than others? Or are the tree loca-
tions random, resulting in no particular patterns?

Figure 6.1 gives a plot of the locations of all 584 longleaf pine trees in a
200-meter by 200-meter region in the Wade Tract.1 Do the locations appear
to be random, or do there appear to be clusters of trees? One approach to the
analysis of these data indicates that a pattern as clustered as, or more clus-
tered than, the one in Figure 6.1 would occur only 4% of the time if, in fact,
the locations of longleaf pine trees in the Wade Tract are random. Because
this chance is fairly small, we conclude that there is some clustering of these
trees.
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FIGURE 6.1 The distribution of
longleaf pine trees, for Example
6.1.
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Our probability calculation helps us to distinguish between patterns that
are consistent or inconsistent with the random location scenario. Here is an
example comparing two drug treatments with a different conclusion.
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E 6.2 Effectiveness of a new drug. Researchers want to know if a new
drug is more effective than a placebo. Twenty patients receive the new drug,
and 20 receive a placebo. Twelve (60%) of those taking the drug show im-
provement versus only 8 (40%) of the placebo patients.

Our unaided judgment would suggest that the new drug is better. However,
probability calculations tell us that a difference this large or larger between
the results in the two groups would occur about one time in five simply be-
cause of chance variation. Since this probability is not very small, it is better
to conclude that the observed difference is due to chance rather than a real
difference between the two treatments.

In this chapter we introduce the two most prominent types of formal statisti-
cal inference. Section 6.1 concerns confidence intervals for estimating the value
of a population parameter. Section 6.2 presents tests of significance, which as-
sess the evidence for a claim. Both types of inference are based on the sam-LOOK BACK

sampling
distributions,
page 215

pling distributions of statistics. That is, both report probabilities that state
what would happen if we used the inference method many times. This kind of
probability statement is characteristic of standard statistical inference. Users
of statistics must understand the nature of this reasoning and the meaning of
the probability statements that appear, for example, in newspaper and journal
articles as well as statistical software output.

Because the methods of formal inference are based on sampling distri-
butions, they require a probability model for the data. Trustworthy prob-
ability models can arise in many ways, but the model is most secure and
inference is most reliable when the data are produced by a properly ran-
domized design. When you use statistical inference, you are acting as if the
data come from a random sample or a randomized experiment. If this is not

CAUTION

! true, your conclusions may be open to challenge. Do not be overly impressed
by the complex details of formal inference. This elaborate machinery can-
not remedy basic flaws in producing the data such as voluntary response
samples and confounded experiments. Use the common sense developed in
your study of the first three chapters of this book, and proceed to detailed
formal inference only when you are satisfied that the data deserve such
analysis.

The primary purpose of this chapter is to describe the reasoning used in sta-
tistical inference. We will discuss only a few specific inference techniques, and
these require an unrealistic assumption: that we know the standard deviation
σ . Later chapters will present inference methods for use in most of the settings
we met in learning to explore data. There are libraries—both of books and of
computer software—full of more elaborate statistical techniques. Informed use
of any of these methods requires an understanding of the underlying reasoning.
A computer will do the arithmetic, but you must still exercise judgment based
on understanding.
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6.1 Estimating with Confidence
The SAT test is a widely used measure of readiness for college study. Orig-
inally, there were two sections, one for verbal reasoning ability (SATV) and
one for mathematical reasoning ability (SATM). In April 1995, section scores
were recentered so that the mean is approximately 500 in a large “standard-LOOK BACK

linear
transformations,
page 45

ized group.” This scale has been maintained since then so that scores have a
constant interpretation.

In 2005, the College Board changed the test, renaming the verbal section
“Critical Reading” and adding a third section on writing ability. These changes
increased the total possible score to 2400, extended the exam an additional 35
minutes, and increased the cost to register for the exam by $12. The changes
also raised concerns about the constant-interpretation assumption.
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E 6.3 Estimating the mean SATM score for seniors in California. Sup-
pose you want to estimate the mean SATM score for the more than 420,000
high school seniors in California. You know better than to trust data from the
students who choose to take the SAT. Only about 45% of California students
take the SAT. These self-selected students are planning to attend college and
are not representative of all California seniors. At considerable effort and ex-
pense, you give the test to a simple random sample (SRS) of 500 California
high school seniors. The mean score for your sample is x = 461. What can
you say about the mean score μ in the population of all 420,000 seniors?

The sample mean x is the natural estimator of the unknown population
mean μ. We know that x is an unbiased estimator of μ. More important, the
law of large numbers says that the sample mean must approach the population
mean as the size of the sample grows. The value x = 461 therefore appears to
be a reasonable estimate of the mean score μ that all 420,000 students would
achieve if they took the test. But how reliable is this estimate? A second sample
would surely not give 461 again. Unbiasedness says only that there is no system-
atic tendency to underestimate or overestimate the truth. Could we plausibly
get a sample mean of 410 or 510 on repeated samples? An estimate without an
indication of its variability is of little value.

Statistical confidence
Just as unbiasedness of an estimator concerns the center of its sampling dis-
tribution, questions about variation are answered by looking at the spread. We
know that if the entire population of SAT scores has mean μ and standard de-
viation σ , then in repeated samples of size 500 the sample mean x follows the
N(μ, σ/

√
500) distribution. Let us suppose that we know that the standard devi-LOOK BACK

distribution of the
sample mean,
page 339

ation σ of SATM scores in our California population is σ = 100. (This is not re-
alistic. We will see in the next chapter how to proceed when σ is not known. For
now, we are more interested in statistical reasoning than in details of realistic
methods.) In repeated sampling the sample mean x has a Normal distribution
centered at the unknown population mean μ and having standard deviation

σx = 100√
500

= 4.5
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Probability = 0.95

Density curve of x

– 9μ + 9μ (unknown)μ

FIGURE 6.2 x lies within ± 9 of
μ in 95% of all samples, so μ also
lies within ± 9 of x in those
samples.

Now we are in business. Consider this line of thought, which is illustrated
by Figure 6.2:

• The 68–95–99.7 rule says that the probability is about 0.95 that x will be
within 9 points (two standard deviations of x) of the population mean score
μ.

• To say that x lies within 9 points of μ is the same as saying that μ is within 9
points of x.

• So 95% of all samples will capture the true μ in the interval from x − 9 to
x + 9.

We have simply restated a fact about the sampling distribution of x. The lan-
guage of statistical inference uses this fact about what would happen in the long
run to express our confidence in the results of any one sample. Our sample gave
x = 461. We say that we are 95% confident that the unknown mean score for
all California seniors lies between

x − 9 = 461 − 9 = 452

and

x + 9 = 461 + 9 = 470

Be sure you understand the grounds for our confidence. There are only two
possibilities for our SRS:

1. The interval between 452 and 470 contains the true μ.

2. The interval between 452 and 470 does not contain the true μ.

We cannot know whether our sample is one of the 95% for which the interval
x ± 9 catches μ or one of the unlucky 5% that does not catch μ. The statement
that we are 95% confident is shorthand for saying, “We arrived at these num-
bers by a method that gives correct results 95% of the time.”

USE YOUR KNOWLEDGE
6.1 How much do you spend on lunch? The average amount you spend

on a lunch during the week is not known. Based on past experience,
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you are willing to assume that the standard deviation is about $2. If
you take a random sample of 36 lunches, what is the value of the stan-
dard deviation for x?

6.2 Applying the 68–95–99.7 rule. In the setting of the previous exercise,
the 68–95–99.7 rule says that the probability is about 0.95 that x is
within $ of the population mean μ. Fill in the blank.

6.3 Constructing a 95% confidence interval. In the setting of the previ-
ous two exercises, about 95% of all samples will capture the true mean
in the interval x plus or minus $ . Fill in the blank.

Confidence intervals
The interval of numbers between the values x ± 9 is called a 95% confidence
interval for μ. Like most confidence intervals we will discuss, this one has the
form

estimate ± margin of error

The estimate (x in this case) is our guess for the value of the unknown param-
eter. The margin of error (9 here) reflects how accurate we believe our guessmargin of error
is, based on the variability of the estimate, and how confident we are that the
procedure will catch the true population mean μ.

Figure 6.3 illustrates the behavior of 95% confidence intervals in repeated
sampling. The center of each interval is at x and therefore varies from sample to
sample. The sampling distribution of x appears at the top of the figure to show

μ

Density curve of x

FIGURE 6.3 Twenty-five
samples from the same
population gave these 95%
confidence intervals. In the long
run, 95% of all samples give an
interval that covers μ.
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the long-term pattern of this variation. The 95% confidence intervals, x ± 9,
from 25 SRSs appear below. The center x of each interval is marked by a dot.
The arrows on either side of the dot span the confidence interval. All except one
of the 25 intervals cover the true value of μ. In a very large number of samples,
95% of the confidence intervals would contain μ. With the Confidence Interval
applet, you can construct many diagrams similar to the one displayed in Fig-AP

PLET

ure 6.3.
Statisticians have constructed confidence intervals for many different pa-

rameters based on a variety of designs for data collection. We will meet a num-
ber of these in later chapters. You need to know two important things about a
confidence interval:

1. It is an interval of the form (a, b), where a and b are numbers computed from
the data.

2. It has a property called a confidence level that gives the probability of pro-
ducing an interval that contains the unknown parameter.

Users can choose the confidence level, but 95% is the standard for most sit-
uations. Occasionally, 90% or 99% is used. We will use C to stand for the confi-
dence level in decimal form. For example, a 95% confidence level corresponds
to C = 0.95.

CONFIDENCE INTERVAL

A level C confidence interval for a parameter is an interval computed
from sample data by a method that has probability C of producing an
interval containing the true value of the parameter.

AP
PLET

USE YOUR KNOWLEDGE
6.4 80% confidence intervals. The idea of an 80% confidence interval

is that the interval captures the true parameter value in 80% of all
samples. That’s not high enough confidence for practical use, but 80%
hits and 20% misses make it easy to see how a confidence interval be-
haves in repeated samples from the same population.

(a) Set the confidence level in the Confidence Interval applet to 80%.
Click “Sample” to choose an SRS and calculate the confidence in-
terval. Do this 10 times. How many of the 10 intervals captured
the true mean μ? How many missed?

(b) You see that we can’t predict whether the next sample will capture
μ or miss. The confidence level, however, tells us what percent will
capture μ in the long run. Reset the applet and click “Sample 50”
to get the confidence intervals from 50 SRSs. How many hit? Keep
clicking “Sample 50” and record the percent of hits among 100,
200, 300, 400, 500, 600, 700, 800, and 1000 SRSs. As the number of
samples increases, we expect the percent of captures to get closer
to the confidence level, 80%.
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Confidence interval for a population mean
We will now construct a level C confidence interval for the mean μ of a popula-
tion when the data are an SRS of size n. The construction is based on the sam-
pling distribution of the sample mean x. This distribution is exactly N(μ, σ/

√
n)

when the population has the N(μ, σ ) distribution. The central limit theoremLOOK BACK
central limit theorem,
page 339

says that this same sampling distribution is approximately correct for large
samples whenever the population mean and standard deviation are μ and σ .

Our construction of a 95% confidence interval for the mean SATM score be-
gan by noting that any Normal distribution has probability about 0.95 within
±2 standard deviations of its mean. To construct a level C confidence interval
we first catch the central C area under a Normal curve. That is, we must find the
number z∗ such that any Normal distribution has probability C within ±z∗ stan-
dard deviations of its mean. Because all Normal distributions have the same
standardized form, we can obtain everything we need from the standard Nor-
mal curve. Figure 6.4 shows how C and z∗ are related. Values of z∗ for many
choices of C appear in the row labeled z∗ at the bottom of Table D at the back
of the book. Here are the most important entries from that row:

z∗ 1.645 1.960 2.576

C 90% 95% 99%

Area = 1 – C
2 Area = 1 – C

2

Area = C

–z* z*0

FIGURE 6.4 The area between
−z∗ and z∗ under the standard
normal curve is C.

As Figure 6.4 reminds us, any Normal curve has probability C between the
point z∗ standard deviations below the mean and the point z∗ standard devi-
ations above the mean. The sample mean x has the Normal distribution with
mean μ and standard deviation σ/

√
n. So there is probability C that x lies

between

μ − z∗ σ√
n

and μ + z∗ σ√
n

This is exactly the same as saying that the unknown population mean μ lies
between

x − z∗ σ√
n

and x + z∗ σ√
n
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That is, there is probability C that the interval x ± z∗σ/
√

n contains μ. That is
our confidence interval. The estimate of the unknown μ is x, and the margin of
error is z∗σ/

√
n.

CONFIDENCE INTERVAL FOR A POPULATION MEAN

Choose an SRS of size n from a population having unknown mean μ and
known standard deviation σ . The margin of error for a level C confi-
dence interval for μ is

m = z∗ σ√
n

Here z∗ is the value on the standard Normal curve with area C between
the critical points −z∗ and z∗. The level C confidence interval for μ is

x ± m

This interval is exact when the population distribution is Normal and is
approximately correct when n is large in other cases.
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E 6.4 Average debt of undergraduate borrowers. The National Stu-
dent Loan Survey collects data to examine questions related to the amount
of money that borrowers owe. The survey selected a sample of 1280 borrow-
ers who began repayment of their loans between four and six months prior
to the study.2 The mean of the debt for undergraduate study was $18,900
and the standard deviation was about $49,000. This distribution is clearly
skewed but because our sample size is quite large, we can rely on the central
limit theorem to assure us that the confidence interval based on the Normal
distribution will be a good approximation. Let’s compute a 95% confidence
interval for the true mean debt for all borrowers. Although the standard devi-
ation is estimated from the data collected, we will treat it as a known quantity
for our calculations here.

For 95% confidence, we see from Table D that z∗ = 1.960. The margin of
error for the 95% confidence interval for μ is therefore

m = z∗ σ√
n

= 1.960
49,000√

1280

= 2684

We have computed the margin of error with more digits than we really need.
Our mean is rounded to the nearest $100, so we will do the same for the mar-
gin of error. Keeping additional digits would provide no additional useful in-
formation. Therefore, we will use m = 2700. The 95% confidence interval is

x ± m = 18,900 ± 2700

= (16,200, 21,600)
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•
We are 95% confident that the mean debt for all borrowers is between $16,200
and $21,600.

Suppose the researchers who designed the National Student Loan Survey
had used a different sample size. How would this affect the confidence interval?
We can answer this question by changing the sample size in our calculations
and assuming that the mean and standard deviation are the same.
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E 6.5 How sample size affects the confidence interval. Let’s assume

that the sample mean of the debt for undergraduate study is $18,900 and the
standard deviation is about $49,000, as in Example 6.4. But suppose that the
sample size is only 320. The margin of error for 95% confidence is

m = z∗ σ√
n

= 1.960
49,000√

320

= 5400

and the 95% confidence interval is

x ± m = 18,900 ± 5400

= (13,500, 24,300)

Notice that the margin of error for this example is twice as large as the mar-
gin of error that we computed in Example 6.4. The only change that we made
was to assume that the sample size is 320 rather than 1280. This sample size
is exactly one-fourth of the original 1280. Thus, we double the margin of error
when we reduce the sample size to one-fourth of the original value. Figure 6.5
illustrates the effect in terms of the intervals.

n = 320

n = 1280

14,000 16,000 18,000 20,000 24,000 26,00022,000

FIGURE 6.5 Confidence
intervals for n = 1280 and
n = 320, for Examples 6.4
and 6.5.

The argument leading to the form of confidence intervals for the popula-
tion mean μ rested on the fact that the statistic x used to estimate μ has a Nor-
mal distribution. Because many sample estimates have Normal distributions
(at least approximately), it is useful to notice that the confidence interval has
the form

estimate ± z∗σestimate
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The estimate based on the sample is the center of the confidence interval. The
margin of error is z∗σestimate. The desired confidence level determines z∗ from
Table D. The standard deviation of the estimate is found from a knowledge of
the sampling distribution in a particular case. When the estimate is x from an
SRS, the standard deviation of the estimate is σestimate = σ/

√
n.

USE YOUR KNOWLEDGE
6.5 College freshmen anxiety level. An SRS of 100 incoming freshmen

was taken to look at their college anxiety level. The mean score of the
sample was 83.5 (out of 100). Assuming a standard deviation of 4, give
the 95% confidence interval for μ, the average anxiety level among all
freshmen.

6.6 Changing the confidence level. In the setting of the previous exer-
cise, would the margin of error for 99% confidence be larger or smaller?
Verify your answer by performing the calculations.

How confidence intervals behave
The margin of error z∗σ/

√
n for the mean of a Normal population illustrates

several important properties that are shared by all confidence intervals in com-
mon use. The user chooses the confidence level, and the margin of error follows
from this choice. High confidence is desirable and so is a small margin of er-
ror. High confidence says that our method almost always gives correct answers.
A small margin of error says that we have pinned down the parameter quite
precisely.

Suppose that you calculate a margin of error and decide that it is too large.
Here are your choices to reduce it:

• Use a lower level of confidence (smaller C).

• Increase the sample size (larger n).

• Reduce σ .

For most problems you would choose a confidence level of 90%, 95%, or
99%. So z∗ will be 1.645, 1.960, or 2.576. Figure 6.4 shows that z∗ will be smaller
for lower confidence (smaller C). The bottom row of Table D also shows this.
If n and σ are unchanged, a smaller z∗ leads to a smaller margin of error. Sim-
ilarly, increasing the sample size n reduces the margin of error for any fixed
confidence level. The square root in the formula implies that we must multi-
ply the number of observations by 4 in order to cut the margin of error in half.
The standard deviation σ measures the variation in the population. You can
think of the variation among individuals in the population as noise that ob-
scures the average value μ. It is harder to pin down the mean μ of a highly
variable population; that is why the margin of error of a confidence interval
increases with σ . In practice, we can sometimes reduce σ by carefully control-
ling the measurement process or by restricting our attention to only part of a
large population.
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E 6.6 How confidence level affects the confidence interval. Suppose
that for the student loan data in Example 6.4, we wanted 99% confidence.
Table D tells us that for 99% confidence, z∗ = 2.576. The margin of error for
99% confidence based on 1280 observations is

m = z∗ σ√
n

= 2.576
49,000√

1280

= 3500

and the 99% confidence interval is

x ± m = 18,900 ± 3500

= (15,400, 22,400)

Requiring 99%, rather than 95%, confidence has increased the margin of er-
ror from 2700 to 3500. Figure 6.6 compares the two intervals.

99%
confidence

95%
confidence

14,000 16,000 18,000 20,000 24,000 26,00022,000

FIGURE 6.6 Confidence
intervals for Examples 6.4
and 6.6.

Choosing the sample size
A wise user of statistics never plans data collection without at the same time
planning the inference. You can arrange to have both high confidence and a
small margin of error. The margin of error of the confidence interval for a pop-
ulation mean is

m = z∗ σ√
n

To obtain a desired margin of error m, plug in the value of σ and the value of
z∗ for your desired confidence level, and solve for the sample size n. Here is the
result.

SAMPLE SIZE FOR DESIRED MARGIN OF ERROR

The confidence interval for a population mean will have a specified mar-
gin of error m when the sample size is

n =
(

z∗σ
m

)2
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This formula does not account for collection costs. In practice, taking obser-
vations costs time and money. The required sample size may be impossibly ex-
pensive. Do notice once again that it is the size of the sample that determines the
margin of error. The size of the population (as long as the population is much
larger than the sample) does not influence the sample size we need.

•

•
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E 6.7 How many students should we survey? Suppose that we are plan-
ning a student loan survey similar to the one described in Example 6.4. If we
want the margin of error to be $2000 with 95% confidence, what sample size
n do we need? For 95% confidence, Table D gives z∗ = 1.960. For σ we will use
the value from the previous study, $49,000. If the margin of error is $2000, we
have

n =
(

z∗σ
m

)2

=
(

1.96 × 49,000
2000

)2

= 2305.9

Because 2305 measurements will give a slightly wider interval than desired
and 2306 measurements a slightly narrower interval, we could choose n =
2306. We need loan information from 2306 borrowers to determine an esti-
mate of mean debt with the desired margin of error.

It is always safe to round up to the next higher whole number when find-
ing n because this will give us a smaller margin of error. The purpose of this
calculation is to determine a sample size that is sufficient to provide useful re-
sults, but the determination of what is useful is a matter of judgment. Would
we need a much larger sample size to obtain a margin of error of $1500? Here
is the calculation:

n =
(

z∗σ
m

)2

=
(

1.96 × 49,000
1500

)2

= 4099.4

A sample of n = 4100 is much larger, and the costs of such a large sample may
be prohibitive.

Unfortunately, the actual number of usable observations is often less than
what we plan at the beginning of a study. This is particularly true of data col-
lected in surveys but is an important consideration in most studies. Careful
study designers often assume a nonresponse rate or dropout rate that speci-
fies what proportion of the originally planned sample will fail to provide data.
We use this information to calculate the sample size to be used at the start of
the study. For example, if in the survey above, we expect only 25% of those con-
tacted to respond, we would need to start with a sample size of 4 × 2306 = 9224
to obtain usable information from 2306 borrowers.

USE YOUR KNOWLEDGE
6.7 Starting salaries. You are planning a survey of starting salaries for

recent marketing majors. In 2005, the average starting salary was re-
ported to be $37,832.3 Assuming the standard deviation for this study
is $10,500, what sample size do you need to have a margin of error
equal to $900 with 95% confidence?
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6.8 Changes in sample size. Suppose that in the setting of the previous
exercise you have the resources to contact 1000 recent graduates. If
all respond, will your margin of error be larger or smaller than $900?
What if only 45% respond? Verify your answers by performing the
calculations.

Some cautions
We have already seen that small margins of error and high confidence can re-
quire large numbers of observations. You should also be keenly aware that any
formula for inference is correct only in specific circumstances. If the government
required statistical procedures to carry warning labels like those on drugs,
most inference methods would have long labels indeed. Our handy formula
x ± z∗σ/

√
n for estimating a population mean comes with the following list of

warnings for the user:

• The data should be an SRS from the population. We are completely safe if we
actually did a randomization and drew an SRS. We are not in great danger
if the data can plausibly be thought of as independent observations from a
population. That is the case in Examples 6.4 to 6.7, where we redefine our
population to correspond to survey respondents.

• The formula is not correct for probability sampling designs more complex
than an SRS. Correct methods for other designs are available. We will not
discuss confidence intervals based on multistage or stratified samples. If you
plan such samples, be sure that you (or your statistical consultant) know how
to carry out the inference you desire.

• There is no correct method for inference from data haphazardly collected
with bias of unknown size. Fancy formulas cannot rescue badly produced
data.

• Because x is not resistant, outliers can have a large effect on the confidence
interval. You should search for outliers and try to correct them or justify their
removal before computing the interval. If the outliers cannot be removed,
ask your statistical consultant about procedures that are not sensitive to
outliers.

• If the sample size is small and the population is not Normal, the true confi-
dence level will be different from the value C used in computing the interval.
Examine your data carefully for skewness and other signs of non-Normality.
The interval relies only on the distribution of x, which even for quite small
sample sizes is much closer to Normal than that of the individual observa-
tions. When n ≥ 15, the confidence level is not greatly disturbed by non-
Normal populations unless extreme outliers or quite strong skewness are
present. Our debt data in Example 6.4 are clearly skewed, but because of the
large sample size, we are confident that the sample mean will be approxi-
mately Normal. We will discuss this issue in more detail in the next chapter.

• This interval x ± z∗σ/
√

n assumes that the standard deviation σ of the popu-
lation is known. This unrealistic requirement renders the interval of little use
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in statistical practice. We will learn in the next chapter what to do when σ is
unknown. If, however, the sample is large, the sample standard deviation sLOOK BACK

standard deviation,
page 40

will be close to the unknown σ . The interval x ± z∗s/
√

n is then an approxi-
mate confidence interval for μ.

The most important caution concerning confidence intervals is a conse-
quence of the first of these warnings. The margin of error in a confidence interval
covers only random sampling errors. The margin of error is obtained from the
sampling distribution and indicates how much error can be expected because
of chance variation in randomized data production. Practical difficulties such
as undercoverage and nonresponse in a sample survey cause additional errors.
These errors can be larger than the random sampling error. This often happens

CAUTION

!
when the sample size is large (so that σ/

√
n is small). Remember this unpleas-

ant fact when reading the results of an opinion poll or other sample survey. The
practical conduct of the survey influences the trustworthiness of its results in
ways that are not included in the announced margin of error.

Every inference procedure that we will meet has its own list of warnings.
Because many of the warnings are similar to those above, we will not print the
full warning label each time. It is easy to state (from the mathematics of prob-
ability) conditions under which a method of inference is exactly correct. These
conditions are never fully met in practice. For example, no population is exactly
Normal. Deciding when a statistical procedure should be used in practice of-
ten requires judgment assisted by exploratory analysis of the data. Mathemati-
cal facts are therefore only a part of statistics. The difference between statistics
and mathematics can be stated thus: mathematical theorems are true; statisti-
cal methods are often effective when used with skill.

Finally, you should understand what statistical confidence does not say.
Based on our SRS in Example 6.3, we are 95% confident that the mean SATM
score for the California students lies between 452 and 470. This says that this
interval was calculated by a method that gives correct results in 95% of all
possible samples. It does not say that the probability is 95% that the true mean
falls between 452 and 470. No randomness remains after we draw a particular
sample and compute the interval. The true mean either is or is not between 452
and 470. The probability calculations of standard statistical inference describe
how often the method, not a particular sample, gives correct answers.

USE YOUR KNOWLEDGE
6.9 Internet users. A survey of users of the Internet found that males out-

numbered females by nearly 2 to 1. This was a surprise, because ear-
lier surveys had put the ratio of men to women closer to 9 to 1. Later
in the article we find this information:

Detailed surveys were sent to more than 13,000 organizations on
the Internet; 1,468 usable responses were received. According to Mr.
Quarterman, the margin of error is 2.8 percent, with a confidence
level of 95 percent.4

Do you think that the small margin of error is a good measure of the
accuracy of the survey’s results? Explain your answer.
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BEYOND THE BASICS

The Bootstrap

Confidence intervals are based on sampling distributions. In this section we
have used the fact that the sampling distribution of x is N(μ, σ/

√
n) when the

data are an SRS from an N(μ, σ ) population. If the data are not Normal, the
central limit theorem tells us that this sampling distribution is still a reasonable
approximation as long as the distribution of the data is not strongly skewed and
there are no outliers. Even a fair amount of skewness can be tolerated when the
sample size is large.

What if the population does not appear to be Normal and we have only a
small sample? Then we do not know what the sampling distribution of x looks
like. The bootstrap is a procedure for approximating sampling distributionsbootstrap
when theory cannot tell us their shape.5

The basic idea is to act as if our sample were the population. We take many
samples from it. Each of these is called a resample. We calculate the mean xresample
for each resample. We get different results from different resamples because
we sample with replacement. An individual observation in the original sample
can appear more than once in the resample.

For example, suppose we have four measurements of a student’s daily time
online last month (in minutes):

190.5 109.0 95.5 137.0

one resample could be

109.0 95.5 137.0 109.0

with x = 112.625. Collect the x’s from 1000 such resamples. Their distribution
will be close to what we would get if we took 1000 samples from the entire pop-
ulation. We treat the distribution of x’s from our 1000 resamples as if it were
the sampling distribution. If we want a 95% confidence interval, for example,
we can use the middle 95% of this distribution.

The bootstrap is practical only when you can use a computer to take 1000
or more samples quickly. It is an example of how the use of fast and easy com-
puting is changing the way we do statistics. More details about the bootstrap
can be found in Chapter 16.

SECTION 6.1 Summary

The purpose of a confidence interval is to estimate an unknown parameter
with an indication of how accurate the estimate is and of how confident we are
that the result is correct.

Any confidence interval has two parts: an interval computed from the data and
a confidence level. The interval often has the form

estimate ± margin of error
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The confidence level states the probability that the method will give a correct
answer. That is, if you use 95% confidence intervals, in the long run 95% of your
intervals will contain the true parameter value. When you apply the method
once, you do not know if your interval gave a correct value (this happens 95%
of the time) or not (this happens 5% of the time).

The margin of error for a level C confidence interval for the mean μ of a Nor-
mal population with known standard deviation σ , based on an SRS of size n,
is given by

m = z∗ σ√
n

Here z∗ is obtained from the row labeled z∗ at the bottom of Table D. The prob-
ability is C that a standard Normal random variable takes a value between −z∗
and z∗. The confidence interval is

x ± m

Other things being equal, the margin of error of a confidence interval decreases
as

• the confidence level C decreases,

• the sample size n increases, and

• the population standard deviation σ decreases.

The sample size n required to obtain a confidence interval of specified margin
of error m for a Normal mean is

n =
(

z∗σ
m

)2

where z∗ is the critical point for the desired level of confidence.

A specific confidence interval recipe is correct only under specific conditions.
The most important conditions concern the method used to produce the data.
Other factors such as the form of the population distribution may also be
important.

SECTION 6.1 Exercises
For Exercises 6.1 to 6.3, see pages 357 and 358; for Exercise
6.4, see page 359; for Exercises 6.5 and 6.6, see page 363; for
Exercises 6.7 and 6.8, see pages 365 and 366; and for
Exercise 6.9, see page 367.

6.10 Margin of error and the confidence interval.
A study based on a sample of size 25 reported a
mean of 93 with a margin of error of 11 for 95%
confidence.

(a) Give the 95% confidence interval.

(b) If you wanted 99% confidence for the same
study, would your margin of error be greater than,
equal to, or less than 11? Explain your answer.

6.11 Changing the sample size. Suppose that the sample
mean is 50 and the standard deviation is assumed
to be 5. Make a diagram similar to Figure 6.5 (page
362) that illustrates the effect of sample size on the
width of a 95% interval. Use the following sample
sizes: 10, 20, 40, and 80. Summarize what the
diagram shows.

6.12 Changing the confidence level. A study with 36
observations had a mean of 70. Assume that the
standard deviation is 12. Make a diagram similar
to Figure 6.6 (page 364) that illustrates the effect
of the confidence level on the width of the interval.
Use 80%, 90%, 95%, and 99%. Summarize what the
diagram shows.
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6.13 Importance of recreational sports. The National
Intramural-Recreational Sports Association
(NIRSA) performed a study to look at the value of
recreational sports on college campuses.6 A total of
2673 students were asked to indicate how important
(on a 10-point scale) each of 21 factors was in terms
of their college satisfaction and success. The factor
“recreational sports and activities” resulted in a
mean score of 7.5. Assuming a standard deviation
of 4.1, give the margin of error and find the 95%
confidence interval for this sample.

6.14 More on the importance of recreational sports.
Refer to Exercise 6.13. Repeat the calculations
for a 99% confidence interval. How do the results
compare with those in Exercise 6.13?

6.15 Importance of quality professors. Refer to
Exercise 6.13. In this same sample, the factor
“quality of professors and ability to interact with
them” resulted in a mean score of 8.7. Assuming a
standard deviation of 3.5, find the 95% confidence
interval.

6.16 Inference based on integer values. Refer to
Exercise 6.13. The data for this study are integer
values between 1 and 10. Explain why the confidence
interval based on the Normal distribution will be a
good approximation.

6.17 Mean serum TRAP in young women. For many
important processes that occur in the body, direct
measurement of characteristics of the process is not
possible. In many cases, however, we can measure a
biomarker, a biochemical substance that is relatively
easy to measure and is associated with the process
of interest. Bone turnover is the net effect of two
processes: the breaking down of old bone, called
resorption, and the building of new bone, called
formation. One biochemical measure of bone
resorption is tartrate resistant acid phosphatase
(TRAP), which can be measured in blood. In a study
of bone turnover in young women, serum TRAP was
measured in 31 subjects.7 The units are units per
liter (U/l). The mean was 13.2 U/l. Assume that the
standard deviation is known to be 6.5 U/l. Give the
margin of error and find a 95% confidence interval
for the mean for young women represented by this
sample.

6.18 Mean OC in young women. Refer to the previous
exercise. A biomarker for bone formation measured
in the same study was osteocalcin (OC), measured
in the blood. The units are nanograms per milliliter
(ng/ml). For the 31 subjects in the study the
mean was 33.4 ng/ml. Assume that the standard

deviation is known to be 19.6 ng/ml. Report the 95%
confidence interval.

6.19 Populations sampled and margins of error.
Consider the following two scenarios. (A) Take a
simple random sample of 100 sophomore students
at your college or university. (B) Take a simple
random sample of 100 sophomore students in your
major at your college or university. For each of
these samples you will record the amount spent on
textbooks used for classes during the fall semester.
Which sample should have the smaller margin of
error? Explain your answer.

6.20 Apartment rental rates. You want to rent an
unfurnished one-bedroom apartment in Boston
next year. The mean monthly rent for a random
sample of 10 apartments advertised in the local
newspaper is $1400. Assume that the standard
deviation is $220. Find a 95% confidence interval
for the mean monthly rent for unfurnished one-
bedroom apartments available for rent in this
community.

6.21 More on apartment rental rates. Refer to the
previous exercise. Will the 95% confidence interval
include approximately 95% of the rents of all
unfurnished one-bedroom apartments in this area?
Explain why or why not.

6.22 C
H

ALLENG
E Inference based on skewed data. The

mean OC for the 31 subjects in Exercise 6.18
was 33.4 ng/ml. In our calculations, we assumed
that the standard deviation was known to be 19.6
ng/ml. Use the 68–95–99.7 rule from Chapter 1
(page 59) to find the approximate bounds on the
values of OC that would include these percents of
the population. If the assumed standard deviation is
correct, it would appear that this distribution may
be highly skewed. Why? (Hint: The measured values
for a variable such as this are all positive.) Do you
think that this skewness will invalidate the use of
the Normal confidence interval in this case? Explain
your answer.

6.23 Average hours per week on the Internet. The
Student Monitor surveys 1200 undergraduates from
100 colleges semiannually to understand trends
among college students.8 Recently, the Student
Monitor reported that the average amount of time
spent per week on the Internet was 15.1 hours.
Assume that the standard deviation is 5 hours.

(a) Give a 95% confidence interval for the mean
time spent per week on the Internet.
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(b) Is it true that 95% of the students surveyed
reported weekly times that lie in the interval you
found in part (a)? Explain your answer.

6.24 Average minutes per week on the Internet. Refer
to the previous exercise.

(a) Give the mean and standard deviation in
minutes.

(b) Calculate the 95% confidence interval in minutes
from your answer to part (a).

(c) Explain how you could have directly calculated
this interval from the 95% interval that you
calculated in the previous exercise.

6.25 Calories consumed by women in the U.S. The
mean number of calories consumed by women in
the United States who are 19 to 30 years of age is
μ = 1791 calories per day. The standard deviation is
31 calories.9 You will study a sample of 200 women
in this age range, and one of the variables you will
collect is calories consumed per day.

(a) What is the standard deviation of the sample
mean x?

(b) The 68–95–99.7 rule says that the probability is
about 0.95 that x is within calories of the
population mean μ. Fill in the blank.

(c) About 95% of all samples will capture the true
mean of calories consumed per day in the interval x
plus or minus calories. Fill in the blank.

6.26 Fuel efficiency. Computers in some vehicles
calculate various quantities related to performance.
One of these is the fuel efficiency, or gas mileage,
usually expressed as miles per gallon (mpg). For one
vehicle equipped in this way, the mpg were recorded
each time the gas tank was filled, and the computer
was then reset.10 Here are the mpg values for a
random sample of 20 of these records:

41.5 50.7 36.6 37.3 34.2 45.0 48.0 43.2 47.7 42.2
43.2 44.6 48.4 46.4 46.8 39.2 37.3 43.5 44.3 43.3

Suppose that the standard deviation is known to be
σ = 3.5 mpg.

(a) What is σx, the standard deviation of x?

(b) Give a 95% confidence interval for μ, the mean
mpg for this vehicle.

6.27 Fuel efficiency in metric units. In the previous
exercise you found an estimate with a margin of
error for the average miles per gallon. Convert your

estimate and margin of error to the metric units
kilometers per liter (kpl). To change mpg to kpl,
use the facts that 1 mile = 1.609 kilometers and
1 gallon = 3.785 liters.

6.28
AP

PLET

Percent coverage of 95% confidence
interval. The Confidence Interval applet lets

you simulate large numbers of confidence intervals
quickly. Select 95% confidence and then sample 50
intervals. Record the number of intervals that cover
the true value (this appears in the “Hit” box in the
applet). Press the reset button and repeat 30 times.
Make a stemplot of the results and find the mean.
Describe the results. If you repeated this experiment
very many times, what would you expect the average
number of hits to be?

6.29 Required sample size for specifed margin of
error. A new bone study is being planned that
will measure the biomarker TRAP described in
Exercise 6.17. Using the value of σ given there,
6.5 U/l, find the sample size required to provide an
estimate of the mean TRAP with a margin of error
of 2.0 U/l for 95% confidence.

6.30 C
H

ALLENG
E Adjusting required sample size for drop

out. Refer to the previous exercise. In similar
previous studies, about 20% of the subjects drop out
before the study is completed. Adjust your sample
size requirement to have enough subjects at the end
of the study to meet the margin of error criterion.

6.31 Sample size needed for apartment rental rates.
How large a sample of one-bedroom apartments in
Exercise 6.20 would be needed to estimate the mean
μ within ±$50 with 90% confidence?

6.32 Accuracy of a laboratory scale. To assess the
accuracy of a laboratory scale, a standard weight
known to weigh 10 grams is weighed repeatedly.
The scale readings are Normally distributed with
unknown mean (this mean is 10 grams if the scale
has no bias). The standard deviation of the scale
readings is known to be 0.0002 gram.

(a) The weight is measured five times. The mean
result is 10.0023 grams. Give a 98% confidence
interval for the mean of repeated measurements of
the weight.

(b) How many measurements must be averaged
to get a margin of error of ±0.0001 with 98%
confidence?

6.33 C
H

ALLENG
E More than one confidence interval. As

we prepare to take a sample and compute
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a 95% confidence interval, we know that the
probability that the interval we compute will cover
the parameter is 0.95. That’s the meaning of 95%
confidence. If we use several such intervals, however,
our confidence that all of them give correct results
is less than 95%. Suppose we take independent
samples each month for five months and report a
95% confidence interval for each set of data.

(a) What is the probability that all five intervals
cover the true means? This probability (expressed
as a percent) is our overall confidence level for the
five simultaneous statements.

(b) What is the probability that at least four of the
five intervals cover the true means?

6.34 Telemarketing wages. An advertisement in the
student newspaper asks you to consider working
for a telemarketing company. The ad states, “Earn
between $500 and $1000 per week.” Do you think
that the ad is describing a confidence interval?
Explain your answer.

6.35 Like your job? A Gallup Poll asked working adults
about their job satisfaction. One question was “All
in all, which best describes how you feel about your
job?” The possible answers were “love job,” “like
job,” “dislike job,” and “hate job.” Fifty-nine percent
of the sample responded that they liked their job.
Material provided with the results of the poll noted:

Results are based on telephone interviews with 1,001
national adults, aged 18 and older, conducted Aug.
8–11, 2005. For results based on the total sample of
national adults, one can say with 95% confidence
that the maximum margin of sampling error is ±3
percentage points.11

The Gallup Poll uses a complex multistage sample
design, but the sample percent has approximately a
Normal sampling distribution.

(a) The announced poll result was 59% ± 3%. Can
we be certain that the true population percent falls
in this interval?

(b) Explain to someone who knows no statistics
what the announced result 59% ± 3% means.

(c) This confidence interval has the same form we
have met earlier:

estimate ± z∗σestimate

What is the standard deviation σestimate of the
estimated percent?

(d) Does the announced margin of error
include errors due to practical problems such
as undercoverage and nonresponse?

6.2 Tests of Significance
The confidence interval is appropriate when our goal is to estimate population
parameters. The second common type of inference is directed at a quite dif-
ferent goal: to assess the evidence provided by the data in favor of some claim
about the population parameters.

The reasoning of significance tests
A significance test is a formal procedure for comparing observed data with a hy-
pothesis whose truth we want to assess. The hypothesis is a statement about the
population parameters. The results of a test are expressed in terms of a prob-
ability that measures how well the data and the hypothesis agree. We use the
following examples to illustrate these concepts.
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E 6.8 Debt levels of private and public college borrowers. One purpose
of the National Student Loan Survey described in Example 6.4 (page 361) is
to compare the debt of different subgroups of students. For example, the 525
borrowers who last attended a private four-year college had a mean debt of
$21,200, while those who last attended a public four-year college had a mean
debt of $17,100. The difference of $4100 is fairly large, but we know that these



6.2 Tests of Significance
•

373

•

numbers are estimates of the true means. If we took different samples, we
would get different estimates. Can we conclude from these data that the av-
erage debt of borrowers who attended a private college is different than the
average debt of borrowers who attended a public college?

One way to answer this question is to compute the probability of obtaining
a difference as large or larger than the observed $4100 assuming that, in fact,
there is no difference in the true means. This probability is 0.17. Because this
probability is not particularly small, we conclude that observing a difference
of $4100 is not very surprising when the true means are equal. The data do not
provide evidence for us to conclude that the mean debts for private four-year
borrowers and public four-year borrowers are different.

Here is an example with a different conclusion.

•

•
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E 6.9 Change in average debt levels between 1997 and 2002. Another
purpose of the National Student Loan Survey is to look for changes over time.
For example, in 1997, the survey found that the mean debt for undergraduate
study was $11,400. How does this compare with the value of $18,900 in the
2002 study? The difference is $7500. As we learned in the previous example,
an observed difference in means is not necessarily sufficient for us to con-
clude that the true means are different. Do the data provide evidence that
there is an increase in borrowing? Again, we answer this question with a prob-
ability calculated under the assumption that there is no difference in the true
means. The probability is 0.00004 of observing an increase in mean debt that
is $7500 or more when there really is no difference. Because this probability
is so small, we have sufficient evidence in the data to conclude that there has
been a change in borrowing between 1997 and 2002.

What are the key steps in these examples?

• We started each with a question about the difference between two mean
debts. In Example 6.8, we compare private four-year borrowers with public
four-year borrowers. In Example 6.9, we compare borrowers in 2002 with
borrowers in 1997. In both cases, we ask whether or not the data are com-
patible with no difference, that is, a difference of $0.

• Next we compared the data, $4100 in the first case and $7500 in the second,
with the value that comes from the question, $0.

• The results of the comparisons are probabilities, 0.17 in the first case and
0.00004 in the second.

The 0.17 probability is not particularly small, so we have no evidence to
question the possibility that the true difference is zero. In the second case, how-
ever, the probability is quite small. Something that happens with probability
0.00004 occurs only about 4 times out of 100,000. In this case we have two pos-
sible explanations:
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1. we have observed something that is very unusual, or

2. the assumption that underlies the calculation, no difference in mean debt,
is not true.

Because this probability is so small, we prefer the second conclusion: there has
been a change in the mean debt between 1997 and 2002.

The probabilities in Examples 6.8 and 6.9 are measures of the compatibility
of the data (a difference in means of $4100 and $7500) with the null hypothesis
that there is no difference in the true means. Figures 6.7 and 6.8 compare the
two results graphically. For each a Normal curve centered at 0 is the sampling
distribution. You can see that we are not particularly surprised to observe the
difference $4100 in Figure 6.7, but the difference $7500 in Figure 6.8 is clearly
an unusual observation. We will now consider some of the formal aspects of
significance testing.

FIGURE 6.7 Comparison of the sample mean in
Example 6.8 relative to the null hypothesized value 0.

0 4500 9000–9000 –4500

Difference in debt dollars
x– = 4100

FIGURE 6.8 Comparison of the sample mean in
Example 6.9 relative to the null hypothesized value 0.

0 3800 7600–7600 –3800

Difference in debt dollars
x– = 7500

Stating hypotheses
In Examples 6.8 and 6.9, we asked whether the difference in the observed
means is reasonable if, in fact, there is no difference in the true means. To an-
swer this, we begin by supposing that the statement following the “if” in the
previous sentence is true. In other words, we suppose that the true difference
is $0. We then ask whether the data provide evidence against the supposition
we have made. If so, we have evidence in favor of an effect (the means are dif-
ferent) we are seeking. The first step in a test of significance is to state a claim
that we will try to find evidence against.
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NULL HYPOTHESIS

The statement being tested in a test of significance is called the null hy-
pothesis. The test of significance is designed to assess the strength of
the evidence against the null hypothesis. Usually the null hypothesis is a
statement of “no effect” or “no difference.”

We abbreviate “null hypothesis” as H0. A null hypothesis is a statement
about the population parameters. For example, our null hypothesis for Example
6.8 is

H0: there is no difference in the true means

Note that the null hypothesis refers to the true means for all borrowers from
either a four-year private or public college, including those for whom we do
not have data.

It is convenient also to give a name to the statement we hope or suspect is
true instead of H0. This is called the alternative hypothesis and is abbreviatedalternative hypothesis
as Ha. In Example 6.8, the alternative hypothesis states that the means are dif-
ferent. We write this as

Ha: the true means are not the same

Hypotheses always refer to some populations or a model, not to a particular out-
come. For this reason, we must state H0 and Ha in terms of population parame-
ters.

CAUTION

!
Because Ha expresses the effect that we hope to find evidence for, we often

begin with Ha and then set up H0 as the statement that the hoped-for effect is
not present. Stating Ha is often the more difficult task. It is not always clear,
in particular, whether Ha should be one-sided or two-sided, which refers toone-sided or two-sided

alternatives whether a parameter differs from its null hypothesis value in a specific direc-
tion or in either direction.

The alternative hypothesis should express the hopes or suspicions we bring
to the data. It is cheating to first look at the data and then frame Ha to fit what
the data show. If you do not have a specific direction firmly in mind in advance,

CAUTION

! you must use a two-sided alternative. Moreover, some users of statistics argue
that we should always use a two-sided alternative.

USE YOUR KNOWLEDGE
6.36 Food court survey. The food court at your dormitory has been re-

designed. A survey is planned to determine whether or not students
think that the new design is an improvement. Sampled students will
respond on a seven-point scale with scores less than 4 favoring the
old design and scores greater than 4 favoring the new design (to
varying degrees). State the null and alternative hypotheses that pro-
vide a framework for examining whether or not the new design is an
improvement.

6.37 DXA scanners. A dual-energy X-ray absorptiometry (DXA) scanner is
used to measure bone mineral density for people who may be at risk
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for osteoporosis. To ensure its accuracy, the company uses an object
called a “phantom” that has known mineral density μ = 1.4 grams
per square centimeter. Once installed, the company scans the phan-
tom 10 times and compares the sample mean reading x with the theo-
retical mean μ using a significance test. State the null and alternative
hypotheses for this test.

Test statistics
We will learn the form of significance tests in a number of common situa-
tions. Here are some principles that apply to most tests and that help in under-
standing these tests:

• The test is based on a statistic that estimates the parameter that appears in
the hypotheses. Usually this is the same estimate we would use in a confi-
dence interval for the parameter. When H0 is true, we expect the estimate to
take a value near the parameter value specified by H0.

• Values of the estimate far from the parameter value specified by H0 give ev-
idence against H0. The alternative hypothesis determines which directions
count against H0.

• To assess how far the estimate is from the parameter, standardize the esti-
mate. In many common situations the test statistic has the form

z = estimate − hypothesized value
standard deviation of the estimate

Let’s return to our student loan example.
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E 6.10 Debt levels of private and public college borrowers: the hy-
potheses. In Example 6.8, the hypotheses are stated in terms of the dif-
ference in debt between borrowers who attended a private college and those
who attended a public college:

H0: there is no difference in the true means

Ha: there is a difference in the true means

Because Ha is two-sided, large values of both positive and negative differences
count as evidence against the null hypothesis.

A test statistic measures compatibility between the null hypothesis and thetest statistic
data. We use it for the probability calculation that we need for our test of sig-
nificance. It is a random variable with a distribution that we know.
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E 6.11 Debt levels of private and public college borrowers: the test
statistic. In Example 6.8, we can state the null hypothesis as H0: the true
mean difference is 0. The estimate of the difference is $4100. Using methods
that we will discuss in detail later, we can determine that the standard devi-
ation of the estimate is $3000. For this problem the test statistic is
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z = estimate − hypothesized value
standard deviation of the estimate

For our data,

z = 4100 − 0
3000

= 1.37

We have observed a sample estimate that is about one and a third standard
deviations away from the hypothesized value of the parameter. Because the
sample sizes are sufficiently large for us to conclude that the distribution of
the sample estimate is approximately Normal, the standardized test statistic
z will have approximately the N(0, 1) distribution.

We will use facts about the Normal distribution in what follows.LOOK BACK
Normal distribution,
page 58 P-values

If all test statistics were Normal, we could base our conclusions on the value of
the z test statistic. In fact, the Supreme Court of the United States has said that
“two or three standard deviations” (z = 2 or 3) is its criterion for rejecting H0

(see Exercise 6.42 on page 381), and this is the criterion used in most applica-
tions involving the law. Because not all test statistics are Normal, we translate
the value of test statistics into a common language, the language of probability.

A test of significance finds the probability of getting an outcome as extreme
or more extreme than the actually observed outcome. “Extreme” means “far from
what we would expect if H0 were true.” The direction or directions that count
as “far from what we would expect” are determined by Ha and H0.

In Example 6.8 we want to know if the debt of private college borrowers is
different from the debt of public college borrowers. The difference we calcu-
lated based on our sample is $4100, which corresponds to 1.37 standard de-
viations away from zero—that is, z = 1.37. Because we are using a two-sided
alternative for this problem, the evidence against H0 is measured by the proba-
bility that we observe a value of Z as extreme or more extreme than 1.37. More
formally, this probability is

P(Z ≤ −1.37 or Z ≥ 1.37)

where Z has the standard Normal distribution N(0, 1).

P-VALUE

The probability, assuming H0 is true, that the test statistic would take a
value as extreme or more extreme than that actually observed is called
the P-value of the test. The smaller the P-value, the stronger the evidence
against H0 provided by the data.

The key to calculating the P-value is the sampling distribution of the test
statistic. For the problems we consider in this chapter, we need only the stan-
dard Normal distribution for the test statistic z.
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E 6.12 Debt levels of private and public college borrowers: the P-value.
In Example 6.11 we found that the test statistic for testing

H0: the true mean difference is 0

versus

Ha: there is a difference in the true means

is

z = 4100 − 0
3000

= 1.37

If H0 is true, then z is a single observation from the standard Normal, N(0, 1),
distribution. Figure 6.9 illustrates this calculation. The P-value is the proba-
bility of observing a value of Z at least as extreme as the one that we observed,
z = 1.37. From Table A, our table of standard Normal probabilities, we find

P(Z ≥ 1.37) = 1 − 0.9147 = 0.0853

The probability for being extreme in the negative direction is the same:

P(Z ≤ −1.37) = 0.0853

So the P-value is

P = 2P(Z ≥ 1.37) = 2(0.0853) = 0.1706

This is the value that was reported on page 373. There is a 17% chance of
observing a difference as extreme as the $4100 in our sample if the true pop-
ulation difference is zero. The P-value tells us that our outcome is not par-
ticularly extreme, so we conclude that the data do not provide evidence that
would cause us to doubt the validity of the null hypothesis.

0–2–4 2 4

Standard normal
density curve

P = 0.17

z = 1.37

FIGURE 6.9 The P-value for
Example 6.12. The P-value here is
the probability (when H0 is true)
that x takes a value as extreme
or more extreme than the actual
observed value.

USE YOUR KNOWLEDGE
6.38 Normal curve and the P-value. A test statistic for a two-sided signifi-

cance test for a population mean is z = 2.7. Sketch a standard Normal
curve and mark this value of z on it. Find the P-value and shade the ap-
propriate areas under the curve to illustrate your calculations.
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6.39 More on the Normal curve and the P-value. A test statistic for a
two-sided significance test for a population mean is z = −1.2. Sketch
a standard Normal curve and mark this value of z on it. Find the
P-value and shade the appropriate areas under the curve to illustrate
your calculations.

Statistical significance
We started our discussion of the reasoning of significance tests with the state-
ment of null and alternative hypotheses. We then learned that a test statistic
is the tool used to examine the compatibility of the observed data with the null
hypothesis. Finally, we translated the test statistic into a P-value to quantify the
evidence against H0. One important final step is needed: to state our conclusion.

We can compare the P-value we calculated with a fixed value that we re-
gard as decisive. This amounts to announcing in advance how much evidence
against H0 we will require to reject H0. The decisive value of P is called the
significance level. It is commonly denoted by α. If we choose α = 0.05, we aresignificance level
requiring that the data give evidence against H0 so strong that it would hap-
pen no more than 5% of the time (1 time in 20) when H0 is true. If we choose
α = 0.01, we are insisting on stronger evidence against H0, evidence so strong
that it would appear only 1% of the time (1 time in 100) if H0 is in fact true.

STATISTICAL SIGNIFICANCE

If the P-value is as small or smaller than α, we say that the data are sta-
tistically significant at level α.

“Significant” in the statistical sense does not mean “important.” The origi-
nal meaning of the word is “signifying something.” In statistics the term is used
to indicate only that the evidence against the null hypothesis reached the stan-
dard set by α. Significance at level 0.01 is often expressed by the statement “The
results were significant (P < 0.01).” Here P stands for the P-value. The P-value
is more informative than a statement of significance because we can then as-
sess significance at any level we choose. For example, a result with P = 0.03 is
significant at the α = 0.05 level but is not significant at the α = 0.01 level.

A test of significance is a process for assessing the significance of the evi-
dence provided by data against a null hypothesis. The four steps common to
all tests of significance are as follows:

1. State the null hypothesis H0 and the alternative hypothesis Ha. The test is de-
signed to assess the strength of the evidence against H0; Ha is the statement
that we will accept if the evidence enables us to reject H0.

2. Calculate the value of the test statistic on which the test will be based. This
statistic usually measures how far the data are from H0.

3. Find the P-value for the observed data. This is the probability, calculated as-
suming that H0 is true, that the test statistic will weigh against H0 at least as
strongly as it does for these data.
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4. State a conclusion. One way to do this is to choose a significance level α, how
much evidence against H0 you regard as decisive. If the P-value is less than or
equal to α, you conclude that the alternative hypothesis is true; if it is greater
than α, you conclude that the data do not provide sufficient evidence to reject
the null hypothesis. Your conclusion is a sentence that summarizes what you
have found by using a test of significance.

We will learn the details of many tests of significance in the following chap-
ters. The proper test statistic is determined by the hypotheses and the data col-
lection design. We use computer software or a calculator to find its numerical
value and the P-value. The computer will not formulate your hypotheses for
you, however. Nor will it decide if significance testing is appropriate or help
you to interpret the P-value that it presents to you. The most difficult and im-
portant step is the last one: stating a conclusion.

•

•

E
X

A
M

P
L

E 6.13 Debt levels of private and public college borrowers: signifi-
cance. In Example 6.12 we found that the P-value is 0.1706. There is a 17%
chance of observing a difference as extreme as the $4100 in our sample if
the true population difference is zero. The P-value tells us that our outcome
is not particularly extreme. We could report the result as “the data do not
provide evidence that would cause us to conclude that there is a difference
in student loan debt between private college borrowers and public college
borrowers (z = 1.37, P = 0.17).”

If the P-value is small, we reject the null hypothesis. Here is an example.
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E 6.14 Change in mean debt levels: significance. In Example 6.9 we
found that the average debt has risen by $7500 from 1997 to 2002. Since we
would have a prior expectation that the debt would increase over this pe-
riod because of rising costs of a college education, it is appropriate to use a
one-sided alternative in this situation. So, our hypotheses are

H0: the true mean difference is 0

versus

Ha: the mean debt has increased between 1997 and 2002

The standard deviation is $1900 (again we defer details regarding this calcu-
lation), and the test statistic is

z = estimate − hypothesized value
standard deviation of the estimate

z = 7500 − 0
1900

= 3.95

Because only increases in debt count against the null hypothesis, the one-
sided alternative leads to the calculation of the P-value using the upper tail
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of the Normal distribution. The P-value is

P = P(Z ≥ 3.95)

= 0.00004

The calculation is illustrated in Figure 6.10. There is about a 4 in 100,000
chance of observing a difference as large or larger than the $7500 in our
sample if the true population difference is zero. This P-value tells us that our
outcome is extremely rare. We conclude that the null hypothesis must be
false. Here is one way to report the result: “The data clearly show that the
mean debt for college loans has increased between 1997 and 2002 (z = 3.95,
P < 0.001).”

P = 0.00004

0–2–4 2 4
z = 3.95

Standard normal
density curve

FIGURE 6.10 The P-value for
Example 6.14. The P-value here is
the probability (when H0 is true)
that x takes a value as large or
larger than the actual observed
value.

Note that the calculated P-value for this example is 0.00004 but we reported
the result as P < 0.001. The value 0.001, 1 in 1000, is sufficiently small to force
a clear rejection of H0. Standard practice is to report very small P-values as
simply less than 0.001.

USE YOUR KNOWLEDGE
6.40 Finding significant z-scores. Consider a significance test of the true

mean based on an SRS of 30 observations from a Normal population.
The alternative hypothesis is that the true mean is different from 1000.
What values of the z statistic are statistically significant at the α = 0.05
level?

6.41 More on finding significant z-scores. Consider a significance test of
the true mean based on an SRS of 30 observations from a Normal pop-
ulation. The alternative hypothesis is that the true mean is larger than
1000. What values of the z statistic are statistically significant at the
α = 0.05 level?

6.42 The Supreme Court speaks. The Supreme Court has said that z-
scores beyond z∗ = 2 or 3 are generally convincing statistical evidence.
For a two-sided test, what significance level corresponds to z∗ = 2? To
z∗ = 3?
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Tests for a population mean
Our discussion has focused on the reasoning of statistical tests, and we have
outlined the key ideas for one type of procedure. Here is a summary. We want
to test the hypothesis that a parameter has a specified value. This is the null
hypothesis. For a test of a population mean μ, the null hypothesis is

H0: the true population mean is equal to μ0

which often is expressed as

H0: μ = μ0

where μ0 is the specified value of μ that we would like to examine.
The test is based on data summarized as an estimate of the parameter. For a

population mean this is the sample mean x. Our test statistic measures the dif-
ference between the sample estimate and the hypothesized parameter in terms
of standard deviations of the test statistic:

z = estimate − hypothesized value
standard deviation of the estimate

Recall from Chapter 5 that the standard deviation of x is σ/
√

n. Therefore, theLOOK BACK
distribution of sample
mean, page 339

central limit theorem,
page 339

test statistic is

z = x − μ0

σ/
√

n

Again recall from Chapter 5 that, if the population is Normal, then x will
be Normal and z will have the standard Normal distribution when H0 is true.
By the central limit theorem both distributions will be approximately Normal
when the sample size is large even if the population is not Normal.

Suppose we have calculated a test statistic z = 1.7. If the alternative is one-
sided on the high side, then the P-value is the probability that a standard Nor-
mal random variable Z takes a value as large or larger than the observed 1.7.
That is,

P = P(Z ≥ 1.7)

= 1 − P(Z < 1.7)

= 1 − 0.9554

= 0.0446

Similar reasoning applies when the alternative hypothesis states that the
true μ lies below the hypothesized μ0 (one-sided). When Ha states that μ is
simply unequal to μ0 (two-sided), values of z away from zero in either direction
count against the null hypothesis. The P-value is the probability that a standard
Normal Z is at least as far from zero as the observed z. Again, if the test statis-
tic is z = 1.7, the two-sided P-value is the probability that Z ≤ −1.7 or Z ≥ 1.7.
Because the standard Normal distribution is symmetric, we calculate this prob-
ability by finding P(Z ≥ 1.7) and doubling it:

P(Z ≤ −1.7 or Z ≥ 1.7) = 2P(Z ≥ 1.7)

= 2(1 − 0.9554) = 0.0892



6.2 Tests of Significance
•

383

We would make exactly the same calculation if we observed z = −1.7. It is the
absolute value |z| that matters, not whether z is positive or negative. Here is a
statement of the test in general terms.

z TEST FOR A POPULATION MEAN

To test the hypothesis H0: μ = μ0 based on an SRS of size n from a popu-
lation with unknown mean μ and known standard deviation σ , compute
the test statistic

z = x − μ0

σ/
√

n

In terms of a standard Normal random variable Z, the P-value for a test
of H0 against

Ha: μ > μ0 is P(Z ≥ z)
z

Ha: μ < μ0 is P(Z ≤ z)
z

Ha: μ �= μ0 is 2P(Z ≥ |z|)
z

These P-values are exact if the population distribution is Normal and are
approximately correct for large n in other cases.
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E 6.15 Cholesterol level of sedentary female undergraduates. In 1999,
it was reported that the mean serum cholesterol level for female undergrad-
uates was 168 mg/dl with a standard deviation of 27 mg/dl. A recent study at
Baylor University investigated the lipid levels in a cohort of sedentary univer-
sity students.12 The mean total cholesterol level among n = 71 females was
x = 173.7. Is this evidence that cholesterol levels of sedentary students differ
from the previously reported average?

The null hypothesis is “no difference” from the published mean μ0 = 168.
The alternative is two-sided because the researcher did not have a particu-
lar direction in mind before examining the data. So the hypotheses about the
unknown mean μ of the sedentary population are

H0: μ = 168

Ha: μ �= 168
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As usual in this chapter, we make the unrealistic assumption that the pop-
ulation standard deviation is known, in this case that sedentary female stu-
dents have the same σ = 27 as the general population of female undergradu-
ates. The z test requires that the 71 students in the sample are an SRS from the
population of all sedentary female students. We check this assumption by ask-
ing how the data were produced. In this case, all participants were enrolled
in a health class at Baylor, so there may be some concerns about whether the
sample is an SRS. We will press on for now.

We compute the test statistic:

z = x − μ0

σ/
√

n
= 173.7 − 168

27/
√

71

= 1.78

Figure 6.11 illustrates the P-value, which is the probability that a standard
Normal variable Z takes a value at least 1.78 away from zero. From Table A
we find that this probability is

P = 2P(Z ≥ 1.78) = 2(1 − 0.9625) = 0.075

That is, more than 7% of the time an SRS of size 71 from the general under-
graduate female population would have a mean cholesterol level at least as
far from 168 as that of the sedentary sample. The observed x = 173.7 is there-
fore not strong evidence that the sedentary female undergraduate population
differs from the general female undergraduate population.

0–2–4 2 4

P = 0.075

FIGURE 6.11 The P-value for the two-sided test in Example 6.15.

The data in Example 6.15 do not establish that the mean cholesterol level μ

for the sedentary population is 168. We sought evidence that μ differed from
168 and failed to find convincing evidence. That is all we can say. No doubt the
mean cholesterol level of the entire sedentary population is not exactly equal to
168. A large enough sample would give evidence of the difference, even if it is
very small. Tests of significance assess the evidence against H0. If the evidence
is strong, we can confidently reject H0 in favor of the alternative. Failing to find
evidence against H0 means only that the data are consistent with H0, not that
we have clear evidence that H0 is true.
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E 6.16 Significance test of the mean SATM score. In a discussion of SAT
Mathematics (SATM) scores, someone comments: “Because only a minority
of California high school students take the test, the scores overestimate the
ability of typical high school seniors. I think that if all seniors took the test,
the mean score would be no more than 450.” You decided to test this claim
(H0) and gave the SAT to an SRS of 500 seniors from California (Example 6.3).
These students had a mean SATM score of x = 461. Is this good evidence
against this claim? Because the claim states the mean is “no more than 450,”
the alternative hypothesis is one-sided. The hypotheses are

H0: μ = 450

Ha: μ > 450

As we did in the discussion following Example 6.3, we assume that σ = 100.
The z statistic is

z = x − μ0

σ/
√

n
= 461 − 450

100/
√

500

= 2.46

Because Ha is one-sided on the high side, large values of z count against
H0. From Table A, we find that the P-value is

P = P(Z ≥ 2.46) = 1 − 0.9931 = 0.0069

Figure 6.12 illustrates this P-value. A mean score as large as that observed
would occur fewer than seven times in 1000 samples if the population mean
were 450. This is convincing evidence that the mean SATM score for all Cal-
ifornia high school seniors is higher than 450.

0–2–4 2 4

P = 0.0069

z = 2.46

FIGURE 6.12 The P-value for the one-sided test in Example 6.16.

USE YOUR KNOWLEDGE
6.43 Computing the test statistic and P-value. You will perform a signif-

icance test of H0: μ = 25 based on an SRS of n = 25. Assume σ = 5.

(a) If x = 27, what is the test statistic z?
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(b) What is the P-value if Ha: μ > 25?

(c) What is the P-value if Ha: μ �= 25?

6.44 Testing a random number generator. Statistical software has a
“random number generator” that is supposed to produce numbers
uniformly distributed between 0 to 1. If this is true, the numbers
generated come from a population with μ = 0.5. A command to gen-
erate 100 random numbers gives outcomes with mean x = 0.522 and
s = 0.316. Because the sample is reasonably large, take the population
standard deviation also to be σ = 0.316. Do we have evidence that the
mean of all numbers produced by this software is not 0.5?

Two-sided significance tests and confidence intervals
Recall the basic idea of a confidence interval, discussed in the first section of
this chapter. We constructed an interval that would include the true value of μ

with a specified probability C. Suppose we use a 95% confidence interval (C =
0.95). Then the values of μ that are not in our interval would seem to be incom-
patible with the data. This sounds like a significance test with α = 0.05 (or 5%)
as our standard for drawing a conclusion. The following examples demonstrate
that this is correct.
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E 6.17 Testing a pharmaceutical product. The Deely Laboratory analyzes
specimens of a pharmaceutical product to determine the concentration of the
active ingredient. Such chemical analyses are not perfectly precise. Repeated
measurements on the same specimen will give slightly different results. The
results of repeated measurements follow a Normal distribution quite closely.
The analysis procedure has no bias, so that the mean μ of the population of all
measurements is the true concentration in the specimen. The standard devia-
tion of this distribution is a property of the analytical procedure and is known
to be σ = 0.0068 grams per liter. The laboratory analyzes each specimen three
times and reports the mean result.

The Deely Laboratory has been asked to evaluate the claim that the con-
centration of the active ingredient in a specimen is 0.86 grams per liter. The
true concentration is the mean μ of the population of repeated analyses. The
hypotheses are

H0: μ = 0.86

Ha: μ �= 0.86

The lab chooses the 1% level of significance, α = 0.01.
Three analyses of one specimen give concentrations

0.8403 0.8363 0.8447

The sample mean of these readings is

x = 0.8403 + 0.8363 + 0.8447
3

= 0.8404
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The test statistic is

z = x − μ0

σ/
√

n
= 0.8404 − 0.86

0.0068/
√

3
= −4.99 standard deviations

Because the alternative is two-sided, the P-value is

P = 2P(Z ≥ |−4.99|) = 2P(Z ≥ 4.99)

We cannot find this probability in Table A. The largest value of z in that table
is 3.49. All that we can say from Table A is that P is less than 2P(Z ≥ 3.49) =
2(1 − 0.9998) = 0.0004. If we use the bottom row of Table D, we find that the
largest value of z∗ is 3.291, corresponding to a P-value of 1 − 0.999 = 0.001.
Software could be used to give an accurate value of the P-value. However, be-
cause the P-value is clearly less than the company’s standard of 1%, we reject
H0.

Suppose we compute a 99% confidence interval for the same data.
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E 6.18 99% confidence interval for the mean concentration. The 99%
confidence interval for μ in Example 6.17 is

x ± z∗ σ√
n

= 0.8404 ± 0.0101

= (0.8303, 0.8505)

The hypothesized value μ0 = 0.86 in Example 6.17 falls outside the confi-
dence interval we computed in Example 6.18. We are therefore 99% confident
that μ is not equal to 0.86, so we can reject

H0: μ = 0.86

at the 1% significance level. On the other hand, we cannot reject

H0: μ = 0.85

at the 1% level in favor of the two-sided alternative Ha: μ �= 0.85, because 0.85
lies inside the 99% confidence interval for μ. Figure 6.13 illustrates both cases.

The calculation in Example 6.17 for a 1% significance test is very similar to
the calculation for a 99% confidence interval. In fact, a two-sided test at signif-
icance level α can be carried out directly from a confidence interval with con-
fidence level C = 1 − α.

Cannot
reject H0: μ = 0.85 μ

Reject H0: μ = 0.86

0.83 0.84 0.85 0.86

μ
FIGURE 6.13 Values of μ

falling outside a 99% confidence
interval can be rejected at the
1% significance level; values
falling inside the interval cannot
be rejected.
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TWO-SIDED SIGNIFICANCE TESTS AND CONFIDENCE INTERVALS

A level α two-sided significance test rejects a hypothesis H0: μ = μ0 ex-
actly when the value μ0 falls outside a level 1 − α confidence interval
for μ.

USE YOUR KNOWLEDGE
6.45 Two-sided significance tests and confidence intervals. The P-value

for a two-sided test of the null hypothesis H0: μ = 30 is 0.08.

(a) Does the 95% confidence interval include the value 30? Explain.

(b) Does the 90% confidence interval include the value 30? Explain.

6.46 More on two-sided tests and confidence intervals. A 95% confi-
dence interval for a population mean is (57, 65).

(a) Can you reject the null hypothesis that μ = 68 at the 5% signifi-
cance level? Explain.

(b) Can you reject the null hypothesis that μ = 62 at the 5% signifi-
cance level? Explain.

P-values versus fixed α

The observed result in Example 6.17 was z = −4.99. The conclusion that this
result is significant at the 1% level does not tell the whole story. The observed
z is far beyond the z corresponding to 1%, and the evidence against H0 is far
stronger than 1% significance suggests. The P-value

2P(Z ≥ 4.99) = 0.0000006

gives a better sense of how strong the evidence is. The P-value is the smallest
level α at which the data are significant. Knowing the P-value allows us to assess
significance at any level.
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•
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E 6.19 Test of the mean SATM score: significance. In Example 6.16, we
tested the hypotheses

H0: μ = 450

Ha: μ > 450

concerning the mean SAT Mathematics score μ of California high school se-
niors. The test had the P-value P = 0.0069. This result is significant at the
α = 0.01 level because 0.0069 ≤ 0.01. It is not significant at the α = 0.005
level, because the P-value is larger than 0.005. See Figure 6.14.

A P-value is more informative than a reject-or-not finding at a fixed signif-
icance level. But assessing significance at a fixed level α is easier, because no
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0 0.005 0.01 0.015

α < P not significant αα α ≥ P significantP
FIGURE 6.14 An outcome with
P-value P is significant at all
levels α at or above P and is not
significant at smaller levels α.

probability calculation is required. You need only look up a number in a table.
A value z∗ with a specified area to its right under the standard Normal curve is
called a critical value of the standard Normal distribution. Because the prac-critical value
tice of statistics almost always employs computer software that calculates P-
values automatically, the use of tables of critical values is becoming outdated.
We include the usual tables of critical values (such as Table D) at the end of the
book for learning purposes and to rescue students without good computing fa-
cilities. The tables can be used directly to carry out fixed α tests. They also allow
us to approximate P-values quickly without a probability calculation. The fol-
lowing example illustrates the use of Table D to find an approximate P-value.

•
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E 6.20 Debt levels of private and public college borrowers: assessing
significance. In Example 6.11 we found the test statistic z = 1.37 for testing
the null hypothesis that there was no difference in the mean debt between bor-
rowers who attended a private college and those who attended a public col-
lege. The alternative was two-sided. Under the null hypothesis, z has a stan-
dard Normal distribution, and from the last row in Table D we can see that
there is a 95% chance that z is between ±1.96. Therefore, we reject H0 in favor
of Ha whenever z is outside this range. Since our calculated value is 1.37, we
are within the range and we do not reject the null hypothesis at the 5% level
of significance.

USE YOUR KNOWLEDGE
6.47 P-value and the significance level. The P-value for a significance test

is 0.026.

(a) Do you reject the null hypothesis at level α = 0.05?

(b) Do you reject the null hypothesis at level α = 0.01?

(c) Explain your answers.

6.48 More on the P-value and the significance level. The P-value for a
significance test is 0.074.

(a) Do you reject the null hypothesis at level α = 0.05?

(b) Do you reject the null hypothesis at level α = 0.01?

(c) Explain your answers.

6.49 One-sided and two-sided P-values. The P-value for a two-sided sig-
nificance test is 0.06.

(a) State the P-values for the one-sided tests.
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(b) What additional information do you need to properly assign these
P-values to the > and < (one-sided) alternatives?

SECTION 6.2 Summary

A test of significance is intended to assess the evidence provided by data
against a null hypothesis H0 in favor of an alternative hypothesis Ha.

The hypotheses are stated in terms of population parameters. Usually H0 is a
statement that no effect or no difference is present, and Ha says that there is an
effect or difference, in a specific direction (one-sided alternative) or in either
direction (two-sided alternative).

The test is based on a test statistic. The P-value is the probability, computed
assuming that H0 is true, that the test statistic will take a value at least as ex-
treme as that actually observed. Small P-values indicate strong evidence against
H0. Calculating P-values requires knowledge of the sampling distribution of the
test statistic when H0 is true.

If the P-value is as small or smaller than a specified value α, the data are sta-
tistically significant at significance level α.

Significance tests for the hypothesis H0: μ = μ0 concerning the unknown mean
μ of a population are based on the z statistic:

z = x − μ0

σ/
√

n

The z test assumes an SRS of size n, known population standard deviation σ ,
and either a Normal population or a large sample. P-values are computed from
the Normal distribution (Table A). Fixed α tests use the table of standard Nor-
mal critical values (Table D).

SECTION 6.2 Exercises
For Exercises 6.36 and 6.37, see page 375; for Exercises 6.38
and 6.39, see pages 378 and 379; for Exercises 6.40 to 6.42,
see page 381; for Exercises 6.43 and 6.44, see pages 385 and
386; for Exercises 6.45 and 6.46, see page 388; and for
Exercises 6.47 to 6.49, see page 389.

6.50 What’s wrong? Here are several situations where
there is an incorrect application of the ideas
presented in this section. Write a short paragraph
explaining what is wrong in each situation and why
it is wrong.

(a) A random sample of size 20 is taken from a
population that is assumed to have a standard
deviation of 12. The standard deviation of the
sample mean is 12/20.

(b) A researcher tests the following null hypothesis:
H0: x = 10.

(c) A study with x = 48 reports statistical
significance for Ha: μ > 54.

(d) A researcher tests the hypothesis H0: μ = 50 and
concludes that the population mean is equal to 50.

6.51 What’s wrong? Here are several situations where
there is an incorrect application of the ideas
presented in this section. Write a short paragraph
explaining what is wrong in each situation and why
it is wrong.

(a) A significance test rejected the null hypothesis
that the sample mean is equal to 1500.

(b) A change is made that should improve student
satisfaction with the way grades are processed. The
null hypothesis, that there is an improvement, is
tested versus the alternative, that there is no change.

(c) A study summary says that the results are
statistically significant and the P-value is 0.99.
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6.52 Determining hypotheses. State the appropriate
null hypothesis H0 and alternative hypothesis Ha in
each of the following cases.

(a) A 2002 study reported that 70% of students
owned a cell phone. You plan to take an SRS of
students to see if the percent has increased.

(b) The examinations in a large freshman chemistry
class are scaled after grading so that the mean score
is 72. The professor thinks that students who attend
morning recitation sections will have a higher mean
score than the class as a whole. Her students this
semester can be considered a sample from the
population of all students she might teach, so she
compares their mean score with 72.

(c) The student newspaper at your college recently
changed the format of their opinion page. You
take a random sample of students and select those
who regularly read the newspaper. They are asked
to indicate their opinions on the changes using a
five-point scale: −2 if the new format is much worse
than the old, −1 if the new format is somewhat
worse than the old, 0 if the new format is the same
as the old, +1 if the new format is somewhat better
than the old, and +2 if the new format is much
better than the old.

6.53 More on determining hypotheses. State the null
hypothesis H0 and the alternative hypothesis Ha in
each case. Be sure to identify the parameters that
you use to state the hypotheses.

(a) A university gives credit in French language
courses to students who pass a placement test. The
language department wants to know if students who
get credit in this way differ in their understanding
of spoken French from students who actually take
the French courses. Experience has shown that the
mean score of students in the courses on a standard
listening test is 26. The language department gives
the same listening test to a sample of 35 students
who passed the credit examination to see if their
performance is different.

(b) Experiments on learning in animals sometimes
measure how long it takes a mouse to find its way
through a maze. The mean time is 20 seconds
for one particular maze. A researcher thinks that
playing rap music will cause the mice to complete
the maze faster. She measures how long each of 12
mice takes with the rap music as a stimulus.

(c) The average square footage of one-bedroom
apartments in a new student-housing development
is advertised to be 460 square feet. A student
group thinks that the apartments are smaller than

advertised. They hire an engineer to measure a
sample of apartments to test their suspicion.

6.54 Even more on determining hypotheses. In each
of the following situations, state an appropriate null
hypothesis H0 and alternative hypothesis Ha. Be
sure to identify the parameters that you use to state
the hypotheses. (We have not yet learned how to test
these hypotheses.)

(a) A sociologist asks a large sample of high school
students which academic subject they like best.
She suspects that a higher percent of males than
of females will name marketing as their favorite
subject.

(b) An education researcher randomly divides
sixth-grade students into two groups for physical
education class. He teaches both groups basketball
skills, using the same methods of instruction in both
classes. He encourages Group A with compliments
and other positive behavior but acts cool and neutral
toward Group B. He hopes to show that positive
teacher attitudes result in a higher mean score on a
test of basketball skills than do neutral attitudes.

(c) An education researcher believes that among
college students there is a negative correlation
between credit card debt and self-esteem. To test
this, she gathers credit card debt information and
self-esteem data from a sample of students at your
college.

6.55 Translating research questions into hypotheses.
Translate each of the following research questions
into appropriate H0 and Ha.

(a) Census Bureau data show that the mean
household income in the area served by a shopping
mall is $62,500 per year. A market research firm
questions shoppers at the mall to find out whether
the mean household income of mall shoppers is
higher than that of the general population.

(b) Last year, your company’s service technicians
took an average of 2.6 hours to respond to trouble
calls from business customers who had purchased
service contracts. Do this year’s data show a different
average response time?

6.56 Computing the P-value. A test of the null
hypothesis H0: μ = μ0 gives test statistic z = 1.34.

(a) What is the P-value if the alternative is
Ha: μ > μ0?

(b) What is the P-value if the alternative is
Ha: μ < μ0?
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(c) What is the P-value if the alternative is
Ha: μ �= μ0?

6.57 More on computing the P-value. A test of the null
hypothesis H0: μ = μ0 gives test statistic z = −1.73.

(a) What is the P-value if the alternative is
Ha: μ > μ0?

(b) What is the P-value if the alternative is
Ha: μ < μ0?

(c) What is the P-value if the alternative is
Ha: μ �= μ0?

6.58 A two-sided test and the confidence interval. The
P-value for a two-sided test of the null hypothesis
H0: μ = 30 is 0.04.

(a) Does the 95% confidence interval include the
value 30? Why?

(b) Does the 90% confidence interval include the
value 30? Why?

6.59 More on a two-sided test and the confidence
interval. A 90% confidence interval for a population
mean is (23, 28).

(a) Can you reject the null hypothesis that μ = 24 at
the 10% significance level? Why?

(b) Can you reject the null hypothesis that μ = 30
at the 10% significance level? Why?

6.60 Use of bed nets. A study found that the use of
bed nets was associated with a lower prevalence
of malarial infections in the Gambia.13 A report of
the study states that the significance is P < 0.001.
Explain what this means in a way that could
be understood by someone who has not studied
statistics.

6.61 Purity of a catalyst. A new supplier offers a good
price on a catalyst used in your production process.
You compare the purity of this catalyst with that of
the catalyst offered by your current supplier. The
P-value for a test of “no difference” is 0.27. Can you
be confident that the purity of the new product is
the same as the purity of the product that you have
been using? Discuss.

6.62 Symbol of wealth in ancient China? Every society
has its own symbols of wealth and prestige. In
ancient China, it appears that owning pigs was such
a symbol. Evidence comes from examining burial
sites. If the skulls of sacrificed pigs tend to appear
along with expensive ornaments, that suggests that
the pigs, like the ornaments, signal the wealth and

prestige of the person buried. A study of burials
from around 3500 B.C. concluded that, “there are
striking differences in grave goods between burials
with pig skulls and burials without them. . . . A test
indicates that the two samples of total artifacts are
significantly different at the 0.01 level.”14 Explain
clearly why “significantly different at the 0.01 level”
gives good reason to think that there really is a
systematic difference between burials that contain
pig skulls and those that lack them.

6.63 Alcohol awareness among college students. A
study of alcohol awareness among college students
reported a higher awareness for students enrolled
in a health and safety class than for those enrolled
in a statistics class.15 The difference is described
as being statistically significant. Explain what this
means in simple terms and offer an explanation for
why the health and safety students had a higher
mean score.

6.64 Change in California’s eighth-grade average
science score. A report based on the 2005 National
Assessment of Educational Progress (NAEP)16 states
that the average score on their science test for eighth-
grade students in California is significantly higher
than in 2000. A footnote states that comparisons
(higher/lower/different) are determined by statistical
tests with 0.05 as the level of significance. Explain
what this means in language understandable to
someone who knows no statistics. Do not use the
word “significance” in your answer.

6.65 More on the eighth-grade average science score.
The 2005 NAEP report described in the previous
exercise states that the average score on their science
test for eighth-grade students across the nation
was not significantly different from the average
score in 2000. A footnote states that comparisons
(higher/lower/different) are determined by statistical
tests with 0.05 as the level of significance. Explain
what this means in language understandable to
someone who knows no statistics. Do not use the
word “significance” in your answer.

6.66 C
H

ALLENG
E Are the pine trees randomly distributed

north to south? In Example 6.1 we looked
at the distribution of longleaf pine trees in the
Wade Tract. One way to formulate hypotheses about
whether or not the trees are randomly distributed
in the tract is to examine the average location in
the north-south direction. The values range from
0 to 200, so if the trees are uniformly distributed
in this direction, any difference from the middle
value (100) should be due to chance variation. The
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sample mean for the 584 trees in the tract is 99.74.
A theoretical calculation based on the assumption
that the trees are uniformly distributed gives a
standard deviation of 58. Carefully state the null and
alternative hypotheses in terms of this variable. Note
that this requires that you translate the research
question about the random distribution of the
trees into specific statements about the mean of
a probability distribution. Test your hypotheses,
report your results, and write a short summary of
what you have found.

6.67 C
H

ALLENG
E Are the pine trees randomly distributed

east to west? Answer the questions in the
previous exercise for the east-west direction, where
the sample mean is 113.8.

6.68 Who is the author? Statistics can help decide the
authorship of literary works. Sonnets by a certain
Elizabethan poet are known to contain an average
of μ = 8.9 new words (words not used in the poet’s
other works). The standard deviation of the number
of new words is σ = 2.5. Now a manuscript with
6 new sonnets has come to light, and scholars are
debating whether it is the poet’s work. The new
sonnets contain an average of x = 10.2 words not
used in the poet’s known works. We expect poems
by another author to contain more new words, so to
see if we have evidence that the new sonnets are not
by our poet we test

H0: μ = 8.9

Ha: μ > 8.9

Give the z test statistic and its P-value. What do you
conclude about the authorship of the new poems?

6.69 Attitudes toward school. The Survey of Study
Habits and Attitudes (SSHA) is a psychological
test that measures the motivation, attitude toward
school, and study habits of students. Scores range
from 0 to 200. The mean score for U.S. college
students is about 115, and the standard deviation is
about 30. A teacher who suspects that older students
have better attitudes toward school gives the SSHA
to 25 students who are at least 30 years of age. Their
mean score is x = 132.2.

(a) Assuming that σ = 30 for the population of older
students, carry out a test of

H0: μ = 115

Ha: μ > 115

Report the P-value of your test, and state your
conclusion clearly.

(b) Your test in (a) required two important
assumptions in addition to the assumption that
the value of σ is known. What are they? Which of
these assumptions is most important to the validity
of your conclusion in (a)?

6.70 Calcium level in pregnant women in rural
Guatemala. The level of calcium in the blood in
healthy young adults varies with mean about 9.5
milligrams per deciliter and standard deviation
about σ = 0.4. A clinic in rural Guatemala measures
the blood calcium level of 160 healthy pregnant
women at their first visit for prenatal care. The
mean is x = 9.57. Is this an indication that the mean
calcium level in the population from which these
women come differs from 9.5?

(a) State H0 and Ha.

(b) Carry out the test and give the P-value, assuming
that σ = 0.4 in this population. Report your
conclusion.

(c) Give a 95% confidence interval for the mean
calcium level μ in this population. We are confident
that μ lies quite close to 9.5. This illustrates the fact
that a test based on a large sample (n = 160 here)
will often declare even a small deviation from H0 to
be statistically significant.

6.71 Are the mpg measurements similar? Refer
to Exercise 6.26 (page 371). In addition to the
computer computing mpg, the driver also recorded
the mpg by dividing the miles driven by the number
of gallons at each fill-up. The following data are the
differences between the computer’s and the driver’s
calculations for that random sample of 20 records.
The driver wants to determine if these calculations
are different. Assume the standard deviation of a
difference to be σ = 3.0.

5.0 6.5 −0.6 1.7 3.7 4.5 8.0 2.2 4.9 3.0
4.4 0.1 3.0 1.1 1.1 5.0 2.1 3.7 −0.6 −4.2

(a) State the appropriate H0 and Ha to test this
suspicion.

(b) Carry out the test. Give the P-value, and then
interpret the result in plain language.

6.72 Adjusting for changes in the value of the dollar.
In Example 6.9 (page 373), we found that the
average student debt has risen between 1997 to
2002. In computing the difference, we did not adjust
for differing values of the dollar. Using the fact that
$1 in 1997 was worth approximately $1.12 in 2002,
redo the test based on 2002 dollars. For simplicity,
assume the standard deviation is unchanged.
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6.73 Level of nicotine in cigarettes. According to data
from the Tobacco Institute Testing Laboratory,
Camel Lights King Size cigarettes contain an
average of 1.4 milligrams of nicotine. An advocacy
group commissions an independent test to see if the
mean nicotine content is higher than the industry
laboratory claims.

(a) What are H0 and Ha?

(b) Suppose that the test statistic is z = 2.36. Is this
result significant at the 5% level?

(c) Is the result significant at the 1% level?

6.74
AP

PLET

Changes of x on significance. The Statistical
Significance applet illustrates statistical tests

with a fixed level of significance for Normally
distributed data with known standard deviation.
Open the applet and keep the default settings for the
null (μ = 0) and the alternative (μ > 0) hypotheses,
the sample size (n = 10), the standard deviation
(σ = 1), and the significance level (α = 0.05). In
the “I have data, and the observed x is x =” box
enter the value 1. Is the difference between x and μ0

significant at the 5% level? Repeat for x equal to 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Make a table giving
x and the results of the significance tests. What do
you conclude?

6.75
AP

PLET

Changes of α on significance. Repeat the
previous exercise with significance level

α = 0.01. How does the choice of α affect the
values of x that are far enough away from μ0 to be
statistically significant?

6.76
AP

PLET

Changes of x on the P-value. The P-Value
of a Test of Significance applet illustrates P-

values of significance tests for Normally distributed
data with known standard deviation. Open the
applet and keep the default settings for the null
(μ = 0) and the alternative (μ > 0) hypotheses, the
sample size (n = 10), the standard deviation (σ = 1),
and the significance level (α = 0.05). In the “I have
data, and the observed x is x =” box enter the value

1. What is the P-value? Repeat for x equal to 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Make a table giving
x and P-values. How does the P-value change as x
moves farther away from μ0?

6.77 Understanding levels of significance. Explain
in plain language why a significance test that is
significant at the 1% level must always be significant
at the 5% level.

6.78 More on understanding levels of significance.
You are told that a significance test is significant
at the 5% level. From this information can you
determine whether or not it is significant at the 1%
level? Explain your answer.

6.79 Test statistic and levels of significance. Consider
a significance test for a null hypothesis versus a
two-sided alternative with a z test statistic. Give a
value of z that will give a result significant at the
0.5% level but not at the 0.1% level.

6.80 Using Table D to find a P-value. You have
performed a two-sided test of significance and
obtained a value of z = 3.1. Use Table D to find the
approximate P-value for this test.

6.81 More on using Table D to find a P-value. You
have performed a one-sided test of significance and
obtained a value of z = 0.35. Use Table D to find the
approximate P-value for this test.

6.82 Using Table A and Table D to find a P-value.
Consider a significance test for a null hypothesis
versus a two-sided alternative. Between what values
from Table D does the P-value for an outcome
z = 1.37 lie? Calculate the P-value using Table A,
and verify that it lies between the values you found
from Table D.

6.83 More on using Table A and Table D to find a
P-value. Refer to the previous exercise. Find the
P-value for z = −1.37.

6.3 Use and Abuse of Tests
Carrying out a test of significance is often quite simple, especially if the P-value
is given effortlessly by a computer. Using tests wisely is not so simple. Each test
is valid only in certain circumstances, with properly produced data being par-
ticularly important. The z test, for example, should bear the same warning label
that was attached in Section 6.1 to the corresponding confidence interval (page
366). Similar warnings accompany the other tests that we will learn. There are
additional caveats that concern tests more than confidence intervals, enough
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to warrant this separate section. Some hesitation about the unthinking use of
significance tests is a sign of statistical maturity.

The reasoning of significance tests has appealed to researchers in many
fields, so that tests are widely used to report research results. In this setting Ha

is a “research hypothesis” asserting that some effect or difference is present.
The null hypothesis H0 says that there is no effect or no difference. A low
P-value represents good evidence that the research hypothesis is true. Here are
some comments on the use of significance tests, with emphasis on their use in
reporting scientific research.

Choosing a level of significance
The spirit of a test of significance is to give a clear statement of the degree of
evidence provided by the sample against the null hypothesis. The P-value does
this. It is common practice to report P-values and to describe results as sta-
tistically significant whenever P ≤ 0.05. However, there is no sharp border be-
tween “significant” and “not significant,” only increasingly strong evidence as the
P-value decreases. Having both the P-value and the statement that we reject or

CAUTION

!
fail to reject H0 allows us to draw better conclusions from our data.

•

•
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E 6.21 Information provided by the P-value. Suppose the test statistic
for a two-sided significance test for a population mean is z = 1.95. From
Table A we can calculate the P-value. It is

P = 2[1 − P(Z ≤ 1.95)] = 2(1 − 0.9744) = 0.0512

We have failed to meet the standard of α = 0.05. However, with the infor-
mation provided by the P-value, we can see that the result just barely missed
the standard. If the effect in question is interesting and potentially important,
we might want to design another study with a larger sample to investigate it
further.

Here is another example where the P-value provides useful information be-
yond that provided by the statement that we reject or fail to reject the null
hypothesis.

•

•
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E 6.22 More on information provided by the P-value? We have a test
statistic of z = −4.66 for a two-sided significance test on a population mean.
Software tells us that the P-value is 0.000003. This means that there are 3
chances in 1,000,000 of observing a sample mean this far or farther away
from the null hypothesized value of μ. This kind of event is virtually impossi-
ble if the null hypothesis is true. There is no ambiguity in the result; we can
clearly reject the null hypothesis.

We frequently report small P-values such as that in the previous example as
P < 0.001. This corresponds to a chance of 1 in 1000 and is sufficiently small
to lead us to a clear rejection of the null hypothesis.
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One reason for the common use of α = 0.05 is the great influence of Sir R. A.
Fisher, the inventor of formal statistical methods for analyzing experimental
data. Here is his opinion on choosing a level of significance: “A scientific fact
should be regarded as experimentally established only if a properly designed
experiment rarely fails to give this level of significance.”17

What statistical significance does not mean
When a null hypothesis (“no effect” or “no difference”) can be rejected at the
usual level α = 0.05, there is good evidence that an effect is present. But that
effect can be extremely small. When large samples are available, even tiny devi-
ations from the null hypothesis will be significant.

CAUTION

!

•
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E 6.23 It’s significant. So what? Suppose that we are testing the hypoth-
esis of no correlation between two variables. With 400 observations, an ob-
served correlation of only r = 0.1 is significant evidence at the α = 0.05 level
that the correlation in the population is not zero. The low significance level
does not mean there is a strong association, only that there is strong evidence
of some association. The proportion of the variability in one of the variables
explained by the other is r2 = 0.01, or 1%.

For practical purposes, we might well decide to ignore this association. Sta-
tistical significance is not the same as practical significance.

CAUTION

! The remedy for attaching too much importance to statistical significance is
to pay attention to the actual experimental results as well as to the P-value. Plot
your data and examine them carefully. Beware of outliers. The foolish user of
statistics who feeds the data to a computer without exploratory analysis will often
be embarrassed. It is usually wise to give a confidence interval for the parameter

CAUTION

! in which you are interested. Confidence intervals are not used as often as they
should be, while tests of significance are perhaps overused.

USE YOUR KNOWLEDGE
6.84 Is it significant? More than 200,000 people worldwide take the GMAT

examination each year as they apply for MBA programs. Their scores
vary Normally with mean about μ = 525 and standard deviation about
σ = 100. One hundred students go through a rigorous training pro-
gram designed to raise their GMAT scores. Test the following hypothe-
ses about the training program

H0: μ = 525

Ha: μ > 525

in each of the following situations:

(a) The students’ average score is x = 541.4. Is this result significant
at the 5% level?

(b) The average score is x = 541.5. Is this result significant at the 5%
level?
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(c) Explain how you would reconcile this difference in significance,
especially if any increase greater than 15 points is considered a
success.

Don’t ignore lack of significance
There is a tendency to conclude that there is no effect whenever a P-value fails
to attain the usual 5% standard. A provocative editorial in the British Medical
Journal entitled “Absence of Evidence Is Not Evidence of Absence” deals with
this issue.18 Here is one of the examples they cite.
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E 6.24 Interventions to reduce HIV-1 transmission. A randomized trial

of interventions for reducing transmission of HIV-1 reported an incident rate
ratio of 1.00, meaning that the intervention group and the control group both
had the same rate of HIV-1 infection. The 95% confidence interval was re-
ported as 0.63 to 1.58.19 The editorial notes that a summary of these results
that says the intervention has no effect on HIV-1 infection is misleading. The
confidence interval indicates that the intervention may be capable of achiev-
ing a 37% decrease in infection; it might also be harmful and produce a 58%
increase in infection. Clearly, more data are needed to distinguish between
these possibilities.

The situation can be worse. Research in some fields has rarely been pub-
lished unless significance at the 0.05 level is attained.
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E 6.25 Journal survey of reported significance results. A survey of four
journals published by the American Psychological Association showed that
of 294 articles using statistical tests, only 8 reported results that did not at-
tain the 5% significance level.20It is very unlikely that these were the only 8
studies of scientific merit that did not attain significance at the 0.05 level.
Manuscripts describing other studies were likely rejected because of a lack
of statistical significance or were never submitted in the first place due to the
expectation of rejection.

In some areas of research, small effects that are detectable only with large
sample sizes can be of great practical significance. Data accumulated from
a large number of patients taking a new drug may be needed before we can
conclude that there are life-threatening consequences for a small number of
people.

On the other hand, sometimes a meaningful result is not found significant.
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E 6.26 A meaningful but statistically insignificant result. A sample of
size 10 gave a correlation of r = 0.5 between two variables. The P-value is
0.102 for a two-sided significance test. In many situations, a correlation this
large would be interesting and worthy of additional study. When it takes a lot
of effort (say, in terms of time or money) to obtain samples, researchers of-
ten use small studies like these to gain interest from various funding sources.
With financial support, a larger, more powerful study can then be run.
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Another important aspect of planning a study is to verify that the test you plan
to use does have high probability of detecting an effect of the size you hope to find.
This probability is the power of the test. Power calculations are discussed in

CAUTION

!
Section 6.4.

Statistical inference is not valid for all sets of data
In Chapter 3, we learned that badly designed surveys or experiments often pro-
duce invalid results. Formal statistical inference cannot correct basic flaws in theLOOK BACK

design of experiments,
page 181

design.
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E 6.27 English vocabulary and studying a foreign language. There is

no doubt that there is a significant difference in English vocabulary scores be-
tween high school seniors who have studied a foreign language and those who
have not. But because the effect of actually studying a language is confounded
with the differences between students who choose language study and those
who do not, this statistical significance is hard to interpret. The most plau-
sible explanation is that students who were already good at English chose to
study another language. A randomized comparative experiment would iso-
late the actual effect of language study and so make significance meaningful.
However, such an experiment probably could not be done.

Tests of significance and confidence intervals are based on the laws of prob-
ability. Randomization in sampling or experimentation ensures that these laws
apply. But we must often analyze data that do not arise from randomized samples
or experiments. To apply statistical inference to such data, we must have confi-
dence in a probability model for the data. We can check a probability model by

CAUTION

! examining the data. If the Normal distribution model appears correct, we can
apply the methods of this chapter to do inference about the mean μ.

USE YOUR KNOWLEDGE
6.85 Home security systems. A recent TV advertisement for home secu-

rity systems said that homes without an alarm system are 3 times
more likely to be broken into. Suppose this conclusion was obtained
by examining an SRS of police records of break-ins and determining
whether the percent of homes with alarm systems was significantly
smaller than 50%. Explain why the significance of this study is suspect
and propose an alternative study that would help clarify the impor-
tance of an alarm system.

Beware of searching for significance
Statistical significance is an outcome much desired by researchers. It means
(or ought to mean) that you have found an effect that you were looking for. The
reasoning behind statistical significance works well if you decide what effect you
are seeking, design an experiment or sample to search for it, and use a test of sig-
nificance to weigh the evidence you get. But because a successful search for a

CAUTION

!
new scientific phenomenon often ends with statistical significance, it is all too
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tempting to make significance itself the object of the search. There are several
ways to do this, none of them acceptable in polite scientific society.
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E 6.28 Microarray studies. In genomic experiments using microarrays, it
is common to perform tens of thousands of significance tests. If each of these
was examined separately and statistical significance declared for all that had
P-values that pass the 0.05 standard, we would have quite a mess. In the ab-
sence of any real biological effects, we would expect that, by chance alone,
approximately 5% of these tests will show statistical significance. Much re-
search in genomics is directed toward appropriate ways to deal with this
situation.21

We do not mean that searching data for suggestive patterns is not proper
scientific work. It certainly is. Many important discoveries have been made by
accident rather than by design. Exploratory analysis of data is an essential part
of statistics. We do mean that the usual reasoning of statistical inference does
not apply when the search for a pattern is successful. You cannot legitimately
test a hypothesis on the same data that first suggested that hypothesis. The remedy

CAUTION

! is clear. Once you have a hypothesis, design a study to search specifically for the
effect you now think is there. If the result of this study is statistically significant,
you have real evidence.

SECTION 6.3 Summary

P-values are more informative than the reject-or-not result of a fixed level α test.
Beware of placing too much weight on traditional values of α, such as α = 0.05.

Very small effects can be highly significant (small P), especially when a test is
based on a large sample. A statistically significant effect need not be practically
important. Plot the data to display the effect you are seeking, and use confi-
dence intervals to estimate the actual values of parameters.

On the other hand, lack of significance does not imply that H0 is true, especially
when the test has low power.

Significance tests are not always valid. Faulty data collection, outliers in the
data, and testing a hypothesis on the same data that suggested the hypothesis
can invalidate a test. Many tests run at once will probably produce some sig-
nificant results by chance alone, even if all the null hypotheses are true.

SECTION 6.3 Exercises
For Exercise 6.84, see page 396; and for Exercise 6.85, see
page 398.

6.86 A role as a statistical consultant. You are the
statistical expert for a graduate student planning
her PhD research. After you carefully present the
mechanics of significance testing, she suggests
using α = 0.25 for the study because she would be
more likely to obtain statistically significant results

and she really needs significant results to graduate.
Explain in simple terms why this would not be a
good use of statistical methods.

6.87 What do you know? A research report described
two results that both achieved statistical
significance at the 5% level. The P-value for the
first is 0.049; for the second it is 0.00002. Do the
P-values add any useful information beyond that
conveyed by the statement that both results are
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statistically significant? Write a short paragraph
explaining your views on this question.

6.88 Interpreting the P-value. A P-value of 0.90 is
reported for a significance test for a population
mean. Interpret this result.

6.89 What a test of significance can answer. Explain
whether a test of significance can answer each of
the following questions.

(a) Is the sample or experiment properly designed?

(b) Is the observed effect compatible with the null
hypothesis?

(c) Is the observed effect important?

6.90 Statistical versus practical significance. A study
with 7500 subjects reported a result that was
statistically significant at the 5% level. Explain
why this result might not be particularly large or
important.

6.91 More on statistical versus practical significance.
A study with 14 subjects reported a result that failed
to achieve statistical significance at the 5% level.
The P-value was 0.052. Write a short summary of
how you would interpret these findings.

6.92 Vitamin C and colds. In a study to investigate
whether vitamin C will prevent colds, 400 subjects
are assigned at random to one of two groups. The
experimental group takes a vitamin C tablet daily,
while the control group takes a placebo. At the end
of the experiment, the researchers calculate the
difference between the percents of subjects in the
two groups who were free of colds. This difference
is statistically significant (P = 0.03) in favor of the
vitamin C group. Can we conclude that vitamin C
has a strong effect in preventing colds? Explain
your answer.

6.93 How far do rich parents take us? How much
education children get is strongly associated with
the wealth and social status of their parents,
termed “socioeconomic status,” or SES. The
SES of parents, however, has little influence on
whether children who have graduated from college
continue their education. One study looked at
whether college graduates took the graduate
admissions tests for business, law, and other
graduate programs. The effects of the parents’ SES
on taking the LSAT test for law school were “both
statistically insignificant and small.”

(a) What does “statistically insignificant” mean?

(b) Why is it important that the effects were small
in size as well as insignificant?

6.94 C
H

ALLENG
E Find journal articles. Find two journal

articles that report results with statistical
analyses. For each article, summarize how the
results are reported and write a critique of the
presentation. Be sure to include details regarding
use of significance testing at a particular level of
significance, P-values, and confidence intervals.

6.95 Coaching for the SAT. Every user of statistics
should understand the distinction between
statistical significance and practical importance.
A sufficiently large sample will declare very small
effects statistically significant. Let us suppose that
SAT Mathematics (SATM) scores in the absence
of coaching vary Normally with mean μ = 505
and σ = 100. Suppose further that coaching may
change μ but does not change σ . An increase in the
SATM score from 505 to 508 is of no importance in
seeking admission to college, but this unimportant
change can be statistically very significant. To see
this, calculate the P-value for the test of

H0: μ = 505

Ha: μ > 505

in each of the following situations:

(a) A coaching service coaches 100 students; their
SATM scores average x = 508.

(b) By the next year, the service has coached 1000
students; their SATM scores average x = 508.

(c) An advertising campaign brings the number of
students coached to 10,000; their average score is
still x = 508.

6.96 More on coaching for the SAT. Give a 99%
confidence interval for the mean SATM score μ

after coaching in each part of the previous exercise.
For large samples, the confidence interval says,
“Yes, the mean score is higher after coaching, but
only by a small amount.”

6.97 Property damage by tornadoes. Table 1.5 (page
25) gives average property damage per year due to
tornadoes for each of the states. Is it appropriate
to use the statistical methods we discussed in this
chapter for these data? Explain why or why not.

6.98 When statistical inference is not valid. Give
an example of a set of data for which statistical
inference is not valid. Explain your answer.
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6.99 When statistical inference is valid. Give an
example of an interesting set of data for which
statistical inference is valid. Explain your answer.

6.100 C
H

ALLENG
E Predicting success of trainees. What

distinguishes managerial trainees who
eventually become executives from those who,
after expensive training, don’t succeed and leave
the company? We have abundant data on past
trainees—data on their personalities and goals,
their college preparation and performance, even
their family backgrounds and their hobbies.
Statistical software makes it easy to perform dozens
of significance tests on these dozens of variables
to see which ones best predict later success. We
find that future executives are significantly more
likely than washouts to have an urban or suburban
upbringing and an undergraduate degree in a
technical field.

Explain clearly why using these “significant”
variables to select future trainees is not wise. Then
suggest a follow-up study using this year’s trainees
as subjects that should clarify the importance of
the variables identified by the first study.

6.101 Searching for significance. Give an example of a
situation where searching for significance would
lead to misleading conclusions.

6.102 More on searching for significance. You perform
1000 significance tests using α = 0.05. Assuming
that all null hypotheses are true, about how
many of the test results would you expect to be
statistically significant? Explain how you obtained
your answer.

6.103 Interpreting a very small P-value. Assume that
you are performing a large number of significance
tests. Let n be the number of these tests. How
large would n need to be for you to expect about
one P-value to be 0.00001 or smaller? Use this
information to write an explanation of how to
interpret a result that has P = 0.00001 in this
setting.

6.104 C
H

ALLENG
E An adjustment for multiple tests. One

way to deal with the problem of misleading
P-values when performing more than one
significance test is to adjust the criterion you
use for statistical significance. The Bonferroni
procedure does this in a simple way. If you
perform 2 tests and want to use the α = 5%
significance level, you would require a P-value
of 0.05/2 = 0.025 to declare either one of the
tests significant. In general, if you perform k tests
and want protection at level α, use α/k as your
cutoff for statistical significance. You perform 6
tests and obtain individual P-values 0.076, 0.042,
0.241, 0.008, 0.010, and <0.001. Which of these
are statistically significant using the Bonferroni
procedure with α = 0.05?

6.105 C
H

ALLENG
E Significance using the Bonferroni

procedure. Refer to the previous problem.
A researcher has performed 12 tests of significance
and wants to apply the Bonferroni procedure with
α = 0.05. The calculated P-values are 0.041, 0.569,
0.050, 0.416, 0.001, 0.004, 0.256, 0.041, 0.888,
0.010, 0.002, and 0.433. Which of these tests reject
their null hypotheses with this procedure?

6.4 Power and Inference as a Decision*
Although we prefer to use P-values rather than the reject-or-not view of the fixed
α significance test, the latter view is very important for planning studies and
for understanding statistical decision theory. We will discuss these two topics
in this section.

Power
Fixed level α significance tests are closely related to confidence intervals—in
fact, we saw that a two-sided test can be carried out directly from a confidence
interval. The significance level, like the confidence level, says how reliable the
method is in repeated use. If we use 5% significance tests repeatedly when H0

*Although the topics in this section are important in planning and interpreting significance
tests, they can be omitted without loss of continuity.
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is in fact true, we will be wrong (the test will reject H0) 5% of the time and right
(the test will fail to reject H0) 95% of the time.

The ability of a test to detect that H0 is false is measured by the probability
that the test will reject H0 when an alternative is true. The higher this proba-
bility is, the more sensitive the test is.

POWER

The probability that a fixed level α significance test will reject H0 when a
particular alternative value of the parameter is true is called the power
of the test to detect that alternative.
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E 6.29 Power of TBBMC significance test. Can a 6-month exercise pro-
gram increase the total body bone mineral content (TBBMC) of young wo-
men? A team of researchers is planning a study to examine this question.
Based on the results of a previous study, they are willing to assume that σ =
2 for the percent change in TBBMC over the 6-month period. A change in
TBBMC of 1% would be considered important, and the researchers would
like to have a reasonable chance of detecting a change this large or larger.
Is 25 subjects a large enough sample for this project?

We will answer this question by calculating the power of the significance test
that will be used to evaluate the data to be collected. The calculation consists
of three steps:

1. State H0, Ha, the particular alternative we want to detect, and the signifi-
cance level α.

2. Find the values of x that will lead us to reject H0.

3. Calculate the probability of observing these values of x when the alternative
is true.

Step 1 The null hypothesis is that the exercise program has no effect on
TBBMC. In other words, the mean percent change is zero. The alternative is
that exercise is beneficial; that is, the mean change is positive. Formally, we
have

H0: μ = 0

Ha: μ > 0

The alternative of interest is μ = 1% increase in TBBMC. A 5% test of signifi-
cance will be used.

Step 2 The z test rejects H0 at the α = 0.05 level whenever

z = x − μ0

σ/
√

n
= x − 0

2/
√

25
≥ 1.645
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Be sure you understand why we use 1.645. Rewrite this in terms of x:

x ≥ 1.645
2√
25

x ≥ 0.658

Because the significance level is α = 0.05, this event has probability 0.05 of
occurring when the population mean μ is 0.

Step 3 The power against the alternative μ = 1% is the probability that H0

will be rejected when in fact μ = 1%. We calculate this probability by standard-
izing x, using the value μ = 1, the population standard deviation σ = 2, and the
sample size n = 25. The power is

P( x ≥ 0.658 when μ = 1) = P
(

x − μ

σ/
√

n
≥ 0.658 − 1

2/
√

25

)
= P(Z ≥ −0.855) = 0.80

Figure 6.15 illustrates the power with the sampling distribution of x when
μ = 1. This significance test rejects the null hypothesis that exercise has no ef-
fect on TBBMC 80% of the time if the true effect of exercise is a 1% increase in
TBBMC. If the true effect of exercise is a greater percent increase, the test will
have greater power; it will reject with a higher probability.

Fail to 
reject H0 Reject H0Distribution

of x when μ = 0μ

= 0.05

–2 –1 0 10.658  2 3

0.658

Fail to 
reject H0

Reject H0

Distribution
of x when μ = 1

Power = 0.80

–2 –1 0 1  2 3
Increase

Increase

μ

α

FIGURE 6.15 The sampling
distributions of x when μ = 0
and when μ = 1. The power is
the probability that the test
rejects H0 when the alternative is
true.

Here is another example of a power calculation, this time for a two-sided
z test.
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E 6.30 Power of the pharmaceutical product test. Example 6.17 (page
386) presented a test of

H0: μ = 0.86

Ha: μ �= 0.86

at the 1% level of significance. What is the power of this test against the spe-
cific alternative μ = 0.845?

The test rejects H0 when |z| ≥ 2.576. The test statistic is

z = x − 0.86

0.0068/
√

3

Some arithmetic shows that the test rejects when either of the following is
true:

z ≥ 2.576 (in other words, x ≥ 0.870)

z ≤ −2.576 (in other words, x ≤ 0.850)

These are disjoint events, so the power is the sum of their probabilities,
computed assuming that the alternative μ =0.845 is true. We find that

P( x ≥ 0.87) = P
(

x − μ

σ/
√

n
≥ 0.87 − 0.845

0.0068/
√

3

)
= P(Z ≥ 6.37)

.= 0

P( x ≤ 0.85) = P
(

x − μ

σ/
√

n
≤ 0.85 − 0.845

0.0068/
√

3

)
= P(Z ≤ 1.27) = 0.8980

Figure 6.16 illustrates this calculation. Because the power is about 0.9, we are
quite confident that the test will reject H0 when this alternative is true.

Reject H0 Reject H0Fail to reject H0

Power = 0.8980

0.845 0.850 0.870
(alternative )μ

FIGURE 6.16 The power for
Example 6.30.
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High power is desirable. Along with 95% confidence intervals and 5% signif-
icance tests, 80% power is becoming a standard. Many U.S. government agen-
cies that provide research funds require that the sample size for the funded
studies be sufficient to detect important results 80% of the time using a 5% test
of significance.

Increasing the power
Suppose you have performed a power calculation and found that the power is
too small. What can you do to increase it? Here are four ways:

• Increase α. A 5% test of significance will have a greater chance of rejecting
the alternative than a 1% test because the strength of evidence required for
rejection is less.

• Consider a particular alternative that is farther away from μ0. Values of μ

that are in Ha but lie close to the hypothesized value μ0 are harder to detect
(lower power) than values of μ that are far from μ0.

• Increase the sample size. More data will provide more information about x
so we have a better chance of distinguishing values of μ.

• Decrease σ . This has the same effect as increasing the sample size: more in-
formation about μ. Improving the measurement process and restricting at-
tention to a subpopulation are two common ways to decrease σ .

Power calculations are important in planning studies. Using a significance
test with low power makes it unlikely that you will find a significant effect even
if the truth is far from the null hypothesis. A null hypothesis that is in fact false
can become widely believed if repeated attempts to find evidence against it fail
because of low power. The following example illustrates this point.
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E 6.31 Are stock markets efficient? The “efficient market hypothesis” for
the time series of stock prices says that future stock prices (when adjusted
for inflation) show only random variation. No information available now
will help us predict stock prices in the future, because the efficient work-
ing of the market has already incorporated all available information in the
present price. Many studies have tested the claim that one or another kind
of information is helpful. In these studies, the efficient market hypothesis
is H0, and the claim that prediction is possible is Ha. Almost all the studies
have failed to find good evidence against H0. As a result, the efficient market
hypothesis is quite popular. But an examination of the significance tests em-
ployed finds that the power is generally low. Failure to reject H0 when using
tests of low power is not evidence that H0 is true. As one expert says, “The
widespread impression that there is strong evidence for market efficiency
may be due just to a lack of appreciation of the low power of many statistical
tests.”22
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Inference as decision*
We have presented tests of significance as methods for assessing the strength of
evidence against the null hypothesis. This assessment is made by the P-value,
which is a probability computed under the assumption that H0 is true. The al-
ternative hypothesis (the statement we seek evidence for) enters the test only
to help us see what outcomes count against the null hypothesis.

There is another way to think about these issues. Sometimes we are really
concerned about making a decision or choosing an action based on our evalua-
tion of the data. Acceptance sampling is one such circumstance. A producer ofacceptance sampling
bearings and a skateboard manufacturer agree that each carload lot of bearings
shall meet certain quality standards. When a carload arrives, the manufacturer
chooses a sample of bearings to be inspected. On the basis of the sample out-
come, the manufacturer will either accept or reject the carload. Let’s examine
how the idea of inference as a decision changes the reasoning used in tests of
significance.

Two types of error
Tests of significance concentrate on H0, the null hypothesis. If a decision is
called for, however, there is no reason to single out H0. There are simply two
hypotheses, and we must accept one and reject the other. It is convenient to
call the two hypotheses H0 and Ha, but H0 no longer has the special status (the
statement we try to find evidence against) that it had in tests of significance. In
the acceptance sampling problem, we must decide between

H0: the lot of bearings meets standards

Ha: the lot does not meet standards

on the basis of a sample of bearings.
We hope that our decision will be correct, but sometimes it will be wrong.

There are two types of incorrect decisions. We can accept a bad lot of bearings,
or we can reject a good lot. Accepting a bad lot injures the consumer, while
rejecting a good lot hurts the producer. To help distinguish these two types of
error, we give them specific names.

TYPE I AND TYPE II ERRORS

If we reject H0 (accept Ha) when in fact H0 is true, this is a Type I error.
If we accept H0 (reject Ha) when in fact Ha is true, this is a Type II error.

The possibilities are summed up in Figure 6.17. If H0 is true, our decision
either is correct (if we accept H0) or is a Type I error. If Ha is true, our decision
either is correct or is a Type II error. Only one error is possible at one time.
Figure 6.18 applies these ideas to the acceptance sampling example.

*The purpose of this discussion is to clarify the reasoning of significance tests by contrast
with a related type of reasoning. It can be omitted without loss of continuity.
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Type I
error

Correct
decision

Correct
decision

Type II
error

Truth about
the population

H0 true Ha true

Decision
based on 
sample

Reject H0

Accept H0

FIGURE 6.17 The two types of
error in testing hypotheses.

Does not 
meet standards

Type I
error

Correct
decision

Correct
decision

Type II
error

Truth about the lot

Does meet
standards

Decision
based on 
sample

Reject
the lot

Accept
the lot

FIGURE 6.18 The two types of
error in the acceptance sampling
setting.

Error probabilities
Any rule for making decisions is assessed in terms of the probabilities of the
two types of error. This is in keeping with the idea that statistical inference is
based on probability. We cannot (short of inspecting the whole lot) guarantee
that good lots of bearings will never be rejected and bad lots never be accepted.
But by random sampling and the laws of probability, we can say what the prob-
abilities of both kinds of error are.

Significance tests with fixed level α give a rule for making decisions because
the test either rejects H0 or fails to reject it. If we adopt the decision-making
way of thought, failing to reject H0 means deciding that H0 is true. We can then
describe the performance of a test by the probabilities of Type I and Type II
errors.
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E 6.32 Outer diameter of a skateboard bearing. The mean outer diam-
eter of a skateboard bearing is supposed to be 22.000 millimeters (mm). The
outer diameters vary Normally with standard deviation σ = 0.010 mm. When
a lot of the bearings arrives, the skateboard manufacturer takes an SRS of
5 bearings from the lot and measures their outer diameters. The manufac-
turer rejects the bearings if the sample mean diameter is significantly differ-
ent from 22 at the 5% significance level.

This is a test of the hypotheses

H0: μ = 22

Ha: μ �= 22

To carry out the test, the manufacturer computes the z statistic:
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z = x − 22

0.01/
√

5

and rejects H0 if

z < −1.96 or z > 1.96

A Type I error is to reject H0 when in fact μ = 22.
What about Type II errors? Because there are many values of μ in Ha, we

will concentrate on one value. The producer and the manufacturer agree that
a lot of bearings with mean 0.015 cm away from the desired mean 22.000
should be rejected. So a particular Type II error is to accept H0 when in fact
μ = 22.015.

Figure 6.19 shows how the two probabilities of error are obtained from the
two sampling distributions of x, for μ = 22 and for μ = 22.015. When μ = 22,
H0 is true and to reject H0 is a Type I error. When μ = 22.015, accepting H0

is a Type II error. We will now calculate these error probabilities.

The probability of a Type I error is the probability of rejecting H0 when it is
really true. In Example 6.32, this is the probability that |z| ≥ 1.96 when μ = 22.
But this is exactly the significance level of the test. The critical value 1.96 was
chosen to make this probability 0.05, so we do not have to compute it again. The
definition of “significant at level 0.05” is that sample outcomes this extreme will
occur with probability 0.05 when H0 is true.

SIGNIFICANCE AND TYPE I ERROR

The significance level α of any fixed level test is the probability of a Type
I error. That is, α is the probability that the test will reject the null hy-
pothesis H0 when H0 is in fact true.

Reject H0 Accept H0 Reject H0

=22
(H0)

μ = 22.015
(Ha)

μCritical
value of x

Critical
value of x

FIGURE 6.19 The two error
probabilities for Example 6.32.
The probability of a Type I error
(lighter yellow area) is the
probability of rejecting
H0: μ = 22 when in fact μ = 22.
The probability of a Type II error
(blue area) is the probability of
accepting H0 when in fact
μ = 22.015.



6.4 Power and Inference as a Decision
•

409

The probability of a Type II error for the particular alternative μ = 22.015
in Example 6.32 is the probability that the test will fail to reject H0 when μ has
this alternative value. The power of the test against the alternative μ = 22.015
is just the probability that the test does reject H0. By following the method of
Example 6.30, we can calculate that the power is about 0.92. The probability
of a Type II error is therefore 1 − 0.92, or 0.08.

POWER AND TYPE II ERROR

The power of a fixed level test to detect a particular alternative is 1 minus
the probability of a Type II error for that alternative.

The two types of error and their probabilities give another interpretation of
the significance level and power of a test. The distinction between tests of sig-
nificance and tests as rules for deciding between two hypotheses does not lie in
the calculations but in the reasoning that motivates the calculations. In a test of
significance we focus on a single hypothesis (H0) and a single probability (the
P-value). The goal is to measure the strength of the sample evidence against H0.
Calculations of power are done to check the sensitivity of the test. If we cannot
reject H0, we conclude only that there is not sufficient evidence against H0, not
that H0 is actually true. If the same inference problem is thought of as a deci-
sion problem, we focus on two hypotheses and give a rule for deciding between
them based on the sample evidence. We therefore must focus equally on two
probabilities, the probabilities of the two types of error. We must choose one
hypothesis and cannot abstain on grounds of insufficient evidence.

The common practice of testing hypotheses
Such a clear distinction between the two ways of thinking is helpful for under-
standing. In practice, the two approaches often merge. We continued to call
one of the hypotheses in a decision problem H0. The common practice of test-
ing hypotheses mixes the reasoning of significance tests and decision rules as
follows:

1. State H0 and Ha just as in a test of significance.

2. Think of the problem as a decision problem, so that the probabilities of Type
I and Type II errors are relevant.

3. Because of Step 1, Type I errors are more serious. So choose an α (signif-
icance level) and consider only tests with probability of Type I error no
greater than α.

4. Among these tests, select one that makes the probability of a Type II error
as small as possible (that is, power as large as possible). If this probability
is too large, you will have to take a larger sample to reduce the chance of an
error.

Testing hypotheses may seem to be a hybrid approach. It was, historically,
the effective beginning of decision-oriented ideas in statistics. An impressive
mathematical theory of hypothesis testing was developed between 1928 and
1938 by Jerzy Neyman and Egon Pearson. The decision-making approach came
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later (1940s). Because decision theory in its pure form leaves you with two er-
ror probabilities and no simple rule on how to balance them, it has been used
less often than either tests of significance or tests of hypotheses. Decision ideas
have been applied in testing problems mainly by way of the Neyman-Pearson
hypothesis-testing theory. That theory asks you first to choose α, and the in-
fluence of Fisher often has led users of hypothesis testing comfortably back
to α = 0.05 or α = 0.01. Fisher, who was exceedingly argumentative, violently
attacked the Neyman-Pearson decision-oriented ideas, and the argument still
continues.

SECTION 6.4 Summary

The power of a significance test measures its ability to detect an alternative
hypothesis. The power against a specific alternative is calculated as the proba-
bility that the test will reject H0 when that alternative is true. This calculation
requires knowledge of the sampling distribution of the test statistic under the
alternative hypothesis. Increasing the size of the sample increases the power
when the significance level remains fixed.

An alternative to significance testing regards H0 and Ha as two statements of
equal status that we must decide between. This decision theory point of view
regards statistical inference in general as giving rules for making decisions in
the presence of uncertainty.

In the case of testing H0 versus Ha, decision analysis chooses a decision rule on
the basis of the probabilities of two types of error. A Type I error occurs if H0

is rejected when it is in fact true. A Type II error occurs if H0 is accepted when
in fact Ha is true.

In a fixed level α significance test, the significance level α is the probability of a
Type I error, and the power against a specific alternative is 1 minus the proba-
bility of a Type II error for that alternative.

SECTION 6.4 Exercises
6.106 Make a recommendation. Your manager has

asked you to review a research proposal that
includes a section on sample size justification. A
careful reading of this section indicates that the
power is 20% for detecting an effect that you would
consider important. Write a short report for your
manager explaining what this means and make
a recommendation on whether or not this study
should be run.

6.107 Explain power and sample size. Two studies are
identical in all respects except for the sample sizes.
Consider the power versus a particular sample
size. Will the study with the larger sample size have
more power or less power than the one with the
smaller sample size? Explain your answer in terms
that could be understood by someone with very
little knowledge of statistics.

6.108 Power for a different alternative. The power
for a two-sided test of the null hypothesis μ = 0
versus the alternative μ = 5 is 0.82. What is the
power versus the alternative μ = −5? Explain your
answer.

6.109 More on the power for a different alternative. A
one-sided test of the null hypothesis μ = 50 versus
the alternative μ = 60 has power equal to 0.5. Will
the power for the alternative μ = 70 be higher
or lower than 0.5? Draw a picture and use this to
explain your answer.

6.110
AP

PLET

Power of the random north-south
distribution of trees test. In Exercise 6.66

(page 392) you performed a two-sided significance
test of the null hypothesis that the average north-
south location of the longleaf pine trees sampled
in the Wade Tract was μ = 100. There were 584
trees in the sample and the standard deviation
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was assumed to be 58. The sample mean in that
analysis was x = 99.74. Use the Power applet to
compute the power for the alternative μ = 99 using
a two-sided test at the 5% level of significance.

6.111
AP

PLET

Power of the random east-west
distribution of trees test. Refer to the

previous exercise. Note that in the east-west
direction, the average location was 113.8. Use the
Power applet to find the power for the alternative
μ = 110.

6.112 Mail-order catalog sales. You want to see if a
redesign of the cover of a mail-order catalog will
increase sales. A very large number of customers
will receive the original catalog, and a random
sample of customers will receive the one with the
new cover. For planning purposes, you are willing
to assume that the sales from the new catalog
will be approximately Normal with σ = 50 dollars
and that the mean for the original catalog will be
μ = 25 dollars. You decide to use a sample size of
n = 900. You wish to test

H0: μ = 25

Ha: μ > 25

You decide to reject H0 if x > 26.

(a) Find the probability of a Type I error, that is,
the probability that your test rejects H0 when in
fact μ = 25 dollars.

(b) Find the probability of a Type II error when
μ = 28 dollars. This is the probability that your test
accepts H0 when in fact μ = 28.

(c) Find the probability of a Type II error when
μ = 30.

(d) The distribution of sales is not Normal, because
many customers buy nothing. Why is it nonetheless
reasonable in this circumstance to assume that the
mean will be approximately Normal?

6.113 Power of the mean SAT score test. Example 6.16
(page 385) gives a test of a hypothesis about the
SAT scores of California high school students based
on an SRS of 500 students. The hypotheses are

H0: μ = 450

Ha: μ > 450

Assume that the population standard deviation
is σ = 100. The test rejects H0 at the 1% level of
significance when z ≥ 2.326, where

z = x − 450

100/
√

500

Is this test sufficiently sensitive to usually detect
an increase of 10 points in the population mean
SAT score? Answer this question by calculating the
power of the test against the alternative μ = 460.

6.114 C
H

ALLENG
E Choose the appropriate distribution. You

must decide which of two discrete distribu-
tions a random variable X has. We will call the
distributions p0 and p1. Here are the probabilities
they assign to the values x of X:

x 0 1 2 3 4 5 6

p0 0.1 0.1 0.1 0.2 0.1 0.1 0.3

p1 0.3 0.1 0.1 0.2 0.1 0.1 0.1

You have a single observation on X and wish to test

H0: p0 is correct

Ha: p1 is correct

One possible decision procedure is to reject H0

only if X = 0 or X = 1.

(a) Find the probability of a Type I error, that is,
the probability that you reject H0 when p0 is the
correct distribution.

(b) Find the probability of a Type II error.

6.115 A Web-based business. You are in charge of
marketing for a Web site that offers automated
medical diagnoses. The program will scan the
results of routine medical tests (pulse rate, blood
pressure, urinalysis, etc.) and either clear the
patient or refer the case to a doctor. You are
marketing the program for use as part of a
preventive-medicine system to screen many
thousands of persons who do not have specific
medical complaints. The program makes a decision
about each patient.

(a) What are the two hypotheses and the two types
of error that the program can make? Describe the
two types of error in terms of “false-positive” and
“false-negative” test results.

(b) The program can be adjusted to decrease one
error probability at the cost of an increase in the
other error probability. Which error probability
would you choose to make smaller, and why? (This
is a matter of judgment. There is no single correct
answer.)
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CHAPTER 6 Exercises

6.116 C
H

ALLENG
E Full-time employment and age. A study
of late adolescents and early adults reported

average months of full-time employment for
individuals aged 18 to 26.23 Here are the means:

Age 18 19 20 21 22 23 24 25 26

Months employed 2.9 4.2 5.0 5.3 6.4 7.4 8.5 8.9 9.3

Assume that the standard deviation for each of
these means is 4.5 months and that each sample
size is 750.

(a) Calculate the 95% confidence interval for each
mean.

(b) Plot the means versus age. Draw a vertical line
through the first mean extending up to the upper
confidence limit and down to the lower limit. At
the ends of the line, draw a short dash. Do the
same for each of the other means.

(c) Write a summary of what the data show. Note
that in circumstances such as this, it is common
practice not to make any adjustments for the
fact that several confidence intervals are being
reported. Be sure to include comments about this
in your summary.

6.117 C
H

ALLENG
E Workers’ perceptions about safety. The

Safety Climate Index (SCI) measures
workers’ perceptions about the safety of their
work environment. A study of safe work practices
of industrial workers reported mean SCI scores
for workers classified by workplace size.24 Here
are the means:

Workplace Fewer than 50 to 200 More than
size 50 workers workers 200 workers

Mean SCI 67.23 70.37 74.83

Assume that the standard deviation is 19 and
the sample sizes are all 180. (We will discuss
ways to compare three means such as these in
Chapter 12.)

(a) Calculate the 95% confidence interval for each
mean.

(b) Plot the means versus workplace size. Draw
a vertical line through the first mean extending
up to the upper confidence limit and down to the
lower limit. At the ends of the line, draw a short
dash. Do the same for each of the other means.

(c) One way to adjust for the fact that we are
reporting three confidence intervals is a procedure
that uses a larger value of z∗ in the calculation
of the margin of error. For this problem one
recommendation would be to use z∗ = 2.40.
Repeat parts (a) and (b) making this adjustment.

(d) Summarize your results. Be sure to include
comments on the effects of the adjustment on
your results.

6.118
AP

PLET

C
H

ALLENG
E Coverage percent of 95%

confidence interval. For this
exercise you will use the Confidence Interval
applet. Set the confidence level at 95% and click
the “Sample” button 10 times to simulate 10
confidence intervals. Record the percent hit.
Simulate another 10 intervals by clicking another
10 times (do not click the “Reset” button). Record
the percent hit for your 20 intervals. Repeat the
process of simulating 10 additional intervals and
recording the results until you have a total of 200
intervals. Plot your results and write a summary
of what you have found.

6.119
AP

PLET
C
H

ALLENG
E Coverage percent of 90%

confidence interval. Refer to the
previous exercise. Do the simulations and report
the results for 90% confidence.

6.120 C
H

ALLENG
E Effect of sample size on significance.

You are testing the null hypothesis that
μ = 0 versus the alternative μ > 0 using α = 0.05.
Assume σ = 14. Suppose x = 4 and n = 10.
Calculate the test statistic and its P-value. Repeat
assuming the same value of x but with n = 20. Do
the same for sample sizes of 30, 40, and 50. Plot
the values of the test statistic versus the sample
size. Do the same for the P-values. Summarize
what this demonstration shows about the effect of
the sample size on significance testing.

6.121 C
H

ALLENG
E Blood phosphorus level in dialysis

patients. Patients with chronic kidney
failure may be treated by dialysis, using a machine
that removes toxic wastes from the blood, a
function normally performed by the kidneys.
Kidney failure and dialysis can cause other
changes, such as retention of phosphorus, that
must be corrected by changes in diet. A study of
the nutrition of dialysis patients measured the
level of phosphorus in the blood of several patients
on six occasions. Here are the data for one patient
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(in milligrams of phosphorus per deciliter of
blood):25

5.4 5.2 4.5 4.9 5.7 6.3

The measurements are separated in time and
can be considered an SRS of the patient’s blood
phosphorus level. Assume that this level varies
Normally with σ = 0.9 mg/dl.

(a) Give a 95% confidence interval for the mean
blood phosphorus level.

(b) The normal range of phosphorus in the blood
is considered to be 2.6 to 4.8 mg/dl. Is there strong
evidence that this patient has a mean phosphorus
level that exceeds 4.8?

6.122 Cellulose content in alfalfa hay. An agronomist
examines the cellulose content of a variety of
alfalfa hay. Suppose that the cellulose content
in the population has standard deviation σ = 8
milligrams per gram (mg/g). A sample of 15
cuttings has mean cellulose content x = 145 mg/g.

(a) Give a 90% confidence interval for the mean
cellulose content in the population.

(b) A previous study claimed that the mean
cellulose content was μ = 140 mg/g, but the
agronomist believes that the mean is higher than
that figure. State H0 and Ha and carry out a
significance test to see if the new data support this
belief.

(c) The statistical procedures used in (a) and (b)
are valid when several assumptions are met. What
are these assumptions?

6.123 Odor threshold of future wine experts.
Many food products contain small quantities
of substances that would give an undesirable taste
or smell if they are present in large amounts.
An example is the “off-odors” caused by sulfur
compounds in wine. Oenologists (wine experts)
have determined the odor threshold, the lowest
concentration of a compound that the human nose
can detect. For example, the odor threshold for
dimethyl sulfide (DMS) is given in the oenology
literature as 25 micrograms per liter of wine
(μg/l). Untrained noses may be less sensitive,
however. Here are the DMS odor thresholds for 10
beginning students of oenology:

31 31 43 36 23 34 32 30 20 24

Assume (this is not realistic) that the standard
deviation of the odor threshold for untrained
noses is known to be σ = 7 μg/l.

(a) Make a stemplot to verify that the distribution
is roughly symmetric with no outliers. (A Normal
quantile plot confirms that there are no systematic
departures from Normality.)

(b) Give a 95% confidence interval for the
mean DMS odor threshold among all beginning
oenology students.

(c) Are you convinced that the mean odor
threshold for beginning students is higher than
the published threshold, 25 μg/l? Carry out a
significance test to justify your answer.

6.124 C
H

ALLENG
E Where do you buy? Consumers can pur-

chase nonprescription medications at food
stores, mass merchandise stores such as Kmart
and Wal-Mart, or pharmacies. About 45% of
consumers make such purchases at pharmacies.
What accounts for the popularity of pharmacies,
which often charge higher prices?

A study examined consumers’ perceptions
of overall performance of the three types of
stores, using a long questionnaire that asked
about such things as “neat and attractive
store,” “knowledgeable staff,” and “assistance in
choosing among various types of nonprescription
medication.” A performance score was based
on 27 such questions. The subjects were 201
people chosen at random from the Indianapolis
telephone directory. Here are the means and
standard deviations of the performance scores for
the sample:26

Store type x s

Food stores 18.67 24.95
Mass merchandisers 32.38 33.37
Pharmacies 48.60 35.62

We do not know the population standard
deviations, but a sample standard deviation s
from so large a sample is usually close to σ . Use s
in place of the unknown σ in this exercise.

(a) What population do you think the authors
of the study want to draw conclusions about?
What population are you certain they can draw
conclusions about?

(b) Give 95% confidence intervals for the mean
performance for each type of store.

(c) Based on these confidence intervals, are you
convinced that consumers think that pharmacies
offer higher performance than the other types of
stores? (In Chapter 12, we will study a statistical
method for comparing means of several groups.)
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6.125 CEO pay. A study of the pay of corporate chief
executive officers (CEOs) examined the increase in
cash compensation of the CEOs of 104 companies,
adjusted for inflation, in a recent year. The mean
increase in real compensation was x = 6.9%,
and the standard deviation of the increases was
s = 55%. Is this good evidence that the mean real
compensation μ of all CEOs increased that year?
The hypotheses are

H0: μ = 0 (no increase)

Ha: μ > 0 (an increase)

Because the sample size is large, the sample s is
close to the population σ , so take σ = 55%.

(a) Sketch the Normal curve for the sampling
distribution of x when H0 is true. Shade the
area that represents the P-value for the observed
outcome x = 6.9%.

(b) Calculate the P-value.

(c) Is the result significant at the α = 0.05 level?
Do you think the study gives strong evidence that
the mean compensation of all CEOs went up?

6.126 Meaning of “statistically significant.” When
asked to explain the meaning of “statistically
significant at the α = 0.01 level,” a student says,
“This means there is only probability 0.01 that
the null hypothesis is true.” Is this an essentially
correct explanation of statistical significance?
Explain your answer.

6.127 More on the meaning of “statistically
significant.” Another student, when asked
why statistical significance appears so often
in research reports, says, “Because saying that
results are significant tells us that they cannot
easily be explained by chance variation alone.”
Do you think that this statement is essentially
correct? Explain your answer.

6.128 Roulette. A roulette wheel has 18 red slots among
its 38 slots. You observe many spins and record the
number of times that red occurs. Now you want
to use these data to test whether the probability
of a red has the value that is correct for a fair
roulette wheel. State the hypotheses H0 and Ha

that you will test. (We will describe the test for this
situation in Chapter 8.)

6.129 C
H

ALLENG
E Simulation study of the confidence

interval. Use a computer to generate
n = 12 observations from a Normal distribution
with mean 25 and standard deviation 4: N(25, 4).

Find the 95% confidence interval for μ. Repeat
this process 100 times and then count the number
of times that the confidence interval includes the
value μ = 25. Explain your results.

6.130 C
H

ALLENG
E Simulation study of a test of significance.

Use a computer to generate n = 12
observations from a Normal distribution with
mean 25 and standard deviation 4: N(25, 4). Test
the null hypothesis that μ = 25 using a two-sided
significance test. Repeat this process 100 times
and then count the number of times that you
reject H0. Explain your results.

6.131 C
H

ALLENG
E Another simulation study of a test

of significance. Use the same procedure
for generating data as in the previous exercise.
Now test the null hypothesis that μ = 23. Explain
your results.

6.132 C
H

ALLENG
E Older customer concerns in restaurants.

Persons aged 55 and over represented
21.3% of the U.S. population in the year 2000.
This group is expected to increase to 30.5% by
2025. In terms of actual numbers of people, the
increase is from 58.6 million to 101.4 million.
Restauranteurs have found this market to be
important and would like to make their businesses
attractive to older customers. One study used a
questionnaire to collect data from people aged 50
and over.27 For one part of the analysis, individuals
were classified into two age groups: 50 to 64 and
65 to 79. There were 267 people in the first
group and 263 in the second. One set of items
concerned ambiance, menu design, and service. A
series of statements were rated on a 1 to 5 scale
with 1 representing “strongly disagree” and 5
representing “strongly agree.” In some cases the
wording has been shortened in the table below.
Here are the means:

Statement 50–64 65–79

Ambiance:
Most restaurants are too dark 2.75 2.93
Most restaurants are too noisy 3.33 3.43
Background music is often too loud 3.27 3.55
Restaurants are too smoky 3.17 3.12
Tables are too small 3.00 3.19
Tables are too close together 3.79 3.81

Menu design:
Print size is not large enough 3.68 3.77
Glare makes menus difficult to read 2.81 3.01
Colors of menus make them difficult

to read 2.53 2.72



Chapter 6 Exercises
•

415

Statement 50–64 65–79

Service:
It is difficult to hear the service staff 2.65 3.00
I would rather be served than

serve myself 4.23 4.14
I would rather pay the server than

a cashier 3.88 3.48
Service is too slow 3.13 3.10

First examine the means of the people who are
50 to 64. Order the statements according to the
means and describe the results. Then do the same
for the older group. For each statement compute
the z statistic and the associated P-value for the
comparison between the two groups. For these
calculations you can assume that the standard
deviation of the difference is 0.08, so z is simply
the difference in the means divided by 0.08. Note

that you are performing 13 significance tests in
this exercise. Keep this in mind when you interpret
your results. Write a report summarizing your
work.

6.133 C
H

ALLENG
E Find published studies with confidence

intervals. Search the Internet or some
journals that report research in your field and
find two reports that provide an estimate with a
margin of error or a confidence interval. For each
report:

(a) Describe the method used to collect the data.

(b) Describe the variable being studied.

(c) Give the estimate and the confidence interval.

(d) Describe any practical difficulties that may
have led to errors in addition to the sampling
errors quantified by the margin of error.
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CHAPTER

77Inference for Distributions

Some people feel that a full moon causes strange and aggressive behavior in people.
Is there any scientific evidence to support this? Example 7.7 describes one such study.

7.1 Inference for the Mean
of a Population

7.2 Comparing Two Means

7.3 Optional Topics in Comparing
Distributions

Introduction
We began our study of data analysis in Chapter 1 by learn-
ing graphical and numerical tools for describing the
distribution of a single variable and for comparing
several distributions. Our study of the practice of statis-
tical inference begins in the same way, with inference about a single distribu-
tion and comparison of two distributions. Comparing more than two distri-
butions requires more elaborate methods, which are presented in Chapters 12
and 13.

Two important aspects of any distribution are its center and spread. If the
distribution is Normal, we describe its center by the mean μ and its spread by
the standard deviation σ . In this chapter, we will meet confidence intervals and
significance tests for inference about a population mean μ and for comparing
the means or spreads of two populations. The previous chapter emphasized the
reasoning of tests and confidence intervals; now we emphasize statistical prac-
tice, so we no longer assume that population standard deviations are known.
The t procedures for inference about means are among the most common sta-
tistical methods. Inference about the spreads, as we will see, poses some diffi-
cult practical problems.

417
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The methods in this chapter will allow us to address questions like:

• Does cellular phone use, specifically the number of hours listening to music
tracks, differ between cell phone users in the United States and the United
Kingdom?

• Do male and female college students differ in terms of “social insight,” the
ability to appraise other people?

• Does the daily number of disruptive behaviors in dementia patients change
when there is a full moon?

7.1 Inference for the Mean of a Population
Both confidence intervals and tests of significance for the mean μ of a Normal
population are based on the sample mean x, which estimates the unknown μ.LOOK BACK

sampling distribution
of x, page 339

The sampling distribution of x depends on σ . This fact causes no difficulty when
σ is known. When σ is unknown, however, we must estimate σ even though
we are primarily interested in μ. The sample standard deviation s is used to
estimate the population standard deviation σ .

The t distributions
Suppose that we have a simple random sample (SRS) of size n from a Normally
distributed population with mean μ and standard deviation σ . The sample
mean x is then Normally distributed with mean μ and standard deviation σ/

√
n.

When σ is not known, we estimate it with the sample standard deviation s, and
then we estimate the standard deviation of x by s/

√
n. This quantity is called

the standard error of the sample mean x and we denote it by SEx.

STANDARD ERROR

When the standard deviation of a statistic is estimated from the data, the
result is called the standard error of the statistic. The standard error of
the sample mean is

SEx = s√
n

The term “standard error” is sometimes used for the actual standard devia-
tion of a statistic. The estimated value is then called the “estimated standard er-
ror.” In this book we will use the term “standard error” only when the standard
deviation of a statistic is estimated from the data. The term has this meaning in
the output of many statistical computer packages and in research reports that
apply statistical methods.

The standardized sample mean, or one-sample z statistic,

z = x − μ

σ/
√

n
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is the basis of the z procedures for inference about μ when σ is known. This
statistic has the standard Normal distribution N(0, 1). When we substitute the
standard error s/

√
n for the standard deviation σ/

√
n of x, the statistic does

not have a Normal distribution. It has a distribution that is new to us, called a
t distribution.

THE t DISTRIBUTIONS

Suppose that an SRS of size n is drawn from an N(μ, σ ) population. Then
the one-sample t statistic

t = x − μ

s/
√

n

has the t distribution with n − 1 degrees of freedom.

A particular t distribution is specified by giving the degrees of freedom. We
use t(k) to stand for the t distribution with k degrees of freedom. The degrees
of freedom for this t statistic come from the sample standard deviation s in the
denominator of t. We showed earlier that s has n − 1 degrees of freedom. Thus,LOOK BACK

degrees of freedom,
page 42

there is a different t distribution for each sample size. There are also other t
statistics with different degrees of freedom, some of which we will meet later
in this chapter.

The t distributions were discovered in 1908 by William S. Gosset. Gosset was
a statistician employed by the Guinness brewing company, which prohibited
its employees from publishing their discoveries that were brewing related. In
this case, the company let him publish under the pen name “Student” using an
example that did not involve brewing. The t distribution is often called “Stu-
dent’s t” in his honor.

The density curves of the t(k) distributions are similar in shape to the stan-
dard Normal curve. That is, they are symmetric about 0 and are bell-shaped.
Figure 7.1 compares the density curves of the standard Normal distribution
and the t distributions with 5 and 10 degrees of freedom. The similarity in shape
is apparent, as is the fact that the t distributions have more probability in the
tails and less in the center. This greater spread is due to the extra variability
caused by substituting the random variable s for the fixed parameter σ . Fig-
ure 7.1 also shows that as the degrees of freedom k increase, the t(k) density
curve gets closer to the N(0, 1) curve. This reflects the fact that s will likely be
closer to σ as the sample size increases.

Table D in the back of the book gives critical values t∗ for the t distributions.
For convenience, we have labeled the table entries both by the value of p needed
for significance tests and by the confidence level C (in percent) required for con-
fidence intervals. The standard Normal critical values are in the bottom row of
entries and labeled z∗. As in the case of the Normal table (Table A), computer
software often makes Table D unnecessary.

USE YOUR KNOWLEDGE
7.1 Apartment rents. You randomly choose 15 unfurnished one-bedroom

apartments from a large number of advertisements in your local
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0

N (0 ,1)

t (5)

t (10)

FIGURE 7.1 Density curves for
the standard Normal, t(10), and
t(5) distributions. All are
symmetric with center 0. The
t distributions have more
probability in the tails than the
standard Normal distribution.

newspaper. You calculate that their mean monthly rent is $570 and
their standard deviation is $105.

(a) What is the standard error of the mean?

(b) What are the degrees of freedom for a one-sample t statistic?

7.2 Finding critical t∗ values. What critical value t∗ from Table D should
be used to construct

(a) a 95% confidence interval when n = 12?

(b) a 99% confidence interval when n = 24?

(c) a 90% confidence interval when n = 200?

The one-sample t confidence interval
With the t distributions to help us, we can now analyze a sample from a Normal
population with unknown σ . The one-sample t confidence interval is similar in
both reasoning and computational detail to the z confidence interval of Chap-
ter 6. There, the margin of error for the population mean was z∗σ/

√
n. Here,

LOOK BACK
z confidence interval,
page 361 we replace σ by its estimate s and z∗ by t∗. This means that the margin of error

for the population mean when we use the data to estimate σ is t∗s/
√

n.

THE ONE-SAMPLE t CONFIDENCE INTERVAL

Suppose that an SRS of size n is drawn from a population having un-
known mean μ. A level C confidence interval for μ is

x ± t∗
s√
n
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where t∗ is the value for the t(n − 1) density curve with area C between
−t∗ and t∗. The quantity

t∗
s√
n

is the margin of error. This interval is exact when the population distri-
bution is Normal and is approximately correct for large n in other cases.
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E 7.1 Listening to music on cell phones. Founded in 1998, Telephia pro-

vides a wide variety of information on cellular phone use. In 2006, Telephia
reported that, on average, United Kingdom (U.K.) subscribers with third-
generation technology (3G) phones spent an average of 8.3 hours per month
listening to full-track music on their cell phones.1 Suppose we want to deter-
mine a 95% confidence interval for the U.S. average and draw the following
random sample of size 8 from the U.S. population of 3G subscribers:

5 6 0 4 11 9 2 3

The sample mean is x = 5 and the standard deviation is s = 3.63 with de-
grees of freedom n − 1 = 7. The standard error is

SEx = s/
√

n = 3.63/
√

8 = 1.28

From Table D we find t∗ = 2.365. The 95% confidence interval is

x ± t∗
s√
n

= 5.0 ± 2.365
3.63√

8

= 5.0 ± (2.365)(1.28)

= 5.0 ± 3.0

= (2.0, 8.0)

We are 95% confident that the U.S. population’s average time spent listening
to full-track music on a cell phone is between 2.0 and 8.0 hours per month.
Since this interval does not contain 8.3 hours, these data suggest that, on av-
erage, a U.S. subscriber listens to less full-track music.

In this example we have given the actual interval (2.0, 8.0) as our answer.
Sometimes we prefer to report the mean and margin of error: the mean time is
5.0 hours per month with a margin of error of 3.0 hours.

The use of the t confidence interval in Example 7.1 rests on assumptions that
appear reasonable here. First, we assume our random sample is an SRS from
the U.S. population of cell phone users. Second, we assume the distribution
of listening times is Normal. With only 8 observations, this assumption can-
not be effectively checked. In fact, because the listening time cannot be neg-
ative, we might expect this distribution to be skewed to the right. With these
data, however, there are no extreme outliers to suggest a severe departure from
Normality.
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USE YOUR KNOWLEDGE
7.3 More on apartment rents. Recall Exercise 7.1 (page 419). Construct

a 95% confidence interval for the mean monthly rent of all advertised
one-bedroom apartments.

7.4 90% versus 95% confidence interval. If you were to use 90% con-
fidence, rather than 95% confidence, would the margin of error be
larger or smaller? Explain your answer.

The one-sample t test
Significance tests using the standard error are also very similar to the z test that
we studied in the last chapter.LOOK BACK

z significance test,
page 383

THE ONE-SAMPLE t TEST

Suppose that an SRS of size n is drawn from a population having un-
known mean μ. To test the hypothesis H0: μ = μ0 based on an SRS of
size n, compute the one-sample t statistic

t = x − μ0

s/
√

n

In terms of a random variable T having the t(n − 1) distribution, the P-
value for a test of H0 against

Ha: μ > μ0 is P(T ≥ t)
t

Ha: μ < μ0 is P(T ≤ t)
t

Ha: μ �= μ0 is 2P(T ≥ |t|)
t

These P-values are exact if the population distribution is Normal and are
approximately correct for large n in other cases.
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E 7.2 Significance test for cell phone use. Suppose that, for the U.S. data
in Example 7.1, we want to test whether the U.S. average is different from the
reported U.K. average. Specifically, we want to test

H0: μ = 8.3

Ha: μ �= 8.3
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Recall that n = 8, x = 5.0, and s = 3.63. The t test statistic is

t = x − μ0

s/
√

n
= 5.0 − 8.3

3.63/
√

8

= −2.57

This means that the sample mean x = 5.0 is slightly over 2.5 standard devi-
ations away from the null hypothesized value μ = 8.3. Because the degrees
of freedom are n − 1 = 7, this t statistic has the t(7) distribution. Figure 7.2
shows that the P-value is 2P(T ≥ 2.57), where T has the t(7) distribution. From
Table D we see that P(T ≥ 2.517) = 0.02 and P(T ≥ 2.998) = 0.01. Therefore,
we conclude that the P-value is between 2 × 0.01 = 0.02 and 2 × 0.02 = 0.04.
Software gives the exact value as P = 0.037. These data are incompatible with
a mean of 8.3 hours per month at the α = 0.05 level.

df = 7

p 0.02 0.01

t∗ 2.517 2.998

0–2–4 2 4

P = 0.037

2.57–2.57

FIGURE 7.2 The P-value for Example 7.2.

In this example we tested the null hypothesis μ = 8.3 hours per month
against the two-sided alternative μ �= 8.3 hours per month because we had no
prior suspicion that the average in the United States would be larger or smaller.
If we had suspected that the U.S. average would be smaller, we would have used
a one-sided test. It is wrong, however, to examine the data first and then decide
to do a one-sided test in the direction indicated by the data. If in doubt, use a

CAUTION

! two-sided test. In the present circumstance, however, we could use our results
from Example 7.2 to justify a one-sided test for another sample from the same
population.
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E 7.3 One-sided test for cell phone use. For the cell phone problem de-
scribed in the previous example, we want to test whether the U.S. average is
smaller than the U.K. average. Here we test

H0: μ = 8.3

versus

Ha: μ < 8.3

The t test statistic does not change: t = −2.57. As Figure 7.3 illustrates,
however, the P-value is now P(T ≤ −2.57), half of the value in the previ-
ous example. From Table D we can determine that 0.01 < P < 0.02; software
gives the exact value as P = 0.0185. At the α = 0.05 level, we conclude that
the U.S. average is smaller than the U.K. average.

0–2–4 2 4

P = 0.0185

–2.57

FIGURE 7.3 The P-value for Example 7.3.

For small data sets, such as the one in Example 7.1, it is easy to perform the
computations for confidence intervals and significance tests with an ordinary
calculator. For larger data sets, however, we prefer to use software or a statis-
tical calculator.
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E 7.4 Stock portfolio diversification? An investor with a stock portfo-
lio worth several hundred thousand dollars sued his broker and brokerage
firm because lack of diversification in his portfolio led to poor performance.
Table 7.1 gives the rates of return for the 39 months that the account was
managed by the broker.2 Figure 7.4 gives a histogram for these data and
Figure 7.5 gives the Normal quantile plot. There are no outliers and the dis-
tribution shows no strong skewness. We are reasonably confident that the
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TABLE 7.1

Monthly rates of return on a portfolio (percent)

−8.36 1.63 −2.27 −2.93 −2.70 −2.93 −9.14 −2.64
6.82 −2.35 −3.58 6.13 7.00 −15.25 −8.66 −1.03

−9.16 −1.25 −1.22 −10.27 −5.11 −0.80 −1.44 1.28
−0.65 4.34 12.22 −7.21 −0.09 7.34 5.04 −7.24
−2.14 −1.01 −1.41 12.03 −2.56 4.33 2.35
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FIGURE 7.4 Histogram for
Example 7.4.
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FIGURE 7.5 Normal quantile
plot for Example 7.4.

distribution of x is approximately Normal, and we proceed with our inference
based on Normal theory.

The arbitration panel compared these returns with the average of the Stan-
dard and Poor’s 500 stock index for the same period. Consider the 39 monthly
returns as a random sample from the population of monthly returns the
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brokerage would generate if it managed the account forever. Are these returns
compatible with a population mean of μ = 0.95%, the S&P 500 average? Our
hypotheses are

H0: μ = 0.95

Ha: μ �= 0.95

Minitab and SPSS outputs appear in Figure 7.6. Output from other software
will look similar.

Here is one way to report the conclusion: the mean monthly return on in-
vestment for this client’s account was x = −1.1%. This differs significantly
from the performance of the S&P 500 stock index for the same period (t =
−2.14, df = 38, P < 0.039).

FIGURE 7.6 Minitab and SPSS
output for Example 7.4.

The hypothesis test in Example 7.4 leads us to conclude that the mean return
on the client’s account differs from that of the S&P 500 stock index. Now let’s
assess the return on the client’s account with a confidence interval.
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E 7.5 Estimating the mean monthly return. The mean monthly return
on the client’s portfolio was x = −1.1% and the standard deviation was
s = 5.99%. Figure 7.7 gives the Minitab, SPSS, and Excel outputs for a 95%
confidence interval for the population mean μ. Note that Excel gives the mar-
gin of error next to the label “Confidence Level (95.0%)” rather than the actual
confidence interval. We see that the 95% confidence interval is (−3.04, 0.84),
or (from Excel) −1.0997 ± 1.9420.

Because the S&P 500 return, 0.95%, falls outside this interval, we know
that μ differs significantly from 0.95% at the α = 0.05 level. Example 7.4 gave
the actual P-value as P = 0.039.
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FIGURE 7.7 Minitab, SPSS, and
Excel output for Example 7.5.

The confidence interval suggests that the broker’s management of this ac-
count had a long-term mean somewhere between a loss of 3.04% and a gain of
0.84% per month. We are interested not in the actual mean but in the difference
between the performance of the client’s portfolio and that of the diversified S&P
500 stock index.
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E 7.6 Estimating the difference from a standard. Following the analysis
accepted by the arbitration panel, we are considering the S&P 500 monthly
average return as a constant standard. (It is easy to envision scenarios where
we would want to treat this type of quantity as random.) The difference
between the mean of the investor’s account and the S&P 500 is x − μ =
−1.10 − 0.95 = −2.05%. In Example 7.5 we found that the 95% confidence in-
terval for the investor’s account was (−3.04, 0.84). To obtain the correspond-
ing interval for the difference, subtract 0.95 from each of the endpoints. The
resulting interval is (−3.04 − 0.95, 0.84 − 0.95), or (−3.99,−0.11). We con-
clude with 95% confidence that the underperformance was between −3.99%
and −0.11%. This interval is presented in the SPSS output of Figure 7.6. This
estimate helps to set the compensation owed the investor.



428
•

CHAPTER 7 • Inference for Distributions

The assumption that these 39 monthly returns represent an SRS from the
population of monthly returns is certainly questionable. If the monthly S&P
500 returns were available, an alternative analysis would be to compare the av-
erage difference between the monthly returns for this account and for the S&P
500. This method of analysis is discussed next.

USE YOUR KNOWLEDGE
7.5 Significance test using the t distribution. A test of a null hypothesis

versus a two-sided alternative gives t = 2.35.

(a) The sample size is 15. Is the test result significant at the 5% level?
Explain how you obtained your answer.

(b) The sample size is 6. Is the test result significant at the 5% level?
Explain how you obtained your answer.

(c) Sketch the two t distributions to illustrate your answers.

7.6 Significance test for apartment rents. Recall Exercise 7.1 (page
419). Does this SRS give good reason to believe that the mean rent of
all advertised one-bedroom apartments is greater than $550? State
the hypotheses, find the t statistic and its P-value, and state your
conclusion.

7.7 Using software. In Example 7.1 (page 421) we calculated the 95%
confidence interval for the U.S. average of hours per month spent lis-
tening to full-track music on a cell phone. Use software to compute
this interval and verify that you obtain the same interval.

Matched pairs t procedures
The cell phone problem of Example 7.1 concerns only a single population. We
know that comparative studies are usually preferred to single-sample investi-
gations because of the protection they offer against confounding. For that rea-
son, inference about a parameter of a single distribution is less common than
comparative inference. One common comparative design, however, makes use
of single-sample procedures. In a matched pairs study, subjects are matched
in pairs and the outcomes are compared within each matched pair. The exper-LOOK BACK

matched pairs design,
page 189

imenter can toss a coin to assign two treatments to the two subjects in each
pair. Matched pairs are also common when randomization is not possible. One
situation calling for matched pairs is when observations are taken on the same
subjects, under different conditions.
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E 7.7 Does a full moon affect behavior? Many people believe that the
moon influences the actions of some individuals. A study of dementia pa-
tients in nursing homes recorded various types of disruptive behaviors every
day for 12 weeks. Days were classified as moon days if they were in a three-
day period centered at the day of the full moon. For each patient the average
number of disruptive behaviors was computed for moon days and for all
other days. The data for the 15 subjects whose behaviors were classified as
aggressive are presented in Table 7.2.3 The patients in this study are not a
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TABLE 7.2

Aggressive behaviors of dementia patients

Patient Moon days Other days Difference Patient Moon days Other days Difference

1 3.33 0.27 3.06 9 6.00 1.59 4.41
2 3.67 0.59 3.08 10 4.33 0.60 3.73
3 2.67 0.32 2.35 11 3.33 0.65 2.68
4 3.33 0.19 3.14 12 0.67 0.69 −0.02
5 3.33 1.26 2.07 13 1.33 1.26 0.07
6 3.67 0.11 3.56 14 0.33 0.23 0.10
7 4.67 0.30 4.37 15 2.00 0.38 1.62
8 2.67 0.40 2.27

4  4 4
3  1 1 1 6 7
2  1 3 4 7
1  
0 0 1 1

FIGURE 7.8 Stemplot of
differences in aggressive
behaviors for Examples 7.7
and 7.8.

random sample of dementia patients. However, we examine their data in the
hope that what we find is not unique to this particular group of individuals
and applies to other patients who have similar characteristics.

To analyze these paired data, we first subtract the disruptive behaviors for
moon days from the disruptive behaviors for other days. These 15 differences
form a single sample. They appear in the “Difference” columns in Table 7.2.
The first patient, for example, averaged 3.33 aggressive behaviors on moon
days but only 0.27 aggressive behaviors on other days. The difference 3.33 −
0.27 = 3.06 is what we will use in our analysis.

Next, we examine the distribution of these differences. Figure 7.8 gives a
stemplot of the differences. This plot indicates that there are three patients
with very small differences but there are no indications of extreme outliers
or strong skewness. We will proceed with our analysis using the Normality-
based methods of this section.

To assess whether there is a difference in aggressive behaviors on moon
days versus other days, we test

H0: μ = 0

Ha: μ �= 0

Here μ is the mean difference in aggressive behaviors, moon versus other
days, for patients of this type. The null hypothesis says that aggressive be-
haviors occur at the same frequency for both types of days, and Ha says that
the behaviors on moon days are not the same as on other days.

The 15 differences have

x = 2.433 and s = 1.460

The one-sample t statistic is therefore

t = x − 0

s/
√

n
= 2.433

1.460/
√

15

= 6.45
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The P-value is found from the t(14) distribution (remember that the de-
grees of freedom are 1 less than the sample size). Table D shows that 6.45
lies beyond the upper 0.0005 critical value of the t(14) distribution. Since
we are using a two-sided alternative, we know that the P-value is less than
two times this value, or 0.0010. Software gives a value that is much smaller,
P = 0.000015. In practice, there is little difference between these two P-
values; the data provide clear evidence in favor of the alternative hypothesis.
A difference this large is very unlikely to occur by chance if there is, in fact,
no effect of the moon on aggressive behaviors. In scholarly publications, the
details of routine statistical procedures are omitted; our test would be re-
ported in the form: “There was more aggressive behavior on moon days than
on other days (t = 6.45, df = 14, P < 0.001).”

df = 14

p 0.001 0.0005

t∗ 3.787 4.140

Note that we could have justified a one-sided alternative in this example.
Based on previous research, we expect more aggressive behaviors on moon
days, and the alternative Ha: μ > 0 is reasonable in this setting. The choice of
the alternative here, however, has no effect on the conclusion: from Table D we
determine that P is less than 0.0005; from software it is 0.000008. These are
very small values and we would still report P < 0.001. In most circumstances

CAUTION

! we cannot be absolutely certain about the direction and the safest strategy is to
use the two-sided alternative.

The results of the significance test allow us to conclude that dementia pa-
tients exhibit more aggressive behaviors in the days around a full moon. What
are the implications of the study for the administrators who run the facilities
where these patients live? For example, should they increase staff on these
days? To make these kinds of decisions, an estimate of the magnitude of the
problem, with a margin of error, would be helpful.
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E 7.8 95% confidence interval for the full-moon study. A 95% confi-
dence interval for the mean difference in aggressive behaviors per day re-
quires the critical value t∗ = 2.145 from Table D. The margin of error is

t∗
s√
n

= 2.145
1.460√

15

= 0.81

and the confidence interval is

x ± t∗
s√
n

= 2.43 ± 0.81

= (1.62, 3.24)

The estimated average difference is 2.43 aggressive behaviors per day, with
margin of error 0.81 for 95% confidence. The increase needs to be interpreted
in terms of the baseline values. The average number of aggressive behaviors per
day on other days is 0.59; on moon days it is 3.02. This is approximately a 400%
increase. If aggressive behaviors require a substantial amount of attention by
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staff, then administrators should be aware of the increased level of these activ-
ities during the full-moon period. Additional staff may be needed.

The following are key points to remember concerning matched pairs:

1. A matched pairs analysis is called for when subjects are matched in pairs
or there are two measurements or observations on each individual and we
want to examine the difference.

2. For each pair or individual, use the difference between the two measure-
ments as the data for your analysis.

3. Use the one-sample confidence interval and significance-testing procedures
that we learned in this section.

Use of the t procedures in Examples 7.7 and 7.8 faces several issues. First, no
randomization is possible in a study like this. Our inference procedures assume
that there is a process that generates these aggressive behaviors and that the
process produces them at possibly different rates during the days near the full
moon. Second, many of the patients in these nursing homes did not exhibit any
disruptive behaviors. These were not included in our analysis. So our inference
is restricted to patients who do exhibit disruptive behaviors.

A final difficulty is that the data show departures from Normality. In a
matched pairs analysis, when the t procedures are applied to the differences,
we are assuming that the differences are Normally distributed. Figure 7.8 gives
a stemplot of the differences. There are 3 patients with very small differences
in aggressive behaviors while the other 12 have a large increase. We have a

CAUTION

! dilemma here similar to that in Example 7.1. The data may not be Normal, and
our sample size is very small. We can try an alternative procedure that does not
require the Normality assumption—but there is a price to pay. The alternative
procedures have less power to detect differences. Despite these caveats, for
Example 7.7 the P-value is so small that we are very confident that we have
found an effect of the moon phase on behavior.

USE YOUR KNOWLEDGE
7.8 Comparison of two energy drinks. Consider the following study to

compare two popular energy drinks. Each drink was rated on a 0 to
100 scale, with 100 being the highest rating.

Subject 1 2 3 4 5

Drink A 43 79 66 88 78

Drink B 45 78 61 77 70

Is there a difference in preference? State appropriate hypotheses and
carry out a matched pairs t test for these data.

7.9 95% confidence interval for the difference in energy drinks. For
the companies producing these drinks, the real question is how much
difference there is between the two preferences. Use the data above
to give a 95% confidence interval for the difference in preference be-
tween Drink A and Drink B.
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Robustness of the t procedures
The results of one-sample t procedures are exactly correct only when the pop-
ulation is Normal. Real populations are never exactly Normal. The usefulness
of the t procedures in practice therefore depends on how strongly they are af-
fected by non-Normality. Procedures that are not strongly affected are called
robust.

ROBUST PROCEDURES

A statistical inference procedure is called robust if the required proba-
bility calculations are insensitive to violations of the assumptions made.

The assumption that the population is Normal rules out outliers, so the pres-
ence of outliers shows that this assumption is not valid. The t procedures are
not robust against outliers, because x and s are not resistant to outliers.LOOK BACK

resistant measure,
page 32

In Example 7.7, there are three patients with fairly low values of the differ-
ence. Whether or not these are outliers is a matter of judgment. If we rerun the
analysis without these three patients, the t statistic would increase to 11.89 and
the P-value would be much lower. Careful inspection of the records may reveal
some characteristic of these patients which distinguishes them from the others
in the study. Without such information, it is difficult to justify excluding them
from the analysis. In general, we should be very cautious about discarding sus-

CAUTION

! pected outliers, particularly when they make up a substantial proportion of the
data, as they do in this example.

Fortunately, the t procedures are quite robust against non-Normality of the
population except in the case of outliers or strong skewness. Larger samples
improve the accuracy of P-values and critical values from the t distributions
when the population is not Normal. This is true for two reasons:

1. The sampling distribution of the sample mean x from a large sample is close
to Normal (that’s the central limit theorem). Normality of the individual ob-LOOK BACK

central limit theorem,
page 339

law of large numbers,
page 274

servations is of little concern when the sample is large.

2. As the sample size n grows, the sample standard deviation s will be an accu-
rate estimate of σ whether or not the population has a Normal distribution.
This fact is closely related to the law of large numbers.

Constructing a Normal quantile plot, stemplot, or boxplot to check for skew-
ness and outliers is an important preliminary to the use of t procedures for
small samples. For most purposes, the one-sample t procedures can be safely
used when n ≥ 15 unless an outlier or clearly marked skewness is present.
Except in the case of small samples, the assumption that the data are an SRS

CAUTION

! from the population of interest is more crucial than the assumption that the pop-
ulation distribution is Normal. Here are practical guidelines for inference on a
single mean:4

• Sample size less than 15: Use t procedures if the data are close to Normal. If
the data are clearly non-Normal or if outliers are present, do not use t.

• Sample size at least 15: The t procedures can be used except in the presence
of outliers or strong skewness.
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• Large samples: The t procedures can be used even for clearly skewed distri-
butions when the sample is large, roughly n ≥ 40.

Consider, for example, some of the data we studied in Chapter 1. The break-
ing-strength data in Figure 1.34 (page 69) contain three outliers in a sample
of size 23, which makes the use of t procedures risky. The guinea pig survival
times in Figure 1.35 (page 70) are strongly skewed to the right with no out-
liers. Since there are 72 observations, we could use the t procedures here. On
the other hand, many would prefer to use a transformation to make these data
more nearly Normal. (See the material on inference for non-Normal popula-
tions on page 435 and in Chapter 16.) Figure 1.36 (page 71) gives the Normal
quantile plot for 105 acidity measurements of rainwater. These data appear to
be Normal and we would apply the t procedures in this case.

USE YOUR KNOWLEDGE
7.10 Significance test for CO2 emissions? Consider the CO2 emissions

data presented in Figure 1.40 (page 76). Would you feel comfortable
applying the t procedures in this case? Explain your answer.

7.11 Significance test for mounting holes data? Consider data on the
distance between mounting holes presented in Figure 1.41 (page 76).
Would you feel comfortable applying the t procedures in this case? Ex-
plain your answer.

The power of the t test*
The power of a statistical test measures its ability to detect deviations from
the null hypothesis. In practice, we carry out the test in the hope of showing
that the null hypothesis is false, so high power is important. The power of the
one-sample t test for a specific alternative value of the population mean μ is
the probability that the test will reject the null hypothesis when the alternative
value of the mean is true. To calculate the power, we assume a fixed level of
significance, often α = 0.05.

Calculation of the exact power of the t test takes into account the estimation
of σ by s and is a bit complex. But an approximate calculation that acts as if σ

were known is almost always adequate for planning a study. This calculation is
very much like that for the z test:LOOK BACK

power of the z test,
page 402

1. Decide on a standard deviation, significance level, whether the test is one-
sided or two-sided, and an alternative value of μ to detect.

2. Write the event that the test rejects H0 in terms of x.

3. Find the probability of this event when the population mean has this alter-
native value.

Consider Example 7.7, where we examined the effect of the moon on the
aggressive behavior of dementia patients in nursing homes. Suppose that we
wanted to perform a similar study in a different setting. How many patients
should we include in our new study? To answer this question, we do a power
calculation.

*This section can be omitted without loss of continuity.
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In Example 7.7, we found x = 2.433 and s = 1.460. Let’s use s = 1.5 for our
calculations. It is always better to use a value of the standard deviation that is a

CAUTION

! little larger than what we expect than one that is smaller. This may give a sample
size that is a little larger than we need. We want to avoid a situation where we
fail to find the effect that we are looking for because we did not have enough
data. Let’s use μ = 1.0 as the alternative value to detect. We are very confident
that the effect was larger than this in our previous study, and this amount of an
increase in aggressive behavior would still be important to those who work in
these facilities. Finally, based on the previous study, we can justify using a one-
sided alternative; we expect the moon days to be associated with an increase in
aggressive behavior.

•

•
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test for

H0: μ = 0

Ha: μ > 0

when the alternative μ = 1.0. We will use a 5% level of significance. The t test
with n observations rejects H0 at the 5% significance level if the t statistic

t = x − 0

s/
√

n

exceeds the upper 5% point of t(n − 1). Taking n = 20 and s = 1.5, the upper
5% point of t(19) is 1.729. The event that the test rejects H0 is therefore

t = x

1.5/
√

20
≥ 1.729

x ≥ 1.729
1.5√

20

x ≥ 0.580

The power is the probability that x ≥ 0.580 when μ = 1.0. Taking σ = 1.5,
this probability is found by standardizing x:

P(x ≥ 0.580 when μ = 1.0) = P
(

x − 1.0

1.5/
√

20
≥ 0.580 − 1.0

1.5/
√

20

)
= P(Z ≥ −1.25)

= 1 − 0.1056 = 0.89

The power is 89% that we will detect an increase of 1.0 aggressive behav-
iors per day during moon days. This is sufficient power for most situations.
For many studies, 80% is considered the standard value for desirable power.
We could repeat the calculations for some smaller values of n to determine the
smallest value that would meet the 80% criterion.

Power calculations are used in planning studies to ensure that we have a
reasonable chance of detecting effects of interest. They give us some guidance
in selecting a sample size. In making these calculations, we need assumptions



7.1 Inference for the Mean of a Population
•

435

about the standard deviation and the alternative of interest. In our example we
assumed that the standard deviation would be 1.5, but in practice we are hop-
ing that the value will be somewhere around this value. Similarly, we have used
a somewhat arbitrary alternative of 1.0. This is a guess based on the results of
the previous study. Beware of putting too much trust in fine details of the results

CAUTION

! of these calculations. They serve as a guide, not a mandate.

USE YOUR KNOWLEDGE
7.12 Power and the alternative mean μ. If you were to repeat the power

calculation in Example 7.9 for a value of μ that is smaller than 1,
would you expect the power to be higher or lower than 89%? Why?

7.13 More on power and the alternative mean μ. Verify your answer
to the previous question by doing the calculation for the alternative
μ = 0.75.

Inference for non-Normal populations*
We have not discussed how to do inference about the mean of a clearly non-
Normal distribution based on a small sample. If you face this problem, you
should consult an expert. Three general strategies are available:

1. In some cases a distribution other than a Normal distribution will describe
the data well. There are many non-Normal models for data, and inference
procedures for these models are available.

2. Because skewness is the chief barrier to the use of t procedures on data with-
out outliers, you can attempt to transform skewed data so that the distribu-
tion is symmetric and as close to Normal as possible. Confidence levels and
P-values from the t procedures applied to the transformed data will be quite
accurate for even moderate sample sizes.

3. Use a distribution-free inference procedure. Such procedures do not as-distribution-free procedures
sume that the population distribution has any specific form, such as Normal.
Distribution-free procedures are often called nonparametric procedures.nonparametric procedures
Chapter 15 discusses several of these procedures.

Each of these strategies can be effective, but each quickly carries us beyond
the basic practice of statistics. We emphasize procedures based on Normal dis-
tributions because they are the most common in practice, because their robust-
ness makes them widely useful, and (most important) because we are first of all
concerned with understanding the principles of inference. We will therefore not
discuss procedures for non-Normal continuous distributions. We will be con-
tent with illustrating by example the use of a transformation and of a simple
distribution-free procedure.

Transforming data When the distribution of a variable is skewed, it often
happens that a simple transformation results in a variable whose distribution is
symmetric and even close to Normal. The most common transformation is the
logarithm, or log. The logarithm tends to pull in the right tail of a distribution.log transformation

*This section can be omitted without loss of continuity.
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For example, the data 2, 3, 4, 20 show an outlier in the right tail. Their loga-
rithms 0.30, 0.48, 0.60, 1.30 are much less skewed. Taking logarithms is a pos-
sible remedy for right-skewness. Instead of analyzing values of the original vari-
able X, we first compute their logarithms and analyze the values of log X. Here
is an example of this approach.

•
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E 7.10 Length of audio files on an iPod. Table 7.3 presents data on the
length (in seconds) of audio files found on an iPod. There were a total of
10,003 audio files and 50 files were randomly selected using the “shuffle
songs” command.5 We would like to give a confidence interval for the av-
erage audio file length μ for this iPod.

A Normal quantile plot of the audio data from Table 7.3 (Figure 7.9) shows
that the distribution is skewed to the right. Because there are no extreme out-
liers, the sample mean of the 50 observations will nonetheless have an ap-
proximately Normal sampling distribution. The t procedures could be used
for approximate inference. For more exact inference, we will seek to trans-
form the data so that the distribution is more nearly Normal. Figure 7.10 is a
Normal quantile plot of the logarithms of the time measurements. The trans-
formed data are very close to Normal, so t procedures will give quite exact
results.

TABLE 7.3

Length (in seconds) of audio files sampled from an iPod

240 316 259 46 871 411 1366
233 520 239 259 535 213 492
315 696 181 357 130 373 245
305 188 398 140 252 331 47
309 245 69 293 160 245 184
326 612 474 171 498 484 271
207 169 171 180 269 297 266

1847

The application of the t procedures to the transformed data is straightfor-
ward. Call the original length values from Table 7.3 the variable X. The trans-
formed data are values of Xnew = log X. In most software packages, it is an easy
task to transform data in this way and then analyze the new variable.
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E 7.11 Software output of audio length data. Analysis of the logs of the
length values in Minitab produces the following output:

N MEAN STDEV SE MEAN 95.0 PERCENT C.I.
50 5.6315 0.6840 0.0967 ( 5.4371, 5.8259)

For comparison, the 95% t confidence interval for the original mean μ is
found from the original data as follows:
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N MEAN STDEV SE MEAN 95.0 PERCENT C.I.

50 354.1 307.9 43.6 (266.6, 441.6)

The advantage of analyzing transformed data is that use of procedures based
on the Normal distributions is better justified and the results are more exact.
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FIGURE 7.9 Normal quantile
plot of audio file length, for
Example 7.10. The distribution is
skewed to the right.
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FIGURE 7.10 Normal quantile
plot of the logarithms of the
audio file lengths, for Example
7.10. This distribution is close to
Normal.
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The disadvantage is that a confidence interval for the mean μ in the original
scale (in our example, seconds) cannot be easily recovered from the confidence
interval for the mean of the logs. One approach based on the lognormal distri-
bution6 results in an interval of (290.33, 428.30), which is much narrower than
the t interval.

The sign test Perhaps the most straightforward way to cope with non-Normal
data is to use a distribution-free, or nonparametric, procedure. As the name indi-
cates, these procedures do not require the population distribution to have any
specific form, such as Normal. Distribution-free significance tests are quite
simple and are available in most statistical software packages. Distribution-
free tests have two drawbacks. First, they are generally less powerful than tests
designed for use with a specific distribution, such as the t test. Second, we must
often modify the statement of the hypotheses in order to use a distribution-
free test. A distribution-free test concerning the center of a distribution, for
example, is usually stated in terms of the median rather than the mean. This
is sensible when the distribution may be skewed. But the distribution-free
test does not ask the same question (Has the mean changed?) that the t test
does. The simplest distribution-free test, and one of the most useful, is the
sign test.sign test

Let’s examine again the aggressive-behavior data of Example 7.7 (page 428).
In that example we concluded that there was more aggressive behavior on
moon days than on other days. The stemplot given in Figure 7.8 was not very
reassuring concerning the assumption that the data are Normal. There were
3 patients with low values that seemed to be somewhat different from the ob-
servations on the other 12 patients. How does the sign test deal with these
data?

LOOK BACK
binomial probability
formula, page 329
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E 7.12 Sign test for the full-moon effect. The sign test is based on the
following simple observation: of the 15 patients in our sample, 14 had more
aggressive behaviors on moon days than on other days. This sounds like con-
vincing evidence in favor of a moon effect on behavior, but we need to do some
calculations to confirm this.

Let p be the probability that a randomly chosen dementia patient will have
more aggressive behaviors on moon days than on other days. The null hypoth-
esis of “no moon effect” says that the moon days are no different from other
days, so a patient is equally likely to have more aggressive behaviors on moon
days as on other days. We therefore want to test

H0: p = 1/2

Ha: p > 1/2

There are 15 patients in the study, so the number who have more aggressive
behaviors on moon days has the binomial distribution B(15, 1/2) if H0 is true.
The P-value for the observed count 14 is therefore P(X ≥ 14), where X has
the B(15, 1/2) distribution. You can compute this probability with software
or from the binomial probability formula:
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P(X ≥ 14) = P(X = 14) + P(X = 15)

=
(

15
14

) (
1
2

)14 (
1
2

)1

+
(

15
15

)(
1
2

)15 (
1
2

)0

= (15)

(
1
2

)15

+
(

1
2

)15

= 0.000488

Using Table C we would approximate this value as 0.0005. As in Example 7.7,
there is very strong evidence in favor of an increase in aggressive behavior on
moon days.

There are several varieties of sign test, all based on counts and the binomial
distribution. The sign test for matched pairs (Example 7.12) is the most use-
ful. The null hypothesis of “no effect” is then always H0: p = 1/2. The alterna-
tive can be one-sided in either direction or two-sided, depending on the type
of change we are looking for. The test gets its name from the fact that we look
only at the signs of the differences, not their actual values.

THE SIGN TEST FOR MATCHED PAIRS

Ignore pairs with difference 0; the number of trials n is the count of
the remaining pairs. The test statistic is the count X of pairs with a
positive difference. P-values for X are based on the binomial B(n, 1/2)

distribution.

The matched pairs t test in Example 7.7 tested the hypothesis that the mean
of the distribution of differences (moon days minus other days) is 0. The sign
test in Example 7.12 is in fact testing the hypothesis that the median of the dif-
ferences is 0. If p is the probability that a difference is positive, then p = 1/2
when the median is 0. This is true because the median of the distribution is the
point with probability 1/2 lying to its right. As Figure 7.11 illustrates, p > 1/2
when the median is greater than 0, again because the probability to the right
of the median is always 1/2. The sign test of H0: p = 1/2 against Ha: p > 1/2 is
a test of

0 Median

p = probability that the difference
      is positiveFIGURE 7.11 Why the sign test

tests the median difference:
when the median is greater than
0, the probability p of a positive
difference is greater than 1/2,
and vice versa.
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H0: population median = 0

Ha: population median > 0

The sign test in Example 7.12 makes no use of the actual differences—it just
counts how many patients had more aggressive behaviors on moon days than
on other days. Because the sign test uses so little of the available information,
it is much less powerful than the t test when the population is close to Normal.

CAUTION

! It is better to use a test that is powerful when we believe our assumptions are ap-
proximately satisfied than a less powerful test with fewer assumptions. There are
other distribution-free tests that are more powerful than the sign test.7

USE YOUR KNOWLEDGE
7.14 Sign test for energy drink comparison. Exercise 7.8 (page 431) gives

data on the appeal of two popular energy drinks. Is there evidence
that the medians are different? State the hypotheses, carry out the sign
test, and report your conclusion.

SECTION 7.1 Summary

Significance tests and confidence intervals for the mean μ of a Normal popu-
lation are based on the sample mean x of an SRS. Because of the central limit
theorem, the resulting procedures are approximately correct for other popula-
tion distributions when the sample is large.

The standardized sample mean, or one-sample z statistic,

z = x − μ

σ/
√

n

has the N(0, 1) distribution. If the standard deviation σ/
√

n of x is replaced by
the standard error s/

√
n, the one-sample t statistic

t = x − μ

s/
√

n

has the t distribution with n − 1 degrees of freedom.

There is a t distribution for every positive degrees of freedom k. All are sym-
metric distributions similar in shape to Normal distributions. The t(k) distri-
bution approaches the N(0, 1) distribution as k increases.

A level C confidence interval for the mean μ of a Normal population is

x ± t∗
s√
n

where t∗ is the value for the t(n − 1) density curve with area C between −t∗ and
t∗. The quantity

t∗
s√
n

is the margin of error.
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Significance tests for H0: μ = μ0 are based on the t statistic. P-values or fixed
significance levels are computed from the t(n − 1) distribution.

These one-sample procedures are used to analyze matched pairs data by first
taking the differences within the matched pairs to produce a single sample.

The t procedures are relatively robust against non-Normal populations. The t
procedures are useful for non-Normal data when 15 ≤ n < 40 unless the data
show outliers or strong skewness. When n ≥ 40, the t procedures can be used
even for clearly skewed distributions.

The power of the t test is calculated like that of the z test, using an approximate
value for both σ and s.

Small samples from skewed populations can sometimes be analyzed by first
applying a transformation (such as the logarithm) to obtain an approximately
Normally distributed variable. The t procedures then apply to the transformed
data.

The sign test is a distribution-free test because it uses probability calcula-
tions that are correct for a wide range of population distributions.

The sign test for “no treatment effect” in matched pairs counts the number of
positive differences. The P-value is computed from the B(n, 1/2) distribution,
where n is the number of non-0 differences. The sign test is less powerful than
the t test in cases where use of the t test is justified.

SECTION 7.1 Exercises
For Exercises 7.1 and 7.2, see pages 419 and 420; for
Exercises 7.3 and 7.4, see page 422; for Exercises 7.5 to 7.7,
see page 428; for Exercises 7.8 and 7.9, see page 431; for
Exercises 7.10 and 7.11, see page 433; for Exercises 7.12
and 7.13, see page 435; and for Exercise 7.14, see page 440.

7.15 Finding the critical value t∗. What critical value t∗

from Table D should be used to calculate the margin
of error for a confidence interval for the mean of the
population in each of the following situations?

(a) A 95% confidence interval based on n = 15
observations.

(b) A 95% confidence interval from an SRS of 25
observations.

(c) A 90% confidence interval from a sample of size
25.

(d) These cases illustrate how the size of the margin
of error depends upon the confidence level and the
sample size. Summarize these relationships.

7.16 Distribution of the t statistic. Assume a sample
size of n = 20. Draw a picture of the distribution
of the t statistic under the null hypothesis. Use
Table D and your picture to illustrate the values
of the test statistic that would lead to rejection of
the null hypothesis at the 5% level for a two-sided
alternative.

7.17 More on the distribution of the t statistic. Repeat
the previous exercise for the two situations where
the alternative is one-sided.

7.18 One-sided versus two-sided P-values. Computer
software reports x = 15.3 and P = 0.04 for a t
test of H0: μ = 0 versus Ha: μ �= 0. Based on prior
knowledge, you can justify testing the alternative
Ha: μ > 0. What is the P-value for your significance
test?

7.19 More on one-sided versus two-sided P-values.
Suppose that x = −15.3 in the setting of the
previous exercise. Would this change your P-value?
Use a sketch of the distribution of the test statistic
under the null hypothesis to illustrate and explain
your answer.

7.20 A one-sample t test. The one-sample t statistic for
testing

H0: μ = 10

Ha: μ > 10

from a sample of n = 20 observations has the value
t = 2.10.

(a) What are the degrees of freedom for this
statistic?
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(b) Give the two critical values t∗ from Table D that
bracket t.

(c) Between what two values does the P-value of the
test fall?

(d) Is the value t = 2.10 significant at the 5% level?
Is it significant at the 1% level?

(e) If you have software available, find the exact
P-value.

7.21 Another one-sample t test. The one-sample t
statistic for testing

H0: μ = 60

Ha: μ �= 60

from a sample of n = 24 observations has the value
t = 2.40.

(a) What are the degrees of freedom for t?

(b) Locate the two critical values t∗ from Table D
that bracket t.

(c) Between what two values does the P-value of the
test fall?

(d) Is the value t = 2.40 statistically significant at
the 5% level? At the 1% level?

(e) If you have software available, find the exact
P-value.

7.22 A final one-sample t test. The one-sample t statistic
for testing

H0: μ = 20

Ha: μ < 20

based on n = 115 observations has the value
t = −1.55.

(a) What are the degrees of freedom for this
statistic?

(b) Between what two values does the P-value of the
test fall?

(c) If you have software available, find the exact
P-value.

7.23 Two-sided to one-sided P-value. Most software
gives P-values for two-sided alternatives. Explain
why you cannot always divide these P-values by 2 to
obtain P-values for one-sided alternatives.

7.24 C
H

ALLENG
E Fuel efficiency t test. Computers in some

vehicles calculate various quantities related
to performance. One of these is the fuel efficiency,

or gas mileage, usually expressed as miles per gallon
(mpg). For one vehicle equipped in this way, the
mpg were recorded each time the gas tank was filled,
and the computer was then reset.8 Here are the mpg
values for a random sample of 20 of these records:

41.5 50.7 36.6 37.3 34.2 45.0 48.0 43.2 47.7 42.2
43.2 44.6 48.4 46.4 46.8 39.2 37.3 43.5 44.3 43.3

(a) Describe the distribution using graphical
methods. Is it appropriate to analyze these data
using methods based on Normal distributions?
Explain why or why not.

(b) Find the mean, standard deviation, standard
error, and margin of error for 95% confidence.

(c) Report the 95% confidence interval for μ, the
mean mpg for this vehicle based on these data.

7.25 Random distribution of trees t test. A study of
584 longleaf pine trees in the Wade Tract in Thomas
County, Georgia, is described in Example 6.1 (page
354). For each tree in the tract, the researchers
measured the diameter at breast height (DBH). This
is the diameter of the tree at 4.5 feet and the units
are centimeters (cm). Only trees with DBH greater
than 1.5 cm were sampled. Here are the diameters
of a random sample of 40 of these trees:

10.5 13.3 26.0 18.3 52.2 9.2 26.1 17.6 40.5 31.8
47.2 11.4 2.7 69.3 44.4 16.9 35.7 5.4 44.2 2.2
4.3 7.8 38.1 2.2 11.4 51.5 4.9 39.7 32.6 51.8

43.6 2.3 44.6 31.5 40.3 22.3 43.3 37.5 29.1 27.9

(a) Use a histogram or stemplot and a boxplot to
examine the distribution of DBHs. Include a Normal
quantile plot if you have the necessary software.
Write a careful description of the distribution.

(b) Is it appropriate to use the methods of this
section to find a 95% confidence interval for the
mean DBH of all trees in the Wade Tract? Explain
why or why not.

(c) Report the mean with the margin of error and
the confidence interval. Write a short summary
describing the meaning of the confidence interval.

(d) Do you think these results would apply to other
similar trees in the same area? Give reasons for your
answer.

7.26 C-reactive protein in children. C-reactive protein
(CRP) is a substance that can be measured in the
blood. Values increase substantially within 6 hours
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of an infection and reach a peak within 24 to 48
hours after. In adults, chronically high values have
been linked to an increased risk of cardiovascular
disease. In a study of apparently healthy children
aged 6 to 60 months in Papua New Guinea, CRP was
measured in 90 children.9 The units are milligrams
per liter (mg/l). Here are the data from a random
sample of 40 of these children.

0.00 3.90 5.64 8.22 0.00 5.62 3.92 6.81 30.61 0.00
73.20 0.00 46.70 0.00 0.00 26.41 22.82 0.00 0.00 3.49
0.00 0.00 4.81 9.57 5.36 0.00 5.66 0.00 59.76 12.38

15.74 0.00 0.00 0.00 0.00 9.37 20.78 7.10 7.89 5.53

(a) Look carefully at the data above. Do you
think that there are outliers or is this a skewed
distribution? Now use a histogram or stemplot to
examine the distribution. Write a short summary
describing the distribution.

(b) Do you think that the mean is a good
characterization of the center of this distribution?
Explain why or why not.

(c) Find a 95% confidence interval for the mean
CRP. Discuss the appropriateness of using this
methodology for these data.

7.27 C
H

ALLENG
E More on C-reactive protein in children.

Refer to the previous exercise. With strongly
skewed distributions such as this, we frequently
reduce the skewness by taking a log transformation.
We have a bit of a problem here, however, because
some of the data are recorded as 0.00 and the
logarithm of zero is not defined. For this variable,
the value 0.00 is recorded whenever the amount
of CRP in the blood is below the level that the
measuring instrument is capable of detecting. The
usual procedure in this circumstance is to add a
small number to each observation before taking
the logs. Transform these data by adding 1 to each
observation and then taking the logarithm. Use the
questions in the previous exercise as a guide to your
analysis, and prepare a summary contrasting this
analysis with the one that you performed in the
previous exercise.

7.28 C
H

ALLENG
E Serum retinol in children. In the Papua

New Guinea study that provided the data
for the previous two exercises, the researchers
also measured serum retinol. A low value of this
variable can be an indicator of vitamin A deficiency.
Following are the data on the same sample of 40
children from this study. The units are micromoles
per liter (μmol/l).

1.15 1.36 0.38 0.34 0.35 0.37 1.17 0.97 0.97 0.67
0.31 0.99 0.52 0.70 0.88 0.36 0.24 1.00 1.13 0.31
1.44 0.35 0.34 1.90 1.19 0.94 0.34 0.35 0.33 0.69
0.69 1.04 0.83 1.11 1.02 0.56 0.82 1.20 0.87 0.41

Analyze these data. Use the questions in the previous
two exercises as a guide.

7.29 Do you feel lucky? Children in a psychology
study were asked to solve some puzzles and were
then given feedback on their performance. Then
they were asked to rate how luck played a role
in determining their scores.10 This variable was
recorded on a 1 to 10 scale with 1 corresponding to
very lucky and 10 corresponding to very unlucky.
Here are the scores for 60 children:

1 10 1 10 1 1 10 5 1 1 8 1 10 2 1
9 5 2 1 8 10 5 9 10 10 9 6 10 1 5
1 9 2 1 7 10 9 5 10 10 10 1 8 1 6

10 1 6 10 10 8 10 3 10 8 1 8 10 4 2

(a) Use graphical methods to display the
distribution. Describe any unusual characteristics.
Do you think that these would lead you to hesitate
before using the Normality-based methods of this
section?

(b) Give a 95% confidence interval for the mean
luck score.

(c) The children in this study were volunteers whose
parents agreed to have them participate in the study.
To what extent do you think your results would
apply to all similar children in this community?

7.30 Perceived organizational skills. In a study of
children with attention deficit hyperactivity disorder
(ADHD), parents were asked to rate their child on
a variety of items related to how well their child
performs different tasks.11 One item was “Has
difficulty organizing work,” rated on a five-point
scale of 0 to 4 with 0 corresponding to “not at all”
and 4 corresponding to “very much.” The mean
rating for 282 boys with ADHD was reported as 2.22
with a standard deviation of 1.03.

(a) Do you think that these data are Normally
distributed? Explain why or why not.

(b) Is it appropriate to use the methods of this
section to compute a 99% confidence interval?
Explain why or why not.

(c) Find the 99% margin of error and the
corresponding confidence interval. Write a sentence
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explaining the interval and the meaning of the 99%
confidence level.

(d) The boys in this study were all evaluated at
the Western Psychiatric Institute and Clinic at the
University of Pittsburgh. To what extent do you
think the results could be generalized to boys with
ADHD in other locations?

7.31 Confidence level and interval width. Refer to the
previous exercise. Compute the 90% and the 95%
confidence intervals. Display the three intervals
graphically and write a short explanation of the
effect of the confidence level on the width of the
interval using your display as an example.

7.32 C
H

ALLENG
E Food intake and weight gain. If we increase

our food intake, we generally gain weight.
Nutrition scientists can calculate the amount of
weight gain that would be associated with a given
increase in calories. In one study, 16 nonobese
adults, aged 25 to 36 years, were fed 1000 calories
per day in excess of the calories needed to maintain
a stable body weight. The subjects maintained this
diet for 8 weeks, so they consumed a total of 56,000
extra calories.12 According to theory, 3500 extra
calories will translate into a weight gain of 1 pound.
Therefore, we expect each of these subjects to gain
56,000/3500 = 16 pounds (lb). Here are the weights
before and after the 8-week period expressed in
kilograms (kg):

Subject 1 2 3 4 5 6 7 8

Weight before 55.7 54.9 59.6 62.3 74.2 75.6 70.7 53.3
Weight after 61.7 58.8 66.0 66.2 79.0 82.3 74.3 59.3

Subject 9 10 11 12 13 14 15 16

Weight before 73.3 63.4 68.1 73.7 91.7 55.9 61.7 57.8
Weight after 79.1 66.0 73.4 76.9 93.1 63.0 68.2 60.3

(a) For each subject, subtract the weight before
from the weight after to determine the weight
change.

(b) Find the mean and the standard deviation for
the weight change.

(c) Calculate the standard error and the margin of
error for 95% confidence. Report the 95% confidence
interval in a sentence that explains the meaning of
the 95%.

(d) Convert the mean weight gain in kilograms to
mean weight gain in pounds. Because there are 2.2
kg per pound, multiply the value in kilograms by

2.2 to obtain pounds. Do the same for the standard
deviation and the confidence interval.

(e) Test the null hypothesis that the mean weight
gain is 16 lb. Be sure to specify the null and
alternative hypotheses, the test statistic with degrees
of freedom, and the P-value. What do you conclude?

(f) Write a short paragraph explaining your results.

7.33 Food intake and NEAT. Nonexercise activity
thermogenesis (NEAT) provides a partial
explanation for the results you found in the previous
analysis. NEAT is energy burned by fidgeting,
maintenance of posture, spontaneous muscle
contraction, and other activities of daily living. In
the study of the previous exercise, the 16 subjects
increased their NEAT by 328 calories per day, on
average, in response to the additional food intake.
The standard deviation was 256.

(a) Test the null hypothesis that there was no
change in NEAT versus the two-sided alternative.
Summarize the results of the test and give your
conclusion.

(b) Find a 95% confidence interval for the change in
NEAT. Discuss the additional information provided
by the confidence interval that is not evident from
the results of the significance test.

7.34 Potential insurance fraud? Insurance adjusters
are concerned about the high estimates they are
receiving from Jocko’s Garage. To see if the estimates
are unreasonably high, each of 10 damaged cars
was taken to Jocko’s and to another garage and the
estimates recorded. Here are the results:

Car 1 2 3 4 5

Jocko’s 500 1550 1250 1300 750
Other 400 1500 1300 1300 800

Car 6 7 8 9 10

Jocko’s 1000 1250 1300 800 2500
Other 800 1000 1100 650 2200

Test the null hypothesis that there is no difference
between the two garages. Be sure to specify the null
and alternative hypotheses, the test statistic with
degrees of freedom, and the P-value. What do you
conclude?

7.35 Fuel efficiency comparison t test. Refer to
Exercise 7.24. In addition to the computer
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calculating mpg, the driver also recorded the
mpg by dividing the miles driven by the amount of
gallons at fill-up. The driver wants to determine if
these calculations are different.

Fill-up 1 2 3 4 5 6 7 8 9 10

Computer 41.5 50.7 36.6 37.3 34.2 45.0 48.0 43.2 47.7 42.2
Driver 36.5 44.2 37.2 35.6 30.5 40.5 40.0 41.0 42.8 39.2

Fill-up 11 12 13 14 15 16 17 18 19 20

Computer 43.2 44.6 48.4 46.4 46.8 39.2 37.3 43.5 44.3 43.3
Driver 38.8 44.5 45.4 45.3 45.7 34.2 35.2 39.8 44.9 47.5

(a) State the appropriate H0 and Ha.

(b) Carry out the test. Give the P-value, and then
interpret the result.

7.36 Level of phosphate in the blood. The level of
various substances in the blood of kidney dialysis
patients is of concern because kidney failure
and dialysis can lead to nutritional problems. A
researcher performed blood tests on several dialysis
patients on 6 consecutive clinic visits. One variable
measured was the level of phosphate in the blood.
Phosphate levels for an individual tend to vary
Normally over time. The data on one patient, in
milligrams of phosphate per deciliter (mg/dl) of
blood, are given below:13

5.6 5.1 4.6 4.8 5.7 6.4

(a) Calculate the sample mean x and its standard
error.

(b) Use the t procedures to give a 90% confidence
interval for this patient’s mean phosphate level.

7.37 More on the level of phosphate in the blood. The
normal range of values for blood phosphate levels is
2.6 to 4.8 mg/dl. The sample mean for the patient in
the previous exercise falls above this range. Is this
good evidence that the patient’s mean level in fact
falls above 4.8? State H0 and Ha and use the data in
the previous exercise to carry out a t test. Between
which levels from Table D does the P-value lie? Are
you convinced that the patient’s phosphate level is
higher than normal?

7.38 A customer satisfaction survey. Many organiza-
tions are doing surveys to determine the satisfaction
of their customers. Attitudes toward various aspects
of campus life were the subject of one such study
conducted at Purdue University. Each item was

rated on a 1 to 5 scale, with 5 being the highest
rating. The average response of 1406 first-year
students to “Feeling welcomed at Purdue” was 3.9
with a standard deviation of 0.98. Assuming that
the respondents are an SRS, give a 90% confidence
interval for the mean of all first-year students.

7.39 Comparing operators of a DXA machine. Dual-
energy X-ray absorptiometry (DXA) is a technique
for measuring bone health. One of the most common
measures is total body bone mineral content
(TBBMC). A highly skilled operator is required
to take the measurements. Recently, a new DXA
machine was purchased by a research lab and two
operators were trained to take the measurements.
TBBMC for eight subjects was measured by both
operators.14 The units are grams (g). A comparison
of the means for the two operators provides a
check on the training they received and allows us
to determine if one of the operators is producing
measurements that are consistently higher than the
other. Here are the data:

Subject

Operator 1 2 3 4 5 6 7 8

1 1.328 1.342 1.075 1.228 0.939 1.004 1.178 1.286
2 1.323 1.322 1.073 1.233 0.934 1.019 1.184 1.304

(a) Take the difference between the TBBMC
recorded for Operator 1 and the TBBMC for
Operator 2. Describe the distribution of these
differences.

(b) Use a significance test to examine the null
hypothesis that the two operators have the same
mean. Be sure to give the test statistic with
its degrees of freedom, the P-value, and your
conclusion.

(c) The sample here is rather small, so we may not
have much power to detect differences of interest.
Use a 95% confidence interval to provide a range of
differences that are compatible with these data.

(d) The eight subjects used for this comparison were
not a random sample. In fact, they were friends of
the researchers whose ages and weights were similar
to the types of people who would be measured with
this DXA. Comment on the appropriateness of this
procedure for selecting a sample, and discuss any
consequences regarding the interpretation of the
significance testing and confidence interval results.

7.40 Another comparison of DXA machine operators.
Refer to the previous exercise. TBBMC measures
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the total amount of mineral in the bones. Another
important variable is total body bone mineral
density (TBBMD). This variable is calculated by
dividing TBBMC by the area corresponding to bone
in the DXA scan. The units are grams per squared
centimeter (g/cm2). Here are the TBBMD values for
the same subjects:

Subject

Operator 1 2 3 4 5 6 7 8

1 4042 3703 2626 2673 1724 2136 2808 3322
2 4041 3697 2613 2628 1755 2140 2836 3287

Analyze these data using the questions in the
previous exercise as a guide.

7.41 C
H

ALLENG
E Assessment of a foreign-language

institute. The National Endowment for
the Humanities sponsors summer institutes to
improve the skills of high school teachers of foreign
languages. One such institute hosted 20 French
teachers for 4 weeks. At the beginning of the period,
the teachers were given the Modern Language
Association’s listening test of understanding of
spoken French. After 4 weeks of immersion in
French in and out of class, the listening test was
given again. (The actual French spoken in the two
tests was different, so that simply taking the first test
should not improve the score on the second test.)
The maximum possible score on the test is 36.15

Here are the data:

Teacher Pretest Posttest Gain Teacher Pretest Posttest Gain

1 32 34 2 11 30 36 6
2 31 31 0 12 20 26 6
3 29 35 6 13 24 27 3
4 10 16 6 14 24 24 0
5 30 33 3 15 31 32 1
6 33 36 3 16 30 31 1
7 22 24 2 17 15 15 0
8 25 28 3 18 32 34 2
9 32 26 −6 19 23 26 3

10 20 26 6 20 23 26 3

To analyze these data, we first subtract the
pretest score from the posttest score to obtain the
improvement for each teacher. These 20 differences
form a single sample. They appear in the “Gain”
columns. The first teacher, for example, improved
from 32 to 34, so the gain is 34 − 32 = 2.

(a) State appropriate null and alternative
hypotheses for examining the question of whether

or not the course improves French spoken-language
skills.

(b) Describe the gain data. Use numerical and
graphical summaries.

(c) Perform the significance test. Give the test
statistic, the degrees of freedom, and the P-value.
Summarize your conclusion.

(d) Give a 95% confidence interval for the mean
improvement.

7.42 Length of calls to customer service center.
Refer to the lengths of calls to a customer service
center in Table 1.1 (page 8). Give graphical and
numerical summaries for these data. Compute a
95% confidence interval for the mean call length.
Comment on the validity of your interval.

7.43 IQ test scores. Refer to the IQ test scores for
fifth-grade students in Table 1.3 (page 13). Give
numerical and graphical summaries of the data and
compute a 95% confidence interval. Comment on
the validity of the interval.

7.44 Property damage due to tornadoes. Table 1.5
(page 25) gives the average property damage per
year due to tornadoes for each of the 50 states and
Puerto Rico. It does not make sense to use the t
procedures (or any other statistical procedures)
to give a 95% confidence interval for the mean
property damage per year due to tornadoes in the
United States. Explain why not.

The following exercises concern the optional material in the
sections on the power of the t test and on non-Normal
populations.

7.45 Sign test for potential insurance fraud. The
differences in the repair estimates in Exercise 7.34
can also be analyzed using a sign test. Set up the
appropriate null and alternative hypotheses, carry
out the test, and summarize the results. How do
these results compare with those that you obtained
in Exercise 7.34?

7.46 Sign test for the comparison of operators. The
differences in the TBBMC measures in Exercise 7.39
can also be analyzed using a sign test. Set up the
appropriate null and alternative hypotheses, carry
out the test, and summarize the results. How do
these results compare with those that you obtained
in Exercise 7.39?

7.47 Another sign test for the comparison of
operators. TBBMD values for the same subjects
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that you studied in the previous exercise are given
in Exercise 7.40. Answer the questions given in the
previous exercise for TBBMD.

7.48 Sign test for assessment of foreign-language
institute. Use the sign test to assess whether the
summer institute of Exercise 7.41 improves French
listening skills. State the hypotheses, give the P-value
using the binomial table (Table C), and report your
conclusion.

7.49 Sign test for fuel efficiency comparison. Use the
sign test to assess whether the computer calculates
a higher mpg than the driver in Exercise 7.35. State
the hypotheses, give the P-value using the binomial
table (Table C), and report your conclusion.

7.50 Insulation study. A manufacturer of electric motors
tests insulation at a high temperature (250◦C) and
records the number of hours until the insulation
fails.16 The data for 5 specimens are

446 326 372 377 310

The small sample size makes judgment from the
data difficult, but engineering experience suggests
that the logarithm of the failure time will have a

Normal distribution. Take the logarithms of the 5
observations, and use t procedures to give a 90%
confidence interval for the mean of the log failure
time for insulation of this type.

7.51 Power of the comparison of DXA machine
operators. Suppose that the bone researchers
in Exercise 7.39 wanted to be able to detect an
alternative mean difference of 0.002. Find the power
for this alternative for a sample size of 15. Use the
standard deviation that you found in Exercise 7.39
for these calculations.

7.52 C
H

ALLENG
E Sample size calculations. You are designing

a study to test the null hypothesis that μ = 0
versus the alternative that μ is positive. Assume
that σ is 10. Suppose that it would be important
to be able to detect the alternative μ = 2. Perform
power calculations for a variety of sample sizes and
determine how large a sample you would need to
detect this alternative with power of at least 0.80.

7.53 C
H

ALLENG
E Determining the sample size. Consider

Example 7.9 (page 434). What is the
minimum sample size needed for the power to
be greater than 80% when μ = 1.0?

7.2 Comparing Two Means
A nutritionist is interested in the effect of increased calcium on blood pres-
sure. A psychologist wants to compare male and female college students’ im-
pressions of personality based on selected photographs. A bank wants to know
which of two incentive plans will most increase the use of its credit cards. Two-
sample problems such as these are among the most common situations en-
countered in statistical practice.

TWO-SAMPLE PROBLEMS
• The goal of inference is to compare the responses in two groups.

• Each group is considered to be a sample from a distinct population.

• The responses in each group are independent of those in the other
group.

A two-sample problem can arise from a randomized comparative experi-
ment that randomly divides the subjects into two groups and exposes eachLOOK BACK

randomized
comparative
experiment, page 183

group to a different treatment. Comparing random samples separately selected
from two populations is also a two-sample problem. Unlike the matched pairs
designs studied earlier, there is no matching of the units in the two samples,
and the two samples may be of different sizes. Inference procedures for two-
sample data differ from those for matched pairs.
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We can present two-sample data graphically by a back-to-back stemplot (for
small samples) or by side-by-side boxplots (for larger samples). Now we will
apply the ideas of formal inference in this setting. When both population dis-
tributions are symmetric, and especially when they are at least approximately
Normal, a comparison of the mean responses in the two populations is most
often the goal of inference.

We have two independent samples, from two distinct populations (such as
subjects given a treatment and those given a placebo). The same variable is
measured for both samples. We will call the variable x1 in the first population
and x2 in the second because the variable may have different distributions in
the two populations. Here is the notation that we will use to describe the two
populations:

Population Variable Mean Standard deviation

1 x1 μ1 σ1

2 x2 μ2 σ2

We want to compare the two population means, either by giving a confidence
interval for μ1 − μ2 or by testing the hypothesis of no difference, H0: μ1 = μ2.

Inference is based on two independent SRSs, one from each population.
Here is the notation that describes the samples:

Sample Sample
Population Sample size mean standard deviation

1 n1 x1 s1

2 n2 x2 s2

Throughout this section, the subscripts 1 and 2 show the population to which
a parameter or a sample statistic refers.

The two-sample z statistic
The natural estimator of the difference μ1 − μ2 is the difference between the
sample means, x1 − x2. If we are to base inference on this statistic, we must
know its sampling distribution. First, the mean of the difference x1 − x2 is the
difference of the means μ1 − μ2. This follows from the addition rule for means
and the fact that the mean of any x is the same as the mean of the population.LOOK BACK

addition rule for
means, page 278

addition rule for
variances, page 282

Because the samples are independent, their sample means x1 and x2 are inde-
pendent random variables. The addition rule for variances says that the vari-
ance of the difference x1 − x2 is the sum of their variances, which is

σ 2
1

n1
+ σ 2

2

n2

We now know the mean and variance of the distribution of x1 − x2 in terms
of the parameters of the two populations. If the two population distributions
are both Normal, then the distribution of x1 − x2 is also Normal. This is true
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because each sample mean alone is Normally distributed and because a differ-
ence of independent Normal random variables is also Normal.

•
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E 7.13 Heights of 10-year-old girls and boys. A fourth-grade class has 12
girls and 8 boys. The children’s heights are recorded on their 10th birthdays.
What is the chance that the girls are taller than the boys? Of course, it is very
unlikely that all of the girls are taller than all of the boys. We translate the
question into the following: what is the probability that the mean height of
the girls is greater than the mean height of the boys?

Based on information from the National Health and Nutrition Examina-
tion Survey,17 we assume that the heights (in inches) of 10-year-old girls are
N(56.4, 2.7) and the heights of 10-year-old boys are N(55.7, 3.8). The heights
of the students in our class are assumed to be random samples from these
populations. The two distributions are shown in Figure 7.12(a).

The difference x1 − x2 between the female and male mean heights varies
in different random samples. The sampling distribution has mean

μ1 − μ2 = 56.4 − 55.7 = 0.7 inch

and variance

σ 2
1

n1
+ σ 2

2

n2
= 2.72

12
+ 3.82

8

= 2.41

The standard deviation of the difference in sample means is therefore
√

2.41 =
1.55 inches.

If the heights vary Normally, the difference in sample means is also Nor-
mally distributed. The distribution of the difference in heights is shown in
Figure 7.12(b). We standardize x1 − x2 by subtracting its mean (0.7) and
dividing by its standard deviation (1.55). Therefore, the probability that the

–4 –2 0 2 4 6

45 50 55 60 65
Height (inches)

Height difference

P = 0.67

Girls
Boys

(a)

(b)

FIGURE 7.12 Distributions for
Example 7.13. (a) Distributions of
heights of 10-year-old boys and
girls. (b) Distribution of the
difference between mean
heights of 12 girls and 8 boys.
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girls are taller than the boys is

P(x1 − x2 > 0) = P
(

(x1 − x2) − 0.7
1.55

>
0 − 0.7

1.55

)
= P(Z > −0.45) = 0.67

Even though the population mean height of 10-year-old girls is greater than
the population mean height of 10-year-old boys, the probability that the sample
mean of the girls is greater than the sample mean of the boys in our class is only
67%. Large samples are needed to see the effects of small differences.

CAUTION

!
As Example 7.13 reminds us, any Normal random variable has the N(0, 1)

distribution when standardized. We have arrived at a new z statistic.

TWO-SAMPLE z STATISTIC

Suppose that x1 is the mean of an SRS of size n1 drawn from an N(μ1, σ1)

population and that x2 is the mean of an independent SRS of size n2

drawn from an N(μ2, σ2) population. Then the two-sample z statistic

z = (x1 − x2) − (μ1 − μ2)√
σ 2

1

n1
+ σ 2

2

n2

has the standard Normal N(0, 1) sampling distribution.

In the unlikely event that both population standard deviations are known,
the two-sample z statistic is the basis for inference about μ1 − μ2. Exact z proce-
dures are seldom used, however, because σ1 and σ2 are rarely known. In Chap-
ter 6, we discussed the one-sample z procedures in order to introduce the ideas
of inference. Here we move directly to the more useful t procedures.

The two-sample t procedures
Suppose now that the population standard deviations σ1 and σ2 are not known.
We estimate them by the sample standard deviations s1 and s2 from our two
samples. Following the pattern of the one-sample case, we substitute the stan-
dard errors for the standard deviations used in the two-sample z statistic. The
result is the two-sample t statistic:

t = (x1 − x2) − (μ1 − μ2)√
s2

1

n1
+ s2

2

n2

Unfortunately, this statistic does not have a t distribution. A t distribution re-
places the N(0, 1) distribution only when a single standard deviation (σ ) in a z
statistic is replaced by its sample standard deviation (s). In this case, we replace
two standard deviations (σ1 and σ2) by their estimates (s1 and s2), which does
not produce a statistic having a t distribution.



7.2 Comparing Two Means
•

451

Nonetheless, we can approximate the distribution of the two-sample t statis-
tic by using the t(k) distribution with an approximation for the degrees ofapproximations for the

degrees of freedom freedom k. We use these approximations to find approximate values of t∗ for
confidence intervals and to find approximate P-values for significance tests.
Here are two approximations:

1. Use a value of k that is calculated from the data. In general, it will not be a
whole number.

2. Use k equal to the smaller of n1 − 1 and n2 − 1.

Most statistical software uses the first option to approximate the t(k) distri-
bution for two-sample problems unless the user requests another method. Use
of this approximation without software is a bit complicated; we will give the
details later in this section. If you are not using software, the second approx-
imation is preferred. This approximation is appealing because it is conserva-
tive.18 Margins of error for confidence intervals are a bit larger than they need
to be, so the true confidence level is larger than C. For significance testing, the
true P-values are a bit smaller than those we obtain from the approximation;
for tests at a fixed significance level, we are a little less likely to reject H0 when
it is true. In practice, the choice of approximation rarely makes a difference in
our conclusion.

The two-sample t significance test

THE TWO-SAMPLE t SIGNIFICANCE TEST

Suppose that an SRS of size n1 is drawn from a Normal population with
unknown mean μ1 and that an independent SRS of size n2 is drawn from
another Normal population with unknown mean μ2. To test the hypoth-
esis H0: μ1 = μ2, compute the two-sample t statistic

t = x1 − x2√
s2

1

n1
+ s2

2

n2

and use P-values or critical values for the t(k) distribution, where the
degrees of freedom k are either approximated by software or are the
smaller of n1 − 1 and n2 − 1.
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E 7.14 Directed reading activities assessment. An educator believes that
new directed reading activities in the classroom will help elementary school
pupils improve some aspects of their reading ability. She arranges for a third-
grade class of 21 students to take part in these activities for an eight-week
period. A control classroom of 23 third-graders follows the same curriculum
without the activities. At the end of the eight weeks, all students are given
a Degree of Reading Power (DRP) test, which measures the aspects of read-
ing ability that the treatment is designed to improve. The data appear in
Table 7.4.19
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TABLE 7.4

DRP scores for third-graders

Treatment Group Control Group

24 61 59 46 42 33 46 37
43 44 52 43 43 41 10 42
58 67 62 57 55 19 17 55
71 49 54 26 54 60 28
43 53 57 62 20 53 48
49 56 33 37 85 42

First examine the data:

1
2
3

5
6
7
8

4

079
068
377
1222368
3455
02

5

2 3 46 7 7 89
1 2 7
1

333 4699

4
3

TreatmentControl

A back-to-back stemplot suggests that there is a mild outlier in the control
group but no deviation from Normality serious enough to forbid use of t pro-
cedures. Separate Normal quantile plots for both groups (Figure 7.13) con-
firm that both are approximately Normal. The scores of the treatment group
appear to be somewhat higher than those of the control group. The summary
statistics are

Group n x s

Treatment 21 51.48 11.01
Control 23 41.52 17.15

Because we hope to show that the treatment (Group 1) is better than the
control (Group 2), the hypotheses are

H0: μ1 = μ2

Ha: μ1 > μ2

The two-sample t test statistic is

t = x1 − x2√
s2

1

n1
+ s2

2

n2

= 51.48 − 41.52√
11.012

21
+ 17.152

23

= 2.31



7.2 Comparing Two Means
•

453

0

20

10
20
30
40
50
60
70
80
90

30

40

50

60

70

–2 –1 0 1 2
Normal score

Normal score
–2 –1 0 1 2

T
re

at
m

en
t g

ro
up

 D
R

P 
sc

or
es

C
on

tr
ol

 g
ro

up
 D

R
P 

sc
or

es

FIGURE 7.13 Normal quantile
plots of the DRP scores in
Table 7.4.

•

The P-value for the one-sided test is P(T ≥ 2.31). Software gives the approxi-
mate P-value as 0.0132 and uses 37.9 as the degrees of freedom. For the sec-
ond approximation, the degrees of freedom k are equal to the smaller of

n1 − 1 = 21 − 1 = 20 and n2 − 1 = 23 − 1 = 22

Comparing 2.31 with the entries in Table D for 20 degrees of freedom, we see
that P lies between 0.02 and 0.01. The data strongly suggest that directed read-
ing activity improves the DRP score (t = 2.31, df = 20, P < 0.02).

Note that when we report a result such as this with P < 0.02, we imply that
the result is not significant at the 0.01 level.

df = 20

p 0.02 0.01

t∗ 2.197 2.528

If your software gives P-values for only the two-sided alternative, 2P(T ≥ |t|),
you need to divide the reported value by 2 after checking that the means differ
in the direction specified by the alternative hypothesis.

USE YOUR KNOWLEDGE
7.54 Comparison of two Web designs. You want to compare the daily

number of hits for two different Web designs that advertise your Inter-
net business. You assign the next 50 days to either Design A or Design
B, 25 days to each.
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(a) Would you use a one-sided or two-sided significance test for this
problem? Explain your choice.

(b) If you use Table D to find the critical value, what are the degrees
of freedom using the second approximation?

(c) If you perform the significance test using α = 0.05, how large (pos-
itive or negative) must the t statistic be to reject the null hypothesis
that the two designs result in the same average hits?

7.55 More on the comparison of two Web designs. Consider the previous
problem. If the t statistic for comparing the mean hits were 2.75, what
P-value would you report? What would you conclude using α = 0.05?

The two-sample t confidence interval
The same ideas that we used for the two-sample t significance tests also apply
to give us two-sample t confidence intervals. We can use either software or the
conservative approach with Table D to approximate the value of t∗.

THE TWO-SAMPLE t CONFIDENCE INTERVAL

Suppose that an SRS of size n1 is drawn from a Normal population with
unknown mean μ1 and that an independent SRS of size n2 is drawn from
another Normal population with unknown mean μ2. The confidence in-
terval for μ1 − μ2 given by

(x1 − x2) ± t∗
√

s2
1

n1
+ s2

2

n2

has confidence level at least C no matter what the population standard
deviations may be. Here, t∗ is the value for the t(k) density curve with
area C between −t∗ and t∗. The value of the degrees of freedom k is ap-
proximated by software or we use the smaller of n1 − 1 and n2 − 1.

To complete the analysis of the DRP scores we examined in Example 7.14,
we need to describe the size of the treatment effect. We do this with a confidence
interval for the difference between the treatment group and the control group
means.
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E 7.15 How much improvement? We will find a 95% confidence interval
for the mean improvement in the entire population of third-graders. The in-
terval is

(x1 − x2) ± t∗
√

s2
1

n1
+ s2

2

n2
= (51.48 − 41.52) ± t∗

√
11.012

21
+ 17.152

23

= 9.96 ± 4.31t∗
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Using software, the degrees of freedom are 37.9 and t∗ = 2.025. This approx-
imation gives

9.96 ± (4.31 × 2.025) = 9.96 ± 8.72 = (1.2, 18.7)

The conservative approach uses the t(20) distribution. Table D gives t∗ =
2.086. With this approximation we have

9.96 ± (4.31 × 2.086) = 9.96 ± 8.99 = (1.0, 18.9)

We can see that the conservative approach does, in fact, give a larger in-
terval than the more accurate approximation used by software. However, the
difference is pretty small.

We estimate the mean improvement to be about 10 points, but with a mar-
gin of error of almost 9 points with either method. Although we have good
evidence of some improvement, the data do not allow a very precise estimate
of the size of the average improvement.

The design of the study in Example 7.14 is not ideal. Random assignment
of students was not possible in a school environment, so existing third-grade
classes were used. The effect of the reading programs is therefore confounded
with any other differences between the two classes. The classes were chosen
to be as similar as possible—for example, in terms of the social and economic
status of the students. Extensive pretesting showed that the two classes were
on the average quite similar in reading ability at the beginning of the experi-
ment. To avoid the effect of two different teachers, the researcher herself taught
reading in both classes during the eight-week period of the experiment. We can
therefore be somewhat confident that the two-sample test is detecting the ef-
fect of the treatment and not some other difference between the classes. This
example is typical of many situations in which an experiment is carried out but
randomization is not possible.

USE YOUR KNOWLEDGE
7.56 Two-sample t confidence interval. Assume x1 = 100, x2 = 120,

s1 = 10, s2 = 12, n1 = 50, and n2 = 50. Find a 95% confidence in-
terval for the difference in the corresponding values of μ using the
second approximation for degrees of freedom. Does this interval in-
clude more or fewer values than a 99% confidence interval? Explain
your answer.

7.57 Another two-sample t confidence interval. Assume x1 = 100, x2 =
120, s1 = 10, s2 = 12, n1 = 10, and n2 = 10. Find a 95% confidence
interval for the difference in the corresponding values of μ using the
second approximation for degrees of freedom. Would you reject the
null hypothesis that the population means are equal in favor of the
two-sided alternative at significance level 0.05? Explain.
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Robustness of the two-sample procedures
The two-sample t procedures are more robust than the one-sample t methods.
When the sizes of the two samples are equal and the distributions of the two
populations being compared have similar shapes, probability values from the
t table are quite accurate for a broad range of distributions when the sample
sizes are as small as n1 = n2 = 5.20 When the two population distributions
have different shapes, larger samples are needed. The guidelines for the use of
one-sample t procedures can be adapted to two-sample procedures by replacing
“sample size” with the “sum of the sample sizes” n1 + n2. These guidelines are
rather conservative, especially when the two samples are of equal size. In plan-

CAUTION

! ning a two-sample study, choose equal sample sizes if you can. The two-sample
t procedures are most robust against non-Normality in this case, and the con-
servative probability values are most accurate.

Here is an example with moderately large sample sizes that are not equal.
Even if the distributions are not Normal, we are confident that the sample
means will be approximately Normal. The two-sample t test is very robust in
this case.
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E 7.16 Wheat prices. The U.S. Department of Agriculture (USDA) uses
sample surveys to produce important economic estimates. One pilot study
estimated wheat prices in July and in September using independent samples
of wheat producers in the two months. Here are the summary statistics, in
dollars per bushel:21

Month n x s

September 45 $3.61 $0.19
July 90 $2.95 $0.22

The September prices are higher on the average. But we have data from
only a sample of producers each month. Can we conclude that national aver-
age prices in July and September are not the same? Or are these differences
merely what we would expect to see due to random variation?

Because we did not specify a direction for the difference before looking at
the data, we choose a two-sided alternative. The hypotheses are

H0: μ1 = μ2

Ha: μ1 �= μ2

Because the samples are moderately large, we can confidently use the t pro-
cedures even though we lack the detailed data and so cannot verify the Nor-
mality condition.

The two-sample t statistic is

t = x1 − x2√
s2

1

n1
+ s2

2

n2

= 3.61 − 2.95√
0.192

45
+ 0.222

90

= 18.03
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The conservative approach finds the P-value by comparing 18.03 to critical
values for the t(44) distribution because the smaller sample has 45 observa-
tions. We must double the table tail area p because the alternative is two-
sided. Table D does not have entries for 44 degrees of freedom. When this
happens, we use the next smaller degrees of freedom. Our calculated value of
t is larger than the p = 0.0005 entry in the table. Doubling 0.0005, we con-
clude that the P-value is less than 0.001. The data give conclusive evidence
that the mean wheat prices were higher in September than they were in July
(t = 18.03, df = 44, P < 0.001).

df = 40

p 0.0005

t∗ 3.551

In this example the exact P-value is very small because t = 18 says that the
observed difference in means is 18 standard errors above the hypothesized dif-
ference of zero (μ1 = μ2). This is so unlikely that the probability is zero for all
practical purposes. The difference in mean prices is not only highly significant
but large enough (66 cents per bushel) to be important to producers.

In this and other examples, we can choose which population to label 1 and
which to label 2. After inspecting the data, we chose September as Population
1 because this choice makes the t statistic a positive number. This avoids any
possible confusion from reporting a negative value for t. Choosing the popu-

CAUTION

! lation labels is not the same as choosing a one-sided alternative after looking at
the data. Choosing hypotheses after seeing a result in the data is a violation of
sound statistical practice.

Inference for small samples
Small samples require special care. We do not have enough observations to ex-
amine the distribution shapes, and only extreme outliers stand out. The power
of significance tests tends to be low, and the margins of error of confidence in-
tervals tend to be large. Despite these difficulties, we can often draw important
conclusions from studies with small sample sizes. If the size of an effect is as
large as it was in the wheat price example, it should still be evident even if the
n’s are small.
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E 7.17 More about wheat prices. In the setting of Example 7.16, a quick
survey collects prices from only 5 producers each month. The data are

Month Price of wheat ($/bushel)

September $3.5900 $3.6150 $3.5950 $3.5725 $3.5825
July $2.9200 $2.9675 $2.9175 $2.9250 $2.9325

The prices are reported to the nearest quarter of a cent. First, examine the
distributions with a back-to-back stemplot after rounding each price to the
nearest cent.
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The pattern is clear. There is little variation among prices within each
month, and the distributions for the two months are far apart relative to the
within-month variation.

A significance test can confirm that the difference between months is too
large to easily arise just by chance. We test

H0: μ1 = μ2

Ha: μ1 �= μ2

The price is higher in September (t = 56.99, df = 7.55, P < 0.0001). The dif-
ference in sample means is 65.9 cents.

Figure 7.14 gives outputs for this analysis from several software packages.
Although the formats differ, the basic information is the same. All report the
sample sizes, the sample means and standard deviations (or variances), the t
statistic, and its P-value. All agree that the P-value is very small, though some
give more detail than others. Software often labels the groups in alphabetical
order. In this example, July is then the first population and t = −56.99, the neg-
ative of our result. Always check the means first and report the statistic (you
may need to change the sign) in an appropriate way. Be sure to also mention
the size of the effect you observed, such as “The mean price for September was
65.9 cents higher than in July.”

FIGURE 7.14 SAS, Excel,
Minitab, and SPSS output for
Example 7.17. (continued)
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FIGURE 7.14 (Continued) SAS,
Excel, Minitab, and SPSS output
for Example 7.17.
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SPSS and SAS report the results of two t procedures: a special procedure
that assumes that the two population variances are equal and the general two-
sample procedure that we have just studied. We don’t recommend the “equal-
variances” procedures, but we describe them later, in the section on pooled two-
sample t procedures.

Software approximation for the degrees of freedom*
We noted earlier that the two-sample t statistic does not have an exact t distri-
bution. Moreover, the exact distribution changes as the unknown population
standard deviations σ1 and σ2 change. However, the distribution can be approx-
imated by a t distribution with degrees of freedom given by

df =

(
s2

1

n1
+ s2

2

n2

)2

1
n1 − 1

(
s2

1

n1

)2

+ 1
n2 − 1

(
s2

2

n2

)2

This is the approximation used by most statistical software. It is quite accurate
when both sample sizes n1 and n2 are 5 or larger.

•
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E 7.18 Degrees of freedom for directed reading assessment. For the
DRP study of Example 7.14, the following table summarizes the data:

Group n x s

1 21 51.48 11.01
2 23 41.52 17.15

For greatest accuracy, we will use critical points from the t distribution
with degrees of freedom given by the equation above:

df =

(
11.012

21
+ 17.152

23

)2

1
20

(
11.012

21

)2

+ 1
22

(
17.152

23

)2

= 344.486
9.099

= 37.86

This is the value that we reported in Examples 7.14 and 7.15, where we gave
the results produced by software.

The number df given by the above approximation is always at least as large
as the smaller of n1 − 1 and n2 − 1. On the other hand, df is never larger than the

*This material can be omitted unless you are using statistical software and wish to under-
stand what the software does.
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sum n1 + n2 − 2 of the two individual degrees of freedom. The number of de-
grees of freedom is generally not a whole number. There is a t distribution with
any positive degrees of freedom, even though Table D contains entries only for
whole-number degrees of freedom. When df is small and is not a whole number,
interpolation between entries in Table D may be needed to obtain an accurate
critical value or P-value. Because of this and the need to calculate df, we do
not recommend regular use of this approximation if a computer is not doing
the arithmetic. With a computer, however, the more accurate procedures are
painless.

USE YOUR KNOWLEDGE
7.58 Calculating the degrees of freedom. Assume s1 = 10, s2 = 12, n1 =

20, and n2 = 18. Find the software approximate degrees of freedom.

The pooled two-sample t procedures*
There is one situation in which a t statistic for comparing two means has ex-
actly a t distribution. Suppose that the two Normal population distributions
have the same standard deviation. In this case we need substitute only a single
standard error in a z statistic, and the resulting t statistic has a t distribution.
We will develop the z statistic first, as usual, and from it the t statistic.

Call the common—and still unknown—standard deviation of both popula-
tions σ . Both sample variances s2

1 and s2
2 estimate σ 2. The best way to combine

these two estimates is to average them with weights equal to their degrees of
freedom. This gives more weight to the information from the larger sample,
which is reasonable. The resulting estimator of σ 2 is

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

This is called the pooled estimator of σ2 because it combines the informationpooled estimator of σ2

in both samples.
When both populations have variance σ 2, the addition rule for variances

says that x1 − x2 has variance equal to the sum of the individual variances,
which is

σ 2

n1
+ σ 2

n2
= σ 2

(
1
n1

+ 1
n2

)
The standardized difference of means in this equal-variance case is therefore

z = (x1 − x2) − (μ1 − μ2)

σ

√
1
n1

+ 1
n2

This is a special two-sample z statistic for the case in which the populations
have the same σ . Replacing the unknown σ by the estimate sp gives a t statistic.

*This section can be omitted if desired, but it should be read if you plan to read Chapters 12
and 13.
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The degrees of freedom are n1 + n2 − 2, the sum of the degrees of freedom of
the two sample variances. This statistic is the basis of the pooled two-sample t
inference procedures.

THE POOLED TWO-SAMPLE t PROCEDURES

Suppose that an SRS of size n1 is drawn from a Normal population with
unknown mean μ1 and that an independent SRS of size n2 is drawn from
another Normal population with unknown mean μ2. Suppose also that
the two populations have the same standard deviation. A level C confi-
dence interval for μ1 − μ2 is

(x1 − x2) ± t∗sp

√
1
n1

+ 1
n2

Here t∗ is the value for the t(n1 + n2 − 2) density curve with area C be-
tween −t∗ and t∗.

To test the hypothesis H0: μ1 = μ2, compute the pooled two-sample t
statistic

t = x1 − x2

sp

√
1
n1

+ 1
n2

In terms of a random variable T having the t(n1 + n2 − 2) distribution,
the P-value for a test of H0 against

Ha: μ1 > μ2 is P(T ≥ t)

Ha: μ1 < μ2 is P(T ≤ t)

Ha: μ1 �= μ2 is 2P(T ≥ |t|)
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E 7.19 Calcium and blood pressure. Does increasing the amount of cal-
cium in our diet reduce blood pressure? Examination of a large sample of
people revealed a relationship between calcium intake and blood pressure,
but such observational studies do not establish causation. Animal experi-
ments, however, showed that calcium supplements do reduce blood pressure
in rats, justifying an experiment with human subjects. A randomized com-
parative experiment gave one group of 10 black men a calcium supplement
for 12 weeks. The control group of 11 black men received a placebo that
appeared identical. (In fact, a block design with black and white men as the
blocks was used. We will look only at the results for blacks, because the earlier
survey suggested that calcium is more effective for blacks.) The experiment
was double-blind. Table 7.5 gives the seated systolic (heart contracted) blood
pressure for all subjects at the beginning and end of the 12-week period, in
millimeters (mm) of mercury. Because the researchers were interested in de-
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TABLE 7.5

Seated systolic blood pressure

Calcium Group Placebo Group

Begin End Decrease Begin End Decrease

107 100 7 123 124 −1
110 114 −4 109 97 12
123 105 18 112 113 −1
129 112 17 102 105 −3
112 115 −3 98 95 3
111 116 −5 114 119 −5
107 106 1 119 114 5
112 102 10 114 112 2
136 125 11 110 121 −11
102 104 −2 117 118 −1

130 133 −3

•
creasing blood pressure, Table 7.5 also shows the decrease for each subject.
An increase appears as a negative entry.22

As usual, we first examine the data. To compare the effects of the two treat-
ments, take the response variable to be the amount of the decrease in blood
pressure. Inspection of the data reveals that there are no outliers. Normal quan-
tile plots (Figure 7.15) give a more detailed picture. The calcium group has a
somewhat short left tail, but there are no departures from Normality that will
prevent use of t procedures. To examine the question of the researchers who
collected these data, we perform a significance test.
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E 7.20 Does increased calcium reduce blood pressure? Take Group 1 to
be the calcium group and Group 2 to be the placebo group. The evidence that
calcium lowers blood pressure more than a placebo is assessed by testing

H0: μ1 = μ2

Ha: μ1 > μ2

Here are the summary statistics for the decrease in blood pressure:

Group Treatment n x s

1 Calcium 10 5.000 8.743
2 Placebo 11 –0.273 5.901

The calcium group shows a drop in blood pressure, and the placebo group has
a small increase. The sample standard deviations do not rule out equal pop-
ulation standard deviations. A difference this large will often arise by chance
in samples this small. We are willing to assume equal population standard
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FIGURE 7.15 Normal quantile
plots of the change in blood
pressure from Table 7.5.

deviations. The pooled sample variance is

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

= (10 − 1)8.7432 + (11 − 1)5.9012

10 + 11 − 2
= 54.536

so that

sp = √
54.536 = 7.385

The pooled two-sample t statistic is

t = x1 − x2

sp

√
1
n1

+ 1
n2

= 5.000 − (−0.273)

7.385

√
1
10

+ 1
11

= 5.273
3.227

= 1.634
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The P-value is P(T ≥ 1.634), where T has the t(19) distribution. From Table D
we can see that P falls between the α = 0.10 and α = 0.05 levels. Statistical
software gives the exact value P = 0.059. The experiment found evidence that
calcium reduces blood pressure, but the evidence falls a bit short of the tra-
ditional 5% and 1% levels.

df = 19

p 0.10 0.05

t∗ 1.328 1.729

Sample size strongly influences the P-value of a test. An effect that fails to be
significant at a specified level α in a small sample can be significant in a larger
sample. In the light of the rather small samples in Example 7.20, the evidence
for some effect of calcium on blood pressure is rather good. The published ac-
count of the study combined these results for blacks with the results for whites
and adjusted for pretest differences among the subjects. Using this more de-
tailed analysis, the researchers were able to report the P-value P = 0.008.

Of course, a P-value is almost never the last part of a statistical analysis. To
make a judgment regarding the size of the effect of calcium on blood pressure,
we need a confidence interval.
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E 7.21 How different are the calcium and placebo groups? We esti-
mate that the effect of calcium supplementation is the difference between
the sample means of the calcium and the placebo groups, x1 − x2 = 5.273
mm. A 90% confidence interval for μ1 − μ2 uses the critical value t∗ = 1.729
from the t(19) distribution. The interval is

(x1 − x2) ± t∗sp

√
1
n1

+ 1
n2

= [5.000 − (−0.273)] ± (1.729)(7.385)

√
1
10

+ 1
11

= 5.273 ± 5.579

We are 90% confident that the difference in means is in the interval

(−0.306, 10.852)

The calcium treatment reduced blood pressure by about 5.3 mm more than
a placebo on the average, but the margin of error for this estimate is 5.6 mm.

The pooled two-sample t procedures are anchored in statistical theory and
so have long been the standard version of the two-sample t in textbooks. But

CAUTION

! they require the assumption that the two unknown population standard devia-
tions are equal. As we shall see in Section 7.3, this assumption is hard to ver-
ify. The pooled t procedures are therefore a bit risky. They are reasonably ro-
bust against both non-Normality and unequal standard deviations when the
sample sizes are nearly the same. When the samples are quite different in size,
the pooled t procedures become sensitive to unequal standard deviations and
should be used with caution unless the samples are large. Unequal standard
deviations are quite common. In particular, it is not unusual for the spread of
data to increase when the center gets larger. Statistical software often calcu-
lates both the pooled and the unpooled t statistics, as in Figure 7.14.
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USE YOUR KNOWLEDGE
7.59 Wheat prices revisited. Figure 7.14 (page 458) gives the outputs from

four software packages for comparing prices received by wheat pro-
ducers in July and September for small samples of 5 producers in each
month. Some of the software reports both pooled and unpooled anal-
yses. Which outputs give the pooled results? What are the pooled t and
its P-value?

7.60 More on wheat prices. The software outputs in Figure 7.14 give the
same value for the pooled and unpooled t statistics. Do some simple
algebra to show that this is always true when the two sample sizes n1

and n2 are the same. In other cases, the two t statistics usually differ.

SECTION 7.2 Summary

Significance tests and confidence intervals for the difference of the means μ1

and μ2 of two Normal populations are based on the difference x1 − x2 of the
sample means from two independent SRSs. Because of the central limit theo-
rem, the resulting procedures are approximately correct for other population
distributions when the sample sizes are large.

When independent SRSs of sizes n1 and n2 are drawn from two Normal popu-
lations with parameters μ1, σ1 and μ2, σ2 the two-sample z statistic

z = (x1 − x2) − (μ1 − μ2)√
σ 2

1

n1
+ σ 2

2

n2

has the N(0, 1) distribution.

The two-sample t statistic

t = (x1 − x2) − (μ1 − μ2)√
s2

1

n1
+ s2

2

n2

does not have a t distribution. However, good approximations are available.

Conservative inference procedures for comparing μ1 and μ2 are obtained
from the two-sample t statistic by using the t(k) distribution with degrees of
freedom k equal to the smaller of n1 − 1 and n2 − 1.

More accurate probability values can be obtained by estimating the degrees
of freedom from the data. This is the usual procedure for statistical software.

An approximate level C confidence interval for μ1 − μ2 is given by

(x1 − x2) ± t∗
√

s2
1

n1
+ s2

2

n2

Here, t∗ is the value for the t(k) density curve with area C between −t∗ and t∗,
where k is computed from the data by software or is the smaller of n1 − 1 and
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n2 − 1. The quantity

t∗
√

s2
1

n1
+ s2

2

n2

is the margin of error.

Significance tests for H0: μ1 = μ2 use the two-sample t statistic

t = x1 − x2√
s2

1

n1
+ s2

2

n2

The P-value is approximated using the t(k) distribution where k is estimated
from the data using software or is the smaller of n1 − 1 and n2 − 1.

The guidelines for practical use of two-sample t procedures are similar to those
for one-sample t procedures. Equal sample sizes are recommended.

If we can assume that the two populations have equal variances, pooled two-
sample t procedures can be used. These are based on the pooled estimator

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

of the unknown common variance and the t(n1 + n2 − 2) distribution.

SECTION 7.2 Exercises
For Exercises 7.54 and 7.55, see pages 453 and 454; for
Exercises 7.56 and 7.57, see page 455; for Exercise 7.58, see
page 461; and for Exercises 7.59 and 7.60, see page 466.

In exercises that call for two-sample t procedures, you
may use either of the two approximations for the degrees of
freedom that we have discussed: the value given by your
software or the smaller of n1 − 1 and n2 − 1. Be sure to state
clearly which approximation you have used.

7.61 Comparison of blood lipid levels in males
and females. A recent study at Baylor University
investigated the lipid levels in a cohort of sedentary
university students.23 A total of 108 students
volunteered for the study and met the eligibility
criteria. The following table summarizes the blood
lipid levels, in milligrams per deciliter (mg/dl), of
the participants broken down by gender:

Females (n = 71) Males (n = 37)

x s x s

Total cholesterol 173.70 34.79 171.81 33.24
LDL 96.38 29.78 109.44 31.05
HDL 61.62 13.75 46.47 7.94

(a) Is it appropriate to use the two-sample t
procedures that we studied in this section to analyze
these data for gender differences? Give reasons for
your answer.

(b) Describe appropriate null and alternative
hypotheses for comparing male and female total
cholesterol levels.

(c) Carry out the significance test. Report the test
statistic with the degrees of freedom and the P-value.
Write a short summary of your conclusion.

(d) Find a 95% confidence interval for the difference
between the two means. Compare the information
given by the interval with the information given by
the significance test.

(e) The participants in this study were all taking
an introductory health class. To what extent do
you think the results can be generalized to other
populations?

7.62 More on blood lipid levels. Refer to the
previous exercise. LDL is also known as “bad”
cholesterol. Suppose the researchers wanted to
test the hypothesis that LDL levels are higher in
sedentary males than in sedentary females. Describe
appropriate null and alternative hypotheses and
carry out the significance test using α = 0.05. Report
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the test statistic with the degrees of freedom and the
P-value. Write a short summary of your conclusion.

7.63 Evaluating a multimedia program. A multimedia
program designed to improve dietary behavior
among low-income women was evaluated by
comparing women who were randomly assigned to
intervention and control groups. The intervention
was a 30-minute session in a computer kiosk in the
Food Stamp office.24 One of the outcomes was the
score on a knowledge test taken about 2 months
after the program. Here is a summary of the data:

Group n x s

Intervention 165 5.08 1.15
Control 212 4.33 1.16

(a) The test had six multiple-choice items that were
scored as correct or incorrect, so the total score was
an integer between 0 and 6. Do you think that these
data are Normally distributed? Explain why or why
not.

(b) Is it appropriate to use the two-sample t
procedures that we studied in this section to
analyze these data? Give reasons for your answer.

(c) Describe appropriate null and alternative
hypotheses for evaluating the intervention. Some
people would prefer a two-sided alternative in
this situation while others would use a one-sided
significance test. Give reasons for each point of view.

(d) Carry out the significance test. Report the test
statistic with the degrees of freedom and the P-value.
Write a short summary of your conclusion.

(e) Find a 95% confidence interval for the difference
between the two means. Compare the information
given by the interval with the information given by
the significance test.

(f) The women in this study were all residents
of Durham, North Carolina. To what extent do
you think the results can be generalized to other
populations?

7.64 Self-control and food. Self-efficacy is a general
concept that measures how well we think we can
control different situations. In the study described
in the previous exercise, the participants were asked,
“How sure are you that you can eat foods low in fat
over the next month?” The response was measured
on a five-point scale with 1 corresponding to “not
sure at all” and 5 corresponding to “very sure.” Here
is a summary of the self-efficacy scores obtained
about 2 months after the intervention:

Group n x s

Intervention 165 4.10 1.19
Control 212 3.67 1.12

Analyze the data using the questions in the previous
exercise as a guide.

7.65 Dust exposure at work. Exposure to dust at
work can lead to lung disease later in life. One
study measured the workplace exposure of tunnel
construction workers.25 Part of the study compared
115 drill and blast workers with 220 outdoor
concrete workers. Total dust exposure was measured
in milligram years per cubic meter (mg.y/m3). The
mean exposure for the drill and blast workers
was 18.0 mg.y/m3 with a standard deviation of 7.8
mg.y/m3. For the outdoor concrete workers, the
corresponding values were 6.5 mg.y/m3 and 3.4
mg.y/m3.

(a) The sample included all workers for a tunnel
construction company who received medical
examinations as part of routine health checkups.
Discuss the extent to which you think these results
apply to other similar types of workers.

(b) Use a 95% confidence interval to describe the
difference in the exposures. Write a sentence that
gives the interval and provides the meaning of 95%
confidence.

(c) Test the null hypothesis that the exposures for
these two types of workers are the same. Justify
your choice of a one-sided or two-sided alternative.
Report the test statistic, the degrees of freedom,
and the P-value. Give a short summary of your
conclusion.

(d) The authors of the article describing these
results note that the distributions are somewhat
skewed. Do you think that this fact makes your
analysis invalid? Give reasons for your answer.

7.66 Not all dust is the same. Not all dust particles
that are in the air around us cause problems for our
lungs. Some particles are too large and stick to other
areas of our body before they can get to our lungs.
Others are so small that we can breathe them in
and out and they will not deposit on our lungs. The
researchers in the study described in the previous
exercise also measured respirable dust. This is dust
that deposits in our lungs when we breathe it. For
the drill and blast workers, the mean exposure to



Section 7.2 Exercises
•

469

respirable dust was 6.3 mg.y/m3 with a standard
deviation of 2.8 mg.y/m3. The corresponding values
for the outdoor concrete workers were 1.4 mg.y/m3

and 0.7 mg.y/m3. Analyze these data using the
questions in the previous exercise as a guide.

7.67 Change in portion size. A recent study of food
portion sizes reported that over a 17-year period,
the average size of a soft drink consumed by
Americans aged 2 years and older increased from
13.1 ounces (oz) to 19.9 oz. The authors state
that the difference is statistically significant with
P < 0.01.26 Explain what additional information
you would need to compute a confidence interval
for the increase, and outline the procedure that you
would use for the computations. Do you think that a
confidence interval would provide useful additional
information? Explain why or why not.

7.68 Beverage consumption. The results in the previous
exercise were based on two national surveys with
a very large number of individuals. Here is a study
that also looked at beverage consumption but the
sample sizes are much smaller. One part of this
study compared 20 children who were 7 to 10 years
old with 5 who were 11 to 13.27 The younger children
consumed an average of 8.2 oz of sweetened drinks
per day while the older ones averaged 14.5 oz.
The standard deviations were 10.7 oz and 8.2 oz
respectively.

(a) Do you think that it is reasonable to assume that
these data are Normally distributed? Explain why
or why not. (Hint: Think about the 68–95–99.7 rule.)

(b) Using the methods in this section, test the
null hypothesis that the two groups of children
consume equal amounts of sweetened drinks versus
the two-sided alternative. Report all details of the
significance-testing procedure with your conclusion.

(c) Give a 95% confidence interval for the difference
in means.

(d) Do you think that the analyses performed in
parts (b) and (c) are appropriate for these data?
Explain why or why not.

(e) The children in this study were all participants
in an intervention study at the Cornell Summer Day
Camp at Cornell University. To what extent do you
think that these results apply to other groups of
children?

7.69 What is wrong? In each of the following situations
explain what is wrong and why.

(a) A researcher wants to test H0: x1 = x2 versus the
two-sided alternative Ha: x1 �= x2.

(b) A study recorded the IQ scores of 50 college
freshmen. The scores of the 24 males in the study
were compared with the scores of all 50 freshmen
using the two-sample methods of this section.

(c) A two-sample t statistic gave a P-value of 0.93.
From this we can reject the null hypothesis with
90% confidence.

(d) A researcher is interested in testing the one-
sided alternative Ha: μ1 < μ2. The significance test
gave t = 2.25. Since the P-value for the two-sided
alternative is 0.04, he concluded that his P-value
was 0.02.

7.70 Basic concepts. For each of the following, answer
the question and give a short explanation of your
reasoning.

(a) A 95% confidence interval for the difference
between two means is reported as (−0.1, 1.5). What
can you conclude about the results of a significance
test of the null hypothesis that the population means
are equal versus the two-sided alternative?

(b) Will larger samples generally give a larger or
smaller margin of error for the difference between
two sample means?

7.71 More basic concepts. For each of the following,
answer the question and give a short explanation of
your reasoning.

(a) A significance test for comparing two means
gave t = −3.69 with 9 degrees of freedom. Can
you reject the null hypothesis that the μ’s are
equal versus the two-sided alternative at the 5%
significance level?

(b) Answer part (a) for the one-sided alternative
that the difference in means is negative.

7.72 Effect of the confidence level. Assume x1 = 100,
x2 = 120, s1 = 10, s2 = 12, n1 = 50, and n2 = 50.
Find a 95% confidence interval for the difference
in the corresponding values of μ. Does this interval
include more or fewer values than a 99% confidence
interval? Explain your answer.

7.73 Study design is important! Recall Exercise 7.54
(page 453). You are concerned that day of the week
may affect online sales. So to compare the two Web
page designs, you choose two successive weeks in
the middle of a month. You flip a coin to assign one
Monday to the first design and the other Monday
to the second. You repeat this for each of the seven
days of the week. You now have 7 hit amounts for
each design. It is incorrect to use the two-sample t
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test to see if the mean hits differ for the two designs.
Carefully explain why.

7.74 New computer monitors? The purchasing
department has suggested that all new computer
monitors for your company should be flat screens.
You want data to assure you that employees will like
the new screens. The next 20 employees needing a
new computer are the subjects for an experiment.

(a) Label the employees 01 to 20. Randomly choose
10 to receive flat screens. The remaining 10 get
standard monitors.

(b) After a month of use, employees express their
satisfaction with their new monitors by responding
to the statement “I like my new monitor” on a scale
from 1 to 5, where 1 represents “strongly disagree,”
2 is “disagree,” 3 is “neutral,” 4 is “agree,” and 5
stands for “strongly agree.” The employees with
the flat screens have average satisfaction 4.8 with
standard deviation 0.7. The employees with the
standard monitors have average 3.0 with standard
deviation 1.5. Give a 95% confidence interval for
the difference in the mean satisfaction scores for all
employees.

(c) Would you reject the null hypothesis that the
mean satisfaction for the two types of monitors
is the same versus the two-sided alternative at
significance level 0.05? Use your confidence interval
to answer this question. Explain why you do not
need to calculate the test statistic.

7.75 Why randomize? Refer to the previous exercise. A
coworker suggested that you give the flat screens to
the next 10 employees who need new screens and
the standard monitor to the following 10. Explain
why your randomized design is better.

7.76 Effect of storage time on vitamin C content. Does
bread lose its vitamins when stored? Small loaves
of bread were prepared with flour that was fortified
with a fixed amount of vitamins. After baking, the
vitamin C content of two loaves was measured.
Another two loaves were baked at the same time,
stored for three days, and then the vitamin C content
was measured. The units are milligrams per hundred
grams of flour (mg/100 g).28 Here are the data:

Immediately after baking: 47.62 49.79
Three days after baking: 21.25 22.34

(a) When bread is stored, does it lose vitamin C?
To answer this question, perform a two-sample t
test for these data. Be sure to state your hypotheses,

the test statistic with degrees of freedom, and the
P-value.

(b) Give a 90% confidence interval for the amount
of vitamin C lost.

7.77 Study design matters! Suppose that the researchers
in the previous exercise could have measured the
same two loaves of bread immediately after baking
and again after three days. Assume that the data
given had come from this study design. (Assume
that the values given in the previous exercise are for
first loaf and second loaf from left to right.)

(a) Explain carefully why your analysis in the
previous exercise is not correct now, even though the
data are the same.

(b) Redo the analysis for the design based on
measuring the same loaves twice.

7.78 Another ingredient. Refer to Exercise 7.76. The
amount of vitamin E (in mg/100 g of flour) in the
same loaves was also measured. Here are the data:

Immediately after baking: 94.6 96.0
Three days after baking: 97.4 94.3

(a) When bread is stored, does it lose vitamin E?
To answer this question, perform a two-sample t
test for these data. Be sure to state your hypotheses,
the test statistic with degrees of freedom, and the
P-value.

(b) Give a 90% confidence interval for the amount
of vitamin E lost.

7.79 Are the samples too small? Refer to Exercises 7.76
and 7.78. Some people claim that significance tests
with very small samples never lead to rejection of
the null hypothesis. Discuss this claim using the
results of these two exercises.

7.80 Does ad placement matter? Corporate advertising
tries to enhance the image of the corporation. A
study compared two ads from two sources, the Wall
Street Journal and the National Enquirer. Subjects
were asked to pretend that their company was
considering a major investment in Performax,
the fictitious sportswear firm in the ads. Each
subject was asked to respond to the question “How
trustworthy was the source in the sportswear
company ad for Performax?” on a 7-point scale.
Higher values indicated more trustworthiness.29

Here is a summary of the results:
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Ad source n x s

Wall Street Journal 66 4.77 1.50
National Enquirer 61 2.43 1.64

(a) Compare the two sources of ads using a t test. Be
sure to state your null and alternative hypotheses,
the test statistic with degrees of freedom, the
P-value, and your conclusion.

(b) Give a 95% confidence interval for the difference.

(c) Write a short paragraph summarizing the results
of your analyses.

7.81 C
H

ALLENG
E Size of trees in the northern and southern

halves. The study of 584 longleaf pine trees
in the Wade Tract in Thomas County, Georgia, had
several purposes. Are trees in one part of the tract
more or less like trees in any other part of the tract
or are there differences? In Example 6.1 (page 354)
we examined how the trees were distributed in the
tract and found that the pattern was not random. In
this exercise we will examine the sizes of the trees.
In Exercise 7.25 we analyzed the sizes, measured
as diameter at breast height (DBH), for a random
sample of 40 trees. Here we divide the tract into
northern and southern halves and take random
samples of 30 trees from each half. Here are the
diameters in centimeters (cm) of the sampled trees:

27.8 14.5 39.1 3.2 58.8 55.5 25.0 5.4 19.0 30.6
North 15.1 3.6 28.4 15.0 2.2 14.2 44.2 25.7 11.2 46.8

36.9 54.1 10.2 2.5 13.8 43.5 13.8 39.7 6.4 4.8

44.4 26.1 50.4 23.3 39.5 51.0 48.1 47.2 40.3 37.4
South 36.8 21.7 35.7 32.0 40.4 12.8 5.6 44.3 52.9 38.0

2.6 44.6 45.5 29.1 18.7 7.0 43.8 28.3 36.9 51.6

(a) Use a back-to-back stemplot and side-by-side
boxplots to examine the data graphically. Describe
the patterns in the data.

(b) Is it appropriate to use the methods of this
section to compare the mean DBH of the trees in the
north half of the tract with the mean DBH of trees
in the south half? Give reasons for your answer.

(c) What are appropriate null and alternative
hypotheses for comparing the two samples of tree
DBHs? Give reasons for your choices.

(d) Perform the significance test. Report the test
statistic, the degrees of freedom, and the P-value.
Summarize your conclusion.

(e) Find a 95% confidence interval for the difference
in mean DBHs. Explain how this interval provides
additional information about this problem.

7.82 C
H

ALLENG
E Size of trees in the eastern and western

halves. The Wade Tract can also be divided
into eastern and western halves. Here are the DBHs
of 30 randomly selected longleaf pine trees from
each half:

23.5 43.5 6.6 11.5 17.2 38.7 2.3 31.5 10.5 23.7
East 13.8 5.2 31.5 22.1 6.7 2.6 6.3 51.1 5.4 9.0

43.0 8.7 22.8 2.9 22.3 43.8 48.1 46.5 39.8 10.9

17.2 44.6 44.1 35.5 51.0 21.6 44.1 11.2 36.0 42.1
West 3.2 25.5 36.5 39.0 25.9 20.8 3.2 57.7 43.3 58.0

21.7 35.6 30.9 40.6 30.7 35.6 18.2 2.9 20.4 11.4

Using the questions in the previous exercise, analyze
these data.

7.83 Sales of a small appliance across months. A
market research firm supplies manufacturers with
estimates of the retail sales of their products from
samples of retail stores. Marketing managers are
prone to look at the estimate and ignore sampling
error. Suppose that an SRS of 70 stores this month
shows mean sales of 53 units of a small appliance,
with standard deviation 15 units. During the same
month last year, an SRS of 55 stores gave mean sales
of 50 units, with standard deviation 18 units. An
increase from 50 to 53 is a rise of 6%. The marketing
manager is happy because sales are up 6%.

(a) Use the two-sample t procedure to give a 95%
confidence interval for the difference in mean
number of units sold at all retail stores.

(b) Explain in language that the manager can
understand why he cannot be certain that sales rose
by 6%, and that in fact sales may even have dropped.

7.84 An improper significance test. A friend has
performed a significance test of the null hypothesis
that two means are equal. His report states that the
null hypothesis is rejected in favor of the alternative
that the first mean is larger than the second. In a
presentation on his work, he notes that the first
sample mean was larger than the second mean
and this is why he chose this particular one-sided
alternative.

(a) Explain what is wrong with your friend’s
procedure and why.

(b) Suppose he reported t = 1.70 with a P-value
of 0.06. What is the correct P-value that he should
report?
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7.85 Breast-feeding versus baby formula. A study of
iron deficiency among infants compared samples
of infants following different feeding regimens.
One group contained breast-fed infants, while the
children in another group were fed a standard baby
formula without any iron supplements. Here are
summary results on blood hemoglobin levels at 12
months of age:30

Group n x s

Breast-fed 23 13.3 1.7
Formula 19 12.4 1.8

(a) Is there significant evidence that the mean
hemoglobin level is higher among breast-fed
babies? State H0 and Ha and carry out a t test.
Give the P-value. What is your conclusion?

(b) Give a 95% confidence interval for the mean
difference in hemoglobin level between the two
populations of infants.

(c) State the assumptions that your procedures in
(a) and (b) require in order to be valid.

The following exercises concern optional material on the
pooled two-sample t procedures and on the power of tests.

7.86 Revisiting the comparison of LDL levels for
males and females. In Exercise 7.62 (page 467), the
LDL levels for males and females were compared
using the two-sample t procedures that do not
assume equal standard deviations. Compare the
means using a significance test and find the 95%
confidence interval for the difference using the
pooled methods. How do the results compare with
those you obtained in Exercise 7.62?

7.87 Revisiting the evaluation of a multimedia
program. In Exercise 7.63 (page 468), the knowledge
test means for intervention and control groups were
compared using the two-sample t procedures that
do not assume equal standard deviations. Examine
the standard deviations for the two groups and
verify that it is appropriate to use the pooled
procedures for these data. Compare the means
using a significance test and find the 95% confidence
interval for the difference using the pooled methods.
How do the results compare with those you obtained
in Exercise 7.63?

7.88 Revisiting self-control and food. You used
methods that do not require equal standard
deviations when you analyzed the self-efficacy data
in Exercise 7.64 (page 468). Can you justify using

the pooled procedures for these data? Explain your
answer. Analyze the data using these procedures
and compare what you found in Exercise 7.64 with
these results.

7.89 Revisiting the size of trees. Refer to the Wade
Tract DBH data in Exercise 7.81 (page 471), where
we compared a sample of trees from the northern
half of the tract with a sample from the southern
half. Because the standard deviations for the two
samples are quite close, it is reasonable to analyze
these data using the pooled procedures. Perform
the significance test and find the 95% confidence
interval for the difference in means using these
methods. Summarize your results and compare
them with what you found in Exercise 7.81.

7.90 Revisiting the price of wheat. Example 7.16 (page
456) gives summary statistics for prices received by
wheat producers in September and July. The two
sample standard deviations are very similar, so we
may be willing to assume equal population standard
deviations. Calculate the pooled t test statistic and
its degrees of freedom from the summary statistics.
Use Table D to assess significance. How do your
results compare with the unpooled analysis in the
example?

7.91 Computing the degrees of freedom. Use the Wade
Tract data in Exercise 7.81 to calculate the software
approximation to the degrees of freedom using the
formula on page 460. Verify your calculation with
software.

7.92 Again computing the degrees of freedom. Use
the Wade Tract data in Exercise 7.82 to calculate
the software approximation to the degrees of
freedom using the formula on page 460. Verify your
calculation with software.

7.93 C
H

ALLENG
E Revisiting the dust exposure study. The

data on occupational exposure to dust that
we analyzed in Exercise 7.65 (page 468) come from
two groups of workers that are quite different in
size. This complicates the issue regarding pooling
because the sample that is larger will dominate the
calculations.

(a) Calculate the degrees of freedom approximation
using the formula for the degrees of freedom given
on page 460. Then verify your calculations with
software.

(b) Find the pooled estimate of the standard
deviation. Write a short summary comparing it with
the estimates of the standard deviations that come
from each group.
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(c) Find the standard error of the difference in
sample means that you would use for the method
that does not assume equal variances. Do the
same for the pooled approach. Compare these two
estimates with each other.

(d) Perform the significance test and find the 95%
confidence interval using the pooled methods. How
do these results compare with those you found in
Exercise 7.65?

(e) Exercise 7.66 has data for the same workers but
for respirable dust. Here the standard deviations
differ more than those in Example 7.65 do. Answer
parts (a) through (d) for these data. Write a summary
of what you have found in this exercise.

7.94 C
H

ALLENG
E Revisiting the effect of storage time on

vitamin C. The analysis of the loss of vitamin
C when bread is stored in Exercise 7.76 (page 470)

is a rather unusual case involving very small sample
sizes. There are only two observations per condition
(immediately after baking and three days later).
When the samples are so small, we have very little
information to make a judgment about whether
the population standard deviations are equal. The
potential gain from pooling is large when the sample
sizes are very small. Assume that we will perform a
two-sided test using the 5% significance level.

(a) Find the critical value for the unpooled t test
statistic that does not assume equal variances. Use
the minimum of n1 − 1 and n2 − 1 for the degrees of
freedom.

(b) Find the critical value for the pooled t test
statistic.

(c) How does comparing these critical values show
an advantage of the pooled test?

7.3 Optional Topics
in Comparing Distributions*
In this section we discuss three topics that are related to the material that we
have already covered in this chapter. If we can do inference for means, it is nat-
ural to ask if we can do something similar for spread. The answer is yes, but
there are many cautions. We also discuss robustness and show how to find the
power for the two-sample t test. If you plan to design studies, you should be-
come familiar with this last topic.

Inference for population spread
The two most basic descriptive features of a distribution are its center and
spread. In a Normal population, these aspects are measured by the mean and
the standard deviation. We have described procedures for inference about
population means for Normal populations and found that these procedures
are often useful for non-Normal populations as well. It is natural to turn next
to inference about the standard deviations of Normal populations. Our recom-
mendation here is short and clear: Don’t do it without expert advice.

We will describe the F test for comparing the spread of two Normal popula-
tions. Unlike the t procedures for means, the F test and other procedures for stan-

CAUTION

! dard deviations are extremely sensitive to non-Normal distributions. This lack
of robustness does not improve in large samples. It is difficult in practice to
tell whether a significant F-value is evidence of unequal population spreads or
simply evidence that the populations are not Normal. Consequently, we do not
recommend use of inference about population standard deviations in basic sta-
tistical practice.31

*This section can be omitted without loss of continuity.
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It was once common to test equality of standard deviations as a prelimi-
nary to performing the pooled two-sample t test for equality of two population
means. It is better practice to check the distributions graphically, with special
attention to skewness and outliers, and to use the software-based two-sample
t that does not require equal standard deviations. In the words of one distin-
guished statistician, “To make a preliminary test on variances is rather like
putting to sea in a rowing boat to find out whether conditions are sufficiently
calm for an ocean liner to leave port!”32

The F test for equality of spread
Because of the limited usefulness of procedures for inference about the stan-
dard deviations of Normal distributions, we will present only one such proce-
dure. Suppose that we have independent SRSs from two Normal populations,
a sample of size n1 from N(μ1, σ1) and a sample of size n2 from N(μ2, σ2). The
population means and standard deviations are all unknown. The hypothesis of
equal spread H0: σ1 = σ2 is tested against Ha: σ1 �= σ2 by a simple statistic, the
ratio of the sample variances.

THE F STATISTIC AND F DISTRIBUTIONS

When s2
1 and s2

2 are sample variances from independent SRSs of sizes n1

and n2 drawn from Normal populations, the F statistic

F = s2
1

s2
2

has the F distribution with n1 − 1 and n2 − 1 degrees of freedom when
H0: σ1 = σ2 is true.

The F distributions are a family of distributions with two parameters: theF distributions
degrees of freedom of the sample variances in the numerator and denomina-
tor of the F statistic. The F distributions are another of R. A. Fisher’s contribu-
tions to statistics and are called F in his honor. Fisher introduced F statistics for
comparing several means. We will meet these useful statistics in later chapters.
The numerator degrees of freedom are always mentioned first. Interchanging
the degrees of freedom changes the distribution, so the order is important. Our
brief notation will be F(j, k) for the F distribution with j degrees of freedom in
the numerator and k degrees of freedom in the denominator. The F distribu-
tions are not symmetric but are right-skewed. The density curve in Figure 7.16
illustrates the shape. Because sample variances cannot be negative, the F statis-
tic takes only positive values and the F distribution has no probability below 0.
The peak of the F density curve is near 1; values far from 1 in either direction
provide evidence against the hypothesis of equal standard deviations.

Tables of F critical values are awkward because a separate table is needed
for every pair of degrees of freedom j and k. Table E in the back of the book gives
upper p critical values of the F distributions for p = 0.10, 0.05, 0.025, 0.01, and
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FIGURE 7.16 The density curve
for the F(9, 10) distribution. The
F distributions are skewed to the
right.

0.001. For example, these critical values for the F(9, 10) distribution shown in
Figure 7.16 are

p 0.10 0.05 0.025 0.01 0.001

F∗ 2.35 3.02 3.78 4.94 8.96

The skewness of F distributions causes additional complications. In the
symmetric Normal and t distributions, the point with probability 0.05 below it
is just the negative of the point with probability 0.05 above it. This is not true
for F distributions. We therefore require either tables of both the upper and
lower tails or means of eliminating the need for lower-tail critical values. Sta-
tistical software that eliminates the need for tables is plainly very convenient.
If you do not use statistical software, arrange the F test as follows:

1. Take the test statistic to be

F = larger s2

smaller s2

This amounts to naming the populations so that s2
1 is the larger of the ob-

served sample variances. The resulting F is always 1 or greater.

2. Compare the value of F with the critical values from Table E. Then double
the probabilities obtained from the table to get the significance level for the
two-sided F test.

The idea is that we calculate the probability in the upper tail and double to
obtain the probability of all ratios on either side of 1 that are at least as im-
probable as that observed. Remember that the order of the degrees of freedom
is important in using Table E.

•
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E 7.22 Comparing calcium and placebo groups. Example 7.19 (page
462) recounts a medical experiment comparing the effects of calcium and
a placebo on the blood pressure of black men. The analysis (Example 7.20)
employed the pooled two-sample t procedures. Because these procedures
require equal population standard deviations, it is tempting to first test

H0: σ1 = σ2 Ha: σ1 �= σ2
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The larger of the two sample standard deviations is s = 8.743 from 10 ob-
servations. The other is s = 5.901 from 11 observations. The two-sided test
statistic is therefore

F = larger s2

smaller s2
= 8.7432

5.9012
= 2.20

We compare the calculated value F = 2.20 with critical points for the F(9, 10)

distribution. Table E shows that 2.20 is less than the 0.10 critical value of the
F(9, 10) distribution, which is F∗ = 2.35. Doubling 0.10, we know that the
observed F falls short of the 0.20 significance level. The results are not sig-
nificant at the 20% level (or any lower level). Statistical software shows that
the exact upper-tail probability is 0.118, and hence P = 0.236. If the popula-
tions were Normal, the observed standard deviations would give little reason
to suspect unequal population standard deviations. Because one of the popu-
lations shows some non-Normality, however, we cannot be fully confident of
this conclusion.

USE YOUR KNOWLEDGE
7.95 The F statistic. The F statistic F = s2

1/s2
2 is calculated from samples

of size n1 = 16 and n2 = 21.

(a) What is the upper 5% critical value for this F?

(b) In a test of equality of standard deviations against the two-sided
alternative, this statistic has the value F = 2.45. Is this value sig-
nificant at the 10% level? Is it significant at the 5% level?

Robustness of Normal inference procedures
We have claimed that

• The t procedures for inference about means are quite robust against non-
Normal population distributions. These procedures are particularly robust
when the population distributions are symmetric and (for the two-sample
case) when the two sample sizes are equal.

• The F test and other procedures for inference about variances are so lacking
in robustness as to be of little use in practice.

Simulations with a large variety of non-Normal distributions support these
claims. One set of simulations was carried out with samples of size 25 and used
significance tests with fixed level α = 0.05. The three types of tests studied were
the one-sample and pooled two-sample t tests and the F test for comparing two
variances.

The robustness of the one-sample and two-sample t procedures is remark-
able. The true significance level remains between about 4% and 6% for a large
range of populations. The t test and the corresponding confidence intervals are
among the most reliable tools that statisticians use. Remember, however, that
outliers can greatly disturb the t procedures. Also, two-sample procedures are
less robust when the sample sizes are not similar.
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The lack of robustness of the tests for variances is equally remarkable. The true

CAUTION

! significance levels depart rapidly from the target 5% as the population distribu-
tion departs from Normality. The two-sided F test carried out with 5% critical
values can have a true level of less than 1% or greater than 11% even in sym-
metric populations with no outliers. Results such as these are the basis for our
recommendation that these procedures not be used.

The power of the two-sample t test
The two-sample t test is one of the most used statistical procedures. Unfortu-
nately, because of inadequate planning, users frequently fail to find evidence
for the effects that they believe to be true. Power calculations should be part of
the planning of any statistical study. Information from a pilot study or previous
research is needed.

In Section 7.1 (optional material), we learned how to find an approximation
for the power of the one-sample t test. The basic concepts for the two-sample
case are the same. Here, we give the exact method, which involves a new distri-
bution, the noncentral t distribution. To perform the calculations, we simplynoncentral t distribution
need software to calculate probabilities for this distribution.

We first present the method for the pooled two-sample t test, where the pa-
rameters are μ1, μ2, and the common standard deviation σ . Modifications to
get approximate results when we do not pool are then described.

To find the power for the pooled two-sample t test, use the following steps.
We consider only the case where the null hypothesis is μ1 − μ2 = 0.

1. Specify

(a) an alternative value for μ1 − μ2 that you consider important to detect;

(b) the sample sizes, n1 and n2;

(c) the Type I error for a fixed significance level, α;

(d) a guess at the standard deviation, σ .

2. Find the degrees of freedom df = n1 + n2 − 2 and the value of t∗ that will
lead to rejection of H0.

3. Calculate the noncentrality parameternoncentrality parameter

δ = |μ1 − μ2|
σ

√
1
n1

+ 1
n2

4. Find the power as the probability that a noncentral t random variable with
degrees of freedom df and noncentrality parameter δ will be greater than
t∗. In SAS the command is 1-PROBT(tstar, df, delta). If you do not have
software that can perform this calculation, you can approximate the power
as the probability that a standard Normal random variable is greater than
t∗ − δ, that is, P(z > t∗ − δ), and use Table A.

Note that the denominator in the noncentrality parameter,

σ

√
1
n1

+ 1
n2
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is our guess at the standard error for the difference in the sample means. There-
fore, if we wanted to assess a possible study in terms of the margin of error for
the estimated difference, we would examine t∗ times this quantity.

If we do not assume that the standard deviations are equal, we need to guess
both standard deviations and then combine these for our guess at the standard
error: √

σ 2
1

n1
+ σ 2

2

n2

This guess is then used in the denominator of the noncentrality parameter. For
the degrees of freedom, the conservative approximation is appropriate.

•

•
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E 7.23 Planning a new study of calcium versus placebo groups. In
Example 7.20 we examined the effect of calcium on blood pressure by com-
paring the means of a treatment group and a placebo group using a pooled
two-sample t test. The P-value was 0.059, failing to achieve the usual stan-
dard of 0.05 for statistical significance. Suppose that we wanted to plan a
new study that would provide convincing evidence, say at the 0.01 level, with
high probability. Let’s examine a study design with 45 subjects in each group
(n1 = n2 = 45). Based on our previous results we choose μ1 − μ2 = 5 as an
alternative that we would like to be able to detect with α = 0.01. For σ we
use 7.4, our pooled estimate from Example 7.20. The degrees of freedom are
n1 + n2 − 2 = 88 and t∗ = 2.37 for the significance test. The noncentrality
parameter is

δ = 5

7.4

√
1

45
+ 1

45

= 5
1.56

= 3.21

Software gives the power as 0.7965, or 80%. The Normal approximation gives
0.7983, a very accurate result. With this choice of sample sizes we would ex-
pect the margin of error for a 95% confidence interval (t∗ = 1.99) for the dif-
ference in means to be

t∗ × 7.4

√
1

45
+ 1

45
= 1.99 × 1.56 = 3.1

With software it is very easy to examine the effects of variations on a study
design. In the above example, we might want to examine the power for α = 0.05
and the effects of reducing the sample sizes.

USE YOUR KNOWLEDGE
7.96 Power and μ1 − μ2. If you repeat the calculation in Example 7.23 for

other values of μ1 − μ2 that are larger than 5, would you expect the
power to be higher or lower than 0.7965? Why?

7.97 Power and the standard deviation. If the true population standard
deviation were 7.0 instead of the 7.4 hypothesized in Example 7.23,
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would the power for this new experiment be greater or smaller than
0.7965? Explain.

SECTION 7.3 Summary

Inference procedures for comparing the standard deviations of two Normal
populations are based on the F statistic, which is the ratio of sample
variances:

F = s2
1

s2
2

If an SRS of size n1 is drawn from the x1 population and an independent SRS
of size n2 is drawn from the x2 population, the F statistic has the F distribution
F(n1 − 1, n2 − 1) if the two population standard deviations σ1 and σ2 are in fact
equal.

The F test for equality of standard deviations tests H0: σ1 = σ2 versus
Ha: σ1 �= σ2 using the statistic

F = larger s2

smaller s2

and doubles the upper-tail probability to obtain the P-value.

The t procedures are quite robust when the distributions are not Normal. The
F tests and other procedures for inference about the spread of one or more Nor-
mal distributions are so strongly affected by non-Normality that we do not rec-
ommend them for regular use.

The power of the pooled two-sample t test is found by first computing the crit-
ical value for the significance test, the degrees of freedom, and the noncentral-
ity parameter for the alternative of interest. These are used to find the power
from the t distribution. A Normal approximation works quite well. Calculat-
ing margins of error for various study designs and assumptions is an alternative
procedure for evaluating designs.

SECTION 7.3 Exercises
For Exercise 7.95, see page 476; and for Exercises 7.96 and
7.97, see page 478.

In all exercises calling for use of the F test, assume that
both population distributions are very close to Normal. The
actual data are not always sufficiently Normal to justify use
of the F test.

7.98 Comparison of standard deviations. Here are
some summary statistics from two independent
samples from Normal distributions:

Sample n s2

1 10 3.1
2 16 9.3

You want to test the null hypothesis that the two
population standard deviations are equal versus
the two-sided alternative at the 5% significance
level.

(a) Calculate the test statistic.

(b) Find the appropriate value from Table E that
you need to perform the significance test.

(c) What do you conclude?

7.99 Revisiting the cholesterol comparison. Compare
the standard deviations of total cholesterol in
Exercise 7.61 (page 467). Give the test statistic, the
degrees of freedom, and the P-value. Write a short
summary of your analysis, including comments on
the assumptions for the test.
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7.100 An HDL comparison. HDL is also known as “good”
cholesterol. Compare the standard deviations of
HDL in Exercise 7.61 (page 467). Give the test
statistic, the degrees of freedom, and the P-value.
Write a short summary of your analysis, including
comments on the assumptions for the test.

7.101 C
H

ALLENG
E Revisiting the multimedia evaluation

study. Mean scores on a knowledge test
are compared for two groups of women in
Exercise 7.63 (page 468). Compare the standard
deviations using an F test. What do you conclude?
Comment on the Normal assumption for these
data. These standard deviations are so close that
we are not particularly surprised at the result of the
significance test. Assume that the sample standard
deviation in the intervention is the value given in
Exercise 7.63 (1.15). How large would the standard
deviation in the control group need to be to reject
the null hypothesis of equal standard deviations at
the 5% level?

7.102 Revisiting the self-control and food study.
Compare the standard deviations of the self-
efficacy scores in Exercise 7.64 (page 468). Give
the test statistic, the degrees of freedom, and the
P-value. Write a short summary of your analysis,
including comments on the assumptions for the
test.

7.103 Revisiting the dust exposure study. The two-
sample problem in Exercise 7.65 (page 468)
compares drill and blast workers with outdoor
concrete workers with respect to the total dust that
they are exposed to in the workplace. Here it may
be useful to know whether or not the standard
deviations differ in the two groups. Perform the F
test and summarize the results. Are you concerned
about the assumptions here? Explain why or why
not.

7.104 More on the dust exposure study. Exercise 7.66
(page 468) is similar to Exercise 7.65, but the
response variable here is exposure to dust particles
that can enter and stay in the lungs. Compare the
standard deviations with a significance test and
summarize the results. Be sure to comment on the
assumptions.

7.105 Revisiting the size of trees in the north and
south. The diameters of trees in the Wade Tract for
random samples selected from the north and south
portions of the tract are compared in Exercise 7.81
(page 471). Are there statistically significant
differences in the standard deviations for these
two parts of the tract? Perform the significance

test and summarize the results. Does the Normal
assumption appear reasonable for these data?

7.106 Revisiting the size of trees in the east and west.
Tree diameters for the east and west halves of the
Wade Tract are compared in Exercise 7.82 (page
471). Using the questions in the previous exercise
as a guide, analyze these data.

7.107 Revisiting the storage time study. We studied
the loss of vitamin C when bread is stored in
Exercise 7.76 (page 470). Recall that two loaves
were measured immediately after baking and
another two loaves were measured after three days
of storage. These are very small sample sizes.

(a) Use Table E to find the value that the ratio of
variances would have to exceed for us to reject the
null hypothesis (at the 5% level) that the standard
deviations are equal. What does this suggest about
the power of the test?

(b) Perform the test and state your conclusion.

7.108 Planning a study to compare tree size. In
Exercise 7.81 (page 471) DBH data for longleaf
pine trees in two parts of the Wade Tract are
compared. Suppose that you are planning a similar
study where you will measure the diameters of
longleaf pine trees. Based on Exercise 7.81, you are
willing to assume that the standard deviation is 20
cm. Suppose that a difference in mean DBH of 10
cm or more would be important to detect. You will
use a t statistic and a two-sided alternative for the
comparison.

(a) Find the power if you randomly sample 20
trees from each area to be compared.

(b) Repeat the calculations for 60 trees in each
sample.

(c) If you had to choose between the 20 and 60
trees per sample, which would be acceptable? Give
reasons for your answer.

7.109 C
H

ALLENG
E More on planning a study to compare

tree size. Refer to the previous exercise.
Find the two standard deviations from
Exercise 7.81. Do the same for the data in
Exercise 7.82, which is a similar setting. These
are somewhat smaller than the assumed value that
you used in the previous exercise. Explain why
it is generally a better idea to assume a standard
deviation that is larger than you expect than one
that is smaller. Repeat the power calculations for
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some other reasonable values of σ and comment
on the impact of the size of σ for planning the new
study.

7.110 Planning a study to compare ad placement.
Refer to Exercise 7.80 (page 470), where we
compared trustworthy ratings for ads from two
different publications. Suppose that you are
planning a similar study using two different
publications that are not expected to show the
differences seen when comparing the Wall Street
Journal with the National Enquirer. You would like
to detect a difference of 1.5 points using a two-sided

significance test with a 5% level of significance.
Based on Exercise 7.80, it is reasonable to use 1.6
as the value of the standard deviation for planning
purposes.

(a) What is the power if you use sample sizes
similar to those used in the previous study, for
example, 65 for each publication?

(b) Repeat the calculations for 100 in each group.

(c) What sample size would you recommend for
the new study?

CHAPTER 7 Exercises

7.111 LSAT scores. The scores of four senior roommates
on the Law School Admission Test (LSAT) are

158, 168, 143, 155

Find the mean, the standard deviation, and the
standard error of the mean. Is it appropriate to
calculate a confidence interval based on these
data? Explain why or why not.

7.112 Converting a two-sided P-value. You use
statistical software to perform a significance
test of the null hypothesis that two means are
equal. The software reports P-values for the two-
sided alternative. Your alternative is that the first
mean is greater than the second mean.

(a) The software reports t = 1.81 with a P-value of
0.07. Would you reject H0 with α = 0.05? Explain
your answer.

(b) The software reports t = −1.81 with a P-value
of 0.07. Would you reject H0 with α = 0.05?
Explain your answer.

7.113 Degrees of freedom and confidence interval
width. As the degrees of freedom increase, the t
distributions get closer and closer to the z (N(0, 1))
distribution. One way to see this is to look at
how the value of t∗ for a 95% confidence interval
changes with the degrees of freedom. Make a plot
with degrees of freedom from 2 to 100 on the x
axis and t∗ on the y axis. Draw a horizontal line on
the plot corresponding to the value of z∗ = 1.96.
Summarize the main features of the plot.

7.114 Degrees of freedom and t∗. Refer to the previous
exercise. Make a similar plot and summarize its
features for the value of t∗ for a 90% confidence
interval.

7.115 Sample size and margin of error. The margin
of error for a confidence interval depends on
the confidence level, the standard deviation, and
the sample size. Fix the confidence level at 95%
and the standard deviation at 1 to examine the
effect of the sample size. Find the margin of
error for sample sizes of 5 to 100 by 5s—that
is, let n = 5, 10, 15, . . . , 100. Plot the margins of
error versus the sample size and summarize the
relationship.

7.116 More on sample size and margin of error.
Refer to the previous exercise. Make a similar plot
and summarize its features for a 99% confidence
interval.

7.117 C
H

ALLENG
E Alcohol consumption and body

composition. Individuals who consume
large amounts of alcohol do not use the calories
from this source as efficiently as calories from
other sources. One study examined the effects
of moderate alcohol consumption on body
composition and the intake of other foods.
Fourteen subjects participated in a crossover
design where they either drank wine for the first 6
weeks and then abstained for the next 6 weeks or
vice versa.33 During the period when they drank
wine, the subjects, on average, lost 0.4 kilograms
(kg) of body weight; when they did not drink
wine, they lost an average of 1.1 kg. The standard
deviation of the difference between the weight lost
under these two conditions is 8.6 kg. During the
wine period, they consumed an average of 2589
calories; with no wine, the mean consumption
was 2575. The standard deviation of the difference
was 210.

(a) Compute the differences in means and the
standard errors for comparing body weight
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and caloric intake under the two experimental
conditions.

(b) A report of the study indicated that there were
no significant differences in these two outcome
measures. Verify this result for each measure,
giving the test statistic, degrees of freedom, and
the P-value.

(c) One concern with studies such as this, with a
small number of subjects, is that there may not
be sufficient power to detect differences that are
potentially important. Address this question by
computing 95% confidence intervals for the two
measures and discuss the information provided
by the intervals.

(d) Here are some other characteristics of the
study. The study periods lasted for 6 weeks. All
subjects were males between the ages of 21 and 50
years who weighed between 68 and 91 kilograms
(kg). They were all from the same city. During
the wine period, subjects were told to consume
two 135 milliliter (ml) servings of red wine and
no other alcohol. The entire 6-week supply was
given to each subject at the beginning of the
period. During the other period, subjects were
instructed to refrain from any use of alcohol. All
subjects reported that they complied with these
instructions except for three subjects, who said
that they drank no more than 3 to 4 12-ounce
bottles of beer during the no-alcohol period.
Discuss how these factors could influence the
interpretation of the results.

7.118 Healthy bones study. Healthy bones are
continually being renewed by two processes.
Through bone formation, new bone is built;
through bone resorption, old bone is removed.
If one or both of these processes are disturbed,
by disease, aging, or space travel, for example,
bone loss can be the result. Osteocalcin (OC)
is a biochemical marker for bone formation:
higher levels of bone formation are associated
with higher levels of OC. A blood sample is used
to measure OC, and it is much less expensive to
obtain than direct measures of bone formation.
The units are milligrams of OC per milliliter
of blood (mg/ml). One study examined various
biomarkers of bone turnover.34 Here are the OC
measurements on 31 healthy females aged 11 to
32 years who participated in this study:

68.9 56.3 54.6 31.2 36.4 31.4 52.8 38.4
35.7 76.5 44.4 40.2 77.9 54.6 9.9 20.6
20.0 17.2 24.2 20.9 17.9 19.7 15.9 20.8

8.1 19.3 16.9 10.1 47.7 30.2 17.2

(a) Display the data with a stemplot or histogram
and a boxplot. Describe the distribution.

(b) Find a 95% confidence interval for the mean
OC. Comment on the suitability of using this
procedure for these data.

7.119 More on the healthy bones study. Refer to
the previous exercise. Tartrate resistant acid
phosphatase (TRAP) is a biochemical marker for
bone resorption that is also measured in blood.
Here are the TRAP measurements, in units per
liter (U/l), for the same 31 females:

19.4 25.5 19.0 9.0 19.1 14.6 25.2 14.6
28.8 14.9 10.7 5.9 23.7 19.0 6.9 8.1

9.5 6.3 10.1 10.5 9.0 8.8 8.2 10.3
3.3 10.1 9.5 8.1 18.6 14.4 9.6

(a) Display the data with a stemplot or histogram
and a boxplot. Describe the distribution.

(b) Find a 95% confidence interval for the mean
TRAP. Comment on the suitability of using this
procedure for these data.

7.120 Transforming the data. Refer to Exercise 7.118
and the OC data for 31 females. Variables that
measure concentrations such as this often have
distributions that are skewed to the right. For this
reason it is common to work with the logarithms
of the measured values. Here are the OC values
transformed with the (natural) log:

4.23 4.03 4.00 3.44 3.59 3.45 3.97 3.65
3.58 4.34 3.79 3.69 4.36 4.00 2.29 3.03
3.00 2.84 3.19 3.04 2.88 2.98 2.77 3.03
2.09 2.96 2.83 2.31 3.86 3.41 2.84

(a) Display the data with a stemplot and a boxplot.
Describe the distribution.

(b) Find a 95% confidence interval for the mean
OC. Comment on the suitability of using this
procedure for these data.

(c) Transform the mean and the endpoints of
the confidence interval back to the original scale,
mg/ml. Compare this interval with the one you
computed in Exercise 7.118.

7.121 More on transforming the data. Refer to
Exercise 7.119 and the TRAP data for 31 females.
Variables that measure concentrations such as
this often have distributions that are skewed to the
right. For this reason it is common to work with
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the logarithms of the measured values. Here are
the TRAP values transformed with the (natural)
log:

2.97 3.24 2.94 2.20 2.95 2.68 3.23 2.68
3.36 2.70 2.37 1.77 3.17 2.94 1.93 2.09
2.25 1.84 2.31 2.35 2.20 2.17 2.10 2.33
1.19 2.31 2.25 2.09 2.92 2.67 2.26

(a) Display the data with a stemplot and a boxplot.
Describe the distribution.

(b) Find a 95% confidence interval for the mean
TRAP. Comment on the suitability of using this
procedure for these data.

(c) Transform the mean and the endpoints of the
confidence interval back to the original scale, U/l.
Compare this interval with the one you computed
in Exercise 7.119.

7.122 C
H

ALLENG
E Analysis of tree size using the complete

data set. The data used in Exercises 7.25
(page 442), 7.81, and 7.82 (page 471) were obtained
by taking simple random samples from the 584
longleaf pine trees that were measured in the
Wade Tract. The entire data set is given in the
LONGLEAF data set. More details about this
data set can be found in the Data Appendix at
the back of the book. Find the 95% confidence
interval for the mean DBH using the entire data
set, and compare this interval with the one that
you calculated in Exercise 7.25. Write a report
about these data. Include comments on the effect
of the sample size on the margin of error, the
distribution of the data, the appropriateness of the
Normality-based methods for this problem, and
the generalizability of the results to other similar
stands of longleaf pine or other kinds of trees in
this area of the United States and other areas.

7.123 C
H

ALLENG
E More on the complete tree size data

set. Use the LONGLEAF data set to
repeat the calculations that you performed in
Exercises 7.81 and 7.82. Discuss the effect of the
sample size on the results.

7.124 C
H

ALLENG
E Even more on the complete tree size

data set. The DBH measures in the
LONGLEAF data set do not appear to be Normally
distributed. Make a histogram of the data and
a Normal quantile plot if you have the software
available. Mark the mean and the median on
the histogram. Now, transform the data using a
logarithm. Does this make the distribution appear

to be Normal? Use the same graphical summaries
with the mean and the median marked on the
histogram. Write a summary of your conclusions,
paying particular attention to the use of data such
as these for inference using the methods based on
Normal distributions.

7.125 Competitive prices? A retailer entered into
an exclusive agreement with a supplier who
guaranteed to provide all products at competitive
prices. The retailer eventually began to purchase
supplies from other vendors who offered better
prices. The original supplier filed a legal action
claiming violation of the agreement. In defense,
the retailer had an audit performed on a random
sample of invoices. For each audited invoice,
all purchases made from other suppliers were
examined and the prices were compared with
those offered by the original supplier. For each
invoice, the percent of purchases for which the
alternate supplier offered a lower price than the
original supplier was recorded.35 Here are the
data:

0 100 0 100 33 34 100 48 78 100 77 100 38
68 100 79 100 100 100 100 100 100 89 100 100

Report the average of the percents with a
95% margin of error. Do the sample invoices
suggest that the original supplier’s prices are not
competitive on the average?

7.126 Weight-loss programs. In a study of the
effectiveness of weight-loss programs, 47 subjects
who were at least 20% overweight took part in
a group support program for 10 weeks. Private
weighings determined each subject’s weight at
the beginning of the program and 6 months after
the program’s end. The matched pairs t test was
used to assess the significance of the average
weight loss. The paper reporting the study said,
“The subjects lost a significant amount of weight
over time, t(46) = 4.68, p < 0.01.” It is common
to report the results of statistical tests in this
abbreviated style.36

(a) Why was the matched pairs statistic
appropriate?

(b) Explain to someone who knows no statistics
but is interested in weight-loss programs what the
practical conclusion is.

(c) The paper follows the tradition of reporting
significance only at fixed levels such as α = 0.01.
In fact, the results are more significant than
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“p < 0.01” suggests. What can you say about the
P-value of the t test?

7.127 C
H

ALLENG
E Do women perform better in school?

Some research suggests that women
perform better than men in school but men score
higher on standardized tests. Table 1.9 (page 29)
presents data on a measure of school performance,
grade point average (GPA), and a standardized
test, IQ, for 78 seventh-grade students. Do these
data lend further support to the previously found
gender differences? Give graphical displays of
the data and describe the distributions. Use
significance tests and confidence intervals to
examine this question, and prepare a short report
summarizing your findings.

7.128 C
H

ALLENG
E Self-concept and school performance.

Refer to the previous exercise. Although
self-concept in this study was measured on a
scale with values in the data set ranging from
20 to 80, many prefer to think of this kind of
variable as having only two possible values: low
self-concept or high self-concept. Find the median
of the self-concept scores in Table 1.9 and define
those students with scores at or below the median
to be low-self-concept students and those with
scores above the median to be high-self-concept
students. Do high-self-concept students have
grade point averages that are different from low-
self-concept students? What about IQ? Prepare
a report addressing these questions. Be sure to
include graphical and numerical summaries and
confidence intervals, and state clearly the details
of significance tests.

7.129 Behavior of pet owners. On the morning of
March 5, 1996, a train with 14 tankers of propane
derailed near the center of the small Wisconsin
town of Weyauwega. Six of the tankers were
ruptured and burning when the 1700 residents
were ordered to evacuate the town. Researchers
study disasters like this so that effective relief
efforts can be designed for future disasters. About
half of the households with pets did not evacuate
all of their pets. A study conducted after the
derailment focused on problems associated with
retrieval of the pets after the evacuation and
characteristics of the pet owners. One of the scales
measured “commitment to adult animals,” and
the people who evacuated all or some of their pets
were compared with those who did not evacuate
any of their pets. Higher scores indicate that the
pet owner is more likely to take actions that benefit
the pet.37 Here are the data summaries:

Group n x s

Evacuated all or some pets 116 7.95 3.62
Did not evacuate any pets 125 6.26 3.56

Analyze the data and prepare a short report
describing the results.

7.130 Occupation and diet. Do various occupational
groups differ in their diets? A British study of this
question compared 98 drivers and 83 conductors
of London double-decker buses.38 The conductors’
jobs require more physical activity. The article
reporting the study gives the data as “Mean daily
consumption (± se).” Some of the study results
appear below:

Drivers Conductors

Total calories 2821 ± 44 2844 ± 48
Alcohol (grams) 0.24 ± 0.06 0.39 ± 0.11

(a) What does “se” stand for? Give x and s for each
of the four sets of measurements.

(b) Is there significant evidence at the 5% level
that conductors consume more calories per day
than do drivers? Use the two-sample t method to
give a P-value, and then assess significance.

(c) How significant is the observed difference in
mean alcohol consumption? Use two-sample t
methods to obtain the P-value.

(d) Give a 95% confidence interval for the mean
daily alcohol consumption of London double-
decker bus conductors.

(e) Give a 99% confidence interval for the
difference in mean daily alcohol consumption
between drivers and conductors.

7.131 Occupation and diet, continued (optional). Use
of the pooled two-sample t test is justified in part
(b) of the previous exercise. Explain why. Find
the P-value for the pooled t statistic, and compare
with your result in the previous exercise.

7.132 Conditions for inference. The report cited in
Exercise 7.130 says that the distribution of alcohol
consumption among the individuals studied is
“grossly skew.”

(a) Do you think that this skewness prevents the
use of the two-sample t test for equality of means?
Explain your answer.
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(b) (Optional) Do you think that the skewness
of the distributions prevents the use of the F test
for equality of standard deviations? Explain your
answer.

7.133 More on conditions for inference. Table 1.2
(page 10) gives literacy rates for men and women
in 17 Islamic nations. Is it proper to apply the
one-sample t method to these data to give a 95%
confidence interval for the mean literacy rate of
Islamic men? Explain your answer.

7.134 C
H

ALLENG
E PCBs in fish. Polychlorinated biphenyls

(PCBs) are a collection of compounds
that are no longer produced in the United States
but are still found in the environment. Evidence
suggests that they can cause harmful health effects
when consumed. Because PCBs can accumulate
in fish, efforts have been made to identify areas
where fish contain excessive amounts so that
recommendations concerning consumption limits
can be made. There are over 200 types of PCBs.
Data from the Environmental Protection Agency
National Study of Residues in Lake Fish are given
in the data set PCB. More details about this data
set can be found in the Data Appendix. Various
lakes in the United States were sampled and the
amounts of PCBs in fish were measured. The
variable PCB is the sum of the amounts of all
PCBs found in the fish. The units are parts per
billion (ppb).

(a) Use graphical and numerical summaries to
describe the distribution of this variable. Include
a histogram with the location of the mean and the
median clearly marked.

(b) Do you think it is appropriate to use methods
based on Normal distributions for these data?
Explain why or why not.

(c) Find a 95% confidence interval for the mean.
Will this interval contain approximately 95% of
the observations in the data set? Explain your
answer.

(d) Transform the PCB variable with a logarithm.
Analyze the transformed data and summarize
your results. Do you prefer to work with the raw
data or with logs for this variable? Give reasons
for your answer.

(e) Visit the Web site http://epa.gov/
waterscience/fishstudy/ to find details about
how the data were collected. Write a summary
describing these details and discuss how the
results from this study can be generalized to other
settings.

7.135 C
H

ALLENG
E PCBs in fish, continued. Refer to the

previous exercise. Not all types of PCBs are
equally harmful. A scale has been developed to
convert the raw amount of each type of PCB to a
toxic equivalent (TEQ). The PCB data set contains
a variable TEQPCB that is the total TEQ from all
PCBs found in each sample. Using the questions
in the previous exercise, analyze these data and
summarize the results.

7.136 C
H

ALLENG
E Inference using the complete CRP data

set. In Exercise 7.26 (page 442) you
analyzed the C-reactive protein (CRP) scores for a
random sample of 40 children who participated in
a study in Papua New Guinea. Serum retinol for
the same children was analyzed in Exercise 7.28.
Data for all 90 children who participated in the
study are given in the data set PNG, described
in the Data Appendix. Researchers who analyzed
these data along with data from several other
countries were interested in whether or not
infections (as indicated by high CRP values) were
associated with lower levels of serum retinol. A
child with a value of CRP greater than 5.0 mg/l
is classified as recently infected. Those whose
CRP is less than or equal to 5.0 mg/l are not.
Compare the serum retinol levels of the infected
and noninfected children. Include graphical
and numerical summaries, comments on all
assumptions, and details of your analyses. Write a
short report summarizing your results.

7.137 C
H

ALLENG
E More on using the complete CRP data

set. Refer to the previous exercise. The
researchers in this study also measured α1-acid
glycoprotein (AGP). This protein is similar to CRP
in that it is an indicator of infection. However,
it rises more slowly than CRP and reaches a
maximum 2 to 3 days after an infection. The units
for AGP are grams per liter (g/l), and any value
greater than 1.0 g/l is an indication of infection.
Analyze the data on AGP in the data set PNG and
write a report summarizing your results.

7.138 C
H

ALLENG
E Male and female CS students (optional).

Is there a difference between the average
SAT scores of males and females? The CSDATA
data set, described in the Data Appendix, gives
the Math (SATM) and Verbal (SATV) scores for
a group of 224 computer science majors. The
variable SEX indicates whether each individual is
male or female.

(a) Compare the two distributions graphically,
and then use the two-sample t test to compare
the average SATM scores of males and females.

http://epa.gov/waterscience/fishstudy/
http://epa.gov/waterscience/fishstudy/
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Is it appropriate to use the pooled t test for this
comparison? Write a brief summary of your results
and conclusions that refers to both versions of
the t test and to the F test for equality of standard
deviations. Also give a 95% confidence interval for
the difference in the means.

(b) Answer part (a) for the SATV scores.

(c) The students in the CSDATA data set were
all computer science majors who began college
during a particular year. To what extent do you
think that your results would generalize to (i)
computer science students entering in different
years, (ii) computer science majors at other
colleges and universities, and (iii) college students
in general?

7.139 Different methods of teaching reading. In
the READING data set, described in the Data
Appendix, the response variable Post3 is to be
compared for three methods of teaching reading.
The Basal method is the standard, or control,
method, and the two new methods are DRTA and
Strat. We can use the methods of this chapter
to compare Basal with DRTA and Basal with
Strat. Note that to make comparisons among
three treatments it is more appropriate to use the
procedures that we will learn in Chapter 12.

(a) Is the mean reading score with the DRTA
method higher than that for the Basal method?
Perform an analysis to answer this question, and
summarize your results.

(b) Answer part (a) for the Strat method in place
of DRTA.

7.140 Sample size calculation (optional).
Example 7.13 (page 449) tells us that the mean
height of 10-year-old girls is N(56.4, 2.7) and for
boys it is N(55.7, 3.8). The null hypothesis that
the mean heights of 10-year-old boys and girls
are equal is clearly false. The difference in mean
heights is 56.4 − 55.7 = 0.7 inch. Small differences
such as this can require large sample sizes to
detect. To simplify our calculations, let’s assume
that the standard deviations are the same, say
σ = 3.2, and that we will measure the heights of
an equal number of girls and boys. How many
would we need to measure to have a 90% chance
of detecting the (true) alternative hypothesis?

7.141 C
H

ALLENG
E House prices. How much more would you

expect to pay for a home that has four

bedrooms than for a home that has three? Here
are some data for West Lafayette, Indiana.39 These
are the asking prices (in dollars) that the owners
have set for their homes.

Four-bedroom homes:

121,900 139,900 157,000 159,900 176,900 224,900
235,000 245,000 294,000

Three-bedroom homes:

65,500 79,900 79,900 79,900 82,900 87,900
94,000 97,500 105,000 111,900 116,900 117,900

119,900 122,900 124,000 125,000 126,900 127,900
127,900 127,900 132,900 145,000 145,500 157,500
194,000 205,900 259,900 265,000

(a) Plot the asking prices for the two sets of homes
and describe the two distributions.

(b) Test the null hypothesis that the mean asking
prices for the two sets of homes are equal versus
the two-sided alternative. Give the test statistic
with degrees of freedom, the P-value, and your
conclusion.

(c) Would you consider using a one-sided
alternative for this analysis? Explain why or
why not.

(d) Give a 95% confidence interval for the
difference in mean asking prices.

(e) These data are not SRSs from a population.
Give a justification for use of the two-sample t
procedures in this case.

7.142 C
H

ALLENG
E More on house prices. Go to the Web

site www.realtor.com and select two
geographical areas of interest to you. You will
compare the prices of similar types of homes
in these two areas. State clearly how you define
the areas and the type of homes. For example,
you can use city names or zip codes to define
the area and you can select single-family homes
or condominiums. We view these homes as
representative of the asking prices of homes for
these areas at the time of your search. If the search
gives a large number of homes, select a random
sample. Be sure to explain exactly how you do
this. Use the methods you have learned in this
chapter to compare the asking prices. Be sure to
include a graphical summary.

www.realtor.com
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Does a new medicine reduce the chance of getting a cold? A randomized
comparative experiment is often used to answer this question. This chapter
describes procedures for statistical inference when the response variable is Yes/No.

8.1 Inference for a Single
Proportion

8.2 Comparing Two ProportionsIntroduction
Many statistical studies produce counts rather than mea-
surements. For example, the data from an opinion poll
that asks a sample of adults whether they approve of the conduct of the presi-
dent in office are the counts of “Yes,” “No,” and “Don’t know.” In an experiment
that compares the effectiveness of four cold prevention treatments, the data are
the number of subjects given each treatment and the number of subjects in each
treatment group who catch a cold during the next month. Similarly, in a survey
on driving behavior, the proportions of men and women who admit to shout-
ing, cursing, or making gestures to other drivers in the last year are compared
using count data. This chapter, and the next, present procedures for statistical
inference in these settings.

The parameters we want to do inference about are population proportions.
Just as in the case of inference about population means, we may be concerned
with a single population or with comparing two populations. Inference about
proportions in these one-sample and two-sample settings is very similar to in-
ference about means, which we discussed in Chapter 7.

We begin in Section 8.1 with inference about a single population proportion.
The statistical model for a count is then the binomial distribution, which we
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studied in Section 5.1. Section 8.2 concerns methods for comparing two pro-
portions. Binomial distributions again play an important role.

8.1 Inference for a Single Proportion
We want to estimate the proportion p of some characteristic, such as approval
of the president’s conduct in office, among the members of a large population.
We select a simple random sample (SRS) of size n from the population and
record the count X of “successes” (such as “Yes” answers to a question about
the president). We will use “success” to represent the characteristic of inter-
est. The sample proportion of successes p̂ = X/n estimates the unknown pop-
ulation proportion p. If the population is much larger than the sample (say, at
least 20 times as large), the count X has approximately the binomial distribu-
tion B(n, p).1 In statistical terms, we are concerned with inference about the
probability p of a success in the binomial setting.

If the sample size n is very small, we must base tests and confidence inter-
vals for p on the binomial distributions. These are awkward to work with be-
cause of the discreteness of the binomial distributions.2 But we know that when
the sample is large, both the count X and the sample proportion p̂ are approxi-
mately Normal. We will consider only inference procedures based on the Nor-LOOK BACK

Normal approxi-
mation for counts,
page 323

mal approximation. These procedures are similar to those for inference about
the mean of a Normal distribution.

Large-sample confidence interval for a single proportion
The unknown population proportion p is estimated by the sample proportion
p̂ = X/n. If the sample size n is sufficiently large, p̂ has approximately the Nor-
mal distribution, with mean μp̂ = p and standard deviation σp̂ = √

p(1 − p)/n.LOOK BACK
Normal approxima-
tion for proportions,
page 323

standard error,
page 418

This means that approximately 95% of the time p̂ will be within 2
√

p(1 − p)/n
of the unknown population proportion p.

Note that the standard deviation σp̂ depends upon the unknown parame-
ter p. To estimate this standard deviation using the data, we replace p in the
formula by the sample proportion p̂. As we did in Chapter 7, we use the term
standard error for the standard deviation of a statistic that is estimated from
data. Here is a summary of the procedure.

LARGE-SAMPLE CONFIDENCE INTERVAL FOR A
POPULATION PROPORTION

Choose an SRS of size n from a large population with unknown propor-
tion p of successes. The sample proportion is

p̂ = X
n

where X is the number of successes. The standard error of p̂ is

SEp̂ =
√

p̂(1 − p̂)

n
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and the margin of error for confidence level C is

m = z∗SEp̂

where z∗ is the value for the standard Normal density curve with area C
between −z∗ and z∗. An approximate level C confidence interval for p
is

p̂ ± m

Use this interval for 90%, 95%, or 99% confidence when the number of
successes and the number of failures are both at least 15.

•

•
E

X
A

M
P

L
E 8.1 Proportion of frequent binge drinkers. Alcohol abuse has been de-

scribed by college presidents as the number one problem on campus, and it
is a major cause of death in young adults. How common is it? A survey of
13,819 students in U.S. four-year colleges collected information on drinking
behavior and alcohol-related problems.3

The researchers defined “binge drinking” as having five or more drinks in
a row for men and four or more drinks in a row for women. “Frequent binge
drinking”was defined as binge drinking three or more times in the past two
weeks. According to this definition, 3140 students were classified as frequent
binge drinkers. The proportion of drinkers is

p̂ = 3140
13,819

= 0.227

To find a 95% confidence interval, first compute the standard error:

SEp̂ =
√

p̂(1 − p̂)

n

=
√

(0.227)(1 − 0.227)

13,819

= 0.00356

Approximately 95% of the time, p̂ will be within two standard errors (2 ×
0.00356 = 0.00712) of the true p. From Table A or D we find the value of z∗ to
be 1.960. So the confidence interval is

p̂ ± z∗SEp̂ = 0.227 ± (1.960)(0.00356)

= 0.227 ± 0.007

= (0.220, 0.234)

We estimate with 95% confidence that between 22.0% and 23.4% of college
students are frequent binge drinkers. In other words, we estimate that 22.7%
of college students are frequent binge drinkers, with a 95% confidence level
margin of error of 0.7%.
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FIGURE 8.1 Minitab and
CrunchIt! output for Example
8.1. By default, Minitab outputs
an interval based on the
binomial distribution. The
large-sample confidence interval
shown in the figure can be
requested as an option.

Because the calculations for statistical inference for a single proportion are
relatively straightforward, many software packages do not include them. Fig-
ure 8.1 gives output from Minitab and CrunchIt! for Example 8.1. As usual, the
output reports more digits than are useful. When you use software, be sure to

CAUTION

! think about how many digits are meaningful for your purposes.
Remember that the margin of error in this confidence interval includes only

random sampling error. There are other sources of error that are not taken into
account. This survey used a design where the number of students sampled was
proportional to the size of the college they attended; in this way we can treat
the data as if we had an SRS. However, as is the case with many such surveys,
we are forced to assume that the respondents provided accurate information.
If the students did not answer the questions honestly, the results may be biased.
Furthermore, we also have the typical problem of nonresponse. The response
rate for this survey was 60%, a very good rate for surveys of this type. Do the
students who did not respond have different drinking habits than those who
did? If so, this is another source of bias.

We recommend the large-sample confidence interval for 90%, 95%, and 99%
confidence whenever the number of successes and the number of failures are
both at least 15. For smaller sample sizes, we recommend exact methods that
use the binomial distribution. These are available as the default (for example,
in Minitab and SAS) or as options in many statistical software packages and
we do not cover them here. There is also an intermediate case between large
samples and very small samples where a slight modification of the large-sample
approach works quite well.4 This method is called the “plus four” procedure
and is described later.

USE YOUR KNOWLEDGE
8.1 Owning a cell phone. In a 2004 survey of 1200 undergraduate stu-

dents throughout the United States, 89% of the respondents said they
owned a cell phone.5 For 90% confidence, what is the margin of error?
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8.2 Importance of cell phone “features and functions.” In that same
survey, one question asked what aspect was most important when
buying a cell phone. “Features and functions” was the choice for 336
students. Give a 95% confidence interval for the proportion of U.S.
students who find “features and functions” the most important aspect
when buying a phone.

BEYOND THE BASICS

The Plus Four Confidence Interval for a Single Proportion

Computer studies reveal that confidence intervals based on the large-sample
approach can be quite inaccurate when the number of successes and the num-
ber of failures are not at least 15. When this occurs, a simple adjustment to the
confidence interval works very well in practice. The adjustment is based on as-
suming that the sample contains 4 additional observations, 2 of which are suc-
cesses and 2 of which are failures. The estimator of the population proportion
based on this plus four rule is

p̃ = X + 2
n + 4

This estimate was first suggested by Edwin Bidwell Wilson in 1927 and we call
it the plus four estimate. The confidence interval is based on the z statisticplus four estimate
obtained by standardizing the plus four estimate p̃. Because p̃ is the sample
proportion for our modified sample of size n + 4, it isn’t surprising that the dis-
tribution of p̃ is close to the Normal distribution with mean p and standard de-
viation

√
p(1 − p)/(n + 4). To get a confidence interval, we estimate p by p̃ in

this standard deviation to get the standard error of p̃. Here is the final result.

PLUS FOUR CONFIDENCE INTERVAL FOR A SINGLE PROPORTION

Choose an SRS of size n from a large population with unknown propor-
tion p of successes. The plus four estimate of the population propor-
tion is

p̃ = X + 2
n + 4

where X is the number of successes. The standard error of p̃ is

SEp̃ =
√

p̃(1 − p̃)

n + 4

and the margin of error for confidence level C is

m = z∗SEp̃

where z∗ is the value for the standard Normal density curve with area C
between −z∗ and z∗. An approximate level C confidence interval for
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p is

p̃ ± m

Use this interval for 90%, 95%, or 99% confidence whenever the sample
size is at least n = 10.

•
E

X
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E 8.2 Percent of equol producers. Research has shown that there are

many health benefits associated with a diet that contains soy foods. Sub-
stances in soy called isoflavones are known to be responsible for these bene-
fits. When soy foods are consumed, some subjects produce a chemical called
equol, and it is thought that production of equol is a key factor in the health
benefits of a soy diet. Unfortunately, not all people are equol producers;
there appear to be two distinct subpopulations: equol producers and equol
nonproducers.6

A nutrition researcher planning some bone health experiments would like
to include some equol producers and some nonproducers among her sub-
jects. A preliminary sample of 12 female subjects were measured, and 4 were
found to be equol producers. We would like to estimate the proportion of
equol producers in the population from which this researcher will draw her
subjects.

The plus four estimate of the proportion of equol producers is

p̃ = 4 + 2
12 + 4

= 6
16

= 0.375

For a 95% confidence interval, we use Table D to find z∗ = 1.96. We first com-
pute the standard error

SEp̃ =
√

p̃(1 − p̃)

n + 4

=
√

(0.375)(1 − 0.375)

16

= 0.12103

and then the margin of error

m = z∗SEp̃

= (1.96)(0.12103)

= 0.237

So the confidence interval is

p̃ ± m = 0.375 ± 0.237

= (0.138, 0.612)

We estimate with 95% confidence that between 14% and 61% of women from
this population are equol producers.
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If the true proportion of equol users is near 14%, the lower limit of this in-
terval, there may not be a sufficient number of equol producers in the study
if subjects are tested only after they are enrolled in the experiment. It may
be necessary to determine whether or not a potential subject is an equol pro-
ducer. The study could then be designed to have the same number of equol
producers and nonproducers.

Significance test for a single proportion
Recall that the sample proportion p̂ = X/n is approximately Normal, with
mean μp̂ = p and standard deviation σp̂ = √

p(1 − p)/n. For confidence inter-LOOK BACK
Normal
approximation for
proportions, page 323

vals, we substitute p̂ for p in the last expression to obtain the standard error.
When performing a significance test, however, the null hypothesis specifies a
value for p, and we assume that this is the true value when calculating the P-
value. Therefore, when we test H0: p = p0, we substitute p0 into the expression
for σp̂ and then standardize p̂. Here are the details.

LARGE-SAMPLE SIGNIFICANCE TEST
FOR A POPULATION PROPORTION

Draw an SRS of size n from a large population with unknown proportion
p of successes. To test the hypothesis H0: p = p0, compute the z statistic

z = p̂ − p0√
p0(1 − p0)

n

In terms of a standard Normal random variable Z, the approximate P-
value for a test of H0 against

Ha: p > p0 is P(Z ≥ z)
z

Ha: p < p0 is P(Z ≤ z)
z

Ha: p �= p0 is 2P(Z ≥ |z|)
z

We recommend the large-sample z significance test as long as the expected
number of successes, np0, and the expected number of failures, n(1 − p0), are
both at least 10. If this rule of thumb is not met, or if the population is less
than 20 times as large as the sample, other procedures should be used. One
such approach is to use the binomial distribution as we did with the sign test.

LOOK BACK
sign test for matched
pairs, page 439

Here is a large-sample example.
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E 8.3 Work stress. According to the National Institute for Occupational
Safety and Health,7 job stress poses a major threat to the health of workers.
A national survey of restaurant employees found that 75% said that work
stress had a negative impact on their personal lives.8 A sample of 100 em-
ployees of a restaurant chain finds that 68 answer “Yes” when asked, “Does
work stress have a negative impact on your personal life?” Is this good rea-
son to think that the proportion of all employees of this chain who would say
“Yes” differs from the national proportion p0 = 0.75?

To answer this question, we test

H0: p = 0.75

Ha: p �= 0.75

The expected numbers of “Yes” and “No” responses are 100 × 0.75 = 75 and
100 × 0.25 = 25. Both are greater than 10, so we can use the z test. The test
statistic is

z = p̂ − p0√
p0(1 − p0)

n

= 0.68 − 0.75√
(0.75)(0.25)

100

= −1.62

From Table A we find P(Z ≤ −1.62) = 0.0526. The P-value is the area in both
tails, P = 2 × 0.0526 = 0.1052. Figure 8.2 displays the P-value as an area un-
der the standard Normal curve. We conclude that the chain restaurant data
are compatible with the survey results (p̂ = 0.68, z = −1.62, P = 0.11).

–1.62 1.62

P -value = 0.11

FIGURE 8.2 The P-value for
Example 8.3.

Figure 8.3 gives computer output from Minitab and CrunchIt! for this
example. Note that for some entries software gives many more digits than we

CAUTION

! need. You should decide how many digits are important for your analysis. In
general, we will round proportions to two digits, for example, 0.68, and non-
significant P-values to two digits, for example, P = 0.11.
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FIGURE 8.3 Minitab and
CrunchIt! output for Example
8.3. By default, Minitab performs
a test using the binomial
distribution. The large-sample
significance test shown in the
figure can be requested as an
option.

In this example we have arbitrarily chosen to associate the response “Yes”
that work stress has a negative impact on the respondent’s personal life with
success and “No” with failure. Suppose we reversed the choice. If we observed
that 68 respondents said “Yes,” then the other 100 − 68 = 32 people said “No.”
Let’s repeat the significance test with “No” as the success outcome. The national
comparison value for the significance test is now 25%, the proportion in the
national survey who responded “No.”

•

•
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E 8.4 Work stress, revisited. A sample of 100 restaurant workers were
asked whether or not work stress had a negative impact on their personal
lives and 32 of them responded “No.” A large national survey reported that
25% of workers reported a negative impact. We test the null hypothesis

H0: p = 0.25

against

Ha: p �= 0.25

The test statistic is

z = p̂ − 0.25√
(0.25)(0.75)

100

= 0.32 − 0.25√
(0.25)(0.75)

100

= 1.62

Using Table A, we find that P = 0.11.

When we interchanged “Yes” and “No” (or success and failure), we simply
changed the sign of the test statistic z. The P-value remained the same. These
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facts are true in general. Our conclusion does not depend on an arbitrary choice
of success and failure.

The results of our significance test have limited use in this example, as in
many cases of inference about a single parameter. Of course, we do not expect
the experience of the restaurant workers to be exactly the same as that of the
workers in the national survey. If the sample of restaurant workers is sufficiently

CAUTION

! large, we will have sufficient power to detect a very small difference. On the other
hand, if our sample size is very small, we may be unable to detect differences that
could be very important. For these reasons we prefer to include a confidence
interval as part of our analysis.

Confidence intervals provide additional information
To see what other values of p are compatible with the sample results, we will
calculate a confidence interval.

•

•
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E 8.5 Work stress, continued. The restaurant worker survey in Example 8.3
found that 68 of a sample of 100 employees agreed that work stress had a neg-
ative impact on their personal lives. That is, the sample size is n = 100 and
the count of successes is X = 68. Because the number of successes and the
number of failures are both at least 15, we will use the large-sample proce-
dure to compute a 95% confidence interval. The sample proportion is

p̂ = X
n

= 68
100

= 0.68

The standard error is

SEp̂ =
√

p̂(1 − p̂)

n

=
√

(0.68)(1 − 0.68)

100
= 0.0466

The z critical value for 95% confidence is z∗ = 1.96, so the margin of error is

m = z∗SEp̂

= (1.96)(0.0466)

= 0.091

The confidence interval is

p̂ ± m = 0.68 ± (1.96)(0.0466)

= 0.68 ± 0.09

= (0.59, 0.77)

We are 95% confident that between 59% and 77% of the restaurant chain’s
employees feel that work stress is damaging their personal lives.
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The confidence interval of Example 8.5 is much more informative than the
significance test of Example 8.3. We have determined the values of p that are
consistent with the observed results. Note that the standard error used for
the confidence interval is estimated from the data, whereas the denominator
in the test statistic z is based on the value assumed in the null hypothesis. A
consequence of this fact is that the correspondence between the significance
test result and the confidence interval is no longer exact. However, the cor-
respondence is still very close. The confidence interval (0.59, 0.77) gives an
approximate range of p0’s that would not be rejected by a test at the α = 0.05
level of significance. We would not be surprised if the true proportion of restau-
rant workers who would say that work stress has a negative impact on their
lives was as low as 60% or as high as 75%.

We do not often use significance tests for a single proportion, because it is
uncommon to have a situation where there is a precise p0 that we want to test.
For physical experiments such as coin tossing or drawing cards from a well-

CAUTION

!
shuffled deck, probability arguments lead to an ideal p0. Even here, however, it
can be argued, for example, that no real coin has a probability of heads exactly
equal to 0.5. Data from past large samples can sometimes provide a p0 for the
null hypothesis of a significance test. In some types of epidemiology research,
for example, “historical controls” from past studies serve as the benchmark
for evaluating new treatments. Medical researchers argue about the validity
of these approaches, because the past never quite resembles the present. In
general, we prefer comparative studies whenever possible.

USE YOUR KNOWLEDGE
8.3 Working while enrolled in school. A 1993 nationwide survey by the

National Center for Education Statistics reports that 72% of all under-
graduates work while enrolled in school.9 You decide to test whether
this percent is different at your university. In your random sample of
100 students, 77 said they were currently working.

(a) Give the null and alternative hypotheses for this study.

(b) Carry out the significance test. Report the test statistic and
P-value.

(c) Does it appear that the percent of students working at your uni-
versity is different at the α = 0.05 level?

8.4 Owning a cell phone, continued. Refer to Exercise 8.1 (page 490).
It was reported that cell phone ownership by undergraduate students
in 2003 was 83%. Do the sample data in 2004 give good evidence that
this percent has increased?

(a) Give the null and alternative hypotheses.

(b) Carry out the significance test. Report the test statistic and the
P-value.

(c) State your conclusion using α = 0.05.
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Choosing a sample size
In Chapter 6, we showed how to choose the sample size n to obtain a confidence
interval with specified margin of error m for a Normal mean. Because we areLOOK BACK

choosing the sample
size, page 364

using a Normal approximation for inference about a population proportion,
sample size selection proceeds in much the same way.

Recall that the margin of error for the large-sample confidence interval for
a population proportion is

m = z∗SEp̂ = z∗
√

p̂(1 − p̂)

n

Choosing a confidence level C fixes the critical value z∗. The margin of error
also depends on the value of p̂ and the sample size n. Because we don’t know
the value of p̂ until we gather the data, we must guess a value to use in the cal-
culations. We will call the guessed value p∗. There are two common ways to
get p∗:

1. Use the sample estimate from a pilot study or from similar studies done
earlier.

2. Use p∗ = 0.5. Because the margin of error is largest when p̂ = 0.5, this choice
gives a sample size that is somewhat larger than we really need for the confi-
dence level we choose. It is a safe choice no matter what the data later show.

Once we have chosen p∗ and the margin of error m that we want, we can find
the n we need to achieve this margin of error. Here is the result.

SAMPLE SIZE FOR DESIRED MARGIN OF ERROR

The level C confidence interval for a proportion p will have a margin of
error approximately equal to a specified value m when the sample size
satisfies

n =
(

z∗

m

)2

p∗(1 − p∗)

Here z∗ is the critical value for confidence C, and p∗ is a guessed value
for the proportion of successes in the future sample.

The margin of error will be less than or equal to m if p∗ is chosen to be
0.5. The sample size required when p∗ = 0.5 is

n = 1
4

(
z∗

m

)2

The value of n obtained by this method is not particularly sensitive to the
choice of p∗ when p∗ is fairly close to 0.5. However, if the value of p is likely to
be smaller than about 0.3 or larger than about 0.7, use of p∗ = 0.5 may result
in a sample size that is much larger than needed.
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E 8.6 Planning a survey of students. A large university is interested in as-
sessing student satisfaction with the overall campus environment. The plan
is to distribute a questionnaire to an SRS of students, but before proceeding,
the university wants to determine how many students to sample. The ques-
tionnaire asks about a student’s degree of satisfaction with various student
services, each measured on a five-point scale. The university is interested in
the proportion p of students who are satisfied (that is, who choose either “sat-
isfied” or “very satisfied,” the two highest levels on the five-point scale).

The university wants to estimate p with 95% confidence and a margin of
error less than or equal to 3%, or 0.03. For planning purposes, they are willing
to use p∗ = 0.5. To find the sample size required,

n = 1
4

(
z∗

m

)2

= 1
4

[
1.96
0.03

]2

= 1067.1

Round up to get n = 1068. (Always round up. Rounding down would give a
margin of error slightly greater than 0.03.)

Similarly, for a 2.5% margin of error we have (after rounding up)

n = 1
4

[
1.96

0.025

]2

= 1537

and for a 2% margin of error,

n = 1
4

[
1.96
0.02

]2

= 2401

News reports frequently describe the results of surveys with sample sizes be-
tween 1000 and 1500 and a margin of error of about 3%. These surveys gener-
ally use sampling procedures more complicated than simple random sampling,
so the calculation of confidence intervals is more involved than what we have
studied in this section. The calculations in Example 8.6 nonetheless show in
principle how such surveys are planned.

In practice, many factors influence the choice of a sample size. The follow-
ing example illustrates one set of factors.

•
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E 8.7 Assessing interest in Pilates classes. The Division of Recreational
Sports (Rec Sports) at a major university is responsible for offering compre-
hensive recreational programs, services, and facilities to the students. Rec
Sports is continually examining its programs to determine how well it is
meeting the needs of the students. Rec Sports is considering adding some
new programs and would like to know how much interest there is in a new
exercise program based on the Pilates method.10 They will take a survey of
undergraduate students. In the past, they emailed short surveys to all un-
dergraduate students. The response rate obtained in this way was about 5%.
This time they will send emails to a simple random sample of the students
and will follow up with additional emails and eventually a phone call to get
a higher response rate. Because of limited staff and the work involved with
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the follow-up, they would like to use a sample size of about 200. One of the
questions they will ask is “Have you ever heard about the Pilates method of
exercise?”

The primary purpose of the survey is to estimate various sample proportions
for undergraduate students. Will the proposed sample size of n = 200 be ade-
quate to provide Rec Sports with the needed information? To address this ques-
tion, we calculate the margins of error of 95% confidence intervals for various
values of p̂.

•

•
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E 8.8 Margins of error. In the Rec Sports survey, the margin of error of a

95% confidence interval for any value of p̂ and n = 200 is

m = z∗SEp̂

= 1.96

√
p̂(1 − p̂)

200

= 0.139
√

p̂(1 − p̂)

The results for various values of p̂ are

p̂ m p̂ m

0.05 0.030 0.60 0.068
0.10 0.042 0.70 0.064
0.20 0.056 0.80 0.056
0.30 0.064 0.90 0.042
0.40 0.068 0.95 0.030
0.50 0.070

Rec Sports judged these margins of error to be acceptable, and they used
a sample size of 200 in their survey.

The table in Example 8.8 illustrates two points. First, the margins of error
for p̂ = 0.05 and p̂ = 0.95 are the same. The margins of error will always be the
same for p̂ and 1 − p̂. This is a direct consequence of the form of the confidence
interval. Second, the margin of error varies only between 0.064 and 0.070 as p̂
varies from 0.3 to 0.7, and the margin of error is greatest when p̂ = 0.5, as we
claimed earlier. It is true in general that the margin of error will vary relatively
little for values of p̂ between 0.3 and 0.7. Therefore, when planning a study, it
is not necessary to have a very precise guess for p. If p∗ = 0.5 is used and the
observed p̂ is between 0.3 and 0.7, the actual interval will be a little shorter than
needed but the difference will be small.

Again it is important to emphasize that these calculations consider only the

CAUTION

! effects of sampling variability that are quantified in the margin of error. Other
sources of error, such as nonresponse and possible misinterpretation of ques-
tions, are not included in the table of margins of error for Example 8.8. Rec
Sports is trying to minimize these kinds of errors. They did a pilot study us-
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ing a small group of current users of their facilities to check the wording of the
questions, and they devised a careful plan to follow up with the students who
did not respond to the initial email.

USE YOUR KNOWLEDGE
8.5 Confidence level and sample size. Refer to Example 8.6 (page 499).

Suppose the university was interested in a 90% confidence interval
with margin of error 0.03. Would the required sample size be smaller
or larger than 1068 students? Verify this by performing the calcula-
tion.

8.6 Calculating the sample size. Refer to Exercise 8.3 (page 497). You
plan to do a larger survey such that the 95% margin of error is no
larger than 0.02. Using the results from the small survey of 100 stu-
dents, what sample size would you use?

SECTION 8.1 Summary

Inference about a population proportion p from an SRS of size n is based on the
sample proportion p̂ = X/n. When n is large, p̂ has approximately the Normal
distribution with mean p and standard deviation

√
p(1 − p)/n.

For large samples, the margin of error for confidence level C is

m = z∗SEp̂

where z∗ is the value for the standard Normal density curve with area C between
−z∗ and z∗, and the standard error of p̂ is

SEp̂ =
√

p̂(1 − p̂)

n

The level C large-sample confidence interval is

p̂ ± m

We recommend using this interval for 90%, 95% and 99% confidence whenever
the number of successes and the number of failures are both at least 15. When
sample sizes are smaller, alternative procedures such as the plus four estimate
of the population proportion are recommended.

The sample size required to obtain a confidence interval of approximate mar-
gin of error m for a proportion is found from

n =
(

z∗

m

)2

p∗(1 − p∗)

where p∗ is a guessed value for the proportion, and z∗ is the standard Normal
critical value for the desired level of confidence. To ensure that the margin of
error of the interval is less than or equal to m no matter what p̂ may be, use

n = 1
4

(
z∗

m

)2
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Tests of H0: p = p0 are based on the z statistic

z = p̂ − p0√
p0(1 − p0)

n

with P-values calculated from the N(0, 1) distribution. Use this procedure when
the expected number of successes, np0, and the expected number of failures,
n(1 − p0), are both at least 10.

SECTION 8.1 Exercises
For Exercises 8.1 and 8.2, see pages 490 and 491; for
Exercises 8.3 and 8.4, see page 497; and for Exercises 8.5
and 8.6, see page 501.

8.7 Can we use the large-sample confidence interval?
In each of the following circumstances state whether
you would use the large-sample confidence interval.

(a) n = 50, X = 30.

(b) n = 90, X = 15.

(c) n = 10, X = 2.

(d) n = 60, X = 50.

(e) n = 25, X = 15.

8.8 More on whether to use the large-sample
confidence interval. In each of the following
circumstances state whether you would use the
large-sample confidence interval.

(a) n = 8, X = 4.

(b) n = 500, X = 13.

(c) n = 40, X = 18.

(d) n = 15, X = 15.

(e) n = 50, X = 22.

8.9 What’s wrong? Explain what is wrong with each of
the following:

(a) An approximate 99% confidence interval for
an unknown proportion p is p̂ plus or minus its
standard error.

(b) When performing a large-sample significance
test for a population proportion, the t distribution is
used to compute the P-value.

(c) A significance test is used to evaluate H0 : p̂ = 0.2
versus the two-sided alternative.

8.10 p̂ and the Normal distribution. Consider the
binomial setting with n = 60 and p = 0.4.

(a) The sample proportion p̂ will have a distribution
that is approximately Normal. Give the mean and
the standard deviation of this Normal distribution.

(b) Draw a sketch of this Normal distribution. Mark
the location of the mean.

(c) Find a value p∗ for which the probability is 95%
that p̂ will be between ±p∗. Mark these two values
on your sketch.

8.11 Gambling and college athletics. Gambling is
an issue of great concern to those involved in
intercollegiate athletics. Because of this, the
National Collegiate Athletic Association (NCAA)
surveyed student-athletes concerning their
gambling-related behaviors.11 There were 5594
Division I male athletes in the survey. Of these, 3547
reported participation in some gambling behavior.
This included playing cards, betting on games of
skill, buying lottery tickets, and betting on sports.

(a) Find the sample proportion and the large-
sample margin of error for 95% confidence. Explain
in simple terms the meaning of the 95%.

(b) Because of the way that the study was designed
to protect the anonymity of the student-athletes
who responded, it was not possible to calculate the
number of students who were asked to respond
but did not. Does this fact affect the way that
you interpret the results? Write a short paragraph
explaining your answer.

8.12 Gambling and female athletes. In the study
described in the previous exercise, 1447 out of
a total of 3469 female student-athletes reported
participation in some gambling activity.

(a) Use the large-sample methods to find an estimate
of the true proportion with a 95% confidence
interval.

(b) The margin of error for this sample is not the
same as the margin of error calculated for the
previous exercise. Explain why.
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8.13 Do students report Internet sources? The
National Survey of Student Engagement found
that 87% of students report that their peers at least
“sometimes” copy information from the Internet in
their papers without reporting the source.12 Assume
that the sample size is 430,000.

(a) Find the margin of error for 99% confidence.

(b) Here are some items from the report that
summarizes the survey. More than 430,000 students
from 730 four-year colleges and universities
participated. The average response rate was 43%
and ranged from 15% to 89%. Institutions pay a
participation fee of between $3000 and $7500 based
on the size of their undergraduate enrollment.
Discuss these as sources of error in this study. How
do you think these errors would compare with the
error that you calculated in part (a)?

8.14 Do you enjoy driving your car? The Pew Research
Center recently polled n = 1048 U.S. drivers and
found that 69% enjoyed driving their automobiles.13

(a) Construct a 95% confidence interval for the
proportion of U.S. drivers who enjoy driving their
automobiles.

(b) In 1991, a Gallup Poll reported this percent to be
79%. Using the data from this poll, test the claim that
the percent of drivers who enjoy driving their cars
has declined since 1991. Report the large-sample z
statistic and its P-value.

8.15 Getting angry at other drivers. Refer to
Exercise 8.14. The same Pew Poll found that
38% of the respondents “shouted, cursed or made
gestures to other drivers” in the last year.

(a) Construct a 95% confidence interval for the true
proportion of U.S. drivers who did these actions in
the last year.

(b) Does the fact that the respondent is self-
reporting these actions affect the way that you
interpret the results? Write a short paragraph
explaining your answer.

8.16 Cheating during a test. A national survey of
high school students conducted by the Josephson
Institute of Ethics was sent to 37,328 students, and
24,142 were returned. One question asked students
if they had cheated during a test in the last school
year.14 Of those who returned the survey, 9054
responded that they had cheated at least two times
in the last year.

(a) What is the sample proportion of respondents
who cheated at least twice?

(b) Compute the 95% confidence interval for the
true proportion of students who have cheated on at
least two tests in the last year.

(c) Compute the nonresponse rate for this study.
Does this influence how you interpret these results?
Write a short discussion of this issue.

8.17 C
H

ALLENG
E Long sermons. The National Congregations

Study collected data in a one-hour interview
with a key informant—that is, a minister, priest,
rabbi, or other staff person or leader.15 One question
asked concerned the length of the typical sermon.
For this question 390 out of 1191 congregations
reported that the typical sermon lasted more than
30 minutes.

(a) Use the large-sample inference procedures to
estimate the true proportion for this question with a
95% confidence interval.

(b) The respondents to this question were not
asked to use a stopwatch to record the lengths of a
random sample of sermons at their congregations.
They responded based on their impressions of
the sermons. Do you think that ministers, priests,
rabbis, or other staff persons or leaders might
perceive sermon lengths differently from the people
listening to the sermons? Discuss how your ideas
would influence your interpretation of the results of
this study.

8.18 Confidence level and interval width. Refer to
Exercise 8.17. Would a 90% confidence interval be
wider or narrower than the one that you found in
that exercise? Verify your results by computing the
interval.

8.19 Student loans larger than $30,000. A survey
of 1280 student loan borrowers found that 192
had loans totaling more than $30,000 for their
undergraduate education.16 Give a 95% confidence
interval for the proportion of all student loan
borrowers who have loans of more than $30,000 for
their undergraduate education.

8.20 More on confidence level and interval width.
Refer to Exercise 8.19. Would a 99% confidence
interval be wider or narrower than the one that
you found in that exercise? Verify your results by
computing the interval.

8.21 Can we use the z test? In each of the following cases
state whether or not the Normal approximation to
the binomial should be used for a significance test
on the population proportion p.

(a) n = 30 and H0: p = 0.2.
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(b) n = 30 and H0: p = 0.6.

(c) n = 100 and H0: p = 0.5.

(d) n = 200 and H0: p = 0.01.

8.22 Instant versus fresh-brewed coffee. A matched
pairs experiment compares the taste of instant
versus fresh-brewed coffee. Each subject tastes
two unmarked cups of coffee, one of each type, in
random order and states which he or she prefers.
Of the 40 subjects who participate in the study, 12
prefer the instant coffee. Let p be the probability
that a randomly chosen subject prefers fresh-
brewed coffee to instant coffee. (In practical terms,
p is the proportion of the population who prefer
fresh-brewed coffee.)

(a) Test the claim that a majority of people prefer the
taste of fresh-brewed coffee. Report the large-sample
z statistic and its P-value.

(b) Draw a sketch of a standard Normal curve and
mark the location of your z statistic. Shade the
appropriate area that corresponds to the P-value.

(c) Is your result significant at the 5% level? What
is your practical conclusion?

8.23 College students and dieting. For a study of
unhealthy eating behaviors, 267 college women
aged 18 to 25 years were surveyed.17 Of these, 69%
reported that they had been on a diet sometime
during the past year. Give a 95% confidence interval
for the true proportion of college women aged 18 to
25 years in this population who dieted last year.

8.24 High school students and dieting. In the study
described in the previous exercise, the researchers
also surveyed 266 high school students who were
18 years old. In this sample 58.3% reported that
they had dieted sometime in the past year. Give a
95% confidence interval for the true proportion of
18-year-old high school students in this population
who were on a diet sometime during the past year.

8.25 Pet ownership among older adults. In a study of
the relationship between pet ownership and physical
activity in older adults,18 594 subjects reported that
they owned a pet, while 1939 reported that they
did not. Give a 95% confidence interval for the
proportion of older adults in this population who
are pet owners.

8.26 C
H

ALLENG
E Annual income of older adults. In the

study described in the previous exercise,
1434 subjects out of a total of 2533 reported that
their annual income was $25,000 or more.

(a) Give a 95% confidence interval for the true
proportion of subjects in this population with
incomes of at least $25,000.

(b) Do you think that some respondents might
not give truthful answers to a question about
their income? Discuss the possible effects on your
estimate and confidence interval.

(c) In the previous exercise, the question analyzed
concerned pet ownership. Compare this question
with the income question with respect to the
possibility that the respondents were not truthful.

8.27 Dogs sniffing out cancer. A 2005 study by
researchers set out to determine whether dogs
could be trained to detect lung and breast cancer
by sniffing exhaled breath samples.19 For the breast
cancer portion, breath samples from 6 cancer
patients and 17 cancer-free volunteers were used.
Each dog had to sniff five breath samples. 125 of the
trials involved one cancer sample and four control
samples. A correct response on these trials involved
lying down next to the sample from the breast cancer
patient. Collectively, the dogs correctly identified
the cancer sample in 110 of these trials. Construct
a 95% confidence interval for the true proportion
of times these dogs will correctly identify a breast
cancer sample.

8.28 C
H

ALLENG
E Bicycle accidents and alcohol. In the

United States approximately 900 people die
in bicycle accidents each year. One study examined
the records of 1711 bicyclists aged 15 or older who
were fatally injured in bicycle accidents between
1987 and 1991 and were tested for alcohol. Of
these, 542 tested positive for alcohol (blood alcohol
concentration of 0.01% or higher).20

(a) Summarize the data with appropriate
descriptive statistics.

(b) To do statistical inference for these data, we
think in terms of a model where p is a parameter
that represents the probability that a tested bicycle
rider is positive for alcohol. Find a 99% confidence
interval for p.

(c) Can you conclude from your analysis of this
study that alcohol causes fatal bicycle accidents?
Explain.

(d) In this study 386 bicyclists had blood alcohol
levels above 0.10%, a level defining legally drunk
in many states at the time. Give a 99% confidence
interval for the proportion who were legally drunk
according to this criterion.

8.29 Tossing a coin 10,000 times! The South African
mathematician John Kerrich, while a prisoner of
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war during World War II, tossed a coin 10,000 times
and obtained 5067 heads.

(a) Is this significant evidence at the 5% level that
the probability that Kerrich’s coin comes up heads
is not 0.5? Use a sketch of the standard Normal
distribution to illustrate the P-value.

(b) Use a 95% confidence interval to find the range
of probabilities of heads that would not be rejected
at the 5% level.

8.30 Is there interest in a new product? One of your
employees has suggested that your company develop
a new product. You decide to take a random sample
of your customers and ask whether or not there
is interest in the new product. The response is on
a 1 to 5 scale with 1 indicating “definitely would
not purchase”; 2, “probably would not purchase”;
3, “not sure”; 4, “probably would purchase”; and 5,
“definitely would purchase.” For an initial analysis,
you will record the responses 1, 2, and 3 as “No” and
4 and 5 as “Yes.” What sample size would you use if
you wanted the 95% margin of error to be 0.15 or
less?

8.31 More information is needed. Refer to the previous
exercise. Suppose that after reviewing the results of
the previous survey, you proceeded with preliminary
development of the product. Now you are at the
stage where you need to decide whether or not to
make a major investment to produce and market
it. You will use another random sample of your
customers but now you want the margin of error to

be smaller. What sample size would you use if you
wanted the 95% margin of error to be 0.075 or less?

8.32 Sample size needed for an evaluation. You are
planning an evaluation of a semester-long alcohol
awareness campaign at your college. Previous
evaluations indicate that about 25% of the students
surveyed will respond “Yes” to the question “Did
the campaign alter your behavior toward alcohol
consumption?” How large a sample of students
should you take if you want the margin of error for
95% confidence to be about 0.1?

8.33 C
H

ALLENG
E Sample size needed for an evaluation,

continued. The evaluation in the previous
exercise will also have questions that have not
been asked before, so you do not have previous
information about the possible value of p. Repeat
the calculation above for the following values of
p∗: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.
Summarize the results in a table and graphically.
What sample size will you use?

8.34 Are the customers dissatisfied? An automobile
manufacturer would like to know what proportion
of its customers are dissatisfied with the service
received from their local dealer. The customer
relations department will survey a random sample
of customers and compute a 95% confidence interval
for the proportion that are dissatisfied. From past
studies, they believe that this proportion will be
about 0.15. Find the sample size needed if the
margin of error of the confidence interval is to be no
more than 0.02.

8.2 Comparing Two Proportions
Because comparative studies are so common, we often want to compare the
proportions of two groups (such as men and women) that have some character-
istic. In the previous section we used data to estimate the proportion of college
students who were frequent binge drinkers. Suppose we also wanted to com-
pare the binge-drinking behaviors across years or of men and women college
students. Our problem now concerns the comparison of two proportions.

We call the two groups being compared Population 1 and Population 2, and
the two population proportions of “successes” p1 and p2. The data consist of
two independent SRSs, of size n1 from Population 1 and size n2 from Popula-
tion 2. The proportion of successes in each sample estimates the corresponding
population proportion. Here is the notation we will use in this section:

Population Sample Count of Sample
Population proportion size successes proportion

1 p1 n1 X1 p̂1 = X1/n1

2 p2 n2 X2 p̂2 = X2/n2
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To compare the two populations, we use the difference between the two sample
proportions:

D = p̂1 − p̂2

When both sample sizes are sufficiently large, the sampling distribution of the
difference D is approximately Normal.

Inference procedures for comparing proportions are z procedures based on
the Normal approximation and on standardizing the difference D. The first step
is to obtain the mean and standard deviation of D. By the addition rule for
means, the mean of D is the difference of the means:LOOK BACK

addition rule for
means, page 278

addition rule for
variances, page 282

μD = μp̂1 − μp̂2 = p1 − p2

That is, the difference D = p̂1 − p̂2 between the sample proportions is an unbi-
ased estimator of the population difference p1 − p2. Similarly, the addition rule
for variances tells us that the variance of D is the sum of the variances:

σ 2
D = σ 2

p̂1
+ σ 2

p̂2

= p1(1 − p1)

n1
+ p2(1 − p2)

n2

Therefore, when n1 and n2 are large, D is approximately Normal with mean
μD = p1 − p2 and standard deviation

σD =
√

p1(1 − p1)

n1
+ p2(1 − p2)

n2

Large-sample confidence interval
for a difference in proportions
To obtain a confidence interval for p1 − p2, we once again replace the unknown
parameters in the standard deviation by estimates to obtain an estimated stan-
dard deviation, or standard error. Here is the confidence interval we want.

LARGE-SAMPLE CONFIDENCE INTERVAL FOR COMPARING
TWO PROPORTIONS

Choose an SRS of size n1 from a large population having proportion p1

of successes and an independent SRS of size n2 from another population
having proportion p2 of successes. The estimate of the difference in the
population proportions is

D = p̂1 − p̂2

The standard error of D is

SED =
√

p̂1(1 − p̂1)

n1
+ p̂2(1 − p̂2)

n2

and the margin of error for confidence level C is

m = z∗SED



8.2 Comparing Two Proportions
•

507

where z∗ is the value for the standard Normal density curve with area C
between −z∗ and z∗. An approximate level C confidence interval for
p1 − p2 is

D ± m

Use this method for 90%, 95%, or 99% confidence when the number of
successes and the number of failures in each sample are at least 10.

In Example 8.1 (page 489) we estimated the proportion of college students
who engage in frequent binge drinking. Are there characteristics of these stu-
dents that relate to this behavior? For example, how similar is this behavior in
men and women? This kind of follow-up question is natural in many studies
like this one. We will first use a confidence interval to examine it. In the binge-
drinking study, data were also summarized by gender:

Population n X p̂ = X/n

1 (men) 5,348 1,392 0.260
2 (women) 8,471 1,748 0.206

Total 13,819 3,140 0.227

In this table the p̂ column gives the sample proportions of frequent binge
drinkers. The last line gives the totals that we studied in Example 8.1.
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E 8.9 Gender and the proportion of frequent binge drinkers. Let’s find
a 95% confidence interval for the difference between the proportions of men
and of women who are frequent binge drinkers. Output from Minitab and
CrunchIt! is given in Figure 8.4. To perform the computations using our for-
mulas, we first find the difference in the proportions:

D = p̂1 − p̂2

= 0.260 − 0.206

= 0.054

Then we calculate the standard error of D:

SED =
√

p̂1(1 − p̂1)

n1
+ p̂2(1 − p̂2)

n2

=
√

(0.260)(0.740)

5348
+ (0.206)(0.794)

8471

= 0.00744

For 95% confidence, we have z∗ = 1.96, so the margin of error is

m = z∗SED = (1.96)(0.00744)

= 0.015
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FIGURE 8.4 Minitab and
CrunchIt! output for Example
8.9.

•

The 95% confidence interval is

D ± m = 0.054 ± 0.015

= (0.039, 0.069)

With 95% confidence we can say that the difference in the proportions is be-
tween 0.039 and 0.069. Alternatively, we can report that the men are 5.4%
more likely to be frequent binge drinkers, with a 95% margin of error of 1.5%.

In this example men and women were not sampled separately. The sample
sizes are in fact random and reflect the gender distributions of the colleges that
were randomly chosen. Two-sample significance tests and confidence intervals
are still approximately correct in this situation. The authors of the report note
that women are somewhat overrepresented partly because 6 of the 140 colleges
in the study were all-women institutions.

In the example above we chose men to be the first population. Had we cho-
sen women to be the first population, the estimate of the difference would be
negative (−0.054). Because it is easier to discuss positive numbers, we gener-
ally choose the first population to be the one with the higher proportion.
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USE YOUR KNOWLEDGE
8.35 Gender and commercial preference. A study was designed to com-

pare two energy drink commercials. Each participant was shown the
commercials in random order and asked to select the better one. Com-
mercial A was selected by 45 out of 100 women and 80 out of 140 men.
Give an estimate of the difference in gender proportions that favored
Commercial A. Also construct a large-sample 95% confidence interval
for this difference.

8.36 Gender and commercial preference, revisited. Refer to Exercise
8.35. Construct a 95% confidence interval for the difference in propor-
tions that favor Commercial B. Explain how you could have obtained
these results from the calculations you did in Exercise 8.35.

BEYOND THE BASICS

Plus Four Confidence Interval for a Difference in Proportions

Just as in the case of estimating a single proportion, a small modification of
the sample proportions can greatly improve the accuracy of confidence inter-
vals.21 As before, we add 2 successes and 2 failures to the actual data, but now
we divide them equally between the two samples. That is, we add 1 success and
1 failure to each sample. We will again call the estimates produced by adding
hypothetical observations plus four estimates. The plus four estimates of the
two population proportions are

p̃1 = X1 + 1
n1 + 2

and p̃2 = X2 + 1
n2 + 2

The estimated difference between the populations is

D̃ = p̃1 − p̃2

and the standard deviation of D̃ is approximately

σD̃ =
√

p1(1 − p1)

n1 + 2
+ p2(1 − p2)

n2 + 2

This is similar to the formula for σD, adjusted for the sizes of the modified
samples.

To obtain a confidence interval for p1 − p2, we once again replace the un-
known parameters in the standard deviation by estimates to obtain an esti-
mated standard deviation, or standard error. Here is the confidence interval
we want.

PLUS FOUR CONFIDENCE INTERVAL FOR COMPARING
TWO PROPORTIONS

Choose an SRS of size n1 from a large population having proportion
p1 of successes and an independent SRS of size n2 from another
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population having proportion p2 of successes. The plus four estimate
of the difference in proportions is

D̃ = p̃1 − p̃2

where

p̃1 = X1 + 1
n1 + 2

p̃2 = X2 + 1
n2 + 2

The standard error of D̃ is

SED̃ =
√

p̃1(1 − p̃1)

n1 + 2
+ p̃2(1 − p̃2)

n2 + 2

and the margin of error for confidence level C is

m = z∗SED̃

where z∗ is the value for the standard Normal density curve with area C
between −z∗ and z∗. An approximate level C confidence interval for
p1 − p2 is

D̃ ± m

Use this method for 90%, 95%, or 99% confidence when both sample
sizes are at least 5.
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E 8.10 Gender and sexual maturity. In studies that look for a difference
between genders, a major concern is whether or not apparent differences are
due to other variables that are associated with gender. Because boys mature
more slowly than girls, a study of adolescents that compares boys and girls
of the same age may confuse a gender effect with an effect of sexual maturity.
The “Tanner score” is a commonly used measure of sexual maturity.22 Sub-
jects are asked to determine their score by placing a mark next to a rough
drawing of an individual at their level of sexual maturity. There are five dif-
ferent drawings, so the score is an integer between 1 and 5.

A pilot study included 12 girls and 12 boys from a population that will be
used for a large experiment. Four of the boys and three of the girls had Tanner
scores of 4 or 5, a high level of sexual maturity. Let’s find a 95% confidence
interval for the difference between the proportions of boys and girls who have
high (4 or 5) Tanner scores in this population. The numbers of successes and
failures in both groups are not all at least 10, so the large-sample approach is
not recommended. On the other hand, the sample sizes are both at least 5, so
the plus four method is appropriate.

The plus four estimate of the population proportion for boys is

p̃1 = X1 + 1
n1 + 2

= 4 + 1
12 + 2

= 0.3571
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For girls, the estimate is

p̃2 = X2 + 1
n2 + 2

= 3 + 1
12 + 2

= 0.2857

Therefore, the estimate of the difference is

D̃ = p̃1 − p̃2 = 0.3571 − 0.2857 = 0.071

The standard error of D̃ is

SED̃ =
√

p̃1(1 − p̃1)

n1 + 2
+ p̃2(1 − p̃2)

n2 + 2

=
√

(0.3571)(1 − 0.3571)

12 + 2
+ (0.2857)(1 − 0.2857)

12 + 2

= 0.1760

For 95% confidence, z∗ = 1.96 and the margin of error is

m = z∗SED̃ = (1.96)(0.1760) = 0.345

The confidence interval is

D̃ ± m = 0.071 ± 0.345 = (−0.274, 0.416)

With 95% confidence we can say that the difference in the proportions is be-
tween −0.274 and 0.416. Alternatively, we can report that the difference in
the proportions of boys and girls with high Tanner scores in this population
is 7.1% with a 95% margin of error of 34.5%.

The very large margin of error in this example indicates that either boys
or girls could be more sexually mature in this population and that the differ-
ence could be quite large. Although the interval includes the possibility that there

CAUTION

! is no difference, corresponding to p1 = p2 or p1 − p2 = 0, we must be very cau-
tious about concluding that there is no difference in the proportions. With small
sample sizes such as these, the data do not provide us with a lot of information
for our inference. This fact is expressed quantitatively through the very large
margin of error.

Significance test for a difference in proportions
Although we prefer to compare two proportions by giving a confidence inter-
val for the difference between the two population proportions, it is sometimes
useful to test the null hypothesis that the two population proportions are the
same.

We standardize D = p̂1 − p̂2 by subtracting its mean p1 − p2 and then divid-
ing by its standard deviation

σD =
√

p1(1 − p1)

n1
+ p2(1 − p2)

n2
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If n1 and n2 are large, the standardized difference is approximately N(0, 1). For
the large-sample confidence interval we used sample estimates in place of the
unknown population values in the expression for σD. Although this approach
would lead to a valid significance test, we instead adopt the more common prac-
tice of replacing the unknown σD with an estimate that takes into account our
null hypothesis H0: p1 = p2. If these two proportions are equal, then we can
view all of the data as coming from a single population. Let p denote the com-
mon value of p1 and p2; then the standard deviation of D = p̂1 − p̂2 is

σD =
√

p(1 − p)

n1
+ p(1 − p)

n2

=
√

p(1 − p)

(
1
n1

+ 1
n2

)
We estimate the common value of p by the overall proportion of successes

in the two samples:

p̂ = number of successes in both samples
number of observations in both samples

= X1 + X2

n1 + n2

This estimate of p is called the pooled estimate because it combines, or pools,pooled estimate of p
the information from both samples.

To estimate σD under the null hypothesis, we substitute p̂ for p in the expres-
sion for σD. The result is a standard error for D that assumes H0: p1 = p2:

SEDp =
√

p̂(1 − p̂)

(
1
n1

+ 1
n2

)
The subscript on SEDp reminds us that we pooled data from the two samples
to construct the estimate.

SIGNIFICANCE TEST FOR COMPARING TWO PROPORTIONS

To test the hypothesis

H0: p1 = p2

compute the z statistic

z = p̂1 − p̂2

SEDp

where the pooled standard error is

SEDp =
√

p̂(1 − p̂)

(
1
n1

+ 1
n2

)
and where

p̂ = X1 + X2

n1 + n2
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In terms of a standard Normal random variable Z, the P-value for a test
of H0 against

Ha: p1 > p2 is P(Z ≥ z)
z

Ha: p1 < p2 is P(Z ≤ z)
z

Ha: p1 �= p2 is 2P(Z ≥ |z|)
z

This z test is based on the Normal approximation to the binomial distribu-
tion. As a general rule, we will use it when the number of successes and the
number of failures in each of the samples are at least 5.
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E 8.11 Gender and the proportion of frequent binge drinkers: the z
test. Are men and women college students equally likely to be frequent
binge drinkers? We examine the survey data in Example 8.9 (page 507) to
answer this question. Here is the data summary:

Population n X p̂ = X/n

1 (men) 5,348 1,392 0.260
2 (women) 8,471 1,748 0.206

Total 13,819 3,140 0.227

The sample proportions are certainly quite different, but we will perform
a significance test to see if the difference is large enough to lead us to be-
lieve that the population proportions are not equal. Formally, we test the
hypotheses

H0: p1 = p2

Ha: p1 �= p2

The pooled estimate of the common value of p is

p̂ = 1392 + 1748
5348 + 8471

= 3140
13,819

= 0.227

Note that this is the estimate on the bottom line of the data summary above.
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FIGURE 8.5 Minitab and
CrunchIt! output for Example
8.11. With Minitab, the option
“use pooled estimate of p for
test” was selected.

•

The test statistic is calculated as follows:

SEDp =
√

(0.227)(0.773)

(
1

5348
+ 1

8471

)
= 0.007316

z = p̂1 − p̂2

SEDp
= 0.260 − 0.206

0.007316
= 7.37

The P-value is 2P(Z ≥ 7.37). The largest value of z in Table A is 3.49, so
from this table we can conclude P < 2 × 0.0002 = 0.0004. Most software re-
ports this result as simply 0 or a very small number. Output from Minitab and
CrunchIt! is given in Figure 8.5. Minitab reports the P-value as 0.000. This
means that the calculated value is less than 0.0005; this is certainly a very
small number. CrunchIt! gives < 0.0001. The exact value is not particularly
important; it is clear that we should reject the null hypothesis. For most sit-
uations 0.001 (1 chance in 1000) is sufficiently small. We report: among col-
lege students in the study, 26.0% of the men and 20.6% of the women were
frequent binge drinkers; the difference is statistically significant (z = 7.37,
P < 0.001).

We could have argued that we expect the proportion to be higher for men
than for women in this example. This would justify using the one-sided alter-
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native Ha: p1 > p2. The P-value would be half of the value obtained for the two-
sided test. Because the z statistic is so large, this distinction is of no practical
importance.

USE YOUR KNOWLEDGE
8.37 Gender and commercial preference: the z test. Refer to Exer-

cise 8.35 (page 509). Test that the proportions of women and men
that liked Commercial A are the same versus the two-sided alterna-
tive at the 5% level.

8.38 Changing the alternative hypothesis. Refer to the previous exercise.
Does your conclusion change if you test whether the proportion of
men that favor Commercial A is larger than the proportion of females?
Explain.

BEYOND THE BASICS

Relative Risk

We summarized the comparison of the frequent binge-drinking proportions for
men and for women by reporting a confidence interval for the difference in
Example 8.9. Another way to summarize the comparison is to view each sample
proportion as the risk that a college student of that gender is a frequent bingerisk
drinker. We then compare these two risks with the ratio of the two proportions,
which is called the relative risk (RR) in many applications. Note that a relativerelative risk
risk of 1 means that the two proportions, p̂1 and p̂2, are equal. The procedure
for calculating confidence intervals for relative risk is based on the same kind
of principles that we have studied, but the details are somewhat more compli-
cated. Fortunately, we can leave the details to software and concentrate on in-
terpretation and communication of the results.
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E 8.12 Gender and the proportion of frequent binge drinkers: the rela-
tive risk. On page 507 we summarized the data on the proportions of men
and women who are frequent binge drinkers with the following table:

Population n X p̂ = X/n

1 (men) 5,348 1,392 0.260
2 (women) 8,471 1,748 0.206

Total 13,819 3,140 0.227

The relative risk is

RR = p̂1

p̂2
= 0.260

0.206
= 1.26
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Software gives the 95% confidence interval as 1.19 to 1.34. Men are 1.26 times
as likely as women to be frequent binge drinkers; the 95% confidence interval
is (1.19, 1.34).

In this example the confidence interval appears to be symmetric about the
estimate. If we reported the results with more accuracy (RR = 1.261, 95% con-
fidence interval = 1.186 to 1.341), we would see that the interval is not sym-
metric, and this is true in general.

SECTION 8.2 Summary

The large-sample estimate of the difference in two population proportions
is

D = p̂1 − p̂2

where p̂1 and p̂2 are the sample proportions

p̂1 = X1

n1
and p̂2 = X2

n2

The standard error of the difference D is

SED =
√

p̂1(1 − p̂1)

n1
+ p̂2(1 − p̂2)

n2

The margin of error for confidence level C is

m = z∗SED

where z∗ is the value for the standard Normal density curve with area C between
−z∗ and z∗. The large-sample level C confidence interval is

D ± m

We recommend using this interval for 90%, 95%, or 99% confidence when
the number of successes and the number of failures in both samples are all
at least 10. When sample sizes are smaller, alternative procedures such as the
plus four estimate of the difference in two population proportions are
recommended.

Significance tests of H0: p1 = p2 use the z statistic

z = p̂1 − p̂2

SEDp

with P-values from the N(0, 1) distribution. In this statistic,

SEDp =
√

p̂(1 − p̂)

(
1
n1

+ 1
n2

)
and p̂ is the pooled estimate of the common value of p1 and p2:

p̂ = X1 + X2

n1 + n2
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Relative risk is the ratio of two sample proportions:

RR = p̂1

p̂2

Confidence intervals for relative risk are often used to summarize the compar-
ison of two proportions.

SECTION 8.2 Exercises
For Exercises 8.35 and 8.36, see page 509; and for Exercises
8.37 and 8.38, see page 515.

8.39 Can we use the large-sample confidence interval?
In each of the following circumstances state whether
you would use the large-sample confidence interval.

(a) n1 = 30, n2 = 30, X1 = 10, and X2 = 15.

(b) n1 = 15, n2 = 10, X1 = 10, and X2 = 5.

(c) n1 = 25, n2 = 20, X1 = 11, and X2 = 8.

(d) n1 = 40, n2 = 40, X1 = 20, and X2 = 12.

(e) n1 = 50, n2 = 50, X1 = 40, and X2 = 45.

8.40 More on whether to use the large-sample
confidence interval. In each of the following
circumstances state whether you would use the
large-sample confidence interval.

(a) n1 = 25, n2 = 25, X1 = 12, and X2 = 8.

(b) n1 = 25, n2 = 25, X1 = 17, and X2 = 12.

(c) n1 = 60, n2 = 30, X1 = 30, and X2 = 15.

(d) n1 = 60, n2 = 55, X1 = 45, and X2 = 37.

(e) n1 = 200, n2 = 100, X1 = 128, and X2 = 94.

8.41 Comparing cell phone ownership in 2003 and
2004. In Exercise 8.4 (page 497), you were asked
to compare the 2004 proportion of cell phone
owners (89%) with the 2003 estimate (83%). It
would be more appropriate to compare these two
proportions using the methods of this section. Given
that the sample size of each SRS is 1200 students,
compare these two years with a significance test,
and give an estimate of the difference in proportions
of undergraduate cell phone owners with a 95%
margin of error. Write a short summary of your
results.

8.42 p̂1 − p̂2 and the Normal distribution. Suppose
there are two binomial populations. For the first, the
true proportion of successes is 0.3; for the second,
it is 0.4. Consider taking independent samples from
these populations, 50 from the first and 60 from the
second.

(a) Find the mean and the standard deviation of the
distribution of p̂1 − p̂2.

(b) This distribution is approximately Normal.
Sketch this Normal distribution and mark the
location of the mean.

(c) Find a value d for which the probability is 0.95
that the difference in sample proportions is within
±d. Mark these values on your sketch.

8.43 C
H

ALLENG
E Gender and gambling behaviors among

student-athletes. Gambling behaviors of
Division I intercollegiate student-athletes were
analyzed in Exercises 8.11 and 8.12 (page 502). Use
the methods of this section to compare the males
and females with a significance test, and give an
estimate of the difference in proportions of student-
athletes who participate in any gambling activity
with a 95% margin of error. In Exercise 8.11 it is
noted that we do not have any information available
to assess nonresponse. Consider the possibility that
the response rates differ by gender and by whether or
not the person participates in any gambling activity.
Write a short summary of how these differences
might affect inference.

8.44 Pet ownership and gender. In the Health ABC
Study, 595 subjects owned a pet and 1939 subjects
did not.23 Among the pet owners, there were 285
women; 1024 of the non–pet owners were women.
Find the proportion of pet owners who were women.
Do the same for the non–pet owners. Give a 95%
confidence interval for the difference in the two
proportions. (Be sure to let Population 1 correspond
to the group with the higher proportion so that the
difference will be positive.)

8.45 Pet ownership and marital status. Refer to the
previous exercise. The 595 pet owners and 1939
non–pet owners were also classified according to
whether or not they were married. For the pet
owners, 53.3% were married, while for the non–pet
owners, 57.7% were married. Find a 95% confidence
interval for the difference. Write a short summary
of your work.

8.46 A comparison of the proportion of frequent
binge drinkers. In the published report on binge
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drinking that we used for Example 8.1, survey
results from both 1993 and 1999 are presented.
Using the table below, test whether the proportions
of frequent binge drinkers are different at the 5%
level. Also construct a 95% confidence interval
for the difference. Write a short summary of your
results.

Year n X

1993 14,995 2,973
1999 13,819 3,140

8.47 A comparison of the proportion of frequent
binge drinkers, revisited. Refer to Exercise 8.46.
Redo the exercise in terms of the proportion of
nonfrequent binge drinkers in each classification.
Explain how you could have obtained these results
from the calculations you did in Exercise 8.46.

8.48 Effects of reducing air pollution. A study that
evaluated the effects of a reduction in exposure to
traffic-related air pollutants compared respiratory
symptoms of 283 residents of an area with congested
streets with 165 residents in a similar area where
the congestion was removed because a bypass was
constructed. The symptoms of the residents of both
areas were evaluated at baseline and again a year
after the bypass was completed.24 For the residents
of the congested streets, 17 reported that their
symptoms of wheezing improved between baseline
and one year later, while 35 of the residents of the
bypass streets reported improvement.

(a) Find the two sample proportions.

(b) Report the difference in the proportions and the
standard error of the difference.

(c) What are the appropriate null and alternative
hypotheses for examining the question of interest?
Be sure to explain your choice of the alternative
hypothesis.

(d) Find the test statistic. Construct a sketch of
the distribution of the test statistic under the
assumption that the null hypothesis is true. Find the
P-value and use your sketch to explain its meaning.

(e) Is no evidence of an effect the same as evidence
that there is no effect? Use a 95% confidence interval
to answer this question. Summarize your ideas in a
way that could be understood by someone who has
very little experience with statistics.

(f ) The study was done in the United Kingdom.
To what extent do you think that the results can be
generalized to other circumstances?

8.49 Downloading music from the Internet. A
2005 survey of Internet users reported that 22%
downloaded music onto their computers. The filing
of lawsuits by the recording industry may be a reason
why this percent has decreased from the estimate
of 29% from a survey taken two years before.25

Assume that the sample sizes are both 1421. Using
a significance test, evaluate whether or not there
has been a change in the percent of Internet users
who download music. Provide all details for the test
and summarize your conclusion. Also report a 95%
confidence interval for the difference in proportions
and explain what information is provided in the
interval that is not in the significance test results.

8.50 More on downloading music from the Internet.
Refer to the previous exercise. Suppose we are
not exactly sure about the sizes of the samples.
Redo the calculations for the significance test
and the confidence interval under the following
assumptions: (i) both sample sizes are 1000, (ii) both
sample sizes are 1600, (iii) the first sample size is
1000 and the second is 1600. Summarize the effects
of the sample sizes on the results.

8.51 Who gets stock options? Different kinds of
companies compensate their key employees in
different ways. Established companies may pay
higher salaries, while new companies may offer
stock options that will be valuable if the company
succeeds. Do high-tech companies tend to offer
stock options more often than other companies?
One study looked at a random sample of 200
companies. Of these, 91 were listed in the Directory
of Public High Technology Corporations and 109
were not listed. Treat these two groups as SRSs of
high-tech and non-high-tech companies. Seventy-
three of the high-tech companies and 75 of the
non-high-tech companies offered incentive stock
options to key employees.26

(a) Give a 95% confidence interval for the difference
in the proportions of the two types of companies
that offer stock options.

(b) Compare the two groups of companies with a
significance test.

(c) Summarize your analysis and conclusions.

8.52 Cheating during a test: 2002 versus 2004. In
Exercise 8.16, you examined the proportion of high
school students who cheated on tests at least twice
during the past year. Included in that study were the
results for both 2002 and 2004. A reported 9054 out
of 24,142 students said they cheated at least twice
in 2004. A reported 5794 out of 12,121 students said
they cheated at least twice in 2002. Give an estimate
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of the difference between these two proportions
with a 90% confidence interval.

8.53 Gender bias in textbooks. To what extent do
syntax textbooks, which analyze the structure of
sentences, illustrate gender bias? A study of this
question sampled sentences from 10 texts.27 One
part of the study examined the use of the words
“girl,” “boy,” “man,” and “woman.” We will call the
first two words juvenile and the last two adult. Is
the proportion of female references that are juvenile
(girl) equal to the proportion of male references that
are juvenile (boy)? Here are data from one of the
texts:

Gender n X( juvenile)

Female 60 48
Male 132 52

(a) Find the proportion of juvenile references for
females and its standard error. Do the same for the
males.

(b) Give a 90% confidence interval for the difference
and briefly summarize what the data show.

(c) Use a test of significance to examine whether the
two proportions are equal.

8.54 C
H

ALLENG
E Bicycle accidents, alcohol, and gender. In

Exercise 8.28 (page 504) we examined the
percent of fatally injured bicyclists tested for alcohol
who tested positive. Here we examine the same data
with respect to gender.

Gender n X(tested positive)

Female 191 27
Male 1520 515

(a) Summarize the data by giving the estimates
of the two population proportions and a 95%
confidence interval for their difference.

(b) The standard error SED contains a contribution
from each sample, p̂1(1 − p̂1)/n1 and p̂2(1 − p̂2)/n2.
Which of these contributes the larger amount to the
standard error of the difference? Explain why.

(c) Use a test of significance to examine whether the
two proportions are equal.

8.55 Pet ownership and gender: the significance
test. In Exercise 8.44 (page 517) we compared the
proportion of pet owners who were women with
the proportion of non–pet owners who were women
in the Health ABC Study. Use a significance test to
make the comparison and summarize the results of
your analysis.

8.56 Pet ownership and marital status: the
significance test. In Exercise 8.45 (page 517)
we compared the proportion of pet owners who
were married with the proportion of non–pet
owners who were married in the Health ABC Study.
Use a significance test to make the comparison and
summarize the results of your analysis.

CHAPTER 8 Exercises

8.57 What’s wrong? For each of the following, explain
what is wrong and why.

(a) A 90% confidence interval for the difference
in two proportions includes errors due to
nonresponse.

(b) A z statistic is used to test the null hypothesis
that H0 : p̂1 = p̂2.

(c) If two sample proportions are equal, then the
sample counts must be equal.

8.58 Using a handheld phone while driving. Refer
to Exercise 8.14 (page 503). This same poll found
that 58% of the respondents talked on a handheld
phone while driving in the last year. Construct a
90% confidence interval for the proportion of U.S.

drivers who talked on a handheld phone while
driving in the last year.

8.59 Gender and using a handheld phone while
driving. Refer to the previous exercise. In this same
report, this percent was broken down into 59% for
men and 56% for women. Assuming that, among
the 1048 respondents, there were an equal number
of men and women, construct a 95% confidence
interval for the difference in these proportions.

8.60 C
H

ALLENG
E Even more on downloading music from

the Internet. The following quotation is
from a recent survey of Internet users. The sample
size for the survey was 1371. Since 18% of those
surveyed said they download music, the sample
size for this subsample is 247.
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Among current music downloaders, 38% say they
are downloading less because of the RIAA suits . . . .
About a third of current music downloaders say they
use peer-to-peer networks . . . . 24% of them say they
swap files using email and instant messaging; 20%
download files from music-related Web sites like
those run by music magazines or musician home-
pages. And while online music services like iTunes
are far from trumping the popularity of file-sharing
networks, 17% of current music downloaders say
they are using these paid services. Overall, 7% of
Internet users say they have bought music at these
new services at one time or another, including 3%
who currently use paid services.28

(a) For each percent quoted, give the margin of
error. You should express these in percents, as given
in the quote.

(b) Rewrite the paragraph more concisely and
include the margins of error.

(c) Pick either side A or side B below and give
arguments in favor of the view that you select.

(A) The margins of error should be included because
they are necessary for the reader to properly interpret
the results.

(B) The margins of error interfere with the flow of
the important ideas. It would be better to just report
one margin of error and say that all of the others are
no greater than this number.

If you choose view B, be sure to give the value of
the margin of error that you report.

8.61 C
H

ALLENG
E Proportion of male heavy lottery players.

A study of state lotteries included a random
digit dialing (RDD) survey conducted by the
National Opinion Research Center (NORC). The
survey asked 2406 adults about their lottery
spending.29 A total of 248 individuals were classified
as “heavy” players. Of these, 152 were male. The
study notes that 48.5% of U.S. adults are male. For
this analysis, assume that the 248 heavy lottery
players are a random sample of all heavy lottery
players and that the margin of error for the 48.5%
estimate of the percent of males in the U.S. adult
population is so small that it can be neglected. Use a
significance test to compare the proportion of males
among heavy lottery players with the proportion
of males in the U.S. adult population. Construct a
95% confidence interval for the proportion. Write
a summary of what you have found. Be sure to
comment on the possibility that some people may
be reluctant to provide information about their
lottery spending and how this might affect the
results.

8.62 C
H

ALLENG
E Cell phone ownership: 2000 versus 2004.

Refer to Exercise 8.41 (page 517). The
estimated proportion of undergraduates owning a
phone in 2000 was 43%. We want to test whether
the proportion of undergraduate cell phone owners
has more than doubled in the last 4 years.

(a) Compute the quantity p̂1 − 2p̂2 where p̂1 is the
2004 estimate and p̂2 is the 2000 estimate.

(b) Using the rules for variances, compute the
standard error of this estimate.

(c) Compute the z statistic and P-value. What is
your conclusion at the 5% level?

8.63 C
H

ALLENG
E More on the effects of reducing air

pollution. In Exercise 8.48 the effects of
a reduction in air pollution on wheezing was
examined by comparing the one-year change in
symptoms in a group of residents who lived on
congested streets with a group who lived in an
area that had been congested but from which the
congestion was removed when a bypass was built.
The effect of the reduction in air pollution was
assessed by comparing the proportions of residents
in the two groups who reported that their wheezing
symptoms improved. Here are some additional
data from the same study:

Bypass Congested

Symptom n Improved n Improved

Number of wheezing
attacks 282 45 163 21

Wheezing disturbs sleep 282 45 164 12
Wheezing limits speech 282 12 164 4
Wheezing affects

activities 281 26 165 13
Winter cough 261 15 156 14
Winter phlegm 253 12 144 10
Consulted doctor 247 29 140 18

The table gives the number of subjects in each
group and the number reporting improvement.
So, for example, the proportion who reported
improvement in the number of wheezing attacks
was 21/163 in the congested group.

(a) The reported sample sizes vary from symptom
to symptom. Give possible reasons for this and
discuss the possible impact on the results.

(b) Calculate the difference in the proportions for
each symptom. Make a table of symptoms ordered
from highest to lowest based on these differences.
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Include the estimates of the differences and the
95% confidence intervals in the table. Summarize
your conclusions.

(c) Can you justify a one-sided alternative in this
situation? Give reasons for your answer.

(d) Perform a significance test to compare the two
groups for each of the symptoms. Summarize the
results.

(e) Reanalyze the data using only the data from
the bypass group. Give confidence intervals for
the proportions that reported improved symptoms.
Compare the conclusions that someone might make
from these results with those you presented in part
(b). Use your analyses of the data in this exercise to
discuss the importance of a control group in studies
such as this.

8.64 “No Sweat” garment labels. Following complaints
about the working conditions in some apparel
factories both in the United States and abroad,
a joint government and industry commission
recommended in 1998 that companies that monitor
and enforce proper standards be allowed to display
a “No Sweat” label on their products. Does the
presence of these labels influence consumer
behavior? A survey of U.S. residents aged 18 or
older asked a series of questions about how likely
they would be to purchase a garment under various
conditions. For some conditions, it was stated that
the garment had a “No Sweat” label; for others,
there was no mention of such a label. On the basis
of the responses, each person was classified as a
“label user” or a “label nonuser.”30 There were 296
women surveyed. Of these, 63 were label users. On
the other hand, 27 of 251 men were classified as
users.

(a) Give a 95% confidence interval for the difference
in the proportions.

(b) You would like to compare the women with
the men. Set up appropriate hypotheses, and find
the test statistic and the P-value. What do you
conclude?

8.65 Education of the customers. To devise effective
marketing strategies it is helpful to know the
characteristics of your customers. A study
compared demographic characteristics of people
who use the Internet for travel arrangements and
of people who do not.31 Of 1132 Internet users, 643
had completed college. Among the 852 nonusers,
349 had completed college.

(a) Do users and nonusers differ significantly in the
proportion of college graduates?

(b) Give a 95% confidence interval for the
difference in the proportions.

8.66 Income of the customers. The study mentioned
in the previous exercise also asked about income.
Among Internet users, 493 reported income of
less than $50,000 and 378 reported income of
$50,000 or more. (Not everyone answered the
income question.) The corresponding numbers for
nonusers were 477 and 200. Perform a significance
test to compare the incomes of users with nonusers
and also give an estimate of the difference in
proportions with a 95% margin of error.

8.67 Nonresponse for the income question. Refer to
the previous two exercises. Give the total number
of users and the total number of nonusers for the
analysis of education. Do the same for the analysis
of income. The difference is due to respondents who
chose “Rather not say” for the income question.
Give the proportions of “Rather not say” individuals
for users and nonusers. Perform a significance test
to compare these and give a 95% confidence interval
for the difference. People are often reluctant to
provide information about their income. Do you
think that this amount of nonresponse for the
income question is a serious limitation for this
study?

8.68 Improving the time to repair golf clubs. The
Ping Company makes custom-built golf clubs and
competes in the $4 billion golf equipment industry.
To improve its business processes, Ping decided to
seek ISO 9001 certification.32 As part of this process,
a study of the time it took to repair golf clubs that
were sent to the company by mail determined that
16% of orders were sent back to the customers in
5 days or less. Ping examined the processing of
repair orders and made changes. Following the
changes, 90% of orders were completed within 5
days. Assume that each of the estimated percents is
based on a random sample of 200 orders.

(a) How many orders were completed in 5 days
or less before the changes? Give a 95% confidence
interval for the proportion of orders completed in
this time.

(b) Do the same for orders after the changes.

(c) Give a 95% confidence interval for the
improvement. Express this both for a difference in
proportions and for a difference in percents.

8.69 Parental pressure to succeed in school. A Pew
Research Center Poll used telephone interviews
to ask American adults if parents are pushing
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their kids too hard to succeed in school. Of those
responding, 56% said parents are placing too little
pressure on their children.33 Assuming that this is
an SRS of 1200 U.S. residents over the age of 18,
give the 95% margin of error for this estimate.

8.70 Brand loyalty and the Chicago Cubs. According
to literature on brand loyalty, consumers who are
loyal to a brand are likely to consistently select
the same product. This type of consistency could
come from a positive childhood association. To
examine brand loyalty among fans of the Chicago
Cubs, 371 Cubs fans among patrons of a restaurant
located in Wrigleyville were surveyed prior to a
game at Wrigley Field, the Cubs’ home field.34 The
respondents were classified as “die-hard fans” or
“less loyal fans.” Of the 134 die-hard fans, 90.3%
reported that they had watched or listened to Cubs
games when they were children. Among the 237
less loyal fans, 67.9% said that they had watched or
listened as children.

(a) Find the numbers of die-hard Cubs fans who
watched or listened to games when they were
children. Do the same for the less loyal fans.

(b) Use a significance test to compare the die-hard
fans with the less loyal fans with respect to their
childhood experiences relative to the team.

(c) Express the results with a 95% confidence
interval for the difference in proportions.

8.71 Brand loyalty in action. The study mentioned
in the previous exercise found that two-thirds of
the die-hard fans attended Cubs games at least
once a month, but only 20% of the less loyal fans
attended this often. Analyze these data using a
significance test and a confidence interval. Write a
short summary of your findings.

8.72 C
H

ALLENG
E More on gender bias in textbooks. Refer

to the study of gender bias and stereotyping
described in Exercise 8.53 (page 519). Here are the
counts of “girl,” “woman,” “boy,” and “man” for all
of the syntax texts studied. The one we analyzed in
Exercise 8.53 was number 6.

Text number

1 2 3 4 5 6 7 8 9 10

Girl 2 5 25 11 2 48 38 5 48 13
Woman 3 2 31 65 1 12 2 13 24 5
Boy 7 18 14 19 12 52 70 6 128 32
Man 27 45 51 138 31 80 2 27 48 95

For each text perform the significance test to
compare the proportions of juvenile references
for females and males. Summarize the results of
the significance tests for the 10 texts studied. The
researchers who conducted the study note that the
authors of the last three texts are women, while
the other seven texts were written by men. Do you
see any pattern that suggests that the gender of the
author is associated with the results?

8.73 C
H

ALLENG
E Even more on gender bias in textbooks.

Refer to the previous exercise. Let us
now combine the categories “girl” with “woman”
and “boy” with “man.” For each text calculate
the proportion of male references and test the
hypothesis that male and female references are
equally likely (that is, the proportion of male
references is equal to 0.5). Summarize the results
of your 10 tests. Is there a pattern that suggests a
relation with the gender of the author?

8.74 C
H

ALLENG
E Changing majors during college. In a

random sample of 975 students from a
large public university, it was found that 463 of
the students changed majors during their college
years.

(a) Give a 95% confidence interval for the
proportion of students at this university who
change majors.

(b) Express your results from (a) in terms of the
percent of students who change majors.

(c) University officials concerned with counseling
students are interested in the number of students
who change majors rather than the proportion.
The university has 37,500 undergraduate students.
Convert the confidence interval you found in (a) to
a confidence interval for the number of students
who change majors during their college years.

8.75 Gallup Poll study. Go to the Gallup Poll Web site
http://www.galluppoll.com/ and find a poll that
has several questions of interest to you. Summarize
the results of the poll giving margins of error and
comparisons of interest. (For this exercise, you may
assume that the data come from an SRS.)

8.76 Parental pressure and gender. The Pew Research
Center poll in Exercise 8.69 (page 521) also reported
that 62% of the men and 51% of the women
thought parents are placing too little pressure on
their children to succeed in school. Assuming that
the respondents were 52% women, compare the
proportions with a significance test and give a
95% confidence interval for the difference. Write a
summary of your results.

http://www.galluppoll.com/
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8.77 C
H

ALLENG
E Sample size and the P-value. In this

exercise we examine the effect of the sample
size on the significance test for comparing two
proportions. In each case suppose that p̂1 = 0.5 and
p̂2 = 0.4, and take n to be the common value of n1

and n2. Use the z statistic to test H0: p1 = p2 versus
the alternative Ha: p1 �= p2. Compute the statistic
and the associated P-value for the following values
of n: 40, 50, 80, 100, 400, 500, and 1000. Summarize
the results in a table. Explain what you observe
about the effect of the sample size on statistical
significance when the sample proportions p̂1 and p̂2

are unchanged.

8.78 C
H

ALLENG
E Sample size and the margin of error. In

the first section of this chapter, we studied
the effect of the sample size on the margin of error
of the confidence interval for a single proportion.
In this exercise we perform some calculations
to observe this effect for the two-sample problem.
Suppose that p̂1 = 0.7 and p̂2 = 0.6, and n represents
the common value of n1 and n2. Compute the 95%
margins of error for the difference in the two
proportions for n = 40, 50, 80, 100, 400, 500, and
1000. Present the results in a table and with a graph.
Write a short summary of your findings.

8.79 C
H

ALLENG
E Calculating sample sizes for the two-

sample problem. For a single proportion
the margin of error of a confidence interval is
largest for any given sample size n and confidence
level C when p̂ = 0.5. This led us to use p∗ = 0.5 for
planning purposes. The same kind of result is true
for the two-sample problem. The margin of error of
the confidence interval for the difference between
two proportions is largest when p̂1 = p̂2 = 0.5.
You are planning a survey and will calculate a
95% confidence interval for the difference in two
proportions when the data are collected. You would
like the margin of error of the interval to be less
than or equal to 0.075. You will use the same sample
size n for both populations.

(a) How large a value of n is needed?

(b) Give a general formula for n in terms of the
desired margin of error m and the critical value z∗.

8.80 A corporate liability trial. A major court case on
the health effects of drinking contaminated water
took place in the town of Woburn, Massachusetts.
A town well in Woburn was contaminated by
industrial chemicals. During the period that
residents drank water from this well, there were
16 birth defects among 414 births. In years when
the contaminated well was shut off and water
was supplied from other wells, there were 3 birth

defects among 228 births. The plaintiffs suing the
firm responsible for the contamination claimed that
these data show that the rate of birth defects was
higher when the contaminated well was in use.35

How statistically significant is the evidence? What
assumptions does your analysis require? Do these
assumptions seem reasonable in this case?

8.81 C
H

ALLENG
E Statistics and the law. Castaneda v. Partida

is an important court case in which
statistical methods were used as part of a legal
argument.36 When reviewing this case, the
Supreme Court used the phrase “two or three
standard deviations” as a criterion for statistical
significance. This Supreme Court review has served
as the basis for many subsequent applications
of statistical methods in legal settings. (The two
or three standard deviations referred to by the
Court are values of the z statistic and correspond
to P-values of approximately 0.05 and 0.0026.) In
Castaneda the plaintiffs alleged that the method
for selecting juries in a county in Texas was biased
against Mexican Americans. For the period of time
at issue, there were 181,535 persons eligible for jury
duty, of whom 143,611 were Mexican Americans.
Of the 870 people selected for jury duty, 339 were
Mexican Americans.

(a) What proportion of eligible jurors were Mexican
Americans? Let this value be p0.

(b) Let p be the probability that a randomly selected
juror is a Mexican American. The null hypothesis
to be tested is H0: p = p0. Find the value of p̂ for
this problem, compute the z statistic, and find
the P-value. What do you conclude? (A finding of
statistical significance in this circumstance does
not constitute proof of discrimination. It can be
used, however, to establish a prima facie case. The
burden of proof then shifts to the defense.)

(c) We can reformulate this exercise as a two-
sample problem. Here we wish to compare the
proportion of Mexican Americans among those
selected as jurors with the proportion of Mexican
Americans among those not selected as jurors. Let
p1 be the probability that a randomly selected juror
is a Mexican American, and let p2 be the probability
that a randomly selected nonjuror is a Mexican
American. Find the z statistic and its P-value. How
do your answers compare with your results in (b)?

8.82 C
H

ALLENG
E Home court advantage. In many sports

there is a home field or home court
advantage. This means that the home team is more
likely to win when playing at home than they are
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to win when playing at an opponent’s field or court,
all other things being equal. Go to the Web site of
your favorite sports team and find the proportion
of wins for home games and the proportion of wins
for away games. Now consider these games to be a
random sample of the process that generates wins
and losses. A complete analysis of data like these
requires methods that are beyond what we have
studied, but the methods discussed in this chapter
will give us a reasonable approximation. Examine
the home court advantage for your team and write
a summary of your results. Be sure to comment on
the effect of the sample size.

8.83 C
H

ALLENG
E Attitudes toward student loan debt. The

National Student Loan Survey asked the
student loan borrowers in their sample about
attitudes toward debt.37 Here are some of the
questions they asked, with the percent who
responded in a particular way:

(a) “To what extent do you feel burdened by your
student loan payments?” 55.5% said they felt
burdened.

(b) “If you could begin again, taking into account
your current experience, what would you borrow?”
54.4% said they would borrow less.

(c) “Since leaving school, my education loans have
not caused me more financial hardship than I had
anticipated at the time I took out the loans.” 34.3%
disagreed.

(d) “Making loan payments is unpleasant but I
know that the benefits of education loans are worth
it.” 58.9% agreed.

(e) “I am satisfied that the education I invested in
with my student loan(s) was worth the investment
for career opportunities.” 58.9% agreed.

(f) “I am satisfied that the education I invested in
with my student loan(s) was worth the investment
for personal growth.” 71.5% agreed.

Assume that the sample size is 1280 for all of these
questions. Compute a 95% confidence interval for
each of the questions, and write a short report
about what student loan borrowers think about
their debt.
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There is growing evidence that early exposure to frightening movies is associated
with lingering fright symptoms. Is this relationship different for boys and girls?
Example 9.3 addresses this question.

9.1 Inference for Two-Way Tables

9.2 Formulas and Models
for Two-Way Tables

9.3 Goodness of Fit

Introduction
We continue our study of methods for analyzing categori-
cal data in this chapter. Inference about proportions in
one-sample and two-sample settings was the focus of
Chapter 8. We now study how to compare two or more
populations when the response variable has two or more categories and how
to test whether two categorical variables are independent. A single statistical
test handles both of these cases.
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The first section of this chapter gives the basics of statistical inference that
are appropriate in this setting. An optional second section provides some tech-
nical details, and a goodness of fit test is presented in the last section. The meth-
ods in this chapter answer questions such as

• Are men and women equally likely to suffer lingering fear symptoms after
watching scary movies like Jaws and Poltergeist at a young age?

• Does the style of a store’s background music affect the purchase of French
and Italian wine?

• Is vitamin A supplementation of young children in developing countries as-
sociated with a reduction in death rates?

9.1 Inference for Two-Way Tables
When we studied inference for two proportions in Chapter 8, we started sum-
marizing the raw data by giving the number of observations in each population
(n) and how many of these were classified as “successes” (X).

•

•

E
X

A
M

P
L

E 9.1 Gender and the proportion of frequent binge drinkers. In
Example 8.9, we compared the proportions of male and female college stu-
dents who engage in frequent binge drinking. The following table summa-
rizes the data used in this comparison:

Population n X p̂ = X/n

1 (men) 5,348 1,392 0.260
2 (women) 8,471 1,748 0.206

Total 13,819 3,140 0.227

These data suggest that the men are 5.4% more likely to be frequent binge
drinkers, with a 95% margin of error of 1.5%.

In this chapter we consider a different summary of the data. Rather than
recording just the count of binge drinkers, we record counts of all the outcomes
in a two-way table.

LOOK BACK
two-way table,
page 142
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E 9.2 Two-way table of frequent binge drinking and gender. Here is
the two-way table classifying students by gender and whether or not they
are frequent binge drinkers. The two categorical variables are “Frequent
binge drinker,” with values “Yes” and “No,” and “Gender,” with values “Men”
and “Women.” Since the objective is to compare the genders, we view “Gen-
der” as an explanatory variable, and therefore, we make it the column vari-
able. The row variable is a categorical response variable, “Frequent binge
drinker.”
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Two-way table for frequent binge drinking and gender

Gender

Frequent binge drinker Men Women Total

Yes 1,392 1,748 3,140
No 3,956 6,723 10,679

Total 5,348 8,471 13,819

The next example presents another two-way table.

•

•
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E 9.3 Lingering symptoms from frightening movies. There is a growing
body of literature demonstrating that early exposure to frightening movies is
associated with lingering fright symptoms. As part of a class on media effects,
college students were asked to write narrative accounts of their exposure to
frightening movies before the age of 13. More than one-fourth of the respon-
dents said that some of the fright symptoms were still present in waking life.1

The following table breaks down these results by gender:

Observed numbers of students

Gender

Ongoing fright symptoms Men Women Total

Yes 7 29 36
No 31 50 81

Total 38 79 117

The two categorical variables in this example are “Ongoing fright symp-
toms,” with values “Yes” and “No,” and “Gender,” with values “Men” and
“Women.” Again we view “Gender” as an explanatory variable and “Ongoing
fright symptoms” as a categorical response variable.

In Chapter 2 we discussed two-way tables and the basics about joint,
marginal, and conditional distributions. There we learned that the key to
examining the relationship between two categorical variables is to look at
conditional distributions. Figure 9.1 shows the output from CrunchIt! for

LOOK BACK
conditional
distributions,
page 146

the data of Example 9.3. Check this figure carefully. Be sure that you can
identify the joint distribution, the marginal distributions, and the conditional
distributions.
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FIGURE 9.1 CrunchIt! computer
output for Example 9.3.

•

•
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E 9.4 Two-way table of ongoing fright symptoms and gender. To com-
pare the frequency of lingering fright symptoms across genders, we examine
column percents. Here they are, rounded from the output for clarity:

Column percents for gender

Gender

Ongoing fright symptoms Male Female

Yes 18% 37%
No 82% 63%

Total 100% 100%

The “Total” row reminds us that 100% of the male and female students have
been classified as having ongoing fright symptoms or not. (The sums some-
times differ slightly from 100% because of roundoff error.) The bar graph in
Figure 9.2 compares the percents. The data reveal a clear relationship: 37%
of the women have ongoing fright symptoms, as opposed to only 18% of the
men.
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FIGURE 9.2 Bar graph of the percents of male and female students with lingering fright
symptoms, for Example 9.4.

The difference between the percents of students with lingering fears is rea-
sonably large. A statistical test will tell us whether or not this difference can be
plausibly attributed to chance. Specifically, if there is no association between
gender and having ongoing fright symptoms, how likely is it that a sample
would show a difference as large or larger than that displayed in Figure 9.2?
In the remainder of this section we discuss the significance test to examine
this question.

The hypothesis: no association
The null hypothesis H0 of interest in a two-way table is: There is no associa-
tion between the row variable and the column variable. In Example 9.3, this
null hypothesis says that gender and having ongoing fright symptoms are not
related. The alternative hypothesis Ha is that there is an association between
these two variables. The alternative Ha does not specify any particular direc-
tion for the association. For two-way tables in general, the alternative includes
many different possibilities. Because it includes all sorts of possible associa-
tions, we cannot describe Ha as either one-sided or two-sided.

In our example, the hypothesis H0 that there is no association between gen-
der and having ongoing fright symptoms is equivalent to the statement that the
distributions of the ongoing fright symptoms variable are the same across the
genders. For other two-way tables, where the columns correspond to indepen-
dent samples from distinct populations, there are c distributions for the row
variable, one for each population. The null hypothesis then says that the c dis-
tributions of the row variable are identical. The alternative hypothesis is that
the distributions are not all the same.

Expected cell counts
To test the null hypothesis in r × c tables, we compare the observed cell counts
with expected cell counts calculated under the assumption that the null hy-expected cell counts
pothesis is true. A numerical summary of the comparison will be our test
statistic.
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E 9.5 Expected counts from software. The observed and expected counts
for the ongoing fright symptoms example appear in the Minitab computer
output shown in Figure 9.3. The expected counts are given as the second en-
try in each cell. For example, in the first cell the observed count is 7 and the
expected count is 11.69.

How is this expected count obtained? Look at the percents in the right mar-
gin of the table in Figure 9.1. We see that 30.77% of all students had ongoing
fright symptoms. If the null hypothesis of no relation between gender and on-
going fright is true, we expect this overall percent to apply to both men and
women. In particular, we expect 30.77% of the men to have lingering fright
symptoms. Since there are 38 men, the expected count is 30.77% of 38, or
11.69. The other expected counts are calculated in the same way.

FIGURE 9.3 Minitab computer
output for Example 9.5.

The reasoning of Example 9.5 leads to a simple formula for calculating ex-
pected cell counts. To compute the expected count of men with ongoing fright
symptoms, we multiplied the proportion of students with fright symptoms
(36/117) by the number of men (38). From Figures 9.1 and 9.3 we see that the
numbers 36 and 38 are the row and column totals for the cell of interest and
that 117 is n, the total number of observations for the table. The expected cell
count is therefore the product of the row and column totals divided by the table
total.

expected cell count = row total × column total
n

The chi-square test
To test the H0 that there is no association between the row and column classifi-
cations, we use a statistic that compares the entire set of observed counts with
the set of expected counts. To compute this statistic,
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• First, take the difference between each observed count and its corresponding
expected count, and square these values so that they are all 0 or positive.

• Since a large difference means less if it comes from a cell that is expected
to have a large count, divide each squared difference by the expected count.
This is a kind of standardization.

LOOK BACK
standardizing, page 61

• Finally, sum over all cells.

The result is called the chi-square statistic X2. The chi-square statistic was
invented by the English statistician Karl Pearson (1857–1936) in 1900, for pur-
poses slightly different from ours. It is the oldest inference procedure still used
in its original form. With the work of Pearson and his contemporaries at the
beginning of the last century, statistics first emerged as a separate discipline.

CHI-SQUARE STATISTIC

The chi-square statistic is a measure of how much the observed cell
counts in a two-way table diverge from the expected cell counts. The for-
mula for the statistic is

X2 =
∑ (observed count − expected count)2

expected count

where “observed” represents an observed cell count, “expected” repre-
sents the expected count for the same cell, and the sum is over all r × c
cells in the table.

If the expected counts and the observed counts are very different, a large
value of X2 will result. Large values of X2 provide evidence against the null hy-
pothesis. To obtain a P-value for the test, we need the sampling distribution of
X2 under the assumption that H0 (no association between the row and column
variables) is true. We once again use an approximation, related to the Normal
approximation for binomial distributions. The result is a new distribution, the

LOOK BACK
Normal
approximation for
counts, page 323

chi-square distribution, which we denote by χ2 (χ is the lowercase Greek let-
chi-square distribution

χ2 ter chi).
Like the t distributions, the χ2 distributions form a family described by a

single parameter, the degrees of freedom. We use χ2(df) to indicate a particular
member of this family. Figure 9.4 displays the density curves of the χ2(2) and
χ2(4) distributions. As the figure suggests, χ2 distributions take only positive

0
(a)

0
(b)

FIGURE 9.4 (a) The χ2(2)

density curve. (b) The χ2(4)

density curve.
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values and are skewed to the right. Table F in the back of the book gives upper
critical values for the χ2 distributions.

CHI-SQUARE TEST FOR TWO-WAY TABLES

The null hypothesis H0 is that there is no association between the row
and column variables in a two-way table. The alternative is that these
variables are related.

If H0 is true, the chi-square statistic X2 has approximately a χ2 distribu-
tion with (r − 1)(c − 1) degrees of freedom.

The P-value for the chi-square test is

P(χ2 ≥ X2)

0 X2

where χ2 is a random variable having the χ2(df) distribution with
df = (r − 1)(c − 1).

The chi-square test always uses the upper tail of the χ2 distribution, because
any deviation from the null hypothesis makes the statistic larger. The approxi-
mation of the distribution of X2 by χ2 becomes more accurate as the cell counts
increase. Moreover, it is more accurate for tables larger than 2 × 2 tables. For
tables larger than 2 × 2, we will use this approximation whenever the average of
the expected counts is 5 or more and the smallest expected count is 1 or more.
For 2 × 2 tables, we require that all four expected cell counts be 5 or more.2
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E 9.6 Chi-square significance test from software. The results of the chi-
square significance test for the ongoing fright symptoms example appear in
the computer outputs in Figures 9.1 and 9.3, labeled Chi-square and Pearson
Chi-Square respectively. Because all the expected cell counts are moderately
large, the χ2 distribution provides an accurate P-value. We see that X2 = 4.03,
df = 1, and P = 0.045. As a check we verify that the degrees of freedom are
correct for a 2 × 2 table:

df = (r − 1)(c − 1) = (2 − 1)(2 − 1) = 1
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The chi-square test confirms that the data contain clear evidence against
the null hypothesis that there is no relationship between gender and ongoing
fright symptoms. Under H0, the chance of obtaining a value of X2 greater than
or equal to the calculated value of 4.03 is small—fewer than 5 times in 100.

The test does not tell us what kind of relationship is present. It is up to us
to see that the data show that women are more likely to have lingering fright
symptoms. You should always accompany a chi-square test by percents such as
those in Example 9.4 and Figure 9.2 and by a description of the nature of the
relationship.

The observational study of Example 9.3 cannot tell us whether gender is
a cause of lingering fright symptoms. The association may be explained by
confounding with other variables. For example, other research has shown that

LOOK BACK
confounding, page 156

there are gender differences in the social desirability of admitting fear.3 Our
data don’t allow us to investigate possible confounding variables. Often a ran-

CAUTION

! domized comparative experiment can settle the issue of causation, but we can-
not randomly assign gender to each student. The researcher who published the
data of our example states merely that women are more likely to have lingering
fright symptoms and that this conclusion is consistent with other studies.

The chi-square test and the z test
A comparison of the proportions of “successes” in two populations leads to
a 2 × 2 table. We can compare two population proportions either by the chi-
square test or by the two-sample z test from Section 8.2. In fact, these tests al-
ways give exactly the same result, because the X2 statistic is equal to the square
of the z statistic, and χ2(1) critical values are equal to the squares of the corre-
sponding N(0, 1) critical values. The advantage of the z test is that we can test
either one-sided or two-sided alternatives. The chi-square test always tests the
two-sided alternative. Of course, the chi-square test can compare more than
two populations, whereas the z test compares only two.

USE YOUR KNOWLEDGE
9.1 Comparison of conditional distributions. Consider the following

2 × 2 table.

Observed counts

Explanatory variable

Response variable 1 2

Yes 75 95 170
No 125 105 230

Total 200 200 400

(a) Compute the conditional distribution of the response variable for
each of the two explanatory-variable categories.
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(b) Display the distributions graphically.

(c) Write a short paragraph describing the two distributions and how
they differ.

9.2 Expected cell counts and the chi-square test. Refer to Exercise 9.1.
You decide to use the chi-square test to compare these two conditional
distributions.

(a) What is the expected count for the first cell (observed count is 75)?

(b) Computer software gives you X2 = 4.09. What are the degrees of
freedom for this statistic?

(c) Using Table F, give an appropriate bound on the P-value.

BEYOND THE BASICS

Meta-analysis

Policymakers wanting to make decisions based on research are sometimes
faced with the problem of summarizing the results of many studies. These
studies may show effects of different magnitudes, some highly significant and
some not significant. What overall conclusion can we draw? Meta-analysis ismeta-analysis
a collection of statistical techniques designed to combine information from
different but similar studies. Each individual study must be examined with
care to ensure that its design and data quality are adequate. The basic idea is
to compute a measure of the effect of interest for each study. These are then
combined, usually by taking some sort of weighted average, to produce a sum-
mary measure for all of the studies. Of course, a confidence interval for the
summary is included in the results. Here is an example.
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young children in developing countries to prevent night blindness. It was ob-
served that children receiving vitamin A appear to have reduced death rates.
To investigate the possible relationship between vitamin A supplementation
and death, a large field trial with over 25,000 children was undertaken in Aceh
Province of Indonesia. About half of the children were given large doses of vi-
tamin A, and the other half were controls. In 1986, the researchers reported
a 34% reduction in mortality (deaths) for the treated children who were 1
to 6 years old compared with the controls. Several additional studies were
then undertaken. Most of the results confirmed the association: treatment of
young children in developing countries with vitamin A reduces the death rate;
but the size of the effect varied quite a bit.

How can we use the results of these studies to guide policy decisions? To
address this question, a meta-analysis was performed on data available from
eight studies.4 Although the designs varied, each study provided a two-way
table of counts. Here is the table for Aceh. A total of n = 25,200 children were
enrolled in the study. Approximately half received vitamin A supplements.
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One year after the start of the study, the number of children who died was
determined.

Vitamin A Control

Dead 101 130
Alive 12,890 12,079

Total 12,991 12,209

The summary measure chosen was the relative risk: the ratio formed by
dividing the proportion of children who died in the vitamin A group by the
proportion of children who died in the control group. For Aceh, the propor-
tion who died in the vitamin A group was

101
12,991

= 0.00777

or 7.7 per thousand; for the control group, the proportion who died was

130
12,209

= 0.01065

or 10.6 per thousand. The relative risk is therefore

0.00777
0.01065

= 0.73

Relative risk less than 1 means that the vitamin A group has the lower mor-
tality rate.

The relative risks for the eight studies were

0.73 0.50 0.94 0.71 0.70 1.04 0.74 0.80

A meta-analysis combined these eight results to produce a relative risk es-
timate of 0.77 with a 95% confidence interval of (0.68, 0.88). That is, vita-
min A supplementation reduced the mortality rate to 77% of its value in an
untreated group. In other words, there is a 23% reduction in the mortality
rate. The confidence interval does not include 1, so the null hypothesis of no
effect (a relative risk of 1) can be clearly rejected. The researchers examined
many variations of this meta-analysis, such as using different weights and
leaving out one study at a time. These variations had little effect on the final
estimate.

LOOK BACK
relative risk, page 515

After these findings were published, large-scale programs to distribute high-
potency vitamin A supplements were started. These programs have saved hun-
dreds of thousands of lives since the meta-analysis was conducted and the
arguments and uncertainties were resolved.
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SECTION 9.1 Summary

The null hypothesis for r × c tables of count data is that there is no relationship
between the row variable and the column variable.

Expected cell counts under the null hypothesis are computed using the
formula

expected count = row total × column total
n

The null hypothesis is tested by the chi-square statistic, which compares the
observed counts with the expected counts:

X2 =
∑ (observed − expected)2

expected

Under the null hypothesis, X2 has approximately the χ2 distribution with
(r − 1)(c − 1) degrees of freedom. The P-value for the test is

P(χ2 ≥ X2)

where χ2 is a random variable having the χ2(df) distribution with df =
(r − 1)(c − 1).

The chi-square approximation is adequate for practical use when the average
expected cell count is 5 or greater and all individual expected counts are 1 or
greater, except in the case of 2 × 2 tables. All four expected counts in a 2 × 2
table should be 5 or greater.

The section we just completed assumed that you have access to software or a sta-
tistical calculator. If you do not, you now need to study the material on compu-
tations in the following optional section. All exercises appear at the end of the
chapter.

9.2 Formulas and Models
for Two-Way Tables*
Computations
The calculations required to analyze a two-way table are straightforward but
tedious. In practice, we recommend using software, but it is possible to do the
work with a calculator, and some insight can be gained by examining the de-
tails. Here is an outline of the steps required.

COMPUTATIONS FOR TWO-WAY TABLES

1. Calculate descriptive statistics that convey the important information
in the table. Usually these will be column or row percents.

*The analysis of two-way tables is based on computations that are a bit messy and on statis-
tical models that require a fair amount of notation to describe. This section gives the details.
By studying this material you will deepen your understanding of the methods described in
this chapter, but this section is optional.
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2. Find the expected counts and use these to compute the X2 statistic.

3. Use chi-square critical values from Table F to find the approximate
P-value.

4. Draw a conclusion about the association between the row and col-
umn variables.

The following example illustrates these steps.
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background music can influence the mood and purchasing behavior of cus-
tomers. One study in a supermarket in Northern Ireland compared three
treatments: no music, French accordion music, and Italian string music.
Under each condition, the researchers recorded the numbers of bottles of
French, Italian, and other wine purchased.5 Here is the two-way table that
summarizes the data:

Music

Wine None French Italian Total

French 30 39 30 99
Italian 11 1 19 31
Other 43 35 35 113

Total 84 75 84 243

This is a 3 × 3 table, to which we have added the marginal totals obtained
by summing across rows and columns. For example, the first-row total is
30 + 39 + 30 = 99. The grand total, the number of bottles of wine in the study,
can be computed by summing the row totals, 99 + 31 + 113 = 243, or the col-
umn totals, 84 + 75 + 84 = 243. It is easy to make an error in these calculations,
so it is a good idea to do both as a check on your arithmetic.

CAUTION

!

Computing conditional distributions
First, we summarize the observed relation between the music being played and
the type of wine purchased. The researchers expected that music would influ-
ence sales, so music type is the explanatory variable and the type of wine pur-
chased is the response variable. In general, the clearest way to describe this
kind of relationship is to compare the conditional distributions of the response
variable for each value of the explanatory variable. So we will compare the col-
umn percents that give the conditional distribution of purchases for each type
of music played.
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When no music was played, there were 84 bottles of wine sold. Of these, 30
were French wine. Therefore, the column proportion for this cell is

30
84

= 0.357

That is, 35.7% of the wine sold was French when no music was played. Sim-
ilarly, 11 bottles of Italian wine were sold under this condition, and this is
13.1% of the sales:

11
84

= 0.131

In all, we calculate nine percents. Here are the results:

Column percents for wine and music

Music

Wine None French Italian Total

French 35.7 52.0 35.7 40.7
Italian 13.1 1.3 22.6 12.8
Other 51.2 46.7 41.7 46.5

Total 100.0 100.0 100.0 100.0

In addition to the conditional distributions of types of wine sold for each
kind of music being played, the table also gives the marginal distribution of
the types of wine sold. These percents appear in the rightmost column, la-
beled “Total.”

The sum of the percents in each column should be 100, except for possible
small roundoff errors. It is good practice to calculate each percent separately
and then sum each column as a check. In this way we can find arithmetic errors
that would not be uncovered if, for example, we calculated the column percent
for the “Other” row by subtracting the sum of the percents for “French” and
“Italian” from 100.

Figure 9.5 compares the distributions of types of wine sold for each of the
three music conditions. There appears to be an association between the mu-
sic played and the type of wine that customers buy. Sales of Italian wine are
very low when French music is playing but are higher when Italian music or
no music is playing. French wine is popular in this market, selling well under
all music conditions but notably better when French music is playing.

Another way to look at these data is to examine the row percents. These fix
a type of wine and compare its sales when different types of music are play-
ing. Figure 9.6 displays these results. We see that more French wine is sold
when French music is playing, and more Italian wine is sold when Italian mu-
sic is playing. The negative effect of French music on sales of Italian wine is
dramatic.
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FIGURE 9.5 Comparison of the
percents of different types of
wine sold for different music
conditions, for Example 9.8.
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FIGURE 9.6 Comparison of the
percents of different types of
wine sold for different music
conditions, for Example 9.8.

We observe a clear relationship between music type and wine sales for the
243 bottles sold during the study. The chi-square test assesses whether this ob-
served association is statistically significant, that is, too strong to occur often
just by chance. The test only confirms that there is some relationship. The per-
cents we have compared describe the nature of the relationship. The chi-square
test does not in itself tell us what population our conclusion describes. If the study

CAUTION

! was done in one market on a Saturday, the results may apply only to Saturday
shoppers at this market. The researchers may invoke their understanding of
consumer behavior to argue that their findings apply more generally, but that
is beyond the scope of the statistical analysis.
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Computing expected cell counts
The null hypothesis is that there is no relationship between music and wine
sales. The alternative is that these two variables are related. Here is the formula
for the expected cell counts under the hypothesis of “no relationship.”

EXPECTED CELL COUNTS

expected count = row total × column total
n
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is the expected count in the upper-left cell in the table of Example 9.8, bottles
of French wine sold when no music is playing, under the null hypothesis that
music and wine sales are independent?

The column total, the number of bottles of wine sold when no music is
playing, is 84. The row total shows that 99 bottles of French wine were sold
during the study. The total sales were 243. The expected cell count is therefore

(84)(99)

243
= 34.222

Note that although any count of bottles sold must be a whole number, an ex-
pected count need not be. The expected count is the mean over many repeti-
tions of the study, assuming no relationship.

Nine similar calculations produce this table of expected counts:

Expected counts for wine and music

Music

Wine None French Italian Total

French 34.222 30.556 34.222 99.000
Italian 10.716 9.568 10.716 31.000
Other 39.062 34.877 39.062 113.001

Total 84.000 75.001 84.000 243.001

We can check our work by adding the expected counts to obtain the row and
column totals, as in the table. These should be the same as those in the table of
observed counts except for small roundoff errors, such as 113.001 rather than
113 for the total number of bottles of other wine sold.

The X2 statistic and its P-value
The expected counts are all large, so we proceed with the chi-square test. We
compare the table of observed counts with the table of expected counts using
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the X2 statistic.6 We must calculate the term for each cell, then sum over all
nine cells. For French wine with no music, the observed count is 30 bottles and
the expected count is 34.222. The contribution to the X2 statistic for this cell is
therefore

(30 − 34.222)2

34.222
= 0.5209

The X2 statistic is the sum of nine such terms:

X2 =
∑ (observed − expected)2

expected

= (30 − 34.222)2

34.222
+ (39 − 30.556)2

30.556
+ (30 − 34.222)2

34.222

+ (11 − 10.716)2

10.716
+ (1 − 9.568)2

9.568
+ (19 − 10.716)2

10.716

+ (43 − 39.062)2

39.062
+ (35 − 34.877)2

34.877
+ (35 − 39.062)2

39.062
= 0.5209 + 2.3337 + 0.5209 + 0.0075 + 7.6724 + 6.4038

+ 0.3971 + 0.0004 + 0.4223

= 18.28

Because there are r = 3 types of wine and c = 3 music conditions, the de-
grees of freedom for this statistic are

df = (r − 1)(c − 1) = (3 − 1)(3 − 1) = 4

Under the null hypothesis that music and wine sales are independent, the test
statistic X2 has a χ2(4) distribution. To obtain the P-value, look at the df = 4
row in Table F. The calculated value X2 = 18.28 lies between the critical points

df = 4

p 0.0025 0.001

χ2 16.42 18.47 for probabilities 0.0025 and 0.001. The P-value is therefore between 0.0025 and
0.001. Because the expected cell counts are all large, the P-value from Table F
will be quite accurate. There is strong evidence (X2 = 18.28, df = 4, P < 0.0025)
that the type of music being played has an effect on wine sales.

The size and nature of the relationship between music and wine sales are de-
scribed by row and column percents. These are displayed in Figures 9.5 and 9.6.
Here is another way to look at the data: we see that just two of the nine terms
that make up the chi-square sum contribute about 14 of the total X2 = 18.28.
Comparing the observed and expected counts in these two cells, we see that
sales of Italian wine are much below expectation when French music is play-
ing and much above expectation when Italian music is playing. We are led to
a specific conclusion: sales of Italian wine are strongly affected by Italian and
French music. Figure 9.6(b) displays this effect.

Models for two-way tables
The chi-square test for the presence of a relationship between the two direc-
tions in a two-way table is valid for data produced from several different study
designs. The precise statement of the null hypothesis “no relationship” in terms
of population parameters is different for different designs. We now describe
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two of these settings in detail. An essential requirement is that each experimen-
CAUTION

! tal unit or subject is counted only once in the data table.

Comparing several populations: the first model Example 9.8 (wine sales in
three environments) is an example of separate and independent random samples
from each of c populations. The c columns of the two-way table represent the
populations. There is a single categorical response variable, wine type. The r
rows of the table correspond to the values of the response variable.

We know that the z test for comparing the two proportions of successes and
the chi-square test for the 2 × 2 table are equivalent. The r × c table allows us to
compare more than two populations or more than two categories of response,
or both. In this setting, the null hypothesis “no relationship between column
variable and row variable” becomes

H0: The distribution of the response variable is the same in all c populations.

Because the response variable is categorical, its distribution just consists of the
probabilities of its r possible values. The null hypothesis says that these prob-
abilities (or population proportions) are the same in all c populations.
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tions. In the market research study of Example 9.8, we compare three
populations:

Population 1: bottles of wine sold when no music is playing

Population 2: bottles of wine sold when French music is playing

Population 3: bottles of wine sold when Italian music is playing

We have three samples, of sizes 84, 75, and 84, a separate sample from each
population. The null hypothesis for the chi-square test is

H0: The proportions of each wine type sold are the same in all
three populations.

The parameters of the model are the proportions of the three types of wine
that would be sold in each of the three environments. There are three propor-
tions (for French wine, Italian wine, and other wine) for each environment.

More generally, if we take an independent SRS from each of c populations
and classify each outcome into one of r categories, we have an r × c table of pop-
ulation proportions. There are c different sets of proportions to be compared.
There are c groups of subjects, and a single categorical variable with r possible
values is measured for each individual.

MODEL FOR COMPARING SEVERAL POPULATIONS
USING TWO-WAY TABLES

Select independent SRSs from each of c populations, of sizes n1, n2, . . . ,

nc. Classify each individual in a sample according to a categorical re-
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sponse variable with r possible values. There are c different probability
distributions, one for each population.

The null hypothesis is that the distributions of the response variable are
the same in all c populations. The alternative hypothesis says that these
c distributions are not all the same.

Testing independence: the second model A second model for which our
analysis of r × c tables is valid is illustrated by the ongoing fright symptoms
study, Example 9.3. There, a single sample from a single population was classi-
fied according to two categorical variables.
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E 9.12 Ongoing fright symptoms and gender: testing independence.

The single population studied is college students. Each college student was
classified according to the following categorical variables: “Ongoing fright
symptoms,” with possible responses “Yes” and “No,” and “Gender,” with pos-
sible responses “Men” and “Women.” The null hypothesis for the chi-square
test is

H0: “Ongoing fright symptoms” and “Gender” are independent.

The parameters of the model are the probabilities for each of the four possible
combinations of values of the row and column variables. If the null hypothe-
sis is true, the multiplication rule for independent events says that these can
be found as the products of outcome probabilities for each variable alone.

LOOK BACK
multiplication rule,
page 295

More generally, take an SRS from a single population and record the values
of two categorical variables, one with r possible values and the other with c pos-
sible values. The data are summarized by recording the numbers of individuals
for each possible combination of outcomes for the two random variables. This
gives an r × c table of counts. Each of these r × c possible outcomes has its own
probability. The probabilities give the joint distribution of the two categoricalLOOK BACK

joint distribution,
page 144

marginal
distributions,
page 145

variables.
Each of the two categorical random variables has a distribution. These are

the marginal distributions because they are the sums of the population propor-
tions in the rows and columns.

The null hypothesis “no relationship” now states that the row and column
variables are independent. The multiplication rule for independent events tells
us that the joint probabilities are the products of the marginal probabilities.
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E 9.13 The joint distribution and the two marginal distributions. The
joint probability distribution gives a probability for each of the four cells in
our 2 × 2 table of “Ongoing fright symptoms” and “Gender.” The marginal
distribution for “Ongoing fright symptoms” gives probabilities for each of the
two possible categories; the marginal distribution for “Gender” gives proba-
bilities for each of the two possible gender categories.

Independence between “Ongoing fright symptoms” and “Gender” implies
that the joint distribution can be obtained by multiplying the appropriate
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terms from the two marginal distributions. For example, the probability that
a randomly chosen college student has ongoing fright symptoms and is male
is equal to the probability that the student has ongoing symptoms times the
probability that the student is male. The hypothesis that “Ongoing fright
symptoms” and “Gender” are independent says that the multiplication rule
applies to all outcomes.

MODEL FOR EXAMINING INDEPENDENCE IN TWO-WAY TABLES

Select an SRS of size n from a population. Measure two categorical vari-
ables for each individual.

The null hypothesis is that the row and column variables are indepen-
dent. The alternative hypothesis is that the row and column variables are
dependent.

Concluding remarks
You can distinguish between the two models by examining the design of the
study. In the independence model, there is a single sample. The column totals
and row totals are random variables. The total sample size n is set by the re-
searcher; the column and row sums are known only after the data are collected.
For the comparison-of-populations model, on the other hand, there is a sample
from each of two or more populations. The column sums are the sample sizes
selected at the design phase of the research. The null hypothesis in both mod-
els says that there is no relationship between the column variable and the row
variable. The precise statement of the hypothesis differs, depending on the sam-
pling design. Fortunately, the test of the hypothesis of “no relationship” is the
same for both models; it is the chi-square test. There are yet other statistical
models for two-way tables that justify the chi-square test of the null hypoth-
esis “no relation,” made precise in ways suitable for these models. Statistical
methods related to the chi-square test also allow the analysis of three-way and
higher-way tables of count data. You can find a discussion of these topics in
advanced texts on categorical data.7

USE YOUR KNOWLEDGE
9.3 Find the P-value. For each of the following give the degrees of free-

dom and an appropriate bound on the P-value for the X2 statistic.

(a) X2 = 2.5 for a 2 by 2 table

(b) X2 = 6.5 for a 2 by 2 table

(c) X2 = 16.3 for a 3 by 5 table

(d) X2 = 16.3 for a 5 by 3 table

9.4 Frequent binge drinking and gender: the chi-square test. Refer to
Example 9.2 (page 526). Use the chi-square test to assess if frequent
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binge drinking is associated with gender. Also, compare the chi-square
statistic with the z statistic in Example 8.11 (page 513). State your con-
clusions.

SECTION 9.2 Summary

For two-way tables we first compute percents or proportions that describe the
relationship of interest. Then, we compute expected counts, the X2 statistic,
and the P-value.

Two different models for generating r × c tables lead to the chi-square test. In
the first model, independent SRSs are drawn from each of c populations, and
each observation is classified according to a categorical variable with r possi-
ble values. The null hypothesis is that the distributions of the row categorical
variable are the same for all c populations. In the second model, a single SRS is
drawn from a population, and observations are classified according to two cat-
egorical variables having r and c possible values. In this model, H0 states that
the row and column variables are independent.

9.3 Goodness of Fit*
In the last two sections, we discussed the use of the chi-square test to compare
categorical-variable distributions of c populations. We now consider a slight
variation on this scenario where we compare a sample from one population
with a hypothesized distribution. Here is an example that illustrates the basic
ideas.
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motor vehicle collision when using a cell phone? A study of 699 drivers who
were using a cell phone when they were involved in a collision examined
this question.8 These drivers made 26,798 cell phone calls during a 14-month
study period. Each of the 699 collisions was classified in various ways. Here
are the numbers for each day of the week:

Number of collisions by day of the week

Sun. Mon. Tue. Wed. Thu. Fri. Sat. Total

20 133 126 159 136 113 12 699

We have a total of 699 accidents involving drivers who were using a cell
phone at the time of their accident. Let’s explore the relationship between
these accidents and the day of the week. Are the accidents equally likely to
occur on any day of the week?

We can think of this table of counts as a one-way table with seven cells, each
with a count of the number of accidents that occurred on the particular day

*This section is optional.
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of the week. Our question is translated into a null hypothesis that motor ve-
hicle accidents involving cell phone use are equally likely to occur on each of
the seven days of the week. The alternative is that the probabilities vary from
day to day. Our analysis of these data is very similar to the analyses of two-way
tables that we studied in Section 9.1. We first compute expected counts. Since
there are 699 accidents and 7 days, under the null hypothesis we expect one-
seventh of the accidents to occur on each day. So the expected number of ac-
cidents for each day is 699/7 = 99.86. Next, we construct a chi-square statistic
that compares the actual numbers with the expected numbers:

X2 =
∑ (observed count − expected count)2

expected count

For Sunday, we have

(observed count − expected count)2

expected count
= (20 − 99.86)2

99.86
= 63.86

and for Monday,

(observed count − expected count)2

expected count
= (133 − 99.86)2

99.86
= 11.0

Performing the same calculations for the other days and summing the results
over the seven cells gives

X2 = 208.85

The degrees of freedom are 1 less than the number of cells, df = 7 − 1 = 6. We
calculate the P-value using Table F or software. From Table F, we can determine
P < 0.0005 and we conclude that these types of accidents are not equally likely
to occur on each of the seven days of the week.

We have covered all of the basics for chi-square goodness of fit tests in our
example. Now we will summarize the details for the general case.

THE CHI-SQUARE GOODNESS OF FIT TEST

Data for n observations of a categorical variable with k possible out-
comes are summarized as observed counts, n1, n2, . . . , nk in k cells.
A null hypothesis specifies probabilities p1, p2, . . . , pk for the possible
outcomes.

For each cell, multiply the total number of observations n by the speci-
fied probability to determine the expected counts:

expected count = npi

The chi-square statistic measures how much the observed cell counts
differ from the expected cell counts. The formula for the statistic is

X2 =
∑ (observed count − expected count)2

expected count



9.3 Goodness of Fit
•

547

The degrees of freedom are k − 1, and P-values are computed from the
chi-square distribution.

In our example about cell phones and motor vehicle accidents we examined
the accident rates for all seven days of the week. A traffic expert would presum-
ably tell us that accidents are less likely on weekends. Indeed, the two days con-
tributing the largest amounts to the X2 statistic are Saturday and Sunday. Let’s
examine the pattern of accidents for weekdays. Note that this is not the same
as making up hypotheses after looking at the data. After some reflection about

CAUTION

! the data and the context of the problem, we have determined that it is reason-
able to ask this question. Such decisions require careful judgment and the ra-
tionale must be clearly explained. More advanced methods of inference allow
the examination of this kind of question within the framework of the overall
analysis.9

•

•
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X
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E 9.15 Vehicle collisions and cell phones: weekdays only. Here are the
data from Example 9.24 for weekdays only:

Number of collisions by day of the week

Mon. Tue. Wed. Thu. Fri. Total

133 126 159 136 113 667

We now have a total of 667 accidents because we are not considering the
32 = 20 + 12 accidents that occurred on weekends. For five equally likely out-
comes we have pi = 1/5 for each. The expected count for each of the five days
is 667(1/5) = 133.4, and the contribution to the chi-square statistic for Mon-
day is

(observed count − expected count)2

expected count
= (133 − 133.4)2

133.4
= 0.0012

Summing the results for the five weekdays gives X2 = 8.49 with 5 − 1 = 4
degrees of freedom. The P-value is 0.08. For weekdays, the data do not provide
evidence in support of differences due to the day of the week in the accident
rates for motor vehicle collisions where the driver was using a cell phone.

Many software packages do not provide routines for computing the chi-
square goodness of fit test. However, there is a very simple trick that can be used
to produce the results from software that can analyze two-way tables. Make a
two-way table where the first column contains k cells with the observed counts.
Make a second column with counts that correspond exactly to the probabilities
specified by the null hypothesis, with a very large number of observations. For
the problem in Example 9.15, we would have a second column with 10,000
accidents on each of the five days. When analyzed as a two-way table, software
gives X2 = 8.37 with P = 0.08, which agrees reasonably well with our exact
calculations.
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USE YOUR KNOWLEDGE
9.5 Distribution of M&M colors. M&M Mars Company has varied the

mix of colors for M&M’s Milk Chocolate Candies over the years. These
changes in color blends are the result of consumer preference tests.
Most recently, the color distribution is reported to be 13% brown, 14%
yellow, 13% red, 20% orange, 24% blue, and 16% green.10 You open
up a 14-ounce bag of M&M’s and find 61 brown, 59 yellow, 49 red, 77
orange, 141 blue, and 88 green. Use a goodness of fit test to examine
how well this bag fits the percents stated by the M&M Mars Company.

SECTION 9.3 Summary

The chi-square goodness of fit test is used to compare the sample distribu-
tion of a categorical variable from a population with a hypothesized distribu-
tion. The data for n observations with k possible outcomes are summarized as
observed counts n1, n2, . . . , nk in k cells. The null hypothesis specifies proba-
bilities p1, p2, . . . , pk for the possible outcomes.

The analysis of these data is similar to the analyses of two-way tables discussed
in Section 9.1. For each cell, the expected count is determined by multiply-
ing the total number of observations n by the specified probability pi. The null
hypothesis is tested by the usual chi-square statistic, which compares the ob-
served counts, ni, with the expected counts. Under the null hypothesis, X2 has
approximately the χ2 distribution with df = k − 1.

CHAPTER 9 Exercises

For Exercises 9.1 and 9.2, see pages 533 and 534; for
Exercises 9.3 and 9.4, see page 544; and for Exercise 9.5,
see page 548.

9.6 Why not use a chi-square test? As part of the
study on ongoing fright symptoms due to exposure
to horror movies at a young age, the following table

Percent of students who reported each problem

Type of Problem

Bedtime Waking

Short Short
Movie or video term Enduring term Enduring

Poltergeist (n = 29) 68 7 64 32
Jaws (n = 23) 39 4 83 43
Nightmare on Elm Street

(n = 16) 69 13 37 31
Thriller (music video)

(n = 16) 40 0 27 7
It (n = 24) 64 0 64 50
The Wizard of Oz (n = 12) 75 17 50 8
E.T. (n = 11) 55 0 64 27

was created based on the written responses from
119 students.11 Explain why a chi-square test is not
appropriate for this table.

9.7 Age and time status of U.S. college students.
The Census Bureau provides estimates of numbers
of people in the United States classified in various
ways.12 Let’s look at college students. The following
table gives us data to examine the relation between
age and full-time or part-time status. The numbers
in the table are expressed as thousands of U.S.
college students.

U.S. college students by age and status: October 2004

Status

Age Full-time Part-time

15–19 3553 329
20–24 5710 1215
25–34 1825 1864
35 and over 901 1983
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(a) Give the joint distribution of age and status for
this table.

(b) What is the marginal distribution of age?
Display the results graphically.

(c) What is the marginal distribution of status?
Display the results graphically.

(d) Compute the conditional distribution of age
for each of the two status categories. Display the
results graphically.

(e) Write a short paragraph describing the
distributions and how they differ.

9.8 Time status versus gender for the 20–24 age
category. Refer to Exercise 9.7. The table below
breaks down the 20–24 age category by gender.

Gender

Status Male Female Total

Full-time 2719 2991 5710
Part-time 535 680 1215

Total 3254 3671 6925

(a) Compute the marginal distribution for gender.
Display the results graphically.

(b) Compute the conditional distribution of
status for males and for females. Display the
results graphically and comment on how these
distributions differ.

(c) If you wanted to test the null hypothesis that
there is no difference between these two conditional
distributions, what would the expected cell counts
be for the full-time status row of the table?

(d) Computer software gives X2 = 5.17. Using
Table F, give an appropriate bound for the P-value
and state your conclusions at the 5% level.

9.9 Does using Rodham matter? In April 2006,
the Opinion Research Corporation conducted a
telephone poll for CNN of 1012 adult Americans.13

Half those polled were asked their opinion of
Hillary Rodham Clinton. The other half were asked
their opinion of Hillary Clinton. The table below
summarizes the results. A chi-square test was used
to determine if opinions differed based on the
name.

Opinion

Never No
Name Favorable Unfavorable heard of opinion

Hillary Rodham
Clinton 50% 42% 2% 6%

Hillary Clinton 46% 43% 2% 9%

(a) Computer software gives X2 = 4.23. Can we
comfortably use the chi-square distribution to
compute the P-value? Explain.

(b) What are the degrees of freedom for X2?

(c) Give an appropriate bound for the P-value using
Table F and state your conclusions.

9.10 Waking versus bedtime symptoms. As part of the
study on ongoing fright symptoms due to exposure
to horror movies at a young age, the following table
was presented to describe the lasting impact these
movies have had during bedtime and waking life:

Waking
symptoms

Bedtime symptoms Yes No

Yes 36 33
No 33 17

(a) What percent of the students have lasting
waking-life symptoms?

(b) What percent of the students have both waking-
life and bedtime symptoms?

(c) Test whether there is an association between
waking-life and bedtime symptoms. State the null
and alternative hypotheses, the X2 statistic, and the
P-value.

9.11 New treatment for cocaine addiction. Cocaine
addiction is difficult to overcome. Addicts have
been reported to have a significant depletion of
stimulating neurotransmitters and thus continue
to take cocaine to avoid feelings of depression and
anxiety. A 3-year study with 72 chronic cocaine
users compared an antidepressant drug called
desipramine with lithium and a placebo. (Lithium
is a standard drug to treat cocaine addiction. A
placebo is a substance containing no medication,
used so that the effect of being in the study but
not taking any drug can be seen.) One-third of
the subjects, chosen at random, received each
treatment.14 Following are the results:
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Cocaine relapse?

Treatment Yes No

Desipramine 10 14
Lithium 18 6
Placebo 20 4

(a) Compare the effectiveness of the three
treatments in preventing relapse using percents
and a bar graph. Write a brief summary.

(b) Can we comfortably use the chi-square test to
test the null hypothesis that there is no difference
between treatments? Explain.

(c) Perform the significance test and summarize
the results.

9.12 Find the degrees of freedom and P-value. For
each of the following situations give the degrees of
freedom and an appropriate bound on the P-value
(give the exact value if you have software available)
for the X2 statistic for testing the null hypothesis
of no association between the row and column
variables.

(a) A 2 by 2 table with X2 = 1.25.

(b) A 4 by 4 table with X2 = 18.34.

(c) A 2 by 8 table with X2 = 24.21.

(d) A 5 by 3 table with X2 = 12.17.

9.13 Can you construct the joint distribution from
the marginal distributions? Here are the row and
column totals for a two-way table with two rows
and two columns:

a b 50
c d 150

100 100 200

Find two different sets of counts a, b, c, and d
for the body of the table. This demonstrates that
the relationship between two variables cannot be
obtained solely from the two marginal distributions
of the variables.

9.14 Construct a table with no association. Construct
a 3 × 2 table of counts where there is no apparent
association between the row and column variables.

9.15 C
H

ALLENG
E Gender versus motivation for volunteer

service. A study examined patterns and
characteristics of volunteer-service for young people
from high school through early adulthood.15 Here

are some data that can be used to compare males
and females on participation in unpaid volunteer
service or community service and motivation for
participation:

Participants

Motivation

Strictly Court- Non-
Gender voluntary ordered Other participants

Men 31.9% 2.1% 6.3% 59.7%
Women 43.7% 1.1% 6.5% 48.7%

Note that the percents in each row sum to 100%.

(a) Graphically compare the volunteer-service
profiles for men and women. Describe any
differences that are striking.

(b) Find the proportion of men who volunteer. Do
the same for women. Refer to the section on relative
risk in Chapter 8 (page 515) and the discussion on
page 535 of this chapter. Compute the relative risk
of being a volunteer for females versus males. Write
a clear sentence contrasting females and males
using relative risk as your numerical summary.

9.16 C
H

ALLENG
E Gender versus motivation for volunteer

service, continued. Refer to the previous
exercise. Recompute the table for volunteers only.
To do this take the entries for each motivation
and divide by the percent of volunteers. Do this
separately for each gender. Verify that the percents
sum to 100% for each gender. Give a graphical
summary to compare the motivation of men and
women who are volunteers. Compare this with your
summary in part (a) of the previous exercise, and
write a short paragraph describing similarities and
differences in these two views of the data.

9.17 Drinking status and class attendance. As part of
the 1999 College Alcohol Study, students who drank
alcohol in the last year were asked if drinking ever
resulted in missing a class.16 The data are given in
the following table:

Drinking status

Missed Occasional Frequent
a class Nonbinger binger binger

No 4617 2047 1176
Yes 446 915 1959
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(a) Summarize the results of this table graphically
and numerically.

(b) What is the marginal distribution of drinking
status? Display the results graphically.

(c) Compute the relative risk of missing a class
for occasional bingers versus nonbingers and for
frequent bingers versus nonbingers. Summarize
these results.

(d) Perform the chi-square test for this two-way
table. Give the test statistic, degrees of freedom, the
P-value, and your conclusion.

9.18 Sexual imagery in magazine ads. In what ways
do advertisers in magazines use sexual imagery to
appeal to youth? One study classified each of 1509
full-page or larger ads as “not sexual” or “sexual,”
according to the amount and style of the dress of
the male or female model in the ad. The ads were
also classified according to the target readership
of the magazine.17 Here is the two-way table of
counts:

Magazine readership

Model dress Women Men General interest Total

Not sexual 351 514 248 1113
Sexual 225 105 66 396

Total 576 619 314 1509

(a) Summarize the data numerically and
graphically.

(b) Perform the significance test that compares the
model dress for the three categories of magazine
readership. Summarize the results of your test and
give your conclusion.

(c) All of the ads were taken from the March, July,
and November issues of six magazines in one year.
Discuss this fact from the viewpoint of the validity
of the significance test and the interpretation of the
results.

9.19 Intended readership of ads with sexual imagery.
The ads in the study described in the previous
exercise were also classified according to the
age group of the intended readership. Here is a
summary of the data:

Magazine readership age group

Model dress Young adult Mature adult

Not sexual 72.3% 76.1%
Sexual 27.2% 23.9%

Number of ads 1006 503

Using parts (a) and (b) in the previous exercise
as a guide, analyze these data and write a report
summarizing your work.

9.20 Air pollution from a steel mill. One possible effect
of air pollution is genetic damage. A study designed
to examine this problem exposed one group of mice
to air near a steel mill and another group to air in a
rural area and compared the numbers of mutations
in each group.18 Here are the data for a mutation at
the Hm-2 gene locus:

Location

Mutation Steel mill air Rural air

Yes 30 23
No

Total 96 150

(a) Fill in the missing entries in the table.

(b) Summarize the data numerically and
graphically.

(c) Is there evidence to conclude that the location
is related to the occurrence of mutations? Perform
the significance test and summarize the results.

9.21 Dieting trends among male and female
undergraduates. A recent study of undergraduates
looked at gender differences in dieting trends.19

There were 181 women and 105 men who
participated in the survey. The table below
summarizes whether a student tried a low-fat
diet or not by gender:

Gender

Tried low-fat diet Women Men

Yes 35 8
No
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(a) Fill in the missing cells of the table.

(b) Summarize the data numerically and
graphically.

(c) Test that there is no association between
gender and the likelihood of trying a low-fat diet.
Summarize the results.

9.22 Identity theft. A study of identity theft looked
at how well consumers protect themselves from
this increasingly prevalent crime. The behaviors
of 61 college students were compared with the
behaviors of 59 nonstudents.20 One of the questions
was “When asked to create a password, I have
used either my mother’s maiden name, or my pet’s
name, or my birth date, or the last four digits of my
social security number, or a series of consecutive
numbers.” For the students, 22 agreed with this
statement while 30 of the nonstudents agreed.

(a) Display the data in a two-way table and perform
the chi-square test. Summarize the results.

(b) Reanalyze the data using the methods for
comparing two proportions that we studied in the
previous chapter. Compare the results and verify
that the chi-square statistic is the square of the z
statistic.

(c) The students in this study were junior
and senior college students from two sections
of a course in Internet marketing at a large
northeastern university. The nonstudents were
a group of individuals who were recruited to
attend commercial focus groups on the West Coast
conducted by a lifestyle marketing organization.
Discuss how the method of selecting the subjects
in this study relates to the conclusions that can be
drawn from it.

9.23 C
H

ALLENG
E Student-athletes and gambling. A survey

of student-athletes that asked questions
about gambling behavior classified students
according to the National Collegiate Athletic
Association (NCAA) division.21 For male student-
athletes, the percents who reported wagering on
collegiate sports are given here along with the
numbers of respondents in each division:

Division I II III

Percent 17.2% 21.0% 24.4%
Number 5619 2957 4089

(a) Use a significance test to compare the percents
for the three NCAA divisions. Give details and a

short summary of your conclusion.

(b) The percents in the table above are given
in the NCAA report, but the numbers of male
student-athletes in each division who responded to
the survey question are estimated based on other
information in the report. To what extent do you
think this has an effect on the results? (Hint: Rerun
your analysis a few times, with slightly different
numbers of students but the same percents.)

(c) Some student-athletes may be reluctant to
provide this kind of information, even in a survey
where there is no possibility that they can be
identified. Discuss how this fact may affect your
conclusions.

(d) The chi-square test for this set of data assumes
that the responses of the student-athletes are
independent. However, some of the students are
at the same school and even on the same team.
Discuss how you think this might affect the results.

9.24 Which model? Refer to Exercises 9.17, 9.18,
9.20, and 9.23. For each, state whether you are
comparing two or more populations (the first
model for two-way tables) or testing independence
between two categorical variables (the second
model).

9.25 Hummingbirds of Santa Lucia. E. jugularis is
a type of hummingbird that lives in the forest
preserves of the Carribean island of Santa Lucia.
The males and the females of this species have bills
that are shaped somewhat differently. Researchers
who study these birds thought that the bill shape
might be related to the shape of the flowers that they
visit for food. The researchers observed 49 females
and 21 males. Of the females, 20 visited the flowers
of H. bihai, while none of the males visited these
flowers.22 Display the data in a two-way table and
perform the chi-square test. Summarize the results
and give a brief statement of your conclusion. Your
two-way table has a count of zero in one cell. Does
this invalidate your significance test? Explain why
or why not.

9.26 Internet references in prominent journals. The
World Wide Web (WWW) has led to an enormous
increase in the amount of information that is
easily available to anyone with Internet access.
References to Internet pages are becoming quite
common in the scientific literature. One study
examined Internet references in articles in three
prominent journals: the New England Journal of
Medicine (NEJM), the Journal of the American
Medical Association (JAMA), and Science.23 In one
part of the study, Internet references were classified
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according to the top-level domain. Here are the
data:

Journal

Top-level domain NEJM JAMA Science

.gov 41 103 111

.org 37 46 162

.com 6 17 14

.edu 4 8 47
Other 9 15 52

Analyze the data. Include numerical and graphical
summaries as well as a significance test. Summarize
your results and conclusions.

9.27 Pet ownership and education level. The Health,
Aging, and Body Composition (Health ABC) study
is a 10-year study of older adults. A research project
based on this study examined the relationship
between physical activity and pet ownership.24 The
data collected included information concerning pet
owner characteristics and the type of pet owned.
Here is a table of counts of subjects classified by
pet ownership status and education level:

Pet ownership status

Education Non–pet Dog Cat
level owners owners owners

Less than high school 421 93 28
High school graduate 666 100 40
Postsecondary 845 135 99

Note that “Dog owners” and “Cat owners” designate
individuals who own a dog only or a cat only,
respectively. Individuals who own both a dog and a
cat are not included in this table. Analyze the data.
Include numerical and graphical summaries as well
as a significance test. Summarize your results and
conclusions.

9.28 Pet ownership and gender. Refer to the
previous exercise. Here are similar data giving
the relationship between pet ownership status and
gender:

Pet ownership status

Gender Non–pet owners Dog owners Cat owners

Female 1024 157 85
Male 915 171 82

Analyze the data. Include numerical and graphical
summaries as well as a significance test. Summarize
your results and conclusions.

9.29 Changing majors. A task force set up to examine
retention of students in the majors that they chose
when starting college examined data on transfers
to other majors.25 Here are some data giving counts
of students classified by initial major and the area
that they transferred to:

Area transferred to

Initial Manage- Liberal
major Engineering ment arts Other Total

Biology 13 25 158 398
Chemistry 16 15 19 114
Mathematics 3 11 20 72
Physics 9 5 14 61

Complete the table by computing the values for
the “Other” column. Write a short paragraph
explaining what conclusions you can draw about
the relationship between initial major and area
transferred to. Be sure to include numerical and
graphical summaries as well as the details of your
significance test.

9.30 Secondhand stores. Shopping at secondhand
stores is becoming more popular and has even
attracted the attention of business schools. A
study of customers’ attitudes toward secondhand
stores interviewed samples of shoppers at two
secondhand stores of the same chain in two cities.
The breakdown of the respondents by gender is as
follows:26

Gender City 1 City 2

Men 38 68
Women 203 150

Total 241 218

Is there a significant difference between the
proportions of women customers in the two cities?

(a) State the null hypothesis, find the sample
proportions of women in both cities, do a two-sided
z test, and give a P-value using Table A.

(b) Calculate the X2 statistic and show that it is the
square of the z statistic. Show that the P-value from
Table F agrees (up to the accuracy of the table) with
your result from (a).
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(c) Give a 95% confidence interval for the difference
between the proportions of women customers in
the two cities.

9.31 More on secondhand stores. The study of
shoppers in secondhand stores cited in the previous
exercise also compared the income distributions
of shoppers in the two stores. Here is the two-way
table of counts:

Income City 1 City 2

Under $10,000 70 62
$10,000 to $19,999 52 63
$20,000 to $24,999 69 50
$25,000 to $34,999 22 19
$35,000 or more 28 24

Verify that the X2 statistic for this table is
X2 = 3.955. Give the degrees of freedom and the
P-value. Is there good evidence that customers at
the two stores have different income distributions?

9.32 C
H

ALLENG
E Cracks in veneer. Many furniture pieces

are built with veneer, a thin layer of fine wood
that is fastened to less expensive wood products
underneath. Face checks are cracks that sometimes
develop in the veneer. When face checks appear,
the furniture needs to be reconstructed. Because
this is a fairly expensive process, researchers seek
ways to minimize the occurrence of face checks
by controlling the manufacturing process. In one
study, the type of adhesive used was one of the
factors examined.27 Because of the way that the
veneer is cut, it has two different sides, called loose
and tight, either of which can face out. Here is a
table giving the numbers of veneer panels with and
without face checks for two different adhesives,
PVA and UF. Separate columns are given for the
loose side and the tight side.

Loose side Tight side

Face checks Face checks

Adhesive No Yes No Yes

PVA 10 54 44 20
UF 21 43 37 27

Analyze the data. Write a summary of your results
concerning the relationship between the adhesive
and the occurrence of face checks. Be sure to
include numerical and graphical summaries as well
as the details of your significance tests.

9.33 C
H

ALLENG
E Why are animals brought to animal

shelters? Euthanasia of healthy but
unwanted pets by animal shelters is believed to
be the leading cause of death for cats and dogs.
A study designed to find factors associated with
bringing a cat to an animal shelter compared data
on cats that were brought to an animal shelter with
data on cats from the same county that were not
brought in.28 One of the factors examined was the
source of the cat: the categories were private owner
or breeder, pet store, and other (includes born in
home, stray, and obtained from a shelter). This
kind of study is called a case-control study by
epidemiologists. Here are the data:

Source

Group Private Pet store Other

Cases 124 16 76
Controls 219 24 203

The same researchers did a similar study for dogs.29

The data are given in the following table:

Source

Group Private Pet store Other

Cases 188 7 90
Controls 518 68 142

(a) Analyze the data for the dogs and the cats
separately. Be sure to include graphical and
numerical summaries. Is there evidence to conclude
that the source of the animal is related to whether
or not the pet is brought to an animal shelter?

(b) Write a discussion comparing the results for
the cats with those for the dogs.

(c) These data were collected using a telephone
interview with pet owners in Mishawaka, Indiana.
The animal shelter was run by the Humane Society
of Saint Joseph County. The control group data
were obtained by a random digit dialing telephone
survey. Discuss how these facts relate to your
interpretation of the results.

9.34 Student loans. A study of 865 college students
found that 42.5% had student loans.30 The students
were randomly selected from the approximately
30,000 undergraduates enrolled in a large public
university. The overall purpose of the study was
to examine the effects of student loan burdens on
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the choice of a career. A student with a large debt
may be more likely to choose a field where starting
salaries are high so that the loan can more easily be
repaid. The following table classifies the students
by field of study and whether or not they have a
loan:

Student loan

Field of study Yes No

Agriculture 32 35
Child development and family studies 37 50
Engineering 98 137
Liberal arts and education 89 124
Management 24 51
Science 31 29
Technology 57 71

Carry out a complete analysis of the association
between having a loan and field of study, including
a description of the association and an assessment
of its statistical significance.

9.35 Altruism and field of study. In one part of the study
described in the previous exercise, students were
asked to respond to some questions regarding their
interests and attitudes. Some of these questions
form a scale called PEOPLE that measures altruism,
or an interest in the welfare of others. Each student
was classified as low, medium, or high on this scale.
Is there an association between PEOPLE score and
field of study? Here are the data:

PEOPLE score

Field of study Low Medium High

Agriculture 5 27 35
Child development and

family studies 1 32 54
Engineering 12 129 94
Liberal arts and education 7 77 129
Management 3 44 28
Science 7 29 24
Technology 2 62 64

Analyze the data and summarize your results.
Are there some fields of study that have very
large or very small proportions of students in the
high-PEOPLE category?

9.36 C
H

ALLENG
E “No Sweat” label. Following complaints

about the working conditions in some
apparel factories both in the United States
and abroad, a joint government and industry

commission recommended in 1998 that companies
that monitor and enforce proper standards be
allowed to display a “No Sweat” label on their
products. Does the presence of these labels
influence consumer behavior? A survey of U.S.
residents aged 18 or older asked a series of
questions about how likely they would be to
purchase a garment under various conditions. For
some conditions, it was stated that the garment had
a “No Sweat” label; for others, there was no mention
of such a label. On the basis of the responses, each
person was classified as a “label user” or a “label
nonuser.”31 There were 296 women surveyed. Of
these, 63 were label users. On the other hand, 27 of
251 men were classified as users.

(a) Construct the 2 × 2 table of counts for this
problem. Include the marginal totals for your table.

(b) Use a X2 statistic to examine the question of
whether or not there is a relationship between
gender and use of No Sweat labels. Give the test
statistic, degrees of freedom, the P-value, and your
conclusion.

(c) You examined this question using the methods
of the previous chapter in Exercise 8.64 (page
521). Verify that if you square the z statistic you
calculated for that exercise, you obtain the X2

statistic that you calculated for this exercise.

9.37 Are Mexican Americans less likely to be selected
as jurors? Refer to Exercise 8.81 (page 523)
concerning Castaneda v. Partida, the case where the
Supreme Court review used the phrase “two or three
standard deviations” as a criterion for statistical
significance. Recall that there were 181,535 persons
eligible for jury duty, of whom 143,611 were
Mexican Americans. Of the 870 people selected for
jury duty, 339 were Mexican Americans. We are
interested in finding out if there is an association
between being a Mexican American and being
selected as a juror. Formulate this problem using
a two-way table of counts. Construct the 2 × 2
table using the variables Mexican American or
not and juror or not. Find the X2 statistic and its
P-value. Square the z statistic that you obtained in
Exercise 8.81 and verify that the result is equal to
the X2 statistic.

9.38 C
H

ALLENG
E More on why animals are brought to

animal shelters. Refer to Exercise 9.33
(page 554) concerning the case-control study of
factors associated with bringing a cat to an animal
shelter and the similar study for dogs. The last
category for the source of the pet was given as
“Other” and includes born in home, stray, and
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obtained from a shelter. The following two-way
table lists these categories separately for cats:

Source

Group Private Pet store Home Stray Shelter

Cases 124 16 20 38 18
Controls 219 24 38 116 49

Here is the same breakdown for dogs:

Source

Group Private Pet store Home Stray Shelter

Cases 188 7 11 23 56
Controls 518 68 20 55 67

Analyze these 2 × 5 tables and compare the results
with those that you obtained for the 2 × 3 tables
in Exercise 9.33. With a large number of cells, the
chi-square test sometimes does not have very much
power.

9.39 C
H

ALLENG
E Evaluation of an herbal remedy. A study

designed to evaluate the effects of the herbal
remedy Echinacea purpurea randomly assigned
healthy children who were 2 to 11 years old to
receive either echinacea or a placebo.32 Each
time a child had an upper respiratory infection
(URI) treatment with echinacea or the placebo
was given for the duration of the URI. The dose
for the echinacea was based on the age of the
child according to the recommendation of the
manufacturer. The echinacea children had 329
URIs, while the placebo children had 367 URIs.
For each URI many variables were measured. One
of these was the parental assessment of the illness
severity. Here are the data:

Group

Parental assessment Echinacea Placebo

Mild 153 170
Moderate 128 157
Severe 48 40

They also recorded the presence or absence of
various types of adverse events. Here is a summary:

Group

Adverse event Echinacea Placebo

Itchiness 13 7
Rash 24 10
“Hyper” behavior 30 23
Diarrhea 38 34
Vomiting 22 21
Headache 33 24
Stomachache 52 41
Drowsiness 63 48
Other 63 48
Any adverse event 152 146

(a) Analyze the parental assessment data. Write a
summary of your analysis and conclusion. Be sure
to include graphical and numerical summaries.

(b) Analyze each adverse event. Display the results
graphically in a single graph. Make a table of the
relevant descriptive statistics.

(c) Use a statistical significance test to compare
the echinacea URIs with those of the placebo URIs
for each type of adverse event. Summarize the
results in a table and write a short report giving
your conclusions about the effect of echinacea on
URIs in healthy children who are 2 to 11 years
old. Explain why you need to analyze each type of
adverse event separately rather than performing a
chi-square test on the 10 × 2 table above.

(d) One concern about analyzing several outcome
variables in situations like this is that we may be
able to find statistical significance by chance if
we look at a sufficiently large number of outcome
variables. Explain why this is a concern in general
but is not a concern that is important for the
interpretation of the results of your analysis here.

(e) The authors of the paper describing these
results note that the unit of analysis for their
computations is the URI and not the child. They
state that similar results were found using more
sophisticated statistical methods. Based on the
descriptive statistics that you have computed,
are you inclined to agree or to disagree with this
statement of the authors? Explain your answer.

(f) This study was published in the Journal of the
American Medical Association (JAMA) and was
criticized in an article that appeared in Alternative
& Complementary Therapies.33 Three herbalists
gave responses to the original article. Among their
criticisms were (i) the dose of echinacea was too
low, (ii) the treatment should have been given
before the URI, not at the onset of symptoms,
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(iii) we should be skeptical of any positive trials
on pharmaceuticals or negative trials on natural
remedies that are published in JAMA, and (iv)
Echinacea angustifolia (not E. purpurea) should
have been used in combination with other herbs.
Discuss these criticisms and write a summary of
your opinions regarding echinacea.

The following exercises concern the optional material on
goodness of fit discussed in Section 9.3.

9.40 Is there a random distribution of trees? In
Example 6.1 (page 354) we examined data
concerning the longleaf pine trees in the Wade
Tract and concluded that the distribution of trees
in the tract was not random. Here is another way
to examine the same question. First, we divide the
tract into four equal parts, or quadrants, in the
east-west direction. Call the four parts, Q1 to Q4.
Then we take a random sample of 100 trees and
count the number of trees in each quadrant. Here
are the data:

Quadrant Q1 Q2 Q3 Q4

Count 18 22 39 21

(a) If the trees are randomly distributed, we expect
to find 25 trees in each quadrant. Why? Explain
your answer.

(b) We do not really expect to get exactly 25 trees in
each quadrant. Why? Explain your answer.

(c) Perform the goodness of fit test for these data
to determine if these trees are randomly scattered.
Write a short report giving the details of your
analysis and your conclusion.

9.41 Use of academic assistance services. The 2005
National Survey of Student Engagement reported
on the use of campus services during the first year
of college. 34 In terms of academic assistance (for
example tutoring, writing lab), 43% never used
the services, 35% sometimes used the services,
15% often used the services, and 7% very often
used the services. You decide to see if your large
university has this same distribution. You survey
first-year students and obtain the counts 79, 83,
36, and 12 respectively. Use a goodness of fit test
to examine how well your university reflects the
national average.

9.42 Goodness of fit to a standard Normal
distribution. Computer software generated 500

random numbers that should look like they are
from the standard Normal distribution. They are
categorized into five groups: (1) less than or equal
to −0.6, (2) greater than −0.6 and less than or equal
to −0.1, (3) greater than −0.1 and less than or equal
to 0.1, (4) greater than 0.1 and less than or equal to
0.6, and (5) greater than 0.6. The counts in the five
groups are 139, 102, 41, 78, and 140, respectively.
Find the probabilities for these five intervals using
Table A. Then compute the expected number for
each interval for a sample of 500. Finally, perform
the goodness of fit test and summarize your results.

9.43 More on the goodness of fit to a standard Normal
distribution. Refer to the previous exercise. Use
software to generate your own sample of 500
standard Normal random variables, and perform
the goodness of fit test. Choose a different set
of intervals from the ones used in the previous
exercise.

9.44 Goodness of fit to the uniform distribution.
Computer software generated 500 random numbers
that should look like they are from the uniform
distribution on the interval 0 to 1 (see page 263).
They are categorized into five groups: (1) less
than or equal to 0.2, (2) greater than 0.2 and less
than or equal to 0.4, (3) greater than 0.4 and less
than or equal to 0.6, (4) greater than 0.6 and less
than or equal to 0.8, and (5) greater than 0.8. The
counts in the five groups are 114, 92, 108, 101, and
85, respectively. The probabilities for these five
intervals are all the same. What is this probability?
Compute the expected number for each interval for
a sample of 500. Finally, perform the goodness of
fit test and summarize your results.

9.45 More on goodness of fit to the uniform
distribution. Refer to the previous exercise.
Use software to generate your own sample of 500
uniform random variables on the interval from 0
to 1, and perform the goodness of fit test. Choose a
different set of intervals from the ones used in the
previous exercise.

9.46 C
H

ALLENG
E Suspicious results? An instructor who

assigned an exercise similar to the one
described in the previous exercise received
homework from a student who reported a P-value
of 0.999. The instructor suspected that the student
did not use the computer for the assignment but
just made up some numbers for the homework.
Why was the instructor suspicious? How would
this scenario change if there were 1000 students in
the class?
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CHAPTER

1010Inference for Regression

Previously we looked at the average property damage per year due to tornadoes.
What about the frequency of tornadoes? Has the annual number of reported
tornadoes increased over time? See Exercises 10.23 and 10.24 for more details.

10.1 Simple Linear Regression

10.2 More Detail about Simple
Linear Regression

Introduction
In this chapter we describe methods for inference when
there is a single quantitative response variable and a
single quantitative explanatory variable. The descriptive
tools we learned in Chapter 2—scatterplots, least-squares regression, and
correlation—are essential preliminaries to inference and also provide a foun-
dation for confidence intervals and significance tests.

We first met the sample mean x in Chapter 1 as a measure of the center of a
collection of observations. Later we learned that when the data are a random
sample from a population, the sample mean is an estimate of the population
mean μ. In Chapters 6 and 7, we used x as the basis for confidence intervals
and significance tests for inference about μ.

Now we will follow the same approach for the problem of fitting straight
lines to data. In Chapter 2 we met the least-squares regression line ŷ = b0 +
b1x as a description of a straight-line relationship between a response variable
y and an explanatory variable x. At that point we did not distinguish between
sample and population. Now we will think of the least-squares line computed
from a sample as an estimate of a true regression line for the population.

Following the common practice of using Greek letters for population pa-
rameters, we will write the population line as β0 + β1x. This notation reminds
us that the intercept b0 of the fitted line estimates the intercept β0 of the popu-
lation line, and the slope b1 estimates the slope β1.

559
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The methods detailed in this chapter will help us answers questions such as:

• Is the trend in the annual number of tornadoes reported in the United States
linear? If so, what is the average yearly increase in the number of tornadoes?
How many are predicted for next year?

• What is the relationship between the selling price of a home and the number
of bathrooms that it contains?

• Among North American universities, is there a strong correlation between
the binge-drinking rate and the average price for a bottle of beer at establish-
ments within a 2-mile radius of campus?

10.1 Simple Linear Regression
Statistical model for linear regression
Simple linear regression studies the relationship between a response variable
y and a single explanatory variable x. We expect that different values of x will
produce different mean responses. We encountered a similar but simpler situ-
ation in Chapter 7 when we discussed methods for comparing two population
means. Figure 10.1 illustrates the statistical model for a comparison of blood
pressure change in two groups of experimental subjects, one group taking a
calcium supplement and the other a placebo. We can think of the treatment
(placebo or calcium) as the explanatory variable in this example. This model
has two important parts:

• The mean change may be different in the two populations. These means are
labeled μ1 and μ2 in Figure 10.1.

• Individual changes in blood pressure vary within each population according
to a Normal distribution. The two Normal curves in Figure 10.1 describe the
individual responses. These Normal distributions have the same spread, in-
dicating that the population standard deviations are assumed to be equal.

In linear regression the explanatory variable x is quantitative and can have
many different values. Imagine, for example, giving different amounts x of cal-
cium to different groups of subjects. We can think of the values of x as defining

Placebo
Calcium

Treatment group

Blood pres
su

re 
ch

ange

μ1

μ2

FIGURE 10.1 The statistical
model for comparing responses
to two treatments; the mean
response varies with the
treatment.
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different subpopulations, one for each possible value of x. Each subpopula-subpopulations
tion consists of all individuals in the population having the same value of x. If
we conducted an experiment with five different amounts of calcium, we could
view these values as defining five different subpopulations.

The statistical model for simple linear regression also assumes that for
each value of x the observed values of the response variable y are Normally dis-
tributed with a mean that depends on x. We use μy to represent these means.
In general, the means μy can change as x changes according to any sort of pat-
tern. In simple linear regression we assume the means all lie on a line whensimple linear regression
plotted against x. To summarize, this model also has two important parts:

• The mean of the response variable y changes as x changes. The means all lie
on a straight line. That is, μy = β0 + β1x.

• Individual responses of y with the same x vary according to a Normal distri-
bution. These Normal distributions all have the same standard deviation.

This statistical model is pictured in Figure 10.2. Rather than just two means
μ1 and μ2, we are interested in how the many means μy change as x changes.
The simple linear regression model assumes that they all lie on a line when plot-
ted against x. The equation of the line is

μy = β0 + β1x

with intercept β0 and slope β1. This is the population regression line; it de-population regression line
scribes how the mean response changes with x. The line in Figure 10.2 is the
population regression line. Observed y’s will vary about these means. The three
Normal curves show how the response y will vary for three different values of
the explanatory variable x. The model assumes that this variation, measured by
the standard deviation σ , is the same for all values of x.

y

x

βμ 1xy β 0= +FIGURE 10.2 The statistical
model for linear regression; the
mean response is a straight-line
function of the explanatory
variable.

Data for simple linear regression
The data for a linear regression are observed values of y and x. The model takes
each x to be a fixed known quantity. In practice, x may not be exactly known.
If the error in measuring x is large, more advanced inference methods are needed.
The response y to a given x is a random variable. The linear regression model

CAUTION

!
LOOK BACK

random variable,
page 259 describes the mean and standard deviation of this random variable y. These

unknown parameters must be estimated from the data.
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We will use the following example to explain the fundamentals of simple lin-
ear regression. Because regression calculations in practice are always done by
statistical software, we will rely on computer output for the arithmetic. In the
next section, we give an example that illustrates how to do the work with a cal-
culator if software is unavailable.

•

•

E
X

A
M
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E 10.1 Relationship between speed driven and fuel efficiency. Com-
puters in some vehicles calculate various quantities related to the vehicle’s
performance. One of these is the fuel efficiency, or gas mileage, expressed as
miles per gallon (mpg). Another is the average speed in miles per hour (mph).
For one vehicle equipped in this way, mpg and mph were recorded each time
the gas tank was filled, and the computer was then reset.1 How does the speed
at which the vehicle is driven affect the fuel efficiency? There are 234 obser-
vations available. We will work with a simple random sample of size 60.

Before starting our analysis, it is appropriate to consider the extent to which
our results can reasonably be generalized. Because we have a simple random
sample from a population of size 234, we are on firm ground in making infer-
ences about this particular vehicle. However, as a practical matter, no one really
cares about this particular vehicle. Our results are interesting only if they can
be applied to other similar vehicles that are driven under similar conditions.
Our statistical modeling for this data set is concerned about the process by
which speed affects the fuel efficiency. Although we would not expect the pa-
rameters that describe the relationship between speed and fuel efficiency to be
exactly the same for similar vehicles, we would expect to find qualitatively sim-
ilar results.

In the statistical model for predicting fuel efficiency from speed, subpopu-
lations are defined by the explanatory variable, speed. For a particular value of
speed, say 30 mph, we can think about operating this vehicle repeatedly at this
average speed. Variation in driving conditions and the behavior of the driver
would be sources of variation that would give different values of mpg for this
subpopulation.

•

•

E
X

A
M
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L

E 10.2 Graphical display of the fuel efficiency relationship. We start
our analysis with a graphical display of the data. Figure 10.3 is a plot of fuel
efficiency versus speed for our sample of 60 observations. We use the vari-
able names MPG and MPH. The least-squares regression line and a smooth
function are also shown in the plot. Although there is a positive association
between MPG and MPH, the fit is not linear. The smooth function shows us
that the relationship levels off somewhat with increasing speed.

Always start with a graphical display of the data. There is no point in trying

CAUTION

! to do statistical inference if our data do not, at least approximately, meet the
assumptions that are the foundation for our inference. At this point we need to
make a choice. One possibility would be to confine our interest to speeds that
are 30 mph or less, a region where it appears that a line would be a good fit to
the data. Another possibility is to make some sort of transformation that will
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FIGURE 10.3 Scatterplot of
MPG versus MPH with a smooth
function and the least-squares
line, for Example 10.2.

make the relationship approximately linear for the entire set of data. We will
choose the second option.

•

•
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E 10.3 Is this relationship linear? One type of function that looks similar
to the smooth-function fit in Figure 10.3 is a logarithm. Therefore, we will
examine the effect of transforming speed by taking the natural logarithm. The
result is shown in Figure 10.4. In this plot the smooth function and the line
are quite close. We are satisfied that the relationship between the log of speed
and fuel efficiency is approximately linear for this set of data.
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LOGMPH
3.83.63.4

FIGURE 10.4 Scatterplot of
MPG versus logarithm of MPH
with a smooth function and the
least-squares line, for
Example 10.3.

Now that we have an approximate linear relationship, we return to predict-
ing fuel efficiency for different subpopulations, defined by the explanatory vari-
able speed. Consider a particular value of speed, for example 30 mph, which
in Figure 10.4 would be x = log(30) = 3.4. Our statistical model assumes that
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these fuel efficiencies are Normally distributed with a mean μy that depends
upon x in a linear way. Specifically,

μy = β0 + β1x

This population regression line gives the mean fuel efficiency for all values
of x. We cannot observe this line, because the observed responses y vary about
their means. The statistical model for linear regression consists of the popula-
tion regression line and a description of the variation of y about the line. This
was displayed in Figure 10.2 with the line and the three Normal curves. The
following equation expresses this idea in an equation:

DATA = FIT + RESIDUAL

The FIT part of the model consists of the subpopulation means, given by the ex-
pression β0 + β1x. The RESIDUAL part represents deviations of the data from
the line of population means. We assume that these deviations are Normally
distributed with standard deviation σ . We use ε (the Greek letter epsilon) to
stand for the RESIDUAL part of the statistical model. A response y is the sum
of its mean and a chance deviation ε from the mean. The deviations ε repre-
sent “noise,” that is, variation in y due to other causes that prevent the observed
(x, y)-values from forming a perfectly straight line on the scatterplot.

SIMPLE LINEAR REGRESSION MODEL

Given n observations of the explanatory variable x and the response vari-
able y,

(x1, y1), (x2, y2), . . . , (xn, yn)

the statistical model for simple linear regression states that the ob-
served response yi when the explanatory variable takes the value xi is

yi = β0 + β1xi + εi

Here β0 + β1xi is the mean response when x = xi. The deviations εi are
assumed to be independent and Normally distributed with mean 0 and
standard deviation σ .

The parameters of the model are β0, β1, and σ .

Because the means μy lie on the line μy = β0 + β1x, they are all determined
by β0 and β1. Once we have estimates of β0 and β1, the linear relationship deter-
mines the estimates of μy for all values of x. Linear regression allows us to do
inference not only for subpopulations for which we have data but also for those
corresponding to x’s not present in the data. We will learn how to do inference
about

• the slope β1 and the intercept β0 of the population regression line,

• the mean response μy for a given value of x, and

• an individual future response y for a given value of x.



10.1 Simple Linear Regression
•

565

Estimating the regression parameters
The method of least squares presented in Chapter 2 fits a line to summarizeLOOK BACK

least-squares
regression, page 112

a relationship between the observed values of an explanatory variable and a
response variable. Now we want to use the least-squares line as a basis for in-
ference about a population from which our observations are a sample. We can
do this only when the statistical model just presented holds. In that setting, the
slope b1 and intercept b0 of the least-squares line

ŷ = b0 + b1x

estimate the slope β1 and the intercept β0 of the population regression line.
Using the formulas from Chapter 2, the slope of the least-squares line isLOOK BACK

least-squares
equations, page 114

correlation, page 102

unbiased estimator,
page 217

b1 = r
sy

sx

and the intercept is

b0 = y − b1x

Here, r is the correlation between y and x, sy is the standard deviation of y, and
sx is the standard deviation of x. Some algebra based on the rules for means of
random variables (Section 4.4) shows that b0 and b1 are unbiased estimators of
β0 and β1. Furthermore, b0 and b1 are Normally distributed with means β0 and
β1 and standard deviations that can be estimated from the data. Normality of
these sampling distributions is a consequence of the assumption that the εi are
distributed Normally. A general form of the central limit theorem tells us thatLOOK BACK

central limit theorem,
page 339

the distributions of b0 and b1 will still be approximately Normal even if the εi

are not. On the other hand, outliers and influential observations can invalidate
the results of inference for regression.

The predicted value of y for a given value x∗ of x is the point on the least-
squares line ŷ = b0 + b1x∗. This is an unbiased estimator of the mean response
μy when x = x∗. The residual isresidual

ei = observed response − predicted response

= yi − ŷi

= yi − b0 − b1xi

The residuals ei correspond to the model deviations εi. The ei sum to 0, and the
εi come from a population with mean 0.

The remaining parameter to be estimated is σ , which measures the variation
of y about the population regression line. Because this parameter is the stan-
dard deviation of the model deviations, it should come as no surprise that we
use the residuals to estimate it. As usual, we work first with the variance and
take the square root to obtain the standard deviation. For simple linear regres-
sion, the estimate of σ 2 is the average squared residual

s2 =
∑

e2
i

n − 2

=
∑

( yi − ŷi)
2

n − 2
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We average by dividing the sum by n − 2 in order to make s2 an unbiased es-
timate of σ 2. The sample variance of n observations uses the divisor n − 1 for
this same reason. The quantity n − 2 is called the degrees of freedom for s2.

LOOK BACK
sample variance,
page 40

degrees of freedom
The estimate of σ is given by

s =
√

s2

We will use statistical software to calculate the regression for predicting fuel
efficiency with the log of speed for Example 10.3. In entering the data, we chose
the names LOGMPH for the log of speed and MPG for fuel efficiency. It is good
practice to use names, rather than just x and y, to remind yourself which data the
output describes.

CAUTION

!

•
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E 10.4 Statistical software output for fuel efficiency. Figure 10.5 gives
the outputs for four commonly used statistical software packages and Excel.
Other software will give similar information. The SPSS output reports esti-
mates of our three parameters as b0 = −7.796, b1 = 7.874, and s = 0.9995.
Be sure that you can find these entries in this output and the corresponding
values in the other outputs.

The least-squares regression line is the straight line that is plotted in Fig-
ure 10.4. We would report it as

M̂PG = −7.80 + 7.87LOGMPH

with a model standard deviation of s = 1.00. Note that the number of digits
provided varies with the software used and we have rounded off the values to
three significant digits. It is important to avoid cluttering up your report of the
results of a statistical analysis with many digits that are not relevant. Software

CAUTION

!
often reports many more digits than are meaningful or useful.

The outputs contain other information that we will ignore for now. Com-
puter outputs often give more information than we want or need. The experi-
enced user of statistical software learns to ignore the parts of the output that are
not needed for the current problem. This is done to reduce user frustration when

CAUTION

!
a software package does not print out the particular statistics wanted for an
analysis.

Now that we have fitted a line, we should examine the residuals for Normal-
ity and any remaining patterns in the data. We usually plot the residuals both
against the case number (especially if this reflects the order in which the obser-
vations were collected) and against the explanatory variable. For this example,
in place of case number, we prefer another variable that is similar but is re-
corded in a more useful scale. It is the total number of miles that the vehicle
has been driven.

Figure 10.6 gives a plot of the residuals versus miles driven with a smooth-
function fit. The smooth function suggests that the residuals increase slightly
up to about 50,000 miles and then tend to decrease somewhat. With the data
that we have for this example, it is difficult to decide if this effect is real or due to
chance variation. It is not unreasonable to think that the vehicle performance
decreases with age. Since the effect does not appear to be particularly large, we
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FIGURE 10.5 Regression
output from SPSS, Minitab,
CrunchIt!, Excel, and SAS for the
fuel efficiency example.
(continued)
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FIGURE 10.5 (Continued)
Regression output from SPSS,
Minitab, CrunchIt!, Excel, and
SAS for the fuel efficiency
example.

10,000 20,000 30,000 40,000 50,000 70,000
–4

–3

–2

–1

1

2

3

R
es

id
ua

l

Miles driven
60,000

0

FIGURE 10.6 Plot of residuals
versus miles driven with a
smooth function, for the fuel
efficiency example.
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will ignore it for the present analysis. With more data, however, it may be an
interesting phenomenon to study.

The residuals are plotted versus the explanatory variable, log of mph (la-
beled LOGMPH), in Figure 10.7. No clear pattern is evident. There is one resid-
ual that is somewhat low, and we have seen it in all of our plots. Inspection of
Figure 10.4 reveals that this observation does not appear to distort our least-
squares regression line.
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FIGURE 10.7 Plot of residuals
versus log of MPH with a smooth
function, for the fuel efficiency
example.
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FIGURE 10.8 Normal quantile
plot of the residuals for the fuel
efficiency example.

Finally, Figure 10.8 is a Normal quantile plot of the residuals. Because the
plot looks fairly straight, we are confident that we do not have a serious vio-
lation of our assumption that the residuals are Normally distributed. Observe
that the low outlier is also visible in this plot.

USE YOUR KNOWLEDGE
10.1 Understanding a linear regression model. Consider a linear re-

gression model with μy = 40.5 − 2.5x and standard deviation σ =
2.0.

(a) What is the slope of the population regression line?
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(b) Explain clearly what this slope says about the change in the
mean of y for a change in x.

(c) What is the subpopulation mean when x = 10?

(d) Between what 2 values would approximately 95% of the ob-
served responses, y, fall when x = 10?

10.2 More on speed’s effect on fuel efficiency. Refer to Example 10.4.

(a) What is the predicted mpg for the car when it averages 35 mph?

(b) If the observed mpg when x = 35 mph were 21.0, what is the
residual?

(c) Suppose you wanted to use the estimated population regression
line to examine the average mpg at 45, 55, 65, and 75 mph. Dis-
cuss the appropriateness of using the equation to predict mpg for
each of these speeds.

Confidence intervals and significance tests
Chapter 7 presented confidence intervals and significance tests for means and
differences in means. In each case, inference rested on the standard errors of
estimates and on t distributions. Inference for the intercept and slope in a linear
regression is similar in principle. For example, the confidence intervals have
the form

estimate ± t∗SEestimate

where t∗ is a critical point of a t distribution. It is the formulas for the estimate
and standard error that are more complicated.

Confidence intervals and tests for the slope and intercept are based on the
Normal sampling distributions of the estimates b1 and b0. Standardizing these
estimates gives standard Normal z statistics. The standard deviations of these
estimates are multiples of σ , the model parameter that describes the variability
about the true regression line. Because we do not know σ , we estimate it by s,
the variability of the data about the least-squares line. When we do this, we get
t distributions with degrees of freedom n − 2, the degrees of freedom of s. We
give formulas for the standard errors SEb1 and SEb0 in Section 10.2. For now we
will concentrate on the basic ideas and let the computer do the computations.

CONFIDENCE INTERVALS AND SIGNIFICANCE TESTS FOR
REGRESSION SLOPE AND INTERCEPT

A level C confidence interval for the intercept β0 is

b0 ± t∗SEb0

A level C confidence interval for the slope β1 is

b1 ± t∗SEb1

In these expressions t∗ is the value for the t(n − 2) density curve with area
C between −t∗ and t∗.
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To test the hypothesis H0: β1 = 0, compute the test statistic

t = b1

SEb1

The degrees of freedom are n − 2. In terms of a random variable T hav-
ing the t(n − 2) distribution, the P-value for a test of H0 against

Ha: β1 > 0 is P(T ≥ t)
t

Ha: β1 < 0 is P(T ≤ t)
t

Ha: β1 �= 0 is 2P(T ≥ |t|)
t

There is a similar significance test about the intercept β0 that uses SEb0 and
the t(n − 2) distribution. Although computer outputs often include a test of
H0: β0 = 0, this information usually has little practical value. From the equa-
tion for the population regression line, μy = β0 + β1x, we see that β0 is the mean
response corresponding to x = 0. In many practical situations, this subpopu-
lation does not exist or is not interesting.

On the other hand, the test of H0: β1 = 0 is quite useful. When we substitute
β1 = 0 in the model, the x term drops out and we are left with

μy = β0

This model says that the mean of y does not vary with x. All of the y’s come from
a single population with mean β0, which we would estimate by y. The hypothe-
sis H0: β1 = 0 therefore says that there is no straight-line relationship between
y and x and that linear regression of y on x is of no value for predicting y.
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E 10.5 Statistical software output, continued. The computer outputs in
Figure 10.5 for the fuel efficiency problem contain the information needed
for inference about the regression slope and intercept. Let’s look at the SPSS
output. The column labeled Std. Error gives the standard errors of the esti-
mates. The value of SEb1 appears on the line labeled with the variable name
for the explanatory variable, LOGMPH. It is given as 0.354. In a summary we
would report that the regression coefficient for the log of speed is 7.87 with a
standard error of 0.35.

The t statistic and P-value for the test of H0: β1 = 0 against the two-sided
alternative Ha: β1 �= 0 appear in the columns labeled t and Sig. We can verify
the t calculation from the formula for the standardized estimate:

t = b1

SEb1

= 7.874
0.354

= 22.24
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The P-value is given as 0.000. This is a rounded number and from that
information we can conclude that P < 0.0005. The other outputs in Fig-
ure 10.5 also indicate that the P-value is very small. We will report the result
as P < 0.001 because 1 chance in 1000 is sufficiently small for us to decisively
reject the null hypothesis.

We have found a statistically significant linear relationship between fuel ef-
ficiency and log speed. The estimated slope is more than 22 standard deviations
away from zero. Because this is extremely unlikely to happen if the true slope
is zero, we have strong evidence for our claim. Note, however, that this is not
the same as concluding that we have found a strong relationship between the
response and explanatory variables in this example. A very small P-value for the
significance test for a zero slope does not necessarily imply that we have found
a strong relationship. A confidence interval will provide additional information

CAUTION

!
about the relationship.
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quires a critical value t∗ from the t(n − 2) = t(58) distribution. In Table D
there are entries for 50 and 60 degrees of freedom. The values for these rows
are very similar. To be conservative, we will use the larger critical value, for
50 degrees of freedom. Find the confidence level values at the bottom of the
table. In the 95% confidence column the entry for 50 degrees of freedom is
t∗ = 2.009.

To compute the 95% confidence interval for β1 we combine the estimate
of the slope with the margin of error:

b1 ± t∗SEb1 = 7.874 ± (2.009)(0.354)

= 7.874 ± 0.711

The interval is (7.16, 8.58). This agrees with the value given by the software
outputs that provide this information in Figure 10.5. We estimate that an in-
crease of 1 in the logarithm of speed is associated with an increase of between
7.16 and 8.58 mpg.

To interpret the interval, it is useful to translate the statement back to the
original mph scale. From Figure 10.4 we can see that the values for LOGMPH
range from about 2.5 to 3.9. Let’s translate the increase of 1 unit in LOGMPH
to the mph scale by considering a change from 2.8 to 3.8. Since log(16.4) = 2.8
and log(44.7) = 3.8, the change corresponds to an increase in speed from 16.4
to 44.7 mph. An increase in average speed from 16.4 to 44.7 mph is associated
with an increase of 7.8 ± 0.7 in mpg.

Note that the intercept in this example is not of practical interest. It esti-
mates mpg when the logarithm of mph (that’s x) is 0, a value that cannot occur.
For this reason, we do not compute a confidence interval for β0.

Confidence intervals for mean response
For any specific value of x, say x∗, the mean of the response y in this subpopu-
lation is given by
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μy = β0 + β1x∗

To estimate this mean from the sample, we substitute the estimates b0 and b1

for β0 and β1:

μ̂y = b0 + b1x∗

A confidence interval for μy adds to this estimate a margin of error based on
the standard error SEμ̂. (The formula for the standard error is given in Sec-
tion 10.2.)

CONFIDENCE INTERVAL FOR A MEAN RESPONSE

A level C confidence interval for the mean response μy when x takes
the value x∗ is

μ̂y ± t∗SEμ̂

where t∗ is the value for the t(n − 2) density curve with area C between
−t∗ and t∗.

Many computer programs calculate confidence intervals for the mean re-
sponse corresponding to each of the x-values in the data. Some can calculate
an interval for any value x∗ of the explanatory variable. We will use a plot to
illustrate these intervals.

•

•

E
X

A
M

P
L

E 10.7 Confidence intervals for the mean response. Figure 10.9 shows
the upper and lower confidence limits on a graph with the data and the least-
squares line. The 95% confidence limits appear as dashed curves. For any x∗,
the confidence interval for the mean response extends from the lower dashed
curve to the upper dashed curve. The intervals are narrowest for values of x∗
near the mean of the observed x’s and widen as x∗ moves away from x.
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FIGURE 10.9 The 95%
confidence limits (dashed curves)
for the mean response for the
fuel efficiency example.
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Some software will do these calculations directly if you input a value for the
explanatory variable. Others will calculate the intervals for each value of x in
the data set. Creating a new data set with an additional observation with x equal
to the value of interest and y missing will often work.
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E 10.8 Confidence interval for a speed of 30 mph. Let’s find the confi-
dence interval for the mean response at 30 mph. We use x = log(30) = 3.4 as
the value for the explanatory variable. Our predicted fuel efficiency is

M̂PG = −7.80 + 7.87LOGMPH

= −7.80 + (7.87)(3.4)

= 19.0

Software tells us that the 95% confidence interval for the mean response is
18.7 to 19.3 mpg.

If we operated this vehicle many times under similar conditions at an av-
erage speed of 30 mph, we would expect the fuel efficiency to be between 18.7
and 19.3 mpg. Note that many of the observations in Figure 10.9 lie outside the
confidence bands. These confidence intervals do not tell us what mileage to expect
for a single observation at a particular average speed such as 30 mph. We need a

CAUTION

!
different kind of interval for this purpose.

Prediction intervals
In the last example, we predicted the mean fuel efficiency when the average
speed is 30 mph. Suppose we now want to predict a future observation of fuel
efficiency when the vehicle is driven at 30 mph under similar conditions. Our
best guess at the fuel efficiency is what we obtained before using the regression
equation, that is, 19.0 mpg. The margin of error, on the other hand, is larger
because it is harder to predict an individual value than to predict the mean.

The predicted response y for an individual case with a specific value x∗ of
the explanatory variable x is

ŷ = b0 + b1x∗

This is the same as the expression for μ̂y. That is, the fitted line is used both
to estimate the mean response when x = x∗ and to predict a single future re-
sponse. We use the two notations μ̂y and ŷ to remind ourselves of these two
distinct uses.

A useful prediction should include a margin of error to indicate its accuracy.
The interval used to predict a future observation is called a prediction inter-prediction interval
val. Although the response y that is being predicted is a random variable, the
interpretation of a prediction interval is similar to that for a confidence inter-
val. Consider doing the following many times:

• Draw a sample of n observations (xi, yi) and then one additional observation
(x∗, y).

• Calculate the 95% prediction interval for y when x = x∗ using the sample of
size n.
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Then 95% of the prediction intervals will contain the value of y for the addi-
tional observation. In other words, the probability that this method produces
an interval that contains the value of a future observation is 0.95.

The form of the prediction interval is very similar to that of the confidence
interval for the mean response. The difference is that the standard error SEŷ

used in the prediction interval includes both the variability due to the fact that
the least-squares line is not exactly equal to the true regression line and the vari-
ability of the future response variable y around the subpopulation mean. (The
formula for SEŷ appears in Section 10.2.)

PREDICTION INTERVAL FOR A FUTURE OBSERVATION

A level C prediction interval for a future observation on the response
variable y from the subpopulation corresponding to x∗ is

ŷ ± t∗SEŷ

where t∗ is the value for the t(n − 2) density curve with area C between
−t∗ and t∗.

Again, we use a graph to illustrate the results.
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E 10.9 Prediction intervals for fuel efficiency. Figure 10.10 shows the up-
per and lower prediction limits, along with the data and the least-squares line.
The 95% prediction limits are indicated by the dashed curves. Compare this
figure with Figure 10.9, which shows the 95% confidence limits drawn to the
same scale. The upper and lower limits of the prediction intervals are far-
ther from the least-squares line than are the confidence limits. This results
in most, but not all, of the observations in Figure 10.10 lying within the pre-
diction bands.
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FIGURE 10.10 The 95%
prediction limits (dashed curves)
for individual responses for the
fuel efficiency example. Compare
with Figure 10.9.
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The comparison of Figures 10.9 and 10.10 reminds us that the interval for a
single future observation must be larger than an interval for the mean of its sub-
population.

CAUTION

!
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E 10.10 Prediction interval for a speed of 30 mph. Let’s find the predic-
tion interval for a future observation of fuel efficiency when the vehicle is
driven at 30 mph. The predicted value is the same as the estimate of the mean
response that we calculated in Example 10.8, that is, 19.0 mpg. Software tells
us that the 95% prediction interval is 17.0 to 21.0 mpg. If we operated this ve-
hicle a single time under similar conditions at an average speed of 30 mph,
we would expect the fuel efficiency to be between 17.0 and 21.0 mpg.

USE YOUR KNOWLEDGE
10.3 Constructing confidence intervals for the mean response. Refer

to Example 10.6. For the following three changes in average speed,
construct a 95% confidence interval for the change in mpg.

(a) LOGMPH increases from 2.9 to 3.9 (18.2 to 49.4 mph).

(b) LOGMPH decreases from 3.7 to 2.7 (40.4 to 14.9 mph).

(c) LOGMPH increases from 2.8 to 3.3 (16.4 to 27.1 mph).

10.4 Standard error for the mean response. Refer to Example 10.10.
What is the standard error of ŷ when x = 30 mph? Would you expect
the standard error of ŷ to be larger, smaller, or the same when x = 40
mph? Explain.

BEYOND THE BASICS

Nonlinear Regression

The regression model that we have studied assumes that the relationship be-
tween the response variable and the explanatory variable can be summarized
with a straight line. When the relationship is not linear, we can sometimes make
it linear by a transformation. In other circumstances, we use models that allow
for various types of curved relationships. These models are called nonlinear
models.nonlinear models

Technical details are much more complicated for nonlinear models. In gen-
eral we cannot write down simple formulas for the parameter estimates; we
use a computer to solve systems of equations to find the estimates. However,
the basic principles are those that we have already learned. For example,

DATA = FIT + RESIDUAL

still applies. The FIT is a nonlinear (curved) function, and the residuals are as-
sumed to be an SRS from the N(0, σ ) distribution. The nonlinear function con-
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tains parameters that must be estimated from the data. Approximate standard
errors for these estimates are part of the standard output provided by software.
Here is an example.
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E 10.11 Bone mass accumulation in young women. As we age, our
bones become weaker and are more likely to break. Osteoporosis (or weak
bones) is the major cause of bone fractures in older women. Some researchers
have studied this problem by looking at how and when bone mass is accu-
mulated by young women. Understanding the relationship between age and
bone mass is an important part of this approach to the problem.

Figure 10.11 displays data for a measure of bone strength, called “total
body bone mineral density” (TBBMD), and age for a sample of 256 young
women.2 TBBMD is measured in grams per square centimeter (g/cm2), and
age is recorded in years. The solid curve is the nonlinear fit, and the dashed
curves are 95% prediction limits. The fitted nonlinear equation is

ŷ = 1.162
e−1.162+0.28x

1 + e−1.162+0.28x

In this equation, ŷ is the predicted value of TBBMD, the response variable;
and x is age, the explanatory variable. A straight line would not do a very
good job of summarizing the relationship between TBBMD and age. At first,
TBBMD increases with age, but then it levels off as age increases. The value
of the function where it is level is called “peak bone mass”; it is a parameter
in the nonlinear model. The estimate is 1.162 and the standard error is 0.008.
Software gives the 95% confidence interval as (1.146, 1.178).
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FIGURE 10.11 Plot of total
body bone mineral density
versus age.

The long-range goals of the researchers who conducted this study include
developing intervention programs (exercise and increasing calcium intake
have been shown to be effective) for young women that will increase their
TBBMD. What age groups should be the target of these interventions? The
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fitted nonlinear model can be used to obtain estimates of the age (with a stan-
dard error) at which any given percent of the peak bone mass is attained. We
estimate that the age at which the population reaches 95% of peak bone mass
is 16.2 years (SE = 1.1 years). For 99% of peak bone mass, the age is 22.1
years (SE = 2.5 years). Intervention programs should be directed toward high
school- and college-aged women.

SECTION 10.1 Summary

The statistical model for simple linear regression is

yi = β0 + β1xi + εi

where i = 1, 2, . . . , n. The εi are assumed to be independent and Normally dis-
tributed with mean 0 and standard deviation σ . The parameters of the model
are β0, β1, and σ .

The intercept and slope β0 and β1 are estimated by the intercept and slope of
the least-squares regression line, b0 and b1. The parameter σ is estimated by

s =
√ ∑

e2
i

n − 2

where the ei are the residuals

ei = yi − ŷi

A level C confidence interval for β1 is

b1 ± t∗SEb1

where t∗ is the value for the t(n − 2) density curve with area C between −t∗
and t∗.

The test of the hypothesis H0: β1 = 0 is based on the t statistic

t = b1

SEb1

and the t(n − 2) distribution. There are similar formulas for confidence inter-
vals and tests for β0, but these are meaningful only in special cases.

The estimated mean response for the subpopulation corresponding to the
value x∗ of the explanatory variable is

μ̂y = b0 + b1x∗

A level C confidence interval for the mean response is

μ̂y ± t∗SEμ̂

where t∗ is the value for the t(n − 2) density curve with area C between −t∗
and t∗.

The estimated value of the response variable y for a future observation from
the subpopulation corresponding to the value x∗ of the explanatory variable is

ŷ = b0 + b1x∗
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A level C prediction interval for the estimated response is

ŷ ± t∗SEŷ

where t∗ is the value for the t(n − 2) density curve with area C between −t∗
and t∗.

The following section contains material that you should study if you plan to read
Chapter 11 on multiple regression. In addition, the section we just completed as-
sumes that you have access to software or a statistical calculator. If you do not,
you now need to study the material on computations in the following optional
section. The exercises are given at the end of the chapter.

10.2 More Detail about Simple
Linear Regression*
In this section we study three optional topics. The first is analysis of variance
for regression. If you plan to study the next chapter on multiple regression, you
should study this material. The second topic concerns computations for regres-
sion inference. Here we present and illustrate the use of formulas for the in-
ference procedures that we have just studied. Finally, we discuss inference for
correlation.

Analysis of variance for regression
The usual computer output for regression includes additional calculations
called analysis of variance. Analysis of variance, often abbreviated ANOVA, isanalysis of variance
essential for multiple regression (Chapter 11) and for comparing several means
(Chapters 12 and 13). Analysis of variance summarizes information about the
sources of variation in the data. It is based on the

DATA = FIT + RESIDUAL

framework.
The total variation in the response y is expressed by the deviations yi − y. If

these deviations were all 0, all observations would be equal and there would be
no variation in the response. There are two reasons why the individual obser-
vations yi are not all equal to their mean y.

1. The responses yi correspond to different values of the explanatory variable
x and will differ because of that. The fitted value ŷi estimates the mean re-
sponse for the specific xi. The differences ŷi − y reflect the variation in mean
response due to differences in the xi. This variation is accounted for by the
regression line, because the ŷ’s lie exactly on the line.

2. Individual observations will vary about their mean because of variation
within the subpopulation of responses to a fixed xi. This variation is repre-
sented by the residuals yi − ŷi that record the scatter of the actual observa-
tions about the fitted line.

*This material is optional.
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The overall deviation of any y observation from the mean of the y’s is the sum
of these two deviations:

( yi − y) = ( ŷi − y) + ( yi − ŷi)

In terms of deviations, this equation expresses the idea that DATA = FIT +
RESIDUAL.

Several times we have measured variation by an average of squared devia-
tions. If we square each of the three deviations above and then sum over all n
observations, it is an algebraic fact that the sums of squares add:∑

( yi − y)2 =
∑

( ŷi − y)2 +
∑

( yi − ŷi)
2

We rewrite this equation as

SST = SSM + SSE

where

SST =
∑

( yi − y)2

SSM =
∑

( ŷi − y)2

SSE =
∑

( yi − ŷi)
2

The SS in each abbreviation stands for sum of squares, and the T, M, and Esum of squares
stand for total, model, and error, respectively. (“Error” here stands for devia-
tions from the line, which might better be called “residual” or “unexplained
variation.”) The total variation, as expressed by SST, is the sum of the varia-
tion due to the straight-line model (SSM) and the variation due to deviations
from this model (SSE). This partition of the variation in the data between two
sources is the heart of analysis of variance.

If H0: β1 = 0 were true, there would be no subpopulations and all of the y’s
should be viewed as coming from a single population with mean μy. The vari-
ation of the y’s would then be described by the sample variance

s2
y =

∑
( yi − y)2

n − 1

The numerator in this expression is SST. The denominator is the total degrees
of freedom, or simply DFT.

Just as the total sum of squares SST is the sum of SSM and SSE, the total
degrees of freedom DFT is the sum of DFM and DFE, the degrees of freedom
for the model and for the error:

DFT = DFM + DFE

The model has one explanatory variable x, so the degrees of freedom for this
source are DFM = 1. Because DFT = n − 1, this leaves DFE = n − 2 as the
degrees of freedom for error. For each source, the ratio of the sum of squares
to the degrees of freedom is called the mean square, or simply MS. The generalmean square
formula for a mean square is

MS = sum of squares
degrees of freedom
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Each mean square is an average squared deviation. MST is just s2
y , the sample

variance that we would calculate if all of the data came from a single popula-
tion. MSE is also familiar to us:

MSE = s2 =
∑

( yi − ŷi)
2

n − 2

It is our estimate of σ 2, the variance about the population regression line.

SUMS OF SQUARES, DEGREES OF FREEDOM,
AND MEAN SQUARES

Sums of squares represent variation present in the responses. They are
calculated by summing squared deviations. Analysis of variance parti-
tions the total variation between two sources.

The sums of squares are related by the formula

SST = SSM + SSE

That is, the total variation is partitioned into two parts, one due to the
model and one due to deviations from the model.

Degrees of freedom are associated with each sum of squares. They are
related in the same way:

DFT = DFM + DFE

To calculate mean squares, use the formula

MS = sum of squares
degrees of freedom

In Section 2.3 we noted that r2 is the fraction of variation in the values of yinterpretation of r2

that is explained by the least-squares regression of y on x. The sums of squares
make this interpretation precise. Recall that SST = SSM + SSE. It is an alge-
braic fact that

r2 = SSM
SST

=
∑

( ŷi − y)2∑
( yi − y)2

Because SST is the total variation in y and SSM is the variation due to the re-
gression of y on x, this equation is the precise statement of the fact that r2 is the
fraction of variation in y explained by x.

The ANOVA F test
The null hypothesis H0: β1 = 0 that y is not linearly related to x can be tested
by comparing MSM with MSE. The ANOVA test statistic is an F statistic,F statistic

F = MSM
MSE
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When H0 is true, this statistic has an F distribution with 1 degree of freedom in
LOOK BACK

F distribution,
page 474

F test for equality of
spread, page 474

the numerator and n − 2 degrees of freedom in the denominator. These degrees
of freedom are those of MSM and MSE. Just as there are many t statistics, there
are many F statistics. The ANOVA F statistic is not the same as the F statistic
of equality of spread.

When β1 �= 0, MSM tends to be large relative to MSE. So large values of F
are evidence against H0 in favor of the two-sided alternative.

ANALYSIS OF VARIANCE F TEST

In the simple linear regression model, the hypotheses

H0: β1 = 0

Ha: β1 �= 0

are tested by the F statistic

F = MSM
MSE

F

The P-value is the probability that a random variable having the
F(1, n − 2) distribution is greater than or equal to the calculated value
of the F statistic.

The F statistic tests the same null hypothesis as one of the t statistics that
we encountered earlier in this chapter, so it is not surprising that the two are
related. It is an algebraic fact that t2 = F in this case. For linear regression with
one explanatory variable, we prefer the t form of the test because it more easily
allows us to test one-sided alternatives and is closely related to the confidence
interval for β1.

The ANOVA calculations are displayed in an analysis of variance table, of-
ten abbreviated ANOVA table. Here is the format of the table for simple linearANOVA table
regression:

Degrees
Source of freedom Sum of squares Mean square F

Model 1
∑

( ŷi − y)2 SSM/DFM MSM/MSE
Error n − 2

∑
( yi − ŷi)

2 SSE/DFE

Total n − 1
∑

( yi − y)2 SST/DFT
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E 10.12 Interpreting SPSS output for fuel efficiency. The entire output
generated by SPSS for the fuel efficiency data in Example 10.3 is given in
Figure 10.12. Note that SPSS uses the labels Regression, Residual, and To-
tal for the three sources of variation. We have called these Model, Error, and
Total. Other statistical software packages may use slightly different labels. We
round the calculated value of the F statistic to 494.47; the P-value is given as
0.000. This is a rounded value and we can conclude that P < 0.0005. (The ac-
tual value is much less than this.) There is strong evidence against the null
hypothesis that there is no relationship between fuel efficiency and the log-
arithm of speed. Now look at the output for the regression coefficients. The
t statistic for LOGMPH is given as 22.237, which we round to 22.24. If we
square this number, we obtain the F statistic (accurate up to roundoff error).
The value of r2 is also given in the output. Log of speed explains 89.5% of the
variability in fuel efficiency.

FIGURE 10.12 Regression
output with ANOVA table for
Example 10.12.

Calculations for regression inference
We recommend using statistical software for regression calculations. With
time and care, however, the work is feasible with a calculator. We will use the
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following example to illustrate how to perform inference for regression analy-
sis using a calculator.
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E 10.13 Protein requirements via nitrogen balance. Nitrogen balance
studies are used to determine protein requirements for people. Each subject
is fed three different controlled diets during three separate experimental pe-
riods. The three diets are similar with regard to all nutrients except protein.

Nitrogen balance is the difference between the amount of nitrogen con-
sumed and the amount lost in feces and urine and by other means. Since vir-
tually all of the nitrogen in a diet comes from protein, nitrogen balance is an
indicator of the amount of protein retained by the body. The protein require-
ment for an individual is the intake corresponding to a balance of zero.

Linear regression is used to model the relationship between nitrogen bal-
ance, measured in milligrams of nitrogen per kilogram of body weight per day
(mg/kg/d), and protein intake, measured in grams of protein per kilogram of
body weight per day (g/kg/d). Here are the data for one subject:3

Protein intake (x) 0.543 0.797 1.030

Nitrogen balance (y) −23.4 17.8 67.3

The data and the least-squares line are plotted in Figure 10.13. The strong
straight-line pattern suggests that we can use linear regression to model the
relationship between nitrogen balance and protein intake.
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FIGURE 10.13 Data and
regression line for
Example 10.13.

We begin our regression calculations by fitting the least-squares line. Fitting
the line gives estimates b1 and b0 of the model parameters β1 and β0. Next we
examine the residuals from the fitted line and obtain an estimate s of the re-
maining parameter σ . These calculations are preliminary to inference. Finally,
we use s to obtain the standard errors needed for the various interval estimates
and significance tests. Roundoff errors that accumulate during these calculations
can ruin the final results. Be sure to carry many significant digits and check your
work carefully.

CAUTION

!
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Preliminary calculations After examining the scatterplot (Figure 10.13) to
verify that the data show a straight-line pattern, we begin our calculations.
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E 10.14 Summary statistics for nitrogen balance study. We start by
making a table with the mean and standard deviation for each of the vari-
ables, the correlation, and the sample size. These calculations should be
familiar from Chapters 1 and 2. Here is the summary:

Standard Sample
Variable Mean deviation Correlation size

Intake x = 0.79000 sx = 0.24357545 r = 0.99698478 n = 3
N balance y = 20.56667 sy = 45.4132506

These quantities are the building blocks for our calculations.

We will need one additional quantity for the calculations to follow. It is the
expression

∑
(xi − x)2. We obtain this quantity as an intermediate step when

we calculate sx. You could also find it using the fact that
∑

(xi − x)2 = (n − 1)s2
x.

You should verify that the value for our example is∑
(xi − x)2 = 0.118658

Our first task is to find the least-squares line. This is easy with the building
blocks that we have assembled.
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E 10.15 Computing the least-squares regression line. The slope of the
least-squares line is

b1 = r
sy

sx

= 0.99698478
45.4132506
0.24357545

= 185.882

The intercept is

b0 = y − b1x

= 20.56667 − (185.882)(0.79000)

= −126.280

The equation of the least-squares regression line is therefore

ŷ = −126 + 186x

This is the line shown in Figure 10.13.

We now have estimates of the first two parameters, β0 and β1, of our lin-
ear regression model. We now find the estimate of the third parameter, σ : the
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standard deviation s about the fitted line. To do this we need to find the pre-
dicted values and then the residuals.
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E 10.16 Computing the predicted values and residuals. The first obser-
vation is an intake of x = 0.543. The corresponding predicted value of nitro-
gen balance is

ŷ1 = b0 + b1x1

= −126.280 + (185.882)(0.543)

= −25.346

and the residual is

e1 = y1 − ŷ1

= −23.4 − (−25.346)

= 1.946

The residuals for the other intakes are calculated in the same way. You should
verify that they are −4.068 and 2.122.

Notice that the sum of these three residuals is zero. When doing these cal-
culations by hand, it is always helpful to check that the sum of the residuals is
zero.
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E 10.17 Computing s2. The estimate of σ 2 is s2, the sum of the squares of
the residuals divided by n − 2. The estimated standard deviation about the
line is the square root of this quantity.

s2 =
∑

e2
i

n − 2

= (1.946)2 + (−4.068)2 + (2.122)2

1
= 24.84

So the estimate of the standard deviation about the line is

s = √
24.84 = 4.984

Now that we have estimates of the three parameters of our model, we can
proceed to the more detailed calculations needed for regression inference.

Inference for slope and intercept Confidence intervals and significance
tests for the slope β1 and intercept β0 of the population regression line make
use of the estimates b1 and b0 and their standard errors.

Some algebra using the rules for variances establishes that the standard de-

LOOK BACK
rules for variances,
page 282

viation of b1 is
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σb1 = σ√∑
(xi − x)2

Similarly, the standard deviation of b0 is

σb0 = σ

√
1
n

+ x2∑
(xi − x)2

To estimate these standard deviations, we need only replace σ by its estimate s.

STANDARD ERRORS FOR ESTIMATED REGRESSION COEFFICIENTS

The standard error of the slope b1 of the least-squares regression line is

SEb1 = s√∑
(xi − x)2

The standard error of the intercept b0 is

SEb0 = s

√
1
n

+ x2∑
(xi − x)2

The plot of the regression line with the data in Figure 10.13 appears to show
a very strong relationship, but our sample size is very small. We assess the sit-
uation with a significance test for the slope.
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E 10.18 Testing the slope. First we need the standard error of the estimated
slope:

SEb1 = s√∑
(xi − x)2

= 4.984√
0.118658

= 14.47

To test

H0: β1 = 0

Ha: β1 �= 0

calculate the t statistic:

t = b1

SEb1

= 185.882
14.47

= 12.85
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Using Table D with n − 2 = 1 degree of freedom, we conclude that P < 0.05.
(The exact value obtained from software is 0.0494.) The data provide evidence
in favor of a relationship between nitrogen balance and protein intake (t =
12.85, df = 1, P < 0.05).

Three things are important to note about this example. First, the sample
size is very small. Even though the estimated slope is more than 12 standard
deviations away from zero, we have only barely attained the 0.05 standard for
statistical significance. It is important to remember that we need to have a very
large effect if we expect to detect it with a small sample size. Second, we would, of

CAUTION

! course, prefer to have more than three observations for this analysis. However,
for each diet, data are collected for about a month. Because the requirement
is assumed to be a distribution rather than a single number for everyone, it is
important to measure several subjects. Because of the enormous expense in-
volved, researchers typically use only three levels of intake. Third, because we
expect balance to increase with increasing intake, a one-sided significance test
is justified in this setting.

The significance test tells us that the data provide sufficient information to
conclude that intake and balance are related. We use the estimate b1 and its
confidence interval to further describe the relationship.
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E 10.19 Computing a 95% confidence interval for the slope. For the
protein requirement problem, let’s find a 95% confidence interval for the slope
β1. The degrees of freedom are n − 2 = 1, so t∗ from Table D is 12.71. We
compute

b1 ± t∗SEb1 = 185.882 ± (12.71)(14.47)

= 186 ± 184

The interval is (2, 370).

Note the effect of the small sample size on the critical value t∗. With one
additional observation, it would decrease to 4.303.

In this example, the intercept β0 does not have a meaningful interpretation.
A protein intake of zero is theoretically possible, but we would not expect our
linear model to be reasonable when extended to such an extreme value. For
problems where inference for β0 is appropriate, the calculations are performed
in the same way as those for β1. Note that there is a different formula for the
standard error, however.

Confidence intervals for the mean response and prediction intervals for a
future observation When we substitute a particular value x∗ of the explana-
tory variable into the regression equation and obtain a value of ŷ, we can view
the result in two ways:

1. We have estimated the mean response μy.

2. We have predicted a future value of the response y.

The margins of error for these two uses are often quite different. Prediction in-
tervals for an individual response are wider than confidence intervals for esti-
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mating a mean response. We now proceed with the details of these calculations.
Once again, standard errors are the essential quantities. And once again, these
standard errors are multiples of s, our basic measure of the variability of the
responses about the fitted line.

STANDARD ERRORS FOR μ̂ AND ŷ

The standard error of μ̂ is

SEμ̂ = s

√
1
n

+ (x∗ − x)2∑
(xi − x)2

The standard error for predicting an individual response ŷ is4

SEŷ = s

√
1 + 1

n
+ (x∗ − x)2∑

(xi − x)2

Note that the only difference between the formulas for these two standard
errors is the extra 1 under the square root sign in the standard error for predic-
tion. This standard error is larger due to the additional variation of individual
responses about the mean response. It produces prediction intervals that are
wider than the confidence intervals for the mean response.

For the nitrogen balance example, we can think about the mean balance that
would result if a particular protein intake was consumed many times. The con-
fidence interval for the mean response would provide an interval estimate of
this population value. On the other hand, we might want to predict a future
observation under conditions similar to those used in the study, that is, for a
one-month period, at a particular intake level. A prediction interval attempts
to capture this future observation.
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E 10.20 Confidence and prediction intervals. Let’s find a 95% confidence
interval for the mean balance corresponding to an intake of 0.7 g/kg/d. The
estimated mean balance is

μ̂ = b0 + b1x1

= −126.280 + (185.882)(0.7)

= 3.837

The standard error is

SEμ̂ = s

√
1
n

+ (x∗ − x)2∑
(xi − x)2

= 4.984

√
1
3

+ (0.70 − 0.79)2

0.118658

= 3.158
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To find the 95% confidence interval we compute

μ̂ ± t∗SEμ̂ = 3.837 ± (12.71)(3.158)

= 3.837 ± 40.138

= 4 ± 40

The interval is −36 to 44 mg/kg/d of nitrogen.

Calculations for the prediction intervals are similar. The only difference is
the use of the formula for SEŷ in place of SEμ̂.

Since the confidence interval for mean response includes the value 0, the
corresponding intake 0.7 g/kg/d should be considered as a possible value for
the intake requirement for this individual. Other intakes would also produce
confidence intervals that would include the value of 0 for mean balance. Here
is one method that is commonly used to determine a single value of the require-
ment for an individual.
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E 10.21 Estimating the protein requirement. We define the estimated re-
quirement for an individual to be the intake corresponding to zero balance
using the fitted regression equation. To do this, we set the equation

μ̂ = b0 + b1x

equal to 0 and solve for the intake x. So,

x = −b0/b1

= −(−126.280)/185.882

= 0.68

The estimated protein requirement for this individual is 0.68 g/kg/d.

If we repeat these calculations using data collected on a large number of in-
dividuals, we can estimate the requirement distribution for a population. There
are many interesting statistical issues related to this problem.5

Inference for correlation
The correlation coefficient is a measure of the strength and direction of theLOOK BACK

correlation, page 102 linear association between two variables. Correlation does not require an
explanatory-response relationship between the variables. We can consider the
sample correlation r as an estimate of the correlation in the population and
base inference about the population correlation on r.

The correlation between the variables x and y when they are measured for
every member of a population is the population correlation. As usual, we usepopulation correlation ρ

Greek letters to represent population parameters. In this case ρ (the Greek let-
ter rho) is the population correlation. When ρ = 0, there is no linear associa-
tion in the population. In the important case where the two variables x and y
are both Normally distributed, the condition ρ = 0 is equivalent to the state-
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ment that x and y are independent. That is, there is no association of any kind
between x and y. (Technically, the condition required is that x and y be jointly
Normal. This means that the distribution of x is Normal and also that the con-jointly Normal variables
ditional distribution of y, given any fixed value of x, is Normal.) We therefore
may wish to test the null hypothesis that a population correlation is 0.

TEST FOR A ZERO POPULATION CORRELATION

To test the hypothesis H0: ρ = 0, compute the t statistic:

t = r
√

n − 2√
1 − r2

where n is the sample size and r is the sample correlation.

In terms of a random variable T having the t(n − 2) distribution, the
P-value for a test of H0 against

Ha: ρ > 0 is P(T ≥ t)
t

Ha: ρ < 0 is P(T ≤ t)
t

Ha: ρ �= 0 is 2P(T ≥ |t|)
t

Most computer packages have routines for calculating correlations and
some will provide the significance test for the null hypothesis that ρ is zero.
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E 10.22 Correlation in the fuel efficiency study. For the fuel efficiency
example, the SPSS output appears in Figure 10.14. The sample correlation
between fuel efficiency and the logarithm of speed is r = 0.946. SPSS calls
this a Pearson correlation to distinguish it from other kinds of correlations
that it can calculate. The P-value for a two-sided test of H0: ρ = 0 is given as
0.000. This means that the actual P-value is less than 0.0005. We conclude
that there is a nonzero correlation between MPG and LOGMPH.

If we wanted to test the one-sided alternative that the population correlation
is negative, we divide the P-value in the output by 2, after checking that the
sample coefficient is in fact negative.

If your software does not give the significance test, you can do the compu-
tations easily with a calculator.
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FIGURE 10.14 Correlation
output for Example 10.22.
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E 10.23 Correlation test using a calculator. The correlation between
MPG and LOGMPH is r = 0.946. Recall that n = 60. The t statistic for testing
the null hypothesis that the population correlation is zero is

t = r
√

n − 2√
1 − r2

= 0.946
√

60 − 2√
1 − (0.946)2

= 22.2

The degrees of freedom are n − 2 = 58. From Table D we conclude that
P < 0.0001. This agrees with the SPSS output in Figure 10.14, where the
P-value is given as 0.000. The data provide clear evidence that fuel efficiency
and the log of speed are related.

There is a close connection between the significance test for a correlation
and the test for the slope in a linear regression. Recall that

b1 = r
sy

sx

From this fact we see that if the slope is 0, so is the correlation, and vice versa. It
should come as no surprise to learn that the procedures for testing H0: β1 = 0
and H0: ρ = 0 are also closely related. In fact, the t statistics for testing these
hypotheses are numerically equal. That is,

b1

sb1

= r
√

n − 2√
1 − r2

Check that this holds in both of our examples.
In our examples, the conclusion that there is a statistically significant cor-

relation between the two variables would not come as a surprise to anyone fa-
miliar with the meaning of these variables. The significance test simply tells us
whether or not there is evidence in the data to conclude that the population
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correlation is different from 0. The actual size of the correlation is of consider-
ably more interest. We would therefore like to give a confidence interval for the
population correlation. Unfortunately, most software packages do not perform
this calculation. Because hand calculation of the confidence interval is very te-
dious, we do not give the method here.6

USE YOUR KNOWLEDGE
10.5 Research and development spending. The National Science Foun-

dation collects data on the research and development spending by
universities and colleges in the United States.7 Here are the data for
the years 1999 to 2001 (using 1996 dollars):

Year 1999 2000 2001

Spending (billions of dollars) 26.4 28.0 29.7

Do the following by hand or with a calculator and verify your re-
sults with a software package.

(a) Make a scatterplot that shows the increase in research and de-
velopment spending over time. Does the pattern suggest that the
spending is increasing linearly over time?

(b) Find the equation of the least-squares regression line for predict-
ing spending from year. Add this line to your scatterplot.

(c) For each of the three years, find the residual. Use these residuals
to calculate the standard error s.

(d) Write the regression model for this setting. What are your esti-
mates of the unknown parameters in this model?

(e) Compute a 95% confidence interval for the slope and summarize
what this interval tells you about the increase in spending over
time.

SECTION 10.2 Summary

The ANOVA table for a linear regression gives the degrees of freedom, sum of
squares, and mean squares for the model, error, and total sources of variation.
The ANOVA F statistic is the ratio MSM/MSE. Under H0: β1 = 0, this statis-
tic has an F(1, n − 2) distribution and is used to test H0 versus the two-sided
alternative.

The square of the sample correlation can be expressed as

r2 = SSM
SST

and is interpreted as the proportion of the variability in the response variable
y that is explained by the explanatory variable x in the linear regression.
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The standard errors for b0 and b1 are

SEb0 = s

√
1
n

+ x2∑
(xi − x)2

SEb1 = s√∑
(xi − x)2

The standard error that we use for a confidence interval for the estimated
mean response for the subpopulation corresponding to the value x∗ of the ex-
planatory variable is

SEμ̂ = s

√
1
n

+ (x∗ − x)2∑
(xi − x)2

The standard error that we use for a prediction interval for a future observa-
tion from the subpopulation corresponding to the value x∗ of the explanatory
variable is

SEŷ = s

√
1 + 1

n
+ (x∗ − x)2∑

(xi − x)2

When the variables y and x are jointly Normal, the sample correlation is an es-
timate of the population correlation ρ. The test of H0: ρ = 0 is based on the t
statistic

t = r
√

n − 2√
1 − r2

which has a t(n − 2) distribution under H0. This test statistic is numerically
identical to the t statistic used to test H0: β1 = 0.

CHAPTER 10 Exercises

For Exercises 10.1 and 10.2, see pages 569 and 570; for
Exercises 10.3 and 10.4, see page 576; and for Exercise
10.5, see page 593.

10.6 What’s wrong? For each of the following, explain
what is wrong and why.

(a) The slope describes the change in x for a
change in y.

(b) The population regression line is y = b0 + b1x.

(c) A 95% confidence interval for the mean
response is the same width regardless of x.

10.7 What’s wrong? For each of the following, explain
what is wrong and why.

(a) The parameters of the simple linear regression
model are b0, b1, and s.

(b) To test H0: b1 = 0, use a t test.

(c) For a particular value of the explanatory
variable x, the confidence interval for the mean
response will be wider than the prediction interval
for a future observation.

10.8 95% confidence intervals for the slope. Find a
95% confidence interval for the slope in each of
the following settings:

(a) n = 25, ŷ = 1.3 + 12.10x, and SEb1 = 6.31

(b) n = 25, ŷ = 13.0 + 6.10x, and SEb1 = 6.31

(c) n = 100, ŷ = 1.3 + 12.10x, and SEb1 = 6.31

10.9 Significance test for the slope. For each of
the settings in the previous exercise, test the
null hypothesis that the slope is zero versus the
two-sided alternative.
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TABLE 10.1

In-state tuition and fees (in dollars) for 32 public universities

School 2000 2005 School 2000 2005 School 2000 2005

Penn State 7,018 11,508 Virginia 4,335 7,370 Iowa State 3,132 5,634
Pittsburgh 7,002 11,436 Indiana 4,405 7,112 Oregon 3,819 5,613
Michigan 6,926 9,798 Cal-Santa Barbara 3,832 6,997 Iowa 3,204 5,612
Rutgers 6,333 9,221 Texas 3,575 6,972 Washington 3,761 5,610
Illinois 4,994 8,634 Cal-Irvine 3,970 6,770 Nebraska 3,450 5,540
Minnesota 4,877 8,622 Cal-San Diego 3,848 6,685 Kansas 2,725 5,413
Michigan State 5,432 8,108 Cal-Berkeley 4,047 6,512 Colorado 3,188 5,372
Ohio State 4,383 8,082 UCLA 3,698 6,504 North Carolina 2,768 4,613
Maryland 5,136 7,821 Purdue 3,872 6,458 Arizona 2,348 4,498
Cal-Davis 4,072 7,457 Wisconsin 3,791 6,284 Florida 2,256 3,094
Missouri 4,726 7,415 Buffalo 4,715 6,068

10.10 Public university tuition: 2000 versus 2005.
Table 10.1 shows the in-state undergraduate
tuition and required fees for 34 public universities
in 2000 and 2005.8

(a) Plot the data with the 2000 tuition on the
x-axis and describe the relationship. Are there
any outliers or unusual values? Does a linear
relationship between the tuition in 2000 and 2005
seem reasonable?

(b) Run the simple linear regression and state the
least-squares regression line.

(c) Obtain the residuals and plot them versus the
2000 tuition amount. Is there anything unusual in
the plot?

(d) Do the residuals appear to be approximately
Normal? Explain.

(e) Give the null and alternative hypotheses for
examining the relationship between 2000 and
2005 tuition amounts.

(f) Write down the test statistic and P-value for
the hypotheses stated in part (e). State your
conclusions.

10.11 More on public university tuition. Refer to
Exercise 10.10.

(a) Construct a 95% confidence interval for the
slope. What does this interval tell you about the
percent increase in tuition between 2000 and
2005?

(b) The tuition at Stat U was $5000 in 2000. What
is the predicted tuition in 2005?

(c) Find a 95% prediction interval for the 2005
tuition at Stat U and summarize the results.

10.12 Are the two fuel efficiency measurements
similar? Refer to Exercise 7.24. In addition to
the computer calculating mpg, the driver also

recorded the mpg by dividing the miles driven by
the amount of gallons at fill-up. The driver wants
to determine if these calculations are different.

Fill-up 1 2 3 4 5 6 7 8 9 10

Computer 41.5 50.7 36.6 37.3 34.2 45.0 48.0 43.2 47.7 42.2
Driver 36.5 44.2 37.2 35.6 30.5 40.5 40.0 41.0 42.8 39.2

Fill-up 11 12 13 14 15 16 17 18 19 20

Computer 43.2 44.6 48.4 46.4 46.8 39.2 37.3 43.5 44.3 43.3
Driver 38.8 44.5 45.4 45.3 45.7 34.2 35.2 39.8 44.9 47.5

(a) Consider the driver’s mpg calculations as
the explanatory variable. Plot the data and
describe the relationship. Are there any outliers or
unusual values? Does a linear relationship seem
reasonable?

(b) Run the simple linear regression and state the
least-squares regression line.

(c) Summarize the results. Does it appear that the
computer and driver calculations are the same?
Explain.

10.13 Beer and blood alcohol. How well does the
number of beers a student drinks predict his
or her blood alcohol content? Sixteen student
volunteers at Ohio State University drank a
randomly assigned number of 12-ounce cans
of beer. Thirty minutes later, a police officer
measured their blood alcohol content (BAC). Here
are the data:9

Student 1 2 3 4 5 6 7 8

Beers 5 2 9 8 3 7 3 5
BAC 0.10 0.03 0.19 0.12 0.04 0.095 0.07 0.06

Student 9 10 11 12 13 14 15 16

Beers 3 5 4 6 5 7 1 4
BAC 0.02 0.05 0.07 0.10 0.085 0.09 0.01 0.05
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The students were equally divided between men
and women and differed in weight and usual
drinking habits. Because of this variation, many
students don’t believe that number of drinks
predicts blood alcohol well.

(a) Make a scatterplot of the data. Find the
equation of the least-squares regression line for
predicting blood alcohol from number of beers
and add this line to your plot. What is r2 for these
data? Briefly summarize what your data analysis
shows.

(b) Is there significant evidence that drinking
more beers increases blood alcohol on the average
in the population of all students? State hypotheses,
give a test statistic and P-value, and state your
conclusion.

(c) Steve thinks he can drive legally 30 minutes
after he drinks 5 beers. The legal limit is
BAC = 0.08. Give a 90% confidence interval
for Steve’s BAC. Can he be confident he won’t be
arrested if he drives and is stopped?

10.14 C
H

ALLENG
E Predicting water quality. The index of

biotic integrity (IBI) is a measure of
the water quality in streams. IBI and land use
measures for a collection of streams in the Ozark
Highland ecoregion of Arkansas were collected as
part of a study.10 Table 10.2 gives the data for IBI
and the area of the watershed in square kilometers
for streams in the original sample with area less
than or equal to 70 km2.

(a) Use numerical and graphical methods to
describe the variable IBI. Do the same for area.
Summarize your results.

(b) Plot the data and describe the relationship.
Are there any outliers or unusual patterns?

(c) Give the statistical model for simple linear
regression for this problem.

(d) State the null and alternative hypotheses for
examining the relationship between IBI and area.

(e) Run the simple linear regression and
summarize the results.

(f) Obtain the residuals and plot them versus area.
Is there anything unusual in the plot?

(g) Do the residuals appear to be approximately
Normal? Give reasons for your answer.

(h) Do the assumptions for the analysis of these
data using the model you gave in part (c) appear
to be reasonable? Explain your answer.

10.15 C
H

ALLENG
E More on predicting water quality. The

researchers who conducted the study
described in the previous exercise also recorded
the percent of the watershed area that was forest
for each of the streams. The data are given in
Table 10.3. Analyze these data using the questions
in the previous exercise as a guide.

10.16 Comparing the analyses. In Exercises 10.14 and
10.15, you used two different explanatory variables
to predict IBI. Summarize the two analyses and
compare the results. If you had to choose between
the two explanatory variables for predicting IBI,
which one would you prefer? Give reasons for
your answer.

10.17 How an outlier can affect statistical
significance. Consider the data in Table 10.3
and the relationship between IBI and the percent
of watershed area that was forest. The relationship
between these two variables is almost significant at
the .05 level. In this exercise you will demonstrate
the potential effect of an outlier on statistical
significance. Investigate what happens when you
decrease the IBI to 0.0 for (1) an observation with
0% forest and (2) an observation with 100% forest.

TABLE 10.2

Watershed area and index of biotic integrity

Area IBI Area IBI Area IBI Area IBI Area IBI

21 47 29 61 31 39 32 59 34 72
34 76 49 85 52 89 2 74 70 89
6 33 28 46 21 32 59 80 69 80

47 78 8 53 8 43 58 88 54 84
10 62 57 55 18 29 19 29 39 54
49 78 9 71 5 55 14 58 9 71
23 33 31 59 18 81 16 71 21 75
32 64 10 41 26 82 9 60 54 84
12 83 21 82 27 82 23 86 26 79
16 67 26 56 26 85 28 91
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TABLE 10.3

Percent forest and index of biotic integrity

Forest IBI Forest IBI Forest IBI Forest IBI Forest IBI

0 47 0 61 0 39 0 59 0 72
0 76 3 85 3 89 7 74 8 89
9 33 10 46 10 32 11 80 14 80

17 78 17 53 18 43 21 88 22 84
25 62 31 55 32 29 33 29 33 54
33 78 39 71 41 55 43 58 43 71
47 33 49 59 49 81 52 71 52 75
59 64 63 41 68 82 75 60 79 84
79 83 80 82 86 82 89 86 90 79
95 67 95 56 100 85 100 91

Write a short summary of what you learn from
this exercise.

10.18 Predicting water quality for an area of 30 km2.
Refer to Exercise 10.14.

(a) Find a 95% confidence interval for mean
response corresponding to an area of 30 km2.

(b) Find a 95% prediction interval for a future
response.

(c) Write a short paragraph interpreting the
meaning of the intervals in terms of Ozark
Highland streams.

(d) Do you think that these results can be applied
to other streams in Arkansas or in other states?
Explain why or why not.

10.19 Compare the predictions. Case 21 in Table 10.2
and Table 10.3 corresponds to the same watershed
area. For this case the area is 10 km2 and the
percent forest is 25%. A predicted index of
biotic integrity based on area was computed in
Exercise 10.14, while one based on percent forest
was computed in Exercise 10.15. Compare these
two estimates and explain why they differ. Use
the idea of a prediction interval to interpret these
results.

10.20 U.S. versus overseas stock returns. Returns on
common stocks in the United States and overseas
appear to be growing more closely correlated
as economies become more interdependent.
Suppose that the following population regression
line connects the total annual returns (in percent)
on two indexes of stock prices:

MEAN OVERSEAS RETURN

= 4.6 + 0.67 × U.S. RETURN

(a) What is β0 in this line? What does this number
say about overseas returns when the U.S. market
is flat (0% return)?

(b) What is β1 in this line? What does this number
say about the relationship between U.S. and
overseas returns?

(c) We know that overseas returns will vary in
years having the same return on U.S. common
stocks. Write the regression model based on the
population regression line given above. What part
of this model allows overseas returns to vary when
U.S. returns remain the same?

10.21 C
H

ALLENG
E Breaking strength of wood. Exercise

2.144 (page 163) gives the modulus of
elasticity (MOE) and the modulus of rupture
(MOR) for 32 plywood specimens. Because
measuring MOR involves breaking the wood
but measuring MOE does not, we would like to
predict the destructive test result, MOR, using the
nondestructive test result, MOE.

(a) Describe the distribution of MOR using
graphical and numerical summaries. Do the same
for MOE.

(b) Make a plot of the two variables. Which should
be plotted on the x axis? Give a reason for your
answer.

(c) Give the statistical model for this analysis, run
the analysis, summarize the results, and write a
short summary of your conclusions.

(d) Examine the assumptions needed for the
analysis. Are you satisfied that there are no serious
violations that would cause you to question the
validity of your conclusions?

10.22 Breaking strength of wood, continued. Refer
to the previous exercise. Consider an MOE of
2,000,000.

(a) Interpret the confidence interval for mean
response and the prediction interval for a future
observation for this value of MOE.
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(b) Which interval will include more values? Give
a reason for your answer.

(c) (Optional) Calculate the two intervals.

10.23 Are the number of tornadoes increasing? Storm
Data is a publication of the National Climatic
Data Center that contains a listing of tornadoes,
thunderstorms, floods, lightning, temperature
extremes, and other weather phenomena.
Table 10.4 summarizes the annual number of
tornadoes in the United States between 1953 and
2005.11

(a) Make a plot of the total number of tornadoes
by year. Does a linear trend over years appear
reasonable?

(b) Are there any outliers or unusual patterns?
Explain your answer.

(c) Run the simple linear regression and
summarize the results, making sure to construct
a 95% confidence interval for the average annual
increase in the number of tornadoes.

(d) Obtain the residuals and plot them versus
year. Is there anything unusual in the plot?

(e) Are the residuals Normal? Justify your answer.

10.24 More on the number of tornadoes. Refer to
the previous exercise. The number of tornadoes
in 2004 was much larger than expected under
the linear model. Remove this observation and
rerun the simple linear regression. Compare these
results with the results of the previous exercise.

10.25 CRP and serum retinol. In Exercise 7.26 (page
442) we examined the distribution of C-reactive
protein (CRP) in a sample of 40 children from
Papua New Guinea. Serum retinol values for
the same children were studied in Exercise 7.28.
One important question that can be addressed
with these data is whether or not infections,
as indicated by CRP, cause a decrease in the
measured values of retinol, low values of which
indicate a vitamin A deficiency. The data are given
in Table 10.5.

TABLE 10.4

Annual number of tornadoes in the United States between 1953 and 2005

Number of Number of Number of Number of
Year tornadoes Year tornadoes Year tornadoes Year tornadoes

1953 421 1967 926 1981 783 1995 1235
1954 550 1968 660 1982 1046 1996 1173
1955 593 1969 608 1983 931 1997 1148
1956 504 1970 653 1984 907 1998 1449
1957 856 1971 888 1985 684 1999 1340
1958 564 1972 741 1986 764 2000 1076
1959 604 1973 1102 1987 656 2001 1213
1960 616 1974 947 1988 702 2002 934
1961 697 1975 920 1989 856 2003 1372
1962 657 1976 835 1990 1133 2004 1819
1963 464 1977 852 1991 1132 2005 1194
1964 704 1978 788 1992 1298
1965 906 1979 852 1993 1176
1966 585 1980 866 1994 1082

TABLE 10.5

C-reactive protein and serum retinol

CRP Retinol CRP Retinol CRP Retinol CRP Retinol CRP Retinol

0.00 1.15 30.61 0.97 22.82 0.24 5.36 1.19 0.00 0.83
3.90 1.36 0.00 0.67 0.00 1.00 0.00 0.94 0.00 1.11
5.64 0.38 73.20 0.31 0.00 1.13 5.66 0.34 0.00 1.02
8.22 0.34 0.00 0.99 3.49 0.31 0.00 0.35 9.37 0.56
0.00 0.35 46.70 0.52 0.00 1.44 59.76 0.33 20.78 0.82
5.62 0.37 0.00 0.70 0.00 0.35 12.38 0.69 7.10 1.20
3.92 1.17 0.00 0.88 4.81 0.34 15.74 0.69 7.89 0.87
6.81 0.97 26.41 0.36 9.57 1.90 0.00 1.04 5.53 0.41
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(a) Examine the distributions of CRP and serum
retinol. Use graphical and numerical methods.

(b) Forty percent of the CRP values are zero. Does
this violate any assumption that we need to do a
regression analysis using CRP to predict serum
retinol? Explain your answer.

(c) Run the regression, summarize the results,
and write a short paragraph explaining your
conclusions.

(d) Explain the assumptions needed for your
results to be valid. Examine the data with respect
to these assumptions and report your results.

10.26 C
H

ALLENG
E Osteocalcin and bone formation. In

Exercise 7.118 (page 482) we looked at
the distribution of osteocalcin (OC), a biomarker
for bone formation, in a sample of 31 healthy
females aged 11 to 32 years. This biomarker is
relatively inexpensive to measure, requiring only a
single sample of blood. Measuring bone formation
(VO+), on the other hand, is very expensive. Oral
and intravenous administration of stable isotopes
of calcium are needed, 25 blood samples over a
period of two weeks are drawn, and the collection
of all urine and fecal samples for two weeks is
required. If a biomarker can reliably predict
bone formation, then we could avoid the cost of

the expensive VO+ measures. Studies designed
to assess the effects of interventions intended to
increase bone formation could include many more
subjects if only the biomarker measurement is
needed. The measured values of VO+ and OC for
the 31 females in this study are given in Table 10.6.

(a) Use numerical and graphical summaries to
describe the distributions of VO+ and OC.

(b) Plot the data. Give a reason for your choice
of variables for the x and y axes. Describe the
pattern and note any unusual observations. Do
the assumptions needed for regression analysis
appear to be approximately satisfied?

(c) Run the regression using OC to predict VO+.
Summarize the results.

10.27 C
H

ALLENG
E TRAP and bone resorption. In Exercise

7.119 (page 482) we looked at the distribu-
tion of tartrate resistant acid phosphatase (TRAP),
a biomarker for bone resorption. Table 10.7 gives
values for this biomarker and a measure of bone
resorption VO−. Analyze these data using the
questions in the previous exercise as a guide.

10.28 Transforming the data. Refer to the OC and VO+
data in Exercise 10.26. For variables such as these,
it is common to work with the logarithms of the

TABLE 10.6

VO+ and osteocalcin

VO+ OC VO+ OC VO+ OC VO+ OC

476 8.1 1032 40.2 624 17.2 285 9.9
694 10.1 445 20.6 479 15.9 403 19.7
753 17.9 896 31.2 572 16.9 391 20.0
687 17.2 968 19.3 512 24.2 513 20.8
628 20.9 985 44.4 838 30.2 878 31.4

1100 38.4 1251 76.5 870 47.7 2221 54.6
1303 54.6 2545 36.4 1606 68.9 1126 77.9
1682 52.8 2240 56.3 1557 35.7

TABLE 10.7

VO− and TRAP

VO− TRAP VO− TRAP VO− TRAP VO− TRAP

407 3.3 874 5.9 445 6.3 351 6.9
980 8.1 493 8.1 572 8.2 634 8.8

1028 9.0 1116 9.0 857 9.5 536 9.5
701 9.6 934 10.1 477 10.1 254 10.3
766 10.5 496 10.7 924 14.4 954 14.6
918 14.6 1065 14.9 722 18.6 1486 19.0

1018 19.0 2236 19.1 903 19.4 960 23.7
1251 25.2 1761 25.5 1446 28.8
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measured values. Reanalyze these data using the
logs of both OC and VO+. Summarize your results
and compare them with those you obtained in
Exercise 10.26.

10.29 TRAP and bone resorption using logs. Refer
to the TRAP and VO– data in Exercise 10.27.
Reanalyze these data using the logs of both TRAP
and VO–. Summarize your results and compare
them with those you obtained in Exercise 10.27.

10.30 Reading test scores and IQ. In Exercise 2.11
(page 95) you examined the relationship between
a reading test score and an IQ score for a sample
of 60 fifth-grade children.

(a) Run the regression and summarize the results
of the significance tests.

(b) Rerun the analysis with the four possible
outliers removed. Summarize your findings,
paying particular attention to the effects of
removing the outliers.

10.31 C
H

ALLENG
E Neuron responses. Exercise 2.143 (page

163) gives data on neuron responses to
pure tones and to monkey calls.

(a) Describe each variable graphically and
numerically.

(b) Plot the data with the pure tone response on
the x axis and the monkey call response on the y
axis. Describe the relationship and mark the point
with the largest residual and the point with the
extreme value of the tone response.

(c) Analyze the entire set of 37 observations and
summarize the results.

(d) Perform additional analyses to assess the
effects of the two marked points on the results.
Summarize your findings.

10.32 School budget and number of students.
Suppose that there is a linear relationship between
the number of students x in an elementary school
and the annual budget y. Write a population
regression model to describe this relationship.

(a) Which parameter in your model is the fixed
cost in the budget (for example, the salary of the
principal and some administrative costs) that does
not change as x increases?

(b) Which parameter in your model shows how
total cost changes when there are more students
in the school? Do you expect this number to be
greater than 0 or less than 0?

(c) Actual data from schools will not fit a straight
line exactly. What term in your model allows
variation among schools of the same size x?

10.33 Stocks and bonds. How is the flow of investors’
money into stock mutual funds related to the flow
of money into bond mutual funds? Here are data
on the net new money flowing into stock and bond
mutual funds in the years 1985 to 2000, in billions
of dollars.12 “Net” means that funds flowing out
are subtracted from those flowing in. If more
money leaves than arrives, the net flow will be
negative. To eliminate the effect of inflation, all
dollar amounts are in “real dollars” with constant
buying power equal to that of a dollar in the year
2000.

Year 1985 1986 1987 1988 1989 1990 1991 1992

Stocks 12.8 34.6 28.8 −23.3 8.3 17.1 50.6 97.0
Bonds 100.8 161.8 10.6 −5.8 −1.4 9.2 74.6 87.1

Year 1993 1994 1995 1996 1997 1998 1999 2000

Stocks 151.3 133.6 140.1 238.2 243.5 165.9 194.3 309.0
Bonds 84.6 −72.0 −6.8 3.3 30.0 79.2 −6.2 −48.0

(a) Make a scatterplot with cash flow into stock
funds as the explanatory variable. Find the least-
squares line for predicting net bond investments
from net stock investments. What do the data
suggest?

(b) Is there statistically significant evidence that
there is some straight-line relationship between
the flows of cash into bond funds and stock funds?
(State hypotheses, give a test statistic and its
P-value, and state your conclusion.)

(c) What fact about the scatterplot explains why
the relationship described by the least-squares
line is not significant?

10.34 Math pretest predicts success? Can a pretest on
mathematics skills predict success in a statistics
course? The 82 students in an introductory
statistics class took a pretest at the beginning of
the semester. The least-squares regression line for
predicting the score y on the final exam from the
pretest score x was ŷ = 9.7 + 0.76x. The standard
error of b1 was 0.44.

(a) Test the null hypothesis that there is no linear
relationship between the pretest score and the
score on the final exam against the two-sided
alternative.



Chapter 10 Exercises
•

601

(b) Would you reject this null hypothesis versus
the one-sided alternative that the slope is positive?
Explain your answer.

10.35 Severities of MA and HAV. Metatarsus adductus
(call it MA) is a turning in of the front part of the
foot that is common in adolescents and usually
corrects itself. Hallux abducto valgus (call it HAV)
is a deformation of the big toe that is not common
in youth and often requires surgery. Perhaps the
severity of MA can help predict the severity of HAV.
Table 2.2 (page 98) gives data on 38 consecutive
patients who came to a medical center for HAV
surgery.13 Using X-rays, doctors measured the
angle of deformity for both MA and HAV. They
speculated that there is a positive association—
more serious MA is associated with more serious
HAV.

(a) Make a scatterplot of the data in Table 2.2.
(Which is the explanatory variable?)

(b) Describe the form, direction, and strength
of the relationship between MA angle and HAV
angle. Are there any clear outliers in your graph?

(c) Give a statistical model that provides a
framework for asking the question of interest for
this problem.

(d) Translate the question of interest into null and
alternative hypotheses.

(e) Test these hypotheses and write a short
description of the results. Be sure to include the
value of the test statistic, the degrees of freedom,

the P-value, and a clear statement of what you
conclude.

10.36 More on MA and HAV. Refer to the previous
exercise. Give a 95% confidence interval for the
slope. Explain how this interval can tell you
what to conclude from a significance test for this
parameter.

10.37 Do wages rise with experience? We assume that
our wages will increase as we gain experience and
become more valuable to our employers. Wages
also increase because of inflation. By examining
a sample of employees at a given point in time,
we can look at part of the picture. How does
length of service (LOS) relate to wages? Table 10.8
gives data on the LOS in months and wages for
60 women who work in Indiana banks. Wages
are yearly total income divided by the number
of weeks worked. We have multiplied wages by a
constant for reasons of confidentiality.14

(a) Plot wages versus LOS. Describe the
relationship. There is one woman with relatively
high wages for her length of service. Circle this
point and do not use it in the rest of this exercise.

(b) Find the least-squares line. Summarize the
significance test for the slope. What do you
conclude?

(c) State carefully what the slope tells you about
the relationship between wages and length of
service.

(d) Give a 95% confidence interval for the slope.

TABLE 10.8

Bank wages, length of service (LOS), and bank size

Wages LOS Size Wages LOS Size Wages LOS Size

48.3355 94 Large 64.1026 24 Large 41.2088 97 Small
49.0279 48 Small 54.9451 222 Small 67.9096 228 Small
40.8817 102 Small 43.8095 58 Large 43.0942 27 Large
36.5854 20 Small 43.3455 41 Small 40.7000 48 Small
46.7596 60 Large 61.9893 153 Large 40.5748 7 Large
59.5238 78 Small 40.0183 16 Small 39.6825 74 Small
39.1304 45 Large 50.7143 43 Small 50.1742 204 Large
39.2465 39 Large 48.8400 96 Large 54.9451 24 Large
40.2037 20 Large 34.3407 98 Large 32.3822 13 Small
38.1563 65 Small 80.5861 150 Large 51.7130 30 Large
50.0905 76 Large 33.7163 124 Small 55.8379 95 Large
46.9043 48 Small 60.3792 60 Large 54.9451 104 Large
43.1894 61 Small 48.8400 7 Large 70.2786 34 Large
60.5637 30 Large 38.5579 22 Small 57.2344 184 Small
97.6801 70 Large 39.2760 57 Large 54.1126 156 Small
48.5795 108 Large 47.6564 78 Large 39.8687 25 Large
67.1551 61 Large 44.6864 36 Large 27.4725 43 Small
38.7847 10 Small 45.7875 83 Small 67.9584 36 Large
51.8926 68 Large 65.6288 66 Large 44.9317 60 Small
51.8326 54 Large 33.5775 47 Small 51.5612 102 Large
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10.38 Do wages rise with experience? Refer to the
previous exercise. Analyze the data with the
outlier included.

(a) How does this change the estimates of the
parameters β0, β1, and σ?

(b) What effect does the outlier have on the results
of the significance test for the slope?

(c) How has the width of the 95% confidence
interval changed?

10.39 Leaning Tower of Pisa. The Leaning Tower
of Pisa is an architectural wonder. Engineers
concerned about the tower’s stability have
done extensive studies of its increasing tilt.
Measurements of the lean of the tower over time
provide much useful information. The following
table gives measurements for the years 1975 to
1987. The variable “lean” represents the difference
between where a point on the tower would be if
the tower were straight and where it actually is.
The data are coded as tenths of a millimeter in
excess of 2.9 meters, so that the 1975 lean, which
was 2.9642 meters, appears in the table as 642.
Only the last two digits of the year were entered
into the computer.15

Year 75 76 77 78 79 80 81 82 83 84 85 86 87

Lean 642 644 656 667 673 688 696 698 713 717 725 742 757

(a) Plot the data. Does the trend in lean over time
appear to be linear?

(b) What is the equation of the least-squares line?
What percent of the variation in lean is explained
by this line?

(c) Give a 99% confidence interval for the average
rate of change (tenths of a millimeter per year) of
the lean.

10.40 More on the Leaning Tower of Pisa. Refer to the
previous exercise.

(a) In 1918 the lean was 2.9071 meters. (The coded
value is 71.) Using the least-squares equation for
the years 1975 to 1987, calculate a predicted value
for the lean in 1918. (Note that you must use the
coded value 18 for year.)

(b) Although the least-squares line gives an
excellent fit to the data for 1975 to 1987, this
pattern did not extend back to 1918. Write a short
statement explaining why this conclusion follows
from the information available. Use numerical and
graphical summaries to support your explanation.

10.41 Predicting the lean in 2009. Refer to the previous
two exercises.

(a) How would you code the explanatory variable
for the year 2009?

(b) The engineers working on the Leaning Tower
of Pisa were most interested in how much the
tower would lean if no corrective action was
taken. Use the least-squares equation to predict
the tower’s lean in the year 2009.

(c) To give a margin of error for the lean in 2009,
would you use a confidence interval for a mean
response or a prediction interval? Explain your
choice.

10.42 Correlation between binge drinking and the
average price of beer. A recent study looked at
118 colleges to investigate the association between
the binge-drinking rate and the average price for
a bottle of beer at establishments within a 2-mile
radius of campus.16 A correlation of −0.36 was
found. Explain this correlation.

10.43 Is this relationship significant? Refer to the
previous exercise. Test the null hypothesis that
the correlation between the binge-drinking rate
and the average price for a bottle of beer within a
2-mile radius of campus is zero.

10.44 Capacity of DRAM. The capacity (bits) of the
largest DRAM (dynamic random access memory)
chips commonly available at retail has increased
as follows:17

Year 1971 1980 1987 1993 1999 2000

Bits 1,024 64,000 1,024,000 16,384,000 256,000,000 512,000,000

(a) Make a scatterplot of the data. Growth is much
faster than linear.

(b) Plot the logarithm of DRAM capacity against
year. These points are close to a straight line.

(c) Regress the logarithm of DRAM capacity on
year. Give a 95% confidence interval for the slope
of the population regression line.

10.45 Net flow in stock and bond funds. Is there a
nonzero correlation between net flow of money
into stock mutual funds and into bond funds? Use
the regression analysis you did in Exercise 10.33
(page 600) to answer this question with no
additional calculations.
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10.46 Parental behavior and self-esteem. Chinese
students from public schools in Hong Kong were
the subjects of a study designed to investigate the
relationship between various measures of parental
behavior and other variables. The sample size was
713. The data were obtained from questionnaires
filled in by the students. One of the variables
examined was parental control, an indication of
the amount of control that the parents exercised
over the behavior of the students. Another was the
self-esteem of the students.18

(a) The correlation between parental control and
self-esteem was r = −0.19. Calculate the t statistic
for testing the null hypothesis that the population
correlation is 0.

(b) Find an approximate P-value for testing H0

versus the two-sided alternative and report your
conclusion.

10.47 Completing an ANOVA table. How are returns
on common stocks in overseas markets related
to returns in U.S. markets? Measure U.S. returns
by the annual rate of return on the Standard &
Poor’s 500 stock index and overseas returns by
the annual rate of return on the Morgan Stanley
Europe, Australasia, Far East (EAFE) index.
Both are recorded in percents. Regress the EAFE
returns on the S&P 500 returns for the 30 years
1971 to 2000. Here is part of the Minitab output
for this regression:

The regression equation is

EAFE = 4.76 + 0.663 S&P

Analysis of Variance

Source DF SS MS F P

Regression 1 3445.9 3445.9 9.50 0.005

Residual Error

Total 29 13598.3

Complete the analysis of variance table by filling
in the “Residual Error” row.

10.48 Interpreting statistical software output. Refer
to the previous exercise. What are the values of
the regression standard error s and the squared
correlation r2?

10.49 Standard error and confidence interval for
the slope. Refer to the previous two exercises.
The standard deviation of the S&P 500 returns
for these years is 16.45%. From this and your
work in the previous exercise, find the standard
error for the least-squares slope b1. Give a

95% confidence interval for the slope β1 of the
population regression line.

10.50 Quality of life in chronically ill patients.
Concern about the quality of life for chronically ill
patients is becoming as important as treating their
physical symptoms. The SF-36, a questionnaire
for measuring the health quality of life, was
given to 50 patients with chronic obstructive
lung disease.19 A correlation of 0.68 was reported
between the component of the questionnaire
called general health perceptions (GHP) and
a measure of lung function called forced vital
capacity (FVC), expressed as a percent of Normal.
The mean and standard deviation of GHP are 43.5
and 20.3, and for FVC the values are 80.9 and
17.2.

(a) Find the equation of the least-squares line for
predicting GHP from FVC.

(b) Give the results of the significance test for the
null hypothesis that the slope is 0. (Hint: What is
the relation between this test and the test for a
zero correlation?)

10.51 Significance test of the correlation. A study
reported a correlation r = 0.5 based on a sample
size of n = 20; another reported the same
correlation based on a sample size of n = 10.
For each, perform the test of the null hypothesis
that ρ = 0. Describe the results and explain why
the conclusions are different.

10.52 Verifying the effect of bank size. Refer to the
bank wages data given in Table 10.8 and described
in Exercise 10.37 (page 601). The data also include
a variable “Size,” which classifies the bank as large
or small. Obtain the residuals from the regression
used to predict wages from LOS, and plot them
versus LOS using different symbols for the large
and small banks. Include on your plot a horizontal
line at 0 (the mean of the residuals). Describe the
important features of this plot. Explain what they
indicate about wages in this set of data.

10.53 SAT versus ACT. The SAT and the ACT are the
two major standardized tests that colleges use to
evaluate candidates. Most students take just one
of these tests. However, some students take both.
Table 10.9 gives the scores of 60 students who did
this. How can we relate the two tests?

(a) Plot the data with SAT on the x axis and ACT
on the y axis. Describe the overall pattern and any
unusual observations.
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TABLE 10.9

SAT and ACT scores

SAT ACT SAT ACT SAT ACT SAT ACT

1000 24 870 21 1090 25 800 21
1010 24 880 21 860 19 1040 24

920 17 850 22 740 16 840 17
840 19 780 22 500 10 1060 25
830 19 830 20 780 12 870 21

1440 32 1190 30 1120 27 1120 25
490 7 800 16 590 12 800 18

1050 23 830 16 990 24 960 27
870 18 890 23 700 16 880 21
970 21 880 24 930 22 1020 24
920 22 980 27 860 23 790 14
810 19 1030 23 420 21 620 18

1080 23 1220 30 800 20 1150 28
1000 19 1080 22 1140 24 970 20
1030 25 970 20 920 21 1060 24

(b) Find the least-squares regression line and
draw it on your plot. Give the results of the
significance test for the slope.

(c) What is the correlation between the two tests?

10.54 C
H

ALLENG
E SAT versus ACT, continued. Refer to the

previous exercise. Find the predicted value
of ACT for each observation in the data set.

(a) What is the mean of these predicted values?
Compare it with the mean of the ACT scores.

(b) Compare the standard deviation of the
predicted values with the standard deviation of
the actual ACT scores. If least-squares regression
is used to predict ACT scores for a large number
of students such as these, the average predicted
value will be accurate but the variability of the
predicted scores will be too small.

(c) Find the SAT score for a student who
is one standard deviation above the mean
(z = (x − x)/s = 1). Find the predicted ACT
score and standardize this score. (Use the means
and standard deviations from this set of data for
these calculations.)

(d) Repeat part (c) for a student whose SAT
score is one standard deviation below the mean
(z = −1).

(e) What do you conclude from parts (c) and (d)?
Perform additional calculations for different z’s if
needed.

10.55 C
H

ALLENG
E Matching standardized scores. Refer to

the previous two exercises. An alternative
to the least-squares method is based on matching

standardized scores. Specifically, we set

( ŷ − y)
sy

= (x − x)

sx

and solve for y. Let’s use the notation y = a0 + a1x
for this line. The slope is a1 = sy/sx and the
intercept is a0 = y − a1x. Compare these
expressions with the formulas for the least-squares
slope and intercept (page 565).

(a) Using the data in Table 10.9, find the values of
a0 and a1.

(b) Plot the data with the least-squares line and
the new prediction line.

(c) Use the new line to find predicted ACT scores.
Find the mean and the standard deviation of these
scores. How do they compare with the mean and
standard deviation of the ACT scores?

10.56 Length, width, and weight of perch. Here are
data for 12 perch caught in a lake in Finland:20

Weight Length Width Weight Length Width
(grams) (cm) (cm) (grams) (cm) (cm)

5.9 8.8 1.4 300.0 28.7 5.1
100.0 19.2 3.3 300.0 30.1 4.6
110.0 22.5 3.6 685.0 39.0 6.9
120.0 23.5 3.5 650.0 41.4 6.0
150.0 24.0 3.6 820.0 42.5 6.6
145.0 25.5 3.8 1000.0 46.6 7.6

In this exercise we will examine different models
for predicting weight.

(a) Run the regression using length to predict
weight. Do the same using width as the
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explanatory variable. Summarize the results.
Be sure to include the value of r2.

(b) Plot weight versus length and weight versus
width. Include the least-squares lines in these
plots. Do these relationships appear to be linear?
Explain your answer.

10.57 C
H

ALLENG
E Transforming the perch data. Refer to

the previous exercise.

(a) Try to find a better model using a
transformation of length. One possibility is to
use the square. Make a plot and perform the
regression analysis. Summarize the results.

(b) Do the same for width.

10.58 C
H

ALLENG
E Creating a new explanatory variable.

Refer to the previous two exercises.

(a) Create a new variable that is the product
of length and width. Make a plot and run the
regression using this new variable. Summarize the
results.

(b) Write a short report summarizing and
comparing the different regression analyses that
you performed in this exercise and the previous
two exercises.

10.59 C
H

ALLENG
E Index of biotic integrity. Refer to the

data on the index of biotic integrity and area
in Exercise 10.14 (page 596) and the additional
data on percent watershed area that was forest
in Exercise 10.15. Find the correlations among
these three variables, perform the test of statistical
significance, and summarize the results. Which of
these test results could have been obtained from
the analyses that you performed in Exercises 10.14
and 10.15?

10.60 Food neophobia. Food neophobia is a personality
trait associated with avoiding unfamiliar foods.
In one study of 564 children who were 2 to 6
years of age, food neophobia and the frequency
of consumption of different types of food were
measured.21 Here is a summary of the correlations:

Type of food Correlation

Vegetables −0.27
Fruit −0.16
Meat −0.15
Eggs −0.08
Sweet/fatty snacks 0.04
Starchy staples −0.02

Perform the significance test for each correlation
and write a summary about food neophobia and
the consumption of different types of food.

10.61 Personality traits and scores on the GRE.
A study reported correlations between several
personality traits and scores on the Graduate
Record Examination (GRE) for a sample of 342
test takers.22 Here is a table of the correlations:

GRE score

Personality trait Analytical Quantitative Verbal

Conscientiousness −0.17 −0.14 −0.12
Rationality −0.06 −0.03 −0.08
Ingenuity −0.06 −0.08 −0.02
Quickness 0.21 0.15 0.26
Creativity 0.24 0.26 0.29
Depth 0.06 0.08 0.15

For each correlation, test the null hypothesis
that the corresponding true correlation is zero.
Reproduce the table and mark the correlations
that have P < 0.001 with ***, those that have
P < 0.01 with **, and those that have P < 0.05
with *. Some critics of standardized tests have
suggested that the tests penalize students who are
“deep thinkers” and those who are very creative.
Others have suggested that students who work
quickly do better on these tests. Write a summary
of the results of your significance tests, taking into
account these comments.

10.62 Resting metabolic rate and exercise. Metabolic
rate, the rate at which the body consumes energy,
is important in studies of weight gain, dieting,
and exercise. The table below gives data on the
lean body mass and resting metabolic rate for 12
women and 7 men who are subjects in a study of
dieting. Lean body mass, given in kilograms, is a
person’s weight leaving out all fat. Metabolic rate
is measured in calories burned per 24 hours, the
same calories used to describe the energy content
of foods. The researchers believe that lean body
mass is an important influence on metabolic rate.

Subject Sex Mass Rate Subject Sex Mass Rate

1 M 62.0 1792 11 F 40.3 1189
2 M 62.9 1666 12 F 33.1 913
3 F 36.1 995 13 M 51.9 1460
4 F 54.6 1425 14 F 42.4 1124
5 F 48.5 1396 15 F 34.5 1052
6 F 42.0 1418 16 F 51.1 1347
7 M 47.4 1362 17 F 41.2 1204
8 F 50.6 1502 18 M 51.9 1867
9 F 42.0 1256 19 M 46.9 1439

10 M 48.7 1614
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(a) Make a scatterplot of the data, using different
symbols or colors for men and women. Summarize
what you see in the plot.

(b) Run the regression to predict metabolic rate
from lean body mass for the women in the sample
and summarize the results. Do the same for the
men.

10.63 C
H

ALLENG
E Resting metabolic rate and exercise,

continued. Refer to the previous exercise.
It is tempting to conclude that there is a
strong linear relationship for the women but
no relationship for the men. Let’s look at this issue
a little more carefully.

(a) Find the confidence interval for the slope
in the regression equation that you ran for the
females. Do the same for the males. What do these
suggest about the possibility that these two slopes
are the same? (The formal method for making this
comparison is a bit complicated and is beyond the
scope of this chapter.)

(b) Examine the formula for the standard error
of the regression slope given on page 587. The

term in the denominator is
√


(xi − x)2. Find
this quantity for the females; do the same for the
males. How do these calculations help to explain
the results of the significance tests?

(c) Suppose you were able to collect additional
data for males. How would you use lean body
mass in deciding which subjects to choose?

10.64 C
H

ALLENG
E Inference over different ranges of X.

Think about what would happen if you
analyzed a subset of a set of data by analyzing
only data for a restricted range of values of
the explanatory variable. What results would
you expect to change? Examine your ideas by
analyzing the fuel efficiency data studied in
Example 10.4 (page 566) for only those cases
with speed less than or equal to 30 mph. Note
that this corresponds to 3.4 in the log scale. Now,
let’s do the same analysis with a restriction on
the response variable. Run the analysis with only
those cases with fuel efficiency less than or equal
to 20 mpg. Write a summary comparing the effects
of these two restrictions with each other and with
the results in Example 10.4.
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1111Multiple Regression

How well do high school achievement scores predict success in college?
Example 11.1 addresses this question.

11.1 Inference for Multiple
Regression

11.2 A Case Study

Introduction
In Chapter 10 we presented methods for inference in the
setting of a linear relationship between a response vari-
able y and a single explanatory variable x. In this chapter,
we use more than one explanatory variable to explain
or predict a single response variable. Many of the ideas that we encountered
in our study of simple linear regression carry over to the multiple linear re-
gression setting. For example, the descriptive tools we learned in Chapter 2—
scatterplots, least-squares regression, and correlation—are still essential pre-
liminaries to inference and also provide a foundation for confidence intervals
and significance tests. However, the introduction of several explanatory vari-
ables leads to many additional considerations. In this short chapter we cannot
explore all of these issues. Rather, we will outline some basic facts about in-
ference in the multiple regression setting and then illustrate the analysis with
a case study whose purpose was to predict success in college based on several
high school achievement scores.

11.1 Inference for Multiple Regression
Population multiple regression equation
The simple linear regression model assumes that the mean of the response vari-
able y depends on the explanatory variable x according to a linear equation

607
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μy = β0 + β1x

For any fixed value of x, the response y varies Normally around this mean and
has a standard deviation σ that is the same for all values of x.

In the multiple regression setting, the response variable y depends on p ex-
planatory variables, which we will denote by x1, x2, . . . , xp. The mean response
depends on these explanatory variables according to a linear function

μy = β0 + β1x1 + β2x2 + · · · + βpxp

Similar to simple linear regression, this expression is the population regres-
sion equation. We do not observe the mean response because the observed val-
ues of y vary about their means. We can think of subpopulations of responses,
each corresponding to a particular set of values for all of the explanatory vari-
ables x1, x2, . . . , xp. In each subpopulation, y varies Normally with a mean given
by the population regression equation. The regression model assumes that the
standard deviation σ of the responses is the same in all subpopulations.

•

•

E
X

A
M

P
L

E 11.1 Predicting early success in college. Our case study uses data col-
lected at a large university on all first-year computer science majors in a par-
ticular year.1 The purpose of the study was to attempt to predict success in
the early university years. One measure of success was the cumulative grade
point average (GPA) after three semesters. Among the explanatory variables
recorded at the time the students enrolled in the university were average high
school grades in mathematics (HSM), science (HSS), and English (HSE).

We will use high school grades to predict the response variable GPA. There
are p = 3 explanatory variables: x1 = HSM, x2 = HSS, and x3 = HSE. The high
school grades are coded on a scale from 1 to 10, with 10 corresponding to
A, 9 to A−, 8 to B+, and so on. These grades define the subpopulations. For
example, the straight-C students are the subpopulation defined by HSM = 4,
HSS = 4, and HSE = 4.

One possible multiple regression model for the subpopulation mean GPAs
is

μGPA = β0 + β1HSM + β2HSS + β3HSE

For the straight-C subpopulation of students, the model gives the subpopula-
tion mean as

μGPA = β0 + β14 + β24 + β34

Data for multiple regression
The data for a simple linear regression problem consist of observations (xi, yi)

of the two variables. Because there are several explanatory variables in multiple
regression, the notation needed to describe the data is more elaborate. Each
observation or case consists of a value for the response variable and for each
of the explanatory variables. Call xij the value of the jth explanatory variable for
the ith case. The data are then
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Case 1: (x11, x12, . . . , x1p, y1)

Case 2: (x21, x22, . . . , x2p, y2)

...

Case n: (xn1, xn2, . . . , xnp, yn)

Here, n is the number of cases and p is the number of explanatory variables.
Data are often entered into computer regression programs in this format. Each
row is a case and each column corresponds to a different variable. The data
for Example 11.1, with several additional explanatory variables, appear in this
format in the CSDATA data set described in the Data Appendix.

Multiple linear regression model
We combine the population regression equation and assumptions about vari-
ation to construct the multiple linear regression model. The subpopulationLOOK BACK

DATA = FIT +
RESIDUAL, page 564

means describe the FIT part of our statistical model. The RESIDUAL part rep-
resents the variation of observations about the means. We will use the same
notation for the residual that we used in the simple linear regression model.
The symbol ε represents the deviation of an individual observation from its sub-
population mean. We assume that these deviations are Normally distributed
with mean 0 and an unknown standard deviation σ that does not depend on the
values of the x variables. These are assumptions that we can check by examining
the residuals in the same way that we did for simple linear regression.

CAUTION

!

MULTIPLE LINEAR REGRESSION MODEL

The statistical model for multiple linear regression is

yi = β0 + β1xi1 + β2xi2 + · · · + βpxip + εi

for i = 1, 2, . . . , n.

The mean response μy is a linear function of the explanatory variables:

μy = β0 + β1x1 + β2x2 + · · · + βpxp

The deviations εi are independent and Normally distributed with mean
0 and standard deviation σ . In other words, they are an SRS from the
N(0, σ ) distribution.

The parameters of the model are β0, β1, β2, . . . , βp, and σ .

The assumption that the subpopulation means are related to the regression
coefficients β by the equation

μy = β0 + β1x1 + β2x2 + · · · + βpxp

implies that we can estimate all subpopulation means from estimates of the β ’s.
To the extent that this equation is accurate, we have a useful tool for describing
how the mean of y varies with the collection of x’s.



610
•

CHAPTER 11 • Multiple Regression

Estimation of the multiple regression parameters
Similar to simple linear regression, we use the method of least squares to ob-LOOK BACK

least squares,
page 112

tain estimators of the regression coefficients β. The details, however, are more
complicated. Let

b0, b1, b2, . . . , bp

denote the estimators of the parameters

β0, β1, β2, . . . , βp

For the ith observation, the predicted response is

ŷi = b0 + b1xi1 + b2xi2 + · · · + bpxip

The ith residual, the difference between the observed and predicted response,LOOK BACK
residual, page 565 is therefore

ei = observed response − predicted response

= yi − ŷi

= yi − b0 − b1xi1 − b2xi2 − · · · − bpxip

The method of least squares chooses the values of the b’s that make the sum
of the squared residuals as small as possible. In other words, the parameter
estimates b0, b1, b2, . . . , bp minimize the quantity∑

( yi − b0 − b1xi1 − b2xi2 − · · · − bpxip)
2

The formula for the least-squares estimates is complicated. We will be content
to understand the principle on which it is based and to let software do the com-
putations.

The parameter σ 2 measures the variability of the responses about the pop-
ulation regression equation. As in the case of simple linear regression, we esti-
mate σ 2 by an average of the squared residuals. The estimator is

s2 =
∑

e2
i

n − p − 1

=
∑

( yi − ŷi)
2

n − p − 1

The quantity n − p − 1 is the degrees of freedom associated with s2. The degreesLOOK BACK
degrees of freedom,
page 566

of freedom equal the sample size, n, minus p + 1, the number of β ’s we must
estimate to fit the model. In the simple linear regression case there is just one
explanatory variable, so p = 1 and the degrees of freedom are n − 2. To estimate
σ we use

s =
√

s2

USE YOUR KNOWLEDGE
11.1 Describing a multiple regression. As part of a recent study titled

“Predicting Success for Actuarial Students in Undergraduate Math-



11.1 Inference for Multiple Regression
•

611

ematics Courses,” data from 106 Bryant College actuarial gradu-
ates were obtained.2 The researchers were interested in describing
how students’ overall math grade point averages are explained by
SAT Math and SAT Verbal scores, class rank, and Bryant College’s
mathematics placement score.

(a) What is the response variable?

(b) What is n, the number of cases?

(c) What is p, the number of explanatory variables?

(d) What are the explanatory variables?

11.2 Understanding the fitted regression line. The fitted regression
equation for a multiple regression is

ŷ = −1.4 + 2.6x1 − 2.3x2

(a) If x1 = 4 and x2 = 2, what is the predicted value of y?

(b) For the answer to part (a) to be valid, is it necessary that the val-
ues x1 = 4 and x2 = 2 correspond to a case in the data set? Ex-
plain why or why not.

(c) If you hold x2 at a fixed value, what is the effect of an increase of
two units in x1 on the predicted value of y?

Confidence intervals and significance tests
for regression coefficients
We can obtain confidence intervals and perform significance tests for each of
the regression coefficients βj as we did in simple linear regression. The standard
errors of the b’s have more complicated formulas, but all are multiples of s. We
again rely on statistical software to do the calculations.

CONFIDENCE INTERVALS AND SIGNIFICANCE TESTS FOR βJ

A level C confidence interval for βj is

bj ± t∗SEbj

where SEbj is the standard error of bj and t∗ is the value for the
t(n − p − 1) density curve with area C between −t∗ and t∗.

To test the hypothesis H0: βj = 0, compute the t statistic

t = bj

SEbj

In terms of a random variable T having the t(n − p − 1) distribution, the
P-value for a test of H0 against
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Ha: βj > 0 is P(T ≥ t)
t

Ha: βj < 0 is P(T ≤ t)
t

Ha: βj �= 0 is 2P(T ≥ |t|)
t

Because regression is often used for prediction, we may wish to use multiple
regression models to construct confidence intervals for a mean response andLOOK BACK

confidence intervals
for mean response,
page 573

prediction intervals,
page 575

prediction intervals for a future observation. The basic ideas are the same as
in the simple linear regression case. In most software systems, the same com-
mands that give confidence and prediction intervals for simple linear regres-
sion work for multiple regression. The only difference is that we specify a list of
explanatory variables rather than a single variable. Modern software allows us
to perform these rather-complex calculations without an intimate knowledge
of all of the computational details. This frees us to concentrate on the meaning
and appropriate use of the results.

ANOVA table for multiple regression
In simple linear regression the F test from the ANOVA table is equivalent to
the two-sided t test of the hypothesis that the slope of the regression line is 0.
For multiple regression there is a corresponding ANOVA F test, but it tests theLOOK BACK

ANOVA F test,
page 582

hypothesis that all of the regression coefficients (with the exception of the inter-
cept) are 0. Here is the general form of the ANOVA table for multiple regression:

Degrees
Source of freedom Sum of squares Mean square F

Model p
∑

( ŷi − y)2 SSM/DFM MSM/MSE
Error n − p − 1

∑
( yi − ŷi)

2 SSE/DFE

Total n − 1
∑

( yi − y)2 SST/DFT

The ANOVA table is similar to that for simple linear regression. The degreesLOOK BACK
ANOVA table,
page 582

of freedom for the model increase from 1 to p to reflect the fact that we now
have p explanatory variables rather than just one. As a consequence, the degrees
of freedom for error decrease by the same amount. It is always a good idea to
calculate the degrees of freedom by hand and then check that your software agrees
with your calculations. In this way you can verify that your software is using the
number of cases and number of explanatory variables that you intended.

CAUTION

!
The sums of squares represent sources of variation. Once again, both the

sums of squares and their degrees of freedom add:
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SST = SSM + SSE

DFT = DFM + DFE

The estimate of the variance σ 2 for our model is again given by the MSE in the
ANOVA table. That is, s2 = MSE.

The ratio MSM/MSE is an F statistic for testing the null hypothesisLOOK BACK
F statistic, page 582 H0: β1 = β2 = · · · = βp = 0

against the alternative hypothesis

Ha: at least one of the βj is not 0

The null hypothesis says that none of the explanatory variables are predictors
of the response variable when used in the form expressed by the multiple re-
gression equation. The alternative states that at least one of them is a predictor
of the response variable. As in simple linear regression, large values of F give
evidence against H0. When H0 is true, F has the F( p, n − p − 1) distribution. The
degrees of freedom for the F distribution are those associated with the model
and error in the ANOVA table. A common error in the use of multiple regression
is to assume that all of the regression coefficients are statistically different from
zero whenever the F statistic has a small P-value. Be sure that you understand
the difference between the F test and the t tests for individual coefficients.

CAUTION

!

ANALYSIS OF VARIANCE F TEST

In the multiple regression model, the hypothesis

H0: β1 = β2 = · · · = βp = 0

is tested against the alternative hypothesis

Ha: at least one of the βj is not 0

by the analysis of variance F statistic

F = MSM
MSE

F

The P-value is the probability that a random variable having the
F( p, n − p − 1) distribution is greater than or equal to the calculated
value of the F statistic.

Squared multiple correlation R2

For simple linear regression we noted that the square of the sample correla-
tion could be written as the ratio of SSM to SST and could be interpreted as
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the proportion of variation in y explained by x. A similar statistic is routinely
calculated for multiple regression.

THE SQUARED MULTIPLE CORRELATION

The statistic

R2 = SSM
SST

=
∑

( ŷi − ȳ)2∑
( yi − ȳ)2

is the proportion of the variation of the response variable y that is ex-
plained by the explanatory variables x1, x2, . . . , xp in a multiple linear
regression.

Often, R2 is multiplied by 100 and expressed as a percent. The square root
of R2, called the multiple correlation coefficient, is the correlation betweenmultiple correlation coefficient
the observations yi and the predicted values ŷi.

USE YOUR KNOWLEDGE
11.3 Significance tests for regression coefficients. Recall Exercise 11.1

(page 610). Due to missing values for some students, only 86 students
were used in the multiple regression analysis. The following table
contains the estimated coefficients and standard errors:

Variable Estimate SE

Intercept −0.764 0.651
SAT Math 0.00156 0.00074
SAT Verbal 0.00164 0.00076
High school rank 1.470 0.430
Bryant College placement 0.889 0.402

(a) All the estimated coefficients for the explanatory variables are
positive. Is this what you would expect? Explain.

(b) What are the degrees of freedom for the model and error?

(c) Test the significance of each coefficient and state your conclu-
sions.

11.4 ANOVA table for multiple regression. Use the following informa-
tion to perform the ANOVA F test and compute R2.

Degrees
Source of freedom Sum of squares

Model 175
Error 60

Total 65 1015
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11.2 A Case Study
Preliminary analysis
In this section we illustrate multiple regression by analyzing the data from
the study described in Example 11.1. The response variable is the cumulative
GPA after three semesters for a group of computer science majors at a large
university. The explanatory variables previously mentioned are average high
school grades, represented by HSM, HSS, and HSE. We also examine the SAT
Mathematics and SAT Verbal scores as explanatory variables. We have data for
n = 224 students in the study. We use SAS to illustrate the outputs that are
given by most software.

The first step in the analysis is to carefully examine each of the variables.
Means, standard deviations, and minimum and maximum values appear in
Figure 11.1. The minimum value for the SAT Mathematics (SATM) variable
appears to be rather extreme; it is (595 − 300)/86 = 3.43 standard deviations
below the mean. We do not discard this case at this time but will take care in
our subsequent analyses to see if it has an excessive influence on our results.
The mean for the SATM score is higher than the mean for the Verbal score
(SATV), as we might expect for a group of computer science majors. The two
standard deviations are about the same. The means of the three high school
grade variables are similar, with the mathematics grades being a bit higher.
The standard deviations for the high school grade variables are very close to
each other. The mean GPA is 2.635 on a 4-point scale, with standard deviation
0.779.

FIGURE 11.1 Descriptive
statistics for the computer
science student case study.

Because the variables GPA, SATM, and SATV have many possible values, we
could use stemplots or histograms to examine the shapes of their distributions.
Normal quantile plots indicate whether or not the distributions look Normal.
It is important to note that the multiple regression model does not require any
of these distributions to be Normal. Only the deviations of the responses y from
their means are assumed to be Normal. The purpose of examining these plots
is to understand something about each variable alone before attempting to use
it in a complicated model. Extreme values of any variable should be noted and
checked for accuracy. If found to be correct, the cases with these values should

CAUTION

! be carefully examined to see if they are truly exceptional and perhaps do not
belong in the same analysis with the other cases. When our data on computer
science majors are examined in this way, no obvious problems are evident.
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The high school grade variables HSM, HSS, and HSE have relatively few
values and are best summarized by giving the relative frequencies for each pos-
sible value. The output in Figure 11.2 provides these summaries. The distri-
butions are all skewed, with a large proportion of high grades (10 = A and
9 = A−). Again we emphasize that these distributions need not be Normal.

FIGURE 11.2 The distributions
of the high school grade
variables.

Relationships between pairs of variables
The second step in our analysis is to examine the relationships between all
pairs of variables. Scatterplots and correlations are our tools for studying
two-variable relationships. The correlations appear in Figure 11.3. The out-LOOK BACK

test for ρ = 0, page 591 put includes the P-value for the test of the null hypothesis that the population
correlation is 0 versus the two-sided alternative for each pair. Thus, we see
that the correlation between GPA and HSM is 0.44, with a P-value of 0.0001,
whereas the correlation between GPA and SATV is 0.11, with a P-value of 0.087.
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FIGURE 11.3 Correlations
among the case study variables.

The first is statistically significant by any reasonable standard, and the second
is marginally significant.

The high school grades all have higher correlations with GPA than do the
SAT scores. As we might expect, math grades have the highest correlation
(r = 0.44), followed by science grades (0.33) and then English grades (0.29).
The two SAT scores have a rather high correlation with each other (0.46), and
the high school grades also correlate well with each other (0.45 to 0.58). SATM
correlates well with HSM (0.45), less well with HSS (0.24), and rather poorly
with HSE (0.11). The correlations of SATV with the three high school grades
are about equal, ranging from 0.22 to 0.26.

It is important to keep in mind that by examining pairs of variables we are
seeking a better understanding of the data. The fact that the correlation of a par-
ticular explanatory variable with the response variable does not achieve statistical
significance does not necessarily imply that it will not be a useful (and statistically

CAUTION

!
significant) predictor in a multiple regression.

Numerical summaries such as correlations are useful, but plots are gener-
ally more informative when seeking to understand data. Plots tell us whether
the numerical summary gives a fair representation of the data. For a multiple
regression, each pair of variables should be plotted. For the six variables in our
case study, this means that we should examine 15 plots. In general, there are
p + 1 variables in a multiple regression analysis with p explanatory variables, so
that p( p + 1)/2 plots are required. Multiple regression is a complicated proce-
dure. If we do not do the necessary preliminary work, we are in serious danger
of producing useless or misleading results. We leave the task of making these
plots as an exercise.
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USE YOUR KNOWLEDGE
11.5 Pairwise relationships among variables in the CSDATA data set.

The CSDATA data set can be found in the Data Appendix. Using a
statistical package, generate the pairwise correlations and scatter-
plots discussed previously. Comment on any unusual patterns or
observations.

Regression on high school grades
To explore the relationship between the explanatory variables and our response
variable GPA, we run several multiple regressions. The explanatory variables
fall into two classes. High school grades are represented by HSM, HSS, and
HSE, and standardized tests are represented by the two SAT scores. We begin
our analysis by using the high school grades to predict GPA. Figure 11.4 gives
the multiple regression output.

FIGURE 11.4 Multiple
regression output for regression
using high school grades to
predict GPA.

The output contains an ANOVA table, some additional descriptive statistics,
and information about the parameter estimates. When examining any ANOVA
table, it is a good idea to first verify the degrees of freedom. This ensures that we
have not made some serious error in specifying the model for the software or
in entering the data. Because there are n = 224 cases, we have DFT = n − 1 =
223. The three explanatory variables give DFM = p = 3 and DFE = n − p − 1 =
223 − 3 = 220.
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The ANOVA F statistic is 18.86, with a P-value of 0.0001. Under the null
hypothesis

H0: β1 = β2 = β3 = 0

the F statistic has an F(3, 220) distribution. According to this distribution, the
chance of obtaining an F statistic of 18.86 or larger is 0.0001. We therefore con-
clude that at least one of the three regression coefficients for the high school
grades is different from 0 in the population regression equation.

In the descriptive statistics that follow the ANOVA table we find that Root
MSE is 0.6998. This value is the square root of the MSE given in the ANOVA
table and is s, the estimate of the parameter σ of our model. The value of R2 is
0.20. That is, 20% of the observed variation in the GPA scores is explained by
linear regression on high school grades. Although the P-value is very small, the
model does not explain very much of the variation in GPA. Remember, a small
P-value does not necessarily tell us that we have a large effect, particularly when
the sample size is large.

From the Parameter Estimates section of the computer output we obtain the
fitted regression equation

ĜPA = 0.590 + 0.169HSM + 0.034HSS + 0.045HSE

Let’s find the predicted GPA for a student with an A− average in HSM, B+ in
HSS, and B in HSE. The explanatory variables are HSM = 9, HSS = 8, and
HSE = 7. The predicted GPA is

ĜPA = 0.590 + 0.169(9) + 0.034(8) + 0.045(7)

= 2.7

Recall that the t statistics for testing the regression coefficients are obtained
by dividing the estimates by their standard errors. Thus, for the coefficient of
HSM we obtain the t-value given in the output by calculating

t = b
SEb

= 0.168567
0.03549214

= 4.749

The P-values appear in the last column. Note that these P-values are for the
two-sided alternatives. HSM has a P-value of 0.0001, and we conclude that
the regression coefficient for this explanatory variable is significantly different
from 0. The P-values for the other explanatory variables (0.36 for HSS and 0.25
for HSE) do not achieve statistical significance.

Interpretation of results
The significance tests for the individual regression coefficients seem to contra-
dict the impression obtained by examining the correlations in Figure 11.3. In
that display we see that the correlation between GPA and HSS is 0.33 and the
correlation between GPA and HSE is 0.29. The P-values for both of these cor-
relations are 0.0001. In other words, if we used HSS alone in a regression to
predict GPA, or if we used HSE alone, we would obtain statistically significant
regression coefficients.

This phenomenon is not unusual in multiple regression analysis. Part of
the explanation lies in the correlations between HSM and the other two ex-
planatory variables. These are rather high (at least compared with the other
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correlations in Figure 11.3). The correlation between HSM and HSS is 0.58,
and that between HSM and HSE is 0.45. Thus, when we have a regression
model that contains all three high school grades as explanatory variables, there
is considerable overlap of the predictive information contained in these vari-
ables. The significance tests for individual regression coefficients assess the signif-
icance of each predictor variable assuming that all other predictors are included
in the regression equation. Given that we use a model with HSM and HSS as

CAUTION

!
predictors, the coefficient of HSE is not statistically significant. Similarly, given
that we have HSM and HSE in the model, HSS does not have a significant re-
gression coefficient. HSM, however, adds significantly to our ability to predict
GPA even after HSS and HSE are already in the model.

Unfortunately, we cannot conclude from this analysis that the pair of ex-
planatory variables HSS and HSE contribute nothing significant to our model
for predicting GPA once HSM is in the model. The impact of relations among
the several explanatory variables on fitting models for the response is the most
important new phenomenon encountered in moving from simple linear regres-
sion to multiple regression. We can only hint at the many complicated prob-
lems that arise.

Residuals
As in simple linear regression, we should always examine the residuals as an
aid to determining whether the multiple regression model is appropriate for the
data. Because there are several explanatory variables, we must examine several
residual plots. It is usual to plot the residuals versus the predicted values ŷ and
also versus each of the explanatory variables. Look for outliers, influential ob-
servations, evidence of a curved (rather than linear) relation, and anything else
unusual. Again, we leave the task of making these plots as an exercise. The plots
all appear to show more or less random noise around the center value of 0.

If the deviations ε in the model are Normally distributed, the residuals
should be Normally distributed. Figure 11.5 presents a Normal quantile plot
of the residuals. The distribution appears to be approximately Normal. There
are many other specialized plots that help detect departures from the multiple
regression model. Discussion of these, however, is more than we can undertake
in this chapter.
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FIGURE 11.5 Normal quantile
plot of the residuals from the
high school grades model. There
are no important deviations
from Normality.
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USE YOUR KNOWLEDGE
11.6 Residual plots for the CSDATA analysis. The CSDATA data set can

be found in the Data Appendix. Using a statistical package, fit the lin-
ear model with HSM and HSE as predictors and obtain the residuals
and predicted values. Plot the residuals versus the predicted values,
HSM, and HSE. Are the residuals more or less randomly dispersed
around zero? Comment on any unusual patterns.

Refining the model
Because the variable HSS has the largest P-value of the three explanatory vari-
ables (see Figure 11.4) and therefore appears to contribute the least to our
explanation of GPA, we rerun the regression using only HSM and HSE as ex-
planatory variables. The SAS output appears in Figure 11.6. The F statistic
indicates that we can reject the null hypothesis that the regression coefficients
for the two explanatory variables are both 0. The P-value is still 0.0001. The
value of R2 has dropped very slightly compared with our previous run, from
0.2046 to 0.2016. Thus, dropping HSS from the model resulted in the loss of
very little explanatory power. The measure s of variation about the fitted equa-
tion (Root MSE in the printout) is nearly identical for the two regressions,
another indication that we lose very little dropping HSS. The t statistics for the
individual regression coefficients indicate that HSM is still clearly significant
(P = 0.0001), while the statistic for HSE is larger than before (1.747 versus
1.166) and approaches the traditional 0.05 level of significance (P = 0.082).

FIGURE 11.6 Multiple
regression output for regression
using HSM and HSE to predict
GPA.
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Comparison of the fitted equations for the two multiple regression analyses
tells us something more about the intricacies of this procedure. For the first run
we have

ĜPA = 0.590 + 0.169HSM + 0.034HSS + 0.045HSE

whereas the second gives us

ĜPA = 0.624 + 0.183HSM + 0.061HSE

Eliminating HSS from the model changes the regression coefficients for all of
the remaining variables and the intercept. This phenomenon occurs quite gen-
erally in multiple regression. Individual regression coefficients, their standard er-
rors, and significance tests are meaningful only when interpreted in the context of
the other explanatory variables in the model.

CAUTION

!

Regression on SAT scores
We now turn to the problem of predicting GPA using the two SAT scores. Fig-
ure 11.7 gives the output. The fitted model is

ĜPA = 1.289 + 0.002283SATM − 0.000025SATV

The degrees of freedom are as expected: 2, 221, and 223. The F statistic is 7.476,
with a P-value of 0.0007. We conclude that the regression coefficients for SATM
and SATV are not both 0. Recall that we obtained the P-value 0.0001 when we
used high school grades to predict GPA. Both multiple regression equations are

FIGURE 11.7 Multiple
regression output for regression
using SAT scores to predict GPA.
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highly significant, but this obscures the fact that the two models have quite dif-
ferent explanatory power. For the SAT regression, R2 = 0.0634, whereas for the
high school grades model even with only HSM and HSE (Figure 11.6), we have
R2 = 0.2016, a value more than three times as large. Stating that we have a sta-
tistically significant result is quite different from saying that an effect is large or
important.

CAUTION

!
Further examination of the output in Figure 11.7 reveals that the coeffi-

cient of SATM is significant (t = 3.44, P = 0.0007), and that for SATV is not
(t = −0.04, P = 0.9684). For a complete analysis we should carefully examine
the residuals. Also, we might want to run the analysis with SATM as the only
explanatory variable.

Regression using all variables
We have seen that either the high school grades or the SAT scores give a highly
significant regression equation. The mathematics component of each of these
groups of explanatory variables appears to be the key predictor. Comparing the
values of R2 for the two models indicates that high school grades are better pre-
dictors than SAT scores. Can we get a better prediction equation using all of the
explanatory variables together in one multiple regression?

To address this question we run the regression with all five explanatory vari-
ables. The output appears in Figure 11.8. The F statistic is 11.69, with a P-value
of 0.0001, so at least one of our explanatory variables has a nonzero regression
coefficient. This result is not surprising, given that we have already seen that
HSM and SATM are strong predictors of GPA. The value of R2 is 0.2115, not
much higher than the value of 0.2046 that we found for the high school grades
regression.

Examination of the t statistics and the associated P-values for the individ-
ual regression coefficients reveals that HSM is the only one that is significant
(P = 0.0003). That is, only HSM makes a significant contribution when it is
added to a model that already has the other four explanatory variables. Once
again it is important to understand that this result does not necessarily mean
that the regression coefficients for the four other explanatory variables are all 0.

Figure 11.9 gives the Excel and Minitab multiple regression outputs for this
problem. Although the format and organization of outputs differ among soft-
ware packages, the basic results that we need are easy to find.

Many statistical software packages provide the capability for testing whether
a collection of regression coefficients in a multiple regression model are all 0.
We use this approach to address two interesting questions about this set of
data. We did not discuss such tests in the outline that opened this section, but
the basic idea is quite simple.

Test for a collection of regression coefficients
In the context of the multiple regression model with all five predictors, we ask
first whether or not the coefficients for the two SAT scores are both 0. In other
words, do the SAT scores add any significant predictive information to that
already contained in the high school grades? To be fair, we also ask the com-
plementary question—do the high school grades add any significant predictive
information to that already contained in the SAT scores?
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FIGURE 11.8 Multiple
regression output for regression
using all variables to predict GPA.

The answers are given in the last two parts of the output in Figure 11.8. For
the first test we see that F = 0.9503. Under the null hypothesis that the two SAT
coefficients are 0, this statistic has an F(2, 218) distribution and the P-value is
0.39. We conclude that the SAT scores are not significant predictors of GPA in a
regression that already contains the high school scores as predictor variables.
Recall that the model with just SAT scores has a highly significant F statistic. We
now see that whatever predictive information is in the SAT scores can also be
found in the high school grades. In this sense, the SAT scores are unnecessary.

The test statistic for the three high school grade variables is F = 13.6462. Un-
der the null hypothesis that these three regression coefficients are 0, the statis-
tic has an F(3, 218) distribution and the P-value is 0.0001. We conclude that
high school grades contain useful information for predicting GPA that is not
contained in SAT scores.

Of course, our statistical analysis of these data does not imply that SAT
scores are less useful than high school grades for predicting college grades for
all groups of students. We have studied a select group of students—computer
science majors—from a specific university. Generalizations to other situations
are beyond the scope of inference based on these data alone.
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FIGURE 11.9 Excel and Minitab
multiple regression outputs for
regression using all variables to
predict GPA.

BEYOND THE BASICS

Multiple Logistic Regression

Many studies have yes/no or success/failure response variables. A surgery pa-
tient lives or dies; a consumer does or does not purchase a product after view-
ing an advertisement. Because the response variable in a multiple regression
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is assumed to have a Normal distribution, this methodology is not suitable for
predicting such responses. However, there are models that apply the ideas of
regression to response variables with only two possible outcomes.

One type of model that can be used is called logistic regression. We think inlogistic regression
terms of a binomial model for the two possible values of the response variable
and use one or more explanatory variables to explain the probability of success.
Details are more complicated than those for multiple regression and are given
in the supplemental Chapter 14 on this topic. However, the fundamental ideas
are very much the same. Here is an example.

•

E
X

A
M

P
L

E 11.2 Sexual imagery in advertisements. Marketers sometimes use sex-
ual imagery in advertisements targeted at teens and young adults. One study
designed to examine this issue analyzed how models were dressed in 1509 ads
in magazines read by young and mature adults.3 The clothing of the models
in the ads was classified as not sexual or sexual. Logistic regression was used
to model the probability that the model’s clothing was sexual as a function of
four explanatory variables. Here, model clothing with values 1 for sexual and
0 for not sexual is the response variable.

The explanatory variables were x1, a variable having the value 1 if the me-
dian age of the readers of the magazine is 20 to 29, and 0 if the median age of
the readers of the magazine is 40 to 49; x2, the gender of the model, coded as 1
for female and 0 for male; x3, a code to indicate men’s magazines with values
1 for a men’s magazine and 0 otherwise; and x4, a code to indicate women’s
magazines with values 1 for a women’s magazine and 0 otherwise. Note that
general-interest magazines are coded as 0 for both x3 and x4.

Similar to the F test in multiple regression, there is a chi-square test for
multiple logistic regression that tests the null hypothesis that all coefficients
of the explanatory variables are zero. The value is X2 = 168.2, and the de-
grees of freedom are the number of explanatory variables, 4 in this case. The
P-value is reported as P = 0.001. (You can verify that it is less than 0.0005 us-
ing Table F.) We conclude that not all of the explanatory variables have zero
coefficients.

Interpretation of the coefficients is a little more difficult in multiple logis-
tic regression because of the form of the model. For our example, the fitted
model is

log
(

p
1 − p

)
= −2.32 + 0.50x1 + 1.31x2 − 0.05x3 + 0.45x4

The expression p/(1 − p) is the odds that the model is sexually dressed.
Logistic regression models the “log odds” as a linear combination of the
explanatory variables. Positive coefficients are associated with a higher prob-
ability that the model is dressed sexually. We see that ads in magazines with
younger readers, female models, and women’s magazines are more likely to
show models dressed sexually.

In place of the t tests for individual coefficients in multiple regression, chi-
square tests, each with 1 degree of freedom, are used to test whether individ-
ual coefficients are zero. For reader age and model gender, P < 0.01, while

LOOK BACK
chi-square
distribution, page 531

odds
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•
for the indicator for women’s magazines, P < 0.05. The indicator for men’s
magazines is not statistically significant.

CHAPTER 11 Summary

The statistical model for multiple linear regression with response variable y
and p explanatory variables x1, x2, . . . , xp is

yi = β0 + β1xi1 + β2xi2 + · · · + βpxip + εi

where i = 1, 2, . . . , n. The εi are assumed to be independent and Normally dis-
tributed with mean 0 and standard deviation σ . The parameters of the model
are β0, β1, β2, . . . , βp, and σ .

The β ’s are estimated by b0, b1, b2, . . . , bp, which are obtained by the method
of least squares. The parameter σ is estimated by

s = √
MSE =

√ ∑
e2

i

n − p − 1

where the ei are the residuals,

ei = yi − ŷi

A level C confidence interval for βj is

bj ± t∗SEbj

where t∗ is the value for the t(n − p − 1) density curve with area C between −t∗
and t∗.

The test of the hypothesis H0: βj = 0 is based on the t statistic

t = bj

SEbj

and the t(n − p − 1) distribution.

The estimate bj of βj and the test and confidence interval for βj are all based on a
specific multiple linear regression model. The results of all of these procedures
change if other explanatory variables are added to or deleted from the model.

The ANOVA table for a multiple linear regression gives the degrees of freedom,
sum of squares, and mean squares for the model, error, and total sources of
variation. The ANOVA F statistic is the ratio MSM/MSE and is used to test the
null hypothesis

H0: β1 = β2 = · · · = βp = 0

If H0 is true, this statistic has an F( p, n − p − 1) distribution.

The squared multiple correlation is given by the expression

R2 = SSM
SST
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and is interpreted as the proportion of the variability in the response variable y
that is explained by the explanatory variables x1, x2, . . . , xp in the multiple linear
regression.

CHAPTER 11 Exercises

For Exercises 11.1 and 11.2, see pages 610 and 611; for
Exercises 11.3 and 11.4, see page 614; for Exercise 11.5, see
page 618; and for Exercise 11.6, see page 621.

11.7 95% confidence intervals for regression
coefficients. In each of the following settings,
give a 95% confidence interval for the coefficient
of x1.

(a) n = 30, ŷ = 10.6 + 10.8x1 + 7.9x2, SEb1 = 2.4.

(b) n = 53, ŷ = 10.6 + 10.8x1 + 7.9x2, SEb1 = 2.4.

(c) n = 30, ŷ = 10.6 + 10.8x1 + 7.9x2 + 5.2x3,
SEb1 = 2.4.

(d) n = 124, ŷ = 10.6 + 10.8x1 + 7.9x2 + 5.2x3,
SEb1 = 2.4.

11.8 More on significance tests for regression
coefficients. For each of the settings in the
previous exercise, test the null hypotheses that
the coefficient of x1 is zero versus the two-sided
alternative.

11.9 What’s wrong? In each of the following situations,
explain what is wrong and why.

(a) In a multiple regression with a sample size of
40 and 4 explanatory variables, the test statistic
for the null hypothesis H0: b2 = 0 is a t statistic
that follows the t(35) distribution when the null
hypothesis is true.

(b) The multiple correlation coefficient gives
the proportion of the variation in the response
variable that is explained by the explanatory
variables.

(c) A small P-value for the ANOVA F test implies
all explanatory variables are statistically different
from zero.

11.10 What’s wrong? In each of the following situations,
explain what is wrong and why.

(a) One of the assumptions for multiple regression
is that the distribution of each explanatory variable
is Normal.

(b) The smaller the P-value for the ANOVA F test,
the greater the explanatory power of the model.

(c) All explanatory variables that are significantly
correlated with the response variable will have a
statistically significant regression coefficient in
the multiple regression model.

11.11 Constructing the ANOVA table. Seven
explanatory variables are used to predict a
response variable using a multiple regression.
There are 140 observations.

(a) Write the statistical model that is the
foundation for this analysis. Also include a
description of all assumptions.

(b) Outline the analysis of variance table giving
the sources of variation and numerical values for
the degrees of freedom.

11.12 More on constructing the ANOVA table. A
multiple regression analysis of 73 cases was
performed with 5 explanatory variables. Suppose
that SSM = 14.1 and SSE = 100.5.

(a) Find the value of the F statistic for testing the
null hypothesis that the coefficients of all of the
explanatory variables are zero.

(b) What are the degrees of freedom for this
statistic?

(c) Find bounds on the P-value using Table E.
Show your work.

(d) What proportion of the variation in the
response variable is explained by the explanatory
variables?

11.13 Childhood obsesity. The prevalence of childhood
obesity in industrialized nations is constantly
rising. Since between 30% and 60% of obese
children maintain their obesity into adulthood,
there is great interest in better understanding
the reasons for this rising trend. In one study,
researchers looked at the relationship between a
child’s percent fat mass and several explanatory
variables.4 These were the percent of energy intake
at dinner, each parent’s body mass index (BMI),
an index of energy intake validity (EI/BMR), and
gender. The following table summarizes the results
of the multiple regression analysis:



Chapter 11 Exercises
•

629

b s(b)

Intercept 5.13 3.03
Gender (M = 0, F = 1) 4.69 0.51
Dinner (%) 0.08 0.02
EI/predicted BMR −1.90 0.65
Mother’s BMI (kg/m2) 0.23 0.07
Father’s BMI (kg/m2) 0.27 0.09

In addition, it is reported that R = 0.44 and
F(5, 524) = 25.16.

(a) How many children were used in this study?

(b) What percent of the variation in percent fat
mass is explained by these explanatory variables?

(c) Interpret the sign of each of the regression
coefficients given in the table. For EI/predicted
BMR, data values ranged between 1.4 and 2.8
with a low value associated with underreporting
of energy intake.

(d) Construct a 95% confidence interval for the
difference in predicted percent fat mass when
energy intake at dinner differs by 5% (assume all
other variables are the same).

11.14 Understanding the tests of significance. Using
a new software package, you ran a multiple
regression. The output reported an F statistic with
P < 0.05, but none of the t tests for the individual
coefficients were significant (P > 0.05). Does this
mean that there is something wrong with the
software? Explain your answer.

11.15 Predicting substance abuse. What factors
predict substance abuse among high school
students? One study designed to answer this
question collected data from 89 high school
seniors in a suburban Florida high school.5 One
of the response variables was marijuana use,
which was rated on a four-point scale. A multiple
regression analysis used grade point average
(GPA), popularity, and a depression score to
predict marijuana use. The results were reported
in a table similar to this:

b t P

GPA −0.597 4.55 < 0.001
Popularity 0.340 2.69 < 0.01
Depression 0.030 2.69 < 0.01

A footnote to the table gives R2 = 0.34,
F(3, 85) = 14.83, and P < 0.001.

(a) State the null and alternative hypotheses that
are tested by each of the t statistics. Give the
results of these significance tests.

(b) Interpret the sign of each of the regression
coefficients given in the table.

(c) In the expression F(3, 85), what do the
numbers 3 and 85 represent?

(d) State the null and alternative hypotheses
that are tested by the F statistic. What is the
conclusion?

(e) Each of the variables in this analysis was
measured by having the students complete a
questionnaire. Discuss how this might affect the
results.

(f) How well do you think that these results can
be applied to other populations of high school
students?

11.16 C
H

ALLENG
E More on predicting substance abuse.

Refer to the previous exercise. The
researchers also studied cigarette use, alcohol
use, and cocaine use. Here is a summary of the
results for the individual regression coefficients:

b t P

GPA −0.340 2.16 < 0.05
Cigarette Popularity 0.338 2.24 < 0.05

Depression 0.034 2.60 < 0.05

GPA −0.321 3.83 < 0.001
Alcohol Popularity 0.185 2.29 < 0.05

Depression 0.015 2.19 < 0.05

GPA −0.583 5.99 < 0.001
Cocaine Popularity −1.90 2.25 < 0.05

Depression 0.002 0.27 Not sig.

And here are other relevant results:

Response variable R2 F P

Cigarette 0.18 6.38 < 0.001
Alcohol 0.27 10.37 < 0.001
Cocaine 0.38 12.21 < 0.001

Using the questions given in the previous exercise,
summarize the results for each of these response
variables. Then write a short essay comparing the
results for the four different response variables.

11.17 Demand for non-biotech cereals. A study
designed to determine how willing consumers
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are to pay a premium for non-biotech breakfast
cereals (cereals that do not include gene-altered
ingredients) included both U.S. and U.K. subjects.6

The response variable was a measure of how
much extra they would be willing to pay, and
the explanatory variables included items related
to perceived risks and benefits, demographic
variables, and country. Country was coded as 0
for the U.K. subjects and 1 for the U.S. subjects.
The parameter estimate for country was reported
as −0.2304 with t = −4.196. The total number of
subjects was 1810.

(a) Interpret the regression coefficient. Are
subjects in the U.S. more willing to pay extra for
non-biotech breakfast cereals than U.K. subjects,
or are they less willing?

(b) Use the t statistic to find a bound on the
P-value. Explain the hypothesis tested by
this statistic and summarize the result of the
significance test.

(c) The U.S. data were collected using
questionnaires that were sent to a nationally
representative sample of 5200 households enrolled
in the National Dairy Panel (NDP) Group. The
response rate was 58%. The same questionnaire
was used for an online survey of the 9000 U.K.
customers enrolled in another NDP Group. The
response rate was 28.5%. Several of the items
used in the analysis included “Don’t know” as
a possible response. Respondents choosing this
option were excluded from the analysis. Discuss
the implications of these considerations on the
results.

11.18 C
H

ALLENG
E Enjoyment of physical exercise. Although

the benefits of physical exercise are well
known, most people do not exercise and many
who start exercise programs drop out after a
short time. A study designed to determine factors
associated with exercise enjoyment collected data
from 282 female volunteers who were participants
in not-for-credit aerobic dance classes at two
university centers.7 Exercise enjoyment was the
response variable, with a possible range of 18 to
136. Three explanatory variables were analyzed:
satisfaction with the music used (range 4 to 28),
satisfaction with the instructor (range 6 to 42),
and identity, a variable that measured the extent to
which the subject viewed herself as an exerciser. A
table of correlations among the four variables was
given, and the text noted that all were significant
with P < 0.01. The coefficients for music (1.02),
instructor (0.96), and identity (0.30) were given in
another table, where it was noted that R2 = 0.33.

(a) Can you give the fitted regression equation?
If your answer is Yes, write the equation; if No,
explain what additional information you would
need.

(b) Does the fact that all of the correlations
between the four variables are significant at
P < 0.01 tell us that the regression coefficients
for each of the three explanatory variables will be
statistically significant? Explain your answer.

(c) The statistic for testing the null hypothesis
that the population regression coefficients for
the three explanatory variables are all zero is
F = 45.64. Give the degrees of freedom for this
statistic, and carry out the significance test. What
do you conclude?

(d) What proportion of the variation in exercise
enjoyment is explained by music, instructor, and
identity?

(e) The authors of the study note that males were
not included because there were too few of them
in these classes. Do you think that these results
would apply to males? Explain why or why not.

11.19 Nutrition labels for foods. Labels providing
nutrition facts give consumers information about
the nutritional value of food products that they
buy. A study of these labels collected data from
152 consumers who were sent information about
a frozen chicken dinner. Each subject was asked
to give an overall product nutrition score and also
evaluated each of 10 nutrients on a 9-point scale,
with higher values indicating that the product has
a healthy value for the given nutrient. Composite
scores for favorable nutrients (such as protein
and fiber) and unfavorable nutrients (such as fat
and sodium) were used in a multiple regression to
predict the overall product nutrition score.8 The
following was reported in a table:

Explanatory variables b se t Model F R2

33.7** 0.31
Unfavorable nutrients 0.82 0.12 6.8**
Favorable nutrients 0.57 0.10 5.5**
Constant 3.33 0.13 26.1**

**p < 0.01

(a) What is the equation of the least-squares line?

(b) Give the null and alternative hypotheses
associated with the entry labeled “Model F” and
interpret this result.
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(c) The column labeled “t” contains three entries.
Explain what each of these means.

(d) What are the degrees of freedom associated
with the t statistics that you explained in part (c)?

11.20 More on nutrition labels for foods. The product
used in the previous exercise was described
by the researchers as a poor-nutrition product.
The label information for this product had high
values for unfavorable nutrients such as fat
and low values for favorable nutrients such as
fiber. The researchers who conducted this study
collected a parallel set of data from subjects
who were provided label information for a good-
nutrition product. This label had low values for
the unfavorable nutrients and high values for
the favorable ones. The same type of multiple
regression model was run for the 162 consumers
who participated in this part of the study. Here are
the regression results:

Explanatory variables b se t Model F R2

44.0** 0.36
Unfavorable nutrients 0.86 0.12 6.9**
Favorable nutrients 0.66 0.10 6.9**
Constant 3.96 0.12 32.8**

**p < 0.01

For this analysis, answer the questions in parts (a)
to (d) of the previous exercise.

11.21 Even more on nutrition labels for foods.
Refer to the previous two exercises. When the
researchers planned these studies, they expected
both unfavorable nutrients and favorable nutrients
to be positively associated with the overall
product nutrition score. They also expected
the unfavorable nutrients to have a stronger
effect. Examine the regression coefficients and
the associated t statistics for the two regression
models. Then, use this information to discuss how
well the researchers’ expectations were fulfilled.

The following five exercises use the data given in the next
exercise.

11.22 Online stock trading. Online stock trading has
increased dramatically during the past several
years. An article discussing this new method of
investing provided data on the major Internet
stock brokerages who provide this service.9 Below
are some data for the top 10 Internet brokerages.
The variables are Mshare, the market share of the

firm; Accts, the number of Internet accounts in
thousands; and Assets, the total assets in billions
of dollars. These firms are not a random sample
from any population, but we will use multiple
regression methods to develop statistical models
that relate assets to the other two variables.

ID Broker Mshare Accts Assets

1 Charles Schwab 27.5 2500 219.0
2 E*Trade 12.9 909 21.1
3 TD Waterhouse 11.6 615 38.8
4 Datek 10.0 205 5.5
5 Fidelity 9.3 2300 160.0
6 Ameritrade 8.4 428 19.5
7 DLJ Direct 3.6 590 11.2
8 Discover 2.8 134 5.9
9 Suretrade 2.2 130 1.3

10 National Discount Brokers 1.3 125 6.8

(a) Plot assets versus accounts and describe the
relationship.

(b) Perform a simple linear regression to predict
assets from the number of accounts. Give the
least-squares line and the results of the hypothesis
test for the slope.

(c) Obtain the residuals from part (b) and plot
them versus accounts. Describe the plot. What do
you conclude?

(d) Construct a new variable that is the square of
the number of accounts. Rerun the regression
analysis with accounts and the square as
explanatory variables. Summarize the results.

11.23 Adjusting for correlated explanatory variables.
In the multiple regression you performed in the
previous exercise, the P-value for the number
of accounts was 0.8531, while the P-value for
the square was 0.0070. Unless we have a strong
theoretical reason for considering a model with a
quadratic term and no linear term, we prefer not to
do this. One problem with these two explanatory
variables is that they are highly correlated. Here is
a way to construct a version of the quadratic term
that is less correlated with the linear term. We first
find the mean for accounts, and then we subtract
this value from accounts before squaring. The
mean is 793.6, so the new quadratic explanatory
variable will be (Accts − 793.6)2. Run the multiple
regression to predict assets using accounts and
the new quadratic term. Compare these results
with what you found in the previous exercise.

11.24 Curvilinear relationship versus a couple
of outliers. To one person, the plot of assets
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versus the number of accounts indicates that the
relationship is curved. Another person might see
this as a linear relationship with two outliers.
Identify the two outliers and rerun the linear
regression and the multiple regression with the
linear and quadratic terms. Summarize your
results.

11.25 Transforming the variables. Sometimes we
attempt to model curved relationships by
transforming variables. Take the logarithm
of assets and the logarithm of the number of
accounts. Does the relationship between the logs
appear to be approximately linear? Analyze the
data and provide a summary of your results. Be
sure to include plots along with the results of your
statistical inference.

11.26 Interpretation of coefficients in a multiple
regression. Recall that the relationship between
an explanatory variable and a response variable
can depend on what other explanatory variables
are included in the model.

(a) Use a simple linear regression to predict assets
using the number of accounts. Give the regression
equation and the results of the significance test for
the regression coefficient.

(b) Do the same using market share to predict
assets.

(c) Run a multiple regression using both the
number of accounts and market share to predict
assets. Give the multiple regression equation and
the results of the significance tests for the two
regression coefficients.

(d) Compare the results in parts (a), (b), and (c).
If you had to choose one of these three models,
which one do you prefer? Give an explanation for
your answer.

The following three exercises use the RANKING data set
described in the Data Appendix.

11.27 Annual ranking of world universities. Let’s
consider developing a model to predict total score
based on the peer review score (PEER), faculty-to-
student ratio (FtoS), and citations-to-faculty ratio
(CtoF).

(a) Using numerical and graphical summaries,
describe the distribution of each explanatory
variable.

(b) Using numerical and graphical summaries,
describe the relationship between each pair of
explanatory variables.

11.28 Looking at the simple linear regressions.
Now let’s look at the relationship between each
explanatory variable and the total score.

(a) Generate scatterplots for each explanatory
variable and the total score. Do these relationships
all look linear?

(b) Compute the correlation between each
explanatory variable and the total score. Are
certain explanatory variables more strongly
associated with the total score?

11.29 Multiple linear regression model. Now consider
a regression model using all three explanatory
variables.

(a) Write out the statistical model for this analysis,
making sure to specify all assumptions.

(b) Run the multiple regression model and specify
the fitted regression equation.

(c) Generate a 95% confidence interval for each
coefficient. Should any of these intervals contain
0? Explain.

(d) What percent of the variation in total score
is explained by this model? What is the estimate
for σ?

11.30 Predicting GPA of seventh-graders. Refer to the
educational data for 78 seventh-grade students
given in Table 1.9 (page 29). We view GPA as the
response variable. IQ, gender, and self-concept are
the explanatory variables.

(a) Find the correlation between GPA and each
of the explanatory variables. What percent of the
total variation in student GPAs can be explained
by the straight-line relationship for each of the
explanatory variables?

(b) The importance of IQ in explaining GPA is not
surprising. The purpose of the study is to assess
the influence of self-concept on GPA. So we will
include IQ in the regression model and ask, “How
much does self-concept contribute to explaining
GPA after the effect of IQ on GPA is taken into
account?” Give a model that can be used to answer
this question.

(c) Run the model and report the fitted regression
equation. What percent of the variation in GPA
is explained by the explanatory variables in your
model?

(d) Translate the question of interest into
appropriate null and alternative hypotheses
about the model parameters. Give the value of
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the test statistic and its P-value. Write a short
summary of your analysis with an emphasis on
your conclusion.

The following three exercises use the HAPPINESS data set
described in the Data Appendix.

11.31 Predicting a nation’s “average happiness”
score. Consider the following five variables for
each nation: LSI, life-satisfaction score, an index
of happiness; GINI, a measure of inequality in the
distribution of income; CORRUPT, a measure of
corruption in government; LIFE, the average life
expectancy; and DEMOCRACY, a measure of civil
and political liberties.

(a) Using numerical and graphical summaries,
describe the distribution of each variable.

(b) Using numerical and graphical summaries,
describe the relationship between each pair of
variables.

11.32 Building a multiple linear regression model.
Let’s now build a model to predict the life-
satisfaction score, LSI.

(a) Consider a simple linear regression using GINI
as the explanatory variable. Run the regression
and summarize the results. Be sure to check
assumptions.

(b) Now consider a model using GINI and LIFE.
Run the multiple regression and summarize the
results. Again be sure to check assumptions.

(c) Now consider a model using GINI, LIFE, and
DEMOCRACY. Run the multiple regression and
summarize the results. Again be sure to check
assumptions.

(d) Now consider a model using all four
explanatory variable. Again summarize the results
and check assumptions.

11.33 Selecting from among several models. Refer to
the results from the previous exercise.

(a) Make a table giving the estimated regression
coefficients, standard errors, t statistics, and
P-values.

(b) Describe how the coefficients and P-values
change for the four models.

(c) Based on the table of coefficients, suggest
another model. Run that model, summarize the
results, and compare it with the other ones. Which
model would you choose to explain LSI? Explain.

The following six exercises use the BIOMARKERS data set
described in the Data Appendix.

11.34 Bone formation and resorption. Consider the
following four variables: VO+, a measure of bone
formation; VO−, a measure of bone resorption;
OC, a biomarker of bone formation; and TRAP, a
biomarker of bone resorption.

(a) Using numerical and graphical summaries,
describe the distribution of each of these variables.

(b) Using numerical and graphical summaries,
describe the relationship between each pair of
variables in this set.

11.35 Predicting bone formation. Let’s use regression
methods to predict VO+, the measure of bone
formation.

(a) Since OC is a biomarker of bone formation,
we start with a simple linear regression using OC
as the explanatory variable. Run the regression
and summarize the results. Be sure to include an
analysis of the residuals.

(b) Because the processes of bone formation and
bone resorption are highly related, it is possible
that there is some information in the bone
resorption variables that can tell us something
about bone formation. Use a model with both
OC and TRAP, the biomarker of bone resorption,
to predict VO+. Summarize the results. In the
context of this model, it appears that TRAP is a
better predictor of bone formation, VO+, than
the biomarker of bone formation, OC. Is this
view consistent with the pattern of relationships
that you described in the previous exercise? One
possible explanation is that, while all of these
variables are highly related, TRAP is measured
with more precision than OC.

11.36 More on predicting bone formation. Now
consider a regression model for predicting VO+
using OC, TRAP, and VO−.

(a) Write out the statistical model for this analysis
including all assumptions.

(b) Run the multiple regression to predict VO+
using OC, TRAP, and VO−. Summarize the results.

(c) Make a table giving the estimated regression
coefficients, standard errors, and t statistics with
P-values for this analysis and the two that you
ran in the previous exercise. Describe how the
coefficients and the P-values differ for the three
analyses.
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(d) Give the percent of variation in VO+ explained
by each of the three models and the estimate of σ .
Give a short summary.

(e) The results you found in part (b) suggest
another model. Run that model, summarize the
results, and compare them with the results in (b).

11.37 C
H

ALLENG
E Predicting bone formation using

transformed variables. Because the
distributions of VO+, VO−, OC, and TRAP tend to
be skewed, it is common to work with logarithms
rather than the measured values. Using the
questions in the previous three exercises as a
guide, analyze the log data.

11.38 C
H

ALLENG
E Predicting bone resorption. Refer to

Exercises 11.34 to 11.36. Answer these
questions with the roles of VO+ and VO− reversed;
that is, run models to predict VO−, with VO+ as
an explanatory variable.

11.39 C
H

ALLENG
E Predicting bone resorption using

transformed variables. Refer to the
previous exercise. Rerun using logs.

The following eleven exercises use the PCB data set
described in the Data Appendix.

11.40 Relationship among PCB congeners. Produc-
tion of polychlorinated biphenyls (PCBs) was
banned in the United States in 1977, but because
of their widespread use, these compounds are
found in many species of fish. As a result, 38
states have issued advisories about limiting
consumption of certain species caught in some
areas. Specific advisories are targeted at pregnant
and lactating women and all women who are
of childbearing age. Unfortunately, there are
209 different varieties, called congeners, of
PCB. Measurement of all of these congeners
in a fish specimen is an expensive and time-
consuming process. If the total amount of PCB in
a specimen can be estimated with data collected
on a few congeners, costs can be reduced and
more specimens can be measured. Consider the
following variables: PCB (the total amount of PCB)
and four congeners, PCB52, PCB118, PCB138,
and PCB180.

(a) Using numerical and graphical summaries,
describe the distribution of each of these variables.

(b) Using numerical and graphical summaries,
describe the relationship between each pair of
variables in this set.

11.41 Predicting the total amount of PCB. Use the
four congeners, PCB52, PCB118, PCB138, and
PCB180, in a multiple regression to predict PCB.

(a) Write the statistical model for this analysis.
Include all assumptions.

(b) Run the regression and summarize the results.

(c) Examine the residuals. Do they appear to
be approximately Normal? When you plot them
versus each of the explanatory variables, are any
patterns evident?

11.42 Adjusting analysis for potential outliers. The
examination of the residuals in part (c) of the
previous exercise suggests that there may be two
outliers, one with a high residual and one with a
low residual.

(a) Because of safety issues, we are more
concerned about underestimating PCB in a
specimen than about overestimating. Give
the specimen number for each of the two
suspected outliers. Which one corresponds to
an overestimate of PCB?

(b) Rerun the analysis with the two suspected
outliers deleted, summarize these results, and
compare them with those you obtained in the
previous exercise.

11.43 More on predicting the total amount of PCB.
Run a regression to predict PCB using the
variables PCB52, PCB118, and PCB138. Note
that this is similar to the analysis that you did in
Exercise 11.41, with the change that PCB180 is
not included as an explanatory variable.

(a) Summarize the results.

(b) In this analysis, the regression coefficient
for PCB118 is not statistically significant. Give
the estimate of the coefficient and the associated
P-value.

(c) Find the estimate of the coefficient for PCB118
and the associated P-value for the model analyzed
in Exercise 11.41.

(d) Using the results in parts (b) and (c), write a
short paragraph explaining how the inclusion of
other variables in a multiple regression can have
an effect on the estimate of a particular coefficient
and the results of the associated significance test.

11.44 Multiple regression model for total TEQ.
Dioxins and furans are other classes of chemicals
that can cause undesirable health effects similar
to those caused by PCB. The three types of
chemicals are combined using toxic equivalent
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scores (TEQs), which attempt to measure the
health effects on a common scale. The PCB data
set contains TEQs for PCB, dioxins, and furans.
The variables are called TEQPCB, TEQDIOXIN,
and TEQFURAN. The data set also includes the
total TEQ, defined to be the sum of these three
variables.

(a) Consider using a multiple regression to predict
TEQ using the three components TEQPCB,
TEQDIOXIN, and TEQFURAN as explanatory
variables. Write the multiple regression model in
the form

TEQ = β0 + β1TEQPCB + β2TEQDIOXIN

+ β3TEQFURAN + ε

Give numerical values for the parameters β0, β1,
β2, and β3.

(b) The multiple regression model assumes that
the ε’s are Normal with mean zero and standard
deviation σ . What is the numerical value of σ?

(c) Use software to run this regression and
summarize the results.

11.45 C
H

ALLENG
E Multiple regression model for total

TEQ, continued. The information
summarized in TEQ is used to assess and manage
risks from these chemicals. For example, the World
Health Organization (WHO) has established the
tolerable daily intake (TDI) as 1 to 4 TEQs per
kilogram of body weight per day. Therefore,
it would be very useful to have a procedure
for estimating TEQ using just a few variables
that can be measured cheaply. Use the four
PCB congeners, PCB52, PCB118, PCB138, and
PCB180, in a multiple regression to predict TEQ.
Give a description of the model and assumptions,
summarize the results, examine the residuals, and
write a summary of what you have found.

11.46 C
H

ALLENG
E Predicting total amount of PCB using

transformed variables. Because
distributions of variables such as PCB, the
PCB congeners, and TEQ tend to be skewed,
researchers frequently analyze the logarithms of
the measured variables. Create a data set that has
the logs of each of the variables in the PCB data
set. Note that zero is a possible value for PCB126;
most software packages will eliminate these cases
when you request a log transformation.

(a) If you do not do anything about the 16 zero
values of PCB126, what does your software do

with these cases? Is there an error message of
some kind?

(b) If you attempt to run a regression to predict
the log of PCB using the log of PCB126 and the
log of PCB52, are the cases with the zero values of
PCB126 eliminated? Do you think that is a good
way to handle this situation?

(c) The smallest nonzero value of PCB126 is
0.0052. One common practice when taking
logarithms of measured values is to replace
the zeros by one-half of the smallest observed
value. Create a logarithm data set using this
procedure; that is, replace the 16 zero values of
PCB126 by 0.0026 before taking logarithms. Use
numerical and graphical summaries to describe
the distributions of the log variables.

11.47 C
H

ALLENG
E Predicting total amount of PCB using

transformed variables, continued. Refer
to the previous exercise.

(a) Use numerical and graphical summaries to
describe the relationships between each pair of
log variables.

(b) Compare these summaries with the
summaries that you produced in Exercise 11.40
for the measured variables.

11.48 C
H

ALLENG
E Even more on predicting total amount
of PCB using transformed variables. Use

the log data set that you created in Exercise 11.46
to find a good multiple regression model for
predicting the log of PCB. Use only log PCB
variables for this analysis. Write a report
summarizing your results.

11.49 C
H

ALLENG
E Predicting total TEQ using transformed

variables. Use the log data set that you
created in Exercise 11.46 to find a good multiple
regression model for predicting the log of TEQ.
Use only log PCB variables for this analysis. Write
a report summarizing your results and comparing
them with the results that you obtained in the
previous exercise.

11.50 Interpretation of coefficients in log PCB
regressions. Use the results of your analysis
of the log PCB data in Exercise 11.48 to write
an explanation of how regression coefficients,
standard errors of regression coefficients, and
tests of significance for explanatory variables can
change depending on what other explanatory
variables are included in the multiple regression
analysis.
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The following nine exercises use the CHEESE data set
described in the Data Appendix.

11.51 Describing the explanatory variables. For each
of the four variables in the CHEESE data set,
find the mean, median, standard deviation, and
interquartile range. Display each distribution by
means of a stemplot and use a Normal quantile
plot to assess Normality of the data. Summarize
your findings. Note that when doing regressions
with these data, we do not assume that these
distributions are Normal. Only the residuals from
our model need to be (approximately) Normal.
The careful study of each variable to be analyzed
is nonetheless an important first step in any
statistical analysis.

11.52 Pairwise scatterplots of the explanatory
variables. Make a scatterplot for each pair of
variables in the CHEESE data set (you will have
six plots). Describe the relationships. Calculate
the correlation for each pair of variables and
report the P-value for the test of zero population
correlation in each case.

11.53 Simple linear regression model of Taste.
Perform a simple linear regression analysis using
Taste as the response variable and Acetic as
the explanatory variable. Be sure to examine
the residuals carefully. Summarize your results.
Include a plot of the data with the least-squares
regression line. Plot the residuals versus each of
the other two chemicals. Are any patterns evident?
(The concentrations of the other chemicals are
lurking variables for the simple linear regression.)

11.54 Another simple linear regression model of
Taste. Repeat the analysis of Exercise 11.53 using
Taste as the response variable and H2S as the
explanatory variable.

11.55 The final simple linear regression model of
Taste. Repeat the analysis of Exercise 11.53 using
Taste as the response variable and Lactic as the
explanatory variable.

11.56 Comparing the simple linear regression
models. Compare the results of the regressions
performed in the three previous exercises.
Construct a table with values of the F statistic, its
P-value, R2, and the estimate s of the standard
deviation for each model. Report the three
regression equations. Why are the intercepts in
these three equations different?

11.57 Multiple regression model of Taste. Carry out
a multiple regression using Acetic and H2S to
predict Taste. Summarize the results of your
analysis. Compare the statistical significance
of Acetic in this model with its significance
in the model with Acetic alone as a predictor
(Exercise 11.53). Which model do you prefer?
Give a simple explanation for the fact that Acetic
alone appears to be a good predictor of Taste, but
with H2S in the model, it is not.

11.58 Another multiple regression model of Taste.
Carry out a multiple regression using H2S and
Lactic to predict Taste. Comparing the results of
this analysis with the simple linear regressions
using each of these explanatory variables alone,
it is evident that a better result is obtained by
using both predictors in a model. Support this
statement with explicit information obtained from
your analysis.

11.59 The final multiple regression model of Taste.
Use the three explanatory variables Acetic, H2S,
and Lactic in a multiple regression to predict
Taste. Write a short summary of your results,
including an examination of the residuals. Based
on all of the regression analyses you have carried
out on these data, which model do you prefer and
why?

11.60 Finding a multiple regression model on the
Internet. Search the Internet to find an example
of the use of multiple regression. Give the setting
of the example, describe the data, give the model,
and summarize the results. Explain why the use of
multiple regression in this setting was appropriate
or inappropriate.



CHAPTER

1212One-Way Analysis of Variance

Which brand of tires lasts the longest under city driving conditions? The methods
described in this chapter allow us to compare the average wear of each brand.

12.1 Inference for One-Way
Analysis of Variance

12.2 Comparing the Means
Introduction
Many of the most effective statistical studies are compar-
ative. For example, we may wish to compare customer
satisfaction of men and women using an online fantasy football site or
compare the responses to various treatments in a clinical trial. We display
these comparisons with back-to-back stemplots or side-by-side boxplots, and
we measure them with five-number summaries or with means and standard
deviations.

When only two groups are compared, Chapter 7 provides the tools we need
to answer the question “Is the difference between groups statistically signifi-
cant?” Two-sample t procedures compare the means of two Normal popula-
tions, and we saw that these procedures, unlike comparisons of spread, are suf-
ficiently robust to be widely useful.

In this chapter, we will compare any number of means by techniques that
generalize the two-sample t and share its robustness and usefulness. These
methods will allow us to address comparisons such as

• Which of 4 advertising offers mailed to sample households produces the
highest dollar sales?

• Which of 10 brands of automobile tires wears longest?

• How long do cancer patients live under each of 3 therapies for their lung
cancer?

637
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12.1 Inference for One-Way
Analysis of Variance
When comparing different populations or treatments, the data are subject to
sampling variability. For example, we would not expect the same sales data if
we mailed various advertising offers to a different sample of households. We
therefore pose the question for inference in terms of the mean response. In
Chapter 7 we met procedures for comparing the means of two populations. We

LOOK BACK
comparing two means,
page 447 are now ready to extend those methods to problems involving more than two

populations. The statistical methodology for comparing several means is called
analysis of variance, or simply ANOVA. In the sections that follow, we will ex-ANOVA
amine the basic ideas and assumptions that are needed for ANOVA. Although
the details differ, many of the concepts are similar to those discussed in the
two-sample case.

We will consider two ANOVA techniques. When there is only one way to clas-
sify the populations of interest, we use one-way ANOVA to analyze the data.one-way ANOVA
For example, to compare the survival times for three different lung cancer ther-
apies we use one-way ANOVA. This chapter presents the details for one-way
ANOVA.

In many other comparison studies, there is more than one way to classify the
populations. For the advertising study, the company may also consider mail-
ing the offers using two different envelope styles. Will each offer draw more
sales on the average when sent in an attention-grabbing envelope? Analyzing
the effect of advertising offer and envelope layout together requires two-waytwo-way ANOVA
ANOVA. This technique will be discussed in Chapter 13. While adding yet more
factors necessitates even higher-way ANOVA techniques, most of the new ideas
in ANOVA with more than one factor already appear in two-way ANOVA.

Data for one-way ANOVA
One-way analysis of variance is a statistical method for comparing several pop-
ulation means. We draw a simple random sample (SRS) from each population
and use the data to test the null hypothesis that the population means are all
equal. Consider the following two examples:

•

•

E
X

A
M

P
L

E 12.1 Choosing the best magazine layout. A magazine publisher wants
to compare three different layouts for a magazine that will be offered for sale
at supermarket checkout lines. She is interested in whether there is a layout
that better catches shoppers’ attention and results in more sales. To investi-
gate, she randomly assigns each of 60 stores to one of the three layouts and
records the number of magazines that are sold in a one-week period.

•

•

E
X

A
M

P
L

E 12.2 Average age of bookstore customers. How do five bookstores in
the same city differ in the demographics of their customers? Are certain book-
stores more popular among teenagers? Do upper-income shoppers tend to go
to one store? A market researcher asks 50 customers of each store to respond
to a questionnaire. Two variables of interest are the customer’s age and in-
come level.
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These two examples are similar in that

• There is a single quantitative response variable measured on many units; the
units are stores in the first example and customers in the second.

• The goal is to compare several populations: stores displaying three magazine
layouts in the first example and customers of five bookstores in the second.

There is, however, an important difference. Example 12.1 describes an ex-LOOK BACK
observation versus
experiment, page 175

periment in which stores are randomly assigned to layouts. Example 12.2 is an
observational study in which customers are selected during a particular time
period and not all agree to provide data. We will treat our samples of customers
as random samples even though this is only approximately true.

In both examples, we will use ANOVA to compare the mean responses. The
same ANOVA methods apply to data from random samples and to data from
randomized experiments. It is important to keep the data-production method in
mind when interpreting the results. A strong case for causation is best made by a
randomized experiment.

CAUTION

!

Comparing means
The question we ask in ANOVA is “Do all groups have the same population
mean?” We will often use the term groups for the populations to be compared
in a one-way ANOVA. To answer this question we compare the sample means.
Figure 12.1 displays the sample means for Example 12.1. It appears that Lay-
out 2 has the highest average sales. But is the observed difference in sample
means just the result of chance variation? We should not expect sample means
to be equal, even if the population means are all identical.

The purpose of ANOVA is to assess whether the observed differences among
sample means are statistically significant. Could a variation among the three
sample means this large be plausibly due to chance, or is it good evidence for a
difference among the population means? This question can’t be answered from
the sample means alone. Because the standard deviation of a sample mean x is
the population standard deviation σ divided by

√
n, the answer also dependsLOOK BACK

standard deviation of
x, page 338

upon both the variation within the groups of observations and the sizes of the
samples.
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FIGURE 12.1 Mean sales of
magazines for three different
magazine layouts.
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Side-by-side boxplots help us see the within-group variation. Compare Fig-
ures 12.2(a) and 12.2(b). The sample medians are the same in both figures, but
the large variation within the groups in Figure 12.2(a) suggests that the differ-
ences among the sample medians could be due simply to chance variation. The
data in Figure 12.2(b) are much more convincing evidence that the populations
differ. Even the boxplots omit essential information, however. To assess the ob-
served differences, we must also know how large the samples are. Nonetheless,
boxplots are a good preliminary display of the data. While ANOVA compares
means and boxplots display medians, we expect the data to be approximately
Normal and will consider a transformation if they are not. For distributions

LOOK BACK
transforming data,
page 435 that are nearly symmetric, these two measures of center will be close together.

(a) (b)

FIGURE 12.2 (a) Side-by-side boxplots for three groups with large within-group
variation. The differences among centers may be just chance variation. (b) Side-by-side
boxplots for three groups with the same centers as in Figure 12.2(a) but with small
within-group variation. The differences among centers are more likely to be significant.

The two-sample t statistic
Two-sample t statistics compare the means of two populations. If the two pop-
ulations are assumed to have equal but unknown standard deviations and the
sample sizes are both equal to n, the t statistic isLOOK BACK

pooled two-sample t
statistic, page 462

t = x − y

sp

√
1
n

+ 1
n

=

√
n
2

(x − y)

sp

The square of this t statistic is

t2 =
n
2

(x − y)2

s2
p

If we use ANOVA to compare two populations, the ANOVA F statistic is exactly
equal to this t2. We can therefore learn something about how ANOVA works by
looking carefully at the statistic in this form.

The numerator in the t2 statistic measures the variation between the groupsbetween-group variation
in terms of the difference between their sample means x and y. It includes a
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factor for the common sample size n. The numerator can be large because of
a large difference between the sample means or because the sample sizes are
large. The denominator measures the variation within groups by s2

p, the pooledwithin-group variation
estimator of the common variance. If the within-group variation is small, the
same variation between the groups produces a larger statistic and thus a more
significant result.

Although the general form of the F statistic is more complicated, the idea
is the same. To assess whether several populations all have the same mean, we
compare the variation among the means of several groups with the variation
within groups. Because we are comparing variation, the method is called anal-
ysis of variance.

An overview of ANOVA
ANOVA tests the null hypothesis that the population means are all equal. The
alternative is that they are not all equal. This alternative could be true because
all of the means are different or simply because one of them differs from the
rest. This is a more complex situation than comparing just two populations.
If we reject the null hypothesis, we need to perform some further analysis to
draw conclusions about which population means differ from which others and
by how much.

The computations needed for an ANOVA are more lengthy than those for the
t test. For this reason we generally use computer programs to perform the cal-
culations. Automating the calculations frees us from the burden of arithmetic
and allows us to concentrate on interpretation. Complicated computations do
not guarantee a valid statistical analysis. We should always start our ANOVA with
a careful examination of the data using graphical and numerical summaries.

CAUTION

!
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E 12.3 Workplace safety. In a study of workplace safety, workers were
asked to rate various elements of safety, and a composite score called the
Safety Climate Index (SCI) was calculated.1 The index is the sum of the re-
sponses to 10 different questions about safety. The response for each of these
questions is an integer ranging from 0 to 10, so the SCI has values from 0 to
100. The workers were classified according to their job category as unskilled,
skilled, and supervisor. Here is a summary of the data:

Job category n x s

Unskilled workers 448 70.42 18.27
Skilled workers 91 71.21 18.83
Supervisors 51 80.51 14.58

Histograms and descriptive statistics for the three groups of workers are
given in Figure 12.3. Note that the heights of the bars in the histograms are
percents rather than counts. If we had used counts with the same scale on the
y axis, then the bars for the skilled workers and the supervisors would be very
small because of the smaller sample sizes in these groups. Figure 12.4 gives
side-by-side boxplots for these data. We see that the largest and the small-
est possible values are present in the data. The distributions are somewhat
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•
skewed toward lower values. Our sample sizes, however, are sufficiently large
that we are confident that the sample means are approximately Normal.
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FIGURE 12.3 Histograms and
descriptive statistics for the
worker safety example.
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FIGURE 12.4 Side-by-side
boxplots for the worker safety
example.

The three sample means are plotted in Figure 12.5. It appears that the means
for the unskilled workers and the skilled workers are similar, while the super-
visors have a higher mean. To apply ANOVA in this setting, we view the three
samples that we have as three independent random samples from three dis-
tinct populations. Each of these populations has a mean and our inference asks
questions about these means.

Formulating a clear definition of the populations being compared with ANOVA

CAUTION

! can be difficult, as in our example. Often some expert judgment is required, and
different consumers of the results may have differing opinions. The workers in
this study all worked in the same industry in a particular region. They certainly
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FIGURE 12.5 SCI means for the
worker safety example.

do represent some larger population of similar workers. We are more confi-
dent in generalizing our conclusions to similar populations when the results
are clearly significant than when the level of significance just barely passes the
standard of P = 0.05.

We first ask whether or not there is sufficient evidence in the data to con-
clude that the corresponding population means are not all equal. Our null
hypothesis here states that the population mean SCI is the same for all three
groups of workers. The alternative is that they are not all the same.

Our inspection of the data for our example suggests that the means for the
skilled workers and the unskilled workers may be the same while the mean
for the supervisors is higher. Rejecting the null hypothesis that the means are all

CAUTION

! the same using ANOVA is not the same as concluding that all of the means are
different from one another. The ANOVA null hypothesis can be false in many
different ways. Additional analysis is required to distinguish among these
possibilities.

When there are particular versions of the alternative hypothesis that are of
interest, we use contrasts to examine them. In our example, we might wantcontrasts
to compare the supervisors with all of the other workers. Note that, to use con-
trasts, it is necessary that the questions of interest be formulated before examining
the data. It is cheating to make up these questions after analyzing the data.

CAUTION

!
If we have no specific relations among the means in mind before looking

at the data, we instead use a multiple-comparisons procedure to determinemultiple comparisons
which pairs of population means differ significantly. In later sections we will
explore both contrasts and multiple comparisons in detail.

USE YOUR KNOWLEDGE
12.1 What’s wrong? For each of the following, explain what is wrong and

why.

(a) ANOVA tests the null hypothesis that the sample means are all
equal.

(b) A strong case for causation is best made in an observational
study.

(c) You use one-way ANOVA when the response variable has only
two possible values.
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12.2 What’s wrong? For each of the following, explain what is wrong and
why.

(a) In rejecting the null hypothesis, one can conclude that all the
means are different from each other.

(b) A one-way ANOVA can be used only when there are fewer than
five means to be compared.

(c) A two-way ANOVA is used when comparing two populations.

The ANOVA model
When analyzing data, the following equation reminds us that we look for an
overall pattern and deviations from it:

DATA = FIT + RESIDUAL

In the regression model of Chapter 10, the FIT was the population regressionLOOK BACK
DATA = FIT +
RESIDUAL, page 564

line, and the RESIDUAL represented the deviations of the data from this line.
We now apply this framework to describe the statistical models used in ANOVA.
These models provide a convenient way to summarize the assumptions that are
the foundation for our analysis. They also give us the necessary notation to de-
scribe the calculations needed.

First, recall the statistical model for a random sample of observations from
a single Normal population with mean μ and standard deviation σ . If the ob-LOOK BACK

Normal distributions,
page 58

servations are

x1, x2, . . . , xn

we can describe this model by saying that the xj are an SRS from the N(μ, σ )

distribution. Another way to describe the same model is to think of the x’s vary-
ing about their population mean. To do this, write each observation xj as

xj = μ + εj

The εj are then an SRS from the N(0, σ ) distribution. Because μ is unknown,
the ε’s cannot actually be observed. This form more closely corresponds to our

DATA = FIT + RESIDUAL

way of thinking. The FIT part of the model is represented by μ. It is the sys-
tematic part of the model, like the line in a regression. The RESIDUAL part is
represented by εj. It represents the deviations of the data from the fit and is due
to random, or chance, variation.

There are two unknown parameters in this statistical model: μ and σ . We
estimate μ by x, the sample mean, and σ by s, the sample standard deviation.
The differences ej = xj − x are the sample residuals and correspond to the εj in
the statistical model.

The model for one-way ANOVA is very similar. We take random samples
from each of I different populations. The sample size is ni for the ith popula-
tion. Let xij represent the jth observation from the ith population. The I popula-
tion means are the FIT part of the model and are represented by μi. The random
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variation, or RESIDUAL, part of the model is represented by the deviations εij

of the observations from the means.

THE ONE-WAY ANOVA MODEL

The one-way ANOVA model is

xij = μi + εij

for i = 1, . . . , I and j = 1, . . . , ni. The εij are assumed to be from an N(0, σ )

distribution. The parameters of the model are the population means
μ1, μ2, . . . , μI and the common standard deviation σ .

Note that the sample sizes ni may differ, but the standard deviation σ is
assumed to be the same in all of the populations. Figure 12.6 pictures this
model for I = 3. The three population means μi are different, but the shapes
of the three Normal distributions are the same, reflecting the assumption that
all three populations have the same standard deviation.

μ1 μ2 μ3

FIGURE 12.6 Model for
one-way ANOVA with three
groups. The three populations
have Normal distributions with
the same standard deviation.
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E 12.4 ANOVA model for worker safety study. In our worker safety
example there are three groups of workers that we want to compare, so I = 3.
The population means μ1, μ2, and μ3 are the mean SCI values for unskilled
workers, for skilled workers, and for supervisors, respectively. The sample
sizes ni are 448, 91, and 51.

The observation x1,1 is the SCI score for the first unskilled worker. The data
for the other unskilled workers are denoted by x1,2, x1,3, . . . , x1,448. Similarly,
the data for the other two groups have a first subscript indicating the group
and a second subscript indicating the worker in that group.

According to our model, the SCI for the first worker is x1,1 = μ1 + ε1,1,
where μ1 is the average for all unskilled workers and ε1,1 is the chance varia-
tion due to this particular worker. The ANOVA model assumes that the εij are
independent and Normally distributed with mean 0 and standard deviation
σ . We have clear evidence that the data are not Normal in our example. The
values are numbers ranging from 0 to 100, and we saw some skewness for
all three groups in Figures 12.3 and 12.4. However, because our inference is
based on the sample means, which will be approximately Normal, we are not
overly concerned about this violation of our assumptions.
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It is common to use numerical subscripts to distinguish the different means,
and some software requires that levels of factors in ANOVA be specified as
numerical values. An alternative is to use subscripts that suggest the actual
groups. In our example, we could replace μ1, μ2, and μ3 by μUN, μSK, and μSU.

Estimates of population parameters
The unknown parameters in the statistical model for ANOVA are the I popula-
tion means μi and the common population standard deviation σ . To estimate
μi we use the sample mean for the ith group:

xi = 1
ni

ni∑
j=1

xij

The residuals eij = xij − xi reflect the variation about the sample means that we
see in the data.

The ANOVA model assumes that the population standard deviations are all
equal. If we have unequal standard deviations, we generally try to transform the
data so that they are approximately equal. We might, for example, work with√

xij or log xij. Fortunately, we can often find a transformation that both makes
the group standard deviations more nearly equal and also makes the distribu-
tions of observations in each group more nearly Normal. If the standard devia-
tions are markedly different and cannot be made similar by a transformation,
inference requires different methods that are beyond the scope of this book.

Unfortunately, formal tests for the equality of standard deviations in sev-
eral groups share the lack of robustness against non-Normality that we noted
in Chapter 7 for the case of two groups. Because ANOVA procedures are notLOOK BACK

F test for equality of
spread, page 474

extremely sensitive to unequal standard deviations, we do not recommend a
formal test of equality of standard deviations as a preliminary to the ANOVA.
Instead, we will use the following rule as a guideline.

RULE FOR EXAMINING STANDARD DEVIATIONS IN ANOVA

If the largest standard deviation is less than twice the smallest standard
deviation, we can use methods based on the assumption of equal stan-
dard deviations, and our results will still be approximately correct.2

When we assume that the population standard deviations are equal, each
sample standard deviation is an estimate of σ . To combine these into a single es-
timate, we use a generalization of the pooling method introduced in Chapter 7.

POOLED ESTIMATOR OF σ

Suppose we have sample variances s2
1, s2

2, . . . , s2
I from I independent

SRSs of sizes n1, n2, . . . , nI from populations with common variance
σ 2. The pooled sample variance

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2 + · · · + (nI − 1)s2

I

(n1 − 1) + (n2 − 1) + · · · + (nI − 1)
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is an unbiased estimator of σ 2. The pooled standard deviation

sp =
√

s2
p

is the estimate of σ .

Pooling gives more weight to groups with larger sample sizes. If the sample
sizes are equal, s2

p is just the average of the I sample variances. Note that sp is
not the average of the I sample standard deviations.

CAUTION

!
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E 12.5 Population estimates for worker safety study. In the worker

safety study there are I = 3 groups and the sample sizes are n1 = 448, n2 = 91,
and n3 = 51. The sample standard deviations are s1 = 18.27, s2 = 18.83, and
s3 = 14.58.

Because the largest standard deviation (18.83) is less than twice the small-
est (2 × 14.58 = 29.16), our rule indicates that we can use the assumption of
equal population standard deviations.

The pooled variance estimate is

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2 + (n3 − 1)s2

3

(n1 − 1) + (n2 − 1) + (n3 − 1)

= (447)(18.27)2 + (90)(18.83)2 + (50)(14.58)2

447 + 90 + 50

= 191,745
587

= 326.7

The pooled standard deviation is

sp = √
326.7 = 18.07

This is our estimate of the common standard deviation σ of the SCI scores in
the three populations of workers.

USE YOUR KNOWLEDGE
12.3 Computing the pooled standard deviation. An experiment was

run to compare three groups. The sample sizes were 25, 22, and 19,
and the corresponding estimated standard deviations were 22, 20,
and 18.

(a) Is it reasonable to use the assumption of equal standard devia-
tions when we analyze these data? Give a reason for your answer.

(b) Give the values of the variances for the three groups.

(c) Find the pooled variance.

(d) What is the value of the pooled standard deviation?
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12.4 Visualizing the ANOVA model. For each of the following situations,
draw a picture of the ANOVA model similar to Figure 12.6 (page 645).
Use numerical values for the μi. To sketch the Normal curves, you
may want to review the 68–95–99.7 rule on page 59.

(a) μ1 = 15, μ2 = 16, μ3 = 21, and σ = 6.

(b) μ1 = 10, μ2 = 15, μ3 = 20, μ4 = 20.1, and σ = 2.5.

(c) μ1 = 15, μ2 = 16, μ3 = 21, and σ = 2.

Testing hypotheses in one-way ANOVA
Comparison of several means is accomplished by using an F statistic to com-
pare the variation among groups with the variation within groups. We now
show how the F statistic expresses this comparison. Calculations are orga-
nized in an ANOVA table, which contains numerical measures of the variationLOOK BACK

ANOVA table,
page 582

among groups and within groups.
First we must specify our hypotheses for one-way ANOVA. As usual, I rep-

resents the number of populations to be compared.

HYPOTHESES FOR ONE-WAY ANOVA

The null and alternative hypotheses for one-way ANOVA are

H0: μ1 = μ2 = · · · = μI

Ha: not all of the μi are equal

We will now use our worker safety example to illustrate how to do a one-
way ANOVA. Because the calculations are generally performed using statistical
software, we focus on interpretation of the output.
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E 12.6 Reading software output. Figure 12.7 gives descriptive statistics
generated by SPSS for the ANOVA of the worker safety example. Summaries
for each group are given on the first three lines. In addition to the sample size,
the mean, and the standard deviation, this output also gives the minimum
and maximum observed value, standard error of the mean and the 95% con-
fidence interval for the mean of each group. The three sample means xi given
in the output are estimates of the three unknown population means μi.

The output gives the estimates of the standard deviations for each group,
the si, but does not provide sp, the pooled estimate of the model standard de-
viation, σ . We could perform the calculation using a calculator, as we did in
Example 12.5. We will see an easier way to obtain this quantity from the ANOVA
table in Figure 12.8. Some software packages report sp as part of the standard
ANOVA output. Sometimes you are not sure whether or not a quantity given by



12.1 Inference for One-Way Analysis of Variance
•

649

FIGURE 12.7 Software output
with descriptive statistics for the
worker safety example.

FIGURE 12.8 Software output
giving the ANOVA table for the
worker safety example.

software is what you think it is. A good way to resolve this dilemma is to do a

CAUTION

! sample calculation with a simple example to check the numerical results.
Note that sp is not the standard deviation given in the Total row of Figure 12.7.

This quantity is the standard deviation that we would obtain if we viewed the data

CAUTION
!

as a single sample of 590 workers and ignored the possibility that the group means
could be different. As we have mentioned many times before, it is important to
use care when reading and interpreting software output.
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E 12.7 Reading software output, continued. Additional output gener-
ated by SPSS for the ANOVA of the worker safety example is given in Fig-
ure 12.8. We will discuss some details in the next section. For now, we observe
that the results of our significance test are given in the last two columns of
the output. The null hypothesis that the three population means are the same
is tested by the statistic F = 7.137, and the associated P-value is reported as
P = 0.001. The data provide clear evidence to support the claim that these
three groups of workers have different mean SCI values.

The ANOVA table
The information in an analysis of variance is organized in an ANOVA table. To
understand the table, it is helpful to think in terms of our
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DATA = FIT + RESIDUAL

view of statistical models. For one-way ANOVA, this corresponds to

xij = μi + εij

We can think of these three terms as sources of variation. The ANOVA table
separates the variation in the data into two parts: the part due to the fit and the
remainder, which we call residual.
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E 12.8 ANOVA table for worker safety study. The SPSS output in Fig-

ure 12.8 gives the sources of variation in the first column. Here, FIT is called
Between Groups, RESIDUAL is called Within Groups, and DATA is the last
entry, Total. Different software packages use different terms for these sources
of variation but the basic concept is common to all. In place of FIT, some
software packages use Between Groups, Model, or the name of the factor.
Similarly, terms like Within Groups or Error are frequently used in place of
RESIDUAL.

The Between Groups row in the table gives information related to the vari-
ation among group means. In writing ANOVA tables we will use the genericvariation among groups
label “groups” or some other term that describes the factor being studied for
this row.

The Within Groups row in the table gives information related to the varia-
tion within groups. We noted that the term “error” is frequently used for thisvariation within groups
source of variation, particularly for more general statistical models. This label
is most appropriate for experiments in the physical sciences where the obser-
vations within a group differ because of measurement error. In business and
the biological and social sciences, on the other hand, the within-group varia-
tion is often due to the fact that not all firms or plants or people are the same.
This sort of variation is not due to errors and is better described as “residual”
or “within-group” variation. Nevertheless, we will use the generic label “error”
for this source of variation in writing ANOVA tables.

Finally, the Total row in the ANOVA table corresponds to the DATA term in
our DATA = FIT + RESIDUAL framework. So, for analysis of variance,

DATA = FIT + RESIDUAL

translates into

Total = Between Groups + Within Groups

The second column in the software output given in Figure 12.8 is labeled
Sum of Squares. As you might expect, each sum of squares is a sum of squaredLOOK BACK

sum of squares,
page 580

deviations. We use SSG, SSE, and SST for the entries in this column, corre-
sponding to groups, error, and total. Each sum of squares measures a different
type of variation. SST measures variation of the data around the overall mean,
xij − x. Variation of the group means around the overall mean xi − x is measured
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by SSG. Finally, SSE measures variation of each observation around its group
mean, xij − xi.
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E 12.9 ANOVA table for worker safety study, continued. The Sum of
Squares column in Figure 12.8 gives the values for the three sums of squares.

SST = 196391.4

SSG = 4662.2

SSE = 191729.2

Verify that SST = SSG + SSE.

This fact is true in general. The total variation is always equal to the among-
group variation plus the within-group variation. Note that software output fre-
quently gives many more digits than we need, as in this case. In this example
it appears that most of the variation is coming from within groups.

Associated with each sum of squares is a quantity called the degrees of free-
dom. Because SST measures the variation of all N observations around theLOOK BACK

degrees of freedom,
page 42

overall mean, its degrees of freedom are DFT = N − 1. This is the same as
the degrees of freedom for the ordinary sample variance with sample size N.
Similarly, because SSG measures the variation of the I sample means around
the overall mean, its degrees of freedom are DFG = I − 1. Finally, SSE is the
sum of squares of the deviations xij − xi. Here we have N observations being
compared with I sample means, and DFE = N − I.
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E 12.10 Degrees of freedom for worker safety study. In our worker
safety example, we have I = 3 and N = 590. Therefore,

DFT = N − 1 = 590 − 1 = 589

DFG = I − 1 = 3 − 1 = 2

DFE = N − I = 590 − 3 = 587

These are the entries in the df column of Figure 12.8.

Note that the degrees of freedom add in the same way that the sums of
squares add. That is, DFT = DFG + DFE.

For each source of variation, the mean square is the sum of squares dividedLOOK BACK
mean square,
page 581

by the degrees of freedom. You can verify this by doing the divisions for the
values given on the output in Figure 12.8.

SUMS OF SQUARES, DEGREES OF FREEDOM,
AND MEAN SQUARES

Sums of squares represent variation present in the data. They are calcu-
lated by summing squared deviations. In one-way ANOVA there are three
sources of variation: groups, error, and total. The sums of squares are
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related by the formula

SST = SSG + SSE

Thus, the total variation is composed of two parts, one due to groups and
one due to error.

Degrees of freedom are related to the deviations that are used in the
sums of squares. The degrees of freedom are related in the same way as
the sums of squares are:

DFT = DFG + DFE

To calculate each mean square, divide the corresponding sum of squares
by its degrees of freedom.

We can use the error mean square to find sp, the pooled estimate of the pa-
rameter σ of our model. It is true in general that

s2
p = MSE = SSE

DFE

In other words, the error mean square is an estimate of the within-group vari-
ance, σ 2. The estimate of σ is therefore the square root of this quantity. So,

sp = √
MSE
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E 12.11 MSE for worker safety study. From the SPSS output in Fig-
ure 12.8 we see that the MSE is reported as 326.626. The pooled estimate
of σ is therefore

sp = √
MSE

= √
326.626 = 18.07

The F test
If H0 is true, there are no differences among the group means. The ratio
MSG/MSE is a statistic that is approximately 1 if H0 is true and tends to be
larger if Ha is true. This is the ANOVA F statistic. In our example, MSG =
2331.116 and MSE = 326.626, so the ANOVA F statistic is

F = MSG
MSE

= 2331.116
326.626

= 7.137

When H0 is true, the F statistic has an F distribution that depends upon two
numbers: the degrees of freedom for the numerator and the degrees of freedom
for the denominator. These degrees of freedom are those associated with the
mean squares in the numerator and denominator of the F statistic. For one-
way ANOVA, the degrees of freedom for the numerator are DFG = I − 1, and
the degrees of freedom for the denominator are DFE = N − I. We use the no-
tation F(I − 1, N − I) for this distribution.
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The One-Way ANOVA applet available on the Web site www.whfreeman.com/
AP

PLET

ips is an excellent way to see how the value of the F statistic and the P-value
depend upon the variability of the data within the groups and the differences
between the means. See Exercises 12.18 and 12.19 for use of this applet.

THE ANOVA F TEST

To test the null hypothesis in a one-way ANOVA, calculate the F statistic

F = MSG
MSE

F

When H0 is true, the F statistic has the F(I − 1, N − I) distribution. When
Ha is true, the F statistic tends to be large. We reject H0 in favor of Ha if
the F statistic is sufficiently large.

The P-value of the F test is the probability that a random variable having
the F(I − 1, N − I) distribution is greater than or equal to the calculated
value of the F statistic.

Tables of F critical values are available for use when software does not give
the P-value. Table E in the back of the book contains the F critical values for
probabilities p = 0.100, 0.050, 0.025, 0.010, and 0.001. For one-way ANOVA we
use critical values from the table corresponding to I − 1 degrees of freedom in
the numerator and N − I degrees of freedom in the denominator.
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E 12.12 The ANOVA F test for the worker safety study. In the study of
worker safety, we found F = 7.14. (Note that it is standard practice to round F
statistics to two places after the decimal point.) There were three populations,
so the degrees of freedom in the numerator are DFG = I − 1 = 2. For this
example the degrees of freedom in the denominator are DFE = N − I = 590 −
3 = 587. In Table E we first find the column corresponding to 2 degrees of
freedom in the numerator. For the degrees of freedom in the denominator, we
see that there are entries for 200 and 1000. These entries are very close. To be
conservative we use critical values corresponding to 200 degrees of freedom
in the denominator since these are slightly larger.

Critical
p value

0.100 2.33
0.050 3.04
0.025 3.76
0.010 4.71
0.001 7.15

www.whfreeman.com/ips
www.whfreeman.com/APPL
www.whfreeman.com/ips
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We have F = 7.14. This is very close to the critical value for P = 0.001. Using
the table, however, we can conclude only that P < 0.010 because our calcu-
lated F does not exceed 7.15. (Note that the more accurate calculations per-
formed by software indicated that, in fact, P < 0.001.) For this example, we
reject H0 and conclude that the population means are not all the same.

When determining the P-value, remember that the F test is always one-sided
because any differences among the group means tend to make F large. The ANOVA

CAUTION

! F test shares the robustness of the two-sample t test. It is relatively insensitive
to moderate non-Normality and unequal variances, especially when the sample
sizes are similar.

The following display shows the general form of a one-way ANOVA table
with the F statistic. The formulas in the sum of squares column can be used
for calculations in small problems. There are other formulas that are more ef-
ficient for hand or calculator use, but ANOVA calculations are usually done by
computer software.

Degrees
Source of freedom Sum of squares Mean square F

Groups I − 1
∑

groups ni(xi − x)2 SSG/DFG MSG/MSE

Error N − I
∑

groups(ni − 1)s2
i SSE/DFE

Total N − 1
∑

obs(xij − x)2

One other item given by some software for ANOVA is worth noting. For an
analysis of variance, we define the coefficient of determination ascoefficient of determination

R2 = SSG
SST

The coefficient of determination plays the same role as the squared multiple
correlation R2 in a multiple regression. We can easily calculate the value from

LOOK BACK
multiple correlation
squared, page 614 the ANOVA table entries.
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E 12.13 Coefficient of determination for the worker safety study. The
software-generated ANOVA table for the worker safety study is given in
Figure 12.8. From that display, we see that SSG = 4662.233 and SST =
196,391.4. The coefficient of determination is

R2 = SSG
SST

= 4662.233
196,391.4

= 0.02

About 2% of the variation in SCI scores is explained by membership in the
groups of workers: unskilled workers, skilled workers, and supervisors. The
other 98% of the variation is due to worker-to-worker variation within each of
the three groups. We can see this in the histograms of Figure 12.3. Each of the
groups has a large amount of variation, and there is a substantial amount of
overlap in the distributions. The fact that we have strong evidence (P < 0.001)
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against the null hypothesis that the three population means are not all the same

CAUTION

! does not tell us that the distributions of values are far apart.

USE YOUR KNOWLEDGE
12.5 What’s wrong? For each of the following, explain what is wrong and

why.

(a) Within-group variation is the variation in the data due to the dif-
ferences in the sample means.

(b) The mean squares in an ANOVA table will add, that is, MST =
MSG + MSE.

(c) The pooled estimate sp is a parameter of the ANOVA model.

12.6 Determining the critical value of F. For each of the following situ-
ations, state how large the F statistic needs to be for rejection of the
null hypothesis at the 0.05 level.

(a) Compare 5 groups with 3 observations per group.

(b) Compare 5 groups with 6 observations per group.

(c) Compare 5 groups with 9 observations per group.

(d) Summarize what you have learned about F distributions from
this exercise.

12.2 Comparing the Means
Contrasts
The ANOVA F test gives a general answer to a general question: are the differ-
ences among observed group means significant? Unfortunately, a small P-value
simply tells us that the group means are not all the same. It does not tell us
specifically which means differ from each other. Plotting and inspecting the
means give us some indication of where the differences lie, but we would like
to supplement inspection with formal inference.

In the ideal situation, specific questions regarding comparisons among the
means are posed before the data are collected. We can answer specific questions
of this kind and attach a level of confidence to the answers we give. We now
explore these ideas through our worker safety example.
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E 12.14 Reporting the results. In the worker safety study we compared
the SCI scores for three groups of workers: unskilled workers, skilled work-
ers, and supervisors. Let’s use xUN, xSK, and xSU to represent the three sample
means and a similar notation for the population means. From Figure 12.7
we see that the three sample means are

xUN = 70.42, xSK = 71.21, and xSU = 80.51

The null hypothesis we tested was

H0: μUN = μSK = μSU
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versus the alternative that the three population means are not all the same.
We would report these results as F(2,587) = 7.14 with P < 0.001. (Note that
we have given the degrees of freedom for the F statistic in parentheses.) Be-
cause the P-value is very small, we conclude that the data provide clear evi-
dence that the three population means are not all the same.

Having evidence that the three population means are not the same does not
really tell us anything useful. We would really like our analysis to provide us
with more specific information. The alternative hypothesis is true if

μUN �= μSK

or if

μUN �= μSU

or if

μSK �= μSU

or if any combination of these statements is true. When you reject the ANOVA
null hypothesis, additional analyses are required to obtain useful results.

CAUTION

! Experts on safety in workplaces would suggest that supervisors face a very
different safety environment than the other types of workers. Therefore, a rea-
sonable question to ask is whether or not the mean of the supervisors is differ-
ent from the mean of the others. We can take this question and translate it into
a testable hypothesis.
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E 12.15 An additional comparison of interest. To compare the supervi-
sors with the other two groups of workers we construct the following null
hypothesis:

H01:
1
2

(μUN + μSK) = μSU

We could use the two-sided alternative

Ha1:
1
2

(μUN + μSK) �= μSU

but we could also argue that the one-sided alternative

Ha1:
1
2

(μUN + μSK) < μSU

is appropriate for this problem because we expect the unskilled workers and
the skilled workers to have a work environment that is less safe than the su-
pervisors’ work environment.

In the example above we used H01 and Ha1 to designate the null and alter-
native hypotheses. The reason for this is that there is a natural additional set of
hypotheses that we should examine for this example. We use H02 and Ha2 for
these hypotheses.
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E 12.16 Another comparison of interest. Do the data provide any ev-
idence to support a conclusion that the unskilled workers and the skilled
workers have different mean SCI scores? We translate this question into the
following null and alternative hypotheses:

H02: μUN = μSK

Ha2: μUN �= μSK

Each of H01 and H02 says that a combination of population means is 0.
These combinations of means are called contrasts because the coefficients
sum to zero. We use ψ , the Greek letter psi, for contrasts among population
means. For comparing the supervisors with the other two groups of workers,
we have

ψ1 = −1
2

(μUN + μSK) + μSU

= (−0.5)μUN + (−0.5)μSK + (1)μSU

and for comparing the unskilled workers with the skilled workers

ψ2 = (1)μUN + (−1)μSK

In each case, the value of the contrast is 0 when H0 is true. Note that we have
chosen to define the contrasts so that they will be positive when the alternative of
interest (what we expect) is true. Whenever possible, this is a good idea because
it makes some computations easier.

CAUTION

!
A contrast expresses an effect in the population as a combination of popu-

lation means. To estimate the contrast, form the corresponding sample con-sample contrast
trast by using sample means in place of population means. Under the ANOVA
assumptions, a sample contrast is a linear combination of independent Normal
variables and therefore has a Normal distribution. We can obtain the standard
error of a contrast by using the rules for variances. Inference is based on t statis-LOOK BACK

rules for variances,
page 282

tics. Here are the details.

CONTRASTS

A contrast is a combination of population means of the form

ψ =
∑

aiμi

where the coefficients ai sum to 0. The corresponding sample contrast
is

c =
∑

aixi

The standard error of c is

SEc = sp

√∑ a2
i

ni
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To test the null hypothesis

H0: ψ = 0

use the t statistic

t = c
SEc

with degrees of freedom DFE that are associated with sp. The alternative
hypothesis can be one-sided or two-sided.

A level C confidence interval for ψ is

c ± t∗SEc

where t∗ is the value for the t(DFE) density curve with area C between
−t∗ and t∗.

Because each xi estimates the corresponding μi, the addition rule for meansLOOK BACK
addition rule for
means, page 278

tells us that the mean μc of the sample contrast c is ψ . In other words, c is an
unbiased estimator of ψ . Testing the hypothesis that a contrast is 0 assesses the
significance of the effect measured by the contrast. It is often more informative
to estimate the size of the effect using a confidence interval for the population
contrast.
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E 12.17 The contrast coefficients. In our example the coefficients in the
contrasts are

a1 = −0.5, a2 = −0.5, a3 = 1 for ψ1

a1 = 1, a2 = −1, a3 = 0 for ψ2

where the subscripts 1, 2, and 3 correspond to UN, SK, and SU. In each case
the sum of the ai is 0. We look at inference for each of these contrasts in turn.
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E 12.18 Testing the first contrast of interest. The sample contrast that
estimates ψ1 is

c1 = −1
2

(xUN + xSK) + xSU

= −(0.5)70.42 − (0.5)71.21 + 80.51 = 9.69

with standard error

SEc1 = 18.07

√
(−0.5)2

448
+ (−0.5)2

91
+ (1)2

51

= 2.74

The t statistic for testing H01: ψ1 = 0 versus Ha1: ψ1 > 0 is

t = c1

SEc1

= 9.69
2.74

= 3.54
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Because sp has 587 degrees of freedom, software using the t(587) distribu-
tion gives the one-sided P-value as < 0.0001. If we used Table D, we would
conclude that P < 0.0005. The P-value is small, so there is strong evidence
against H01.

We have evidence to conclude that the mean SCI score for supervisors is
higher than the average of the means for the unskilled workers and the skilled
workers. The size of the difference can be described with a confidence interval.

•

•
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E 12.19 Confidence interval for the first contrast. To find the 95% con-

fidence interval for ψ1, we combine the estimate with its margin of error:

c1 ± t∗SEc1 = 9.69 ± (1.984)(2.74)

= 9.69 ± 5.44

The 1.984 is a conservative estimate of t∗ using 100 degrees of freedom. The
interval is (4.25, 15.13). We are 95% confident that the difference is between
4.25 and 15.13 rating points.

We use the same method for the second contrast.
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E 12.20 Testing the second contrast of interest. The second sample con-
trast, which compares the unskilled workers with the skilled workers, is

c2 = 70.42 − 71.21

= −0.79

with standard error

SEc2 = 18.07

√
(1)2

448
+ (−1)2

91

= 2.08

The t statistic for assessing the significance of this contrast is

t = −0.79
2.08

= −0.38

The P-value for the two-sided alternative is 0.706. The data do not provide us
with evidence in favor of a difference in population mean SCI scores between
unskilled workers and skilled workers.

Note that we have not concluded that there is no difference between the pop-
ulation means. A confidence interval will tell us what values of the population
difference are compatible with the data.
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E 12.21 Confidence interval for the second contrast. To find the 95%
confidence interval for ψ2, we combine the estimate with its margin of error:

c2 ± t∗SEc2 = −0.79 ± (1.984)(2.08)

= −0.79 ± 4.13

The interval is (−4.92, 3.34). With 95% confidence we state that the difference
between the population means for these two groups of workers is between
−4.92 and 3.34.

SPSS output for contrasts is given in Figure 12.9. The results agree with
the calculations that we performed in Examples 12.18 and 12.20 except for mi-
nor differences due to roundoff error in our calculations. Note that the output
does not give the confidence intervals that we calculated in Examples 12.19 and
12.21. These are easily computed, however, from the contrast estimates and
standard errors provided in the output.

FIGURE 12.9 Software output
giving the contrast analysis for
the worker safety example.

Some statistical software packages report the test statistics associated with
contrasts as F statistics rather than t statistics. These F statistics are the squares
of the t statistics described above. As with much statistical software output,
P-values for significance tests are reported for the two-sided alternative. If the

CAUTION

! software you are using gives P-values for the two-sided alternative, and you are
using the appropriate one-sided alternative, divide the reported P-value by 2. In
our example, we argued that a one-sided alternative was appropriate for the
first contrast. The software reported the P-value as 0.000, so we can conclude
P < 0.0005. Dividing this value by 2 has no effect on the conclusion.

Questions about population means are expressed as hypotheses about con-
trasts. A contrast should express a specific question that we have in mind when
designing the study. When contrasts are formulated before seeing the data, in-
ference about contrasts is valid whether or not the ANOVA H0 of equality of means

CAUTION

! is rejected. Because the F test answers a very general question, it is less pow-
erful than tests for contrasts designed to answer specific questions. Specifying
the important questions before the analysis is undertaken enables us to use this
powerful statistical technique.
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Multiple comparisons
In many studies, specific questions cannot be formulated in advance of the
analysis. If H0 is not rejected, we conclude that the population means are indis-
tinguishable on the basis of the data given. On the other hand, if H0 is rejected,
we would like to know which pairs of means differ. Multiple-comparisonsmultiple-comparisons methods
methods address this issue. It is important to keep in mind that multiple-
comparisons methods are used only after rejecting the ANOVA H0.
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E 12.22 Comparing each pair of groups. Return once more to the worker

safety data with three groups of workers. We can make three comparisons
between pairs of means: unskilled workers versus skilled workers, unskilled
workers versus supervisors, and skilled workers versus supervisors. We can
write a t statistic for each of these pairs. For example, the statistic

t12 = x1 − x2

sp

√
1
n1

+ 1
n2

= 70.42 − 71.21

18.07

√
1

448
+ 1

91

= −0.38

compares populations 1 and 2. The subscripts on t specify which groups are
compared.

The t statistics for the other two pairs are

t13 = x1 − x3

sp

√
1
n1

+ 1
n3

= 70.42 − 80.51

18.07

√
1

448
+ 1

51

= −3.78

and

t23 = x2 − x3

sp

√
1
n2

+ 1
n3

= 71.21 − 80.51

18.07

√
1
91

+ 1
51

= −2.94
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We performed the first calculation when we analyzed the contrast ψ2 =
μ1 − μ2 in the previous section. These t statistics are very similar to the pooled
two-sample t statistic for comparing two population means. The difference isLOOK BACK

pooled two-sample t
procedures, page 462

that we now have more than two populations, so each statistic uses the pooled
estimator sp from all groups rather than the pooled estimator from just the two
groups being compared. This additional information about the common σ in-
creases the power of the tests. The degrees of freedom for all of these statistics
are DFE = 587, those associated with sp.

Because we do not have any specific ordering of the means in mind as an
alternative to equality, we must use a two-sided approach to the problem of de-
ciding which pairs of means are significantly different.

MULTIPLE COMPARISONS

To perform a multiple-comparisons procedure, compute t statistics
for all pairs of means using the formula

tij = xi − xj

sp

√
1
ni

+ 1
nj

If

|tij| ≥ t∗∗

we declare that the population means μi and μj are different. Otherwise,
we conclude that the data do not distinguish between them. The value
of t∗∗ depends upon which multiple-comparisons procedure we choose.

One obvious choice for t∗∗ is the upper α/2 critical value for the t(DFE) dis-
tribution. This choice simply carries out as many separate significance tests of
fixed level α as there are pairs of means to be compared. The procedure based
on this choice is called the least-significant differences method, or simplyLSD method
LSD.

LSD has some undesirable properties, particularly if the number of means be-
ing compared is large. Suppose, for example, that there are I = 20 groups and

CAUTION

! we use LSD with α = 0.05. There are 190 different pairs of means. If we per-
form 190 t tests, each with an error rate of 5%, our overall error rate will be
unacceptably large. We expect about 5% of the 190 to be significant even if the
corresponding population means are the same. Since 5% of 190 is 9.5, we ex-
pect 9 or 10 false rejections.

The LSD procedure fixes the probability of a false rejection for each single
pair of means being compared. It does not control the overall probability of
some false rejection among all pairs. Other choices of t∗∗ control possible errors
in other ways. The choice of t∗∗ is therefore a complex problem, and a detailed
discussion of it is beyond the scope of this text. Many choices for t∗∗ are used
in practice. One major statistical package allows selection from a list of over a
dozen choices.
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We will discuss only one of these, called the Bonferroni method. Use ofBonferroni method
this procedure with α = 0.05, for example, guarantees that the probability of
any false rejection among all comparisons made is no greater than 0.05. This is
much stronger protection than controlling the probability of a false rejection
at 0.05 for each separate comparison.
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E 12.23 Applying the Bonferroni method. We apply the Bonferroni mul-
tiple-comparisons procedure with α = 0.05 to the data from the worker safety
study. The value of t∗∗ for this procedure (from software or special tables) is
2.13. Of the statistics t12 = −0.38, t13 = −3.78, and t23 = −2.94 calculated in
the beginning of this section, only t13 and t23 are significant. These two statis-
tics compare supervisors with each of the other two groups.

Of course, we prefer to use software for the calculations.
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E 12.24 Interpreting software output. The output generated by SPSS
for Bonferroni comparisons appears in Figure 12.10. The software uses an
asterisk to indicate that the difference in a pair of means is statistically
significant. These results agree with the calculations that we performed in
Examples 12.22 and 12.23. Note that each comparison is given twice in the
output.

FIGURE 12.10 Software output
giving the multiple-comparisons
analysis for the worker safety
example.

The data in the worker safety study provided a clear result: the supervisors
have the highest mean SCI score, and we are unable to see a difference between
the unskilled workers and the skilled workers. Unfortunately, this type of clarity
does not always emerge from a multiple-comparisons analysis. For example,
with three groups, we can (a) fail to detect a difference between Groups 1 and
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2, (b) fail to detect a difference between Groups 2 and 3, and (c) conclude that
Groups 1 and 3 are not the same. This kind of apparent contradiction points out
dramatically the nature of the conclusions of statistical tests of significance. The

CAUTION

! conclusion appears to be illogical. If μ1 is the same as μ2 and μ2 is the same
as μ3, doesn’t it follow that μ1 is the same as μ3? Logically, the answer must be
Yes.

Some of the difficulty can be resolved by noting the choice of words used.
In describing the inferences, we talk about failing to detect a difference or con-
cluding that two groups are different. In making logical statements, we say
things like “is the same as.” There is a big difference between the two modes
of thought. Statistical tests ask, “Do we have adequate evidence to distinguish
two means?” It is not illogical to conclude that we have sufficient evidence to
distinguish μ1 from μ3, but not μ1 from μ2 or μ2 from μ3.

One way to deal with these difficulties of interpretation is to give confidence
intervals for the differences. The intervals remind us that the differences are
not known exactly. We want to give simultaneous confidence intervals, thatsimultaneous confidence

intervals is, intervals for all differences among the population means at once. Again, we
must face the problem that there are many competing procedures—in this case,
many methods of obtaining simultaneous intervals.

SIMULTANEOUS CONFIDENCE INTERVALS FOR DIFFERENCES
BETWEEN MEANS

Simultaneous confidence intervals for all differences μi − μj between
population means have the form

(xi − xj) ± t∗∗sp

√
1
ni

+ 1
nj

The critical values t∗∗ are the same as those used for the multiple-
comparisons procedure chosen.

The confidence intervals generated by a particular choice of t∗∗ are closely
related to the multiple-comparisons results for that same method. If one of the
confidence intervals includes the value 0, then that pair of means will not be
declared significantly different, and vice versa.
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E 12.25 Interpreting software output, continued. The SPSS output for
the Bonferroni multiple-comparisons procedure given in Figure 12.10 in-
cludes the simultaneous 95% confidence intervals. We can see, for example,
that the interval for μ1 − μ2 is −5.77 to 4.20. The fact that the interval includes
0 is consistent with the fact that we failed to detect a difference between these
two means using this procedure. Note that the interval for μ2 − μ1 is also pro-
vided. This is not really a new piece of information, because it can be obtained
from the other interval by reversing the signs and reversing the order, that
is, −4.20 to 5.77. So, in fact, we really have only three intervals. Use of the
Bonferroni procedure provides us with 95% confidence that all three intervals
simultaneously contain the true values of the population mean differences.
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Software
We have used SPSS to illustrate the analysis of the worker safety data. Other
statistical software gives similar output, and you should be able to read it with-
out any difficulty.
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E 12.26 Customers’ opinions of product quality. Research suggests that
customers think that a product is of high quality if it is heavily advertised.
An experiment designed to explore this idea collected quality ratings (on a 1
to 7 scale) of a new line of take-home refrigerated entrées based on reading
a magazine ad. Three groups were compared. The first group’s ad included
information that would undermine (U) the expected positive association be-
tween quality and advertising; the second group’s ad contained information
that would affirm (A) the association; and the third group was a control (C).3

The data are given in Table 12.1. Outputs from SAS, Excel, Minitab, and the
TI-83 are given in Figure 12.11.

TABLE 12.1

Quality ratings in three groups

Group Quality ratings

Undermine 6 5 5 5 4 5 4 6 5 5 5 5 3 3 5 4 5 5 5 4
(n = 55) 5 4 4 5 4 4 4 5 5 5 4 5 5 5 4 4 5 5 4 5

5 4 4 5 4 3 4 5 5 5 3 4 4 4 4

Affirm 4 6 4 6 5 5 5 6 4 5 5 5 4 6 6 5 5 7 4 6
(n = 36) 6 4 5 4 5 5 6 4 5 5 4 6 4 6 5 5

Control 5 4 5 6 5 7 5 6 7 5 7 5 4 5 4 4 6 6 5 6
(n = 36) 5 5 4 5 5 6 6 6 5 6 6 7 6 6 5 5

USE YOUR KNOWLEDGE
12.7 Why no multiple comparisons? Any pooled two-sample t problem

can be run as a one-way ANOVA with I = 2. Explain why it is inappro-
priate to analyze the data using contrasts or multiple-comparisons
procedures in this setting.

12.8 Growth of Douglas fir seedlings. An experiment was conducted to
compare the growth of Douglas fir seedlings under three different
levels of vegetation control (0%, 50%, and 100%). Forty seedlings
were randomized to each level of control. The resulting sample
means for stem volume were 50, 75, and 120 cubic centimeters (cm3)
respectively with sp = 30 cm3. The researcher hypothesized that the
average growth at 50% control would be less than the average of the
0% and 100% levels.

(a) What are the coefficients for testing this contrast?

(b) Perform the test. Do the data provide evidence to support this
hypothesis?



666
•

CHAPTER 12 • One-Way Analysis of Variance

FIGURE 12.11 SAS, Excel,
Minitab, and TI-83 output for the
advertising study in
Example 12.26. (continued)

Power*
Recall that the power of a test is the probability of rejecting H0 when Ha is in
fact true. Power measures how likely a test is to detect a specific alternative.
When planning a study in which ANOVA will be used for the analysis, it is
important to perform power calculations to check that the sample sizes are
adequate to detect differences among means that are judged to be important.
Power calculations also help evaluate and interpret the results of studies in

*This section is optional.
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FIGURE 12.11 (Continued)
SAS, Excel, Minitab, and TI-83
output for the advertising study
in Example 12.26.

which H0 was not rejected. We sometimes find that the power of the test was
so low against reasonable alternatives that there was little chance of obtaining
a significant F.

In Chapter 7 we found the power for the two-sample t test. One-way ANOVALOOK BACK
power, page 433 is a generalization of the two-sample t test, so it is not surprising that the proce-

dure for calculating power is quite similar. Here are the steps that are needed:

1. Specify

(a) an alternative (Ha) that you consider important; that is, values for the
true population means μ1, μ2, . . . , μI;

(b) sample sizes n1, n2, . . . , nI; usually these will all be equal to the common
value n;

(c) a level of significance α, usually equal to 0.05; and

(d) a guess at the standard deviation σ .
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2. Use the degrees of freedom DFG = I − 1 and DFE = N − I to find the critical
value that will lead to the rejection of H0. This value, which we denote by F∗,
is the upper α critical value for the F(DFG, DFE) distribution.

3. Calculate the noncentrality parameter4noncentrality parameter

λ =
∑

ni(μi − μ)2

σ 2

where μ is a weighted average of the group means

μ =
∑ ni

N
μi

4. Find the power, which is the probability of rejecting H0 when the alternative
hypothesis is true, that is, the probability that the observed F is greater than
F∗. Under Ha, the F statistic has a distribution known as the noncentral Fnoncentral F distribution
distribution. SAS, for example, has a function for this distribution. Using
this function, the power is

Power = 1 − PROBF(F∗, DFG, DFE, λ)

Note that, if the ni are all equal to the common value n, then μ is the ordinary
average of the μi and

λ = n
∑

(μi − μ)2

σ 2

If the means are all equal (the ANOVA H0), then λ = 0. The noncentrality pa-
rameter measures how unequal the given set of means is. Large λ points to an
alternative far from H0, and we expect the ANOVA F test to have high power.
Software makes calculation of the power quite easy, but tables and charts are
also available.
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E 12.27 Power of a reading comprehension study. Suppose that a study
on reading comprehension for three different teaching methods has 10 stu-
dents in each group. How likely is this study to detect differences in the mean
responses that would be viewed as important? A previous study performed in
a different setting found sample means of 41, 47, and 44, and the pooled stan-
dard deviation was 7. Based on these results, we will use μ1 = 41, μ2 = 47,
μ3 = 44, and σ = 7 in a calculation of power. The ni are equal, so μ is simply
the average of the μi:

μ = 41 + 47 + 44
3

= 44

The noncentrality parameter is therefore

λ = n
∑

(μi − μ)2

σ 2

= (10)[(41 − 44)2 + (47 − 44)2 + (44 − 44)2]
49

= (10)(18)

49
= 3.67
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Because there are three groups with 10 observations per group, DFG = 2 and
DFE = 27. The critical value for α = 0.05 is F∗ = 3.35. The power is therefore

1 − PROBF(3.35, 2, 27, 3.67) = 0.3486

The chance that we reject the ANOVA H0 at the 5% significance level is only
about 35%.

If the assumed values of the μi in this example describe differences among
the groups that the experimenter wants to detect, then we would want to use
more than 10 subjects per group. Although H0 is assumed to be false, the
chance of rejecting it is only about 35%. This chance can be increased to ac-
ceptable levels by increasing the sample sizes.

•

•
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E 12.28 Changing the sample size. To decide on an appropriate sample
size for the experiment described in the previous example, we repeat the
power calculation for different values of n, the number of subjects in each
group. Here are the results:

n DFG DFE F∗ λ Power

20 2 57 3.16 7.35 0.65
30 2 87 3.10 11.02 0.84
40 2 117 3.07 14.69 0.93
50 2 147 3.06 18.37 0.97

100 2 297 3.03 36.73 ≈ 1

With n = 40, the experimenters have a 93% chance of rejecting H0 with
α = 0.05 and thereby demonstrating that the groups have different means.
In the long run, 93 out of every 100 such experiments would reject H0 at the
α = 0.05 level of significance. Using 50 subjects per group increases the chance
of finding significance to 97%. With 100 subjects per group, the experimenters
are virtually certain to reject H0. The exact power for n = 100 is 0.99989. In
most real-life situations the additional cost of increasing the sample size from
50 to 100 subjects per group would not be justified by the relatively small in-
crease in the chance of obtaining statistically significant results.

SECTION 12.2 Summary

One-way analysis of variance (ANOVA) is used to compare several population
means based on independent SRSs from each population. The populations are
assumed to be Normal with possibly different means and the same standard
deviation.

To do an analysis of variance, first compute sample means and standard devia-
tions for all groups. Side-by-side boxplots give an overview of the data. Exam-
ine Normal quantile plots (either for each group separately or for the residuals)
to detect outliers or extreme deviations from Normality. Compute the ratio of



670
•

CHAPTER 12 • One-Way Analysis of Variance

the largest to the smallest sample standard deviation. If this ratio is less than 2
and the Normal quantile plots are satisfactory, ANOVA can be performed.

The null hypothesis is that the population means are all equal. The alternative
hypothesis is true if there are any differences among the population means.

ANOVA is based on separating the total variation observed in the data into two
parts: variation among group means and variation within groups. If the vari-
ation among groups is large relative to the variation within groups, we have
evidence against the null hypothesis.

An analysis of variance table organizes the ANOVA calculations. Degrees of
freedom, sums of squares, and mean squares appear in the table. The F
statistic and its P-value are used to test the null hypothesis.

Specific questions formulated before examination of the data can be expressed
as contrasts. Tests and confidence intervals for contrasts provide answers to
these questions.

If no specific questions are formulated before examination of the data and
the null hypothesis of equality of population means is rejected, multiple-
comparisons methods are used to assess the statistical significance of the
differences between pairs of means.

The power of the F test depends upon the sample sizes, the variation among
population means, and the within-group standard deviation.

CHAPTER 12 Exercises

For Exercises 12.1 and 12.2, see pages 643 and 644; for
Exercises 12.3 and 12.4, see pages 647 and 648; for
Exercises 12.5 and 12.6, see page 655; and for Exercises
12.7 and 12.8, see page 665.

12.9 Describing the ANOVA model. For each of the
following situations, identify the response variable
and the populations to be compared, and give I,
the ni, and N.

(a) A poultry farmer is interested in reducing the
cholesterol level in his marketable eggs. He wants
to compare two different cholesterol-lowering
drugs added to the hen’s standard diet as well as
an all-vegetarian diet. He assigns 25 of his hens to
each of the three treatments.

(b) A researcher is interested in students’ opinions
regarding an additional annual fee to support non-
income-producing varsity sports. Students were
asked to rate their acceptance of this fee on a five-
point scale. She received 94 responses, of which
31 were from students who attend varsity football
or basketball games only, 18 were from students
who also attend other varsity competitions, and
45 who did not attend any varsity games.

(c) A professor wants to evaluate the effectiveness
of his teaching assistants. In one class period,

the 42 students were randomly divided into three
equal-sized groups, and each group was taught
power calculations from one of the assistants. At
the beginning of the next class, each student took
a quiz on power calculations, and these scores
were compared.

12.10 Describing the ANOVA model, continued.
For each of the following situations, identify
the response variable and the populations to be
compared, and give I, the ni, and N.

(a) A developer of a virtual-reality (VR) teaching
tool for the deaf wants to compare the effectiveness
of different navigation methods. A total of 40
children were available for the experiment, of
which equal numbers were randomly assigned to
use a joystick, wand, dancemat, or gesture-based
pinch gloves. The time (in seconds) to complete a
designed VR path is recorded for each child.

(b) To study the effects of pesticides on birds, an
experimenter randomly (and equally) allocated
65 chicks to five diets (a control and four with a
different pesticide included). After a month, the
calcium content (milligrams) in a 1-centimeter
length of bone from each chick was measured.
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(c) A university sandwich shop wants to compare
the effects of providing free food with a sandwich
order on sales. The experiment will be conducted
from 11:00 A.M. to 2:00 P.M. for the next 20
weekdays. On each day, customers will be offered
one of the following: a free drink, free chips, a free
cookie, or nothing. Each option will be offered 5
times.

12.11 Determining the degrees of freedom. Refer
to Exercise 12.9. For each situation, give the
following:

(a) Degrees of freedom for the model, for error,
and for the total.

(b) Null and alternative hypotheses.

(c) Numerator and denominator degrees of
freedom for the F statistic.

12.12 Determining the degrees of freedom,
continued. Refer to Exercise 12.10. For each
situation, give the following:

(a) Degrees of freedom for the model, for error,
and for the total.

(b) Null and alternative hypotheses.

(c) Numerator and denominator degrees of
freedom for the F statistic.

12.13 Data collection and the interpretation of
results. Refer to Exercise 12.9. For each situation,
discuss the method of obtaining the data and how
this will affect the extent to which the results can
be generalized.

12.14 Data collection, continued. Refer to Exer-
cise 12.10. For each situation, discuss the method
of obtaining the data and how this will affect the
extent to which the results can be generalized.

12.15 A one-way ANOVA example. A study compared
4 groups with 8 observations per group. An F
statistic of 3.33 was reported.

(a) Give the degrees of freedom for this statistic
and the entries from Table E that correspond to
this distribution.

(b) Sketch a picture of this F distribution with the
information from the table included.

(c) Based on the table information, how would
you report the P-value?

(d) Can you conclude that all pairs of means are
different? Explain your answer.

12.16 Calculating the ANOVA F test P-value. For each
of the following situations, find the degrees of

freedom for the F statistic and then use Table E to
approximate the P-value.

(a) Seven groups are being compared with 5
observations per group. The value of the F statistic
is 2.31.

(b) Five groups are being compared with 11
observations per group. The value of the F statistic
is 2.83.

(c) Six groups are being compared using 66 total
observations. The value of the F statistic is 4.08.

12.17 Calculating the ANOVA F test P-value,
continued. For each of the following situations,
find the F statistic and the degrees of freedom.
Then draw a sketch of the distribution under
the null hypothesis and shade in the portion
corresponding to the P-value. State how you
would report the P-value.

(a) Compare 5 groups with 9 observations per
group, MSE = 50, and MSG = 127.

(b) Compare 4 groups with 7 observations per
group, SSG = 40, and SSE = 153.

12.18
AP

PLET

The effect of increased variation within
groups. The One-Way ANOVA applet lets

you see how the F statistic and the P-value depend
on the variability of the data within groups and
the differences among the means.

(a) The black dots are at the means of the three
groups. Move these up and down until you get a
configuration that gives a P-value of about 0.01.
What is the value of the F statistic?

(b) Now increase the variation within the groups
by dragging the mark on the pooled standard
error scale to the right. Describe what happens to
the F statistic and the P-value. Explain why this
happens.

12.19
AP

PLET

The effect of increased variation
between groups. Set the pooled standard

error for the One-Way ANOVA applet at a middle
value. Drag the black dots so that they are
approximately equal.

(a) What is the F statistic? Give its P-value.

(b) Drag the mean of the second group up and the
mean of the third group down. Describe the effect
on the F statistic and its P-value. Explain why they
change in this way.

12.20 Calculating the pooled standard deviation.
An experiment was run to compare four groups.
The sample sizes were 25, 28, 150, and 21, and
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the corresponding estimated standard deviations
were 42, 38, 20, and 45.

(a) Is it reasonable to use the assumption of equal
standard deviations when we analyze these data?
Give a reason for your answer.

(b) Give the values of the variances for the four
groups.

(c) Find the pooled variance.

(d) What is the value of the pooled standard
deviation?

(e) Explain why your answer in part (d) is much
closer to the standard deviation for the third group
than to any of the other standard deviations.

12.21 Sleep deprivation and reaction times. Sleep
deprivation experienced by physicians during
residency training and the possible negative
consequences are of concern to many in the
health care community. One study of 33 resident
anesthesiologists compared their changes from
baseline in reaction times on four tasks.5 Under
baseline conditions, the physicians reported
getting an average of 7.04 hours of sleep. While
on duty, however, the average was 1.66 hours.
For each of the tasks the researchers reported a
statistically significant increase in the reaction
time when the residents were working in a state of
sleep deprivation.

(a) If each task is analyzed separately as the
researchers did in their report, what is the
appropriate statistical method to use? Explain
your answer.

(b) Is it appropriate to use a one-way ANOVA with
I = 4 to analyze these data? Explain why or why
not.

12.22 C
H

ALLENG
E The two-sample t test and one-way

ANOVA. Refer to the LDL level data in
Exercise 7.61 (page 467). Find the two-sample
pooled t statistic for comparing men with women.
Then formulate the problem as an ANOVA and
report the results of this analysis. Verify that
F = t2.

12.23 The importance of recreational sports to
college satisfaction. The National Intramural-
Recreational Sports Association (NIRSA)
performed a survey to look at the value of
recreational sports on college campuses.6 One
of the questions asked each student to rate the
importance of recreational sports to college
satisfaction and success. Responses were on

a 10-point scale with 1 indicating total lack
of importance and 10 indicating very high
importance. The following table summarizes
these results:

Class n Mean score

Freshman 724 7.6
Sophomore 536 7.6
Junior 593 7.5
Senior 437 7.3

(a) To compare the mean scores across classes,
what are the degrees of freedom for the ANOVA F
statistic?

(b) The MSG = 11.806. If sp = 2.16, what is the F
statistic?

(c) Give an approximate (from a table) or exact
(from software) P-value. What do you conclude?

12.24 Restaurant ambience and consumer behavior.
There have been numerous studies investigating
the effects of restaurant ambience on consumer
behavior. A recent study investigated the effects of
musical genre on consumer spending.7 At a single
high-end restaurant in England over a 3-week
period, there were a total of 141 participants; 49
of them were subjected to background pop music
(for example, Britney Spears, Culture Club, and
Ricky Martin) while dining, 44 to background
classical music (for example, Vivaldi, Handel, and
Strauss), and 48 to no background music. For each
participant, the total food bill, adjusted for time
spent dining, was recorded. The following table
summarizes the means and standard deviations:

Background music Mean bill n s

Classical 24.130 44 2.243
Pop 21.912 49 2.627
None 21.697 48 3.332

Total 22.531 141 2.969

(a) Plot the means versus the type of background
music. Does there appear to be a difference in
spending?

(b) Is it reasonable to assume that the variances
are equal? Explain.

(c) The F statistic is 10.62. Give the degrees of
freedom and either an approximate (from a table)
or an exact (from software) P-value. What do you
conclude?
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(d) Refer back to part (a). Without doing any
formal analysis, describe the pattern in the means
that is likely responsible for your conclusion in
part (c).

(e) To what extent do you think the results of this
study can be generalized to other settings? Give
reasons for your answer.

12.25 The effects of two stimulant drugs. An
experimenter was interested in investigating
the effects of two stimulant drugs (labeled A and
B). She divided 20 rats equally into 5 groups
(placebo, Drug A low, Drug A high, Drug B low,
and Drug B high) and, 20 minutes after injection
of the drug, recorded each rat’s activity level
(higher score is more active). The following table
summarizes the results:

Treatment x s2

Placebo 14.00 8.00
Low A 15.25 12.25
High A 18.25 12.25
Low B 16.75 6.25
High B 22.50 11.00

(a) Plot the means versus the type of treatment.
Does there appear to be a difference in the activity
level? Explain.

(b) Is it reasonable to assume that the variances
are equal? Explain your answer, and if reasonable,
compute sp.

(c) Give the degrees of freedom for the F statistic.

(d) The F statistic is 4.35. Find the associated
P-value and state your conclusions.

12.26 C
H

ALLENG
E Exam accommodations and end-of-

term grades. The Americans with
Disabilities Act (ADA) requires that students with
learning disabilities (LD) and/or attention deficit
disorder (ADD) be given certain accommodations
when taking examinations. One study designed
to assess the effects of these accommodations
examined the relationship between end-of-term
grades and the number of accommodations given.8

The researchers reported the mean grades with
sample sizes and standard deviations versus the
number of accommodations in a table similar to
this:

Accommodations Mean grade n s

0 2.7894 160 0.85035
1 2.8605 38 0.83068
2 2.5757 37 0.82745
3 2.6286 7 1.03072
4 2.4667 3 1.66233

Total 2.7596 245 0.85701

(a) Plot the means versus the number of
accommodations. Is there a pattern evident?

(b) A large number of digits are reported for the
means and the standard deviations. Do you think
that all of these are necessary? Give reasons for
your answer and describe how you would report
these results.

(c) Should we pool to obtain an estimate of
an assumed standard deviation for these data?
Explain your answer and give the pooled estimate
if your answer is Yes.

(d) The small numbers of observations with 3 or 4
accommodations lead to estimates that are highly
variable in these groups compared with the other
groups. Inclusion of groups with relatively few
observations in an ANOVA can also lead to low
power. We could eliminate these two levels from
the analysis or we could combine them with the
37 observations in the group above to form a new
group with 2 or more accommodations. Which of
these options would you prefer? Give reasons for
your answer.

(e) The 245 grades reported in the table were
from a sample of 61 students who completed
three, four, or five courses during a spring term
at one college and who were qualified to receive
accommodations. Students in the sample were
self-identified, in the sense that they had to request
qualification. Even when qualified, some students
choose not to request accommodations for some
or all of their courses. Based on these facts, would
you advise that ANOVA methods be used for
these data? Explain your answer. (The authors
did not present the results of an ANOVA in their
publication.)

(f) To what extent do you think the results of this
study can be generalized to other settings? Give
reasons for your answer.

(g) Most reasonable approaches to the analysis
of these data would conclude that the data
fail to provide evidence that the number of
accommodations is related to the mean grades.
Does this imply that the accommodations are not
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needed or does it suggest that they are effective?
Discuss your answer.

12.27 Do we experience emotions differently?
Do people from different cultures experience
emotions differently? One study designed to
examine this question collected data from 416
college students from five different cultures.9 The
participants were asked to record, on a 1 (never)
to 7 (always) scale, how much of the time they
typically felt eight specific emotions. These were
averaged to produce the global emotion score
for each participant. Here is a summary of this
measure:

Culture n Mean (s)

European American 46 4.39 (1.03)
Asian American 33 4.35 (1.18)
Japanese 91 4.72 (1.13)
Indian 160 4.34 (1.26)
Hispanic American 80 5.04 (1.16)

Note that the convention of giving the standard
deviations in parentheses after the means saves a
great deal of space in a table such as this.

(a) From the information given, do you think
that we need to be concerned that a possible
lack of Normality in the data will invalidate the
conclusions that we might draw using ANOVA to
analyze the data? Give reasons for your answer.

(b) Is it reasonable to used a pooled standard
deviation for these data? Why or why not?

(c) The ANOVA F statistic was reported as
5.69. Give the degrees of freedom and either an
approximate (from a table) or an exact (from
software) P-value. Sketch a picture of the F
distribution that illustrates the P-value. What do
you conclude?

(d) Without doing any additional formal analysis,
describe the pattern in the means that appears to
be responsible for your conclusion in part (c). Are
there pairs of means that are quite similar?

12.28 C
H

ALLENG
E The emotion study, continued. Refer

to the previous exercise. The experimenters
also measured emotions in some different ways.
For a period of a week, each participant carried
a device that sounded an alarm at random times
during a 3-hour interval 5 times a day. When the
alarm sounded, participants recorded several
mood ratings indicating their emotions for the
time immediately preceding the alarm. These

responses were combined to form two variables:
frequency, the number of emotions recorded,
expressed as a percent; and intensity, an average
of the intensity scores measured on a scale of
0 to 6. At the end of the 1-week experimental
period, the subjects were asked to recall the
percent of time that they experienced different
emotions. This variable was called “recall.” Here
is a summary of the results:

Frequency Intensity Recall
Culture n mean (s) mean (s) mean (s)

European American 46 82.87 (18.26) 2.79 (0.72) 49.12 (22.33)
Asian American 33 72.68 (25.15) 2.37 (0.60) 39.77 (23.24)
Japanese 91 73.36 (22.78) 2.53 (0.64) 43.98 (22.02)
Indian 160 82.71 (17.97) 2.87 (0.74) 49.86 (21.60)
Hispanic American 80 92.25 (8.85) 3.21 (0.64) 59.99 (24.64)

F statistic 11.89 13.10 7.06

(a) For each response variable state whether
or not it is reasonable to use a pooled standard
deviation to analyze these data. Give reasons for
your answer.

(b) Give the degrees of freedom for the F statistics
and find the associated P-values. Summarize what
you can conclude from these ANOVA analyses.

(c) Summarize the means, paying particular
attention to similarities and differences across
cultures and across variables. Include the means
from the previous exercise in your summary.

(d) The European American and Asian American
subjects were from the University of Illinois, the
Japanese subjects were from two universities
in Tokyo, the Indian subjects were from eight
universities in or near Calcutta, and the Hispanic
American subjects were from California State
University at Fresno. Participants were paid
$25 or an equivalent monetary incentive for the
Japanese and Indians. Ads were posted on or
near the campuses to recruit volunteers for the
study. Discuss how these facts influence your
conclusions and the extent to which you would
generalize the results.

(e) The percents of female students in the samples
were as follows: European American, 83%; Asian
American, 67%; Japanese, 63%; Indian, 64%; and
Hispanic American, 79%. Use a chi-square test
to compare these proportions (see Section 9.2)
and discuss how this information influences your
interpretation of the results that you have found
in this exercise.
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12.29 Storage time and the vitamin C content of
bread. Does bread lose its vitamins when stored?
Small loaves of bread were prepared with flour
that was fortified with a fixed amount of vitamins.
After baking, the vitamin C content of two loaves
was measured. Another two loaves were baked
at the same time, stored for one day, and then
the vitamin C content was measured. In a similar
manner, two loaves were stored for three, five, and
seven days before measurements were taken. The
units are milligrams of vitamin C per hundred
grams of flour (mg/100 g).10 Here are the data:

Condition Vitamin C (mg/100 g)

Immediately after baking 47.62 49.79
One day after baking 40.45 43.46
Three days after baking 21.25 22.34
Five days after baking 13.18 11.65
Seven days after baking 8.51 8.13

(a) Give a table with sample size, mean, standard
deviation, and standard error for each condition.

(b) Perform a one-way ANOVA for these data. Be
sure to state your hypotheses, the test statistic
with degrees of freedom, and the P-value.

(c) Summarize the data and the means with a
plot. Use the plot and the ANOVA results to write
a short summary of your conclusions.

12.30 Storage time and vitamin C content, continued.
Refer to the previous exercise. Use the Bonferroni
or another multiple-comparisons procedure to
compare the group means. Summarize the results.

12.31 Storage time and vitamin A and E content. Refer
to Exercise 12.29. Measurements of the amounts
of vitamin A (beta-carotene) and vitamin E in
each loaf are given below. Use the analysis of
variance method to study the data for each of
these vitamins.

Vitamin A Vitamin E
Condition (mg/100 g) (mg/100 g)

Immediately after baking 3.36 3.34 94.6 96.0
One day after baking 3.28 3.20 95.7 93.2
Three days after baking 3.26 3.16 97.4 94.3
Five days after baking 3.25 3.36 95.0 97.7
Seven days after baking 3.01 2.92 92.3 95.1

12.32 Storage time and vitamin A and E content,
continued. Refer to the previous exercise.

(a) Explain why it is inappropriate to perform a
multiple-comparisons analysis for the vitamin E
data.

(b) Perform the Bonferroni or another multiple-
comparisons procedure for the vitamin A data and
summarize the results.

12.33 C
H

ALLENG
E Summarizing the results of storage time

on vitamin content. Refer to Exer-
cises 12.29 to 12.32. Write a report summarizing
what happens to vitamins A, C, and E after bread
is baked. Include appropriate statistical inference
results and graphs.

12.34 Air quality in poultry-processing plants. The air
in poultry-processing plants often contains fungus
spores. If the ventilation is inadequate, this can
affect the health of the workers. To measure the
presence of spores, air samples are pumped to an
agar plate, and “colony-forming units (CFUs)” are
counted after an incubation period. Here are data
from the “kill room” of a plant that slaughters
37,000 turkeys per day, taken at four seasons of
the year. The units are CFUs per cubic meter of
air.11

Fall Winter Spring Summer

1231 384 2105 3175
1254 104 701 2526
1088 97 842 1090

(a) Examine the data using graphs and descriptive
measures. How do airborne fungus spores vary
with the seasons?

(b) Is the effect of season statistically significant?

12.35 C
H

ALLENG
E A comparison of tropical flower

varieties. Different varieties of the tropical
flower Heliconia are fertilized by different species
of hummingbirds. Over time, the lengths of the
flowers and the form of the hummingbirds’ beaks
have evolved to match each other. Here are data
on the lengths in millimeters of three varieties of
these flowers on the island of Dominica:12

H. bihai

47.12 46.75 46.81 47.12 46.67 47.43 46.44 46.64
48.07 48.34 48.15 50.26 50.12 46.34 46.94 48.36
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H. caribaea red

41.90 42.01 41.93 43.09 41.47 41.69 39.78 40.57
39.63 42.18 40.66 37.87 39.16 37.40 38.20 38.07
38.10 37.97 38.79 38.23 38.87 37.78 38.01

H. caribaea yellow

36.78 37.02 36.52 36.11 36.03 35.45 38.13 37.1
35.17 36.82 36.66 35.68 36.03 34.57 34.63

Do a complete analysis that includes description
of the data and a significance test to compare the
mean lengths of the flowers for the three species.

12.36 C
H

ALLENG
E Air quality in poultry-processing plants,

continued. Refer to Exercise 12.34. There
is not sufficient information to examine the
distributions in detail, but it is not unreasonable
to expect count data such as these to be skewed.
Reanalyze the data after taking logs of the CFU
counts. Summarize your work and compare
the results you have found here with what you
obtained in Exercise 12.34.

12.37 C
H

ALLENG
E Taking the log of the response variable.

The distributions of the flower lengths
in Exercise 12.35 are somewhat skewed. Take
logs of the lengths and reanalyze the data. Write a
summary of your results and include a comparison
with the results you found in Exercise 12.35.

12.38 C
H

ALLENG
E Do poets die young? According to William

Butler Yeats, “She is the Gaelic muse, for
she gives inspiration to those she persecutes. The
Gaelic poets die young, for she is restless, and will
not let them remain long on earth.” One study
designed to investigate this issue examined the age

at death for writers from different cultures and
genders.13 Three categories of writers examined
were novelists, poets, and nonfiction writers. The
ages at death for female writers in these categories
from North America are given in Table 12.2. Most
of the writers are from the United States, but
Canadian and Mexican writers are also included.

(a) Use graphical and numerical methods to
describe the data.

(b) Examine the assumptions necessary for
ANOVA. Summarize your findings.

(c) Run the ANOVA and report the results.

(d) Use a contrast to compare the poets with
the two other types of writers. Do you think that
the quotation from Yeats justifies the use of a
one-sided alternative for examining this contrast?
Explain your answer.

(e) Use another contrast to compare the novelists
with the nonfiction writers. Explain your choice
for an alternative hypothesis for this contrast.

(f) Use a multiple-comparisons procedure to
compare the three means. How do the conclusions
from this approach compare with those using the
contrasts?

12.39 Do isoflavones increase bone mineral density?
Kudzu is a plant that was imported to the United
States from Japan and now covers over seven
million acres in the South. The plant contains
chemicals called isoflavones that have been shown
to have beneficial effects on bones. One study used
three groups of rats to compare a control group
with rats that were fed either a low dose or a
high dose of isoflavones from kudzu.14 One of the
outcomes examined was the bone mineral density

TABLE 12.2

Age at death for women writers

Type Age at death

Novels 57 90 67 56 90 72 56 90 80 74 73 86 53 72 86
(n = 67) 82 74 60 79 80 79 77 64 72 88 75 79 74 85 71

78 57 54 50 59 72 60 77 50 49 73 39 73 61 90
77 57 72 82 54 62 74 65 83 86 73 79 63 72 85
91 77 66 75 90 35 86

Poems 88 69 78 68 72 60 50 47 74 36 87 55 68 75 78
(n = 32) 85 69 38 58 51 72 58 84 30 79 90 66 45 70 48

31 43

Nonfiction 74 86 87 68 76 73 63 78 83 86 40 75 90 47 91
(n = 24) 94 61 83 75 89 77 86 66 97



Chapter 12 Exercises
•

677

in the femur (in grams per square centimeter).
Here are the data:

Treatment Bone mineral density (g/cm2)

Control 0.228 0.207 0.234 0.220 0.217 0.228
0.209 0.221 0.204 0.220 0.203 0.219
0.218 0.245 0.210

Low dose 0.211 0.220 0.211 0.233 0.219 0.233
0.226 0.228 0.216 0.225 0.200 0.208
0.198 0.208 0.203

High dose 0.250 0.237 0.217 0.206 0.247 0.228
0.245 0.232 0.267 0.261 0.221 0.219
0.232 0.209 0.255

(a) Use graphical and numerical methods to
describe the data.

(b) Examine the assumptions necessary for
ANOVA. Summarize your findings.

(c) Run the ANOVA and report the results.

(d) Use a multiple-comparisons method to
compare the three groups.

(e) Write a short report explaining the effect of
kudzu isoflavones on the femur of the rat.

12.40 A consumer price promotion study. If a
supermarket product is offered at a reduced
price frequently, do customers expect the price
of the product to be lower in the future? This
question was examined by researchers in a

study conducted on students enrolled in an
introductory management course at a large
midwestern university. For 10 weeks 160 subjects
received information about the products. The
treatment conditions corresponded to the number
of promotions (1, 3, 5, or 7) that were described
during this 10-week period. Students were
randomly assigned to four groups.15 Table 12.3
gives the data.

(a) Make a Normal quantile plot for the data in
each of the four treatment groups. Summarize the
information in the plots and draw a conclusion
regarding the Normality of these data.

(b) Summarize the data with a table containing
the sample size, mean, standard deviation, and
standard error for each group.

(c) Is the assumption of equal standard deviations
reasonable here? Explain why or why not.

(d) Run the one-way ANOVA. Give the hypotheses
tested, the test statistic with degrees of freedom,
and the P-value. Summarize your conclusion.

12.41 A consumer price promotion study, continued.
Refer to the previous exercise. Use the Bonferroni
or another multiple-comparisons procedure to
compare the group means. Summarize the results
and support your conclusions with a graph of the
means.

12.42 Do piano lessons improve the spatial-temporal
reasoning of preschool children? The data
in Table 12.4 contain the change in spatial-

TABLE 12.3

Price promotion data

Number of
promotions Expected price (dollars)

1 3.78 3.82 4.18 4.46 4.31 4.56 4.36 4.54 3.89 4.13
3.97 4.38 3.98 3.91 4.34 4.24 4.22 4.32 3.96 4.73
3.62 4.27 4.79 4.58 4.46 4.18 4.40 4.36 4.37 4.23
4.06 3.86 4.26 4.33 4.10 3.94 3.97 4.60 4.50 4.00

3 4.12 3.91 3.96 4.22 3.88 4.14 4.17 4.07 4.16 4.12
3.84 4.01 4.42 4.01 3.84 3.95 4.26 3.95 4.30 4.33
4.17 3.97 4.32 3.87 3.91 4.21 3.86 4.14 3.93 4.08
4.07 4.08 3.95 3.92 4.36 4.05 3.96 4.29 3.60 4.11

5 3.32 3.86 4.15 3.65 3.71 3.78 3.93 3.73 3.71 4.10
3.69 3.83 3.58 4.08 3.99 3.72 4.41 4.12 3.73 3.56
3.25 3.76 3.56 3.48 3.47 3.58 3.76 3.57 3.87 3.92
3.39 3.54 3.86 3.77 4.37 3.77 3.81 3.71 3.58 3.69

7 3.45 3.64 3.37 3.27 3.58 4.01 3.67 3.74 3.50 3.60
3.97 3.57 3.50 3.81 3.55 3.08 3.78 3.86 3.29 3.77
3.25 3.07 3.21 3.55 3.23 2.97 3.86 3.14 3.43 3.84
3.65 3.45 3.73 3.12 3.82 3.70 3.46 3.73 3.79 3.94
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TABLE 12.4

Piano lesson data

Lessons Scores

Piano 2 5 7 −2 2 7 4 1 0 7
3 4 3 4 9 4 5 2 9 6
0 3 6 −1 3 4 6 7 −2 7

−3 3 4 4

Singing 1 −1 0 1 −4 0 0 1 0 −1

Computer 0 1 1 −3 −2 4 −1 2 4 2
2 2 −3 −3 0 2 0 −1 3 −1

None 5 −1 7 0 4 0 2 1 −6 0
2 −1 0 −2

temporal reasoning (after treatment minus before
treatment) of 34 children who took piano lessons,
10 who took singing lessons, 20 who had some
computer instruction, and 14 who received no
extra lessons.

(a) Make a table giving the sample size, the mean,
the standard deviation, and the standard error for
each group.

(b) Analyze the data using one-way analysis of
variance. State the null and alternative hypotheses,
the test statistic with degrees of freedom, the P-
value, and your conclusion.

12.43 The piano lessons study, continued. Refer to the
previous exercise. Use the Bonferroni or another
multiple-comparisons procedure to compare the
group means. Summarize the results and support
your conclusions with a graph of the means.

12.44 More on the piano lessons study. The
researchers in Exercise 12.42 based their research
on a biological argument for a causal link between
music and spatial-temporal reasoning. Therefore,
it is natural to test the contrast that compares the
mean of the piano lesson group with the average
of the three other means. Construct this contrast,
perform the significance test, and summarize the
results.

12.45 How long should an infant be breast-fed?
Recommendations regarding how long infants
in developing countries should be breast-fed
are controversial. If the nutritional quality
of the breast milk is inadequate because the
mothers are malnourished, then there is risk
of inadequate nutrition for the infant. On the
other hand, the introduction of other foods
carries the risk of infection from contamination.

Further complicating the situation is the fact
that companies that produce infant formulas
and other foods benefit when these foods are
consumed by large numbers of customers. One
question related to this controversy concerns the
amount of energy intake for infants who have
other foods introduced into the diet at different
ages. Part of one study compared the energy
intakes, measured in kilocalories per day (kcal/d),
for infants who were breast-fed exclusively for 4,
5, or 6 months.16 Here are the data:

Breast-fed for: Energy intake (kcal/d)

4 months 499 620 469 485 660 588 675
517 649 209 404 738 628 609
617 704 558 653 548

5 months 490 395 402 177 475 617 616
587 528 518 370 431 518 639
368 538 519 506

6 months 585 647 477 445 485 703 528
465

(a) Make a table giving the sample size, mean,
and standard deviation for each group of infants.
Is it reasonable to pool the variances?

(b) Run the analysis of variance. Report the F
statistic with its degrees of freedom and P-value.
What do you conclude?

12.46 Breast-feeding study, continued. Refer to the
previous exercise.

(a) Examine the residuals. Is the Normality
assumption reasonable for these data?
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(b) Explain why you do not need to use a multiple-
comparisons procedure for these data.

12.47 Exercise and healthy bones. Many studies have
suggested that there is a link between exercise and
healthy bones. Exercise stresses the bones and this
causes them to get stronger. One study examined
the effect of jumping on the bone density of
growing rats.17 There were three treatments: a
control with no jumping, a low-jump condition
(the jump height was 30 centimeters), and a high-
jump condition (60 centimeters). After 8 weeks
of 10 jumps per day, 5 days per week, the bone
density of the rats (expressed in mg/cm3) was
measured. Here are the data:

Group Bone density (mg/cm3)

Control 611 621 614 593 593 653 600 554 603 569
Low jump 635 605 638 594 599 632 631 588 607 596
High jump 650 622 626 626 631 622 643 674 643 650

(a) Make a table giving the sample size, mean,
and standard deviation for each group of rats. Is it
reasonable to pool the variances?

(b) Run the analysis of variance. Report the F
statistic with its degrees of freedom and P-value.
What do you conclude?

12.48 Exercise and healthy bones, continued. Refer
to the previous exercise.

(a) Examine the residuals. Is the Normality
assumption reasonable for these data?

(b) Use the Bonferroni or another multiple-
comparisons procedure to determine which pairs
of means differ significantly. Summarize your
results in a short report. Be sure to include a
graph.

12.49 Does the type of cooking pot affect iron
content? Iron-deficiency anemia is the most
common form of malnutrition in developing
countries, affecting about 50% of children and
women and 25% of men. Iron pots for cooking
foods had traditionally been used in many of these
countries, but they have been largely replaced by
aluminum pots, which are cheaper and lighter.
Some research has suggested that food cooked
in iron pots will contain more iron than food
cooked in other types of pots. One study designed
to investigate this issue compared the iron content
of some Ethiopian foods cooked in aluminum,
clay, and iron pots.18 One of the foods was yesiga

wet’, beef cut into small pieces and prepared with
several Ethiopian spices. The iron content of
four samples of yesiga wet’ cooked in each of the
three types of pots is given below. The units are
milligrams of iron per 100 grams of cooked food.

Type of pot Iron (mg/100 g food)

Aluminum 1.77 2.36 1.96 2.14
Clay 2.27 1.28 2.48 2.68
Iron 5.27 5.17 4.06 4.22

(a) Make a table giving the sample size, mean,
and standard deviation for each type of pot. Is it
reasonable to pool the variances? Note that with
the small sample sizes in this experiment, we
expect a large amount of variability in the sample
standard deviations.

(b) Run the analysis of variance. Report the F
statistic with its degrees of freedom and P-value.
What do you conclude?

12.50 The cooking pot study, continued. Refer to the
previous exercise.

(a) Examine the residuals. Is the Normality
assumption reasonable for these data?

(b) Use the Bonferroni or another multiple-
comparisons procedure to determine which pairs
of means differ significantly. Summarize your
results in a short report. Be sure to include a
graph.

12.51 A comparison of different types of scaffold
material. One way to repair serious wounds
is to insert some material as a scaffold for the
body’s repair cells to use as a template for new
tissue. Scaffolds made from extracellular material
(ECM) are particularly promising for this purpose.
Because they are made from biological material,
they serve as an effective scaffold and are then
resorbed. Unlike biological material that includes
cells, however, they do not trigger tissue rejection
reactions in the body. One study compared 6 types
of scaffold material.19 Three of these were ECMs
and the other three were made of inert materials.
There were three mice used per scaffold type.
The response measure was the percent of glucose
phosphated isomerase (Gpi) cells in the region
of the wound. A large value is good, indicating
that there are many bone marrow cells sent by the
body to repair the tissue.
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Material Gpi (%)

ECM1 55 70 70
ECM2 60 65 65
ECM3 75 70 75
MAT1 20 25 25
MAT2 5 10 5
MAT3 10 15 10

(a) Make a table giving the sample size, mean,
and standard deviation for each of the six types of
material. Is it reasonable to pool the variances?
Note that the sample sizes are small and the data
are rounded.

(b) Run the analysis of variance. Report the F
statistic with its degrees of freedom and P-value.
What do you conclude?

12.52 A comparison of different types of scaffold
material, continued. Refer to the previous
exercise.

(a) Examine the residuals. Is the Normality
assumption reasonable for these data?

(b) Use the Bonferroni or another multiple-
comparisons procedure to determine which pairs
of means differ significantly. Summarize your
results in a short report. Be sure to include a
graph.

(c) Use a contrast to compare the three ECM
materials with the three other materials.
Summarize your conclusions. How do these
results compare with those that you obtained
from the multiple-comparisons procedure in part
(b)?

12.53 Two contrasts of interest for the stimulant
study. Refer to Exercise 12.25 (page 673).
There are two comparisons of interest to the
experimenter. They are (1) Placebo versus the
average of the 2 low-dose treatments; and (2) the
difference between High A and Low A versus the
difference between High B and Low B.

(a) Express each contrast in terms of the means
(μ’s) of the treatments.

(b) Give estimates with standard errors for each
of the contrasts.

(c) Perform the significance tests for the contrasts.
Summarize the results of your tests and your
conclusions.

12.54 A dandruff study. Analysis of variance methods
are often used in clinical trials where the goal is to

assess the effectiveness of one or more treatments
for a particular medical condition. One such study
compared three treatments for dandruff and a
placebo. The treatments were 1% pyrithione zinc
shampoo (PyrI), the same shampoo but with
instructions to shampoo two times (PyrII), 2%
ketoconazole shampoo (Keto), and a placebo
shampoo (Placebo). After six weeks of treatment,
eight sections of the scalp were examined and
given a score that measured the amount of scalp
flaking on a 0 to 10 scale. The response variable
was the sum of these eight scores. An analysis
of the baseline flaking measure indicated that
randomization of patients to treatments was
successful in that no differences were found
between the groups. At baseline there were 112
subjects in each of the three treatment groups
and 28 subjects in the Placebo group. During the
clinical trial, 3 dropped out from the PyrII group
and 6 from the Keto group. No patients dropped
out of the other two groups. The data are given
in the DANDRUFF data set described in the Data
Appendix.

(a) Find the mean, standard deviation, and
standard error for the subjects in each group.
Summarize these, along with the sample sizes, in
a table and make a graph of the means.

(b) Run the analysis of variance on these data.
Write a short summary of the results and your
conclusion. Be sure to include the hypotheses
tested, the test statistic with degrees of freedom,
and the P-value.

12.55 The dandruff study, continued. Refer to the
previous exercise.

(a) Plot the residuals versus case number (the first
variable in the data set). Describe the plot. Is there
any pattern that would cause you to question the
assumption that the data are independent?

(b) Examine the standard deviations for the
four treatment groups. Is there a problem with
the assumption of equal standard deviations for
ANOVA in this data set? Explain your answer.

(c) Prepare Normal quantile plots for each
treatment group. What do you conclude from
these plots?

(d) Obtain the residuals from the analysis of
variance and prepare a Normal quantile plot of
these. What do you conclude?

12.56 Comparing each pair of dandruff treatments.
Refer to Exercise 12.54. Use the Bonferroni or
another multiple-comparisons procedure that



Chapter 12 Exercises
•

681

your software provides to compare the individual
group means in the dandruff study. Write a short
summary of your conclusions.

12.57 Testing several contrasts from the dandruff
study. Refer to Exercise 12.54. There are several
natural contrasts in this experiment that describe
comparisons of interest to the experimenters.
They are (1) Placebo versus the average of the
three treatments; (2) Keto versus the average of
the two Pyr treatments; and (3) PyrI versus PyrII.

(a) Express each of these three contrasts in terms
of the means (μ’s) of the treatments.

(b) Give estimates with standard errors for each
of the contrasts.

(c) Perform the significance tests for the contrasts.
Summarize the results of your tests and your
conclusions.

12.58 C
H

ALLENG
E Changing the response variable of the

storage time study. Refer to Exercise 12.29
(page 675), where we studied the effects of
storage on the vitamin C content of bread. In this
experiment 64 mg of vitamin C per 100 g of flour
was added to the flour that was used to make each
loaf.

(a) Convert the vitamin C amounts (mg/100 g) to
percents of the amounts originally in the loaves
by dividing the amounts in Exercise 12.29 by 64
and multiplying by 100. Calculate the transformed
means, standard deviations, and standard errors
and summarize them with the sample sizes in a
table.

(b) Explain how you could have calculated the
table entries directly from the table you gave in
part (a) of Exercise 12.29.

(c) Analyze the percents using analysis of
variance. Compare the test statistic, degrees
of freedom, P-value, and conclusion you obtain
here with the corresponding values that you found
in Exercise 12.29.

12.59 More on changing the response variable of the
storage time study. Refer to the previous exercise
and Exercise 12.31 (page 675). The flour used to
make the loaves contained 5 mg of vitamin A per
100 g of flour and 100 mg of vitamin E per 100 g
of flour. Summarize the effects of transforming
the data to percents for all three vitamins.

12.60 C
H

ALLENG
E Linear transformation of the response

variable. Refer to the previous exercise.
Can you suggest a general conclusion regarding

what happens to the test statistic, degrees of
freedom, P-value, and conclusion when you
perform analysis of variance on data that have
been transformed by multiplying the raw data by a
constant and then adding another constant? (That
is, if y is the original data, we analyze y∗, where
y∗ = a + by and a and b �= 0 are constants.)

12.61 C
H

ALLENG
E Comparing three levels of reading

comprehension instruction. A study of
reading comprehension in children compared
three methods of instruction.20 The three
methods of instruction are called Basal, DRTA,
and Strategies. As is common in such studies,
several pretest variables were measured before
any instruction was given. One purpose of the
pretest was to see if the three groups of children
were similar in their comprehension skills. The
READING data set described in the Data Appendix
gives two pretest measures that were used in this
study. Use one-way ANOVA to analyze these data
and write a summary of your results.

12.62 C
H

ALLENG
E More on the reading comprehension

study. In the study described in the
previous exercise, Basal is the traditional method
of teaching, while DRTA and Strategies are two
innovative methods based on similar theoretical
considerations. The READING data set includes
three response variables that the new methods
were designed to improve. Analyze these variables
using ANOVA methods. Be sure to include multiple
comparisons or contrasts as needed. Write a report
summarizing your findings.

12.63 C
H

ALLENG
E More on the price promotion study.

Refer to the price promotion study that
we examined in Exercise 12.40 (page 677). The
explanatory variable in this study is the number
of price promotions in a 10-week period, with
possible values of 1, 3, 5, and 7. When using
analysis of variance, we treat the explanatory
variable as categorical. An alternative analysis
is to use simple linear regression. Perform this
analysis and summarize the results. Plot the
residuals from the regression model versus the
number of promotions. What do you conclude?

12.64 Overall standard deviation versus the pooled
standard deviation. The last line of the summary
table given in Exercise 12.26 (page 673) gives the
mean and the standard deviation for all of the data
combined. Compare this standard deviation with
the pooled standard deviation that you would use
as an estimate of the model standard deviation.
Explain why you would expect this standard
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deviation to be larger than the pooled standard
deviation.

12.65 C
H

ALLENG
E Search the Internet. Search the Internet

or your library to find a study that is
interesting to you and that used one-way ANOVA
to analyze the data. First describe the question
or questions of interest and then give the details
of how ANOVA was used to provide answers. Be
sure to include how the study authors examined
the assumptions for the analysis. Evaluate how
well the authors used ANOVA in this study. If
your evaluation finds the analysis deficient, make
suggestions for how it could be improved.

12.66 A power calculation exercise (optional). In
Example 12.27 (page 674) the power calculation
indicated that there was a fairly small chance
of detecting the alternative given. Redo the
calculations for the alternative μ1 = 40, μ2 = 47,
and μ3 = 43. Do you think that the choice of
10 students per treatment is adequate for this
alternative?

12.67 Planning another emotions study. Scores
on an emotional scale were compared for five
different cultures in Exercise 12.27 (page 674).
Suppose that you are planning a new study
using the same outcome variable. Your study
will use European American, Asian American,
and Hispanic American students from a large
university.

(a) Explain how you would select the students to
participate in your study.

(b) (Optional) Use the data from Exercise 12.27 to
perform power calculations to determine sample
sizes for your study.

(c) Write a report that could be understood by
someone with limited background in statistics and
that describes your proposed study and why you
think it is likely that you will obtain interesting
results.

12.68 C
H

ALLENG
E Planning another isoflavone study.

Exercise 12.39 (page 676) gave data for
a bone health study that examined the effect of
isoflavones on rat bone mineral density. In this
study there were three groups. Controls received a
placebo, and the other two groups received either
a low or a high dose of isoflavones from kudzu.
You are planning a similar study of a new kind of
isoflavone. Use the results of the study described in
Exercise 12.39 to plan your study. Write a proposal
explaining why your study should be funded.

12.69 C
H

ALLENG
E Planning another restaurant ambience

study. Exercise 12.24 (page 672) gave data
for a study that examined the effect of background
music on total food spending at a high-end
restaurant. You are planning a similar study but
intend to look at total food spending at a more
casual restaurant. Use the results of the study
described in Exercise 12.24 to plan your study.



CHAPTER

1313Two-Way Analysis of Variance

Can the consumption of red palm oil decrease the occurrence and severity of
malaria in children? See Example 13.3 for more details.

13.1 The Two-Way ANOVA
Model

13.2 Inference for Two-Way
ANOVA

Introduction
The t procedures of Chapter 7 compare the means of two
populations. We generalized these procedures in Chap-
ter 12 so that we could compare the means of several
populations. In this chapter, we move from one-way
ANOVA to two-way ANOVA. Two-way ANOVA com-
pares the means of populations that can be classified in two ways or the mean
responses in two-factor experiments.

Many of the key concepts are similar to those of one-way ANOVA, but the
presence of more than one classification factor also introduces some new ideas.
We once more assume that the data are approximately Normal and that groups
may have different means but the same standard deviation; we again pool to
estimate the variance; and we again use F statistics for significance tests. The
major difference between one-way and two-way ANOVA is in the FIT part of the
model. We will carefully study this term, and we will find much that is both new
and useful. This will allow us to address comparisons such as the following:

• Can an increase in the consumption of red palm oil reduce the occurrence
and severity of malaria in both male and female children living in Nigeria?

• What effects do the floral morphologies of male and female jack-in-the-pulpit
plants have on herbivory?

• Do calcium supplements prevent bone loss in elderly people with and without
adequate vitamin D?

683
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13.1 The Two-Way ANOVA Model
We begin with a discussion of the advantages of the two-way ANOVA design
and illustrate these with some examples. Then we discuss the model and the
assumptions.

Advantages of two-way ANOVA
In one-way ANOVA, we classify populations according to one categorical vari-
able, or factor. In the two-way ANOVA model, there are two factors, each with
its own number of levels. When we are interested in the effects of two factors, a
two-way design offers great advantages over several single-factor studies. Sev-
eral examples will illustrate these advantages.

•

•

E
X

A
M

P
L

E 13.1 Design 1: Choosing the best magazine layout and cover. In
Example 12.1, a magazine publisher wants to compare three different mag-
azine layouts. To do this, she plans to randomly assign the three design lay-
outs equally among 60 supermarkets. The number of magazines sold during
a one-week period is the outcome variable.

Now suppose a second experiment is planned for the following week to
compare four different covers for the magazine. A similar experimental de-
sign will be used, with the four covers randomly assigned among the same
60 supermarkets.

Here is a picture of the design of the first experiment with the sample sizes:

Layout n

1 20
2 20
3 20

Total 60

And this represents the second experiment:

Cover n

1 15
2 15
3 15
4 15

Total 60

In the first experiment 20 stores were assigned to each level of the factor
for a total of 60 stores. In the second experiment 15 stores were assigned to
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each level of the factor for a total of 60 stores. The total amount of time for the
two experiments is two weeks. Each experiment will be analyzed using one-way
ANOVA. The factor in the first experiment is magazine layout with three levels,
and the factor in the second experiment is magazine cover with four levels. Let’s
now consider combining the two experiments into one.

•

•

E
X

A
M

P
L

E 13.2 Design 2: Choosing the best magazine layout and cover. Sup-
pose we use a two-way approach for the magazine design problem. There are
two factors, layout and cover. Since layout has three levels and cover has four
levels, this is a 3 × 4 design. This gives a total of 12 possible combinations of
layout and cover. With a total of 60 stores, we could assign each combination
of layout and cover to 5 stores. The number of magazines sold during a one-
week period is the outcome variable.

Here is a picture of the two-way design with the sample sizes:

Cover

Layout 1 2 3 4 Total

1 5 5 5 5 20
2 5 5 5 5 20
3 5 5 5 5 20

Total 15 15 15 15 60

Each combination of the factors in a two-way design corresponds to a cell.cell
The 3 × 4 ANOVA for the magazine experiment has twelve cells, each corre-
sponding to a particular combination of layout and cover.

With the two-way design for layout, notice that we have 20 stores assigned
to each level, the same as what we had for the one-way experiment for layout
alone. Similarly, there are 15 stores assigned to each level of cover. Thus, the
two-way design gives us the same amount of information for estimating the
sales for each level of each factor as we had with the two one-way designs.
The difference is that we can collect all of the information in only one week.
By combining the two factors into one experiment, we have increased our effi-
ciency by reducing the amount of data to be collected by half.

•

•
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E 13.3 Can increased palm oil consumption reduce malaria? Malaria is
a serious health problem causing an estimated 2.7 million deaths per year,
mostly in Africa.1 Some research suggests that vitamin A can reduce episodes
of malaria in young children. Red palm oil is a good source of vitamin A and
is readily available in Nigeria, a country where malaria accounts for about
30% of the deaths of young children. Can an increase in the consumption of
red palm oil reduce the occurrence and severity of malaria in this region?2



686
•

CHAPTER 13 • Two-Way Analysis of Variance

To design a study to answer this question we first need to determine an ap-
propriate target group. Since malaria is a serious problem for young children,
we will concentrate on children who are 2 to 5 years of age. A supplement will
be prepared that contains either a placebo, a low dose of red palm oil, or a high
dose of red palm oil. Because boys and girls may differ in exposure to malaria
and the response to the red palm oil supplement, our design should also take
gender into account. Let’s consider a two-way ANOVA for this study.

•

•
E

X
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M
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L
E 13.4 Implementing the two-way ANOVA design. The factors for our

two-way ANOVA are red palm oil with three levels and gender with two levels.
There are 3 × 2 = 6 cells in our study. Suppose we recruit 75 boys and 75 girls.
We will then randomly assign 25 of each gender to each of the red palm oil
levels. The outcome variable will be the amount of an acute-phase protein in
the blood that measures the severity of infection.

Here is a table that summarizes the design:

Gender

Red palm oil Girls Boys Total

Placebo 25 25 50
Low dose 25 25 50
High dose 25 25 50

Total 75 75 150

This example illustrates another advantage of two-way designs. Although we
are primarily interested in the possible benefit of red palm oil, we included gen-
der in the design because we thought that there might be differences between
the boys and the girls. Consider an alternative one-way design where we assign
150 children to the three levels of red palm oil and ignore gender. With this de-
sign we will have the same number of children at each of the red palm oil lev-
els, so in this way it is similar to our two-way design. However, suppose that
there are, in fact, differences between boys and girls. In this case, the one-way
ANOVA would assign this variation to the RESIDUAL (within groups) part of
the model. In the two-way ANOVA, gender is included as a factor, and therefore
this variation is included in the FIT part of the model. Whenever we can move
variation from RESIDUAL to FIT, we reduce the σ of our model and increase
the power of our tests.

•

E
X

A
M

P
L

E 13.5 Vitamin D and osteoporosis. Osteoporosis is a disease primarily of
the elderly. People with osteoporosis have low bone mass and an increased
risk of bone fractures. Over 10 million people in the United States, 1.4 million
Canadians, and many millions throughout the world have this disease. Ade-
quate calcium in the diet is necessary for strong bones, but vitamin D is also
needed for the body to efficiently use calcium. High doses of calcium in the
diet will not prevent osteoporosis unless there is adequate vitamin D. Expo-
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sure of the skin to the ultraviolet rays in sunlight enables our bodies to make
vitamin D. However, elderly people often avoid sunlight, and in northern ar-
eas such as Canada, there is not sufficient ultraviolet light to make vitamin D,
particularly in the winter months.

Suppose we wanted to see if calcium supplements will increase bone mass
(or prevent a decrease in bone mass) in an elderly Canadian population. Be-
cause of the vitamin D complication we will make this a factor in our design.

•

•
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X
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E 13.6 Designing the osteoporosis study. We will use a 2 × 2 design for

our osteoporosis study. The two factors are calcium and vitamin D. The levels
of each factor will be zero (placebo) and an amount that is expected to be ad-
equate, 800 mg/day for calcium and 300 international units per day (IU/day)
for vitamin D. Women between the ages of 70 and 80 will be recruited as sub-
jects. Bone mineral density (BMD) will be measured at the beginning of the
study, and supplements will be taken for one year. The change in BMD over
the one-year period is the outcome variable. We expect a dropout rate of 20%
and we would like to have about 20 subjects providing data in each group at
the end of the study. We will therefore recruit 100 subjects and randomly as-
sign 25 to each treatment combination.

Here is a table that summarizes the design with the sample sizes at baseline:

Vitamin D

Calcium Placebo 300 IU/day Total

Placebo 25 25 50
800 mg/day 25 25 50

Total 50 50 100

This example illustrates a third reason for using two-way designs. The ef-
fectiveness of the calcium supplement on BMD depends on having adequate
vitamin D. We call this an interaction. In contrast, the average values for theinteraction
calcium effect and the vitamin D effect are represented as main effects. Themain effects
two-way model represents FIT as the sum of a main effect for each of the two
factors and an interaction. One-way designs that vary a single factor and hold
other factors fixed cannot discover interactions. We will discuss interactions
more fully in a later section.

These examples illustrate several reasons why two-way designs are prefer-
able to one-way designs.

ADVANTAGES OF TWO-WAY ANOVA

1. It is more efficient to study two factors simultaneously rather than
separately.
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2. We can reduce the residual variation in a model by including a second
factor thought to influence the response.

3. We can investigate interactions between factors.

These considerations also apply to study designs with more than two fac-
tors. We will be content to explore only the two-way case. The choice of sam-
pling or experimental design is fundamental to any statistical study. Factors and
levels must be carefully selected by an individual or team who understands both
the statistical models and the issues that the study will address.

CAUTION

!
The two-way ANOVA model
When discussing two-way models in general, we will use the labels A and B
for the two factors. For particular examples and when using statistical soft-
ware, it is better to use meaningful names for these categorical variables. Thus,
in Example 13.2 we would say that the factors are layout and cover, and in
Example 13.4 we would say the factors are dosage and gender.

The numbers of levels of the factors are often used to describe the model.
Again using our earlier examples, we would say Example 13.2 represents a 3 × 4
ANOVA and Example 13.4 illustrates a 3 × 2 ANOVA. In general, Factor A will
have I levels and Factor B will have J levels. Therefore, we call the general two-
way problem an I × J ANOVA.

In a two-way design every level of A appears in combination with every level
of B, so that I × J groups are compared. The sample size for level i of Factor A
and level j of Factor B is nij.3 The total number of observations is

N =
∑

nij

ASSUMPTIONS FOR TWO-WAY ANOVA

We have independent SRSs of size nij from each of I × J Normal popula-
tions. The population means μij may differ, but all populations have the
same standard deviation σ . The μij and σ are unknown parameters.

Let xijk represent the kth observation from the population having Factor
A at level i and Factor B at level j. The statistical model is

xijk = μij + εijk

for i = 1, . . . , I and j = 1, . . . , J and k = 1, . . . , nij, where the deviations
εijk are from an N(0, σ ) distribution.

Similar to the one-way model, the FIT part is the group means μij, and theLOOK BACK
one-way model,
page 645

RESIDUAL part is the deviations εijk of the individual observations from their
group means. To estimate a group mean μij we use the sample mean of the ob-
servations in the samples from this group:

xij = 1
nij

∑
k

xijk
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The k below the
∑

means that we sum the nij observations that belong to the
(i, j)th sample.

The RESIDUAL part of the model contains the unknown σ . We calculate the
sample variances for each SRS and pool these to estimate σ 2:

s2
p =

∑
(nij − 1)s2

ij∑
(nij − 1)

Just as in one-way ANOVA, the numerator in this fraction is SSE and the de-
nominator is DFE. Also, DFE is the total number of observations minus the
number of groups. That is, DFE = N − IJ. The estimator of σ is sp.

Main effects and interactions
In this section we will further explore the FIT part of the two-way ANOVA,
which is represented in the model by the population means μij. The two-way
design gives some structure to the set of means μij.

So far, because we have independent samples from each of I × J groups, we
have presented the problem as a one-way ANOVA with IJ groups. Each popu-
lation mean μij is estimated by the corresponding sample mean xij, and we can
calculate sums of squares and degrees of freedom as in one-way ANOVA. In ac-
cordance with the conventions used by many computer software packages, we
use the term model when discussing the sums of squares and degrees of free-
dom calculated as in one-way ANOVA with IJ groups. Thus, SSM is a model
sum of squares constructed from deviations of the form xij − x, where x is the
average of all of the observations and xij is the mean of the (i, j)th group. Sim-
ilarly, DFM is simply IJ − 1.

In two-way ANOVA, the terms SSM and DFM can be further broken down
into terms corresponding to a main effect for A, a main effect for B, and an AB
interaction. Each of SSM and DFM is then a sum of terms:

SSM = SSA + SSB + SSAB

and

DFM = DFA + DFB + DFAB

The term SSA represents variation among the means for the different levels of
Factor A. Because there are I such means, DFA = I − 1 degrees of freedom.
Similarly, SSB represents variation among the means for the different levels of
Factor B, with DFB = J − 1.

Interactions are a bit more involved. We can see that SSAB, which is
SSM − SSA − SSB, represents the variation in the model that is not accounted
for by the main effects. By subtraction we see that its degrees of freedom are

DFAB = (IJ − 1) − (I − 1) − (J − 1)

= (I − 1)(J − 1)

There are many kinds of interactions. The easiest way to study them is through
examples.
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E 13.7 Investigating differences in soft drink consumption. There is
a general consensus that food portions have been increasing, but there is
little scientific evidence that documents this change. One study used data
from three nationally representative surveys to examine this issue. More than
63,380 individuals provided data for these three surveys. Three time points
were examined: 1978, 1991, and 1996.4 Here are the means for the number
of calories per portion in soft drinks consumed at home and in sit-down
restaurants:

Year

Location 1978 1991 1996 Mean

Home 130 133 158 140
Restaurant 125 126 155 135

Mean 127 129 156 137

The table includes averages of the means in the rows and columns. For
example, in 1978 the mean of calories in soft drinks consumed at home and in
restaurants is

130 + 125
2

= 127.5

which is rounded to 127 in the table. Similarly, the corresponding value for
1996 is

158 + 155
2

= 156.5

which is rounded to 156 in the table. These averages are called marginal
means (because of their location at the margins of such tabulations). The grandmarginal means
mean can be obtained by averaging either set of marginal means. It is always
a good idea to do both as a check on your arithmetic.CAUTION

! Figure 13.1 is a plot of the group means. From the plot we see that the soft
drinks consumed at home have about 3 to 7 more calories per serving than
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FIGURE 13.1 Plot of the mean
calories of soft drinks consumed
at home and in restaurants in
1978, 1991, and 1996, for
Example 13.7.
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soft drinks consumed in restaurants for the three years. In statistical language,
there is a main effect for location. We also see that the means for 1978 and
1991 are similar but there is a large increase by 1996. This is the main effect of
year. These main effects can be described by differences between the marginal
means. For example, the mean for 1978 is 127 calories, it increases by 2 calo-
ries to 129 calories in 1991, and then it jumps by 27 calories to 156 calories in
1996.

To examine two-way ANOVA data for a possible interaction, always construct
a plot similar to Figure 13.1. In this plot, we see that the patterns of means over

CAUTION

! the years are similar for home and restaurant, with the restaurant means being
about 5 calories lower than the home means. The two profiles are roughly par-
allel. This is another way of saying that there is no clear interaction between
location and year evident in these data.

When no interaction is present, the marginal means provide a reasonable
description of the two-way table of means. On the other hand, if there is an in-
teraction, then the marginal means do not tell the whole story. Here is an example

CAUTION

!
that illustrates this point.
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E 13.8 Soft drink consumption, continued. The surveys described in the
previous example also obtained data on soft drinks consumed in fast-food
restaurants. Here are the data from the previous example with the fast-food
means added:

Year

Location 1978 1991 1996 Mean

Home 130 133 158 140
Restaurant 125 126 155 135
Fast-food 131 143 191 155

Mean 129 134 168 143

Including the fast-food restaurants changes the marginal means for years
and the overall mean. Figure 13.2 is a plot of the group means.

In this figure we see that home and the fast-food restaurants were quite sim-
ilar in 1978. The increase from 1978 to 1991 was somewhat similar, with fast
food increasing a little more than home. The most noticeable feature of the plot
is the very large jump for the fast-food restaurants by 1996. The mean calories
in soft drinks increased from 131 in 1978 to 191 in 1996, an increase of about
46%. This change is thought to be closely related to the trend toward “super-
sizing” food portions at fast-food restaurants.

The three patterns of means in Figure 13.2 are clearly not all parallel. The
change over time differs for the fast-food restaurants. We have an interaction
between location and year. However, the presence of an interaction does not nec-
essarily mean that the main effects are uninformative. The calories in soft drinks

CAUTION

! have increased from 1978 to 1991 and from 1991 to 1996. Similarly, there is a
tendency for the means to be lowest in restaurants, a little higher at home, and
highest at fast-food restaurants.
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FIGURE 13.2 Plot of the mean
calories of soft drinks consumed
at home, in restaurants, and in
fast-food restaurants, in 1978,
1991, and 1996, for
Example 13.8.

Interactions come in many shapes and forms. When we find an interaction, a
careful examination of the means is needed to properly interpret the data. Simply

CAUTION

! stating that interactions are significant tells us little. Plots of the group means
are essential.
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E 13.9 Eating in groups. Some research has shown that people eat more
when they eat in groups. One possible mechanism for this phenomenon is
that they may spend more time eating when in a larger group. A study de-
signed to examine this idea measured the length of time spent (in minutes)
eating lunch in different settings.5 Here are some data from this study:

Number of people eating

Lunch setting 1 2 3 4 5 or more Mean

Workplace 12.6 23.0 33.0 41.1 44.0 30.7
Fast-food restaurant 10.7 18.2 18.4 19.7 21.9 17.8

Mean 11.6 20.6 25.7 30.4 32.9 24.2

Figure 13.3 gives the plot of the means for this example. The patterns are not
parallel, so it appears that we have an interaction. Meals take longer when there
are more people present, but this phenomenon is much greater for the meals
consumed at work. For fast-food eating, the meal durations are fairly similar
when there is more than one person present.

A different kind of interaction is present in the next example. Here, we must
be very cautious in our interpretation of the main effects since one of them can
lead to a distorted conclusion.
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FIGURE 13.3 Plot of mean meal
duration versus lunch setting and
group size, for Example 13.9.
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E 13.10 We got the beat? When we hear music that is familiar to us, we

can quickly pick up the beat and our mind synchronizes with the music. How-
ever, if the music is unfamiliar, it takes us longer to synchronize. In a study
that investigated the theoretical framework for this phenomenon, French and
Tunisian nationals listened to French and Tunisian music.6 Each subject was
asked to tap in time with the music being played. A synchronization score,
recorded in milliseconds, measured how well the subjects synchronized with
the music. A higher score indicates better synchronization. Six songs of each
music type were used. Here are the means:

Music

Nationality French Tunisian Mean

French 950 750 850
Tunisian 760 1090 925

Mean 855 920 887

The means are plotted in Figure 13.4. In the study the researchers were not
interested in main effects. Their theory predicted the interaction that we see
in the figure. Subjects synchronize better with music from their own culture.
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FIGURE 13.4 Plot of mean
synchronization score versus type
of music for French and Tunisian
nationals, for Example 13.10.
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The interaction in Figure 13.4 is very different from those that we saw in
Figures 13.2 and 13.3. These examples illustrate the point that it is necessary
to plot the means and carefully describe the patterns when interpreting an
interaction.

The design of the study in Example 13.10 allows us to examine two main
effects and an interaction. However, this setting does not meet all of the as-
sumptions needed for statistical inference using the two-way ANOVA frame-
work of this chapter. As with one-way ANOVA, we require that observations
be independent. In this study, we have a design that has each subject con-CAUTION

! tributing data for two types of music, so these two scores will be dependent.
The framework is similar to the matched pairs setting. The design is called a

LOOK BACK
matched pairs t test,
page 428

repeated-measures design. More advanced texts on statistical methods coverrepeated-measures design
this important design.

USE YOUR KNOWLEDGE
13.1 What’s wrong? For each of the following, explain what is wrong and

why.

(a) A two-way ANOVA is used when there are two outcome variables.

(b) In a 3 × 3 ANOVA each level of Factor A appears with only two
levels of Factor B.

(c) The FIT part of the model in a two-way ANOVA represents the
variation that is sometimes called error or residual.

13.2 What’s wrong? For each of the following, explain what is wrong and
why.

(a) You can perform a two-way ANOVA only when the sample sizes
are the same in all cells.

(b) The estimate s2
p is obtained by pooling the marginal sample vari-

ances.

(c) When interaction is present, the main effects are always uninfor-
mative.

13.2 Inference for Two-Way ANOVA
Inference for two-way ANOVA involves F statistics for each of the two main ef-
fects and an additional F statistic for the interaction. As with one-way ANOVA,
the calculations are organized in an ANOVA table.

The ANOVA table for two-way ANOVA
Two-way ANOVA is the statistical analysis for a two-way design with a quanti-
tative response variable. The results of a two-way ANOVA are summarized in
an ANOVA table based on splitting the total variation SST and the total degrees
of freedom DFT among the two main effects and the interaction. Both the sums
of squares (which measure variation) and the degrees of freedom add:
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SST = SSA + SSB + SSAB + SSE

DFT = DFA + DFB + DFAB + DFE

The sums of squares are always calculated in practice by statistical software.
When the nij are not all equal, some methods of analysis can give sums of squares
that do not add. From each sum of squares and its degrees of freedom we find

CAUTION

! the mean square in the usual way:

mean square = sum of squares
degrees of freedom

The significance of each of the main effects and the interaction is assessed
by an F statistic that compares the variation due to the effect of interest with
the within-group variation. Each F statistic is the mean square for the source
of interest divided by MSE. Here is the general form of the two-way ANOVA
table:

Degrees of Sum of
Source freedom squares Mean square F

A I − 1 SSA SSA/DFA MSA/MSE
B J − 1 SSB SSB/DFB MSB/MSE
AB (I − 1)(J − 1) SSAB SSAB/DFAB MSAB/MSE
Error N − IJ SSE SSE/DFE

Total N − 1 SST

There are three null hypotheses in two-way ANOVA, with an F test for each.
We can test for significance of the main effect of A, the main effect of B, and
the AB interaction. It is generally good practice to examine the test for interaction
first, since the presence of a strong interaction may influence the interpretation of
the main effects. Be sure to plot the means as an aid to interpreting the results

CAUTION
!

of the significance tests.

SIGNIFICANCE TESTS IN TWO-WAY ANOVA

To test the main effect of A, use the F statistic

FA = MSA
MSE

To test the main effect of B, use the F statistic

FB = MSB
MSE

To test the interaction of A and B, use the F statistic

FAB = MSAB
MSE
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If the effect being tested is zero, the calculated F statistic has an F dis-
tribution with numerator degrees of freedom corresponding to the effect
and denominator degrees of freedom equal to DFE. Large values of the F
statistic lead to rejection of the null hypothesis. The P-value is the prob-
ability that a random variable having the corresponding F distribution
is greater than or equal to the calculated value.

The following example illustrates how to do a two-way ANOVA. As with
the one-way ANOVA, we focus our attention on interpretation of the computer
output.

•
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E 13.11 A study of cardiovascular risk factors. A study of cardiovascular
risk factors compared runners who averaged at least 15 miles per week with a
control group described as “generally sedentary.” Both men and women were
included in the study.7 The design is a 2 × 2 ANOVA with the factors group
and gender. There were 200 subjects in each of the four combinations. One
of the variables measured was the heart rate after 6 minutes of exercise on
a treadmill. SAS computer analysis produced the outputs in Figure 13.5 and
Figure 13.6.

FIGURE 13.5 Summary
statistics for heart rates in the
four groups of a 2 × 2 ANOVA,
for Example 13.11.
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FIGURE 13.6 Two-way ANOVA
output for heart rates, for
Example 13.11.

We begin with the usual preliminary examination. From Figure 13.5 we see
that the ratio of the largest to the smallest standard deviation is less than 2.
Therefore, we are not concerned about violating the assumption of equal pop-
ulation standard deviations. Normal quantile plots (not shown) do not reveal
any outliers, and the data appear to be reasonably Normal.

The ANOVA table at the top of the output in Figure 13.6 is in effect a one-
way ANOVA with four groups: female control, female runner, male control, and
male runner. In this analysis Model has 3 degrees of freedom, and Error has 796
degrees of freedom. The F test and its associated P-value for this analysis refer
to the hypothesis that all four groups have the same population mean. We are
interested in the main effects and interaction, so we ignore this test.

The sums of squares for the group and gender main effects and the group-
by-gender interaction appear at the bottom of Figure 13.6 under the heading
Type I SS. These sum to the sum of squares for Model. Similarly, the degrees
of freedom for these sums of squares sum to the degrees of freedom for Model.
Two-way ANOVA splits the variation among the means (expressed by the Model
sum of squares) into three parts that reflect the two-way layout.

Because the degrees of freedom are all 1 for the main effects and the inter-
action, the mean squares are the same as the sums of squares. The F statistics
for the three effects appear in the column labeled F Value, and the P-values are
under the heading Pr > F. For the group main effect, we verify the calculation
of F as follows:

F = MSG
MSE

= 168,432
242.12

= 695.65

All three effects are statistically significant. The group effect has the largest
F, followed by the gender effect and then the group-by-gender interaction. To
interpret these results, we examine the plot of means with bars indicating one
standard error in Figure 13.7. Note that the standard errors are quite small due
to the large sample sizes. The significance of the main effect for group is due to
the fact that the controls have higher average heart rates than the runners for
both genders. This is the largest effect evident in the plot.
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heart rates in the 2 × 2 ANOVA,
for Example 13.11.

The significance of the main effect for gender is due to the fact that the fe-
males have higher heart rates than the men in both groups. The differences are
not as large as those for the group effect, and this is reflected in the smaller
value of the F statistic.

The analysis indicates that a complete description of the average heart rates
requires consideration of the interaction in addition to the main effects. The
two lines in the plot are not parallel. This interaction can be described in two
ways. The female-male difference in average heart rates is greater for the con-
trols than for the runners. Alternatively, the difference in average heart rates
between controls and runners is greater for women than for men. As the plot
suggests, the interaction is not large. It is statistically significant because there
were 800 subjects in the study.

Two-way ANOVA output for other software is similar to that given by SAS.
Figure 13.8 gives the analysis of the heart rate data using Excel and Minitab.

SECTION 13.2 Summary

Two-way analysis of variance is used to compare population means when
populations are classified according to two factors.

ANOVA assumes that the populations are Normal with possibly different means
and the same standard deviation and that independent SRSs are drawn from
each population.

As with one-way ANOVA, preliminary analysis includes examination of means,
standard deviations, and Normal quantile plots. Marginal means are calcu-
lated by taking averages of the cell means across rows and columns. Pooling is
used to estimate the within-group variance.

ANOVA separates the total variation into parts for the model and error. The
model variation is separated into parts for each of the main effects and the
interaction.

The calculations are organized into an ANOVA table. F statistics and P-values
are used to test hypotheses about the main effects and the interaction.

Careful inspection of the means is necessary to interpret significant main ef-
fects and interactions. Plots are a useful aid.
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FIGURE 13.8 Excel and Minitab
two-way ANOVA output for the
heart rate study, for
Example 13.11.

CHAPTER 13 Exercises

For Exercises 13.1 and 13.2, see page 694.

13.3 Describing a two-way ANOVA model. A 2 × 3
ANOVA was run with 6 observations per cell.

(a) Give the degrees of freedom for the F statistic
that is used to test for interaction in this analysis
and the entries from Table E that correspond to
this distribution.

(b) Sketch a picture of this distribution with the
information from the table included.

(c) The calculated value of the F statistic is 2.73.
How would you report the P-value?

(d) Would you expect a plot of the means to look
parallel? Explain your answer.

13.4 Determining the critical value of F. For each
of the following situations, state how large
the F statistic needs to be for rejection of the
null hypothesis at the 5% level. Sketch each
distribution and indicate the region where you
would reject.

(a) The main effect for the first factor in a 3 × 5
ANOVA with 3 observations per cell.

(b) The interaction in a 3 × 3 ANOVA with 3
observations per cell.
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(c) The interaction in a 2 × 2 ANOVA with 51
observations per cell.

13.5 Identifying the factors of a two-way ANOVA
model. For each of the following situations,
identify both factors and the response variable.
Also, state the number of levels for each factor (I
and J) and the total number of observations (N).

(a) A child psychologist is interested in studying
how a child’s percent of pretend play differs with
gender and age (4, 8, and 12 months). There are
11 infants assigned to each cell of the experiment.

(b) Brewers malt is produced from germinating
barley. A homebrewer wants to determine the best
conditions to germinate the barley. A total of 30
lots of barley seed were equally and randomly
assigned to 10 germination conditions. The
conditions are combinations of the week after
harvest (1, 3, 6, 9, or 12 weeks) and the amount
of water used in the process (4 or 8 milliliters).
The percent of seeds germinating is the outcome
variable.

(c) A virologist wants to compare the effects of
two different media (A and B) and three different
incubation times (12, 18, and 24 hours) on the
growth of the Ebola virus. She plans on doing four
replicates of each combination.

13.6 Determining the degrees of freedom. For each
part in Exercise 13.5, outline the ANOVA table,
giving the sources of variation and the degrees of
freedom.

13.7 The effects of proximity and visibility on food
intake. A recent study investigated the influence
that proximity and visibility of food have on
food intake.8 A total of 40 secretaries from the
University of Illinois participated in the study. A
candy dish full of individually wrapped chocolates
was placed either at the desk of the participant or
at a location 2 meters from the participant. The
candy dish was either a clear (candy visible) or
opaque (candy not visible) covered bowl. After a
week, the researchers noted not only the number
of candies consumed per day but also the self-
reported number of candies consumed by each
participant. The table at the top of the next column
summarizes the mean difference between these
two values (reported minus actual).

(a) Make a plot of the means and describe the
patterns that you see. Does the plot suggest an
interaction between visibility and proximity?

(b) This study actually took 4 weeks, with each
participant being observed at each treatment

Visibility

Proximity Clear Opaque

Proximate −1.2 −0.8
Less proximate 0.5 0.4

combination in a random order. Explain why
a “repeated-measures” design like this may be
beneficial.

13.8 Hypotension and endurance exercise. In
sedentary individuals, low blood pressure
(hypotension) often occurs after a single bout
of aerobic exercise and lasts nearly two hours.
This can cause dizziness, light-headedness, and
possibly fainting upon standing. It is thought
that endurance exercise training can reduce the
degree of postexercise hypotension. To test this,
researchers studied 16 endurance-trained and
16 sedentary men and women.9 The following
table summarizes the postexercise systolic arterial
pressure (mmHg) after 60 minutes of upright
cycling:

Group n x Std. error

Women, sedentary 8 100.7 3.4
Women, endurance 8 105.3 3.6
Men, sedentary 8 114.2 3.8
Men, endurance 8 110.2 2.3

(a) Make a plot similar to Figure 13.1 with the
systolic blood pressure on the y axis and training
level on the x axis. Describe the pattern you see.

(b) From the table, one can show that
SSA = 677.12, SSB = 0.72, SSAB = 147.92,
and SSE = 2478 where A is the gender effect
and B is the training level. Construct the ANOVA
table with F statistics and degrees of freedom, and
state your conclusions regarding main effects and
interaction.

(c) The researchers also measured the before-
exercise systolic blood pressure of the participants
and looked at a model that incorporated both
the pre- and postexercise values. Explain why it is
likely beneficial to incorporate both measurements
in the study.

13.9 Evaluation of an intervention program. The
National Crime Victimization Survey estimates
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TABLE 13.1

Safety behaviors of abused women

Intervention group (%) Control group (%)

Behavior Baseline 3 months 6 months Baseline 3 months 6 months

Hide money 68.0 60.0 62.7 60.0 37.8 35.1
Hide extra keys 52.7 76.0 68.9 53.3 33.8 39.2
Abuse code to alert family 30.7 74.7 60.0 22.7 27.0 43.2
Hide extra clothing 37.3 73.6 52.7 42.7 32.9 27.0
Asked neighbors to call police 49.3 73.0 66.2 32.0 45.9 40.5
Know Social Security number 93.2 93.2 100.0 89.3 93.2 98.6
Keep rent, utility receipts 75.3 95.5 89.4 70.3 84.7 80.9
Keep birth certificates 84.0 90.7 93.3 77.3 90.4 93.2
Keep driver’s license 93.3 93.3 97.3 94.7 95.9 98.6
Keep telephone numbers 96.0 98.7 100.0 90.7 97.3 100.0
Removed weapons 50.0 70.6 38.5 40.7 23.8 5.9
Keep bank account numbers 81.0 94.3 96.2 76.2 85.5 94.4
Keep insurance policy number 70.9 90.4 89.7 68.3 84.2 94.8
Keep marriage license 71.1 92.3 84.6 63.3 73.2 80.0
Hide valuable jewelry 78.7 84.5 83.9 74.0 75.0 80.3

that there were over 400,000 violent crimes
committed against women by their intimate
partner that resulted in physical injury. An
intervention study designed to increase safety
behaviors of abused women compared the
effectiveness of six telephone intervention sessions
with a control group of abused women who
received standard care. Fifteen different safety
behaviors were examined.10 One of the variables
analyzed was the total number of behaviors
(out of 15) that each woman performed. Here
is a summary of the means of this variable at
baseline (just before the first telephone call) and
at follow-up 3 and 6 months later:

Time

Group Baseline 3 months 6 months

Intervention 10.4 12.5 11.9
Control 9.6 9.9 10.4

(a) Find the marginal means. Are they useful for
understanding the results of this study?

(b) Plot the means. Do you think there is
an interaction? Describe the meaning of an
interaction for this study.

(Note: This exercise is from a repeated-measures
design, and the data are not particularly Normal
because they are counts with values from 1 to
15. Although we cannot use the methods in this

chapter for statistical inference in this setting, the
example does illustrate ideas about interactions.)

13.10 C
H

ALLENG
E More on the assessment of an inter-

vention program. Refer to the previous
exercise. Table 13.1 gives the percents of women
who responded that they performed each of the
15 safety behaviors studied.

(a) Summarize these data graphically. Do you
think that your graphical display is more effective
than Table 13.1 for describing the results of this
study? Explain why or why not.

(b) Note any particular patterns in the data that
would be important to someone who would
use these results to design future intervention
programs for abused women.

(c) The study was conducted “at a family violence
unit of a large urban District Attorney’s Office that
serves an ethnically diverse population of three
million citizens.” To what extent do you think that
this fact limits the conclusions that can be drawn?

13.11 The acceptability of lying. Lying is a common
component of all human relationships. To
investigate the acceptability of lying under
various scenarios, researchers questioned 229
high school students from a West Coast public
high school and 261 college students from a
state university in the Midwest.11 As part of the
questioning, participants were asked to read a
vignette in which the protagonist lies to his or
her parents and to evaluate the acceptability of
lying on a 4-point scale (1 = totally unacceptable,
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4 = totally acceptable). Each participant was
randomly assigned to read the vignette with either
a female or male protagonist. The following table
summarizes the mean response across age and
protagonist.

Age

Protagonist H.S. Col.

Male 2.25 2.18
Female 2.35 1.82

(a) Plot the means and describe the pattern that
you see.

(b) Suppose the F statistic for the interaction was
3.26. What are the degrees of freedom for this
statistic and the approximate P-value? Is there a
significant interaction?

(c) This study involved participants from one
high school and one college. To what extent do
you think this limits the generalizability of the
conclusions? Explain.

13.12 C
H

ALLENG
E The effects of peer pressure on

mathematics achievement. Researchers
were interested in comparing the relationship
between high achievement in mathematics
and peer pressure across several countries.12

They hypothesized that in countries where high
achievement is not valued highly, considerable
peer pressure may exist. A questionnaire was
distributed to 14-year-olds from three countries
(Germany, Canada, and Israel). One of the
questions asked students to rate how often
they fear being called a nerd or teacher’s pet on
a 4-point scale (1 = never, 4 = frequently). The
following table summarizes the response:

Country Gender n x

Germany Female 336 1.62
Germany Male 305 1.39
Israel Female 205 1.87
Israel Male 214 1.63
Canada Female 301 1.91
Canada Male 304 1.88

(a) The P-values for the interaction and the main
effects of country and gender are 0.016, 0.068,
and 0.108, respectively. Using the table and P-
values, summarize the results both graphically
and numerically.

(b) The researchers contend that Germany does
not value achievement as highly as Canada and
Israel. Do the results from (a) allow you to address
their primary hypothesis? Explain.

(c) The students were also asked to indicate their
current grade in mathematics on a 6-point scale
(1 = excellent, 6 = insufficient). How might both
responses be used to address the researchers’
primary hypothesis?

13.13 What can you conclude? Analysis of data for a
3 × 2 ANOVA with 5 observations per cell gave the
F statistics in the following table:

Effect F

A 1.53
B 3.87
AB 2.94

What can you conclude from the information
given?

13.14 What can you conclude? A study reported the
following results for data analyzed using the
methods that we studied in this chapter:

Effect F P-value

A 7.50 0.006
B 18.66 0.001
AB 6.14 0.011

(a) What can you conclude from the information
given?

(b) What additional information would you need
to write a summary of the results for this study?

13.15 Brand familiarity and repetitive advertising.
Does repetition of an advertising message increase
its effectiveness? One theory suggests that there
are two phases in the process. In the first phase,
called “wearin,” negative or unfamiliar views are
transformed into positive views. In the second
phase, called “wearout,” the effectiveness of the ad
is decreased because of boredom or other factors.
One study designed to investigate this theory
examined two factors. The first was familiarity of
the ad, with two levels, familiar and unfamiliar;
the second was repetition, with three levels, 1, 2,
and 3.13 One of the response variables collected
was attitude toward the ad. This variable was
the average of four items, each measured on a
seven-point scale, anchored by bad–good, low
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quality–high quality, unappealing–appealing, and
unpleasant–pleasant. Here are the means for
attitude:

Repetition

Familiarity 1 2 3

Familiar 4.56 4.73 5.24
Unfamiliar 4.14 5.26 4.41

(a) Make a plot of the means and describe the
patterns that you see.

(b) Does the plot suggest that there is an
interaction between familiarity and repetition? If
your answer is Yes, describe the interaction.

13.16 C
H

ALLENG
E More on brand familiarity and repetitive

advertising. Refer to the previous exercise.
In settings such as this, researchers collect data
for several response variables. For this study,
they also constructed variables that were called
attitude toward the brand, total thoughts, support
arguments, and counterarguments. Here are the
means:

Attitude to brand Total

Repetition Repetition

Familiarity 1 2 3 1 2 3

Familiar 4.67 4.65 5.06 1.33 1.93 2.55
Unfamiliar 3.94 4.79 4.26 1.52 3.06 3.17

Support Counter

Repetition Repetition

Familiarity 1 2 3 1 2 3

Familiar 0.63 0.67 0.98 0.54 0.70 0.49
Unfamiliar 0.76 1.40 0.64 0.52 0.75 1.14

For each of the four response variables, give
a graphical summary of the means. Use this
summary to discuss any interactions that are
evident. Write a short report summarizing the
effect of repetition on the response variables
measured, using the data in this exercise and the
previous one.

13.17 Estimating the within-group variance. Refer
to the previous exercise. Here are the standard
deviations for attitude toward brand:

Repetition

Familiarity 1 2 3

Familiar 1.16 1.46 1.16
Unfamiliar 1.39 1.22 1.42

Find the pooled estimate of the standard deviation
for these data. Use the rule for examining standard
deviations in ANOVA from Chapter 12 (page 646)
to determine if it is reasonable to use a pooled
standard deviation for the analysis of these data.

13.18 More on estimating the within-group variance.
Refer to Exercise 13.16. Here are the standard
deviations for total thoughts:

Repetition

Familiarity 1 2 3

Familiar 1.63 1.42 1.52
Unfamiliar 1.64 2.16 1.59

Find the pooled estimate of the standard deviation
for these data. Use the rule for examining standard
deviations in ANOVA from Chapter 12 (page 646)
to determine if it is reasonable to use a pooled
standard deviation for the analysis of these data.

13.19 Interpreting the results. Refer to Exercises 13.15
and 13.16. The subjects were 94 adult staff
members at a West Coast university. They watched
a half-hour local news show from a different
state that included the ads. The selected ads were
judged to be “good” by some experts and had been
shown in regions other than where the study was
conducted. The real names of the products were
replaced by either familiar or unfamiliar brand
names by a professional video editor. The ads
were pretested and no one in the pretest sample
suggested that the ads were not real. Discuss each
of these facts in terms of how you would interpret
the results of this study.

13.20 Assessing the Normality assumption. Refer to
Exercises 13.15 and 13.16. The ratings for this
study were each measured on a seven-point scale,
anchored by bad–good, low quality–high quality,
unappealing–appealing, and unpleasant–pleasant.
The results presented were averaged over three
ads for different products: a bank, women’s
clothing, and a health care plan. Write a short
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report summarizing the Normality assumption
for two-way ANOVA and the extent to which it is
reasonable for the analysis of these data.

13.21 The effect of chromium on insulin metabolism.
The amount of chromium in the diet has an effect
on the way the body processes insulin. In an
experiment designed to study this phenomenon,
four diets were fed to male rats. There were two
factors. Chromium had two levels: low (L) and
normal (N). The rats were allowed to eat as much
as they wanted (M) or the total amount that they
could eat was restricted (R). We call the second
factor Eat. One of the variables measured was the
amount of an enzyme called GITH.14 The means
for this response variable appear in the following
table:

Eat

Chromium M R

L 4.545 5.175
N 4.425 5.317

(a) Make a plot of the mean GITH for these diets,
with the factor Chromium on the x axis and GITH
on the y axis. For each Eat group, connect the
points for the two Chromium means.

(b) Describe the patterns you see. Does the
amount of chromium in the diet appear to affect
the GITH mean? Does restricting the diet rather
than letting the rats eat as much as they want
appear to have an effect? Is there an interaction?

(c) Compute the marginal means. Compute
the differences between the M and R diets for
each level of Chromium. Use this information
to summarize numerically the patterns in the
plot.

13.22 Changing your major. A study of undergraduate
computer science students examined changes in
major after the first year.15 The study examined
the fates of 256 students who enrolled as first-
year computer science students in the same fall
semester. The students were classified according to
gender and their declared major at the beginning
of the second year. For convenience we use the
labels CS for computer science majors, EO for
engineering and other science majors, and O for
other majors. The explanatory variables included
several high school grade summaries coded as
10 = A, 9 = A−, etc. Here are the mean high
school mathematics grades for these students:

Major

Gender CS EO O

Males 8.68 8.35 7.65
Females 9.11 9.36 8.04

Describe the main effects and interaction using
appropriate graphs and calculations.

13.23 More on changing your major. The mean
SAT Mathematics scores for the students in the
previous exercise are summarized in the following
table:

Major

Gender CS EO O

Males 628 618 589
Females 582 631 543

Summarize the results of this study using
appropriate plots and calculations to describe
the main effects and interaction.

13.24 Designing a study. The students studied in the
previous two exercises were enrolled at a large
midwestern university more than two decades
ago. Discuss how you would conduct a similar
study at a college or university of your choice
today. Include a description of all variables that
you would collect for your study.

13.25 A comparison of different types of scaffold
material. One way to repair serious wounds
is to insert some material as a scaffold for the
body’s repair cells to use as a template for new
tissue. Scaffolds made from extracellular material
(ECM) are particularly promising for this purpose.
Because they are made from biological material,
they serve as an effective scaffold and are then
resorbed. Unlike biological material that includes
cells, however, they do not trigger tissue rejection
reactions in the body. One study compared 6 types
of scaffold material.16 Three of these were ECMs
and the other three were made of inert materials.
There were three mice used per scaffold type.
The response measure was the percent of glucose
phosphated isomerase (Gpi) cells in the region
of the wound. A large value is good, indicating
that there are many bone marrow cells sent by
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the body to repair the tissue. In Exercise 12.51
(page 679) we analyzed the data for rats whose
tissues were measured 4 weeks after the repair.
The experiment included additional groups of rats
who received the same types of scaffold but were
measured at different times. Here are the data for
4 weeks and 8 weeks after the repair:

Gpi (%)

Material 4 weeks 8 weeks

ECM1 55 70 70 60 65 65
ECM2 60 65 65 60 70 60
ECM3 75 70 75 70 80 70
MAT1 20 25 25 15 25 25
MAT2 5 10 5 10 5 5
MAT3 10 15 10 5 15 10

(a) Make a table giving the sample size, mean,
and standard deviation for each of the material-
by-time combinations. Is it reasonable to pool
the variances? Because the sample sizes in this
experiment are very small, we expect a large
amount of variability in the sample standard
deviations. Although they vary more than we
would prefer, we will proceed with the ANOVA.

(b) Make a plot of the means. Describe the main
features of the plot.

(c) Run the analysis of variance. Report the F
statistics with degrees of freedom and P-values
for each of the main effects and the interaction.
What do you conclude? Write a short paragraph
summarizing the results of your analysis.

13.26 C
H

ALLENG
E A comparison of different types of

scaffold material, continued. Refer to
the previous exercise. Here are the data that were
collected at 2 weeks, 4 weeks, and 8 weeks:

Gpi (%)

Material 2 weeks 4 weeks 8 weeks

ECM1 70 75 65 55 70 70 60 65 65
ECM2 60 65 70 60 65 65 60 70 60
ECM3 80 60 75 75 70 75 70 80 70
MAT1 50 45 50 20 25 25 15 25 25
MAT2 5 10 15 5 10 5 10 5 5
MAT3 30 25 25 10 15 10 5 15 10

Rerun the analyses that you performed in the
previous exercise. How does the addition of the
data for 2 weeks change the conclusions? Write a

summary comparing these results with those in
the previous exercise.

13.27 Analysis using multiple one-way ANOVAs. Refer
to the previous exercise. Analyze the data for each
time period separately using a one-way ANOVA.
Use a multiple-comparisons procedure where
needed. Summarize the results.

13.28 C
H

ALLENG
E Does the type of cooking pot affect

iron content? Iron-deficiency anemia is the
most common form of malnutrition in developing
countries, affecting about 50% of children and
women and 25% of men. Iron pots for cooking
foods had traditionally been used in many of these
countries, but they have been largely replaced by
aluminum pots, which are cheaper and lighter.
Some research has suggested that food cooked
in iron pots will contain more iron than food
cooked in other types of pots. One study designed
to investigate this issue compared the iron content
of some Ethiopian foods cooked in aluminum,
clay, and iron pots.17 In Exercise 12.49 (page 679),
we analyzed the iron content of yesiga wet’, beef
cut into small pieces and prepared with several
Ethiopian spices. The researchers who conducted
this study also examined the iron content of
shiro wet’, a legume-based mixture of chickpea
flour and Ethiopian spiced pepper, and ye-atkilt
allych’a, a lightly spiced vegetable casserole. In the
table below, these three foods are labeled meat,
legumes, and vegetables. Four samples of each
food were cooked in each type of pot. The iron in
the food is measured in milligrams of iron per 100
grams of cooked food. Here are the data:

Iron content

Type of pot Meat

Aluminum 1.77 2.36 1.96 2.14
Clay 2.27 1.28 2.48 2.68
Iron 5.27 5.17 4.06 4.22

Type of pot Legumes

Aluminum 2.40 2.17 2.41 2.34
Clay 2.41 2.43 2.57 2.48
Iron 3.69 3.43 3.84 3.72

Type of pot Vegetables

Aluminum 1.03 1.53 1.07 1.30
Clay 1.55 0.79 1.68 1.82
Iron 2.45 2.99 2.80 2.92
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(a) Make a table giving the sample size, mean,
and standard deviation for each type of pot. Is it
reasonable to pool the variances? Although the
standard deviations vary more than we would like,
this is partially due to the small sample sizes and
we will proceed with the analysis of variance.

(b) Plot the means. Give a short summary of
how the iron content of foods depends upon the
cooking pot.

(c) Run the analysis of variance. Give the ANOVA
table, the F statistics with degrees of freedom
and P-values, and your conclusions regarding the
hypotheses about main effects and interactions.

13.29 Interpreting the results. Refer to the previous
exercise. Although there is a statistically significant
interaction, do you think that these data support
the conclusion that foods cooked in iron pots
contain more iron than foods cooked in aluminum
or clay pots? Discuss.

13.30 Analysis using a one-way ANOVA. Refer to
Exercise 13.28. Rerun the analysis as a one-
way ANOVA with 9 groups and 4 observations
per group. Report the results of the F test.
Examine differences in means using a multiple-
comparisons procedure. Summarize your results
and compare them with those you obtained in
Exercise 13.28.

13.31 Examination of a drilling process. One step in
the manufacture of large engines requires that
holes of very precise dimensions be drilled. The
tools that do the drilling are regularly examined
and are adjusted to ensure that the holes meet the
required specifications. Part of the examination
involves measurement of the diameter of the
drilling tool. A team studying the variation in the
sizes of the drilled holes selected this measurement
procedure as a possible cause of variation in the
drilled holes. They decided to use a designed
experiment as one part of this examination. Some
of the data are given in Table 13.2. The diameters
in millimeters (mm) of five tools were measured
by the same operator at three times (8:00 A.M.,
11:00 A.M., and 3:00 P.M.). Three measurements
were taken on each tool at each time. The person
taking the measurements could not tell which tool
was being measured, and the measurements were
taken in random order.18

(a) Make a table of means and standard deviations
for each of the 5 × 3 combinations of the two
factors.

TABLE 13.2

Tool diameter data

Tool Time Diameter (mm)

1 1 25.030 25.030 25.032
1 2 25.028 25.028 25.028
1 3 25.026 25.026 25.026

2 1 25.016 25.018 25.016
2 2 25.022 25.020 25.018
2 3 25.016 25.016 25.016

3 1 25.005 25.008 25.006
3 2 25.012 25.012 25.014
3 3 25.010 25.010 25.008

4 1 25.012 25.012 25.012
4 2 25.018 25.020 25.020
4 3 25.010 25.014 25.018

5 1 24.996 24.998 24.998
5 2 25.006 25.006 25.006
5 3 25.000 25.002 24.999

(b) Plot the means and describe how the means
vary with tool and time. Note that we expect the
tools to have slightly different diameters. These
will be adjusted as needed. It is the process of
measuring the diameters that is important.

(c) Use a two-way ANOVA to analyze these data.
Report the test statistics, degrees of freedom, and
P-values for the significance tests.

(d) Write a short report summarizing your results.

13.32 Examination of a drilling process, continued.
Refer to the previous exercise. Multiply each
measurement by 0.04 to convert from millimeters
to inches. Redo the plots and rerun the ANOVA
using the transformed measurements. Summarize
what parts of the analysis have changed and what
parts have remained the same.

13.33 A price promotion study. How does the frequency
that a supermarket product is promoted at a
discount affect the price that customers expect to
pay for the product? Does the percent reduction
also affect this expectation? These questions were
examined by researchers in a study conducted on
students enrolled in an introductory management
course at a large midwestern university. For 10
weeks 160 subjects received information about the
products. The treatment conditions corresponded
to the number of promotions (1, 3, 5, or 7) that
were described during this 10-week period and
the percent that the product was discounted (10%,
20%, 30%, and 40%). Ten students were randomly
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TABLE 13.3

Expected price data

Number of Percent
promotions discount Expected price ($)

1 40 4.10 4.50 4.47 4.42 4.56 4.69 4.42 4.17 4.31 4.59
1 30 3.57 3.77 3.90 4.49 4.00 4.66 4.48 4.64 4.31 4.43
1 20 4.94 4.59 4.58 4.48 4.55 4.53 4.59 4.66 4.73 5.24
1 10 5.19 4.88 4.78 4.89 4.69 4.96 5.00 4.93 5.10 4.78

3 40 4.07 4.13 4.25 4.23 4.57 4.33 4.17 4.47 4.60 4.02
3 30 4.20 3.94 4.20 3.88 4.35 3.99 4.01 4.22 3.70 4.48
3 20 4.88 4.80 4.46 4.73 3.96 4.42 4.30 4.68 4.45 4.56
3 10 4.90 5.15 4.68 4.98 4.66 4.46 4.70 4.37 4.69 4.97

5 40 3.89 4.18 3.82 4.09 3.94 4.41 4.14 4.15 4.06 3.90
5 30 3.90 3.77 3.86 4.10 4.10 3.81 3.97 3.67 4.05 3.67
5 20 4.11 4.35 4.17 4.11 4.02 4.41 4.48 3.76 4.66 4.44
5 10 4.31 4.36 4.75 4.62 3.74 4.34 4.52 4.37 4.40 4.52

7 40 3.56 3.91 4.05 3.91 4.11 3.61 3.72 3.69 3.79 3.45
7 30 3.45 4.06 3.35 3.67 3.74 3.80 3.90 4.08 3.52 4.03
7 20 3.89 4.45 3.80 4.15 4.41 3.75 3.98 4.07 4.21 4.23
7 10 4.04 4.22 4.39 3.89 4.26 4.41 4.39 4.52 3.87 4.70

assigned to each of the 4 × 4 = 16 treatments.19

Table 13.3 gives the data.

(a) Summarize the means and standard deviations
in a table and plot the means. Summarize the main
features of the plot.

(b) Analyze the data with a two-way ANOVA.
Report the results of this analysis.

(c) Using your plot and the ANOVA results,
prepare a short report explaining how the expected
price depends on the number of promotions and
the percent of the discount.

13.34 Analysis using a one-way ANOVA. Refer to
the previous exercise. Rerun the analysis as a
one-way ANOVA with 4 × 4 = 16 treatments.
Summarize the results of this analysis. Use a
multiple-comparisons procedure to describe
combinations of number of promotions and
percent discounts that are similar or different.

13.35 Do left-handed people live shorter lives than
right-handed people? A study of this question
examined a sample of 949 death records and
contacted next of kin to determine handedness.20

Note that there are many possible definitions
of “left-handed.” The researchers examined the
effects of different definitions on the results of
their analysis and found that their conclusions
were not sensitive to the exact definition used. For
the results presented here, people were defined to
be right-handed if they wrote, drew, and threw a

ball with the right hand. All others were defined to
be left-handed. People were classified by gender
(female or male) and handedness (left or right),
and a 2 × 2 ANOVA was run with the age at death
as the response variable. The F statistics were
22.36 (handedness), 37.44 (gender), and 2.10
(interaction). The following marginal mean ages
at death (in years) were reported: 77.39 (females),
71.32 (males), 75.00 (right-handed), and 66.03
(left-handed).

(a) For each of the F statistics given above find the
degrees of freedom and an approximate P-value.
Summarize the results of these tests.

(b) Using the information given, write a short
summary of the results of the study.

13.36 A radon exposure study. Scientists believe that
exposure to the radioactive gas radon is associated
with some types of cancers in the respiratory
system. Radon from natural sources is present
in many homes in the United States. A group
of researchers decided to study the problem in
dogs because dogs get similar types of cancers
and are exposed to environments similar to those
of their owners. Radon detectors are available
for home monitoring but the researchers wanted
to obtain actual measures of the exposure of
a sample of dogs. To do this they placed the
detectors in holders and attached them to the
collars of the dogs. One problem was that the
holders might in some way affect the radon
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readings. The researchers therefore devised a
laboratory experiment to study the effects of the
holders. Detectors from four series of production
were available, so they used a two-way ANOVA
design (series with 4 levels and holder with 2,
representing the presence or absence of a holder).
All detectors were exposed to the same radon
source and the radon measure in picocuries per
liter was recorded.21 The F statistic for the effect
of series is 7.02, for holder it is 1.96, and for the
interaction it is 1.24.

(a) Using Table E or statistical software find
approximate P-values for the three test statistics.
Summarize the results of these three significance
tests.

(b) The mean radon readings for the four series
were 330, 303, 302, and 295. The results of the
significance test for series were of great concern
to the researchers. Explain why.

13.37 A comparison of plant species under low
water conditions. The PLANTS1 data set in
the Data Appendix gives the percent of nitrogen
in four different species of plants grown in a
laboratory. The species are Leucaena leucocephala,
Acacia saligna, Prosopis juliflora, and Eucalyptus
citriodora. The researchers who collected these
data were interested in commercially growing
these plants in parts of the country of Jordan
where there is very little rainfall. To examine the
effect of water, they varied the amount per day
from 50 millimeters (mm) to 650 mm in 100 mm
increments. There were nine plants per species-by-
water combination. Because the plants are to be
used primarily for animal food, with some parts
that can be consumed by people, a high nitrogen
content is very desirable.

(a) Find the means for each species-by-water
combination. Plot these means versus water for
the four species, connecting the means for each
species by lines. Describe the overall pattern.

(b) Find the standard deviations for each species-
by-water combination. Is it reasonable to pool
the standard deviations for this problem? Note
that with sample sizes of size 9, we expect these
standard deviations to be quite variable.

(c) Run the two-way analysis of variance. Give the
results of the hypothesis tests for the main effects
and the interaction.

13.38 Examination of the residuals. Refer to the
previous exercise. Examine the residuals. Are
there any unusual patterns or outliers? If you

think that there are one or more points that are
somewhat extreme, rerun the two-way analysis
without these observations. Does this change the
results in any substantial way?

13.39 Analysis using multiple one-way ANOVAs.
Refer to Exercise 13.37. Run a separate one-way
analysis of variance for each water level. If there is
evidence that the species are not all the same, use
a multiple-comparisons procedure to determine
which pairs of species are significantly different.
In what way, if any, do the differences appear to
vary by water level? Write a short summary of
your conclusions.

13.40 More on the analysis using multiple one-way
ANOVAs. Refer to Exercise 13.37. Run a separate
one-way analysis of variance for each species
and summarize the results. Since the amount
of water is a quantitative factor, we can also
analyze these data using regression. Run simple
linear regressions separately for each species to
predict nitrogen percent from water. Use plots to
determine whether or not a line is a good way
to approximate this relationship. Summarize the
regression results and compare them with the
one-way ANOVA results.

13.41 Another comparison of plant species under
low water conditions. Refer to Exercise 13.37.
Additional data collected by the same researchers
according to a similar design are given in the
PLANTS2 data set in the Data Appendix. Here,
there are two response variables. They are fresh
biomass and dry biomass. High values for both
of these variables are desirable. The same four
species and seven levels of water are used for this
experiment. Here, however, there are four plants
per species-by-water combination. Analyze each
of the response variables in the PLANTS2 data set
using the outline from Exercise 13.37.

13.42 Examination of the residuals. Perform the tasks
described in Exercise 13.38 for the two response
variables in the PLANTS2 data set.

13.43 Analysis using multiple one-way ANOVAs.
Perform the tasks described in Exercise 13.39 for
the two response variables in the PLANTS2 data
set.

13.44 More on the analysis using multiple one-
way ANOVAs. Perform the tasks described in
Exercise 13.40 for the two response variables in
the PLANTS2 data set.
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13.45 Are insects more attracted to male plants?
Some scientists wanted to determine if there are
gender-related differences in the level of herbivory
in the jack-in-the-pulpit, a spring-blooming
perennial plant common in deciduous forests.
A study was conducted in southern Maryland
at forests associated with the Smithsonian
Environmental Research Center (SERC).22 To
determine the effects of flowering and floral
characteristics on herbivory, the researchers
altered the floral morphology of male and female
plants. The three levels of floral characteristics
were (1) the spathes were completely removed;
(2) in females, a gap was created in the base of
the spathe, and in males, the gap was closed; (3)
plants were not altered (control). The percent of
leaf area damaged by thrips (an order of insects)
between early May and mid-June was recorded for
each of 30 plants per combination of sex and floral
characteristic. A table of means and standard
deviations (in parentheses) is shown below:

Floral characteristic level

Gender 1 2 3

Males 0.11 (0.081) 1.28 (0.088) 1.63 (0.382)
Females 0.02 (0.002) 0.58 (0.321) 0.20 (0.035)

(a) Give the degrees of freedom for the F
statistics that are used to test for gender, floral
characteristic, and the interaction.

(b) Describe the main effects and interaction
using appropriate graphs.

(c) The researchers used the natural logarithm
of percent area as the response in their analysis.
Using the relationship between the means and
standard deviations, explain why this was done.

13.46 Change-of-majors study: HSS. Refer to the data
given for the change-of-majors study in the data set
MAJORS described in the Data Appendix. Analyze
the data for HSS, the high school science grades.
Your analysis should include a table of sample

sizes, means, and standard deviations; Normal
quantile plots; a plot of the means; and a two-way
ANOVA using sex and major as the factors. Write
a short summary of your conclusions.

13.47 Change-of-majors study: HSE. Refer to the data
given for the change-of-majors study in the data set
MAJORS described in the Data Appendix. Analyze
the data for HSE, the high school English grades.
Your analysis should include a table of sample
sizes, means, and standard deviations; Normal
quantile plots; a plot of the means; and a two-way
ANOVA using sex and major as the factors. Write
a short summary of your conclusions.

13.48 Change-of-majors study: GPA. Refer to the data
given for the change-of-majors study in the data set
MAJORS described in the Data Appendix. Analyze
the data for GPA, the college grade point average.
Your analysis should include a table of sample
sizes, means, and standard deviations; Normal
quantile plots; a plot of the means; and a two-way
ANOVA using sex and major as the factors. Write
a short summary of your conclusions.

13.49 Change-of-majors study: SATV. Refer to the
data given for the change-of-majors study in the
data set MAJORS described in the Data Appendix.
Analyze the data for SATV, the SAT Verbal score.
Your analysis should include a table of sample
sizes, means, and standard deviations; Normal
quantile plots; a plot of the means; and a two-way
ANOVA using sex and major as the factors. Write
a short summary of your conclusions.

13.50 Search the Internet. Search the Internet or your
library to find a study that is interesting to you
and uses a two-way ANOVA to analyze the data.
First describe the question or questions of interest
and then give the details of how ANOVA was used
to provide answers. Be sure to include how the
study authors examined the assumptions for the
analysis. Evaluate how well the authors used
ANOVA in this study. If your evaluation finds the
analysis deficient, make suggestions for how it
could be improved.
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CHAPTER

1414Logistic Regression

Will a patient live or die after being admitted to a hospital? Logistic regression can
be used to model categorical outcomes such as this.

14.1 The Logistic Regression
Model

14.2 Inference for Logistic
Regression

Introduction
The simple and multiple linear regression methods we
studied in Chapters 10 and 11 are used to model the
relationship between a quantitative response variable
and one or more explanatory variables. A key assumption for these models is
that the deviations from the model fit are Normally distributed. In this chapter
we describe similar methods that are used when the response variable has only
two possible values.

Our response variable has only two values: success or failure, live or die, ac-
ceptable or not. If we let the two values be 1 and 0, the mean is the propor-
tion of ones, p = P(success). With n independent observations, we have the
binomial setting. What is new here is that we have data on an explanatory vari-
able x. We study how p depends on x. For example, suppose we are studying

LOOK BACK
binomial setting,
page 314whether a patient lives, (y = 1) or dies (y = 0) after being admitted to a hos-

pital. Here, p is the probability that a patient lives, and possible explanatory
variables include (a) whether the patient is in good condition or in poor condi-
tion, (b) the type of medical problem that the patient has, and (c) the age of the
patient. Note that the explanatory variables can be either categorical or quan-
titative. Logistic regression is a statistical method for describing these kinds of
relationships.1

14-1
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14.1 The Logistic Regression Model
Binomial distributions and odds
In Chapter 5 we studied binomial distributions and in Chapter 8 we learned
how to do statistical inference for the proportion p of successes in the binomial
setting. We start with a brief review of some of these ideas that we will need in
this chapter.
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E 14.1 College students and binge drinking. Example 8.1 (page 489) de-

scribes a survey of 13,819 four-year college students. The researchers were
interested in estimating the proportion of students who are frequent binge
drinkers. A male student who reports drinking five or more drinks in a row,
or a female student who reports drinking four or more drinks in a row, three
or more times in the past two weeks is called a frequent binge drinker. In the
notation of Chapter 5, p is the proportion of frequent binge drinkers in the
entire population of college students in four-year colleges. The number of fre-
quent binge drinkers in an SRS of size n has the binomial distribution with
parameters n and p. The sample size is n = 13,819 and the number of fre-
quent binge drinkers in the sample is 3140. The sample proportion is

p̂ = 3140
13,819

= 0.2272

Logistic regressions work with odds rather than proportions. The oddsodds
are simply the ratio of the proportions for the two possible outcomes. If p̂ is
the proportion for one outcome, then 1 − p̂ is the proportion for the second
outcome:

odds = p̂
1 − p̂

A similar formula for the population odds is obtained by substituting p for p̂ in
this expression.
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E 14.2 Odds of being a binge drinker. For the binge-drinking data the
proportion of frequent binge drinkers in the sample is p̂ = 0.2272, so the
proportion of students who are not frequent binge drinkers is

1 − p̂ = 1 − 0.2272 = 0.7728

Therefore, the odds of a student being a frequent binge drinker are

odds = p̂
1 − p̂

= 0.2272
0.7728

= 0.29
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When people speak about odds, they often round to integers or fractions.
Since 0.29 is approximately 1/3, we could say that the odds that a college stu-
dent is a frequent binge drinker are 1 to 3. In a similar way, we could describe
the odds that a college student is not a frequent binge drinker as 3 to 1.

USE YOUR KNOWLEDGE
14.1 Odds of drawing a heart. If you deal one card from a standard deck,

the probability that the card is a heart is 0.25. Find the odds of draw-
ing a heart.

14.2 Given the odds, find the probability. If you know the odds, you can
find the probability by solving the equation for odds given above for
the probability. So, p̂ = odds/(odds + 1). If the odds of an outcome
are 2 (or 2 to 1), what is the probability of the outcome?

Odds for two samples
In Example 8.9 (page 507) we compared the proportions of frequent binge
drinkers among men and women college students using a confidence inter-
val. The proportion for men is 0.260 (26.0%), and the proportion for women
is 0.206 (20.6%). The difference is 0.054, and the 95% confidence interval is
(0.039, 0.069). We can summarize this result by saying, “The proportion of
frequent binge drinkers is 5.4% higher among men than among women.”

Another way to analyze these data is to use logistic regression. The ex-
planatory variable is gender, a categorical variable. To use this in a regression
(logistic or otherwise), we need to use a numeric code. The usual way to do
this is with an indicator variable. For our problem we will use an indicator ofindicator variable
whether or not the student is a man:

x =
{

1 if the student is a man
0 if the student is a woman

The response variable is the proportion of frequent binge drinkers. For use
in a logistic regression, we perform two transformations on this variable. First,
we convert to odds. For men,

odds = p̂
1 − p̂

= 0.260
1 − 0.260

= 0.351

Similarly, for women we have

odds = p̂
1 − p̂

= 0.206
1 − 0.206

= 0.259
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USE YOUR KNOWLEDGE
14.3 Energy drink commercials. A study was designed to compare two

energy drink commercials. Each participant was shown the commer-
cials, A and B, in random order and asked to select the better one.
There were 100 women and 140 men who participated in the study.
Commercial A was selected by 45 women and by 80 men. Find the
odds of selecting Commercial A for the men. Do the same for the
women.

14.4 Find the odds. Refer to the previous exercise. Find the odds of se-
lecting Commercial B for the men. Do the same for the women.

Model for logistic regression
In simple linear regression we modeled the mean μ of the response variable
y as a linear function of the explanatory variable: μ = β0 + β1x. With logistic
regression we are interested in modeling the mean of the response variable p
in terms of an explanatory variable x. We could try to relate p and x through
the equation p = β0 + β1x. Unfortunately, this is not a good model. As long as
β1 �= 0, extreme values of x will give values of β0 + β1x that are inconsistent with
the fact that 0 ≤ p ≤ 1.

The logistic regression solution to this difficulty is to transform the odds
(p/(1 − p)) using the natural logarithm. We use the term log odds for thislog odds
transformation. We model the log odds as a linear function of the explanatory
variable:

log
(

p
1 − p

)
= β0 + β1x

Figure 14.1 graphs the relationship between p and x for some different values of
β0 and β1. For logistic regression we use natural logarithms. There are tables of
natural logarithms, and many calculators have a built-in function for this trans-
formation. As we did with linear regression, we use y for the response variable.

0 1 2 3 4 5 6 7 8 9
x

10

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

p

β0 = – 4.0β

1 = 2.0β

β0 = – 8.0β
1 = 1.6β β0 = – 4.0β

1 = 1.8β
1 = 1.6

FIGURE 14.1 Plot of p versus x
for different logistic regression
models.
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So for men,

y = log(odds) = log(0.351) = −1.05

and for women,

y = log(odds) = log(0.259) = −1.35

USE YOUR KNOWLEDGE
14.5 Find the odds. Refer to Exercise 14.3. Find the log odds for the men

and the log odds for the women.

14.6 Find the odds. Refer to Exercise 14.4. Find the log odds for the men
and the log odds for the women.

In these expressions for the log odds we use y as the observed value of the
response variable, the log odds of being a frequent binge drinker. We are now
ready to build the logistic regression model.

LOGISTIC REGRESSION MODEL

The statistical model for logistic regression is

log
(

p
1 − p

)
= β0 + β1x

where p is a binomial proportion and x is the explanatory variable. The
parameters of the logistic model are β0 and β1.
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E 14.3 Model for binge drinking. For our binge-drinking example, there
are n = 13,819 students in the sample. The explanatory variable is gender,
which we have coded using an indicator variable with values x = 1 for men
and x = 0 for women. The response variable is also an indicator variable.
Thus, the student is either a frequent binge drinker or not a frequent binge
drinker. Think of the process of randomly selecting a student and recording
the value of x and whether or not the student is a frequent binge drinker.
The model says that the probability (p) that this student is a frequent binge
drinker depends upon the student’s gender (x = 1 or x = 0). So there are two
possible values for p, say pmen and pwomen.

Logistic regression with an indicator explanatory variable is a very special
case. It is important because many multiple logistic regression analyses focus
on one or more such variables as the primary explanatory variables of interest.
For now, we use this special case to understand a little more about the model.

The logistic regression model specifies the relationship between p and x.
Since there are only two values for x, we write both equations. For men,
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log
(

pmen

1 − pmen

)
= β0 + β1

and for women,

log
(

pwomen

1 − pwomen

)
= β0

Note that there is a β1 term in the equation for men because x = 1, but it is
missing in the equation for women because x = 0.

Fitting and interpreting the logistic regression model
In general, the calculations needed to find estimates b0 and b1 for the parame-
ters β0 and β1 are complex and require the use of software. When the explana-
tory variable has only two possible values, however, we can easily find the esti-
mates. This simple framework also provides a setting where we can learn what
the logistic regression parameters mean.
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E 14.4 Log odds for binge drinking. In the binge-drinking example, we
found the log odds for men,

y = log
(

p̂men

1 − p̂men

)
= −1.05

and for women,

y = log
(

p̂women

1 − p̂women

)
= −1.35

The logistic regression model for men is

log
(

pmen

1 − pmen

)
= β0 + β1

and for women it is

log
(

pwomen

1 − pwomen

)
= β0

To find the estimates of b0 and b1, we match the male and female model equa-
tions with the corresponding data equations. Thus, we see that the estimate
of the intercept b0 is simply the log(odds) for the women:

b0 = −1.35

and the slope is the difference between the log(odds) for the men and the
log(odds) for the women:

b1 = −1.05 − (−1.35) = 0.30

The fitted logistic regression model is

log(odds) = −1.35 + 0.30x
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The slope in this logistic regression model is the difference between the
log(odds) for men and the log(odds) for women. Most people are not comfort-
able thinking in the log(odds) scale, so interpretation of the results in terms of
the regression slope is difficult. Usually, we apply a transformation to help us.
With a little algebra, it can be shown that

oddsmen

oddswomen
= e0.30 = 1.34

The transformation e0.30 undoes the logarithm and transforms the logistic re-
gression slope into an odds ratio, in this case, the ratio of the odds that a manodds ratio
is a frequent binge drinker to the odds that a woman is a frequent binge drinker.
In other words, we can multiply the odds for women by the odds ratio to obtain
the odds for men:

oddsmen = 1.34 × oddswomen

In this case, the odds for men are 1.34 times the odds for women.
Notice that we have chosen the coding for the indicator variable so that the

regression slope is positive. This will give an odds ratio that is greater than 1.
Had we coded women as 1 and men as 0, the signs of the parameters would be
reversed, the fitted equation would be log(odds) = 1.35 − 0.30x, and the odds
ratio would be e−0.30 = 0.74. The odds for women are 74% of the odds for men.

USE YOUR KNOWLEDGE
14.7 Find the logistic regression equation and the odds ratio. Refer

to Exercises 14.3 and 14.5. Find the logistic regression equation and
the odds ratio.

14.8 Find the logistic regression equation and the odds ratio. Refer
to Exercises 14.4 and 14.6. Find the logistic regression equation and
the odds ratio.

Logistic regression with an explanatory variable having two values is a very
important special case. Here is an example where the explanatory variable is
quantitative.
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E 14.5 Predict whether or not the taste of the cheese is acceptable.
The CHEESE data set described in the Data Appendix includes a response
variable called “Taste” that is a measure of the quality of the cheese in the
opinions of several tasters. For this example, we will classify the cheese as
acceptable (tasteok = 1) if Taste ≥ 37 and unacceptable (tasteok = 0) if
Taste < 37. This is our response variable. The data set contains three ex-
planatory variables: “Acetic,” “H2S,” and “Lactic.” Let’s use Acetic as the
explanatory variable. The model is

log
(

p
1 − p

)
= β0 + β1x
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where p is the probability that the cheese is acceptable and x is the value of
Acetic. The model for estimated log odds fitted by software is

log(odds) = b0 + b1x = −13.71 + 2.25x

The odds ratio is eb1 = 9.48. This means that if we increase the acetic acid
content x by one unit, we increase the odds that the cheese will be acceptable
by about 9.5 times.

14.2 Inference for Logistic Regression
Statistical inference for logistic regression is very similar to statistical infer-
ence for simple linear regression. We calculate estimates of the model param-
eters and standard errors for these estimates. Confidence intervals are formed
in the usual way, but we use standard Normal z∗-values rather than critical val-
ues from the t distributions. The ratio of the estimate to the standard error is
the basis for hypothesis tests. Often the test statistics are given as the squares
of these ratios, and in this case the P-values are obtained from the chi-square
distributions with 1 degree of freedom.

Confidence Intervals and Significance Tests

CONFIDENCE INTERVALS AND SIGNIFICANCE TESTS FOR
LOGISTIC REGRESSION PARAMETERS

A level C confidence interval for the slope β1 is

b1 ± z∗SEb1

The ratio of the odds for a value of the explanatory variable equal to x + 1
to the odds for a value of the explanatory variable equal to x is the odds
ratio.

A level C confidence interval for the odds ratio eβ1 is obtained by
transforming the confidence interval for the slope

(eb1−z∗SEb1 , eb1+z∗SEb1 )

In these expressions z∗ is the value for the standard Normal density curve
with area C between −z∗ and z∗.

To test the hypothesis H0: β1 = 0, compute the test statistic

z = b1

SEb1

The P-value for the significance test of H0 against Ha: β1 �= 0 is computed
using the fact that, when the null hypothesis is true, z has approximately
a standard Normal distribution.
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The statistic z is sometimes called a Wald statistic. Output from some sta-Wald statistic
tistical software reports the significance test result in terms of the square of the
z statistic.

X2 = z2

This statistic is called a chi-square statistic. When the null hypothesis is true,chi-square statistic
it has a distribution that is approximately a χ2 distribution with 1 degree of
freedom, and the P-value is calculated as P(χ2 ≥ X2). Because the square of a
standard Normal random variable has a χ2 distribution with 1 degree of free-
dom, the z statistic and the chi-square statistic give the same results for statis-
tical inference.

We have expressed the hypothesis-testing framework in terms of the slope
β1 because this form closely resembles what we studied in simple linear regres-
sion. In many applications, however, the results are expressed in terms of the
odds ratio. A slope of 0 is the same as an odds ratio of 1, so we often express the
null hypothesis of interest as “the odds ratio is 1.” This means that the two odds
are equal and the explanatory variable is not useful for predicting the odds.
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E 14.6 Software output. Figure 14.2 gives the output from SPSS and SAS
for a different binge-drinking example that is similar to the one in Example
14.4. The parameter estimates are given as b0 = −1.5869 and b1 = 0.3616.
The standard errors are 0.0267 and 0.0388. A 95% confidence interval for the
slope is

b1 ± z∗SEb1 = 0.3616 ± (1.96)(0.0388)

= 0.3616 ± 0.0760

We are 95% confident that the slope is between 0.2856 and 0.4376. The output
provides the odds ratio 1.436 but does not give the confidence interval. This
is easy to compute from the interval for the slope:

(eb1−z∗SEb1 , eb1+z∗SEb1 ) = (e0.2855, e0.4376)

= (1.33, 1.55)

For this problem we would report, “College men are more likely to be frequent
binge drinkers than college women (odds ratio = 1.44, 95% CI = 1.33 to 1.55).”

In applications such as these, it is standard to use 95% for the confidence
coefficient. With this convention, the confidence interval gives us the result of
testing the null hypothesis that the odds ratio is 1 for a significance level of 0.05.
If the confidence interval does not include 1, we reject H0 and conclude that the
odds for the two groups are different; if the interval does include 1, the data do
not provide enough evidence to distinguish the groups in this way.

The following example is typical of many applications of logistic regression.
Here there is a designed experiment with five different values for the explana-
tory variable.
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FIGURE 14.2 Logistic
regression output from SPSS and
SAS for binge-drinking data, for
Example 14.6.
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E 14.7 An insecticide for aphids. An experiment was designed to examine
how well the insecticide rotenone kills an aphid, called Macrosiphoniella san-
borni, that feeds on the chrysanthemum plant.2 The explanatory variable is
the concentration (in log of milligrams per liter) of the insecticide. At each
concentration, approximately 50 insects were exposed. Each insect was either
killed or not killed. We summarize the data using the number killed. The re-
sponse variable for logistic regression is the log odds of the proportion killed.
Here are the data:

Concentration (log) Number of insects Number killed

0.96 50 6
1.33 48 16
1.63 46 24
2.04 49 42
2.32 50 44

If we transform the response variable (by taking log odds) and use least
squares, we get the fit illustrated in Figure 14.3. The logistic regression fit is
given in Figure 14.4. It is a transformed version of Figure 14.3 with the fit
calculated using the logistic model.
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FIGURE 14.3 Plot of log odds
of percent killed versus log
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FIGURE 14.4 Plot of the
percent killed versus log
concentration with the logistic
regression fit for the insecticide
data, for Example 14.7.

One of the major themes of this text is that we should present the results of
a statistical analysis with a graph. For the insecticide example we have done
this with Figure 14.4 and the results appear to be convincing. But suppose that
rotenone has no ability to kill Macrosiphoniella sanborni. What is the chance
that we would observe experimental results at least as convincing as what we
observed if this supposition were true? The answer is the P-value for the test
of the null hypothesis that the logistic regression slope is zero. If this P-value
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is not small, our graph may be misleading. Statistical inference provides what
we need.
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E 14.8 Software output. Figure 14.5 gives the output from SPSS, SAS, and
Minitab logistic regression analysis of the insecticide data. The model is

log
(

p
1 − p

)
= β0 + β1x

where the values of the explanatory variable x are 0.96, 1.33, 1.63, 2.04, 2.32.
From the output we see that the fitted model is

log(odds) = b0 + b1x = −4.89 + 3.10x

FIGURE 14.5 Logistic
regression output from SPSS,
SAS, and Minitab for the
insecticide data, for Example
14.8.
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This is the fit that we plotted in Figure 14.4. The null hypothesis that β1 = 0
is clearly rejected (X2 = 64.23, P < 0.001). We calculate a 95% confidence
interval for β1 using the estimate b1 = 3.1035 and its standard error SEb1 =
0.3877 given in the output:

b1 ± z∗SEb1 = 3.1088 ± (1.96)(0.3879)

= 3.1088 ± 0.7603

We are 95% confident that the true value of the slope is between 2.34 and 3.86.
The odds ratio is given on the Minitab output as 22.39. An increase of one

unit in the log concentration of insecticide (x) is associated with a 22-fold in-
crease in the odds that an insect will be killed. The confidence interval for the
odds is obtained from the interval for the slope:

(eb1+z∗SEb1 , eb1−z∗SEb1 ) = (e2.3485, e3.8691)

= (10.47, 47.90)

Note again that the test of the null hypothesis that the slope is 0 is the same
as the test of the null hypothesis that the odds are 1. If we were reporting
the results in terms of the odds, we could say, “The odds of killing an insect
increase by a factor of 22.4 for each unit increase in the log concentration of
insecticide (X2 = 64.23, P < 0.001; 95% CI = 10.5 to 47.9).”

In Example 14.5 we studied the problem of predicting whether or not the
taste of cheese was acceptable using Acetic as the explanatory variable. We now
revisit this example and show how statistical inference is an important part of
the conclusion.
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E 14.9 Software output. Figure 14.6 gives the output from Minitab for a
logistic regression analysis using Acetic as the explanatory variable. The fitted
model is

log(odds) = b0 + b1x = −13.71 + 2.25x

This agrees up to rounding with the result reported in Example 14.5.
From the output we see that because P = 0.029, we can reject the null hy-

pothesis that β1 = 0. The value of the test statistic is X2 = 4.79 with 1 degree of
freedom. We use the estimate b1 = 2.249 and its standard error SEb1 = 1.027
to compute the 95% confidence interval for β1:

FIGURE 14.6 Logistic
regression output from Minitab
for the cheese data with Acetic
as the explanatory variable, for
Example 14.9.
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b1 ± z∗SEb1 = 2.249 ± (1.96)(1.027)

= 2.249 ± 2.0131

Our estimate of the slope is 2.25 and we are 95% confident that the true value
is between 0.24 and 4.26. For the odds ratio, the estimate on the output is
9.48. The 95% confidence interval is

(eb1+z∗SEb1 , eb1−z∗SEb1 ) = (e0.23588, e4.26212)

= (1.27, 70.96)

We estimate that increasing the acetic acid content of the cheese by one unit
will increase the odds that the cheese will be acceptable by about 9 times. The
data, however, do not give us a very accurate estimate. The odds ratio could be
as small as a little more than 1 or as large as 71 with 95% confidence. We have
evidence to conclude that cheeses with higher concentrations of acetic acid are
more likely to be acceptable, but establishing the true relationship accurately
would require more data.

Multiple logistic regression
The cheese example that we just considered naturally leads us to the next topic.
The data set includes three variables: Acetic, H2S, and Lactic. We examined the
model where Acetic was used to predict the odds that the cheese was accept-
able. Do the other explanatory variables contain additional information that
will give us a better prediction? We use multiple logistic regression to answermultiple logistic regression
this question. Generating the computer output is easy, just as it was when we
generalized simple linear regression with one explanatory variable to multiple
linear regression with more than one explanatory variable in Chapter 11. The
statistical concepts are similar, although the computations are more complex.
Here is the example.

•

E
X

A
M

P
L

E 14.10 Software output. As in Example 14.9, we predict the odds that the
cheese is acceptable. The explanatory variables are Acetic, H2S, and Lactic.
Figure 14.7 gives the outputs from SPSS, SAS, and Minitab for this analysis.
The fitted model is

log(odds) = b0 + b1 Acetic + b2 H2S + b3 Lactic

= −14.26 + 0.58 Acetic + 0.68 H2S + 3.47 Lactic

When analyzing data using multiple regression, we first examine the hypothe-
sis that all of the regression coefficients for the explanatory variables are zero.
We do the same for logistic regression. The hypothesis

H0: β1 = β2 = β3 = 0

is tested by a chi-square statistic with 3 degrees of freedom. For Minitab, this
is given in the last line of the output and the statistic is called “G.” The value
is G = 16.33 and the P-value is 0.001. We reject H0 and conclude that one
or more of the explanatory variables can be used to predict the odds that the



FIGURE 14.7 Logistic
regression output from SPSS,
SAS, and Minitab for the cheese
data with Acetic, H2S, and Lactic
as the explanatory variables, for
Example 14.10.
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•

cheese is acceptable. We now examine the coefficients for each variable and
the tests that each of these is 0. The P-values are 0.71, 0.09, and 0.19. None of
the null hypotheses, H0: β1 = 0, H0: β2 = 0, and H0: β3 = 0, can be rejected.

Our initial multiple logistic regression analysis told us that the explanatory
variables contain information that is useful for predicting whether or not the
cheese is acceptable. Because the explanatory variables are correlated, how-
ever, we cannot clearly distinguish which variables or combinations of vari-
ables are important. Further analysis of these data using subsets of the three
explanatory variables is needed to clarify the situation. We leave this work for
the exercises.

SECTION 14.2 Summary

If p̂ is the sample proportion, then the odds are p̂/(1 − p̂), the ratio of the pro-
portion of times the event happens to the proportion of times the event does
not happen.

The logistic regression model relates the log of the odds to the explanatory
variable:

log
(

pi

1 − pi

)
= β0 + β1xi

where the response variables for i = 1, 2, . . . , n are independent binomial ran-
dom variables with parameters 1 and pi; that is, they are independent with dis-
tributions B(1, pi). The explanatory variable is x.

The parameters of the logistic model are β0 and β1.

The odds ratio is eβ1 , where β1 is the slope in the logistic regression model.

A level C confidence interval for the intercept β0 is

b0 ± z∗SEb0

A level C confidence interval for the slope β1 is

b1 ± z∗SEb1

A level C confidence interval for the odds ratio eβ1 is obtained by transform-
ing the confidence interval for the slope

(eb1−z∗SEb1 , eb1+z∗SEb1 )

In these expressions z∗ is the value for the standard Normal density curve with
area C between −z∗ and z∗.

To test the hypothesis H0: β1 = 0, compute the test statistic

z = b1

SEb1

and use the fact that z has a distribution that is approximately the standard Nor-
mal distribution when the null hypothesis is true. This statistic is sometimes



Chapter 14 Exercises
•

14-17

called the Wald statistic. An alternative equivalent procedure is to report the
square of z,

X2 = z2

This statistic has a distribution that is approximately a χ2 distribution with 1
degree of freedom, and the P-value is calculated as P(χ2 ≥ X2). This is the same
as testing the null hypothesis that the odds ratio is 1.

In multiple logistic regression the response variable has two possible values,
as in logistic regression, but there can be several explanatory variables.

CHAPTER 14 Exercises

For Exercises 14.1 and 14.2, see page 14-3; for Exercises
14.3 and 14.4, see page 14-4; for Exercises 14.5 and 14.6,
see page 14-5; and for Exercises 14.7 and 14.8, see page
14-7.

14.9 What’s wrong? For each of the following, explain
what is wrong and why.

(a) For a multiple logistic regression with 6
explanatory variables, the null hypothesis that the
regression coefficients of all of the explanatory
variables are zero is tested with an F test.

(b) In logistic regression with one explanatory
variable we can use a chi-square statistic to test
the null hypothesis H0: b1 = 0 versus a two-sided
alternative.

(c) For a logistic regression we assume that the
error term in our model has a Normal distribution.

14.10 Find the logistic regression equation and
the odds ratio. A study of 170 franchise firms
classified each firm as to whether it was successful
or not and whether or not it had an exclusive
territory.3 Here are the data:

Observed numbers of firms

Exclusive territory

Success Yes No Total

Yes 108 15 123
No 34 13 47

Total 142 28 170

(a) What proportion of the exclusive-territory
firms are successful?

(b) Find the proportion for the firms that do not
have exclusive territories.

(c) Convert the proportion you found in part (a)
to odds. Do the same for the proportion you found
in part (b).

(d) Find the log of each of the odds that you found
in part (c).

14.11 “No Sweat” labels on clothing. Following
complaints about the working conditions in
some apparel factories both in the United
States and abroad, a joint government and
industry commission recommended in 1998
that companies that monitor and enforce proper
standards be allowed to display a “No Sweat”
label on their products. Does the presence of these
labels influence consumer behavior?

A survey of U.S. residents aged 18 or older
asked a series of questions about how likely they
would be to purchase a garment under various
conditions. For some conditions, it was stated that
the garment had a “No Sweat” label; for others,
there was no mention of such a label. On the basis
of the responses, each person was classified as
a “label user” or a “label nonuser.”4 Suppose we
want to examine the data for a possible gender
effect. Here are the data for comparing women
and men:

Number of
Gender n label users

Women 296 63
Men 251 27

(a) For each gender find the proportion of label
users.

(b) Convert each of the proportions that you
found in part (a) to odds.
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(c) Find the log of each of the odds that you found
in part (b).

14.12 Exclusive territories for franchises. Refer
to Exercise 14.10. Use x = 1 for the exclusive
territories and x = 0 for the other territories.

(a) Find the estimates b0 and b1.

(b) Give the fitted logistic regression model.

(c) What is the odds ratio for exclusive territory
versus no exclusive territory?

14.13 “No Sweat” labels on clothing. Refer to
Exercise 14.11. Use x = 1 for women and x = 0 for
men.

(a) Find the estimates b0 and b1.

(b) Give the fitted logistic regression model.

(c) What is the odds ratio for women versus men?

14.14 C
H

ALLENG
E Interpret the fitted model. If we apply

the exponential function to the fitted model
in Example 14.9, we get

odds = e−13.71+2.25x = e−13.71 × e2.25x

Show that, for any value of the quantitative
explanatory variable x, the odds ratio for
increasing x by 1,

oddsx+1

oddsx

is e2.25 = 9.49. This justifies the interpretation
given after Example 14.9.

14.15 Give a 99% confidence interval for β1. Refer to
Example 14.8. Suppose that you wanted to report
a 99% confidence interval for β1. Show how you
would use the information provided in the outputs
shown in Figure 14.5 to compute this interval.

14.16 Give a 99% confidence interval for the odds
ratio. Refer to Example 14.8 and the outputs in
Figure 14.5. Using the estimate b1 and its standard
error, find the 95% confidence interval for the odds
ratio and verify that this agrees with the interval
given by the software.

14.17 C
H

ALLENG
E z and the X2 statistic. The Minitab output

in Figure 14.5 does not give the value
of X2. The column labeled “Z” provides similar
information.

(a) Find the value under the heading “Z” for
the predictor lconc. Verify that Z is simply the

estimated coefficient divided by its standard
error. This is a z statistic that has approximately
the standard Normal distribution if the null
hypothesis (slope 0) is true.

(b) Show that the square of z is X2. The two-sided
P-value for z is the same as P for X2.

(c) Draw sketches of the standard Normal and the
chi-square distribution with 1 degree of freedom.
(Hint: You can use the information in Table F
to sketch the chi-square distribution.) Indicate
the value of the z and the X2 statistics on these
sketches and use shading to illustrate the P-value.

14.18 Sexual imagery in magazine ads. Exercise 9.18
(page 551) presents some results of a study about
how advertisers use sexual imagery to appeal to
young people. The clothing worn by the model
in each of 1509 ads was classified as “not sexual”
or “sexual” based on a standardized criterion.
A logistic regression was used to describe the
probability that the clothing in the ad was “not
sexual” as a function of several explanatory
variables. Here are some of the reported results:

Explanatory variable b Wald (z) statistic

Reader age 0.50 13.64
Model gender 1.31 72.15
Men’s magazines −0.05 0.06
Women’s magazines 0.45 6.44
Constant −2.32 135.92

Reader age is coded as 0 for young adult and 1
for mature adult. Therefore, the coefficient of 0.50
for this explanatory variable suggests that the
probability that the model clothing is not sexual
is higher when the target reader age is mature
adult. In other words, the model clothing is more
likely to be sexual when the target reader age is
young adult. Model gender is coded as 0 for female
and 1 for male. The explanatory variable men’s
magazines is 1 if the intended readership is men
and is 0 for women’s magazines and magazines
intended for both men and women. Women’s
magazines is coded similarly.

(a) State the null and alternative hypotheses for
each of the explanatory variables.

(b) Perform the significance tests associated with
the Wald statistics.

(c) Interpret the sign of each of the statistically
significant coefficients in terms of the probability
that the model clothing is sexual.
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(d) Write an equation for the fitted logistic
regression model.

14.19 Interpret the odds ratios. Refer to the previous
exercise. The researchers also reported odds ratios
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with 95% confidence intervals for this logistic
regression model. Here is a summary:

95% Confidence
Limits

Explanatory
variable Odds ratio Lower Upper

Reader age 1.65 1.27 2.16
Model gender 3.70 2.74 5.01
Men’s magazines 0.96 0.67 1.37
Women’s magazines 1.57 1.11 2.23

(a) Explain the relationship between the
confidence intervals reported here and the results
of the Wald z significance tests that you found in
the previous exercise.

(b) Interpret the results in terms of the odds
ratios.

(c) Write a short summary explaining the results.
Include comments regarding the usefulness of the
fitted coefficients versus the odds ratios.

14.20 What purchases will be made? A poll of 811
adults aged 18 or older asked about purchases
that they intended to make for the upcoming
holiday season.5 One of the questions asked what
kind of gift they intended to buy for the person on
whom they intended to spend the most. Clothing
was the first choice of 487 people.

(a) What proportion of adults said that clothing
was their first choice?

(b) What are the odds that an adult will say that
clothing is his or her first choice?

(c) What proportion of adults said that something
other than clothing was their first choice?

(d) What are the odds that an adult will say that
something other than clothing is his or her first
choice?

(e) How are your answers to parts (a) and (d)
related?

14.21 High-tech companies and stock options.
Different kinds of companies compensate their
key employees in different ways. Established
companies may pay higher salaries, while new
companies may offer stock options that will be
valuable if the company succeeds. Do high-tech
companies tend to offer stock options more often
than other companies? One study looked at a
random sample of 200 companies. Of these,
91 were listed in the Directory of Public High

Technology Corporations, and 109 were not listed.
Treat these two groups as SRSs of high-tech and
non-high-tech companies. Seventy-three of the
high-tech companies and 75 of the non-high-tech
companies offered incentive stock options to key
employees.6

(a) What proportion of the high-tech companies
offer stock options to their key employees? What
are the odds?

(b) What proportion of the non-high-tech
companies offer stock options to their key
employees? What are the odds?

(c) Find the odds ratio using the odds for the
high-tech companies in the numerator. Describe
the result in a few sentences.

14.22 High-tech companies and stock options. Refer
to the previous exercise.

(a) Find the log odds for the high-tech firms. Do
the same for the non-high-tech firms.

(b) Define an explanatory variable x to have the
value 1 for high-tech firms and 0 for non-high-tech
firms. For the logistic model, we set the log odds
equal to β0 + β1x. Find the estimates b0 and b1 for
the parameters β0 and β1.

(c) Show that the odds ratio is equal to eb1 .

14.23 High-tech companies and stock options. Refer
to Exercises 14.21 and 14.23. Software gives
0.3347 for the standard error of b1.

(a) Find the 95% confidence interval for β1.

(b) Transform your interval in (a) to a 95%
confidence interval for the odds ratio.

(c) What do you conclude?

14.24 High-tech companies and stock options.
Refer to Exercises 14.21 to 14.23. Repeat the
calculations assuming that you have twice as
many observations with the same proportions. In
other words, assume that there are 182 high-tech
firms and 218 non-high-tech firms. The numbers
of firms offering stock options are 146 for the
high-tech group and 150 for the non-high-tech
group. The standard error of b1 for this scenario is
0.2366. Summarize your results, paying particular
attention to what remains the same and what is
different from what you found in Exercises 14.21
to 14.23.

14.25 High blood pressure and cardiovascular
disease. There is much evidence that high blood
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pressure is associated with increased risk of death
from cardiovascular disease. A major study of this
association examined 3338 men with high blood
pressure and 2676 men with low blood pressure.
During the period of the study, 21 men in the
low-blood-pressure group and 55 in the high-
blood-pressure group died from cardiovascular
disease.

(a) Find the proportion of men who died from
cardiovascular disease in the high-blood-pressure
group. Then calculate the odds.

(b) Do the same for the low-blood-pressure group.

(c) Now calculate the odds ratio with the odds for
the high-blood-pressure group in the numerator.
Describe the result in words.

14.26 Gender bias in syntax textbooks. To what extent
do syntax textbooks, which analyze the structure
of sentences, illustrate gender bias? A study of this
question sampled sentences from 10 texts.7 One
part of the study examined the use of the words
“girl,” “boy,” “man,” and “woman.” We will call
the first two words juvenile and the last two adult.
Here are data from one of the texts:

Gender n X(juvenile)

Female 60 48
Male 132 52

(a) Find the proportion of the female references
that are juvenile. Then transform this proportion
to odds.

(b) Do the same for the male references.

(c) What is the odds ratio for comparing the
female references to the male references? (Put the
female odds in the numerator.)

14.27 High blood pressure and cardiovascular
disease. Refer to the study of cardiovascular
disease and blood pressure in Exercise 14.25.
Computer output for a logistic regression analysis
of these data gives the estimated slope b1 = 0.7505
with standard error SEb1 = 0.2578.

(a) Give a 95% confidence interval for the slope.

(b) Calculate the X2 statistic for testing the null
hypothesis that the slope is zero and use Table F
to find an approximate P-value.

(c) Write a short summary of the results and
conclusions.

14.28 Gender bias in syntax textbooks. The data
from the study of gender bias in syntax textbooks
given in Exercise 14.26 are analyzed using logistic
regression. The estimated slope is b1 = 1.8171 and
its standard error is SEb1 = 0.3686.

(a) Give a 95% confidence interval for the slope.

(b) Calculate the X2 statistic for testing the null
hypothesis that the slope is zero and use Table F
to find an approximate P-value.

(c) Write a short summary of the results and
conclusions.

14.29 High blood pressure and cardiovascular
disease. The results describing the relationship
between blood pressure and cardiovascular
disease are given in terms of the change in log
odds in Exercise 14.27.

(a) Transform the slope to the odds and the
95% confidence interval for the slope to a 95%
confidence interval for the odds.

(b) Write a conclusion using the odds to describe
the results.

14.30 Gender bias in syntax textbooks. The gender
bias in syntax textbooks is described in the log
odds scale in Exercise 14.28.

(a) Transform the slope to the odds and the
95% confidence interval for the slope to a 95%
confidence interval for the odds.

(b) Write a conclusion using the odds to describe
the results.

14.31 Reducing the number of workers. To be
competitive in global markets, many corporations
are undertaking major reorganizations. Often
these involve “downsizing” or a “reduction in
force” (RIF), where substantial numbers of
employees are terminated. Federal and various
state laws require that employees be treated
equally regardless of their age. In particular,
employees over the age of 40 years are in
a “protected” class, and many allegations of
discrimination focus on comparing employees
over 40 with their younger coworkers. Here are
the data for a recent RIF:

Over 40

Terminated No Yes

Yes 7 41
No 504 765
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(a) Write the logistic regression model for this
problem using the log odds of a RIF as the
response variable and an indicator for over and
under 40 years of age as the explanatory variable.

(b) Explain the assumption concerning binomial
distributions in terms of the variables in this
exercise. To what extent do you think that these
assumptions are reasonable?

(c) Software gives the estimated slope b1 = 1.3504
and its standard error SEb1 = 0.4130. Transform
the results to the odds scale. Summarize the
results and write a short conclusion.

(d) If additional explanatory variables were
available, for example, a performance evaluation,
how would you use this information to study the
RIF?

14.32 Repair times for golf clubs. The Ping Company
makes custom-built golf clubs and competes in
the $4 billion golf equipment industry. To improve
its business processes, Ping decided to seek ISO
9001 certification.8 As part of this process, a study
of the time it took to repair golf clubs sent to the
company by mail determined that 16% of orders
were sent back to the customers in 5 days or less.
Ping examined the processing of repair orders
and made changes. Following the changes, 90%
of orders were completed within 5 days. Assume
that each of the estimated percents is based on
a random sample of 200 orders. Use logistic
regression to examine how the odds that an order
will be filled in 5 days or less has improved. Write
a short report summarizing your results.

14.33 Education level of customers. To devise effective
marketing strategies it is helpful to know the
characteristics of your customers. A study
compared demographic characteristics of people
who use the Internet for travel arrangements and
of people who do not.9 Of 1132 Internet users, 643
had completed college. Among the 852 nonusers,
349 had completed college. Model the log odds of
using the Internet to make travel arrangements
with an indicator variable for having completed
college as the explanatory variable. Summarize
your findings.

14.34 Income level of customers. The study mentioned
in the previous exercise also asked about income.
Among Internet users, 493 reported income of
less than $50,000 and 378 reported income of
$50,000 or more. (Not everyone answered the
income question.) The corresponding numbers for
nonusers were 477 and 200. Repeat the analysis

using an indicator variable for income of $50,000
or more as the explanatory variable. What do you
conclude?

14.35 Alcohol use and bicycle accidents. A study of
alcohol use and deaths due to bicycle accidents
collected data on a large number of fatal
accidents.10 For each of these, the individual
who died was classified according to whether or
not there was a positive test for alcohol and by
gender. Here are the data:

Gender n X(tested positive)

Female 191 27
Male 1520 515

Use logistic regression to study the question of
whether or not gender is related to alcohol use in
people who are fatally injured in bicycle accidents.

14.36 The amount of acetic acid predicts the taste of
cheese. In Examples 14.5 and 14.9, we analyzed
data from the CHEESE data set described in the
Data Appendix. In those examples, we used Acetic
as the explanatory variable. Run the same analysis
using H2S as the explanatory variable.

14.37 What about lactic acid? Refer to the previous
exercise. Run the same analysis using Lactic as
the explanatory variable.

14.38 C
H

ALLENG
E Compare the analyses. For the cheese

data analyzed in Examples 14.9, 14.10,
and the two exercises above, there are three
explanatory variables. There are three different
logistic regressions that include two explanatory
variables. Run these. Summarize the results of
these analyses, the ones using each explanatory
variable alone, and the one using all three
explanatory variables together. What do you
conclude?

The following four exercises use the CSDATA data set
described in the Data Appendix. We examine models for
relating success as measured by the GPA to several
explanatory variables. In Chapter 11 we used multiple
regression methods for our analysis. Here, we define an
indicator variable, say HIGPA, to be 1 if the GPA is 3.0 or
better and 0 otherwise.

14.39 C
H

ALLENG
E Use high school grades to predict high

grade point averages. Use a logistic
regression to predict HIGPA using the three high
school grade summaries as explanatory variables.



Chapter 14 Exercises
•

14-23

(a) Summarize the results of the hypothesis test
that the coefficients for all three explanatory
variables are zero.

(b) Give the coefficient for high school math
grades with a 95% confidence interval. Do the
same for the two other predictors in this model.

(c) Summarize your conclusions based on parts
(a) and (b).

14.40 C
H

ALLENG
E Use SAT scores to predict high grade

point averages. Use a logistic regression
to predict HIGPA using the two SAT scores as
explanatory variables.

(a) Summarize the results of the hypothesis test
that the coefficients for both explanatory variables
are zero.

(b) Give the coefficient for the SAT Math score
with a 95% confidence interval. Do the same for
the SAT Verbal score.

(c) Summarize your conclusions based on parts
(a) and (b).

14.41 C
H

ALLENG
E Use high school grades and SAT scores

to predict high grade point averages.
Run a logistic regression to predict HIGPA using
the three high school grade summaries and the
two SAT scores as explanatory variables. We want
to produce an analysis that is similar to that done
for the case study in Chapter 11.

(a) Test the null hypothesis that the coefficients of
the three high school grade summaries are zero;
that is, test H0: βHSM = βHSS = βHSE = 0.

(b) Test the null hypothesis that the coefficients
of the two SAT scores are zero; that is, test
H0: βSATM = βSATV = 0.

(c) What do you conclude from the tests in (a)
and (b)?

14.42 C
H

ALLENG
E Is there an effect of gender? In this

exercise we investigate the effect of gender
on the odds of getting a high GPA.

(a) Use gender to predict HIGPA using a logistic
regression. Summarize the results.

(b) Perform a logistic regression using gender and
the two SAT scores to predict HIGPA. Summarize
the results.

(c) Compare the results of parts (a) and (b)
with respect to how gender relates to HIGPA.
Summarize your conclusions.

14.43 C
H

ALLENG
E An example of Simpson’s paradox. Here

is an example of Simpson’s paradox, the
reversal of the direction of a comparison or an
association when data from several groups are
combined to form a single group. The data concern
two hospitals, A and B, and whether or not patients
undergoing surgery died or survived. Here are the
data for all patients:

Hospital A Hospital B

Died 63 16
Survived 2037 784

Total 2100 800

And here are the more detailed data where the
patients are categorized as being in good condition
or poor condition:

Good condition

Hospital A Hospital B

Died 6 8
Survived 594 592

Total 600 600

Poor condition

Hospital A Hospital B

Died 57 8
Survived 1443 192

Total 1500 200

(a) Use a logistic regression to model the odds of
death with hospital as the explanatory variable.
Summarize the results of your analysis and give
a 95% confidence interval for the odds ratio of
Hospital A relative to Hospital B.

(b) Rerun your analysis in (a) using hospital
and the condition of the patient as explanatory
variables. Summarize the results of your analysis
and give a 95% confidence interval for the odds
ratio of Hospital A relative to Hospital B.

(c) Explain Simpson’s paradox in terms of your
results in parts (a) and (b).
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CHAPTER 14 Notes

1. Logistic regression models for the general case where
there are more than two possible values for the response
variable have been developed. These are considerably more
complicated and are beyond the scope of our present study.
For more information on logistic regression, see A. Agresti,
An Introduction to Categorical Data Analysis, 2nd ed., Wiley,
2002; and D. W. Hosmer and S. Lemeshow, Applied Logistic
Regression, 2nd ed., Wiley, 2000.

2. This example is taken from a classic text written by a
contemporary of R. A. Fisher, the person who developed
many of the fundamental ideas of statistical inference that
we use today. The reference is D. J. Finney, Probit Analysis,
Cambridge University Press, 1947. Although not included
in the analysis, it is important to note that the experiment
included a control group that received no insecticide. No
aphids died in this group. We have chosen to call the re-
sponse “dead.” In Finney’s book the category is described
as “apparently dead, moribund, or so badly affected as to
be unable to walk more than a few steps.” This is an early
example of the need to make careful judgments when defin-
ing variables to be used in a statistical analysis. An insect
that is “unable to walk more than a few steps” is unlikely to
eat very much of a chrysanthemum plant!

3. From P. Azoulay and S. Shane, “Entrepreneurs, con-
tracts, and the failure of young firms,” Management Science,

47 (2001), pp. 337–358.

4. Marsha A. Dickson, “Utility of no sweat labels for ap-
parel customers: profiling label users and predicting their
purchases,” Journal of Consumer Affairs, 35 (2001), pp. 96–
119.

5. The poll is part of the American Express Retail Index
Project and is reported in Stores, December 2000, pp. 38–
40.

6. Based on Greg Clinch, “Employee compensation and
firms’ research and development activity,” Journal of Ac-
counting Research, 29 (1991), pp. 59–78.

7. Monica Macaulay and Colleen Brice, “Don’t touch
my projectile: gender bias and stereotyping in syntactic
examples,” Language, 73, no. 4 (1997), pp. 798–825.

8. Based on Robert T. Driescher, “A quality swing with
Ping,” Quality Progress, August 2001, pp. 37–41.

9. Karin Weber and Weley S. Roehl, “Profiling people
searching for and purchasing travel products on the World
Wide Web,” Journal of Travel Research, 37 (1999), pp. 291–
298.

10. Guohua Li and Susan P. Baker, “Alcohol in fatally
injured bicyclists,” Accident Analysis and Prevention, 26
(1994), pp. 543–548.
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Is corn yield reduced by the presence of the common weed called lamb’s-quarter?
See Example 15.1 for more details.

15.1 The Wilcoxon Rank Sum Test

15.2 The Wilcoxon Signed Rank
Test

15.3 The Kruskal-Wallis Test
Introduction
The most commonly used methods for inference about
the means of quantitative response variables assume that
the variables in question have Normal distributions in
the population or populations from which we draw our data. In practice, of
course, no distribution is exactly Normal. Fortunately, our usual methods for
inference about population means (the one-sample and two-sample t proce-
dures and analysis of variance) are quite robust. That is, the results of infer- robustness
ence are not very sensitive to moderate lack of Normality, especially when the
samples are reasonably large. Some practical guidelines for taking advantage
of the robustness of these methods appear in Chapter 7.

What can we do if plots suggest that the data are clearly not Normal, es-
pecially when we have only a few observations? This is not a simple question.
Here are the basic options:

1. If lack of Normality is due to outliers, it may be legitimate to remove the out- outlier
liers. An outlier is an observation that may not come from the same popula-
tion as the others. Equipment failure that produced a bad measurement, for
example, entitles you to remove the outlier and analyze the remaining data.
If the outlier appears to be “real data,” you can base inference on statistics
that are more resistant than x and s. Options 4 and 5 below allow this.

15-1
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2. Sometimes we can transform our data so that their distribution is moretransforming data
nearly Normal. Transformations such as the logarithm that pull in the long
tail of right-skewed distributions are particularly helpful. Example 7.10
(page 436) illustrates use of the logarithm. A detailed discussion of transfor-
mations appears in the extra material entitled Transforming Relationships
available on the text CD and Web site.

3. In some settings, other standard distributions replace the Normal distri-other standard distributions
butions as models for the overall pattern in the population. We mentioned in
Chapter 5 (page 344) that the Weibull distributions are common models for
the lifetimes in service of equipment in statistical studies of reliability. There
are inference procedures for the parameters of these distributions that re-
place the t procedures when we use specific non-Normal models.

4. Modern bootstrap methods and permutation tests do not require Normal-bootstrap methods
permutation tests ity or any other specific form of sampling distribution. Moreover, you can

base inference on resistant statistics such as the trimmed mean. We recom-
mend these methods unless the sample is so small that it may not represent
the population well. Chapter 16 gives a full discussion.

5. Finally, there are other nonparametric methods that do not require anynonparametric methods
specific form for the distribution of the population. Unlike bootstrap and
permutation methods, common nonparametric methods do not make use
of the actual values of the observations. The sign test (page 438) works with
counts of observations. This chapter presents rank tests based on the rankrank tests
(place in order) of each observation in the set of all the data.

This chapter concerns rank tests that are designed to replace the t tests and
one-way analysis of variance when the Normality conditions for those tests are
not met. Figure 15.1 presents an outline of the standard tests (based on Normal
distributions) and the rank tests that compete with them. All of these tests re-
quire that the population or populations have continuous distributions. Thatcontinuous distribution
is, each distribution must be described by a density curve that allows observa-
tions to take any value in some interval of outcomes. The Normal curves are
one shape of density curve. Rank tests allow curves of any shape.

The rank tests we will study concern the center of a population or pop-
ulations. When a population has at least roughly a Normal distribution, we
describe its center by the mean. The “Normal tests” in Figure 15.1 all test hy-

Setting Normal test Rank test

One sample One-sample t test Wilcoxon signed rank test
Section 7.1 Section 15.2

Matched pairs Apply one-sample test to differences within pairs

Two independent samples Two-sample t test Wilcoxon rank sum test
Section 7.2 Section 15.1

Several independent samples One-way ANOVA F test Kruskal-Wallis test
Chapter 12 Section 15.3

FIGURE 15.1 Comparison of
tests based on Normal
distributions with nonparametric
tests for similar settings.
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potheses about population means. When distributions are strongly skewed, we
often prefer the median to the mean as a measure of center. In simplest form,
the hypotheses for rank tests just replace mean by median.

We devote a section of this chapter to each of the rank procedures. Section
15.1, which discusses the most common of these tests, also contains general
information about rank tests. The kind of assumptions required, the nature of
the hypotheses tested, the big idea of using ranks, and the contrast between
exact distributions for use with small samples and approximations for use with
larger samples are common to all rank tests. Sections 15.2 and 15.3 more briefly
describe other rank tests.

15.1 The Wilcoxon Rank Sum Test
Two-sample problems (see Section 7.2) are among the most common in statis-
tics. The most useful nonparametric significance test compares two distribu-
tions. Here is an example of this setting.
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E 15.1 Weeds and corn yield. Does the presence of small numbers of
weeds reduce the yield of corn? Lamb’s-quarter is a common weed in corn
fields. A researcher planted corn at the same rate in 8 small plots of ground,
then weeded the corn rows by hand to allow no weeds in 4 randomly selected
plots and exactly 3 lamb’s-quarter plants per meter of row in the other 4 plots.
Here are the yields of corn (bushels per acre) in each of the plots:1

Weeds per meter Yield (bu/acre)

0 166.7 172.2 165.0 176.9
3 158.6 176.4 153.1 156.0

Normal quantile plots (Figure 15.2) suggest that the data may be right-
skewed. The samples are too small to assess Normality adequately or to rely
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FIGURE 15.2 Normal quantile plots of corn yields from plots with no weeds (left) and
with 3 weeds per meter of row (right), for Example 15.1.
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•
on the robustness of the two-sample t test. We prefer to use a test that does
not require Normality.

The rank transformation
We first rank all 8 observations together. To do this, arrange them in order from
smallest to largest:

153.1 156.0 158.6 165.0 166.7 172.2 176.4 176.9

The boldface entries in the list are the yields with no weeds present. We see that
four of the five highest yields come from that group, suggesting that yields are
higher with no weeds. The idea of rank tests is to look just at position in this
ordered list. To do this, replace each observation by its order, from 1 (smallest)
to 8 (largest). These numbers are the ranks:

Yield 153.1 156.0 158.6 165.0 166.7 172.2 176.4 176.9
Rank 1 2 3 4 5 6 7 8

RANKS

To rank observations, first arrange them in order from smallest to largest.
The rank of each observation is its position in this ordered list, starting
with rank 1 for the smallest observation.

Moving from the original observations to their ranks is a transformation of
the data, like moving from the observations to their logarithms. The rank trans-
formation retains only the ordering of the observations and makes no other use
of their numerical values. Working with ranks allows us to dispense with spe-
cific assumptions about the shape of the distribution, such as Normality.

USE YOUR KNOWLEDGE
15.1 Numbers of rooms in top spas. A report of a readers’ poll in Condé

Nast Traveler magazine ranked 36 top resort spas.2 Let Group A be
the top-ranked 18 spas, and let Group B be the next 18 rated spas
in the list. A simple random sample of size 5 was taken from each
group, and the number of rooms in each selected spa was recorded.
Here are the data:

Group A 552 448 68 243 30
Group B 329 780 560 540 240

Rank all of the observations together and make a list of the ranks for
Group A and Group B.
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15.2 The effect of Spa Bellagio on the result. Refer to the previous exer-
cise. Spa Bellagio in Las Vegas is one of the spas in Group B. Suppose
this spa had been the second spa selected in the random sample for
Group B. Replace the observation 780 in Group B by 4003, the num-
ber of rooms in Spa Bellagio. Use the modified data to make a list of
the ranks for Groups A and B combined. What changes?

The Wilcoxon rank sum test
If the presence of weeds reduces corn yields, we expect the ranks of the yields
from plots with weeds to be smaller as a group than the ranks from plots with-
out weeds. We might compare the sums of the ranks from the two treatments:

Treatment Sum of ranks

No weeds 23
Weeds 13

These sums measure how much the ranks of the weed-free plots as a group ex-
ceed those of the weedy plots. In fact, the sum of the ranks from 1 to 8 is always
equal to 36, so it is enough to report the sum for one of the two groups. If the
sum of the ranks for the weed-free group is 23, the ranks for the other group
must add to 13 because 23 + 13 = 36. If the weeds have no effect, we would
expect the sum of the ranks in each group to be 18 (half of 36). Here are the
facts we need in a more general form that takes account of the fact that our
two samples need not be the same size.

THE WILCOXON RANK SUM TEST

Draw an SRS of size n1 from one population and draw an independent
SRS of size n2 from a second population. There are N observations in all,
where N = n1 + n2. Rank all N observations. The sum W of the ranks for
the first sample is the Wilcoxon rank sum statistic. If the two popula-
tions have the same continuous distribution, then W has mean

μW = n1(N + 1)

2

and standard deviation

σW =
√

n1n2(N + 1)

12

The Wilcoxon rank sum test rejects the hypothesis that the two popu-
lations have identical distributions when the rank sum W is far from its
mean.*

*This test was invented by Frank Wilcoxon (1892–1965) in 1945. Wilcoxon was a chemist
who encountered statistical problems in his work at the research laboratories of American
Cyanimid Company.
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In the corn yield study of Example 15.1, we want to test

H0: no difference in distribution of yields

against the one-sided alternative

Ha: yields are systematically higher in weed-free plots

Our test statistic is the rank sum W = 23 for the weed-free plots.

USE YOUR KNOWLEDGE
15.3 Hypotheses and test statistic for top spas. Refer to Exercise 15.1.

State appropriate null and alternative hypotheses for this setting and
calculate the value of W, the test statistic.

15.4 Effect of Spa Bellagio on the test statistic. Refer to Exercise 15.2.
Using the altered data, state appropriate null and alternative hy-
potheses and calculate the value of W, the test statistic.

•
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E 15.2 Perform the significance test. In Example 15.1, n1 = 4, n2 = 4, and
there are N = 8 observations in all. The sum of ranks for the weed-free plots
has mean

μW = n1(N + 1)

2

= (4)(9)

2
= 18

and standard deviation

σW =
√

n1n2(N + 1)

12

=
√

(4)(4)(9)

12
= √

12 = 3.464

Although the observed rank sum W = 23 is higher than the mean, it is only
about 1.4 standard deviations higher. We now suspect that the data do not
give strong evidence that yields are higher in the population of weed-free
corn.

The P-value for our one-sided alternative is P(W ≥ 23), the probability that
W is at least as large as the value for our data when H0 is true.

To calculate the P-value P(W ≥ 23), we need to know the sampling distri-
bution of the rank sum W when the null hypothesis is true. This distribution
depends on the two sample sizes n1 and n2. Tables are therefore a bit unwieldy,
though you can find them in handbooks of statistical tables. Most statistical
software will give you P-values, as well as carry out the ranking and calculate W.
However, some software gives only approximate P-values. You must learn what
your software offers.
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E 15.3 Software output. Figure 15.3 shows the output from software that
calculates the exact sampling distribution of W. We see that the sum of the
ranks in the weed-free group is W = 23, with P-value P = 0.100 against the
one-sided alternative that weed-free plots have higher yields. There is some
evidence that weeds reduce yield, considering that we have data from only
four plots for each treatment. The evidence does not, however, reach the levels
usually considered convincing.

FIGURE 15.3 Output from the
S-PLUS statistical software for
the data in Example 15.1. The
program uses the exact
distribution for W when the
samples are small and there are
no tied observations.

It is worth noting that the two-sample t test gives essentially the same result
as the Wilcoxon test in Example 15.3 (t = 1.554, P = 0.0937). A permutation
test (Chapter 16) for the sample means gives P = 0.084. It is in fact somewhat
unusual to find a strong disagreement among the conclusions reached by these
tests.

The Normal approximation
The rank sum statistic W becomes approximately Normal as the two sample
sizes increase. We can then form yet another z statistic by standardizing W:

z = W − μW

σW

= W − n1(N + 1)/2√
n1n2(N + 1)/12

Use standard Normal probability calculations to find P-values for this statistic.LOOK BACK
continuity correction,
page 326

Because W takes only whole-number values, the continuity correction improves
the accuracy of the approximation.
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E 15.4 The continuity correction. The standardized rank sum statistic W
in our corn yield example is

z = W − μW

σW
= 23 − 18

3.464
= 1.44

We expect W to be larger when the alternative hypothesis is true, so the ap-
proximate P-value is

P(Z ≥ 1.44) = 0.0749
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The continuity correction acts as if the whole number 23 occupies the entire
interval from 22.5 to 23.5. We calculate the P-value P(W ≥ 23) as P(W ≥ 22.5)

because the value 23 is included in the range whose probability we want. Here
is the calculation:

P(W ≥ 22.5) = P
(

W − μW

σW
≥ 22.5 − 18

3.464

)
= P(Z ≥ 1.30)

= 0.0968

The continuity correction gives a result closer to the exact value P = 0.100.

USE YOUR KNOWLEDGE
15.5 The P-value for top spas. Refer to Exercises 15.1 and 15.3. Find μW,

σW, and the standardized rank sum statistic. Then give an approx-
imate P-value using the Normal approximation. What do you con-
clude?

15.6 The effect of Spa Bellagio on the P-value. Refer to Exercises 15.2
and 15.4. Answer the questions for Exercise 15.5 using the altered
data.

We recommend always using either the exact distribution (from software
or tables) or the continuity correction for the rank sum statistic W. The exact
distribution is safer for small samples. As Example 15.4 illustrates, however,
the Normal approximation with the continuity correction is often adequate.
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E 15.5 Software output. Figure 15.4 shows the output for our data from
two more statistical programs. Minitab offers only the Normal approxima-
tion, and it refers to the Mann-Whitney test. This is an alternative form of
the Wilcoxon rank sum test. SAS carries out both the exact and the approx-
imate tests. SAS calls the rank sum S rather than W and gives the mean 18
and standard deviation 3.464 as well as the z statistic 1.299 (using the conti-
nuity correction). SAS gives the approximate two-sided P-value as 0.1939, so
the one-sided result is half this, P = 0.0970. This agrees with Minitab and (up
to a small roundoff error) with our result in Example 15.4. This approximate
P-value is close to the exact result P = 0.100, given by SAS and in Figure 15.3.

Mann-Whitney test

What hypotheses does Wilcoxon test?
Our null hypothesis is that weeds do not affect yield. Our alternative hypothesis
is that yields are lower when weeds are present. If we are willing to assume that
yields are Normally distributed, or if we have reasonably large samples, we use
the two-sample t test for means. Our hypotheses then become

H0: μ1 = μ2

Ha: μ1 > μ2
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(a)

(b)

FIGURE 15.4 Output from the
Minitab and SAS statistical
software for the data in Example
15.1. (a) Minitab uses the Normal
approximation for the
distribution of W . (b) SAS gives
both the exact and approximate
values.

When the distributions may not be Normal, we might restate the hypotheses
in terms of population medians rather than means:

H0: median1 = median2

Ha: median1 > median2

The Wilcoxon rank sum test does test hypotheses about population medians, but

CAUTION

! only if an additional assumption is met: both populations must have distribu-
tions of the same shape. That is, the density curve for corn yields with 3 weeds
per meter looks exactly like that for no weeds except that it may slide to a
different location on the scale of yields. The Minitab output in Figure 15.4(a)
states the hypotheses in terms of population medians (which it calls “ETA”) and
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also gives a confidence interval for the difference between the two population
medians.

The same-shape assumption is too strict to be reasonable in practice. Re-
call that our preferred version of the two-sample t test does not require that the
two populations have the same standard deviation—that is, it does not make a
same-shape assumption. Fortunately, the Wilcoxon test also applies in a much
more general and more useful setting. It tests hypotheses that we can state in
words as

H0: The two distributions are the same.

Ha: One distribution has values that are systematically larger.

Here is a more exact statement of the “systematically larger” alternative hy-
pothesis. Take X1 to be corn yield with no weeds and X2 to be corn yield with
3 weeds per meter. These yields are random variables. That is, every time we
plant a plot with no weeds, the yield is a value of the variable X1. The probabil-
ity that the yield is more than 160 bushels per acre when no weeds are present
is P(X1 > 160). If weed-free yields are “systematically larger” than those with
weeds, yields higher than 160 should be more likely with no weeds. That is, we
should have

P(X1 > 160) > P(X2 > 160)

The alternative hypothesis says that this inequality holds not just for 160 but
for any yield we care to specify. No weeds always puts more probability “to the
right” of whatever yield we are interested in.3

This exact statement of the hypotheses we are testing is a bit awkward. The
hypotheses really are “nonparametric” because they do not involve any spe-
cific parameter such as the mean or median. If the two distributions do have
the same shape, the general hypotheses reduce to comparing medians. Many
texts and computer outputs state the hypotheses in terms of medians, some-
times ignoring the same-shape requirement. We recommend that you express
the hypotheses in words rather than symbols. “Yields are systematically higher
in weed-free plots” is easy to understand and is a good statement of the effect
that the Wilcoxon test looks for.

Ties
The exact distribution for the Wilcoxon rank sum is obtained assuming that
all observations in both samples take different values. This allows us to rank
them all. In practice, however, we often find observations tied at the same value.
What shall we do? The usual practice is to assign all tied values the average ofaverage ranks
the ranks they occupy. Here is an example with 6 observations:

Observation 153 155 158 158 161 164
Rank 1 2 3.5 3.5 5 6

The tied observations occupy the third and fourth places in the ordered list, so
they share rank 3.5.

The exact distribution for the Wilcoxon rank sum W changes if the data
contain ties. Moreover, the standard deviation σW must be adjusted if ties are
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present. The Normal approximation can be used after the standard deviation is
adjusted. Statistical software will detect ties, make the necessary adjustment,
and switch to the Normal approximation. In practice, software is required if
you want to use rank tests when the data contain tied values.

It is sometimes useful to use rank tests on data that have very many ties be-
cause the scale of measurement has only a few values. Here is an example.
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E 15.6 Food safety. Food sold at outdoor fairs and festivals may be less safe
than food sold in restaurants because it is prepared in temporary locations
and often by volunteer help. What do people who attend fairs think about the
safety of the food served? One study asked this question of people at a number
of fairs in the Midwest:

How often do you think people become sick because of food they consume
prepared at outdoor fairs and festivals?

The possible responses were:

1 = very rarely

2 = once in a while

3 = often

4 = more often than not

5 = always

In all, 303 people answered the question. Of these, 196 were women and 107
were men. Is there good evidence that men and women differ in their percep-
tions about food safety at fairs?4

We should first ask if the subjects in Example 15.6 are a random sample of
people who attend fairs, at least in the Midwest. The researcher visited 11 differ-
ent fairs. She stood near the entrance and stopped every 25th adult who passed.
Because no personal choice was involved in choosing the subjects, we can rea-
sonably treat the data as coming from a random sample. (As usual, there was
some nonresponse, which could create bias.)

Here are the data, presented as a two-way table of counts:

Response

1 2 3 4 5 Total

Female 13 108 50 23 2 196
Male 22 57 22 5 1 107

Total 35 165 72 28 3 303

Comparing row percents shows that the women in the sample are more con-
cerned about food safety than the men:
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Response

1 2 3 4 5 Total

Female 6.6% 55.1% 25.5% 11.7% 1.0% 100%
Male 20.6% 53.3% 20.6% 4.7% 1.0% 100%

Is the difference between the genders statistically significant?
We might apply the chi-square test (Chapter 9). It is highly significant (X2 =

16.120, df = 4, P = 0.0029). Although the chi-square test answers our general
question, it ignores the ordering of the responses and so does not use all of the
available information. We would really like to know whether men or women
are more concerned about the safety of the food served. This question depends
on the ordering of responses from least concerned to most concerned. We can
use the Wilcoxon test for the hypotheses:

H0: Men and women do not differ in their responses.

Ha: One of the two genders gives systematically larger responses
than the other.

The alternative hypothesis is two-sided. Because the responses can take only
five values, there are very many ties. All 35 people who chose “very rarely” are
tied at 1, and all 165 who chose “once in a while” are tied at 2.
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E 15.7 Software output. Figure 15.5 gives software output for the Wilcoxon
test. The rank sum for men (using average ranks for ties) is W = 14,059.5. The
standardized value is z = −3.33, with two-sided P-value P = 0.0009. There is
very strong evidence of a difference. Women are more concerned than men
about the safety of food served at fairs.

With more than 100 observations in each group and no outliers, we might
use the two-sample t even though responses take only five values. In fact, the
results for Example 15.6 are t = 3.3655 with P = 0.0009. The P-value for the
two-sample t is the same as that for the Wilcoxon test. There is, however,
another reason to prefer the rank test in this example. The t statistic treats
the response values 1 through 5 as meaningful numbers. In particular, the pos-
sible responses are treated as though they are equally spaced. The difference
between “very rarely” and “once in a while” is the same as the difference be-
tween “once in a while” and “often.” This may not make sense. The rank test,
on the other hand, uses only the order of the responses, not their actual values.
The responses are arranged in order from least to most concerned about safety,
so the rank test makes sense. Some statisticians avoid using t procedures when
there is not a fully meaningful scale of measurement.

CAUTION

!
Rank, t, and permutation tests
The two-sample t procedures are the most common method for comparing the
centers of two populations based on random samples from each. The Wilcoxon
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FIGURE 15.5 Output from SAS
for the food safety study of
Example 15.6. The approximate
two-sided P-value is 0.0009.

rank sum test is a competing procedure that does not start from the condition
that the populations have Normal distributions. Permutation tests (Chapter 16)
also avoid the need for Normality. Tests based on Normality, rank tests, and
permutation tests apply in many other settings as well. How do these three ap-
proaches compare in general?

First consider rank tests versus traditional tests based on Normal distribu-
tions. Both are available in almost all statistical software.

• Moving from the actual data values to their ranks allows us to find an exact
sampling distribution for rank statistics such as the Wilcoxon rank sum W
when the null hypothesis is true. (Most software will do this only if there
are no ties and if the samples are quite small.) When our samples are small,
are truly random samples from the populations, and show non-Normal dis-
tributions of the same shape, the Wilcoxon test is more reliable than the
two-sample t test. In practice, the robustness of t procedures implies that we
rarely encounter data that require nonparametric procedures to obtain rea-
sonably accurate P-values. The t and W tests give very similar results in our
examples. Nonetheless, many statisticians would not use a t test in Example
15.6 because the response variable gives only the order of the responses.

• Normal tests compare means and are accompanied by simple confidence
intervals for means or differences between means. When we use rank tests
to compare medians, we can also give confidence intervals for medians.
However, the usefulness of rank tests is clearest in settings when they do
not simply compare medians—see the discussion “What hypotheses does
Wilcoxon test?” Rank methods emphasize tests, not confidence intervals.

• Inference based on ranks is largely restricted to simple settings. Normal in-
ference extends to methods for use with complex experimental designs and
multiple regression, but nonparametric tests do not. We stress Normal infer-
ence in part because it leads to more advanced statistics.
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If you have read Chapter 16 and use software that makes permutation tests
available to you, you will also want to compare rank tests with resampling
methods.

• Both rank and permutation tests are nonparametric. That is, they require no
assumptions about the shape of the population distribution. A two-sample
permutation test has the same null hypothesis as the Wilcoxon rank sum test:
that the two population distributions are identical. Calculation of the sam-
pling distribution under the null hypothesis is similar for both tests but is
simpler for rank tests because it depends only on the sizes of the samples. As
a result, software often gives exact P-values for rank tests but not for permu-
tation tests.

• Permutation tests have the advantage of flexibility. They allow wide choice
of the statistic used to compare two samples, an advantage over both t and
Wilcoxon. In fact, we could apply the permutation test method to sample
means (imitating t) or to rank sums (imitating Wilcoxon), as well as to other
statistics such as the trimmed mean. Permutation tests are not available in
some settings, such as testing hypotheses about a single population, though
bootstrap confidence intervals do allow resampling tests in these settings.
Permutation tests are available for multiple regression and some other quite
elaborate settings.

• An important advantage of resampling methods over both Normal and rank
procedures is that we can get bootstrap confidence intervals for the parame-
ter corresponding to whatever statistic we choose for the permutation test. If
the samples are very small, however, bootstrap confidence intervals may be
unreliable because the samples don’t represent the population well enough
to provide a good basis for bootstrapping.

In general, both Normal distribution methods and resampling methods are
more useful than rank tests. If you are familiar with resampling, we recommend

CAUTION

! rank tests only for very small samples, and even then only if your software gives
exact P-values for rank tests but not for permutation tests.

SECTION 15.1 Summary

Nonparametric tests do not require any specific form for the distribution of
the population from which our samples come.

Rank tests are nonparametric tests based on the ranks of observations, their
positions in the list ordered from smallest (rank 1) to largest. Tied observations
receive the average of their ranks.

The Wilcoxon rank sum test compares two distributions to assess whether
one has systematically larger values than the other. The Wilcoxon test is based
on the Wilcoxon rank sum statistic W, which is the sum of the ranks of one
of the samples. The Wilcoxon test can replace the two-sample t test.

P-values for the Wilcoxon test are based on the sampling distribution of the
rank sum statistic W when the null hypothesis (no difference in distributions)
is true. You can find P-values from special tables, software, or a Normal approx-
imation (with continuity correction).
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SECTION 15.1 Exercises
For Exercises 15.1 and 15.2, see pages 15-4 and 15-5; for
Exercises 15.3 and 15.4, see page 15-6; and for Exercises
15.5 and 15.6, see page 15-8.

Statistical software is very helpful in doing these
exercises. If you do not have access to software, base your
work on the Normal approximation with continuity
correction.

15.7 Storytelling and the use of language. A study
of early childhood education asked kindergarten
students to retell two fairy tales that had been read
to them earlier in the week. The 10 children in
the study included 5 high-progress readers and 5
low-progress readers. Each child told two stories.
Story 1 had been read to them; Story 2 had been
read and also illustrated with pictures. An expert
listened to a recording of the children and assigned
a score for certain uses of language. Here are the
data:5

Story 1 Story 2
Child Progress score score

1 high 0.55 0.80
2 high 0.57 0.82
3 high 0.72 0.54
4 high 0.70 0.79
5 high 0.84 0.89
6 low 0.40 0.77
7 low 0.72 0.49
8 low 0.00 0.66
9 low 0.36 0.28

10 low 0.55 0.38

Is there evidence that the scores of high-progress
readers are higher than those of low-progress
readers when they retell a story they have heard
without pictures (Story 1)?

(a) Make Normal quantile plots for the 5 responses
in each group. Are any major deviations from
Normality apparent?

(b) Carry out a two-sample t test. State hypotheses
and give the two sample means, the t statistic and
its P-value, and your conclusion.

(c) Carry out the Wilcoxon rank sum test. State
hypotheses and give the rank sum W for high-
progress readers, its P-value, and your conclusion.
Do the t and Wilcoxon tests lead you to different
conclusions?

15.8 Repeat the analysis for Story 2. Repeat the
analysis of Exercise 15.7 for the scores when
children retell a story they have heard and seen
illustrated with pictures (Story 2).

15.9 Do the calculations by hand. Use the data in
Exercise 15.7 for children telling Story 2 to carry
out by hand the steps in the Wilcoxon rank sum
test.

(a) Arrange the 10 observations in order and assign
ranks. There are no ties.

(b) Find the rank sum W for the five high-progress
readers. What are the mean and standard deviation
of W under the null hypothesis that low-progress
and high-progress readers do not differ?

(c) Standardize W to obtain a z statistic. Do a
Normal probability calculation with the continuity
correction to obtain a one-sided P-value.

(d) The data for Story 1 contain tied observations.
What ranks would you assign to the 10 scores for
Story 1?

15.10 Weeds and corn yield. The corn yield study of
Example 15.1 also examined yields in four plots
having 9 lamb’s-quarter plants per meter of row.
The yields (bushels per acre) in these plots were

162.8 142.4 162.7 162.4

There is a clear outlier, but rechecking the results
found that this is the correct yield for this plot.
The outlier makes us hesitant to use t procedures
because x̄ and s are not resistant.

(a) Is there evidence that 9 weeds per meter
reduces corn yields when compared with weed-free
corn? Use the Wilcoxon rank sum test with the data
above and some of the data from Example 15.1 to
answer this question.

(b) Compare the results from (a) with those from
the two-sample t test for these data.

(c) Now remove the low outlier 142.4 from the data
for 9 weeds per meter. Repeat both the Wilcoxon
and t analyses. By how much did the outlier reduce
the mean yield in its group? By how much did
it increase the standard deviation? Did it have a
practically important impact on your conclusions?

15.11 Decay of polyester fabrics in landfills. How
quickly do synthetic fabrics such as polyester
decay in landfills? A researcher buried polyester
strips in the soil for different lengths of time,
then dug up the strips and measured the force
required to break them. Breaking strength is easy
to measure and is a good indicator of decay. Lower
strength means the fabric has decayed. Part of
the study involved burying 10 polyester strips in
well-drained soil in the summer. Five of the strips,
chosen at random, were dug up after 2 weeks; the
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other 5 were dug up after 16 weeks. Here are the
breaking strengths in pounds:6

2 weeks 118 126 126 120 129
16 weeks 124 98 110 140 110

(a) Make a back-to-back stemplot. Does it appear
reasonable to assume that the two distributions
have the same shape?

(b) Is there evidence that breaking strengths are
lower for strips buried longer?

15.12 Learning math through subliminal messages.
A “subliminal” message is below our threshold of
awareness but may nonetheless influence us. Can
subliminal messages help students learn math? A
group of students who had failed the mathematics
part of the City University of New York Skills
Assessment Test agreed to participate in a study to
find out. All received a daily subliminal message,
flashed on a screen too rapidly to be consciously
read. The treatment group of 10 students was
exposed to “Each day I am getting better in math.”
The control group of 8 students was exposed to
a neutral message, “People are walking on the
street.” All students participated in a summer
program designed to raise their math skills, and
all took the assessment test again at the end of
the program. Here are data on the subjects’ scores
before and after the program:7

Treatment Group Control Group

Pretest Posttest Pretest Posttest

18 24 18 29
18 25 24 29
21 33 20 24
18 29 18 26
18 33 24 38
20 36 22 27
23 34 15 22
23 36 19 31
21 34
17 27

(a) The study design was a randomized
comparative experiment. Outline this design.

(b) Compare the gain in scores in the two groups,
using a graph and numerical descriptions. Does it
appear that the treatment group’s scores rose more
than the scores for the control group?

(c) Apply the Wilcoxon rank sum test to the
posttest versus pretest differences. Note that there
are some ties. What do you conclude?

15.13 Effects of logging in Borneo. “Conservationists
have despaired over destruction of tropical
rainforest by logging, clearing, and burning.”
These words begin a report on a statistical study of
the effects of logging in Borneo.8 Here are data on
the number of tree species in 12 unlogged forest
plots and 9 similar plots logged 8 years earlier:

Unlogged Logged

22 18 17 4
22 20 18 14
15 21 18 15
13 13 15 10
19 13 12
19 15

(a) Make a back-to-back stemplot of the data. Does
there appear to be a difference in species counts
for logged and unlogged plots?

(b) Does logging significantly reduce the number
of species in a plot after 8 years? State hypotheses,
do a Wilcoxon test, and state your conclusion.

15.14 Improved methods for teaching reading. Do
new “directed reading activities” improve the
reading ability of elementary school students, as
measured by their Degree of Reading Power (DRP)
score? A study assigns students at random to either
the new method (treatment group, 21 students) or
traditional teaching methods (control group, 23
students). Here are the DRP scores at the end of
the study:9

Treatment group Control group

24 61 59 46 42 33 46 37
43 44 52 43 43 41 10 42
58 67 62 57 55 19 17 55
71 49 54 26 54 60 28
43 53 57 62 20 53 48
49 56 33 37 85 42

For these data the two-sample t test (Example
7.14) gives P = 0.013 and a permutation test based
on the difference of means (Example 16.12) gives
P = 0.015. Both of these tests are based on the
difference of sample means. Does the Wilcoxon
test, based on rank sums rather than means, give a
similar P-value?
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15.15 Food safety. Example 15.12 describes a study
of the attitudes of people attending outdoor
fairs about the safety of the food served at such
locations. The full data set with the responses
of 300 people to several questions is in the file
eg15 012. The variables in this data set are (in
order)

subject hfair sfair sfast srest gender

The variable “sfair” contains the responses
described in the example concerning safety of
food served at outdoor fairs and festivals. The
variable “srest” contains responses to the same
question asked about food served in restaurants.
The variable “gender” contains 1 if the respondent
is a woman, 2 if he is a man. We saw that women
are more concerned than men about the safety of
food served at fairs. Is this also true for restaurants?

15.16 Compare fairs with restaurants. The data file
used in Example 15.6 and Exercise 15.15 contains
303 rows, one for each of the 303 respondents.
Each row contains the responses of one person
to several questions. We wonder if people are
more concerned about the safety of food served at
fairs than they are about the safety of food served
at restaurants. Explain carefully why we cannot
answer this question by applying the Wilcoxon
rank sum test to the variables “sfair” and “srest.”

15.17 Attitudes toward secondhand stores. To study
customers’ attitudes toward secondhand stores,
researchers interviewed samples of shoppers at
two secondhand stores of the same chain in two
cities. Here are data on the incomes of shoppers
at the two stores, presented as a two-way table of
counts:10

Income City 1 City 2

Under $10,000 70 62
$10,000 to $19,999 52 63
$20,000 to $24,999 69 50
$25,000 to $34,999 22 19
$35,000 or more 28 24

(a) Is there a relationship between city and
income? Use the chi-square test to answer this
question.

(b) The chi-square test ignores the ordering of the
income categories. The data file ex15 11 contains
data on the 459 shoppers in this study. The first
variable is the city (City1 or City2) and the second
is the income as it is coded in the table above. Is
there good evidence that shoppers in one city have
systematically higher incomes than in the other?

15.2 The Wilcoxon Signed Rank Test
We use the one-sample t procedures for inference about the mean of one pop-
ulation or for inference about the mean difference in a matched pairs setting.
The matched pairs setting is more important because good studies are gener-
ally comparative. We will now meet a rank test for this setting.
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E 15.8 Storytelling and reading. A study of early childhood education
asked kindergarten students to retell two fairy tales that had been read to
them earlier in the week. Each child told two stories. The first had been read
to them, and the second had been read but also illustrated with pictures. An
expert listened to a recording of the children and assigned a score for certain
uses of language. Here are the data for five “low-progress” readers in a pilot
study:11

Child 1 2 3 4 5

Story 2 0.77 0.49 0.66 0.28 0.38
Story 1 0.40 0.72 0.00 0.36 0.55
Difference 0.37 −0.23 0.66 −0.08 −0.17



15-18
•

CHAPTER 15 • Nonparametric Tests

•

We wonder if illustrations improve how the children retell a story. We would
like to test the hypotheses

H0: Scores have the same distribution for both stories.

Ha: Scores are systematically higher for Story 2.

Because this is a matched pairs design, we base our inference on the dif-
ferences. The matched pairs t test gives t = 0.635 with one-sided P-value
P = 0.280. Displays of the data (Figure 15.6) suggest some lack of Normality.
We would therefore like to use a rank test.

D
if

fe
re

nc
es

–3 –2 –1 0
Normal score

1 2 3

–0.2

0.0

0.2

0.4

0.6

–0.4 –0.2 0.0 0.2
Differences

0.4 0.6 0.8
0.0

1.0

2.0

FIGURE 15.6 Normal quantile plot and histogram for the five differences in Example
15.8.

Positive differences in Example 15.8 indicate that the child performed better
telling Story 2. If scores are generally higher with illustrations, the positive dif-
ferences should be farther from zero in the positive direction than the negative
differences are in the negative direction. We therefore compare the absoluteabsolute value
values of the differences, that is, their magnitudes without a sign. Here they
are, with boldface indicating the positive values:

0.37 0.23 0.66 0.08 0.17

Arrange these in increasing order and assign ranks, keeping track of which val-
ues were originally positive. Tied values receive the average of their ranks. If
there are differences of zero, discard them before ranking.

Absolute value 0.08 0.17 0.23 0.37 0.66
Rank 1 2 3 4 5

The test statistic is the sum of the ranks of the positive differences. (We could
equally well use the sum of the ranks of the negative differences.) This is the
Wilcoxon signed rank statistic. Its value here is W+ = 9.
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THE WILCOXON SIGNED RANK TEST FOR MATCHED PAIRS

Draw an SRS of size n from a population for a matched pairs study and
take the differences in responses within pairs. Rank the absolute values
of these differences. The sum W+ of the ranks for the positive differ-
ences is the Wilcoxon signed rank statistic. If the distribution of the
responses is not affected by the different treatments within pairs, then
W+ has mean

μW+ = n(n + 1)

4

and standard deviation

σW+ =
√

n(n + 1)(2n + 1)

24

The Wilcoxon signed rank test rejects the hypothesis that there are no
systematic differences within pairs when the rank sum W+ is far from
its mean.

USE YOUR KNOWLEDGE
15.18 Services provided by top spas. The readers’ poll in Condé Nast

Traveler magazine that ranked 36 top resort spas and that was de-
scribed in Exercise 15.1 also reported scores on Diet/Cuisine and on
Program/Facilities. Here are the scores for a random sample of 7
spas that ranked in the top 18:

Spa 1 2 3 4 5 6 7

Diet/Cuisine 90.9 92.3 88.6 81.8 85.7 88.9 81.0
Program/Facilities 93.8 92.3 91.4 95.0 89.2 88.2 81.8

Is food, expressed by the Diet/Cuisine score, more important than ac-
tivities, expressed as the Program/Facilities score, for a top ranking?
Formulate this question in terms of null and alternative hypotheses.
Then compute the differences and find the value of the Wilcoxon
signed rank statistic, W+.

15.19 Scores for lower-ranked spas. Refer to the previous exercise. Here
are the scores for a random sample of 7 spas that ranked between 19
and 36:

Spa 1 2 3 4 5 6 7

Diet/Cuisine 77.3 85.7 84.2 85.3 83.7 84.6 78.5
Program/Facilities 95.7 78.0 87.2 85.3 93.6 76.0 86.3

Answer the questions from the previous exercise for this setting.
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E 15.9 Software output. In the storytelling study of Example 15.8, n = 5.
If the null hypothesis (no systematic effect of illustrations) is true, the mean
of the signed rank statistic is

μW+ = n(n + 1)

4
= (5)(6)

4
= 7.5

Our observed value W+ = 9 is only slightly larger than this mean. The one-
sided P-value is P(W+ ≥ 9).

Figure 15.7 displays the output of two statistical programs. We see from
Figure 15.7(a) that the one-sided P-value for the Wilcoxon signed rank test
with n = 5 observations and W+ = 9 is P = 0.4062. This result differs from
the t test result P = 0.280, but both tell us that this very small sample gives
no evidence that seeing illustrations improves the storytelling of low-progress
readers.

(a)

(b)

FIGURE 15.7 Output from
(a) S-PLUS and (b) SPSS for the
storytelling study of Example
15.8. S-PLUS reports the exact
P-value, P = 0.4062. SPSS uses
the Normal approximation
without the continuity correction
and so gives a less accurate
P-value, P = 0.343 (one-sided).

The Normal approximation
The distribution of the signed rank statistic when the null hypothesis (no differ-
ence) is true becomes approximately Normal as the sample size becomes large.
We can then use Normal probability calculations (with the continuity correc-
tion) to obtain approximate P-values for W+. Let’s see how this works in the
storytelling example, even though n = 5 is certainly not a large sample.
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E 15.10 The Normal approximation. For n = 5 observations, we saw in
Example 15.9 that μW+ = 7.5. The standard deviation of W+ under the null
hypothesis is

σW+ =
√

n(n + 1)(2n + 1)

24

=
√

(5)(6)(11)

24

= √
13.75 = 3.708

The continuity correction calculates the P-value P(W+ ≥ 9) as P(W+ ≥ 8.5),
treating the value W+ = 9 as occupying the interval from 8.5 to 9.5. We find
the Normal approximation for the P-value by standardizing and using the
standard Normal table:

P(W+ ≥ 8.5) = P
(

W+ − 7.5
3.708

≥ 8.5 − 7.5
3.708

)
= P(Z ≥ 0.27)

= 0.394

Despite the small sample size, the Normal approximation gives a result quite
close to the exact value P = 0.4062. Figure 15.7(b) shows that the approxi-
mation is much less accurate without the continuity correction. This output
reminds us not to trust software unless we know exactly what it does.

CAUTION

!

USE YOUR KNOWLEDGE
15.20 Significance test for top-ranked spas. Refer to Exercise 15.18.

Find μW+ , σW+ , and the Normal approximation for the P-value for
the Wilcoxon signed rank test.

15.21 Significance test for lower-ranked spas. Refer to Exercise 15.19.
Find μW+ , σW+ , and the Normal approximation for the P-value for
the Wilcoxon signed rank test.

Ties
Ties among the absolute differences are handled by assigning average ranks. A
tie within a pair creates a difference of zero. Because these are neither positive
nor negative, the usual procedure simply drops such pairs from the sample.
This amounts to dropping observations that favor the null hypothesis (no dif-

CAUTION

! ference). If there are many ties, the test may be biased in favor of the alternative
hypothesis. As in the case of the Wilcoxon rank sum, ties complicate finding a
P-value. Most software no longer provides an exact distribution for the signed
rank statistic W+, and the standard deviation σW+ must be adjusted for the ties
before we can use the Normal approximation. Software will do this. Here is an
example.
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E 15.11 Golf scores of a women’s golf team. Here are the golf scores of
12 members of a college women’s golf team in two rounds of tournament play.
(A golf score is the number of strokes required to complete the course, so that
low scores are better.)

Player 1 2 3 4 5 6 7 8 9 10 11 12

Round 2 94 85 89 89 81 76 107 89 87 91 88 80
Round 1 89 90 87 95 86 81 102 105 83 88 91 79
Difference 5 −5 2 −6 −5 −5 5 −16 4 3 −3 1

Negative differences indicate better (lower) scores on the second round. We
see that 6 of the 12 golfers improved their scores. We would like to test the
hypotheses that in a large population of collegiate women golfers

H0: Scores have the same distribution in Rounds 1 and 2.

Ha: Scores are systematically lower or higher in Round 2.

A Normal quantile plot of the differences (Figure 15.8) shows some irregular-
ity and a low outlier. We will use the Wilcoxon signed rank test.
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FIGURE 15.8 Normal quantile
plot of the differences in scores
for two rounds of a golf
tournament, for Example 15.11.

The absolute values of the differences, with boldface indicating those that
were negative, are

5 5 2 6 5 5 5 16 4 3 3 1

Arrange these in increasing order and assign ranks, keeping track of which val-
ues were originally negative. Tied values receive the average of their ranks.
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Absolute value 1 2 3 3 4 5 5 5 5 5 6 16
Rank 1 2 3.5 3.5 5 8 8 8 8 8 11 12

The Wilcoxon signed rank statistic is the sum of the ranks of the negative dif-
ferences. (We could equally well use the sum of the ranks of the positive differ-
ences.) Its value is W+ = 50.5.
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E 15.12 Software output. Here are the two-sided P-values for the Wilcoxon
signed rank test for the golf score data from several statistical programs:

Program P-value

Minitab P = 0.388
SAS P = 0.388
S-PLUS P = 0.384
SPSS P = 0.363

All lead to the same practical conclusion: these data give no evidence for a
systematic change in scores between rounds. However, the P-values reported
differ a bit from program to program. The reason for the variations is that
the programs use slightly different versions of the approximate calculations
needed when ties are present. The exact result depends on which of these vari-
ations the programmer chooses to use.

For these data, the matched pairs t test gives t = 0.9314 with P = 0.3716.
Once again, t and W+ lead to the same conclusion.

SECTION 15.2 Summary

The Wilcoxon signed rank test applies to matched pairs studies. It tests the
null hypothesis that there is no systematic difference within pairs against alter-
natives that assert a systematic difference (either one-sided or two-sided).

The test is based on the Wilcoxon signed rank statistic W+, which is the sum
of the ranks of the positive (or negative) differences when we rank the abso-
lute values of the differences. The matched pairs t test and the sign test are
alternative tests in this setting.

P-values for the signed rank test are based on the sampling distribution of W+
when the null hypothesis is true. You can find P-values from special tables, soft-
ware, or a Normal approximation (with continuity correction).

SECTION 15.2 Exercises
For Exercises 15.18 and 15.19, see page 15-19; and for
Exercises 15.20 and 15.21, see page 15-21.

Statistical software is very helpful in doing these
exercises. If you do not have access to software, base your
work on the Normal approximation with continuity
correction.

15.22 Carbon dioxide and plant growth. The
concentration of carbon dioxide (CO2) in the
atmosphere is increasing rapidly due to our use
of fossil fuels. Because plants use CO2 to fuel
photosynthesis, more CO2 may cause trees and
other plants to grow faster. An elaborate apparatus
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allows researchers to pipe extra CO2 to a 30-meter
circle of forest. They set up three pairs of circles
in different parts of a forest in North Carolina.
One of each pair received extra CO2 for an entire
growing season, and the other received ambient
air. The response variable is the average growth in
base area for trees in a circle, as a fraction of the
starting area. Here are the data for one growing
season:12

Pair Control Treatment

1 0.06528 0.08150
2 0.05232 0.06334
3 0.04329 0.05936

(a) Summarize the data. Does it appear that
growth was faster in the treated plots?

(b) The researchers used a matched pairs t test to
see if the data give good evidence of faster growth
in the treated plots. State hypotheses, carry out the
test, and state your conclusion.

(c) The sample is so small that we cannot assess
Normality. To be safe, we might use the Wilcoxon
signed rank test. Carry out this test and report your
result.

(d) The tests lead to very different conclusions.
The primary reason is the lack of power of rank
tests for very small samples. Explain to someone
who knows no statistics what this means.

15.23 Heart rate and exercise. A student project asked
subjects to step up and down for three minutes
and measured their heart rates before and after
the exercise. Here are data for five subjects and
two treatments: stepping at a low rate (14 steps
per minute) and at a medium rate (21 steps per
minute). For each subject, we give the resting heart
rate (beats per minute) and the heart rate at the
end of the exercise.13

Low Rate Medium Rate

Subject Resting Final Resting Final

1 60 75 63 84
2 90 99 69 93
3 87 93 81 96
4 78 87 75 90
5 84 84 90 108

Does exercise at the low rate raise heart rate
significantly? State hypotheses in terms of the

median increase in heart rate and apply the
Wilcoxon signed rank test. What do you conclude?

15.24 Compare exercise at a medium rate with
exercise at a low rate. Do the data from the
previous exercise give good reason to think that
stepping at the medium rate increases heart rates
more than stepping at the low rate?

(a) State hypotheses in terms of comparing the
median increases for the two treatments. What is
the proper rank test for these hypotheses?

(b) Carry out your test and state a conclusion.

15.25 The full moon and behavior. Can the full moon
influence behavior? A study observed 15 nursing-
home patients with dementia. The number of
incidents of aggressive behavior was recorded each
day for 12 weeks. Call a day a “moon day” if it is the
day of a full moon or the day before or after a full
moon. Here are the average numbers of aggressive
incidents for moon days and other days for each
subject:14

Patient Moon days Other days

1 3.33 0.27
2 3.67 0.59
3 2.67 0.32
4 3.33 0.19
5 3.33 1.26
6 3.67 0.11
7 4.67 0.30
8 2.67 0.40
9 6.00 1.59

10 4.33 0.60
11 3.33 0.65
12 0.67 0.69
13 1.33 1.26
14 0.33 0.23
15 2.00 0.38

The matched pairs t test (Example 7.7) gives
P < 0.000015 and a permutation test (Example
16.14) gives P = 0.0001. Does the Wilcoxon signed
rank test, based on ranks rather than means, agree
that there is strong evidence that there are more
aggressive incidents on moon days?

15.26 A summer language institute for teachers. A
matched pairs study of the effect of a summer
language institute on the ability of teachers
to comprehend spoken French had these
improvements in scores between the pretest
and the posttest for 20 teachers:

2 0 6 6 3 3 2 3 −6 6
6 6 3 0 1 1 0 2 3 3
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(Exercise 7.41 applies the t test to these data;
Exercise 16.59 applies a permutation test based
on the means.) Show the assignment of ranks and
the calculation of the signed rank statistic W+ for
these data. Remember that zeros are dropped from
the data before ranking, so that n is the number of
nonzero differences within pairs.

15.27 Food safety. Example 15.6 describes a study of the
attitudes of people attending outdoor fairs about
the safety of the food served at such locations. The
full data set is available on the text CD and Web
site as the file eg15 006. It contains the responses
of 303 people to several questions. The variables in
this data set are (in order)

subject hfair sfair sfast srest gender

The variable “sfair” contains responses to the
safety question described in Example 15.6. The
variable “srest” contains responses to the same
question asked about food served in restaurants.
We suspect that restaurant food will appear safer
than food served outdoors at a fair. Do the data give
good evidence for this suspicion? (Give descriptive
measures, a test statistic and its P-value, and your
conclusion.) Why might we hesitate to accept a
small P-value as good evidence against H0 for these
data?

15.28 Use of latex gloves by nurses. How often do
nurses use latex gloves during procedures for
which glove use is recommended? A matched pairs
study observed nurses (without their knowledge)
before and after a presentation on the importance
of glove use. Here are the proportions of procedures
for which each nurse wore gloves:15

Nurse Before After

1 0.500 0.857
2 0.500 0.833
3 1.000 1.000
4 0.000 1.000
5 0.000 1.000
6 0.000 1.000
7 1.000 1.000
8 0.000 1.000
9 0.000 0.667

10 0.167 1.000
11 0.000 0.750
12 0.000 1.000
13 0.000 1.000
14 1.000 1.000

Is there good evidence that glove use increased
after the presentation?

15.29 Radon detectors. How accurate are radon
detectors of a type sold to homeowners? To
answer this question, university researchers placed
12 detectors in a chamber that exposed them to 105
picocuries per liter (pCi/l) of radon.16 The detector
readings are as follows:

91.9 97.8 111.4 122.3 105.4 95.0
103.8 99.6 96.6 119.3 104.8 101.7

We wonder if the median reading differs
significantly from the true value 105.

(a) Graph the data, and comment on skewness and
outliers. A rank test is appropriate.

(b) We would like to test hypotheses about the
median reading from home radon detectors:

H0: median = 105

Ha: median �= 105

To do this, apply the Wilcoxon signed rank statistic
to the differences between the observations and
105. (This is the one-sample version of the test.)
What do you conclude?

15.30 Vitamin C in wheat-soy blend. The U.S.
Agency for International Development provides
large quantities of wheat-soy blend (WSB) for
development programs and emergency relief
in countries throughout the world. One study
collected data on the vitamin C content of 27 bags
of WSB at the factory and five months later in
Haiti.17Here are the data:

Sample 1 2 3 4 5

Before 73 79 86 88 78
After 20 27 29 36 17

We want to know if vitamin C has been lost during
transportation and storage. Describe what the data
show about this question. Then use a rank test to
see whether there has been a significant loss.

15.31 Weight gains with an extra 1000 calories per
day. Exercise 7.32 (page 444) presents these data
on the weight gains (in kilograms) of adults who
were fed an extra 1000 calories per day for 8
weeks:18
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Weight

Subject Before After

1 55.7 61.7
2 54.9 58.8
3 59.6 66.0
4 62.3 66.2
5 74.2 79.0
6 75.6 82.3
7 70.7 74.3
8 53.3 59.3
9 73.3 79.1

10 63.4 66.0
11 68.1 73.4
12 73.7 76.9
13 91.7 93.1
14 55.9 63.0
15 61.7 68.2
16 57.8 60.3

(a) Use a rank test to test the null hypothesis that
the median weight gain is 16 pounds, as theory
suggests. What do you conclude?

(b) If your software allows, give a 95% confidence
interval for the median weight gain in the
population.

15.3 The Kruskal-Wallis Test*
We have now considered alternatives to the matched pairs and two-sample t
tests for comparing the magnitude of responses to two treatments. To com-
pare more than two treatments, we use one-way analysis of variance (ANOVA)
if the distributions of the responses to each treatment are at least roughly Nor-
mal and have similar spreads. What can we do when these distribution require-
ments are violated?
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E 15.13 Weeds and corn yield. Lamb’s-quarter is a common weed that in-
terferes with the growth of corn. A researcher planted corn at the same rate
in 16 small plots of ground, then randomly assigned the plots to four groups.
He weeded the plots by hand to allow a fixed number of lamb’s-quarter plants
to grow in each meter of corn row. These numbers were 0, 1, 3, and 9 in the
four groups of plots. No other weeds were allowed to grow, and all plots re-
ceived identical treatment except for the weeds. Here are the yields of corn
(bushels per acre) in each of the plots:19

Weeds Corn Weeds Corn Weeds Corn Weeds Corn
per meter yield per meter yield per meter yield per meter yield

0 166.7 1 166.2 3 158.6 9 162.8
0 172.2 1 157.3 3 176.4 9 142.4
0 165.0 1 166.7 3 153.1 9 162.7
0 176.9 1 161.1 3 156.0 9 162.4

*Because this test is an alternative to the one-way analysis of variance F test, you should first
read Chapter 12.
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The summary statistics are

Weeds n Mean Std. dev.

0 4 170.200 5.422
1 4 162.825 4.469
3 4 161.025 10.493
9 4 157.575 10.118

The sample standard deviations do not satisfy our rule of thumb that for safe
use of ANOVA the largest should not exceed twice the smallest. Normal quan-
tile plots (Figure 15.9) show that outliers are present in the yields for 3 and
9 weeds per meter. These are the correct yields for their plots, so we have no
justification for removing them. We may want to use a rank test.
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FIGURE 15.9 Normal quantile plots for the corn yields in the four treatment groups in
Example 15.13.
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Hypotheses and assumptions
The ANOVA F test concerns the means of the several populations represented
by our samples. For Example 15.13, the ANOVA hypotheses are

H0: μ0 = μ1 = μ3 = μ9

Ha: not all four means are equal

For example, μ0 is the mean yield in the population of all corn planted under
the conditions of the experiment with no weeds present. The data should con-
sist of four independent random samples from the four populations, all Nor-
mally distributed with the same standard deviation.

The Kruskal-Wallis test is a rank test that can replace the ANOVA F test. The
assumption about data production (independent random samples from each
population) remains important, but we can relax the Normality assumption.
We assume only that the response has a continuous distribution in each popu-
lation. The hypotheses tested in our example are

H0: Yields have the same distribution in all groups.

Ha: Yields are systematically higher in some groups than in others.

If all of the population distributions have the same shape (Normal or not), these
hypotheses take a simpler form. The null hypothesis is that all four populations
have the same median yield. The alternative hypothesis is that not all four me-
dian yields are equal.

The Kruskal-Wallis test
Recall the analysis of variance idea: we write the total observed variation in the
responses as the sum of two parts, one measuring variation among the groups
(sum of squares for groups, SSG) and one measuring variation among individ-
ual observations within the same group (sum of squares for error, SSE). The
ANOVA F test rejects the null hypothesis that the mean responses are equal in
all groups if SSG is large relative to SSE.

The idea of the Kruskal-Wallis rank test is to rank all the responses from all
groups together and then apply one-way ANOVA to the ranks rather than to the
original observations. If there are N observations in all, the ranks are always the
whole numbers from 1 to N. The total sum of squares for the ranks is therefore
a fixed number no matter what the data are. So we do not need to look at both
SSG and SSE. Although it isn’t obvious without some unpleasant algebra, the
Kruskal-Wallis test statistic is essentially just SSG for the ranks. We give the
formula, but you should rely on software to do the arithmetic. When SSG is
large, that is evidence that the groups differ.

THE KRUSKAL-WALLIS TEST

Draw independent SRSs of sizes n1, n2, . . . , nI from I populations. There
are N observations in all. Rank all N observations and let Ri be the sum
of the ranks for the ith sample. The Kruskal-Wallis statistic is

H = 12
N(N + 1)

∑ R2
i

ni
− 3(N + 1)
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When the sample sizes ni are large and all I populations have the same
continuous distribution, H has approximately the chi-square distribu-
tion with I − 1 degrees of freedom.

The Kruskal-Wallis test rejects the null hypothesis that all populations
have the same distribution when H is large.

We now see that, like the Wilcoxon rank sum statistic, the Kruskal-Wallis
statistic is based on the sums of the ranks for the groups we are comparing.
The more different these sums are, the stronger is the evidence that responses
are systematically larger in some groups than in others.

The exact distribution of the Kruskal-Wallis statistic H under the null hy-
pothesis depends on all the sample sizes n1 to nI, so tables are awkward. The
calculation of the exact distribution is so time-consuming for all but the small-
est problems that even most statistical software uses the chi-square approxi-
mation to obtain P-values. As usual, there is no usable exact distribution when
there are ties among the responses. We again assign average ranks to tied
observations.
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E 15.14 Perform the significance test. In Example 15.13, there are I = 4
populations and N = 16 observations. The sample sizes are equal, ni = 4. The
16 observations arranged in increasing order, with their ranks, are

Yield 142.4 153.1 156.0 157.3 158.6 161.1 162.4 162.7
Rank 1 2 3 4 5 6 7 8

Yield 162.8 165.0 166.2 166.7 166.7 172.2 176.4 176.9
Rank 9 10 11 12.5 12.5 14 15 16

There is one pair of tied observations. The ranks for each of the four treat-
ments are

Weeds Ranks Rank sums

0 10 12.5 14 16 52.5
1 4 6 11 12.5 33.5
3 2 3 5 15 25.0
9 1 7 8 9 25.0

The Kruskal-Wallis statistic is therefore

H = 12
N(N + 1)

∑ R2
i

ni
− 3(N + 1)

= 12
(16)(17)

(
52.52

4
+ 33.52

4
+ 252

4
+ 252

4

)
− (3)(17)

= 12
272

(1282.125) − 51

= 5.56
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Referring to the table of chi-square critical points (Table F) with df = 3, we
find that the P-value lies in the interval 0.10 < P < 0.15. This small experi-
ment suggests that more weeds decrease yield but does not provide convinc-
ing evidence that weeds have an effect.

Figure 15.10 displays the output from the SAS statistical software, which
gives the results H = 5.5725 and P = 0.1344. The software makes a small ad-
justment for the presence of ties that accounts for the slightly larger value of H.
The adjustment makes the chi-square approximation more accurate. It would
be important if there were many ties.

As an option, SAS will calculate the exact P-value for the Kruskal-Wallis test.
The result for Example 15.14 is P = 0.1299. This result required more than an
hour of computing time. Fortunately, the chi-square approximation is quite ac-
curate. The ordinary ANOVA F test gives F = 1.73 with P = 0.2130. Although
the practical conclusion is the same, ANOVA and Kruskal-Wallis do not agree
closely in this example. The rank test is more reliable for these small samples
with outliers.

FIGURE 15.10 Output from
SAS for the Kruskal-Wallis test
applied to the data in Example
15.14. SAS uses the chi-square
approximation to obtain a
P-value.

SECTION 15.3 Summary

The Kruskal-Wallis test compares several populations on the basis of indepen-
dent random samples from each population. This is the one-way analysis of
variance setting.

The null hypothesis for the Kruskal-Wallis test is that the distribution of the
response variable is the same in all the populations. The alternative hypothesis
is that responses are systematically larger in some populations than in others.
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The Kruskal-Wallis statistic H can be viewed in two ways. It is essentially the
result of applying one-way ANOVA to the ranks of the observations. It is also a
comparison of the sums of the ranks for the several samples.

When the sample sizes are not too small and the null hypothesis is true, H for
comparing I populations has approximately the chi-square distribution with
I − 1 degrees of freedom. We use this approximate distribution to obtain P-
values.

SECTION 15.3 Exercises
Statistical software is needed to do these exercises without
unpleasant hand calculations. If you do not have access to
software, find the Kruskal-Wallis statistic H by hand and
use the chi-square table to get approximate P-values.

15.32 Vitamins in bread. Does bread lose its vitamins
when stored? Here are data on the vitamin C
content (milligrams per 100 grams of flour) in
bread baked from the same recipe and stored for 1,
3, 5, or 7 days.20 The 10 observations are from 10
different loaves of bread.

Condition Vitamin C (mg/100 g)

Immediately after baking 47.62 49.79
One day after baking 40.45 43.46
Three days after baking 21.25 22.34
Five days after baking 13.18 11.65
Seven days after baking 8.51 8.13

The loss of vitamin C over time is clear, but with
only 2 loaves of bread for each storage time we
wonder if the differences among the groups are
significant.

(a) Use the Kruskal-Wallis test to assess
significance, then write a brief summary of what
the data show.

(b) Because there are only 2 observations per
group, we suspect that the common chi-square
approximation to the distribution of the Kruskal-
Wallis statistic may not be accurate. The exact
P-value (from the SAS software) is P = 0.0011.
Compare this with your P-value from (a). Is the
difference large enough to affect your conclusion?

15.33 Jumping and strong bones. Many studies suggest
that exercise causes bones to get stronger. One
study examined the effect of jumping on the bone
density of growing rats. Ten rats were assigned to
each of three treatments: a 60-centimeter “high
jump,” a 30-centimeter “low jump,” and a control
group with no jumping. Here are the bone densities
(in milligrams per cubic centimeter) after 8 weeks
of 10 jumps per day:21

Group Bone density (mg/cm3)

Control 611 621 614 593 593
653 600 554 603 569

Low jump 635 605 638 594 599
632 631 588 607 596

High jump 650 622 626 626 631
622 643 674 643 650

(a) The study was a randomized comparative
experiment. Outline the design of this experiment.

(b) Make side-by-side stemplots for the three
groups, with the stems lined up for easy
comparison. The distributions are a bit irregular
but not strongly non-Normal. We would usually
use analysis of variance to assess the significance
of the difference in group means.

(c) Do the Kruskal-Wallis test. Explain the
distinction between the hypotheses tested by
Kruskal-Wallis and ANOVA.

(d) Write a brief statement of your findings.
Include a numerical comparison of the groups as
well as your test result.

15.34 Detecting insects in farm fields. To detect the
presence of harmful insects in farm fields, we
can put up boards covered with a sticky material
and examine the insects trapped on the boards.
Which colors attract insects best? Experimenters
placed six boards of each of four colors at random
locations in a field of oats and measured the
number of cereal leaf beetles trapped. Here are the
data:22

Color Insects trapped

Lemon yellow 45 59 48 46 38 47
White 21 12 14 17 13 17
Green 37 32 15 25 39 41
Blue 16 11 20 21 14 7

Because the samples are small, we will apply a
nonparametric test.
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(a) What hypotheses does ANOVA test? What
hypotheses does Kruskal-Wallis test?

(b) Find the median number of beetles trapped by
boards of each color. Which colors appear more
effective? Use the Kruskal-Wallis test to see if there
are significant differences among the colors. What
do you conclude?

15.35 Do the calculations by hand. Exercise 15.34 gives
data on the counts of insects attracted by boards of
four different colors. Carry out the Kruskal-Wallis
test by hand, following these steps.

(a) What are I, the ni, and N?

(b) Arrange the counts in order and assign ranks.
Be careful about ties. Find the sum of the ranks Ri

for each color.

(c) Calculate the Kruskal-Wallis statistic H. How
many degrees of freedom should you use for the
chi-square approximation to its null distribution?
Use the chi-square table to give an approximate
P-value.

15.36 Decay of polyester fabric in landfills. Here are
the breaking strengths (in pounds) of strips of
polyester fabric buried in the ground for several
lengths of time:23

Time Breaking strength

2 weeks 118 126 126 120 129
4 weeks 130 120 114 126 128
8 weeks 122 136 128 146 140

16 weeks 124 98 110 140 110

Breaking strength is a good measure of the extent
to which the fabric has decayed.

(a) Find the standard deviations of the 4 samples.
They do not meet our rule of thumb for applying
ANOVA. In addition, the sample buried for 16
weeks contains an outlier. We will use the Kruskal-
Wallis test.

(b) Find the medians of the four samples. What
are the hypotheses for the Kruskal-Wallis test,
expressed in terms of medians?

(c) Carry out the test and report your conclusion.

15.37 Food safety. Example 15.6 describes a study of the
attitudes of people attending outdoor fairs about
the safety of the food served at such locations. The
full data set is available on the text CD and Web
site as the file eg15 006. It contains the responses

of 303 people to several questions. The variables in
this data set are (in order)

subject hfair sfair sfast srest gender

The variable “sfair” contains responses to the safety
question described in Example 15.6. The variables
“srest” and “sfast” contain responses to the same
question asked about food served in restaurants
and in fast-food chains. Explain carefully why we
cannot use the Kruskal-Wallis test to see if there
are systematic differences in perceptions of food
safety in these three locations.

15.38 Logging in Borneo. In Exercise 15.13 you
compared the number of tree species in plots
of land in a tropical rainforest that had never been
logged with similar plots nearby that had been
logged 8 years earlier. The researchers also counted
species in plots that had been logged just 1 year
earlier. Here are the counts of species:24

Plot type Species count

Unlogged 22 18 22 20 15 21
13 13 19 13 19 15

Logged 1 year ago 11 11 14 7 18 15
15 12 13 2 15 8

Logged 8 years ago 17 4 18 14 18 15
15 10 12

(a) Use side-by-side stemplots to compare the
distributions of number of species per plot for
the three groups of plots. Are there features that
might prevent use of ANOVA? Also give the median
number of species per plot in the three groups.

(b) Use the Kruskal-Wallis test to compare the
distributions of species counts. State hypotheses,
the test statistic and its P-value, and your
conclusions.

15.39 Heart disease and smoking. In a study of heart
disease in male federal employees, researchers
classified 356 volunteer subjects according to their
socioeconomic status (SES) and their smoking
habits. There were three categories of SES: high,
middle, and low. Individuals were asked whether
they were current smokers, former smokers, or
had never smoked. Here are the data, as a two-way
table of counts:25

SES Never (1) Former (2) Current (3)

High 68 92 51
Middle 9 21 22
Low 22 28 43
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The data for all 356 subjects are stored in the file
ex15 29 on the text CD and Web site. Smoking
behavior is stored numerically as 1, 2, or 3 using
the codes given in the column headings above.

(a) Higher-SES people in the United States smoke
less as a group than lower-SES people. Do these
data show a relationship of this kind? Give percents
that back your statements.

(b) Apply the chi-square test to see if there is a
significant relationship between SES and smoking
behavior.

(c) The chi-square test ignores the ordering of the
responses. Use the Kruskal-Wallis test (with many
ties) to test the hypothesis that some SES classes
smoke systematically more than others.

CHAPTER 15 Exercises

15.40 Response times for telephone repair calls.
Exercise 16.55 (page 16-53) presents data on the
time required for the telephone company Verizon
to respond to repair calls from its own customers
and from customers of a CLEC, another phone
company that pays Verizon to use its local lines.
Here are the data, which are rounded to the
nearest hour:

Verizon

1 1 1 1 2 2 1 1 1 1 2 2
1 1 1 1 2 2 1 1 1 1 2 3
1 1 1 1 2 3 1 1 1 1 2 3
1 1 1 1 2 3 1 1 1 1 2 3
1 1 1 1 2 3 1 1 1 1 2 4
1 1 1 1 2 5 1 1 1 1 2 5
1 1 1 1 2 6 1 1 1 1 2 8
1 1 1 1 2 15 1 1 1 2 2

CLEC

1 1 5 5 5 1 5 5 5 5

(a) Does Verizon appear to give CLEC customers
the same level of service as its own customers?
Compare the data using graphs and descriptive
measures and express your opinion.

(b) We would like to see if times are significantly
longer for CLEC customers than for Verizon
customers. Why would you hesitate to use a t test
for this purpose? Carry out a rank test. What can
you conclude?

15.41 Selling prices of three- and four-bedroom
homes. Exercise 7.141 (page 486) reports data on
the selling prices of 9 four-bedroom houses and 28
three-bedroom houses in West Lafayette, Indiana.
We wonder if there is a difference between the
average prices of three- and four-bedroom houses
in this community.

(a) Make a Normal quantile plot of the prices of
three-bedroom houses. What kind of deviation

from Normality do you see?

(b) The t tests are quite robust. State the
hypotheses for the proper t test, carry out the test,
and present your results, including appropriate
data summaries.

(c) Carry out a nonparametric test. Once more
state the hypotheses tested and present your
results for both the test and the data summaries
that should go with it.

15.42 Air in a turkey-processing plant. The air in
poultry-processing plants often contains fungus
spores. If the ventilation is inadequate, this can
affect the health of the workers. To measure the
presence of spores, air samples are pumped to an
agar plate and “colony-forming units (CFUs)” are
counted after an incubation period. Here are data
from the “kill room” of a plant that slaughters
37,000 turkeys per day, taken at four seasons of
the year. The units are CFUs per cubic meter of
air.26

Fall Winter Spring Summer

1231 384 2105 3175
1254 104 701 2526
752 251 2947 1763

1088 97 842 1090

(a) Examine the data using graphs and descriptive
measures. How do airborne fungus spores vary
with the seasons?

(b) Is the effect of season statistically significant?

15.43 C
H

ALLENG
E Plants and hummingbirds. Different

varieties of the tropical flower Heliconia are
fertilized by different species of hummingbirds.
Over time, the lengths of the flowers and the
form of the hummingbirds’ beaks have evolved to
match each other. Here are data on the lengths in
millimeters of three varieties of these flowers on
the island of Dominica:27
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H. bihai

47.12 46.75 46.81 47.12 46.67 47.43
46.44 46.64 48.07 48.34 48.15 50.26
50.12 46.34 46.94 48.36

H. caribaea red

41.90 42.01 41.93 43.09 41.47 41.69
39.78 40.57 39.63 42.18 40.66 37.87
39.16 37.40 38.20 38.07 38.10 37.97
38.79 38.23 38.87 37.78 38.01

H. caribaea yellow

36.78 37.02 36.52 36.11 36.03 35.45
38.13 37.10 35.17 36.82 36.66 35.68
36.03 34.57 34.63

Do a complete analysis that includes description
of the data and a rank test for the significance of
the differences in lengths among the three species.

Iron-deficiency anemia is the most common form of
malnutrition in developing countries. Does the type of
cooking pot affect the iron content of food? We have data
from a study in Ethiopia that measured the iron content
(milligrams per 100 grams of food) for three types of food
cooked in each of three types of pots:28

Type of pot Iron Content

Meat
Aluminum 1.77 2.36 1.96 2.14
Clay 2.27 1.28 2.48 2.68
Iron 5.27 5.17 4.06 4.22

Legumes
Aluminum 2.40 2.17 2.41 2.34
Clay 2.41 2.43 2.57 2.48
Iron 3.69 3.43 3.84 3.72

Vegetables
Aluminum 1.03 1.53 1.07 1.30
Clay 1.55 0.79 1.68 1.82
Iron 2.45 2.99 2.80 2.92

Exercises 15.44 to 15.46 use these data.

15.44 Cooking vegetables in different pots. Does the
vegetable dish vary in iron content when cooked
in aluminum, clay, and iron pots?

(a) What do the data appear to show? Check
the conditions for one-way ANOVA. Which
requirements are a bit dubious in this setting?

(b) Instead of ANOVA, do a rank test. Summarize
your conclusions about the effect of pot material
on the iron content of the vegetable dish.

15.45 Cooking meat and legumes in aluminum and
clay pots. There appears to be little difference
between the iron content of food cooked in
aluminum pots and food cooked in clay pots. Is
there a significant difference between the iron
content of meat cooked in aluminum and clay?
Is the difference between aluminum and clay
significant for legumes? Use rank tests.

15.46 Iron in food cooked in iron pots. The data show
that food cooked in iron pots has the highest iron
content. They also suggest that the three types
of food differ in iron content. Is there significant
evidence that the three types of food differ in iron
content when all are cooked in iron pots?

15.47 C
H

ALLENG
E Multiple comparisons for plants and

hummingbirds. As in ANOVA, we often
want to carry out a multiple-comparisons
procedure following a Kruskal-Wallis test to tell us
which groups differ significantly.29 Here is a simple
method: If we carry out k tests at fixed significance
level 0.05/k, the probability of any false rejection
among the k tests is always no greater than 0.05.
That is, to get overall significance level 0.05 for all
of k comparisons, do each individual comparison
at the 0.05/k level. In Exercise 15.43 you found a
significant difference among the lengths of three
varieties of the flower Heliconia. Now we will
explore multiple comparisons.

(a) Write down all of the pairwise comparisons we
can make, for example, bihai versus caribaea red.
There are three possible pairwise comparisons.

(b) Carry out three Wilcoxon rank sum tests, one
for each of the three pairs of flower varieties. What
are the three two-sided P-values?

(c) For purposes of multiple comparisons, any of
these three tests is significant if its P-value is no
greater than 0.05/3 = 0.0167. Which pairs differ
significantly at the overall 0.05 level?

15.48 C
H

ALLENG
E Multiple comparisons for the turkey-

processing plant. Exercise 15.47 outlines
how to use the Wilcoxon rank sum test several
times for multiple comparisons with overall
significance level 0.05 for all comparisons together.
In Exercise 15.42 you found that the airborne
fungus spore counts in a turkey-processing plant
differ significantly among the seasons of the year.
At the overall 0.05 level, which pairs of seasons
differ significantly? (Hint: There are 6 possible
pairwise comparisons among 4 seasons.)
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in the sense that the power of the test approaches 1 (that is,
the test becomes more certain to reject the null hypothesis)
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14. These data were collected as part of a larger study of
dementia patients conducted by Nancy Edwards, School
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CHAPTER

1616Bootstrap Methods
and Permutation Tests

Telephone repair times are strongly skewed to the right. This chapter describes
alternative inference methods that do not rely on the Normal distribution. See
Example 16.1 for a comparison of telephone repair times.

16.1 The Bootstrap Idea

16.2 First Steps in Using
the Bootstrap

16.3 How Accurate Is a Bootstrap
Distribution?

16.4 Bootstrap Confidence
Intervals

16.5 Significance Testing Using
Permutation Tests

Introduction
The continuing revolution in computing is having a
dramatic influence on statistics. The exploratory analy-
sis of data is becoming easier as more graphs and calcu-
lations are automated. The statistical study of very
large and very complex data sets is now feasible.
Another impact of this fast and cheap computing is
less obvious: new methods that apply previously un-
thinkable amounts of computation to produce confi-
dence intervals and tests of significance in settings that

*This chapter was written by Tim Hesterberg, David S. Moore, Shaun Monaghan, Ashley Clip-
son, and Rachel Epstein, with support from the National Science Foundation under grant
DMI-0078706. It was revised for the 6th edition by Bruce A. Craig. Special thanks to Bob
Thurman, Richard Heiberger, Laura Chihara, Tom Moore, and Gudmund Iversen for helpful
comments on an earlier version.
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don’t meet the conditions for safe application of the usual methods of
inference.

Consider the commonly used t procedures for inference about means (Chap-
ter 7) and relationships between quantitative variables (Chapter 10). All of these
methods rest on the use of Normal distributions for data. While no data are
exactly Normal, the t procedures are useful in practice because they are ro-
bust. Nonetheless, we cannot use t confidence intervals and tests if the dataLOOK BACK

robustness, page 432

F test for equality of
spread, page 474

are strongly skewed, unless our samples are quite large. Inference about spread
based on Normal distributions is not robust and therefore of little use in prac-
tice. Finally, what should we do if we are interested in, say, a ratio of means,
such as the ratio of average men’s salary to average women’s salary? There is
no simple traditional inference method for this setting.

The methods of this chapter—bootstrap confidence intervals and permuta-
tion tests—apply computing power to relax some of the conditions needed for
traditional inference and to do inference in new settings. The big ideas of sta-
tistical inference remain the same. The fundamental reasoning is still based on
asking, “What would happen if we applied this method many times?” Answers
to this question are still given by confidence levels and P-values based on the
sampling distributions of statistics.

The most important requirement for trustworthy conclusions about a pop-
ulation is still that our data can be regarded as random samples from the
population—not even the computer can rescue voluntary response samples or
confounded experiments. But the new methods set us free from the need forLOOK BACK

confounded, page 177 Normal data or large samples. They also set us free from formulas. They work
the same way (without formulas) for many different statistics in many differ-
ent settings. They can, with sufficient computing power, give results that are
more accurate than those from traditional methods. What is more, bootstrap
intervals and permutation tests are conceptually simpler than confidence in-
tervals and tests based on Normal distributions because they appeal directly
to the basis of all inference: the sampling distribution that shows what would
happen if we took very many samples under the same conditions.

The new methods do have limitations, some of which we will illustrate. But
their effectiveness and range of use are so great that they are rapidly becoming
the preferred way to do statistical inference. This is already true in high-stakes
situations such as legal cases and clinical trials.

Software
Bootstrapping and permutation tests are feasible in practice only with software
that automates the heavy computation that these methods require. If you are
sufficiently expert, you can program at least the basic methods yourself. It is
easier to use software that offers bootstrap intervals and permutation tests pre-
programmed, just as most software offers the various t intervals and tests. You
can expect the new methods to become more common in standard statistical
software.

This chapter primarily uses S-PLUS,1 the software choice of many statis-
ticians doing research on resampling methods. A free version of S-PLUS is
available to students, and a free evaluation copy is available to instructors.
You will need two free libraries that supplement S-PLUS: the S+Resample
library, which provides menu-driven access to the procedures described in
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this chapter, and the IPSdata library, which contains all the data sets for this
text. You can find links for downloading this software on the text Web site,
www.whfreeman.com/ipsresample.

You will find that using S-PLUS is straightforward, especially if you have ex-
perience with menu-based statistical software. After launching S-PLUS, load
the IPSdata library. This automatically loads the S+Resample library as well.
The IPSdata menu includes a guide with brief instructions for each procedure
in this chapter. Look at this guide each time you meet something new. There is
also a detailed manual for resampling under the Help menu. The resampling
methods you need are all in the Resampling submenu in the Statistics menu
in S-PLUS. Just choose the entry in that menu that describes your setting.
S-PLUS is highly capable statistical software that can be used for everything in
this text. If you use S-PLUS for all your work, you may want to obtain a more
detailed book on S-PLUS.

Other software packages that currently offer preprogrammed bootstrap and
permutation methods are SPSS and SAS. For SPSS, there is an auxiliary boot-
strap module that contains all but a few of the methods described in this chap-
ter. Included with the module are all the data sets in this chapter as well as the
syntax needed to generate most of the plots. For SAS, the SURVEYSELECT
procedure can be used to do the necessary resampling. The bootstrap macro
contains most of the confidence interval methods offered by S-PLUS. You can
again find links for downloading these modules or macros on the text Web site,
www.whfreeman.com/ipsresample.

16.1 The Bootstrap Idea
Here is a situation in which the new computer-intensive methods are now being
applied. We will use this example to introduce these methods.

•
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E 16.1 A comparison of telephone repair times. In most of the United
States, many different companies offer local telephone service. It isn’t in the
public interest to have all these companies digging up streets to bury cables,
so the primary local telephone company in each region must (for a fee) share
its lines with its competitors. The legal term for the primary company is In-
cumbent Local Exchange Carrier, ILEC. The competitors are called Compet-
ing Local Exchange Carriers, or CLECs.

Verizon is the ILEC for a large area in the eastern United States. As such,
it must provide repair service for the customers of the CLECs in this region.
Does Verizon do repairs for CLEC customers as quickly (on the average) as
for its own customers? If not, it is subject to fines. The local Public Utilities
Commission requires the use of tests of significance to compare repair times
for the two groups of customers.

Repair times are far from Normal. Figure 16.1 shows the distribution of a
random sample of 1664 repair times for Verizon’s own customers.2 The dis-
tribution has a very long right tail. The median is 3.59 hours, but the mean
is 8.41 hours and the longest repair time is 191.6 hours. We hesitate to use t
procedures on such data, especially as the sample sizes for CLEC customers
are much smaller than for Verizon’s own customers.

www.whfreeman.com/ipsresample
www.whfreeman.com/ipsresample
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FIGURE 16.1 (a) The
distribution of 1664 repair times
for Verizon customers. (b)
Normal quantile plot of the
repair times. The distribution is
strongly right-skewed.

The big idea: resampling and the bootstrap distribution
Statistical inference is based on the sampling distributions of sample statistics.LOOK BACK

sampling distribution,
page 215

A sampling distribution is based on many random samples from the popula-
tion. The bootstrap is a way of finding the sampling distribution, at least ap-
proximately, from just one sample. Here is the procedure:

Step 1: Resampling. In Example 16.1, we have just one random sample. In
place of many samples from the population, create many resamples by repeat-resamples
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edly sampling with replacement from this one random sample. Each resample
is the same size as the original random sample.

Sampling with replacement means that after we randomly draw an ob-sampling with replacement
servation from the original sample we put it back before drawing the next
observation. Think of drawing a number from a hat, then putting it back be-
fore drawing again. As a result, any number can be drawn more than once. If
we sampled without replacement, we’d get the same set of numbers we started
with, though in a different order. Figure 16.2 illustrates three resamples from
a sample of six observations. In practice, we draw hundreds or thousands of
resamples, not just three.

1.57 0.22 19.67 0.00 0.22 3.12
mean = 4.13

0.00 2.20 2.20 2.20 19.67 1.57
mean = 4.64

3.12 0.00 1.57 19.67 0.22 2.20
  mean = 4.46

0.22 3.12 1.57 3.12 2.20 0.22
mean = 1.74

FIGURE 16.2 The resampling idea. The top box is a sample of size n = 6 from the Verizon
data. The three lower boxes are three resamples from this original sample. Some values
from the original are repeated in the resamples because each resample is formed by
sampling with replacement. We calculate the statistic of interest—the sample mean in this
example—for the original sample and each resample.

Step 2: Bootstrap distribution. The sampling distribution of a statistic
collects the values of the statistic from the many samples of the population.
The bootstrap distribution of a statistic collects its values from the manybootstrap distribution
resamples. The bootstrap distribution gives information about the sampling
distribution.

THE BOOTSTRAP IDEA

The original sample represents the population from which it was drawn.
Thus, resamples from this original sample represent what we would get
if we took many samples from the population. The bootstrap distribution
of a statistic, based on the resamples, represents the sampling distribu-
tion of the statistic.
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we want to estimate the population mean repair time μ, so the statistic is the
sample mean x. For our one random sample of 1664 repair times, x = 8.41
hours. When we resample, we get different values of x, just as we would if we
took new samples from the population of all repair times.

Figure 16.3 displays the bootstrap distribution of the means of 1000 re-
samples from the Verizon repair time data, using first a histogram and a den-
sity curve and then a Normal quantile plot. The solid line in the histogram
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FIGURE 16.3 (a) The bootstrap distribution for 1000 resample means from the sample of
Verizon repair times. The solid line marks the original sample mean, and the dashed line
marks the average of the bootstrap means. (b) The Normal quantile plot confirms that the
bootstrap distribution is nearly Normal in shape.

•
marks the mean 8.41 of the original sample, and the dashed line marks the
mean of the bootstrap resample means.

According to the bootstrap idea, the bootstrap distribution represents the
sampling distribution. Let’s compare the bootstrap distribution with what we
know about the sampling distribution.

Shape: We see that the bootstrap distribution is nearly Normal. The central
limit theorem says that the sampling distribution of the sample mean x is ap-LOOK BACK

central limit theorem,
page 339

proximately Normal if n is large. So the bootstrap distribution shape is close
to the shape we expect the sampling distribution to have.

Center: The bootstrap distribution is centered close to the mean of the orig-
inal sample. That is, the mean of the bootstrap distribution has little bias as an
estimator of the mean of the original sample. We know that the sampling dis-
tribution of x is centered at the population mean μ, that is, that x is an unbiased
estimate of μ. So the resampling distribution behaves (starting from the orig-LOOK BACK

mean and standard
deviation of x,
page 338

inal sample) as we expect the sampling distribution to behave (starting from
the population).

Spread: The histogram and density curve in Figure 16.3 picture the varia-
tion among the resample means. We can get a numerical measure by calculat-
ing their standard deviation. Because this is the standard deviation of the 1000
values of x that make up the bootstrap distribution, we call it the bootstrap
standard error of x. The numerical value is 0.367. In fact, we know that thebootstrap standard error
standard deviation of x is σ/

√
n, where σ is the standard deviation of individ-

ual observations in the population. Our usual estimate of this quantity is the
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standard error of x, s/
√

n, where s is the standard deviation of our one random
sample. For these data, s = 14.69 and

s√
n

= 14.69√
1664

= 0.360

The bootstrap standard error 0.367 agrees closely with the theory-based esti-
mate 0.360.

In discussing Example 16.2, we took advantage of the fact that statistical
theory tells us a great deal about the sampling distribution of the sample mean
x. We found that the bootstrap distribution created by resampling matches
the properties of this sampling distribution. The heavy computation needed
to produce the bootstrap distribution replaces the heavy theory (central limit
theorem, mean and standard deviation of x) that tells us about the sampling
distribution. The great advantage of the resampling idea is that it often works
even when theory fails. Of course, theory also has its advantages: we know ex-
actly when it works. We don’t know exactly when resampling works, so that
“When can I safely bootstrap?” is a somewhat subtle issue.

Figure 16.4 illustrates the bootstrap idea by comparing three distributions.
Figure 16.4(a) shows the idea of the sampling distribution of the sample mean
x: take many random samples from the population, calculate the mean x for
each sample, and collect these x-values into a distribution.

Figure 16.4(b) shows how traditional inference works: statistical theory tells
us that if the population has a Normal distribution, then the sampling distri-
bution of x is also Normal. If the population is not Normal but our sample is
large, we can use the central limit theorem. If μ and σ are the mean and stan-LOOK BACK

central limit theorem,
page 339

dard deviation of the population, the sampling distribution of x has mean μ and
standard deviation σ/

√
n. When it is available, theory is wonderful: we know

the sampling distribution without the impractical task of actually taking many
samples from the population.

Figure 16.4(c) shows the bootstrap idea: we avoid the task of taking many
samples from the population by instead taking many resamples from a single
sample. The values of x from these resamples form the bootstrap distribution.
We use the bootstrap distribution rather than theory to learn about the sam-
pling distribution.

USE YOUR KNOWLEDGE
16.1 A small bootstrap example. To illustrate the bootstrap procedure,

let’s bootstrap a small random subset of the Verizon data:

26.47 0.00 5.32 17.30 29.78 3.67

(a) Sample with replacement from this initial SRS by rolling a die.
Rolling a 1 means select the first member of the SRS (26.47), a
2 means select the second member (0.00), and so on. (You can
also use Table B of random digits, responding only to digits 1 to
6.) Create 20 resamples of size n = 6.

(b) Calculate the sample mean for each of the resamples.
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FIGURE 16.4 (a) The idea of the sampling distribution of the sample mean x: take very
many samples, collect the x-values from each, and look at the distribution of these values.
(b) The theory shortcut: if we know that the population values follow a Normal
distribution, theory tells us that the sampling distribution of x is also Normal. (c) The
bootstrap idea: when theory fails and we can afford only one sample, that sample stands
in for the population, and the distribution of x in many resamples stands in for the
sampling distribution.

16-8
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(c) Make a stemplot of the means of the 20 resamples. This is the
bootstrap distribution.

(d) Calculate the standard deviation of the bootstrap distribution.

16.2 Standard deviation versus standard error. Explain the difference
between the standard deviation of a sample and the standard error
of a statistic such as the sample mean.

Thinking about the bootstrap idea
It might appear that resampling creates new data out of nothing. This seems
suspicious. Even the name “bootstrap” comes from the impossible image of
“pulling yourself up by your own bootstraps.”3 But the resampled observa-
tions are not used as if they were new data. The bootstrap distribution of the
resample means is used only to estimate how the sample mean of one actual
sample of size 1664 would vary because of random sampling.

Using the same data for two purposes—to estimate a parameter and also to
estimate the variability of the estimate—is perfectly legitimate. We do exactly
this when we calculate x to estimate μ and then calculate s/

√
n from the same

data to estimate the variability of x.
What is new? First of all, we don’t rely on the formula s/

√
n to estimate the

standard deviation of x. Instead, we use the ordinary standard deviation of the
many x-values from our many resamples.4 Suppose that we take B resamples.
Call the means of these resamples x∗ to distinguish them from the mean x of
the original sample. Find the mean and standard deviation of the x∗’s in the
usual way. To make clear that these are the mean and standard deviation of the
means of the B resamples rather than the mean x and standard deviation s of
the original sample, we use a distinct notation:

meanboot = 1
B

∑
x∗

SEboot =
√

1
B − 1

∑ (
x∗ − meanboot

)2

These formulas go all the way back to Chapter 1. Once we have the values x∗,LOOK BACK
describing
distributions with
numbers, page 30

we just ask our software for their mean and standard deviation. We will often
apply the bootstrap to statistics other than the sample mean. Here is the general
definition.

BOOTSTRAP STANDARD ERROR

The bootstrap standard error SEboot of a statistic is the standard devi-
ation of the bootstrap distribution of that statistic.

Another thing that is new is that we don’t appeal to the central limit theo-
rem or other theory to tell us that a sampling distribution is roughly Normal.
We look at the bootstrap distribution to see if it is roughly Normal (or not). In
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most cases, the bootstrap distribution has approximately the same shape and
spread as the sampling distribution, but it is centered at the original sample
statistic value rather than the parameter value. The bootstrap allows us to cal-
culate standard errors for statistics for which we don’t have formulas and to
check Normality for statistics that theory doesn’t easily handle.

To apply the bootstrap idea, we must start with a statistic that estimates the
parameter we are interested in. We come up with a suitable statistic by appeal-
ing to another principle that we have often applied without thinking about it.

THE PLUG-IN PRINCIPLE

To estimate a parameter, a quantity that describes the population, use
the statistic that is the corresponding quantity for the sample.

The plug-in principle tells us to estimate a population mean μ by the sample
mean x and a population standard deviation σ by the sample standard devia-
tion s. Estimate a population median by the sample median and a population
regression line by the least-squares line calculated from a sample. The boot-
strap idea itself is a form of the plug-in principle: substitute the data for the
population, then draw samples (resamples) to mimic the process of building a
sampling distribution.

Using software
Software is essential for bootstrapping in practice. Here is an outline of the pro-
gram you would write if your software can choose random samples from a set
of data but does not have bootstrap functions:

Repeat 1000 times {
Draw a resample with replacement from the data.
Calculate the resample mean.
Save the resample mean into a variable.

}
Make a histogram and Normal quantile plot of the 1000 means.
Calculate the standard deviation of the 1000 means.
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1664 Verizon repair times are saved as a variable, we can use menus to re-
sample from the data, calculate the means of the resamples, and request
both graphs and printed output. We can also ask that the bootstrap results
be saved for later access.

The graphs in Figure 16.3 are part of the S-PLUS output. Figure 16.5
shows some of the text output. The Observed entry gives the mean x = 8.412
of the original sample. Mean is the mean of the resample means, meanboot.
Bias is the difference between the Mean and Observed values. The bootstrap
standard error is displayed under SE. The Percentiles are percentiles of the
bootstrap distribution, that is, of the 1000 resample means pictured in Figure
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FIGURE 16.5 S-PLUS output for
the Verizon data bootstrap, for
Example 16.3.

•
16.3. All of these values except Observed will differ a bit if you repeat 1000
resamples, because resamples are drawn at random.

SECTION 16.1 Summary

To bootstrap a statistic such as the sample mean, draw hundreds of resamples
with replacement from a single original sample, calculate the statistic for each
resample, and inspect the bootstrap distribution of the resampled statistics.

A bootstrap distribution approximates the sampling distribution of the statis-
tic. This is an example of the plug-in principle: use a quantity based on the
sample to approximate a similar quantity from the population.

A bootstrap distribution usually has approximately the same shape and spread
as the sampling distribution. It is centered at the statistic (from the original
sample) when the sampling distribution is centered at the parameter (of the
population).

Use graphs and numerical summaries to determine whether the bootstrap dis-
tribution is approximately Normal and centered at the original statistic, and to
get an idea of its spread. The bootstrap standard error is the standard devia-
tion of the bootstrap distribution.

The bootstrap does not replace or add to the original data. We use the bootstrap
distribution as a way to estimate the variation in a statistic based on the original
data.

SECTION 16.1 Exercises
For Exercises 16.1 and 16.2, see pages 16-7 and 16-9.

16.3 What’s wrong? Explain what is wrong with each
of the following statements.

(a) The bootstrap distribution is created by
resampling with replacement from the population.

(b) The bootstrap distribution is created by
resampling without replacement from the original
sample.

(c) When generating the resamples, it is best to use
a sample size larger than the size of the original
sample.

(d) The bootstrap distribution will be similar to
the sampling distribution in shape, center, and
spread.

Inspecting the bootstrap distribution of a statistic helps us
judge whether the sampling distribution of the statistic is
close to Normal. Bootstrap the sample mean x for each of
the data sets in Exercises 16.4 to 16.8 using 1000 resamples.
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Construct a histogram and Normal quantile plot to assess
Normality of the bootstrap distribution. On the basis of
your work, do you expect the sampling distribution of x to
be close to Normal? Save your bootstrap results for later
analysis.

16.4 Bootstrap distribution of average IQ score. The
distribution of the 60 IQ test scores in Table 1.3
(page 13) is roughly Normal (see Figure 1.7) and
the sample size is large enough that we expect a
Normal sampling distribution.

16.5 Bootstrap distribution of average CO2

emissions. The distribution of carbon dioxide
(CO2) emissions in Table 1.6 (page 26) is strongly
skewed to the right. The United States and several
other countries appear to be high outliers.

16.6 Bootstrap distribution of average listening
time. The numbers of hours per month listening to
full-track music on cell phones in a random sample
of 8 U.S. 3G subscribers (Example 7.1, page 421)
are

5 6 0 4 11 9 2 3

The distribution has no outliers, but we cannot
assess Normality from so small a sample.

16.7 Bootstrap distribution of average C-reactive
protein. The measurements of C-reactive protein
in 40 children (Exercise 7.26, page 442) are
very strongly skewed. We were hesitant to use t
procedures for inference from these data.

16.8 Bootstrap distribution of average audio file
length. The distribution of the lengths (in seconds)
of audio files found on an iPod (Table 7.3, page
436) is skewed. We previously transformed the
data prior to using t procedures.

16.9 Standard error versus the bootstrap standard
error. We have two ways to estimate the standard
deviation of a sample mean x: use the formula
s/

√
n for the standard error, or use the bootstrap

standard error.

(a) Find the sample standard deviation s for the
60 IQ test scores in Exercise 16.4 and use it to find
the standard error s/

√
n of the sample mean. How

closely does your result agree with the bootstrap
standard error from your resampling in Exercise
16.4?

(b) Find the sample standard deviation s for the
CO2 emissions in Exercise 16.5 and use it to find
the standard error s/

√
n of the sample mean. How

closely does your result agree with the bootstrap
standard error from your resampling in Exercise
16.5?

(c) Find the sample standard deviation s for the 8
listening times in Exercise 16.6 and use it to find
the standard error s/

√
n of the sample mean. How

closely does your result agree with the bootstrap
standard error from your resampling in Exercise
16.6?

16.10 Survival times in a medical study. The “survival
times” of machines before a breakdown and
of cancer patients after treatment are typically
strongly right-skewed. Table 1.8 (page 29) gives
the survival times (in days) of 72 guinea pigs in a
medical trial.5

(a) Make a histogram of the survival times. The
distribution is strongly skewed.

(b) The central limit theorem says that the
sampling distribution of the sample mean x
becomes Normal as the sample size increases.
Is the sampling distribution roughly Normal for
n = 72? To find out, bootstrap these data using 1000
resamples and inspect the bootstrap distribution
of the mean. The central part of the distribution is
close to Normal. In what way do the tails depart
from Normality?

16.11 More on survival times in a medical study. Here
is an SRS of 20 of the guinea pig survival times
from Exercise 16.10:

92 123 88 598 100 114 89 522 58 191
137 100 403 144 184 102 83 126 53 79

We expect the sampling distribution of x to be
less close to Normal for samples of size 20 than
for samples of size 72 from a skewed distribution.
These data include some extreme high outliers.

(a) Create and inspect the bootstrap distribution
of the sample mean for these data using 1000
resamples. Is it less close to Normal than your
distribution from the previous exercise?

(b) Compare the bootstrap standard errors for
your two runs. What accounts for the larger
standard error for the smaller sample?
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16.2 First Steps in Using the Bootstrap
To introduce the key ideas of resampling and bootstrap distributions, we stud-
ied an example in which we knew quite a bit about the actual sampling dis-
tribution. We saw that the bootstrap distribution agrees with the sampling
distribution in shape and spread. The center of the bootstrap distribution is not
the same as the center of the sampling distribution. The sampling distribution
of a statistic used to estimate a parameter is centered at the actual value of the
parameter in the population, plus any bias. The bootstrap distribution is cen-
tered at the value of the statistic for the original sample, plus any bias. The keyLOOK BACK

bias, page 217 fact is that the two biases are similar even though the two centers may not be.
The bootstrap method is most useful in settings where we don’t know the

sampling distribution of the statistic. The principles are:

• Shape: Because the shape of the bootstrap distribution approximates the
shape of the sampling distribution, we can use the bootstrap distribution to
check Normality of the sampling distribution.

• Center: A statistic is biased as an estimate of the parameter if its sampling
distribution is not centered at the true value of the parameter. We can check
bias by seeing whether the bootstrap distribution of the statistic is centered
at the value of the statistic for the original sample.

More precisely, the bias of a statistic is the difference between the mean
of its sampling distribution and the true value of the parameter. The boot-
strap estimate of bias is the difference between the mean of the bootstrapbootstrap estimate of bias
distribution and the value of the statistic in the original sample.

• Spread: The bootstrap standard error of a statistic is the standard deviation
of its bootstrap distribution. The bootstrap standard error estimates the stan-
dard deviation of the sampling distribution of the statistic.

Bootstrap t confidence intervals
If the bootstrap distribution of a statistic shows a Normal shape and small bias,
we can get a confidence interval for the parameter by using the bootstrap stan-
dard error and the familiar t distribution. An example will show how this works.
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E 16.4 Selling prices of residential real estate. We are interested in the
selling prices of residential real estate in Seattle, Washington. Table 16.1 dis-
plays the selling prices of a random sample of 50 pieces of real estate sold in
Seattle during 2002, as recorded by the county assessor.6 Unfortunately, the
data do not distinguish residential property from commercial property. Most
sales are residential, but a few large commercial sales in a sample can greatly
increase the sample mean selling price.

Figure 16.6 shows the distribution of the sample prices. The distribution is
far from Normal, with a few high outliers that may be commercial sales. The
sample is small, and the distribution is highly skewed and “contaminated” by
an unknown number of commercial sales. How can we estimate the center of
the distribution despite these difficulties?
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TABLE 16.1

Selling prices for Seattle real estate, 2002 ($1000s)

142 175 197.5 149.4 705 232 50 146.5 155 1850
132.5 215 116.7 244.9 290 200 260 449.9 66.407 164.95
362 307 266 166 375 244.95 210.95 265 296 335
335 1370 256 148.5 987.5 324.5 215.5 684.5 270 330
222 179.8 257 252.95 149.95 225 217 570 507 190
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FIGURE 16.6 Graphical displays of the 50 selling prices in Table 16.1. The distribution is
strongly skewed, with high outliers.

The first step is to abandon the mean as a measure of center in favor of a
statistic that is more resistant to outliers. We might choose the median, but in
this case we will use the 25% trimmed mean, the mean of the middle 50% of theLOOK BACK

trimmed mean,
page 53

observations. The median is the middle or mean of the 2 middle observations.
The trimmed mean often does a better job of representing the average of typical
observations than does the median.

Our parameter is the 25% trimmed mean of the population of all real estate
sales prices in Seattle in 2002. By the plug-in principle, the statistic that esti-
mates this parameter is the 25% trimmed mean of the sample prices in Table
16.1. Because 25% of 50 is 12.5, we drop the 12 lowest and 12 highest prices
in Table 16.1 and find the mean of the remaining 26 prices. The statistic is (in
thousands of dollars)

x25% = 244.0019

We can say little about the sampling distribution of the trimmed mean when
we have only 50 observations from a strongly skewed distribution. Fortunately,
we don’t need any distribution facts to use the bootstrap. We bootstrap the 25%
trimmed mean just as we bootstrapped the sample mean: draw 1000 resamples



16.2 First Steps in Using the Bootstrap
•

16-15

of size 50 from the 50 selling prices in Table 16.1, calculate the 25% trimmed
mean for each resample, and form the bootstrap distribution from these 1000
values.

Figure 16.7 shows the bootstrap distribution of the 25% trimmed mean.
Here is the summary output from S-PLUS:

Number of Replications: 1000

Summary Statistics:
Observed Mean Bias SE

TrimMean 244 244.7 0.7171 16.83

What do we see? Shape: The bootstrap distribution is roughly Normal. This
suggests that the sampling distribution of the trimmed mean is also roughly
Normal. Center: The bootstrap estimate of bias is 0.7171, which is small rela-
tive to the value 244 of the statistic. So the statistic (the trimmed mean of the
sample) has small bias as an estimate of the parameter (the trimmed mean of
the population). Spread: The bootstrap standard error of the statistic is

SEboot = 16.83

This is an estimate of the standard deviation of the sampling distribution of the
trimmed mean.
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FIGURE 16.7 The bootstrap distribution of the 25% trimmed means of 1000 resamples
from the data in Table 16.1. The bootstrap distribution is roughly Normal.

Recall the familiar one-sample t confidence interval (page 420) for the mean
of a Normal population:

x ± t∗SE = x ± t∗
s√
n

This interval is based on the Normal sampling distribution of the sample mean
x and the formula SE = s/

√
n for the standard error of x. When a bootstrap

distribution is approximately Normal and has small bias, we can essentially use
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the same recipe with the bootstrap standard error to get a confidence interval
for any parameter.

BOOTSTRAP t CONFIDENCE INTERVAL

Suppose that the bootstrap distribution of a statistic from an SRS of
size n is approximately Normal and that the bootstrap estimate of bias
is small. An approximate level C confidence interval for the parameter
that corresponds to this statistic by the plug-in principle is

statistic ± t∗SEboot

where SEboot is the bootstrap standard error for this statistic and t∗ is the
critical value of the t(n − 1) distribution with area C between −t∗ and t∗.

•

•
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mate the 25% trimmed mean of the population of all 2002 Seattle real estate
selling prices. Table 16.1 gives an SRS of size n = 50. The software output
above shows that the trimmed mean of this sample is x25% = 244 and that
the bootstrap standard error of this statistic is SEboot = 16.83. A 95% confi-
dence interval for the population trimmed mean is therefore

x25% ± t∗SEboot = 244 ± (2.009)(16.83)

= 244 ± 33.81

= (210.19, 277.81)

Because Table D does not have entries for n − 1 = 49 degrees of freedom, we
used t∗ = 2.009, the entry for 50 degrees of freedom.

We are 95% confident that the 25% trimmed mean (the mean of the mid-
dle 50%) for the population of real estate sales in Seattle in 2002 is between
$210,190 and $277,810.

USE YOUR KNOWLEDGE
16.12 Bootstrap t confidence interval for repair times. Refer to Exer-

cise 16.1. Suppose a bootstrap distribution was created using 1000
resamples, and the mean and standard deviation of the resample
sample means were 13.762 and 4.725, respectively.

(a) What is the bootstrap estimate of the bias?

(b) What is the bootstrap standard error of x?

(c) Assume the bootstrap distribution is reasonably Normal. Since
the bias is small relative to the observed x, the bootstrap t con-
fidence interval for the population mean μ is justified. Give the
95% bootstrap t confidence interval for μ.



16.2 First Steps in Using the Bootstrap
•

16-17

16.13 Bootstrap t confidence interval for average audio file length. Re-
turn to or create the bootstrap distribution resamples on the sample
mean for the audio file lengths in Exercise 16.8. In Example 7.11
(page 436), the t confidence interval for the average length was
constructed.

(a) Inspect the bootstrap distribution. Is a bootstrap t confidence in-
terval appropriate? Explain why or why not.

(b) Construct the 95% bootstrap t confidence interval.

(c) Compare the bootstrap results with the t confidence interval re-
ported in Example 7.11.

Bootstrapping to compare two groups
Two-sample problems are among the most common statistical settings. In
a two-sample problem, we wish to compare two populations, such as male
and female college students, based on separate samples from each popula-
tion. When both populations are roughly Normal, the two-sample t procedures
compare the two population means. The bootstrap can also compare two pop-LOOK BACK

two-sample t
significance test,
page 451

ulations, without the Normality condition and without the restriction to com-
parison of means. The most important new idea is that bootstrap resampling
must mimic the “separate samples” design that produced the original data.

BOOTSTRAP FOR COMPARING TWO POPULATIONS

Given independent SRSs of sizes n and m from two populations:

1. Draw a resample of size n with replacement from the first sample and
a separate resample of size m from the second sample. Compute a statis-
tic that compares the two groups, such as the difference between the two
sample means.

2. Repeat this resampling process hundreds of times.

3. Construct the bootstrap distribution of the statistic. Inspect its shape,
bias, and bootstrap standard error in the usual way.

•
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E 16.6 Bootstrap comparison of average repair times. We saw in Ex-
ample 16.1 that Verizon is required to perform repairs for customers of com-
peting providers of telephone service (CLECs) within its region. How do
repair times for CLEC customers compare with times for Verizon’s own cus-
tomers? Figure 16.8 shows density curves and Normal quantile plots for the
service times (in hours) of 1664 repair requests from customers of Verizon
and 23 requests from customers of a CLEC during the same time period. The
distributions are both far from Normal. Here are some summary statistics:
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FIGURE 16.8 Density curves and Normal quantile plots of the distributions of repair
times for Verizon customers and customers of a CLEC. (The density curves extend below
zero because they smooth the data. There are no negative repair times.)

•

Service provider n x s

Verizon 1664 8.4 14.7
CLEC 23 16.5 19.5
Difference −8.1

The data suggest that repair times may be longer for CLEC customers. The
mean repair time, for example, is almost twice as long for CLEC customers
as for Verizon customers.

In the setting of Example 16.6 we want to estimate the difference in popula-
tion means, μ1 − μ2. We are reluctant to use the two-sample t confidence inter-
val because one of the samples is both small and very skewed. To compute the
bootstrap standard error for the difference in sample means x1 − x2, resample
separately from the two samples. Each of our 1000 resamples consists of two
group resamples, one of size 1664 drawn with replacement from the Verizon
data and one of size 23 drawn with replacement from the CLEC data. For each
combined resample, compute the statistic x1 − x2. The 1000 differences form
the bootstrap distribution. The bootstrap standard error is the standard devia-
tion of the bootstrap distribution.

S-PLUS automates the proper bootstrap procedure. Here is some of the
S-PLUS output:

Number of Replications: 1000

Summary Statistics:
Observed Mean Bias SE

meanDiff -8.098 -8.251 -0.1534 4.052
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Figure 16.9 shows that the bootstrap distribution is not close to Normal. It
has a short right tail and a long left tail, so that it is skewed to the left. Because
the bootstrap distribution is non-Normal, we can’t trust the bootstrap t confidence

CAUTION

! interval. When the sampling distribution is non-Normal, no method based on
Normality is safe. Fortunately, there are more general ways of using the boot-
strap to get confidence intervals that can be safely applied when the bootstrap
distribution is not Normal. These methods, which we discuss in Section 16.4,
are the next step in practical use of the bootstrap.
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FIGURE 16.9 The bootstrap distribution of the difference in means for the Verizon and
CLEC repair time data.

USE YOUR KNOWLEDGE
16.14 Bootstrap comparison of average reading abilities. Table 7.4

(page 452) gives the scores on a test of reading ability for two groups
of third-grade students. The treatment group used “directed read-
ing activities,” and the control group followed the same curriculum
without the activities.

(a) Bootstrap the difference in means x1 − x2 and report the boot-
strap standard error.

(b) Inspect the bootstrap distribution. Is a bootstrap t confidence in-
terval appropriate? If so, give a 95% confidence interval.

(c) Compare the bootstrap results with the two-sample t confidence
interval reported on page 455.

16.15 Formula-based versus bootstrap standard error. We have a for-
mula (page 450) for the standard error of x1 − x2. This formula does
not depend on Normality. How does this formula-based standard er-
ror for the data of Example 16.6 compare with the bootstrap stan-
dard error?
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BEYOND THE BASICS

The Bootstrap for a Scatterplot Smoother

The bootstrap idea can be applied to quite complicated statistical methods,
such as the scatterplot smoother illustrated in Chapter 2 (page 92).

•

•
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E 16.7 Do all daily numbers have an equal payout? The New Jersey

Pick-It Lottery is a daily numbers game run by the state of New Jersey. We’ll
analyze the first 254 drawings after the lottery was started in 1975.7 Buying
a ticket entitles a player to pick a number between 000 and 999. Half of the
money bet each day goes into the prize pool. (The state takes the other half.)
The state picks a winning number at random, and the prize pool is shared
equally among all winning tickets.

Although all numbers are equally likely to win, numbers chosen by fewer
people have bigger payoffs if they win because the prize is shared among
fewer tickets. Figure 16.10 is a scatterplot of the first 254 winning numbers
and their payoffs. What patterns can we see?
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FIGURE 16.10 The first 254
winning numbers in the New
Jersey Pick-It Lottery and the
payoffs for each, for Example
16.7. To see patterns we use
least-squares regression (line)
and a scatterplot smoother
(curve).

The straight line in Figure 16.10 is the least-squares regression line. The line
shows a general trend of higher payoffs for larger winning numbers. The curve
in the figure was fitted to the plot by a scatterplot smoother that follows local
patterns in the data rather than being constrained to a straight line. The curve
suggests that there were larger payoffs for numbers in the intervals 000 to 100,
400 to 500, 600 to 700, and 800 to 999. When people pick “random” numbers,
they tend to choose numbers starting with 2, 3, 5, or 7, so these numbers have
lower payoffs. This pattern disappeared after 1976; it appears that players no-
ticed the pattern and changed their number choices.
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Are the patterns displayed by the scatterplot smoother just chance? We can
use the bootstrap distribution of the smoother’s curve to get an idea of how
much random variability there is in the curve. Each resample “statistic” is now
a curve rather than a single number. Figure 16.11 shows the curves that result
from applying the smoother to 20 resamples from the 254 data points in Figure
16.10. The original curve is the thick line. The spread of the resample curves
about the original curve shows the sampling variability of the output of the
scatterplot smoother.
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FIGURE 16.11 The curves
produced by the scatterplot
smoother for 20 resamples from
the data displayed in Figure
16.10. The curve for the original
sample is the heavy line.

Nearly all the bootstrap curves mimic the general pattern of the original
smoother curve, showing, for example, the same low average payoffs for num-
bers in the 200s and 300s. This suggests that these patterns are real, not just
chance.

SECTION 16.2 Summary

Bootstrap distributions mimic the shape, spread, and bias of sampling distri-
butions.

The bootstrap standard error SEboot of a statistic is the standard deviation
of its bootstrap distribution. It measures how much the statistic varies under
random sampling.

The bootstrap estimate of the bias of a statistic is the mean of the bootstrap
distribution minus the statistic for the original data. Small bias means that the
bootstrap distribution is centered at the statistic of the original sample and sug-
gests that the sampling distribution of the statistic is centered at the population
parameter.

The bootstrap can estimate the sampling distribution, bias, and standard er-
ror of a wide variety of statistics, such as the trimmed mean, whether or not
statistical theory tells us about their sampling distributions.
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If the bootstrap distribution is approximately Normal and the bias is small, we
can give a bootstrap t confidence interval, statistic ± t∗SEboot, for the pa-
rameter. Do not use this t interval if the bootstrap distribution is not Normal
or shows substantial bias.

SECTION 16.2 Exercises
For Exercises 16.12 and 16.13, see pages 16-16 and 16-17;
and for Exercises 16.14 and 16.15, see page 16-19.

16.16 Bootstrap t confidence interval for listening
times. Return to or re-create the bootstrap
distribution of the sample mean for the 8 listening
times in Exercise 16.6.

(a) Although the sample is small, verify using
graphs and numerical summaries of the bootstrap
distribution that the distribution is reasonably
Normal and that the bias is small relative to the
observed x.

(b) The bootstrap t confidence interval for the
population mean μ is therefore justified. Give the
95% bootstrap t confidence interval for μ.

(c) Give the usual t 95% interval and compare it
with your interval from (b).

16.17 Bootstrap t confidence interval for survival
times. Return to or re-create the bootstrap
distribution of the sample mean for the 72 guinea
pig survival times in Exercise 16.10.

(a) What is the bootstrap estimate of the bias?
Verify from the graphs of the bootstrap distribution
that the distribution is reasonably Normal (some
right-skew remains) and that the bias is small
relative to the observed x. The bootstrap t
confidence interval for the population mean μ

is therefore justified.

(b) Give the 95% bootstrap t confidence interval
for μ.

(c) The only difference between the bootstrap t
and usual one-sample t confidence intervals is that
the bootstrap interval uses SEboot in place of the
formula-based standard error s/

√
n. What are the

values of the two standard errors? Give the usual
t 95% interval and compare it with your interval
from (b).

16.18 Another bootstrap distribution of the trimmed
mean. Bootstrap distributions and quantities
based on them differ randomly when we repeat
the resampling process. A key fact is that they do
not differ very much if we use a large number
of resamples. Figure 16.7 shows one bootstrap

distribution for the trimmed mean selling price
for Seattle real estate. Repeat the resampling of
the data in Table 16.1 to get another bootstrap
distribution for the trimmed mean.

(a) Plot the bootstrap distribution and compare
it with Figure 16.7. Are the two bootstrap
distributions similar?

(b) What are the values of the mean statistic,
bias, and bootstrap standard error for your new
bootstrap distribution? How do they compare with
the previous values given on page 16-15?

(c) Find the 95% bootstrap t confidence interval
based on your bootstrap distribution. Compare it
with the previous result in Example 16.5.

16.19 Bootstrap distribution of the standard deviation
s. For Example 16.5 we bootstrapped the 25%
trimmed mean of the 50 selling prices in Table
16.1. Another statistic whose sampling distribution
is unknown to us is the standard deviation s.
Bootstrap s for these data. Discuss the shape and
bias of the bootstrap distribution. Is the bootstrap
t confidence interval for the population standard
deviation σ justified? If it is, give a 95% confidence
interval.

16.20 Bootstrap comparison of tree diameters.
In Exercise 7.81 (page 471) you were asked to
compare the mean diameter at breast height
(DBH) for trees from the northern and southern
halves of a land tract using a random sample of 30
trees from each region.

(a) Use a back-to-back stemplot or side-by-side
boxplots to examine the data graphically. Does it
appear reasonable to use standard t procedures?

(b) Bootstrap the difference in means xNorth − xSouth

and look at the bootstrap distribution. Does it meet
the conditions for a bootstrap t confidence interval?

(c) Report the bootstrap standard error and the
95% bootstrap t confidence interval.

(d) Compare the bootstrap results with the usual
two-sample t confidence interval.

16.21 Bootstrapping a Normal data set. The following
data are “really Normal.” They are an SRS from the
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standard Normal distribution N(0, 1), produced by
a software Normal random number generator.

0.01 −0.04 −1.02 −0.13 −0.36 −0.03 −1.88 0.34 −0.00 1.21
−0.02 −1.01 0.58 0.92 −1.38 −0.47 −0.80 0.90 −1.16 0.11

0.23 2.40 0.08 −0.03 0.75 2.29 −1.11 −2.23 1.23 1.56
−0.52 0.42 −0.31 0.56 2.69 1.09 0.10 −0.92 −0.07 −1.76

0.30 −0.53 1.47 0.45 0.41 0.54 0.08 0.32 −1.35 −2.42
0.34 0.51 2.47 2.99 −1.56 1.27 1.55 0.80 −0.59 0.89

−2.36 1.27 −1.11 0.56 −1.12 0.25 0.29 0.99 0.10 0.30
0.05 1.44 −2.46 0.91 0.51 0.48 0.02 −0.54

(a) Make a histogram and Normal quantile plot.
Do the data appear to be “really Normal”? From
the histogram, does the N(0, 1) distribution appear
to describe the data well? Why?

(b) Bootstrap the mean. Why do your bootstrap
results suggest that t confidence intervals are
appropriate?

(c) Give both the bootstrap and the formula-based
standard errors for x. Give both the bootstrap and
usual t 95% confidence intervals for the population
mean μ.

16.22 Bootstrap distribution of the median. We will see
in Section 16.3 that bootstrap methods often work
poorly for the median. To illustrate this, bootstrap
the sample median of the 50 selling prices in Table
16.1. Why is the bootstrap t confidence interval not
justified?

16.23 Do you feel lucky? Exercise 7.29 (page 443) gives
data on 60 children who said how big a part they
thought luck played in solving puzzles. The data
have a discrete 1 to 10 scale. Is inference based on
t distributions nonetheless justified? Explain your
answer. If t inference is justified, compare the usual
t and the bootstrap t 95% confidence intervals.

16.24 Bootstrap distribution of the mpg standard
deviation. Computers in some vehicles calculate
various quantities related to performance. One
of these is the fuel efficiency, or gas mileage,
usually expressed as miles per gallon (mpg). For
one vehicle equipped in this way, the mpg were
recorded each time the gas tank was filled, and the
computer was then reset.8 Here are the mpg values
for a random sample of 20 of these records:

41.5 50.7 36.6 37.3 34.2 45.0 48.0 43.2 47.7 42.2
43.2 44.6 48.4 46.4 46.8 39.2 37.3 43.5 44.3 43.3

In addition to the average mpg, the driver is also
interested in how much variability there is in the
mpg.

(a) Calculate the sample standard deviation s for
these mpg values.

(b) We have no formula for the standard error of
s. Find the bootstrap standard error for s.

(c) What does the standard error indicate about
how accurate the sample standard deviation is as
an estimate of the population standard deviation?

(d) Would it be appropriate to give a bootstrap
t interval for the population standard deviation?
Why or why not?

16.25 C
H

ALLENG
E The really rich. Each year, the business

magazine Forbes publishes a list of the
world’s billionaires. In 2006, the magazine found
793 billionaires. Here is the wealth, as estimated
by Forbes and rounded to the nearest $100 million,
of an SRS of 20 of these billionaires:9

2.9 15.9 4.1 1.7 3.3 1.1 2.7 13.6 2.2 2.5
3.4 4.3 2.7 1.2 2.8 1.1 4.4 2.1 1.4 2.6

Suppose you are interested in “the wealth of
typical billionaires.” Bootstrap an appropriate
statistic, inspect the bootstrap distribution, and
draw conclusions based on this sample.

16.26 Comparing the average repair time bootstrap
distributions. Why is the bootstrap distribution of
the difference in mean Verizon and CLEC repair
times in Figure 16.9 so skewed? Let’s investigate
by bootstrapping the mean of the CLEC data and
comparing it with the bootstrap distribution for
the mean for Verizon customers. The 23 CLEC
repair times (in hours) are

26.62 8.60 0.00 21.15 8.33 20.28 96.32 17.97
3.42 0.07 24.38 19.88 14.33 5.45 5.40 2.68
0.00 24.20 22.13 18.57 20.00 14.13 5.80

(a) Bootstrap the mean for the CLEC data.
Compare the bootstrap distribution with the
bootstrap distribution of the Verizon repair times
in Figure 16.3.

(b) Based on what you see in (a), what is the source
of the skew in the bootstrap distribution of the
difference in means x1 − x2?
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16.3 How Accurate Is a Bootstrap
Distribution?*
We said earlier that “When can I safely bootstrap?” is a somewhat subtle issue.
Now we will give some insight into this issue.

We understand that a statistic will vary from sample to sample and infer-
ence about the population must take this random variation into account. The
sampling distribution of a statistic displays the variation in the statistic due to
selecting samples at random from the population. For example, the margin of
error in a confidence interval expresses the uncertainty due to sampling vari-
ation. In this chapter we have used the bootstrap distribution as a substitute
for the sampling distribution. This introduces a second source of random vari-
ation: choosing resamples at random from the original sample.

SOURCES OF VARIATION AMONG BOOTSTRAP DISTRIBUTIONS

Bootstrap distributions and conclusions based on them include two
sources of random variation:

1. Choosing an original sample at random from the population.

2. Choosing bootstrap resamples at random from the original sample.

A statistic in a given setting has only one sampling distribution. It has many
bootstrap distributions, formed by the two-step process just described. Boot-
strap inference generates one bootstrap distribution and uses it to tell us about
the sampling distribution. Can we trust such inference?

Figure 16.12 displays an example of the entire process. The population dis-
tribution (top left) has two peaks and is far from Normal. The histograms in the
left column of the figure show five random samples from this population, each
of size 50. The line in each histogram marks the mean x of that sample. These
vary from sample to sample. The distribution of the x-values from all possible
samples is the sampling distribution. This sampling distribution appears to the
right of the population distribution. It is close to Normal, as we expect because
of the central limit theorem.

The middle column in Figure 16.12 displays a bootstrap distribution of x
for each of the five samples. Each distribution was created by drawing 1000 re-
samples from the original sample, calculating x for each resample, and present-
ing the 1000 x’s in a histogram. The right column shows the results of repeating
the resampling from the first sample five more times.

Compare the five bootstrap distributions in the middle column to see the
effect of the random choice of the original sample. Compare the six bootstrap
distributions drawn from the first sample to see the effect of the random re-
sampling. Here’s what we see:

• Each bootstrap distribution is centered close to the value of x for its original
sample. That is, the bootstrap estimate of bias is small in all five cases. Of
course, the five x-values vary, and not all are close to the population mean μ.

*This section is optional.
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FIGURE 16.12 Five random
samples (n = 50) from the same
population, with a bootstrap
distribution for the sample mean
formed by resampling from each
of the five samples. At the right
are five more bootstrap
distributions from the first
sample.
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• The shape and spread of the bootstrap distributions in the middle column
vary a bit, but all five resemble the sampling distribution in shape and spread.
That is, the shape and spread of a bootstrap distribution depend on the orig-
inal sample, but the variation from sample to sample is not great.

• The six bootstrap distributions from the same sample are very similar in
shape, center, and spread. That is, random resampling adds very little varia-
tion to the variation due to the random choice of the original sample from the
population.

Figure 16.12 reinforces facts that we have already relied on. If a bootstrap
distribution is based on a moderately large sample from the population, its
shape and spread don’t depend heavily on the original sample and do mimic
the shape and spread of the sampling distribution. Bootstrap distributions do
not have the same center as the sampling distribution; they mimic bias, not the
actual center. The figure also illustrates a fact that is important for practical
use of the bootstrap: the bootstrap resampling process (using 1000 or more re-
samples) introduces very little additional variation. We can rely on a bootstrap
distribution to inform us about the shape, bias, and spread of the sampling
distribution.

Bootstrapping small samples
We now know that almost all of the variation among bootstrap distributions for
a statistic such as the mean comes from the random selection of the original
sample from the population. We also know that in general statisticians prefer
large samples because small samples give more variable results. This general
fact is also true for bootstrap procedures.

Figure 16.13 repeats Figure 16.12, with two important differences. The five
original samples are only of size n = 9, rather than the n = 50 of Figure 16.12.
Also, the population distribution (top left) is Normal, so that the sampling dis-
tribution of x is Normal despite the small sample size. Even with a Normal
population distribution, the bootstrap distributions in the middle column show
much more variation in shape and spread than those for larger samples in Fig-
ure 16.12. Notice, for example, how the skewness of the fourth sample produces
a skewed bootstrap distribution. The bootstrap distributions are no longer all
similar to the sampling distribution at the top of the column. We can’t trust a

CAUTION

! bootstrap distribution from a very small sample to closely mimic the shape and
spread of the sampling distribution. Bootstrap confidence intervals will some-
times be too long or too short, or too long in one direction and too short in
the other. The six bootstrap distributions based on the first sample are again
very similar. Because we used 1000 resamples, resampling adds very little vari-
ation. There are subtle effects that can’t be seen from a few pictures, but the
main conclusions are clear.

VARIATION IN BOOTSTRAP DISTRIBUTIONS

For most statistics, almost all the variation among bootstrap distribu-
tions comes from the selection of the original sample from the popula-
tion. You can reduce this variation by using a larger original sample.
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FIGURE 16.13 Five random
samples (n = 9) from the same
population, with a bootstrap
distribution for the sample mean
formed by resampling from each
of the five samples. At the right
are five more bootstrap
distributions from the first
sample.
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Bootstrapping does not overcome the weakness of small samples as a
basis for inference. We will describe some bootstrap procedures that are
usually more accurate than standard methods, but even they may not be
accurate for very small samples. Use caution in any inference—including
bootstrap inference—from a small sample.

The bootstrap resampling process using 1000 or more resamples intro-
duces very little additional variation.

Bootstrapping a sample median
In dealing with the real estate sales prices in Example 16.4, we chose to boot-
strap the 25% trimmed mean rather than the median. We did this in part be-
cause the usual bootstrapping procedure doesn’t work well for the median
unless the original sample is quite large. Now we will bootstrap the median in
order to understand the difficulties.

Figure 16.14 follows the format of Figures 16.12 and 16.13. The population
distribution appears at top left, with the population median M marked. Below
in the left column are five samples of size n = 15 from this population, with
their sample medians m marked. Bootstrap distributions for the median based
on resampling from each of the five samples appear in the middle column. The
right column again displays five more bootstrap distributions from resampling
the first sample. The six bootstrap distributions from the same sample are once
again very similar to each other—resampling adds little variation—so we con-
centrate on the middle column in the figure.

Bootstrap distributions from the five samples differ markedly from each
other and from the sampling distribution at the top of the column. Here’s why.
The median of a resample of size 15 is the 8th-largest observation in the re-
sample. This is always one of the 15 observations in the original sample and is
usually one of the middle observations. Each bootstrap distribution therefore
repeats the same few values, and these values depend on the original sample.
The sampling distribution, on the other hand, contains the medians of all pos-
sible samples and is not confined to a few values.

The difficulty is somewhat less when n is even, because the median is then
the average of two observations. It is much less for moderately large samples,
say n = 100 or more. Bootstrap standard errors and confidence intervals from
such samples are reasonably accurate, though the shapes of the bootstrap dis-
tributions may still appear odd. You can see that the same difficulty will occur
for small samples with other statistics, such as the quartiles, that are calculated
from just one or two observations from a sample.

There are more advanced variations of the bootstrap idea that improve per-
formance for small samples and for statistics such as the median and quartiles.
Unless you have expert advice or undertake further study, avoid bootstrapping the

CAUTION

!
median and quartiles unless your sample is rather large.

SECTION 16.3 Summary

Almost all of the variation among bootstrap distributions for a statistic is due to
the selection of the original random sample from the population. Resampling
introduces little additional variation.
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Bootstrap distributions based on small samples can be quite variable. Their
shape and spread reflect the characteristics of the sample and may not accu-
rately estimate the shape and spread of the sampling distribution. Bootstrap
inference from a small sample may therefore be unreliable.

Bootstrap inference based on samples of moderate size is unreliable for statis-
tics like the median and quartiles that are calculated from just a few of the
sample observations.

SECTION 16.3 Exercises
16.27 Bootstrap versus sampling distribution. Most

statistical software includes a function to generate
samples from Normal distributions. Set the mean
to 8.4 and the standard deviation to 14.7. You can
think of all the numbers that would be produced
by this function if it ran forever as a population
that has the N(8.4, 14.7) distribution. Samples
produced by the function are samples from this
population.

(a) What is the exact sampling distribution of the
sample mean x for a sample of size n from this
population?

(b) Draw an SRS of size n = 10 from this
population. Bootstrap the sample mean x
using 1000 resamples from your sample. Give
a histogram of the bootstrap distribution and the
bootstrap standard error.

(c) Repeat the same process for samples of sizes
n = 40 and n = 160.

(d) Write a careful description comparing the
three bootstrap distributions and also comparing
them with the exact sampling distribution. What
are the effects of increasing the sample size?

16.28 The effect of increasing sample size. The data for
Example 16.1 are 1664 repair times for customers
of Verizon, the local telephone company in their
area. In that example, these observations formed a
sample. Now we will treat these 1664 observations
as a population. The population distribution is

pictured in Figures 16.1 and 16.8. It is very non-
Normal. The population mean is μ = 8.4, and the
population standard deviation is σ = 14.7.

(a) Although we don’t know the shape of the
sampling distribution of the sample mean x for
a sample of size n from this population, we do
know the mean and standard deviation of this
distribution. What are they?

(b) Draw an SRS of size n = 10 from this
population. Bootstrap the sample mean x
using 1000 resamples from your sample. Give
a histogram of the bootstrap distribution and the
bootstrap standard error.

(c) Repeat the same process for samples of sizes
n = 40 and n = 160.

(d) Write a careful description comparing the
three bootstrap distributions. What are the effects
of increasing the sample size?

16.29 The effect of non-Normality. The populations in
the two previous exercises have the same mean and
standard deviation, but one is very close to Normal
and the other is strongly non-Normal. Based
on your work in these exercises, how does non-
Normality of the population affect the bootstrap
distribution of x? How does it affect the bootstrap
standard error? Do either of these effects diminish
when we start with a larger sample? Explain what
you have observed based on what you know about
the sampling distribution of x and the way in
which bootstrap distributions mimic the sampling
distribution.

16.4 Bootstrap Confidence Intervals
Till now, we have met just one type of inference procedure based on resampling,
the bootstrap t confidence intervals. We can calculate a bootstrap t confidence
interval for any parameter by bootstrapping the corresponding statistic. We
don’t need conditions on the population or special knowledge about the sam-
pling distribution of the statistic. The flexible and almost automatic nature of
bootstrap t intervals is appealing—but there is a catch. These intervals work
well only when the bootstrap distribution tells us that the sampling distribu-
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tion is approximately Normal and has small bias. How well must these condi-
tions be met? What can we do if we don’t trust the bootstrap t interval? In this
section we will see how to quickly check t confidence intervals for accuracy and
will learn alternative bootstrap confidence intervals that can be used more gen-
erally than the bootstrap t.

Bootstrap percentile confidence intervals
Confidence intervals are based on the sampling distribution of a statistic. If a
statistic has no bias as an estimator of a parameter, its sampling distribution is
centered at the true value of the parameter. We can then get a 95% confidence
interval by marking off the central 95% of the sampling distribution. The t crit-
ical values in a t confidence interval are a shortcut to marking off the central
95%.

This shortcut doesn’t work under all conditions—it depends both on lack
of bias and on Normality. One way to check whether t intervals (using either
bootstrap or formula-based standard errors) are reasonable is to compare them
with the central 95% of the bootstrap distribution. The 2.5% and 97.5% per-
centiles mark off the central 95%. The interval between the 2.5% and 97.5%
percentiles of the bootstrap distribution is often used as a confidence interval
in its own right. It is known as a bootstrap percentile confidence interval.

BOOTSTRAP PERCENTILE CONFIDENCE INTERVALS

The interval between the 2.5% and 97.5% percentiles of the bootstrap
distribution of a statistic is a 95% bootstrap percentile confidence in-
terval for the corresponding parameter. Use this method when the boot-
strap estimate of bias is small.

The conditions for safe use of bootstrap t and bootstrap percentile inter-
vals are a bit vague. We recommend that you check whether these intervals
are reasonable by comparing them with each other. If the bias of the bootstrap
distribution is small and the distribution is close to Normal, the bootstrap t
and percentile confidence intervals will agree closely. Percentile intervals, un-
like t intervals, do not ignore skewness. Percentile intervals are therefore usu-
ally more accurate, as long as the bias is small. Because we will soon meet much
more accurate bootstrap intervals, our recommendation is that, when bootstrap
t and bootstrap percentile intervals do not agree closely, neither type of interval

CAUTION

!
should be used.
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E 16.8 Bootstrap percentile confidence interval for the trimmed mean.
In Example 16.5 (page 16-16) we found that a 95% bootstrap t confidence in-
terval for the 25% trimmed mean of Seattle real estate sales prices is 210.2
to 277.8. The bootstrap distribution in Figure 16.7 shows a small bias and,
though roughly Normal, is a bit skewed. Is the bootstrap t confidence inter-
val accurate for these data?

The S-PLUS bootstrap output includes the 2.5% and 97.5% percentiles of
the bootstrap distribution (for example, see Figure 16.5). For this bootstrap



16-32
•

CHAPTER 16 • Bootstrap Methods and Permutation Tests

•

sample they are 213.1 and 279.4. These are the endpoints of the 95% boot-
strap percentile confidence interval. This interval is quite close to the boot-
strap t interval. We conclude that both intervals are reasonably accurate.

The bootstrap t interval for the trimmed mean of real estate sales in Example
16.8 is

x25% ± t∗SEboot = 244 ± 33.81

We can learn something by also writing the percentile interval starting at the
statistic x25% = 244. In this form, it is

244.0 − 30.9, 244.0 + 35.4

Unlike the t interval, the percentile interval is not symmetric—its endpoints are
different distances from the statistic. The slightly greater distance to the 97.5%
percentile reflects the slight right-skewness of the bootstrap distribution.

USE YOUR KNOWLEDGE
16.30 Determining the percentile endpoints. What percentiles of the

bootstrap distribution are the endpoints of a 90% bootstrap per-
centile confidence interval? Of a 98% bootstrap percentile confidence
interval?

16.31 Bootstrap percentile confidence interval for average repair time.
Consider the small random subset of the Verizon data in Exercise 16.1.
Bootstrap the sample mean using 1000 resamples.

(a) Make a histogram and Normal quantile plot. Does the bootstrap
distribution appear close to Normal? Is the bias small relative to
the observed sample mean?

(b) Find the 95% bootstrap t confidence interval.

(c) Give the 95% bootstrap percentile confidence interval and com-
pare it with the interval in (b).

More accurate bootstrap confidence intervals:
BCa and tilting
Any method for obtaining confidence intervals requires some conditions in
order to produce exactly the intended confidence level. These conditions (for
example, Normality) are never exactly met in practice. So a 95% confidence in-
terval in practice will not capture the true parameter value exactly 95% of the
time. In addition to “hitting” the parameter 95% of the time, a good confidence
interval should divide its 5% of “misses” equally between high misses and low
misses. We will say that a method for obtaining 95% confidence intervals is
accurate in a particular setting if 95% of the time it produces intervals thataccurate
capture the parameter and if the 5% misses are shared equally between high
and low misses. Perfect accuracy isn’t available in practice, but some methods
are more accurate than others.
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One advantage of the bootstrap is that we can to some extent check the ac-
curacy of the bootstrap t and percentile confidence intervals by examining the
bootstrap distribution for bias and skewness and by comparing the two inter-
vals with each other. The interval in Example 16.8 reveals some right-skewness,
but not enough to invalidate inference. The bootstrap distribution in Figure
16.9 (page 16-19) for comparing two means, on the other hand, is so skewed
that we hesitate to use the t or percentile intervals. In general, the t and per-
centile intervals may not be sufficiently accurate when

• the statistic is strongly biased, as indicated by the bootstrap estimate of bias;

• the sampling distribution of the statistic is clearly skewed, as indicated by the
bootstrap distribution and by comparing the t and percentile intervals; or

• we require high accuracy because the stakes are high (for example, large
sums of money or public welfare involved).

Most confidence interval procedures are more accurate for larger sample
sizes. The t and percentile procedures improve only slowly: they require 100
times more data to improve accuracy by a factor of 10. (Recall the

√
n in the

formula for the usual one-sample t interval.) These intervals may not be very
accurate except for quite large sample sizes. There are more elaborate boot-
strap procedures that improve faster, requiring only 10 times more data to im-
prove accuracy by a factor of 10. These procedures are quite accurate unless
the sample size is very small.

BCA AND TILTING CONFIDENCE INTERVALS

The bootstrap bias-corrected accelerated (BCa) interval is a modifi-
cation of the percentile method that adjusts the percentiles to correct for
bias and skewness.

The bootstrap tilting interval adjusts the process of randomly forming
resamples (though a clever implementation allows use of the same re-
samples as other bootstrap methods).

These two methods are accurate in a wide variety of settings, have reason-
able computation requirements (by modern standards), and do not produce
excessively wide intervals. The BCa intervals are more widely used. Both are
based on the key ideas of resampling and the bootstrap distribution. Now that
you understand these concepts, you should always use one of these more ac-
curate methods if your software offers them. We did not meet them earlier be-
cause the details of producing the confidence intervals are quite technical.10

The BCa method requires more than 1000 resamples for high accuracy. Use
5000 or more resamples if the accuracy of inference is very important. Tilting
is more efficient, so that 1000 resamples are generally enough. Don’t forget that
even BCa and tilting confidence intervals should be used cautiously when sampleCAUTION

! sizes are small, because there are not enough data to accurately determine the nec-
essary corrections for bias and skewness.
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E 16.9 The BCa and tilting confidence interval for the trimmed mean.
The 2002 Seattle real estate sales data are strongly skewed (Figure 16.6). Fig-
ure 16.15 shows the bootstrap distribution of the sample mean x. We see that
the skewness persists in the bootstrap distribution and therefore in the sam-
pling distribution. Inference based on a Normal sampling distribution is not
appropriate.

We generally prefer resistant measures of center such as the median or
trimmed mean for skewed data. Accordingly, in Example 16.5 (page 16-16)
we bootstrapped the 25% trimmed mean. However, the mean is easily under-
stood by the public and is needed for some purposes, such as projecting taxes
based on total sales value.

The bootstrap t and percentile intervals aren’t reliable when the sampling
distribution of the statistic is skewed. Figure 16.16 shows software output
that includes all four of the bootstrap confidence intervals we have men-
tioned, along with the traditional one-sample t interval.

The BCa interval is

(329.3 − 62.2, 329.3 + 127.0) = (267.1, 456.3)

and the tilting interval is

(329.3 − 66.2, 329.3 + 125.9) = (263.1, 455.2)

These intervals agree closely. Both are strongly asymmetrical: the upper end-
point is about twice as far from the sample mean as the lower endpoint. This
reflects the strong right-skewness of the bootstrap distribution.

The output in Figure 16.16 also shows that both endpoints of the less-
accurate intervals (one-sample t, bootstrap t, and percentile) are too low. These

200 300 400 500

Observed
Mean

Resample means (in $1000s)

FIGURE 16.15 The bootstrap
distribution of the sample means
of 5000 resamples from the data
in Table 16.1, for Example 16.9.
The bootstrap distribution is
right-skewed, so we conclude
that the sampling distribution of
x is right-skewed as well.



16.4 Bootstrap Confidence Intervals
•

16-35

FIGURE 16.16 S-PLUS output
for bootstrapping the mean of
the Seattle real estate selling
price data, for Example 16.9. The
output includes four types of
confidence intervals for the
population mean.

intervals miss the population mean on the low side too often (more than 2.5%)
and miss on the high side too seldom. They give a biased picture of where the
true mean is likely to be.

While the BCa and tilting calculations are radically different, the results
tend to be about the same, except for random variation in the BCa if the num-
ber of resamples is less than about 5000. Both procedures are accurate, so we
expect them to produce similar results unless a small sample size makes any
inference dubious.

Confidence intervals for the correlation
The bootstrap allows us to find confidence intervals for a wide variety of statis-
tics. So far, we have looked at the sample mean, trimmed mean, and difference
between means, using a variety of different bootstrap confidence intervals. The
choice of interval depended on the shape of the bootstrap distribution and the
desired accuracy. Now we will bootstrap the correlation coefficient. This is our
first use of the bootstrap for a statistic that depends on two related variables.
As with the difference in means, we must pay attention to how we should re-
sample.

•
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E 16.10 Correlation between baseball salary and performance. Major
League Baseball (MLB) owners claim they need limitations on player salaries
to maintain competitiveness among richer and poorer teams. This argument
assumes that higher salaries attract better players. Is there a relationship be-
tween an MLB player’s salary and his performance, as measured by career
batting average?
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Table 16.2 contains the names, 2002 salaries, and career batting averages
of 50 randomly selected MLB players (excluding pitchers).11 The scatterplot
in Figure 16.17 suggests that the relationship between salary and batting av-
erage is weak. The sample correlation is r = 0.107. Is this small correlation
significantly different from 0? To find out, we can calculate a 95% confidence
interval for the population correlation and see whether or not it covers 0. If
the confidence interval does not cover 0, the observed correlation is signifi-
cant at the 5% level.

TABLE 16.2

Major League Baseball salaries and batting averages

Name Salary Average Name Salary Average

Matt Williams $9,500,000 0.269 Greg Colbrunn $1,800,000 0.307
Jim Thome $8,000,000 0.282 Dave Martinez $1,500,000 0.276
Jim Edmonds $7,333,333 0.327 Einar Diaz $1,087,500 0.216
Fred McGriff $7,250,000 0.259 Brian L. Hunter $1,000,000 0.289
Jermaine Dye $7,166,667 0.240 David Ortiz $950,000 0.237
Edgar Martinez $7,086,668 0.270 Luis Alicea $800,000 0.202
Jeff Cirillo $6,375,000 0.253 Ron Coomer $750,000 0.344
Rey Ordonez $6,250,000 0.238 Enrique Wilson $720,000 0.185
Edgardo Alfonzo $6,200,000 0.300 Dave Hansen $675,000 0.234
Moises Alou $6,000,000 0.247 Alfonso Soriano $630,000 0.324
Travis Fryman $5,825,000 0.213 Keith Lockhart $600,000 0.200
Kevin Young $5,625,000 0.238 Mike Mordecai $500,000 0.214
M. Grudzielanek $5,000,000 0.245 Julio Lugo $325,000 0.262
Tony Batista $4,900,000 0.276 Mark L. Johnson $320,000 0.207
Fernando Tatis $4,500,000 0.268 Jason LaRue $305,000 0.233
Doug Glanville $4,000,000 0.221 Doug Mientkiewicz $285,000 0.259
Miguel Tejada $3,625,000 0.301 Jay Gibbons $232,500 0.250
Bill Mueller $3,450,000 0.242 Corey Patterson $227,500 0.278
Mark McLemore $3,150,000 0.273 Felipe Lopez $221,000 0.237
Vinny Castilla $3,000,000 0.250 Nick Johnson $220,650 0.235
Brook Fordyce $2,500,000 0.208 Thomas Wilson $220,000 0.243
Torii Hunter $2,400,000 0.306 Dave Roberts $217,500 0.297
Michael Tucker $2,250,000 0.235 Pablo Ozuna $202,000 0.333
Eric Chavez $2,125,000 0.277 Alexis Sanchez $202,000 0.301
Aaron Boone $2,100,000 0.227 Abraham Nunez $200,000 0.224

How shall we resample from Table 16.2? Because each observation con-
sists of the batting average and salary for one player, we resample players.
Resampling batting averages and salaries separately would lose the tie be-
tween a player’s batting average and his salary. Software such as S-PLUS auto-
mates proper resampling. Once we have produced a bootstrap distribution by
resampling, we can examine the distribution and form a confidence interval
in the usual way. We need no special formulas or procedures to handle the
correlation.
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FIGURE 16.17 Career batting
average and 2002 salary for a
random sample of 50 Major
League Baseball players.

Figure 16.18 shows the bootstrap distribution and Normal quantile plot for
the sample correlation for 1000 resamples from the 50 players in our sample.
The bootstrap distribution is close to Normal and has small bias, so a 95% boot-
strap t confidence interval appears reasonable.

The bootstrap standard error is SEboot = 0.125. The t interval using the boot-
strap standard error is

r ± t∗SEboot = 0.107 ± (2.009)(0.125)

= 0.107 ± 0.251

= (−0.144, 0.358)
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FIGURE 16.18 The bootstrap distribution and Normal quantile plot for the correlation r
for 1000 resamples from the baseball player data in Table 16.2. The solid double-ended
arrow below the distribution is the t interval, and the dashed arrow is the percentile
interval.
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The 95% bootstrap percentile interval is

(2.5% percentile, 97.5% percentile) = (−0.128, 0.356)

= (0.107 − 0.235, 0.107 + 0.249)

The two confidence intervals are in reasonable agreement.
The confidence intervals give a wide range for the population correlation,

and both include 0. These data do not provide significant evidence that there
is a relationship between salary and batting average. A larger sample might re-
sult in a significant relationship, but the evidence from this sample suggests
that any relationship is quite weak. Of course, batting average is only one facet
of a player’s performance. It is possible that there may be a significant salary-
performance relationship if we include several measures of performance.

SECTION 16.4 Summary

Both bootstrap t and (when they exist) traditional z and t confidence intervals
require statistics with small bias and sampling distributions close to Normal.
We can check these conditions by examining the bootstrap distribution for bias
and lack of Normality.

The bootstrap percentile confidence interval for 95% confidence is the in-
terval from the 2.5% percentile to the 97.5% percentile of the bootstrap distri-
bution. Agreement between the bootstrap t and percentile intervals is an added
check on the conditions needed by the t interval. Do not use t or percentile in-
tervals if these conditions are not met.

When bias or skewness is present in the bootstrap distribution, use either a BCa
or bootstrap tilting interval. The t and percentile intervals are inaccurate un-
der these circumstances unless the sample sizes are very large. The tilting and
BCa confidence intervals adjust for bias and skewness and are generally accu-
rate except for small samples.

SECTION 16.4 Exercises
For Exercises 16.30 and 16.31, see page 16-32.

Many of these exercises require software that will
calculate accurate bootstrap confidence intervals. If your
software finds BCa but not tilting intervals, ignore requests
for tilting intervals. S-PLUS supplies both types.

16.32 Confidence interval for the average IQ score.
The distribution of the 60 IQ test scores in Table
1.3 (page 13) is roughly Normal (see Figure 1.7),
and the sample size is large enough that we expect
a Normal sampling distribution. We will compare
confidence intervals for the population mean IQ μ

based on this sample.

(a) Use the formula s/
√

n to find the standard error
of the mean. Give the 95% t confidence interval
based on this standard error.

(b) Bootstrap the mean of the IQ scores. Make
a histogram and Normal quantile plot of the
bootstrap distribution. Does the bootstrap
distribution appear Normal? What is the
bootstrap standard error? Give the bootstrap t
95% confidence interval.

(c) Give the 95% confidence percentile, BCa, and
tilting intervals. Make a graphical comparison by
drawing a vertical line at the original sample mean
x and displaying the five intervals horizontally, one
above the other. How well do your five confidence
intervals agree? Was bootstrapping needed to
find a reasonable confidence interval, or was the
formula-based confidence interval good enough?

16.33 Confidence interval for the Normal data set.
In Exercise 16.21 (page 16-22) you bootstrapped
the mean of a simulated SRS from the standard
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Normal distribution N(0, 1) and found the standard
t and bootstrap t 95% confidence intervals for the
mean.

(a) Find the bootstrap percentile 95% confidence
interval. Does this interval confirm that the t
intervals are acceptable?

(b) We know that the population mean is 0. Do the
confidence intervals capture this mean?

16.34 Using bootstrapping to check traditional
methods. Bootstrapping is a good way to check if
traditional inference methods are accurate for a
given sample. Consider the following data:

108 107 113 104 94 100 107 98 112 97 98 95 95 97
99 95 97 90 109 102 89 101 93 95 105 91 96 104
95 87 91 101 119 116 91 95 95 104 111 101 92 91

(a) Examine the data graphically. Do they appear
to violate any of the conditions needed to use the
one-sample t confidence interval for the population
mean?

(b) Calculate the 95% one-sample t confidence
interval for this sample.

(c) Bootstrap the data, and inspect the bootstrap
distribution of the mean. Does it suggest that a t
interval should be reasonably accurate? Calculate
the bootstrap t 95% interval.

(d) Find the 95% bootstrap percentile interval.
Does it agree with the two t intervals? What do you
conclude about the accuracy of the one-sample t
interval here?

16.35 Comparing bootstrap confidence intervals. The
graphs in Figure 16.15 do not appear to show any
important skewness in the bootstrap distribution
of the correlation for Example 16.9. Compare the
bootstrap percentile and bootstrap t intervals for
the correlation, given in the discussion of Example
16.9. Does the comparison suggest any skewness?

16.36 More on using bootstrapping to check
traditional methods. Continue to work with
the data given in Exercise 16.34.

(a) Find the bootstrap BCa or tilting 95%
confidence interval.

(b) Does your opinion of the robustness of the
one-sample t confidence interval change when
comparing it to the BCa or tilting interval?

(c) To check the accuracy of the one-sample t
confidence interval, would you generally use the

bootstrap percentile or BCa (or tilting) interval?
Explain.

16.37 BCa and tilting intervals for the correlation
coefficient. Find the BCa and tilting 95%
confidence intervals for the correlation between
baseball salaries and batting averages, from
the data in Table 16.2. Are these more accurate
intervals in general agreement with the bootstrap
t and percentile intervals? Do you still agree with
the judgment in the discussion of Example 16.9
that the simpler intervals are adequate?

16.38 Bootstrap confidence intervals for the average
audio file length. In Exercise 16.13, you found a
bootstrap t confidence interval for the population
mean μ. Careful examination of the bootstrap
distribution reveals a slight skewness in the right
tail. Is this something to be concerned about?
Bootstrap the mean and give all four bootstrap
95% confidence intervals: t, percentile, BCa, and
tilting. Make a graphical comparison by drawing
a vertical line at the original sample mean x and
displaying the four intervals horizontally, one
above the other. Discuss what you see.

16.39 Bootstrap confidence intervals for the average
survival time. The distribution of the 72 guinea
pig survival times in Table 1.8 (page 29) is strongly
skewed. In Exercise 16.17 (page 16-22) you found
a bootstrap t confidence interval for the population
mean μ, even though some skewness remains in
the bootstrap distribution. Bootstrap the mean
lifetime and give all four bootstrap 95% confidence
intervals: t, percentile, BCa, and tilting. Make a
graphical comparison by drawing a vertical line at
the original sample mean x and displaying the four
intervals horizontally, one above the other. Discuss
what you see. Do bootstrap t and percentile agree?
Do the more accurate intervals agree with the two
simpler methods?

16.40 Bootstrap confidence intervals for the standard
deviation s. We would like a 95% confidence
interval for the standard deviation σ of Seattle
real estate prices. Your work in Exercise 16.19
probably suggests that it is risky to bootstrap
the sample standard deviation s from the sample
in Table 16.1 and use the bootstrap t interval.
Now we have more accurate methods. Bootstrap
s and report all four bootstrap 95% confidence
intervals: t, percentile, BCa, and tilting. Make a
graphical comparison by drawing a vertical line
at the original s and displaying the four intervals
horizontally, one above the other. Discuss what you
see. Do bootstrap t and percentile agree? Do the
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more accurate intervals agree with the two simpler
methods? What interval would you use in a report
on real estate prices?

16.41 C
H

ALLENG
E The effect of decreasing sample size.

Exercise 16.11 (page 16-12) gives an SRS of
20 of the 72 guinea pig survival times in Table 1.8.
The bootstrap distribution of x from this sample
is clearly right-skewed. Give a 95% confidence
interval for the population mean μ based on
these data and a method of your choice. Describe
carefully how your result differs from the intervals
in Exercise 16.39, which use the full sample of 72
survival times.

16.42 C
H

ALLENG
E Bootstrap confidence interval for the

CLEC data. The CLEC data for Example
16.6 are strongly skewed to the right. The 23 CLEC
repair times appear in Exercise 16.26 (page 16-23).

(a) Bootstrap the mean of the data. Based on the
bootstrap distribution, which bootstrap confidence
intervals would you consider for use? Explain your
answer.

(b) Find all four bootstrap confidence intervals.
How do the intervals compare? Briefly explain the
reasons for any differences. In particular, what
kind of errors would you make in estimating the
mean repair time for all CLEC customers by using
a t interval or percentile interval instead of a tilting
or BCa interval?

16.43 Bootstrap confidence intervals for the
difference in average repair times. Example
16.6 (page 16-17) considers the mean difference
between repair times for Verizon (ILEC) customers
and customers of competing carriers (CLECs). The
bootstrap distribution is non-Normal with strong
left-skewness, so that any t confidence interval
is inappropriate. Give the BCa 95% confidence
interval for the mean difference in service times
for all customers. In practical terms, what kind
of error would you make by using a t interval or
percentile interval instead of a BCa interval?

16.44 The correlation between field and lab
measurements. Figure 2.3 (page 90) is a
scatterplot of field versus laboratory measurements
of the depths of 100 defects in the Trans-Alaska Oil
Pipeline. The correlation is r = 0.944. Bootstrap
the correlation for these data. (The data are in the
file ex16-044.)

(a) Describe the shape and bias of the bootstrap
distribution. Do the simpler bootstrap confidence
intervals (t and percentile) appear to be justified?

(b) Find all four bootstrap 95% confidence
intervals: t, percentile, BCa, and tilting. Make
a graphical comparison by drawing a vertical line
at the original correlation r and displaying the four
intervals horizontally, one above the other. Discuss
what you see. Does it still appear that the simpler
intervals are justified? What confidence interval
would you include in a report comparing field and
laboratory measurements?

16.45 The correlation between Treasury bills and
common stock returns. Figure 2.7 (page 96)
shows a very weak relationship between returns
on Treasury bills and returns on common stocks.
The correlation is r = −0.113. We wonder if this is
significantly different from 0. To find out, bootstrap
the correlation. (The data are in the file ex16-045.)

(a) Describe the shape and bias of the bootstrap
distribution. It appears that even simple bootstrap
inference (t and percentile confidence intervals) is
justified. Explain why.

(b) Give the BCa and bootstrap percentile 95%
confidence intervals for the population correlation.
Do they (as expected) agree closely? Do these
intervals provide significant evidence at the 5%
level that the population correlation is not 0?

16.46 C
H

ALLENG
E Bootstrap distribution for the slope β1.

Describe carefully how to resample from
data on an explanatory variable x and a response
variable y to create a bootstrap distribution for
the slope b1 of the least-squares regression line.
(Software such as S-PLUS automates resampling
methods for regression inference.)

16.47 Predicting salary. Table 16.2 gives data on a
sample of 50 baseball players.

(a) Find the least-squares regression line for
predicting salary from batting average.

(b) Bootstrap the regression line and give a 95%
confidence interval for the slope of the population
regression line.

(c) In the discussion after Example 16.10 we found
bootstrap confidence intervals for the correlation
between salary and batting average. Does your
interval for the slope of the population line agree
with our previous conclusion that there may be
no relation between salary and batting average?
Explain.

16.48 C
H

ALLENG
E Predicting field measurements. Continue

your study of field measurements versus
laboratory measurements of defects in the Trans-
Alaska Oil Pipeline, begun in Exercise 16.44, by
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regressing field measurement result on laboratory
measurement result.

(a) Request a plot of the residuals against the
explanatory variable and a Normal quantile plot
of the residuals. These plots suggest that inference
based on the usual simple linear regression model
(Chapter 10, page 564) may be inaccurate. Why?

(b) Examine the bootstrap distribution of
the slope b1 of the least-squares regression
line. The distribution shows some departures
from Normality. In what way is the bootstrap
distribution non-Normal? What is the bootstrap
estimate of bias? Based on what you see, would you
consider use of bootstrap t or bootstrap percentile
intervals?

(c) Give the BCa 95% confidence interval for the
slope β1 of the population regression line. Compare
this with the standard 95% confidence interval
based on Normality, the bootstrap t interval, and
the bootstrap percentile interval. Using the BCa
interval as a standard, which of the other intervals
are adequately accurate for practical use?

16.49 C
H

ALLENG
E Predicting stock returns. Continue your

study of historical returns on Treasury bills
and common stocks, begun in Exercise 16.45, by
regressing stock returns on T-bill returns.

(a) Request a plot of the residuals against the
explanatory variable and a Normal quantile plot

of the residuals. The residuals are somewhat non-
Normal. In what way? It is hard to predict the
accuracy of the usual t confidence interval for the
slope β1 of the population regression line.

(b) Examine the shape and bias of the bootstrap
distribution of the slope b1 of the least-squares line.
The distribution suggests that even the bootstrap t
interval will be accurate. Why?

(c) Give the standard t confidence interval for
β1 and also the BCa, bootstrap t, and bootstrap
percentile 95% confidence intervals. What do you
conclude about the accuracy of the two t intervals?
Do the data provide evidence at the 5% level that
the population slope β1 is not 0?

16.50 The effect of outliers. We know that outliers
can strongly influence statistics such as the mean
and the least-squares line. Example 7.7 (page 428)
describes a matched pairs study of disruptive
behavior by dementia patients. The differences
in Table 7.2 show several low values that may be
considered outliers.

(a) Bootstrap the mean of the differences with
and without the three low values. How do these
values influence the shape and bias of the bootstrap
distribution?

(b) Give the BCa or tilting confidence interval
from both bootstrap distributions. Discuss the
differences.

16.5 Significance Testing Using
Permutation Tests
Significance tests tell us whether an observed effect, such as a difference be-

LOOK BACK
tests of significance,
page 372

tween two means or a correlation between two variables, could reasonably oc-
cur “just by chance” in selecting a random sample. If not, we have evidence that
the effect observed in the sample reflects an effect that is present in the popu-
lation. The reasoning of tests goes like this:

1. Choose a statistic that measures the effect you are looking for.

2. Construct the sampling distribution that this statistic would have if the ef-
fect were not present in the population.

3. Locate the observed statistic in this distribution. A value in the main body of
the distribution could easily occur just by chance. A value in the tail would
rarely occur by chance and so is evidence that something other than chance
is operating.

The statement that the effect we seek is not present in the population is the
null hypothesis, H0. Assuming the null hypothesis were true, the probability

LOOK BACK
null hypothesis,
page 375 that we would observe a statistic value as extreme or more extreme than the
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one we did observe is the P-value. Figure 16.19 illustrates the idea of a P-value.
LOOK BACK

P-value, page 377
Small P-values are evidence against the null hypothesis and in favor of a real
effect in the population. The reasoning of statistical tests is indirect and a bit
subtle but is by now familiar. Tests based on resampling don’t change this rea-
soning. They find P-values by resampling calculations rather than from formu-
las and so can be used in settings where traditional tests don’t apply.

Sampling
distribution

when H0 is true
P-value

Observed statistic

FIGURE 16.19 The P-value of a
statistical test is found from the
sampling distribution the statistic
would have if the null hypothesis
were true. It is the probability of
a result at least as extreme as the
value we actually observed.

Because P-values are calculated acting as if the null hypothesis were true, we
cannot resample from the observed sample as we did earlier. In the absence of
bias, resampling from the original sample creates a bootstrap distribution cen-
tered at the observed value of the statistic. If the null hypothesis is in fact not
true, this value may be far from the parameter value stated by the null hypoth-
esis. We must estimate what the sampling distribution of the statistic would be
if the null hypothesis were true. That is, we must obey the following rule.

RESAMPLING FOR SIGNIFICANCE TESTS

To estimate the P-value for a test of significance, estimate the sampling
distribution of the test statistic when the null hypothesis is true by re-
sampling in a manner that is consistent with the null hypothesis.
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E 16.11 Directed reading activities. Do new “directed reading activities”
improve the reading ability of elementary school students, as measured by
their Degree of Reading Power (DRP) scores? A study assigns third-grade stu-
dents at random to either the new method (treatment group, 21 students) or
traditional teaching methods (control group, 23 students). The DRP scores
at the end of the study appear in Table 16.3.12 In Example 7.14 (page 451) we
applied the two-sample t test to these data.

To apply resampling, we will start with the difference between the sample
means as a measure of the effect of the new activities:

statistic = xtreatment − xcontrol
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TABLE 16.3

DRP scores for third-graders

Treatment group Control group

24 61 59 46 43 53 42 33 46 37 62 20
43 44 52 43 57 49 43 41 10 42 53 48
58 67 62 57 56 33 55 19 17 55 37 85
71 49 54 26 54 60 28 42

•

The null hypothesis H0 for the resampling test is that the teaching method has
no effect on the distribution of DRP scores. If H0 is true, the DRP scores in
Table 16.3 do not depend on the teaching method. Each student has a DRP
score that describes that child and is the same no matter which group the
child is assigned to. The observed difference in group means just reflects the
accident of random assignment to the two groups.

Now we can see how to resample in a way that is consistent with the null
hypothesis: imitate many repetitions of the random assignment of students
to treatment and control groups, with each student always keeping his or her
DRP score unchanged. Because resampling in this way scrambles the assign-
ment of students to groups, tests based on resampling are called permutation
tests, from the mathematical name for scrambling a collection of things.

permutation test

Here is an outline of the permutation test procedure for comparing the
mean DRP scores in Example 16.11:

• Choose 21 of the 44 students at random to be the treatment group; the other
23 are the control group. This is an ordinary SRS, chosen without replace-
ment. It is called a permutation resample.permutation resample

• Calculate the mean DRP score in each group, using the students’ DRP scores
in Table 16.3. The difference between these means is our statistic.

• Repeat this resampling and calculation of the statistic hundreds of times. The
distribution of the statistic from these resamples estimates the sampling dis-
tribution under the condition that H0 is true. It is called a permutation dis-permutation distribution
tribution.

• Consider the value of the statistic actually observed in the study,

xtreatment − xcontrol = 51.476 − 41.522 = 9.954

Locate this value on the permutation distribution to get the P-value.

Figure 16.20 illustrates permutation resampling on a small scale. The top
box shows the results of a study with four subjects in the treatment group and
two subjects in the control group. A permutation resample chooses an SRS of
four of the six subjects to form the treatment group. The remaining two are
the control group. The results of three permutation resamples appear below
the original results, along with the statistic (difference in group means) for
each.
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24, 61   |   42, 33, 46, 37
x1 – x2 = 42.5 – 39.5 = 3.0

33, 61   |   24, 42, 46, 37
x1 – x2 = 47 – 37.25 = 9.75

37, 42   |   24, 61, 33, 46
x1 – x2 = 39.5 – 41 = –1.5

33, 46   |   24, 61, 42, 37
x1 – x2 = 39.5 – 41 = –1.5

FIGURE 16.20 The idea of permutation resampling. The top box shows the outcomes of
a study with four subjects in one group and two in the other. The boxes below show three
permutation resamples. The values of the statistic for many such resamples form the
permutation distribution.

•

E
X

A
M

P
L

E 16.12 Permutation test for the DRP study. Figure 16.21 shows the per-
mutation distribution of the difference of means based on 999 permutation
resamples from the DRP data in Table 16.3. This is a resampling estimate of
the sampling distribution of the statistic when the null hypothesis H0 is true.
As H0 suggests, the distribution is centered at 0 (no effect). The solid vertical
line in the figure marks the location of the statistic for the original sample,
9.954. Use the permutation distribution exactly as if it were the sampling dis-
tribution: the P-value is the probability that the statistic takes a value at least
as extreme as 9.954 in the direction given by the alternative hypothesis.

We seek evidence that the treatment increases DRP scores, so the alter-
native hypothesis is that the distribution of the statistic xtreatment − xcontrol is
centered not at 0 but at some positive value. Large values of the statistic are
evidence against the null hypothesis in favor of this one-sided alternative. The
permutation test P-value is the proportion of the 999 resamples that give a
result at least as great as 9.954. A look at the resampling results finds that 14
of the 999 resamples gave a value 9.954 or larger, so the estimated P-value is
14/999, or 0.014.

–15 –5–10 0 5 10 15

P-value

Observed
Mean

FIGURE 16.21 The
permutation distribution of the
statistic xtreatment − xcontrol based
on the DRP scores of 44 students.
The dashed line marks the mean
of the permutation distribution:
it is very close to zero, the value
specified by the null hypothesis.
The solid vertical line marks the
observed difference in means,
9.954. Its location in the right tail
shows that a value this large is
unlikely to occur when the null
hypothesis is true.
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We, however, have one last refinement. In Chapter 8 we discussed an ad-
justment to the population proportion confidence interval that improves its
accuracy. This involved adding two successes and two failures to the sample.
It turns out that we can similarly improve the estimate of the P-value by
adding one sample result more extreme than the observed statistic. The final
permutation test estimate of the P-value is

14 + 1
999 + 1

= 15
1000

= 0.015

(This is why we used 999, rather than 1000, resamples: at this last step we can
divide by 1000 rather than 1001.) The data give good evidence that the new
method beats the standard method.

LOOK BACK
plus four confidence
interval, page 491

Figure 16.21 shows that the permutation distribution has a roughly Nor-
mal shape. Because the permutation distribution approximates the sampling
distribution, we now know that the sampling distribution is close to Normal.
When the sampling distribution is close to Normal, we can safely apply the
usual two-sample t test. The t test in Example 7.14 gives P = 0.013, very close
to the P-value from the permutation test.

Using software
In principle, you can program almost any statistical software to do a permu-
tation test. It is more convenient to use software that automates the process
of resampling, calculating the statistic, forming the permutation distribution,
and finding the P-value. The menus in S-PLUS allow you to request permuta-
tion tests along with standard tests whenever they make sense. The permuta-
tion distribution in Figure 16.21 is one output. Another is this summary of the
test results:

Number of Replications: 999

Summary Statistics:
Observed Mean SE alternative p.value

score 9.954 0.07153 4.421 greater 0.015

By giving “greater” as the alternative hypothesis, the output makes it clear that
0.015 is the one-sided P-value.

Permutation tests in practice
Permutation tests versus t tests. We have analyzed the data in Table 16.3
both by the two-sample t test (in Chapter 7) and by a permutation test. Com-
paring the two approaches brings out some general points about permutation
tests versus traditional formula-based tests.

• The hypotheses for the t test are stated in terms of the two population means,

H0: μtreatment − μcontrol = 0

Ha: μtreatment − μcontrol > 0
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The permutation test hypotheses are more general. The null hypothesis is
“same distribution of scores in both groups,” and the one-sided alternative
is “scores in the treatment group are systematically higher.” These more gen-
eral hypotheses imply the t hypotheses if we are interested in mean scores
and the two distributions have the same shape.

• The plug-in principle says that the difference in sample means estimates the
difference in population means. The t statistic starts with this difference. We
used the same statistic in the permutation test, but that was a choice: we
could use the difference in 25% trimmed means or any other statistic that
measures the effect of treatment versus control.

• The t test statistic is based on standardizing the difference in means in a
clever way to get a statistic that has a t distribution when H0 is true. The
permutation test works directly with the difference in means (or some other
statistic) and estimates the sampling distribution by resampling. No formu-
las are needed.

• The t test gives accurate P-values if the sampling distribution of the differ-
ence in means is at least roughly Normal. The permutation test gives accurate
P-values even when the sampling distribution is not close to Normal.

The permutation test is useful even if we plan to use the two-sample t test.
Rather than relying on Normal quantile plots of the two samples and the cen-
tral limit theorem, we can directly check the Normality of the sampling distri-
bution by looking at the permutation distribution. Permutation tests provide a
“gold standard” for assessing two-sample t tests. If the two P-values differ con-
siderably, it usually indicates that the conditions for the two-sample t don’t hold
for these data. Because permutation tests give accurate P-values even when the
sampling distribution is skewed, they are often used when accuracy is very im-
portant. Here is an example.
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E 16.13 Permutation test of repair times. In Example 16.6, we looked
at the difference in means between repair times for 1664 Verizon (ILEC)
customers and 23 customers of competing companies (CLECs). Figure 16.8
(page 16-18) shows both distributions. Penalties are assessed if a significance
test concludes at the 1% significance level that CLEC customers are receiving
inferior service. The alternative hypothesis is one-sided because the Public
Utilities Commission wants to know if CLEC customers are disadvantaged.

Because the distributions are strongly skewed and the sample sizes are
very different, two-sample t tests are inaccurate. An inaccurate testing pro-
cedure might declare 3% of tests significant at the 1% level when in fact the
two groups of customers are treated identically. Errors like this would cost
Verizon substantial sums of money.

Verizon performs permutation tests with 500,000 resamples for high ac-
curacy, using custom software based on S-PLUS. Depending on the prefer-
ences of each state’s regulators, one of three statistics is chosen: the differ-
ence in means, x1 − x2; the pooled-variance t statistic; or a modified t statistic
in which only the standard deviation of the larger group is used to determine
the standard error. The last statistic prevents the large variation in the small
group from inflating the standard error.
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To perform a permutation test, we randomly regroup the total set of repair
times into two groups that are the same sizes as the two original samples. This
is consistent with the null hypothesis that CLEC versus ILEC has no effect on
repair time. Each repair time appears once in the data in each resample, but
some repair times from the ILEC group move to CLEC, and vice versa. We
calculate the test statistic for each resample and create its permutation dis-
tribution. The P-value is the proportion of the resamples with statistics that
exceed the observed statistic.

Here are the P-values for the three tests on the Verizon data, using 500,000
permutations. The corresponding t test P-values, obtained by comparing the t
statistic with t critical values, are shown for comparison.

Test statistic t test P-value Permutation test P-value

x1 − x2 0.0183
Pooled t statistic 0.0045 0.0183
Modified t statistic 0.0044 0.0195

The t test results are off by a factor of more than 4 because they do not take
skewness into account. The t test suggests that the differences are significant at
the 1% level, but the more accurate P-values from the permutation test indicate
otherwise. Figure 16.22 shows the permutation distribution of the first statistic,
the difference in sample means. The strong skewness implies that t tests will be
inaccurate.

–15 –10 –5 0 5 7

Observed
Mean

P-value

FIGURE 16.22 The
permutation distribution of the
difference in means x1 − x2 for
the Verizon repair time data.

If you read Chapter 15, on nonparametric tests, you will find there permu-
tation tests compared with rank tests and tests based on Normal distributions.

Data from an entire population. A subtle difference between confidence in-
tervals and significance tests is that confidence intervals require the distinction
between sample and population, but tests do not. If we have data on an entire
population—say, all employees of a large corporation—we don’t need a confi-
dence interval to estimate the difference between the mean salaries of male and
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female employees. We can calculate the means for all men and for all women
and get an exact answer. But it still makes sense to ask, “Is the difference in
means so large that it would rarely occur just by chance?” A test and its P-value
answer that question.

Permutation tests are a convenient way to answer such questions. In carry-
ing out the test we pay no attention to whether the data are a sample or an entire
population. The resampling assigns the full set of observed salaries at random
to men and women and builds a permutation distribution from repeated ran-
dom assignments. We can then see if the observed difference in mean salaries
is so large that it would rarely occur if gender did not matter.

When are permutation tests valid? The two-sample t test starts from the
condition that the sampling distribution of x1 − x2 is Normal. This is the case
if both populations have Normal distributions, and it is approximately true for
large samples from non-Normal populations because of the central limit theo-
rem. The central limit theorem helps explain the robustness of the two-sample t
test. The test works well when both populations are symmetric, especially when
the two sample sizes are similar.

LOOK BACK
robustness of
two-sample
procedures, page 456 The permutation test completely removes the Normality condition. How-

ever, resampling in a way that moves observations between the two groups

CAUTION

! requires that the two populations are identical when the null hypothesis is true—
not only are their means the same but so are their spreads and shapes. Our pre-
ferred version of the two-sample t allows different standard deviations in the
two groups, so the shapes are both Normal but need not have the same spread.

In Example 16.13, the distributions are strongly skewed, ruling out the t test.
The permutation test is valid if the repair time distributions for Verizon cus-
tomers and CLEC customers have the same shape, so that they are identical un-
der the null hypothesis that the centers (the means) are the same. Fortunately,
the permutation test is robust. That is, it gives accurate P-values when the two
population distributions have somewhat different shapes—say, when they have
slightly different standard deviations.

Sources of variation. Just as in the case of bootstrap confidence intervals,
permutation tests are subject to two sources of random variability: the original
sample is chosen at random from the population, and the resamples are chosen
at random from the sample. Again as in the case of the bootstrap, the added
variation due to resampling is usually small and can be made as small as we
like by increasing the number of resamples. For example, Verizon uses 500,000
resamples.

For most purposes, 999 resamples are sufficient. If stakes are high or
P-values are near a critical value (for example, near 0.01 in the Verizon case),
increase the number of resamples. Here is a helpful guideline: If a one-
sided test has P-value P, the standard deviation of this value is approximately√

P(1 − P)/B, where B is the number of resamples. You can choose B to obtain
a desired level of accuracy.

USE YOUR KNOWLEDGE
16.51 Is use of a permutation test valid? Suppose a professor wants to

compare the effectiveness of two different instruction methods. By
design, one method is more team oriented, and so he expects the vari-
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ability in individual tests scores for this method to be smaller. Is a
permutation test to compare the mean individual scores of the two
methods valid in this case? Explain.

16.52 Declaring significance. Suppose a one-sided permutation test based
on 200 permutation resamples resulted in a P-value of 0.04. What is
the approximate standard deviation of this value? Would you feel
comfortable declaring the result significant at the 5% level? Explain.

Permutation tests in other settings
The bootstrap procedure can replace many different formula-based confidence
intervals, provided that we resample in a way that matches the setting. Permu-
tation testing is also a general method that we can adapt to various settings.

GENERAL PROCEDURE FOR PERMUTATION TESTS

To carry out a permutation test based on a statistic that measures the
size of an effect of interest:

1. Compute the statistic for the original data.

2. Choose permutation resamples from the data without replacement
in a way that is consistent with the null hypothesis of the test and with
the study design. Construct the permutation distribution of the statistic
from its values in a large number of resamples.

3. Find the P-value by locating the original statistic on the permutation
distribution.

Permutation test for matched pairs. The key step in the general procedure
for permutation tests is to form permutation resamples in a way that is consis-
tent with the study design and with the null hypothesis. Our examples to this
point have concerned two-sample settings. How must we modify our procedure
for a matched pairs design?
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E 16.14 Permutation test for full-moon study. Can the full moon influ-
ence behavior? A study observed 15 nursing-home patients with dementia.
The number of incidents of aggressive behavior was recorded each day for
12 weeks. Call a day a “moon day” if it is the day of a full moon or the day be-
fore or after a full moon. Table 16.4 gives the average number of aggressive
incidents for moon days and other days for each subject.13 These are matched
pairs data. In Example 7.7, the matched pairs t test found evidence that the
mean number of aggressive incidents is higher on moon days (t = 6.45, df =
14, P < 0.001). The data show some signs of non-Normality. We want to apply
a permutation test.

The null hypothesis says that the full moon has no effect on behavior. If
this is true, the two entries for each patient in Table 16.4 are two measure-
ments of aggressive behavior made under the same conditions. There is no
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TABLE 16.4

Aggressive behaviors of dementia patients

Patient Moon days Other days Patient Moon days Other days

1 3.33 0.27 9 6.00 1.59
2 3.67 0.59 10 4.33 0.60
3 2.67 0.32 11 3.33 0.65
4 3.33 0.19 12 0.67 0.69
5 3.33 1.26 13 1.33 1.26
6 3.67 0.11 14 0.33 0.23
7 4.67 0.30 15 2.00 0.38
8 2.67 0.40

•

distinction between “moon days” and “other days.” Resampling in a way con-
sistent with this null hypothesis randomly assigns one of each patient’s two
scores to “moon” and the other to “other.” We don’t mix results for different
subjects, because the original data are paired.

The permutation test (like the matched pairs t test) uses the difference in
means xmoon − xother. Figure 16.23 shows the permutation distribution of this
statistic from 9999 resamples. None of these resamples produces a difference
as large as the observed difference, xmoon − xother = 2.433. The estimated one-
sided P-value is therefore

P = 0 + 1
9999 + 1

= 1
10,000

= 0.0001

There is strong evidence that aggressive behavior is more common on moon
days.

–2.5

Observed
Mean

Difference of means

–0.5–1.0–1.5–2.0 0.0 0.5 1.0 1.5 2.0 2.5

FIGURE 16.23 The
permutation distribution for the
mean difference (moon days
versus other days) from 9999
paired resamples from the data
in Table 16.4, for Example 16.14.
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The permutation distribution in Figure 16.23 is close to Normal, as a Nor-
mal quantile plot confirms. The paired sample t test is therefore reliable and
agrees with the permutation test that the P-value is very small.

Permutation test for the significance of a relationship. Permutation test-
ing can be used to test the significance of a relationship between two variables.
For example, in Example 16.10 we looked at the relationship between baseball
players’ batting averages and salaries.

The null hypothesis is that there is no relationship. In that case, salaries are
assigned to players for reasons that have nothing to do with batting averages.
We can resample in a way consistent with the null hypothesis by permuting the
observed salaries among the players at random.

Take the correlation as the test statistic. For every resample, calculate the
correlation between the batting averages (in their original order) and salaries
(in the reshuffled order). The P-value is the proportion of the resamples with
correlation larger than the original correlation.

When can we use permutation tests? We can use a permutation test only
when we can see how to resample in a way that is consistent with the study
design and with the null hypothesis. We now know how to do this for the fol-
lowing types of problems:

• Two-sample problems when the null hypothesis says that the two popula-
tions are identical. We may wish to compare population means, proportions,
standard deviations, or other statistics. You may recall from Section 7.3 that
traditional tests for comparing population standard deviations work very
poorly. Permutation tests are a much better choice.

• Matched pairs designs when the null hypothesis says that there are only
random differences within pairs. A variety of comparisons is again possible.

• Relationships between two quantitative variables when the null hypothe-
sis says that the variables are not related. The correlation is the most common
measure of association, but not the only one.

These settings share the characteristic that the null hypothesis specifies a
simple situation such as two identical populations or two unrelated variables.
We can see how to resample in a way that matches these situations. Permu-
tation tests can’t be used for testing hypotheses about a single population, com-

CAUTION

! paring populations that differ even under the null hypothesis, or testing general
relationships. In these settings, we don’t know how to resample in a way that
matches the null hypothesis. Researchers are developing resampling methods
for these and other settings, so stay tuned.

When we can’t do a permutation test, we can often calculate a bootstrap con-
fidence interval instead. If the confidence interval fails to include the null hy-
pothesis value, then we reject H0 at the corresponding significance level. This
is not as accurate as doing a permutation test, but a confidence interval esti-
mates the size of an effect as well as giving some information about its statis-
tical significance. Even when a test is possible, it is often helpful to report a
confidence interval along with the test result. Confidence intervals don’t assume
that a null hypothesis is true, so we use bootstrap resampling with replacement
rather than permutation resampling without replacement.
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SECTION 16.5 Summary

Permutation tests are significance tests based on permutation resamples
drawn at random from the original data. Permutation resamples are drawn
without replacement, in contrast to bootstrap samples, which are drawn
with replacement.

Permutation resamples must be drawn in a way that is consistent with the null
hypothesis and with the study design. In a two-sample design, the null hy-
pothesis says that the two populations are identical. Resampling randomly re-
assigns observations to the two groups. In a matched pairs design, randomly
permute the two observations within each pair separately. To test the hypothe-
sis of no relationship between two variables, randomly reassign values of one
of the two variables.

The permutation distribution of a suitable statistic is formed by the values
of the statistic in a large number of resamples. Find the P-value of the test by
locating the original value of the statistic on the permutation distribution.

When they can be used, permutation tests have great advantages. They do not
require specific population shapes such as Normality. They apply to a variety
of statistics, not just to statistics that have a simple distribution under the null
hypothesis. They can give very accurate P-values, regardless of the shape and
size of the population (if enough permutations are used).

It is often useful to give a confidence interval along with a test. To create a confi-
dence interval, we no longer assume the null hypothesis is true, so we use boot-
strap resampling rather than permutation resampling.

SECTION 16.5 Exercises
For Exercises 16.51 and 16.52, see pages 16-48 and 16-49.

The number of resamples on which a permutation test is
based determines the number of decimal places and
accuracy in the resulting P-value. Tests based on 999
resamples give P-values to three places (multiples of 0.001),
with a margin of error 2

√
P(1 − P)/999 equal to 0.014 when

the true one-sided P-value is 0.05. If high accuracy is needed
or your computer is sufficiently fast, you may choose to use
9999 or more resamples.

16.53 A small-sample permutation test. To illustrate
the process, let’s perform a permutation test by
hand for a small random subset of the DRP data
(Example 16.12). Here are the data:

Treatment group 57 53
Control group 19 37 41 42

(a) Calculate the difference in means
xtreatment − xcontrol between the two groups. This
is the observed value of the statistic.

(b) Resample: Start with the 6 scores and choose
an SRS of 2 scores to form the treatment group for

the first resample. You can do this by labeling the
scores 1 to 6 and using consecutive random digits
from Table B or by rolling a die to choose from 1 to
6 at random. Using either method, be sure to skip
repeated digits. A resample is an ordinary SRS,
without replacement. The remaining 4 scores are
the control group. What is the difference in group
means for this resample?

(c) Repeat step (b) 20 times to get 20 resamples
and 20 values of the statistic. Make a histogram
of the distribution of these 20 values. This is the
permutation distribution for your resamples.

(d) What proportion of the 20 statistic values were
equal to or greater than the original value in part
(a)? You have just estimated the one-sided P-value
for the original 6 observations.

(e) For this small data set, there are only 16
possible permutations of the data. As a result,
we can calculate the exact P-value by counting
the number of permutations with a statistic value
greater than or equal to the original value and then
dividing by 16. What is the exact P-value here?
How close was your estimate?
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16.54 Permutation test of real estate prices. Table 16.1
contains the selling prices for a random sample of
50 Seattle real estate transactions in 2002. Table
16.5 contains a similar random sample of sales in
2001. Test whether the means of the two random
samples of the 2001 and 2002 real estate sales data
are significantly different.

TABLE 16.5

Selling prices for an SRS of 50 Seattle real estate
sales in 2001 ($1000s)

419 55.268 65 210 510.728 212.2
152.720 266.6 69.427 125 191 451
469 310 325 50 675 140
105.5 285 320 305 255 95.179
346 199 450 280 205.5 135
190 452.5 335 455 291.905 239.9
369.95 569 481 475 495 195
237.5 143 218.95 239 710 172
228.5 270

(a) State the null and alternative hypotheses.

(b) Perform a two-sample t test. What is the
P-value?

(c) Perform a permutation test on the difference
in means. What is the P-value? Compare it with
the P-value you found in part (b). What do you
conclude based on the tests?

(d) Find a bootstrap BCa 95% confidence interval
for the difference in means. How is the interval
related to your conclusion in (c)?

16.55 Comparing repair times in hours. Verizon uses
permutation testing for hundreds of comparisons,
such as between different time periods, between
different locations, and so on. Here is a sample
from another Verizon data set, containing repair
times in hours for Verizon (ILEC) and CLEC
customers.

ILEC

1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1
2 2 1 1 1 1 2 3 1 1 1 1 2 3 1 1
1 1 2 3 1 1 1 1 2 3 1 1 1 1 2 3
1 1 1 1 2 3 1 1 1 1 2 4 1 1 1 1
2 5 1 1 1 1 2 5 1 1 1 1 2 6 1 1
1 1 2 8 1 1 1 1 2 15 1 1 1 2 2

CLEC

1 1 5 5 5 1 5 5 5 5

(a) Choose and make data displays. Describe the
shapes of the samples and how they differ.

(b) Perform a t test to compare the population
mean repair times. Give hypotheses, the test
statistic, and the P-value.

(c) Perform a permutation test for the same
hypotheses using the pooled-variance t statistic.
Why do the two P-values differ?

(d) What does the permutation test P-value tell
you?

16.56 Standard deviation of the estimated P-value.
The estimated P-value for the DRP study (Example
16.12) based on 999 resamples is P = 0.015.
For the Verizon study (Example 16.13) the
estimated P-value for the test based on x1 − x2

is P = 0.0183 based on 500,000 resamples. What
is the approximate standard deviation of each
of these estimated P-values? (Use each P as an
estimate of the unknown true P-value p.)

16.57 C
H

ALLENG
E When is a permutation test valid?

You want to test the equality of the means
of two populations. Sketch density curves for two
populations for which

(a) a permutation test is valid but a t test is not.

(b) both permutation and t tests are valid.

(c) a t test is valid but a permutation test is not.

Exercises 16.58 to 16.72 concern permutation tests for
hypotheses stated in terms of a variety of parameters. In
some cases, there are no standard formula-based tests for
the hypotheses in question. These exercises illustrate the
flexibility of permutation tests.

16.58 Comparing median sales prices. Because
distributions of real estate prices are typically
strongly skewed, we often prefer the median to
the mean as a measure of center. We would like
to test the null hypothesis that Seattle real estate
sales prices in 2001 and 2002 have equal medians.
Sample data for these years appear in Tables 16.1
and 16.5. Carry out a permutation test for the
difference in medians, find the P-value, and explain
what the P-value tells us.

16.59 Assessment of a summer language institute.
Exercise 7.41 (page 446) gives data on a study of the
effect of a summer language institute on the ability
of high school language teachers to understand
spoken French. This is a matched pairs study, with
scores for 20 teachers at the beginning (pretest)
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and end (posttest) of the institute. We conjecture
that the posttest scores are higher on the average.

(a) Carry out the matched pairs t test. That is, state
hypotheses, calculate the test statistic, and give its
P-value.

(b) Make a Normal quantile plot of the gains:
posttest score − pretest score. The data have a
number of ties and a low outlier. A permutation
test can help check the t test result.

(c) Carry out the permutation test for the
difference in means in matched pairs, using 9999
resamples. The Normal quantile plot shows that
the permutation distribution is reasonably Normal,
but the histogram looks a bit odd. What explains
the appearance of the histogram? What is the
P-value for the permutation test? Do your tests
in here and in part (a) lead to the same practical
conclusion?

16.60 Comparing mpg calculations. Exercise 7.35
(page 444) gives data on a comparison of driver
and computer mpg calculations. This is a matched
pairs study, with mpg values for 20 fill-ups. We
conjecture that the computer is giving higher mpg
values.

(a) Carry out the matched pairs t test. That is, state
hypotheses, calculate the test statistic, and give its
P-value.

(b) A permutation test can help check the t test
result. Carry out the permutation test for the
difference in means in matched pairs, using 9999
resamples. What is the P-value for the permutation
test? Do your tests in here and in part (a) lead to
the same practical conclusion?

16.61 Testing the correlation between Treasury bill
and stock returns. In Exercise 16.45, we assessed
the significance of the correlation between returns
on Treasury bills and common stocks by creating
bootstrap confidence intervals. If a 95% confidence
interval does not cover 0, the observed correlation
is significantly different from 0 at the α = 0.05
level. We would prefer to do a test that gives us a
P-value. Carry out a permutation test and give the
P-value. What do you conclude? Is your conclusion
consistent with your work in Exercise 16.45?

16.62 Testing the correlation between salaries and
batting averages. Table 16.2 contains the salaries
and batting averages of a random sample of 50
Major League Baseball players. Can we conclude
that the correlation between these variables is
greater than 0 in the population of all players?

(a) State the null and alternative hypotheses.

(b) Perform a permutation test based on the
sample correlation. Report the P-value and draw a
conclusion.

16.63 Comparing average tree diameters. In Exercise
7.105 (page 480), the standard deviations of the tree
diameter for the northern and southern regions
of the tract were compared. The test is unreliable
because it is sensitive to non-Normality of the data.
Perform a permutation test using the F statistic
(ratio of sample variances) as your statistic. What
do you conclude? Are the two tests comparable?

16.64 Comparing serum retinol levels. The formal
medical term for vitamin A in the blood is serum
retinol. Serum retinol has various beneficial effects,
such as protecting against fractures. Medical
researchers working with children in Papua New
Guinea asked whether recent infections reduce
the level of serum retinol. They classified children
as recently infected or not on the basis of other
blood tests, then measured serum retinol. Of the
90 children in the sample, 55 had been recently
infected. Table 16.6 gives the serum retinol levels
for both groups, in micromoles per liter.14

TABLE 16.6

Serum retinol levels in two groups of children

Not infected

0.59 1.08 0.88 0.62 0.46 0.39
1.44 1.04 0.67 0.86 0.90 0.70
0.35 0.99 1.22 1.15 1.13 0.67
0.99 0.35 0.94 1.00 1.02 1.11
0.83 0.35 0.67 0.31 0.58 1.36
1.17 0.35 0.23 0.34 0.49

Infected

0.68 0.56 1.19 0.41 0.84 0.37
0.38 0.34 0.97 1.20 0.35 0.87
0.30 1.15 0.38 0.34 0.33 0.26
0.82 0.81 0.56 1.13 1.90 0.42
0.78 0.68 0.69 1.09 1.06 1.23
0.69 0.57 0.82 0.59 0.24 0.41
0.36 0.36 0.39 0.97 0.40 0.40
0.24 0.67 0.40 0.55 0.67 0.52
0.23 0.33 0.38 0.33 0.31 0.35
0.82

(a) The researchers are interested in the
proportional reduction in serum retinol. Verify
that the mean for infected children is 0.620 and
that the mean for uninfected children is 0.778.
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(b) There is no standard test for the null hypothesis
that the ratio of the population means is 1. We can
do a permutation test on the ratio of sample
means. Carry out a one-sided test and report the
P-value. Briefly describe the center and shape of
the permutation distribution. Why do you expect
the center to be close to 1?

16.65 Methods of resampling. In Exercise 16.64,
we did a permutation test for the hypothesis
“no difference between infected and uninfected
children” using the ratio of mean serum retinol
levels to measure “difference.” We might also want
a bootstrap confidence interval for the ratio of
population means for infected and uninfected
children. Describe carefully how resampling is
done for the permutation test and for the bootstrap,
paying attention to the difference between the two
resampling methods.

16.66 C
H
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E Bootstrap confidence interval for the

ratio. Here is one conclusion from the data
in Table 16.6, described in Exercise 16.64: “The
mean serum retinol level in uninfected children
was 1.255 times the mean level in the infected
children. A 95% confidence interval for the ratio of
means in the population of all children in Papua
New Guinea is.. . .”

(a) Bootstrap the data and use the BCa method to
complete this conclusion.

(b) Briefly describe the shape and bias of the
bootstrap distribution. Does the bootstrap
percentile interval agree closely with the BCa
interval for these data?

16.67 Permutation test for the ratio of standard
deviations. In Exercise 16.55 we compared
the mean repair times for Verizon (ILEC) and
CLEC customers. We might also wish to compare
the variability of repair times. For the data in
Exercise 16.55, the F statistic for comparing
sample variances is 0.869 and the corresponding
P-value is 0.67. We know that this test is very
sensitive to lack of Normality.

(a) Perform a two-sided permutation test on the
ratio of standard deviations. What is the P-value
and what does it tell you?

(b) What does a comparison of the two P-values
say about the validity of the F test for these data?

16.68 Calcium intake and blood pressure. Does added
calcium intake reduce the blood pressure of black
men? In a randomized comparative double-blind
trial, 10 men were given a calcium supplement for

twelve weeks and 11 others received a placebo.
Whether or not blood pressure dropped was
recorded for each subject. Here are the data:15

Treatment Subjects Successes Proportion

Calcium 10 6 0.60
Placebo 11 4 0.36

Total 21 10 0.48

We want to use these sample data to test equality
of the population proportions of successes. Carry
out a permutation test. Describe the permutation
distribution. The permutation test does not depend
on a “nice” distribution shape. Give the P-value
and report your conclusion.

16.69 Bootstrap confidence interval for the difference
in proportions. We want a 95% confidence interval
for the difference in the proportions of reduced
blood pressure between a population of black men
given calcium and a similar population given a
placebo. Summary data appear in Exercise 16.68.

(a) Give the plus four confidence interval. Because
the sample sizes are both small, we may wish to
use the bootstrap to check this interval.

(b) Bootstrap the sample data. We recommend
tilting confidence intervals for proportions based
on small samples. Other bootstrap intervals may
be inaccurate. Give all four bootstrap confidence
intervals (t, percentile, BCa, tilting). How do the
other three compare with tilting? How does the
tilting interval compare with the plus four interval?

16.70 More on calcium intake and blood pressure.
We prefer measured data to the success/failure
data given in Exercise 16.68. Table 16.7 gives the
actual values of seated systolic blood pressure
for this experiment. Example 7.20 (page 463)
applies the pooled t test (a procedure that we
do not recommend) to these data. Carry out a
permutation test to discover whether the calcium
group had a significantly greater decrease in blood
pressure.

16.71 A bootstrap comparison of variances. Are the
variances of decreases in blood pressure equal in
populations of black men given calcium and given
a placebo? Example 7.22 (page 475) applied the F
test for equality of variances to the data in Table
16.7. This test is unreliable because it is sensitive
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TABLE 16.7

Effect of calcium and placebo on blood pressure

Calcium Group Placebo Group

Begin End Decrease Begin End Decrease

107 100 7 123 124 −1
110 114 −4 109 97 12
123 105 18 112 113 −1
129 112 17 102 105 −3
112 115 −3 98 95 3
111 116 −5 114 119 −5
107 106 1 119 114 5
112 102 10 114 112 2
136 125 11 110 121 −11
102 104 −2 117 118 −1

130 133 −3

to non-Normality in the data. The permutation test
does not suffer from this drawback.

(a) State the null and alternative hypotheses.

(b) Perform a permutation test using the F statistic

(ratio of sample variances) as your statistic. What
do you conclude?

(c) Compare the permutation test P-value with
that in Example 7.22. What do you conclude about
the F test for equality of variances for these data?

16.72 C
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7.39 (page 445) gives these data on a delicate
measurement of total body bone mineral content
made by two operators on the same 8 subjects:16

Subject

Operator 1 2 3 4 5 6 7 8

1 1.328 1.342 1.075 1.228 0.939 1.004 1.178 1.286
2 1.323 1.322 1.073 1.233 0.934 1.019 1.184 1.304

Do permutation tests give good evidence that
measurements made by the two operators differ
systematically? If so, in what way do they differ?
Do two tests, one that compares centers and one
that compares spreads.

CHAPTER 16 Exercises

16.73 More bootstrap confidence intervals of the
trimmed mean. The bootstrap distribution of
the 25% trimmed mean for the Seattle real estate
sales (Figure 16.7) is not strongly skewed. We
were therefore willing in Examples 16.5 and 16.8
to use the bootstrap t and bootstrap percentile
confidence intervals for the trimmed mean of
the population. Now we can check these against
more accurate intervals. Bootstrap the trimmed
mean and give all of the bootstrap 95% confidence
intervals: t, percentile, BCa, and tilting. Make a
graphical comparison by drawing a vertical line
at the original sample mean x and displaying the
four intervals horizontally, one above the other.
Describe how the intervals compare. Do you still
regard the bootstrap t and percentile intervals as
adequately accurate?

16.74 More on average CO2 emissions. In Exercise
16.5 (page 16-12), you constructed the bootstrap
distribution for the average carbon dioxide (CO2)
emissions. Re-create this distribution here.

(a) Based on the distribution, do you expect a
bootstrap t confidence interval to be reasonable?
Explain.

(b) Construct both the bootstrap t and BCa
confidence intervals.

(c) How do the two intervals compare? Do
you think the t interval is adequately accurate?
Explain.

16.75 Bootstrap confidence interval for the median.
Your software can generate random numbers that
have the uniform distribution on 0 to 1. Figure 4.9
(page 264) shows the density curve. Generate a
sample of 50 observations from this distribution.

(a) What is the population median? Bootstrap
the sample median and describe the bootstrap
distribution.

(b) What is the bootstrap standard error?
Compute a bootstrap t 95% confidence interval.

(c) Find the BCa or tilting 95% confidence
interval. Compare with the interval in (b). Is the
bootstrap t interval reliable here?

16.76 Are female personal trainers, on average,
younger? A fitness center employs 20 personal
trainers. Here are the ages in years of the female
and male personal trainers working at this center:
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Male 25 26 23 32 35 29 30 28 31 32 29
Female 21 23 22 23 20 29 24 19 22

(a) Make a back-to-back stemplot. Do you think
the difference in mean ages will be significant?

(b) A two-sample t test gives P < 0.001 for the null
hypothesis that the mean age of female personal
trainers is equal to the mean age of male personal
trainers. Do a two-sided permutation test to check
the answer.

(c) What do you conclude about using the t test?
What do you conclude about the mean ages of the
trainers?

16.77 Social distress and brain activity. Exercise 2.17
(page 97) describes a study that suggests that the
“pain” caused by social rejection really is pain,
in the sense that it causes activity in brain areas
known to be activated by physical pain. Here are
data for 13 subjects on degree of social distress
and extent of brain activity:17

Social Brain Social Brain
Subject distress activity Subject distress activity

1 1.26 −0.055 8 2.18 0.025
2 1.85 −0.040 9 2.58 0.027
3 1.10 −0.026 10 2.75 0.033
4 2.50 −0.017 11 2.75 0.064
5 2.17 −0.017 12 3.33 0.077
6 2.67 0.017 13 3.65 0.124
7 2.01 0.021

Make a scatterplot of brain activity against social
distress. There is a positive linear association,
with correlation r = 0.878. Is this correlation
significantly greater than 0? Use a permutation
test.

16.78 C
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activity. Use the bootstrap to obtain a
95% confidence interval for the correlation in the
population of all similar subjects from the data in
the previous exercise.

(a) The permutation distribution in the previous
exercise was reasonably Normal, with somewhat
short tails. The bootstrap distribution is very
non-Normal: most resample correlations are not
far from 1, the largest value that a correlation can
have. Explain carefully why the two distributions
differ in shape. Also explain why we might expect
a bootstrap distribution to have this shape when
the observed correlation is r = 0.878.

(b) Choose an appropriate bootstrap confidence
interval for the population correlation and state
your conclusion.

16.79 Comparing 2001 and 2002 real estate prices.
We have compared the selling prices of Seattle
real estate in 2002 (Table 16.1) and 2001 (Table
16.5). Let’s compare 2001 and 2000. Here are the
prices (thousands of dollars) for 20 random sales
in Seattle in the year 2000:

333 126.5 207.5 199.5 1836 360 175 133 1100 203
194.5 140 280 475 185 390 242 276 359 163.95

(a) Plot both the 2000 and the 2001 data. Explain
what conditions needed for a two-sample t test are
violated.

(b) Perform a permutation test to find the P-value
for the difference in means. What do you conclude
about selling prices in 2000 versus 2001?

16.80 The standard deviation of returns on an
investment. In financial theory, the standard
deviation of returns on an investment is used to
describe the risk of the investment. The idea is
that an investment whose returns are stable over
time is less risky than one whose returns vary a
lot. The data file ex16-080 contains the returns (in
percent) on 1129 consecutive days for a portfolio
that weights all U.S. common stocks according to
their market value.18

(a) What is the standard deviation of these
returns?

(b) Bootstrap the standard deviation. What is its
bootstrap standard error?

(c) Find the 95% bootstrap t confidence interval
for the population standard deviation.

(d) Find the 95% tilting or BCa confidence
interval for the standard deviation. Compare the
confidence intervals and give your conclusions
about the appropriateness of the bootstrap t
interval.

16.81 Nurses’ use of latex gloves. Nurses in an inner-
city hospital were unknowingly observed on their
use of latex gloves during procedures for which
glove use is recommended.19 The nurses then
attended a presentation on the importance of
glove use. One month after the presentation, the
same nurses were observed again. Here are the
proportions of procedures for which each nurse
wore gloves:
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Nurse Before After Nurse Before After

1 0.500 0.857 8 0.000 1.000
2 0.500 0.833 9 0.000 0.667
3 1.000 1.000 10 0.167 1.000
4 0.000 1.000 11 0.000 0.750
5 0.000 1.000 12 0.000 1.000
6 0.000 1.000 13 0.000 1.000
7 1.000 1.000 14 1.000 1.000

(a) Why is a one-sided alternative proper here?
Why must matched pairs methods be used?

(b) Do a permutation test for the difference in
means. Does the test indicate that the presentation
was helpful?

16.82 More on nurses’ use of latex gloves. In the
previous exercise, you did a one-sided permutation
test to compare means before and after an
intervention. If you are mainly interested in
whether or not the effect of the intervention is
significant at the 5% level, an alternative approach
is to give a bootstrap confidence interval for
the mean difference within pairs. If zero (no
difference) falls outside the interval, the result is
significant. Do this and report your conclusion.

16.83 C
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Examples 8.9 (page 507) and 8.11 (page
513) examine survey data on binge drinking
among college students. Here are data on the
prevalence of frequent binge drinking among
female and male students:20

Sample Binge
Gender size drinkers

Men 5,348 1,392
Women 8,471 1,748

Total 13,819 3,140

The sample is large, so that traditional inference
should be accurate. Nonetheless, use resampling
methods to obtain

(a) a 95% confidence interval for the proportion
of all students who are frequent binge drinkers.

(b) a test of the research hypothesis that men
are more likely than women to be frequent binge
drinkers.

(c) a 95% confidence interval for the difference
in the proportions of men and of women who are
frequent binge drinkers.

16.84 Readability of magazine advertisements.
Is there a difference in the readability of
advertisements in magazines aimed at people
with varying educational levels? Here are word
counts in randomly selected ads from magazines
aimed at people with high and middle education
levels:21

Education level Word count

High 205 203 229 208 146 230 215 153 205
80 208 89 49 93 46 34 39 88

Medium 191 219 205 57 105 109 82 88 39
94 206 197 68 44 203 139 72 67

(a) Make histograms and Normal quantile plots
for both data sets. Do the distributions appear
approximately Normal? Find the means.

(b) Bootstrap the means of both data sets and find
their bootstrap standard errors.

(c) Make histograms and Normal quantile plots
of the bootstrap distributions. What do the plots
show?

(d) Find the 95% percentile and tilting confidence
intervals for both data sets. Do the intervals for
high and medium education level overlap? What
does this indicate?

(e) Bootstrap the difference in means and find
a 95% percentile confidence interval. Does it
contain 0? What conclusions can you draw from
your confidence intervals?

16.85 More on the readability of advertisements.
The researchers in the study described in the
previous exercise expected higher word counts in
magazines aimed at people with high education
level. Do a permutation test to see if the data
support this expectation. State hypotheses, give a
P-value, and state your conclusions. How do your
conclusions here relate to those from the previous
exercise?

16.86 Assessment of a citizen-police program. The
following table gives the number of burglaries per
month in the Hyde Park neighborhood of Chicago
for a period before and after the commencement
of a citizen-police program:22
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Before

60 44 37 54 59 69 108 89 82 61 47
72 87 60 64 50 79 78 62 72 57 57
61 55 56 62 40 44 38 37 52 59 58
69 73 92 77 75 71 68 102

After

88 44 60 56 70 91 54 60 48 35 49
44 61 68 82 71 50

(a) Plot both sets of data. Are the distributions
skewed or roughly Normal?

(b) Perform a one-sided (which side?) t test on the
data. Is there statistically significant evidence of a
decrease in burglaries after the program began?

(c) Perform a permutation test for the difference
in means, using the same alternative hypothesis
as in part (b). What is the P-value? Is there
a substantial difference between this P-value
and the one in part (b)? Use the shapes of the

distributions to explain why or why not. What do
you conclude from your tests?

(d) Now do a permutation test using the opposite
one-sided alternative hypothesis. Explain what
this is testing, why it is not of interest to us, and
why the P-value is so large.

16.87 More on the assessment of a citizen-police
program. The previous exercise applied
significance tests to the Hyde Park burglary
data. We might also apply confidence intervals.

(a) Bootstrap the difference in mean monthly
burglary counts. Make a histogram and a Normal
quantile plot of the bootstrap distribution and
describe the distribution.

(b) Find the bootstrap standard error, and use it
to create a 95% bootstrap t confidence interval.

(c) Find the 95% percentile confidence interval.
Compare this with the t interval. Does the
comparison suggest that these intervals are
accurate? How do the intervals relate to the
results of the tests in the previous exercise?

CHAPTER 16 Notes

1. S-PLUS is a registered trademark of Insightful Corpo-
ration.

2. Verizon repair time data used with the permission of
Verizon.

3. The origin of this quaint phrase is Rudolph Raspe, The
Singular Adventures of Baron Munchausen, 1786. Here is
the passage, from the edition by John Carswell, Heritage
Press, 1952: “I was still a couple of miles above the clouds
when it broke, and with such violence I fell to the ground
that I found myself stunned, and in a hole nine fathoms un-
der the grass, when I recovered, hardly knowing how to get
out again. Looking down, I observed that I had on a pair
of boots with exceptionally sturdy straps. Grasping them
firmly, I pulled with all my might. Soon I had hoist myself
to the top and stepped out on terra firma without further
ado.”

4. In fact, the bootstrap standard error underestimates
the true standard error. Bootstrap standard errors are gen-
erally too small by a factor of roughly

√
1 − 1/n. This factor

is about 0.95 for n = 10 and 0.98 for n = 25, so we ignore
it in this elementary exposition.

5. T. Bjerkedal, “Acquisition of resistance in guinea pigs
infected with different doses of virulent tubercle bacilli,”
American Journal of Hygiene, 72 (1960), pp. 130–148.

6. Seattle real estate sales data provided by Stan Roe of
the King County Assessor’s Office.

7. The 254 winning numbers and their payoffs are repub-
lished here by permission of the New Jersey State Lottery
Commission.

8. The vehicle is a 2002 Toyota Prius owned by the third
author.

9. From the Forbes Web site, www.forbes.com.

10. The standard advanced introduction to bootstrap
methods is B. Efron and R. Tibshirani, An Introduction
to the Bootstrap, Chapman and Hall, 1993. For tilting in-
tervals, see B. Efron, “Nonparametric standard errors and
confidence intervals” (with discussion), Canadian Journal
of Statistics, 36 (1981), pp. 369–401; and T. J. DiCiccio and
J. P. Romano, “Nonparametric confidence limits by resam-
pling methods and least favourable families,” International
Statistical Review, 58 (1990), pp. 59–76.

11. From www.espn.com, July 2, 2002.

12. This example is adapted from Maribeth C. Schmitt,
“The effects of an elaborated directed reading activity on
the metacomprehension skills of third graders,” PhD disser-
tation, Purdue University, 1987.
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13. These data were collected as part of a larger study of
dementia patients conducted by Nancy Edwards, School
of Nursing, and Alan Beck, School of Veterinary Medicine,
Purdue University.

14. Data provided by Francisco Rosales of the Department
of Nutritional Sciences, Penn State University. See Rosales
et al., “Relation of serum retinol to acute phase proteins
and malarial morbidity in Papua New Guinea children,”
American Journal of Clinical Nutrition, 71 (2000), pp. 1580–
1588.

15. Roseann M. Lyle et al., “Blood pressure and metabolic
effects of calcium supplementation in normotensive white
and black men,” Journal of the American Medical Associa-
tion, 257 (1987), pp. 1772–1776.

16. These data were collected in connection with a bone
health study at Purdue University and were provided by
Linda McCabe.

17. Data from a plot in Naomi I. Eisenberger, Matthew D.
Lieberman, and Kipling D. Williams, “Does rejection hurt?
An fMRI study of social exclusion,” Science, 302 (2003), pp.
290–292.

18. These are daily returns from January 1990 through
part of May 2004 for the CREF Equity Index Fund, which is
a good proxy for all U.S. common stocks. The returns were
calculated from net asset values appearing on the TIAA-
CREF Web site, www.tiaa-cref.org.

19. L. Friedland et al., “Effect of educational program on
compliance with glove use in a pediatric emergency de-
partment,” American Journal of Diseases of Childhood, 146
(1992), 1355–1358.

20. Results of this survey are reported in Henry Wechsler
et al., “Health and behavioral consequences of binge drink-
ing in college,” Journal of the American Medical Association,
272 (1994), pp. 1672–1677.

21. F. K. Shuptrine and D. D. McVicker, “Readability levels
of magazine ads,” Journal of Advertising Research, 21, No.
5 (1981), p. 47.

22. G. V. Glass, V. L. Wilson, and J. M. Gottman, Design
and Analysis of Time Series Experiments, Colorado Associ-
ated University Press, 1975.

www.tiaa-cref.org


CHAPTER

1717Statistics for Quality:
Control and Capability

In-N-Out Burger prides itself on quality fast food. In this chapter, methods for
measuring and monitoring quality are discussed.

17.1 Processes and Statistical
Process Control

17.2 Using Control Charts

17.3 Process Capability Indexes

17.4 Control Charts for Sample
Proportions

Introduction
Quality is a broad concept. Often it refers to a degree or
grade of excellence. For example, you may feel that a
restaurant serving filet mignon is a higher-quality estab-
lishment than a fast-food outlet that serves hamburgers.
You may also consider a name-brand sweater of higher
quality than one sold at a discount store.

In this chapter, we consider a narrower concept of
quality: consistently meeting standards appropriate for a specific product or ser-
vice. The fast-food outlet, for example, may serve high-quality hamburgers.
The hamburgers are freshly grilled, are served at the right temperature, and
are the same every time you visit. The discount store sweaters may be high
quality because they are consistently free of defects and the tight knit helps
them keep their shape wash after wash.

Statistically minded management can assess quality through sampling. For
example, the fast-food outlet could sample hamburgers and measure the time
from order to being served, the temperature of the burgers, and their ten-
derness. This chapter discusses the methods used to monitor the quality of a

17-1
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product or service and effectively detect changes in the process that may affect
its quality.

Use of data to assess quality
Organizations are (or ought to be) concerned about the quality of the prod-
ucts and services they offer. What they don’t know about quality can hurt them:
rather than make complaints that an alert organization could use as warnings,
customers often simply leave when they feel they are receiving poor quality. A
key to maintaining and improving quality is systematic use of data in place of
intuition or anecdotes. Here are two examples.

•
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E 17.1 Membership renewal process. Sometimes data that are routinely
produced make a quality problem obvious. The internal financial statements
of a professional society showed that hiring temporary employees to enter
membership data was causing expenditures above budgeted levels each year
during the several months when memberships were renewed. Investigation
led to two actions. Membership renewal dates were staggered across the year
to spread the workload more evenly. More important, outdated and inflexible
data entry software was replaced by a modern system that was much easier
to use. Result: permanent employees can now process renewals quickly, elim-
inating the need for temps and also reducing member complaints.
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E 17.2 Response time process. Systematic collection of data helps an or-
ganization to move beyond dealing with obvious problems. Motorola places
a corporate-wide emphasis on measuring the performance of its services
as well as of its manufactured products. Behind the counter of every local
service center, for example, is a chart showing the average time from a cus-
tomer’s call until a service person reaches the customer’s location, month by
month. The trend should be steadily downward as ways are found to speed
response.

Because using data is a key to improving quality, statistical methods have
much to contribute. Simple tools are often the most effective. Motorola’s ser-
vice centers calculate mean response times each month and make a time plot. ALOOK BACK

time plot, page 18

regression line,
page 109

scatterplot and perhaps a regression line can show how the time to answer tele-
phone calls to a corporate call center influences the percent of callers who hang
up before their calls are answered. The design of a new product as simple as a
multivitamin tablet may involve interviewing samples of consumers to learn
what vitamins and minerals they want included and using randomized com-
parative experiments to determine the best manufacturing process. An exper-LOOK BACK

design of experiments,
page 178

sampling
distributions,
page 215

iment might discover, for example, what combination of moisture level in the
raw vitamin powder and pressure in the tablet-forming press produces the right
tablet hardness.

This chapter focuses on just one aspect of statistics for improving quality:
statistical process control. The techniques are simple and are based on sampling
distributions, but the underlying ideas are important and a bit subtle.
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17.1 Processes and Statistical Process Control
In thinking about statistical inference, we distinguish between the sample data
we have in hand and the wider population that the data represent. We hope to
use the sample to draw conclusions about the population. In thinking about
quality improvement, it is often more natural to speak of processes rather than
populations. This is because work is organized in processes. Here are some
examples:

• Processing an application for admission to a university and deciding whether
or not to admit the student.

• Reviewing an employee’s expense report for a business trip and issuing a re-
imbursement check.

• Hot forging to shape a billet of titanium into a blank that, after machining,
will become part of a medical implant for hip, knee, or shoulder replacement.

Each of these processes is made up of several successive operations that
eventually produce the output—an admission decision, reimbursement check,
or metal component.

PROCESS

A process is a chain of activities that turns inputs into outputs.

We can accommodate processes in our sample-versus-population frame-
work: think of the population as containing all the outputs that would be pro-
duced by the process if it ran forever in its present state. The outputs produced
today or this week are a sample from this population. Because the population
doesn’t actually exist now, it is simpler to speak of a process and of recent
output as a sample from the process in its present state.

Describing processes
The first step in improving a process is to understand it. If the process is at all
complex, even the people involved with it may not have a full picture of how
the activities interact in ways that influence quality. A brainstorming session is
in order: bring people together to gain an understanding of the process.

This understanding is often presented graphically using two simple tools:
flowcharts and cause-and-effect diagrams. A flowchart is a picture of the stagesflowchart
of a process. Many organizations have formal standards for making flowcharts.
Because flowcharts are not statistical graphics, we will informally illustrate
their use in an example and not insist on a specific format. A cause-and-effectcause-and-effect diagram
diagram organizes the logical relationships between the inputs and stages of
a process and an output. Sometimes the output is successful completion of
the process task; sometimes it is a quality problem that we hope to solve. A
good starting outline for a cause-and-effect diagram appears in Figure 17.1.
The main branches organize the causes and serve as a skeleton for detailed en-
tries. You can see why these are sometimes called “fishbone diagrams.” Once
again we will illustrate the diagram by example rather than insist on a specific
format.1
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Effect

Environment Material

MethodsPersonnel

Equipment

FIGURE 17.1 An outline for a
cause-and-effect diagram. Group
causes under these main
headings in the form of
branches.
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E 17.3 Flowchart and cause-and-effect diagram of a hot-forging pro-

cess. Hot forging involves heating metal to a plastic state and then shaping
it by applying thousands of pounds of pressure to force the metal into a die
(a kind of mold). Figure 17.2 is a flowchart of a typical hot-forging process.2

A process improvement team, after making and discussing this flowchart,
came to several conclusions:

• Inspecting the billets of metal received from the supplier adds no value. We
should insist that the supplier be responsible for the quality of the material.
The supplier should put in place good statistical process control. We can
then eliminate the inspection step.

• Can we buy the metal billets already cut to rough length and deburred
by the supplier, thus eliminating the cost of preparing the raw material
ourselves?

• Heating the metal billet and forging (pressing the hot metal into the die)
are the heart of the process. We should concentrate our attention here.

The team then prepared a cause-and-effect diagram (Figure 17.3) for the
heating and forging part of the process. The team members shared their spe-
cialist knowledge of the causes in their area, resulting in a more complete pic-
ture than any one person could produce. Figure 17.3 is a simplified version of
the actual diagram. We have given some added detail for the “hammer stroke”
branch under “equipment” to illustrate the next level of branches. Even this
requires some knowledge of hot forging to understand. Based on detailed dis-
cussion of the diagram, the team decided what variables to measure and at
what stages of the process to measure them. Producing well-chosen data is
the key to improving the process.

We will apply statistical methods to a series of measurements made on a pro-
cess. Deciding what specific variables to measure is an important step in quality
improvement. Often we use a “performance measure” that describes an output
of a process. A company’s financial office might record the percent of errors that
outside auditors find in expense account reports or the number of data entry
errors per week. The personnel department may measure the time to process
employee insurance claims or the percent of job offers that are accepted. In the
case of complex processes, it is wise to measure key steps within the process
rather than just final outputs. The process team in Example 17.3 might recom-
mend that the temperature of the die and of the billet be measured just before
forging.
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Heat billet to the
required temperature

Forge to the size

Flash trim
and wash

Shot blast

Check for
size and metallurgy

O.K.

Receive the material

Check for
size and metallurgy

O.K.

Cut to the billet
length

Deburr

Scrap

Scrap

Check for
size
O.K.

Oversize

Bar code and store

No

No

No

Scrap
No

Yes

Yes

Yes

Yes

FIGURE 17.2 Flowchart of the
hot-forging process in Example
17.3. Use this as a model for
flowcharts: decision points
appear as diamonds, and other
steps in the process appear as
rectangles. Arrows represent
flow from step to step.

USE YOUR KNOWLEDGE
17.1 Describing your process. Choose a process that you know well,

preferably from a job you have held. If you lack experience with ac-
tual business processes, choose a personal process such as cooking
scrambled eggs or brushing your teeth. Make a flowchart of the pro-
cess. Make a cause-and-effect diagram that presents the factors that
lead to successful completion of the process.
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FIGURE 17.3 Simplified
cause-and-effect diagram of the
hot-forging process in Example
17.3. Good cause-and-effect
diagrams require detailed
knowledge of the specific
process.

17.2 What variables to measure? Based on your description of the pro-
cess in Exercise 17.1, suggest specific variables that you might mea-
sure in order to

(a) assess the overall quality of the process.

(b) gather information on a key step within the process.

Statistical process control
The goal of statistical process control is to make a process stable over time
and then keep it stable unless planned changes are made. You might want, for
example, to keep your weight constant over time. A manufacturer of machine
parts wants the critical dimensions to be the same for all parts. “Constant over
time” and “the same for all” are not realistic requirements. They ignore the fact
that all processes have variation. Your weight fluctuates from day to day; the
critical dimension of a machined part varies a bit from item to item; the time
to process a college admission application is not the same for all applications.
Variation occurs in even the most precisely made product due to small changes
in the raw material, the behavior of the machine or operator, and even the tem-
perature in the plant.

Because variation is always present, we can’t expect to hold a variable ex-
actly constant over time. The statistical description of stability over time re-
quires that the pattern of variation remain stable, not that there be no variation
in the variable measured.

In the language of statistical quality control, a process that is in control has
only common cause variation. Common cause variation is the inherent vari-common cause
ability of the process, due to many small causes that are always present. When
the normal functioning of the process is disturbed by some unpredictable
event, special cause variation is added to the common cause variation. Wespecial cause
hope to be able to discover what lies behind special cause variation and elimi-
nate that cause to restore the stable functioning of the process.



17.1 Processes and Statistical Process Control
•

17-7

•

•

E
X

A
M

P
L

E 17.4 Common and special cause variation. Imagine yourself doing the
same task repeatedly, say folding an advertising flyer, stuffing it into an enve-
lope, and sealing the envelope. The time to complete this task will vary a bit,
and it is hard to point to any one reason for the variation. Your completion
time shows only common cause variation.

Now the telephone rings. You answer, and though you continue folding
and stuffing while talking, your completion time rises beyond the level ex-
pected from common causes alone. Answering the telephone adds special
cause variation to the common cause variation that is always present. The
process has been disturbed and is no longer in its normal and stable state.

Control charts work by distinguishing the always-present common cause
variation in a process from the additional variation that suggests that the pro-
cess has been disturbed by a special cause. A control chart sounds an alarm
when it sees too much variation. The most common application of control
charts is to monitor the performance of industrial and business processes. The
same methods, however, can be used to check the stability of quantities as var-
ied as the ratings of a television show, the level of ozone in the atmosphere, and
the gas mileage of your car. Control charts combine graphical and numerical
descriptions of data with use of sampling distributions.*

STATISTICAL CONTROL

A variable that continues to be described by the same distribution when
observed over time is said to be in statistical control, or simply in control.

Control charts are statistical tools that monitor a process and alert us
when the process has been disturbed so that it is now out of control.
This is a signal to find and correct the cause of the disturbance.

USE YOUR KNOWLEDGE
17.3 Considering common and special cause variation. In Exercise

17.1, you described a process that you know well. What are some
sources of common cause variation in this process? What are some
special causes that might, at times, drive the process out of control?

17.4 Examples of special cause variation in bicycling times. Jeannine
participates in bicycle road races. She regularly rides 25 kilometers
over the same course in training. Her time varies a bit from day to
day but is generally stable. Give several examples of special causes
that might raise Jeannine’s time on a particular day.

*Control charts were invented in the 1920s by Walter Shewhart at the Bell Telephone Labo-
ratories. Shewhart’s classic book, Economic Control of Quality of Manufactured Product (Van
Nostrand, 1931), organized the application of statistics to improving quality.
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x charts for process monitoring
When you first apply control charts to a process, the process may not be in con-
trol. Even if it is in control, you don’t yet understand its behavior. You will have
to collect data from the process, establish control by uncovering and removing
special causes, and then set up control charts to maintain control. We call this
the chart setup stage.chart setup

Later, when the process has been operating in control for some time, you
understand its usual behavior and have a long run of data from the process.
You keep control charts to monitor the process because a special cause could
erupt at any time. We will call this process monitoring.3process monitoring

Although in practice chart setup precedes process monitoring, the big ideas
of control charts are more easily understood in the process-monitoring set-
ting. We will start there, then discuss the more complex process improvement
setting.

Consider a quantitative variable x that is an important measure of quality.
The variable might be the diameter of a part, the number of envelopes stuffed
in an hour, or the time to respond to a customer call. If this process is in con-
trol, the variable x is described by the same distribution, typically Normal, over
time.

PROCESS-MONITORING CONDITIONS

The measured quantitative variable x has a Normal distribution. The
process has been operating in control for a long period, so that we know
the process mean μ and the process standard deviation σ that de-
scribe the distribution of x as long as the process remains in control.

In practice, we must estimate the process mean and standard deviation from
past data on the process. Under the process-monitoring conditions, we have
very many observations and the process has remained in control. The law of
large numbers tells us that estimates from past data will be very close to theLOOK BACK

law of large numbers,
page 274

truth about the process. That is, at the process-monitoring stage we can act as
if we know the true values of μ and σ . Note carefully that μ and σ describe the
center and spread of our variable x only as long as the process remains in control.
A special cause may at any time disturb the process and change the mean, the
standard deviation, or both.

To make control charts, begin by taking small samples from the process at
regular intervals. For example, we might measure 4 or 5 consecutive parts or
time the responses to 4 or 5 consecutive customer calls. There is an important
idea here: the observations in a sample are so close together in time that we can
assume that the process is stable during this short period. Variation within the
same sample gives us a benchmark for the common cause variation in the pro-
cess. The process standard deviation σ refers to the standard deviation within the
time period spanned by one sample. If the process remains in control, the same σ

describes the standard deviation of observations across any time period. Con-
trol charts help us decide whether this is the case.
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We start with the x chart, which is based on plotting the means of the suc-x chart
cessive samples. Here is the outline:

1. Take samples of size n from the process at regular intervals. Plot the
means x of these samples against the order in which the samples were
taken.

2. We know that the sampling distribution of x under the process-monitoring
conditions is Normal with mean μ and standard deviation σ/

√
n. Draw a

LOOK BACK
sampling distribution
of x, page 339

solid center line on the chart at height μ.center line

3. The 99.7 part of the 68–95–99.7 rule for Normal distributions says that, as
LOOK BACK

68–95–99.7 rule,
page 59 long as the process remains in control, 99.7% of the values of x will fall be-

tween μ − 3σ/
√

n and μ + 3σ/
√

n. Draw dashed control limits on the chart
control limits at these heights. The control limits mark off the range of variation in sample

means that we expect to see when the process remains in control.

If the process remains in control and the process mean and standard devia-
tion do not change, we will rarely observe an x outside the control limits. Such
an x would be a signal that the process has been disturbed.
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E 17.5 Monitoring the tension on a wire mesh. A manufacturer of com-
puter monitors must control the tension on the mesh of fine vertical wires that
lies behind the surface of the viewing screen. Too much tension will tear the
mesh, and too little will allow wrinkles. Tension is measured by an electrical
device with output readings in millivolts (mV). The manufacturing process
has been stable with mean tension μ = 275 mV and process standard devia-
tion σ = 43 mV.

The operator measures the tension on a sample of 4 monitors each hour.
Table 17.1 gives the last 20 samples. The table also gives the mean x and the
standard deviation s for each sample. The operator did not have to calculate
these—modern measuring equipment often comes equipped with software
that automatically records x and s and even produces control charts.

Figure 17.4 is an x control chart for the 20 mesh tension samples in Table
17.1. We have plotted each sample mean from the table against its sample num-
ber. For example, the mean of the first sample is 253.4 mV, and this is the value
plotted for sample 1. The center line is at μ = 275 mV. The upper and lower
control limits are

μ + 3
σ√
n

= 275 + 3
43√

4
= 275 + 64.5 = 339.5 mV (UCL)

μ − 3
σ√
n

= 275 − 3
43√

4
= 275 − 64.5 = 210.5 mV (LCL)

As is common, we have labeled the control limits UCL for upper control limit
and LCL for lower control limit.
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TABLE 17.1

Twenty control chart samples of mesh tension (in millivolts)

Sample Standard
Sample Tension measurements mean deviation

1 234.5 272.3 234.5 272.3 253.4 21.8
2 311.1 305.8 238.5 286.2 285.4 33.0
3 247.1 205.3 252.6 316.1 255.3 45.7
4 215.4 296.8 274.2 256.8 260.8 34.4
5 327.9 247.2 283.3 232.6 272.7 42.5
6 304.3 236.3 201.8 238.5 245.2 42.8
7 268.9 276.2 275.6 240.2 265.2 17.0
8 282.1 247.7 259.8 272.8 265.6 15.0
9 260.8 259.9 247.9 345.3 278.5 44.9

10 329.3 231.8 307.2 273.4 285.4 42.5
11 266.4 249.7 231.5 265.2 253.2 16.3
12 168.8 330.9 333.6 318.3 287.9 79.7
13 349.9 334.2 292.3 301.5 319.5 27.1
14 235.2 283.1 245.9 263.1 256.8 21.0
15 257.3 218.4 296.2 275.2 261.8 33.0
16 235.1 252.7 300.6 297.6 271.5 32.7
17 286.3 293.8 236.2 275.3 272.9 25.6
18 328.1 272.6 329.7 260.1 297.6 36.5
19 316.4 287.4 373.0 286.0 315.7 40.7
20 296.8 350.5 280.6 259.8 296.9 38.8
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FIGURE 17.4 The x chart for
the mesh tension data of Table
17.1. No points lie outside the
control limits.
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E 17.6 Reading an x control chart. Figure 17.4 is a typical x chart for a
process in control. The means of the 20 samples do vary, but all lie within the
range of variation marked out by the control limits. We are seeing the com-
mon cause variation of a stable process.

Figures 17.5 and 17.6 illustrate two ways in which the process can go out of
control. In Figure 17.5, the process was disturbed by a special cause sometime
between sample 12 and sample 13. As a result, the mean tension for sample
13 falls above the upper control limit. It is common practice to mark all out-
of-control points with an “x” to call attention to them. A search for the cause
begins as soon as we see a point out of control. Investigation finds that the
mounting of the tension-measuring device has slipped, resulting in readings
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FIGURE 17.5 This x chart is
identical to that in Figure 17.4
except that a special cause has
driven x for sample 13 above the
upper control limit. The
out-of-control point is marked
with an x.
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FIGURE 17.6 The first 10 points
on this x chart are as in Figure
17.4. The process mean drifts
upward after sample 10, and the
sample means x reflect this drift.
The points for samples 18, 19,
and 20 are out of control.
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that are too high. When the problem is corrected, samples 14 to 20 are again
in control.

Figure 17.6 shows the effect of a steady upward drift in the process center,
starting at sample 11. You see that some time elapses before x is out of control
(sample 18). The one-point-out rule works better for detecting sudden large
disturbances than for detecting slow drifts in a process.

USE YOUR KNOWLEDGE
17.5 An x control chart for sandwich orders. A sandwich shop owner

takes a daily sample of 6 consecutive sandwich orders at random
times during the lunch rush and records the time it takes to complete
each order. Past experience indicates that the process mean should
be μ = 168 seconds and the process standard deviation should be
σ = 30 seconds. Calculate the center line and control limits for an x
control chart.

17.6 Changing the sample size n. Refer to Exercise 17.5. What happens
to the center line and control limits if

(a) the owner samples 4 consecutive sandwich orders?

(b) the owner samples 8 consecutive sandwich orders?

(c) the owner uses minutes rather than seconds as the units?

s charts for process monitoring
The x charts in Figures 17.4, 17.5, and 17.6 were easy to interpret because the
process standard deviation remained fixed at 43 mV. The effects of moving the
process mean away from its in-control value (275 mV) are then clear to see.
We know that even the simplest description of a distribution should give both
a measure of center and a measure of spread. So it is with control charts. We
must monitor both the process center, using an x chart, and the process spread,
using a control chart for the sample standard deviation s.

The standard deviation s does not have a Normal distribution, even approxi-
mately. Under the process-monitoring conditions, the sampling distribution of
s is skewed to the right. Nonetheless, control charts for any statistic are based
on the “plus or minus three standard deviations” idea motivated by the 68–95–
99.7 rule for Normal distributions. Control charts are intended to be practi-
cal tools that are easy to use. Standard practice in process control therefore
ignores such details as the effect of non-Normal sampling distributions. Here
is the general control chart setup for a sample statistic Q (short for “quality
characteristic”).

THREE-SIGMA CONTROL CHARTS

To make a three-sigma (3σ) control chart for any statistic Q:

1. Take samples from the process at regular intervals and plot the values
of the statistic Q against the order in which the samples were taken.
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2. Draw a center line on the chart at height μQ, the mean of the statistic
when the process is in control.

3. Draw upper and lower control limits on the chart three standard de-
viations of Q above and below the mean. That is,

UCL = μQ + 3σQ

LCL = μQ − 3σQ

Here σQ is the standard deviation of the sampling distribution of the
statistic Q when the process is in control.

4. The chart produces an out-of-control signal when a plotted point lies
outside the control limits.

We have applied this general idea to x charts. If μ and σ are the process mean
and standard deviation, the statistic x has mean μx = μ and standard deviation
σx = σ/

√
n. The center line and control limits for x charts follow from these

facts.
What are the corresponding facts for the sample standard deviation s? Study

of the sampling distribution of s for samples from a Normally distributed pro-
cess characteristic gives these facts:

1. The mean of s is a constant times the process standard deviation σ , that is,
μs = c4σ .

2. The standard deviation of s is also a constant times the process standard de-
viation, σs = c5σ .

The constants are called c4 and c5 for historical reasons. Their values depend
on the size of the samples. For large samples, c4 is close to 1. That is, the sample
standard deviation s has little bias as an estimator of the process standard de-
viation σ . Because statistical process control often uses small samples, we pay
attention to the value of c4. Following the general pattern for three-sigma con-
trol charts:

1. The center line of an s chart is at c4σ .

2. The control limits for an s chart are at

UCL = μs + 3σs = c4σ + 3c5σ = (c4 + 3c5)σ = B6σ

LCL = μs − 3σs = c4σ − 3c5σ = (c4 − 3c5)σ = B5σ

That is, the control limits UCL and LCL are also constants times the process
standard deviation. These constants are called (again for historical reasons)
B6 and B5. We don’t need to remember that B6 = c4 + 3c5 and B5 = c4 − 3c5,
because tables give us the numerical values of B6 and B5.

x AND s CONTROL CHARTS FOR PROCESS MONITORING4

Take regular samples of size n from a process that has been in control
with process mean μ and process standard deviation σ . The center line
and control limits for an x chart are
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UCL = μ + 3
σ√
n

CL = μ

LCL = μ − 3
σ√
n

The center line and control limits for an s chart are

UCL = B6σ

CL = c4σ

LCL = B5σ

The control chart constants c4, B5, and B6 depend on the sample size n.

Table 17.2 gives the values of the control chart constants c4, c5, B5, and B6

for samples of sizes 2 to 10. This table makes it easy to draw s charts. The table
has no B5 entries for samples of size smaller than n = 6. The lower control limit
for an s chart is zero for samples of sizes 2 to 5. This is a consequence of the fact
that s has a right-skewed distribution and takes only values greater than zero.
Three standard deviations above the mean (UCL) lies on the long right side of
the distribution. Three standard deviations below the mean (LCL) on the short
left side is below zero, so we say that LCL = 0.

TABLE 17.2

Control chart constants

Sample
size n c4 c5 B5 B6

2 0.7979 0.6028 2.606
3 0.8862 0.4633 2.276
4 0.9213 0.3889 2.088
5 0.9400 0.3412 1.964
6 0.9515 0.3076 0.029 1.874
7 0.9594 0.2820 0.113 1.806
8 0.9650 0.2622 0.179 1.751
9 0.9693 0.2459 0.232 1.707

10 0.9727 0.2321 0.276 1.669

•
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E 17.7 Interpreting an s chart for the mesh tension process. Figure 17.7
is the s chart for the computer monitor mesh tension data in Table 17.1. The
samples are of size n = 4 and the process standard deviation in control is
σ = 43 mV. The center line is therefore

CL = c4σ = (0.9213)(43) = 39.6 mV
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FIGURE 17.7 The s chart for
the mesh tension data of Table
17.1. Both the s chart and the x
chart (Figure 17.4) are in control.

The control limits are

UCL = B6σ = (2.088)(43) = 89.8

LCL = B5σ = (0)(43) = 0

Figures 17.4 and 17.7 go together: they are x and s charts for monitoring the
mesh-tensioning process. Both charts are in control, showing only common
cause variation within the bounds set by the control limits.

Figures 17.8 and 17.9 are x and s charts for the mesh-tensioning process
when a new and poorly trained operator takes over between samples 10 and
11. The new operator introduces added variation into the process, increasing
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FIGURE 17.8 The x chart for
mesh tension when the process
variability increases after sample
10. The x chart does show the
increased variability, but the s
chart is clearer and should be
read first.
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FIGURE 17.9 The s chart for
mesh tension when the process
variability increases after sample
10. Increased within-sample
variability is clearly visible. Find
and remove the s-type special
cause before reading the x chart.

•

the process standard deviation from its in-control value of 43 mV to 60 mV.
The x chart in Figure 17.8 shows one point out of control. Only on closer in-
spection do we see that the spread of the x’s increases after sample 10. In fact,
the process mean has remained unchanged at 275 mV. The apparent lack of
control in the x chart is entirely due to the larger process variation. There is
a lesson here: it is difficult to interpret an x chart unless s is in control. When
you look at x and s charts, always start with the s chart.

The s chart in Figure 17.9 shows lack of control starting at sample 11. As
usual, we mark the out-of-control points by an “x.” The points for samples 13
and 15 also lie above the UCL, and the overall spread of the sample points is
much greater than for the first 10 samples. In practice, the s chart would call
for action after sample 11. We would ignore the x chart until the special cause
(the new operator) for the lack of control in the s chart has been found and
removed by training the operator.

CAUTION

!

Example 17.7 suggests a strategy for using x and s charts in practice. First
examine the s chart. Lack of control on an s chart is due to special causes that
affect the observations within a sample differently. New and nonuniform raw
material, a new and poorly trained operator, and mixing results from several
machines or several operators are typical “s-type” special causes.

Once the s chart is in control, the stable value of the process standard de-
viation σ means that the variation within samples serves as a benchmark for
detecting variation in the level of the process over the longer time periods be-
tween samples. The x chart, with control limits that depend on σ , does this.
The x chart, as we saw in Example 17.7, responds to s-type causes as well as
to longer-range changes in the process, so it is important to eliminate s-type
special causes first. Then the x chart will alert us to, for example, a change in
process level caused by new raw material that differs from that used in the past
or a gradual drift in the process level caused by wear in a cutting tool.
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E 17.8 Special causes and their effect on control charts. A large health
maintenance organization (HMO) uses control charts to monitor the process
of directing patient calls to the proper department or doctor’s receptionist.
Each day at a random time, 5 consecutive calls are recorded electronically.
The first call today is handled quickly by an experienced operator, but the next
goes to a newly hired operator who must ask a supervisor for help. The sample
has a large s, and lack of control signals the need to train new hires more
thoroughly.

The same HMO monitors the time required to receive orders from its
main supplier of pharmaceutical products. After a long period in control, the
x chart shows a systematic shift downward in the mean time because the
supplier has changed to a more efficient delivery service. This is a desirable
special cause, but it is nonetheless a systematic change in the process. The
HMO will have to establish new control limits that describe the new state of
the process, with smaller process mean μ.

The second setting in Example 17.8 reminds us that a major change in the
process returns us to the chart setup stage. In the absence of deliberate changes
in the process, process monitoring uses the same values of μ and σ for long
periods of time. One exception is common: careful monitoring and removal of
special causes as they occur can permanently reduce the process σ . If the points
on the s chart remain near the center line for a long period, it is wise to update
the value of σ to the new, smaller value.

SECTION 17.1 Summary

Work is organized in processes, chains of activities that lead to some result.
We use flowcharts and cause-and-effect diagrams to describe processes.

All processes have variation. If the pattern of variation is stable over time, the
process is in statistical control. Control charts are statistical plots intended
to warn when a process is out of control.

Standard 3σ control charts plot the values of some statistic Q for regular
samples from the process against the time order of the samples. The center
line is at the mean of Q. The control limits lie three standard deviations of Q
above and below the center line. A point outside the control limits is an out-of-
control signal. For process monitoring of a process that has been in control,
the mean and standard deviation are based on past data from the process and
are updated regularly.

When we measure some quantitative characteristic of the process, we use x and
s charts for process control. The s chart monitors variation within individual
samples. If the s chart is in control, the x chart monitors variation from sample
to sample. To interpret the charts, always look first at the s chart.

SECTION 17.1 Exercises
For Exercises 17.1 and 17.2, see pages 17-5 and 17-6; for
Exercises 17.3 and 17.4, see page 17-7; and for Exercises
17.5 and 17.6, see page 17-12.

17.7 Constructing a flowchart. Each weekday
morning, you must get to work or to your first
class on time. Make a flowchart of your daily
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process for doing this, starting when you wake. Be
sure to include the time at which you plan to start
each step.

17.8 Determining sources of common and special
cause variation. Refer to the previous exercise. The
time at which you reach work or class varies from
day to day, and your planning must allow for this
variation. List several common causes of variation
in your arrival time. Then list several special
causes that might result in unusual variation, such
as being late to work or class.

17.9 Constructing a Pareto chart. Comparisons are
easier if you order the bars in a bar graph by height.
A bar graph ordered from tallest to shortest bar is
sometimes called a Pareto chart, after the Italian
economist who recommended this procedure.
Pareto charts are often used in quality studies
to isolate the “vital few” categories on which we
should focus our attention. Here is an example.
Painting new auto bodies is a multistep process.
There is an “electrocoat” that resists corrosion, a
primer, a color coat, and a gloss coat. A quality
study for one paint shop produced this breakdown
of the primary problem type for those autos whose
paint did not meet the manufacturer’s standards:

Problem Percent

Electrocoat uneven—redone 4
Poor adherence of color to primer 5
Lack of clarity in color 2
“Orange peel” texture in color 32
“Orange peel” texture in gloss 1
Ripples in color coat 28
Ripples in gloss coat 4
Uneven color thickness 19
Uneven gloss thickness 5

Total 100

Make a Pareto chart. Which stage of the painting
process should we look at first?

17.10 Constructing another Pareto chart. A large
hospital finds that it is losing money on surgery
due to inadequate reimbursement by insurance
companies and government programs. An initial
study looks at losses broken down by diagnosis.
Government standards place cases into Diagnostic
Related Groups (DRGs). For example, major joint
replacements are DRG 209. Here is what the
hospital finds:

DRG Percent of losses

104 5.2
107 10.1
109 7.7
116 13.7
148 6.8
209 15.2
403 5.6
430 6.8
462 9.4

What percent of total losses do these 9 DRGs
account for? Make a Pareto chart of losses by DRG.
Which DRGs should the hospital study first when
attempting to reduce its losses?

17.11 Making a Pareto chart. Continue the study of
the process of getting to work or class on time
(Exercise 17.7). If you kept good records, you could
make a Pareto chart of the reasons (special causes)
for late arrivals at work or class. Make a Pareto
chart that you think roughly describes your own
reasons for lateness. That is, list the reasons from
your experience and chart your estimates of the
percent of late arrivals each reason explains.

17.12 Control limits for air conditioner thermostats. A
maker of auto air conditioners checks a sample of 4
thermostatic controls from each hour’s production.
The thermostats are set at 75◦F and then placed in a
chamber where the temperature is raised gradually.
The temperature at which the thermostat turns
on the air conditioner is recorded. The process
mean should be μ = 75◦. Past experience indicates
that the response temperature of properly adjusted
thermostats varies with σ = 0.5◦F.

(a) The mean response temperature x for each
hour’s sample is plotted on an x control chart.
Calculate the center line and control limits for this
chart.

(b) The sample standard deviation s for each hour’s
sample is plotted on an s control chart. What are
the center line and control limits for this chart?

17.13 Control limits for a meat-packaging process.
A meat-packaging company produces 1-pound
packages of ground beef by having a machine
slice a long circular cylinder of ground beef as it
passes through the machine. The timing between
consecutive cuts will alter the weight of each
section. Table 17.3 gives the weight of 3 consecutive
sections of ground beef taken each hour over two
10-hour days. Past experience indicates that the
process mean is 1.03 and the weight varies with
σ = 0.02 lb.
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TABLE 17.3

Twenty samples of size 3, with x and s

Sample Weight (pounds) x s

1 0.999 1.071 1.019 1.030 0.0373
2 1.030 1.057 1.040 1.043 0.0137
3 1.024 1.020 1.041 1.028 0.0108
4 1.005 1.026 1.039 1.023 0.0172
5 1.031 0.995 1.005 1.010 0.0185
6 1.020 1.009 1.059 1.029 0.0263
7 1.019 1.048 1.050 1.039 0.0176
8 1.005 1.003 1.047 1.018 0.0247
9 1.019 1.034 1.051 1.035 0.0159
10 1.045 1.060 1.041 1.049 0.0098
11 1.007 1.046 1.014 1.022 0.0207
12 1.058 1.038 1.057 1.051 0.0112
13 1.006 1.056 1.056 1.039 0.0289
14 1.036 1.026 1.028 1.030 0.0056
15 1.044 0.986 1.058 1.029 0.0382
16 1.019 1.003 1.057 1.026 0.0279
17 1.023 0.998 1.054 1.025 0.0281
18 0.992 1.000 1.067 1.020 0.0414
19 1.029 1.064 0.995 1.029 0.0344
20 1.008 1.040 1.021 1.023 0.0159

(a) Calculate the center line and control limits for
an x chart.

(b) What are the center line and control limits for
an s chart for this process?

(c) Create the x and s charts for these 20
consecutive samples.

(d) Does the process appear to be in control?
Explain.

17.14 C
H

ALLENG
E Causes of variation in the time to respond

to an application. The personnel
department of a large company records a number
of performance measures. Among them is the
time required to respond to an application
for employment, measured from the time the
application arrives. Suggest some plausible
examples of each of the following.

(a) Reasons for common cause variation in
response time.

(b) s-type special causes.

(c) x-type special causes.

17.15 Control charts for a tablet compression process.
A pharmaceutical manufacturer forms tablets by
compressing a granular material that contains the
active ingredient and various fillers. The hardness
of a sample from each lot of tablets is measured in
order to control the compression process. The

TABLE 17.4

Three sets of x’s from 20 samples of size 4

Sample Data set A Data set B Data set C

1 11.602 11.627 11.495
2 11.547 11.613 11.475
3 11.312 11.493 11.465
4 11.449 11.602 11.497
5 11.401 11.360 11.573
6 11.608 11.374 11.563
7 11.471 11.592 11.321
8 11.453 11.458 11.533
9 11.446 11.552 11.486

10 11.522 11.463 11.502
11 11.664 11.383 11.534
12 11.823 11.715 11.624
13 11.629 11.485 11.629
14 11.602 11.509 11.575
15 11.756 11.429 11.730
16 11.707 11.477 11.680
17 11.612 11.570 11.729
18 11.628 11.623 11.704
19 11.603 11.472 12.052
20 11.816 11.531 11.905

process has been operating in control with mean at
the target value μ = 11.5 and estimated standard
deviation σ = 0.2. Table 17.4 gives three sets of
data, each representing x for 20 successive samples
of n = 4 tablets. One set of data remains in control
at the target value. In a second set, the process
mean μ shifts suddenly to a new value. In a third,
the process mean drifts gradually.

(a) What are the center line and control limits for
an x chart for this process?

(b) Draw a separate x chart for each of the three
data sets. Mark any points that are beyond the
control limits.

(c) Based on your work in (b) and the appearance
of the control charts, which set of data comes
from a process that is in control? In which case
does the process mean shift suddenly, and at
about which sample do you think that the mean
changed? Finally, in which case does the mean
drift gradually?

17.16 More on the tablet compression process.
Exercise 17.15 concerns process control data
on the hardness of tablets for a pharmaceutical
product. Table 17.5 gives data for 20 new samples
of size 4, with the x and s for each sample. The
process has been in control with mean at the target
value μ = 11.5 and standard deviation σ = 0.2.

(a) Make both x and s charts for these data based
on the information given about the process.
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TABLE 17.5

Twenty samples of size 4, with x and s

Sample Hardness x s

1 11.432 11.350 11.582 11.184 11.387 0.1660
2 11.791 11.323 11.734 11.512 11.590 0.2149
3 11.373 11.807 11.651 11.651 11.620 0.1806
4 11.787 11.585 11.386 11.245 11.501 0.2364
5 11.633 11.212 11.568 11.469 11.470 0.1851
6 11.648 11.653 11.618 11.314 11.558 0.1636
7 11.456 11.270 11.817 11.402 11.486 0.2339
8 11.394 11.754 11.867 11.003 11.504 0.3905
9 11.349 11.764 11.402 12.085 11.650 0.3437

10 11.478 11.761 11.907 12.091 11.809 0.2588
11 11.657 12.524 11.468 10.946 11.649 0.6564
12 11.820 11.872 11.829 11.344 11.716 0.2492
13 12.187 11.647 11.751 12.026 11.903 0.2479
14 11.478 11.222 11.609 11.271 11.395 0.1807
15 11.750 11.520 11.389 11.803 11.616 0.1947
16 12.137 12.056 11.255 11.497 11.736 0.4288
17 12.055 11.730 11.856 11.357 11.750 0.2939
18 12.107 11.624 11.727 12.207 11.916 0.2841
19 11.933 10.658 11.708 11.278 11.394 0.5610
20 12.512 12.315 11.671 11.296 11.948 0.5641

(b) At some point, the within-sample process
variation increased from σ = 0.2 to σ = 0.4. About
where in the 20 samples did this happen? What is
the effect on the s chart? On the x chart?

(c) At that same point, the process mean changed
from μ = 11.5 to μ = 11.7. What is the effect of this
change on the s chart? On the x chart?

17.17 Control limits for a milling process. The width of
a slot cut by a milling machine is important to the
proper functioning of a hydraulic system for large
tractors. The manufacturer checks the control of
the milling process by measuring a sample of 5
consecutive items during each hour’s production.
The target width for the slot is μ = 0.8750 inch. The
process has been operating in control with center
close to the target and σ = 0.0012 inch. What
center line and control limits should be drawn on
the s chart? On the x chart?

17.18 Control limits for a dyeing process. The unique
colors of the cashmere sweaters your firm makes
result from heating undyed yarn in a kettle with a
dye liquor. The pH (acidity) of the liquor is critical
for regulating dye uptake and hence the final color.
There are 5 kettles, all of which receive dye liquor
from a common source. Twice each day, the pH
of the liquor in each kettle is measured, giving a
sample of size 5. The process has been operating in
control with μ = 4.22 and σ = 0.127.

(a) Give the center line and control limits for the s
chart.

(b) Give the center line and control limits for the x
chart.

17.19 Control charts for a mounting-hole process.
Figure 17.10 reproduces a data sheet from the
floor of a factory that makes electrical meters.5 The
sheet shows measurements of the distance between
two mounting holes for 18 samples of size 5. The
heading informs us that the measurements are in
multiples of 0.0001 inch above 0.6000 inch. That
is, the first measurement, 44, stands for 0.6044
inch. All the measurements end in 4. Although we
don’t know why this is true, it is clear that in effect
the measurements were made to the nearest 0.001
inch, not to the nearest 0.0001 inch.

Calculate x and s for the first two samples.
The data file ex17 19 contains x and s for all
18 samples. Based on long experience with this
process, you are keeping control charts based on
μ = 43 and σ = 12.74. Make s and x charts for the
data in Figure 17.10 and describe the state of the
process.

17.20 Identifying special causes on control charts.
The process described in Exercise 17.18 goes out
of control. Investigation finds that a new type of
yarn was recently introduced. The pH in the kettles
is influenced by both the dye liquor and the yarn.
Moreover, on a few occasions a faulty valve on
one of the kettles had allowed water to enter that
kettle; as a result, the yarn in that kettle had to be
discarded. Which of these special causes appears
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VARIABLES CONTROL CHART (X & R)

FIGURE 17.10 A process control record sheet kept by operators, for Exercise 17.19. This is
typical of records kept by hand when measurements are not automated. We will see in the
next section why such records mention x and R control charts rather than x and s charts.

on the s chart and which on the x chart? Explain
your answer.

17.21 C
H

ALLENG
E Determining the probability of detection.

An x chart plots the means of samples of
size 4 against center line CL = 700 and control
limits LCL = 685 and UCL = 715. The process has
been in control.

(a) What are the process mean and standard
deviation?

(b) The process is disrupted in a way that changes
the mean to μ = 690. What is the probability that
the first sample after the disruption gives a point
beyond the control limits of the x chart?

(c) The process is disrupted in a way that changes
the mean to μ = 690 and the standard deviation
to σ = 15. What is the probability that the first
sample after the disruption gives a point beyond
the control limits of the x chart?

17.22 C
H

ALLENG
E Alternative control limits. American and

Japanese practice uses 3σ control charts.

That is, the control limits are three standard
deviations on either side of the mean. When the
statistic being plotted has a Normal distribution,
the probability of a point outside the limits is about
0.003 (or about 0.0015 in each direction) by the
68–95–99.7 rule. European practice uses control
limits placed so that the probability of a point
outside the limits when in control is 0.001 in each
direction. For a Normally distributed statistic, how
many standard deviations on either side of the
mean do these alternative control limits lie?

17.23 C
H

ALLENG
E 2σ control charts. Some special situations

call for 2σ control charts. That is, the control
limits for a statistic Q will be μQ ± 2σQ. Suppose
that you know the process mean μ and standard
deviation σ and will plot x and s from samples of
size n.

(a) What are the 2σ control limits for an x chart?

(b) Find expressions for the upper and lower 2σ

control limits for an s chart in terms of the control
chart constants c4 and c5 introduced on page 17-13.

17.2 Using Control Charts
We are now familiar with the ideas behind all control charts as well as the de-
tails of making x and s charts. This section discusses a variety of topics related
to using control charts in practice.
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x and R charts
We have seen that it is essential to monitor both the center and the spread of
a process. Control charts were originally intended to be used by factory work-
ers with limited knowledge of statistics in the era before even calculators, let
alone software, were common. In that environment, the standard deviation is
too difficult to calculate. The x chart for center was therefore combined with
a control chart for spread based on the sample range rather than the samplesample range
standard deviation.

The range R of a sample is just the difference between the largest and small-
est observations. It is easy to find R without a calculator. Using R rather than s
to measure the spread of samples replaces the s chart with an R chart. It alsoR chart
changes the x chart because the control limits for x use the estimated process
spread.

Because the range R uses only the largest and smallest observations in a
sample, it is less informative than the standard deviation s calculated from all
the observations. For this reason, x and s charts are now preferred to x and R
charts. R charts remain common because tradition dies hard and also because
it is easier for workers to understand R than s. In this short introduction, we
concentrate on the principles of control charts, so we won’t give the details of
constructing x and R charts. These details appear in any text on quality con-
trol.6 If you meet a set of x and R charts, remember that the interpretation of
these charts is just like the interpretation of x and s charts.
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E 17.9 Example of a typical process control technology. Figure 17.11 is
a display produced by custom process control software attached to a laser mi-
crometer. In this demonstration prepared by the software maker, the microm-
eter is measuring the diameter in millimeters of samples of pens shipped by
an office supply company. The software controls the laser, records measure-
ments, makes the control charts, and sounds an alarm when a point is out of
control. This is typical of process control technology in modern manufactur-
ing settings.

Despite the advanced technology involved, the software presents x and R
charts rather than x and s charts, no doubt because R is easier to explain. The
R chart monitors within-sample variation (just like an s chart), so we look at
it first. We see that the process spread is stable and well within the control
limits. Just as in the case of s, the LCL for R is 0 for the samples of size n = 5
used here. The x chart is also in control, so process monitoring will continue.
The software will sound an alarm if either chart goes out of control.

USE YOUR KNOWLEDGE
17.24 What’s wrong? For each of the following, explain what is wrong and

why.

(a) The R chart monitors the center of the process.

(b) The R chart is commonly used because the range R is more in-
formative than the standard deviation s.
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FIGURE 17.11 Output for
operators from the Laser
Manager software by System
Dynamics, Inc. The software
prepares control charts directly
from measurements made by a
laser micrometer. Compare the
hand record sheet in Figure
17.10. (Image provided by
Gordon A. Feingold, System
Dynamics, Inc. Used by
permission.)

(c) Use of the R chart to monitor process spread does not alter the
construction of the control limits for the x chart.

Additional out-of-control rules
So far, we have used only the basic “one point beyond the control limits” cri-
terion to signal that a process may have gone out of control. We would like a
quick signal when the process moves out of control, but we also want to avoid
“false alarms,” signals that occur just by chance when the process is really in
control. The standard 3σ control limits are chosen to prevent too many false
alarms, because an out-of-control signal calls for an effort to find and remove
a special cause. As a result, x charts are often slow to respond to a gradual drift
in the process center. We can speed the response of a control chart to lack of
control—at the cost of also enduring more false alarms—by adding patterns
other than “one-point-out” as rules. The most common step in this direction is
to add a runs rule to the x chart.

OUT-OF-CONTROL SIGNALS

x and s or x and R control charts produce an out-of-control signal if:

(a) One-point-out: A single point lies outside the 3σ control limits of
either chart.

(b) Run: The x chart shows 9 consecutive points above the center line
or 9 consecutive points below the center line. The signal occurs when we
see the 9th point of the run.
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E 17.10 Effectiveness of the runs rule. Figure 17.12 reproduces the x
chart from Figure 17.6. The process center began a gradual upward drift at
sample 11. The chart shows the effect of the drift—the sample means plot-
ted on the chart move gradually upward, with some random variation. The
one-point-out rule does not call for action until sample 18 finally produces
an x above the UCL. The runs rule reacts more quickly: sample 17 is the 9th
consecutive point above the center line.

150

Sample number
19181716151413121110987654321 20

200

250

UCL x

x

x
x

LCL

350

400

300

Sa
m

pl
e 

m
ea

n

FIGURE 17.12 The x chart for
mesh tension data when the
process center drifts upward, for
Example 17.10. The “run of 9”
signal gives an out-of-control
warning at sample 17.

It is a mathematical fact that the runs rule responds to a gradual drift more
quickly (on the average) than the one-point-out rule does. The motivation for
a runs rule is that when a process is in control, half the points on an x chart
should lie above the center line and half below. That’s true on the average in
the long term. In the short term, we will see runs of points above or below, just
as we see runs of heads or tails in tossing a coin.

To determine how long a run must be to suggest that the process center has
moved, we once again concern ourselves with the cost of false alarms. The 99.7
part of the 68–95–99.7 rule says that we will get a point outside the 3σ control
limits about 3 times for every 1000 points plotted when the process is in con-
trol. The chance of 9 straight points above the center line when the process is
in control is (1/2)9 = 1/512, or about 2 per 1000. The chance for a run of 9 be-
low the center line is the same. Combined, that’s about 4 false alarms per 1000
plotted points overall when the process is in control. This is very close to the
false-alarm rate for one-point-out.

There are many other patterns that can be added to the rules for respond-
ing to x and s or x and R charts. In our enthusiasm to detect various special
kinds of loss of control, it is easy to forget that adding rules always increases
the frequency of false alarms. Frequent false alarms are so annoying that the
people responsible for responding soon begin to ignore out-of-control signals.
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It is better to use only a few out-of-control rules and to reserve rules other than

CAUTION

! one-point-out and runs for processes that are known to be prone to specific spe-
cial causes for which there are tailor-made detection rules.7

USE YOUR KNOWLEDGE
17.25 What’s wrong? For each of the following, explain what is wrong and

why.

(a) For the one-point-out rule, you could speed up the response to
lack of control by using 4σ control limits.

(b) In speeding up the response of a control chart to lack of control,
we decrease the frequency of false alarms.

(c) The runs rule responds to a sudden and large shift in the process
more quickly than the one-point-out rule.

17.26 The effect of special cause variation. Is each of the following
examples of a special cause most likely to first result in (i) one-point-
out on the s or R chart, (ii) one-point-out on the x chart, or (iii) a run
on the x chart? In each case, briefly explain your reasoning.

(a) An etching solution deteriorates as more items are etched.

(b) Buildup of dirt reduces the precision with which parts are placed
for machining.

(c) A new customer service representative for a Spanish-language
help line is not a native speaker and has difficulty understanding
customers.

(d) A data entry employee grows less attentive as her shift continues.

Setting up control charts
When you first encounter a process that has not been carefully studied, it is
quite likely that the process is not in control. Your first goal is to discover and
remove special causes and so bring the process into control. Control charts are
an important tool. Control charts for process monitoring follow the process for-
ward in time to keep it in control. Control charts at the chart setup stage, on the
other hand, look back in an attempt to discover the present state of the process.
An example will illustrate the method.
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E 17.11 Monitoring the viscosity of a material. The viscosity of a mate-
rial is its resistance to flow when under stress. Viscosity is a critical charac-
teristic of rubber and rubber-like compounds called elastomers, which have
many uses in consumer products. Viscosity is measured by placing specimens
of the material above and below a slowly rotating roller, squeezing the as-
sembly, and recording the drag on the roller. Measurements are in “Mooney
units,” named after the inventor of the instrument.

A specialty chemical company is beginning production of an elastomer
that is supposed to have viscosity 45 ± 5 Mooneys. Each lot of the elastomer
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TABLE 17.6

x and s for 24 samples of elastomer viscosity

Sample x s Sample x s

1 49.750 2.684 13 47.875 1.118
2 49.375 0.895 14 48.250 0.895
3 50.250 0.895 15 47.625 0.671
4 49.875 1.118 16 47.375 0.671
5 47.250 0.671 17 50.250 1.566
6 45.000 2.684 18 47.000 0.895
7 48.375 0.671 19 47.000 0.447
8 48.500 0.447 20 49.625 1.118
9 48.500 0.447 21 49.875 0.447

10 46.250 1.566 22 47.625 1.118
11 49.000 0.895 23 49.750 0.671
12 48.125 0.671 24 48.625 0.895

•

is produced by “cooking” raw material with catalysts in a reactor vessel. Table
17.6 records x and s from samples of size n = 4 lots from the first 24 shifts as
production begins.8 An s chart therefore monitors variation among lots pro-
duced during the same shift. If the s chart is in control, an x chart looks for
shift-to-shift variation.

Estimating μ We do not know the process mean μ and standard deviation σ .
What shall we do? Sometimes we can easily adjust the center of a process by
setting some control, such as the depth of a cutting tool in a machining oper-
ation or the temperature of a reactor vessel in a pharmaceutical plant. In such
cases it is common to simply take the process mean μ to be the target value, the
depth or temperature that the design of the process specifies as correct. The x
chart then helps us keep the process mean at this target value.

There is less likely to be a “correct value” for the process mean μ if we are
monitoring response times to customer calls or data entry errors. In Example
17.11, we have the target value 45 Mooneys, but there is no simple way to set
viscosity at the desired level. In such cases, we want the μ we use in our x chart
to describe the center of the process as it has actually been operating. To do this,
take the mean of all the individual measurements in the past samples. Because
the samples are all the same size, this is just the mean of the sample x’s. The
overall “mean of the sample means” is therefore usually called x. For the 24
samples in Table 17.6,

x = 1
24

(49.750 + 49.375 + · · · + 48.625)

= 1161.125
24

= 48.380

Estimating σ It is almost never safe to use a “target value” for the process stan-

CAUTION

! dard deviation σ because it is almost never possible to directly adjust process vari-
ation. We must estimate σ from past data. We want to combine the sample
standard deviations s from past samples rather than use the standard deviation
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of all the individual observations in those samples. That is, in Example 17.11,
we want to combine the 24 sample standard deviations in Table 17.6 rather than
calculate the standard deviation of the 96 observations in these samples. The
reason is that it is the within-sample variation that is the benchmark against
which we compare the longer-term process variation. Even if the process has
been in control, we want only the variation over the short time period of a single
sample to influence our value for σ .

There are several ways to estimate σ from the sample standard deviations.
Software may use a somewhat sophisticated method and then calculate the
control limits for you. Here, we use a simple method that is traditional in qual-
ity control because it goes back to the era before software. If we are basing chart
setup on k past samples, we have k sample standard deviations s1, s2, . . . , sk. Just
average these to get

s = 1
k

(s1 + s2 + · · · + sk)

For the viscosity example, we average the s-values for the 24 samples in Table
17.6,

s = 1
24

(2.684 + 0.895 + · · · + 0.895)

= 24.156
24

= 1.0065

Combining the sample s-values to estimate σ introduces a complication: the
samples used in process control are often small (size n = 4 in the viscosity
example), so s has some bias as an estimator of σ . The estimator s also inheritsLOOK BACK

mean of s, page 17-13 this bias. A proper estimate of σ corrects this bias. Thus, our estimator is

σ̂ = s
c4

We get control limits from past data by using the estimates x and σ̂ in place
of the μ and σ used in charts at the process-monitoring stage. Here are the re-
sults.9

x AND s CONTROL CHARTS USING PAST DATA

Take regular samples of size n from a process. Estimate the process mean
μ and the process standard deviation σ from past samples by

μ̂ = x (or use a target value)

σ̂ = s
c4

The center line and control limits for an x chart are

UCL = μ̂ + 3
σ̂√
n

CL = μ̂

LCL = μ̂ − 3
σ̂√
n
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The center line and control limits for an s chart are

UCL = B6σ̂

CL = c4σ̂ = s

LCL = B5σ̂

If the process was not in control when the samples were taken, these
should be regarded as trial control limits.

We are now ready to outline the chart setup procedure for the elastomer
viscosity.

Step 1 As usual, we look first at an s chart. For chart setup, control limits
are based on the same past data that we will plot on the chart. Based on Table
17.6,

s = 1.0065

σ̂ = s
c4

= 1.0065
0.9213

= 1.0925,

so the center line and control limits for the s chart are

UCL = B6σ̂ = (2.088)(1.0925) = 2.281

CL = s = 1.0065

LCL = B5σ̂ = (0)(1.0925) = 0

Figure 17.13 is the s chart. The points for shifts 1 and 6 lie above the UCL. Both
are near the beginning of production. Investigation finds that the reactor oper-
ator made an error on one lot in each of these samples. The error changed the
viscosity of that lot and increased s for that one sample. The error will not be
repeated now that the operators have gained experience. That is, this special
cause has already been removed.
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FIGURE 17.13 The s chart
based on past data for the
viscosity data of Table 17.6. The
control limits are based on the
same s-values that are plotted on
the chart. Points 1 and 6 are out
of control.
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Step 2 Remove the two values of s that were out of control. This is proper
because the special cause responsible for these readings is no longer present.
From the remaining 22 shifts

s = 0.854 and σ̂ = 0.854
0.9213

= 0.927

The new s chart center line and control limits are

UCL = B6σ̂ = (2.088)(0.927) = 1.936

CL = s = 0.854

LCL = B5σ̂ = (0)(0.927) = 0

We don’t show this chart, but you can see from Table 17.6 and Figure 17.13
that none of the remaining s-values lies above the new, lower, UCL; the largest
remaining s is 1.566. If additional points were out of control, we would repeat
the process of finding and eliminating s-type causes until the s chart for the
remaining shifts is in control. In practice, this is often a challenging task.

Step 3 Once s-type causes have been eliminated, make an x chart using only
the samples that remain after dropping those that had out-of-control s-values.
For the 22 remaining samples, we calculate x = 48.4716 and we know that
σ̂ = 0.927. The center line and control limits for the x chart are

UCL = x + 3
σ̂√
n

= 48.4716 + 3
0.927√

4
= 49.862

CL = x = 48.4716

LCL = x − 3
σ̂√
n

= 48.4716 − 3
0.927√

4
= 47.081

Figure 17.14 is the x chart. Shifts 1 and 6 were already dropped. Seven of the re-
maining 22 points are beyond the 3σ limits, four high and three low. Although
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FIGURE 17.14 The x chart
based on past data for the
viscosity data of Table 17.6. The
samples for shifts 1 and 6 have
been removed because s-type
special causes active in those
samples are no longer active. The
x chart shows poor control.
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within-shift variation is now stable, there is excessive variation from shift to
shift. To find the cause, we must understand the details of the process, but
knowing that the special cause or causes operate between shifts is a big help.
If the reactor is set up anew at the beginning of each shift, that’s one place to
look more closely.

Step 4 Once the x and s charts are both in control (looking backward), use
the estimates μ̂ and σ̂ from the points in control to set tentative control limits
to monitor the process going forward. If it remains in control, we can update
the charts and move to the process-monitoring stage.

USE YOUR KNOWLEDGE
17.27 Updating control chart limits. Suppose that when the process im-

provement project of Example 17.11 (page 17-25) is complete, the
points remaining after removing special causes have x = 48.1 and
s = 0.93. What are the center line and control limits for the x and s
charts you would use to monitor the process going forward?

17.28 More on updating control chart limits. In Exercise 17.13, control
limits for the weight of ground beef were obtained using historical
results. Using Table 17.3, estimate the process μ and process σ . Do
either of these values suggest a change in the process center and
spread?

Comments on statistical control
Having seen how x and s (or x and R) charts work, we can turn to some impor-
tant comments and cautions about statistical control in practice.

Focus on the process rather than on the product This is perhaps the fun-
damental idea in statistical process control. We might attempt to attain high
quality by careful inspection of the finished product or reviewing every outgo-
ing invoice and expense account payment. Inspection of finished products can
ensure good quality, but it is expensive. Perhaps more important, final inspec-
tion often comes too late: when something goes wrong early in a process, much
bad product may be produced before final inspection discovers the problem.
This adds to the expense, because the bad product must then be scrapped or
reworked.

The small samples that are the basis of control charts are intended to moni-
tor the process at key points, not to ensure the quality of the particular items in
the samples. If the process is kept in control, we know what to expect in the fin-
ished product. We want to do it right the first time, not inspect and fix finished
product. Choosing the “key points” at which we will measure and monitor the
process is important. The choice requires that you understand the process well
enough to know where problems are likely to arise. Flowcharts and cause-and-
effect diagrams can help. It should be clear that control charts that monitor
only the final output are often not the best choice.

Rational subgroups The interpretation of control charts depends on the dis-
tinction between x-type special causes and s-type special causes. This
distinction in turn depends on how we choose the samples from which we
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calculate s (or R). We want the variation within a sample to reflect only the
item-to-item chance variation that (when in control) results from many small
common causes. Walter Shewhart, the founder of statistical process control,
used the term rational subgroup to emphasize that we should think about therational subgroup
process when deciding how to choose samples.
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E 17.12 Selecting the sample. A pharmaceutical manufacturer forms tab-
lets by compressing a granular material that contains the active ingredient
and various fillers. To monitor the compression process, we will measure the
hardness of a sample from each 10 minutes’ production of tablets. Should we
choose a random sample of tablets from the several thousand produced in a
10-minute period?

A random sample would contain tablets spread across the entire 10 min-
utes. It fairly represents the 10-minute period, but that isn’t what we want
for process control. If the setting of the press drifts or a new lot of filler ar-
rives during the 10 minutes, the spread of the sample will be increased. That
is, a random sample contains both the short-term variation among tablets
produced in quick succession and the longer-term variation among tablets
produced minutes apart. We prefer to measure a rational subgroup of 5 con-
secutive tablets every 10 minutes. We expect the process to be stable during
this very short time period, so that variation within the subgroups is a bench-
mark against which we can see special cause variation.

Samples of consecutive items are rational subgroups when we are monitor-
ing the output of a single activity that does the same thing over and over again.
Several consecutive items is the most common type of sample for process con-
trol. When the stream of product contains output from several machines or sev-
eral people, however, the choice of samples is more complicated. Do you want
to include variation due to different machines or different people within your
samples? If you decide that this variation is common cause variation, be sure
that the sample items are spread across machines or people. If all the items in
each sample have a common origin, s will be small and the control limits for
the x chart will be narrow. Points on the x chart from samples representing dif-
ferent machines or different people will often be out of control, some high and
some low.

There is no formula for deciding how to form rational subgroups. You must

CAUTION

! think about causes of variation in your process and decide which you are willing
to think of as common causes that you will not try to eliminate. Rational sub-
groups are samples chosen to express variation due to these causes and no oth-
ers. Because the choice requires detailed process knowledge, we will usually ac-
cept samples of consecutive items as being rational subgroups. Just remember
that real processes are messier than textbooks suggest.

Why statistical control is desirable To repeat, if the process is kept in con-
trol, we know what to expect in the finished product. The process mean μ and
standard deviation σ remain stable over time, so (assuming Normal variation)
the 99.7 part of the 68–95–99.7 rule tells us that almost all measurements on
individual products will lie in the range μ ± 3σ . These are sometimes called
the natural tolerances for the product. Be careful to distinguish μ ± 3σ , thenatural tolerances
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range we expect for individual measurements, from the x chart control limits
μ ± 3σ/

√
n, which mark off the expected range of sample means.
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E 17.13 Estimating the tolerances for the mesh tension study. The pro-
cess of setting the mesh tension on computer monitors has been operating in
control. The x and s charts were based on μ = 275 mV and σ = 43 mV. The
s chart in Figure 17.7 and a calculation (see Exercise 17.31) suggest that the
process σ is now less than 43 mV. We may prefer to calculate the natural tol-
erances from the recent data on 20 samples (80 monitors) in Table 17.1. The
estimate of the mean is x = 275.065, very close to the target value.

Now a subtle point arises. The estimate σ̂ = s/c4 used for past-data con-
trol charts is based entirely on variation within the samples. That’s what we
want for control charts, because within-sample variation is likely to be “pure
common cause” variation. Even when the process is in control, there is some
additional variation from sample to sample, just by chance. So the variation
in the process output will be greater than the variation within samples. To esti-
mate the natural tolerances, we should estimate σ from all 80 individual mon-
itors rather than by averaging the 20 within-sample standard deviations. The
standard deviation for all 80 mesh tensions is

s = 38.38

For a sample of size 80, c4 is very close to 1, so we can ignore it. We are there-
fore confident that almost all individual monitors will have mesh tension
between

x ± 3s = 275.065 ± (3)(38.38)
.= 275 ± 115

We expect mesh tension measurements to vary between 160 and 390 mV. You
see that the spread of individual measurements is wider than the spread of
sample means used for the control limits of the x chart.

The natural tolerances in Example 17.13 depend on the fact that the mesh
tensions of individual monitors follow a Normal distribution. We know that the
process was in control when the 80 measurements in Table 17.1 were made, so
we can use them to assess Normality. Figure 17.15 is a Normal quantile plot
of these measurements. There are no strong deviations from Normality. All 80
observations, including the one point that may appear suspiciously low in Fig-
ure 17.15, lie within the natural tolerances. Examining the data strengthens our
confidence in the natural tolerances.

Because we can predict the performance of the mesh-tensioning process,
we can tell the computer makers who buy our monitors what to expect. These
customers, in fact, require us to maintain statistical control of our processes
so that they need not inspect the monitors we ship to them. What is more, if
a process is in control, we can see the effect of any changes we make. A pro-
cess operating out of control is erratic. We can’t do reliable statistical studies
on such a process, and if we make a change in the process, we can’t clearly see
the results of the change—they are hidden by erratic special cause variation.
If we want to improve a process, we must first bring it into control so that we
have a stable starting point from which to improve.
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FIGURE 17.15 Normal quantile
plot for the 80 mesh tension
measurements of Table 17.1.
Calculations about individual
measurements, such as natural
tolerances, depend on
approximate Normality.

Don’t confuse control with capability!
A process in control is stable over time and we know how much variation the
finished product will show. Control charts are, so to speak, the voice of the pro-
cess telling us what state it is in. There is no guarantee that a process in control

CAUTION

! produces products of satisfactory quality. “Satisfactory quality” is measured by
comparing the product to some standard outside the process, set by technical
specifications, customer expectations, or the goals of the organization. These
external standards are unrelated to the internal state of the process, which is
all that statistical control pays attention to.

CAPABILITY

Capability refers to the ability of a process to meet or exceed the require-
ments placed on it.

Capability has nothing to do with control—except for the very important
point that if a process is not in control, it is hard to tell if it is capable or not.

•
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E 17.14 Assessing the capability of the mesh tension process. The pri-
mary customer for our monitors is a large maker of computers. The customer
informed us that adequate image quality requires that the mesh tension lie be-
tween 100 and 400 mV. Although the mesh-tensioning process is in control,
we know (Example 17.13) that almost all monitors will have mesh tension
between 160 and 390 mV. The process is capable of meeting the customer’s
requirement.
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Figure 17.16 compares the distribution of mesh tension for individual
monitors with the customer’s specifications. The distribution of tension is
approximately Normal, and we estimate its mean to be very close to 275 mV
and the standard deviation to be about 38.4 mV. The distribution is safely
within the specifications.

Times change, however. As computer buyers demand better screen qual-
ity, the computer maker restudies the effect of mesh tension and decides to
require that tension lie between 150 and 350 mV. These new specification lim-
its also appear in Figure 17.16. The process is not capable of meeting the new
requirements. The process remains in control. The change in its capability is
entirely due to a change in external requirements.

100 150 350275
Mesh tension

400

Old
specifications

New
specifications

FIGURE 17.16 Comparison of
the distribution of mesh tension
(Normal curve) with original and
tightened specifications, for
Example 17.14. The process in its
current state is not capable of
meeting the new specifications.

Because the mesh-tensioning process is in control, we know that it is not
capable of meeting the new specifications. That’s an advantage of control, but
the fact remains that control does not guarantee capability. We will discuss nu-
merical measures of capability in Section 17.3.

Managers must understand that, if a process that is in control does not have
adequate capability, fundamental changes in the process are needed. The process
is doing as well as it can and displays only the chance variation that is natural to
its present state. Slogans to encourage the workers or disciplining the workers
for poor performance will not change the state of the process. Better training
for workers is a change in the process that may improve capability. New equip-
ment or more uniform material may also help, depending on the findings of a
careful investigation.

SECTION 17.2 Summary

An R chart based on the range of observations in a sample is often used in
place of an s chart. Interpret x and R charts exactly as you would interpret x
and s charts.
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It is common to use out-of-control rules in addition to “one point outside the
control limits.” In particular, a runs rule for the x chart allows the chart to re-
spond more quickly to a gradual drift in the process center.

Control charts based on past data are used at the chart setup stage for a
process that may not be in control. Start with control limits calculated from
the same past data that you are plotting. Beginning with the s chart, narrow
the limits as you find special causes, and remove the points influenced by these
causes. When the remaining points are in control, use the resulting limits to
monitor the process.

Statistical process control maintains quality more economically than inspect-
ing the final output of a process. Samples that are rational subgroups are im-
portant to effective control charts. A process in control is stable, so that we can
predict its behavior. If individual measurements have a Normal distribution,
we can give the natural tolerances.

A process is capable if it can meet the requirements placed on it. Control (sta-
bility over time) does not in itself imply capability. Remember that control de-
scribes the internal state of the process, whereas capability relates the state of
the process to external specifications.

SECTION 17.2 Exercises
For Exercise 17.24, see page 17-22; for Exercises 17.25 and
17.26, see page 17-25; and for Exercises 17.27 and 17.28,
see page 17-30.

17.29 C
H

ALLENG
E Control chart for an unusual sampling

situation. Here is an artificial situation
that illustrates an unusual control chart pattern.
Invoices are processed and paid by two clerks, one
very experienced and the other newly hired. The
experienced clerk processes invoices quickly. The
new hire must often refer to a handbook and is
much slower. Both are quite consistent, so that
their times vary little from invoice to invoice. It
happens that each sample of invoices comes from
one of the clerks, so that some samples are from
one and some from the other clerk. Sketch the x
chart pattern that will result.

17.30 Altering the sampling plan. Refer to Exercise
17.29. Suppose instead that each sample contains
an equal number of invoices from each clerk.

(a) Sketch the x and s chart patterns that will
result.

(b) The process in this case will appear in control.
When might this be an acceptable conclusion?

17.31 Reevaluating the process parameters. The x and
s control charts for the mesh-tensioning example
(Figures 17.4 and 17.7) were based on μ = 275 mV
and σ = 43 mV. Table 17.1 gives the 20 most recent
samples from this process.

(a) Estimate the process μ and σ based on these
20 samples.

(b) Your calculations suggest that the process σ

may now be less than 43 mV. Explain why the s
chart in Figure 17.7 (page 17-15) suggests the same
conclusion. (If this pattern continues, we would
eventually update the value of σ used for control
limits.)

17.32 Estimating the control chart limits from past
data. Table 17.7 gives data on the losses (in dollars)
incurred by a hospital in treating DRG 209 (major
joint replacement) patients.10 The hospital has
taken from its records a random sample of 8 such
patients each month for 15 months.

(a) Make an s control chart using center lines and
limits calculated from these past data. There are
no points out of control.

(b) Because the s chart is in control, base the x
chart on all 15 samples. Make this chart. Is it also
in control?

17.33 C
H

ALLENG
E Efficient process control. The computer

makers who buy monitors require that
the monitor manufacturer practice statistical
process control and submit control charts for
verification. This allows the computer makers to
eliminate inspection of monitors as they arrive, a
considerable cost saving. Explain carefully why
incoming inspection can safely be eliminated.
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TABLE 17.7

Hospital losses for 15 samples of DRG 209 patients

Sample Standard
Sample Loss (dollars) mean deviation

1 6835 5843 6019 6731 6362 5696 7193 6206 6360.6 521.7
2 6452 6764 7083 7352 5239 6911 7479 5549 6603.6 817.1
3 7205 6374 6198 6170 6482 4763 7125 6241 6319.8 749.1
4 6021 6347 7210 6384 6807 5711 7952 6023 6556.9 736.5
5 7000 6495 6893 6127 7417 7044 6159 6091 6653.2 503.7
6 7783 6224 5051 7288 6584 7521 6146 5129 6465.8 1034.3
7 8794 6279 6877 5807 6076 6392 7429 5220 6609.2 1104.0
8 4727 8117 6586 6225 6150 7386 5674 6740 6450.6 1033.0
9 5408 7452 6686 6428 6425 7380 5789 6264 6479.0 704.7

10 5598 7489 6186 5837 6769 5471 5658 6393 6175.1 690.5
11 6559 5855 4928 5897 7532 5663 4746 7879 6132.4 1128.6
12 6824 7320 5331 6204 6027 5987 6033 6177 6237.9 596.6
13 6503 8213 5417 6360 6711 6907 6625 7888 6828.0 879.8
14 5622 6321 6325 6634 5075 6209 4832 6386 5925.5 667.8
15 6269 6756 7653 6065 5835 7337 6615 8181 6838.9 819.5

17.34 Determining the tolerances for losses from
DRG 209 patients. Table 17.7 gives data on
hospital losses for samples of DRG 209 patients.
The distribution of losses has been stable over
time. What are the natural tolerances within which
you expect losses on nearly all such patients to fall?

17.35 Checking the Normality of losses. Do the losses
on the 120 individual patients in Table 17.7 appear
to come from a single Normal distribution? Make
a Normal quantile plot and discuss what it shows.
Are the natural tolerances you found in the previous
exercise trustworthy?

17.36 The percent of products that meet specifica-
tions. If the mesh tension of individual monitors
follows a Normal distribution, we can describe
capability by giving the percent of monitors that
meet specifications. The old specifications for mesh
tension are 100 to 400 mV. The new specifications
are 150 to 350 mV. Because the process is in
control, we can estimate (Example 17.13) that
tension has mean 275 mV and standard deviation
38.4 mV.

(a) What percent of monitors meet the old
specifications?

(b) What percent meet the new specifications?

17.37 Improving the capability of the process. The
center of the specifications for mesh tension is 250
mV, but the center of our process is 275 mV. We can
improve capability by adjusting the process to have
center 250 mV. This is an easy adjustment that does
not change the process variation. What percent of

monitors now meet the new specifications? (Use
the information in the previous exercise.)

17.38 Monitoring the calibration of a densitometer.
Loss of bone density is a serious health problem
for many people, especially older women.
Conventional X-rays often fail to detect loss of bone
density until the loss reaches 25% or more. New
equipment such as the Lunar bone densitometer
is much more sensitive. A health clinic installs one
of these machines. The manufacturer supplies a
“phantom,” an aluminum piece of known density
that can be used to keep the machine calibrated.
Each morning, the clinic makes two measurements
on the phantom before measuring the first patient.
Control charts based on these measurements alert
the operators if the machine has lost calibration.
Table 17.8 contains data for the first 30 days
of operation.11 The units are grams per square
centimeter (for technical reasons, area rather than
volume is measured).

(a) Calculate x and s for the first 2 days to verify
the table entries for those quantities.

(b) What kind of variation does the s chart monitor
in this setting? Make an s chart and comment on
control. If any points are out of control, remove
them and recompute the chart limits until all
remaining points are in control. (That is, assume
that special causes are found and removed.)

(c) Make an x chart using the samples that remain
after you have completed part (b). What kind of
variation will be visible on this chart? Comment
on the stability of the machine over these 30 days
based on both charts.
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TABLE 17.8

Daily calibration samples for a Lunar
bone densitometer

Day Measurements x s

1 1.261 1.260 1.2605 0.000707
2 1.261 1.268 1.2645 0.004950
3 1.258 1.261 1.2595 0.002121
4 1.261 1.262 1.2615 0.000707
5 1.259 1.262 1.2605 0.002121
6 1.269 1.260 1.2645 0.006364
7 1.262 1.263 1.2625 0.000707
8 1.264 1.268 1.2660 0.002828
9 1.258 1.260 1.2590 0.001414

10 1.264 1.265 1.2645 0.000707
11 1.264 1.259 1.2615 0.003536
12 1.260 1.266 1.2630 0.004243
13 1.267 1.266 1.2665 0.000707
14 1.264 1.260 1.2620 0.002828
15 1.266 1.259 1.2625 0.004950
16 1.257 1.266 1.2615 0.006364
17 1.257 1.266 1.2615 0.006364
18 1.260 1.265 1.2625 0.003536
19 1.262 1.266 1.2640 0.002828
20 1.265 1.266 1.2655 0.000707
21 1.264 1.257 1.2605 0.004950
22 1.260 1.257 1.2585 0.002121
23 1.255 1.260 1.2575 0.003536
24 1.257 1.259 1.2580 0.001414
25 1.265 1.260 1.2625 0.003536
26 1.261 1.264 1.2625 0.002121
27 1.261 1.264 1.2625 0.002121
28 1.260 1.262 1.2610 0.001414
29 1.260 1.256 1.2580 0.002828
30 1.260 1.262 1.2610 0.001414

17.39 Determining the natural tolerances for the
distance between holes. Figure 17.10 (page
17-21) displays a record sheet for 18 samples of
distances between mounting holes in an electrical
meter. The data file ex17 19 adds x and s for each
sample. In Exercise 17.19, you found that sample
5 was out of control on the process-monitoring
s chart. The special cause responsible was found
and removed. Based on the 17 samples that were
in control, what are the natural tolerances for the
distance between the holes?

17.40 Determining the natural tolerances for the
densitometer. Remove any samples in Table 17.8
that your work in Exercise 17.38 showed to be out
of control on either chart. Estimate the mean and
standard deviation of individual measurements on
the phantom. What are the natural tolerances for
these measurements?

17.41 Determining the percent of meters that meet
specifications. The record sheet in Figure 17.10

gives the specifications as 0.6054 ± 0.0010 inch.
That’s 54 ± 10 as the data are coded on the record.
Assuming that the distance varies Normally from
meter to meter, about what percent of meters meet
the specifications?

17.42 Assessing the Normality of the densitometer
measurements. Are the 60 individual measure-
ments in Table 17.8 at least approximately Normal,
so that the natural tolerances you calculated in
Exercise 17.40 can be trusted? Make a Normal
quantile plot (or another graph if your software is
limited) and discuss what you see.

17.43 Assessing the Normality of the distance between
holes. Make a Normal quantile plot of the 85
distances in data file ex17 19 that remain after
removing sample 5. How does the plot reflect the
limited precision of the measurements (all of which
end in 4)? Is there any departure from Normality
that would lead you to discard your conclusions
from Exercise 17.39? (If your software will not
make Normal quantile plots, use a histogram to
assess Normality.)

17.44 Determining the natural tolerances for the
weight of ground beef. Table 17.3 gives data
on the weight of ground beef sections. Since the
distribution of weights has been stable, use the data
in Table 17.3 to construct the natural tolerances
within which you expect almost all the weights to
fall.

17.45 Assessing the Normality of the weight
measurements. Do the weights of the 60 individual
sections in Table 17.3 appear to come from a single
Normal distribution? Make a Normal quantile plot
and discuss whether the natural tolerances you
found in the previous exercise are trustworthy.

17.46 Control charts for the outside diameter. A
machine tool in your plant is cutting an outside
diameter. A sample of 4 pieces is taken near the
end of each hour of production. Table 17.9 gives
x and s for the first 21 samples, coded in units of
0.0001 inch from the center of the specifications.
The specifications allow a range of ±0.0002 inch
about the center (a range of −2 to +2 as coded).

(a) Make an s chart based on past data and
comment on control of short-term process
variation.

(b) Because the data are coded about the center
of the specs, we have a given target μ = 0 (as
coded) for the process mean. Make an x chart
and comment on control of long-term process
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TABLE 17.9

x and s for samples of outside diameter

Sample x s Sample x s

1 −0.14 0.48 12 0.55 0.10
2 0.09 0.26 13 0.50 0.25
3 0.17 0.24 14 0.37 0.45
4 0.08 0.38 15 0.69 0.21
5 −0.17 0.50 16 0.47 0.34
6 0.36 0.26 17 0.56 0.42
7 0.30 0.39 18 0.78 0.08
8 0.19 0.31 19 0.75 0.32
9 0.48 0.13 20 0.49 0.23

10 0.29 0.13 21 0.79 0.12
11 0.48 0.25

variation. What special x-type cause probably
explains the lack of control of x?

17.47 C
H

ALLENG
E Detecting special cause variation. Is each

of the following examples of a special cause
most likely to first result in (i) a sudden change in
level on the s or R chart, (ii) a sudden change in
level on the x chart, or (iii) a gradual drift up or
down on the x chart? In each case, briefly explain
your reasoning.

(a) An airline pilots’ union puts pressure on
management during labor negotiations by asking
its members to “work to rule” in doing the detailed
checks required before a plane can leave the gate.

(b) Measurements of part dimensions that were
formerly made by hand are now made by a very
accurate laser system. (The process producing the
parts does not change—measurement methods can
also affect control charts.)

(c) Inadequate air conditioning on a hot day allows
the temperature to rise during the afternoon in an
office that prepares a company’s invoices.

17.48 C
H

ALLENG
E Deming speaks. The quality guru W.

Edwards Deming (1900–1993) taught
(among much else) that12

(a) “People work in the system. Management
creates the system.”

(b) “Putting out fires is not improvement. Finding
a point out of control, finding the special cause
and removing it, is only putting the process back to
where it was in the first place. It is not improvement
of the process.”

(c) “Eliminate slogans, exhortations and targets
for the workforce asking for zero defects and new
levels of productivity.”

Choose one of these sayings. Explain carefully
what facts about improving quality the saying
attempts to summarize.

17.49 C
H

ALLENG
E Monitoring the winning time of the

Boston Marathon. The Boston Marathon
has been run each year since 1897. Winning
times were highly variable in the early years, but
control improved as the best runners became more
professional. A clear downward trend continued
until the 1980s. Rick plans to make a control chart
for the winning times from 1950 to the present.
The first few times are 153, 148, 152, 139, 141, and
138. Calculation from the winning times from 1950
to 2004 gives

x = 134.746 minutes and s = 6.456 minutes

Rick draws a center line at x and control limits
at x ± 3s for a plot of individual winning times.
Explain carefully why these control limits are too
wide to effectively signal unusually fast or slow
times.

17.50 Monitoring weight. Joe has recorded his weight,
measured at the gym after a workout, for several
years. The mean is 162 pounds and the standard
deviation is 1.5 pounds, with no signs of lack of
control. An injury keeps Joe away from the gym
for several months. The data below give his weight,
measured once each week for the first 16 weeks
after he returns from the injury:

Week 1 2 3 4 5 6 7 8

Weight 168.7 167.6 165.8 167.5 165.3 163.4 163.0 165.5

Week 9 10 11 12 13 14 15 16

Weight 162.6 160.8 162.3 162.7 160.9 161.3 162.1 161.0

Joe wants to plot these individual measurements
on a control chart. When each “sample” is just one
measurement, short-term variation is estimated by
advanced techniques.13 The short-term variation
in Joe’s weight is estimated to be about σ = 1.3
pounds. Joe has a target of μ = 162 pounds for his
weight. Make a control chart for his measurements,
using control limits μ ± 2σ . It is common to use
these narrower limits on an “individuals chart.”
Comment on individual points out of control and
on runs. Is Joe’s weight stable or does it change
systematically over this period?



17.3 Process Capability Indexes
•

17-39

17.3 Process Capability Indexes*
Capability describes the quality of the output of a process relative to the needs
or requirements of the users of that output. To be more precise, capability re-
lates the actual performance of a process in control, after special causes have
been removed, to the desired performance.

Suppose, to take a simple but common setting, that there are specifications
set for some characteristic of the process output. The viscosity of the elastomer
in Example 17.11 (page 17-25) is supposed to be 45 ± 5 Mooneys. The speed
with which calls are answered at a corporate customer service call center is
supposed to be no more than 30 seconds. We might measure capability by the
percent of output that meets the specifications. When the variable we measure
has a Normal distribution, we can estimate this percent using the mean and
standard deviation estimated from past control chart samples. When the vari-
able is not Normal, we can use the actual percent of the measurements in the
samples that meet the specifications.

•

•
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E 17.15 What is the probability of meeting specifications?

(a) Before concluding the process improvement study begun in Example
17.11, we found and fixed special causes and eliminated from our data the
samples on which those causes operated. The remaining viscosity measure-
ments have x = 48.7 and s = 0.85. Note once again that to draw conclusions
about viscosity for individual lots we estimate the standard deviation σ from
all individual lots, not from the average s of sample standard deviations.

The specifications call for the viscosity of the elastomer to lie in the range
45 ± 5. A Normal quantile plot shows the viscosities to be quite Normal. Fig-
ure 17.17(a) shows the Normal distribution of lot viscosities with the specifi-
cation limits 45 ± 5. These are marked LSL for lower specification limit and
USL for upper specification limit. The percent of lots that meet the specifica-
tions is about

P(40 ≤ viscosity ≤ 50) = P
(

40 − 48.7
0.85

≤ Z ≤ 50 − 48.7
0.85

)
= P(−10.2 ≤ Z ≤ 1.53) = 0.937

About 94% of the lots meet the specifications. If we can adjust the process cen-
ter to the center of the specifications, μ = 45, it is clear from Figure 17.17(a)
that essentially 100% of lots will meet the specifications.

(b) Times to answer calls to a corporate customer service center are usually
right-skewed. Figure 17.17(b) is a histogram of the times for 300 calls to the
call center of a large bank.14 The specification limit of 30 seconds is marked
USL. The median is 20 seconds, but the mean is 32 seconds. Of the 300 calls,
203 were answered in no more than 30 seconds. That is, 203/300 = 68% of
the times meet the specifications.

LSL
USL

*This material is important in practice but is not needed to understand statistical process
control.
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FIGURE 17.17 Comparing
distributions of individual
measurements with
specifications, for Example 17.15.
(a) Viscosity has a Normal
distribution. The capability is
poor but will be good if we can
properly center the process. (b)
Response times to customer calls
have a right-skewed distribution
and only an upper specification
limit. Capability is again poor.

The percent meeting specifications, however, is a poor measure of capability.

CAUTION
! Figure 17.18 shows why. This figure compares the distributions of the diameter

of the same part manufactured by two processes. The target diameter and the
specification limits are marked. All the parts produced by Process A meet the
specifications, but about 1.5% of those from Process B fail to do so. Nonethe-
less, Process B is superior to Process A because it is less variable: much more of
Process B’s output is close to the target. Process A produces many parts close to
LSL and USL. These parts meet the specifications, but they will fit and perform
more poorly than parts with diameters close to the center of the specifications.
A distribution like that for Process A might result from inspecting all the parts
and discarding those whose diameters fall outside the specifications. That’s not
an efficient way to achieve quality.

We need a way to measure process capability that pays attention to the vari-
ability of the process (smaller is better). The standard deviation does that, but
it doesn’t measure capability because it takes no account of the specifications
that the output must meet. Capability indexes start with the idea of comparing
process variation with the specifications. Process B will beat Process A by such
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LSL USL

Process B

Process A

Target

FIGURE 17.18 Two
distributions for part diameters.
All of the parts from Process A
meet the specifications, but a
higher proportion of parts from
Process B have diameters close to
the target.

a measure. Capability indexes also allow us to measure process improvement—
we can continue to drive down variation, and so improve the process, long after
100% of the output meets specifications. Continual improvement of processes
is our goal, not just reaching “satisfactory” performance. The real importance
of capability indexes is that they give us numerical measures to describe ever-
better process quality.

The capability indexes Cp and Cpk

Capability indexes are numerical measures of process capability that, unlike
percent meeting specifications, have no upper limit such as 100%. We can use
capability indexes to measure continuing improvement of a process. Of course,
reporting just one number has limitations. What is more, the usual indexes are
based on thinking about Normal distributions. They are not meaningful for dis-
tinctly non-Normal output distributions like the call center response times in
Figure 17.17(b).

CAPABILITY INDEXES

Consider a process with specification limits LSL and USL for some mea-
sured characteristic of its output. The process mean for this character-
istic is μ and the standard deviation is σ . The capability index Cp is

Cp = USL − LSL
6σ

The capability index Cpk is

Cpk = |μ − nearer spec limit|
3σ
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Set Cpk = 0 if the process mean μ lies outside the specification limits.
Large values of Cp or Cpk indicate more capable processes.

Capability indexes start from the fact that Normal distributions are in prac-
tice about 6 standard deviations wide. That’s the 99.7 part of the 68–95–99.7 rule.
Conceptually, Cp is the specification width as a multiple of the process width
6σ . When Cp = 1, the process output will just fit within the specifications if the
center is midway between LSL and USL. Larger values of Cp are better—the
process output can fit within the specs with room to spare. But a process with
high Cp can produce poor-quality product if it is not correctly centered.

Cpk remedies this deficiency by considering both the center μ and the vari-
ability σ of the measurements. The denominator 3σ in Cpk is half the process
width. It is the space needed on either side of the mean if essentially all the
output is to lie between LSL and USL. When Cpk = 1, the process has just this
much space between the mean and the nearer of LSL and USL. Again, higher
values are better. Cpk is the most common capability index, but starting with Cp

helps us see how the indexes work.

•

•
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E 17.16 A comparison of the Cp and Cpk indexes. Consider the series of
pictures in Figure 17.19. We might think of a process that machines a metal
part. Measure a dimension of the part that has LSL and USL as its specifi-
cation limits. There is of course variation from part to part. The dimensions
vary Normally with mean μ and standard deviation σ .

Figure 17.19(a) shows process width equal to the specification width. That
is, Cp = 1. Almost all the parts will meet specifications if, as in this figure, the
process mean μ is at the center of the specs. Because the mean is centered, it
is 3σ from both LSL and USL, so Cpk = 1 also. In Figure 17.19(b), the mean
has moved down to LSL. Only half the parts will meet the specifications. Cp is
unchanged because the process width has not changed. But Cpk sees that the
center μ is right on the edge of the specifications, Cpk = 0. The value remains
0 if μ moves outside the specifications.

In Figures 17.19(c) and (d), the process σ has been reduced to half the
value it had in (a) and (b). The process width 6σ is now half the specification
width, so Cp = 2. In Figure 17.19(c) the center is just 3 of the new σ ’s above
LSL, so that Cpk = 1. Figure 17.19(d) shows the same smaller σ accompanied
by mean μ correctly centered between LSL and USL. Cpk rewards the process
for moving the center from 3σ to 6σ away from the nearer limit by increas-
ing from 1 to 2. You see that Cp and Cpk are equal if the process is properly
centered. If not, Cpk is smaller than Cp.

•
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E 17.17 Computing Cp and Cpk for the viscosity process. Figure 17.17(a)
compares the distribution of the viscosities of lots of elastomers with the
specifications LSL = 40 and USL = 50. The distribution here, as is always
true in practice, is estimated from past observations on the process. The esti-
mates are
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(d) Cp  = 2  
Cpk = 2
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Cpk = 0
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Cpk = 1

FIGURE 17.19 How capability indexes work. (a) Process centered, process width equal
to specification width. (b) Process off-center, process width equal to specification width.
(c) Process off-center, process width equal to half the specification width. (d) Process
centered, process width equal to half the specification width.

μ̂ = x = 48.7

σ̂ = s = 0.85

Because capability describes the distribution of individual measurements, we
once more estimate σ from individual measurements rather than using the
estimate s/c4 that we employ for control charts.

These estimates may be quite accurate if we have data on many past lots.
Estimates based on only a few observations may, however, be inaccurate be-
cause statistics from small samples can have large sampling variability. This
important point is often not appreciated when capability indexes are used in
practice. To emphasize that we can only estimate the indexes, we write Ĉp and
Ĉpk for values calculated from sample data. They are

Ĉp = USL − LSL
6σ̂

= 50 − 40
(6)(0.85)

= 10
5.1

= 1.96
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Ĉpk = |μ̂ − nearer limit|
3σ̂

= 50 − 48.7
(3)(0.85)

= 1.3
2.55

= 0.51

Ĉp = 1.96 is quite satisfactory because the process width is only about half the
specification width. The small value of Ĉpk reflects the fact that the process
center is not close to the center of the specs. If we can move the center μ to
45, then Ĉpk will also be 1.96.

USE YOUR KNOWLEDGE
17.51 Specification limits versus control limits. The manager you report

to is confused by LSL and USL versus LCL and UCL. The notations
look similar. Carefully explain the conceptual difference between
specification limits for individual measurements and control limits
for x.

17.52 Interpreting the capability indexes. Sketch Normal curves that
represent measurements on products from a process with

(a) Cp = 2 and Cpk = 0.00.

(b) Cp = 2 and Cpk = 0.75.

(c) Cp = 2 and Cpk = 1.50.

Cautions about capability indexes
Capability indexes are widely used, especially in manufacturing. Some large
manufacturers even set standards, such as Cpk ≥ 1.33, that their suppliers must
meet. That is, suppliers must show that their processes are in control (through
control charts) and also that they are capable of high quality (as measured by
Cpk). There are good reasons for requiring Cpk: it is a better description of pro-
cess quality than “100% of output meets specs,” and it can document contin-
ual improvement. Nonetheless, it is easy to trust Cpk too much. We will point
to three possible pitfalls.

How to cheat on Cpk Estimating Cpk requires estimates of the process mean
μ and standard deviation σ . The estimates are usually based on samples mea-
sured in order to keep control charts. There is only one reasonable estimate
of μ. This is the mean x of all measurements in recent samples, which is the
same as the mean x of the sample means. There are two different ways of es-
timating σ , however. The standard deviation s of all measurements in recent
samples will usually be larger than the control chart estimate s/c4 based on av-
eraging the sample standard deviations. The proper estimate is s because we
want to describe all the variation in the process output. Larger Cpk’s are better,
and a supplier wanting to satisfy a customer can make Cpk a bit larger simply
by using the smaller estimate s/c4 for σ . That’s cheating.
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Non-Normal distributions Many business processes, and some manufactur-
ing processes as well, give measurements that are clearly right-skewed rather
than approximately Normal. Measuring the times required to deal with cus-
tomer calls or prepare invoices typically gives a right-skewed distribution—
there are many routine cases and a few unusual or difficult situations that take
much more time. Other processes have “heavy tails,” with more measurements
far from the mean than in a Normal distribution. Process capability concerns
the behavior of individual outputs, so the central limit theorem effect that im-
proves the Normality of x does not help us. Capability indexes are therefore
more strongly affected by non-Normality than are control charts. It is hard to
interpret Cpk when the measurements are strongly non-Normal. Until you gain

CAUTION

! experience, it is best to apply capability indexes only when Normal quantile
plots show that the distribution is at least roughly Normal.

Sampling variation We know that all statistics are subject to sampling vari-
ation. If we draw another sample from the same process at the same time, we
get slightly different x and s due to the luck of the draw in choosing samples. In
process control language, the samples differ due to the common cause variation
that is always present. Cp and Cpk are in practice calculated from process data
because we don’t know the true process mean and standard deviation. That is,
these capability indexes are statistics subject to sampling variation. A supplier
under pressure from a large customer to measure Cpk often may base calcula-
tions on small samples from the process. The resulting estimate Ĉpk can differ
from the true process Cpk in either direction.

•

•
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E 17.18 Can we adequately measure Cpk? Suppose that the process of
setting mesh tension in computer monitors is in control at its original level.
Tension measurements are Normally distributed with mean μ = 275 mV
and standard deviation σ = 43 mV. The tightened specification limits are
LSL = 150 and USL = 350, so the true capability is

Cpk = 350 − 275
(3)(43)

= 0.58

Suppose also that the manufacturer measures 4 monitors each hour and then
calculates Ĉpk at the end of an 8-hour shift. That is, Ĉpk uses measurements
from 32 monitors.

Figure 17.20 is a histogram of 24 computer-simulated Ĉpk’s from this set-
ting. They vary from 0.44 to 0.84, almost a two-to-one spread. It is clear that
32 measurements are not enough to reliably estimate Cpk.

As a very rough rule of thumb, don’t trust Ĉpk unless it is based on at least 100

CAUTION

! measurements.

SECTION 17.3 Summary

Capability indexes measure process variability (Cp) or process center and vari-
ability (Cpk) against the standard provided by external specifications for the
output of the process. Larger values indicate higher capability.
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FIGURE 17.20 Capability
indexes estimated from samples
will vary from sample to sample.
The histogram shows the
variation in Ĉpk in 24 samples,
each of size 32, for Example
17.18. The process capability is in
fact Cpk = 0.58.

Interpretation of Cp and Cpk requires that measurements on the process output
have a roughly Normal distribution. These indexes are not meaningful unless
the process is in control so that its center and variability are stable.

Estimates of Cp and Cpk can be quite inaccurate when based on small numbers
of observations, due to sampling variability. You should mistrust estimates not
based on at least 100 measurements.

SECTION 17.3 Exercises
For Exercises 17.51 and 17.52, see page 17-44.

17.53 Capability indexes for the mesh tension process.
Table 17.1 (page 17-10) gives 20 process control
samples of the mesh tension of computer monitors.
In Example 17.13, we estimated from these samples
that μ̂ = x = 275.065 mV and σ̂ = s = 38.38 mV.

(a) The original specifications for mesh tension
were LSL = 100 mV and USL = 400 mV. Estimate
Cp and Cpk for this process.

(b) A major customer tightened the specifications
to LSL = 150 mV and USL = 350 mV. Now what
are Ĉp and Ĉpk?

17.54 Capability indexes for the mesh tension process,
continued. We could improve the performance of
the mesh tension process discussed in the previous
exercise by making an adjustment that moves the
center of the process to μ = 250 mV, the center of
the specifications. We should do this even if the
original specifications remain in force, because

screens with tension closer to 250 perform better.
Suppose that we succeed in moving μ to 250 with
no change in the process variability σ , estimated
by s = 38.38.

(a) What are Ĉp and Ĉpk with the original
specifications? Compare the values with those
from part (a) of the previous exercise.

(b) What are Ĉp and Ĉpk with the tightened
specifications? Again compare with the previous
results.

17.55 Capability indexes for the meat-packaging
process. Table 17.3 (page 17-19) gives 20 process
control samples of the weight of ground beef
sections. The lower and upper specifications for
the 1-pound sections are 0.94 and 1.10.

(a) Using these data, estimate Cp and Cpk for this
process.

(b) What may be a reason for the specifications
being centered slightly larger than the desired 1
pound?
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17.56 Can we improve the capability of the meat-
packaging process? Refer to Exercise 17.55. The
average weight of each section can be increased
(or decreased) by increasing (or decreasing) the
time between slices of the machine. Based on the
results of the previous exercise, would a change
in the slicing-time interval improve capability? If
so, what value of the average weight should the
company seek to attain and what are Ĉp and Ĉpk

with this new process mean?

17.57 Capability of a characteristic with a uniform
distribution. Suppose that a quality characteristic
has the uniform distribution on 0 to 1. Figure
17.21 shows the density curve. You can see that
the process mean (the balance point of the density
curve) is μ = 1/2. The standard deviation turns out
to be σ = 0.289. Suppose also that LSL = 1/4 and
USL = 3/4.

0

height = 1

1

FIGURE 17.21 Density curve for the uniform distribution
on 0 to 1, for Exercise 17.57.

(a) Mark LSL and USL on a sketch of the density
curve. What is Cpk? What percent of the output
meets the specifications?

(b) For comparison, consider a process with
Normally distributed output having mean μ = 1/2
and standard deviation σ = 0.289. This process has
the same Cpk that you found in (a). What percent
of its output meets the specifications?

(c) What general fact do your calculations
illustrate?

17.58 An alternative estimate for Cpk of the mesh
tension process. In Exercise 17.54(b) you found
Ĉpk for specifications LSL = 150 and USL = 350
using the standard deviation s = 38.38 for all
80 individual monitors in Table 17.1. Repeat
the calculation using the control chart estimate
σ̂ = s/c4. You should find this Ĉpk to be slightly
larger.

17.59 Estimating capability indexes for the distance
between holes. Figure 17.10 (page 17-21) displays

a record sheet on which operators have recorded 18
samples of measurements on the distance between
two mounting holes on an electrical meter. Sample
5 was out of control on an s chart. We remove
it from the data after the special cause has been
fixed. The data with all sample x’s and s’s are in the
file ex17 19. In Exercise 17.43, you saw that the
measurements are reasonably Normal.

(a) Based on the remaining 17 samples, estimate
the mean and standard deviation of the distance
between holes for the population of all meters
produced by this process. Make a sketch comparing
the Normal distribution with this mean and
standard deviation with the specification limits
54 ± 10.

(b) What are Ĉp and Ĉpk based on the data? How
would you characterize the capability of the
process? (Mention both center and variability.)

17.60 Calculating capability indexes for the DRG 209
hospital losses. Table 17.7 (page 17-36) gives data
on a hospital’s losses for 120 DRG 209 patients,
collected as 15 monthly samples of 8 patients each.
The process has been in control and losses have a
roughly Normal distribution. The hospital decides
that suitable specification limits for its loss in
treating one such patient are LSL = $4500 and
USL = $7500.

(a) Estimate the percent of losses that meet the
specifications.

(b) Estimate Cp.

(c) Estimate Cpk.

17.61 Assessing the capability of a metal clip process.
You are in charge of a process that makes metal
clips. The critical dimension is the opening of a
clip, which has specifications 15 ± 0.5 millimeters
(mm). The process is monitored by x and s charts
based on samples of 5 consecutive clips each
hour. Control has recently been excellent. The 200
individual measurements from the past week’s 40
samples have

x = 14.99 mm s = 0.2239 mm

A Normal quantile plot shows no important
deviations from Normality.

(a) What percent of clip openings will meet
specifications if the process remains in its current
state?

(b) Estimate the capability index Cpk.



17-48
•

CHAPTER 17 • Statistics for Quality: Control and Capability

17.62 C
H

ALLENG
E Will these actions help the capability?

Based on the results of the previous exercise,
you conclude that the capability of the clip-
making process is inadequate. Here are some
suggestions for improving the capability of this
process. Comment on the usefulness of each action
suggested.

(a) An award program for operators who produce
the fewest nonconforming clips.

(b) A capital investment program to install new
fabricating machinery.

(c) Additional training of operators to ensure
correct operating procedures.

(d) Narrowing the control limits so that the process
is adjusted more often.

(e) Purchasing more uniform (and more
expensive) metal stock from which to form the
clips.

17.63 Cp and “six-sigma.” A process with Cp ≥ 2 is
sometimes said to have “six-sigma quality.” Sketch
the specification limits and a Normal distribution
of individual measurements for such a process
when it is properly centered. Explain from your
sketch why this is called six-sigma quality.

17.64 C
H

ALLENG
E More on “six-sigma quality.” The

originators of the “six-sigma quality” idea
reasoned as follows. Short-term process variation
is described by σ . In the long term, the process
mean μ will also vary. Studies show that in most
manufacturing processes, ±1.5σ is adequate to
allow for changes in μ. The six-sigma standard is
intended to allow the mean μ to be as much as 1.5σ

away from the center of the specifications and still
meet high standards for percent of output lying
outside the specifications.

(a) Sketch the specification limits and a Normal
distribution for process output when Cp = 2 and
the mean is 1.5σ away from the center of the
specifications.

(b) What is Cpk in this case? Is six-sigma quality as
strong a requirement as Cpk ≥ 2?

(c) Because most people don’t understand
standard deviations, six-sigma quality is usually
described as guaranteeing a certain level of
parts per million of output that fails to meet
specifications. Based on your sketch in (a), what
is the probability of an outcome outside the
specification limits when the mean is 1.5σ away
from the center? How many parts per million is

this? (You will need software or a calculator for
Normal probability calculations, because the value
you want is beyond the limits of the standard
Normal table.)

Table 17.10 gives the process control samples that lie behind
the histogram of call center response times in Figure
17.17(b) on page 17-40. A sample of 6 calls is recorded each
shift for quality improvement purposes. The time from the
first ring until a representative answers the call is recorded.
Table 17.10 gives data for 50 shifts, 300 calls total. Exercises
17.65 to 17.67 make use of this setting.

17.65 Choosing the sample. The 6 calls each shift are
chosen at random from all calls received during
the shift. Discuss the reasons behind this choice
and those behind a choice to time 6 consecutive
calls.

17.66 Constructing and interpreting the s chart. Table
17.10 also gives x and s for each of the 50 samples.

(a) Make an s chart and check for points out of
control.

(b) If the s-type cause responsible is found and
removed, what would be the new control limits for
the s chart? Verify that no points s are now out of
control.

(c) Use the remaining 46 samples to find the center
line and control limits for an x chart. Comment on
the control (or lack of control) of x. (Because the
distribution of response times is strongly skewed, s
is large and the control limits for x are wide. Control
charts based on Normal distributions often work
poorly when measurements are strongly skewed.)

17.67 More on interpreting the s chart. Each of the 4
out-of-control values of s in part (a) of the previous
exercise is explained by a single outlier, a very long
response time to one call in the sample. You can
see these outliers in Figure 17.17(b). What are the
values of these outliers, and what are the s-values
for the 4 samples when the outliers are omitted?
(The interpretation of the data is, unfortunately,
now clear. Few customers will wait 5 minutes for
a call to be answered, as the customer whose call
took 333 seconds to answer did. We suspect that
other customers hung up before their calls were
answered. If so, response time data for the calls
that were answered don’t adequately picture the
quality of service. We should now look at data
on calls lost before being answered to see a fuller
picture.)
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TABLE 17.10

Fifty control chart samples of call center response times

Sample Standard Sample Standard
Sample Time (seconds) mean deviation Sample Time (seconds) mean deviation

1 59 13 2 24 11 18 21.2 19.93 26 111 6 3 83 27 6 39.3 46.34
2 38 12 46 17 77 12 33.7 25.56 27 83 27 2 56 26 21 35.8 28.88
3 46 44 4 74 41 22 38.5 23.73 28 276 14 30 8 7 12 57.8 107.20
4 25 7 10 46 78 14 30.0 27.46 29 4 29 21 23 4 14 15.8 10.34
5 6 9 122 8 16 15 29.3 45.57 30 23 22 19 66 51 60 40.2 21.22
6 17 17 9 15 24 70 25.3 22.40 31 14 111 20 7 7 87 41.0 45.82
7 9 9 10 32 9 68 22.8 23.93 32 22 11 53 20 14 41 26.8 16.56
8 8 10 41 13 17 50 23.2 17.79 33 30 7 10 11 9 9 12.7 8.59
9 12 82 97 33 76 56 59.3 32.11 34 101 55 18 20 77 14 47.5 36.16

10 42 19 14 21 12 44 25.3 14.08 35 13 11 22 15 2 14 12.8 6.49
11 63 5 21 11 47 8 25.8 23.77 36 20 83 25 10 34 23 32.5 25.93
12 12 4 111 37 12 24 33.3 39.76 37 21 5 14 22 10 68 23.3 22.82
13 43 37 27 65 32 3 34.5 20.32 38 8 70 56 8 26 7 29.2 27.51
14 9 26 5 10 30 27 17.8 10.98 39 15 7 9 144 11 109 49.2 60.97
15 21 14 19 44 49 10 26.2 16.29 40 20 4 16 20 124 16 33.3 44.80
16 24 11 10 22 43 70 30.0 22.93 41 16 47 97 27 61 35 47.2 28.99
17 27 10 32 96 11 29 34.2 31.71 42 18 22 244 19 10 6 53.2 93.68
18 7 28 22 17 9 24 17.8 8.42 43 43 20 77 22 7 33 33.7 24.49
19 15 14 34 5 38 29 22.5 13.03 44 67 20 4 28 5 7 21.8 24.09
20 16 65 6 5 58 17 27.8 26.63 45 118 18 1 35 78 35 47.5 43.00
21 7 44 14 16 4 46 21.8 18.49 46 71 85 24 333 50 11 95.7 119.53
22 32 52 75 11 11 17 33.0 25.88 47 12 11 13 19 16 91 27.0 31.49
23 31 8 36 25 14 85 33.2 27.45 48 4 63 14 22 43 25 28.5 21.29
24 4 46 23 58 5 54 31.7 24.29 49 18 55 13 11 6 13 19.3 17.90
25 28 6 46 4 28 11 20.5 16.34 50 4 3 17 11 6 17 9.7 6.31

17.4 Control Charts for Sample Proportions
We have considered control charts for just one kind of data: measurements of
a quantitative variable in some meaningful scale of units. We describe the dis-
tribution of measurements by its center and spread and use x and s or x and R
charts for process control. There are control charts for other statistics that are
appropriate for other kinds of data. The most common of these is the p chart
for use when the data are proportions.

p CHART

A p chart is a control chart based on plotting sample proportions p̂ from
regular samples from a process against the order in which the samples
were taken.
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E 17.19 Examples of the p chart. Here are two examples of the usefulness
of p charts:

Manufacturing. Measure two dimensions of a part and also grade its sur-
face finish by eye. The part conforms if both dimensions lie within their speci-
fications and the finish is judged acceptable. Otherwise, it is nonconforming.
Plot the proportion of nonconforming parts in samples of parts from each
shift.
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School absenteeism. An urban school system records the percent of its
eighth-grade students who are absent three or more days each month. Be-
cause students with high absenteeism in eighth grade often fail to complete
high school, the school system has launched programs to reduce absen-
teeism. These programs include calls to parents of absent students, public-
service messages to change community expectations, and measures to ensure
that the schools are safe and attractive. A p chart will show if the programs
are having an effect.

The manufacturing example illustrates an advantage of p charts: they can
combine several specifications in a single chart. Nonetheless, p charts have been
rendered outdated in many manufacturing applications by improvements in typi-

CAUTION

! cal levels of quality. For example, Delphi, the largest North American auto elec-
tronics manufacturer, says that it reduced its proportion of problem parts from
200 per million in 1997 to 20 per million in 2001.15 At either of these levels, even
large samples of parts will rarely contain any bad parts. The sample propor-
tions will almost all be 0, so that plotting them is uninformative. It is better to
choose important measured characteristics—voltage at a critical circuit point,
for example—and keep x and s charts. Even if the voltage is satisfactory, qual-
ity can be improved by moving it yet closer to the exact voltage specified in the
design of the part.

The school absenteeism example is a management application of p charts.
More than 20% of all American eighth-graders miss 3 or more days of school
per month, and this proportion is higher in large cities. A p chart will be use-
ful. Proportions of “things going wrong” are often higher in business processes
than in manufacturing, so that p charts are an important tool in business.

Control limits for p charts
We studied the sampling distribution of a sample proportion p̂ in Chapter 5.
The center line and control limits for a 3σ control chart follow directly from the
facts stated there, in the box on page 323. We ought to call such charts “p̂ charts”
because they plot sample proportions. Unfortunately, they have always been
called p charts in quality control circles. We will keep the traditional name but
also keep our usual notation: p is a process proportion and p̂ is a sample pro-
portion.

p CHART USING PAST DATA

Take regular samples from a process that has been in control. The
samples need not all have the same size. Estimate the process proportion
p of “successes” by

p = total number of successes in past samples
total number of opportunities in these samples

The center line and control limits for a p chart for future samples of size
n are
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UCL = p + 3

√
p(1 − p)

n

CL = p

LCL = p − 3

√
p(1 − p)

n

Common out-of-control signals are one sample proportion p̂ outside
the control limits or a run of 9 sample proportions on the same side of
the center line.

If we have k past samples of the same size n, then p is just the average of
the k sample proportions. In some settings, you may meet samples of unequal
size—differing numbers of students enrolled in a month or differing numbers
of parts inspected in a shift. The average p estimates the process proportion p
even when the sample sizes vary. Note that the control limits use the actual size
n of a sample.

•

•

E
X

A
M

P
L

E 17.20 Monitoring absenteeism. Unscheduled absences by clerical and
production workers are an important cost in many companies. Reducing the
rate of absenteeism is therefore an important goal for a company’s human
relations department. A rate of absenteeism above 5% is a serious concern.
Many companies set 3% absent as a desirable target. You have been asked to
improve absenteeism in a production facility where 12% of the workers are
now absent on a typical day.

You first do some background study—in greater depth than this very brief
summary. Companies try to avoid hiring workers who are likely to miss work
often, such as substance abusers. They may have policies that reward good
attendance or penalize frequent absences by individual workers. Changing
those policies in this facility will have to wait until the union contract is rene-
gotiated. What might you do with the current workers under current policies?
Studies of absenteeism by clerical and production workers who do repetitive,
routine work under close supervision point to unpleasant work environment
and harsh or unfair treatment by supervisors as factors that increase absen-
teeism. It’s now up to you to apply this general knowledge to your specific
problem.

First, collect data. Daily absenteeism data are already available. You carry
out a sample survey that asks workers about their absences and the reasons for
them (responses are anonymous, of course). Workers who are more often ab-
sent complain about their supervisors and about the lighting at their worksta-
tions. Female workers complain that the rest rooms are dirty and unpleasant.
You do more data analysis:

• A Pareto chart of average absenteeism rate for the past month broken down
by supervisor (Figure 17.22) shows important differences among supervi-
sors. Only supervisors B, E, and H meet your goal of 5% or less absenteeism.
Workers supervised by I and D have particularly high rates.
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FIGURE 17.22 Pareto chart of
the average absenteeism rate for
workers reporting to each of 12
supervisors.

• Another Pareto chart (not shown) by type of workstation shows that a few
types of workstation have high absenteeism rates.

Now you take action. You retrain all the supervisors in human relations
skills, using B, E, and H as discussion leaders. In addition, a trainer works
individually with supervisors I and D. You ask supervisors to talk with any
absent worker when he or she returns to work. Working with the engineering
department, you study the workstations with high absenteeism rates and make
changes such as better lighting. You refurbish the rest rooms (for both genders
even though only women complained) and schedule more frequent cleaning.
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E 17.21 Are your actions effective? You hope to see a reduction in absen-
teeism. To view progress (or lack of progress), you will keep a p chart of the
proportion of absentees. The plant has 987 production workers. For simplic-
ity, you just record the number who are absent from work each day. Only un-
scheduled absences count, not planned time off such as vacations. Each day
you will plot

p̂ = number of workers absent
987

You first look back at data for the past three months. There were 64 work-
days in these months. The total workdays available for the workers was

(64)(987) = 63,168 person-days

Absences among all workers totaled 7580 person-days. The average daily pro-
portion absent was therefore

p = total days absent
total days available for work

= 7580
63,168

= 0.120

The daily rate has been in control at this level.
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These past data allow you to set up a p chart to monitor future proportions
absent:

UCL = p + 3

√
p(1 − p)

n
= 0.120 + 3

√
(0.120)(0.880)

987

= 0.120 + 0.031 = 0.151

CL = p = 0.120

LCL = p − 3

√
p(1 − p)

n
= 0.120 − 3

√
(0.120)(0.880)

987

= 0.120 − 0.031 = 0.089

Table 17.11 gives the data for the next four weeks. Figure 17.23 is the p chart.

Figure 17.23 shows a clear downward trend in the daily proportion of work-
ers who are absent. Days 13 and 19 lie below LCL, and a run of 9 days below

TABLE 17.11

Proportions of workers absent during four weeks

Day M T W Th F M T W Th F

Workers absent 129 121 117 109 122 119 103 103 89 105
Proportion p̂ 0.131 0.123 0.119 0.110 0.124 0.121 0.104 0.104 0.090 0.106

Day M T W Th F M T W Th F

Workers absent 99 92 83 92 92 115 101 106 83 98
Proportion p̂ 0.100 0.093 0.084 0.093 0.093 0.117 0.102 0.107 0.084 0.099
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FIGURE 17.23 The p chart for
daily proportion of workers
absent over a four-week period.
The lack of control shows an
improvement (decrease) in
absenteeism. Update the chart to
continue monitoring the process.
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the center line is achieved at Day 15 and continues. The points marked “x” are
therefore all out of control. It appears that a special cause (the various actions
you took) has reduced the absenteeism rate from around 12% to around 10%.
The last two weeks’ data suggest that the rate has stabilized at this level. You
will update the chart based on the new data. If the rate does not decline further
(or even rises again as the effect of your actions wears off), you will consider
further changes.

Example 17.20 is a bit oversimplified. The number of workers available did
not remain fixed at 987 each day. Hirings, resignations, and planned vacations
change the number a bit from day to day. The control limits for a day’s p̂ depend
on n, the number of workers that day. If n varies, the control limits will move
in and out from day to day. Software will do the extra arithmetic needed for a
different n each day, but as long as the count of workers remains close to 987,
the greater detail will not change your conclusion.

A single p chart for all workers is not the only, or even the best, choice in this
setting. Because of the important role of supervisors in absenteeism, it would
be wise to also keep separate p charts for the workers under each supervisor.
These charts may show that you must reassign some supervisors.

SECTION 17.4 Summary

There are control charts for several different types of process measurements.
One important type is the p chart for sample proportions p̂.

The interpretation of p charts is very similar to that of x charts. The out-of-
control rules used are also the same.

SECTION 17.4 Exercises
17.68 Constructing a p chart for absenteeism. After

inspecting Figure 17.23, you decide to monitor the
next four weeks’ absenteeism rates using a center
line and control limits calculated from the second
two weeks’ data recorded in Table 17.11. Find p for
these 10 days and give the new values of CL, LCL,
and UCL. (Until you have more data, these are trial
control limits. As long as you are taking steps to
improve absenteeism, you have not reached the
process-monitoring stage.)

17.69 Constructing a p chart for unpaid invoices. The
controller’s office of a corporation is concerned
that invoices that remain unpaid after 30 days are
damaging relations with vendors. To assess the
magnitude of the problem, a manager searches
payment records for invoices that arrived in the
past 10 months. The average number of invoices
is 2875 per month, with relatively little month-
to-month variation. Of all these invoices, 960
remained unpaid after 30 days.

(a) What is the total number of opportunities for
unpaid invoices? What is p?

(b) Give the center line and control limits for
a p chart on which to plot the future monthly
proportions of unpaid invoices.

17.70 Constructing a p chart for mishandled baggage.
The Department of Transportation reports that
about 1 of every 200 passengers on domestic
flights of the 10 largest U.S. airlines files a
report of mishandled baggage. Starting with this
information, you plan to sample records for 1000
passengers per day at a large airport to monitor the
effects of efforts to reduce mishandled baggage.
What are the initial center line and control limits
for a chart of the daily proportion of mishandled
baggage reports? (You will find that LCL < 0.
Because proportions p̂ are always 0 or positive,
take LCL = 0.)

17.71 Constructing a p chart for damaged eggs. An
egg farm wants to monitor the effects of some
new handling procedures on the percent of eggs
arriving at the packaging center with cracked or
broken shells. In the past, roughly 2% of the eggs
were damaged. A machine will allow the farm to
inspect 500 eggs per hour. What are the initial
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center line and control limits for a chart of the
hourly percent of damaged eggs?

17.72 More on constructing a p chart for damaged
eggs. Refer to Exercise 17.71. Suppose that there
are two machine operators, each working 4-hour
shifts. The first operator is very skilled and can
inspect 500 eggs per hour. The second operator
is less experienced and can inspect only 400 eggs
per hour. Construct a p chart for an 8-hour day
showing the appropriate center line and control
limits.

17.73 Constructing a p chart for missing or deformed
rivets. After completion of an aircraft wing
assembly, inspectors count the number of missing
or deformed rivets. There are hundreds of rivets in
each wing, but the total number varies depending
on the aircraft type. Recent data for wings with
a total of 34,700 rivets show 214 missing or
deformed. The next wing contains 1530 rivets.
What are the appropriate center line and control
limits for plotting the p̂ from this wing on a p chart?

17.74 Constructing the p chart limits for incorrect or
illegible prescriptions. A regional chain of retail
pharmacies finds that about 1% of prescriptions
it receives from doctors are incorrect or illegible.
The chain puts in place a secure online system
that doctors’ offices can use to enter prescriptions
directly. It hopes that fewer prescriptions entered
online will be incorrect or illegible. A p chart will
monitor progress. Use information about past
prescriptions to set initial center line and control
limits for the proportion of incorrect or illegible
prescriptions on a day when the chain fills 75,000
online prescriptions. What are the center line and
control limits for a day when only 50,000 online
prescriptions are filled?

17.75 Calculating the p chart limits for school
absenteeism. Here are data from an urban school
district on the number of eighth-grade students
with 3 or more unexcused absences from school
during each month of a school year. Because the
total number of eighth-graders changes a bit from
month to month, these totals are also given for
each month.

Month Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June

Students 911 947 939 942 918 920 931 925 902 883
Absent 291 349 364 335 301 322 344 324 303 344

(a) Find p. Because the number of students varies
from month to month, also find n, the average per
month.

(b) Make a p chart using control limits based on n
students each month. Comment on control.

(c) The exact control limits are different each
month because the number of students n is
different each month. This situation is common
in using p charts. What are the exact limits for
October and June, the months with the largest
and smallest n? Add these limits to your p chart,
using short lines spanning a single month. Do exact
limits affect your conclusions?

17.76 p chart for a high-quality process. A manu-
facturer of consumer electronic equipment makes
full use not only of statistical process control but
of automated testing equipment that efficiently
tests all completed products. Data from the testing
equipment show that finished products have only
3.5 defects per million opportunities.

(a) What is p for the manufacturing process? If the
process turns out 5000 pieces per day, how many
defects do you expect to see per day? In a typical
month of 24 working days, how many defects do
you expect to see?

(b) What are the center line and control limits for
a p chart for plotting daily defect proportions?

(c) Explain why a p chart is of no use at such high
levels of quality.

17.77 More on monitoring a high-quality process.
Because the manufacturing quality in the previous
exercise is so high, the process of writing up orders
is the major source of quality problems: the defect
rate there is 8000 per million opportunities. The
manufacturer processes about 500 orders per
month.

(a) What is p for the order-writing process? How
many defective orders do you expect to see in a
month?

(b) What are the center line and control limits
for a p chart for plotting monthly proportions of
defective orders? What is the smallest number of
bad orders in a month that will result in a point
above the upper control limit?
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CHAPTER 17 Exercises

17.78 Describing a process that is in control. A
manager who knows no statistics asks you, “What
does it mean to say that a process is in control? Is
being in control a guarantee that the quality of the
product is good?” Answer these questions in plain
language that the manager can understand.

17.79 Constructing a Pareto chart. You manage
the customer service operation for a maker of
electronic equipment sold to business customers.
Traditionally, the most common complaint is
that equipment does not operate properly when
installed, but attention to manufacturing and
installation quality will reduce these complaints.
You hire an outside firm to conduct a sample
survey of your customers. Here are the percent
of customers with each of several kinds of
complaints:

Category Percent

Accuracy of invoices 25
Clarity of operating manual 8
Complete invoice 24
Complete shipment 16
Correct equipment shipped 15
Ease of obtaining invoice adjustments/credits 33
Equipment operates when installed 6
Meeting promised delivery date 11
Sales rep returns calls 4
Technical competence of sales rep 12

(a) Why do the percents not add to 100%?

(b) Make a Pareto chart. What area would you
choose as a target for improvement?

17.80 Choice of control chart. What type of control
chart or charts would you use as part of efforts
to improve each of the following performance
measures in a corporate personnel office? Explain
your choices.

(a) Time to get security clearance.

(b) Percent of job offers accepted.

(c) Employee participation in voluntary health
screening.

17.81 More on the choice of control chart. What
type of control chart or charts would you use as
part of efforts to improve each of the following
performance measures in a corporate information
systems department? Explain your choices.

(a) Computer system availability.

(b) Time to respond to requests for help.

(c) Percent of programming changes not properly
documented.

17.82 Selecting the appropriate control chart and
limits. At the present time, about 3 lots out of
every 1000 lots of material arriving at a plant site
from outside vendors are rejected because they
are incorrect. The plant receives about 400 lots
per week. As part of an effort to reduce errors in
the system of placing and filling orders, you will
monitor the proportion of rejected lots each week.
What type of control chart will you use? What are
the initial center line and control limits?

You have just installed a new system that uses an
interferometer to measure the thickness of polystyrene film.
To control the thickness, you plan to measure 3 film
specimens every 10 minutes and keep x and s charts. To
establish control, you measure 22 samples of 3 films each
at 10-minute intervals. Table 17.12 gives x and s for these
samples. The units are millimeters ×10−4. Exercises 17.83
to 17.87 are based on this process improvement setting.

TABLE 17.12

x and s for samples of film thickness

Sample x s Sample x s

1 848 20.1 12 823 12.6
2 832 1.1 13 835 4.4
3 826 11.0 14 843 3.6
4 833 7.5 15 841 5.9
5 837 12.5 16 840 3.6
6 834 1.8 17 833 4.9
7 834 1.3 18 840 8.0
8 838 7.4 19 826 6.1
9 835 2.1 20 839 10.2

10 852 18.9 21 836 14.8
11 836 3.8 22 829 6.7

17.83 Constructing the s chart. Calculate control limits
for s, make an s chart, and comment on control of
short-term process variation.

17.84 Recalculating the x and s charts. Interviews
with the operators reveal that in samples 1 and
10 mistakes in operating the interferometer
resulted in one high-outlier thickness reading
that was clearly incorrect. Recalculate x and s
after removing samples 1 and 10. Recalculate
UCL for the s chart and add the new UCL to your
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s chart from the previous exercise. Control for
the remaining samples is excellent. Now find the
appropriate center line and control limits for an x
chart, make the x chart, and comment on control.

17.85 C
H

ALLENG
E Capability of the film thickness process.

The specifications call for film thickness
830 ± 25 mm × 10−4.

(a) What is the estimate σ̂ of the process standard
deviation based on the sample standard deviations
(after removing samples 1 and 10)? Estimate the
capability ratio Cp and comment on what it says
about this process.

(b) Because the process mean can easily be
adjusted, Cp is more informative than Cpk. Explain
why this is true.

(c) The estimate of Cp from (a) is probably too
optimistic as a description of the film produced.
Explain why.

17.86 C
H

ALLENG
E Calculating the percent that meet

specifications. Examination of individual
measurements shows that they are close to
Normal. If the process mean is set to the target
value, about what percent of films will meet the
specifications?

17.87 More on the film thickness process. Previously,
control of the process was based on categorizing

the thickness of each film inspected as satisfactory
or not. Steady improvement in process quality
has occurred, so that just 15 of the last 5000 films
inspected were unsatisfactory.

(a) What type of control chart would be used in
this setting, and what would be the control limits
for a sample of 100 films?

(b) The chart in (a) is of little practical value at
current quality levels. Explain why.

17.88 Probability of an out-of-control signal. There
are other out-of-control rules that are sometimes
used with x charts. One is “15 points in a row
within the 1σ level.” That is, 15 consecutive points
fall between μ − σ/

√
n and μ + σ/

√
n. This signal

suggests either that the value of σ used for the
chart is too large or that careless measurement is
producing results that are suspiciously close to the
target. Find the probability that the next 15 points
will give this signal when the process remains in
control with the given μ and σ .

17.89 C
H

ALLENG
E Probability of another out-of-control

signal. Another out-of-control signal is
when two out of three successive points are on
the same side of the center line and farther than
2σ/

√
n from it. Find the probability of this event

when the process is in control.

CHAPTER 17 Notes

1. Texts on quality management give more detail about
these and other simple graphical methods for quality prob-
lems. The classic reference is Kaoru Ishikawa, Guide to
Quality Control, Asian Productivity Organization, 1986.

2. The flowchart and a more elaborate version of the
cause-and-effect diagram for Example 17.3 were prepared
by S. K. Bhat of the General Motors Technical Center as
part of a course assignment at Purdue University.

3. We have adopted the terms “chart setup” and “process
monitoring” from Andrew C. Palm’s discussion of William
H. Woodall, “Controversies and contradictions in statistical
process control,” Journal of Quality Technology, 32 (2000),
pp. 341–350. Palm’s discussion appears in the same issue,
pp. 356–360. We have combined Palm’s stages B (“process
improvement”) and C (“process monitoring”) in writing for
beginners because the distinction between them is one of
degree.

4. It is common to call these “standards given” x and
s charts. We avoid this term because it easily leads to
the common and serious error of confusing control limits

(based on the process itself) with standards or specifica-
tions imposed from outside.

5. Data provided by Charles Hicks, Purdue University.

6. See, for example, Chapter 3 of Stephen B. Vardeman
and J. Marcus Jobe, Statistical Quality Assurance Methods
for Engineers, Wiley, 1999.

7. The classic discussion of out-of-control signals and the
types of special causes that may lie behind special control
chart patterns is the AT&T Statistical Quality Control Hand-
book, Western Electric, 1956.

8. The data in Table 17.6 are adapted from data on vis-
cosity of rubber samples appearing in Table P3.3 of Irving
W. Burr, Statistical Quality Control Methods, Marcel Dekker,
1976.

9. The control limits for the s chart based on past data
are commonly given as B4s and B3s. That is, B4 = B6/c4

and B3 = B5/c4. This is convenient for users, but we
choose to minimize the number of control chart con-
stants students must keep straight and to emphasize that
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process-monitoring and past-data charts are exactly the
same except for the source of μ and σ .

10. Simulated data based on information appear-
ing in Arvind Salvekar, “Application of six sigma to
DRG 209,” found at the Smarter Solutions Web site,
www.smartersolutions.com.

11. Data provided by Linda McCabe, Purdue University.

12. The first two Deming quotations are from Public Sector
Quality Report, December 1993, p. 5. They were found on-
line at deming.eng.clemson.edu/pub/den/files/demqtes.
txt. The third quotation is part of the 10th of Deming’s “14
points of quality management,” from his book Out of the
Crisis, MIT Press, 1986.

13. Control charts for individual measurements cannot use
within-sample standard deviations to estimate short-term
process variability. The spread between successive observa-
tions is the next best thing. Texts such as that cited in Note
6 give the details.

14. The data in Figure 17.17(b) are simulated from a prob-
ability model for call pickup times. That pickup times for
large financial institutions have median 20 seconds and
mean 32 seconds is reported by Jon Anton, “A case study in
benchmarking call centers,” Purdue University Center for
Customer-Driven Quality, no date.

15. Micheline Maynard, “Building success from parts,”
New York Times, March 17, 2002.

www.smartersolutions.com


DATA APPENDIX

Some of the computer exercises in the text refer to 16 relatively large data sets that are on
the CD that accompanies this text. The CD also contains data for many other exercises
and examples.

Background information for each of the 16 data sets is presented below. For most,
the first five cases are given here.

1 BIOMARKERS

Healthy bones are continually being renewed by two processes. Through bone forma-Text Reference:
Exercises 7.118–7.121,

10.26–10.29,
and 11.34–11.39

tion, new bone is built; through bone resorption, old bone is removed. If one or both
of these processes is disturbed, by disease, aging, or space travel, for example, bone
loss can be the result. The variables VO+ and VO− measure bone formation and bone
resorption, respectively. Osteocalcin (OC) is a biochemical marker for bone formation:
higher levels of bone formation are associated with higher levels of OC. A blood sample
is used to measure OC, and it is much less expensive to obtain than direct measures of
bone formation. The units are milligrams of OC per milliliter of blood (mg/ml). Sim-
ilarly, tartrate resistant acid phosphatase (TRAP) is a biochemical marker for bone
resorption that is also measured in blood. It is measured in units per liter (U/l). These
variables were measured in a study of 31 healthy women aged 11 to 32 years. The re-
sults were published in C. M. Weaver et al., “Quantification of biochemical markers of
bone turnover by kinetic measures of bone formation and resorption in young healthy
females,” Journal of Bone and Mineral Research, 12 (1997), pp. 1714–1720. Variables
with the first letter “L” are the logarithms of the measured variables. The data were
provided by Linda McCabe. The first five cases are given in the table below.

VO+ VO− OC LOC TRAP LTRAP LVO+ LVO−
1606 903 68.9 4.233 19.4 2.965 7.382 6.806
2240 1761 56.3 4.031 25.5 3.239 7.714 7.474
2221 1486 54.6 4.000 19.0 2.944 7.706 7.304

896 1116 31.2 3.440 9.0 2.197 6.798 7.018
2545 2236 36.4 3.595 19.1 2.950 7.842 7.712

2 BRFSS

With support from the Centers for Disease Control and Prevention (CDC), the Behav-Text Reference:
Exercises 2.136, 2.137, and 2.166 ioral Risk Factor Surveillance System (BRFSS) conducts the world’s largest, ongoing

telephone survey of health conditions and risk behaviors in the United States. The preva-
lence of various health risk factors by state is summarized on the CDC Web site, www.
cdc.gov/brfss. The data set BRFSS contains data on 29 demographic characteristics
and risk factors for each state. The demographic characteristics are age (percents aged
18 to 24, 25 to 34, 35 to 44, 45 to 54, 55 to 64, and 65 or over), education (less than
high school, high school or GED, some post–high school, college), income (less than
$15,000, $15,000 to $25,000, $25,000 to $35,000, $35,000 to $50,000, $50,000 or more),
and percent female. Risk factors are body mass index (BMI is weight in kilograms di-
vided by the square of height in meters; the classifications are less than 25, 25 to 30, and
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30 or more; 18.5 to 24.9 is considered normal, 25 to 29.9 is overweight, and 30 or over
is obese), alcohol consumption (at least one drink within the last 30 days, heavy is more
than two drinks per day for men and more than one drink per day for women, binge is
five or more drinks [four for women] on one occasion during the past 30 days), physical
exercise (at least 10 minutes at a time during a usual week), fruits and vegetables (eat at
least five servings per day), physical activity (30 or more minutes of moderate physical
activity five or more days per week or vigorous physical activity for 20 or more minutes
three or more days per week), and smoking (every day, some days, former smoker, never
smoked).

3 CHEESE

As cheddar cheese matures, many chemical processes take place. The taste of maturedText Reference:
Examples 14.5 and 14.9;

Exercises 11.51–11.59
and 14.36–14.38

cheese is related to the concentration of several chemicals in the final product. In a study
of cheddar cheese from the LaTrobe Valley of Victoria, Australia, samples of cheese were
analyzed for their chemical composition and were subjected to taste tests.

Data for one type of cheese-manufacturing process appear below. The variable
“Case” is used to number the observations from 1 to 30. “Taste” is the response variable
of interest. The taste scores were obtained by combining the scores from several tasters.

Three of the chemicals whose concentrations were measured were acetic acid,
hydrogen sulfide, and lactic acid. For acetic acid and hydrogen sulfide (natural) log
transformations were taken. Thus, the explanatory variables are the transformed con-
centrations of acetic acid (“Acetic”) and hydrogen sulfide (“H2S”) and the untrans-
formed concentration of lactic acid (“Lactic”). These data are based on experiments
performed by G. T. Lloyd and E. H. Ramshaw of the CSIRO Division of Food Research,
Victoria, Australia. Some results of the statistical analyses of these data are given in
G. P. McCabe, L. McCabe, and A. Miller, “Analysis of taste and chemical composition of
cheddar cheese, 1982–83 experiments,” CSIRO Division of Mathematics and Statistics
Consulting Report VT85/6; and in I. Barlow et al., “Correlations and changes in flavour
and chemical parameters of cheddar cheeses during maturation,” Australian Journal of
Dairy Technology, 44 (1989), pp. 7–18. The table below gives the data for the first five
cases.

Case Taste Acetic H2S Lactic

01 12.3 4.543 3.135 0.86
02 20.9 5.159 5.043 1.53
03 39.0 5.366 5.438 1.57
04 47.9 5.759 7.496 1.81
05 5.6 4.663 3.807 0.99

4 CSDATA

The computer science department of a large university was interested in understandingText Reference:
Example 11.1;

Exercises 1.173, 2.155,
3.93, 3.94, 7.138,

11.5, 11.6, and
14.39–14.42

why a large proportion of their first-year students failed to graduate as computer science
majors. An examination of records from the registrar indicated that most of the attrition
occurred during the first three semesters. Therefore, they decided to study all first-year
students entering their program in a particular year and to follow their progress for the
first three semesters.

The variables studied included the grade point average after three semesters and a
collection of variables that would be available as students entered their program. These
included scores on standardized tests such as the SATs and high school grades in various
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subjects. The individuals who conducted the study were also interested in examining
differences between men and women in this program. Therefore, sex was included as a
variable.

Data on 224 students who began study as computer science majors in a particular
year were analyzed. A few exceptional cases were excluded, such as students who did not
have complete data available on the variables of interest (a few students were admitted
who did not take the SATs). Data for the first five students appear below. There are eight
variables for each student. OBS is a variable used to identify the student. The data files
kept by the registrar identified students by social security number, but for this study they
were simply given a number from 1 to 224. The grade point average after three semesters
is the variable GPA. This university uses a four-point scale, with A corresponding to 4,
B to 3, C to 2, etc. A straight-A student has a 4.00 GPA.

The high school grades included in the data set are the variables HSM, HSS, and
HSE. These correspond to average high school grades in math, science, and English.
High schools use different grading systems (some high schools have a grade higher than
A for honors courses), so the university’s task in constructing these variables is not easy.
The researchers were willing to accept the university’s judgment and used its values.
High school grades were recorded on a scale from 1 to 10, with 10 corresponding to A,
9 to A−, 8 to B+, etc.

The SAT scores are SATM and SATV, corresponding to the Mathematics and Verbal
parts of the SAT. Gender was recorded as 1 for men and 2 for women. This is an arbi-
trary code. For software packages that can use alphanumeric variables (that is, values
do not have to be numbers), it is more convenient to use M and F or Men and Women
as values for the sex variable. With this kind of user-friendly capability, you do not have
to remember who are the 1s and who are the 2s.

Results of the study are reported in P. F. Campbell and G. P. McCabe, “Predicting
the success of freshmen in a computer science major,” Communications of the ACM, 27
(1984), pp. 1108–1113. The table below gives data for the first five students.

OBS GPA HSM HSS HSE SATM SATV SEX

001 3.32 10 10 10 670 600 1
002 2.26 6 8 5 700 640 1
003 2.35 8 6 8 640 530 1
004 2.08 9 10 7 670 600 1
005 3.38 8 9 8 540 580 1

5 DANDRUFF

The DANDRUFF data set is based on W. L. Billhimer et al., “Results of a clinical trialText Reference:
Exercises 12.54–12.57 comparing 1% pyrithione zinc and 2% ketoconazole shampoos,” Cosmetic Dermatology,

9 (1996), pp. 34–39. The study reported in this paper is a clinical trial that compared
three treatments for dandruff and a placebo. The treatments were 1% pyrithione zinc
shampoo (PyrI), the same shampoo but with instructions to shampoo two times (PyrII),
2% ketoconazole shampoo (Keto), and a placebo shampoo (Placebo). After six weeks of
treatment, eight sections of the scalp were examined and given a score that measured
the amount of scalp flaking on a 0 to 10 scale. The response variable was the sum of these
eight scores. An analysis of the baseline flaking measure indicated that randomization
of patients to treatments was successful in that no differences were found between the
groups. At baseline there were 112 subjects in each of the three treatment groups and
28 subjects in the Placebo group. During the clinical trial 3 dropped out from the PyrII
group and 6 from the Keto group. No patients dropped out of the other two groups.
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Summary statistics given in the paper were used to generate random data that give the
same conclusions. Here are the first five cases:

OBS Treatment Flaking

001 PyrI 17
002 PyrI 16
003 PyrI 18
004 PyrI 17
005 PyrI 18

6 HAPPINESS

Is a person living in Nation X more likely to be “happier” than a person living in NationText Reference:
Exercises 11.31–11.33 Y? If the answer is Yes, what country-level factors are associated with this happiness?

The data set HAPPINESS is a fusion of two online resources that contain information
to address these and other similar questions.

The World Database of Happiness is an online registry of scientific research on the
subjective appreciation of life. It is available at worlddatabaseofhappiness.eur.nl
and is directed by Dr. Ruut Veenhoven, Erasmus University Rotterdam. One inventory
presents the “average happiness” score for various nations between 1995 and 2005. This
average is based on individual responses from numerous general population surveys to
a general life satisfaction (well-being) question. Scores ranged between 0 (dissatisfied)
to 10 (satisfied). These responses are coded LSI in the HAPPINESS data set.

The NationMaster Web site, www.nationmaster.com, contains a collection of statis-
tics associated with various nations. For the HAPPINESS data set, the factors consid-
ered are the GINI Index, which measures the degree of inequality in the distribution
of income (higher score = greater inequality); the degree of corruption in government
(higher score = less corruption); the degree of democracy (higher score = more political
liberties); and average life expectancy.

Here are the first five cases:

Country LSI GINI CORRUPT DEMOCRACY LIFE

Albania 4.4 28.2 2.5 2.5 77.43
Algeria 5.2 35.3 2.8 1.5 73.26
Argentina 6.8 52.2 2.8 5.5 76.12
Armenia 3.7 41.3 2.9 3.0 71.84
Australia 7.7 35.2 8.8 6.0 80.50

7 LONGLEAF

The Wade Tract in Thomas County, Georgia, is an old-growth forest of longleaf pine treesText Reference:
Example 6.1;

Exercises 6.66, 6.67, 6.110, 6.111,
7.25, 7.81, 7.82, 7.89, 7.105, 7.106,

7.108, 7.109, 7.122–7.124, 9.40,
16.20, and 16.63

(Pinus palustris) that has survived in a relatively undisturbed state since before the set-
tlement of the area by Europeans. This data set includes observations on 584 longleaf
pine trees in a 200-meter by 200-meter region in the Wade Tract and is described in Noel
Cressie, Statistics for Spatial Data, Wiley, 1993. The variable NS is the location within the
region in the north-south direction, EW is the location within the region in the east-west
direction, and DBH is the diameter of the tree at breast height, measured in centimeters.
Here are the first five cases:

www.nationmaster.com
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NS EW DBH

200.0 8.8 32.9
199.3 10.0 53.5
193.6 22.4 68.0
167.7 35.6 17.7
183.9 45.4 36.9

8 MAJORS

See the description of the CSDATA data set for background information on the studyText Reference:
Exercises 13.22–13.24

and 13.46–13.49
behind this data set. In this data set, the variables described for CSDATA are given with
an additional variable “Maj” that specifies the student’s major field of study at the end
of three semesters. The codes 1, 2, and 3 correspond to Computer Science, Engineering
and Other Sciences, and Other. All available data were used in the analyses performed,
which resulted in sample sizes that were unequal in the six sex-by-major groups.

For a one-way ANOVA this causes no particular problems. However, for a two-way
ANOVA several complications arise when the sample sizes are unequal. A detailed dis-
cussion of these complications is beyond the scope of this text. To avoid these difficulties
and still use these interesting data, simulated data based on the results of this study are
given on the data disk. ANOVA based on these simulated data gives the same qualitative
conclusions as those obtained with the original data. Here are the first five cases:

OBS SEX Maj SATM SATV HSM HSS HSE GPA

001 1 1 640 530 8 6 8 2.35
002 1 1 670 600 9 10 7 2.08
003 1 1 600 400 8 8 7 3.21
004 1 1 570 480 7 7 6 2.34
005 1 1 510 530 6 8 8 1.40

9 PCB

Polychlorinated biphenyls (PCBs) are a collection of compounds that are no longer pro-Text Reference:
Exercises 7.134, 7.135,

and 11.40–11.50
duced in the United States but are still found in the environment. Evidence suggests that
they can cause harmful health effects when consumed. Because PCBs can accumulate
in fish, efforts have been made to identify areas where fish contain excessive amounts
so that recommendations concerning consumption limits can be made. There are over
200 types of PCBs. Data from the Environmental Protection Agency National Study of
Residues in Lake Fish are given in the data set PCB. Various lakes in the United States
were sampled and the amounts of PCBs in fish were measured. The variable PCB is the
sum of the amounts of all PCBs found in the fish, while the other variables with the pre-
fix PCB are particular types of PCBs. The units are parts per billion (ppb). Not all types
of PCBs are equally harmful. A scale has been developed to convert the raw amount of
each type of PCB to a toxic equivalent (TEQ). TEQPCB is the total TEQ from all PCBs
found in each sample. Dioxins and furans are other contaminants that were measured
in these samples. The variables TEQDIOXIN and TEQFURAN give the TEQ of these,
while TEQ is the total of TEQPCB, TEQDIOXIN, and TEQFURAN. More information
is available online at epa.gov/waterscience/fishstudy/. This data set was provided by
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Joanne Lasrado, Purdue University Department of Foods and Nutrition. Here are the
first five cases:

PCB138 PCB153 PCB180 PCB28 PCB52 PCB126 PCB118

1.46 1.59 0.738 0.421 0.532 0.0000 0.720
0.64 0.92 0.664 0.025 0.030 0.0000 0.236
3.29 3.90 1.150 0.076 0.134 0.0000 1.540
3.94 5.44 1.330 0.152 0.466 0.0055 1.940
3.18 3.65 2.140 0.116 0.243 0.0059 1.470

PCB TEQ TEQPCB TEQDIOXIN TEQFURAN

19.9959 0.93840 0.18892 0.60948 0.1400
6.0996 0.96881 0.06837 0.90044 0.0000

24.9655 0.97992 0.32992 0.62000 0.0300
37.4436 0.99850 0.92350 0.00500 0.0700
30.1830 1.01654 0.92654 0.00000 0.0900

10 PLANTS1

These data were collected by Maher Tadros, Purdue University Department of ForestryText Reference:
Exercises 13.37–13.40 and Natural Resources, under the direction of Professor Andrew Gillespie. Maher is

from Jordan, a Middle Eastern country where there is very little rainfall in many ar-
eas. His research concerns four species of plants that may be suitable for commercial
development in his country. Products produced by these species can be used as feed for
animals and in some cases for humans. The four species of plants are Leucaena leuco-
cephala, Acacia saligna, Prosopis juliflora, and Eucalyptus citriodora. A major research
question concerns how well these species can tolerate drought stress.

PLANTS1 gives data for a laboratory experiment performed by Maher at Purdue Uni-
versity. Seven different amounts of water were given daily to plants of each species. For
each of the species-by-water combinations, there were nine plants. The response vari-
able is the percent of the plant that consists of nitrogen. A high nitrogen content is de-
sirable for plant products that are used for food.

The actual experiment performed to collect these data had an additional factor that
is not given in the data set. The 4 × 7, species-by-water combinations were actually run
with three plants per combination. This design was then repeated three times. The re-
peat factor is often called a replicate, or rep, and is a standard part of most well-designed
experiments of this type. For our purposes we ignore this additional factor and ana-
lyze the design as a 4 × 7 two-way ANOVA with 9 observations per treatment combina-
tion. The first five cases are listed below. The four species, Leucaena leucocephala, Acacia
saligna, Prosopis juliflora, and Eucalyptus citriodora, are coded 1 to 4. The water levels,
50, 150, 250, 350, 450, 550, and 650 millimeters, are coded 1 to 7.

OBS Species Water pctnit

001 1 1 3.644
002 1 1 3.500
003 1 1 3.509
004 1 1 3.137
005 1 1 3.100
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11 PLANTS2

PLANTS2 gives data for a second experiment conducted by Maher Tadros in a lab at Pur-Text Reference:
Exercises 13.41–13.44 due University. As in PLANTS1, there are the same four species of plants and the same

seven levels of water. Here, however, there are four plants per species-by-water combi-
nation. The two response variables in the data set are fresh biomass and dry biomass.
High values for these response variables indicate that the plants of the given species are
resistant to drought at the given water level. Here are the first five cases:

OBS Species Water fbiomass dbiomass

001 1 1 105.13 37.65
002 1 1 138.95 48.85
003 1 1 90.05 38.85
004 1 1 102.25 36.91
005 1 1 207.90 74.35

12 PNG

A randomized double-blind placebo-controlled trial to assess the benefits of giving high-Text Reference:
Exercises 7.26–7.28, 7.136, 7.137,

10.25, and 16.7
dose vitamin A supplements to young children was performed in the North Wosera Dis-
trict of East Sepik Province in Papua New Guinea. The results of the trial are reported
in F. Rosales et al., “Relation of serum retinol to acute phase proteins and malarial mor-
bidity in Papua New Guinea children,” American Journal of Clinical Nutrition, 71 (2000),
pp. 1580–1588. The data here were collected at the start of the study and were provided
by Francisco Rosales, Department of Nutritional Sciences, Pennsylvania State Univer-
sity. AGEY is age in years, RETINOL is serum retinol, CRP is C-reactive protein, AGP
is α1-acid glycoprotein, and ACT is α1-antichymotrypsin. Serum retinol is a measure of
vitamin A status, and CRP, AGP, and ACT are acute-phase proteins that have high values
when there is an infection. Here are the first five cases:

ID AGEY RETINOL CRP AGP ACT

1 4.33 0.31 3.49 0.61 0.28
2 3.33 0.26 8.64 0.82 0.34
3 2.50 0.24 33.59 0.73 0.36
4 3.33 0.67 3.47 1.05 0.34
5 4.83 0.59 0.00 0.55 0.08

13 RANKING

Since 2004, the Times Higher Education Supplement has provided an annual rankingText Reference:
Exercises 11.27–11.29 of the world universities. A total score for each university is calculated based on the fol-

lowing scores: Peer Review (40%), Faculty-to-Student Ratio (20%), Citations-to-Faculty
Ratio (20%), Recruiter Review (10%), Percent International Faculty (5%), Percent In-
ternational Student (5%). The percents represent the contributions of each score to the
total.

For our purposes here, we will assume these weights are unknown and will focus
on the development of a model for the total score based on the first three explanatory
variables. The report includes a table for the top 200 universities. The RANKING data
set is a random sample of 75 of these universities. This is not a random sample of all
universities but for our purposes here we will consider it to be.
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14 READING

Jim Baumann and Leah Jones, Purdue University College of Education, conducted aText Reference:
Exercises 7.139, 12.61, and 12.62 study to compare three methods of teaching reading comprehension. The 66 students

who participated in the study were randomly assigned to the methods (22 to each). The
standard practice of comparing new methods with a traditional one was used in this
study. The traditional method is called Basal and the two innovative methods are called
DRTA and Strat.

In the data set the variable Subject is used to identify the individual students. The
values are 1 to 66. The method of instruction is indicated by the variable Group, with
values B, D, and S, corresponding to Basal, DRTA, and Strat. Two pretests and three
posttests were given to all students. These are the variables Pre1, Pre2, Post1, Post2,
and Post3. Data for the first five subjects are given below.

Subject Group Pre1 Pre2 Post1 Post2 Post3

01 B 4 3 5 4 41
02 B 6 5 9 5 41
03 B 9 4 5 3 43
04 B 12 6 8 5 46
05 B 16 5 10 9 46

15 RUNNERS

A study of cardiovascular risk factors compared runners who averaged at least 15 milesText Reference:
Example 13.11;

Exercises 1.81 and 1.143
per week with a control group described as “generally sedentary.” Both men and women
were included in the study. The data set was constructed based on information provided
in P. D. Wood et al., “Plasma lipoprotein distributions in male and female runners,” in
P. Milvey (ed.), The Marathon: Physiological, Medical, Epidemiological, and Psychological
Studies, New York Academy of Sciences, 1977.

The study design is a 2 × 2 ANOVA with the factors group and gender. There were
200 subjects in each of the four combinations. The variables are Id, a numeric subject
identifier; Group, with values “Control” and “Runners”; Gender, with values Female and
Male; and HeartRate, heart rate (beats per minute) after the subject ran for 6 minutes
on a treadmill. Here are the data for the first five subjects:

Id Group Gender Beats

1 Control Female 159
2 Control Female 183
3 Control Female 140
4 Control Female 140
5 Control Female 125

16 WORKERS

Each March, the Bureau of Labor Statistics carries out an Annual Demographic Supple-Text Reference:
Exercises 1.82–1.84,

1.172
ment to its monthly Current Population Survey. The data set WORKERS contains data
about 71,076 people from one of these surveys. We included all people between the ages
of 25 and 64 who have worked but whose main work experience is not in agriculture.
Moreover, we combined the 16 levels of education in the BLS survey to form 6 levels.
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There are five variables in the data set. Age is age in years. Education is the high-
est level of education a person has reached, with the following values: 1 = did not reach
high school; 2 = some high school but no high school diploma; 3 = high school diploma;
4 = some college but no bachelor’s degree (this includes people with an associate de-
gree); 5 = bachelor’s degree; 6 = postgraduate degree (master’s, professional, or doc-
torate). Sex is coded as 1 = male and 2 = female. Total income is income from all
sources. Note that income can be less than zero in some cases. Job class is a categoriza-
tion of the person’s main work experience, with 5 = private sector (outside households);
6 = government; 7 = self-employed. Here are the first five cases:

Age Education Sex Total income Job class

25 2 2 7,234 5
25 5 1 37,413 5
25 4 2 29,500 5
25 3 2 13,500 5
25 4 1 17,660 6

The first individual is a 25-year-old female who did not graduate from high school, works
in the private sector, and had $7234 of income.
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Table entry for z is
the area under the
standard normal curve
to the left of z.

Probability

z

TABLE A

Standard normal probabilities

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

−3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
−3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
−3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
−3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
−3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
−2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
−2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
−2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
−2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
−2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
−2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
−2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
−2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
−2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
−2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
−1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
−1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
−1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
−1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
−1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
−1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
−1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
−1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
−1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
−1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
−0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
−0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
−0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
−0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
−0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
−0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
−0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
−0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
−0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
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Table entry for z is the
area under the
standard normal curve
to the left of z.

Probability

z

TABLE A

Standard normal probabilities (continued)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998



T-4
•

Tables

TABLE B

Random digits

Line

101 19223 95034 05756 28713 96409 12531 42544 82853
102 73676 47150 99400 01927 27754 42648 82425 36290
103 45467 71709 77558 00095 32863 29485 82226 90056
104 52711 38889 93074 60227 40011 85848 48767 52573
105 95592 94007 69971 91481 60779 53791 17297 59335
106 68417 35013 15529 72765 85089 57067 50211 47487
107 82739 57890 20807 47511 81676 55300 94383 14893
108 60940 72024 17868 24943 61790 90656 87964 18883
109 36009 19365 15412 39638 85453 46816 83485 41979
110 38448 48789 18338 24697 39364 42006 76688 08708
111 81486 69487 60513 09297 00412 71238 27649 39950
112 59636 88804 04634 71197 19352 73089 84898 45785
113 62568 70206 40325 03699 71080 22553 11486 11776
114 45149 32992 75730 66280 03819 56202 02938 70915
115 61041 77684 94322 24709 73698 14526 31893 32592
116 14459 26056 31424 80371 65103 62253 50490 61181
117 38167 98532 62183 70632 23417 26185 41448 75532
118 73190 32533 04470 29669 84407 90785 65956 86382
119 95857 07118 87664 92099 58806 66979 98624 84826
120 35476 55972 39421 65850 04266 35435 43742 11937
121 71487 09984 29077 14863 61683 47052 62224 51025
122 13873 81598 95052 90908 73592 75186 87136 95761
123 54580 81507 27102 56027 55892 33063 41842 81868
124 71035 09001 43367 49497 72719 96758 27611 91596
125 96746 12149 37823 71868 18442 35119 62103 39244
126 96927 19931 36089 74192 77567 88741 48409 41903
127 43909 99477 25330 64359 40085 16925 85117 36071
128 15689 14227 06565 14374 13352 49367 81982 87209
129 36759 58984 68288 22913 18638 54303 00795 08727
130 69051 64817 87174 09517 84534 06489 87201 97245
131 05007 16632 81194 14873 04197 85576 45195 96565
132 68732 55259 84292 08796 43165 93739 31685 97150
133 45740 41807 65561 33302 07051 93623 18132 09547
134 27816 78416 18329 21337 35213 37741 04312 68508
135 66925 55658 39100 78458 11206 19876 87151 31260
136 08421 44753 77377 28744 75592 08563 79140 92454
137 53645 66812 61421 47836 12609 15373 98481 14592
138 66831 68908 40772 21558 47781 33586 79177 06928
139 55588 99404 70708 41098 43563 56934 48394 51719
140 12975 13258 13048 45144 72321 81940 00360 02428
141 96767 35964 23822 96012 94591 65194 50842 53372
142 72829 50232 97892 63408 77919 44575 24870 04178
143 88565 42628 17797 49376 61762 16953 88604 12724
144 62964 88145 83083 69453 46109 59505 69680 00900
145 19687 12633 57857 95806 09931 02150 43163 58636
146 37609 59057 66967 83401 60705 02384 90597 93600
147 54973 86278 88737 74351 47500 84552 19909 67181
148 00694 05977 19664 65441 20903 62371 22725 53340
149 71546 05233 53946 68743 72460 27601 45403 88692
150 07511 88915 41267 16853 84569 79367 32337 03316
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TABLE B

Random digits (continued)

Line

151 03802 29341 29264 80198 12371 13121 54969 43912
152 77320 35030 77519 41109 98296 18984 60869 12349
153 07886 56866 39648 69290 03600 05376 58958 22720
154 87065 74133 21117 70595 22791 67306 28420 52067
155 42090 09628 54035 93879 98441 04606 27381 82637
156 55494 67690 88131 81800 11188 28552 25752 21953
157 16698 30406 96587 65985 07165 50148 16201 86792
158 16297 07626 68683 45335 34377 72941 41764 77038
159 22897 17467 17638 70043 36243 13008 83993 22869
160 98163 45944 34210 64158 76971 27689 82926 75957
161 43400 25831 06283 22138 16043 15706 73345 26238
162 97341 46254 88153 62336 21112 35574 99271 45297
163 64578 67197 28310 90341 37531 63890 52630 76315
164 11022 79124 49525 63078 17229 32165 01343 21394
165 81232 43939 23840 05995 84589 06788 76358 26622
166 36843 84798 51167 44728 20554 55538 27647 32708
167 84329 80081 69516 78934 14293 92478 16479 26974
168 27788 85789 41592 74472 96773 27090 24954 41474
169 99224 00850 43737 75202 44753 63236 14260 73686
170 38075 73239 52555 46342 13365 02182 30443 53229
171 87368 49451 55771 48343 51236 18522 73670 23212
172 40512 00681 44282 47178 08139 78693 34715 75606
173 81636 57578 54286 27216 58758 80358 84115 84568
174 26411 94292 06340 97762 37033 85968 94165 46514
175 80011 09937 57195 33906 94831 10056 42211 65491
176 92813 87503 63494 71379 76550 45984 05481 50830
177 70348 72871 63419 57363 29685 43090 18763 31714
178 24005 52114 26224 39078 80798 15220 43186 00976
179 85063 55810 10470 08029 30025 29734 61181 72090
180 11532 73186 92541 06915 72954 10167 12142 26492
181 59618 03914 05208 84088 20426 39004 84582 87317
182 92965 50837 39921 84661 82514 81899 24565 60874
183 85116 27684 14597 85747 01596 25889 41998 15635
184 15106 10411 90221 49377 44369 28185 80959 76355
185 03638 31589 07871 25792 85823 55400 56026 12193
186 97971 48932 45792 63993 95635 28753 46069 84635
187 49345 18305 76213 82390 77412 97401 50650 71755
188 87370 88099 89695 87633 76987 85503 26257 51736
189 88296 95670 74932 65317 93848 43988 47597 83044
190 79485 92200 99401 54473 34336 82786 05457 60343
191 40830 24979 23333 37619 56227 95941 59494 86539
192 32006 76302 81221 00693 95197 75044 46596 11628
193 37569 85187 44692 50706 53161 69027 88389 60313
194 56680 79003 23361 67094 15019 63261 24543 52884
195 05172 08100 22316 54495 60005 29532 18433 18057
196 74782 27005 03894 98038 20627 40307 47317 92759
197 85288 93264 61409 03404 09649 55937 60843 66167
198 68309 12060 14762 58002 03716 81968 57934 32624
199 26461 88346 52430 60906 74216 96263 69296 90107
200 42672 67680 42376 95023 82744 03971 96560 55148



T-6
•

Tables

TABLE C

Binomial probabilities

Entry is P(X = k) =
(

n
k

)
pk(1 − p)n−k

p

n k .01 .02 .03 .04 .05 .06 .07 .08 .09

2 0 .9801 .9604 .9409 .9216 .9025 .8836 .8649 .8464 .8281
1 .0198 .0392 .0582 .0768 .0950 .1128 .1302 .1472 .1638
2 .0001 .0004 .0009 .0016 .0025 .0036 .0049 .0064 .0081

3 0 .9703 .9412 .9127 .8847 .8574 .8306 .8044 .7787 .7536
1 .0294 .0576 .0847 .1106 .1354 .1590 .1816 .2031 .2236
2 .0003 .0012 .0026 .0046 .0071 .0102 .0137 .0177 .0221
3 .0001 .0001 .0002 .0003 .0005 .0007

4 0 .9606 .9224 .8853 .8493 .8145 .7807 .7481 .7164 .6857
1 .0388 .0753 .1095 .1416 .1715 .1993 .2252 .2492 .2713
2 .0006 .0023 .0051 .0088 .0135 .0191 .0254 .0325 .0402
3 .0001 .0002 .0005 .0008 .0013 .0019 .0027
4 .0001

5 0 .9510 .9039 .8587 .8154 .7738 .7339 .6957 .6591 .6240
1 .0480 .0922 .1328 .1699 .2036 .2342 .2618 .2866 .3086
2 .0010 .0038 .0082 .0142 .0214 .0299 .0394 .0498 .0610
3 .0001 .0003 .0006 .0011 .0019 .0030 .0043 .0060
4 .0001 .0001 .0002 .0003
5

6 0 .9415 .8858 .8330 .7828 .7351 .6899 .6470 .6064 .5679
1 .0571 .1085 .1546 .1957 .2321 .2642 .2922 .3164 .3370
2 .0014 .0055 .0120 .0204 .0305 .0422 .0550 .0688 .0833
3 .0002 .0005 .0011 .0021 .0036 .0055 .0080 .0110
4 .0001 .0002 .0003 .0005 .0008
5
6

7 0 .9321 .8681 .8080 .7514 .6983 .6485 .6017 .5578 .5168
1 .0659 .1240 .1749 .2192 .2573 .2897 .3170 .3396 .3578
2 .0020 .0076 .0162 .0274 .0406 .0555 .0716 .0886 .1061
3 .0003 .0008 .0019 .0036 .0059 .0090 .0128 .0175
4 .0001 .0002 .0004 .0007 .0011 .0017
5 .0001 .0001
6
7

8 0 .9227 .8508 .7837 .7214 .6634 .6096 .5596 .5132 .4703
1 .0746 .1389 .1939 .2405 .2793 .3113 .3370 .3570 .3721
2 .0026 .0099 .0210 .0351 .0515 .0695 .0888 .1087 .1288
3 .0001 .0004 .0013 .0029 .0054 .0089 .0134 .0189 .0255
4 .0001 .0002 .0004 .0007 .0013 .0021 .0031
5 .0001 .0001 .0002
6
7
8
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TABLE C

Binomial probabilities (continued)

Entry is P(X = k) =
(

n
k

)
pk(1 − p)n−k

p

n k .10 .15 .20 .25 .30 .35 .40 .45 .50

2 0 .8100 .7225 .6400 .5625 .4900 .4225 .3600 .3025 .2500
1 .1800 .2550 .3200 .3750 .4200 .4550 .4800 .4950 .5000
2 .0100 .0225 .0400 .0625 .0900 .1225 .1600 .2025 .2500

3 0 .7290 .6141 .5120 .4219 .3430 .2746 .2160 .1664 .1250
1 .2430 .3251 .3840 .4219 .4410 .4436 .4320 .4084 .3750
2 .0270 .0574 .0960 .1406 .1890 .2389 .2880 .3341 .3750
3 .0010 .0034 .0080 .0156 .0270 .0429 .0640 .0911 .1250

4 0 .6561 .5220 .4096 .3164 .2401 .1785 .1296 .0915 .0625
1 .2916 .3685 .4096 .4219 .4116 .3845 .3456 .2995 .2500
2 .0486 .0975 .1536 .2109 .2646 .3105 .3456 .3675 .3750
3 .0036 .0115 .0256 .0469 .0756 .1115 .1536 .2005 .2500
4 .0001 .0005 .0016 .0039 .0081 .0150 .0256 .0410 .0625

5 0 .5905 .4437 .3277 .2373 .1681 .1160 .0778 .0503 .0313
1 .3280 .3915 .4096 .3955 .3602 .3124 .2592 .2059 .1563
2 .0729 .1382 .2048 .2637 .3087 .3364 .3456 .3369 .3125
3 .0081 .0244 .0512 .0879 .1323 .1811 .2304 .2757 .3125
4 .0004 .0022 .0064 .0146 .0284 .0488 .0768 .1128 .1562
5 .0001 .0003 .0010 .0024 .0053 .0102 .0185 .0312

6 0 .5314 .3771 .2621 .1780 .1176 .0754 .0467 .0277 .0156
1 .3543 .3993 .3932 .3560 .3025 .2437 .1866 .1359 .0938
2 .0984 .1762 .2458 .2966 .3241 .3280 .3110 .2780 .2344
3 .0146 .0415 .0819 .1318 .1852 .2355 .2765 .3032 .3125
4 .0012 .0055 .0154 .0330 .0595 .0951 .1382 .1861 .2344
5 .0001 .0004 .0015 .0044 .0102 .0205 .0369 .0609 .0937
6 .0001 .0002 .0007 .0018 .0041 .0083 .0156

7 0 .4783 .3206 .2097 .1335 .0824 .0490 .0280 .0152 .0078
1 .3720 .3960 .3670 .3115 .2471 .1848 .1306 .0872 .0547
2 .1240 .2097 .2753 .3115 .3177 .2985 .2613 .2140 .1641
3 .0230 .0617 .1147 .1730 .2269 .2679 .2903 .2918 .2734
4 .0026 .0109 .0287 .0577 .0972 .1442 .1935 .2388 .2734
5 .0002 .0012 .0043 .0115 .0250 .0466 .0774 .1172 .1641
6 .0001 .0004 .0013 .0036 .0084 .0172 .0320 .0547
7 .0001 .0002 .0006 .0016 .0037 .0078

8 0 .4305 .2725 .1678 .1001 .0576 .0319 .0168 .0084 .0039
1 .3826 .3847 .3355 .2670 .1977 .1373 .0896 .0548 .0313
2 .1488 .2376 .2936 .3115 .2965 .2587 .2090 .1569 .1094
3 .0331 .0839 .1468 .2076 .2541 .2786 .2787 .2568 .2188
4 .0046 .0185 .0459 .0865 .1361 .1875 .2322 .2627 .2734
5 .0004 .0026 .0092 .0231 .0467 .0808 .1239 .1719 .2188
6 .0002 .0011 .0038 .0100 .0217 .0413 .0703 .1094
7 .0001 .0004 .0012 .0033 .0079 .0164 .0312
8 .0001 .0002 .0007 .0017 .0039

(Continued)
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TABLE C

Binomial probabilities (continued)

Entry is P(X = k) =
(

n
k

)
pk(1 − p)n−k

p

n k .01 .02 .03 .04 .05 .06 .07 .08 .09

9 0 .9135 .8337 .7602 .6925 .6302 .5730 .5204 .4722 .4279
1 .0830 .1531 .2116 .2597 .2985 .3292 .3525 .3695 .3809
2 .0034 .0125 .0262 .0433 .0629 .0840 .1061 .1285 .1507
3 .0001 .0006 .0019 .0042 .0077 .0125 .0186 .0261 .0348
4 .0001 .0003 .0006 .0012 .0021 .0034 .0052
5 .0001 .0002 .0003 .0005
6
7
8
9

10 0 .9044 .8171 .7374 .6648 .5987 .5386 .4840 .4344 .3894
1 .0914 .1667 .2281 .2770 .3151 .3438 .3643 .3777 .3851
2 .0042 .0153 .0317 .0519 .0746 .0988 .1234 .1478 .1714
3 .0001 .0008 .0026 .0058 .0105 .0168 .0248 .0343 .0452
4 .0001 .0004 .0010 .0019 .0033 .0052 .0078
5 .0001 .0001 .0003 .0005 .0009
6 .0001
7
8
9

10

12 0 .8864 .7847 .6938 .6127 .5404 .4759 .4186 .3677 .3225
1 .1074 .1922 .2575 .3064 .3413 .3645 .3781 .3837 .3827
2 .0060 .0216 .0438 .0702 .0988 .1280 .1565 .1835 .2082
3 .0002 .0015 .0045 .0098 .0173 .0272 .0393 .0532 .0686
4 .0001 .0003 .0009 .0021 .0039 .0067 .0104 .0153
5 .0001 .0002 .0004 .0008 .0014 .0024
6 .0001 .0001 .0003
7
8
9

10
11
12

15 0 .8601 .7386 .6333 .5421 .4633 .3953 .3367 .2863 .2430
1 .1303 .2261 .2938 .3388 .3658 .3785 .3801 .3734 .3605
2 .0092 .0323 .0636 .0988 .1348 .1691 .2003 .2273 .2496
3 .0004 .0029 .0085 .0178 .0307 .0468 .0653 .0857 .1070
4 .0002 .0008 .0022 .0049 .0090 .0148 .0223 .0317
5 .0001 .0002 .0006 .0013 .0024 .0043 .0069
6 .0001 .0003 .0006 .0011
7 .0001 .0001
8
9

10
11
12
13
14
15
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TABLE C

Binomial probabilities (continued)

Entry is P(X = k) =
(

n
k

)
pk(1 − p)n−k

p

n k .10 .15 .20 .25 .30 .35 .40 .45 .50

9 0 .3874 .2316 .1342 .0751 .0404 .0207 .0101 .0046 .0020
1 .3874 .3679 .3020 .2253 .1556 .1004 .0605 .0339 .0176
2 .1722 .2597 .3020 .3003 .2668 .2162 .1612 .1110 .0703
3 .0446 .1069 .1762 .2336 .2668 .2716 .2508 .2119 .1641
4 .0074 .0283 .0661 .1168 .1715 .2194 .2508 .2600 .2461
5 .0008 .0050 .0165 .0389 .0735 .1181 .1672 .2128 .2461
6 .0001 .0006 .0028 .0087 .0210 .0424 .0743 .1160 .1641
7 .0003 .0012 .0039 .0098 .0212 .0407 .0703
8 .0001 .0004 .0013 .0035 .0083 .0176
9 .0001 .0003 .0008 .0020

10 0 .3487 .1969 .1074 .0563 .0282 .0135 .0060 .0025 .0010
1 .3874 .3474 .2684 .1877 .1211 .0725 .0403 .0207 .0098
2 .1937 .2759 .3020 .2816 .2335 .1757 .1209 .0763 .0439
3 .0574 .1298 .2013 .2503 .2668 .2522 .2150 .1665 .1172
4 .0112 .0401 .0881 .1460 .2001 .2377 .2508 .2384 .2051
5 .0015 .0085 .0264 .0584 .1029 .1536 .2007 .2340 .2461
6 .0001 .0012 .0055 .0162 .0368 .0689 .1115 .1596 .2051
7 .0001 .0008 .0031 .0090 .0212 .0425 .0746 .1172
8 .0001 .0004 .0014 .0043 .0106 .0229 .0439
9 .0001 .0005 .0016 .0042 .0098

10 .0001 .0003 .0010

12 0 .2824 .1422 .0687 .0317 .0138 .0057 .0022 .0008 .0002
1 .3766 .3012 .2062 .1267 .0712 .0368 .0174 .0075 .0029
2 .2301 .2924 .2835 .2323 .1678 .1088 .0639 .0339 .0161
3 .0852 .1720 .2362 .2581 .2397 .1954 .1419 .0923 .0537
4 .0213 .0683 .1329 .1936 .2311 .2367 .2128 .1700 .1208
5 .0038 .0193 .0532 .1032 .1585 .2039 .2270 .2225 .1934
6 .0005 .0040 .0155 .0401 .0792 .1281 .1766 .2124 .2256
7 .0006 .0033 .0115 .0291 .0591 .1009 .1489 .1934
8 .0001 .0005 .0024 .0078 .0199 .0420 .0762 .1208
9 .0001 .0004 .0015 .0048 .0125 .0277 .0537

10 .0002 .0008 .0025 .0068 .0161
11 .0001 .0003 .0010 .0029
12 .0001 .0002

15 0 .2059 .0874 .0352 .0134 .0047 .0016 .0005 .0001 .0000
1 .3432 .2312 .1319 .0668 .0305 .0126 .0047 .0016 .0005
2 .2669 .2856 .2309 .1559 .0916 .0476 .0219 .0090 .0032
3 .1285 .2184 .2501 .2252 .1700 .1110 .0634 .0318 .0139
4 .0428 .1156 .1876 .2252 .2186 .1792 .1268 .0780 .0417
5 .0105 .0449 .1032 .1651 .2061 .2123 .1859 .1404 .0916
6 .0019 .0132 .0430 .0917 .1472 .1906 .2066 .1914 .1527
7 .0003 .0030 .0138 .0393 .0811 .1319 .1771 .2013 .1964
8 .0005 .0035 .0131 .0348 .0710 .1181 .1647 .1964
9 .0001 .0007 .0034 .0116 .0298 .0612 .1048 .1527

10 .0001 .0007 .0030 .0096 .0245 .0515 .0916
11 .0001 .0006 .0024 .0074 .0191 .0417
12 .0001 .0004 .0016 .0052 .0139
13 .0001 .0003 .0010 .0032
14 .0001 .0005
15

(Continued)
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Binomial probabilities (continued)

p

n k .01 .02 .03 .04 .05 .06 .07 .08 .09

20 0 .8179 .6676 .5438 .4420 .3585 .2901 .2342 .1887 .1516
1 .1652 .2725 .3364 .3683 .3774 .3703 .3526 .3282 .3000
2 .0159 .0528 .0988 .1458 .1887 .2246 .2521 .2711 .2818
3 .0010 .0065 .0183 .0364 .0596 .0860 .1139 .1414 .1672
4 .0006 .0024 .0065 .0133 .0233 .0364 .0523 .0703
5 .0002 .0009 .0022 .0048 .0088 .0145 .0222
6 .0001 .0003 .0008 .0017 .0032 .0055
7 .0001 .0002 .0005 .0011
8 .0001 .0002
9

10
11
12
13
14
15
16
17
18
19
20

p

n k .10 .15 .20 .25 .30 .35 .40 .45 .50

20 0 .1216 .0388 .0115 .0032 .0008 .0002 .0000 .0000 .0000
1 .2702 .1368 .0576 .0211 .0068 .0020 .0005 .0001 .0000
2 .2852 .2293 .1369 .0669 .0278 .0100 .0031 .0008 .0002
3 .1901 .2428 .2054 .1339 .0716 .0323 .0123 .0040 .0011
4 .0898 .1821 .2182 .1897 .1304 .0738 .0350 .0139 .0046
5 .0319 .1028 .1746 .2023 .1789 .1272 .0746 .0365 .0148
6 .0089 .0454 .1091 .1686 .1916 .1712 .1244 .0746 .0370
7 .0020 .0160 .0545 .1124 .1643 .1844 .1659 .1221 .0739
8 .0004 .0046 .0222 .0609 .1144 .1614 .1797 .1623 .1201
9 .0001 .0011 .0074 .0271 .0654 .1158 .1597 .1771 .1602

10 .0002 .0020 .0099 .0308 .0686 .1171 .1593 .1762
11 .0005 .0030 .0120 .0336 .0710 .1185 .1602
12 .0001 .0008 .0039 .0136 .0355 .0727 .1201
13 .0002 .0010 .0045 .0146 .0366 .0739
14 .0002 .0012 .0049 .0150 .0370
15 .0003 .0013 .0049 .0148
16 .0003 .0013 .0046
17 .0002 .0011
18 .0002
19
20
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Table entry for p and C is
the critical value t∗ with
probability p lying to its
right and probability C lying
between −t∗ and t∗.

Probability p

t*

TABLE D

t distribution critical values

Upper-tail probability p

df .25 .20 .15 .10 .05 .025 .02 .01 .005 .0025 .001 .0005

1 1.000 1.376 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6
2 0.816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33 31.60
3 0.765 0.978 1.250 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.21 12.92
4 0.741 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173 8.610
5 0.727 0.920 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6.869
6 0.718 0.906 1.134 1.440 1.943 2.447 2.612 3.143 3.707 4.317 5.208 5.959
7 0.711 0.896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785 5.408
8 0.706 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587
11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437
12 0.695 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318
13 0.694 0.870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4.221
14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.140
15 0.691 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733 4.073
16 0.690 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686 4.015
17 0.689 0.863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965
18 0.688 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.611 3.922
19 0.688 0.861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883
20 0.687 0.860 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.850
21 0.686 0.859 1.063 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527 3.819
22 0.686 0.858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 3.792
23 0.685 0.858 1.060 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485 3.768
24 0.685 0.857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745
25 0.684 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725
26 0.684 0.856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707
27 0.684 0.855 1.057 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3.690
28 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674
29 0.683 0.854 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659
30 0.683 0.854 1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646
40 0.681 0.851 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551
50 0.679 0.849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496
60 0.679 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460
80 0.678 0.846 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3.416

100 0.677 0.845 1.042 1.290 1.660 1.984 2.081 2.364 2.626 2.871 3.174 3.390
1000 0.675 0.842 1.037 1.282 1.646 1.962 2.056 2.330 2.581 2.813 3.098 3.300

z∗ 0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291

50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%

Confidence level C
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Table entry for p is the
critical value F∗ with
probability p lying to
its right. F*

Probability p

TABLE E

F critical values

Degrees of freedom in the numerator

p 1 2 3 4 5 6 7 8 9

.100 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86

.050 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54
1 .025 647.79 799.50 864.16 899.58 921.85 937.11 948.22 956.66 963.28

.010 4052.2 4999.5 5403.4 5624.6 5763.6 5859.0 5928.4 5981.1 6022.5

.001 405284 500000 540379 562500 576405 585937 592873 598144 602284

.100 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38

.050 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
2 .025 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39

.010 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39

.001 998.50 999.00 999.17 999.25 999.30 999.33 999.36 999.37 999.39

.100 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24

.050 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
3 .025 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47

.010 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35

.001 167.03 148.50 141.11 137.10 134.58 132.85 131.58 130.62 129.86

.100 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94

.050 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

D
eg

re
es

of
fr

ee
d

om
in

th
e

d
en

om
in

at
or

4 .025 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90
.010 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66
.001 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 48.47

.100 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32

.050 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
5 .025 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68

.010 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16

.001 47.18 37.12 33.20 31.09 29.75 28.83 28.16 27.65 27.24

.100 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96

.050 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
6 .025 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52

.010 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98

.001 35.51 27.00 23.70 21.92 20.80 20.03 19.46 19.03 18.69

.100 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72

.050 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
7 .025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82

.010 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72

.001 29.25 21.69 18.77 17.20 16.21 15.52 15.02 14.63 14.33
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Table entry for p is the
critical value F∗ with
probability p lying to
its right. F*

Probability p

TABLE E

F critical values (continued)

Degrees of freedom in the numerator

10 12 15 20 25 30 40 50 60 120 1000

60.19 60.71 61.22 61.74 62.05 62.26 62.53 62.69 62.79 63.06 63.30
241.88 243.91 245.95 248.01 249.26 250.10 251.14 251.77 252.20 253.25 254.19
968.63 976.71 984.87 993.10 998.08 1001.4 1005.6 1008.1 1009.8 1014.0 1017.7

6055.8 6106.3 6157.3 6208.7 6239.8 6260.6 6286.8 6302.5 6313.0 6339.4 6362.7
605621 610668 615764 620908 624017 626099 628712 630285 631337 633972 636301

9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.47 9.48 9.49
19.40 19.41 19.43 19.45 19.46 19.46 19.47 19.48 19.48 19.49 19.49
39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.48 39.49 39.50
99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.48 99.49 99.50

999.40 999.42 999.43 999.45 999.46 999.47 999.47 999.48 999.48 999.49 999.50

5.23 5.22 5.20 5.18 5.17 5.17 5.16 5.15 5.15 5.14 5.13
8.79 8.74 8.70 8.66 8.63 8.62 8.59 8.58 8.57 8.55 8.53

14.42 14.34 14.25 14.17 14.12 14.08 14.04 14.01 13.99 13.95 13.91
27.23 27.05 26.87 26.69 26.58 26.50 26.41 26.35 26.32 26.22 26.14

129.25 128.32 127.37 126.42 125.84 125.45 124.96 124.66 124.47 123.97 123.53

3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.80 3.79 3.78 3.76
5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.70 5.69 5.66 5.63
8.84 8.75 8.66 8.56 8.50 8.46 8.41 8.38 8.36 8.31 8.26

14.55 14.37 14.20 14.02 13.91 13.84 13.75 13.69 13.65 13.56 13.47
48.05 47.41 46.76 46.10 45.70 45.43 45.09 44.88 44.75 44.40 44.09

3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.15 3.14 3.12 3.11
4.74 4.68 4.62 4.56 4.52 4.50 4.46 4.44 4.43 4.40 4.37
6.62 6.52 6.43 6.33 6.27 6.23 6.18 6.14 6.12 6.07 6.02

10.05 9.89 9.72 9.55 9.45 9.38 9.29 9.24 9.20 9.11 9.03
26.92 26.42 25.91 25.39 25.08 24.87 24.60 24.44 24.33 24.06 23.82

2.94 2.90 2.87 2.84 2.81 2.80 2.78 2.77 2.76 2.74 2.72
4.06 4.00 3.94 3.87 3.83 3.81 3.77 3.75 3.74 3.70 3.67
5.46 5.37 5.27 5.17 5.11 5.07 5.01 4.98 4.96 4.90 4.86
7.87 7.72 7.56 7.40 7.30 7.23 7.14 7.09 7.06 6.97 6.89

18.41 17.99 17.56 17.12 16.85 16.67 16.44 16.31 16.21 15.98 15.77

2.70 2.67 2.63 2.59 2.57 2.56 2.54 2.52 2.51 2.49 2.47
3.64 3.57 3.51 3.44 3.40 3.38 3.34 3.32 3.30 3.27 3.23
4.76 4.67 4.57 4.47 4.40 4.36 4.31 4.28 4.25 4.20 4.15
6.62 6.47 6.31 6.16 6.06 5.99 5.91 5.86 5.82 5.74 5.66

14.08 13.71 13.32 12.93 12.69 12.53 12.33 12.20 12.12 11.91 11.72

(Continued)
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TABLE E

F critical values (continued)

Degrees of freedom in the numerator

p 1 2 3 4 5 6 7 8 9

.100 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56

.050 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
8 .025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36

.010 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91

.001 25.41 18.49 15.83 14.39 13.48 12.86 12.40 12.05 11.77

.100 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44

.050 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18
9 .025 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03

.010 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35

.001 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37 10.11

.100 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35

.050 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02
10 .025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78

.010 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94

.001 21.04 14.91 12.55 11.28 10.48 9.93 9.52 9.20 8.96

.100 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27

.050 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
11 .025 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59

.010 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63

.001 19.69 13.81 11.56 10.35 9.58 9.05 8.66 8.35 8.12

.100 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21

.050 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
12 .025 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44

.010 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39
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.001 18.64 12.97 10.80 9.63 8.89 8.38 8.00 7.71 7.48

.100 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16

.050 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
13 .025 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31

.010 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19

.001 17.82 12.31 10.21 9.07 8.35 7.86 7.49 7.21 6.98

.100 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12

.050 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
14 .025 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21

.010 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03

.001 17.14 11.78 9.73 8.62 7.92 7.44 7.08 6.80 6.58

.100 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09

.050 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
15 .025 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12

.010 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89

.001 16.59 11.34 9.34 8.25 7.57 7.09 6.74 6.47 6.26

.100 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06

.050 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
16 .025 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05

.010 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78

.001 16.12 10.97 9.01 7.94 7.27 6.80 6.46 6.19 5.98

.100 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03

.050 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
17 .025 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98

.010 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68

.001 15.72 10.66 8.73 7.68 7.02 6.56 6.22 5.96 5.75
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T-15

TABLE E

F critical values (continued)

Degrees of freedom in the numerator

10 12 15 20 25 30 40 50 60 120 1000

2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.35 2.34 2.32 2.30
3.35 3.28 3.22 3.15 3.11 3.08 3.04 3.02 3.01 2.97 2.93
4.30 4.20 4.10 4.00 3.94 3.89 3.84 3.81 3.78 3.73 3.68
5.81 5.67 5.52 5.36 5.26 5.20 5.12 5.07 5.03 4.95 4.87

11.54 11.19 10.84 10.48 10.26 10.11 9.92 9.80 9.73 9.53 9.36

2.42 2.38 2.34 2.30 2.27 2.25 2.23 2.22 2.21 2.18 2.16
3.14 3.07 3.01 2.94 2.89 2.86 2.83 2.80 2.79 2.75 2.71
3.96 3.87 3.77 3.67 3.60 3.56 3.51 3.47 3.45 3.39 3.34
5.26 5.11 4.96 4.81 4.71 4.65 4.57 4.52 4.48 4.40 4.32
9.89 9.57 9.24 8.90 8.69 8.55 8.37 8.26 8.19 8.00 7.84

2.32 2.28 2.24 2.20 2.17 2.16 2.13 2.12 2.11 2.08 2.06
2.98 2.91 2.85 2.77 2.73 2.70 2.66 2.64 2.62 2.58 2.54
3.72 3.62 3.52 3.42 3.35 3.31 3.26 3.22 3.20 3.14 3.09
4.85 4.71 4.56 4.41 4.31 4.25 4.17 4.12 4.08 4.00 3.92
8.75 8.45 8.13 7.80 7.60 7.47 7.30 7.19 7.12 6.94 6.78

2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.04 2.03 2.00 1.98
2.85 2.79 2.72 2.65 2.60 2.57 2.53 2.51 2.49 2.45 2.41
3.53 3.43 3.33 3.23 3.16 3.12 3.06 3.03 3.00 2.94 2.89
4.54 4.40 4.25 4.10 4.01 3.94 3.86 3.81 3.78 3.69 3.61
7.92 7.63 7.32 7.01 6.81 6.68 6.52 6.42 6.35 6.18 6.02

2.19 2.15 2.10 2.06 2.03 2.01 1.99 1.97 1.96 1.93 1.91
2.75 2.69 2.62 2.54 2.50 2.47 2.43 2.40 2.38 2.34 2.30
3.37 3.28 3.18 3.07 3.01 2.96 2.91 2.87 2.85 2.79 2.73
4.30 4.16 4.01 3.86 3.76 3.70 3.62 3.57 3.54 3.45 3.37
7.29 7.00 6.71 6.40 6.22 6.09 5.93 5.83 5.76 5.59 5.44

2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.92 1.90 1.88 1.85
2.67 2.60 2.53 2.46 2.41 2.38 2.34 2.31 2.30 2.25 2.21
3.25 3.15 3.05 2.95 2.88 2.84 2.78 2.74 2.72 2.66 2.60
4.10 3.96 3.82 3.66 3.57 3.51 3.43 3.38 3.34 3.25 3.18
6.80 6.52 6.23 5.93 5.75 5.63 5.47 5.37 5.30 5.14 4.99

2.10 2.05 2.01 1.96 1.93 1.91 1.89 1.87 1.86 1.83 1.80
2.60 2.53 2.46 2.39 2.34 2.31 2.27 2.24 2.22 2.18 2.14
3.15 3.05 2.95 2.84 2.78 2.73 2.67 2.64 2.61 2.55 2.50
3.94 3.80 3.66 3.51 3.41 3.35 3.27 3.22 3.18 3.09 3.02
6.40 6.13 5.85 5.56 5.38 5.25 5.10 5.00 4.94 4.77 4.62

2.06 2.02 1.97 1.92 1.89 1.87 1.85 1.83 1.82 1.79 1.76
2.54 2.48 2.40 2.33 2.28 2.25 2.20 2.18 2.16 2.11 2.07
3.06 2.96 2.86 2.76 2.69 2.64 2.59 2.55 2.52 2.46 2.40
3.80 3.67 3.52 3.37 3.28 3.21 3.13 3.08 3.05 2.96 2.88
6.08 5.81 5.54 5.25 5.07 4.95 4.80 4.70 4.64 4.47 4.33

2.03 1.99 1.94 1.89 1.86 1.84 1.81 1.79 1.78 1.75 1.72
2.49 2.42 2.35 2.28 2.23 2.19 2.15 2.12 2.11 2.06 2.02
2.99 2.89 2.79 2.68 2.61 2.57 2.51 2.47 2.45 2.38 2.32
3.69 3.55 3.41 3.26 3.16 3.10 3.02 2.97 2.93 2.84 2.76
5.81 5.55 5.27 4.99 4.82 4.70 4.54 4.45 4.39 4.23 4.08

2.00 1.96 1.91 1.86 1.83 1.81 1.78 1.76 1.75 1.72 1.69
2.45 2.38 2.31 2.23 2.18 2.15 2.10 2.08 2.06 2.01 1.97
2.92 2.82 2.72 2.62 2.55 2.50 2.44 2.41 2.38 2.32 2.26
3.59 3.46 3.31 3.16 3.07 3.00 2.92 2.87 2.83 2.75 2.66
5.58 5.32 5.05 4.78 4.60 4.48 4.33 4.24 4.18 4.02 3.87

(Continued)
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TABLE E

F critical values (continued)

Degrees of freedom in the numerator

p 1 2 3 4 5 6 7 8 9

.100 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00

.050 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
18 .025 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93

.010 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60

.001 15.38 10.39 8.49 7.46 6.81 6.35 6.02 5.76 5.56

.100 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98

.050 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42
19 .025 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88

.010 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52

.001 15.08 10.16 8.28 7.27 6.62 6.18 5.85 5.59 5.39

.100 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96

.050 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39
20 .025 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84

.010 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46

.001 14.82 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24

.100 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95

.050 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
21 .025 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80

.010 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40

.001 14.59 9.77 7.94 6.95 6.32 5.88 5.56 5.31 5.11

.100 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93

.050 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
22 .025 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76

.010 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35
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.001 14.38 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99

.100 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92

.050 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32
23 .025 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73

.010 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30

.001 14.20 9.47 7.67 6.70 6.08 5.65 5.33 5.09 4.89

.100 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91

.050 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30
24 .025 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70

.010 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26

.001 14.03 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80

.100 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89

.050 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28
25 .025 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68

.010 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22

.001 13.88 9.22 7.45 6.49 5.89 5.46 5.15 4.91 4.71

.100 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88

.050 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
26 .025 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65

.010 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18

.001 13.74 9.12 7.36 6.41 5.80 5.38 5.07 4.83 4.64

.100 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87

.050 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
27 .025 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63

.010 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15

.001 13.61 9.02 7.27 6.33 5.73 5.31 5.00 4.76 4.57
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TABLE E

F critical values (continued)

Degrees of freedom in the numerator

10 12 15 20 25 30 40 50 60 120 1000

1.98 1.93 1.89 1.84 1.80 1.78 1.75 1.74 1.72 1.69 1.66
2.41 2.34 2.27 2.19 2.14 2.11 2.06 2.04 2.02 1.97 1.92
2.87 2.77 2.67 2.56 2.49 2.44 2.38 2.35 2.32 2.26 2.20
3.51 3.37 3.23 3.08 2.98 2.92 2.84 2.78 2.75 2.66 2.58
5.39 5.13 4.87 4.59 4.42 4.30 4.15 4.06 4.00 3.84 3.69

1.96 1.91 1.86 1.81 1.78 1.76 1.73 1.71 1.70 1.67 1.64
2.38 2.31 2.23 2.16 2.11 2.07 2.03 2.00 1.98 1.93 1.88
2.82 2.72 2.62 2.51 2.44 2.39 2.33 2.30 2.27 2.20 2.14
3.43 3.30 3.15 3.00 2.91 2.84 2.76 2.71 2.67 2.58 2.50
5.22 4.97 4.70 4.43 4.26 4.14 3.99 3.90 3.84 3.68 3.53

1.94 1.89 1.84 1.79 1.76 1.74 1.71 1.69 1.68 1.64 1.61
2.35 2.28 2.20 2.12 2.07 2.04 1.99 1.97 1.95 1.90 1.85
2.77 2.68 2.57 2.46 2.40 2.35 2.29 2.25 2.22 2.16 2.09
3.37 3.23 3.09 2.94 2.84 2.78 2.69 2.64 2.61 2.52 2.43
5.08 4.82 4.56 4.29 4.12 4.00 3.86 3.77 3.70 3.54 3.40

1.92 1.87 1.83 1.78 1.74 1.72 1.69 1.67 1.66 1.62 1.59
2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.94 1.92 1.87 1.82
2.73 2.64 2.53 2.42 2.36 2.31 2.25 2.21 2.18 2.11 2.05
3.31 3.17 3.03 2.88 2.79 2.72 2.64 2.58 2.55 2.46 2.37
4.95 4.70 4.44 4.17 4.00 3.88 3.74 3.64 3.58 3.42 3.28

1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.65 1.64 1.60 1.57
2.30 2.23 2.15 2.07 2.02 1.98 1.94 1.91 1.89 1.84 1.79
2.70 2.60 2.50 2.39 2.32 2.27 2.21 2.17 2.14 2.08 2.01
3.26 3.12 2.98 2.83 2.73 2.67 2.58 2.53 2.50 2.40 2.32
4.83 4.58 4.33 4.06 3.89 3.78 3.63 3.54 3.48 3.32 3.17

1.89 1.84 1.80 1.74 1.71 1.69 1.66 1.64 1.62 1.59 1.55
2.27 2.20 2.13 2.05 2.00 1.96 1.91 1.88 1.86 1.81 1.76
2.67 2.57 2.47 2.36 2.29 2.24 2.18 2.14 2.11 2.04 1.98
3.21 3.07 2.93 2.78 2.69 2.62 2.54 2.48 2.45 2.35 2.27
4.73 4.48 4.23 3.96 3.79 3.68 3.53 3.44 3.38 3.22 3.08

1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.62 1.61 1.57 1.54
2.25 2.18 2.11 2.03 1.97 1.94 1.89 1.86 1.84 1.79 1.74
2.64 2.54 2.44 2.33 2.26 2.21 2.15 2.11 2.08 2.01 1.94
3.17 3.03 2.89 2.74 2.64 2.58 2.49 2.44 2.40 2.31 2.22
4.64 4.39 4.14 3.87 3.71 3.59 3.45 3.36 3.29 3.14 2.99

1.87 1.82 1.77 1.72 1.68 1.66 1.63 1.61 1.59 1.56 1.52
2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.84 1.82 1.77 1.72
2.61 2.51 2.41 2.30 2.23 2.18 2.12 2.08 2.05 1.98 1.91
3.13 2.99 2.85 2.70 2.60 2.54 2.45 2.40 2.36 2.27 2.18
4.56 4.31 4.06 3.79 3.63 3.52 3.37 3.28 3.22 3.06 2.91

1.86 1.81 1.76 1.71 1.67 1.65 1.61 1.59 1.58 1.54 1.51
2.22 2.15 2.07 1.99 1.94 1.90 1.85 1.82 1.80 1.75 1.70
2.59 2.49 2.39 2.28 2.21 2.16 2.09 2.05 2.03 1.95 1.89
3.09 2.96 2.81 2.66 2.57 2.50 2.42 2.36 2.33 2.23 2.14
4.48 4.24 3.99 3.72 3.56 3.44 3.30 3.21 3.15 2.99 2.84

1.85 1.80 1.75 1.70 1.66 1.64 1.60 1.58 1.57 1.53 1.50
2.20 2.13 2.06 1.97 1.92 1.88 1.84 1.81 1.79 1.73 1.68
2.57 2.47 2.36 2.25 2.18 2.13 2.07 2.03 2.00 1.93 1.86
3.06 2.93 2.78 2.63 2.54 2.47 2.38 2.33 2.29 2.20 2.11
4.41 4.17 3.92 3.66 3.49 3.38 3.23 3.14 3.08 2.92 2.78

(Continued)
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TABLE E

F critical values (continued)

Degrees of freedom in the numerator

p 1 2 3 4 5 6 7 8 9

.100 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87

.050 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
28 .025 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61

.010 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12

.001 13.50 8.93 7.19 6.25 5.66 5.24 4.93 4.69 4.50

.100 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86

.050 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22
29 .025 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59

.010 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09

.001 13.39 8.85 7.12 6.19 5.59 5.18 4.87 4.64 4.45

.100 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85

.050 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21
30 .025 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57

.010 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07

.001 13.29 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39

.100 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79

.050 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
40 .025 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45

.010 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89

.001 12.61 8.25 6.59 5.70 5.13 4.73 4.44 4.21 4.02

.100 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.76

.050 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07
50 .025 5.34 3.97 3.39 3.05 2.83 2.67 2.55 2.46 2.38

.010 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78

D
eg

re
es

of
fr

ee
d

om
in

th
e

d
en

om
in

at
or

.001 12.22 7.96 6.34 5.46 4.90 4.51 4.22 4.00 3.82

.100 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74

.050 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04
60 .025 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33

.010 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72

.001 11.97 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69

.100 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.69

.050 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97
100 .025 5.18 3.83 3.25 2.92 2.70 2.54 2.42 2.32 2.24

.010 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59

.001 11.50 7.41 5.86 5.02 4.48 4.11 3.83 3.61 3.44

.100 2.73 2.33 2.11 1.97 1.88 1.80 1.75 1.70 1.66

.050 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93
200 .025 5.10 3.76 3.18 2.85 2.63 2.47 2.35 2.26 2.18

.010 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50

.001 11.15 7.15 5.63 4.81 4.29 3.92 3.65 3.43 3.26

.100 2.71 2.31 2.09 1.95 1.85 1.78 1.72 1.68 1.64

.050 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89
1000 .025 5.04 3.70 3.13 2.80 2.58 2.42 2.30 2.20 2.13

.010 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43

.001 10.89 6.96 5.46 4.65 4.14 3.78 3.51 3.30 3.13
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TABLE E

F critical values (continued)

Degrees of freedom in the numerator

10 12 15 20 25 30 40 50 60 120 1000

1.84 1.79 1.74 1.69 1.65 1.63 1.59 1.57 1.56 1.52 1.48
2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.79 1.77 1.71 1.66
2.55 2.45 2.34 2.23 2.16 2.11 2.05 2.01 1.98 1.91 1.84
3.03 2.90 2.75 2.60 2.51 2.44 2.35 2.30 2.26 2.17 2.08
4.35 4.11 3.86 3.60 3.43 3.32 3.18 3.09 3.02 2.86 2.72

1.83 1.78 1.73 1.68 1.64 1.62 1.58 1.56 1.55 1.51 1.47
2.18 2.10 2.03 1.94 1.89 1.85 1.81 1.77 1.75 1.70 1.65
2.53 2.43 2.32 2.21 2.14 2.09 2.03 1.99 1.96 1.89 1.82
3.00 2.87 2.73 2.57 2.48 2.41 2.33 2.27 2.23 2.14 2.05
4.29 4.05 3.80 3.54 3.38 3.27 3.12 3.03 2.97 2.81 2.66

1.82 1.77 1.72 1.67 1.63 1.61 1.57 1.55 1.54 1.50 1.46
2.16 2.09 2.01 1.93 1.88 1.84 1.79 1.76 1.74 1.68 1.63
2.51 2.41 2.31 2.20 2.12 2.07 2.01 1.97 1.94 1.87 1.80
2.98 2.84 2.70 2.55 2.45 2.39 2.30 2.25 2.21 2.11 2.02
4.24 4.00 3.75 3.49 3.33 3.22 3.07 2.98 2.92 2.76 2.61

1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.48 1.47 1.42 1.38
2.08 2.00 1.92 1.84 1.78 1.74 1.69 1.66 1.64 1.58 1.52
2.39 2.29 2.18 2.07 1.99 1.94 1.88 1.83 1.80 1.72 1.65
2.80 2.66 2.52 2.37 2.27 2.20 2.11 2.06 2.02 1.92 1.82
3.87 3.64 3.40 3.14 2.98 2.87 2.73 2.64 2.57 2.41 2.25

1.73 1.68 1.63 1.57 1.53 1.50 1.46 1.44 1.42 1.38 1.33
2.03 1.95 1.87 1.78 1.73 1.69 1.63 1.60 1.58 1.51 1.45
2.32 2.22 2.11 1.99 1.92 1.87 1.80 1.75 1.72 1.64 1.56
2.70 2.56 2.42 2.27 2.17 2.10 2.01 1.95 1.91 1.80 1.70
3.67 3.44 3.20 2.95 2.79 2.68 2.53 2.44 2.38 2.21 2.05

1.71 1.66 1.60 1.54 1.50 1.48 1.44 1.41 1.40 1.35 1.30
1.99 1.92 1.84 1.75 1.69 1.65 1.59 1.56 1.53 1.47 1.40
2.27 2.17 2.06 1.94 1.87 1.82 1.74 1.70 1.67 1.58 1.49
2.63 2.50 2.35 2.20 2.10 2.03 1.94 1.88 1.84 1.73 1.62
3.54 3.32 3.08 2.83 2.67 2.55 2.41 2.32 2.25 2.08 1.92

1.66 1.61 1.56 1.49 1.45 1.42 1.38 1.35 1.34 1.28 1.22
1.93 1.85 1.77 1.68 1.62 1.57 1.52 1.48 1.45 1.38 1.30
2.18 2.08 1.97 1.85 1.77 1.71 1.64 1.59 1.56 1.46 1.36
2.50 2.37 2.22 2.07 1.97 1.89 1.80 1.74 1.69 1.57 1.45
3.30 3.07 2.84 2.59 2.43 2.32 2.17 2.08 2.01 1.83 1.64

1.63 1.58 1.52 1.46 1.41 1.38 1.34 1.31 1.29 1.23 1.16
1.88 1.80 1.72 1.62 1.56 1.52 1.46 1.41 1.39 1.30 1.21
2.11 2.01 1.90 1.78 1.70 1.64 1.56 1.51 1.47 1.37 1.25
2.41 2.27 2.13 1.97 1.87 1.79 1.69 1.63 1.58 1.45 1.30
3.12 2.90 2.67 2.42 2.26 2.15 2.00 1.90 1.83 1.64 1.43

1.61 1.55 1.49 1.43 1.38 1.35 1.30 1.27 1.25 1.18 1.08
1.84 1.76 1.68 1.58 1.52 1.47 1.41 1.36 1.33 1.24 1.11
2.06 1.96 1.85 1.72 1.64 1.58 1.50 1.45 1.41 1.29 1.13
2.34 2.20 2.06 1.90 1.79 1.72 1.61 1.54 1.50 1.35 1.16
2.99 2.77 2.54 2.30 2.14 2.02 1.87 1.77 1.69 1.49 1.22
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Table entry for p is the
critical value (χ2)∗ with
probability p lying to its
right.

Probability p

( 2)*χ

TABLE F

χ2 distribution critical values

Tail probability p

df .25 .20 .15 .10 .05 .025 .02 .01 .005 .0025 .001 .0005

1 1.32 1.64 2.07 2.71 3.84 5.02 5.41 6.63 7.88 9.14 10.83 12.12
2 2.77 3.22 3.79 4.61 5.99 7.38 7.82 9.21 10.60 11.98 13.82 15.20
3 4.11 4.64 5.32 6.25 7.81 9.35 9.84 11.34 12.84 14.32 16.27 17.73
4 5.39 5.99 6.74 7.78 9.49 11.14 11.67 13.28 14.86 16.42 18.47 20.00
5 6.63 7.29 8.12 9.24 11.07 12.83 13.39 15.09 16.75 18.39 20.51 22.11
6 7.84 8.56 9.45 10.64 12.59 14.45 15.03 16.81 18.55 20.25 22.46 24.10
7 9.04 9.80 10.75 12.02 14.07 16.01 16.62 18.48 20.28 22.04 24.32 26.02
8 10.22 11.03 12.03 13.36 15.51 17.53 18.17 20.09 21.95 23.77 26.12 27.87
9 11.39 12.24 13.29 14.68 16.92 19.02 19.68 21.67 23.59 25.46 27.88 29.67

10 12.55 13.44 14.53 15.99 18.31 20.48 21.16 23.21 25.19 27.11 29.59 31.42
11 13.70 14.63 15.77 17.28 19.68 21.92 22.62 24.72 26.76 28.73 31.26 33.14
12 14.85 15.81 16.99 18.55 21.03 23.34 24.05 26.22 28.30 30.32 32.91 34.82
13 15.98 16.98 18.20 19.81 22.36 24.74 25.47 27.69 29.82 31.88 34.53 36.48
14 17.12 18.15 19.41 21.06 23.68 26.12 26.87 29.14 31.32 33.43 36.12 38.11
15 18.25 19.31 20.60 22.31 25.00 27.49 28.26 30.58 32.80 34.95 37.70 39.72
16 19.37 20.47 21.79 23.54 26.30 28.85 29.63 32.00 34.27 36.46 39.25 41.31
17 20.49 21.61 22.98 24.77 27.59 30.19 31.00 33.41 35.72 37.95 40.79 42.88
18 21.60 22.76 24.16 25.99 28.87 31.53 32.35 34.81 37.16 39.42 42.31 44.43
19 22.72 23.90 25.33 27.20 30.14 32.85 33.69 36.19 38.58 40.88 43.82 45.97
20 23.83 25.04 26.50 28.41 31.41 34.17 35.02 37.57 40.00 42.34 45.31 47.50
21 24.93 26.17 27.66 29.62 32.67 35.48 36.34 38.93 41.40 43.78 46.80 49.01
22 26.04 27.30 28.82 30.81 33.92 36.78 37.66 40.29 42.80 45.20 48.27 50.51
23 27.14 28.43 29.98 32.01 35.17 38.08 38.97 41.64 44.18 46.62 49.73 52.00
24 28.24 29.55 31.13 33.20 36.42 39.36 40.27 42.98 45.56 48.03 51.18 53.48
25 29.34 30.68 32.28 34.38 37.65 40.65 41.57 44.31 46.93 49.44 52.62 54.95
26 30.43 31.79 33.43 35.56 38.89 41.92 42.86 45.64 48.29 50.83 54.05 56.41
27 31.53 32.91 34.57 36.74 40.11 43.19 44.14 46.96 49.64 52.22 55.48 57.86
28 32.62 34.03 35.71 37.92 41.34 44.46 45.42 48.28 50.99 53.59 56.89 59.30
29 33.71 35.14 36.85 39.09 42.56 45.72 46.69 49.59 52.34 54.97 58.30 60.73
30 34.80 36.25 37.99 40.26 43.77 46.98 47.96 50.89 53.67 56.33 59.70 62.16
40 45.62 47.27 49.24 51.81 55.76 59.34 60.44 63.69 66.77 69.70 73.40 76.09
50 56.33 58.16 60.35 63.17 67.50 71.42 72.61 76.15 79.49 82.66 86.66 89.56
60 66.98 68.97 71.34 74.40 79.08 83.30 84.58 88.38 91.95 95.34 99.61 102.7
80 88.13 90.41 93.11 96.58 101.9 106.6 108.1 112.3 116.3 120.1 124.8 128.3

100 109.1 111.7 114.7 118.5 124.3 129.6 131.1 135.8 140.2 144.3 149.4 153.2



Answers to Odd-Numbered Exercises

CHAPTER 1

1.1 Exam1 = 95, Exam2 = 98, Final = 96.

1.3 Cases: apartments. Five variables: rent (quantitative),
cable (categorical), pets (categorical), bedrooms
(quantitative), distance to campus (quantitative).

1.5 Scores are slightly left-skewed; most range from 70 to
the low 90s.

1.7 The larger classes hide a lot of detail.

1.9 A stemplot or histogram can be used; the distribution
is left-skewed, centered near 80, and spread from 55 to 98.

1.13 For example, heart rate before and after exercise,
number of sit-ups, time to run 100 m.

1.15 For example, blue is by far the most popular choice;
70% of respondents chose 3 of the 10 options.

1.17 (a) 232 total respondents; 4.31%, 41.81%, 30.17%,
15.52%, 6.03%, 2.16%. (c) For example, 87.5% of the group
were between 19 and 50. (d) The age-group classes do not
have equal width.

1.21 (a) Alaska, 5.7%; Florida, 17.6%. (b) Symmetric,
centered near 13%, spread from 8.5% to 15.6%.

1.23 359 mg/dl is an outlier; only four are in the desired
range.

1.25 Roughly symmetric, centered near 7, spread from 2
to 13.

1.27 There are three peaks; presumably, the lowest group
includes public institutions; the highest group, exclusive
private schools like Harvard; and the middle group, other
private schools.

1.29 (a) The default histogram has 25 intervals (but the
applet may have been revised after these answers were
written). The nine-class histogram might not be an exact
match. (b) Click-and-drag the mouse to the far right to see
the maximum number of classes. (c) Opinions of which
histogram is “best” will vary.

1.31 Both plots show random fluctuation. Pasadena
temperatures show an upward trend. Redding
temperatures are initially similar to Pasadena’s but
dropped in the mid-1980s.

1.35 Right-skewed, centered near 5 or 6, spread from 0 to
18, no outliers.

1.37 Top-left histogram, 4; top right, 2; bottom left, 1;
bottom right, 3.

1.39 Use a stemplot or a histogram. Right-skewed, center
near 30 or 40 thousand barrels, with two or three high
outliers; apart from these, the numbers are spread from 2
to 118.2 thousand barrels.

1.41 (a) Most people will “round” their answers when
asked to give an estimate like this, and some may
exaggerate. (b) The stemplots and midpoints (175 for
women, 120 for men) suggest that women (claim to) study
more than men.

1.43 (a) Four variables: GPA, IQ, and self-concept are
quantitative; gender is categorical. (c) Skewed to the left,
centered near 7.8, spread from 0.5 to 10.8. (d) There is
more variability among the boys; in fact, there seem to be
two groups of boys: those with GPAs below 5 and those
with GPAs above 5.

1.45 Skewed to the left, centered near 59.5; most scores
are between 35 and 73, with a few below that and one high
score of 80 (probably not quite an outlier).

1.47 x = 82.1.

1.49 Q1 = 75, Q3 = 92.

1.51 Use the five-number summary from Exercise 1.50
(55, 75, 82.5, 92, 98).

1.53 s2 .= 157.43 and s
.= 12.55.

1.55 950/4 = 237.5 points.

1.57 (a) Min = Q1 = 0, M = 5.085, Q3 = 9.47, Max
= 73.2. (d) The distribution is sharply right-skewed. The
histogram seems to convey the distribution better.

1.59 Min = 0.24, Q1 = 0.355, M = 0.76, Q3 = 1.03, Max
= 1.9. The distribution is right-skewed. A histogram or
stemplot reveals an important feature not evident from a
boxplot: this distribution has two peaks.

1.61 Five-number summary: $4123, $15,717, $20,072,
$27,957.5, $29,875. This and the boxplot do not reveal the
three groups of schools visible in the histogram.

1.63 (a) Five-number summary (1999 dollars): 0, 2.14,
10.64, 40.96, 88.6. The large gaps between the higher
numbers show the skew. (b) The IQR is 38.82; no
observations fall below −56.09 or above 99.19. (c) The
mean is 21.95 (1999 dollars); the right-skew makes it much
larger than the median.

1.65 This distribution would almost surely be strongly
skewed to the right.

1.67 x = $62,500; seven of the eight employees earned less
than the mean. M = $25,000.

1.69 The mean rises to $87,500, while the median is
unchanged.

1.71 Means are not the appropriate measure of center for
skewed distributions.

1.73 (a) pH: x
.= 5.4256 and s

.= 0.5379. Density:
x

.= 5.4479 and s
.= 0.2209. (b) Medians: 5.44 and 5.46.

A-1
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1.75 The mean and median always agree for two
observations.

1.77 (a) Place the new point at the current median.

1.79 (a) Bihai: x
.= 47.5975, s

.= 1.2129. Red: x
.= 39.7113,

s
.= 1.7988. Yellow: x

.= 36.1800, s
.= 0.9753 (all in mm).

(b) Bihai and red appear to be right-skewed (although it is
difficult to tell with such small samples).

1.81 All four distributions are symmetric with no outliers.
The comparison should include at least the four means:
147, 130, 116, and 103 bpm. The average heart rate for
runners is about 30 bpm less than the average sedentary
rate.

1.83 Positions 748 and 14,211; about $13,000 and
$137,000.

1.85 The five-number summary is 1, 3, 4, 5, and 12 letters.

1.87 Take six or more numbers, with the largest number
much larger than Q3.

1.89 (a) Any set of four identical numbers works. (b) 0, 0,
20, 20 is the only possible answer.

1.91 Five-number summary: 43, 82.5, 102.5, 151.5, and
598 days. Typical guinea pig lifetimes were 82.5 to 151.5
days, but some live quite a bit longer.

1.93 Multiply each value by 0.03937.

1.95 80, 99, 114, and 178 days.

1.97 Full data set: x = 141.8 and M = 102.5 days. 10%
trimmed mean: x∗ = 118.16 days. 20% trimmed mean:
x∗∗ = 111.68 days.

1.99 470 to 674.

1.101 z = 0.55.

1.103 Using Table A, the proportion below 600 is 0.7088,
and the proportion at or above is 0.2912.

1.105 About 655.9.

1.109 (a) 1/4. (b) 0.25. (c) 0.5.

1.111 (a) Mean C, median B. (b) Mean A, median A.
(c) Mean A, median B.

1.113 (a) 0.6826; the 68–95–99.7 rule gives 0.68. (b) 0.9544
(compared to 0.95); 0.9974 (compared to 0.997).

1.115 (a) 327 to 345 days. (b) 16%.

1.117 Women, z = 2.96; men, z = 0.96.

1.119 x = 5.4256 and s = 0.5379; 67.62% within x − s and
x + s, 95.24% within x ± 2s, and all within x ± 3s.

1.121 (a) 0.0287. (b) 0.9713. (c) 0.0606. (d) 0.9107.

1.123 (a) 1.0364. (b) 0.2533.

1.125 About 2.5%.

1.127 Jacob’s score (z = −0.7917) is higher than Emily’s
(z = −1.6555).

1.129 About 1383.

1.131 21st percentile.

1.133 24.8 (round to 25) or above.

1.135 850, 973, 1079, and 1202.

1.137 Above 240 mg/dl: about 31%. Between 200 and 240
mg/dl: about 41%.

1.139 (a) About 5.2%. (b) About 54.7%. (c) More than 279
days.

1.141 (a) About 1.35. (b) 1.35.

1.143 The plot is nearly linear. Because heart rate is
measured in whole numbers, there is a slight “step”
appearance to the graph.

1.145 The plot is reasonably close to a line, apart from the
stair-step appearance, presumably due to limited accuracy
of the measuring instrument.

1.147 The plot suggests no major deviations from
Normality, although the three lowest measurements
don’t quite fall in line with the other points.

1.149 The first plot is nearly linear; the other two each
show a low value.

1.151 Histograms will suggest (but not exactly match)
Figure 1.35. The uniform distribution does not extend as
low or as high as a Normal distribution.

1.153 The given description is true on the average, but
the curves (and a few calculations) give a more complete
picture. For example, a score of about 675 is about the
97.5th percentile for both genders, so the top boys and
girls have very similar scores.

1.155 Slightly right-skewed, with one (or more) high
outliers. Five-number summary: 22, 23.735, 24.31, 24.845,
and 28.55 hours.

1.157 Many (but fewer than half) of the students were 19.

1.159 Women’s weights are right-skewed.

1.161 (a) About 20% of low-income and 33% of high-
income households. (b) The majority of low-income
households, but only about 7% of high-income households,
consist of one person. One-person households often have
less income because the people are young and have no job
or have only recently started working.

1.163 No to both questions; no summary can exactly
describe a distribution that can include any number of
values.

1.165 (a) The number of home runs by the major league
leader each year declines sharply and steadily. (b) Ruth led
for a longer time and appears to have set a new standard
for other players.

1.167 (a) xnew = −50 + 2x. (b) xnew = −49.0909 + 1.8182x.
(c) David (106) is higher than Nancy (92.7). (d) About 62%
of third-graders and 36% of sixth-graders.

1.169 (a) The plot would be linear in the middle. The
outliers would show up as a point in the lower left below
the line and a point in the upper right above the line.

1.173 Men seem to have higher SATM scores than women;
women generally have higher GPAs. All four distributions



Answers to Odd-Numbered Exercises
•

A-3

are close to Normal; female SATM and both GPA sets have
low outliers.

CHAPTER 2

2.1 Students.

2.3 Cases: cups of Mocha Frappuccino. Variables: size and
price (both quantitative).

2.5 (a) “Month” (the passage of time) explains changes in
temperature (not vice versa). (b) Temperature increases
linearly with time (about 10 degrees per month); the
relationship is strong.

2.7 (a) The second test happens before the final
exam. (b) The plot shows a weak positive association.
(c) Students’ study habits are more established by the
middle of the term.

2.9 (a) Explanatory: age. Response: weight. (b) Explore
the relationship. (c) Explanatory: number of bedrooms.
Response: price. (d) Explanatory: amount of sugar.
Response: sweetness. (e) Explore the relationship.

2.11 (a) In general, we expect more intelligent children to
be better readers, and less intelligent children to be weaker
readers. The plot does show this positive association.
(b) These four have moderate IQs but poor reading scores.
(c) Roughly linear but weak (much scatter).

2.13 (a) The response variable (estimated level) can take
only the values 1, 2, 3, 4, 5. (b) The association is (weakly)
positive. (c) The estimate is 4, which is an overestimate;
that child had the lowest score on the test.

2.15 (a) Areas with many breeding pairs would
correspondingly have more males that might potentially
return. (c) The theory suggests a negative association; the
scatterplot shows this.

2.17 A fairly strong, positive, linear association; social
exclusion does appear to trigger a pain response.

2.19 (a) The Lakers and the Knicks are high in both
variables (but fit the pattern). The Grizzlies, Cavaliers,
and Rockets have slightly higher value than their revenues
would suggest. The association is positive and linear.
(b) The Lakers and Knicks still stand out, as do the
Bulls and Trailblazers, but the association is quite weak.
Revenue is a better predictor of value.

2.21 (b) The association is linear and positive, and is
stronger for women. Males typically have larger values for
both variables.

2.23 The plot shows a fairly steady rate of improvement
until the mid-1980s, with much slower progress after that.

2.25 (a) Both show fairly steady improvement. Women
have made more rapid progress, but their progress seems
to have slowed, while men’s records may be dropping more
rapidly in recent years. (b) The data support the first claim
but do not seem to support the second.

2.27 (b) Technology. (c) No; positive/negative only make
sense when both variables are quantitative.

2.29 (a) Price is explanatory; the plot shows a positive
linear association. (b) r = 0.955.

2.31 (a) r = 0.5194. (b) This correlation is much larger
(farther from 0) than the first.

2.33 The correlation increases.

2.35 Closest to 0.6.

2.37 No; units do not affect correlation.

2.39 (a) Value and revenue: r1 = 0.9265. Value and
income: r2 = 0.2107. This agrees with conclusions from
the scatterplots. (b) Without Portland, r2 = 0.3469.
The removal of this point makes the scatterplot appear
(slightly) more linear.

2.41 (a) Positive, but not close to 1. (b) r = 0.5653. (c) r
would not change; it does not tell us that the men were
generally taller. (d) r would not change. (e) 1.

2.43 (a) r = ±1 for a line. (c) Leave some space above
your vertical stack. (d) The curve must be higher at the
right than at the left.

2.45 (a) The Insight seems to fit the line. (b) Without:
0.9757. With: 0.9934. The Insight increases the strength of
the association.

2.47 r = 1 for a positively sloped line.

2.49 There is little linear association between research
and teaching—for example, knowing a professor is a good
researcher gives little information about whether she is a
good or bad teacher.

2.51 Both relationships are somewhat linear; GPA/IQ
(r = 0.6337) is stronger than GPA/self-concept (r = 0.5418).
The two students with the lowest GPAs stand out in both
plots; a few others stand out in at least one plot. Generally
speaking, removing these points raises r, except for the
lower-left point in the self-concept plot.

2.53 This line lies almost entirely above the points in the
scatterplot.

2.55 The first and last predictions would not be
trustworthy.

2.57 (a) y = 35. (b) y increases by 5. (c) 10.

2.59 (b) Final = 60.5 + 0.614× Second.

2.61 The regression line should be similar.

2.63 (a) 4.2255 km3 per year. (b) −271 km3. (c) 617 km3;
the prediction error is about 63 km3. (d) There are high
spikes in the time plot in these two years.

2.65 (b) x = 1997.6667, y = 272.1667, sx = 6.0222,
sy = 6.0470, r = 0.9739, and ŷ = −1681 + 0.9779x. This
line explains about 95% of the variation.

2.67 (a) ŷ = 0.06078x − 0.1261. (b) ŷ
.= 0 (the formula

gives −0.0045). (c) 77%.

2.69 For the slower flow rate (8903), icicles grow at 0.158
cm per minute; for 8905, the growth rate is 0.0911 cm/min.
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2.71 No; the scatterplot shows little or no association,
and regression explains only 1.3% of the variation in stock
return.

2.73 For metabolic rate on body mass, the slope is 26.9
cal/day per kg. For body mass on metabolic rate, the slope
is 0.0278 kg per cal/day.

2.75 ŷ = 33.67 + 0.54x. The predicted height is 69.85
inches.

2.77 (a) x = 95 and sx = 53.3854 minutes; y = 12.6611
and sy = 8.4967 cm; r = 0.9958 (no units). (b) y = 32.1591
and sy = 21.5816 inches; r is unchanged. (c) 0.4025
inches/minute.

2.79 r = 0.40.

2.81 (b) The slope is 0.000051; the plot suggests a
horizontal line (slope 0). (c) Storing the oil doesn’t help, as
the total toxin level does not change over time.

2.83 The sum is 0.01.

2.85 (a) The plot is curved (low at the beginning and end
of the year, high in the middle). (b) ŷ = 39.392 + 1.4832x;
it does not fit well. (c) Residuals are negative for January
through March and October through December, and
positive from April to September. (d) A similar pattern
would be expected in any city that is subject to seasonal
temperature variation. (e) Seasons in the Southern
Hemisphere are reversed.

2.87 (b) No, because the pattern is not linear. (c) The sum
is 0.01. The first two and last four residuals are negative,
and those in the middle are positive.

2.89 The variation of individual data increases the scatter,
thus decreasing the strength of the relationship.

2.91 For example, a student who in the past might have
received a grade of B (and a lower SAT score) now receives
an A (but has a lower SAT score than an A student in the
past).

2.93 r = 0.08795 and b = 0.000811 kg/cal.

2.95 (a) Player 7’s point is influential. (b) The first line
omits Player 7.

2.97 (b) ŷ = 6.47 + 1.01x. (c) The largest residuals are
the Porsche Boxster (2.365) and Lamborghini Murcielago
(−2.545). (d) The Insight pulls the line toward its point.

2.99 Without the Insight, ŷ = 4.87 + 1.11x. For city
mileages between 10 and 30 MPG, the difference in
predicted highway mileage (with or without the Insight) is
no more than 1.4 MPG, so the Insight is not very influential;
it falls near the line suggested by the other points.

2.101 (a) Drawing the “best line” by eye is a very
inaccurate process.

2.103 The plot should show a positive association when
either group of points is viewed separately and should
show a large number of bachelor’s degree economists in
business and graduate degree economists in academia.

2.105 1684 are binge drinkers; 8232 are not.

2.107 8232/17,096 .= 0.482.

2.109 1630/7180
.= 0.227.

2.111 (a) About 3,388,000. (b) 0.207, 0.024; 0.320, 0.071;
0.104, 0.104; 0.046, 0.125. (c) 0.230, 0.391, 0.208, 0.171.
(d) 0.677, 0.323.

2.113 Full-time: 0.305, 0.472, 0.154, 0.069. Part-time:
0.073, 0.220, 0.321, 0.386.

2.115 Two-year FT: 0.479, 0.521. Two-year PT: 0.458,
0.542. Four-year FT: 0.466, 0.534. Four-year PT: 0.394,
0.606. Graduate school: 0.455, 0.545. Vocational school:
0.539, 0.461.

2.117 Start by setting a equal to any number from 0 to
200.

2.119 (a) 51.1%. (b) Small, 41.7%; medium, 51.7%; large,
60.0%. (d) Small, 39.8%; medium, 33.0%; large, 27.3%.

2.121 Success (nonrelapse) rates were 58.3%
(desipramine), 25.0% (lithium), and 16.7% (placebo).

2.123 Age is one lurking variable: married men are
generally older.

2.125 No; self-confidence and improving fitness could be
a common response to some other personality trait, or
high self-confidence could make a person more likely to
join the exercise program.

2.127 Students with music experience may have other
advantages (wealthier parents, better school systems, etc.).

2.129 The diagram should show that either chemical
exposure or time standing up or both or neither affect
miscarriages.

2.131 Spending more time watching TV means that less
time is spent on other activities; this may suggest lurking
variables.

2.133 (a) Given two groups of the same age, where one
group walks and the other does not, the walkers are half
as likely to die in (say) the next year. (b) Men who choose
to walk might also choose (or have chosen, earlier in life)
other habits and behaviors that reduce mortality.

2.135 A school that accepts weaker students but graduates
a higher-than-expected number of them would have a
positive residual, while a school with a stronger incoming
class but a lower-than-expected graduation rate would
have a negative residual. It seems reasonable to measure
school quality by how much benefit students receive from
attending the school.

2.137 (a) The scatterplot shows a moderate positive
association. (b) The regression line (y = 1.1353x + 4.5503)
fits the overall trend. (c) For example, a state whose
point falls above the line has a higher percent of college
graduates than we would expect based on the percent who
eat 5 servings of fruits and vegetables. (d) No; association
is not evidence of causation.

2.141 These results support the idea (the slope is negative),
but the relationship is only moderately strong (r2 = 0.34).
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2.143 (a) One possible measure is mean response:
106.2 spikes/second for pure tones, 176.6 spikes/second
for monkey calls. (b) ŷ = 93.9 + 0.778x. The third point
has the largest residual. The first point is an outlier in
the x direction. (c) The correlation drops only slightly
(from 0.6386 to 0.6101) when the third point is removed; it
drops more drastically (to 0.4793) without the first point.
(d) Without the first point, the line is ŷ = 101 + 0.693x;
without the third point, it is ŷ = 98.4 + 0.679x.

2.145 Based on the quantile plot, the distribution is close
to Normal.

2.147 (a) Lines appear to fit the data well; there do not
appear to be any outliers or influential points. (b) 18.9 ft3

before, 15.7 ft3 after. (c) 770.4 ft3 before, 634.8 ft3 after.
(d) About $50.44.

2.149 (a) ŷ = 259.58 − 19.464x; the relationship appears
to be curved. (b) Either ŷ = 5.9732 − 0.2184x or
ŷ = 2.5941 − 0.09486x; the relationship appears to be
linear.

2.151 It is now more common for these stocks to rise and
fall together.

2.153 Number of firefighters and amount of damage are
common responses to the seriousness of the fire.

2.155 ŷ = 1.28 + 0.00227x, r = 0.252, and r2 = 6.3%. By
itself, SATM does not give reliable predictions of GPA.

2.157 A notably higher percent of women are “strictly
voluntary” participants.

2.159 (a) Males: 490 admitted, 310 not. Females: 400
admitted, 300 not. (b) Males: 61.25% admitted. Females:
57.14% admitted. (c) Business school: 66.67% of males,
66.67% of females. Law school: 45% of males, 50% of
females. (d) Most male applicants apply to the business
school, where admission is easier. More women apply to
the law school, which is more selective.

2.161 First- and second-year: A has 8.3% small classes;
B has 17.1% small. Upper-level: A has 77.5% small; B has
83.3% small.

2.163 There is some suggestion that sexual ads are more
common in magazines intended for young-adult readers,
but the difference in percents is fairly small.

2.165 (a) Wagering on collegiate sports appears to be
more common in Division II, and even more in Division
III. (b) Even with smaller sample sizes (1000 or more),
the estimates should be fairly accurate (barring dishonest
responses). (c) Our conclusion might not hold for the true
percents.

CHAPTER 3

3.1 Any group of friends is unlikely to include a
representative cross section of all students.

3.3 A computer programmer (and his friends) are not
representative of all young people.

3.7 This is an observational study. Explanatory variable:
cell phone usage. Response variable: presence/absence of
brain cancer.

3.9 An experiment: each subject is (presumably randomly)
assigned to a treatment group. Explanatory variable:
teaching method. Response variable: change in each
student’s test score.

3.11 Experimental units: food samples. Treatments:
radiation exposure. Response variable: lipid oxidation.
Factor: radiation exposure. Levels: nine different levels of
radiation. It is likely that different lipids react to radiation
differently.

3.13 Those who volunteer to use the software may be
better students (or worse).

3.17 (a) Students in the front rows have a different
classroom experience from those in the back. (And if
they chose their own seats, those who choose seats in
the front may be different from those who choose back
seats.) (b) There is no control group. (c) It is hard to
compare different classes (zoology and botany) in different
semesters.

3.19 Those evaluating the exams should not know which
teaching approach was used, and the students should not
be told that they are being taught using the new (or old)
method.

3.21 Possible response variables include increase in
weight or height, number of leaves, etc.

3.23 Experimental units: pine tree seedlings. Factor:
amount of light. Treatments: full light, or shaded to 5% of
normal. Response variable: dry weight at end of study.

3.25 Subjects: adults from selected households. Factors:
level of identification and offer of survey results. Six
treatments: interviewer’s name/university name/both
names, with or without results. Response variable: whether
or not the interview is completed.

3.27 Assign 9 subjects to each treatment. The first three
groups are 03, 22, 29, 26, 01, 12, 11, 31, 21; 32, 30, 09, 23,
07, 27, 20, 06, 33; 05, 16, 28, 10, 18, 13, 25, 19, 04.

3.29 (a) Randomly assign 7 rats to each group. (b) Group
1 includes rats 16, 04, 21, 19, 07, 10, and 13. Group 2 is 15,
05, 09, 08, 18, 03, and 01.

3.31 Assign 6 schools to each treatment group. Choose
16, 21, 06, 12, 02, 04 for Group 1; 14, 15, 23, 11, 09, 03 for
Group 2; 07, 24, 17, 22, 01, 13 for Group 3; and the rest for
Group 4.

3.33 (a) There are three factors (roller type, dyeing cycle
time, and temperature), yielding eight treatments and
requiring 24 fabric specimens.

3.35 (a) Population = 1 to 150, sample size 25, then
click “Reset” and “Sample.” (b) Without resetting, click
“Sample” again.
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3.37 The first design is an experiment, while the second
is an observational study; with the first, any difference in
colon health between the two groups could be attributed
to the treatment (bee pollen or not).

3.39 (a) See the definitions in this chapter.

3.41 There are nine treatments. Choose the number of
letters in each group, and send them out at random times
over several weeks.

3.43 Each player runs through the sequence (100 yards,
four times) once with oxygen and once without (on
different days to allow full recovery); observe the difference
in times on the final run. We choose 12, 13, 04, 18, 19, 16,
02, 08, 17, 10 for the oxygen-first group.

3.45 (a) Randomly assign half the girls to get high-calcium
punch; the other half will get low-calcium punch. Observe
how each group processes the calcium. (b) Half receive
high-calcium punch first; the rest get low-calcium punch
first. For each subject, compute the difference in the
response variable for each level. Matched pairs designs
give more precise results. (c) The first five subjects are 38,
44, 18, 33, and 46.

3.47 (a) A block design. (c) Such results would rarely have
occurred by chance if vitamin C were ineffective.

3.49 Population: area forest owners. Sample: the 772
forest owners contacted. Response rate: 348/772 = 45%.
Additionally, we would like to know the sample design
(among other things).

3.53 (a) The content of a single chapter is not random;
choose random words from random pages. (b) Students
who are registered for a 7:30 class might have different
characteristics from those who avoid such classes.
(c) Alphabetic order is not random; for example, some last
names occur more often in some ethnic groups.

3.55 (a) Population: U.S. adults. Sample size: 1001.
(b) Note that polls like this sometimes report results only
for “those expressing an opinion.” One can argue for either
approach.

3.57 12, 14, 11, 16, and 08.

3.59 Population = 1 to 200, sample size 25, then click
“Reset” and “Sample.”

3.61 39 (block 3020), 10 (block 2003), 07 (block 2000), 11
(block 2004), and 20 (block 3001).

3.63 The simplest method is to assign the labels 0 to 5 to
blocks in Group 1, then choose one of those blocks; use the
last two digits of the blocks in Group 2, and choose two of
those, etc.

3.65 Each student has chance 1/45 of being selected, but
it is not an SRS, because the only possible samples have
exactly one name from the first 45, one name from the
second 45, and so on.

3.67 Assign labels 01 to 36 for the Climax 1 group, 01 to
72 for the Climax 2 group, and so on, then choose (from

Table B) 12, 32, 13, 04; 51, 44, 72, 32, 18, 19, 40; 24, 28, 23;
and 29, 12, 16, 25.

3.69 Each student has a 10% chance, but the only possible
samples are those with 3 older and 2 younger students.

3.71 The higher no-answer was probably the second
period—more families are likely to be gone for vacations,
etc.

3.73 (a) 1260 responses. (b) 50.08%, 44.76%, and 5.16%.
(c) We have the opinions only of those who visit this site
and feel strongly enough to respond.

3.75 The first wording brought the higher numbers in
favor of a tax cut.

3.79 Population: undergraduate college students. Sample:
2036 students.

3.81 The larger sample would have less sampling
variability.

3.83 (a) Population: college students. Sample: 17,096
students. (b) Population: restaurant workers. Sample: 100
workers. (c) Population: longleaf pine trees. Sample: 584
trees.

3.85 (a) Smaller sample sizes give less information about
the population. (b) The margin of error was so large that
the results could not be viewed as an accurate reflection of
the population of Cubans.

3.87 (a) The variability will be the same for all states.
(b) There would be less variability for states with larger
samples.

3.89 The histograms should be centered at about 0.6 and
0.2.

3.93 (a) Mean GPA 2.6352, standard deviation 0.7794.

3.95 (a) If, for example, eight heads are observed, then
p̂ = 8

20 = 0.4 = 40%.

3.97 (a) A nonscientist might raise different viewpoints
and concerns from those considered by scientists.

3.105 Interviews conducted in person cannot be
anonymous.

3.113 (a) 00001 through 14959. (b) 03638, 07871, 12193.

3.115 (a) A matched pairs design. (b) A stratified sample
survey. (c) A block design.

3.117 This is an experiment, because treatments are
assigned. Explanatory variable: price history (steady or
fluctuating). Response variable: price the subject expects
to pay.

3.121 Randomly choose the order in which the treatments
(gear and steepness combination) are tried.

3.123 (a) One possibility: full-time undergraduate
students in the fall term on a list provided by the registrar.
(b) One possibility: a stratified sample with 125 students
from each year. (c) Nonresponse might be higher with
mailed (or emailed) questionnaires; telephone interviews
exclude some students and may require repeated calling
for those who are not home; face-to-face interviews might
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be too costly. The topic might also be subject to response
bias.

3.125 (a) Factors: storage method (fresh, room
temperature for one month, refrigerated for one month)
and preparation method (cooked immediately or after
one hour). This makes six treatments (storage/preparation
combinations). Response variables: tasters’ color and
flavor ratings. (b) Randomly allocate n potatoes to each
of the 6 groups, then compare ratings. (c) For each taster,
randomly choose the order in which the fries are tasted.

3.127 Parents who fail to return the consent form may be
more likely to place less priority on education.

CHAPTER 4

4.1 The proportion of heads is 0.55.

4.3 If you hear music (or talking) one time, you will almost
certainly hear the same thing for several more checks after
that.

4.11 One possibility: from 36 to 90 inches (largest and
smallest numbers could vary but should include all
possible heights).

4.13 0.77.

4.15 0.523.

4.17 1/4.

4.19 There are 6 possible outcomes: {link1, link2, link3,
link4, link5, leave}.
4.21 (a) 0.45, so the sum equals 1. (b) 0.56.

4.23 (a) The probabilities sum to 2. (b) Legitimate (for a
nonstandard deck). (c) Legitimate (for a nonstandard die).

4.25 (a) 0.28. (b) 0.88.

4.27 0.1333 for 1, 1/6 for 2 through 5, and 0.2 for 6.

4.29 Take each blood type probability and multiply by 0.84
and by 0.16. For example, the probability for O-positive
blood is (0.45)(0.84) = 0.378.

4.31 (a) 1/38 (all are equally likely). (b) 18/38. (c) 12/38.

4.33 (a) 10,000. (b) 0.3439.

4.35 About 0.38 (0.3773).

4.37 The two events (being 75 or older and being a
woman) are probably not independent.

4.39 (a) 0.2746. (b) 0.35. (c) 0.545.

4.41 Observe that P(A and Bc) = P(A) − P(A and B) =
P(A) − P(A)P(B).

4.43 (a) Either B or O. (b) P(B) = 0.75, P(O) = 0.25.

4.45 (a) 0.25. (b) 0.015625; 0.140625.

4.47 Possible values: 0, 1, 2. Probabilities: 1/4, 1/2, 1/4.

4.49 (a) Continuous. (b) Discrete. (c) Discrete.

4.51 (b) P(X ≥ 1) = 0.9. (c) “No more than two nonword
errors.” P(X ≤ 2) = 0.7; P(X < 2) = 0.4.

4.53 Rented housing typically has fewer rooms and has a
sharply skewed distribution.

4.55 (a) P(X ≥ 6) = 0.658. (b) “The unit has more than
6 rooms.” P(X > 6) = 0.434. (c) Pay attention to whether
you have “greater than” or “greater than or equal to.”

4.57 Y can be 1, 2, 3, . . . , 12, each with probability 1/12.

4.59 (a) 0, 1, 2, or 3. (b) DDD (probability 0.3890); DDF,
DFD, and FDD (probability 0.1439); FFD, FDF, and DFF
(probability 0.0532); FFF (probability 0.0197). (c) The
probabilities for W are 0.3890, 0.4316, 0.1597, and 0.0197.

4.61 (a) 0.4. (b) 0.4. (c) “Equal to” has no effect on the
probability.

4.63 (a) The height should be 1/2. (b) 0.75. (c) 0.55.
(d) 0.55.

4.65 Very close to 1.

4.67 Possible values: $0 and $1. Probabilities: 0.5 and 0.5.
Mean: $0.50.

4.69 μY = 95.

4.71 σ 2
X = 1 and σX = 1.

4.73 2.88.

4.75 For owner-occupied units, the mean is 6.284 rooms;
for rented units, it is 4.187 rooms.

4.77 The owned-unit distribution is more spread out;
σo

.= 1.6399 and σr
.= 1.3077 rooms.

4.79 (a) μ1 = σ1 = 0.5. (b) μ4 = 2 and σ4 = 1.

4.81 Mean 14 cm and standard deviation 0.0042 cm.

4.83 (a) Not independent. (b) Independent.

4.85 Show that σ 2
X+Y = (σX + σY )2.

4.87 If one of the 10 homes were lost, it would cost more
than the collected premiums. For many policies, the
average claim should be close to $300.

4.89 (a) 0.99749. (b) $623.22.

4.91 μR = 11.116% and σR
.= 15.9291%.

4.93 μR = 10.184% and σR
.= 12.3442%.

4.95 4/6 = 2/3.

4.97 (a) 0.21. (b) 0.3392. (c) 0.42. (d) A’s are more
common in HHS than overall.

4.99 0.27.

4.101 (a) The four probabilities sum to 1. (b) 0.77.
(c) 0.7442. (d) The events are not independent.

4.103 (a) The four entries are 0.2684, 0.3416, 0.1599,
0.2301. (b) 0.5975.

4.105 For example, the probability of selecting a female
student is 0.5717; the probability that she comes from a
4-year institution is 0.5975.

4.107 P(A | B)
.= 0.3142. If A and B were independent,

then P(A | B) would equal P(A).

4.109 (a) P(Ac) = 0.69. (b) P(A and B) = 0.08.

4.111 (a) 0.6364. (b) Not independent.
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4.113 1.

4.115 P(B | C) = 1/3. P(C | B) = 0.2.

4.117 (a) P(M)
.= 0.4124. (b) P(B | M)

.= 0.6670.
(c) P(M and B)

.= 0.2751.

4.119 (a) P(L)
.= 0.6722. (b) P(L | C)

.= 0.7837. (c) Not
independent.

4.121 Retired persons are more likely than other adults to
have not completed high school.

4.123 75%.

4.125 (a) Her brother has allele type aa, and he got one
allele from each parent. (b) P(aa) = 0.25, P(Aa) = 0.5,
P(AA) = 0.25. (c) P(AA |not aa) = 1/3, P(Aa |not aa) = 2/3.

4.127 1.

4.129 0.9333.

4.131 (a) P(A) = 1/6 and P(B) = 5/12. (b) P(A) = 1/6
and P(B) = 5/12. (c) P(A) = 5/12 and P(B) = 5/18.
(d) P(A) = 5/12 and P(B) = 5/18.

4.133 Each mean payoff is $10; for a $10 bet, the net gain
is $0.

4.135 (a) All probabilities are greater than or equal to 0,
and their sum is 1. (b) 0.61. (c) Both probabilities are 0.39.

4.137 (a) 0.9389. (b) $1.85. (c) $16.1513.

4.139 0.005352.

4.141 For example: P(2-year | Public) = 0.3759, while
P(2-year | Private) = 0.7528.

4.145 About 22.8%.

4.147 P(Y < 1/2 | Y > X) = 1/4.

CHAPTER 5

5.1 (a) n = 1500. (b) The “Yes” count seems most
reasonable, but either count is defensible. (c) X = 525 (or
X = 975). (d) p̂ = 0.35 (or p̂ = 0.65).

5.3 B(20, 0.5).

5.5 (a) P(X = 0) = 0.2401 and P(X ≥ 3) = 0.0837.
(b) P(X = 4) = 0.2401 and P(X ≤ 1) = 0.0837. (c) The
number of “failures” in a B(4, 0.3) distribution has a
B(4, 0.7) distribution.

5.7 (a) About 0.95. (b) About 0.68.

5.9 (a) Separate flips are independent (coins have no
“memory”). (b) Separate flips are independent (coins have
no “memory”). (c) p̂ can vary from one set of observed
data to another; it is not a parameter.

5.11 (a) A B(200, p) distribution seems reasonable ( p not
known). (b) Not binomial (no fixed n). (c) A B(500, 1/12)

distribution.

5.13 (a) Caught: B(10, 0.7). Missed: B(10, 0.3). (b) 0.3503.

5.15 (a) 7 errors caught, 3 missed. (b) 1.4491 errors.
(c) With p = 0.9, 0.9487 errors; with p = 0.99, 0.3146
errors. σ decreases toward 0 as p approaches 1.

5.17 m = 6.

5.19 (a) 0.4095. (b) 4.

5.21 (a) n = 4 and p = 0.25. (b) The probabilities are
0.3164, 0.4219, 0.2109, 0.0469, 0.0039. (c) μ = 1 child.

5.23 (a) 0.8354. (b) 0.9926. (c) It increases.

5.25 (a) 0.7. (b) 0.1841.

5.27 (a) p = 0.25. (b) 0.0139. (c) μ = 5 and σ = 1.9365
successes. (d) No; the trials would not be independent.

5.29 (a) μ = 180 and σ = 12 successes. (b) For p̂, μ = 0.2
and σ = 0.01333. (c) About 0.0013. (d) 0.2310 or higher.

5.31 (a) 0.1137. (b) 136.4 blacks. (c) About 0.0005.

5.33 (a) 0.0808. (b) 0.0136. (c) 400. (d) Yes.

5.35 Possible values: 1, 2, 3, . . . . P(Y = k) = pqk−1.

5.37 μx = 200, σx = 1.

5.39 About 95% of the time, x is between 199 and 201.

5.41 (a) “Variance” should be “standard deviation.”
(b) Standard deviation decreases with increasing sample
size. (c) μx always equals μ.

5.43 40.135 mm and 0.0015 mm.

5.45 (b) About 0.05. (c) Nearly 0.

5.47 (a) x is not systematically higher than or lower than
μ. (b) With large samples, x is more likely to be close to μ.

5.49 (a) 0.5 and 0.099 moths. (b) About 0.16.

5.51 (a) 0.0668. (b) 0.0047.

5.53 About 133.2 mg/dl.

5.55 About 0.0052.

5.57 0.0294, 0.0853.

5.59 (a) Nearly 1. (b) About 0.9641.

5.61 (a) y is N(μY , σY/
√

m) and x is N(μX, σX/
√

n).

(b) N
(

μY − μX,

√
σ 2

Y/m + σ 2
X/n

)
.

5.63 N(32, 0.2); 0.0124.

5.65 0.0579; these five students were not randomly chosen
from the population of all drivers.

5.67 (a) 0.8822. (b) 0.9999.

5.69 0.0034.

5.71 0.9231.

5.73 0.0336.

5.75 4.0689 to 4.4311.

5.77 (a) p̂F: N(0.82, 0.01921). p̂M: N(0.88, 0.01625).
(b) N(0.06, 0.02516). (c) About 0.0087.

5.79 P(Z ≥ 4.56)
.= 0.

CHAPTER 6

6.1 σx
.= $0.33.

6.3 $0.67.
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6.5 82.716 to 84.284.

6.7 n = 523.

6.9 The organizations that did not respond are (obviously)
not represented in the results.

6.11 Margins of error: 3.0990, 2.1913, 1.5495, 1.0957;
interval width decreases with increasing sample size.

6.13 Margin of error, 0.1554; interval, 7.3446 to 7.6554.

6.15 8.5673 to 8.8327.

6.17 Margin of error, 2.29 U/l; interval, 10.91 to 15.49 U/l.

6.19 Scenario B has a smaller margin of error; less
variability in a single major.

6.21 No, this is a range of values for the mean rent, not
for individual rents.

6.23 (a) 14.8171 to 15.3829 hours. (b) No, this is a range
of values for the mean time spent, not for individual times.

6.25 (a) 2.1920 cal/day. (b) 4.3841 cal/day. (c) 4.3841 (or
4.2694) cal/day.

6.27 x = 18.3515 kpl; the margin of error is 0.6521 kpl.

6.29 n = 41.

6.31 n = 53.

6.33 (a) 0.7738. (b) 0.9774.

6.35 (a) Not certain (only 95% confident). (b) We obtained
the interval 56% to 62% by a method that gives a correct
result 95% of the time. (c) About 1.5%. (d) No (only
random sampling error).

6.37 H0: μ = 1.4 g/cm2; Ha: μ �= 1.4 g/cm2.

6.39 P = 0.2302.

6.41 z > 1.645.

6.43 (a) z = 2. (b) P = 0.0228. (c) P = 0.0456.

6.45 (a) Yes. (b) No.

6.47 (a) Yes. (b) No. (c) To reject, we need P < α.

6.49 (a) P = 0.03 and P = 0.97. (b) We need to know
whether the observed data (for example, x) are consistent
with Ha. (If they are, use the smaller P-value.)

6.51 (a) Population mean, not sample mean. (b) H0

should be that there is no change. (c) A small P-value is
needed for significance.

6.53 (a) H0: μ = 26; Ha: μ �= 26. (b) H0: μ = 20 seconds;
Ha: μ < 20 seconds. (c) H0: μ = 460 ft2; Ha: μ < 460 ft2.

6.55 (a) H0: μ = $62,500; Ha: μ > $62,500. (b) H0:
μ = 2.6 hr; Ha: μ �= 2.6 hr.

6.57 (a) P = 0.9582. (b) P = 0.0418. (c) P = 0.0836.

6.59 (a) No, because 24 is in the interval. (b) Yes, because
30 is not in the interval.

6.61 You have little reason to doubt that the purity is the
same (although you cannot be completely sure).

6.63 The difference was large enough that it would rarely
arise by chance. Health issues related to alcohol use are
probably discussed in the health and safety class.

6.65 The difference in average scores from 2000 to 2005
was so small that it could have occurred by chance even if
population mean scores had not changed in that time.

6.67 H0: μ = 100; Ha: μ �= 100; z = 5.75; significant
(P < 0.0001).

6.69 (a) z = 2.87, P = 0.0021. (b) The important
assumption is that this is an SRS. We also assume a
Normal distribution, but this is not crucial provided there
are no outliers and little skewness.

6.71 (a) H0: μ = 0 mpg; Ha: μ �= 0 mpg, where μ is the
mean difference. (b) z

.= 4.07, which gives a very small
P-value.

6.73 (a) H0: μ = 1.4 mg; Ha: μ > 1.4 mg. (b) Yes. (c) Yes.

6.75 x = 0.8 is significant, but 0.7 is not. Smaller α means
that x must be farther away.

6.77 Something that occurs “less than once in 100
repetitions” also occurs “less than 5 times in 100
repetitions.”

6.79 Any z with 2.807 < |z| < 3.291.

6.81 P > 0.25.

6.83 0.1 < P < 0.2; P = 0.1706.

6.85 In order to determine the effectiveness of alarm
systems, we need to know the percent of all homes with
alarm systems and the percent of burglarized homes with
alarm systems.

6.87 The first test was barely significant at α = 0.05, while
the second was significant at any reasonable α.

6.89 A significance test answers only Question b.

6.91 With a larger sample, we might have significant
results.

6.93 (a) The differences observed might occur by chance
even if SES had no effect. (b) This tells us that the
statistically insignificant test results did not occur merely
because of a small sample size.

6.95 (a) P = 0.3821. (b) P = 0.1711. (c) P = 0.0013.

6.97 No, we have information about the entire population
in question.

6.103 n should be about 100,000.

6.105 Reject the fifth (P = 0.001), sixth (P = 0.004), and
eleventh (P = 0.002).

6.107 Larger samples give more power.

6.109 Higher; larger differences are easier to detect.

6.111 Power: about 0.99.

6.113 Power: 0.4681.

6.115 (a) H0: Patient is healthy; Ha: Patient is ill. Type I
error: sending a healthy patient to the doctor. Type II error:
clearing a patient who is ill.

6.117 (a) 64.45 to 70.01; 67.59 to 73.15; 72.05 to 77.61.
(c) 63.83 to 70.63; 66.97 to 73.77; 71.43 to 78.23. (d) With
the larger margin of error, the intervals overlap more.
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6.121 (a) 4.61 to 6.05 mg/dl. (b) z = 1.45, P = 0.0735; not
significant.

6.123 (b) 26.0614 to 34.7386 μg/l. (c) z = 2.44,
P = 0.0073.

6.125 (a) Under H0, x has an N(0%, 5.3932%) distribution.
(b) z = 1.28, P = 0.1003. (c) Not significant.

6.127 It is essentially correct.

6.129 Find x, then take x ± 1.96(4/
√

12) = x ± 2.2632.

6.131 Find x, then compute z = (x − 23)/(4/
√

12). Reject
H0 based on your chosen significance level.

CHAPTER 7

7.1 (a) $27.1109. (b) 14.

7.3 $511.85 to $628.15.

7.5 (a) Yes. (b) No.

7.9 −1.8866 to 11.0866.

7.11 The sample size should be sufficient to overcome any
non-Normality. One might question the independence of
90 consecutive measurements.

7.13 The power is about 0.6950.

7.15 (a) t∗ = 2.145. (b) t∗ = 2.064. (c) t∗ = 1.711. (d) t∗

decreases with increasing sample size, and increases with
increasing confidence.

7.17 t∗ = 1.729 (or −1.729).

7.19 For the alternative μ < 0, the answer would be the
same (P = 0.02). For the alternative μ > 0, the answer
would be P = 0.98.

7.21 (a) df = 23. (b) 2.177 < t < 2.500. (c) 0.02 < P <

0.04. (d) Significant at 5% but not at 1%. (e) P = 0.0248.

7.23 It depends on whether x is on the appropriate side of
μ0.

7.25 (a) Distribution is not Normal; it has two peaks and
one large value. (b) Maybe; we have a large sample but a
small population. (c) 27.29 ± 5.717, or 21.57 to 33.01 cm.
(d) One could argue for either answer.

7.27 (a) Right-skewed, but less than the original data,
and no clear outliers. (b) No; for skewed distributions, the
median is more appropriate. (c) 1.495 ± 0.449, or 1.05 to
1.94. After undoing the transformation, this is about 1.85
to 5.99 mg/l.

7.29 (a) Not Normal (lots of 1s and 10s), but no outliers.
(b) 4.92 to 6.88. (c) Because this is not a random sample,
it may not represent other children well.

7.31 90%: 2.119 to 2.321. 95%: 2.099 to 2.341. Width
increases with confidence level.

7.33 (a) t = 5.13, df = 15, P < 0.001. (b) With 95%
confidence, the mean NEAT increase is between 192 and
464 calories.

7.35 (a) H0: μc = μd; Ha: μc �= μd. (b) t
.= 4.358,

P
.= 0.0003; we reject H0.

7.37 H0: μ = 4.8; Ha: μ > 4.8 mg/dl; t = 2.086, df = 5,
P = 0.046.

7.39 (a) The differences are spread from −0.018 to 0.020 g.
(b) t = −0.347, df = 7, P = 0.7388. (c) −0.0117 to 0.0087 g.
(d) They may be representative of future subjects, but the
results are suspect because this is not a random sample.

7.41 (a) H0: μ = 0; Ha: μ > 0. (b) Slightly left-skewed;
x = 2.5 and s = 2.893. (c) t = 3.865, df = 19, P = 0.00052.
(d) 1.146 to 3.854.

7.43 x = 114.98, s = 14.80; 111.14 to 118.82. This might
adequately describe the mean IQ at this school, but the
sample could not be considered representative of all
fifth-graders.

7.45 For the sign test, P = 0.0898; not quite significant,
unlike Exercise 7.34.

7.47 H0: median = 0; Ha: median �= 0; P = 0.7266. This is
similar to the t test P-value.

7.49 H0: median = 0; Ha: median > 0; P = 0.0013.

7.51 Reject H0 if |x| ≥ 0.00677. The power is about 7%.

7.53 n ≥ 16. (The power is about 0.794 when n = 15.)

7.55 0.01 < P < 0.02.

7.57 −31.1735 to −8.8265; reject H0.

7.59 SPSS and SAS give both results; the pooled t is
−56.99, which has a tiny P-value.

7.61 (a) Assuming we have SRSs from each population,
this seems reasonable. (b) H0: μf = μm; Ha: μf �= μm.
(c) t

.= 0.276, P
.= 0.78. (d) −11.75 to 15.53 (df .= 76.1)

or −12.1 to 15.9 (df = 30) mg/dl. (e) It might not be
appropriate to treat these students as SRSs from larger
populations.

7.63 (a) Not Normal, because all numbers are integers.
(b) Yes; we have two large samples, with no outliers. (c) H0:
μ1 = μ2; Ha: μ1 > (or �=) μ2. (d) t = 6.258, df = 354 or 164,
P < 0.0001. (e) 0.51 to 0.99 (regardless of df). (f) This may
not generalize well to other areas of the country.

7.65 (a) This may be near enough to an SRS if this
company’s working conditions were similar to those of
other workers. (b) 9.99 to 13.01 mg.y/m3. (c) t = 15.08,
P < 0.0001 with either df = 137 or 114. (d) The sample
sizes are large enough that skewness should not matter.

7.67 You need either sample sizes and standard deviations
or degrees of freedom and a more accurate value for
the P-value. The confidence interval will give us useful
information about the magnitude of the difference.

7.69 (a) Hypotheses should involve μ1 and μ2. (b) The
samples are not independent. (c) We need P to be small
(for example, less than 0.10) to reject H0. (d) t should be
negative.

7.71 (a) Yes (in fact, P
.= 0.005). (b) Yes (P .= 0.0025).

7.73 This is a matched pairs design.
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7.75 The next 10 employees who need screens might not
be an independent group—perhaps they all come from the
same department, for example.

7.77 (a) This is now a matched pairs design. (b) t =
−49.83, df = 1, P = 0.0064.

7.79 Small samples may lead to rejection of H0 if the
evidence is very strong.

7.81 (a) The north distribution (five-number summary 2.2,
10.2, 17.05, 39.1, 58.8 cm) is right-skewed, while the south
distribution (2.6, 26.1, 37.70, 44.6, 52.9) is left-skewed.
(b) The methods of this section seem to be appropriate.
(c) H0: μn = μs; Ha: μn �= μs. (d) t = −2.63 with df = 55.7
(P = 0.011) or df = 29 (P = 0.014). (e) Either −19.09 to
−2.57 or −19.26 to −2.40 cm.

7.83 (a) Either −3.06 to 9.06 units (df = 50) or −2.98
to 8.98 units (df = 104.6). (b) Random fluctuation may
account for the difference in the two averages.

7.85 (a) H0: μB = μF; Ha: μB > μF; t = 1.654, P = 0.053
(df = 37.6) or P = 0.058 (df = 18). (b) −0.2 to 2.0. (c) We
need two independent SRSs from Normal populations.

7.87 sp = 1.1556; t = 6.251 (df = 375); P < 0.0001; 0.51 to
0.99. All results are nearly the same as in Exercise 7.63.

7.89 sp = 15.96; t = −2.629 (df = 58); P = 0.0110; −19.08
to −2.58 cm. All results are nearly the same as in Exercise
7.81.

7.91 df = 55.725.

7.93 (a) df = 137.066. (b) sp = 5.332 (slightly closer
to s2, from the larger sample). (c) With no assumption,
SE1 = 0.7626; with the pooled method, SE2 = 0.6136.
(d) t = 18.74, df = 333, P < 0.0001. t and df are larger,
so the evidence is stronger (although it was quite strong
before). (e) df = 121.503; sp = 1.734; SE1 = 0.2653 and
SE2 = 0.1995. t = 24.56, df = 333, P < 0.0001.

7.95 (a) F∗ = 2.20. (b) Significant at the 10% level but not
at the 5% level.

7.97 A smaller σ would yield more power.

7.99 F = 1.095 with df = 70 and 36; P = 0.7794. We do
not know if the distributions are Normal, so this test may
not be reliable.

7.101 F = 1.017 with df = 211 and 164; P = 0.9114.
The distributions are not Normal, so this test may not be
reliable (although the conclusion is reasonable). To reject
at the 5% level, s2 would need to be at least 1.39 (based on
Table E) or 1.33 (software).

7.103 F = 5.263 with df = 114 and 219; P < 0.0001. The
authors described the distributions as somewhat skewed,
so the Normality assumption may be violated.

7.105 F = 1.506 with df = 29 and 29; P = 0.2757. The
stemplots in Exercise 7.81 did not appear to be Normal.

7.107 (a) F∗ = 647.79; this is a low-power test.
(b) F

.= 3.96; do not reject H0.

7.109 Using a larger σ for planning the study is advisable

because it provides a conservative (safe) estimate of the
power.

7.111 x = 156, s
.= 10.30, sx

.= 5.15. We cannot consider
these four scores to be an SRS.

7.113 As df increases, t∗ approaches 1.96.

7.115 Margins of error decrease with increasing sample
size.

7.117 (a) Body weight: mean −0.7 kg, SE 2.298 kg. Caloric
intake: mean 14 cal, SE 56.125 cal. (b) t1 = −0.305 (body
weight) and t2 = 0.249 (caloric intake), both with df = 13;
both P-values are about 0.8. (c) −5.66 to 4.26 kg and
−107.23 to 135.23 cal.

7.119 (a) Somewhat right-skewed with no extreme
outliers. (b) 10.85 to 15.64 U/l.

7.121 (a) Slightly left-skewed. (b) 2.285 to 2.650. (c) 9.82
to 14.15 U/l.

7.123 For north/south differences: t = 7.15, df = 575.4 or
283, P < 0.0001; the confidence interval is 7.52 to 13.22
cm. For east/west differences: t = 3.69, df = 472.7 or 230,
P < 0.0005; the confidence interval is 2.68 to 8.78 cm. With
larger samples, t increases, P decreases, and the intervals
shrink.

7.125 78.3% ± 13.8%, or 64.5% to 92.1%.

7.127 GPA: t = −0.91, df = 74.9 (P = 0.1839) or 30
(0.15 < P < 0.20). Confidence interval: −1.33 to 0.5. IQ:
t = 1.64, df = 56.9 (P = 0.0503) or 30 (0.05 < P < 0.10).
Confidence interval: −1.12 to 11.36.

7.129 t = 3.65, df = 237.0 or 115, P < 0.0005. 95%
confidence interval for the difference: 0.78 to 2.60.

7.131 t = −0.3533, df = 179, P = 0.3621.

7.133 No; what we have is nothing like an SRS.

7.135 (a) x = 1.7182 and s = 1.3428. Distribution is right-
skewed from 0.068 to 5.417. (b) The sample size should
be large enough to overcome the skewness. (c) 1.396
to 2.041. No; this is an interval for the mean, not for
individual observations. (d) The transformed distribution
is left-skewed, with mean 0.1542 and standard deviation
1.0176. A 95% confidence interval for the mean is −0.090
to 0.399 (0.914 to 1.490, after undoing the logarithms).

7.137 x = 0.8043 and s = 0.2765 g/l; distribution is
right-skewed. 95% confidence interval: 0.746 to 0.862 g/l.

7.139 Basal: x = 41.0455, s = 5.6356. DRTA: x = 46.7273,
s = 7.3884. Strat: x = 44.2727, s = 5.7668. (a) t

.= 2.87,
P < 0.005. Confidence interval for difference: 1.7 to 9.7
points. (b) t

.= 1.88, P < 0.05. Confidence interval for
difference: −0.24 to 6.7 points.

7.141 (a) Both distributions are right-skewed; four-
bedroom homes are generally more expensive. The top
three prices from the three-bedroom distribution qualify
as outliers. (b) t

.= −3.08 with either df = 12.1 (P = 0.0095)
or df = 8 (P = 0.0151); we reject H0. (c) It would be
reasonable to guess that μ3 < μ4. (d) $19,182 to $111,614
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(df = 12.1) or $16,452 to $114,344 (df = 8). (e) It seems
that these houses should be a fair representation of three-
and four-bedroom houses in West Lafayette.

CHAPTER 8

8.1 0.01486.

8.3 (a) H0: p = 0.72; Ha: p �= 0.72. (b) z
.= 1.11, P = 0.2670.

(c) No.

8.5 A smaller sample is needed for 90% confidence;
n = 752.

8.7 (a) Yes. (b) Yes. (c) No. (d) No. (e) No.

8.9 (a) Margin of error equals z∗ times standard error.
(b) Use Normal distributions for proportions. (c) H0

should refer to p, not p̂.

8.11 (a) p̂ = 0.6341, 0.6214 to 0.6467. This interval
was found using a procedure that includes the correct
proportion 95% of the time. (b) We do not know if those
who did respond can reliably represent those who did not.

8.13 (a) ±0.001321. (b) Other sources of error are much
more significant than sampling error.

8.15 (a) 0.3506 to 0.4094. (b) Yes; some respondents
might not admit to such behavior.

8.17 (a) p̂ = 0.3275; 0.3008 to 0.3541. (b) Speakers and
listeners probably perceive sermon length differently.

8.19 0.1304 to 0.1696.

8.21 (a) No. (b) Yes. (c) Yes. (d) No.

8.23 0.6345 to 0.7455.

8.25 0.2180 to 0.2510.

8.27 0.8230 to 0.9370.

8.29 (a) z = 1.34, P = 0.1802. (b) 0.4969 to 0.5165.

8.31 n = 171 or 172.

8.33 The sample sizes are 35, 62, 81, 93, 97, 93, 81, 62,
and 35; take n = 97.

8.35 p̂m − p̂w = 0.1214; the interval is −0.0060 to 0.2488.

8.37 z
.= 1.86, P = 0.0629.

8.39 (a) Yes. (b) No. (c) No. (d) Yes. (e) No.

8.41 z
.= 4.24, P < 0.0001. Confidence interval: 0.0323 to

0.0877.

8.43 z = 20.18, so P is tiny. Confidence interval: 0.1962 to
0.2377. Nonresponse error could render this interval and
test result meaningless.

8.45 −0.0017 to 0.0897.

8.47 z
.= 6.01, P < 0.0001; confidence interval is 0.0195 to

0.0384 (all the same as in Exercise 8.46).

8.49 z = 4.28 and P < 0.0001. Confidence interval: 0.0381
to 0.1019.

8.51 (a) −0.0053 to 0.2335. (b) z
.= 1.83, P = 0.0336.

(c) We have fairly strong evidence that high-tech

companies are more likely to offer stock options, but
the difference in proportions could be very small or as
large as 23%.

8.53 (a) p̂f = 0.8, SE .= 0.05164; p̂m = 0.3939,
SE .= 0.04253. (b) 0.2960 to 0.5161.

8.55 z = 2.10, P = 0.0360.

8.57 (a) Confidence intervals account for only sampling
error. (b) H0 should refer to p1 and p2. (c) Only if n1 = n2.

8.59 −0.0298 to 0.0898.

8.61 p̂ = 0.6129, z = 4.03, P < 0.0001; confidence interval
is 0.5523 to 0.6735.

8.63 (a) People have different symptoms; for example,
not all who wheeze consult a doctor. (b) Sleep: 0.0864,
0.0280 to 0.1448. Number: 0.0307, −0.0361 to 0.0976.
Speech: 0.0182, −0.0152 to 0.0515. Activities: 0.0137,
−0.0395 to 0.0670. Doctor: −0.0112, −0.0796 to 0.0573.
Phlegm: −0.0220, −0.0711 to 0.0271. Cough: −0.0323,
−0.0853 to 0.0207. (c) It is reasonable to expect that the
bypass proportions would be higher. (d) In the same order:
z = 2.64, P = 0.0042; z = 0.88, P = 0.1897; z = 0.99,
P = 0.1600; z = 0.50, P = 0.3100; z = −0.32, P = 0.6267;
z = −0.92, P = 0.8217; z = −1.25, P = 0.8950. (e) 95%
confidence interval for sleep improvement: 0.1168 to
0.2023. Part (b) showed improvement relative to control
group, which is a better measure of the effect of the bypass.

8.65 (a) z = 6.98, P < 0.0001. (b) 0.1145 to 0.2022.

8.67 Education: 1132 users, 852 nonusers. Income: 871
users, 677 nonusers. For users, p̂1 = 0.2306; for nonusers,
p̂2 = 0.2054. z = 1.34, P = 0.1802; −0.0114 to 0.0617. The
lack of response about income makes the conclusions for
Exercise 8.66 suspect.

8.69 The margin of error is ±2.8%.

8.71 z = 8.95, P < 0.0001; 0.3720 to 0.5613.

8.73 All p̂-values are greater than 0.5. Texts 3, 7, and 8 have
(respectively) z = 0.82, P = 0.4122; z = 3.02, P = 0.0025;
and z = 2.10, P = 0.0357. For the other texts, z ≥ 4.64 and
P < 0.00005.

8.77 z: 0.90, 1.01, 1.27, 1.42, 2.84, 3.18, 4.49. P: 0.3681,
0.3125, 0.2041, 0.1556, 0.0045, 0.0015, 0.0000.

8.79 (a) n = 342. (b) n = (z∗/m)2/2.

8.81 (a) p0 = 0.7911. (b) p̂ = 0.3897, z = −29.1, P is tiny.
(c) p̂1 = 0.3897, p̂2 = 0.7930, z = −29.2, P is tiny.

8.83 (a) 0.5278 to 0.5822. (b) 0.5167 to 0.5713. (c) 0.3170
to 0.3690. (d) 0.5620 to 0.6160. (e) 0.5620 to 0.6160.
(f) 0.6903 to 0.7397.

CHAPTER 9

9.1 (a) Given Explanatory = 1: 37.5% Yes, 62.5% No.
Given Explanatory = 2: 47.5% Yes, 52.5% No. (c) When
Explanatory = 2, “Yes” and “No” are nearly evenly split.
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9.3 (a) 0.10 < P < 0.15. (b) 0.01 < P < 0.02.
(c) 0.025 < P < 0.05. (d) 0.025 < P < 0.05.

9.5 X2 .= 15.2, df = 5, 0.005 < P < 0.01.

9.7 (a) 0.2044, 0.0189; 0.3285, 0.0699; 0.1050, 0.1072;
0.0518, 0.1141. (b) 0.2234, 0.3984, 0.2123, 0.1659.
(c) 0.6898, 0.3102. (d) Full-time students: 0.2964, 0.4763,
0.1522, 0.0752. Part-time students: 0.0610, 0.2254, 0.3458,
0.3678.

9.9 (a) Yes, this seems to satisfy the assumptions.
(b) df = 3. (c) 0.20 < P < 0.25.

9.11 (a) Success (nonrelapse) rates were 58.3%
(desipramine), 25.0% (lithium), and 16.7% (placebo).
(b) Yes; this seems to satisfy the assumptions.
(c) X2 = 10.5, df = 2, P = 0.005.

9.13 Start by setting a equal to any number from 0 to 50.

9.15 (a) A notably higher percent of women are “strictly
voluntary” participants. (b) 40.3% of men and 51.3% of
women are participants; the relative risk is 1.27.

9.17 (a) For example, among nonbingers, only 8.8% have
missed class, while 30.9% of occasional and 62.5% of
frequent bingers have missed class. (b) 45.37% of subjects
were nonbingers, 26.54% were occasional bingers, and
28.09% were frequent bingers. (c) Occasional versus
nonbingers: 3.5068. Frequent versus nonbingers: 7.0937.
(d) X2 .= 2672, df = 2, P is tiny.

9.19 (b) X2 = 2.591, df = 1, P = 0.108.

9.21 (a) 146 women/No, 97 men/No. (b) For example,
19.34% of women, versus 7.62% of men, have tried low-fat
diets. (c) X2 = 7.143, df = 1, P = 0.008.

9.23 (a) X2 = 76.7, df = 2, P < 0.0001. (b) Even with much
smaller numbers of students, P is still very small. (c) Our
conclusion might not hold for the true percents. (d) Lack
of independence could cause the estimated percents to be
too large or too small.

9.25 X2 = 12.0, df = 1, P = 0.001. The smallest expected
count is 6, so the test is valid.

9.27 X2 = 23.1, df = 4, P < 0.0005. Dog owners have less
education, and cat owners more, than we would expect
if there were no relationship between pet ownership and
educational level.

9.29 The missing entries are 202, 64, 38, 33. X2 = 50.5,
df = 9, P < 0.0005. The largest contributions to X2

come from chemistry/engineering, physics/engineering,
and biology/liberal arts (more than expected), and
biology/engineering and chemistry/liberal arts (less than
expected).

9.31 X2 = 3.955, df = 4, P = 0.413.

9.33 (a) Cats: X2 = 6.611, df = 2, P = 0.037. Dogs:
X2 = 26.939, df = 2, P < 0.0005. (b) Dogs from pet stores
are less likely to go to a shelter, while “other source” dogs
are more likely to go. (c) The control group data should be
reasonably like an SRS.

9.35 X2 = 43.487, df = 12, P < 0.0005. Science has a
large proportion of low-scoring students, while liberal
arts/education has a large proportion of high-scoring
students.

9.37 X2 = 852.433, df = 1, P < 0.0005.

9.39 (a) X2 = 2.506, df = 2, P = 0.286. (b) Divide each
echinacea count by 337 and each placebo count by 370.
(c) The only significant results are for rash (z = 2.74,
P = 0.0061), drowsiness (z = 2.09, P = 0.0366), and
other (z = 2.09, P = 0.0366). A 10 × 2 table would not be
appropriate, because each URI could have multiple adverse
events. (d) All results are unfavorable to echinacea, so we
are not concerned with having detected “false-positives.”
(e) We do not have independent observations, but we
would expect the dependence to have the same effect on
both groups, so our conclusions should be fairly reliable.

9.41 X2 = 3.781, df = 3, P = 0.2861.

CHAPTER 10

10.1 (a) −2.5. (b) When x increases by 1, μy decreases by
2.5. (c) 15.5. (d) 11.5 and 19.5.

10.3 (a) An increase of 7.16 to 8.58 mpg. (b) A decrease of
7.16 to 8.58 mpg. (c) An increase of 3.58 to 4.29 mpg.

10.5 (a) The plot suggests a linear increase. (b) ŷ =
−3271.9667 + 1.65x. (c) Residuals: 0.01667, −0.03333,
0.01667. s

.= 0.04082. (d) Given x (the year), spending
comes from an N(μy, σ ) distribution, where μy = β0 + β1x.
Estimates: b0

.= −3271.9667, b1
.= 1.65, s

.= 0.04082.
(e) With 95% confidence, R&D spending increases from
1.283 to 2.017 billion dollars per year.

10.7 (a) β0, β1, and σ . (b) H0 should refer to β1. (c) The
confidence interval will be narrower than the prediction
interval.

10.9 (a) t = 1.92, P = 0.0677. (b) t = 0.97, P = 0.3437.
(c) t = 1.92, P = 0.0581.

10.11 (a) 1.2095 to 1.5765; a $1 difference in tuition in
2000 changes 2005 tuition by between $1.21 and $1.58,
so we estimate that tuition increased by 21% to 58%.
(b) $8024. (c) $6717 to $9331.

10.13 (a) ŷ = −0.0127 + 0.0180x, r2 .= 80.0%. (b) H0:
β1 = 0; Ha: β1 �= 0; t = 7.48, P < 0.0001. (c) The predicted
mean is 0.07712; the interval is 0.06808 to 0.08616.

10.15 (a) x (percent forested) is right-skewed;
x = 39.3878%, sx = 32.2043%. y (IBI) is left-skewed;
y = 65.9388, sy = 18.2796. (b) A weak positive association,
with more scatter in y for small x. (c) yi = β0 + β1xi + εi,
i = 1, 2, . . . , 49; εi are independent N(0, σ ) variables. (d) H0:
β1 = 0; Ha: β1 �= 0. (e) ÎBI = 59.9 + 0.153 Area; s = 17.79.
For testing the hypotheses in (d), t = 1.92 and P = 0.061.
(f) Residual plot shows a slight curve. (g) Residuals are
left-skewed.
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10.17 The first change decreases P (that is, the relationship
is more significant) because it accentuates the positive
association. The second change weakens the association,
so P increases (the relationship is less significant).

10.19 Using area = 10, ŷ
.= 57.52; using forest = 25,

ŷ
.= 63.74. Both predictions have a lot of uncertainty (the

prediction intervals are about 70 units wide).

10.21 (a) Both distributions are fairly symmetric. For x
(MOE), x = 1, 799, 180 and sx = 329, 253; for y (MOR),
y = 11, 185 and sy = 1980. (b) Put MOE on the x axis.
(c) yi = β0 + β1xi + εi, i = 1, 2, . . . , 32; εi are independent
N(0, σ ) variables. M̂OR = 2653 + 0.00474 MOE, s = 1238,
t = 7.02, P < 0.0001. (d) Assumptions appear to be met.

10.23 (a) The plot is roughly linear and increasing. (b) The
number of tornadoes in 2004 is noticeably high (1819).
(c) ŷ

.= −28,516 + 14.86x; the confidence interval for the
slope is 11.79 to 17.93 tornadoes per year. (d) Apart from
the large residual for 2004, there are no striking features
in the plot. (e) The 2004 residual is an outlier; the other
residuals appear to be roughly Normal.

10.25 (a) x (CRP) is sharply right-skewed with high
outliers; x = 10.0322 and sx = 16.5632. y (retinol)
is slightly right-skewed; y = 0.7648 and sy = 0.3949.
(b) No; no assumption is made about x-values.
(c) ̂Retinol = 0.843 − 0.00780 CRP, s = 0.3781, t = −2.13,
P = 0.039. (d) The high outliers in CRP are influential;
residuals are right-skewed rather than Normal.

10.27 (a) Both distributions are slightly right-skewed.
TRAP has x = 13.2484 and sx = 6.5282; VO– has
y = 889.1935 and sy = 427.6161. (b) Put TRAP on the x
axis. A moderate positive association. (c) ŷ = 301 + 44.4x,
s = 319.7, t = 4.97, P < 0.0001.

10.29 Both distributions are slightly more symmetric
than before. LOGTRAP has x = 2.4674 and sx = 0.4979;
LOGVO– has y = 6.6815 and sy = 0.4832. A scatterplot
shows a moderate positive association, with one low point
that might be influential. ŷ = 5.091 + 0.6446x, s = 0.3674,
t = 4.78, P < 0.0001.

10.31 (a) Both variables are right-skewed. Pure tones:
x = 106.2 and s = 91.76 spikes/second. Monkey
calls: y = 176.6 and sy = 111.85 spikes/second. (b) A
moderate positive association; the third point has the
largest residual; the first point is an outlier for tone
response. (c) ̂CALL = 93.9 + 0.778 TONE, s = 87.30,
t = 4.91, P < 0.0001. (d) Without the first point,
ŷ = 101 + 0.693x, s = 88.14, t = 3.18. Without the
third point, ŷ = 98.4 + 0.679x, s = 80.69, t = 4.49. With
neither, ŷ = 116 + 0.466x, s = 79.46, t = 2.21.

10.33 (a) Scatterplot shows a weak negative association.̂Bonds = 53.4 − 0.196 Stocks, s = 59.88. (b) H0: β1 = 0; Ha:
β1 �= 0; t = −1.27, P = 0.226. (c) The scatterplot shows a
lot of variation, so s is large and t is small.

10.35 (a) MA angle is explanatory. (b) A moderate-to-
weak positive linear association, with one clear outlier.

(c) yi = β0 + β1xi + εi, i = 1, 2, . . . , 38; εi are independent
N(0, σ ) variables. (d) H0: β1 = 0; Ha: β1 > 0. (e) t = 1.90,
df = 36, P = 0.033.

10.37 (a) Aside from the one high point, there is a mod-
erate positive association. (b) Ŵages = 43.4 + 0.0733 LOS,
t = 2.85, P = 0.006. (c) Wages rise an average of 0.0733
wage units per week of service. (d) 0.0218 to 0.1247.

10.39 (a) It appears to be quite linear. (b) L̂ean =
−61.12 + 9.3187 Year; r2 = 98.8%. (c) 8.36 to 10.28 tenths
of a millimeter/year.

10.41 (a) x = 109. (b) 2.9955 m. (c) Use a prediction
interval.

10.43 t
.= −4.16, df = 116, P < 0.0001.

10.45 We cannot reject H0: ρ = 0, because t = −1.27,
P = 0.226.

10.47 df = 28, SSE = 10,152.4, MSE = 362.6.

10.49 The standard error is 0.2150; the confidence interval
is 0.223 to 1.103.

10.51 n = 20: t = 2.45, df = 18, P = 0.0248. n = 10:
t = 1.63, df = 8, P = 0.1411.

10.53 (a) Strong positive linear association with one
outlier (SAT 420, ACT 21). (b) ÂCT = 1.63 + 0.0214 SAT,
t = 10.78, P < 0.0005. (c) r = 0.8167.

10.55 (a) a1 = 0.02617, a0 = −2.7522. (c) Mean 21.1333
and standard deviation 4.7137—the same as for the ACT
scores.

10.57 (a) For squared length: ̂Weight = −118 +
0.497 SQLEN, r2 = 0.977. (b) For squared width:̂Weight = −99.0 + 18.7 SQWID, r2 = 0.965.

10.59 IBI and area: r = 0.4459, t = 3.42, P = 0.001 (from
Exercise 10.14). IBI and percent forested: r = 0.2698,
t = 1.92, P = 0.061 (Exercise 10.15). Area and percent
forested: r = −0.2571, t = −1.82, P = 0.074.

10.61 P < 0.001: All creativity, quickness/analytical, and
quickness/verbal. P < 0.01: Conscientiousness/analytical,
conscientiousness/quantitative, quickness/quantitative,
and depth/verbal. P < 0.05: Conscientiousness/verbal.

10.63 (a) 95% confidence interval for women: 14.73 to
33.33. For men: −9.47 to 42.97. These intervals overlap
quite a bit. (b) For women: 22.78. For men: 16.38. The
women’s slope standard error is smaller in part because it
is divided by a large number. (c) Choose men with a wider
variety of lean body masses.

CHAPTER 11

11.1 (a) Math GPA. (b) n = 106. (c) p = 4. (d) SAT Math,
SAT Verbal, class rank, and mathematics placement score.

11.3 (a) Math GPA should increase when any explanatory
variable increases. (b) DFM = 4, DFE = 81. (c) All four
coefficients are significantly different from 0 (although the
intercept is not).
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11.5 The correlations are found in Figure 11.3. The
scatterplots for the pairs with the largest correlations are
easy to pick out. The whole-number scale for high school
grades causes point clusters in those scatterplots.

11.7 (a) 5.8752 to 15.7248. (b) 5.9784 to 15.6216.
(c) 5.8656 to 15.7344. (d) 6.0480 to 15.5520.

11.9 (a) H0 should refer to β2. (b) Squared multiple
correlation. (c) Small P implies that at least one coefficient
is different from 0.

11.11 (a) yi = β0 + β1xi1 + β2xi2 + · · · + β7xi7 + εi, where
i = 1, 2, . . . , 140; εi are independent N(0, σ ) random
variables. (b) Model (df = 7), error (df = 132), and total
(df = 139).

11.13 (a) 530 children. (b) 19.36%. (c) Predicted fat mass
is higher for females, those who take in higher percents
of energy at dinner, children of parents with higher
BMIs, and those with underreported intake (low values
of EI/predicted BMR). (d) Construct a 95% confidence
interval for that coefficient, then multiply by 5: percent fat
mass differs by between 0.20 and 0.60.

11.15 (a) H0: β1 = 0; Ha: β1 �= 0 (t = 4.55, P < 0.001). H0:
β2 = 0; Ha: β2 �= 0 (t = 2.69, P < 0.01). H0: β3 = 0; Ha:
β3 �= 0 (t = 2.69, P < 0.01). (b) Marijuana use decreases
with increasing GPA and increases with popularity and
depression. (c) The degrees of freedom of the F statistic.
(d) H0 (β1 = β2 = β3 = 0) is rejected in favor of Ha: at least
one βi is nonzero. (e) Students may have lied (or erred) in
their responses. (f) We cannot assume that students are
the same everywhere.

11.17 (a) U.S. subjects are less willing to pay more.
(b) P < 0.001 for testing H0: β1 = 0; Ha: β1 �= 0. (c) The
U.K. response rate is much lower than the U.S. rate,
and “don’t know” responses are not much better than no
response at all.

11.19 (a) ̂Score = 3.33 + 0.82 Unfav + 0.57 Fav. (b) We
reject H0: β1 = β2 = 0 in favor of Ha: at least one βi

is nonzero. (c) The estimates of β0, β1, and β2 are all
significantly different from 0. (d) df = 149.

11.21 All coefficients are positive, so the associations are
positive, as expected. The unfavorable coefficients are
larger, so they have a stronger effect.

11.23 The coefficient of the new quadratic term is the
same as for the old quadratic term, but the constant
and coefficient of accounts have changed (and are now
significantly different from 0).

11.25 The log plot appears to be reasonably linear.
ŷ = −5.06 + 1.29x, t = 6.96, P < 0.0005.

11.27 (a) For example, all three distributions are right-
skewed. CtoF has a high outlier of 100 (the next largest
value is 55). (b) PEER and CtoF are positively correlated
(r = 0.382); the other two correlations are very small.

11.29 (a) yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi, where εi

are independent N(0, σ ) random variables. (b) ̂Score =

3.62 + 0.690 PEER + 0.254 FtoS + 0.259 CtoF. (c) PEER:
0.6418 to 0.7383. FtoS: 0.2160 to 0.2914. CtoF: 0.1929
to 0.3255. None contain 0, because all coefficients are
significantly different from 0. (d) R2 .= 88.1%, s

.= 5.108.

11.31 (a) For example, all distributions are skewed to
varying degrees—GINI and CORRUPT to the right, the
other three to the left. CORRUPT and DEMOCRACY have
the most skewness. (b) LSI and GINI have a very small
correlation (0.028); all other pairs have moderate to large
correlations. GINI is negatively correlated to the other
three variables, while all other correlations are positive.

11.33 (a) Refer to your regression output. (b) For example,
the t statistic for the GINI coefficient grows from t = 0.25
(P = 0.805) to t = 4.13 (P < 0.0005). The DEMOCRACY t
is 3.65 in the third model (P < 0.0005) but drops to 0.69
(P = 0.491) in the fourth model. (c) A good choice is to
use GINI, LIFE, and CORRUPT: all three coefficients are
significant, and R2 = 53.5% is nearly the same as the fourth
model from Exercise 11.32.

11.35 (a) Plot suggests greater variation in VO+ for
large OC. V̂O+ = 334 + 19.5 OC, t = 4.73, P < 0.0005.
Plot of residuals against OC is slightly curved.
(b) V̂O+ = 58 + 6.41 OC + 53.9 TRAP. Coefficient of OC
is not significantly different from 0 (t = 1.25, P = 0.221),
but coefficient of TRAP is (t = 3.50, P = 0.002). This is
consistent with the correlations found in Exercise 11.34.

11.37 The correlations are 0.840 (LVO+ and LVO–),
0.774 (LVO+ and LOC), and 0.755 (LVO+, LTRAP).
Regression equations, t statistics, R2, and s for
each model: ̂LVO+ = 4.38 + 0.706 LOC; t = 6.58,
P < 0.0005; R2 = 0.599, s = 0.3580. ̂LVO+ =
4.26 + 0.430 LOC + 0.424 LTRAP; t = 2.56, P = 0.016;
t = 2.06, P = 0.048; R2 = 0.652, s = 0.3394. ̂LVO+ =
0.872 + 0.392 LOC + 0.028 LTRAP + 0.672 LVO−; t = 3.40,
P = 0.002; t = 0.18, P = 0.862; t = 5.71, P < 0.0005;
R2 = 0.842, s = 0.2326. As before, this suggests a model
without LTRAP: ̂LVO+ = 0.832 + 0.406 LOC + 0.682 LVO−;
t = 4.93, P < 0.0005; t = 6.57, P < 0.0005; R2 = 0.842,
s = 0.2286.

11.39 Regression equations, t statistics, R2, and
s for each model: ̂LVO− = 5.21 + 0.441 LOC;
t = 3.59, P = 0.001; R2 = 0.308, s = 0.4089.̂LVO− = 5.04 + 0.057 LOC + 0.590 LTRAP; t = 0.31,
P = 0.761; t = 2.61, P = 0.014; R2 = 0.443, s = 0.3732.̂LVO− = 1.57 − 0.293 LOC + 0.245 LTRAP + 0.813 LVO+;
t = −2.08, P = 0.047; t = 1.47, P = 0.152; t = 5.71,
P < 0.0005; R2 = 0.748, s = 0.2558. ̂LVO− =
1.31 − 0.188 LOC + 0.890 LVO+; t = −1.52, P = 0.140;
t = 6.57, P < 0.0005; R2 = 0.728, s = 0.2611.

11.41 (a) yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi,
where i = 1, 2, . . . , 69; εi are independent N(0, σ ) random
variables. (b) P̂CB = 0.94 + 11.9x1 + 3.76x2 + 3.88x3 +
4.18x4. All coefficients are significantly different from 0,
although the constant 0.937 is not (t = 0.76, P = 0.449).



A-16
•

Answers to Odd-Numbered Exercises

R2 = 0.989, s = 6.382. (c) The residuals appear to be
roughly Normal, but with two outliers. There are no clear
patterns when plotted against the explanatory variables.

11.43 (a) P̂CB = −1.02 + 12.6x1 + 0.313x2 + 8.25x3,
R2 = 0.973, s = 9.945. (b) b2 = 0.313, P = 0.708. (c) In
Exercise 11.41, b2 = 3.76, P < 0.0005.

11.45 The model is yi = β0 + β1xi1 + β2xi2 + β3xi3 +
β4xi4 + εi, where i = 1, 2, . . . , 69; εi are independent
N(0, σ ) random variables. Regression gives T̂EQ =
1.06 − 0.097x1 + 0.306x2 + 0.106x3 − 0.0039x4, with
R2 = 0.677. Only the constant (1.06) and the PCB118
coefficient (0.306) are significantly different from 0.
Residuals are slightly right-skewed and show no clear
patterns when plotted with the explanatory variables.

11.47 (a) The correlations are all positive, ranging
from 0.227 (LPCB28 and LPCB180) to 0.956 (LPCB and
LPCB138). LPCB28 has one outlier (specimen 39) when
plotted with the other variables; except for that point, all
scatterplots appear fairly linear. (b) All correlations are
higher with the transformed data.

11.49 It appears that a good model is LPCB126 and
LPCB28 (R2 = 0.768).

11.51 x, M, s, and IQR for each variable: Taste: 24.53,
20.95, 16.26, 23.9. Acetic: 5.498, 5.425, 0.571, 0.656. H2S:
5.942, 5.329, 2.127, 3.689. Lactic: 1.442, 1.450, 0.3035,
0.430. None of the variables show striking deviations from
Normality. Taste and H2S are slightly right-skewed, and
Acetic has two peaks. There are no outliers.

11.53 T̂aste = −61.5 + 15.6 Acetic; t = 3.48, P = 0.002.
The residuals seem to have a Normal distribution but are
positively associated with both H2S and Lactic.

11.55 T̂aste = −29.9 + 37.7 Lactic; t = 5.25, P < 0.0005.
The residuals seem to have a Normal distribution; there
are no striking patterns for residuals against the other
variables.

11.57 T̂aste = −26.9 + 3.80 Acetic + 5.15 H2S. For the
coefficient of Acetic, t = 0.84 and P = 0.406. This model
is not much better than the model with H2S alone; Acetic
and H2S are correlated (r = 0.618), so Acetic does not add
significant information if H2S is included.

11.59 T̂aste = −28.9 + 0.33 Acetic + 3.91 H2S +
19.7 Lactic. The coefficient of Acetic is not significantly
different from 0 (P = 0.942). Residuals of this regression
appear to be Normally distributed and show no patterns in
scatterplots with the explanatory variables. It appears that
the H2S/Lactic model is best.

CHAPTER 12

12.1 (a) H0 says the population means are all equal.
(b) Experiments are best for establishing causation.
(c) ANOVA is used when the explanatory variable has two
(or more) values.

12.3 (a) Yes: 22/18 .= 1.22 < 2. (b) 484, 400, and 324.
(c) 410.2857. (d) 20.2555.

12.5 (a) This is the description of between-group variation.
(b) The sum of squares will add. (c) σ is a parameter.

12.7 Assuming the t (ANOVA) test establishes that the
means are different, contrasts and multiple comparisons
provide no further useful information.

12.9 (a) Response: egg cholesterol level. Populations:
chickens with different diets or drugs. I = 3,
n1 = n2 = n3 = 25, N = 75. (b) Response: rating on
five-point scale. Populations: the three groups of students.
I = 3, n1 = 31, n2 = 18, n3 = 45, N = 94. (c) Response:
quiz score. Populations: students in each TA group. I = 3,
n1 = n2 = n3 = 14, N = 42.

12.11 For all three situations, we test H0: μ1 = μ2 = μ3;
Ha: at least one mean is different. (a) DFM 2, DFE 72, DFT
74. F(2, 72). (b) DFM 2, DFE 91, DFT 93. F(2, 91). (c) DFM
2, DFE 39, DFT 41. F(2, 39).

12.13 (a) This sounds like a fairly well designed
experiment, so the results should at least apply to this
farmer’s breed of chicken. (b) It would be good to know
what proportion of the total student body falls in each
of these groups—that is, is anyone overrepresented in
this sample? (c) Effectiveness teaching one topic (power
calculations) might not reflect overall effectiveness.

12.15 (a) df 3 and 28; 2.95 < F < 3.63. (c) 0.025 < P <

0.050. (d) We can conclude that at least one mean is
different.

12.17 (a) df 4 and 40; F = 2.54, 0.050 < P < 0.100. (b) df
3 and 24; F

.= 2.09, P > 0.100.

12.19 (a) F can be made very small (close to 0), and P
close to 1. (b) F increases, and P decreases.

12.21 (a) Matched pairs t methods; we examine the
change in reaction time for each subject. (b) No; we do not
have 4 independent samples.

12.23 (a) df 3 and 2286. (b) F
.= 2.5304. (c) P = 0.0555.

12.25 (a) Activity seems to increase with both drugs,
and Drug B appears to have a greater effect. (b) Yes; the
standard deviation ratio is 1.4. sp

.= 3.154. (c) df = 4 and
15. (d) 0.01 < P < 0.025 (P = 0.0156).

12.27 (a) The variation in sample size is some cause
for concern, but there can be no extreme outliers in
a 1-to-7 scale, so ANOVA is probably reliable. (b) Yes:
1.26/1.03 = 1.22 < 2. (c) F(4, 405), P = 0.0002.
(d) Hispanic Americans are highest, Japanese are in
the middle, the other three are lowest.

12.29 (a) Immediate: n = 2, x = 48.705, s = 1.534,
SEx = 1.085 mg/100 g. One day: n = 2, x = 41.955,
s = 2.128, SEx = 1.505 mg/100 g. Three days: n = 2,
x = 21.795, s = 0.771, SEx = 0.545 mg/100 g. Five days:
n = 2, x = 12.415, s = 1.082, SEx = 0.765 mg/100 g. Seven
days: n = 2, x = 8.320, s = 0.269, SEx = 0.190 mg/100 g.
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(b) H0: μ1 = μ2 = · · · = μ5; Ha: not all μi are equal.
F = 367.74 with df 4 and 5; P < 0.0005, so we reject H0.
(c) Vitamin C content decreases over time.

12.31 Vitamin A—Immediate: n = 2, x = 3.350,
s = 0.01414, SEx = 0.010 mg/100 g. One day: n = 2,
x = 3.240, s = 0.05657, SEx = 0.040 mg/100 g. Three days:
n = 2, x = 3.210, s = 0.07071, SEx = 0.050 mg/100 g.
Five days: n = 2, x = 3.305, s = 0.07778, SEx = 0.055
mg/100 g. Seven days: n = 2, x = 2.965, s = 0.06364,
SEx = 0.045 mg/100 g. Vitamin E—Immediate: n = 2,
x = 95.30, s = 0.9900, SEx = 0.700 mg/100 g. One day:
n = 2, x = 94.45, s = 1.7678, SEx = 1.250 mg/100 g.
Three days: n = 2, x = 95.85, s = 2.1920, SEx = 1.550
mg/100 g. Five days: n = 2, x = 96.35, s = 1.9092,
SEx = 1.350 mg/100 g. Seven days: n = 2, x = 93.70,
s = 1.9799, SEx = 1.400 mg/100 g. For vitamin A,
F = 12.09, P = 0.009; we conclude that vitamin A content
changes over time. For vitamin E, F = 0.69, P = 0.630; we
cannot reject H0.

12.35 H. bihai and H. caribaea red distributions are
slightly skewed. H. bihai: n = 16, x = 47.597, s = 1.213
mm. H. caribaea red: n = 23, x = 39.711, s = 1.799 mm. H.
caribaea yellow: n = 15, x = 36.180, s = 0.975 mm. This
just meets our rule for standard deviations. ANOVA gives
F = 259.12, df 2 and 51, P < 0.0005, so we conclude the
means are different.

12.37 H. bihai: n = 16, x = 3.8625, s = 0.0251. H. caribaea
red: n = 23, x = 3.6807, s = 0.0450. H. caribaea yellow:
n = 15, x = 3.5882, s = 0.0270. ANOVA gives F = 244.27,
df 2 and 51, P < 0.0005, so we conclude the means are
different.

12.39 (a) All three distributions show no particular
skewness. Control: n = 15, x = 0.21887, s = 0.01159 g/cm2.
Low dose: n = 15, x = 0.21593, s = 0.01151 g/cm2. High
dose: n = 15, x = 0.23507, s = 0.01877 g/cm2. (b) All three
distributions appear to be nearly Normal. (c) F = 7.72, df 2
and 42, P = 0.001. (d) For Bonferroni, t∗∗ = 2.49 and MSD
= 0.0131. The high-dose mean is significantly different
from the other two. (e) High doses increase BMD.

12.41 For Bonferroni, t∗∗ = 2.67 and MSD = 0.1476. All
six differences are significant.

12.43 For Bonferroni, t∗∗ = 2.71 and sp
.= 2.7348. The

Piano mean is significantly higher than the other three,
but the other three means are not significantly different.

12.45 (a) Four months: n = 19, x = 570.0, s = 123.0
kcal/d. Five months: n = 18, x = 483.0, s = 112.9 kcal/d.
Six months: n = 8, x = 541.9, s = 94.0 kcal/d. Pooling is
reasonable. (b) F = 2.72, df 2 and 42, P = 0.078. We cannot
reject H0.

12.47 (a) Control: n = 10, x = 601.10, s = 27.36 mg/cm3.
Low jump: n = 10, x = 612.50, s = 19.33 mg/cm3. High
jump: n = 10, x = 638.70, s = 16.59 mg/cm3. Pooling
is reasonable. (b) F = 7.98, df 2 and 27, P = 0.002. We
conclude that not all means are equal.

12.49 (a) Aluminum: n = 4, x = 2.0575, s = 0.2520
mg/100 g. Clay: n = 4, x = 2.1775, s = 0.6213 mg/100 g.
Iron: n = 4, x = 4.6800, s = 0.6283 mg/100 g. Pooling is
risky because 0.6283/0.2520 = 2.49 > 2. (b) F = 31.16,
df 2 and 9, P < 0.0005. We cautiously conclude that the
means are not the same.

12.51 (a) ECM1: n = 3, x = 65.0%, s = 8.66%. ECM2:
n = 3, x = 63.33%, s = 2.89%. ECM3: n = 3, x = 73.33%,
s = 2.89%. MAT1: n = 3, x = 23.33%, s = 2.89%. MAT2:
n = 3, x = 6.67%, s = 2.89%. MAT3: n = 3, x = 11.67%,
s = 2.89%. Pooling is risky because 8.66/2.89 > 2.
(b) F = 137.94, df 5 and 12, P < 0.0005. We conclude that
the means are not the same.

12.53 (a) ψ1 = μ1 − 0.5μ2 − 0.5μ4 and ψ2 = μ2 − μ3 −
(μ4 − μ5). (b) SEc1

.= 1.9316 and SEc2

.= 3.1544. (c) Neither
contrast is significant (t1

.= −1.035 and t2
.= 0.872).

12.55 (a) The plot shows granularity (which varies
between groups), but that should not make us question
independence; it is due to the fact that the scores are
all integers. (b) The ratio of the largest to the smallest
standard deviations is less than 2. (c) Apart from the
granularity, the quantile plots are reasonably straight.
(d) Again, apart from the granularity, the quantile plots
look pretty good.

12.57 (a) ψ1 = (μ1 + μ2 + μ3)/3 − μ4, ψ2 = (μ1 + μ2)/2 −
μ3, ψ3 = μ1 − μ2. (b) The pooled standard deviation is
sp = 1.1958. SEc1

.= 0.2355, SEc2

.= 0.1413, SEc3

.= 0.1609.
(c) Testing H0: ψi = 0; Ha: ψi �= 0 for each contrast, we find
c1 = −12.51, t1 = −53.17, P1 < 0.0005; c2 = 1.269, t2 =
8.98, P2 < 0.0005; c3 = 0.191, t3 = 1.19, P3

.= 0.2359. The
Placebo mean is significantly higher than the average of
the other three, while the Keto mean is significantly lower
than the average of the two Pyr means. The difference
between the Pyr means is not significant (meaning the
second application of the shampoo is of little benefit).

12.59 (a) Vitamin A—Immediate: n = 2, x = 67.0%,
s = 0.2828%, SEx = 0.2%. One day: n = 2, x = 64.8%,
s = 1.1314%, SEx = 0.8%. Three days: n = 2, x = 64.2%,
s = 1.4142%, SEx = 1.0%. Five days: n = 2, x = 66.1%,
s = 1.5556%, SEx = 1.1%. Seven days: n = 2, x = 59.3%,
s = 1.2728%, SEx = 0.9%. The transformation has no effect
on vitamin E, since the number of milligrams remaining
is also the percent of the original 100 mg. Although the SS
and MS entries for vitamin A are different from those of
Exercise 12.31, everything else is the same: F = 12.09, df
4 and 5, P = 0.009. So we (again) reject H0 and conclude
that vitamin A content decreases over time. Since the
vitamin E numbers are unchanged, we again fail to reject
H0 (F = 0.69, df 4 and 5, P = 0.630).

12.61 All distributions are reasonably Normal, and
standard deviations are close enough to justify pooling.
For PRE1, F = 1.13, df 2 and 63, P = 0.329. For PRE2,
F = 0.11, df 2 and 63, P = 0.895. Neither set of pretest
scores suggests a difference in means.
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12.63 ŷ = 4.36 − 0.116x. The regression is significant (that
is, the slope is significantly different from 0): t = −13.31,
df = 158, P < 0.0005. Regression explains r2 = 52.9% of the
variation in expected price. (This is similar to the ANOVA
value: R2 = 53.5%.) The granularity of the “Number of
promotions” observations makes interpreting the plot a bit
tricky. For five promotions, the residuals seem more likely
to be negative, while for three promotions, the residuals
are weighted toward the positive side. This suggests that a
linear model may not be appropriate.

12.67 (b) Answers will vary with choice of Ha and desired
power. For example, with μ1 = μ2 = 4.4, μ3 = 5, σ = 1.2,
three samples of size 75 will produce power 0.89.

12.69 The design can be similar, although the types of
music might be different. Bear in mind that spending at a
casual restaurant will likely be less than at the restaurants
examined in Exercise 12.24; this might also mean that the
standard deviations could be smaller. Decide how big a
difference in mean spending you would want to detect,
then do some power computations.

CHAPTER 13

13.1 (a) Two-way ANOVA is used when there are two
explanatory variables. (b) Each level of A should occur
with all three levels of B. (c) The RESIDUAL part of the
model represents the error.

13.3 (a) df 3 and 30. (c) 0.05 < P < 0.10. (d) The plot
would look somewhat parallel, because the interaction
term is not significantly different from 0.

13.5 (a) Factors: gender (I = 2) and age (J = 3). Response:
percent of pretend play. N = 66. (b) Factors: time after
harvest (I = 5) and amount of water (J = 2). Response:
percent of seeds germinating. N = 30. (c) Factors: media
type (I = 2) and incubation time (J = 3). Response: growth
of virus. N = 24.

13.7 (a) The plot suggests a possible interaction. (b) By
subjecting the same individual to all four treatments,
rather than four individuals to one treatment each, we
reduce the variability.

13.9 (a) Intervention, 11.6; control, 9.967. Baseline, 10.0;
3 months, 11.2; 6 months, 11.15. Overall, 10.783. The
row means suggest that the intervention group showed
more improvement than the control group. (b) Interaction
means that the mean number of actions changes differently
over time for the two groups.

13.11 (a) High school and college results are very similar
for male protagonists, but college students appear to be
less accepting of lying female protagonists. (b) df = 1 and
486; 0.05 < P < 0.10 (software: 0.0716). (c) The results
might generalize to high schools and universities that are
similar geographically and demographically, but it would
be risky to assume they apply to, for example, East Coast

high schools or universities.

13.13 There were no significant effects (although B and
AB are close): FA has df = 2 and 24 and P = 0.2369. FB has
df = 1 and 24 and P = 0.0608. FAB has df = 2 and 24 and
P = 0.0721.

13.15 (a) Familiar increases with repetition and has the
higher rating for 1 and 3 repetitions, while Unfamiliar
is higher for 2 repetitions. (b) The interaction is that
Unfamiliar does better with 2 repetitions and worse for 1
and 3.

13.17 sp = 1.308. Pooling is reasonable, as 1.46/1.16 =
1.26 < 2.

13.19 For example, are opinions of university employees
(and/or West Coast residents) similar to those of other
groups? What do experts consider to be “good” ads? Did
the content of the news show affect responses to the ads?

13.21 (b) There seems to be a fairly large difference
between the means based on how much the rats were
allowed to eat but not very much difference based on the
chromium level. There may be an interaction: the NM
mean is lower than the LM mean, while the NR mean is
higher than the LR mean. (c) L mean: 4.86. N mean: 4.871.
M mean: 4.485. R mean: 5.246. LR minus LM: 0.63. NR
minus NM: 0.892. Mean GITH levels are lower for M than
for R; there is not much difference between L and N. The
difference between M and R is greater among rats who
had normal chromium levels in their diets (N).

13.23 The “Other” category had the lowest mean SATM
score for both genders; this is apparent from a graph of the
means as well as from the marginal means (CS, 605; EO,
624.5; O, 566). Males had higher mean scores in CS and
O, while females were slightly higher in EO; this seems to
be an interaction. Overall, the marginal means are 611.7
(males) and 585.3 (females).

13.25 (a) n = 3 for all combinations. The means and
standard deviations are xE1,4 = 65.00, sE1,4 = 8.66;
xE1,8 = 63.33, sE1,8 = 2.89; xE2,4 = 63.33, sE2,4 = 2.89;
xE2,8 = 63.33, sE2,8 = 5.77; xE3,4 = 73.33, sE3,4 = 2.89;
xE3,8 = 73.33, sE3,8 = 5.77; xM1,4 = 23.33, sM1,4 = 2.89;
xM1,8 = 21.67, sM1,8 = 5.77; xM2,4 = 6.67, sM2,4 = 2.89;
xM2,8 = 6.67, sM2,8 = 2.89; xM3,4 = 11.67, sM3,4 = 2.89;
xM3,8 = 10.00, sM3,8 = 5.00. Apart from the first standard
deviation, the ratio is 2 for the rest. (b) ECM means are all
higher than MAT means. Time and interaction effects are
not clearly suggested. (c) Only Material (F = 251.26, df 5
and 24, P < 0.0005) is significant. For Time, F = 0.29, df 1
and 24, P = 0.595. For interaction, F = 0.06, df 5 and 24,
P = 0.998.

13.27 For each time period, there is a significant difference
among materials. The pooled standard deviations are
6.236, 4.410, and 4.859. For Bonferroni and α = 0.05,
t∗∗ = 3.65, so the MSDs are 18.6, 13.1, and 14.5. The only
ECM/MAT difference that is not significant is ECM2 and
MAT1 at 2 weeks.
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13.29 Yes, the iron-pot means are the highest, and F for
testing the effect of the pot type is very large.

13.31 (a) In the order listed in the table: x11 = 25.0307,
s11 = 0.0011541; x12 = 25.0280, s12 = 0; x13 = 25.0260,
s13 = 0; x21 = 25.0167, s21 = 0.0011541; x22 = 25.0200,
s22 = 0.0019999; x23 = 25.0160, s23 = 0; x31 = 25.0063,
s31 = 0.0015275; x32 = 25.0127, s32 = 0.0011552;
x33 = 25.0093, s33 = 0.0011552; x41 = 25.0120,
s41 = 0; x42 = 25.0193, s42 = 0.0011552; x43 = 25.0140,
s43 = 0.0039997; x51 = 24.9973, s51 = 0.0011541;
x52 = 25.0060, s52 = 0; x53 = 25.0003, s53 = 0.0015277.
(b) Except for Tool 1, mean diameter is highest at Time
2. Tool 1 had the highest mean diameters, followed by
Tool 2, Tool 4, Tool 3, and Tool 5. (c) FA = 412.98, df 4
and 30, P < 0.0005. FB = 43.61, df 2 and 30, P < 0.0005.
FAB = 7.65, df 8 and 30, P < 0.0005. (d) There is strong
evidence of a difference in mean diameter among the tools
(A) and among the times (B). There is also an interaction
(specifically, Tool 1’s mean diameters changed differently
over time compared to the other tools).

13.33 (a) In the order listed in the table: x1,40 = 4.423,
s1,40 = 0.1848; x1,30 = 4.225, s1,30 = 0.3856; x1,20 = 4.689,
s1,20 = 0.2331; x1,10 = 4.920, s1,10 = 0.1520; x3,40 = 4.284,
s3,40 = 0.2040; x3,30 = 4.097, s3,30 = 0.2346; x3,20 = 4.524,
s3,20 = 0.2707; x3,10 = 4.756, s3,10 = 0.2429; x5,40 = 4.058,
s5,40 = 0.1760; x5,30 = 3.890, s5,30 = 0.1629; x5,20 = 4.251,
s5,20 = 0.2648; x5,10 = 4.393, s5,10 = 0.2685; x7,40 = 3.780,
s7,40 = 0.2144; x7,30 = 3.760, s7,30 = 0.2618; x7,20 = 4.094,
s7,20 = 0.2407; x7,10 = 4.269, s7,10 = 0.2699. The mean
expected price decreases as percent discount increases
and also as the number of promotions increases. (b) With
A = number of promotions and B = percent discount,
FA = 47.73, df 3 and 144, P < 0.0005. FB = 47.42, df 3
and 144, P < 0.0005. FAB = 0.44, df 9 and 144, P = 0.912.
(c) Both main effects are significant, but the interaction is
not.

13.35 (a) All three F-values have df 1 and 945, the P-values
are < 0.001, < 0.001, and 0.1477. Gender and handedness
both have significant effects on mean lifetime, but there is
no interaction. (b) Women live about 6 years longer than
men (on the average), while right-handed people average
9 more years of life than left-handed people. Handedness
affects both genders in the same way, and vice versa.

13.37 (a) and (b) The first three means and standard
deviations are x1,1 = 3.2543, s1,1 = 0.2287; x1,2 = 2.7636,
s1,2 = 0.0666; x1,3 = 2.8429, s1,3 = 0.2333. The standard
deviations range from 0.0666 to 0.3437, for a ratio of
5.16—larger than we like. (c) For Plant, F = 1301.32,
df 3 and 224, P < 0.0005. For Water, F = 9.76, df 6 and
224, P < 0.0005. For interaction, F = 5.97, df 18 and 224,
P < 0.0005.

13.39 The seven F statistics are 184.05, 115.93, 208.87,
218.37, 220.01, 174.14, and 230.17, all with df 3 and 32
and P < 0.0005.

13.41 Fresh: Plant F = 81.45, df 3 and 84, P < 0.0005;
Water F = 43.71, df 6 and 84, P < 0.0005; interaction
F = 1.79, df 18 and 84, P = 0.040. Dry: Plant F = 79.93,
df 3 and 84, P < 0.0005; Water F = 44.79, df 6 and 84,
P < 0.0005; interaction F = 2.22, df 18 and 84, P = 0.008.

13.43 Fresh: The seven F statistics are 15.88, 11.81, 62.08,
10.83, 22.62, 8.20, and 10.81, all with df 3 and 12 and
P ≤ 0.003. Fresh: The seven F statistics are 8.14, 26.26,
22.58, 11.86, 21.38, 14.77, and 8.66, all with df 3 and 12
and P ≤ 0.003.

13.45 (a) Gender: df 1 and 174. Floral characteristic: df 2
and 174. Interaction: df 2 and 174. (b) Damage to males
was higher for all characteristics. For males, damage was
higher under characteristic level 3, while for females,
the highest damage occurred at level 2. (c) Three of the
standard deviations are at least half as large as the means.
Because the response variable (leaf damage) had to be
nonnegative, this suggests that these distributions are
right-skewed.

13.47 Men in CS: n = 39, x = 7.79487, s = 1.50752.
Men in EOS: n = 39, x = 7.48718, s = 2.15054. Men
in Other: n = 39, x = 7.41026, s = 1.56807. Women in
CS: n = 39, x = 8.84615, s = 1.13644. Women in EOS:
n = 39, x = 9.25641, s = 0.75107. Women in Other: n = 39,
x = 8.61539, s = 1.16111. The means suggest that females
have higher HSE grades than males. For a given gender,
there is not too much difference among majors. Normal
quantile plots show no great deviations from Normality,
apart from the granularity of the grades (most evident
among women in EO). In the ANOVA, only the effect of
gender is significant (F = 50.32, df 1 and 228, P < 0.0005).

13.49 Men in CS: n = 39, x = 526.949, s = 100.937.
Men in EOS: n = 39, x = 507.846, s = 57.213. Men in
Other: n = 39, x = 487.564, s = 108.779. Women in CS:
n = 39, x = 543.385, s = 77.654. Women in EOS: n = 39,
x = 538.205, s = 102.209. Women in Other: n = 39,
x = 465.026, s = 82.184. The means suggest that students
who stay in the sciences have higher mean SATV scores
than those who end up in the “Other” group. Female CS
and EO students have higher scores than males in those
majors, but males have the higher mean in the Other group.
Normal quantile plots suggests some right-skewness in the
“Women in CS” group and also some non-Normality in
the tails of the “Women in EO” group. Other groups look
reasonably Normal. In the ANOVA, only the effect of major
is significant (F = 9.32, df 2 and 228, P < 0.0005).

CHAPTER 14

14.1 1 to 3.

14.3 For men: 4 to 3 (or 1.3333). For women: 9 to 11 (or
0.8182).

14.5 For men: 0.2877. For women: −0.2007.
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14.7 If x = 1 for men and 0 for women, log(odds) =
−0.2007 + 0.4884x. (If vice versa, log(odds) =
0.2877 − 0.4884x.) The odds ratio is 1.6296 (or 0.6136).

14.9 (a) Use a chi-square test with df = 6. (b) H0 should
refer to β1. (c) The logistic regression model has no error
term.

14.11 (a) p̂w
.= 0.2128 and p̂m

.= 0.1076. (b) Oddsw
.=

0.2704 and oddsm
.= 0.1205. (c) Log(oddsw)

.= −1.3079
and log(oddsm)

.= −2.1158.

14.13 (a) b0
.= −2.1158 and b1

.= 0.8079. (b) Log(odds) =
−2.1158 + 0.8079x. (c) eb1

.= 2.2432.

14.15 2.1096 to 4.1080.

14.17 (a) z
.= 8.01. (b) z2 .= 64.23.

14.19 (a) The men’s magazine confidence interval includes
1, consistent with failing to reject H0. For other explanatory
variables, the interval does not include 1. (b) The odds that
the model’s clothing is not sexual are 1.27 to 2.16 times
higher for magazines targeted at mature adults, 2.74 to
5.01 times higher when the model is male, and 1.11 to
2.23 times higher for magazines aimed at women. (c) For
example, it is easier to interpret the odds ratio than the
regression coefficients because it is hard to think in terms
of a log-odds scale.

14.21 (a) p̂hi
.= 0.8022 and oddshi = 4.05. (b) p̂non

.= 0.6881
and oddsnon

.= 2.2059. (c) The odds ratio is 1.8385.

14.23 (a) −0.0470 to 1.2650. (b) 0.9540 to 3.5430. (c) The
interval for β1 contains 0 (or the interval for the odds ratio
contains 1), so we cannot reject β1 = 0 at the 5% level.

14.25 (a) p̂hi
.= 0.01648 and oddshi

.= 0.01675, or about 1
to 60. (b) p̂lo

.= 0.00785 and oddslo
.= 0.00791, or about 1

to 126. (c) The odds ratio is 2.1181.

14.27 (a) 0.2452 to 1.2558. (b) X2 .= 8.47, 0.0025 < P <

0.005. (c) We have strong evidence of a difference in risk
between the two groups.

14.29 (a) The estimated odds ratio is 2.1181; the odds-
ratio interval is 1.28 to 3.51. (b) We are 95% confident that
the odds of death from cardiovascular disease are about
1.3 to 3.5 times greater in the high-blood-pressure group.

14.31 (a) Log(odds) = β0 + β1x, where x = 1 if the person
is over 40, and 0 if the person is under 40. (b) pi is the
probability that the ith person is terminated; this model
assumes that the probability of termination depends on
age (over/under 40). (c) The estimated odds ratio is 3.859.
A 95% confidence interval for b1 is 0.5409 to 2.1599. The
odds of being terminated are 1.7 to 8.7 times greater for
those over 40. (d) Use a multiple logistic regression model.

14.33 p̂c
.= 0.6482 and oddsc

.= 1.8424; p̂n
.= 0.4929 and

oddsn
.= 0.9722. With the model log(odds) = β0 + β1x,

where x = 1 for college graduates, we estimate
b0

.= −0.0282 and b1
.= 0.6393. The odds of a college

graduate using the Internet for travel arrangements are
about 1.90 times higher than those for a noncollege
graduate.

14.35 For women: p̂f
.= 0.1414, oddsf

.= 0.1646,
and log(oddsf)

.= −1.8040. For men: p̂m
.= 0.3388,

oddsm
.= 0.5124, and log(oddsm)

.= −0.6686. If x = 1
for males, log(odds) = −1.8040 + 1.1355x, and the odds
ratio is 3.1126.

14.37 The fitted model is log(odds) = −10.7799 + 6.3319x
( p is the probability that the cheese is acceptable, and
x is the value of Lactic). We estimate that the odds ratio
increases by a factor of 562.22 for every unit increase in
Lactic. For testing β1 = 0, X2 = 6.66 (P = 0.0098). We are
95% confident that β1 is in the interval 1.5236 to 11.1402
and that the odds ratio increases by a factor between
4.5889 and about 68.884 for each unit increase in Lactic.

14.39 (a) X2 .= 33.65 (df = 3), P = 0.0001. (b) Log(odds) =
−6.053 + 0.3710 HSM + 0.2489 HSS + 0.03605 HSE. 95%
confidence intervals: 0.1158 to 0.6262, −0.0010 to 0.4988,
and −0.2095 to 0.2816. (c) Only the coefficient of HSM
is significantly different from 0, though HSS may also be
useful.

14.41 (a) X2 .= 19.2256, df = 3, P = 0.0002.
(b) X2 .= 3.4635, df = 2, P = 0.1770. (c) High school
grades (especially HSM and, to a lesser extent, HSS) are
useful, while SAT scores are not.

14.43 (a) Log(odds) = −3.892 + 0.4157 Hospital,
using 1 for Hospital A and 0 for Hospital B. The slope
is not significantly different from 0 (z = −1.47 or
X2 = 2.16, P = 0.1420). A 95% confidence interval
for β1 is −0.1392 to 0.9706. The odds ratio is 1.515,
with confidence interval 0.87 to 2.64. (b) Log(odds) =
−3.109 − 0.1320 Hospital − 1.266 Condition, using 1 for
Hospital A and 0 for Hospital B, and 1 for good condition
and 0 for poor. The odds ratio is 0.8764, with confidence
interval 0.48 to 1.60. (c) In the model with Hospital alone,
the slope was positive and the odds ratio was greater than
1. When Condition is added to the model, the Hospital
coefficient is negative and the odds ratio is less than 1.

CHAPTER 15

15.1 Group A ranks are 1, 2, 4, 6, and 8.

15.3 To test whether the two groups of spas have the same
distribution, we find W = 21.

15.5 μW = 27.5 and σW
.= 4.7871. z

.= −1.36, which gives
P

.= 0.1738; with the continuity correction, z
.= −1.25, for

which P
.= 0.2112.

15.7 (a) Child 8’s score may be a low outlier. (b) For
testing H0: μ1 = μ2; Ha: μ1 > μ2, x1 = 0.676, x2 = 0.406,
and t = 2.062, which gives P = 0.0447. (c) We test H0:
scores for both groups are identically distributed; Ha: high-
progress children systematically score higher. W = 36 and
P

.= 0.0473 or 0.0463, similar to the conclusion reached in
(b).



Answers to Odd-Numbered Exercises
•

A-21

15.9 (a) The 5 high-progress readers have ranks 8, 9, 4, 7,
and 10. (b) W = 38; under H0, μW = 27.5 and σW

.= 4.7871.
(c) z

.= 2.09, P = 0.0183. (d) The tied observations have
ranks 4.5 and 8.5.

15.11 (a) The 16-week distribution is much more spread
out. (b) W = 33 and P

.= 0.1481.

15.13 (a) Unlogged plots appear to have higher species
counts. (b) W = 159 and P

.= 0.0298.

15.15 Counts and percents suggest that women give
higher ratings. W = 32,267.5 and P = 0.0003.

15.17 (a) X2 = 3.955, df = 4, P = 0.413. (b) W = 56,370
and P

.= 0.5.

15.19 We test H0: food scores and activities scores have the
same distribution; Ha: food scores are higher. Ranking food
minus activities differences gives W+ = 6 and P = 0.853.

15.21 One difference was 0, so use n = 6 differences:
μW+

.= 10.5, σW+
.= 4.7697, and P = P(W+ ≥ 5.5)

.= 0.8531.

15.23 We examine the heart rate increase (final minus
resting) from low-rate exercise; our hypotheses are H0:
median = 0; Ha: median > 0. W+ = 10 and P

.= 0.0505.

15.25 W+ = 119 and P < 0.0005.

15.27 The mean and median of sfair − srest are 0.5149
and 0.5. For the one-sided alternative (food at fairs is
systematically rated higher [less safe] than restaurant
food), W+ = 10,850.5 and P < 0.0005.

15.29 (a) The distribution is right-skewed but has no
outliers. (b) W+ = 31 and P = 0.556.

15.31 (a) W+ = 0 and P = 0. (b) 3.75 to 5.90 kg (different
software might produce different results).

15.33 (a) The diagram should show 10 rats assigned
to each group; apply the treatments, then observe bone
density. (b) Stemplots suggest greater density for high-
jump rats, and a greater spread for the control group.

(c) H = 10.66 and P = 0.005. ANOVA assumes Normal
distributions with the same standard deviation and tests
whether the means are all equal. Kruskal-Wallis tests
whether the distributions are the same (but not necessarily
Normal). (d) There is strong evidence that the high-jump
group has the highest average rank (and the highest
density), the low-jump group is in the middle, and the
control group is lowest.

15.35 (a) I = 4, ni = 6, N = 24. (b) Yellow: 17 + 20 +
21 + 22 + 23 + 24 = 127. White: 3 + 4 + 5.5 + 9.5 +
9.5 + 12.5 = 44. Green: 7 + 14 + 15 + 16 + 18 + 19 = 89.
Blue: 1 + 2 + 5.5 + 8 + 11 + 12.5 = 40. (c) H = 16.953;
df = 3; 0.0005 < P < 0.001.

15.37 The Kruskal-Wallis test needs two or more
independent samples.

15.39 (a) The data support this: 32.2% of high-SES
subjects have never smoked, compared to 17.3% and
23.7% of middle- and low-SES subjects. Also, only 24.2%
of high-SES subjects are current smokers, versus 42.3%
and 46.2% of those in the other groups. (b) X2 = 18.510,
df = 4, P = 0.001. (c) H = 12.72, df = 2, P = 0.002
(adjusted for ties: H = 14.43, P = 0.001).

15.41 (a) Clearly right-skewed, with high outliers. (b) H0:
μ3 = μ4; Ha: μ3 �= μ4. t

.= −3.08 with either df = 12.1
(P = 0.0095) or df = 8 (P = 0.0151). (c) H0: medians equal;
Ha: medians different. W = 447 and P

.= 0.0028.

15.43 H = 45.35, df = 2, P < 0.0005.

15.45 For meat, W = 15 and P = 0.4705, and for legumes,
W = 10.5 and P = 0.0433 (or 0.0421, adjusted for ties).

15.47 (a) Bihai-red, bihai-yellow, and red-yellow.
(b) W1 = 504, W2 = 376, W3 = 614. All P-values
are reported as 0 to four decimal places. (c) All three
comparisons are significant at the overall 0.05 level (and
would even be significant at the overall 0.01 level).
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NOTES AND DATA SOURCES

TO TEACHERS: About This Book

1. The committee’s report is George Cobb, “Teaching
statistics,” in L. A. Steen (ed.), Heeding the Call for Change:
Suggestions for Curricular Action, Mathematical Associa-
tion of America, 1990, pp. 3–43. A summary has been en-
dorsed by the ASA Board of Directors.

2. See, for example, the evaluation of the current state
of the first course in statistics, with discussion by leading
statisticians from industry as well as academia, in David S.
Moore and discussants, “New pedagogy and new content:
the case of statistics,” International Statistical Review, 65
(1997), pp. 123–165.

3. A. Agresti and B. A. Coull, “Approximate is better than
‘exact’ for interval estimation of binomial proportions,” The
American Statistician, 52 (1998), pp. 119–126. Alan Agresti
and Brian Caffo, “Simple and effective confidence inter-
vals for proportions and differences of proportions result
from adding two successes and two failures,” The American
Statistician, 45 (2000), pp. 280–288.

4. Lawrence D. Brown, Tony Cai, and Anirban Das-
Gupta, “Confidence intervals for a binomial proportion
and asymptotic expansions,” Annals of Statistics, 30 (2002),
pp. 160–201. For an overview and compelling evidence of
the weakness of the traditional intervals see by the same
authors “Interval estimation for a binomial proportion,”
Statistical Science, 16 (2001), pp. 101–133.

5. A detailed discussion appears in George Cobb and David
S. Moore, “Mathematics, statistics, and teaching,” Ameri-
can Mathematical Monthly, 104 (1997), pp. 801–823. Read-
ers interested in relations between mathematics and statis-
tics as fields might also look at David S. Moore and George
Cobb, “Statistics and mathematics: tension and coopera-
tion,” American Mathematical Monthly, 107 (2000), pp. 615–
630.

TO STUDENTS: What Is Statistics?

1. Federal Interagency Forum on Child and Family Stud-
ies, America’s Children in Brief: Key National Indicators of
Well-Being, 2004, childstats.gov/americaschildren.

2. The rise of statistics from the physical, life, and behav-
ioral sciences is described in detail by S. M. Stigler, The
History of Statistics: The Measurement of Uncertainty before
1900, Harvard-Belknap, 1986.

CHAPTER 1

1. See the National Service-Learning Clearinghouse Web
site at www.servicelearning.org/index.php.

2. From the Fatal Accident Reporting System Web site,
www-fars.nhtsa.dot.gov.

3. Data for 2000, collected by the Current Population
Survey and reported in the 2002 Statistical Abstract of the
United States.

4. Haipeng Shen, “Nonparametric regression for prob-
lems involving lognormal distributions,” PhD thesis, Uni-
versity of Pennsylvania, 2003. Thanks to Haipeng Shen and
Larry Brown for sharing the data.

5. United Nations data found at earthtrends.wri.org.

6. James T. Fleming, “The measurement of children’s per-
ception of difficulty in reading materials,” Research in the
Teaching of English, 1 (1967), pp. 136–156.

7. Wayne Nelson, “Theory and applications of hazard
plotting for censored failure data,” Technometrics, 14
(1972), pp. 945–966.

8. Read from a graph in Peter A. Raymond and Jonathan
J. Cole, “Increase in the export of alkalinity from North
America’s largest river,” Science, 301 (2003), pp. 88–91.

9. Monthly gasoline price index from the Consumer Price
Index, from the Bureau of Labor Statistics, www.bls.gov,
converted into dollars.

10. From the Color Assignment Web site of Joe Hallock,
www.joehallock.com/edu/COM498/index.html.

11. U.S. Environmental Protection Agency, Municipal
Solid Waste in the United States: 2000 Facts and Figures,
document EPA530-R-02-001, 2002.

12. Robyn Greenspan, “The deadly duo: spam and viruses,
October 2003,” found at cyberatlas.internet.com.

13. National Center for Education Statistics, NEDRC
Table Library, at nces.ed.gov/surveys/npsas/table_
library.

14. Debora L. Arsenau, “Comparison of diet management
instruction for patients with non-insulin dependent dia-
betes mellitus: learning activity package vs. group instruc-
tion,” MS thesis, Purdue University, 1993.
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15. Data from Gary Community School Corporation, cour-
tesy of Celeste Foster, Department of Education, Purdue
University.

16. National Climatic Data Center, storm events data
base. See sciencepolicy.colorado.edu/sourcebook/
tornadoes.html.

17. Found online at earthtrends.wri.org.

18. Data from the U.S. Historical Climatology Network,
archived at www.co2science.org. (Despite claims made on
this site, temperatures at most U.S. locations show a grad-
ual increase over the past century.)

19. National Oceanic and Atmospheric Administration,
www.noaa.gov.

20. We thank Heeseung Roh Ryu for supplying the data,
from Heeseung Roh Ryu, Roseann M. Lyle, and George
P. McCabe, “Factors associated with weight concerns and
unhealthy eating patterns among young Korean females,”
Eating Disorders, 11 (2003), pp. 129–141.

21. This exercise was provided by Nicolas Fisher.

22. J. Marcus Jobe and Hutch Jobe, “A statistical approach
for additional infill development,” Energy Exploration and
Exploitation, 18 (2000), pp. 89–103.

23. S. M. Stigler, “Do robust estimators work with real
data?” Annals of Statistics, 5 (1977), pp. 1055–1078.

24. T. Bjerkedal, “Acquisition of resistance in guinea pigs
infected with different doses of virulent tubercle bacilli,”
American Journal of Hygiene, 72 (1960), pp. 130–148.

25. Data provided by Darlene Gordon, Purdue University.

26. U.S. Environmental Protection Agency, Model
Year 2004 Fuel Economy Guide, found online at www.
fueleconomy.gov.

27. Noel Cressie, Statistics for Spatial Data, Wiley, 1993.

28. Data provided by Francisco Rosales of the Department
of Nutritional Sciences, Pennsylvania State University. See
Rosales et al., “Relation of serum retinol to acute phase pro-
teins and malarial morbidity in Papua New Guinea chil-
dren,” American Journal of Clinical Nutrition, 71 (2000), pp.
1580–1588.

29. Data provided by Betsy Hoza, Department of Psycho-
logical Sciences, University of Vermont.

30. Douglas Fore, “Do we have a retirement crisis in
America?” TIAA-CREF Institute, Research Dialogue, No. 77
(2003). The data are for the year 2001.

31. Extreme Weather Sourcebook 2001, found online at
sciencepolicy.colorado.edu/sourcebook.

32. We thank Ethan J. Temeles of Amherst College for pro-
viding the data. His work is described in Ethan J. Temeles
and W. John Kress, “Adaptation in a plant-hummingbird
association,” Science, 300 (2003), pp. 630–633.

33. We thank Charles Cannon of Duke University for pro-
viding the data. The study report is C. H. Cannon, D. R.
Peart, and M. Leighton, “Tree species diversity in commer-
cially logged Bornean rainforest,” Science, 281 (1998), pp.
1366–1367.

34. These graphs, like most others in this book, were pro-
duced by S-Plus, a professional statistical software pack-
age. Both graphs in Figure 1.24 used the same algorithm.
The ability to fit normal curves is widespread in statistical
software, and general “density estimators” are present in
most professional software.

35. Information about the Indiana Statewide Testing for
Educational Progress program can be found at www.doe.
state.in.us/istep/.

36. Results for 1988 to 1991 from a large sample survey,
reported in National Center for Health Statistics, Health,
United States, 1995, 1996.

37. Data provided by Charles Hicks, Purdue University.

38. Data are from the Open Accessible Space Information
System for New York City. See www.oasisnyc.net.

39. We thank C. Robertson McClung of Dartmouth Col-
lege for supplying the data. The study is reported in Todd
P. Michael et al., “Enhanced fitness conferred by naturally
occurring variation in the circadian clock,” Science, 302
(2003), pp. 1049–1053.

40. Julie Reinhart and Paul Schneider, “Student satisfac-
tion, self-efficacy, and the perception of the two-way audio/
visual distance learning environment,” Quarterly Review of
Distance Education, 2 (2001), pp. 357–365.

41. From www.isp-planet.com.

42. From the Current Population Survey, 2003 annual de-
mographic supplement, found online at www.census.gov.

43. James W. Grier, “Ban of DDT and subsequent recov-
ery of reproduction of bald eagles,” Science, 218 (1982), pp.
1232–1235.

CHAPTER 2

1. G. J. Patronek, D. L. Waters, and L. T. Glickman, “Com-
parative longevity of pet dogs and humans: implications
for gerontology research,” Journal of Gerontology: Biologi-
cal Sciences, 52A (1997), pp. B171–B178.
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2. Pernille Monberg, “The state of the Irish Wolfhound,”
at the Web site www.wolfhouse.dk.

3. Figure 2.1 displays data for 2003, from the College
Board Web site, www.collegeboard.com.

4. A sophisticated treatment of improvements and addi-
tions to scatterplots is W. S. Cleveland and R. McGill, “The
many faces of a scatterplot,” Journal of the American Statis-
tical Association, 79 (1984), pp. 807–822.

5. Data from National Institute of Standards and Tech-
nology, Engineering Statistics Handbook, www.itl.nist.
gov/div898/handbook. The analysis there does not com-
ment on the bias of field measurements.

6. Todd W. Anderson, “Predator responses, prey refuges,
and density-dependent mortality of a marine fish,” Ecology,
81 (2001), pp. 245–257.

7. The motorcycle crash test data are often used to test
scatterplot smoothers. They appear in, for example, W.
Hardle, Applied Nonparametric Regression, Cambridge Uni-
versity Press, 1990. The smoother used to produce Figure
2.5 is called “lowess.” A full account appears in section 4.6
of J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A.
Tukey, Graphical Methods for Data Analysis, Wadsworth,
1983.

8. James T. Fleming, “The measurement of children’s per-
ception of difficulty in reading materials,” Research in the
Teaching of English, 1 (1967), pp. 136–156.

9. Christer G. Wiklund, “Food as a mechanism of density-
dependent regulation of breeding numbers in the merlin
Falco columbarius,” Ecology, 82 (2001), pp. 860–867.

10. Data from a plot in Naomi I. Eisenberger, Matthew D.
Lieberman, and Kipling D. Williams, “Does rejection hurt?
An fMRI study of social exclusion,” Science, 302 (2003), pp.
290–292.

11. We thank C. Robertson McClung of Dartmouth Col-
lege for supplying the data. The study is reported in Todd
P. Michael et al., “Enhanced fitness conferred by naturally
occurring variation in the circadian clock,” Science, 302
(2003), pp. 1049–1053.

12. Forbes, February 16, 2004.

13. Alan S. Banks et al., “Juvenile hallux abducto valgus as-
sociation with metatarsus adductus,” Journal of the Ameri-
can Podiatric Medical Association, 84 (1994), pp. 219–224.

14. Based on T. N. Lam, “Estimating fuel consumption
from engine size,” Journal of Transportation Engineering,
111 (1985), pp. 339–357. The data for 10 to 50 km/h are
measured; those for 60 and higher are calculated from a
model given in the paper and are therefore smoothed.

15. From the Web site of the International Olympic Com-
mittee, www.olympic.org.

16. N. Maeno et al., “Growth rates of icicles,” Journal of
Glaciology, 40 (1994), pp. 319–326.

17. Data provided by Matthew Moore.

18. Compiled from Fidelity data in the Fidelity Insight
newsletter, 20, No. 1 (2004).

19. A careful study of this phenomenon is W. S. Cleveland,
P. Diaconis, and R. McGill, “Variables on scatterplots look
more highly correlated when the scales are increased,” Sci-
ence, 216 (1982), pp. 1138–1141.

20. Data from a plot in Timothy G. O’Brien and Margaret F.
Kinnaird, “Caffeine and conservation,” Science, 300 (2003),
p. 587.

21. See Note 18.

22. Data from a plot in James A. Levine, Norman L. Eber-
hardt, and Michael D. Jensen, “Role of nonexercise activity
thermogenesis in resistance to fat gain in humans,” Science,
283 (1999), pp. 212–214.

23. E. P. Hubble, “A relation between distance and radial
velocity among extra-galactic nebulae,” Proceedings of the
National Academy of Sciences, 15 (1929), pp. 168–173.

24. Data from G. A. Sacher and E. F. Staffelt, “Relation of
gestation time to brain weight for placental mammals: im-
plications for the theory of vertebrate growth,” American
Naturalist, 108 (1974), pp. 593–613. We found these data
in F. L. Ramsey and D. W. Schafer, The Statistical Sleuth: A
Course in Methods of Data Analysis, Duxbury, 1997.

25. From the Web site of the National Center for Education
Statistics, www.nces.ed.gov.

26. Data from plots in Chaido Lentza-Rizos, Elizabeth J.
Avramides, and Rosemary A. Roberts, “Persistence of fen-
thion residues in olive oil,” Pesticide Science, 40 (1994), pp.
63–69.

27. Debora L. Arsenau, “Comparison of diet management
instruction for patients with non–insulin dependent dia-
betes mellitus: learning activity package vs. group instruc-
tion,” MS thesis, Purdue University, 1993.

28. Gannett News Service article appearing in the Lafayette
(Ind.) Journal and Courier, April 23, 1994.

29. This example is drawn from M. Goldstein, “Prelimi-
nary inspection of multivariate data,” The American Statis-
tician, 36 (1982), pp. 358–362.

30. The facts in Example 2.26 come from Nancy W. Burton
and Leonard Ramist, Predicting Success in College: Classes
Graduating since 1980, Research Report No. 2001-2, The
College Board, 2001.
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31. Zeinab E. M. Afifi,“Principal components analysis of
growth of Nahya infants: size, velocity and two physique
factors,” Human Biology, 57 (1985), pp. 659–669.

32. D. A. Kurtz (ed.), Trace Residue Analysis, Ameri-
can Chemical Society Symposium Series No. 284, 1985,
Appendix.

33. Data from a plot in Feng Sheng Hu et al., “Cyclic vari-
ation and solar forcing of Holocene climate in the Alaskan
subarctic,” Science, 301 (2003), pp. 1890–1893.

34. R. C. Nelson, C. M. Brooks, and N. L. Pike, “Biome-
chanical comparison of male and female distance run-
ners,” in P. Milvy (ed.), The Marathon: Physiological, Med-
ical, Epidemiological, and Psychological Studies, New York
Academy of Sciences, 1977, pp. 793–807.

35. Frank J. Anscombe, “Graphs in statistical analysis,”
The American Statistician, 27 (1973), pp. 17–21.

36. Results of this survey are reported in Henry Wechsler
et al., “Health and behavioral consequences of binge drink-
ing in college,” Journal of the American Medical Association,
272 (1994), pp. 1672–1677.

37. You can find a clear and comprehensive discussion of
numerical measures of association for categorical data in
Chapter 3 of A. M. Liebetrau, Measures of Association, Sage
Publications, 1983.

38. These data, from reports submitted by airlines to the
Department of Transportation, appear in A. Barnett, “How
numbers can trick you,” Technology Review, October 1994,
pp. 38–45.

39. See the U.S. Bureau of the Census Web site at www.
census.gov/population/socdemo/school/ for these and
similar data.

40. See Note 39.

41. F. D. Blau and M. A. Ferber, “Career plans and expec-
tations of young women and men,” Journal of Human Re-
sources, 26 (1991), pp. 581–607.

42. D. M. Barnes, “Breaking the cycle of addiction,” Sci-
ence, 241 (1988), pp. 1029–1030.

43. Laura L. Calderon et al., “Risk factors for obesity in
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factors, physical activity, and hours of television viewing,”
Journal of the American Dietetic Association, 96 (1996), pp.
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44. Saccharin was on the National Institutes of Health’s list
of suspected carcinogens from 1977 to 2000 but remained
in wide use with a warning label. It was officially cleared in
2000 and the label was removed.

45. A detailed study of this correlation appears in E. M. Re-
molona, P. Kleinman, and D. Gruenstein, “Market returns
and mutual fund flows,” Federal Reserve Bank of New York
Economic Policy Review, 3, No. 2 (1997), pp. 33–52.
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47. The Health Consequences of Smoking: 1983, U.S. Public
Health Service, 1983.
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51. D. E. Powers and D. A. Rock, Effects of Coaching on SAT
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search Report 98-6, College Entrance Examination Board,
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Samuel Flanigan of U.S. News & World Report. See www.
usnews.com/usnews/rankguide/rghome.htm for a descrip-
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53. See www.cdc.gov/brfss/. The data set BRFSS de-
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from this source.
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a bush cricket metapopulation,” Ecology, 77 (1996), pp.
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57. We thank Zhiyong Cai of Texas A&M University for
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64. Data from National Science Foundation Science Re-
sources Studies Division, Data Brief, 12 (1996), p. 1.

65. Based on data in Mike Planty et al., “Volunteer ser-
vice by young people from high school through early adult-
hood,” National Center for Educational Statistics Report
NCES 2004–365.

66. Although these data are fictitious, similar, though
less simple, situations occur. See P. J. Bickel and J. W.
O’Connell, “Is there a sex bias in graduate admissions?” Sci-
ence, 187 (1975), pp. 398–404.
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multiplication, 251–254, 255, 295, 303

Probability sample. See Sample,
probability

Process capability indices, 17-39–17-46
Proportion, sample, 321, 330

distribution of, 322–327, 330

inference for a single proportion,
488–501

inference for comparing two
proportions, 505–515

P-value, 377

Quality, statistics for, Chapter 17
Quartiles, 34–35, 37, 47

of a density curve, 56, 71
Quintiles, 53

Random digits, 184, 192, Table B
Random phenomenon, 237–241
Random variable, 258–267

continuous, 263–265, 267
discrete, 259, 267
mean of, 270–273, 285
standard deviation of, 280, 286
variance of, 279–280, 285

Randomize, 181–187, 191–192
how to, 184–186
software, 186
why, 219–220

Randomized comparative experiment,
183–184

Randomized response survey, 309
RANKING data set, 632
Restricted range, 135–136, 137
Rates, 5
READING data set, 486, 681
Regression, 108–121

and correlation, 115, 121
cautions about, 125–137
deviations, 564, 611
least-squares, 108–121, 610
multiple, 607–614
nonlinear, 576–578
simple linear, 560–593

Regression line, 109, 114, 121
population, 561, 610

Regression to the mean, 166
Relative risk, 515–516, 535
Reliability, 345
Resample, 368. See also

Chapter 16
Residual, 126–127, 137, 564–565,

610, 620, 644
plots, 128–129, 137, 568–569
in time series, 21

Resistant measure, 32, 48
Response bias, 206, 208
Response rate, 198
Response variable. See Variable,

response
Robustness, 434–435, 456–457,

476–477
Roundoff error, 23
Row variable, 143, 151
RUNNERS data set, 51, 76, 696
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Sample, 173–177, 197–207, 212
capture-recapture, 220–221
cautions about, 204
multistage, 203–204, 207
proportion, 313, 488
probability, 202
simple random (SRS), 200, 207
stratified, 202–203, 207
systematic, 210

Sample size, choosing
confidence interval for a mean,

364–365
confidence interval for a proportion,

498
one-way ANOVA, 666–668

Sample space, 243–245, 255
finite, 248–249

Sampling distribution, 214–216, 221, 312
of difference of means, 450–451
of regression estimators, 570
of sample count, 313–331
of sample mean, 335–346
of sample proportion, 313–331

Sampling frame, 211
Sampling variability, 213
SAS, 458, 568, 615–618, 621–622, 624,

666, 14-10, 14-12, 15-9, 15-13, 15-30
Scatterplot, 86–92, 93

smoothing, 92–93
SAT college entrance examination, 74,

75, 166, 350, 356–357, 360, 385, 388,
400, 411, 485–486, 603–604,
610–611, 614, 615–618, 622–624,
704, 709

Seasonal variation, 20
Seasonally adjusted, 20
Shape of a distribution, 15, 22
Sign test, 438–440
Significance level, 379, 395–396
Significance, statistical, 379–381

and Type I error, 408
Significance test, 372–389

chi-square for two-way table, 531–532
relation to z test, 533

F test in one-way ANOVA, 652–653
F test in regression, 582
F test for a collection of regression

coefficients, 623–624
F test for standard deviations, 474
F tests in two-way ANOVA, 695–696
relationship to confidence intervals,

386–388
t test for a contrast, 657–658
t test for correlation, 591
t test for one mean, 422
t test for matched pairs, 430
t test for two means, 451

pooled, 462
t test for regression coefficients,

570–571
t tests for multiple comparisons, 662

use and abuse, 394–399
z test for one mean, 383
z test for one proportion, 493
z test for two proportions, 512–513
z test for two means, 450

Simple random sample. See Sample,
simple random

Simpson’s paradox, 148–151, 152
Simulation, 214
Simultaneous confidence intervals, 664
68–95–99.7 rule, 59–60, 72
Skewed distribution. See Distribution,

skewed
Slope of a line, 119

of least-squares line, 114, 121
Small numbers, law of, 276
Spread of a distribution, 15, 22, 34, 40,

47, 56–57
Spreadsheet, 3. See also Excel
S-Plus, 15-7, 15-20
SPSS, 426, 427, 459, 567, 583, 592, 649,

660, 663, 667, 14-10, 14-12, 15-20
Standard & Poor’s 500 stock index,

425–426
Standard deviation, 40–43, 47, 280, 286.

See also Variance
of binomial distribution, 319–320, 330
of density curve, 57, 71
of difference between sample means,

448
of difference between sample

proportions, 506, 511
of normal distribution, 58–59
pooled

for two samples, 461
in ANOVA, 646–647, 689

of random variable, 279–281, 285
of sample mean, 337–338, 346, 418
of sample proportion, 493

Standard error, 418
of a contrast, 657
of a difference of sample proportions,

506
for regression prediction, 575, 589
of regression intercept and slope,

570–571, 587
of mean regression response, 573, 589
of a sample mean, 418
of a sample proportion, 488

Standard normal distribution. See
Distribution, standard normal

Standardized observation, 61–62, 72
Statistic, 212, 221, 312
Statistical inference, 59, 177, 212–221,

354–355
for nonnormal populations, 435–440.

See also Chapter 15
for small samples, 457–460

Statistical process control, Chapter 17
Statistical significance. See Significance,

statistical

Stem-and-leaf plot. See Stemplot
Stemplot, 7, 22

back-to-back, 11, 452, 458
splitting stems, 11

Strata, 203. See also Sample, stratified
Subpopulation, 561, 610
Sums of squares

in one-way ANOVA, 651–652
in two-way ANOVA, 689, 694–695
in multiple linear regression, 612–613
in simple linear regression, 580

Symmetic distribution. See Distribution,
symmetric

t distribution. See Distribution, t
t inference procedures

for contrasts, 655–660
for correlation, 591
for matched pairs, 428–431
for multiple comparisons, 661–664
for one mean, 420–428
for two means, 450–455
for two means, pooled, 461–465
for regression coefficients, 570–572,

611–612
for regression prediction, 574–576
for regression response, 572–574
robustness of, 434–435, 476–477

Test of significance. See Significance test
Test statistic, 376
Testing hypotheses. See Significance

test
Three-way table, 151, 152
TI-83 calculator, 667
Time plot, 18–19, 22
Time series, 19–21, 22
Trans-Alaska Oil Pipeline, 90–91, 123,

128
Transformation, 119–121

linear, 45–48, 62
logarithm, 119–121, 435, 563

Tree diagram, 299–300
Trend, 19–20
Trimmed mean. See Mean, trimmed
Trimming, 11
Tuskegee study, 229
Two-sample problems, 447
Two-way table, 142–144, 151

data analysis for, 142–151
formulas and models for, 536–544
inference for, 526–534

Type I and II error, 406–409

Unbiased estimator, 217
Undercoverage, 204, 208
Unimodal distribution. See Distribution,

unimodal
Union of events. See Event, union
Unit of measurement, 3, 7, 45
Unit, experimental, 178, 191
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Variability, 47, 213
Variable, 2, 7, 22

categorical, 4, 22, 89–90, 94
dependent, 86
explanatory, 85, 93, 94
independent, 86
lurking, 132–135, 137, 157, 159
quantitative, 4, 22
response, 85, 94
row and column, 143

Variance, 40, 47, 279–280, 285. See also
Standard deviation

of difference between two sample
means, 448

of difference between two sample
proportions, 506

pooled estimator, 461
of random variable, 279–281
rules for, 281–285, 286
of sample mean, 418

Variation
among groups, 650
between groups, 640
within group, 641, 650

Venn diagram, 246
Voluntary response, 200, 207

Wald statistic, 14-9
Wilcoxon rank sum test, 15-3–15-14
Wilcoxon signed rank test, 15-17–15-23
Wording questions, 206, 208
WORKERS data set, 52, 82

z-score, 61, 68
z statistic

for one proportion, 493
for two proportions, 512
one-sample for mean, 376–377
two-sample for means, 448–450
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APPLICATIONS

Introduction to the Practice of Statis-
tics presents a wide variety of appli-
cations from diverse disciplines. The
following list indicates a number of
Examples and Exercises related to
different fields. Note that some items
appear in more than one category.

Examples by Application

Biology and Environmental
Science
Ch 1: 1.12, 1.23, 1.34, 1.35. Ch 2: 2.1,
2.3, 2.7, 2.8, 2.10, 2.18, 2.20. Ch 3:
3.15, 3.19, 3.34. Ch 4: 4.19. Ch 6: 6.1,
6.28. Ch 14: 14.7, 14.8. Ch 15: 15.1,
15.2, 15.3, 15.4, 15.5, 15.13, 15.14.

Business and Consumer
Behavior
Ch 1: 1.6, 1.8, 1.18. Ch 2: 2.2, 2.7,
2.10, 2.20, 2.35, 2.36. Ch 3: 3.8, 3.13,
3.16, 3.26, 3.31. Ch 4: 4.12, 4.13,
4.14, 4.27, 4.29, 4.32, 4.33, 4.34, 4.35,
4.36. Ch 5: 5.6, 5.7, 5.8, 5.11, 5.12,
5.13, 5.14, 5.16, 5.17, 5.18, 5.19. Ch
8: 8.3, 8.4, 8.5. Ch 9: 9.8, 9.9, 9.10,
9.11. Ch 12: 12.1, 12.2, 12.3, 12.4,
12.5, 12.6, 12.7, 12.8, 12.9, 12.10,
12.11, 12.12, 12.13, 12.14, 12.15,
12.16, 12.17, 12.18, 12.19, 12.20,
12.21, 12.22, 12.23, 12.24, 12.25. Ch
13: 13.1, 13.2, 13.7, 13.8. Ch 14: 14.9,
14.10. Ch 16: 16.1, 16.2, 16.3, 16.4,
16.5, 16.6, 16.8, 16.9, 16.13. Ch 17:
17.20, 17.21.

College Life
Ch 1: 1.1, 1.2, 1.3, 1.4. Ch 2: 2.5,
2.23, 2.27, 2.28, 2.29, 2.31, 2.32, 2.33,
2.34. Ch 3: 3.24, 3.25. Ch 4: 4.11,
4.22, 4.26. Ch 6: 6.4, 6.5, 6.6, 6.7, 6.8,
6.9, 6.10, 6.11, 6.12, 6.13, 6.14, 6.20.
Ch 8: 8.1, 8.6, 8.9, 8.11, 8.12. Ch 9:
9.1, 9.2. Ch 14: 14.1, 14.2, 14.3, 14.4,
14.6.

Demographics and
Characteristics of People
Ch 1: 1.7, 1.25, 1.26. Ch 2: 2.42. Ch 4:
4.30. Ch 5: 5.1, 5.5, 5.15. Ch 7: 7.13.

Economics and Finance
Ch 1: 1.20. Ch 2: 2.10, 2.24, 2.37,
2.41, 2.42. Ch 4: 4.38. Ch 6: 6.31. Ch
7: 7.4, 7.5, 7.6, 7.16, 7.17.

Education and Child
Development
Ch 1: 1.9, 1.10, 1.22, 1.24, 1.27, 1.28,
1.29, 1.30, 1.31, 1.32. Ch 2: 2.6, 2.10,
2.23, 2.26, 2.37, 2.40. Ch 3: 3.2, 3.4,
3.5, 3.7, 3.20, 3.21. Ch 4: 4.17, 4.22,
4.26, 4.37, 4.42, 4.45. Ch 6: 6.3, 6.4,
6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12,
6.13, 6.14, 6.16, 6.19, 6.20. Ch 7:
7.14, 7.15, 7.18. Ch 11: 11.1. Ch 12:
12.27, 12.28. Ch 15: 15.8, 15.9, 15.10.
Ch 16: 16.11, 16.12. Ch 17: 17.19.

Ethics
Ch 3: 3.35, 3.36, 3.37, 3.38, 3.39,
3.40, 3.41.

Health and Nutrition
Ch 1: 1.19. Ch 2: 2.4, 2.12, 2.13,
2.14, 2.15, 2.16, 2.19, 2.21, 2.22, 2.25,
2.37, 2.38, 2.39, 2.44, 2.45. Ch 3: 3.1,
3.6, 3.9, 3.14, 3.18, 3.39. Ch 4: 4.12,
4.20. Ch 5: 5.10. Ch 6: 6.2, 6.15,
6.24, 6.29. Ch 7: 7.19, 7.20, 7.21,
7.22, 7.23. Ch 8: 8.1, 8.2, 8.9, 8.10,
8.11, 8.12. Ch 9: 9.1, 9.2, 9.7. Ch
10: 10.10, 10.13, 10.14, 10.15, 10.16,
10.17, 10.18, 10.19, 10.20, 10.21. Ch
13: 13.3, 13.4, 13,5, 13.6, 13.7, 13.8,
13.9, 13.11. Ch 14: 14.1, 14.2, 14.3,
14.4, 14.6. Ch 15: 15.6, 15.7.

Humanities and Social
Sciences
Ch 2: 2.37, 2.42. Ch 3: 3.3, 3.23,
3.27, 3.28, 3.29, 3.30, 3.40, 3.41. Ch
5: 5.2, 5.3, 5.4. Ch 6: 6.25, 6.27. Ch 7:
7.7, 7.8, 7.12. Ch 9: 9.3, 9.4, 9.5, 9.6,
9.12, 9.13. Ch 13: 13.9, 13.10. Ch 16:
16.14.

Manufacturing, Products, and
Processes
Ch 1: 1.11, 1.33. Ch 3: 3.22. Ch
5: 5.5, 5.22, 5.23, 5.25. Ch 6: 6.17,
6.18, 6.30, 6.32. Ch 12: 12.26. Ch
17: 17.1, 17.2, 17.3, 17.4, 17.5, 17.7,

17.8, 17.9, 17.11, 17.12, 17.13, 17.14,
17.15, 17.18, 17.19.

International
Ch 2: 2.25. Ch 7: 7.1, 7.2, 7.3. Ch 9:
9.7, 9.8, 9.9, 9.10, 9.11. Ch 13: 13.10.

Motor Vehicles and Fuel
Ch 1: 1.5, 1.13, 1.14, 1.15, 1.16, 1.17.
Ch 2: 2.9, 2.10. Ch 4: 4.9, 4.10, 4.11,
4.32, 4.33. Ch 9: 9.14, 9.15. Ch 10:
10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7,
10.8, 10.9, 10.10, 10.12, 10.22, 10.23.

Physical Sciences
Ch 1: 1.21. Ch 2: 2.17. Ch 4: 4.16.

Sports and Leisure
Ch 1: 1.27, 1.28, 1.29, 1.30, 1.31,
1.32. Ch 2: 2.11. Ch 4: 4.2, 4.31, 4.34,
4.35, 4.36, 4.41, 4.44, 4.46. Ch 5: 5.9,
5.24. Ch 7: 7.10, 7.11. Ch 8: 8.7, 8.8.
Ch 15: 15.11, 15.12. Ch 16: 16.7,
16.10.

Technology and the Internet
Ch 3: 3.10, 3.11, 3.12, 3.17. Ch 4: 4.9,
4.10, 4.11, 4.43, 4.47, 4.48. Ch 7: 7.1,
7.2, 7.3, 7.10, 7.11. Ch 8: 8.1. Ch 9:
9.14, 9.15.

Exercises by Application

Biology and Environmental
Science
Ch 1: 1.18, 1.28, 1.29, 1.30, 1.31,
1.32, 1.33, 1.34, 1.36, 1.42, 1.56,
1.63, 1.64, 1.71, 1.78, 1.79, 1.80, 1.91,
1.93, 1.95, 1.115, 1.119, 1.144, 1.148,
1.149, 1.152, 1.155, 1.164, 1.168. Ch
2: 2.2, 2.5, 2.15, 2.18, 2.26, 2.29,
2.34, 2.40, 2.50, 2.63, 2.64, 2.66,
2.80, 2.81, 2.85, 2.88, 2.96, 2.141,
2.143, 2.149. Ch 3: 3.21, 3.22, 3.23,
3.44, 3.49, 3.58, 3.67, 3.83. Ch 5:
5.46, 5.49, 5.67, 5.70. Ch 6: 6.66,
6.67, 6.97, 6.110, 6.111, 6.122. Ch
7: 7.10, 7.25, 7.44, 7.65, 7.66, 7.81,
7.82, 7.89, 7.91, 7.92, 7.93, 7.103,
7.104, 7.105, 7.106, 7.108, 7.109,
7.122, 7.123, 7.124, 7.134, 7.135.
Ch 8: 8.48, 8.63, 8.80. Ch 9: 9.20,



9.25, 9.40. Ch 10: 10.14, 10.15, 10.16,
10.17, 10.18, 10.19, 10.23, 10.24,
10.31, 10.56, 10.57, 10.58, 10.59.
Ch 11: 11.40, 11.41, 11.42, 11.43,
11.44, 11.45, 11.46, 11.47, 11.48,
11.49, 11.50. Ch 12: 12.8, 12.10,
12.12, 12.14, 12.25, 12.34, 12.35,
12.36, 12.37, 12.51, 12.52, 12.53. Ch
13: 13.6, 13.7, 13.25, 13.26, 13.27,
13.36, 13.37, 13.38, 13.39, 13.40,
13.41, 13.42, 13.43, 13.44, 13.45.
Ch 14: 14.17. Ch 15: 15.10, 15.11,
15.13, 15.22, 15.34, 15.35, 15.36,
15.38, 15.42, 15.43, 15.47, 15.48. Ch
16: 16.5, 16.11, 16.12, 16.17, 16.20,
16.39, 16.41, 16.64, 16.74.

Business and Consumer
Behavior
Ch 1: 1.39, 1.66, 1.67, 1.69, 1.156.
Ch 2: 2.3, 2.4, 2.19, 2.29, 2.37, 2.39,
2.62, 2.66, 2.84, 2.90, 2.124, 2.129,
2.134, 2.138, 2.161, 2.162, 2.163,
2.164. Ch 3: 3.3, 3.11, 3.15, 3.16,
3.25, 3.28, 3.30, 3.32, 3.35, 3.36,
3.41, 3.48, 3.54, 3.57, 3.60, 3.61,
3.70, 3.78, 3.83, 3.89, 3.107, 3.114,
3.117, 3.120, 3.125, 3.130. Ch 4: 4.5,
4.14, 4.15, 4.32, 4.53, 4.54, 4.55, 4.75,
4.77, 4.87, 4.89, 4.90, 4.106, 4.107,
4.108, 4.109, 4.111, 4.135, 4.144.
Ch 5: 5.20, 5.55, 5.56, 5.60, 5.69,
5.71, 5.77, 5.78. Ch 6: 6.7, 6.8, 6.20,
6.21, 6.31, 6.34, 6.35, 6.42, 6.53, 6.54,
6.55, 6.72, 6.100, 6.112, 6.115, 6.117,
6.123, 6.124, 6.125, 6.132. Ch 7: 7.8,
7.9, 7.14, 7.34, 7.38, 7.42, 7.45, 7.63,
7.65, 7.66, 7.67. 7.68, 7.74, 7.75, 7.80,
7.83, 7.87, 7.93, 7.101, 7.103, 7.104,
7.110, 7.125, 7.141, 7.142. Ch 8: 8.22,
8.30, 8.31, 8.34, 8.35, 8.36, 8.37, 8.38,
8.51, 8.64, 8.65, 8.66, 8.67, 8.70, 8.71,
8.80. Ch 9: 9.30, 9.31, 9.36. Ch 10:
10.37, 10.38, 10.52. Ch 11: 11.17. Ch
12: 12.24, 12.34, 12.36, 12.40, 12.41,
12.63, 12.69. Ch 13: 13.14, 13.15,
13.17, 13.18, 13.19, 13.20, 13.33,
13.34. Ch 14: 14.3, 14.4, 14.5, 14.6,
14.7, 14.8, 14.9, 14.11, 14.12, 14.13,
14.14, 14.15, 14.16, 14.18, 14.19,
14.20, 14.21, 14.22, 14.23, 14.24,
14.31, 14.33, 14.34, 14.36, 14.37,
14.38. Ch 15: 15.17, 15.28, 15.40,
15.41. Ch 16: 16.1, 16.15, 16.18,
16.19, 16.22, 16.26, 16.28, 16.31,
16.40, 16.42, 16.43, 16.54, 16.55,

16.58, 16.67, 16.73, 16.79, 16.84,
16.85. Ch 17: 17.5, 17.14.

College Life
Ch 1: 1.1, 1.2, 1.3, 1.5, 1.6, 1.7, 1.8,
1.9, 1.10, 1.11, 1.12, 1.13, 1.14, 1.27,
1.37, 1.38, 1.41, 1.47, 1.48, 1.49,
1.50, 1.51, 1.52, 1.53, 1.55, 1.61, 1.72,
1.116, 1.146, 1.154, 1.157, 1.160. Ch
2: 2.1, 2.6, 2.7, 2.8, 2.9, 2.30, 2.31,
2.31, 2.33, 2.49, 2.50, 2.58, 2.59, 2.60,
2.61, 2.78, 2.79, 2.105, 2.106, 2.107,
2.108, 2.109, 2.110, 2.120, 2.154. Ch
3: 3.1, 3.2, 3.20, 3.50, 3.51, 3.54, 3.68,
3.69, 3.79, 3.83, 3.123. Ch 4: 4.10,
4.46, 4.60, 4.65, 4.97, 4.99, 4.101,
4.102, 4.103, 4.104, 4.105, 4.112,
4.113, 4.114, 4.115. Ch 5: 5.2, 5.18,
5.25, 5.28, 5.73, 5.77. Ch 6: 6.1, 6.2,
6.3, 6.5, 6.6, 6.14, 6.15, 6.16, 6.19,
6.23, 6.24, 6.36, 6.52, 6.63, 6.69, 6.72.
Ch 7: 7.1, 7.2, 7.3, 7.6, 7.38. Ch 8:
8.3, 8.5, 8.6, 8.11, 8.12, 8.13, 8.16,
8.19, 8.20, 8.23, 8.32, 8.33, 8.43, 8.46,
8.47, 8.52, 8.74, 8.76, 8.83. Ch 9: 9.4,
9.7, 9.8, 9.17, 9.21, 9.23, 9.24, 9.34,
9.35, 9.41. Ch 10: 10.10, 10.11, 10.42,
10.43. Ch 12: 12.9, 12.10, 12.11,
12.12, 12.14, 12.23, 12.26. Ch 13:
13.22, 13.23, 13.24. Ch 16: 16.83. Ch
17: 17.1, 17.2, 17.3, 17.7, 17.8, 17.11.

Demographics and
Characteristics of People
Ch 1: 1.4, 1.15, 1.16, 1.17, 1.20, 1.21,
1.22, 1.62, 1.65, 1.68, 1.82, 1.83, 1.84,
1.117, 1.159, 1.161, 1.169, 1.172.
Ch 2: 2.10, 2.14, 2.92, 2.111, 2.112,
2.113, 2.114, 2.115, 2.116, 2.120,
2.126. Ch 3: 3.76, 3.112, 3.113. Ch
4: 4.11, 4.21, 4.22, 4.28, 4.29, 4.30,
4.34, 4.37, 4.42, 4.43, 4.44, 4.45, 4.52,
4.59, 4.84, 4.89, 4.90, 4.106, 4.107,
4.108, 4.116, 4.117, 4.118, 4.119,
4.120, 4.121, 4.124, 4.141, 4.143. Ch
5: 5.4, 5.21, 5.31, 5.68. Ch 6: 6.116.
Ch 7: 7.130, 7.131. Ch 8: 8.26. Ch 9:
9.7, 9.8. Ch 16: 16.26.

Economics and Finance
Ch 1: 1.170, 1.172. Ch 2: 2.12, 2.27,
2.28, 2.36, 2.38, 2.48, 2.70, 2.71, 2.92,
2.103, 2.142, 2.151, 2.152. Ch 3: 3.40,
3.49, 3.87. Ch 4: 4.39, 4.91, 4.92,
4.93, 4.110, 4.136. Ch 5: 5.57, 5.62.

Ch 6: 6.116. Ch 7: 7.59, 7.60, 7.90. Ch
10: 10.5, 10.20, 10.33, 10.45, 10.47,
10.48, 10.49. Ch 11: 11.22, 11.23,
11.34, 11.25, 11.26. Ch 16: 16.45,
16.49, 16.61, 16.80.

Education and Child
Development
Ch 1: 1.25, 1.43, 1.44, 1.45, 1.74,
1.99, 1.100, 1.101, 1.102, 1.103,
1.104, 1.105, 1.106, 1.126, 1.127,
1.128, 1.129, 1.130, 1.131, 1.132,
1.133, 1.134, 1.135, 1.146, 1.153,
1.157, 1.167, 1.173. Ch 2: 2.11, 2.13,
2.35, 2.51, 2.65, 2.74, 2.91, 2.122,
2.127, 2.128, 2.131, 2.135, 2.155,
2.156, 2.159, 2.160, 2.161. Ch 3: 3.9,
3.12, 3.13, 3.14, 3.17, 3.19, 3.93, 3.94,
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Table entry for z is
the area under the
standard normal curve
to the left of z.

Probability

z

TABLE A

Standard normal probabilities

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

−3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
−3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
−3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
−3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
−3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
−2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
−2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
−2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
−2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
−2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
−2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
−2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
−2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
−2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
−2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
−1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
−1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
−1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
−1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
−1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
−1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
−1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
−1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
−1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
−1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
−0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
−0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
−0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
−0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
−0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
−0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
−0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
−0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
−0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641



Table entry for z is the
area under the
standard normal curve
to the left of z.

Probability

z

TABLE A

Standard normal probabilities (continued)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
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