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Series Preface

The fourth volume in the series Advances in Mathematics Education deals with
contributions from the SimCalc research programme, a highly prestigious and long-
term research programme going back to the visions of Jim Kaput. Jim Kaput started
to develop his visions in the eighties of the last century; the SimCalc-Project is
implementing the Kaputian research ideas into practice. The papers are contributing
to an eminent important and topical theme, namely a democratic access to important
mathematics can be offered based on dynamic representations.

The book starts with a section focusing on more general aspects such as the philo-
sophical foundation of the programme dealing with eminent important aspects such
as the transfer from static to dynamic perspectives on mathematics and mathematics
education. These foundational reflections are followed by discussions on the design
of the SimCalc-technology, which influence the design of the whole research pro-
gramme. The SimCalc research project is not limited to these kinds of reflections, it
aims to scale up and influence mathematics education in a general way. The papers
describe and analyze how SimCalc changed ordinary teaching at various levels in-
cluding dynamic representations during the whole teaching-and-learning-processes.
The book shows by an impressive collection of research studies, how the SimCalc-
programme changed classroom discourse, enabled an equal access to mathematics
by considering a high diversity. The impressive collection of research studies is fol-
lowed by commentaries and reflections from outsiders, who connect the SimCalc
research programme with the mathematics education debate in general.

The book continues the discussion of other books in this series focusing on di-
versity and equity based on a clear theoretical foundation, which makes the book
fit perfectly into the series Advances in Mathematics Education. This monograph
has the potential to strongly influence the debate on technology in mathematics ed-
ucation. It shows how technology and its theory-guided usage can provide a rich
mathematical learning environment allowing equal access to mathematics for all
students.

Gabriele Kaiser
Bharath Sriraman

Hamburg, Germany
Missoula, MT, USA
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Part I
Philosophy & Background

Ubiratan D’Ambrosio

While still teaching at SUNY at Buffalo, in the late 1960s, I became familiar with the
new program, proposed and run by Jim Kaput, at the University of Massachusetts,
Dartmouth, called START. The purpose of the program was to help students to over-
come, in their freshman year, deficiencies in Algebra and to help them to proceed
onwards to a math, science, or engineering degree. Naturally, the students present-
ing deficiencies come from different cultural environments, revealing the broad so-
cial concern of the program. These were the pioneer ideas that led to the SimCalc
Project, launched in 1994 with the main objective of helping students to advance in
Algebra and Calculus. In 2007 I was invited to join the Advisory Board of the James
J. Kaput Center for Research and Innovation in Mathematics Education at the Uni-
versity of Massachusetts Dartmouth. Later, we had the opportunity of receiving the
visits of researchers from the Kaput Center at UNIBAN/Universidade Bandeirantes
de São Paulo. There the visitors made it very clear that the proposals of SimCalc are
of much benefit for practically every country.

The core of the SimCalc Project is the idea of Jim Kaput to let Mathematics
Education spring out of change and variation, which he conceptualized as a major
strand of mathematical development leading through Algebra and beyond Calculus.
The seminal idea is to enliven and enrich mathematics in every grade level and si-
multaneously to give students access to critically important mathematical concepts
much earlier. The development of specific technologies to achieve this goal is key
for the success of this ambitious educational proposal. In this development, research
of SimCalc must review, critically, the most relevant current educational practices,
which largely reflect our past and, at the same time, venture into the future, propos-
ing new directions for education. The same care of critically regarding the past is
present in their views of the future. Thus, they avoid being trapped by the marvels
suggested by the new, amazing, technologies.

U. D’Ambrosio (B)
São Paulo, Brazil
e-mail: ubi@usp.br

mailto:ubi@usp.br
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Education has always been a two-faced enterprise. The past establishes goals and
methods of Education, and the other face tries to capture the future, suggesting and
proposing new directions of thought and new styles of behavior for the generation
which, in a few years, will take over both routines and societal innovation. History
tells us that this face of Education has always been sensitive to emerging technolo-
gies. And as we enter into the 21th Century, the presence of technology, particularly
techno-science, in everyday life is overwhelming. Institutions in the modern world
are affected by this presence.

Technologies of communication and information have been particularly influen-
tial in new directions of society, in particular of education. The transition from oral-
ity to writing marked a new role for the teacher. From the sole repository of accu-
mulated knowledge, the teacher became a guide and interpreter of registered knowl-
edge. The emergence of hardware, in the broad sense, from language, oral and writ-
ten, particularly documents and books, initiated a companionship between teachers
and hardware. It is also remarkable how the emergence of writing strengthened indi-
vidual memory, contrary to the concerns of Thamus when Theuth explained to him
the discovery of writing. The conservative king was afraid that the new invention
would implant forgetfulness in the souls of men, as described in Plato. Something
similar occurred in Europe with the introduction of the technology of calculation
of Indian and Arabic origins, which strengthened the analytic instruments of the
philosophers of the late European Middle Age, thus paving the way to the Renais-
sance and Modern Age. We are now living new possibilities in our communicative
and analytic capabilities, thanks to the powerful new technology of communication
and information.

Since Middle Ages, the scholars concern with movement were, together with
representations, the backbone of a new way of understanding the physical world.
To understand and to explain movements, relying on experience and imagination,
led to a formalism in which change and variation play a fundamental role. With
the support of computational techniques and the symbolism introduced by Algebra,
Calculus became the main intellectual instrument to understand and to explain the
worlds we experience.

Mathematics is a set of practices and languages, rooted on culture. It is applied
and extended through systematic forms of reasoning and argument. Mathematics
leads to representation systems which are organized as arts, humanities, natural and
social sciences. Mathematics change over time and respond specially to technolo-
gies of communication and information. Mathematics embodies strategies for the
generation of knowledge: observing, comparing, classifying, computing, measuring,
inferring. Although generated as individual strategies, they are socialized through
communication and are culturally shared.

It is a fact that billions are spent in education worldwide. But they risk to be
lost if we insist in declining educational models and practices. This big loss is un-
bearable for most countries, where human resources, so necessary for their future,
receive an obsolete, and in most cases, useless, education. Even the more prosper-
ous economies are very much concerned with the downgrading of their education,
in spite of enormous resources available. We all agree that technology, by itself, is
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not the guarantee of a good education. But it is undeniable that lack of technology
may hinder progress in education.

The challenges to the educator, from the cognitive dimensions to the political is-
sues, are all dealt with by the authors of this part. They claim a de facto evolution of
the species towards higher levels of humanity, in the sense of a species impregnated
with respect, solidarity and team spirit. This is particularly noticed when they focus
on the interaction of humans and technology. Refusing a common concern that tech-
nology leads to lack of humanity, researchers of SimCalc draw from many examples
from the history of culture to show the opposite. Indeed, there has been an interac-
tion of the humans and the technology they have created, and the evolution of the
human species results from this interaction, to the points of a true merging of tech-
nologies in everyday life and, remarkably, in the way we think and act. These facts
point to the responsibility of Education to guide this merging to the ultimate goal of
humanity. This is absolutely necessary for the survival, with dignity, of civilization.

The trajectory to a humanity impregnated with respect, solidarity and team spirit
meets with obstacles of a political nature. It is undeniable that some educators have
a reaction to the new and favor sameness. On the other hand, there is a growing
number of educators absorbing the new. Caution, necessary in every step of human
action, should not hinder venturing into the new. The authors of the different chap-
ters are well aware of the need of caution, and adopt all the required instruments
of control and evaluation. Most of the technological innovation in Mathematics Ed-
ucation, internationally recognized, received attention of the authors and were the
subject of careful research.

The description of the projects, accompanied by the results of their research and
by very important remarks, will be extremely valuable for those wishing to innovate.



Introduction: Major Themes, Technologies,
and Timeline

Jeremy Roschelle and Stephen Hegedus

The long-term imperative of the SimCalc project has been to democratize access
to the Mathematics of Change and Variation (MCV) (Kaput, 1994)—especially al-
gebraic ideas underlying calculus (Kaput and Roschelle, 1998)—using a combina-
tion of new dynamic technologies for representing and communicating mathematics
with new curriculum materials for grades 6–13 and aligned teacher professional de-
velopment.

Over time, many investigators at many institutions around the world have taken
up this imperative and advanced it through their own innovations and research,
linked by common themes and technologies. The resulting program of research has
led to several advances in mathematics education including, but not limited to, new
theoretical perspectives in the development of dynamic, representationally-rich sys-
tems, the role of new networks and the impact they have on curriculum and inter-
action inside classrooms, effectiveness results in large-scale experiments, as well
as insights into scaling-up, diffusion and necessary professional development for
effective implementation of research-developed materials and resources.

Our intention in this volume is to provide value to the field of mathematics ed-
ucation by bringing together the depth and breath of the diffuse, emergent research
program through a series of relatively short, accessible chapters that may engage
readers interested in:

• Advanced perspectives on how to design curriculum, technology and professional
development to address important yet difficult mathematics concepts.

J. Roschelle (B)
SRI International, 333 Ravenswood Avenue, Menlo Park, CA, USA
e-mail: jeremy.roschelle@sri.com

S. Hegedus
Kaput Center for Research and Innovation in STEM Education, University of Massachusetts
Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
e-mail: shegedus@umassd.edu

S.J. Hegedus, J. Roschelle (eds.), The SimCalc Vision and Contributions,
Advances in Mathematics Education, DOI 10.1007/978-94-007-5696-0_1,
© Springer Science+Business Media Dordrecht 2013
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6 J. Roschelle and S. Hegedus

• Best practices in integration curriculum, technology, and professional develop-
ment in mathematics education.

• Rich mixed methods descriptions and findings about how students and teachers
learn in technology-rich mathematics classrooms

• Effectiveness results at scale for such integrated applications of technology.
• Contributions to expanding theories of teaching and learning to account for the

interplay of student identities, cognitive processes, and social interactions in the
mathematics classroom.

This book is a testament to the field and all contributing authors who sustained
and advanced these ideas through research and development over many years,
through many funding agencies and advocacy, and in many parts of the world. It
does not represent the totality of work, the contributors and adherents to such a vi-
sion, or the scholars who can report on such work but it does attempt to capture the
multiple projects and voices that have evolved over the years.

This introductory chapter presents the key technologies and themes that have sup-
ported the multi-investigator, multi-institutional research program over the course of
about 18 years and counting. As such, it sets the stage for the chapters that follow.
Hence, we also provide a timeline, which describes how key themes, technologies,
and major research thrusts emerged since the beginning of the first SimCalc project
in 1994 along with major funders whom makes this historic book possible.

Finally, this book is dedicated to the scholars and research students in this book
and many others who have contributed to such work. Kaput had a vision and set for-
ward many innovative principles regarding how all students should learn with new
technologies and this could only be done through the dedicated vision and innova-
tive research and development of many people. This book aims to demonstrate how
that vision was completed and aims to be sustained through the Kaput Center and
its many associates around the world (see http://www.kaputcenter.umassd.edu).

1 Context

From its onset in 1994 and continuing forward in time, the SimCalc Project builds
on growing foundations in mathematics education research, applied to the needs of
students who are struggling with algebra and calculus. Indeed, Jim Kaput originally
founded SimCalc to advance a program he had been running at the University of
Massachusetts, Dartmouth since the late 1960s, called START. The purpose of the
program was to enable students who came to university underprepared in mathemat-
ics to learn enough in their freshman year to proceed onwards to a math, science, or
engineering degree. Thus, at its onset, SimCalc was deeply concerned with serving
diverse populations. While Kaput had a university population in mind at one end
of the spectrum, he was also strongly involved in discussions about how to weave
algebra into the curriculum much earlier, for example in elementary school.

Kaput’s grounding drew heavily on prior advances in mathematics education re-
search, particularly those concerned with epistemology: how could fundamental,

http://www.kaputcenter.umassd.edu
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yet challenging ideas be learned? As with Papert’s earlier program, designing new
microworlds to allow students to interact with technology was seen as a tool for
exploring how deep mathematics could be more readily learned by all students. Rel-
evant innovations that were under development at the time included The Geometer’s
Sketchpad® and Cabri Geometre, Function Probe, the Geometry and Algebra Sup-
posers, and many Logo microworlds. In conjunction with these, investigators were
studying small numbers of students as they struggled to learn foundational ideas
in mathematics, and describe the micro-genetic pathways that students could travel
from their prior knowledge to more advanced conceptions.

Kaput was a visionary poet of what he called “the mathematics of change and
variation,” which he conceptualized as a major strand of mathematical development
leading through algebra and beyond the conventional calculus course. At its heart,
this strand was concerned with the mathematical treatment of rates of change and
accumulations of quantities over time. In his poetic way, Kaput believed that the
“layer cake” school curriculum in which a “calculus” course was the icing on a cake
made up of successive grade level courses did not serve students well. By instead
treating “rate” and related concepts as vertical strand of long-term mathematical
development, Kaput and his colleagues foresaw the opportunity to enliven and en-
rich mathematics in every grade level and simultaneously to give students access
to critically important mathematical concepts much earlier. The SimCalc project
was created to take on this challenge in the broadest possible way, and to create
the specific technologies that would be needed to allow new epistemologies of the
mathematics of change and variation to be realized and to flourish widely.

Through the history of SimCalc, the phrase “democratizing access” has been key
to the mission among participating researchers. However, the team has never de-
fined exactly what it means. In one sense, the implicit contrast to “democratizing” is
“elite”—historically, advanced mathematical topics such as calculus have been the
province of more privileged groups as less well-off students tend to be filtered out of
mathematics before they get to such topics. In another sense, “democratizing” refers
to the mathematics itself. Kaput liked to observe the literacy not achieved merely by
the printing press but also by transitioning from Latin to the vernacular, and by
analogy, he saw dynamic representations as providing an opportunity to create more
accessible notations for mathematics. In a third sense, “democratizing” refers to the
use of mathematics, for example that understanding of rate is critical for citizens to
understand the economy and participate in public discourse effectively. There are
likely many additional senses.

The concluding part of the phrase was initially “the mathematics of change and
variation.” This phrase was carefully chosen because calculus has become a par-
ticular course and the SimCalc imperative was never to advance the teaching of
that specific course; SimCalc was quite apart from university efforts at “calculus
reform.” Instead it was meant to point to a branch of mathematics and allow for the
reconstruction of that branch as a curricular strand. As the program advanced, the
focus on MCV was too opaque or narrow for many settings, and so researchers have
substituted various phrases, such as “advanced mathematics” or “the mathematics
pathway through algebra, calculus, and beyond.”
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Regardless of the exact senses and phrases used, there is a distinct family resem-
blance among SimCalc efforts—for example, most research projects have focused
on rates, graphs, and functions in one way or another, and most research projects
likewise focus on student populations that are traditionally underserved by more
conventional mathematics programs.

An inspirational corollary to this key phrase has been the observation of how
much change in human learning is possible in a 100-year time span. When we look
at year-to-year educational change, it seems that mathematics education is barely
improving. But Kaput liked to point out how much change occurred between 1900
and 2000. In 1900, only a few percent of students nationwide learned any algebra
and almost none learned calculus. Yet by 2000, it became reasonable to expect all
students to pass an algebra course as a graduation requirement, with a high propor-
tion passing their first algebra course before high school. Likewise, Kaput believed
that over a longer timespan, it is very reasonable to expect that all students can learn
more advanced mathematics such as the mathematics of change and variation—and
that given changes in society, figuring out how to “democratize access to advanced
mathematics” is more important than ever.

Traditionally, algebra emphasizes symbolic expressions. The meaning of algebra
is developed in school in relation to rather trivial “story problems” and expressed by
drawing graphs or making tables corresponding to a symbolic function. Kaput called
expressions, graphs, and tables “the Big Three” and pointed out that to most stu-
dents, they were meaninglessly self-referential—they refer to each other but stand
for nothing in the student’s mind. An innovation in all SimCalc approaches and cur-
ricula is to build mathematical understanding NOT by starting with symbols and
then re-representing them (e.g., in graphs and tables), but rather by starting with
more familiar representations and developing their mathematical treatment, culmi-
nating in very compact and operational notations such as symbolic expressions. The
key familiar representation in SimCalc is motion, mostly commonly in the form
of a “world,” which game-like graphics that cue familiar situations in which mo-
tion occurs. Along with the reference to experienced motion, telling narrative sto-
ries about motion is also critical to the SimCalc experience. These are NOT story
problems (e.g., “two trains started at stations 12 km apart and travelling in opposite
directions. . .”) but rather narrative descriptions that students create of their experi-
ence of motion (“they were running a race, and blue started out going faster, but
dropped his baton, and had to stop to look for it, and eventually walked slowly back
to the start line.”

2 Representation and Communication Infrastructures

To sell the proposal for the first SimCalc project, Kaput made a video of what the
software might look like. This 1993 video has almost nothing in common with to-
day’s technologies; through the process of R&D and innovation, the design iterated
in ways that were not anticipated. In the original video, a student is essentially in
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the cockpit of a moving vehicle with instruments that read out position and veloc-
ity as graphs. Although graphs and motion continue to be at the heart of SimCalc,
the technology now focuses on graphs that students can easily edit and manipulate.
Motions tend to be shown in a flat, 2D perspective not in 3D, because 3D proved
not to have any advantages for learning and is hard for students to interpret. Rep-
resentations are linked to establish an infrastructure that a student can work with in
a meaningful way, for example, if they change the slope of a graph by a dragging
action, the table and motion simultaneously updates.

Beginning in 2000, the SimCalc team deliberately opened a new dimension of
technological explorations, focused on communication among devices. Theoreti-
cally, SimCalc leaders argued for the necessity of both representational and con-
nectivity infrastructures to transform the mathematics classroom. As we will dis-
cuss in more detail in the themes sections, whereas the representational dimension
mostly targeted cognition, the connectivity dimension aimed to bring in more social
and participatory elements of positive mathematics classroom cultures. Connectiv-
ity was implemented in several ways: as infrared beaming among handheld Palm
computers, as wired and later wireless connectivity among TI calculators and a lap-
top, and as “wifi” connectivity among laptops in a classroom. Connectivity contin-
ues to be featured and important aspect of today’s SimCalc MathWorlds® software
demonstrating impact on student learning and motivation.

3 Our Intentions

Although one cannot introduce SimCalc properly without acknowledging Kaput’s
singular vision and contributions, it was also his nature to bring people together
around a shared mission. From a charming, ramshackle outpost on the rural south-
eastern coast of Massachusetts, Kaput brought the best and brightest together from
around the world to work on “democratizing access to advanced mathematics.” The
diversity of contributors to this book reflects the nature of the enterprise—rich in
perspectives, varied in approaches, touching a wide range of populations and their
needs, and having in common a commitment to high quality scholarship and making
a difference for math learners everywhere. The book is written by researchers and
students involved in the rich tapestry of work called the SimCalc project and so it
is written for such people who are continuing to build on such work and apply the
themes related to the mathematical of change and variation and social mathematics
more generally to a wider variety of settings.

Today, although we are saddened to no longer have Kaput with us, his commu-
nitarian vision of how the transformation would be realized is faithfully embodied
by the ongoing work of the Kaput Center (see Fig. 1) and we are pleased that all
royalties from this book are donated to support student scholarships there.
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The Mathematics of Change and Variation
from a Millennial Perspective: New Content,
New Context

James J. Kaput and Jeremy Roschelle

This chapter raises three broad questions for the present day:

1. Will the movement of mathematics from static-inert to dynamic-computational
media lead to a widening of mathematical genres and forms of mathematical
reasoning?

2. Will mathematical activity within computational media lead to a democratization
of access to (potentially new forms of) mathematical reasoning?

3. Can these changes transform our notions of a core mathematics curriculum for
all learners?

But before going further, by way of starting points, we should like to give a
broad view of what we take mathematics to be. We regard mathematics as a cul-
turally shared study of patterns and languages that is applied and extended through
systematic forms of reasoning and argument. It is both an object of understanding
and a means of understanding. These patterns and languages are an essential way
of understanding the worlds we experience—physical, social, and even mathemat-
ical. While our universe of experience can be apprehended and organized in many
ways—through the arts, the humanities, the physical and social sciences—important
aspects of our experience can be approached through systematic study of patterns. In
addition, mathematics embodies languages for expressing, communicating, reason-
ing, computing, abstracting, generalizing, and formalizing—all extending the lim-
ited powers of the human mind. Finally, mathematics embodies systematic forms of
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reasoning and argument to help establish the certainty, generality, and reliability of
our mathematical assertions. We take as a starting point that all of these aspects of
mathematics change over time, and that they are especially sensitive to the media
and representation systems in which they are instantiated.

1 A Condensed National History of Representation

While the evolutionary history of representational competence goes back to the be-
ginnings of human evolution (Donald, 1991, 1993; Mithen, 1996), and can be linked
to the evolution of the physiology of the brain (Bradshaw and Rogers, 1993; Calvin,
1990; Lieberman, 1991; Wills, 1993), with three exceptions this history is beyond
our scope. The first is simply to recognize that representational competence, re-
flected in spoken and then written languages, both pictographic and phonetic, in
visual representations of every sort, is a defining feature of our humanity. It is re-
flected in our physiology, our cultures, and our technologies, physical and cognitive.

The second exception involves the two-step evolution of writing systems from
the need to create quantified records (Schmandt-Besserat, 1988, 1992). As convinc-
ingly described by Schmandt-Besserat (1980, 1981, 1985), clay tokens were first
used in clay envelopes to record quantities of grain and other materials in storage
and commercial and tax transactions, i.e., a given number of grain-tokens repre-
sented a certain number of bushels. Before being put inside the soft clay envelopes,
these tokens were pressed into the exterior, leaving an image of the envelope’s con-
tents. Over many generations, the envelope markings replaced the tokens. The en-
velopes evolved into tablets, and the representations led to pictographic writing. The
second step for western civilization was the invention of phonetic writing. Arbitrary
characters were used to encode arbitrary sounds (phonemes), giving rise to abstract
expression (Logan, 1986, 1995). This supported new written structures such as codi-
fied law, for example Hammurabic code and Moses’ commandments, and, when the
idea reached Greece, it enabled the expression of science, mathematics, logic, and
rational philosophy (McLuhan and Logan, 1977). We draw two broad, albeit unsur-
prising, inferences from this history. One is that quantification—mathematics—and
the functioning of human society have been inextricably linked, beginning as early
as the invention of writing. The second is that representational changes in the con-
straints and affordances of concrete media play a critical role in how we organize
our worlds (Goodman, 1978).

The third major historical event to which we direct attention is the invention
of the printing press. Of special interest are three consequences. First, there was a
standardization of dialects and vernaculars used in spoken language in Europe, first
in England with English—as opposed to the existing standard formal languages,
namely Latin and Greek. Second, and closely related, was the democratization of
literacy (Innis, 1951; McLuhan, 1962). Up until that time, there was a small col-
lection of written works and a tiny elite who read and commented on them. In-
deed, you could fit almost all of the available written classics on to a decent sized
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bookshelf. Along with the democratization of literacy came a critically important
third event, the dramatic widening of literary forms and the rapid proliferation of
original literary material based in everyday life (as opposed to narrowly academic
commentary on the classics). For example, the novel was invented. Importantly,
these events occurred largely outside of, and independently of, either the univer-
sities or the monasteries. A fifteenth-century monk would not today recognize the
“language arts” curriculum as being about the “literacy,” which was practiced and
taught before the invention of the printing press. We need to remind ourselves
that Shakespeare, and virtually all fiction of the sixteenth and seventeenth cen-
turies, were regarded as “vulgar” literature, not admitted as the subject of academic
study.

More recently, we have seen the invention of dynamic visual media, film, and es-
pecially television. These have again led to a democratization of visual culture and
a widening of dynamic visual forms (McLuhan, 1967). Almost from the beginning,
films, for example, were not sequential representations of visual events. Film gener-
ated new art forms, much in the way that new literary art forms flourished after the
development of the printing press (Arnheim, 1957). There has been a democratiza-
tion of visually mediated culture (Salomon, 1979). Most people enjoy film and can
understand its idioms. Most people can follow the extraordinary visual and auditory
feats of contemporary television, despite the rapid sequences of images and semiotic
complexity (Fiske and Hartley, 1978; Williams, 1974). This democratization of vi-
sual culture occurred without formal instruction or education, outside the academic
realm. Indeed, the former masters of the visual arts had rather little ability to guide
the new genres that arose in Hollywood and Madison Avenue. These genres built
upon naturally occurring visual and language-interpretation capabilities widely dis-
tributed across the population, and now continue with the ready ability of ways for
everyday people to author and distribute videos

The invention of manipulable formalisms, numeric and algebraic, occurred
around the same time that the printing press was invented. The first of these, the
Hindu-Arabic place-holder system for numbers, was intimately involved in the com-
mercial economy of the time (Swetz, 1987). And perhaps even more important for
the longer term was the rapid development of an algebraic symbol system with syn-
tax for manipulation. This was tied to an explosion of mathematics and science
development that is continuing today. Importantly, this mathematics and science,
and the notation systems in which it was encoded were developed by and for an in-
tellectual élite—far less than one percent of the population. Until very recent times,
only a very tiny minority of the population who were expected to learn these sym-
bol systems and use them productively—and thus no effort went into designing the
symbol systems to be readily learnable by the majority of the population. Whereas
a more accessible vernacular style of writing emerged in literature and journalism
(for example), mathematics has yet to develop an equally accessible style of reading
and writing algebra for everyday use by the general public. Indeed, each of these
successive inventions, writing and the printing technology that democratized it, dy-
namic visual forms, and now interactive digital notations, are much more deeply
embedded in ordinary life than is “classic” school mathematics.
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Fig. 1 A long-term trend:
much more math for many
more people

2 Dual Challenges: Much More Mathematics for Many More
People

At the end of the twentieth century, we face a dual challenge in mathematics ed-
ucation at all levels, from kindergarten to adult education: we need to teach much
more mathematics to many more people. The radical increase in the numbers of
people who are expected to know and use mathematics is leading to a correspond-
ing increase in student diversity and increases in the social cost of mathematics
education—to near the limits for which societies are willing to pay. We need to
achieve dramatic new efficiencies across the entire K-12 mathematics curriculum.
These trends, as indicated in Fig. 1, have been under way for centuries and are ex-
pected to continue.

To illustrate the change in content, we recall a story from Tobias Dantzig (1954):

It appears that a [German] merchant had a son whom he desired to give an advanced com-
mercial education. He appealed to a prominent professor of a university for advice as to
where he should send his son. The reply was that if the mathematical curriculum of the
young man was to be confined to adding and subtracting, he perhaps could obtain the in-
struction in a German university; but the art of multiplying and dividing, he continued, had
been greatly developed in Italy, which, in his opinion, was the only country where such
advanced instruction could be obtained.

This story has been well corroborated by historians of mathematics, for example,
Swetz (1987). While it concerns commercial mathematics, it makes the point that
there was a time when even this mathematics was the province of a very élite group
of specialists. Over time, the fact that widespread acceptance of the newly available
notation system had large impact on the larger population’s access to what we now
term “shopkeeper arithmetic.”

Another useful orienting statistic is derived from U.S. Department of Education
(1996). In the United States, 3.5 % of the 17- to 18-year-old population cohort took
high school Advanced Placement Calculus (successful completion of the associated
test allows them to substitute this course for a corresponding one in the university).
This is almost exactly the percentage of students graduating from high school in
the U.S. a century earlier. Perhaps 2 % of the US population was expected to learn
algebra a century ago; today in the US almost all students are expected to take an
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Algebra course even before they attend high school. Similar dramatic changes in
expectations regarding who can or should learn mathematics have occurred interna-
tionally, throughout both the developed and developing world.

Indeed, reflecting on these longer-term trends, the question we asked about
whether a democratization of mathematical reasoning would occur, now shifts from
the interrogative to the imperative: we must teach much more mathematics to many
more people. But how can we speak of much more mathematics when the curricu-
lum is already overflowing? And for many more people when most of those people
presently end up disliking mathematics intensely?

Before replying, we ask how many people can travel 50 miles per hour? Or can
fly? Or can speak and be heard a thousand miles away? Answer: most of us. Ren-
dering much more mathematics learnable by many more people will require at least
the levels of co-ordinated innovation standing behind the automobile, airplane or
telephone. Let’s step back a bit and examine these other innovations.

First note, the automobile involved considerably more than the invention of the
internal combustion engine. Automobiles are embedded in a sophisticated system of
interrelated innovations and practices that cover a wide range of systems, mechan-
ical, hydraulic, electronic, as well as roadways, laws, and maps. Then there is the
matter of educating and organizing the people to build, operate, and market them.
Of course, jet airplanes, airports, navigation systems, worldwide communication
systems, airline reservation systems, radar-based flight controllers, are at least as
great a miracle. With a very occasional exception, all these staples of the late twen-
tieth century operate with extraordinary efficiency in the service of quite ordinary
people—and are expected to!

We see parallel developments now becoming possible in educational technology.
Much attention has been drawn to graphical and dynamic media, with its atten-
dant possibilities for engaging children in constructing, reasoning, and communi-
cating across multiple representational forms. Likewise, the ubiquitous availability
of social networking suggests a broad change to communication is now afoot, with
potentially as far-reaching consequences. Yet new media and networking are incom-
plete without a third development: the possibility of mass-producing personalizable
educational content. Just as transportation required Henry Ford’s assembly-line-
produced Model T, and communications required the dial tone, educational technol-
ogy needs a wave of modularization, substitutability, and combinatoric composition.
This is now becoming possible under the rubric of “component software architec-
tures” (Cox, 1996) which allow for the mix-and-match interoperability, integration,
and customization of modular functionalities: notebooks, graphs, calculators, simu-
lations, algebraic formulae, annotation tools, etc. Component software architectures
bring the possibility of constructing large complex systems through a highly dis-
tributed effort among developers, researchers, activity authors, curriculum experts,
publishers, teachers, and students, among others. As we argue elsewhere (Roschelle
and Kaput, 1996; Roschelle et al., 1998), the integration of media, networks, and
component architecture can begin to allow us to approach educational problems on
a scale that was formerly inconceivable.

With our confidence stiffened by clear success in transportation and communi-
cation, and with an understanding that the infrastructure for similar advances in
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educational technology is now emerging, let us now turn to our particular interest in
present day reform—democratizing access to powerful mathematics.

3 Access to Powerful Mathematics Through New
Representational Forms

Educational innovators have long experimented with the construction of alterna-
tive notational systems to enable learning of mathematics and science. One well-
established method is to embed mathematics in computer languages (Ayers et al.,
1988; diSessa et al., 1995; Hatfield and Kieren, 1972; Noss and Hoyles, 1996; Pa-
pert, 1980; Sfard and Leron, 1996). Familiar examples could include Turtle Geom-
etry (Abelson and diSessa, 1980), mathematical programming in ISETL (Dubinsky,
1991), and spreadsheets (Neuwirth, 1995). Another method is to embed the content
in activities such as computer games (Kraus, 1982; Shaffer et al., 2005). Here we
argue for a representational alternative: embedding mathematics in direct manipu-
lation of dynamic spatial forms and conversation over those forms (Kaput, 1992).
Dynamic geometry is one example of alternative notational form based upon di-
rect manipulation of spatial forms (Jackiw, 1991–2009; Goldenberg, 1997; Laborde,
1984–2009). Direct manipulation of two-dimensional vectors is another (Roschelle,
1991). For the mathematics of change and variation, our SimCalc project has chosen
to focus on directly manipulable Cartesian graphs that control the action of anima-
tions.

The properties of graphs suggest interesting answers to the three major questions
we posed earlier:

1. Widening of forms? Graphs already support a range of forms that is considerably
wider than can be expressed in closed-form symbolic algebra (Kaput, 1994), and
more specific to particular reasoning techniques. For example, as we shall de-
scribe below, graphs can easily support manipulation of piecewise defined func-
tions, a form that is extremely cumbersome in traditional algebra.

2. Democratization of access? Graphs are already a more democratic form, appear-
ing frequently in newspapers, television, business presentations, and even U.S.
presidential campaign speeches—at least in terms of reading and interpretation,
as opposed to writing and manipulating graphs. These are all places where equa-
tions are seldom found, and indeed usually taboo. As was the case with the explo-
sion of literary forms, graphs appear to draw upon cognitive capabilities, which
are more widespread or accessible than formal mathematical symbols, although
not without challenges (Leinhardt et al., 1990; McDermott et al., 1987). We shall
deal with the matter of writing and manipulating graphs shortly.

3. New core curriculum? Most of the basic characteristics of mathematical thinking
outlined at the beginning of this chapter and highlighted in modern curriculum
standards can be carried over to graphical representational forms, allowing stu-
dents to begin grappling with powerful concepts earlier and more successfully.
In the next millennium, graphical mathematics will need to be part of the basic
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Fig. 2 An introductory elevators activity in SimCalc MathWorlds® software

mainstream experience for all students. But a major step in this direction will
require a move from static graphs that are merely read and interpreted to dynam-
ically manipulable graphs that can be linked to phenomena and simulations of
various kinds. And this change must occur in concert with substantial changes in
how the content is organized and experienced.

Our SimCalc Project is building upon the unique potential of manipulable graphs
in our MathWorlds software, which supports learning about rates of change of ob-
jects in motion, along with many related concepts. Figure 2 shows a screen from
an introductory activity, with a moving elevator controlled by a piecewise-defined
step function for velocity. In this activity (designed by our colleague, Walter Stroup),
middle-school students make velocity functions that occupy six grid squares of area.
The students are asked to make as many different (positive) functions as they can,
and compare similarities and differences. As mathematicians well know, all such
functions will cause the elevator to move upwards 6 floors, but will vary in times
and speeds. Pictured is a very simple one-piece velocity function. As we discuss
elsewhere (Roschelle et al., 2000), velocity step functions also draw upon students’
prior knowledge and skills: students can compute the integral by multiplying the
sides of the rectangles or simply counting squares. They can readily distinguish du-
ration (width) from speed (height), and distance travelled (area). Questions about
the meaning of negative areas (below the axis) arise naturally and their resolution
can be grounded in the motion of the simulated elevator.

Over many weeks with MathWorlds, students can study the properties of velocity
graphs in relation to motion, then position graphs, then relations between the two,
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and finally (for older students) acceleration graphs. Along the way, students also
work with manipulable graphs that are piecewise linear (instead of step functions),
continuous instead of discontinuous, and varying arbitrarily (not just linearly). The
various representations are each dynamically linked, so that students can directly
observe the effects of changing a velocity graph upon position, or vice versa.

4 Relationships Among Representations Move to the Center

As mentioned above, the printing press led to increasing diversity of literary forms
including, for example, the novel. We argued that computational representations are
doing the same for mathematics, and that new forms of graphs are likely to become
common tools for mathematical reasoning. Here we push our millennial comparison
one step further. Among the new literary forms that emerged, the novel stands out as
creating a more participatory experience for the reader; readers of novels are swept
into a fully articulated world that at times seems as real as the familiar world. Indeed,
the great achievement of successful authors is to relate experience in the reader’s
personal world to the new imaginary worlds. Moreover, novelists were now free to
treat topics that were neither religious, nor mythical, nor heroic—contemporary life
became the subject of literary experience. Of course, these new forms did not arrive
without precedent; oral story-telling traditions paved the way; and contemporary
novels are certainly no more constrained to common experience than film-makers
are bound to reproducing common events.

This trend has its parallel in technology that brings motion experiences into the
mathematics classroom, and thus ties the mathematics of change to its historical and
familiar roots in experienced motion. Motion can be represented cybernetically (as
an animation or simulation), as we described above in MathWorlds. And motion can
also be represented physically, in experiences of students’ own body movement, or
objects that they move. When desired, these physical motions can be digitized and
imported as data into the computer, attached to actors, repeated, edited, and so on.
Below we discuss three ways in which SimCalc is using the relationship between
physical and cybernetic experience to give students new opportunities to make sense
of traditionally difficult concepts such as mean value, limits, and continuity.

When using MathWorlds in classrooms, especially with young children, we of-
ten begin with physical motion, unconnected to the computer at all. For example,
students might be asked to walk along a line, with speeds qualitatively described as
“fast,” “medium,” or “slow.” The class can then measure the time to cover a fixed
distance, beginning the slow process of building and differentiating the quantities of
distance, rate, and time and their relationships. Later students move to the computer
and use an activity that displays a “walking world” with animated characters whose
velocities are constrained to three fixed heights, corresponding to fast, medium and
slow. With the greater precision and control supported by the computer representa-
tions, students can now begin to make quantitative comparisons. Here we use the
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Fig. 3 Dude does Clown’s mean value

kinesthetically rich experiences of the physical world to present difficult quantifica-
tion challenges for students who have only the vaguest idea of what one might mea-
sure and why (Piaget, 1970; Thompson and Thompson, 1995). Animated clowns,
on the other hand, are less grounded in real experience (indeed their gaits are car-
toonish at best), but easier to control, measure, examine, and repeat. They provide
pedagogically powerful intermediate idealizations of motion phenomena.

In later activities, physical and cybernetic experience can be connected directly
through data. For example, in Roschelle et al. (1998), we describe an activity se-
quence in which students explore the concept of mean value—a mathematically
central concept upon which much theoretical structure depends (Fleming and Kaput,
1979). Here a student’s body motion is captured with a motion sensor, and input into
MathWorlds, where it becomes replayable as the motion of the walking “Clown”
character. The motion also appears in a MathWorlds graph as a continuously vary-
ing velocity function (assuming the walking student varied speed). Students may
now construct a second animated character (“Dude”) whose motion is controlled by
a single constant velocity function (see Fig. 3). The challenge is to find the correct
velocity to arrive at the same final location at exactly the same time—thus finding
the mean value.

It is exciting for students to find the mean value of their own variable-velocity
body motion. While a large body of research exists regarding student mathemati-
zation of motion, it focuses mainly on high school and college age students, and
generally deals with “regular” motion that is describable algebraically (McDermott
et al., 1987; Thornton, 1992). In contrast, we allow students to work with highly
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irregular motion, generated by their own bodies, and leading towards the important
technique of approximating continuous variation with piecewise linear functions.

Once students are comfortable with the concept of mean value, they can use
piecewise segments to try to approximate a varying motion. In the example given
above, the two motions will only intersect at one place, the final location. But in
MathWorlds students can use two piecewise linear velocity segments (each com-
prising half the given interval) and thus intersect at two places, the final location
and the mid-duration location. This process can be repeated with more and more
(and smaller and smaller) segments, making the two characters meet 2, 4, 8, 16, 32,
or more times. Of course, as the number of segments increases, the approximation
between the motions becomes greater, giving students a concrete sense of taking a
limit. Here students see how an idealized abstraction (a linear velocity segment) can
model a continuously varying real world variable (their varying body position) with
as much precision as required (see Roschelle et al., 1998, for more detail).

Although the activity sequence described above was important in early teaching
experiments with MathWorlds and shows how dynamic representations can fruit-
fully reinterpret ideas in a Calculus course, over time our work has come to em-
phasize position graphs before velocity graphs. When we initiated a sequence of
projects in Texas to test SimCalc curriculum at scale, our entry point was 7th grade
mathematics. At this level, SimCalc relates best not to mean value (a more advanced
concept) but rather to the core construct of proportionality.

In traditional seventh grade teaching, proportionality is addressed through the
equality of two ratios: a/b = c/d . Problems rely heavily on the useful but in-
scrutable cross-multiplication procedure, which transforms this equality to a ∗ d =
c ∗ b, and the process of identifying three given quantities and calculating a fourth.
While useful, this conceptualization of proportionality is narrowly useful and is
not particularly fertile for students’ further mathematical development. We found
that SimCalc could bring the “democratizing access to the mathematics of change”
theme to life at this grade level by refocusing proportionality on its relationship to
rate, as in the speed of a moving object. Further, graphs could be used to visualize
how speed connects changes in time to changes in position, e.g., through the graph
of a line. This could then be developed into the first important mathematical func-
tion that students encounter, y = kx (which is further developed into y = mx + b in
our eighth grade curriculum unit).

These curricula units developed a rich network of connections among repre-
sentations along two dimensions, a familiar-formal dimension and a graphical-
linguistic representation. For instance, in initial exercises, an animated motion (fa-
miliar, graphical) is related to a story of a race (familiar, linguistic) and a graph
of the motion of the actors in the race (formal, graphical). As the curriculum pro-
gresses, algebraic expressions (formal, linguistic) are also introduced in relationship
to graphs, using tables as a stepping stone. Overall, we have argued that optimal
curricular sequences using new representational media should focus on connections
between types of representations and should develop more formal representations
as their more familiar counterparts are better understood.

As reported elsewhere in this volume, we have had considerable success in
demonstrating the effectiveness of these curricular units for seventh and eighth grade
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mathematics through large-scale randomized experiments. We attribute some of this
success to the idea that “new technology without new curriculum isn’t worth the
silicon it’s written in.” To realize the potential of dynamic representations, new cur-
ricular pathways must be envisioned and made concrete for teachers in curriculum
workbooks and teacher professional development.

To summarize, we see new technologies creating a possibility to reconnect math-
ematical representations and concepts to directly perceived phenomena, as well as to
strengthen students’ understanding of connections among different forms of mathe-
matical representation. By starting from more familiar antecedents, such as graphs
and motion, both in kinesthetic and cybernetic form, and developing towards more
compact and formal mathematical representations, we see an opportunity to create
a new path of access to mathematics that has too often remained the province of a
narrow elite.

5 Discussion: Mathematics Education at the Beginning of a New
Millennium

By momentarily rising from the trenches of mathematics education reform to a
larger time scale, we identified a major long-term trend: Computational media are
reshaping mathematics, both in the hands of mathematicians and in the hands of
students as they explore new, more intimate connections to everyday life. As we
mentioned earlier, we can already be fairly certain this will lead to widening of
mathematical forms, just as the printing press increased the range of acceptable
literary forms. Already, we are seeing new forms such as spreadsheets and data vi-
sualization becoming prominent in everyday life. Computational tools are leading to
new epistemological methods as professional mathematicians explore the extraor-
dinary graphical phenomenology of dynamical systems (Stewart, 1990). Educators
are rapidly inventing new, additional forms—such as mathematical programming
languages and construction kits for dynamic geometry.

Based on our experiences and experimental investigations with SimCalc, we are
more and more optimistic about the second question we raised: democratic access.
Some representational forms, like directly editable graphs, can make difficult con-
cepts such as mean value, limit, and continuity in calculus newly available to or-
dinary middle-school (10- to 12-year-old) students and can lead to fertile reinter-
pretations of existing concepts, such as rate and proportionality. The technology’s
capability to provide better links between graphical representations and phenomena
(physical and cybernetic) also appear essential, as this linkage grounds concepts in
familiar semantic referents.

Yet as Sherin (1996) points out, new forms also lead to changes in the meaning
of the concepts; in Sherin’s studies, students who learned physics by programming
in a computer language learned a set of physics concepts subtly different from those
learned by students using traditional algebraic symbols. Indeed, in our work with
SimCalc, we are currently working out the curricular bridge from editable piece-
wise functions back to traditional algebra. It is by no means easy. And this is just
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the beginning! We want to lead students towards understandings of the larger math-
ematics of change and variation that includes dynamical systems because this rel-
atively new mathematical form, with roots in Poincaré’s work at the end of the
previous century, is revolutionizing many sciences simultaneously as we approach
the next century (Hall, 1992). However, the major long-term educational experiment
with systems concepts, based in the use of Stella, is far from a clear success (Do-
err, 1996). Other innovative approaches to systems concepts, StarLogo (Resnick,
1994) and AgentSheets (Repenning, 1994) look promising but present difficulties in
linking back to commonplace notation. Nonetheless, we believe that with time and
effort, innovations in computational representations will make democratic access to
systems dynamics possible.

To harness this potential fully, however, reformers will need to rise to the chal-
lenge of our third question: Can these new possibilities transform our notion of
a core mathematics curriculum for all learners? The technological revolutions in
transportation and communications would be meaningless or impossible if core so-
cietal institutions and infrastructures remained unchanged in their wake. Today’s
overnight shipments and telecommuting workers would be a shock to our forebears
100 years ago, but our curriculum would be recognized as quite familiar. If we are
to overcome this stasis, we must seize the opportunities implicit in new dynamic
notations to reorganize the curriculum to enable extraordinary achievement from
ordinary learners.
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From Static to Dynamic Mathematics:
Historical and Representational Perspectives

Luis Moreno-Armella and Stephen Hegedus

1 Preface

We present new theoretical perspectives on the design and use of digital technolo-
gies, especially dynamic mathematics software and “classroom networks.” We do
so by taking a more contemporary perspective of what can be possible, as the no-
tations, the mathematical experiences, and the medium with which these all work,
come closer together and co-evolve. In effect, this approach takes a more applied
epistemological stance to the nature of mathematics education in the future versus
an epistemological tension between the contemporary mathematician and “their”
mathematics, and society today.

Kaput began to take a deep appreciation of the evolution of sign systems in the
mid-1990s—producing diverse perspectives on the semiotics of mathematical no-
tations for education (Kaput, 1999; Shaffer and Kaput, 1999) and later in Moreno-
Armella and Kaput (2005) and Kaput et al. (2008). In these works, he incorporated
the evolutionary and cultural perspectives of Merlin Donald’s two seminal works
(Donald, 1991; 2001) focusing on cognition and representations. Shaffer and Kaput
(1999) suggest that the “new phase” (virtual culture) is a logical next-step in the
development of the evolutionary-cognitive perspective developed by Merlin Don-
ald. This perspective considers that the evolutionary study of cognition can be con-
ceived of as a timeline going from the mimetic culture, then mythic culture (orality)
to finally, the theoretical culture, based on external memory supports. This includes
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writing as its main component. They suggest that virtual culture, based on the pro-
cessing capacity of new technologies (and future ones), is the next logical step. As
their perspective is mainly cognitive-evolutionary, they do not study in depth the
semiotic aspects of this new stage in the evolution of cognition. We approach the
study of notation systems from a historical perspective emphasizing the semiotic
dimension. This leads us to a serious consideration of the dynamic structure of the
reference field. This is in contrast to Shaffer and Kaput (1999), which emphasizes
the processing power of the new notation system due to the computational embodi-
ment. We build now on this work in considering the epistemological transformations
due to the presence of the executability of digital semiotic representations. This has
allowed us to cast light on historical stages of evolution and compare them with
present stages of technological evolution in mathematics education (Kaput, 2000).
In this chapter, we propose a new way of conceiving a reference field in mathemati-
cal activity. This reference field becomes possible through certain new technologies
and hardware infrastructures, particularly wireless networks.

2 Perspectives on Symbols

A symbol is something that takes the place of another thing. For instance, pencil
takes the place of those material objects we use to write. But this does not still ex-
plain how taking the place occurs in general. A symbol is something that someone
intends to stand for or represent something other than itself. Symbols crystallize
intentional actions, and are instrumental for generating and developing human cul-
tures. We wish to use the metaphor crystallize instead of encapsulate, because we
want to direct our attention to essential properties of a crystal, particularly its stabil-
ity and its possibility for change and growth.

Generalization and symbolization are at the heart of mathematical reasoning in
the SimCalc learning environment. One way a person can make a single statement
that applies to multiple instances—a generalization—without making a repetitive
statement about each instance is to refer to multiple instances through some sort of
unifying expression that refers to all of them at once, in some unitary way—as a
single thing. The SimCalc program of development has attempted to establish such
through linked and multiple-representational software environments with integrated
curriculum that attends to and exploits such affordances in order to focus the atten-
tion of learners in mathematically meaningful ways.

The unifying expression requires some kind of symbolic structure, some way
to unify the multiplicity, and this is the focus of our attention to such a problem
in mathematics education. Symbolization is in the service of generalization—both
within individuals and historically as communal thinkers. And once a level of sym-
bolization is achieved, it becomes a new platform on which to express and reason
with generally, including further symbolization (see Kaput et al., 2008, p. 20).

Now, the difference between different modes of reference can be understood in
terms of levels of interpretation (Deacon, 1997, p. 73). We should emphasize that
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the nature of reference is relative at its core, and what is a referent in one description
may be the result of a prior symbolization. These levels of interpretation call atten-
tion to icons, indexes, and symbols as used by C. S. Peirce (Deacon, 1997, p. 70).
Hence, where we take up the description has a lot to do with “what is a symbol” and
“what is a referent” for that symbol.

The idea of crystallization does not imply a rigid and/or static structure for the
reference field. Instead, with this perspective, reference fields (meanings) are dy-
namic—they grow and transform with the shared use of symbols. The reference
field lodged in a symbol can be greatly enhanced when that symbol is part of a
network of symbols.

Emergent meanings come to light because of the new links among symbols. For
instance, the meaning of a word, in a dictionary, can be found inside the net of
relations established with other words. Nevertheless, Donald (2001, p. 154), has
suggested that as our early experience is gained in a non-symbolic manner, the
roots of meaning can be found in our non-symbolic engine, that is, in our analogue
modes of operation, as if the ultimate meaning of a symbol were an experience, an
intuition. Yet, we have been able to create symbolic universes that duplicate our
experience and provide a meta-cognitive mirror where we can see ourselves and
enrich our lives and thinking. This is the case, for instance, with works of arts, nov-
els, and scientific theories. The feeling of objectivity that comes with our symbolic
creations explains the Platonic viewpoints of many scientists. In mathematics, this
viewpoint translates into the belief in a pre-symbolic mathematical reality. Explain-
ing the mathematical power embodied in Maxwell’s equations for electromagnetism
Hertz wrote:

One cannot escape the feeling that these mathematical formulas have an independent exis-
tence and intelligence of their own (Kline, 1980, p. 338).

This crystallizing impact of symbols in our minds generates the belief that they
are the primordial world of experiences in the first place. But if we are doing math-
ematics, for instance, we need some conviction that we are working with objects
that have a real existence even if this existence is not material existence. This has
been a central philosophical and theoretical focus of the mathematical tapestry of
the SimCalc learning environment.

Platonism becomes acceptable only as emotional Platonism. However, in absence
of symbolic representations, we lose the access to mathematical objects, as they are
intrinsically symbolic objects. We can speak of mathematical inscriptions as the ex-
ternal marks of symbols but we cannot forget that symbol and reference are like
a one-sided coin—each one is the condition of existence of the other. Before, we
said that a symbol crystallizes an action or an intentional act. What kind of ac-
tion is crystallized in a mathematical symbol? We consider this question central for
the epistemology of mathematics and mathematics education, which the SimCalc
project has problematized over several decades.

Later in this chapter, we analyze how new forms of mathematical activity—
through dynamic media—appreciates this fundamental perspective for allowing stu-
dents more direct access to mathematical structures. We will present examples of
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classroom activities to illustrate the dynamics of this process, but first we aim to
cast light on the evolving nature of the relationships between a mathematical sym-
bol and its reference field using some historical examples.

Incised bones like the one found in Moravia (Flegg, 1983), dated 30,000 B.C.,
constitute what is perhaps the first example of manmade symbols. We interpret this
finding as an example of the use of a one-to-one correspondence between a con-
crete collection of objects (perhaps preys attributed to a hunter) and the set of in-
cisions on the bone. This set of incisions, acquire a symbolic meaning. In fact, the
act of incising a bone is an intentional act by means of which the bone is mod-
ified to store, manipulate, and transport information—-an incision, for instance,
can represent a rabbit, a bird. On the bone, one can see after this intentional act
the birth of a new symbolic world—-the territory of the symbol. Tokens are our
next example in the production of mathematical symbols. As D. Schmandt-Besserat
has written in her fascinating account on How Writing Came About (1996) tokens
were “small clay counters of many shapes which served for counting and account-
ing for goods” (p. 1). Tokens served the needs of economy and their development
was tied to the rise of social structures (Schmandt-Besserat, 1996, p. 7). After a
few decades as trade increased, Sumerians needed a more compact way to keep
track of goods than individual tokens. Thus, the tokens which according to shape,
size, and number represented different amounts and sorts of commodities—were
put into a sealed envelope, a container for the tokens. This process compacted in-
formation but created a new problem: to inspect the content of an envelope, it had
to be destroyed. This new problem was resolved, as Schmandt-Besserat recounts
(1996, p. 7) by imprinting the shapes of the tokens on the surface of the enve-
lope. A mark impressed on the surface of the envelope kept an indexical relation
with one counter inside, which figured as its referent. After another one hundred
years, Sumerians realized that they could dispense with the tokens themselves by
just impressing them on wet clay. In fact, transferring their conventional meaning
of the tokens to those external inscriptions was enough to convey the information
intended (Schmandt-Besserat, 1996, pp. 50–51). That decision altered the semiotic
status of those external inscriptions. Afterwards, scribes began to draw on the clay
the shapes of former counters. But drawing a shape versus impressing the shape of
a token are extremely different activities, even if both are intentional. This gradual,
emerging set of physical inscriptions worked as a meta-cognitive mirror to guide
actions—both mental (interpretive actions) and physical (elaborations)—on the new
inscriptions.

As Duval (2006) has explained,

One has only to look at the history of the development of mathematics, to see that the
development of semiotic representations was an essential condition for the development
of mathematical thought. For a start, there is the fact that the possibility of treatment, for
example calculation, depends on the representation system (p. 106).

Duval (2006, p. 107), explains as well that the crucial problem of mathematical
comprehension for learners arises from the fact that the access to a mathematical
object is possible only by means of semiotic representations and yet that these rep-
resentations cannot be confused with the object itself. In fact, each time we produce
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a new system of representation for a mathematical object, that object is no longer the
same object. Mathematical objects have many potential faces and each face corre-
sponds to a certain way of operating the object. Mathematical objects are always un-
der construction. This construction takes place within symbolic cultures, as happens
with novels and sonatas, for instance. The importance of notation systems (semiotic
representations) cannot be overemphasized. Reading classical mathematical texts
from the remote past, one can appreciate how after translating those texts into mod-
ern notation, the problems become almost trivial. This is the case, for instance, with
arithmetic problems from pre-Greek mathematical cultures. Were these trivial prob-
lems? No. Reflecting on these issues, one arrives at the conclusion that mathematical
notation systems are not epistemologically neutral. It must be taken into considera-
tion that notation (or semiotic) systems are artifacts coextensive with our thinking.
We say we think with a notation system when we use it as a cultural tool. For in-
stance, when we compute using the binary system for numbers we feel that system is
outside of our mind. But if we compute with the decimal system, the feeling is quite
different. It is as if this system were an intrinsic component of our mind. And it is, in
fact, because a process of internalization has taken place. The system has gone from
the (school) culture into our mind. It becomes coextensive with our mind. We think
through it. Vygotsky considered the process of internalization—cultural artifacts
becoming cognitive tools—central to his theory of cognition. He said “any higher
mental function is external because it was social at some point before becoming an
internal truly mental function” (Wertsch, 1985, p. 62).

3 Shifting from Static to Dynamic Media for Twenty-First
Century Classrooms

The visual, gestural, and expressive capacity of the use of new technologies becomes
apparent in various ways. These capacities primarily focus on the medium within
which the technology user, learner or teacher (from hereon described as the user)
operates. To describe this change, we introduce the idea of co-action to mean, in
the first place, that a user can guide and/or simultaneously be guided by a dynamic
software environment. This is basic in understanding that humans-with-media (see
Borba and Villarreal, 2005) is a fundamental development in the co-evolution of
technology and educational environments.

Notation systems have evolved in new ways with new mathematical explorations,
hitherto impossible or impractical in the static medium. This stage of mathematical
epistemology is presently situated in the education domain, and less so, if at all, in
the mathematician’s domain.

We suggest that the evolutionary transition from static to dynamic inscriptions,
and hence new forms of symbolic thinking, can be modeled through five stages of
development, each of which can still be evident in mathematics classrooms in the
twenty-first century.
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3.1 Stage 1. Static Inert

In this state, the inscription is “hardened” or “fused” with the media it is presented
upon or within. Even though this historically has been how ancient writing was
preserved (e.g., cuneiform art, bone markings) it is also the description of many
textbooks and handouts from printers in today’s classroom. Early forms of writing
can even include ink on parchment, especially calligraphy as an art form of writing
since it was very difficult to change the writing once “fused” with the paper. In this
sense, it is inert.

3.2 Stage 2. Static Kinesthetic/Aesthetic

With the advance of scribable implements and the co-evolution of reusable media to
inscribe upon, we enter a second stage of use, categorized by erasability. Here, chalk
and marker pens allow a transparent use of writing and expression, as their perma-
nence is temporal, erased over time. But, this new form, albeit static, affords a more
kinesthetic inscription—given it is easy to move within the media of inscription—
and an aesthetic process—given the use of color to differentiate between notations.

3.3 Stage 3. Static Computational

As the media within which the notation system is processed and presented changes
we observe a third stage of evolution. Here presentations (e.g., graph-plotting) are
artifacts of a computational response to a human’s action. The intentional acts of
a human are computationally refined. A simple example is a calculator where the
notation system (e.g., mathematical tokens, graphs, functions) is processed within
the media and presented as a static representation of the user’s input or interaction
with the device.

3.4 Stage 4. Discrete Dynamic

As computational affordances make the medium less static, and user interactions be-
come more fluid, the media within which notations can be expressed becomes more
plastic and malleable. The co-action between user and environment can exist. This
process of presentation and examination is discrete. For example, a spreadsheet of-
fers an environment within which a user can work to represent a set of data by
different intentional acts, e.g., “create a” list, “chart a” graph, “calculate a” regres-
sion line, or is generated through parametric inputs, e.g., a spinner or a slider alters
some seed value. Both of these discretize actions into observable expressions—



From Static to Dynamic Mathematics 33

expressions that are co-actions between the user and the environment—yet the me-
dia is still dynamic, as it is malleable, and re-animates notations and expressions on
discrete inputs.

3.5 Stage 5. Continuous Dynamic

This stage builds on the previous stage by being sensitive to kinesthetic input or
co-action, to make sense of physical force, or gestural interaction through space and
time. Some software allows the user to navigate through continuous actions of a
mouse—the perception or properties of a mathematical shape or surface through re-
orientating its perspective, e.g., what does this surface look like when I click/drag
and move the object? Haptic devices can detect motion through space and time, and
provide feedback force on a user’s input. For example, a user could perceive the
steepness of a surface through a force-feedback haptic device and move it to a point
of extreme value without asking the computer to calculate relative extrema.

4 Dynamical Perspectives of Mathematics Reference Fields:
Variation and Geometry

The nature of mathematical symbols has evolved in recent years from static, in-
ert inscriptions to dynamic objects or diagrams that are constructible, manipulable
and interactive. Learners are now in a position to constitute mathematical signs and
symbols into personally identifiable objects, and systems of objects. The evolution
of a mathematical reference field can now be an active process that learners and
pedagogues can both assist in, can identify with and can actively update. Hence, the
reference field has the potential to co-evolve with human symbolic thinking. We will
use examples from new innovations in technology to illustrate how work in dynamic
mathematical environments (mainly software but also one example which combines
both software and hardware) allow new avenues for learners to be actively involved
in the evolution of new reference fields.

4.1 Variation and Geometry (Co-action and ZPDA)

Mathematical objects are crystallized through diverse symbolic representations. At
prior stages, we only had inert symbolic systems. Those are found in printed books,
for instance, and still continue to be instrumental in mathematics at school and re-
search levels. Crystallization is a process with social and cultural dimension. Today,
mathematical objects are undergoing another level of crystallization as they migrate
to screens and other media where symbols and representations are executable.

We will use examples from recent innovations in digital technology to illustrate
how working in dynamic mathematical environments opens new perspectives for



34 L. Moreno-Armella and S. Hegedus

Fig. 1 Locus

learners. Dynamic geometry environments offer point-and-click tools to construct
geometrical objects. These can be selected and dragged by mouse movements in
which all user-defined mathematical relationships are preserved. In such an envi-
ronment, students have access to conjecture and generalize by clicking and dragging
hotspots on an object, which dynamically re-draws and updates information on the
screen as the user drags the mouse. In doing so, the user can efficiently test large
iterations of the mathematical construction.

Figure 1 attempts to illustrate this dynamism through a snapshot of such a physi-
cal action. As point B is dragged by the user the environment updates by presenting
a dynamic representation of all possible iterations of the construction, or “solu-
tions” to the constraints of the construction, i.e., the locus of point C (an ellipse
in this case). The nature of the construction constrains the path of C to an ellipse.
Since triangles PCB and PDC are congruent, CB = CD. AC + CB = constant, so
AC+CD = constant. This is the original, static definition of the ellipse. Now, some-
thing else comes to the frontline, the enhancement of the mathematical expression,
through the animation of point B. As the point C is structural to the construction (it
is always updated as the intersection of the bisector m with line AB) it follows the
elliptical path.

Indeed we have discretized this “physical” motion. But what we have here is an
illustration of where the user has not only actively constructed the ellipse, but has
the affordance of a flexible media where the diagram can be deformed with the engi-
neering preserved, through one dynamic action. The dynamic action allows a series
of constructions to be instantly created as an embedded environmental automated
process. For instance, if we take the point D outside the circle, the ellipse becomes a
hyperbola making tangible the intrinsic link between these conic sections. Here the
system of tools are embedded and the field of reference (for the symbolic represen-
tation of the conic section) is being broadened because the structural points in the
construction, due to the possibility to be re-placed in the (digital) plane, lodge new
meanings into the executable structure. The dragging of structural, well-constructed
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objects enables the user to establish whether the mathematical constructs that under-
lie its engineering can be preserved upon manipulation. Once this is done, the user
is enabled to flexibly explore the digital object—-which embodies a mathematical
structure. This possibility translates into another dynamic perspective on geomet-
ric diagrams and is referred to as a “drag test.” Such embodied actions of pointing,
clicking, grabbing and dragging allows a semiotic mediation (Falcade et al., 2007;
Kozulin, 1990; Mariotti, 2000; Pea, 1993) between the object and the user who is
trying to make sense, or induce some particular attribute of the diagram or prove
some theorem. Once again, the reference field co-evolves with the user’s symbolic
thinking and/or reasoning. The kinesthetic actions of the user are crystallized within
the geometric diagram and they become part of the enriched, new, mathematical ob-
ject. The conic is not anymore a definition whose visual trace appears magically on
the page. Now, the user sees the conic emerging from the screen through her actions
now coextensive with the executable system of representation. The user is co-acting
with the medium, her intentionality is embedded in there and the answer arrives as
a digital gesture: the conic on the screen. The plasticity of these actions, the mutual
transformation of medium and user, is much more than the classical interaction be-
tween a user and a rigid tool. The media can keep a trace of such constructions and
actions and the user is allowed to rehearse the whole event. The diagram is crys-
tallized in the digital medium but the virtual realities of the diagram obey the rules
of geometry that are preserved in the elements of the diagram, just as world objects
obey the rules of physics in nature (Laborde, 2004). Again, this sense of reality that
the user feels becomes an important element in her cognitive space. We call this cer-
tainty emotional Platonism. When an element of a diagram is dragged, the resulting
re-constructions are developed by the environment NOT the user.

Formalization and rigor are relative to the media in which they take place. They
have to respect the nature of these media. If we use digital semiotic representations
of mathematical objects, what are the new rules to prove a theorem, for instance—
that are considered legal in the new digital environment? This methodology is highly
dependent on time. We can find traces of it in the works of the greatest mathe-
maticians of the past. Euler, for instance, is the author of proofs that could not be
published today. Mathematics has been continuously transforming its standards of
proof.

As we have seen above, the executability of digital semiotic representations of
mathematical objects broadens mathematical expressivity. By allowing the external-
ization of certain cognitive functions (graphing a function or finding the derivative,
for instance), executability makes possible the co-action of the student with a digital
environment. How is this to affect mathematics education in the future? Kaput et al.
(2007, p. 174), observed that the inherited corpus of shared mathematical knowl-
edge produced in interaction with pre-digital technologies is large and stable. So,
we need to create early transition strategies to transform basic contents of this sta-
ble corpus of mathematical knowledge into the new digital semiotic supports. For
instance, take the Hilbert space-filling curve—a continuous fractal curve first de-
scribed by David Hilbert in 1891. In Fig. 2, we illustrate the recursive process that
renders the curve as the limit of the sequence.
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Fig. 2 Hilbert space filling curve

To prove the original theorem, following classical methodology, is an intricate
task. However, when one turns the result into a digital one—writing an executable
Logo procedure, for instance—we can arrive at the following version: Given a
(screen) resolution, there is a step in the recursive process that generates the curve
that fills that screen.

We can imagine the sequence of recursive levels that generate increasingly better
approximations to the Hilbert curve, as metaphorical levels of crystallizations of this
mathematical object. When the only recourse the students have to penetrate into the
mathematical complexity of this object is the analytical representation, we are rather
sure that it will remain hidden from their eyes. Now, the executable representation
from the digital medium comes as a substantial mediation artifact for students in
terms of their cognition. We do not intend to say that this version is formally equiv-
alent to Hilbert’s original version of the theorem. In fact, the digital version is a
different result. The digital version opens a window into the former version and, at
the same time, suggests what is in the future of the students: the meaning of the
theorem. René Thom (1973) said it with these words:

The real problem that confronts mathematical teaching is not that of rigor but the problem
of the development of meaning. . . (p. 202).

In the case of Hilbert’s theorem, the digital, executable representation is an ar-
tifact for developing the meaning hidden in the original analytic representation.
Knowing what a mathematical object entails, we need to find and construct the web
of relationships among a diversity of previous symbolic instantiations of the men-
tioned object. In the present example, the executability of the procedure and the role
of the digital medium, make the mathematical object tangible. Knowing the resolu-
tion, we can calculate the step in the recursive process that will fill the screen. This is
an unexpected activity made possible by the new instantiation of the theorem—one
which might provide educational meaning. Here we are still working at the border
between the paper and pencil (classical) epistemology and the new digital (applied)
one. Courant and Robbins—in their classic What is Mathematics?—advocate the
role of intuition as the driving force of mathematical achievements. And intuition
becomes reinvigorated when mediated by digital media as these provide a strong
visual component for mathematical thinking. Visual, dynamic perception offers an
opportunity to extend mathematical interpretation and, following Thom, meaning.

In his Remarks on the Foundations of Mathematics, Wittgenstein (1983) empha-
sizes the role of the eye whilst describing a sketch of a mechanism for drawing
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Fig. 3 Wittgenstein figure
eight

curves: “when I work the mechanism its movement proves the proposition to me; as
would a construction on paper” (italics added, p. 434).

He was thinking of this as a mechanism to draw a figure eight as shown in Fig. 3.
The digital version of the mechanism makes it ostensible that it is probably more
powerful than Wittgenstein originally thought. In fact, by changing the length of
segment AB one obtains a beautiful family of curves, full of plasticity, and un-
folding continuously on the screen. The unfolding process itself makes explicit the
intimate connection among these curves a fact that, in a static medium, results in-
visible for most students. Exploring through movement becomes a new tool for the
students. Let us exhibit three stages in the evolution of the figure eight coming from
Wittgenstein digital machine (see Fig. 4).

The unfolding process takes place as the segment AB is lengthened. The mathe-
matical object under study is not any longer a remote, static object. The immersion
in the digital medium provides the students with extended resources to explore and
articulate their mathematical reasoning.

We will dedicate the remainder of this chapter to explain and substantiate the
thesis that dynamic, digital technologies have the potential to transform the infras-
tructure of the mathematics classroom, in particular, the distributed cognitive and
communicative activities. As Rotman (2000) has forcefully suggested:

Such a transformation of mathematical practice would have a revolutionary impact on how
we conceptualize mathematics, on what we imagine a mathematical object to be, on what we
consider ourselves to be doing when we carry out mathematical investigations, and persuade
ourselves that certain assertions, certain. . . a “theorem” for example would undergo a sea
change (p. 68–69).

Fig. 4 Stages of evolution of the figure eight
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4.2 The Case of Multiple Representations in a Networked Context

Dynamic representations or representations that can be executed either by the user
or the environment are available in algebraic contexts as well as geometry. We
now continue to illustrate the change in the evolution of reference fields as one
shifts from a static to dynamic media and how exposure to such environments can
contribute to the fusion of multiple forms of function hitherto loosely connected.
SimCalc MathWorlds®—hereon called SimCalc—supports the creation of motions
via linear position and velocity graphs, which are visually editable—by clicking on
hotspots—as well as algebraically editable. These motions are simulated in the soft-
ware so that users can see a character move whose motion is driven by the graphs
they, or someone else, have constructed. Students can step through the motion and
perform other operations in order to help them make inferences about an algebraic
expression to represent the graphs. Software runs on hand-held devices (for exam-
ple, the TI-83/84Plus graphing calculator or the Palm) as well as across computer
platforms (as a Java Application). In SimCalc, users can interact with simulations
of phenomena. In addition to three traditional core representations of mathematical
functions (tables, graphs and formula), motion becomes a conduit to allow fusion of
these forms. Motions can be created synthetically within the environment or phys-
ically through the use of a motion detector. Consider the following example: Your
friend is walking at 2 ft/s for 10 seconds, you need to create a motion that starts
where she ends her motion and ends where she starts. Motion data would be repre-
sented as a position time graph, but an additional feature is that your motion can be
re-played in SimCalc.

Now your contribution to the environment is personally meaningful, and a fu-
sion between traditional “engineered” forms of functional forms, i.e., graphs, and
personal mathematical motions occur. Your motion is a form of semiotic embodi-
ment since your motion is mathematical and provides a facilitator for mathematical
symbolism. Re-enacting the phenomenon is yet another form of executable repre-
sentations that allows users’ intentions to become crystallized into new, examinable
mathematical symbols. Developing understanding of core algebraic ideas such as
slope as rate and linear functions (y = ax + b) is an important piece of mathematics
in which such an environment focuses. Objects in SimCalc are referred to as actors
in associated curriculum. Marks indicating where an actor is—at specified intervals
of time—can be a feature that one can use in SimCalc.

The actor’s motion is preserved or crystallized in this set of marks and the slope
of the associated graph is also crystallized in this set of marks. Indeed, it is a new,
erasable (through resetting the simulation) inscription that informs the viewer that
the actors are moving at constant rates (at least from second to second) and at a speed
(or rate) of 2 ft (the gap between marks) per second. The slope of the graph is this
rate—2 ft/s—and so it is a representation of a rate graph (velocity) that would be as-
sociated with this motion. Links between position (accumulation) and velocity (rate)
graphs is a fundamental calculus principle that is being made accessible through ex-
ecutable representations in SimCalc (Nemirovsky and Tierney, 2001; Nemirovsky
et al., 1998). Such work by Nemirovsky and his colleagues has shown that students
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can make sense of dynamic time-based graphs and connect these with certain ideas
and skills in arithmetic, e.g., number sentences involving addition and subtraction.

We conclude with a brief, yet synergistic example, based upon recent work on
classroom connectivity. Our work (Hegedus and Kaput, 2002, 2003; Roschelle et al.,
2000) has combined the power of dynamic mathematics with connectivity. Here
mathematical constructions that individual students have created are aggregated into
a public workspace via a communication infrastructure (for example, using internet
protocols or wireless networks). The computer version can send constructions to
other computers and receive constructions from various TI graphing calculators run-
ning SimCalc software (see http://kaputcenter.umassd.edu and education.ti.com).

In allowing this, students can create families of mathematical objects that interact
in mathematically meaningful ways with a well-structured activity. An example of
such an activity is a Staggered Race that requires the students to first attain a count-
off number within a group. Such an activity exploits the naturally occurring physical
set-up of the classroom by segregating the whole class into numbered groups where
students within each group are assigned a count-off number. So students can have a
unique identifier both in terms of their group and their place in a group. This number
is critical to the establishment of structure in the activity and contextualization of
the student’s construction within the aggregation of the complete class of functions.
In this example, each student starts at three times their count-off number but “ends
the race in a tie” with the object controlled by the target function y = 2x (so the
target racer moved at 2 ft/s for 6 seconds and started at zero—see the bottom graph
in Fig. 5). Students now need to calculate how fast they have to go to end the race
in a tie.

Fig. 5 Staggered start, simultaneous finish

http://kaputcenter.umassd.edu
http://education.ti.com
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Since they start at different positions, the slope of their graph changes depend-
ing on where they start, which in turn depends on their personal count-off number.
Secondly, and more importantly, the Count-Off Numbers 4 and 5 give rise to two
important slopes (or gradients). The person with Count-Off Number 4 has a graph
with constant slope (or gradient), y = 0x + 12, since he starts at 12 ft, which is the
finish line, so he does not have to move! The person with Count-Off Number 5,
starts beyond the finish line (15 ft) and so has to run backwards, thus forcing the
student to calculate a negative slope.

In simpler examples, the display of y = ax—with a varying as a slope of a fam-
ily of linear functions—has been described by students as a collection of outwardly
spreading motions or a “fan” of functions using a graphical representation. In addi-
tion, they use a gestural metaphor via a physical splayed-out finger representation
or a set of external artifacts—i.e., a bunch of pens—to display their personal con-
struction of a family of linear functions.

It is through such work that we propose that these digital environments include
the social structure of the classroom. Groups of motions and associated graphs can
be analyzed both individually and collaboratively. Here the technology serves not
primarily as a cognitive interaction medium for individuals, but rather as a much
more pervasive medium in which teaching and learning are instantiated in the social
space of the classroom (Cobb et al., 1997). Mathematical experiences emerge from
the distributed interactions enabled by the mobility and shareability of representa-
tions. The student experience of “being mathematical” becomes a joint experience,
shared in the social space of the classroom in new ways as student constructions are
aggregated in common representations.

Lave and Wenger (1991) have made clear the centrality of legitimate peripheral
participation in learning. In the classes that we have been designing and studying, we
have deliberately exploited the social situatedness of student learning and likewise
the conversational resources for learning (Donald, 2001; Roschelle, 1992, 1996).
However, our work has revealed, particularly in the context of currently available
communication technologies, that the basic aggregation participation structures as
described above have hard edges and little room for legitimate peripheral participa-
tion. A student either makes the function for uploading into the aggregate, or not,
and the salient presence or absence of the student’s contribution is a central rather
than a marginal contributing factor to the power of the approach. Hence, we have a
design tension requiring creative responses, both in task design and in pedagogy. A
simple example of a small change is to have a group assign its own numbers instead
of simply counting-off, which offers opportunity to discuss numbers that might be
special in the construction (e.g., in the “Simultaneous Finish” situation, to choose 4
as your number so you start at the finish line).

As we discussed earlier with different examples, the reference field now “en-
larges” through experience or proximal development of the participant in such an
environment, until the symbol and the reference field become the same. Mathe-
matical or theoretical referents are now very individual and personal. The perva-
sive medium of “connectivity allows the aggregation of dynamical objects into a
“dynamic mathematical symbol.” Crystallization of individual contributions into
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a gestalt of dynamic inscriptions occurs with rapid evolution in such an environ-
ment. Crystallization embodies the mathematical symbol (in this case, a family of
functions) and it is shared across a social space. As the aggregation of individu-
als’ construction are built, shared, and executed, a pathway is laid for mathematical
reasoning, abstraction and discovery.

5 Conclusion: New Theoretical Perspectives

Mathematical thinking cannot be achieved exclusively through written symbols; the
production of mathematical knowledge requires the use of the body as well, some-
thing that just recently, has been accepted, but not for all. We still see in the practice
of education that many teachers and curricula designers conceive of mathematics
as a purely intra-mental activity expressed in verbal form. This position has a long
history. For instance, Plato wrote that “he who has got rid, as far as he can, of eyes
and ears and, so to speak, of the whole body, these being. . . distracting elements
which when they infect the soul hinder her from acquiring truth and knowledge”
(Buchanan, 1976, p. 203). Mathematics, in Plato’s epistemology is disembodied and
would be the same even in the absence of human beings. Today, a famous follower
of this way of thinking is the Fields Medal winner Alain Connes (for a fascinating
discussion on this theme see Changeux and Connes, 1998).

In recent times though, as we have mentioned, the body has come to the fore in
mathematics education. Research on gestures, for instance, shows this is the case. It
is as if the brain were not enclosed in the head, but (not metaphorically) distributed
across the body. An important insight that has taken root is that if we look deep
into the meaning of a mathematical symbol—as in a process of deconstruction—we
will find a bodily experience, an intuition. Of course this is not always an easy task
because the structure of the reference field associated with a mathematical symbol
is rather complex.

However, our work with digital media, especially with SimCalc, has shown that
the mathematics of change and variation that in the past has been a black box for
students, now can be approached in such a way that the mathematical structure be-
hind change and motion tells a different story, a story in which the students finds
mathematical understanding and identity. The classroom becomes a public scenario
for discussion of ideas (closer to democracy than to the authoritarian Platonic epis-
temology) where students can compare their productions in an environment open to
discussion with those of their classmates. A central feature of SimCalc is the po-
tential to transform the socially disintegrated classroom into a participation space,
where cognition is socially shared.

We have designed the simulation of a world to study change and variation, not
through a classic analytic approach (where all is inert) but incorporating a dynamic
narrative about motion and velocity. When the actor is in motion, we can simulta-
neously appreciate the corresponding Cartesian graph being born. It is a short cog-
nitive distance for the student to imagine that, instead of the actor, it is herself who
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is walking and causing the corresponding Cartesian graph. Additionally, there is an
emerging sense of mathematical identity in the design task as the student chose the
analytic graph that should control the motion of the actor: The motion is controlled
by the graph. Motion is change. This is the kernel of the grounding metaphor for
the study of change. The mathematics of change and variation, of accumulation, is
crystallized in the SimCalc universe.

The traditional discourse of the Calculus textbooks, supposedly delivers the op-
portunity to study the mathematics of change. However, instead of that, they offer
a discourse whose tacit structure banishes change. This creates a rupture between
the intuitively clear ideas of the mathematics of variation and change, as presented
through change is motion, whose symbolic notation is controlled by basic motion
metaphors (converging, oscillating, continuous, monotone behavior, etc.) and the
formal structure whose telos is quite different: to create a justification structure
based on the Arithmetization program of Weierstrass. It was Felix Klein, in 1896,
who called this program the Arithmetizing of Mathematics. In this paper, Klein em-
phatically declares that, “it is not possible to treat mathematics exhaustively by the
method of logical deduction alone, but that, even at the present time, intuition has its
special province.” A few years later, J. Pierpoint (1899) ended his paper on the arith-
metization of mathematics with a feeling of melancholy clearly felt in his words:

Built up on the simple notion of number, its truths are the most solidly established in the
whole range of human knowledge. It is, however, not to be overlooked that the price paid
for this clearness is appalling, it is total separation from the world of our senses (italics
added, p. 406).

SimCalc learning environments provide students with a medium through which
students can overcome the artificial difficulties that a premature arithmetization of
the mathematics of change and variation can cast on the classroom. When the school
does not hear the voice of the students, frequently uttered too low, the result has
been to expel students from the Newtonian and Leibnizian paradise of Calculus. In
response to this N. Luzin writes:

What Weierstrass, Cantor, Dedekind did was very good. That is the way it had to be done.
But whether this corresponds to what is in the depths of our consciousness is a very different
question. I cannot but see a stark contradiction between the intuitively clear fundamental
formulas of the integral calculus and the incomparably artificial and complex work of the
“justifications” and their “proofs” (Demidov and Shenitzer, 2000, p. 80).

In consequence, we have been witnessing a rupture, this time between a basic
set of embodied conceptual mathematics, and its apparent formalization. The deep
problem here is that Weierstrass Arithmetization ideas do not correspond to the for-
malization of the ideas of the mathematics of change and variation as embodied in
SimCalc. In 1979, Jim Kaput explained that the meaning of mathematical operations
was achieved through an essential projection from our internal cognitive experience
onto the timeless, abstract-structural mathematical operations (Kaput and Clement,
1979). And more recently, Merlin Donald (2001) has provided a long-term per-
spective that cast light on the epistemological and didactical conflict we have been
making explicit:
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Humans thus bridge two worlds. We are hybrids, half analogizers, with direct experience
of the world, and half symbolizers, embedded in a cultural web. During our evolution we
somehow supplemented the analogue capacities built into our brains over hundreds of mil-
lions of years with a symbolic loop through culture (p. 157).

Primary experiences are key for the students in their learning process. These
experiences provide the roots of meanings.

It is clear that these reflections contribute to the perspective that has been called
embodied cognition. According to Donald, it is our hybrid nature or rather, our ana-
logue half that provides the (implicit) instructions for moving ourselves in the world
of our experiences. This would not be possible if our knowledge of this vital space
came from thought exclusively. Again, Donald (2001) provides the deep insight:

Basic animal awareness intuits the mysteries of the world directly, allowing the universe
to carve out its own image in the mind. . . In contrast, the symbolizing side of our mind. . .

creates a sharply defined, abstract universe that is largely of its own invention (p. 155).

It is the human body moving in its (social) space that carries the seed for the pro-
cess of symbolic abstractions. This is what we have tried to awaken in the SimCalc
classroom mediated by forms of digital technology that cast light on cognition.
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Intersecting Representation
and Communication Infrastructures

Stephen Hegedus and Luis Moreno-Armella

1 Overview

For the past two decades, educational technology has been evolving in various ways
along various research and development trajectories. Software has become more
visual, interactive, and more dynamic. Hardware has evolved to allow more com-
plex programs to be executed for work to be done at a distance (both proximally
and longitudinally) through the advances of networks (in particular wireless), and
to be more portable in terms of its hand-heldability. These affordances1 impact two
types of infrastructure: (1) Representational Infrastructures and (2) Communication
Infrastructures. We posit that these infrastructures have at times evolved indepen-
dently but when they co-evolve or intersect each other’s growth pathways, then new
forms of activity occur.

We begin by describing what this evolving dynamic looks like from the perspec-
tive of a mathematics classroom, or mathematics education community, and contex-

1By affordance we mean a quality of an object, or an environment, that allows an individual
to perform an action. We thank one of our reviewers for offering us a succinct and meaningful
definition.
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tualize our work within a program of research (Classroom Connectivity research—
referred to as CC1, CC2 and LAMP in project timeline in the introductory chapter
of this volume) that has investigated the impact of the integration of dynamic soft-
ware environments such as SimCalc MathWorlds® and wireless networks (e.g., TI-
Navigator™ Learning System) on learning, participation and motivation. This work
resulted in highlighting three products from the intersection of representation and
communication infrastructures, which we present in this paper.

2 Representational Infrastructures and Communication
Infrastructures

Technology has offered and afforded representations and interactions between rep-
resentations for a long time. These have been in terms of symbolic manipulators
where computational duties are offloaded to the microprocessor and new actions
are linked to traditional notation systems. But in addition, there is now support
for new interactive notation systems such as programming languages underlying
mathematics packages (e.g., Maple) and spreadsheets, enhanced interactivity and
expressibility of new phenomena by linking traditional notation systems and repre-
sentations to new ones (e.g., simulations), and finally digital communication. This
last modern affordance has been translated into mathematics classrooms as a mode
to enhance access: offering students the ability to see through abstract constructs or
symbolic figures. But we will explain in this paper how this is one inlet to describe a
massive fusion-possibility between two critical ingredients for advancing 21st cen-
tury learning. The connections of such computational and visual affordances of-
fers a deep and wide infrastructure which can be defined as a complex bedrock of
functionalities, expressive and operational affordances, established through an over-
arching organizational structure that allows mathematically valid and viable con-
nections. Contrast this with an infrastructural aspect of society. A road network is
established to organize the flow of traffic between places of habitation and com-
mercial enterprise. Moving water along a road would not be efficient or functional,
similar to connecting a graph to a bunch of signs that made no actual mathemat-
ical sense. Once again, in contemporary society, infrastructure has not only be-
come a material concept but a social one, and the affordances of the Representa-
tional Infrastructure (RI) allows the possibility to create a social learning network
and enhanced communication; yet another inlet to a separately evolving infrastruc-
ture.

Let us now describe Communication Infrastructures (CI) separately, as much as
is possible. Communication has been a critical aspect in the evolution of mankind,
and in recent decades the advancement of knowledge. As symbolic species (Deacon,
1997), language and the brain have co-evolved, and since the evolution of external
supports of memory some 35,000 years ago (Donald, 2001), language has been ex-
pressed through ever-changing forms of media. We will refer to Communication as
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Fig. 1 Model of RI and CI
intersecting

human actions in terms of speech or physical movement (e.g., gesture) or digital in-
scriptions through modern-day interfaces. Once again, a communication infrastruc-
ture is the organizational structure of the various communication inlets and outlets
available in society. A digital infrastructure is composed of networks, wires, and
servers to create information flow of communication acts and services to various
populations. These are often thought to be large, even global, but with the advent of
wireless networks, the same power and functionality can be brought inside a class-
room, historically called an intranet. Similar to RIs, these have largely been material
in nature but are also social in their constitution now, yet the primary development
trajectories have been in terms of their physical implementation into society (e.g.,
installation of broadband connectivity across a whole town or country, or the con-
struction of cellular antennae). Our central position is that such infrastructures have
largely evolved independently even though each have obvious inlets to each other
where one can enhance the functionality of the other, but for a long time we propose
that these types of infrastructure have not co-evolved.

When these intersect in an educational context (see Fig. 1), the evolution of
meaning is enhanced as traditional forms of expression are transformed or enabled.
This is our main claim and one that we will unpack throughout the course of this
chapter. At this stage, we describe in general what this intersection yields. At the
heart of such convergence is a transformation of expression, and what we prefer to
call representational expressivity, where learners can express themselves through
the representational layers of software and where a participatory structure enables
learners to express themselves in natural ways through speech acts (e.g., metaphors,
informal registers, deixis) and physical actions (e.g., gesture or large body move-
ments). We will also illustrate that such forms of expressivity are also loaded with
intentionality; both for the learner and the designer. For the learner, an action to
identify themselves in classroom dialogue and to attach themselves to a represen-
tational artifact of the technology. For the designer (software/curriculum developer,
teacher or whomever) as a specific a priori pedagogical or epistemological decision
made upon the basis of the affordances of the environment and the specific algebraic
structure of the activities addressed.
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3 Combining Representational Infrastructures
with Communication Infrastructures in Mathematics
Classrooms

3.1 Overview

We have designed and used the software SimCalc MathWorlds® to transform stu-
dents’ mathematical constructs into fascinating motion phenomena. The SimCalc
RI has four essential elements: (1) hot-links between graphs and simulations, (2) vi-
sually editable, piecewise-definable graphs of functions, (3) hot-links between rates
and totals graphs, and (4) importing physical data into the computational notation.

The implementations of these RI elements emphasize flexibility in the sense that
the various elements can be used in huge varieties of combinations tuned to specific
curricular objectives, student needs and pedagogical approaches. Of special interest
is (3), in effect embodying the extraordinary human achievement of the fundamen-
tal theorems of calculus inside the RI. We regard this as analogous to other histor-
ical encapsulations of structure into a notation system. For example, the standard
placeholder system for whole numbers embodies in extraordinarily compact form a
hierarchical exponential structure in a way that democratized access to computation
with almost arbitrarily large numbers (Shaffer and Kaput, 1999).

Second, we have integrated a CI into SimCalc’s RI in the form of wireless net-
works in ways that can intimately and rapidly link private cognitive efforts to public
social displays. We have integrated the use of graphing calculators from Texas In-
struments and a specific wireless network, TI-Navigator, to connect students’ work
in SimCalc on their calculators with SimCalc on the teacher’s computer. We have
also done this by connecting computers to computers wirelessly or in labs. Conse-
quently, students can each be assigned a specific mathematical goal (e.g., playing
the part of a single moving character by making a graph with certain mathemati-
cal characteristics), which instantly links to public social display (e.g., the parade
constituted by all characters moving simultaneously).

For example, students, in small groups of three or four, have a group number
(i.e., 1 through 5) and are asked to create a position function so that the motion of
a character moves for a duration of 6 seconds at a speed equal to their group num-
ber. So Groups 1, 2, and 3 create functions that can be defined more formally as
y = x, y = 2x, and y = 3x respectively for a domain of [0,6], or through other rep-
resentations such as graphical or tabular editing. The ability to draw graphs through
stretching it across a Cartesian space offers a more informal register of functional
representation for students to access through simple click-and-drag hotspots to de-
fine slope and domain. This is similar to the role of hotspots in Dynamic Geome-
try™ to stretch and drag figures and constructions. SimCalc couples graphs with
animations and so the results of such actions can be observed through executable
representations.

The important concept is slope as rate—an underlying concept of the mathe-
matics of change and variation—and a family of functions is created by the class
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Fig. 2 Aggregating student work from calculators to a computer

via varying the parameter k, in y = kx, where k is group number. The variation
becomes meaningful for the students; the family of functions is a result of their in-
dependent contributions (see Fig. 2). By default, student work is hidden. Student
contributions are revealed at the discretion of the teacher; this allows students to
conjecture and make generalizations about the whole work of the class, and about
how their contributions relate to the whole class set of contributions before seeing
the variation. The conjectures and generalizations are prompted via curriculum and
teacher questioning strategies such as, “What do you expect to see in terms of mo-
tion (or graphs) for the whole class?” This type of mathematical activity has brought
about new forms of participation and mathematical expressivity in the classroom.

This approach shifts the types of critical thinking that are possible in mathemat-
ics classrooms and transforms the role of instructional technology by integrating it
into the social and cognitive dimensions of the classroom and eliminating its use
as a “prosthetic device” to prop up existing teaching practices and methodologies.
In addition, linking private work in a mathematically meaningful way through net-
works, and displaying the aggregations of whole class work, potentially enhances a
student’s metacognitive ability to reflect upon their own work in reference to others
(Huffaker and Calvert, 2003). For the past decade, we have been deeply engaged
in producing Algebra materials that deliver upon this vision of networked class-
rooms. Our connected approach to classroom learning is reiterated in seminal works
(Bransford et al., 2000) that highlight the potential of classroom response systems
to achieve a transformation of the classroom-learning environment. Similarly others
have expanded their approaches to include devices that allow aggregation of mathe-
matical objects submitted by students (Resnick et al., 2000; Stroup, 2003; Wilensky
and Resnick, 1999; Wilensky and Stroup, 1999, 2000).
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We focus on three main products that result from the intersection of an RI and
CI in a mathematics education context. These three products are a synthesis of the
program of research that we have previously described. The context of work thus is
important in framing the types of products that we focus on here. Since our work has
focused on participation and motivation through synergizing the representational
affordances of SimCalc with the fast, information-sharing capacity of wireless net-
works, we present the results of our iterative development cycles. Of course, as our
paper begins, there is a more general picture where these infrastructures converge,
but we wish to consolidate our theoretical piece through the results of our ongoing
work. A focus on motivation through enhanced participatory activities has yielded
three broad areas of advancement. First, new forms of mathematical expressivity
through gesture and deixis. Deixis examines the properties of linguistic expressions
(indexes) that cannot be interpreted without reference to a nonlinguistic context of
their use (Duranti, 1997). Deixis extends to the use of gestures, movements, posture
and gaze, as well as pointing acts used in collaboration with speech. Second, en-
hanced forms of identity and identification of ones contributions to a mathematical
argument. And third, new forms of activity structures that sustain these forms of
expression through coherent pedagogical strategies.

3.2 Product 1: Mathematical Expressivity

Consider the following activity: You must make a motion for your clown that goes
at the same speed as Clown A (2 ft/s) for 6 seconds but starts at a distance equal to
your group number of feet ahead of Clown A. This is a parade where each group
starts 1 foot ahead of each other.

Through regular group-based activities, we can exploit the use of such physical
structures to embed them into a representational mathematical structure. In doing so,
we move from private or local thoughts to the representation of these thoughts as
artifacts in a public space. Here the affordances of the SimCalc RI can layer visual
effects to motivate the whole class to respond in expressive ways. The aesthetics
of the collection can be represented as a whole, a parade of motions, or colored in
a strategic way (e.g., color by group, individual, etc.). But we must not forget the
overall gestalt of a collection of functions—a family of functions—as a powerful
meta-representation of variation. Such “collections” are often left for undergraduate
mathematics courses in the analysis of families of functions and differential equa-
tions. In Fig. 3 below, we can see a collection of square dots (students’ contributions)
parading in the animation world. There is also a collection of graphs colored by each
individual and where every individual is a member of a group of 3–4 students and
hence they share the same color (shown here as dots versus characters to minimize
the complexity of the figure).

It can be formally represented as Y = 2X + G on [0,6], here G is your group
number as some constant. It can also be represented as a motion; a parade. Be-
cause of the equivalence of motion, a direct variation from such similarity would
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Fig. 3 Parades in SimCalc

yield an examination of the whole set of contributions. A coloring of the graphs (or
clowns) would aim to structure the underlying mathematical system, parallelism, or
equivalence of slope. It could also highlight differences. We use color and the literal
notation (e.g., Crimson in our example above) to describe differences. In Fig. 3, a
student’s login “mdrey” is used to signify that student’s contribution. It is colored
Crimson (randomly by the software), and the teacher has stepped through the mo-
tion. This student’s work has marks dropping (forward facing triangle) every second
to denote a trace of the moving square’s location (this is an attempt at describing mo-
tion in a static medium) and is also a representation of the changing accumulation of
distance traveled per second (hence a rate). Here color can illustrate variation. Even
without color, the visual effect of parallelism synergized with a uniform parade-like
motion can be a sufficient visual gestalt to provide access for students to describe
attributes of the mathematics of the whole motion.

With the ability to show and hide every representation of the contribution of ev-
ery student (see Fig. 4), the teacher can scaffold the classroom discourse in a highly
structured way, and in a manner that allows the structure of the underlying math-
ematics to emerge. For example, questions in our curriculum follow a pattern of
“where are you in the world?,” i.e., which colored dot or animated character repre-
sents your work? And then “what do you expect to see for Group 1?” by selecting
to see just Group 1 in the World (see Fig. 4).

Followed by, “what do you expect to see for Group 1’s graphs?” or “How does
the work of Group 1 compare with Group 2?” In structuring the discourse in this
way, students can conjecture and reason the variation as a collaborative exercise and
their ideas can be tested through the executability of the environment, i.e., teachers
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Fig. 4 Classroom management of groups

can animate the actors following a conjecture and so the feedback is from the envi-
ronment. The software (in the hands of the teacher and projecting the work of every
student) works with the students to support their reflective problem-solving. This is a
critical juncture in how language (and particularly communication) is working syn-
ergistically with the representational affordances of the SimCalc software and the
infrastructures underlying the execution of these activities. Students express them-
selves in vivid ways, both informally and formally, and often conjecture or react to
the shape, form, and structure of the family of graphs or motions as they emerge, or
symbolic expressions later in the activity. For example, students have described the
graphs in this activity to be parallel, and members of a particular group’s graphs to
“lie on top of each other” which illustrates a basic idea of identity. A slight variation
in this activity where each group makes a function to represent an actor’s motion
that goes at a speed equal to their group number for 6 seconds yields a family of
functions that has been described with rich metaphors such as a “fan” with gestured
support (see Fig. 5), and is formally encapsulated as Y = GX on [0,6] (see Hegedus
et al., 2006 for more details).

3.3 Product 2: Identity Formation and Identification
of Self—From Private to Public

Our preliminary analyses (Hegedus and Penuel, 2008) suggest that a key character-
istic of such environments is fluid turn-taking, in which students bid for and gain the
floor in classroom debates and discussions about mathematics. This type of partici-
pation structure is quite different from traditional classrooms, in which the teacher
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Fig. 5 Gesturing a fan

is the primary speaker who nominates students to speak and controls the floor of
discussion.

In a complementary fashion, we have found at least two kinds of identity-
formation processes occurring simultaneously within these classrooms. On the one
hand, fairly stable social identities (see, especially, Eckert, 1989; Wortham, 2004),
often negotiated and maintained within classrooms, are enacted. These types of so-
cial identities are often stable and well-defined both inside and especially outside the
classroom and this plays a role in how a student participates in a classroom discus-
sion, whether calls for attention are upheld and how their contributions and partici-
patory role is accepted, e.g., the “smart kid,” “outspokenness,” socio-economic sta-
tus. These are largely shaped through cultural values and established norms within
a community.

We also observe a more local identity within networked classrooms that is tem-
poral, less stable or well-defined, and constructed through the mathematical activity
made possible by a networked environment. Personification and identification are
defined within a shared work space. Here identity can be virtual and public as work
is projected away from a local self to a representation space managed by a teacher.
Identity can also be discursive, as we have observed above where it can be enacted
through deixis (e.g., deictic markers or references in dialogue) or gesture (see Hege-
dus et al., 2006 for further analysis).

Studies (Eckert, 1989; Gee, 1999; Wortham, 2004) suggest that the acts of posi-
tioning associated with particular social identities can inhibit participation in class-
rooms, and so it seems relevant that the construction of new, less stable and more
flexible forms of identity in these environments can support active forms of partic-
ipation and engagement of more students versus just those students engaged in a
student-teacher turn taking dialogue. We wish to stress that we prefer to focus on
identity as enactments of identity in terms of how students represent themselves
in their use of language, physical action, and social positioning. It is not the more
traditional psychological notion of identity, which is more an enduring sense of self.
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We offer examples from one classroom to illustrate how identity and representa-
tion of ones self are transformed as the RI and CI that we are focused on intersect.
The class has worked on the following activity:

You and your partner will start at different positions. You are positioned G (your Group-
number) feet away from 3 feet. The person with the odd count-off number (number uniquely
assigned to each member in the group) will start to the right of 3 feet. The person with the
even count off # will start to the left of 3 feet. You and your partner must meet at 3 feet at
the same time. You and your partner will determine the amount of time you will travel for.
The group CANNOT travel for the same amount of time, only you and your partner can.
You must create a linear expression for your motions.

There is ambiguity in the problem statement, which offers a wide variety of cor-
rect responses. Given the environment is to support public engagement of each per-
son’s work, this is an important generative feature that structures the environment
the students work within. Since students are in pairs traveling in different direc-
tions towards a common (for the whole class) meeting point (3 feet) but start an
equal distance from this point, pairwise contributions are similar in shape, i.e., the
slope of each student’s graph is the inverse of the other. Each pair travels for the
same amount of time, i.e., share the same domain, but they are potentially differ-
ent across pairs for the whole class. So this simple task generates many similar but
structurally different answers, and it is this structure, which is exposed at a public
level. The transfer from private to public also initiates a projection of the self (for
each student) into a social network, where general discussion and argumentation is
saturated with personality and social cues. We offer some simple examples of this to
illustrate how such behavior can exist. We believe this is fundamentally structured
by the activity structure and sustained by the teacher utilizing the affordances of the
technology (for example that she can see everyone’s work at once).

The students have constructed function-based actors on their own individual
graphing calculators in SimCalc and their results have been collected into the
teacher’s version of SimCalc. A correct version is displayed in Fig. 6. Two groups
of dots (encircled) should move towards the place at 3 ft. Before these dots (or ac-
tors) are displayed (via the classroom manager) and animated, one student (AC)
asks another student (KO) how many “dots” (numbers of students in the class) there
will be:

AC: How many are there?
KO: They’ll overlap each other.
KC: There’s 19.
KO: Oh yeah. There will be 19.
AC: 19 minus Joe, that’s 18.

In this example, AC replaces the number “1” with “Joe,” a move that in a sense
marks Joe as identified simultaneously with a mathematical object—a dot—and
as a variable in a simple equation. This blending of personal and mathematical—
through replacing third-person, gender-neutral descriptions of mathematical objects
with personal pronouns and even names—takes place at several points in this and
other discussions in classrooms observed in our study.
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Fig. 6 The “Arrows Activity”—a correct aggregation in SimCalc

Later it is well understood that two students (one pair) are not correct as they do
not end at 3 ft. This pair has confused domain and range by calculating their slopes
incorrectly. The class is arguing what they believe is wrong with their functions.

JS: It’s not time?
KC: It’s their distance.
KO: Exactly.
KC: Ugh!

As KC realizes the mistake of the two students, it is important to once again
focus on the use of deictic markers such as “their.” In addition, students also assign
mathematical attributes to other students in making sense and reasoning publicly.

NP: {still at front corner of room, facing side of class} Okay, AS, what did you have for
domain? For how many seconds do you go for?

AS: Nine.
NP: Exactly. {standing next to JS, looks to her while responding}
JS: Jess, how many seconds do you go for?
JC: Nine.

Reference is personal, i.e., “. . .do you go for”, and identifiable and reasoning is
inherently mathematical.

As the class progresses, we observe more examples of identity-rich discourse
which again illustrates an important effect of the shifting of dynamic representa-
tions of students’ work from a private to a public workspace. We observed that in
the midst of arguing about whether lines are parallel from certain contributions from
across pairs (see Fig. 6 previously), the teacher (JS) attempts to get KO to explain
why two lines are parallel by referring to the concept of slope. This is part of the
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pedagogical intentions of the teacher as she attempts to consolidate the core math-
ematical ideas in the activity and build on the previous analysis of errors. Instead,
KO simply asserts they are parallel based on what she sees.

AC: They’re not parallel are they?
KO: Yeah-huh. I told you that.
AC: But they all end. {AC claps her hands together.} Ugh. Geez.
{JS steps back away from them. Pause for 3 seconds.}

The teacher (JS) and AC perform two very different speech acts through their
next moves. The teacher asks KO to explain her idea to her peer. AC, in turn, makes
an identity attribution to KO that has the immediate effect of negating the teacher’s
move:

JS: Why don’t instead of saying ‘trust me’ explain to her why she should trust you.
AC: She thinks she knows everything.
KO: See, those are two parallel lines and those are two more parallel lines.
JS: But why? You’re just looking at them and saying they’re parallel.

Here, classroom identities—in this case, a negative attribution to another person
as someone who thinks she knows everything—have the effect of shutting down
rather than allowing for deeper mathematical argumentation, much as they can in
traditional classroom settings. Later in the clip, after the teacher and KO have taken
turns several times to explore just how the lines are parallel, AC reasserts her claim
that KO is a “Know It All,” which could be interpreted as a code to the interaction,
summarizing its significance for the class.

JS: Good. What are those lines gonna be? {Pause for 2 seconds.}
AC: Uhhh.
JS: If you were to connect. . .
AC: Stair steps.
JS: . . .those lines?
Yeah, but if you were to connect them like this . . .

{Pause for 3 seconds while JS draws the lines she is referring to.}
What are those lines going to be?

AC: Parallel. {AC says this very quietly.}
JS: Are they ever going to intersect?
AC: No.
JS: So, they’re parallel based on their slope not just because they look like they’re never

going to intersect. {JS turns and looks at KO while she says this.}
AC: Yeah.
KO: I knew they were never going to intersect because. . .
JS: But you didn’t say why.
AC: Alright Miss Know It All.
KO: I don’t know how to explain things, I just know them.
AC: I know. She doesn’t even work. . . . She shouldn’t be in a group.
KO: I really don’t. I’ll just sit there.

Significantly, KO seems to accept a fixed identity after AC’s assertion, though it
is not quite AC’s positioning of KO. Instead, KO seems to be saying that she cannot
participate in mathematical discourse in the way the teacher originally asked; she is
not someone who can explain, but someone who simply knows. AC takes another
swipe at KO, saying that she doesn’t work. KO’s response can only be interpreted
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as sarcastic, an active resisting of AC’s attempt to position her in this way. KO
seems ready for others in class to recognize her as someone who cannot engage
in mathematical argument for her ideas, but she does want to be seen as an active,
engaged member of her group.

Finally, we believe that the most significant piece of this work is that the forms
of identification that are used by students and teachers in our study are infused
with mathematical structure, and hence informal mathematical registers are used (in
terms of speech and actions) to defend and reason their work (both positively and
negatively). In essence, students identify themselves with the object, or the math-
ematical attributes of the object, in a sense embodying the mathematical idea as a
personal expression. Their thinking is a representation of their identity and how they
wish others to attend to or ignore their work in a public and social setting (Penuel
and Wertsch, 1995). We believe this is a fundamental feature of representational
expressivity that emerges as the RI and CI are combined.

4 Activity Structures—From Intentionality to Attentionality

A communication infrastructure can yield flow, and in our work, a third product is a
pedagogical model that structures curriculum activities in SimCalc classrooms and
the flow of certain patterns of discourse.

Bakhtin (1981) describes how we borrow words so we can mean to others, and
we populate them with our own meanings and intentions so we can signify our rela-
tionship, attitude, and identity with others. Burke (1969) explains how people using
representations direct others’ attention to some things, and deflect them away from
others. This is called external intentionality. In directing attention, intentionality can
be externalized through various forms of expression and action.

We believe evidence of change in such classrooms is a shift towards a more
fluid movement across different representations, evident from classroom discourse.
The model in Fig. 7 attempts to offer a structure to help analyze how flow can
be directed from, and to, participants in a classroom through representational tools
and actions. It is intentionality that forms, and continually transforms, our identity
in these environments. This model can help generate other methods for analyzing
the nature of participation in such classroom environments. It is another result of
when an RI and CI intersect in ways that enhances and structures dialogue in such
classrooms.

In this model, we refer to individual students, groups of students (pairs, small
groups), and the “class” as all students, teachers and the public display in the class-
room. Discursive acts (e.g., directive, reflective, or reflexive), representational affor-
dances (e.g., show/hiding a graph), or deixis (e.g., a deictic marker) have all been
exemplified in our analyses. The model can be used to describe the potential flow of
interaction that could occur because of an intention, an activity, a question, or any
communication situation, and has the potential to be germane to a wider variety of
settings. One example (from our analysis) is where attention was directed from a
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Fig. 7 Structuring dialogue
in SimCalc classrooms

student to the whole class via the representational affordance (observing the whole
set of actors moving in Figs. 3 or 6). Note that the director of attention could be a
teacher, student, or any active participant (e.g., the shared display).

In this model, directing attention is fundamentally an identification procedure in
surfacing identity in five non-ordered forms that have been evident in our classroom
observations:

1. Through a physical space (e.g., the actual person).
2. Through an extended physical space (e.g., via a gesture or positional stance).
3. Through an artifact or projection of a cognitive act (e.g., a person’s graph or

motion).
4. Via projection into a contribution space (which we have specified as a shared

space) as a representation of a personal contribution from a private/local to a
public/social space.

5. Within a gestalt, i.e., a well-defined segregated place within a meaningful whole
as defined by a mathematical space or structure, e.g., the mathematical activity
analyzed earlier.

Indeed, Item 4 could be Item 3 because there are examples such as an utterance
of the form “my dot moves like this” that could be an example of a projected cog-
nitive act enabled by the connected environment but it has not been re-presented in
a shared representational space. We expect that further work will yield more spe-
cific pedagogical actions and related teacher knowledge around effective practice as
determined by measurable learning gains.

5 Conclusions

We have aimed to describe three products that occur when the SimCalc RI and CI
are integrated. In our work, new forms of participation can occur when two such
unique technological ingredients are integrated—dynamic, interactive software that
works with multiple representations simultaneously (RI) and wireless networks to
create networked classrooms (CI).

In addition, a student’s identity can possibly transfer or shift during the course of
a class, and depending on how the student believes their peers perceive their identity,
or how they perceive their identity to be relevant in a public workspace, might direct
the flow of discourse (argumentation, presentations, reaction).
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Finally, we believe that the most significant piece of this work is that the forms
of identification that are used by students and teachers in our study are infused
with mathematical structure, and hence informal mathematical registers are used (in
terms of speech and actions) to defend and reason their work. In essence, students
identify themselves with the object, or the mathematical attributes of the object, thus
embodying the mathematical idea as a personal expression.

Kaput (1991) felt that the interplay of natural language and social interactions,
especially with respect to the status of referents in discourse where reality emerges
in a social situation, was a challenging problem to analyze, and one which we would
be able to address over time. It has taken many years to begin to analyze what that
means in a mathematics classroom, but we believe that as learning environments
begin to evolve into more dynamic, interactive and social spaces, it is necessary to
build new theories to help us structure and analyze the nature of learning. Learning
mathematics that stretches more deeply over a school curriculum is an accomplish-
ment of interactions both human and digital. We have presented how it is necessary
to come to a common understanding of the meaning of mathematical representa-
tions through enhanced communicative forms in the SimCalc learning environment
that is now possible in 21st Century classrooms.
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Part II
Aspects of Design



Reflections on Significant Developments
in Designing SimCalc Software

James Burke, Stephen Hegedus, and Ryan Robidoux

From the first SimCalc project (see timeline in introduction), researchers and soft-
ware developers made decisions shaping the design of the software based on contri-
butions from students, teachers, and an evolving understanding of what this technol-
ogy made possible in the classroom. We developed the SimCalc learning environ-
ments using the principles of dynamic interactive technologies suggested by Kaput
(1994).

Our development of this software over time allowed us to consider and refine its
design according to observations of its use in classrooms, advances in the available
technology, and evolving theories of how students can learn important mathematics.
New development brought new technological affordances. Important decisions can
be seen in the mathematical representations, in the configurability of the software,
and in the communication infrastructure that we developed to take advantage of
networked activities. Importantly, as designers and developers, we have seen tech-
nological affordances as a way to introduce new mathematical affordances into the
classroom.

We focus on two main themes throughout this chapter that describe major shifts
in the evolution of the SimCalc learning environment: (1) The rationale for how
changes in the software were made and the decisions that drove such changes, and
(2) How our thinking about the software changed in terms of new affordances for
learning. We will focus on three main areas of research and how each has guided
the design, development and implementation of the software: (1) Representational
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Infrastructures and how design is guided by mathematically meaningful represen-
tations, (2) Activity Structures, and (3) Classroom Connectivity and its impact on
learning and participation. As researchers and software developers that make up the
core design team, we prefer not to describe a litany of how the software changed
over time but rather major changes to exemplify how our research was tightly in-
tegrated into our development by focusing on improving mathematical learning for
many different kinds of learners. While the process of development took place over
more than 15 years of continually-funded projects, an especially dramatic shift took
place in the later years. SimCalc MathWorlds® (hereon referred to simply as Sim-
Calc) had been a student-centered, 1:1 software environment that mediated mean-
ingful student exploration and expression of mathematical ideas. It has become a
mathematics-learning environment that connects the entire classroom, allowing the
interrelationships among student contributions to be the basis of classroom-level
discussion and thought.

As the development cycle neared its close, the notion of the importance of getting
the software into the hands of users to inform design decisions was bookended by
design changes that would, in turn, put the software into the hands of more students,
particularly underrepresented groups. Dissemination became a priority in order to
allow wider access to important mathematical affordances for educational and re-
search purposes. Design decisions play a role in helping the software reach a larger
community.

1 Innovation Research Software Development

The SimCalc design team (including researchers, software developers, and teachers)
sought not only to enhance existing classroom curriculum, but also to transform it
with activities that were not possible without the use of technology. We intended for
students and teachers to engage in thinking about mathematics in powerful ways.
Introducing SimCalc into the classroom frequently was, for us, a means to see what
might be possible with mathematics learning and instruction in ways that eventually
led us to support the emergence of new forms of participation.

Hegedus and Moreno-Armella (2010) has described the co-evolution of technol-
ogy and user action that draws research and development together this way as a re-
lationship between instrumentation (i.e., a shaping of a participant’s actions through
co-actions with a tool) and instrumentalization (i.e., the shaping of the tool itself
by a user’s knowledge and by the environment). This iterative design cycle led to
highly configurable software that could support a wide variety of pedagogical and
curricular intentions to produce mathematically meaningful lessons. And when we
sought to introduce the affordances of networked devices, the communication in-
frastructure introduced a new connection to mathematical structure (e.g., a family
of functions). We found that SimCalc lessons could structure the physical setup of
the classroom (e.g., how students were placed in groups and how the work of each
group was structured) in ways related to the mathematics. Students were afforded
different ways to interact because the classroom itself had become mathematically
structured.



Reflections on Significant Developments in Designing SimCalc Software 67

Fig. 1 Sketch of “lollipops”

2 Mathematically-Meaningful Design

2.1 Representational Infrastructure

The representations that are central to SimCalc have always been tied to thinking
about how they served mathematical meaning. Even in early discussions, Kaput
described his visions for representations that would connect mathematical concepts
through the actions of users and through some dynamic presentation of the software.
He outlined an animated method for connecting the graph of some varying quantity
to a graph that approximated the change in that quantity over time. He suggested
that the changes over unit time could be drawn and then animated by dropping them
to the axis, where they would provide a very rough approximation of a graph of
change. This idea for connecting (for example) position and velocity graphs was
affectionately referred to as “lollipops” (see Fig. 1).

It was never implemented because it merely existed to serve as the beginning of a
conversation not just about what we could possibly do with the available technology,
but that we should always think about mathematical structure and connections as
part of how we envisioned the development and use of the software as a learning
environment.

2.2 Dynamically-Linked Representations

An important representational infrastructure of SimCalc is its dynamically-linked
representations. This allows different “views” of the functions through the user in-
terface that are linked so that any changes in a function are reflected in all represen-
tations (see Fig. 2). For example, the editing of a position graph is immediately and
continuously reflected in a velocity graph.

The details of these representations are important to preserving them as mathe-
matically meaningful. For example, the segments of piecewise functions in SimCalc
software are considered to be open on the leftmost end and closed on the rightmost
end.

In the creation of activities, many of these functions are built with segments that
start and end on integer values of x. The implications of how segment boundaries are
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Fig. 2 Screenshot of the multiple, linked representations in Classic MathWorlds (name used prior
to SimCalc MathWorlds®)

defined become apparent when a teacher makes a table to show the velocities at each
integer value of x. Developing the software to display the velocity at moments when
the velocity is changing instantaneously presents a problem. We resolved this prob-
lem by determining into which interval that x value falls, but the result may not be
what a teacher expected. The details of the representation can be mathematically jus-
tified, but this is just one example of how ambiguity produces the need to make a de-
cision in some seemingly minor detail of how the software works in legitimate ways.

These details are necessary, intentional, and part of the dynamic experience stu-
dents can have by acting on the software. As Hegedus and Moreno-Armella (2010)
note, the editing of a linear function is accomplished using very distinct types of
(user) actions (and user interface elements). “Hotspots” that appear on the graph
allow a student to explicitly edit the domain or range of a function through separate
actions. With the editing of each variable separated, a student can see the mathemat-
ical consequences of changing one or the other (see Fig. 3).

2.3 “Ghosting”

While the idea of separate hot-spots for editing the graph representation was a core
mathematical idea in the earliest prototypes of SimCalc software, some aspects of
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Fig. 3 This is a constant velocity position graph showing oversized hotspots used for editing the
domain and range of this segment of a function. The point at (5,0) in the first image can be dragged
horizontally to edit domain. The point at (5,6) in the first image is constrained to vertical dragging,
allowing a change in the function’s value at time t = 5, but also the slope of the function. The other
images show the results of those two separate, possible drag actions. Note also the cursor, which
has changed to indicate the possible drag direction

a representation developed over many iterations and was revisited in numerous dis-
cussions over extended periods of time as the software saw increasing classroom use
and feedback flowed back to the project with the aim of improving student learning.
One such representational detail is the “ghosting” effect of characters in the motion
representation (the “world” as it is called). The idea of ghosting was created to solve
the problem of using functions that were only defined over an interval or a restricted
domain in an environment that animates the characters using that data. This was an
important design principle that was mathematical in its intent and purpose.

In early versions of the software, it was unclear what to do with the animated
characters (often referred to as “actors”) when the end of a function’s domain was
passed during animation. Arguments can be made for a number of ways to handle
this situation. A function is undefined outside of its domain, so you might represent
that by having the actor appear only when the animation is within the defined time
domain. The consequence of this is that actors will be appearing and disappearing
while the animation clock is running. A trial of this approach proved to be confusing
for students, despite its mathematically justified interpretation of “undefined.”
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Fig. 4 An example of an actor that is “ghosted” once its domain ends at 3.0 seconds

Another approach is to have the character persist somehow. For example, the ac-
tor can simply stop at the position where its data “runs out.” This simple solution
is problematic because showing an actor at some position during a time when his
position is undefined in the graph is inconsistent. The two representations contra-
dict each other mathematically, and maintaining the position is arbitrary. Consider
a sonar tracking system in a submarine. If you are following some sort of target and
your contact with the target is interrupted, you have no current position data. It might
be reasonable to assume that your target continued to move with its last known ve-
locity instead of coincidentally stopping at its last known location. Making assump-
tions about missing data can depend on the context. The choice of representation
should not be arbitrary.

Since many SimCalc activities involve actors getting to a specific position, stu-
dents need to clearly see the end of a character’s motion. This is accomplished if
the actor remains at that position (rather than continue moving, as in the submarine
example above). This justifies using “last known position” but does not solve the
representational conflict with the graph. Our solution was to ghost the character out.
Ghosting is accomplished by graying out the character’s image to indicate that the
data has run out, or the function of the character’s motion is undefined (see Fig. 4).
The additional indication allows the mathematical meaning of the end of domain
to be represented even while a remnant of the actor remains as a marker; the state
of being undefined is simultaneously represented while the last known position is
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preserved. Among the different choices of how these dynamic representations can
behave, the decisions are made to be mathematically meaningful and provide the
maximum visual feedback to students in ways that provide support to the goals of
classes of activities.

To resolve what was both a usability problem and a problem in mathematical
integrity, we looked to the structure of activities and to enriching the representation
for a solution that solved both problems.

3 Activity Structures

3.1 Activities as an Organizing Principle

In the late 1990s, when the SimCalc development team was considering how to take
advantage of new software environments that could cross platforms and possibly
allow new ways to envision software as being composed of reconfigurable compo-
nents, the notion of what a SimCalc activity was became a focal point. The “Classic
MathWorlds” application (SimCalc’s Mac-only product) had existed for a few short
years and had the dynamic representations for which SimCalc was already known. It
also supported scripting through AppleScript (Roschelle et al., 1996), allowing other
researchers to alter and augment its functionality in meaningful ways, like changing
the method of student input from dragging a hotspot to one that used prompts and
text input boxes so the students could enter a numerical value (Olive and Lobato,
2008).

The SimCalc team began using Sun’s Java environment to create applets that
would be able to deliver the core SimCalc curriculum on any web browser. An ap-
plet, so-named to imply something smaller than a full application, is a program
designed to run in a web browser, usually with a limited user interface specific to
a particular task. A feature of applets is their somewhat isolated nature; they could
be run within a browser, but the browser environment limited the applet’s access to
information from the user’s computer. These security-driven restrictions were lim-
iting to developers looking to connect applets. A number of applets were created
based on the combinations of necessary representations (position, velocity and ac-
celeration graphs and different animation worlds and meters). These applets were
created by, literally, disassembling the curriculum units and re-grouping the activity
based on what representations (Cartesian graphs, animation world, a single number-
line-like meter) were needed to complete the activity. This allowed researchers to
expand the activities to multiple platforms.

There were challenging limitations in this proliferation of applets, and eventu-
ally the applet approach was abandoned. However, it had forced the design team
to consider activities as an important way to think about the structure of the soft-
ware, and the structure of the use of the software. Central to the activity was what
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held it together as mathematically meaningful. For the applets, the use of specific
representations was an observable surface attribute, but also reflected the mathemat-
ical structure of an activity: an activity that needed both an animation world and a
velocity graph relied on the mathematical link between those representations. The
intentions of a well-defined activity structure are reflected in how the software is
configured for any given activity.

3.2 The Problem and Opportunity of Configurability

After SimCalc became a single application, configurability was revisited. There was
also a sense that the increasing set of features of SimCalc allowed possibilities be-
yond one vision for implementation of a curriculum. Designers and developers of
the software considered the possibility that it could become a generative environ-
ment for activity development and implementation.

The main concerns over configurability were considered in two categories of
issues: the first having to do with opportunistic discovery of ideas that could be ex-
plored in the classroom and the second having to do with activity building. When
working with students, Kaput would often remark that he had come across some
significant, interesting, and surprising situation that resulted from students engag-
ing in a discussion of some mathematical insight. It was natural that, as a researcher,
he would want the ability to make a small change in the activity, based on his
pedagogical expertise. He did this in order to provide the students opportunities
to explore further, to extend the reach of a successful activity based on what the
students had brought to the situation. This allowed Kaput to make observations
about what was possible in the undergraduate classroom; it provided specific mo-
ments where the understanding of what was possible could be seen to co-evolve
with the activity itself. This led to user-configurability becoming a central func-
tion of the SimCalc software so that researchers and teachers in the future could
engage in similar actions as Kaput, both in the classroom and in preparation for a
class.

An example of an early configurability feature issue under discussion was “inner
windows.” The applet version of SimCalc and the first desktop version presented
the activity with immutable representations. For example: one position graph and
an animation world. Not only would a user be unable to add a velocity graph, but
the relative sizes and position of these representations were fixed. When the possi-
bility of draggable inner windows was offered, we implemented them. This intro-
duced configurability options with significant implications for the way an activity
could unfold. With draggability came (1) re-arranging representations, (2) hiding
representations, and (3) opening a new representation. Re-arranging representation
allowed a teacher to do such things as place a vertical animation world next to a
position graph so that students could see that a height along the y-axis corresponds
to a position in the animation world. Hiding a representation allowed the teacher to
create a situation in which students see one representation and discuss another one
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Fig. 5 On the left is the position graph with the (light) green actor’s graph hidden, and, on the right,
is the position graph where the (light) green actor’s graph is shown along with the student-created
graph, which is in (dark) blue. (Color figure online)

without seeing it. For instance, students watching an animation could try to describe
and even argue about what the position graphs would look like. The position graph
could then be revealed to spark further discussion about the predictions and encour-
age meaning making across multiple representations—a critical mathematical skill.
Opening a new representation could allow a teacher to make a point that crosses
representations to follow a student’s assertion, for example. These three activity
structures were enabled by a change in the control the teacher had in the config-
urability of the software. The second structure—hiding representations—proved to
be extremely powerful. An example of this structure is illustrated in the screenshots
shown in Fig. 5. On the left is the representational view at the beginning of an ac-
tivity where students are asked to create a linear-piecewise position graph, shown in
blue, which represents the motion of the green actor, whose graph is hidden. Once
the students’ graph is complete, the teacher shows the green actor’s graph, as shown
on the right side of Fig. 5, to begin a discussion comparing the two graphs.

Configurability brought challenges as well. The more flexibility that was built
into the software, the greater the opportunity existed to mutate the activity. And
while mutations can be beneficial, they can also be fatal to the intentions of the
activity (Brown and Campione, 1996). Fidelity of implementation became more of
an issue, and a possible argument against configurability. Configurability must rec-
ognize constraints that define the boundaries of activity within which explorations
remain close to the intentions of the activity designer.

Where that boundary line is drawn was a source of recurring debate. A solution
that emerged was to entrust teachers with wide latitude as authors of activities, and
interpreters of an activity’s intentions. Teachers were trusted to understand the in-
tention of an activity in the belief that they are primarily focused on implementing a
curriculum activity, and only secondarily interested in developing or modifying the
way an activity is presented in the software.
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4 Classroom Connectivity

Classroom connectivity was a major expansion of the SimCalc learning environ-
ment, connecting students and teachers through a network of computer-based de-
vices running the software. With the advent of network connectivity, the communi-
cation infrastructure of the classroom was radically changed, as student work could
now be aggregated and publicly displayed on the teacher’s computer. This would
impact the range of mathematical discourse across groups and individual students
in the classroom. Mathematical discourse became an even more central focus for
understanding how students could learn in such an environment as well as be moti-
vated to learn more in the future as discussed further in other chapters of this book
(for example, Dalton and Hegedus; and Brady, White, Davis and Hegedus, this vol-
ume) Furthermore, with these new forms of participation and communication in the
classroom, new activity structures within a SimCalc classroom emerged. Not only
were new activity structures designed for the affordances of connectivity, but activ-
ity structures were developed and evolved from those affordances.

4.1 Evolution of Network Connectivity Within the SimCalc
Environment

The communicational infrastructure of SimCalc began as a network of graphing
calculators running a pared-down version of the SimCalc computer software and
evolved into a cross-platform network of personal computers running the complete,
representationally-rich SimCalc environment.

The communications infrastructure emerged from efforts to use the social net-
work within the classroom and incorporate that into the structure of an activity.
Kaput had often discussed his desire to see activities that involved numerous actors
in the animation world, each with a function that formed part of a family of func-
tions that varied systematically, like a strange army whose marching revealed some
mathematical variation instead of regimented uniformity. There were technical lim-
itations that held us back from smoothly animating such an “army” of actors in the
world, but those limitations lifted with time. And as Kaput’s army of animated ac-
tors became a technical reality, the SimCalc team began to consider how students
might be the ones to give that army its marching orders.

4.2 Graphing Calculators and Our Partnership with Texas
Instruments

From 2000, Jim Kaput and Stephen Hegedus began to simultaneously design two
versions of SimCalc software—one for the popular TI-83+ graphing calculators and
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a separate cross-platform computer application that extended the work discussed
earlier in this chapter.

The primary concern at the time was developing something that was affordable
and utilizable on a platform that was used at scale. Texas Instruments (TI) had ob-
tained large market penetration in the sale of graphing calculators. A portable docu-
ment format (APPVAR) allowed developers to create small calculator activities that
could be distributed with paper activities in TI’s on-line store.

This was a challenging time for the SimCalc development team, as they had to
deal with multiple programming issues particularly in deploying a fairly complex
representational infrastructure in a small amount of memory. Secondly, the creation
of activities was done in-house due to many complexities and the lack of a simple
authoring environment making scale problematic. Nevertheless, several curriculum
packages were released through the TI webstore that focused on linear functions,
slope as rate and averaging problems using rate graphs. The main demand was cre-
ating a compact animation that was smooth and linked to other representations in-
cluding graphs and algebraic expressions. Many compromises were made due to the
screen resolution and the lack of color. The development team focused on using just
two actors due to such limitations that in turn constrained the kinds of activities that
could be designed. But this was a time to contrast the constraints and affordances of
such devices with respect to their equivalent but more expensive computer counter-
parts.

At the same time there was a new dawn in connectivity. People were talking more
about the potential of social networks and how such potential could be introduced
into classrooms. Connecting graphing calculators through a hardware and software
environment was being actively discussed at TI in consultation with the SimCalc
design team and other partners.

At SimCalc headquarters in Massachusetts, development in this direction was
being undertaken on the desktop application. Development was extremely new and
highly prototypical, with design cycles iterating every day, as new ideas for activity
structures were discussed and the software development team worked on creating
a communication infrastructure using simple network protocols. The SimCalc team
found a local school to partner with who had a lab of networked e-Macs. The driving
force behind this groundbreaking development was the search for deploying new ac-
tivity structures that modified the way mathematics was thought about in classrooms
and where each student could contribute something mathematically meaningful. At
the time, it was unclear how much impact such insights would have on modify-
ing the very nature of participation in the classrooms, and how this might impact
learning and motivation. Aided by funding from the National Science Foundation
(NSF) in 20001 and 20042, the SimCalc design team produced a network applica-

1PI: Kaput, J. (2000–2003). Understanding classroom interactions among diverse, connected
classroom technologies. REC-0087771.
2PI: Kaput, J. & Hegedus, S. (2004–2009). Representation, participation and teaching in con-
nected classrooms. REC-0337710.
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tion that worked in concert with the SimCalc application on several computers and
discovered a lot about what types of activities could be done under such conditions.

5 MathWorlds Server: A Glimpse into New Forms of Student
Participation

The new, connected classroom prototype was designed on a push-pull model,
whereby students pushed their work (i.e., constructed functions) from their Sim-
Calc environment to a server, and the teacher would then aggregate all student con-
tributions within her version of SimCalc. The network topology involved teachers
and students working on desktop computers running SimCalc, with an additional
computer dedicated to running the SimCalc MathWorlds Server application. Once
a student completed a task, she would log into the server and submit her function
across the network. When teachers aggregated all student work from the server,
the students’ representations (e.g., motion, graphs) were projected on the publi-
cally viewed display of the teacher’s computer. Prior to this prototypical version
of SimCalc, activities involved operating on 2–3 functions. However, with the ad-
vent of student contributions, teachers would be operating on functions to an order
of magnitude based on the number of students in their class. The curriculum and
software developers realized that a new level of configurability had to be built into
the SimCalc environment to handle this scale up of available functions. Thus, the
View Matrix was created to allow teachers to hide and show the representations
contributed by students (e.g., graphs, actor motions) in their publically displayed
SimCalc environment.

In 2002, the connectivity-enhanced SimCalc environment, which combined the
data collection afforded by SimCalc Server and highly interactive group-based
classroom activities, was piloted in a 5-week, after-school program with 7th, 8th
and 9th grade students. For the first time in the development of this communica-
tional infrastructure, students would participate in a networked classroom over an
extended period of time. During this pilot intervention, the entire SimCalc design
team—researchers, software developers, teachers—descended upon the after-school
program, and was witness to new forms of student participation that emerged within
the connected classroom (Hegedus and Penuel, 2008).

5.1 Connected MathWorlds on Multiple Platforms

In 2003, it was clear that the development trajectories of SimCalc on the TI-83Plus
and on the computer were proving to be problematic. With a new burst of funding
from the NSF in 2004, Kaput and Hegedus set about re-conceptualizing both soft-
ware platforms within one environment, based upon TI’s newly created Navigator
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product. Over the next few years, Navigator became a successful commercial prod-
uct, and the SimCalc team worked closely with TI to develop a calculator applica-
tion that could receive and send packets to the SimCalc application on the computer
through semi-wireless networks, where the calculators would be connected to wire-
less hubs communicating via a proprietary Access Point connected to the teacher
computer.

Still, major issues resulted from the use of graphing calculators in the Sim-
Calc network—in terms of teacher usability and network stability. Teachers, on the
whole, struggled with the setup of the classroom network, which involved config-
uring TI-Navigator hubs that were not controlled via the SimCalc software. Even
when the Navigator network was properly setup, the communication between the
teacher computer and the student calculators was prone to miscommunication. To
increase reliability of the network, protocols were added to the software to handle
various network states that arose due to this instability. For example, protocols were
implemented to allow for students that had been dropped from the network to recon-
nect and receive all messages that were sent across the network during their absence.
These protocols marked the first substantial effort to move the SimCalc environment
towards a commercial-level of stability, and allowed the SimCalc team to research
Connected SimCalc at scale during a longitudinal efficacy study in Massachusetts’
high schools as reported in this book and elsewhere (see Dalton and Hegedus, this
volume; Dalton et al., 2011).

By 2007, the SimCalc application for the TI-83/84Plus had been completely re-
written from scratch with a brand new interface, and communication as its central
core. Simultaneously, the computer version of SimCalc was re-written into a Java
Application with an embedded protocol utilizing TI network infrastructure. Finally,
both versions were working together and co-evolving in their development cycles.
The computer version became a more parent application, which could configure and
send activities to the calculator, as well as collect student work. After an aesthetic
overhaul, which set the computer version of SimCalc on a potential commercial-
ization trajectory, design challenges now shifted from specific activity functions to
broader functionality, such as activity configuration across both platforms, e.g., rep-
resentational control (see Sect. 5.1.1 on classroom management) and activity design
that could aggregate the work of up to 32 students each working on a calculator.

Funding from the US Department of Education’s Institute of Education Sciences3

allowed the SimCalc team to conduct a large efficacy study in Massachusetts which
solidified this work, allowing them to shift their development to curriculum at scale
and train teachers from a wide variety of backgrounds to implement it. The SimCalc
team was now in a position to implement the integrated software and curriculum
project into several school systems.

Such efficacy and scale-up work was not limited to calculators though, and one
great result of such work is that the co-development of a product on two platforms
can improve both platforms in profoundly important ways, which would not have

3PI: Hegedus, S. (2007–2012). Democratizing access to core mathematics across grades 9–12.
#R305B070430.
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Fig. 6 Students’ SimCalc environments on computers, left, and graphing calculators, right

been possible otherwise. The Java application of SimCalc was still fully functional
as a stand-alone desktop application, working on both PC and Macs. This was used
in a large randomized control trial in Texas (see chapters by Shecthman, Haertel,
Roschelle, Knudsen and Singleton; Roschelle and Shecthman; and Vahey, Roy and
Fueyo, this volume). Similarly, SimCalc on TI-83/84 calculators could work in an
off-line mode if a network was not found and activities could be exported by the
parent computer application for such stand-alone use.

In 2006, during a bleak period after losing Kaput, Hegedus decided to move de-
velopment into a commercialization trajectory to help fuel the new Kaput Center
which the University of Massachusetts had approved, and over the next 2 years both
products went into a thorough testing and quality assurance phase. Many follow-
ers became part of the team to test and also to think about producing the software
in multiple languages. In 2008, the first commercial version of the computer soft-
ware was released with a new name that incorporated a federal trademark, SimCalc
MathWorlds®, that Hegedus had applied for and obtained in the meantime and be-
came the main tradename for all derivative products; e.g., SimCalc MathWorlds®

for the TI Graphing Calculator and SimCalc MathWorlds® for the Computer (see
Fig. 6).

Since 2008, the SimCalc development team has completed a networked version
of the computer software, as the team saw increasing opportunities in developing
countries for using smaller computers (e.g., Netbooks) in wireless networks. As
such development solidified and froze its core functionality, development was fo-
cused on making the application as usable as possible by a wide variety of users in
conjunction with the SimCalc curriculum materials in the future without any more
external support for development. The focus, as it had been from the start, was on
creating access to important mathematical ideas to many students in simple ways.

Many decisions were made in cutting features that were not deemed functional
or too confusing. For example, it was decided there was no mathematical reason to
constrain the use of negative time. Classroom management tools were made simpler,
and network robustness improved so now over 60 SimCalc users could connect and
work together—which was first trialed in Mexico—see Fig. 7.
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Fig. 7 SimCalc trial in Mexico, using over 60 connected users on a single network activity

5.1.1 Classroom Management

What was central to such development in the past few years was a deep fo-
cus on enhancing learning and motivation through mathematically meaningful
participation—for that management of representational affordances was critical
both in the intentional design of the activities and in the enacted curriculum in the
classroom.

One affordance of a connected classroom was an explosion of student data for
teachers to manage during a SimCalc activity. For example, a teacher might have 25
students in her classroom who are each working on 1 or 2 functions. These func-
tions can have multiple forms of representation. For example, the function could be
animated in the world, in addition to having a graphical (position or velocity graph)
and tabular representation. Therefore, given these multiple representations for each
student function, within seconds one teacher might have hundreds of mathematical
representations to manage—preferably in meaningful ways. The classroom man-
agement window (see Fig. 8) was developed over several years to combat such a
challenge in simple and effective ways, keeping in mind that a teacher has limited
time to click through a software interface during class. At the same time, the Sim-
Calc team believed that mathematical structure should be an emergent phenomenon
and the potential of the social activity space was evolving too. Therefore, it was
necessary to create a system so that teachers could progressively show the work of
multiple students at once in mathematically meaningful ways.

For example, the teacher could demonstrate how groups of students differed from
one another in a systematic way by hiding and showing particular students’ repre-
sentations. Group 1 might have been using their group-number to construct an actor
whose velocity was three times their group number (see Sect. 5.2 for more informa-
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Fig. 8 The Classroom Manager interface

tion on group number). On aggregate, each group systematically varied in terms of
the velocity of their actors, or the slope of their linear position graphs, e.g., y = 3Gx,
where G is their group number. The classroom management window allowed a
teacher to show or hide individual or whole group work at a click of the mouse,
and progressively show other representations using a similar method, thus fusing
meaning across representations. This advance in the software functionality on the
desktop computer was critically important as it co-evolved with the development of
the curriculum. Embedded in such curriculum were suggestions to teachers of suit-
able questions that proved useful in prior work for eliciting responses and building
consensus within the classroom at a whole group level. The classroom management
window not only allowed the teacher to do traditional network activities such as
initialization and sending/collecting work, but allowed teachers the possibility for
drawing attention to particular student work in progressively meaningful ways that
cohered with the intentional design embedded in the curriculum.

5.2 Connectivity-Based Activity Structures

SimCalc was initially developed as a 1:1 student environment, but infusing connec-
tivity with the dynamic, interactive features of the SimCalc learning environment
created a classroom and activity space that allowed new, mathematically meaningful
ways of participation for students in a mathematics classroom. From this infusion,
new classroom activities exploited connectivity by designing mathematical tasks
that used the natural classroom set-up of groups to offer variation in the graphs stu-
dents were creating. The teacher would then aggregate the student work and choose
to show all or some of their work. What followed were mathematically intense in-
teractions among the students, and public debate within the classroom about what
they saw, or where they were, in the group structure.

Emerging from this new form of student participation was an activity structure
that adapted students’ unique network login identifiers, which were embedded with
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a student’s assigned group number and count-off number within the group, into a
parameter within the mathematical task at hand. For example, a student might have
been asked to construct a motion where their velocity was equal to their group, and
their count-off number was the starting position. Thus, the students began to create
linear motions, either graphically or algebraically, which were personally meaning-
ful to them since they incorporated their login information. Teachers also used these
identifiers to aggregate student contributions into a mathematically meaningful ob-
ject, e.g., a family of functions. This activity structure allows for a move from a
personal individual construction to a significant group structure to a class aggrega-
tion.

5.3 Innovative Tools for Formative Assessment

The SimCalc connected classroom not only allows for private, student work to be
elevated to a whole-class discussion, but there is functionality that could focus stu-
dents on analyzing data in the public space (i.e., teacher’s display). The polling
interface allows for a teacher to pose a question to the entire class that is focused on
one of the linked, Cartesian representations within the SimCalc environment (i.e.,
a graph or the simulated world) and, from their personal device, students specify a
point in the representation that they perceive as a possible solution to the question.

The teacher could pose the question to the class, “Can you show me in the sim-
ulated world at what point does Kevin’s position graph intersect Jenny’s position
graph?” This type of questioning involves varied student solutions, and in answer-
ing the questions, students must make sense of mathematical representations they
themselves did not construct. By definition of the activity, there are at least two
appropriate answers to the question, because the graphs should intersect at the be-
ginning of the simulation and at the end. However, more answers could be possible
if the graphs intersect during an activity such as Sack Race. In this case, students
would have to analyze the two graphs for points of intersections and then translate
those points to an appropriate point in the simulated world.

6 Dissemination of SimCalc MathWorlds®

When Hegedus initiated a commercialization trajectory for SimCalc in 2006 it was
the first step towards an at-scale diffusion of the software and materials. Prior to
this, disseminating SimCalc for independent implementation (i.e., without influ-
ence from the SimCalc team) was limited by the software environments lack of
configurability by those outside the SimCalc team. However, as part of Hegedus’
commercialization effort, the SimCalc software development team created a robust
authoring environment, and added the ability for it to be implemented in four lan-
guages. These additions to the software environment have allowed SimCalc to now
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be independently adapted and implemented in a number of countries, including re-
search projects in Mexico and Greece. In order to allow true internationalization for
the purpose of wider dissemination, the SimCalc team redesigned the localization
support within the software, making it possible to “plug in” additional languages.
Working together with some SimCalc personnel, new target language resource files
could be created and plugged in, with greatly reduced technical intervention. This
new ability allowed for the multilingual SimCalc software to extend beyond the
development lifecycle.

7 Future Perspective

SimCalc software development existed in an environment of many influences.
Cross-disciplinary tensions among software developers, researchers, and activity
developers sparked discussion and innovation, sometimes in the smallest of details.
However, a consistent focus on the mathematical structure guided the decisions un-
derlying the representational infrastructure, the need for configurability to produce
generative activity structures, and new forms of participation driven by a commu-
nicational infrastructure that formats the classroom according to the mathematical
intentions of activities.

The activity structures that emerge out of the communicational and configuration
affordances of the software extend the life of SimCalc beyond its development cycle.
Development of SimCalc was finalized recently, making it important to establish a
version that was stable and sustainable to be used by existing users and a wider
variety of students and teachers around the world in the foreseeable future. The
final authoring system allows teachers to strip away any part of the menu system to
minimize the actions available to a student, enabling a more focused activity system
and simpler interface.

It was also important for us to establish the software to be used in multiple lan-
guages and to date it is fully functional in English, French, Spanish, Portuguese,
and Greek. While the software is commercially available, the curriculum that was
simultaneously developed over a similar amount of time is freely available from
the Kaput Center and can be adapted and distributed under a Creative Commons
license. It was imperative for the dissemination of a learning environment that was
made possible by several federal grants over 18 years, to be available, usable and
configurable by many more researchers, teachers and students in the future.
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Designing for Generative Activities: Expanding
Spaces for Learning and Teaching

Nancy Ares

1 Introduction

I address design principles guiding SimCalc’s development and implementation in
a range of classroom and school contexts with particular attention to generative ac-
tivity. Expansion of content, opportunities to participate, and avenues for students
to draw on the varied resources they bring to learning are explored and further
theorized given research findings from SimCalc and other potentially generative
network-supported activities. While the topics and concepts addressed in this chap-
ter are germane to examining generativity and equity in a family of networked class-
room technologies, I pay particular attention to SimCalc. As such, SimCalc provides
what can be referred to as a “supporting space” for this exploration. I include ex-
plicit attention to issues of equity in generative activities and in SimCalc’s goal of
democratizing access to rigorous mathematics. Importantly,

the promise of educational software is not teaching efficiency, but fundamentally altering
the curriculum. Students learning only 19th century mathematics will not thrive as 21st
century citizens. Educational technology must enable more students to engage in more so-
phisticated subject matter at a younger age. In ongoing field tests at all grade levels and in
remedial college classes, we find that SimCalc helps students who would otherwise never
reach, much less pass, a conventional calculus course” (Kaput and Roschelle, 1996, p. 97;
emphasis added).

Two issues are key in the above quote. First, altering curriculum is not simply
drawing on the technological affordances of connectivity supported by SimCalc
and related networks. As Bu et al. (2011) note, “The interactive nature of new tech-
nologies further support and constrain the co-actions between learners and the tar-
get system (Moreno-Armella and Hegedus, 2009)” (p. 19), where dynamic, linked
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mathematical objects operate at the border between representation and communi-
cation. Students are thus able to use the “interplay between these communicational
and representational affordances [to engage in] representational expressivity, which
enables the users to express themselves through speech acts and physical actions”
(Sollervall, 2011, p. 5).

Second, and of particular importance for this chapter, the attention to more stu-
dents is critical. Comprehensive work toward equity in mathematics learning is not
only about advocating for greater numbers of students to have access to SimCalc and
other networks’ powerful connectivity. Questions about efficacy of these systems
must be answered in relation to the demographic diversity of students involved and
the social, cultural resources available to students and teachers in networked class-
room learning. Beyond transformation of curriculum, research findings demonstrate
that particular features of connected classrooms are important mediators of activ-
ity that scaffolds, invites, and leverages the power of groups to construct powerful
mathematical learning and communication (Ares, 2008; Hegedus and Penuel, 2008;
Stroup et al., 2005; Vahey et al., 2007). There is not only what Moreno-Armella et al.
(2008) term a mediation space involving “co-action [where] a user can guide and/or
simultaneously be guided by a dynamic software environment” (p. 102). There is
also opportunity to acknowledge the heterogeneity within groups of users (i.e., lin-
guistic, cultural, gender, ideas). This heterogeneity can be a source of important re-
sources (rather than barriers) for teaching and learning that harness the affordances
of SimCalc’s mediating affects as a tool-in-use (Wertsch, 1995) that participates in
the creation of such spaces.

2 What Is Generativity?

I use the term generative to mean, “orchestrating classroom activity in ways that oc-
casion productive and expressive engagement by participants, characterized by in-
creased personal and collective agency” (Stroup et al., 2005, p. 188). The attention
to agency in both individual and group arenas of activity lends itself well to explicit
attention to issues of equity in mathematics classrooms, given that such learning
environments are populated by individuals working together (or at odds with each
other) to accomplish learning goals. Efforts among many researchers (see Kaput
and Hegedus, 2002; Stroup et al., 2002, 2005) are directed at extending and re-
conceptualizing earlier analyses of generativity (Lesh et al., 2000; Wittrock, 1974)
that focused mostly on individual or small group learning (e.g., dyads) to consider
how to design for the variety and multiplicity of learners’ ideas and insights. These
reconceptualizations aim to support the emergence and development of mathemati-
cal reasoning in whole class and large group contexts. This approach to generativity
rests on the idea that connected classrooms include multiple agents participating
at richly interactive levels of engagement and agency. Attending to the diversity
of identities, the plurality of conceptual structures, the shifting of collective under-
standings, and the evolution of disciplinary concepts found in classroom activity
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deepens our insights into the emergence and development of ideas. Simultaneously,
it also illuminates ways designing for SimCalc and related interventions can best
support the advancement of mathematical and scientific thinking for all our students
(Stroup et al., 2005).

3 Affordances of SimCalc and Other Networks for Generative
Design

Design features of next-generation networked systems typically include individual
devices (e.g., calculators, computers) that support peer-to-peer, peer-to-group, or
group-to-group communication and sharing of mathematical objects; connectivity
among devices via the internet or computer servers; portability; a core set of func-
tionality in each device (e.g., at least that of a graphing calculator), and a mixture
of public and private display spaces. The public space can be a computer projection
system as in SimCalc (Kaput et al., 2002) and HubNet and Participatory Simulations
(Wilensky and Stroup, 1999). The private space can be the students’ own individual
displays on a calculator or computer. The network allows teachers, students, or oth-
ers to create new activities or change the flow of a given activity. Participants can
exchange both group and individual artifacts, including text, strings, numeric values,
ordered pairs, lists, matrices, individual and whole-class graphs, images, sounds or
video. Given the blending of public and private spaces, students and teachers act and
interact in that blended space. As a result, “(meanings) are dynamic—they grow and
transform with the shared use of symbols. . . .Emergent meanings come to light be-
cause of the new links among symbols” (Moreno-Armella and Hegedus, p. 29, this
volume).

Earlier work suggests that there is a kind of “resonance” between technological
affordance and generative forms of teaching and learning: “SimCalc MathWorlds®

lends itself to investigations involving piecewise constant and linearly changing
functions. A major design feature of the software and associated activities is the
potential to tap into students’ real-world intuitions, experiences, and understandings
about speed and motion (especially those that involve descriptions and notations in-
volving velocities, positions, and times)” (Schorr and Goldin, 2008, p. 137). Kaput’s
(1998) work on inert versus dynamic artifacts and students’ acting on representa-
tions is helpful here to pinpoint unique affordances of SimCalc’s public and private
spaces. Traditionally in many math classrooms, the static notational system embod-
ied in calculators is used to act on the textbook- or teacher-provided representations
“to reason about and make sense of [the] situation” (Kaput, 1998, p. 258). He argued
that this action on static notation sets up a one-way relationship between mathemat-
ics and experience, denying students any control of either. As Noble et al. (2001)
note, “Dienes emphasized the importance of imagery and storytelling in mathemat-
ics, stating that ‘symbol-manipulation in mathematics is all too often meaningless
simply because there is no corresponding transformation of images’ (1964, p. 105)”
(p. 87). In SimCalc and related systems’ activities, the dynamic notational system
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embodied in the calculators involves varying mathematical representations and al-
lows students to act on:

. . .such motion phenomena, e.g., velocities, positions, times and combinations of these in
graphs. . . [that] are not only modeled by the notations that describe them, they can be
controlled by those notations. . . .These kinds of affordances turn a fundamental represen-
tational relationship between mathematics and experience from one-way to bi-directions.
(Kaput, 1998, as cited in Ares, 2008, p. 5)

The same can be said of the public spaces, where a group’s collective and coor-
dinated efforts to control phenomena via dynamic notational systems are displayed
for all to see, fostering understanding and sharing of experiences, strategies, and use
of mathematical artifacts constructed by the group and manipulated in response to
their individual and collective insights.

3.1 Networks as Mediating Artifacts

Examining the ways that SimCalc supports generativity in design and activity lends
itself to viewing these technologies as mediating artifacts (Vygotsky, 1987; Wertsch,
1995). Human activity and learning are profoundly influenced, or mediated, by the
use of psychological and physical tools (e.g., language, computers) (cf., Cole and
Engeström, 1993; Vygotsky, 1987; Wertsch, 1995). A sociocultural perspective pays
attention to artifacts-in-use: “the agent of mediated action is seen as the individual or
individuals acting in conjunction with mediational means” (Wertsch, 1995, p. 33).
Cultural tools are never “mere” artifacts because, by virtue of people’s use of them
in service of achieving a goal, they inevitably shape the activity by influencing the
means by which goals are achieved (Cole, 1996). Artifacts—like computers and
calculators—can be examined for their mediating role in human activity and in-
teraction, including the ways that generative designs can expand social spaces for
teaching and learning to foster more equitable access to powerful mathematical tools
and discourses. Furthermore, it is through such mediation that symbolic reasoning
and mathematical activity are fostered.

To achieve the goal of democratizing access to rigorous mathematics learn-
ing, SimCalc builds on three lines of innovation: restructuring the subject matter;
grounding mathematical experience in students’ existing understandings; and pro-
viding dynamic representations (Vahey et al., 2007, p. 15). Generativity is a function
of the affordances of these technologies, the nature of the activities, and the range
of resources and practices invited in. As shown below, possibilities for addressing
issues of equity in mathematics learning are numerous due to the affordances of
SimCalc and related networked technologies; and the social spaces for learning that
can be constructed, drawing on the diversity of expressive forms and invitations to
participate and contribute (language, gesture, interaction and communication pat-
terns) that are inherent in mathematics classrooms. Importantly, related to Hegedus
and Moreno-Armella’s (2009) notion of mediation space,



Generative Design 89

. . .these activities are designed to be generative in that, “Learners create a space—or co-
ordinated collection—of expressive artifacts and actions in relation to some shared task or
set of rules. The structures that are created. . . are not determined in advance but are co-
constructed by learners as their sense-making evolves and develops” (Stroup et al., 2004,
p. 1403)

4 Expanded Social Spaces for Contribution and Participation

Recent theorizing about space, including classroom spaces, conceptualizes it as be-
ing socially constructed rather than “static as in classroom space with its requi-
site desks, tables, chairs, etc., staying largely unchanged over decades, particularly
in under-resourced schools serving non-dominant students.” Soja (1996), Harvey
(1973/2009) and de Certeau (1997), argue that social space is actually dynamic
and mutable. Regarding SimCalc classrooms and their learning goals, Noble et al.
(2001) posit that

If the purpose of a mathematical activity is not simply to learn the rules and conventions of
an environment but instead is to make the environment a lived-in space for oneself, then a
diverse range of actions and intentions may be legitimate parts of that mathematical activity.
(p. 88)

Viewing space as a social construction and one that students can shape gives us
new ways to understand the mediating role of networked classroom technologies.
Hegedus and Penuel (2008) portray SimCalc and related technologies as involving

Mathematical Performances. . . [that] emphasize individual student creations, small group
constructions, or constructions that involve coordinated interactions across groups. . .
and Participatory Aggregation to a Common Public Display. . . [that] involve systematic
variation. . . displayed and discussed to reveal patterns, elicit generalizations, expose or
contextualize special cases, and help raise student attention from individual objects to fam-
ilies of objects. (p. 173).

The combination of performance and participatory aggregations that leverage group
contribution and participation link mathematics learning and social structures of
networked classrooms in ways that can invite a diversity of expressive forms (e.g.,
language, gesture, mathematical objects) into the activity of learning. The focus on
collective activities opens the space of participation and contribution in both the
mathematics and the participation structures involved.

Students’ interactions, contributions and participation in SimCalc-type activities
can be seen to involve “Space-creating play. . . a central feature of generative in-
structional designs” (Stroup et al., 2004, p. 840). Indeed, in creating social spaces
of networked classrooms:

. . .what distinguishes playing along from playing a meaningful part includes, in some sense,
the size of the space the students can explore. Playing along invokes a sense of constraint
and limited possibility. . . .Playing a part, on the other hand, involves one’s own explorations
being juxtaposed to others’, to the group’s evolving notion of the domain, and to the more
formalized insights of the dynamic communities of science and mathematics. (Stroup et al.,
2004, p. 840)



90 N. Ares

It is in these opened, expanded spaces for performance that invitations to bring to
bear resources that are often denigrated, untapped, or kept invisible are found. Stu-
dents’ making lived-in spaces infers ownership, creativity, safety, and familiarity—
dimensions of mathematics learning not often found in under-resourced schools
(Ladson-Billings, 1997).

4.1 Varieties of Contributions

Multiple modalities for interaction are available in network-mediated activity, in-
cluding text, physical and electronic gestures, as well as verbal contributions to
classroom dialogue (e.g., conjecture, prediction, observation, and explanation).
Moreover, the collaborative character of participation in those modes of contribution
invites multiple ways of belonging, as students have access to a variety of represen-
tations of phenomena (text, graphs, visual displays of emergent systems, language)
and engage in inquiry-oriented discussion and analyses (Ares and Stroup, 2004). To-
gether, the varied modes of participation and joint construction of knowledge mean
there is unique potential in networked classroom technologies to draw on students’
cultural and social practices to support learning in mathematics and science.

5 Expanding Spaces for Learning via Language, Interaction,
and Communication

Lee and Fradd (1998) noted that communication patterns vary across cultural groups
and that “students from diverse language backgrounds often have different interpre-
tations of verbal communication and paralinguistic expression. . . alternative com-
munication patterns can provide. . . students with powerful ways of demonstrating
their knowledge and understanding” (p. 17). For instance, during a PartSims net-
worked activity involving integers, rate, and slope, two Latinas collaborated in Span-
ish throughout the simulation, sitting next to two European American boys who did
their own work and then compared their results in English (Stroup et al., 2005).
The goals of activity were successfully reached in both pairs’ interactions, expand-
ing the important and appropriate ways of participating seen in more conventional
teaching. In addition to language varieties (e.g., Spanish and English) serving as
cultural resources, choosing to collaborate or working independently may also have
had gendered or cultural roots. The structuring of their activity occurred through the
students’ use of individual and collective social, cultural, and academic resources.
Thus, being able to draw on varied ways of participating made good use of impor-
tant resources the students brought to the task. Such resources include language as a
resource, as well as norms for a variety of classroom interactions; generative designs
have central features that can be important in leveraging these resources in service
of rigorous mathematical learning.
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5.1 Norms for Communication, Interaction Patterns

Communal, collective efforts characterize classroom interactions supported by gen-
erative designs. SimCalc’s classroom activities (i.e., Sack Race, Spreading Apart)
and other networks’ curricula require groups’ coordinated efforts to construct and
analyze mathematical objects and relations together. (See Brady, White, Davis,
and Hegedus, this volume, for more curricular examples.) Classroom participation
structures are transformed from the conventional focus in schools on individualis-
tic/competitive practices (Boykin, 1986; Boykin and Ellison, 1995; Boykin et al.,
2005). Culturally relevant and funds of knowledge pedagogies also feature coordi-
nation and co-construction as strategies to leverage communities’ cultural practices,
with “teachers encourag[ing] a community of learners rather than competitive in-
dividual achievement” (Ladson-Billings, 1997, p. 480). Potential for explicit atten-
tion to expanding engagement in powerful mathematics to include non-dominant
communities often excluded in school mathematics is seen in such practices as the
collective construction of stories in native Hawaiian communities (Au, 1980), con-
fianza (mutual trust) and networks of relations in Mexican communities in Tucson,
AZ, (Moll and Greenberg, 1990; González et al., 2001), and call and response tra-
ditions in African American churches in Chicago (Moss, 1994). Co-construction
and coordination are central features of practices these communities have devel-
oped over time and in particular social, cultural, historical contexts. These features
are also central to mathematical activities in SimCalc, e.g., in the Fans activity,
group members must coordinate their work with their individual slope and inter-
cept assignments to co-construct a shared understanding of slope and intercept in
linear functions (Brady et al., this volume). Also, Boykin and colleagues (1986,
1995, 2005) provide extensive documentation of the role of communalism in ur-
ban African American communities. Flores (1993) traces similar practices in Puerto
Rican communities in the U.S., citing the close proximity both geographically and
in terms of social positioning in the U.S. of African Americans and Puerto Ricans
as influences that foster cross-group influences on cultural practices. These poten-
tial congruities between network-mediated activity and under-served communities’
cultural practices of communities are critical to exploit for generative designs to be
truly transformative, democratic, and inclusive.

Schorr and Goldin’s (2008) work on the importance of respect in SimCalc class-
room activities they conducted in Newark, NJ is germane here, too, as the students
involved in their work come from non-dominant, often dismissed or marginalized
communities. As they point out:

To a greater extent than in suburban environments, the interactions between urban teach-
ers and students have been described as involving admonishment and criticism (Hart and
Risley, 1995, as cited in Pogrow, 2004). The implicit message to students may be that the
teacher neither respects them nor believes that they have the ability to engage with and learn
mathematics, with devastating impact on their emotions, attitudes, beliefs and personal val-
ues. . . .Dance (2002), Anderson (1999), and others likewise stress the centrality of respect
specifically in urban schools, where many students do not trust teachers or the classroom
environments that teachers promote. (p. 134)
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Norms for interaction and for the relationships among mathematics learning and

emotions, attitudes, beliefs and values associated with intense, engaged, and vulnerable
interaction in doing mathematics, . . . have special relevance to our work with urban stu-
dents. For example, respect is important as it pertains to an individual student’s personal
identity—to feelings of being valued, believed in, looked up to, or accepted by others in the
mathematics classroom. (Schorr and Goldin, 2008, p. 135)

Their exploration of interactions and communication patterns in these classrooms
illustrate how the participation structures that characterize SimCalc classrooms in-
volve not only social and cultural resources (e.g., language, collaboration) but also
provide space and opportunity for students to experience interactions that can help
to ameliorate the limitations of the social and cultural contexts of schooling found
too often in urban settings.

5.2 Linguistic Resources

Lee (2003) calls on designers explicitly to draw on community-based norms for
discourse.

. . .norms for who can talk, how, when, and about what help to construct roles for partici-
pants to play. Lack of congruity with community-based norms for talk (including use of dif-
ferent national languages—such as Spanish; language varieties—such as African-American
English Vernacular [AAVE]; or registers) has been shown to result in lack of participation
in classroom talk. (Lee, 2003, p. 47)

Importantly, while classroom technologies themselves cannot open up the kinds of
language use and interaction patterns invited into learning activities, features of their
design and use can be examined for the potential to treat community-based linguistic
resources as legitimate and powerful resources. As Hegedus et al. (2007) note:

This flow of communication has restructured the social space of the classroom. Each stu-
dent’s individual contribution is a piece of the whole. . . .Students are co-acting with the
software environment but also with each other. . . The technology becomes a partner with
the teacher at a public level to support the emergence of ideas, support or refute conjec-
tures made by students and guides, as well as be guided by, the software at a local, personal
level, as students interact and explore dynamic links between graphs, simulations, and each
other’s thoughts. (p. 1419)

Co-action involves a multitude of resources that can be important avenues for
participation and contribution. Examination of the types and function of such fluid
action and reaction cycles characteristic of SimCalc and other networked technolo-
gies illuminates the nature of the evolving relations among the cultural resources stu-
dents bring to bear in classroom learning, uses and roles of tools that shape activity
and interaction, and the emergent outcomes of those activities. As Lee (2003) notes,
“With the new opportunities for forms of representation and communication af-
forded by new computer-based technologies, it may well be quite useful for design-
ers to consider the implications of this work for communication opportunities within
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computer-based environments” (p. 44). In the excerpt below from a Gridlock Partic-
ipatory Simulation (Wilensky and Stroup, 1999), students were using their individ-
ual calculators to control a traffic light in a traffic grid; their task was to coordinate
their efforts to maximize traffic flow as measured by average speed of cars, num-
ber of stopped cars, and average wait time (see http://ccl.northwestern.edu/ps/guide/
for detailed description of this activity). The activities and interaction are similar to
SimCalc in that individual students control some feature of the simulation and their
collective efforts are displayed in public space to serve as the focus of analysis. Ev-
idence of such opportunity is captured in the following extended field note excerpt:

David: Somebody messin’ me up here.
Moniek: Who’s 11? (intersections were designated by numbers)
Alicia: 18, gotta move.
Moniek: 19, change to a different stop light.
David: Well, I ain’t movin’ at all. I’m mad.
Leroy: Can’t see those numbers.
David: Thank you, thank you, God. I’m finally moving.
. . .

Sharee: There we go. . . get through. . . I put that red light. . . oooh. . . change. . . I’m gonna
change 7 thru 9 . . .15,15,15 . . .” I’m gitting backed up. Number 14. . . let my
people go through please. . . Thank you. . . go. . . go. . . go. . . go. . . yeah go. . . stay
there. . . go. . . go. . . number 2, number 5. I’m good. Nobody complaining about
me. I wonder why? I’m just good. I was gitting it, did you all see me. . . did we
beat the freshman yet? If everyone here was like me, we’d be phat.1

The use of informal language to manage the groups’ efforts relied on what Lee
(2003), citing Smitherman (1977), identifies as features of African American En-
glish: “verbal inventiveness, unique nomenclature, rhythmic, dramatic evocative
language, sermonic tone, [and] cultural references” (p. 54). Potential for changing
norms is seen above in talk often associated with African American churches (Thank
you, thank you, God; let my people go) and youth culture (I ain’t movin’; we’d be
phat). While the language and talk invited in to generative, connected mathematical
activities may be distinctive, the goal of engaging students in rigorous mathemati-
cal discourses and practices remains, strengthened by the inclusion of varieties of
learning resources available in classrooms serving non-dominant students and com-
munities.

5.3 Identity Within a Collective

In generative design as mediated by group supportive networking, individualization
is associated with seeing the uniqueness and diversity of each student’s participation
as making an essential contribution to the emergent sense-making taking place in the
classroom.

1This extended excerpt is also included in Ares, 2008, p. 32.

http://ccl.northwestern.edu/ps/guide/
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Students construct parts of a mathematical whole and so the focus of their attention is on
the relations between their individual contribution and the whole. Thus, students’ personal
identities are intimately involved in their building and sharing of mathematical objects in
the public space of the classroom. (Hegedus and Kaput, 2003, p. 4).

Further, given their contribution to and participation in the construction and analysis
of mathematical objects, not only are their personal identities involved (individual
intersections were labeled with 3-letter names), their collective sense of themselves
as a coordinated group is heightened:

The students’ coordination of effort was supported by the combination of interacting with
the dynamic interactive medium. . . communication among individuals, and individual and
group strategies. The comments, “WE need HHH to change” and “look at OUR graphs,”
indicate a group ownership of the activity. (Ares, 2008, pp. 20–21)

Returning to the notion of making lived-in mathematical spaces, students’ identify-
ing themselves as contributors to social space and as members of a collective social
and mathematical space seems important in not only expanding participation and
interaction, but also in personalizing those spaces.

6 Discussion: Freedom to Participate in Democratizing Access

Diversity in the ways that students from a variety of backgrounds and cultural groups
are invited to and can participate and contribute is, as has been shown, central to
efforts to pursue equity via generative design of networked classrooms. Freedom
to participate is critically important in terms of inviting students to be themselves,
to not feel constrained to be a certain kind of person. Students in one study indi-
cated that, during the networked activities, they felt able to relax, “because really
you know, when you’re doing the technology you’re not really worried about it
[surveillance] because it’s like your time to do the technology piece. . . and we’ll
be talking like we’re going home” (Ares, 2008, p. 34). Colloquial vocabulary, over-
lapping speech, pacing of talk, and playful use of language are characteristic of
the ways many researchers have observed youth interacting in network mediated
activity (Ares, 2008; Ares et al., 2009; Schorr and Goldin, 2008). These observa-
tions point to the potential to respond to Lee’s (2003) call to “designers explicitly
to draw on community-based norms for discourse. . . as anchors for instruction”
(p. 47). Generative designs in networked classroom support expansion of norms for
classroom discourse, which may support the construction of learning environments
where school-based discourses and those of youths’

social worlds [are] blended, making the boundaries between these worlds porous and move-
ment between these worlds fluid. It is in this new discourse space that new forms of par-
ticipation [are] legitimized, thereby extending the repertoire of resources accessible to all
students. (Barton, 2007, p. 24, as cited in Ares, 2008, p. 34)

Clearly, generative design in SimCalc and related systems has the potential to
support expanded access to powerful mathematics to include students and commu-
nities who have been attended to in terms of conducting implementation and design
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research. It also has potential to support teachers and researchers’ explicit attention
to and recognition of the cultural and social resources available but too-often ig-
nored in under-resourced schools and classrooms. The goal of this chapter is to fur-
ther SimCalc’s commitment to democratizing access to the mathematics of change
and variation, to calculus, and to enjoyment of and identification with mathematics
among a broader group of students than has been the case in US schools over many,
many years. These commitments are critical to 21st century learning and citizenship.
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SimCalc and the Networked Classroom

Corey Brady, Tobin White, Sarah Davis, and Stephen Hegedus

1 Introduction

Over the past fifteen years, SimCalc and other research projects have attended to
emerging possibilities for research into student thinking and learning presented
by the combined representation and communications infrastructure (Hegedus and
Moreno-Armella, 2009) of classroom network technologies. The purpose of this
chapter is to describe design principles, which serve to guide work in classroom
connectivity: both as they have appeared in work within SimCalc itself and in sev-
eral independent lines of inquiry among researchers in the Kaput Center network.

We begin by outlining the common architecture of the classroom networks in-
volved in our design work. Next, we discuss five major activity structures that have
emerged: three that have been instantiated in SimCalc, and two that we see as the-
oretically complementary. Finally, we reflect on fundamental developments in the
study of group-centered learning that have been enabled by this research.

In order to gauge the depth of influence of the classroom network upon research
on group learning, we conduct this discussion through the lens of Roschelle and
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Teasley’s (1995) seminal work on computer-mediated collaborative problem solv-
ing. We choose this work as representing the state of the art at a moment shortly
before our field’s engagement with the classroom network. Roschelle and Teasley’s
analytic framework provides a toolkit for examining the phenomena of student in-
teractions in the presence of powerful and carefully designed representation infras-
tructures offered by the computer; however, it does not contemplate the effects of
a compatible communications infrastructure. Therefore, by considering the fit of
Roschelle and Teasley’s framework to the phenomena observed within the network
designs we discuss, we can assess both lines of continuity and points of contrast
between a learning paradigm based on a small group of (two or three) students gath-
ered around a computer and the variety of activity structures for large and small
group learning enabled in the networked classroom.

2 Overview of the Networked Classroom

For the purposes of this chapter, we consider a classroom network to be comprised
of hardware, software, and a relation to curricular content. At the hardware level, it
consists of computing devices (often handhelds), distributed in the classroom on a
one-to-one basis (i.e., every student has a device). These devices communicate (usu-
ally wirelessly) with the teacher’s computer, which is connected to a public display
(usually a projector). At the software level, the student devices are programmed to
provide domain- and task-specific activity interfaces that allow them to participate
in mathematically significant ways. The software on the teacher computer manages
communications coming from the student devices, routing these messages appro-
priately and/or aggregating them to form a public display of the collective activity
of the classroom group. At the level of content, materials are sent to students either
electronically on their devices or by other means, to structure classroom activity in a
particular curricular context. Figure 1 shows a diagram of these system components.

On top of this general-purpose network architecture, a wide range of specific
collaborative interactions can be designed. Indeed, flexibility and openness are crit-
ical features of the architecture, as different types of activities make fundamentally
different demands of the underlying network. To give an initial sense of the scope
of this design space, we here identify four dimensions of variation in these col-
laborative interactions. These dimensions also correspond to degrees of flexibility
desirable in the underlying network.

A first dimension concerns the nature of the student devices and their activity-
specific software interfaces. In some activities, a fairly elaborate private workspace
is needed, where the student can independently build contributions that are later
sent to the teacher. In other activities, a “thin client” that has no offline capabilities
can be used to give students real-time remote control of specific elements in the
upfront space. A second dimension concerns the flow of information to the teacher
computer and between the teacher computer and the public display. In some ac-
tivities, the messages must be transmitted immediately and continuously from the
student devices to the public display, so that the aggregate can emerge reflexively—
i.e., simultaneously revealing and influencing the students’ ongoing work. In other
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Fig. 1 Public and private spaces in SimCalc MathWorlds®. The public space runs on the teacher’s
computer and can be projected. The private space (running here on a graphing calculator) allows
the student to prepare and test their work before contributing

designs, student contributions are displayed all at once, so that while the real-time
rendering of contributions is not as critical, the network may need to support the
transfer of “heavyweight” artifacts that reflect more elaborate student constructions.
A third dimension deals with the traceability of mathematical objects to their student
authors. In some activity designs, it is important that the contributions are anony-
mous in the group space, as this allows certain kinds of freedom in group discussion;
in other designs, the public display should allow contributions to be traced to the
groups, or even the individuals that produced them, through features such as color
or through mathematical aspects that are mapped to activity roles. Finally, a fourth
dimension concerns the mathematical representation of contributed objects: in some
activities, student contributions are presented in the public display as they appear in
the student workspace; in others, the representational form of these contributions
must be dynamically manipulable by the teacher (e.g., algebraic equations sent by
students might be represented by their graphs in the public display).

3 Five New Activity Structures

In this section, we describe five important activity structures that have emerged in
the last 15 years, within the broad network design space we have indicated. We



102 C. Brady et al.

define an activity structure as a generative category of task design that specifies
patterns in the use of available social and technological infrastructures to organize
the actions and interactions of participants. An activity structure thus represents a
genre of interaction, and many concrete activities can be built upon the pattern of a
given activity structure.

We distinguish this notion from that of a participation structure, which reflects
patterns of actual practice in the implementation of activities. Participation struc-
tures are thus features of discursive communities; they interact with activity struc-
tures to determine concrete features of the implementation of an activity in a given
context, as the social group perceives and/or makes active use of different affor-
dances of the task design or of available infrastructures.

The five activity structures we discuss are:

• Mathematical Performances
• Participatory Aggregation
• Generative Activities
• Small Groups
• Participatory Simulations

The first two of these have been incorporated deeply into the SimCalc curriculum
and implemented at scale. The third comes from a research program that has inter-
sected richly with SimCalc but has not been incorporated systematically into the
materials used in SimCalc’s large-scale experimental studies. And the last two have
been pursued by colleagues in the Kaput Center network, leading to productive and
influential design discussions. These five activity structures are also ordered here
to produce a trajectory through the multi-dimensional design space sketched above.
We hope that this serves both to illuminate this design space further and to indicate
connections between the activity structures.

3.1 Mathematical Performances

This activity structure involves students as authors of personally meaningful math-
ematical objects and as creators of coordinated multiple representations of these
objects, including narrative descriptions. One example activity in this category is
Sack Race,1 where students create three distinct representations of a motion phe-
nomenon: a piecewise-linear position-time graph, an on-screen animation, and a
story. In the private workspace on their individual device, each student creates a
piecewise-linear position-time graph that drives the animated motion of their actor.
In parallel, they draft a story that provides a third representation of their actor’s mo-
tion. In building their motion, the only constraint is that it must end the race in a
tie with the teacher’s actor, who travels at a constant rate of 2 feet/s for the entire

1Download the Sack Race activity software/curriculum documents at: http://www.kaputcenter.
umassd.edu/products/curriculum_new/algebra1/units/unit2/.

http://www.kaputcenter.umassd.edu/products/curriculum_new/algebra1/units/unit2/
http://www.kaputcenter.umassd.edu/products/curriculum_new/algebra1/units/unit2/
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Fig. 2 One student’s race narrative (left). At right, the student-author is at the board attempting to
identify his own graph among the aggregate

20-foot race. The teacher-actor’s graph and animation are displayed in the students’
private workspace to allow direct comparison with this “target.” After the students
complete their motions, they are uploaded to the teacher computer, and the entire
collection is displayed simultaneously. The collective race can then be run, and the
teacher can select individual students to narrate their actor’s race by reading the sto-
ries they have written while the animation is played. Figure 2 gives a glimpse of this
activity.

In our first implementations of this activity, spontaneous applause occurred when
a student’s race was shown and narrated. Over time, this has become an expected
response, which alerts us to deeply “theatrical” aspects of the activity: not only is
there a “performative” element to the creation and sharing of these artifacts, but the
class coheres as an authentic and appreciative audience.

Numerous variations and extensions of Sack Race are possible. Some involve
adding requirements to the motion-making task. For instance, the actors might be
required to arrive at a given point at a specific moment (e.g., 3 m when t = 4 s).
Or actors might be required to run at the same speed as the teacher-actor during
a specific interval (e.g., between t = 3 s and t = 5 s). Such constraints introduce
graphical regularities in the aggregate, while also imposing authoring challenges in
both mathematical and narrative representations. Other extensions of the activity
emphasize the interplay between narrative and graphical representations. For exam-
ple, the teacher may choose a graph from the aggregate, send it back out to the entire
class, and ask for different stories that fit the same race. The reverse relationship can
also be explored, choosing a story and asking for different motions that fit its de-
scription. In these variations, students explore the flexibility in the mapping between
representation systems of graphs and stories (cf. Nemirovsky and Monk, 2000).

Of the activity structures discussed in this chapter, Mathematical Performances
makes the most extended and clearly delimited use of the independent private
workspace. In Sack Race, this feature gives students the time and latitude to explore
relations between the representational systems of piecewise-linear Cartesian graphs,
animated motion, and natural-language narratives. Later, the aggregation and dis-
play of the entire class’s motions provides a powerful experience of the Cartesian
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space as a representation system capable of bearing diverse stories, since students
know that each of the graphs in the aggregate both stands for and “conceals” its
related story. As students share the stories for some of the graphs in the space, the
class can begin to imagine possible stories for others.

3.2 Participatory Aggregations

This activity structure makes strategic use of the size of the class to explore families
of functions that are mapped to variation of parameters in their symbolic definition.
The class is divided into numbered groups, based both on the size of the class and
the nature of the parameter space to be explored. Within their groups, students also
receive a “count-off number,” so that each student has two “personal parameters.”
In their private workspaces, students create functions that depend in some critical
way on their personal parameters. These are aggregated, organized, and selectively
displayed and discussed.

A paradigmatic example is the Spreading Apart2 activity, in which students cre-
ate functions of the form y = (C/2) ∗ x + (G − 1), where C is their count-off
number and G their group number. Thus, in the upfront display all members of a
given group have the same y-intercept, while all students with the same count-off
number have parallel graphs. When the World representation is animated, the mem-
bers of each group begin clustered together, while students with the same count-off
numbers move in lock-step with each other, maintaining equal distance throughout
the race. In the graphical space, each group’s graphs make a “fan,” and the class
as whole consists of a series of fans, shifted vertically. Figure 3 shows the fan for
group number 1.

Because each student has a unique function, graph, and animation, the Spread-
ing Apart activity supports a powerful “Where are you?” task. The act of “finding
yourself” has proven to be highly motivating and to engage students in the impor-
tant work of conceptually coordinating the various representations (e.g., relating the
“m” and “b” in the algebraic expression to the slope and y-intercept of the graph
and to the initial position and velocity of the animated actor).

As with Mathematical Performances, the student initially works independently of
other students and without reference to the shared public display, until the moment
when the teacher aggregates all of the class work. At that point, because the teacher
is in control of how and when the class contributions are shown, she is able to make
strategic use of the public display to structure classroom discourse. For example, a
powerful teacher strategy for engaging the private-to-public dynamic of this activity
structure is to ask, “What do you expect to see?” before displaying the class’s work
or structurally significant subset of it. This engages students’ and groups’ abilities
to generalize from their own experience of the activity task to the range of tasks

2Download the Spreading Apart activity software/curriculum documents at: http://www.
kaputcenter.umassd.edu/products/curriculum_new/algebra1/units/unit4/.

http://www.kaputcenter.umassd.edu/products/curriculum_new/algebra1/units/unit4/
http://www.kaputcenter.umassd.edu/products/curriculum_new/algebra1/units/unit4/


SimCalc and the Networked Classroom 105

Fig. 3 Spreading Apart fan for five members of Group 1

parameterized by group and count-off numbers. The resulting discussion has a “low
threshold” because every member of the class can provide an account of their own
contribution. And yet it has high mathematical significance, because the variation
across roles in the class reveals important aspects of mathematical structure.

3.3 Generative Activities

In this activity structure, each member of the class uses a task-specific environment
on her individual device to create one or more mathematical objects that comply
with a given condition, and then contribute these to the public space. The public
display provides the class a view on the diversity of possible ways of complying
with the condition, which often relates to important aspects of mathematical struc-
ture. A paradigmatic example is the 2x Activity, which asks students to make “ex-
pressions that are equivalent to 2x” (Stroup et al., 2005) or another simple expres-
sion. Below are several contributions from one classroom’s implementation (Davis,
2009):

• 123456789X−123456787X
• X100000000000−99999999998X
• 1000000X/500000
• 15153X−15151X
• 800000X/400000
• (X*X*X*X*X*X*0)+2X
• (X+X+X)/3*2/2*2
• 2(0.2X+0.2X+0.2X+0.2X+0.2X)
• 3X−X+X−X+X−X+X−X+X−X+X−X+X−X+X−X+X−X+X−X+X−

X+X−X+X−X+X−X+X−X+X−X+X−X
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As can be seen here, the set of student contributions illuminates an algebraic
space: the equivalence class of 2x within the set of algebraic expressions. Because
all of these expressions in x are equivalent, they give the same result when evaluated
at any x. Thus, their graphs are coincident with y = 2x. The class observes the wide
variety of expressions that can be created from 2x by applying the “rules for simpli-
fying” in reverse; and they see that whenever these rules are applied correctly, the
results have the same graph. This experience provides a strong anchor for the mean-
ing of the algebraic manipulations involved in simplifying, factoring, collecting like
terms, and so forth.

Generative Activities uphold the tradition of providing “a low threshold and a
high ceiling” in learning design (e.g., Papert, 1980). On one hand, all students can
participate; and for some students, submitting “2x” or “2∗x” or “x ∗2” may indeed
be a valid form of participation in the activity. On the other hand, as the examples
above begin to indicate, students can engage the activity in mathematically sophis-
ticated ways. Moreover, this “high ceiling” effect has mathematical value for the
class. In creating complicated expressions equivalent to 2x, students are led to use
features of the space of algebraic equivalence such as the distributive law, iden-
tity properties of 0 and 1, and so forth (Davis, 2009). In discussion, then, the class
can identify these properties as technical innovations over which particular student-
experts in the community have demonstrated mastery.

Generative activities make important use of a private workspace where students
can, if they wish, test their work before submitting it to the public space. In the
case of the 2x Activity, the student device enables them to graph their expressions
to check equivalence to y = 2x. This feature, along with anonymity in the public
display, provides support for students to build ‘adventurous’ contributions that push
the limits of their knowledge. At the same time, this use of the private space is con-
tinually connected with activity in the public display, allowing students to change or
enhance their responses. An important driver for individual creativity is the appear-
ance of interesting expressions sent by others, and the potential for one’s own work
to be made public and received as interesting. Thus, the sophistication of the entries
from the class develops through a playful competition that is supported by both the
technology and the teacher’s intervention. Giving voice to impressive entries that
emerge (“Look: this one uses the Distributive Law!”) or, alternatively noting alge-
braic features that the class has not yet explored (“I see that no one has used any
decimals yet. . .”), the teacher can prompt students to explore different aspects of the
mathematical space.

Within SimCalc, Generative Activities have been used by Stroup and colleagues
in curriculum based on the qualitative introduction of concepts of calculus within the
algebra curriculum (Noble et al., 2004; Stroup, 2002, 2005). This work foregrounds
piecewise-constant velocity graphs, offering these as means of producing motion
by specifying changes in position. Single velocity x time units are concretized as
“delta blocks,” so that adding a block extends motion by one distance unit. One
Generative Activity in this context asks all students in the class to build a motion
using six blocks: the diversity of responses creates a diversity of motions, each of
which represents a way of getting from distance = 0 to distance = 6. Later, students
are asked to use piecewise-constant velocity functions to move their elevators to the
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Fig. 4 Student responses to the task to move their elevator to the 6th floor, stop, and return

6th floor, stop, and return to the ground floor. These artifacts are aggregated, and the
upfront space displays the position/time graphs and motions that result (see Fig. 4).

3.4 Small Groups

This family of activity designs for classroom networks emphasizes virtual mathe-
matical objects jointly constructed or manipulated by groups of two to four students
who work together in teams. Each of the designs centers on a mathematical object
that can be subdivided into two, three or four components and distributed across the
devices of two, three or four students. In one such example, two students each move
an individual Cartesian coordinate point in order to jointly manipulate a line (White
and Brady, 2010; White et al., 2012); in another, each student transforms one side
of a algebraic equation they work together to solve (Sutherland and White, 2011);
and in yet another, four students each examine different representations of the same
function (White, 2006; White and Pea, 2011). Some of these designs make use of
the public display by featuring views of artifacts associated with each student and
each small group, while others simply display objects shared by the small group
on the device of each team member. In each instance, these designs structure novel
forms of small group collaboration by complementing face-to-face peer interaction
with joint manipulation of shared mathematical objects facilitated by the overlap-
ping representation and communication infrastructures of the classroom network.

As an illustrative case, we consider the example of Graphing in Groups, an en-
vironment in which all students in a class work in teams of two, with each student
in the pair moving a coordinate point on her calculator screen in order to manipu-
late a line drawn in a group-level graphing window in a public display. Typically,
two student pairs sitting together in the classroom share one of 6 to 8 group-level
graphing windows arranged in a grid on the upfront display (Fig. 5). As students use
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Fig. 5 Two student Cartesian coordinate locations shown calculator screens (at top) form a line
drawn in a group-level graphing window in a Graphing in Groups public display

their calculators to move their respective point markers to new coordinate locations,
they dynamically update both the line and the corresponding equation shown in the
public display. Graphing in Groups tasks generally involve the teacher asking stu-
dents to construct a line with certain characteristics: a slope of three, a y-intercept
equal to negative one times the group’s number, perpendicular to that of the other
pair in the same window, etc. Completing these tasks is an activity that plays out
primarily at the level of the small group; teammates discuss possible strategies for
coordinating their respective point movements in order to construct the desired line.
Those strategies often begin as exploratory investigations of the graphical space, or
efforts to coordinate simultaneous movements of both students’ points in relation to
new task demands. Over time, students develop more systematic means of enacting
familiar properties of linear functions (such as a difference-ratio characterization of
slope) as movements in the virtual graphical space (White and Brady, 2010; White
et al., 2012). Importantly, these small group sessions are usually punctuated by reg-
ular cycles of whole-class discussion, as the teacher pauses an activity in the middle
or follows the completion of a pair-level task to lead a conversation about different
solution strategies or linear function characteristics.
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In this activity structure, the students’ individual devices do have some attributes
of a private workspace, though the tight coupling among the devices of the small
group demands close coordination of action among group members to manipulate
the shared object effectively. Likewise, the real-time changes in the public display as
student pairs manipulate points and lines introduce a highly dynamic element to the
flow of classroom activity; students are able to view the changing graphs produced
by other groups even as they construct their own, and the teacher can utilize this
display both to monitor the progress of all students and groups through successive
tasks and as a resource for drawing student attention to alternative solutions, or illus-
trating connections across multiple groups. The traceability of student productions
in Graphing in Groups is set by the teacher and variable throughout the activity;
student points may be labeled either with their names in the public display (as in the
example of Fig. 5) to allow student work to be monitored by the teacher or peers, or
with the coordinates of the current location to emphasize Cartesian geography and
provide anonymity.

3.5 Participatory Simulations

In this activity structure, each student uses their individual networked device to con-
trol a single element of a larger system that encompasses the group as a whole.
Typically, participants act according to motives or rules that are independent of oth-
ers in the class, and yet this “agent-level” activity gives rise to emergent phenomena
that have domain significance. A common objective of activities of this type is to
understand a system “from the inside” and to learn to trace the genesis of emergent
phenomena back to agent-level mechanisms. After the primary agent-level experi-
ence of the simulation, classroom discussion allows the participants to step out of
the system and view it “from the outside.” This two-sided experience of the system
gives students a pair of complementary conceptual lenses through which to view
the system and its structure. In the study of complex systems, the NetLogo (Wilen-
sky, 1999) agent-based modeling environment provides the HubNet (Wilensky and
Stroup, 1999a) networked system for the purpose of producing participatory sim-
ulations. Classrooms can study the spread of disease through a population as an
emergent effect arising out of the interaction of individuals in the population; or the
phenomena of traffic flow arising out of the coordination of changes in stoplights
(Wilensky and Stroup, 1999b, 2000).

In the domain of mathematics, a paradigmatic Participatory Simulation is the
Point Activity, which develops the basic idea of functions. Students are given a sim-
ple interface allowing them to move a point in the Cartesian plane. They are asked to
go to a location where, for example, their y-coordinate is twice their x-coordinate.
In the public space, these independent behaviors cause the image of the line y = 2x

to emerge (see Fig. 6).
The Point Activity provides the classroom group with a direct experience of the

graph of a function as a locus of points, each of which complies with a condition
relating its y-coordinate to its x-coordinate. This point-based perspective can be
leveraged to study elements of linear functions such as slope (relating to the question
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Fig. 6 Private and public display for the Point Activity

of how one student on the line might move to reach a partner also on the line);
equivalence of functions (pairs of rules that are the same for all students in the class);
and function intersections (pairs of rules that are only the same for only students in
the class—who are identified as standing at these intersections). The Point Activity
also engages the definition of function as a rule that associates one and only one
value of Y for every value of X in the domain, allowing students to explore this
definition at the personal level. (If I choose 3 as my x-value, can I follow the rule
with any y-coordinate other than 6?)

In Participatory Simulations, the use of the private space is minimized. For in-
stance, in the case of the Point Activity, the individual device shows only the stu-
dent’s own point and gives the numeric x- and y-coordinates. These are important
features supporting the student’s work in the activity (permitting her to focus on
her own point and providing the numeric data required to complete the tasks); how-
ever, the student devices are not truly private spaces, as movements are immediately
sent to the public display. This is in fact important for the activity, providing vis-
ibility into the entire class’s thinking as it emerges, complete with hesitations and
explorations.

4 Roschelle and Teasley’s Framework in the Context of Ongoing
Network Research

In this section, we review Roschelle and Teasley’s (1995) analysis of computer sup-
ported collaborative problem solving in small groups and discuss its fit with the
learning phenomena exhibited in classrooms engaging in the range of activity struc-
tures described in Sect. 3. We find that many key aspects of their perspective are
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still highly relevant, and that recent results can be seen as extending them along a
shared trajectory of inquiry. Moreover, we find that points where their perspective
seems limiting also indicate important directions in current research.

At the outset of this discussion we should recognize two ways in which Roschelle
and Teasley’s analysis is historically situated. First, in approaching group interac-
tions, they make innovative use of techniques and constructs from discourse analysis
and conversation analysis (e.g., Schegloff, 1991), as a means to study the processes
of collaboration in action and the development of conditions that enable it. And
second, in approaching phenomena of small group problem-solving, they select an
influential information-processing model of individual cognition and consider ways
in which this model can provide a framework of understanding distributed cognition
at the group level.

Among the aspects of Roschelle and Teasley’s (1995) argument that seem most
compatible with research perspectives on the network current in the field are the
basic ideas behind their focus on the Joint Problem Space and their study of features
of discourse. This includes their insight that collaboration depends on participants’
having the means for continuously establishing shared attention and negotiating the
meaning of their actions and observations. Extending that insight leads to notions
that (1) collaborative work exists in the discursive field and can be studied there;
and that (2) it can be enhanced through the design of learning environments that
provide additional, discipline-specific means for extending these social functions.
In contrast, among the aspects of Roschelle and Teasley’s argument that seem least
compatible with today’s perspectives is the premise that a single, specific model of
individual functioning in problem solving could serve as an adequate framework for
understanding the diversity of interactions and second-order effects that can appear
in collaborative activities supported by a classroom network.

4.1 Points of Continuity

In identifying ways in which Roschelle and Teasley’s work aligns well with cur-
rent perspectives on network-supported collaboration, we focus primarily on their
introduction of the Joint Problem Space (JPS) construct as the site of a variety of
forms of discursive work by group members over the course of collaborative prob-
lem solving. In this context, we investigate ways in which Roschelle and Teasley’s
ideas about relations between technological environments and the JPS can in fact be
seen as prefiguring key elements of classroom network design.

The metaphorical construct of the JPS reflects Roschelle and Teasley’s concep-
tion of shared understanding as a critical element in collaboration. Indeed, their def-
inition of collaboration—as “a coordinated, synchronous activity that is the result
of a continued attempt to construct and maintain a shared conception of a problem”
(1995, p. 70)—demonstrates the fundamental importance they give to this notion.
Moreover, they view common ground as being achieved through concerted discur-
sive activity, including both initial work to establish the JPS and ongoing effort to
maintain it in the face of changing problem solving circumstances and the evolving
individual understandings of group members.



112 C. Brady et al.

Roschelle and Teasley are sensitive to the impact that a virtual environment (their
Envisioning Machine) has in inflecting and extending these discursive patterns in
collaborative problem solving. For instance, they note that discourse becomes dis-
tributed across language and action as students communicate through a range of
modalities including not only words and gestures, but also performative and demon-
strative interactions with the software. They observe that turn-taking behavior is af-
fected by features of the learning environment, and that collaboration contains iden-
tifiable periods when group members withdraw from each other to focus on private
reflection or non-communicative interaction with the software, before returning to a
public register to continue their interpersonal work. In addition, they note discourse
patterns that seem to be specifically provoked or encouraged by the virtual learning
environment, in this case the phenomenon of “collaborative completion” of two-part
(IF-THEN) formulations of shared understanding. Finally, they identify conversa-
tional repairs and narrations as strong indicators of the social nature of some student
interactions with or about the virtual environment.

These fundamental notions—that a significant component of collaboration in-
volves ongoing coordination among collaborators of their evolving perspectives;
that this effort can be understood through a metaphor of constructing a shared
“space” where agreement can be produced, registered, and stored; and that this ef-
fort exhibits unique rhythms and characteristics when it occurs in the context of a
discipline-specific representational infrastructure—are consistent with the views of
much current research on classroom networks. In the next few paragraphs, we briefly
highlight instances of resonance between these notions and findings from current
research. Specifically, we consider the utility of the notion of “spaces” in network
design, and we describe some findings in recent research that develop Roschelle and
Teasley’s discursive categories of language-and-action, turn-taking, repairs, and nar-
rations.

4.1.1 Network Spaces

Although the JPS is an abstract and metaphorical construct for Roschelle and
Teasley, the computer screen does fulfill key roles in supporting the collaborative
group’s work to engender and maintain this space. Collaborating students use it as
a referential field and also as a communication medium in the course of their prob-
lem solving work. Nevertheless, because the Envisioning Machine’s representation
system embraced only the problem-and-solution context and not collaborative inter-
actions as such, it could not act as an embodiment of significant aspects of the JPS.

In contrast, in the classroom network, representational infrastructure is merged
with communications infrastructure (Hegedus and Moreno-Armella, 2009); thus, it
becomes possible for design to attend explicitly to supporting learner behaviors that
cut across these domains. In this way, learning environments can be constructed to
provide private, small-group, and/or public “spaces” that support different kinds of
social and representational engagement. These spaces can be layered in the course of
the activity, offering different interfaces and fostering different kinds of “co-action”
(Moreno-Armella and Hegedus, 2009) at different moments. Indeed, as Hegedus
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and Moreno-Armella, 2009 imply, the social and representational features of the
network are deeply intertwined with the mathematics of the activity. That is, the
network provides support for both the representation of student communications
and contributions, while also stimulating students to communicate about represen-
tations.

Finally, when we imagine a classroom group engaging in collaborative activity
in a supportive network environment over a long period of time, we can envision
the JPS rising to the level of a persistent structure and shared, collective resource
in some degree. Extended in time in this way, the JPS would reflect a history of
patterns of agreement among collaborators, and it could be seen to intersect fruit-
fully with notions of sociomathematical norms (Yackel and Cobb, 1996) and the
classroom micro-culture (e.g., Voigt, 1994). A full exploration of these connections
is beyond the scope of this chapter, but conceptualizing the network as a designed
space whose fundamental properties can be manipulated (its topologies, the visibil-
ity and appearance of elements, the anonymity or identification of agents and their
productions, and so forth), opens the door to a consideration of the design and use
of learning environments as the construction of sociomathematical virtual realities.

4.1.2 Language-and-Action and Turn-Taking

In network activities, classroom discourse is even more acutely affected by the tech-
nological medium than was the case in the environment studied by Roschelle and
Teasley (1995). The network setting is inherently more complex and multi-voiced,
with greater scale and concurrency in both social and technological spheres. It fea-
tures a larger number of students each participating with individual networked de-
vices. Thus such activity settings often feature parallel interactions between stu-
dents, and between students and the private workspaces of their devices, some as-
pects of which are made publicly visible as “electronic gestures” (Stroup et al.,
2007) in the upfront display, while others can be communicated to neighbors by
holding up the device. Network discourse can involve the production and manipu-
lation of mathematical objects that may be completely anonymous or loosely cou-
pled to their student authors. All the while, the verbal interactions of the classroom
are often characterized by spontaneous and responsive utterances of various kinds
that serve to influence or coordinate behavior of local groups or the classroom as a
whole.

In spite of these complications, network researchers have gained analytical trac-
tion with even the most tumultuous activities by strategically applying constructs
such as turn-taking in situation-specific ways, as did Roschelle and Teasley. For in-
stance, within the Small Groups activity structure, White and colleagues have char-
acterized small-group interactions on the basis of turns of discourse that include
verbal utterances and electronic gestures (White et al., 2012). At the whole class
level, recent SimCalc work by Hegedus and Penuel (2008) has applied analysis of
adjacency-pairs in turns to provide a quantitative measure of the qualitatively new
student-centered patterns of discourse and participation that appear as the class en-
gages with the public display. And in the context of Generative Activities, Davis
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and colleagues have begun to identify the movement of structural memes through
the classroom’s semiotic activity by studying time-stamped logfiles of networked
interaction, synchronized with video data (Davis, 2011).

One point of difference between these approaches and Roschelle and Teasley’s
(1995) perspective is that network researchers tend to treat discourse-analytic pat-
terns as affordances and to incorporate them explicitly and intentionally into the
iterative design of activities. For instance, where Roschelle and Teasley note an os-
cillation in discourse patterns between periods of intensive interaction and periods
of withdrawal, network researchers build activities that exploit different uses of pub-
lic and private workspaces. Similarly, where Roschelle and Teasley note a tendency
of collaborating pairs to execute linked components of IF-THEN statements about
the Envisioning Machine, network researchers build on ideas like this “collaborative
completion” in designing the roles and interfaces that individuals and groups use to
produce mathematical objects. For instance, the Small Groups activity structure is
specifically designed to exploit the potential for this kind of interdependence among
small groups of students in constructing and manipulating mathematical objects.
Work by White et al. (2012) illustrates the ways in which social and discursive struc-
tures relate to mathematical structures within this mode of distributed production.
Participatory Aggregation, Generative Activities, and Participatory Simulations ex-
tend the idea of collaborative completion to structure whole activities in which the
entire class group explores a mathematical structure.

4.1.3 Repairs and Narrations

Repairs and narrations enter collaborative discourse when participants detect ac-
tual or potential breakdowns in shared understanding. In Roschelle and Teasley’s
context, speakers were clearly identified with their contributions, so that such dis-
course moves were always clearly situated as coming from author or observer. In
the network context, this picture is complicated by three factors. First, some activi-
ties use anonymity in the virtual space, which decouples the speaking student from
her contributions. Second, some activities distribute control over a mathematical
object among a group of students, so that ownership of contributions is collective
rather than individual. And third, the larger number of participants creates a range
of perspectives towards a given contribution, so that repairs and narrations address a
collective audience rather than a single interlocutor. Nevertheless, these constructs
still offer attractive approaches to classroom discourse in network activities.

Repairs take a variety of forms across the network activity structures: we begin
by considering Small Groups. In this activity structure, some attempts at repairs
can function as they do in the single-computer context described by Roschelle and
Teasley (1995). For example, in Graphing in Groups, collaborating students can
use the medium of language to repair discrepancies in their understandings of the
problem situation. More often, however, a qualitatively different mixed-modality
discourse appears. Since all students of the group have simultaneous access to their
components of the shared mathematical object, it often happens that individuals
initially attempt to proceed in solving the problem, possibly with the intention of
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showing their partners what they mean. The design of the activity immediately
thwarts this attempt (since the control of the mathematical object is symmetrically
distributed), but the multi-modal approach to repairs frequently continues, with stu-
dents working out repairs through a combination of language and demonstrative
electronic gesture. It should be noted that here the network does not necessarily
make repairs more efficient: in fact, the mobility of the collective object often serves
only to highlight the need for repair, making discrepancies in understanding salient
and increasing the pressure on the groups to use a combination of language and
action to resolve them (White and Brady, 2010).

As Roschelle and Teasley also note, the analysis of failed or degenerate collabo-
rations in the case of Small Groups illuminates the dynamics of the activity structure
and of the environment. In Graphing in Groups, for example, the failure to repair is
made evident in groups or dyads where one individual seizes control of the other’s
computing device, or monologically commands the other to execute movements ac-
cording to orders (White and Pea, 2011). Such breakdowns reveal the difficulties of
achieving the shared understanding and focus necessary for coordinated action.

In activity structures that foreground whole-class discussion, the notion of a re-
pair can be generalized to describe how the group responds to discrepant contri-
butions. Many teachers in networked activities use the question, “What might the
person who contributed this have been thinking?” or “What might the person who
contributed this have been trying to do?” This style of question makes use of the
anonymity of the public space to focus attention on the mathematical contribution
rather than on the individual who produced the error or unexpected contribution
(Davis, 2005). It also focuses the discussion on intentions and conceptions (rather
than on individual persons) and opens a space for discussion of process, with the im-
plicit recognition that a student’s contribution may not adequately reflect her entire
thought process. In this context and using phrasing such as, “They might have been
trying to. . .” students are often quite willing to describe difficulties that they them-
selves have had, which they see as relating to the problematic contribution. In fact,
inspection of the data after class sometimes shows that the student who contributed
the erroneous contribution uses this subjunctive phrasing to make a correction to her
own work (Davis, 2003). In such cases, the “cover” of anonymity in the virtual space
allows the student to benefit from both the reflective learning involved in correcting
his error and the social validation of publicly displaying his new understanding in
class discussion.

Narrations, too, vary their form within different activity structures. In Roschelle
and Teasley’s context, narration always involved students augmenting their own ac-
tions with an explanatory gloss or commentary. In contrast, when contributions are
anonymous the opportunity for narrations is much broader and more speculative,
allowing students to experiment with potential explanations for contributions. In
some cases, the work of speaking for and explaining objects and phenomena that
appear in the public space becomes a substantial part of the discursive work of the
class. Thus students are often engaged in providing explanations not only of their
own work, but also of other students’ creations, as well as of the relations among
contributions and of patterns in the class aggregate. The teacher can explicitly trig-
ger such meta-narrations with questions like “What might the person who created
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this object have been trying to do?” (Davis, 2003, 2005). Mathematically, this prac-
tice enables students to discuss shared difficulties as well as to celebrate interesting
responses—particularly when the group discovers a valid but unexpected rationale.

Finally, in providing narrations about the relations among contributions or about
patterns of the aggregate, students can be led to make mathematically significant
generalizations. The task of explaining what we created is a group problem distinct
from, but related to, explaining what I did. This occurs frequently in the Participa-
tory Simulations activity structure, where collective phenomena emerge from indi-
vidual behavior. As the class makes sense of the emergent phenomenon, their narra-
tion bridges from local, agent-based perspectives to global, aggregate explanations.
Narration about the collective artifact also appears strongly in the case of Partici-
patory Aggregations, where families of functions need to be explained as deriving
from the activity of groups and individuals, as well as from the representational
features of the environment and properties of the mathematics.

4.2 Points of Contrast

In identifying ways in which Roschelle and Teasley’s analysis appears limited with
the benefit of hindsight, we consider two basic elements of their approach, asso-
ciated with (1) the relations between individual and group-centered activities, and
(2) the nature of intersubjectivity as an empirical construct.

4.2.1 Individuals and Groups

One path of inquiry into collaborative learning considers group structure as an in-
dependent layer in the implementation of an activity, which can be analyzed sep-
arately from other factors. This approach, which we might call “Scaled-up Indi-
vidualism” is implicit in Roschelle and Teasley, in that their descriptive framework
depends rhetorically at least on the proposition that it is possible to extend individu-
alistic information-processing theories of cognition focused on production systems
(Newell and Simon, 1972; Young, 2001) to act as models for richly social, collabora-
tive human problem solving. An example is the discussion of “Socially-Distributed
Production” where Roschelle and Teasley (1995) find evidence that the two mem-
bers of a collaborative pair may each supply a part of an IF-THEN production rule
in the course of joint problem-solving and implicitly treat such manifestations as
illuminating group learning processes.

On one hand, as long as such individualistic models of cognition are used in
group-centered learning design explicitly as models—as useful over-simplifications
of a reality not yet well understood which are intended to be refined and even dis-
carded over iterative cycles of research—we may regard them as offering a legiti-
mate, pragmatic starting point for design. However, Scaled-up Individualism makes
the questionable assumption that the nature of a task remains the same regardless
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of the group structures (among other contextual factors) characterizing the environ-
ment where it is encountered. In this view, problem solving processes are “hardware-
independent”—the same elements are posited to exist in group and individual set-
tings, with the main difference being their distribution among the available actors.

The notion that this could be an accurate picture in an absolute sense runs counter
to much of the research and theory of the last two decades. In fact, even in the
“person-plus” case where an individual human agent distributes her cognition in the
use of cultural tools (Pea, 1993; Perkins, 1993), there is strong evidence to believe
that this distribution affects the nature of tasks in a fundamental way. In a socially
distributed setting with multiple humans and tools (Hutchins, 1996), the differences
are likely to be further amplified.

Strong adoption of the Scaled-up Individualism perspective may blind re-
searchers to more “emergent” aspects of collaborative activities that disrupt direct
analogies between individual and group learning processes. For instance, in a Gen-
erative Activity like the 2x activity discussed above, classrooms often explore and
build expertise with fundamental algebraic structures such as inverse operations.
These explorations appear in the record of the activity as patterns with increasing
resonance: rather than being the contribution of any individual student, they emerge
as themes in the discourse. Similarly, in the Small Group activity structure, students
may discover structural properties of their shared object that become salient through
coincidences in their individual, exploratory movements. In Graphing in Groups,
for instance, if both students move their points one step to the left, they may find
to their surprise that the slope of their joint line remains unchanged. This discov-
ery can serve to motivate coordination or stimulate collaborative investigation. In
general, research experience in classroom networks suggests that while initial activ-
ity designs may be guided by analogy with individual activity patterns, researchers
should not expect that the patterns of exploration or learning exhibited by the group
will always map cleanly to individual patterns.

4.2.2 Questions of Intersubjectivity

Roschelle and Teasley distinguish “collaborative” from “cooperative” problem solv-
ing; indeed, they introduce the construct of the Joint Problem Space in part as a
means of gaining analytical purchase on the difference (1995, p. 70). This distinc-
tion remains important today. However, implied in their analysis is the idea that
there is a continuum of collaboration, based on the degree to which cognitive pro-
cesses are shared between group members. Though the collaborative end of this
continuum is not explicitly given higher value, the authors’ interest in collaboration
process does lead them to select “one of the most collaborative dyads” for analysis
(1995, p. 71, emphasis added).

Here again, our intention is not to critique Roschelle and Teasley’s pioneering
work. Nevertheless, subsequent research has revealed limitations in adopting the
perspective that the interactive behavior of groups should be ordered on a scale
of “more” or “less” collaborative. Alternative characterizations are possible and
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useful—in which collaborators develop or negotiate shared perspectives along some
dimensions, while in others they maintain differences (or indifference) with respect
to each others’ viewpoints. Thus, depending on the activity structure, a group may
develop one or another style of intersubjectivity, and it may be appropriate that these
styles vary—across groups and across activities.

Moreover, in many approaches to activity design in group spaces, increased stu-
dent agency is a primary objective, and diversity of thinking is regarded as an es-
sential resource. In such settings, while it may desirable for students to recognize
the validity or strengths of others’ contributions, it is also important that they pursue
their own individual directions. For example, in Generative Activities and Math-
ematical Performances, it is often preferable for students not to share a common
approach to the task, since diversity of thinking leads the group as a collective to
explore a broader space of possibility. Indeed, some of the most powerful and pro-
ductive interactions in these activities can begin with a contribution that evokes sur-
prised laughter from the rest of the group. In Graphing in Groups, still other styles of
intersubjectivity are valuable. Here, periods of high productivity in the activity are
often characterized by group members being “on the same page” to some degree, but
without yet having established a completely shared perspective. Moreover, when the
group does achieve a fully shared perspective, they sometimes “defeat” the activity
structure by adopting formulaic divisions of labor that reduce the need for interac-
tion (e.g., one student always moving immediately to the y-intercept of the desired
function). Still other styles of perspective-sharing appear in Participatory Simula-
tions and Participatory Aggregation. Here, students spend a good portion of the
activity immersed in “local” perspectives that are parallel to but independent from
their classmates. Later, the aggregate construction of the entire class provides strik-
ing evidence of the interrelation of these local worlds, which becomes a challenge
for the collective interpretation of the group. Intersubjectivity is therefore purposely
deferred so that it can later be developed explicitly at the whole-class level.

5 Conclusion

Roschelle and Teasley’s construct of the Joint Problem Space (JPS) arose out of a
desire to see problem solving as a fundamentally social phenomenon and to study
the impact of representationally-rich computer environments on the social dynam-
ics of collaboration. In the time since that seminal article, a line of inquiry in edu-
cational research around classroom networks has tapped into some of the potential
suggested by the JPS. In developing this research trajectory, a common network
architecture has emerged, yielding clear system requirements for a classroom net-
work that would support the five classes of mathematically powerful activities we
have described in this chapter. Moreover, each of these five activity structures can
make a claim to being a general category of activities, and together they indicate a
strong frontier in research-based learning design. Student work within each of the
activity structures has been shown to be powerfully thought-revealing in the sense of
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Lesh and colleagues (e.g., Lesh et al., 2007), and there is a growing body of data to
characterize the unique types of learning that occur in these activities, at individual,
small-group, and/or whole-class levels. Finally, design research in these areas holds
strong potential to illuminate processes of learning and to help build theory that is
generalizable beyond the context of the classroom network, addressing models of
mathematical learning more broadly.

At the same time, research in classroom networks faces a number of important
challenges today. While the architectural requirements for networks that provide
technological support for the five activity structures described in this chapter are
clear and increasingly supported by research data, robust systems that instantiate this
representation and communications infrastructure have not yet achieved the wide
distribution for which researchers hoped. Thus, whereas the representation infras-
tructure of dynamic mathematics environments has become increasingly common,
classroom networks are still only present in a minority of mathematics classrooms.
Furthermore, there is a need for additional work in the area of analytical tools and
visualizations to support both researchers and teachers in conducting deeper assess-
ment and analysis of the student interactions that occur during networked activities.
“Scaled-up” Cartesian representations such as function graphs and scatter plots are
sufficiently powerful to support aggregated student and group work during the ac-
tivities described in this chapter, but additional innovations are needed to extend the
kinds of analysis and visualization available to researchers and teachers interested
in mining the wealth of data produced in the course of these activities, at individual,
small-group, and whole-class levels (see, e.g., Davis, 2009). Innovations in these
areas are in development both by the authors and by other researchers, but the path
from innovation to widespread adoption of such analytical tools will require time
and concerted effort.

Nonetheless, the growing field of classroom network learning design and re-
search has shown the power of combining representation and communications in-
frastructure as a platform for mathematically-rich activities. The five activity struc-
tures we have described in this chapter combine these infrastructural affordances
in different ways; together, they carve out a broad space for ongoing design work.
We expect that the future holds strong potential for continued discovery both within
this design space and beyond, as advances in technology and the science of learning
continue develop these activity structures as well as to uncover powerful new ways
of engaging in collective mathematical activity.
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Part III
Impacts from Large-Scale Research

Jinfa Cai

Quantitative research methods have been made available in the psychometric and
sociometric literatures, but these research methods are not yet common knowledge
in the mathematics education research community. This part shows how quantita-
tive research methods can make important contribution to understand issues in the
teaching and learning of mathematics.

This part has five chapters, reporting findings from large-scale studies of SimCalc
using quantitative research methodology. Comparing to the later part on small-scale
studies, the studies in this part use large data set to examine the impact of Sim-
Calc through exploring various relationships among variables. All of the large-scale
studies reported in this part have shown positive effect of SimCalc, especially on
students. In addition to the positive effect of SimCalc, this set of chapters particu-
larly addressed several important issues in large-scale studies.

Measuring Changes The overarching theme of this part is on measuring changes
over time with a primary focus on students. Researchers used different outcome
measures, including student learning, attitude, and classroom interaction to measure
the effect of SimCalc on students. This set of studies will help readers to be aware
of and understand techniques and methodological issues in the proper measurement
of change in educational practice and in the proper interpretation of the change that
is related to changes in student learning outcome measures.

Instrument Development In large-scale studies, it is absolutely critical to de-
velop proper instruments to measure changes over time. This part includes informa-
tion about the development of several instruments to measure what students learn
and what teachers must know to support their learning, as well as several instru-
ments to measure the interaction between learning and participation. Researchers in
this part not only described detailed processes of developing these instruments, but
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also the instruments themselves. It would be even better if the researchers would
had described how the instruments they developed are related to or different from
other instruments in the similar nature.

Implementation and Sustainability Any educational intervention faces chal-
lenges of faithful implementation and sustainable use. Large-scaled studies reported
in this part demonstrate the unique position that the large-scale studies can address
these issues because large-scale studies can identify important factors in faithful im-
plementation and in sustainable use of SimCalc materials. In this part, readers will
find how local capacity should be built to support the SimCalc program and how
teacher professional development should be designed to increase the likelihood of
sustained use in the district.

In summary, the methodological issues of large-scale studies discussed in these
chapters can be used to measure the effectiveness of other mathematical interven-
tions at scale. Researchers in this part have used various designs, including random-
ized controlled experiment design and quasi-experiment design. This part shall help
us to understand the issues in the search for making valid causal inferences.



SimCalc at Scale: Three Studies Examine
the Integration of Technology, Curriculum,
and Professional Development for Advancing
Middle School Mathematics

Jeremy Roschelle and Nicole Shechtman

1 Introduction

SimCalc takes a decidedly representational approach to improving mathematics
learning; dynamic representations are introduced as a tool for increasing conceptual
understanding. The research base supporting a representational approach is broad
but fragmented. Cognitive theory supports the approach via the multimedia princi-
ple, which has firmly established the benefits of carefully integrated presentations of
the same concept in linguistic and graphical forms (Mayer, 2005). A large body of
design research with dynamic tools such as SimCalc, The Geometer’s Sketchpad®

and Cabri Geometre reports benefits to student learning from the use of this repre-
sentational technology (e.g., Heid and Blume, 2008; Hoyles and Lagrange, 2010),
but this research includes few experiments. In more distantly related research, a
meta-analysis that summarized findings from more than 100 research studies involv-
ing 4,000+ experimental/control group comparisons revealed that both representing
knowledge graphically and using manipulatives to explore new knowledge and prac-
tice applying it had a large effect size. “The overall effect size for these techniques
was 0.89, indicating a percentile gain of 31 points. The use of computer simulation
as the vehicle with which students manipulate artifacts produced the highest effect
size” (Marzano, 1998, p. 91).

Although Marzano’s meta-analysis found positive effects in general, more specif-
ically, the field has lacked rigorous experimental evidence of the effectiveness of a
dynamic representational approach. The most prominent random-assignment exper-
iment related to teaching mathematics with technology is the National Study of the
Effectiveness of Educational Technology Interventions (EETI), which found “test
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scores were not significantly higher in classrooms using selected reading and math-
ematics software products” (Dynarski et al., 2007, p. xiii). The EETI did not, how-
ever, include products that take a representational approach. To our knowledge, the
research reported in this paper (along with the related Dalton and Hegedus work
reported in this volume) is among the first to examine a representational approach
within a program of randomized controlled experimentation with a sufficiently large
scope to use multilevel modeling and thereby rigorously establish the effectiveness
of this approach across a diversity of settings.

2 Research Design and Methods

The research design and methods are documented elsewhere in extensive detail (see
Roschelle et al., 2010). Here we provide an overview of the core elements.

2.1 Research Questions

The core research questions of the Scaling Up SimCalc Research Program were as
follows:

1. Can a wide variety of teachers use an integration of technology, curriculum, and
professional development to create new opportunities for middle school students
to learn complex and conceptually difficult mathematics?

2. Can these findings be extended across grade levels?
3. Do student gains persist as we reduce the presence of the research and develop-

ment team?

This chapter primarily focuses on the first two questions. The third question is
addressed in other publications examining sustainability (see Fishman et al., (2009);
Hegedus et al., 2009).

2.2 Experimental Design

To investigate all three research questions, we implemented two randomized exper-
iments (one of which contained an embedded quasi-experiment) with pre/post mea-
surement. The first experiment—the Seventh-Grade Experiment—began in Summer
2005 with seventh-grade content, students, and teachers. The second—the Eighth-
Grade Experiment—began in Summer 2006 and was designed to extend the findings
of the Seventh-Grade Experiment to eighth-grade content, students, and teachers
and investigate a train-the-trainers approach to teacher professional development.

Whereas the Eighth-Grade Experiment lasted 1 year only, the Seventh-Grade
Experiment lasted 2 years and followed a delayed-treatment design. The second
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year of the study afforded an embedded Seventh-Grade Quasi-Experiment in which
control teachers (also called the delayed-treatment teachers) began to use the Sim-
Calc replacement unit, and treatment teachers (also called the immediate-treatment
teachers) continued to use it.

2.3 Components of the Treatment Interventions

This section provides an overview of the treatment interventions, which were an
integration of technology, curriculum, and teacher professional development. We
discuss the rationale for conceptualizing these interventions as replacement units,
and the development of the focal mathematical content, the curricula, and the teacher
professional development.

2.3.1 SimCalc Interventions as Replacement Units

We conceptualized the SimCalc intervention as a replacement unit for several rea-
sons. Prior large-scale research had recommended the replacement unit strategy
(Cohen and Hill, 2001) because it balances the trade-offs between ambition and
specificity. The goals of the research were inherently ambitious and so, too, was
the use of the representational infrastructure. Replacement units were large enough
and long enough to allow real change and meaningful learning consistent with these
goals. At the same time, the short, contained nature of a replacement unit limited
the perceived risks of the teachers and schools in participating; allowed us to pro-
vide explicit curricular content and pedagogical guidance, and tight connections to
existing standards; and enabled us to understand and manage the conditions of im-
plementation.

2.3.2 Focal Mathematical Content

The process of identifying and refining key concepts to be covered in the curricula
and assessments included review of Texas and national standards, an extensive re-
view of Texas mathematics textbooks and the research literature in middle school
mathematics, and consultation with an advisory panel of experts in mathematics and
mathematics education. This process is also discussed in the chapter by Shechtman,
Haertel, Roschelle, Knudsen, and Singleton, this volume.

We identified proportionality and linear function as our target mathematics.
Among middle school mathematical concepts, proportionality ranks high in im-
portance, centrality, and difficulty (Hiebert and Behr, 1988; National Council of
Teachers of Mathematics, 2000; Post et al., 1993). For example, the National Coun-
cil of Teachers of Mathematics (NCTM) describes proportionality and related con-
cepts as “focal points” for learning in seventh and eighth grade (National Council of
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Table 1 Mathematical conceptual frameworks: Focal knowledge, skills, and abilities for the sev-
enth grade and eighth grade curricula and assessments

Framework M1 component M2 component

Foundational concepts typically
covered in the grade-level
standards, curricula, and
assessments

Building on the foundations of M1,
essentials of concepts of
mathematics of change and
variation found in algebra,
calculus, and the sciences

Rate and proportionality
for Seventh-Grade

Simple a/b = c/d or y = kx

problems in which all but one of
the values are provided and the
last must be calculated

Reasoning about a representation
(e.g., graph, table, or y = kx

formula) in which a multiplicative
constant k represents a constant
rate, slope, speed, or scaling factor
across three or more pairs of
values that are given or implied

Basic graph and table reading
without interpretation (e.g., given
a particular value, finding the
corresponding value in a graph or
table of a relationship)

Reasoning across two or more
representations

Linear function for
Eighth-Grade

Categorizing functions as
linear/nonlinear and
proportional/nonproportional

Interpreting two or more functions
that represent change over time,
including linear functions or
segments of piecewise linear
functions

Within one representation of one
linear function (formula, table,
graph, narrative), finding an input
or output value

Finding the average rate over a
single multirate piecewise linear
function

Translating one linear function
from one representation to
another

Note: M1 and M2 refer to the two major dimensions of each framework

Teachers of Mathematics, 2007). From a mathematics perspective, proportionality
is closely related to the important concepts of rate, linearity, slope, and covariation.
In addition, proportionality offers an opportunity to introduce students to the con-
cept of a function, through the constant of proportionality, k, that relates x and f (x)

in the functional equations of the form f (x) = kx. A deep understanding of the
concept of function as it relates to rate, linearity, slope, and covariation is central to
progress in algebra and calculus. Mathematics education research has identified per-
sistent difficulties in mastering these concepts and has theorized that proportionality
is at the heart of the conceptually challenging shift from additive to multiplicative
reasoning (Harel and Confrey, 1994; Leinhardt et al., 1990; Vergnaud, 1988).

We developed a mathematics framework for the seventh- and then for eighth-
grade intervention that articulated the focal knowledge, skills, and abilities for the
curricula and assessments (Table 1; note that is also described in Shechtman et al.,
this volume). We use the symbol M1 to refer to the foundational concepts typi-
cally covered in the Texas state grade-level standards, curricula, and assessments.
This mathematics embodies a formula approach to proportionality and linearity, and
tends to ask students to find one number given two or three other numbers. We use
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the symbol M2 to refer to mathematics that goes beyond what is tested in Texas,
providing essential concepts of the mathematics of change and variation found in
higher-level math and science. This mathematics embodies a function approach to
proportionality and linear function and often asks students to consider the mapping
between a domain and range and to connect such concepts as rate across multiple
representations (e.g., k, in y = kx and the slope in a graph of y = kx).

2.3.3 Curricula

We designed two replacement units, one for the seventh grade and one for the eighth
grade. Each unit covered the relevant mathematical content as outlined in Table 1.
The materials for both units were student workbooks, a teacher’s guide, and corre-
sponding SimCalc MathWorlds® files. The package was designed to be used daily
over a 2- to 3-week period. It was designed to cover the requirements for propor-
tionality in seventh grade and linear function in eighth grade while also introducing
a more advanced perspective.

The seventh-grade curriculum, Managing the Soccer Team, addresses central
concepts of rate and proportionality while also introducing functions in the form
y = kx. Speed as rate is developed through a sequence of increasingly complicated
simulations. Lessons progress through representations—from graphs, to tables, to
equations—aiming to teach students to translate among all three and to connect each
concept to verbal descriptions of motion or other real-world contexts. In this unit’s
contextual theme, students play the role of a soccer team manager—training players,
ordering uniforms, planning trips to games, and negotiating their own salary.

The eighth-grade curriculum, Designing Cell Phone Games, addresses linear
function and average rate. Linear functions are developed as models of motion and
accumulation. Students learn to use different representations of these functions for
problem-solving and to translate among the representations. Graphical representa-
tions are intended to enable students to solve efficiently traditionally difficult word
problems about average rate. In this unit’s contextual theme, students play the role
of an electronic game designer who must use mathematics to make their games
functional.

2.3.4 Teacher Professional Development

For each of the studies, teachers were provided with professional development op-
portunities to strengthen their mathematical content knowledge, learn to use the
curriculum materials, and/or plan specifically how to use the materials.

In all three studies, treatment teachers attended a 3-day summer workshop in-
troducing the respective SimCalc replacement units. The teachers worked through
the SimCalc materials as learners, experiencing a complete but compressed version
of the entire unit. The workshop facilitators emphasized the mathematics in the re-
placement unit and the mathematics knowledge needed for teaching the unit. Treat-
ment teachers also attended a 1-day workshop in the early fall in which they made
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specific plans for how and when to use the SimCalc materials in their classrooms.
In addition, in the Seventh-Grade Experiment Year 1, before the 3-day SimCalc
material workshop, treatment teachers attended a 2-day workshop which addressed
the mathematical knowledge for teaching rate and proportionality. In Year 2 of the
Seventh-Grade Quasi-Experiment, these immediate treatment teachers who had al-
ready attended a SimCalc workshop attended a more advanced workshop during the
summer, focusing on pedagogical techniques.

To investigate whether student gains would persist as we reduced the presence
of the research and development team, we used two different teacher professional
development delivery models. For the Seventh-Grade studies, two members of the
SimCalc team—both highly experienced mathematics teacher educators—led all
the professional development workshops. In the Eighth-Grade Experiment, we used
a train-the-trainers model. As a dissertation describes in detail (Dunn, 2009), these
differences in implementation models did not significantly impact teacher practice
or student gains.

2.4 Control Condition

In the classroom, teachers in the control condition simply taught their “business as
usual” curriculum. Data was collected around the unit in their scope and sequence
that would have been replaced by the SimCalc unit had they been in the treatment
group. Thus the experimental comparison examined the implementation of SimCalc
versus traditional curriculum targeting similar mathematical content.

In addition, to make participation equitable and palatable for control teachers,
teachers in each control condition received professional development training that
was of equal professional value but did not discuss the SimCalc intervention (i.e.,
training in mathematical knowledge for teaching rate and proportionality in the
Seventh-Grade study, and training in using technology to teach statistics in the
Eighth-Grade study).

2.5 Assessment Design and Development

We developed two student assessments, one for the Seventh-Grade studies focusing
on rate and proportionality and one for the Eighth-Grade Experiment focusing on
linear function. Within each study, the identical assessment was administered at pre-
test and post-test.

As described in detail in Shechtman et al. (this volume), to develop valid and reli-
able assessments, we followed models of best practices in assessment development
(e.g., AERA, APA, and NCME, 1999) and drew on the tenants of Evidence Centered
Design (ECD; Almond et al., 2002; Mislevy et al., 2003, 2002). The ECD frame-
work emphasizes the evidentiary base for specifying coherent, logical relationships
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among all essential assessment elements. Our assessment development followed a
progression of four processes, as follows.

In the first process, we established a mathematical conceptual framework and as-
sessment blueprint. The mathematical conceptual frameworks are found in Table 1.
The blueprint had four dimensions: (1) complete coverage of all the M1 and M2
topics with subscales for each (see Table 1), (2) alignment with the state content
standards (the Texas Essential Knowledge and Skills [TEKS]), (3) various prob-
lem contexts (i.e., motion and money), and (4) a diversity of task types (about one
third each of multiple choice, short response, construction of multiple mathematical
representations).

In the second process, we specified the types and properties of items we would
develop. We decided to build our pool of items from those already existing in re-
leased standardized tests, previously validated instruments, the research literature,
the SimCalc pilot (Tatar et al., 2008), and the SimCalc curriculum.

In the third process, we developed, validated, and refined a pool of items. Using
the blueprint as a guide to ensure coverage of all relevant concepts, the team drew
from the instrument used in the pilot study, surveyed existing standardized tests
(TAKS, NAEP, TIMSS, and other state tests) and literature for items, and created
some new items. We validated and refined these items using empirical methods,
each of which provided important data to help us iteratively select and refine ap-
propriate items: (1) formative expert panel to review and rate items for alignment
with our mathematical conceptual framework (Table 1), alignment with TEKS, and
grade-level appropriateness; (2) student cognitive think-alouds to obtain information
about item clarity and how individual students would solve the problems; (3) field
testing of a prototype instrument with a sample of 200–300 students to characterize
the technical qualities of the items and forms (using both classical test theory and
item response theory); and (4) summative expert panel review to assess the content
alignment ratings made by the formative panel and recommend refinements to the
items for better alignment with the content framework.

In the fourth process, we documented the assessment processes and technical
qualities. The basic test specifications of the resulting assessments were as follows.
The Seventh-Grade rate and proportionality assessment had 30 items with an alpha
of 0.86. The M1 subscale had 11 items with an alpha of 0.73, and the M2 subscale
had 19 items and an alpha of 0.82. The Eighth-Grade linear function assessment had
36 items with an alpha of 0.91. The M1 subscale had 18 items with an alpha of 0.79,
and the M2 subscale had 18 items and an alpha of 0.87.

2.6 Demographic and Implementation Measures

We also collected data on student demographics and classroom implementation. Be-
fore teaching their units, teachers were asked to fill out a roster of the students in
their classroom. For each student, teachers reported gender, ethnicity, and their sub-
jective rating of the student’s prior achievement level as low, medium, or high. For
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each day the unit was taught, the teacher filled out a log page probing various aspects
of implementation. In addition, school-level data were obtained through a database
maintained and distributed by the Texas Education Agency, the state department of
education. We measured several other quantitative and qualitative variables, which
are reported on elsewhere.

2.7 Analysis Methods and Procedures

Given the hierarchical nature of the data, we used multilevel modeling (MLM),
specifically hierarchical linear modeling, to estimate the effects of the treatment
(Raudenbush and Bryk, 2002). We constructed a two-level model as follows. The
first level predicted student gain scores as a function of a school-specific intercept
and P student level covariates.

Level 1 (Student): Yij = β0j +
∑

p∈P

βpjX
(p)
ij + rij .

At Level 2, the school-specific intercept was modeled as the sum of a grand mean,
a fixed effect for treatment assignment Tj ,Q school-level covariates and a random
deviation.

Level 2 (School): β0j = γ00 + γ01Tj +
∑

q∈Q

γ0qW
(q)
j + u0j .

As it turns out, tests for random slopes for all student-level covariates were non-
significant, so all βpj in the Level 1 equation are modeled as fixed effects (set equal
to the corresponding γp0).

All models were fit using the xtmixed procedure within Stata version 9 and re-
stricted maximum likelihood estimation. Continuous covariates were grand-mean
centered, whereas categorical variables were represented as 0/1 indicators. In test-
ing the impact of mediating variables, we fit multiple models, each adding a single
fixed covariate (at the student or school level) and interaction with the treatment in-
dicator to the model. We managed the risk of inflated Type I error rates by using the
false discovery rate procedure of Benjamini and Hochberg (1995). This procedure
ensures that fewer than 5 % of the reported statistically significant results within a
logical family of comparisons will be due to Type I error.

2.8 Recruitment and Assignment to Condition

This research took place in the state of Texas, a large state with wide regional
variations in the diversity of subpopulations of teachers and students. We recruited
teachers through the Dana Center and regional Education Service Centers (ESCs)
throughout Texas. ESCs are public organizations (affiliated with the Texas Edu-
cation Agency) that provide supports for schools and districts in their region. By
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working with the Dana Center and with ESCs, the SimCalc project team could use
the existing network of professional development service providers with strong con-
nections to teachers and a positive track record in the eyes of Texas teachers.

We performed selection and random assignment at the school level; that is, if
we accepted one mathematics teacher from a school, we would accept all applicant
mathematics teachers from that school and assign them all to the same condition.
We decided to recruit seventh- and eighth-grade teachers from different schools;
thus no students or teachers participated in both studies.

2.9 Participants

An online appendix associated with Roschelle et al. (2010) shows the sample
characteristics, illustrating the diversity of regions, teacher demographics, and stu-
dent demographics (http://aer.sagepub.com/content/47/4/833/suppl/DC1). A tech-
nical report (Tatar and Stroter, 2009) examined the diversity of the seventh- and
eighth-grade samples, as well as their representativeness relative to broader popula-
tions. The samples were diverse in terms of campus poverty levels, school size, and
campus ethnicity. They were also diverse in terms of teachers’ gender, ethnicity,
years of teaching experience, highest degree obtained, and mathematical knowl-
edge. Comparisons were made to the population in the Texas regions in which the
experiments were conducted, as well as to the state of Texas as a whole. For all vari-
ables for which we had data at the regional and state levels, the ranges and means
were similar among our samples and the middle school mathematics teaching popu-
lation by region and in the state. Note that the low percentages of African-American
teachers and students, as well as schools from large urban settings, reflect their small
populations in the regions in which the experiments were conducted.

Whereas seven of the 20 geographical regions in Texas participated in the studies,
of particular note is the participation of Region 1 because of its unique demographic
and socioeconomic characteristics. Region 1 is in the Rio Grande Valley adjacent
to the Mexican border. It has one of the highest poverty levels in the United States
and is predominantly Hispanic. Region 1 participated in the Seventh-Grade Studies;
however, because of a shift in local circumstances, the region did not participate in
the Eighth-Grade Experiment.

2.10 Experimental Procedure

We used tightly controlled experimental procedures to minimize the possibility of
bias across groups. We designed the treatment and control procedures to be almost
identical with the exception of which unit was implemented. Each year, teachers
attended their designated workshop(s) at their regional ESC. To ensure that they
all had a consistent understanding of the research, all teachers were shown a video

http://aer.sagepub.com/content/47/4/833/suppl/DC1
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at the beginning of the summer workshop that explained the research project and
procedures. Within each experiment, teachers received the same stipend regardless
of which condition they participated in.

3 Results

Two-level MLM analyses were used in all three studies to show that the main ef-
fect was statistically significant, demonstrating that students who had the SimCalc
intervention learned more than control students who had the business as usual cur-
ricula. Table 2 shows that in all three studies, although the treatment and control
groups began with similar pretest scores, treatment students had significantly higher
gains from pretest to posttest. In all three studies, the effect sizes were large and
educationally significant, particularly for the M2 portion of the tests. As Fig. 1 il-
lustrates, the gains differences between the two groups in all three studies occurred
mostly on the M2 portion of the tests. Since conducting this study, we have extended
these results to a large school district in Florida, obtaining similar learning gains for
students in classrooms that use the seventh-grade SimCalc intervention (see Vahey,
Roy, & Fueyo, this volume).

We also examined whether the intervention was effective across five policy-
relevant demographic factors. We began by first examining the extent to which
some students in these groups may have begun at a relative disadvantage. Within
each study, we ran a series of two-level MLM models predicting student M2 pretest
scores, one for each of the five demographic factors, entering the factor indepen-
dently as a covariate at the appropriate level. Overall, we found that all of the fac-
tors, except being located in Region 1, significantly predicted M2 pretest in all three
studies at a significance level of p < 0.01 or lower, indicating baseline disadvan-
tages for traditionally underserved populations. Specifically, girls started lower than

Fig. 1 Student mean difference scores (± SE of total using MLM) at the student level
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Table 2 Student test scores at the student level

n Total score Effect size
of gain
score
difference

Pretest Posttest Gain

Mean SD Mean SD Mean SD

Total score

Seventh Year 1

Control 825 12.7 5.7 15.0 5.7 2.2 3.8 0.63***

Treatment 796 13.2 5.7 19.0 6.0 5.8 4.0

Seventh Quasi-Exp

Delayed Year 1 510 12.8 5.2 15.2 5.5 2.4 3.9 0.50***

Delayed Year 2 538 12.6 5.4 17.7 6.2 5.1 3.9

Eighth Grade

Control 303 12.5 7.6 15.4 8.4 2.9 5.2 0.56***

Treatment 522 11.9 7.3 18.9 8.7 7.0 5.0

M1 subscale

Seventh Year 1

Control 825 7.2 2.7 8.0 2.5 0.8 2.2 0.10

Treatment 796 7.5 2.6 8.6 2.0 1.1 2.1

Seventh Quasi-Exp

Delayed Year 1 510 7.3 2.5 8.2 2.4 0.8 2.3 0.13*

Delayed Year 2 538 7.3 2.6 8.5 2.2 1.2 2.1

Eighth Grade

Control 303 7.2 3.8 8.7 4.0 1.5 2.9 0.19

Treatment 522 7.2 3.6 9.4 4.2 2.2 2.7

M2 subscale

Seventh Year 1

Control 825 5.5 3.6 7.0 4.0 1.4 2.7 0.89***

Treatment 796 5.7 3.8 10.5 4.5 4.7 3.3

Seventh Quasi-Exp

Delayed Year 1 510 5.4 3.4 7.0 3.8 1.6 2.8 0.69***

Delayed Year 2 538 5.3 3.5 9.2 4.5 3.9 3.2

Eighth Grade

Control 303 5.3 4.4 6.6 4.9 1.4 3.5 0.81***

Treatment 522 4.7 4.2 9.5 4.9 4.8 3.3

***p < 0.0001; *p < 0.05
Note: The seventh grade assessment had 30 items and the eighth grade assessment had 36 items

boys, Hispanic students started lower than other students, students rated as low or
high achieving by their teachers started lower or higher respectively than those rated
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Fig. 2 Student mean difference scores (± SE of total using MLM) at the student level. Note that
scores across the Seventh- and Eighth-Grade studies are not directly comparable, as the assess-
ments were different

as medium achieving, and the higher the percentage of students qualifying for lunch
programs in the school, the lower the pretest scores.

We then examined the extent to which students in these groups may have had
differential gains. Within each study, we ran a series of two-level MLM models
predicting student M2 gain scores, one for each of the five demographic factors, en-
tering the factor independently as a covariate at the appropriate level. These models
also included as covariates an indicator for the experimental group and the factor by
group interaction.

Figure 2 and Table 3 summarize the gain models. In the two main experiments,
population factors did not predict student learning gains except for those students
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Table 3 Two-level MLM models run in each study for each factor predicting M2 gains
Model Seventh-Grade

Year 1 Experiment
Seventh-Grade
Quasi-Experiment

Eighth-Grade
Experiment

(Main effect is
experimental
condition)

(Main effect
is year 1
vs. year 2)

(Main effect is
experimental
condition)

N = 1,444 N = 997 N = 657
Value SE Value SE Value SE

Unconditional
Intercept 3.03*** 0.275 2.82*** 0.252 3.26*** 0.377
Level 2 variance 4.72 1.31 4.88
Residual variance 8.07 9.16 8.82
χ̄2

01
† 463.03*** 76.85*** 174.64***

Main effect only
Main effect 3.55*** 0.343 2.46*** 0.179 3.26*** 0.544
Intercept 1.34*** 0.236 1.63*** 0.280 1.44*** 0.416
Level 2 variance 1.55 1.53 2.11
Residual variance 8.07 7.65 8.84
χ̄2

01 134.21*** 109.66*** 51.55***

School is in Region 1
Main effect 3.74*** 0.377 2.83*** 0.204 3.26*** 0.544
Reg. 1 0.35 0.611 0.62 0.760 0.00
Reg. 1 interaction −1.10 0.909 −1.48*** 0.415 0.00
Intercept 1.28*** 0.262 1.47*** 0.314 1.44*** 0.416
Level 2 variance 1.55 1.62 2.11
Residual variance 8.07 7.56 8.84
χ̄2

01 120.24*** 110.34*** 51.55***

Free/reduced-price lunch (%)
Main effect 3.57*** 0.344 2.55*** 0.177 3.27*** 0.553
SES 0.53 0.877 0.52 0.975 1.03 1.847
SES interaction −1.25 1.247 −3.53*** 0.636 −2.35 2.500
Intercept 1.35*** 0.236 1.59*** 0.263 1.41*** 0.423
Level 2 variance 1.54 1.31 2.17
Residual variance 8.07 7.45 8.84
χ̄2

01 120.34*** 81.42*** 50.09***

Student is Hispanic
Main effect 3.73*** 0.383 3.49*** 0.259 3.63*** 0.570
Hisp. −0.25 0.282 0.10 0.292 0.40 0.506
Hisp. interaction −0.41 0.391 −1.84*** 0.351 −1.04 0.603
Intercept 1.47*** 0.269 1.56*** 0.293 1.33** 0.433
Level 2 variance 1.49 1.22 2.05
Residual variance 8.05 7.41 8.82
χ̄2

01 123.96*** 75.04*** 49.43***
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Table 3 (Continued)

Model Seventh-Grade
Year 1 Experiment

Seventh-Grade
Quasi-Experiment

Eighth-Grade
Experiment

(Main effect is
experimental
condition)

(Main effect
is year 1
vs. year 2)

(Main effect is
experimental
condition)

N = 1,444 N = 997 N = 657

Value SE Value SE Value SE

Student is Female

Main effect 3.49*** 0.374 2.60*** 0.246 3.35*** 0.594

Female −0.01 0.211 0.20 0.253 −0.51 0.411

Female interaction 0.14 0.307 −0.27 0.359 −0.17 0.505

Intercept 1.35*** 0.259 1.53*** 0.308 1.69*** 0.459

Level 2 variance 1.54 1.52 2.06

Residual variance 8.08 7.66 8.78

χ̄2
01 133.05*** 107.46*** 49.89***

Teacher-rated prior achievement

Main effect 3.45*** 0.387 2.56*** 0.261 3.02*** 0.609

High group 0.47 0.273 0.36 0.315 0.48 0.490

Low group −0.35 0.256 −0.30 0.303 −1.11* 0.505

High interaction 0.77 0.399 0.69 0.435 0.11 0.614

Low interaction −0.81* 0.379 −0.91* 0.424 0.41 0.626

Intercept 1.33*** 0.264 1.61*** 0.303 1.70*** 0.470

Level 2 variance 1.55 1.41 2.05

Residual variance 7.76 7.36 8.67

χ̄2
01 141.98*** 97.42*** 45.97***

***p < 0.0001; **p < 0.01; *p < 0.05
†χ̄2

01 statistic is an adjusted chi-square statistic from a likelihood ratio test of the given model
against a model without random intercepts. See Gutierrez et al. (2001) for details.
Note: Full model is Yij = γ00 + γ01Tj + γ02Xij + γ03Tj ∗ Xij + rij + uj , where Xij may be a
level 1 or level 2 covariate. All models within an experiment fit are estimated on identical sets of
cases

rated as low achievers. However, in the Seventh-Grade Quasi-Experiment, ethnicity,
region, and percentage receiving free or reduced-price lunch in the school negatively
predicted learning gains. The specific findings were as follows:

1. Student gender. Whereas boys started out with higher pretest scores, there were
no main effects or interactions for the learning gains.

2. Student ethnicity. Although Hispanic students started out with lower pretest
scores, there were no main effects or interactions for learning gains in the two
main experiments. In the Seventh-Grade Quasi-Experiment, however, there was
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an interaction such that Hispanic students using SimCalc in Year 2 had lower
learning gains than their non-Hispanic counterparts.

3. Teachers’ ratings of student prior achievement levels (low, medium, and high). In
all three studies, students at all three achievement levels gained more in the Sim-
Calc replacement unit than their peers studying the ordinary curriculum; however,
there were also interactions in the seventh-grade studies (but not the Eighth-Grade
Experiment) such that students in the SimCalc replacement units rated as low had
lower gain scores than students rated as medium or high.

4. Region 1 (Seventh-Grade studies only). In the Year 1 experiment, there was no
main effect and no interaction. In the Seventh-Grade Quasi-Experiment, how-
ever, there was an interaction such that Region 1 students using business as usual
curriculum in Year 1 had higher learning gains than their counterparts in other
regions, and students using SimCalc in Year 2 had lower learning gains than their
counterparts in other regions.

5. Percentage receiving free or reduced-price lunch. Although this variable was a
strong negative predictor of pretest scores, there was no main effect or interac-
tion for the learning gains in the main experiments. In the Seventh-Grade Quasi-
Experiment, however, there was an interaction such that in Year 2 when students
used SimCalc, this variable was a negative predictor of learning gains.

4 Discussion

In these two randomized experiments and quasi-experiment, we found a causal re-
lationship between classroom implementation of a SimCalc replacement unit and
student learning of more advanced mathematics. Several findings held true across
all studies. SimCalc students learned advanced aspects of the target mathematics
concepts (M2) without sacrificing gains on the mathematics measured by the state
test. Indeed, for the simpler aspects of the target concepts (M1), students of teachers
who used the SimCalc replacement unit showed a trend toward greater gains that
was nonsignificant in the two experiments and statistically significant in the quasi-
experiment. These findings are consistent with the SimCalc program philosophy of
increasing opportunities to learn advanced mathematics within the context of the
topics already included in the curriculum.

In addition, we found the main effects comparing treatment and control students
to be robust across demographic groups. Our sample included the more cosmopoli-
tan Dallas-Fort Worth and Austin areas, as well as the uniquely Texan western and
border regions of the state. Schools within these regions varied in poverty and prior
achievement levels. Within those schools were teachers with different backgrounds,
practices, beliefs, and attitudes. And within the schools were boys and girls who
came from White, Hispanic, and other ethnic backgrounds and had different levels
of prior achievement. Across the five demographic categories we investigated, stu-
dents using the SimCalc treatment interventions outperformed their control student
counterparts.
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While these main effects were significant, as shown in Fig. 2, there were also
differences among demographic subgroups within the treatment conditions. These
differences were statistically significant in the Seventh-Grade Quasi-Experiment
only. In comparisons in the Seventh-Grade Experiment Year 1 and Eighth-Grade
Experiment, we found that while gender, ethnicity, and socioeconomic status were
associated with students’ baseline test scores, there were no statistically signifi-
cant differences within these groups in learning gains. In the Seventh-Grade Quasi-
Experiment, however, ethnicity, region, and socioeconomic status were associated
with both baseline test scores and learning gains. We conjecture two possible expla-
nations. An important shift in the population occurred in the Seventh-Grade Quasi-
Experiment; many teachers in Region 1 dropped out. While other poor and Hispanic
campuses remained in the study, these campuses may differ from the campuses in
Region 1. Another possible explanation is suggested by teacher interviews: after
teaching the unit a first time, teachers reported a belief that it was more appropriate
for high achieving students (a belief which is not supported by our data). Teachers
in the quasi-experiment were teaching with SimCalc a second time and may have
oriented their teaching away from traditionally underachieving students.

As Fig. 2 also shows, learning gains were different in the treatment group among
students rated as low, medium, and high in prior achievement. These trends were
only statistically significant in the Seventh-Grade Studies, such that students rated
as low prior achievers showed significantly lower learning gains than their medium
and high achieving counterparts. These trends were not statistically significant in
the Eighth-Grade Experiment (though there was a main effect across treatment and
control students). This is an important issue, and we are triangulating data from
many sources and conducting further research to better understand this issue. For
example, in interviews, some teachers expressed a belief that SimCalc is only good
for their high performing students. Findings will be reported in future articles.

As in any experiment, these findings should be interpreted with caution. First,
the gains applied to more advanced (M2) mathematics. Consequently, schools may
not see benefits unless they assess more advanced reasoning. Second, the results
were obtained in Texas, a state with a long record of a stable standards-based educa-
tional system and an ability to implement a train-the-trainer model across regions.
Results may vary in states with different contexts. Third, although we view replace-
ment units as a good strategy to fit within school constraints, the tested replacement
units occupied only a modest amount of instructional time. We do not yet know the
consequences of more extended uses of such units and do not necessarily recom-
mend using SimCalc every day; SimCalc use may be most useful when targeted
specifically at the conceptually advanced aspects of mathematics learning. Fourth,
we worked with volunteer teachers and do not know how well nonvolunteer teach-
ers would fare. Fifth, we tested an intervention that incorporated only one kind of
software and not others. Other software and hardware technologies emphasize dy-
namic representations, including graphing calculators, dynamic geometry software
(e.g., The Geometer’s Sketchpad®, Cabri Géomètre), and dynamic statistics pack-
ages (e.g., TinkerPlots®, Fathom). But there are also many technologies for mathe-
matics learning that are not included in this family. We do not know whether these
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results will generalize within or beyond the category of representational tools or
dynamic mathematics tools.

The intervention might have greater impact with more attention on the interaction
between teacher-reported achievement level and student learning gains within class-
rooms. In both the Seventh- and Eighth-Grade studies, teacher-reported achievement
expectations correlated with student gains. In interviews after implementation of the
intervention, we noted that many teachers reported a belief that these materials are
more appropriate for their high-achieving students. To the contrary, our findings
suggest that the materials are better than the existing materials for students in all
teacher-reported achievement categories. It could be that with further professional
development, teachers could learn to more effectively use these materials with stu-
dents they believe are low or medium achievers. In case studies conducted within
the context of our experiments, we are examining this possibility.

5 Conclusions

The slogan of the SimCalc program is “democratizing access to the mathematics of
change and variation.” Given the robust findings, it is fair to say that the integrated
SimCalc approach provided students in a wide variety of settings with access to
more advanced mathematics while providing ample opportunity for them to make
progress on the basics for which schools are most accountable. “Democratizing” can
have multiple meanings. Our preferred meaning is that SimCalc provides a wide va-
riety of students a realistic opportunity to learn more advanced mathematics; this
meaning was confirmed in these experiments. Another meaning would be “closing
achievement gaps.” Although we are concerned about achievement gaps and are
conducting further analyses and research to understand students’ differential perfor-
mance with SimCalc, we doubt that any 2–3 week intervention can address achieve-
ment gaps rooted in deeply structural societal conditions nor do we find reasonable
to hold a 2–3 week intervention accountable to that standard.

It is perhaps particularly interesting that this approach enabled students both to
learn the basics as required by federal and state mandates and to learn more ad-
vanced mathematics on the pathway to Algebra, an important policy goal. If we
had only measured the basic skills required in Texas, we would have obtained null
results. Technology may be particularly valuable in mathematics education when
educators seek to go beyond the basics. Educators who wish to go beyond the ba-
sics may be able to use representational technology to intensify instruction and thus
cover both the basics and more advanced skills and concepts.

In terms of broader recommendations to the field, we see this work as suggesting
that less emphasis should be placed on the value of technology alone and more on
interventions that deeply integrate professional development, curriculum materials,
and software in a unified curricular activity system. We select the word “activity”
with care based on our observation that all elements of the SimCalc intervention
align around enacting particular activities in the classroom (in contrast to a focus on
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lessons, assessments, or projects). Through our research, we observed the complex-
ity and variability in implementing these activities in classrooms. More research
is needed to understand the design features of curricular activities that allow for
adaptation to different student populations and teaching styles without undermining
effectiveness.
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Our research investigated a curriculum package across eight school districts of
varying size and diversity in Massachusetts, USA. The Algebra 2 curriculum ma-
terials were developed during the first year of this four year project, piloted and
refined during the second year of the project, implemented again in a larger num-
ber of randomly assigned classrooms in the third year of the project, and utilized in
a subset of classrooms in the fourth year of the project as a replication study. The
SimCalc Algebra 2 package consists of the SimCalc software, specific software doc-
uments paired with teacher and student written curriculum materials, and hardware
(TI graphing calculators and TI-Navigator™).

Qualitative and quantitative data were collected in both randomly assigned Sim-
Calc classes and in randomly assigned control classes across various school dis-
tricts. Quantitatively, our findings support previous research that higher learning
gains occurred in the SimCalc classrooms as compared to the “business-as-usual”
classrooms. This also held true when we ran further analyses to control for any ef-
fect the pretest might have had on the posttest; there was still a significant amount
of variance accounted for by experimental group in the favor of the SimCalc class-
rooms. We also present data on changes within specific content categories of the
mathematics content test that was administered.

Qualitatively, we analyze two classroom case studies from two different SimCalc
activities. A strength of this research is the amount of classroom video data collected
from every participating classroom with a focus primarily on students but not ex-
cluding the role of the teacher. It is through the qualitative classroom video that we
investigated how student participation arises in the classroom and exemplify various
forms of participation that arise at the whole class level and at the small group level.
While some traditional forms of participation arise in these case studies—for ex-
ample, bids for the floor and identification of self—these case studies were selected
to exemplify the various forms of participation that are demonstrated in a SimCalc
learning environment. We use three analytic tools from discourse analysis to help
us defend this argument. Additionally, we will present specifics about the SimCalc
software and the structure of the intervention to give readers a clearer depiction of
the package as a whole.

We argue that the representational affordances of the software, the structure of
the activities, the encouraged interaction amongst students, and inclusion of connec-
tivity affect students’ learning and participation in the classroom in positive ways.

2 Literature Review

Over the past 10 years, we have studied the impact of combining two technolog-
ical ingredients on learning and participation in algebra classrooms. The first is
the representational affordances of the SimCalc software, which allows students
and teachers to manipulate and construct mathematical functions as well as show
various representations of these functions at once. The second is the new connec-
tivity affordances of robust devices combining inexpensive hand-held devices and
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computers across wireless networks (Roschelle and Pea, 2002). Such a connected
classroom allows representational fluidity to be distributed across the classroom and
reformat the interaction patterns between students, teachers and technology. Such
technology has roots in more than a decade of classroom response systems, most
notably ClassTalk™ (Abrahamson, 1998, 2000), which enable instructors to col-
lect, aggregate and display (often as histograms) student responses to questions.
We have extended such work by exploring how students can express themselves in
mathematically meaningful ways through representations that can be shared and re-
played in a private or public mode. The activity structures that we have developed
resonate deeply with broader views of learning as participation (Lave, 1988; Lave
and Wenger, 1989, 1991; Matos, 2010) but the demands for individual contributions
establish participation structures with hard edges and little room for legitimate pe-
ripheral participation. Our theoretical design principles format the analytical frame-
work necessary to understand how the salient presence or absence of student work is
central rather than a marginal contributing factor. Hence we focus on “instantiated”
ahead of “situated” (Kirshner and Whitson, 1997) forms of cognition because it is
our position that mathematical experience emerges from the distributed interactions
enabled by the mobility and shareability of representations.

In addition, we build on the work of Nemirovsky and colleagues (Nemirovsky
and Noble, 1997; Nemirovsky et al., 1998), which stresses the importance of the
student’s experience being mathematical. As students participate in mathematical
ways, ownership of their constructions can become personal and deeply affective,
triggering various forms of interaction after their work is shared and projected into
a public display space. This joint experience that becomes shared in a social space
through aggregations of student constructions is similar to others’ work on participa-
tory simulations (Resnick et al., 2000; Stroup, 2003; Stroup et al., 2005; Wilensky,
1991; Wilensky and Resnick, 1999; Wilensky and Stroup, 1999, 2000). For teach-
ers, the shared work in a public display space can change the nature of teaching by
altering how participation structures can be defined and controlled, how attention
can be managed, how information flows and can be displayed, and how pedagogical
choices and moves are made in real time (Hegedus and Moreno-Armella, 2009).

In this chapter, we investigate how the mathematical content and activity struc-
tures of the SimCalc Algebra 2 materials play out in the classroom. We look at
both whole class discussions of collected student work and within small group in-
teractions amongst students, as students work to construct mathematical objects.
We build on Sfard’s (2008) work that defines thinking as communicating and add
that a students’ interaction with the technology, both the graphing calculator in the
hands of each student, or the shared upfront space, is also a form of socially and
technologically mediated thinking and hence these actions and interactions are im-
portant to study. The technology allows a teacher to aggregate student work and
project student work from the teacher computer. We posit that this plays a central
participatory role and supports co-action (Moreno-Armella and Hegedus, 2009) be-
tween the students and the representational affordances of the software. We analyze
the display space as co-constructed by students and examine how the students can
guide what is part of the space and at the same time the display space guides the



148 S. Dalton and S. Hegedus

students and teachers by offering visual feedback that can mediate meaning making
at a whole group level. Students exhibit agency by developing ideas, building on the
ideas of others, making connections across representations, making predictions or
generalizations of families of functions, exploring and discussing the properties and
attributes of different types of functions, and participating in a discourse about the
mathematics.

3 SimCalc Software

In the study we report on here, we used SimCalc in conjunction with Texas In-
struments Navigator™ Wireless Network as described elsewhere in this book (see
chapter by Brady, White, Davis, and Hegedus, this volume). SimCalc takes advan-
tage of wireless connectivity in the classroom by enabling teachers to set up a roster
of students prior to class, have students log in from their desks on graphing calcu-
lators, send activities down to students effortlessly, and collect or receive student
work via this network. With work collected, a teacher can display student work in
the up-front space for the whole class to analyze and discuss. However, this dis-
play is not shown all at once. Instead, aggregated work emerges in various dynamic
representations at the teachers’ discretion with suggestions made within the curricu-
lum. The curricular materials encourage teachers to ask for predictions of what the
student work will look like based on the activity structure in the form of open ended
questions like, “what do you expect to see in the motion when I run the animation
of everyone in the class?” Or, “what do you expect to see in the rate graph when I
show everyone’s work?”

Students typically work on the activities in groups constructing functions ei-
ther symbolically, by editing a parameter in an equation, or graphically, by moving
graphical “hotspots” (Moreno-Armella et al., 2008). For example there is a hotspot
controlling the slope of a linear function. This hotspot keeps all other aspects of the
line segment fixed while only allowing the slope of the function to vary using the up
and down arrows keys on the calculator (see Fig. 1).

This is important as it allows students to see how a change affects other rep-
resentations such as a simulation, an algebraic expression, or a tabular representa-
tion. Each of these representations provides feedback to the students of the change
made and its effect on another representation. It is also important to note that ev-
ery representation is not always available to the student. For pedagogical purposes,
the curriculum designers or the teacher can restrict the representations available to
the student to focus attention or stress particular relationships without overloading
the students with too many representations at once (Kaput et al., 2007). The Math
Object Properties window enables the teacher or activity designer to easily restrict
representations available to view and edit in the activity.

The activities are designed to take advantage of mathematical variation within
groups, across groups, and sometimes both. This provides students the opportunity
to analyze their work in relation to the work of their peers and vice versa.
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Fig. 1 Position graph in SimCalc MathWorlds® for Computers (left) and SimCalc MathWorlds®

for TI Graphing Calculators (right) with hotspots highlighted

4 The Algebra 2 Package

The SimCalc curriculum philosophy of observing and understanding change across
representations of functions aims to provide access to understanding the core prop-
erties of functions. This is at the heart of calculus and begins with algebra. In or-
der to extend our previous work with linear functions (i.e., SRI 7th and 8th grade
materials—see Knudsen (2010) and the Kaput Center’s Algebra 1 package—see
http://www.kaputcenter.umassd.edu/products/curriculum_new/), and introduce new
functions such as quadratic and exponential functions, we wanted to make use of
derivative functions (and representations of derivative functions) to enhance access
to these core ideas. For example, most students at this level of high school know how
to plot a quadratic function via a graphing tool or calculate its roots via a formula,
but data in our study provides evidence that few know why it is shaped the way it is,
how each coefficient in y = ax2 + bx + c affects the shape of the graph and what
variation it represents, and the implications of such variation in modeling contexts.
Examination of quadratic and exponential functions at greater depth is often left to
coursework in calculus, a level most high school students in the U.S. will not reach.

The Kaput Center team, under the lead of author Stephen Hegedus, has developed
a series of activities that introduce quadratic functions via linear velocity. These ac-
tivities are based upon prior completion of coursework on linear position functions,
so students can represent linear graphs as y = mx + b, but, in a velocity context. As
such, labels (graphs, units, axis, and variables) become especially important. Still,
students do not always realize such subtleties, and so simulations become an impor-
tant executable representation to help them make sense of variation with “familiar”
graphs. A linearly increasing velocity motion, with marks dropped every second for
example (see Fig. 2), illustrates a different representation to a constant velocity mo-
tion. Moving to an algebraic form, we need to be careful and prepared to support
such shifts.

The aim of our Algebra 2 curriculum materials is not to just replace existing
algebra curriculum, but transform the core concepts normally covered to improve

http://www.kaputcenter.umassd.edu/products/curriculum_new/
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students’ success with procedural and conceptual thinking in deeper, more sustain-
able ways. Participation in the activity is central to our approach. Critical themes
that permeate our entire curriculum package include:

• Part 1. Interpreting motion
• Part 2. Graphical interpretation
• Part 3. Using aggregation to create a family of quadratics (y = kx2) via paramet-

rically varying rate graphs

5 Trajectory of Curriculum Package

The activities in this package start with individual and whole class work and then
move on to group work for a sequence of aggregation activities that depend on the
class being divided into groups of 3 to 5 students. As in most SimCalc materials,
small group work is intended to lead to whole class discussions of student work and
the existing relationships.

The SimCalc Algebra 2 curriculum package begins by comparing the motion of
a car controlled by a linear function with that of a car controlled by a quadratic
function. The purpose of this preliminary activity is to examine and analyze the
properties of each function in various representations in order to identify differ-
ences between a constant rate and a varying rate. At the start of the activity, only
the motion is visible, and various representations are introduced as the activity pro-
gresses in order to build connections amongst the various representations available
in SimCalc (graphs, tables, algebraic expressions, and motion). Starting with mo-
tion provides opportunities for students to describe what they are seeing, what dif-
ferences are visible, and use natural language to talk about these two different types
of functions. From here, a feature called Marks can be turned on. With the Marks
feature on, a marker is dropped on a position ruler every 1 second (or however many
seconds you define, see Fig. 2). Marks provide a second visual opportunity for stu-
dents to examine the differences between 2 actors, which we have called Car A and
Car B.

The materials encourage the teacher to focus attention to the distances between
the marks. Following this analysis of the motion, the teacher can display a Posi-
tion/Time table for each car and the rate of change of position over time can be
found and examined by the class. The rate of change of the rate of change in Po-
sition (or what we refer to as second differences) are also found and analyzed. The
values are 0 for Car A but they are a constant value of 2 for Car B. The teacher
and students can re-animate the cars in the World and connect the motion back to
Car B’s acceleration, the distance between the marks, and the first set of differences
in the table (see Fig. 3).

The teacher can then introduce a new representation to the class: the graphical
representations of the functions that control Car A and Car B’s motion. First, the
class can analyze the position graph and then the velocity graph. Prior to displaying
the graphs, students are encouraged to make conjectures about the shape of the
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Fig. 2 The Position Ruler with Marks dropped for a car moving with a constant speed (Car A) and
a car moving with a varying speed (Car B)

Fig. 3 Time/Position tables, with differences shown, for Car A and Car B

functions in each graphical representation drawing on previous analyses from the
table.

This work provides the basis for the continuing exploration of quadratic func-
tions in the SimCalc package. In the second unit, students continue examining the
attributes of a quadratic function in a position graph that controls the motion of
a runner but through the corresponding velocity graph (rate) for the runner. This
unit continues the critical analysis of the graphical space and connections between
position and velocity for a quadratic function. In the third activity for this unit,
students work in groups to create a motion for an actor with a systematic linearly
varying rate that is dependent on their group number, G. The teacher aggregates
the student work, which creates a family of quadratic functions (y = Gx2) of para-
metrically varying rate graphs. There is a progression in this unit to build up to
this construction, which focuses on how the “a” value affects P(osition) = ax2

and V (elocity) = 2ax. Each student is contributing a component of the family of
functions, thus the family of functions is a collective creation of the classroom of
students (see Fig. 4).
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Fig. 4 Position and corresponding velocity (rate) graphs for a family of functions

From here, the curriculum introduces the role of the “c” value in the standard
form of a quadratic function, P = ax2 + bx + c. This unit also introduces the vertex
form of a quadratic function with vertical-only shifts in the graph. A further analy-
sis of the role of the “a” value in the standard form of a quadratic function delves
into problems related to factoring quadratic functions. This analysis of quadratic
functions is continued with a focus on investigating the “b” value in the standard
form using various representations of a function available in SimCalc. The activi-
ties are structured to also take advantage of the number of students in a classroom by
continuing to exploit the features of classroom connectivity in which students are
contributing a function to a systematically varying family of quadratic functions.
This investigation of the “b” value is continued and culminates in the systematic
variation of each value, a, b, and c, at once in the context of a rocket ship flying
through space. This unit ties the previous units together while continuing to investi-
gate important properties of the quadratic function such as: symmetry, meaning of
roots (solutions), maximum and minimum values, a vertex, and how each of these
are represented in a position graph, a velocity graph, a table, and in the function
expressions for each derivative. An example of what we mean is as follows: what
does it mean for a linear velocity function to intersect the x-axis in terms of speed
and velocity? What does this critical point correspond to in the position graph and
what does it mean? What are the implications of such a point in the motion context
of a rocket ship flying in our one-dimensional world representation?

The curriculum ends by comparing the motions controlled by different types of
functions. But this time, the comparison is between the motion of a car controlled
by a quadratic function and the motion of a car controlled by an exponential func-
tion. The previous analysis of quadratic functions can now be used to analyze the
differences between the properties and attributes of a quadratic function and an ex-
ponential function with a concrete representation of motion always at hand. The
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curriculum package concludes after a focus on various representations of exponen-
tial functions in an attempt to understand exponential change.

6 Methods

6.1 Design & Participants

The participants for the study we report here were high school Algebra 2 students
(15–17 years old) and their teachers from six school districts of varying achieve-
ment levels in the South Coast region of Massachusetts. Each school district had
two treatment classes and two control classes, which were randomly assigned. The
control classes continued using their district adopted classroom materials while the
treatment classes replaced portions of their text with the SimCalc materials. The
total population for this study included 268 control students and 298 treatment stu-
dents. The study was designed as a cluster-randomized control trial where students
were nested within classes (cluster). This allowed us to compare results within a
cluster (class) and across clusters (classes).

6.2 Data Collection

Students in both SimCalc and control classes completed a mathematics content test
at the start and end of the intervention (and at similar times for control classrooms).
The assessment was composed of standardized test items to measure student’s math-
ematical ability and problem-solving skills before and after the intervention across
three content categories: multiple representation items (8), graphical interpretation
items (5), and procedural/computational items (6). Of the 19 items on the content
test, 9 were designated as conceptually simple type items (M1) and 10 were des-
ignated as conceptually complex type items (M2) as in other SimCalc studies (see
Shechtman, Haertel, Roschelle, Knudsen, and Singleton, this volume). The M1 cat-
egory refers to items that are typically one-step problems that are conceptually sim-
ple. An example of an M1 item or task would be to ask students to read a specific
value in a table or on a graph. The M2 category refers to items that are conceptually
more difficult and complex. Often M2 items are multi-step items. Examples of M2
items include reasoning across mathematical representations or comparing two or
more linear functions. Graphical Interpretation (GI) items focus on the ability for a
student to read a graph and interpret the relationship between two variables. Read-
ing a graph focuses on the ability of a student to find a value for y given an input
value x. It also focuses on reading and interpreting more than one value. Graphi-
cal interpretation requires students to be able to see significant trends or patterns
that might be observable in other representations, e.g., is this a linear function or a
quadratic function? where is the slope positive or negative?, etc.
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We collected pre and posttest data from 268 control students across 16 class-
rooms and 298 treatment students across 15 classrooms from 6 school districts in
our Algebra 2 Main Study (2009–2010). Sixteen teachers participated in the study;
5 teachers taught only control classes, 4 teachers taught only treatment classes, and
7 teachers taught at least one class of each.

Video data was collected in every SimCalc classroom once before the interven-
tion started and twice during the intervention. The first SimCalc video was collected
during the first activity where student work varied across groups and was collected
by the teacher. The second SimCalc video was collected about 75 % of the way into
the intervention during an activity where groups create unique functions in which
the “a” value, “b” value, and “c” value in y = ax2 + bx + c vary across groups
and are examined in multiple representations. The Algebra 2 control classrooms
were videotaped once during an activity involving finding and interpreting solutions
to quadratic functions. This activity was similar in content to the second SimCalc
classroom video and our aim was to capture a snapshot of all control classrooms.
For each classroom video, two cameras captured the classroom action: one cam-
era remained stationary in the back of the classroom focused on the teacher and
the upfront space. A second camera was positioned at the front of the classroom
focused on the students and was operated by a trained research associate from the
Kaput Center. This student camera remained stationary during whole class discus-
sions but roamed around the classroom focused on small groups during the group
work portion of class.

6.3 Data Analysis

For the student mathematics content pre/posttest, we analyzed overall change in
score, change in score within complexity categories for the content test (M1 and
M2), and change in score within the content categories (e.g., GI). ANCOVA was
used to test how much of the difference in the posttest score between groups is
accounted for on the pretest. For the classroom video data collected, we analyzed
emerging classroom participation using discourse analytical methods, primarily us-
ing the three methods outlined by Hegedus and Penuel (2008) to explore different
forms of participation in the classroom.

7 Results

7.1 Student Learning Gains

SimCalc students showed higher learning gains over the control students in total
points on the content test (U = 44,899, p < 0.001, r = 0.166) and in several content
categories, including M1 (U = 43,288, p < 0.01, r = 0.130), M2 (U = 42,486,
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Fig. 5 Box plot of total
change score for control and
treatment non-honor students

p < 0.01, r = 0.111), and graphical interpretation (U = 43,583, p < 0.01, r =
0.139). Each of these differences represents a small effect.

When we disaggregated the data by class level—Honors or Non-honors students
(as designated by the school district)—SimCalc students in the non-honor group
(n = 203, Mdn = 2) had higher learning gains compared to control students in the
non-honor group (n = 234, Mdn = 0), U = 30,897.5, p < 0.001, r = 0.261. This
represents a medium effect size, see Fig. 5.

7.2 Student Participation in SimCalc Classrooms

We wished to understand potential reasons for such learning gains. Based on our
theoretical framework and design principles, we focus on student participation. We
will now present two case study analyses from two of our classroom observations
during the Algebra 2 intervention to exemplify the various forms of participation
that are modified in a SimCalc learning environment. Three analytic tools from dis-
course analysis that have been proven useful in analyzing participation in prior Sim-
Calc work (Hegedus and Penuel, 2008) help us to accomplish this goal. These tools
are: (1) analysis of bids for attending to and seeing phenomena as rhetorical strate-
gies of participants; (2) explication of participant structures; and (3) analysis of how
speakers use deictic markers to position themselves vis-à-vis others and classroom
discourse. Such analysis was triangulated with the quantitative results in order to
understand the roots of such significant learning gains in contrast to other Algebra 2
classrooms.

These three forms of discourse arise at different points in time during each class.
The overarching activity structure can establish a production format since there are
various expected stages of development within it. After the teacher has started the
class on his or her own computer, the activity gets sent down to the students’ calcula-
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tors. Students then work individually or as part of a small group. The activity struc-
tures the work of each student. The teacher then collects student work, and proceeds
to show and analyze various representations of each function. This cycle—send ac-
tivity, students construct, teacher collects, class analysis—can be iterated various
times until the class ends or the activity is completed. Our activities are designed so
that this cycle is completed at least once and completion of the activity is within 90
minutes.

7.3 Case Study #1

This case study focuses on a particular lesson, Blast Off !, because of its mathemat-
ical aims: varying rate, interpreting the x-intercepts of a linear velocity function as
a change in direction and associated vertex point of a parabolic graph, and solving
a problem set in a motion context. In this activity, students are editing the veloc-
ity function symbolically and graphically to control the motion of a rocket. The
rocket must start at a position equal to ten times the students’ group number and
the rocket has to decelerate at a fixed rate of one mile per minute per minute. The
final constraint involves a target function; students must end at the same place as
the target function, 50 miles away from 0 miles, in a time of 10 minutes. Students
can watch the motion of the rocket they are editing alongside the target rocket, as
well as view the velocity graph and velocity table for both rockets. Students can
also choose to view a position table for their rocket in addition to the motion but no
other position representations are available. Mathematically, each group of students
is constructing a unique motion and velocity graph via editing V = −1x +b 1 where
y = − 1

2x2 + bx + G, and G is equal to group number. Students must determine
their specific value for “b”. Students have previously investigated the relationship
between the area under a velocity versus time graph, in this lesson a line, and the
total position traveled by an actor. But, this is the first activity in which students
encounter a velocity graph that intersects the x-axis. The general class relationship
for “b” in V = −1x + b and y = − 1

2x2 + bx + G, is the quantity 10-G, where G is
group number (see Fig. 6). For this activity students were grouped in either groups
of three or four students.

Four students (Nate, Ally, Haley, and Carrie2) are working on this task as
Group 4. In the following three segments of group discussion, we see the stu-
dents respond to one another, ask each other questions, explore, conjecture, and
test ideas on their calculators. The technology has allowed students to construct
functions, animate their constructions, receive feedback, re-edit their constructions,
and re-animate again. This cycle is very important for students because it empowers
them to see how a parameter of a function is affecting multiple representations.

1The activities have used V for the velocity function expression rather than y′ because of issues of
symbolization, which we will not address in this chapter.
2All names are pseudonyms.
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Fig. 6 The Velocity graph, Position graph, and Acceleration graph for the class set of functions
for the Blast Off! activity

In this first excerpt, Ally has edited her graph to be similar to Haley’s, rather than
run the animation, she seeks feedback from her group members.

Ally: Mine is at −2 {Ally is referring to her y-intercept. See Fig. 7.}
Haley: That’s not right.
Ally: That’s not right?
Haley: Nope.
Ally: Why isn’t it right? Nate, why is it not right? Why isn’t the line at negative two?
Nate: {inaudible}
Ally: {While running the animation} Why am I going backwards? Mine is wrong. Cause

I’m going backwards. I’m [sic] gonna [sic] have to change that real quick.

With Ally’s question “why am I going backwards?,” we see two important com-
ponents with relation to Ally’s participation with the calculator and with her group.
First, Ally comments that “she” is going backwards. She is identifying herself in
the activity as an active agent who has made something happen. She is conveying a
sense of ownership over the rocket, which could potentially be a driving force for
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Fig. 7 Ally’s graph below
the x-axis with the target
function above the x-axis

her continued participation in the group and in the activity. She is able to identify
what is incorrect based on the motion and her inquiry about the motion prompts her
further participation in the activity. Second, we see evidence that Ally does not un-
derstand the relationship between the line segment in the velocity graph and the mo-
tion representation. There seems to be confusion for Ally between positively versus
negatively sloped linear velocity functions; this confusion is evident by her seeming
surprise that the motion is traveling in the opposite direction than she expected it too.
Although Ally receives some feedback from her group members, the feedback she
receives from the motion leads to her surprise. Ally’s belief about what will happen
when she runs the animation conflicts with what actually happens. None of Ally’s
peers justify this confliction. It might be that the others in the group do not know
why, or they may not be able to express why at this stage. Ally receives feedback
based on the mathematical object she constructed. And while the technology does
not tell her why, she can interact with her construction and receive more feedback.
The SimCalc learning environment enables her to make additional changes to the
symbolic representation of the function and see how that change affects the motion
and graph and what is different from her previous construction.

Later in the class, Nate and Ally have stopped editing their function. They entered
V = −1x +6 on a domain of [0,2] as the function for their rocket. Haley and Carrie
however, continue to work on their calculators keeping their domain fixed as [0,10].
While it is unclear as to whether Nate understands the relationship between the
velocity graph and the position graph, there is evidence to suggest that Ally does not
understand this relationship even though she has a solution. In the next interchange,
Haley has found both solutions, both positions where the rocket is located at 50
miles, the desired ending position, since the rocket travels up and down.

Haley: Ohh, I did it! I did it! The equation is. . . −1x + 6 from 0 to 10.
Ally: That’s close to this. Why? Our’s is −1x + 6
Nate: Yeah.
Haley: It works.
Ally: How can they both work?
{Ally is referring to both function expressions, V = −1x+6 [0,2] and V = −1x+6 [0,10].
She is talking as though these are two symbolically different functions}
Haley: It hits 50 twice. {Haley gestures with her index finger.}
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Fig. 8 Nate gesturing for his
group members with
an arrow tracing the position
of his finger

When Haley explains why her solution is the same as Ally’s she says, “it hits
50 [miles] twice” and makes a vertical gesture of the motion of the rocket with
her index finger in the air. In this gesture, Haley brings her index finger up and
then changes direction moving it downward to mimic the motion of the rocket in
the vertical SimCalc world. Next, after looking at Haley’s calculator, Nate picks
up his calculator and re-edits his graph to be the same as Haley’s graph. After
getting feedback from the motion on his own calculator, and verbally from Ha-
ley, Nate makes a gesture of a parabola in mid air with his index finger. He sites
the vertex point as the time where the velocity graph intersects the x-axis, 6 min-
utes.

Although involving much feedback from the technology, this last interchange
was really initiated by the social component of the group work. We could say Ha-
ley continued to edit her function because she was not satisfied with the seeming
conflict between what her group mates had and the component of the goal that
stated the rocket should end at a time when the target rocket ended, 10 minutes.
As a result of her re-editing, Haley received feedback from the SimCalc software on
the calculator that seemed to enable her to make the connection of “hitting twice.”
Haley then provided feedback to Ally both verbally and with a gesture that the
functions were equal despite different domains. After editing on his own calculator,
Nate identified the relationship between the velocity graph and position graph for
the group.

Ally: Cause you went by our equation before, you just changed the domain.
Haley: It just hits it twice.
{Haley makes a gesture of the vertical motion of the rocket with her index finger in the air.}
Nate: It goes
{Nate gestures a parabola in the air with his index finger, see Fig. 8} It hits twice. The vertex
is like, 75 [miles].

Through analysis of student discourse, we found students disagreeing with one
another, confirming conjectures, explaining to one another, and interpreting re-
sults for one another. While SimCalc served as a medium for confirmation, inter-
pretation and disagreement via multiple representations—specifically the motion
representation—the social aspect played a critical role in the groups understanding
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of the varying rate and the connections between velocity and position (for related
work see chapter by Ares, this volume).

7.4 Case Study #2

In this second case study, we focus on Varying Slopes, the first activity of the Sim-
Calc curriculum where groups have to create a different function that is collected
by the teacher and discussed. The aim of this activity is to continue to introduce
students to quadratic functions by examining the attributes of the function in terms
of a runner moving with a linearly varying speed. In this activity, there is a target
runner who moves at a linearly increasing speed of 1 ft/s every second, the posi-
tion function expression is y = x2. Students are introduced to such a motion via a
rate graph of V = x on the domain [0,5]. The students control the second runner in
which they create a systematically varying family of quadratic functions by focus-
ing on rate graphs and use those, with the table and the motion, to understand the
attributes of a quadratic function.

In our analysis of this activity, the group number plays an important role in cre-
ating systematic variation across the whole class. Each group uses their group num-
ber to create the slope of their velocity function or rate graph. In this activity, each
group member should produce the same function so there is consolidation within the
group, but across groups the functions vary in a systematic way, yielding a family
of rate graphs, V = Gx, and associated Quadratic position functions.

The SimCalc curriculum and associated training encourages teachers to not show
the work of every student at once, but gradually show student work in a fashion that
can yield the overall mathematical structure in an emergent way. In addition, teach-
ers are encouraged to focus the attention of the whole class on the overall motion of
each person’s actor first and to analyze differences and possible contradictions as a
group. Our second case study begins at this stage.

7.4.1 Analyzing Bids

The teacher asks the class “What do you expect to see in the World?” which turns
the attention of the whole class to the up-front space and initializes the coordination
of each student relative to each other. In this activity, students have been focused
on velocity graphs but the World is a representation of position. The velocity graph
does not have information about the starting position of each student, but the World
does and since everyone should be starting at 0 feet, a public display offers the first
important piece of information.

The teacher reports that “someone is behind zero” but proceeds to move on. He
has initialized the group space and before he runs the animation or initiates the
executable representation, he makes sure that there is a set of conjectures verbalized
about what form the motion will take and how the groups will structure the overall
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motion. Before running the animation, the teacher identifies, and points out verbally,
which motion each student should have relative to each other.

T: So when I play this is everything Scott has said. . . is exactly what happens. . . we
should see each group ending at a different position. Does everybody agree with
that. . .

S: {yeah}
T: And they should be in clusters of how many actors per group?
S: 4
T: . . . with the exception of this group as they had just 3

This is an important move in offering a reference point in the discussion and a
field of referential markers to use later on. The teacher refers to the members of
the World in a variety of ways—both as actors and as groups—which map to the
physical group setup of the classroom.

7.4.2 Participant Structures

Following this animation, the class agrees that not everyone has completed the ac-
tivity correctly. This evaluation of approximately 16 contributions happens almost
instantaneously, which exemplifies one affordance of connectivity in this form. The
teacher moves quickly into analyzing what each group should be doing by mov-
ing into a different functional space by discussing what the spacing of the marks
should be as described earlier on. This feature is another representation of rate that
the class is familiar with and which the teacher can talk about abstractly without
actually running the animation with marks on. Participation is structured by the ac-
tivity space and roles have been assigned by the intentional assignment and use of
personal group numbers.

The teacher continues to use the upfront space, suspending the animation to an-
alyze a sub-set of the work of the class. Here the up-front space is the focus. The
teacher asks, “how many actors should be here?” moving back from individualizing
the actors as owned or created by a particular student (although he knows who they
belong to) in order to “fix them.” to use his language.

T: It looks like we are missing an entire group
If this group is going twice as much where should the next group end at?

S: 50
T: where are you?
T: group 2. . . who is group 2?
S: Oh-oh {laughter}
T: group 2 is gone
S: it stayed in our graph
S: our graph is perfect
T: I’m not saying you aren’t perfect
S: yeah but why am I not up there

The final utterance is another specific form of participation in this learning envi-
ronment in that the work of a student can be identified by not being visible. First, a
contribution is part of the mathematical structure but it cannot be directly analyzed.
Second, the student is drawn into participating by their work not being visible.
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Fig. 9 SimCalc MathWorlds® Classroom Manager

7.4.3 Studying Identity

Here we highlight various utterances that sustain this episode of discourse. The
group display is analyzed by the teacher and, following the isolation of missing
group, a member of that missing group reacts quite strongly. The student seeks
ratification of her contribution and is confused as to why her group is not part of
the display projecting her own identity into the display by asking why she is not up
there rather than her actor or graph.

The teacher moves to switching on marks in the Classroom Management window
(see Fig. 9) to analyze each group.

T: Lets do this group by group. . .
We’ll start with group 1, turn the marks on and watch them

S: You can do that?
T: I can do anything. . . don’t you know
{1 minute passes as the teacher changes the display. Downtime}
{Display shows just group 1}
S: I know what color I am
T: When we do this we should expect that each person in group 1 should drop a mark

at the exact same spot for the exact same time for the exact same place. . . . So lets
play this even though we know the outcome

. . .

S: that was probably me. . .
. . .
T: we had two people who were in the right position. . .
S: actually one person was right
T: Did you have a table on this activity?
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This cycle again shows the flexibility that the representation system affords to
help the students analyze a single group, that students are open in owning parts of
that system, and the teacher can employ a pedagogical routine that pre-examines the
groups’ motions prior to running the animation.

The class moves to completing the activity again which the teacher collects and
their work is re-examined in contrast to the prior contributions.

8 Discussion of Findings

The quantitative analysis demonstrated that SimCalc had a positive effect on partic-
ipating high school students in our study as evidenced by their scores on a mathe-
matics test that aligned with the MA State Standards for mathematics. We argue that
the mechanism for these learning gains has to do not just with SimCalc’s dynamic
representations but also how the activity structures of our curriculum lead to deeper
student participation.

Classroom interactions (within the software environment, with students, and the
teacher) offer the opportunity for students and the teacher to engage with meaning-
ful mathematics and construct meaningful mathematical objects. This opportunity
for students to interact with content in significant ways is a critical component for
opportunities to learn (Gee, 2008). Students participate with the technology in two
ways: in a small group setting and in a whole class discussion of the aggregation
of functions. Both are important features of the SimCalc activity design and al-
low students to interact at a personal (or private) level via exploration with their
own calculator and at a social (or public) level as students are encouraged to make
mathematical connections between their own work and the work of their peers, and
generalize predictions.

In terms of the SimCalc software and affordances of connectivity, each student
in the classroom is given two opportunities to learn: (1) the ability to make a per-
sonal mathematical contribution to a group activity and (2) a public display to foster
group discourse of these contributions. Together, mathematical experience emerges
from the distributed interactions enabled by the shareability of students’ contribu-
tions.

Three forms of participation in the two classroom case studies were analyzed.
Identification of one’s self and ownership of one’s work was important to the Sim-
Calc activity and its participants. Student work was used to foster participation in
mathematical experiences. For example, each student was given the ability to con-
struct their own function and their own representation of the motion situation, as
well as given the opportunity to analyze their work in comparison to the work of
another group. Bids for attending to their work and seeing phenomena and iden-
tification of one’s work in relation to another’s occurred at the student-to-student
level and the student-to-technology level. The technology served as a represen-
tation for student thought, which could be shared and compared with other stu-
dents. We saw evidence of this occurring in Case Study #1 when Ally compared
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her work with Haley’s and asked her group, “how can they [the functions] both
work?” This question prompted two of her group members to each see across rep-
resentations: the velocity graph, the motion phenomena, and the graph of the po-
sition function to detail an explanation of what has occurred within the mathemat-
ics.

The SimCalc activity structure of the materials encouraged personally-meaning-
ful interactions amongst students as well as a transition from a specific group-
defined function to a more general class set family of functions, which we believe is
a factor in improving student learning that we observed in their content test scores.
Some key features were:

• The public display space allows a teacher to project aggregated student work.
• The design of the activity structure in conjunction with the intention of the con-

nected classroom allowed students to participate in new was.
• The SimCalc software provided students an opportunity to create functions and

explore various representations.

Together, these features are aligned with important mathematical practices that
are important for increased student learning: developing ideas, building on the ideas
of others, making connections across representations, making predictions or gen-
eralizations of families of functions, exploring and discussing the properties and
attributes of different types of functions, and participating in a discourse about math-
ematics.

9 Implications for Future Research

Our ongoing work is investigating, in more detail, under what conditions students
learn the most. How does the teacher influence student learning? In addition to vari-
ables related to teacher’s background and prior knowledge, how is fidelity of im-
plementation related to changes in student achievement? We have begun to exam-
ine fidelity in terms of how teacher’s perceptions, values and expectations relate to
student learning, their pedagogy and the mathematical affordances of the SimCalc
environment. We believe it is important for future work to more carefully examine
how learning and participation deeply intersect as demonstrated in the analysis we
have presented here.
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A core aspect of examining the efficacy of any intervention moving to scale is the
development of valid and reliable measures of impacts on learning. While most
standardized or off-the-shelf measures test foundational concepts, few capture the
conceptual depth that students can reach using the SimCalc technology and curric-
ula. Thus using such tests for outcome measures could lead researchers to overlook
potentially important impacts of SimCalc interventions. Instead, we need to develop
more appropriate measures of student learning that are closely aligned with the par-
ticular knowledge, skills, and abilities that the SimCalc approach affords learners to
develop.

In addition, in the Scaling Up SimCalc project (see chapter by Roschelle and
Shechtman, this volume), we wanted to study the knowledge that teachers must have
to best support their students’ learning. Investigating teacher knowledge in com-
plement to student knowledge can inform the design and development of teacher
professional development—an integral aspect of a full curricular activity system.
Drawing on the work of Ball, Hill, and other researchers in mathematics teaching
and learning (Ball, 1990; Ball et al., 2005; Hill et al., 2005; Ma, 1999; Shulman,
1986), our team used the construct of mathematical knowledge for teaching (MKT)
to develop the necessary teacher-oriented assessments.
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To meet rigorous standards for reliability and validity (AERA, APA, and NCME,
1999), we developed and implemented a set of development processes for student
and teacher content assessments. These processes build on best practices and con-
temporary methods in assessment development.

In this chapter, we provide an overview of the approach and lay out each of the
processes, illustrating how they were used to develop the four assessments in the
Scaling Up SimCalc project. Two assessments were for students; these tested the
knowledge, skills, and abilities taught in the project’s 3-week replacement units at
the seventh- and eighth-grade levels. The other two assessments were for teachers,
testing the mathematical knowledge necessary to teach these units. Note that greater
technical detail about the assessments are available in a Scaling Up SimCalc Project
technical report (Shechtman et al., 2010a).

By describing the assessments we used and how they were developed, an addi-
tional aim is to provide researchers with a methodological approach that can be used
in future research and development that examines the impacts of dynamic mathe-
matics approaches at scale.

1 Overview of Assessment Development Processes

To design the assessment development processes, we followed best practices in as-
sessment development (e.g., AERA, APA, and NCME, 1999) and used tenets of
evidence centered design (ECD) (Almond et al., 2002; Mislevy et al., 2003; Mis-
levy and Haertel, 2006; Mislevy et al., 2002). ECD emphasizes the evidentiary base
for specifying coherent, logical relationships among (1) the complex of knowledge,
skills, and abilities that are constituents of the construct to be measured; (2) the ob-
servations, behaviors, or performances that should reveal the target construct; (3) the
tasks or situations that should elicit those behaviors or performances; and (4) the ra-
tional development of construct-based scoring criteria and rubrics (Messick, 1994).
This evidentiary base supports both the construct and content validity of the assess-
ment.

Figure 1 illustrates the progression of ECD processes we followed to build as-
sessments with a strong evidentiary base.

In the initial ECD processes, domain analysis and domain modeling, the assess-
ment’s conceptual foundation is established. In domain analysis, experts in the con-
tent domain articulate the important core knowledge, skills, and abilities to be as-
sessed. During domain modeling, the experts elaborate the structure and content of
the assessment tasks to be developed. These processes provide input into the devel-
opment of a test specification that serves as the blueprint for the overall assessment.

In the second process, conceptual assessment framework, the types of assessment
items and their properties are specified.

The third process, assessment task development, is an iterative cycle of devel-
oping a pool of potential assessment items, refining them, collecting and analyzing
validity data, using the data to refine the items, and perhaps developing more items.
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Fig. 1 ECD processes used to design, develop, validate, and document the final version of each
assessment

Finally, in the fourth process, assessment assembly and documentation, the va-
lidity data are used as a guide to assemble the items to meet the test specifications
in the assessment blueprint as closely as possible, and the technical documentation
describing the assessment is prepared.

In the following sections, we describe the development of each of the four Sim-
Calc assessments across the processes outlined in Fig. 1.

2 Process 1—Domain Analysis and Modeling

In ECD, the goal of the domain analysis is to establish and articulate important
core knowledge, skills, and abilities (KSAs) to be assessed. For each grade level,
we performed two major domain analyses. In the first, we developed a conceptual
framework that specified the mathematical content that we would focus on in the
project’s 3-week replacement unit curriculum and the corresponding student assess-
ment. Building on this, we developed a conceptual framework for the mathematical
knowledge for teaching (MKT) that would be necessary to teach this content.

Here we describe the domain analyses and the test specifications that were de-
rived from them.

2.1 Domain Analysis for the Curriculum and Student Assessment

We considered several perspectives in specifying the focal mathematical content for
each grade level curriculum and assessment. These perspectives can be summarized
as follows (see Roschelle et al., 2010 for a detailed description):

1. The mathematical concepts that students could potentially learn from the Sim-
Calc approach, which allows students to connect their mathematical understand-
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ing across familiar representations (narrative stories and animations of motion)
with key mathematical representations (algebraic expressions, tables, graphs).

2. Texas seventh- and eighth-grade standards (Texas Essential Knowledge and
Skills [TEKS]) and our analysis of their content as covered in current Texas
mathematics instruction (the research took place in the state of Texas, U.S.).

3. Recommendations of the national standards and focal points (i.e., the National
Council of Teachers of Mathematics [NCTM] in the U.S.).

4. Research knowledge about student cognition in the learning sciences and best
pedagogical practices for supporting student learning of conceptually difficult
mathematics.

We started by identifying the broad concepts at the intersection of these per-
spectives. This led to the identification of proportionality and linear function as the
target mathematics. Among middle school mathematical concepts, proportionality
ranks high in importance, centrality, and difficulty (Hiebert and Behr, 1988; NCTM,
2000; Post et al., 1993). In conjunction with our project’s mathematics advisory
board, which included three mathematicians and three mathematics educators, we
developed a mathematics framework for the seventh- and then for the eighth-grade
intervention that articulated the focal KSAs for the curricula and assessments. These
are summarized in Table 1.

2.2 Domain Analysis for the Mathematics Necessary to Teach
the Curricula

As discussed in detail in Shechtman et al. (2010b), we built on the teacher knowl-
edge literature and prior studies’ approaches to measuring MKT (Ball, 1990; Ball
et al., 2005; Hill et al., 2005; Ma, 1999; Shulman, 1986) to develop the project’s
framework for the MKT construct. It is important to note that the nature of teacher
knowledge is complex and multifaceted and that different researchers define and
use the MKT construct in different ways for different purposes. The SimCalc MKT
framework was developed to capture the core types of mathematical knowledge
teachers would need to support students’ learning of the focal KSAs in the SimCalc
units, including (1) knowledge of those concepts and (2) specialized mathematics
knowledge necessary during instruction to evaluate student thinking and to help stu-
dents make connections within and across concepts. Our definition of MKT does not
include pedagogical knowledge—knowledge of what teaching moves would sup-
port students’ learning. For example, MKT includes the knowledge a teacher needs
to judge the mathematical quality of the typical kinds of work that students do, but
does not include knowledge of how frequently they should expect to see various
kinds of work or knowledge of what are the best teaching strategies to respond to
particular kinds of work. Thus, MKT is essentially mathematical knowledge, but a
specialized type that teachers need to make sense of students’ mathematical think-
ing. Figure 4 in the Appendix provides an illustrative example; the question seeks
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Table 1 Mathematical conceptual frameworks: Focal KSAs for the Seventh Grade and Eighth
Grade curricula and assessments

Framework M1 component M2 component

Foundational concepts typically
covered in the grade-level standards,
curricula, and assessments

Building on the foundations of M1,
essentials of concepts of
mathematics of change and
variation found in algebra, calculus,
and the sciences

Rate and
proportionality
for Seventh-Grade

Simple a/b = c/d or y = kx

problems in which all but one of the
values are provided; the last must be
calculated

Reasoning about a representation
(e.g., graph, table, or y = kx

formula) in which a multiplicative
constant k represents a constant rate,
slope, speed, or scaling factor across
three or more pairs of values, given
or implied

Basic graph and table reading
without interpretation (e.g., given a
particular value, finding the
corresponding value in a graph or
table of a relationship)

Reasoning across two or more
representations

Linear function
for Eighth-Grade

Categorizing functions as
linear/nonlinear and
proportional/nonproportional

Interpreting two or more functions
that represent change over time,
including linear functions or
segments of piecewise linear
functions

Within one representation of one
linear function (formula, table,
graph, narrative), finding an input or
output value

Finding the average rate over a
single multirate piecewise linear
functionTranslating one linear function from

one representation to another

Note: M1 and M2 refer to the two major dimensions of each framework

mathematical interpretation of an unconventional representation, but does not ask
how teachers would respond pedagogically.

The framework comprises six specific types of knowledge, skills, and abilities
that teachers should know or be able to do:

1. Link and translate between precise aspects of functional representations (i.e.,
story, graph, table, algebra)

2. Evaluate the validity of students’ mathematical conjectures
3. Differentiate between colloquial and mathematical uses of language and evaluate

student statements for their mathematical precision
4. Interpret common unconventional (in many cases, mathematically correct) forms

or representations that students are likely to make as they construct their under-
standing

5. Generate, choose, and evaluate problems and examples that can illustrate key
curricular ideas

6. Make connections to important advanced mathematics beyond the unit

To determine specific MKT relevant for each curriculum unit, an expert panel of
project staff and consultants examined the cells of a matrix crossing these six types
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Table 2 Test specifications

Dimension Student assessments MKT assessments

Mathematical
content

Items aligned with each of the focal
KSAs in Table 1 (such that they create
reliable M1 and M2 subscales)

Items aligned with each of the focal
KSAs in Table 1

Alignment with Texas state standards
(TEKS)

Items aligned with the MKT
categories that support the
understanding of KSAs in Table 1

Task types Varied across contexts (i.e., motion,
money)

Multiple choice, following the model
of prior MKT work in the field

Diversity of tasks types (about
one-third each of multiple choice,
short response, construction of
multiple mathematical representations)

In seventh-grade studies only, velocity
items assessed through multiple
choice and constructed response

of knowledge with the specific mathematical content covered in the curriculum and
student assessments. We did not seek comprehensive coverage of this matrix, but
rather used it as a tool to prompt for the various important facets of teacher knowl-
edge.

2.3 Test Specifications

Based on the domain analysis, we developed test specifications that provided high-
level descriptions of the mathematical content of interest and the item types to be
included in the assessments (see Table 2). All assessments were paper and pen-
cil. The student assessments were designed to be administered by teachers in their
own classrooms within one class period (about 45 minutes). The teacher assess-
ments were designed to be administered by workshop leaders or self-administered
by teachers at home within about 1.5 hours.

3 Process 2—Conceptual Assessment Framework

The goals of this ECD process were (1) to characterize the types of assessment items
and their properties that would be required for each assessment and (2) to develop
item templates to guide the development of new items.

For the MKT assessments outlined in our test specifications, few items of these
types existed, so we had to generate a pool of new items. A common approach in
many large-scale assessment development processes is to create item templates that
form the structure for assessment items and can be filled in with variable content.
Drawing on previous examples of MKT assessments (e.g., Ball, 1990; Ball et al.,
2005; Hill et al., 2005), we created a set of item templates that could be filled in with
new MKT content. Each template could be used to produce a set of multiple-choice
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questions situated within the context of mathematics classrooms and teaching. Each
template addressed one of the six key facets of MKT and had three parts. The first
part was a particular teaching situation that evoked one of the facets of knowledge,
such as a teacher presenting a problem to the class, grading papers, examining errors
students made on a particular problem, or attending a professional development
workshop. The second part was a mathematical question about this situation, and
the third part was a list of distracters, including the correct answer.

For the student assessments, rather than develop item templates, we decided to
build our pool of items from those already existing in released standardized tests,
previously validated instruments, the research literature, the SimCalc pilot (Tatar
et al., 2008), and the SimCalc curriculum.

4 Process 3—Assessment Task Development

Assessment task development is an iterative process, moving between item collec-
tion or development and empirical validation methods, and iterating back through
the processes to revise the items. Here we describe item development and validation
processes. The Appendix provides sample student and MKT items (see Figs. 2–4).

4.1 Development and Analysis of Assessment Items

For the student assessments, we collected candidate items from a variety of sources,
guided by the assessment test specifications, including:

• Released standardized tests (seventh-grade Texas Assessment of Knowledge
and Skills [TAKS], eighth-grade Trends in International Mathematics and Sci-
ence Study [TIMSS], eighth-grade National Assessment of Educational Progress
[NAEP], California High School Exit Examination [CHSEE], the eighth- and
tenth-grade Massachusetts Comprehensive Assessment System [MCAS])

• Items used in early SimCalc design research and the SimCalc pilot
• The rate and proportionality literature (e.g., Kaput and West, 1994; Lamon, 1994;

Lobato and Thanheiser, 2002)
• The math of change and variation literature (e.g., Carlson et al., 2002)
• Items adapted directly from the SimCalc unit

For the seventh-grade and eighth-grade assessments, the team produced initial
pools of 59 and 58 items, respectively.

For the MKT assessments, to develop our initial pool of items, we held a 1.5-
day “item camp,” a workshop in which individuals with various types of expertise
came together to collaboratively generate new assessment items. In addition to the
SimCalc curriculum designer and core research team, members of the item camps
included an experienced middle school math teacher, math education researchers,
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mathematicians, and assessment experts. Participants were provided with the test
specifications, item templates, an outline of the focal KSAs (Table 1) and MKT
framework, the SimCalc curriculum, and various resources such as the Texas middle
school mathematics standards, assessments, and textbooks. They were then asked to
use these resources to generate items that addressed all the important mathematics
teachers should know to support student learning during the unit. In addition, in the
seventh-grade assessment, to test mathematics beyond the unit, we included items
from previous SimCalc research that assessed knowledge of connections between
representations of changes in position and velocity.

For the seventh-grade and eighth-grade MKT assessments, the team generated
initial pools of 45 and 57 items, respectively.

4.2 Collection and Analysis of Validity Data

In assessment validation, evidence is accumulated to provide a scientifically sound
argument that the assessment items measure the constructs they are intended to mea-
sure. The intent is to provide evidence that the assessment will support the intended
interpretation of test scores (AERA, APA, and NCME, 1999). Table 3 summarizes
the methods of assessment validation that we used and the validity issues they each
addressed. Items were also iteratively refined at each step.

Table 3 Methods used for assessment validation

Method Validity issue

Formative and summative
expert panel reviews

Does the task align with the intended content (Table 1)?

Does the task align with the state standards?

Is the task appropriate for the intended grade level?

Cognitive think-alouds Does the task make sense to respondents?

Is the language clear?

Does the task elicit the cognitive processes intended?

Can the task be completed in the available time?

Can respondents use the diagrams, charts, tables as intended?

Field testing for psychometric
information

Does the task elicit a range of responses from students
representing different levels of mathematical understanding?

Information for individual tasks Is the amount of variation in responses sufficient to support
statistical analysis?

What is the distribution of responses by distractor?

Are there ceiling and/or floor effects?

Does the task discriminate among students at different levels
of the construct being assessed?

Information for overall form
and subscales

Are the whole assessment and each individual subscale
adequately internally consistent (i.e., reliable)?

Are there any biases in responses among sample subgroups?
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4.2.1 Formative and Summative Expert Panel Review

The first validation method was expert panel review. For each assessment, we con-
ducted a review that had both formative and summative components. Experts were
provided with the assessment items and asked to make specific judgments about the
items and recommendations for how to improve them.

For the student assessments, we conducted formative and summative expert re-
views separately. The formative reviews were conducted early in the item develop-
ment process, soon after the initial pool of items had been developed. Each summa-
tive review was the final step in the assessment development process.

The two formative panels took place in person in Austin, Texas, in a 1-day work-
shop. There were two subpanels. The first subpanel comprised mathematics educa-
tion researchers and assessment experts (four for the seventh-grade assessment and
three for the eighth-grade assessment). This subpanel focused on making judgments
of categorical concurrence, which Webb (1997) describes as an integral aspect of
assessment validation that examines the extent to which the same or consistent cat-
egories of content appear in both “expectations” and assessments. The experts thus
made judgments about the alignment of each item and two sources of expectations:
(1) the KSAs in the SimCalc conceptual framework and (2) a focused subset of the
TEKS. We also asked them to make recommendations for improving the items. The
second subpanel for each assessment comprised two local curriculum and instruc-
tion experts (e.g., math supervisor, textbook contributor). This subpanel rated items
relative to three aspects of grade-level appropriateness: (1) reading load, (2) compu-
tation load, and (3) graphics load. They rated each item on a 3-point scale (appro-
priate, somewhat inappropriate, inappropriate) for each aspect of grade-level ap-
propriateness. They also made recommendations for modifications that would make
the items more grade-level appropriate.

For each assessment, data were compiled at the item level and used to classify
and refine the items. Items were eliminated from the pool or modified to be more
suitable if they did not demonstrate (1) high percentage agreement among raters
on categorical concurrence classifications, (2) were poorly aligned with the target
TEKS, and/or (3) were rated as inappropriate for the grade level. The categorical
concurrence data were also used to classify items to determine the degree of cover-
age of the mathematical content in our field test instrument across the KSAs.

The summative expert panels for the student assessments took place after field-
testing (see below). The experts were members of our project advisory board who
had worked with us to develop the mathematical conceptual frameworks. The panel
members were provided with the refined items and the categorical concurrence clas-
sifications determined during the formative review. For each item, they checked off
whether they agreed or disagreed with the classification. If they did not agree with
it, they were to explain their decision. The summative panel members agreed with
each other and with the prior ratings in almost all cases. This summative classifica-
tion was used to determine content coverage in the final instruments.

We conducted only one review of the MKT assessments with both formative
and summative components (findings about teacher knowledge were lower stakes in
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this project than those about student knowledge). Senior members of the SimCalc
research team served as the experts. For each assessment, two experts aligned each
item in the initial MKT item pool with the mathematical and MKT frameworks, and
recommended refinements to enhance clarity and alignment. These data were used
to revise the items and determine coverage of the content in these frameworks.

4.2.2 Cognitive Think-Alouds

The second validation method was cognitive think-aloud interviews. While getting
direct test-taker feedback is always important in assessment development, it was
essential in these studies for helping us to determine whether students and teachers
would use appropriate response processes for new items targeting complex KSAs.
We conducted cognitive think-alouds on all the items remaining in the item pool af-
ter the formative review (about 30 items per assessment). In a cognitive think-aloud
protocol, the student is instructed to speak their thoughts out loud as they do the as-
sessment (e.g., Ericsson and Simon, 1993). An interviewer records this monologue
and asks a minimal number of probing questions as necessary but does not interfere
with the test-taker’s engagement with the mathematics. For each student assessment,
we conducted think-aloud interviews with eight middle school students who each
did a subset of the items. To provide representation across a range of achievement
levels in mathematics, student volunteers were drawn from those identified by local
partner teachers as low-, middle-, and high-achieving. For each MKT assessment,
we conducted think-aloud interviews with three teachers known from our prior work
with them to represent a range of depth of knowledge of mathematical content.

For each participant, an analyst examined videotapes or audiotapes of the think-
alouds and documented the time needed to complete each item, the mathematical
strategies the test-taker used, the mathematical mistakes made, difficulties in com-
prehending the problem because of ambiguous or unclear language, unfamiliar ter-
minology, or confusing calculations (when applicable). This information was then
summarized for each item and used to eliminate and/or modify items in the pool.
We eliminated items that were too easy or too difficult for the test-takers or those
for which test-takers could use a construct-irrelevant strategy to solve them (e.g.,
counting to solve a problem intended to measure proportional reasoning). We mod-
ified item instructions, text, and graphics as necessary to increase clarity and refine
mathematical logic.

4.2.3 Field-Testing for Psychometric Information

The third validation method was field-tests of the assessments with a large sample of
students/teachers for the purpose of gathering psychometric data on individual item
performance and overall assessment performance. We assembled the pilot assess-
ments using the categorical concurrence ratings for each of the remaining refined
items in the item pool in alignment with the test specifications in Table 2.
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We field-tested each of the two pilot student assessments with a sample of mid-
dle school students in the classrooms of local partner teachers (n = 230 for the
seventh-grade assessment and n = 309 for the eighth-grade assessment). As indi-
cated by teacher report and the wide range of scores, the students represented a
range of prior achievement levels within their grade level. For each of the two MKT
assessments, we conducted field testing by mailing the assessment to a national
random sample of 1,000 middle school mathematics teachers (the names and ad-
dresses were purchased from an educational data service). The response rates were
17.9 % and 12.8 %, yielding 179 and 128 teachers for the seventh- and eighth-grade
assessments, respectively. On key demographic variables (gender, age, teaching ex-
perience, ethnicity, region type, and first language), the teacher samples were rep-
resentative of the population of teachers we expected to participate in the Scaling
Up SimCalc Project; however, suburban regions, relative to rural and urban regions,
were slightly oversampled. These expectations were based on analyses of Texas’s
Public Education Information Management System (PEIMS), a publicly available
database maintained and distributed by the state department of education.

We used classical test theory (CTT) and item response theory (IRT) with the
field test data to examine three critical evidentiary concerns for both the student and
teacher assessments. First, we examined individual items for the range of possible
responses, statistical variation, ceiling and floor effects, and the capacity of the items
to discriminate among test-takers at different ability levels (using IRT parameters
for a two-parameter logistic model). Second, we examined the internal consistency
(i.e., reliability) of the whole form and each subscale. Third, we examined possible
biases among population subgroups.

We used these data to refine the instrument for a final version. Items with low
discrimination parameters (i.e., items that could not discriminate among individuals
of differing ability) or ceiling/floor effects were eliminated or modified. Items were
kept that were likely to contribute the most information about the test-taker’s ability
and to maintain representative coverage of the focal KSAs.

5 Process 4—Assessment Assembly and Documentation

Table 4 presents assessment form and aggregate item statistics. Details about the
sample characteristics and how the assessments were actually used in the Scaling Up
studies are described in Roschelle and Shechtman, this volume. Note in particular
that the internal reliability statistics for each form and subscale were adequate to
high.

6 Conclusion

In moving the SimCalc approach to scale, a key consideration was how to mea-
sure students’ understanding of and teachers’ MKT for the particular knowledge,
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Table 4 Summary of basic test statistics for student and MKT assessments

Assessment Whole form M1 subscale M2 subscale

Items Internal
reliability

Pre-test
mean
(SD)

Items Internal
reliability

Pre-test
mean
(SD)

Items Internal
reliability

Pre-test
mean
(SD)

Seventh-grade

Student 30 0.86 12.9 11 0.73 7.3 19 0.82 2.6

(5.7) (2.6) (3.7)

MKT 24 0.80 10.0

(4.5)

Eighth-grade

Student 36 0.91 12.1 18 0.79 7.2 18 0.87 4.9

(7.4) (3.7) (4.3)

MKT 28 0.80 16.3

(5.0)

Note: MKT subscale statistics not reported because scores always reported in aggregate

skills, and abilities that the SimCalc approach affords learners to develop. These are
challenging to measure because the mathematical content tends to go beyond what
is assessed in typical assessments, and few instruments are available to measure
teacher knowledge. In this chapter, we have described our approach to assessment
development, illustrating its implementation with the four instruments used in the
Scaling Up SimCalc Project. Our intention is to provide not only documentation of
the technical qualities of the assessments themselves, but also provide researchers
with a methodological approach that can be used in future research and development
examining impacts of dynamic mathematics approaches at scale.

Appendix: Sample Items

Fig. 2 Seventh-grade student
M1 item

Annie and Bonnie are running on the same track. They practice several 45-meter
races. For each race, make a line graph that represents their position by time.
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Race 1: Annie and Bonnie start at the starting line (0 meters) at the same time,
and each runs at a constant speed. Annie finishes the 45-meter race 2 seconds before
Bonnie.

Fig. 3 Eighth-grade student
M2 item (excerpted from a
series)

Here is a graph of a 50-meter dash that a student made. Notice that distance is on
the x-axis and time is on the y-axis.

Which are true statements about the relationship between the line graph and the
speed of the runner? (Choose all that apply.)

Fig. 4 Eighth-grade teacher
MKT item. (Interpreting
unconventional forms or
representations that students
are likely to make)

A. The slope of the line is 9/50 or 0.18 as was the average speed in meters per
second of the runner during the dash.

B. The slope of the line is 50/9 or 5.56 as was the average speed in meters per
second of the runner during the dash.

C. The slope of the line is 9/50 or 0.18, and the average speed of the runner was
50/9 or 5.56 meters per second.

D. The slope of the line is 50/9 or 5.56, and the average speed of the runner was
9/50 or 0.18 meters per second.

E. None of the above.
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Sustainable Use of Dynamic Representational
Environments: Toward a District-Wide
Adoption of SimCalc-Based Materials

Phil Vahey, George J. Roy, and Vivian Fueyo

1 Background

SimCalc MathWorlds® (SimCalc) has been shown to be an effective tool for de-
mocratizing access to the mathematics of change (Dalton and Hegedus, this volume;
Kaput, 1994; Kaput and Roschelle, 1998; Shechtman and Roschelle, this volume).
In this chapter, we report on the SunBay Digital Mathematics program (SunBay
Math), an effort currently in its third year in Pinellas County, Florida, that has the
goal of assisting a large, urban school district in adopting SimCalc as an integral part
of middle school mathematics education. We have taken a curriculum replacement
units approach and built directly on the work described by Roschelle and Shecht-
man (this volume; see also Roschelle et al., 2010) to increase student learning of
important mathematics. We have been guided by research on the sustainability of
SimCalc-based replacement units (Fishman et al., 2011; Hegedus et al., 2009) to
increase the likelihood that our materials become “a regular part of the instructional
repertoire and does not remain a special departure from normal practice” (Fishman
et al., 2011, p. 2).

In the following sections, we discuss our efforts at designing and implementing
the SunBay Math program in the Pinellas County School District (PCS). PCS is a
large, urban school district in Florida, with more than 100,000 K-12 students. PCS
was chosen as a district partner because students in the district were underperform-
ing in middle school mathematics, district personnel recognized the potential of
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a dynamic mathematics approach in improving middle school education, and there
was overall district support for the use of technology in the mathematics classroom.
There was general agreement by all stakeholders that the goal of the SunBay Math
program would not be a wholesale change in the way mathematics is taught in PCS
middle schools. Instead, the goals of the program would be to identify core areas
that are mathematically important and difficult to teach and learn, and to address
these areas with relatively short curriculum replacement units of 2 to 3 weeks in
length. These units would be designed as “peak experiences,” in that they would
be dependent upon dynamically rich technology environments (with an initial em-
phasis on the use of SimCalc MathWorlds®), and would be a clear distinction from
teaching and learning using traditional textbooks.

During the past 3 years, the SunBay Math program has garnered strong local
support, has built substantial local capacity, has been shown to be effective in in-
creasing student learning, and is showing strong potential to achieve the program
goal of sustainable and widespread use in a large school district.

2 Design of the Program

2.1 The Initial Curriculum Unit

The research team, composed of educational researchers and college of education
faculty, in collaboration with district personnel, determined that the first curricu-
lum replacement unit would be Managing the Soccer Team, the seventh grade cur-
riculum unit described in Roschelle and Shechtman (this volume). This unit was
selected because it uses dynamic representations to address important next gener-
ation mathematics standards identified by the state of Florida (Florida Department
of Education, n.d.) related to rate and proportionality. Initially, activities in Manag-
ing the Soccer Team address unit rate and proportional functions through the simple
analyses of motion at a constant speed. The unit progresses incrementally until the
unit ends with analyses of multi-rate functions and an informal expression of the
meaning of positive, negative, and zero slope. The unit combines consumable paper
materials with SimCalc MathWorlds® software files, for a structured exploration of
algebraic representations through connections to real-world topics. Managing the
Soccer Team presents soccer players running races and team buses traveling from
one town to another. For example, using the SimCalc simulation shown in Fig. 1,
students were prompted to use the various algebraic representations to find vehicle
speeds and write stories to explain patterns of motion.

In other activities non-motion contexts were used, including saving money when
buying uniforms and predicting how much fuel vehicles would use. The unit was
not created as stand-alone piece of curriculum, but instead was created as part of a
curricular activity system that included professional development, paper materials,
and technology, all integrated to meet the needs of students, teachers, and schools
(see Vahey et al., in press). More information on the curriculum can be found at
http://sunbay.sri.com.

http://sunbay.sri.com
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Fig. 1 Example SimCalc simulation and graph

2.2 Extension of Prior Research

While the SunBay effort to build a sustainable and district-wide program was based
directly on the SimCalc randomized control trial (RCT) conducted in Texas (de-
scribed in Shechtman and Roschelle, this volume), there are important differences
in the goals, and hence the design, of the programs. The SimCalc RCT was de-
signed to generate findings that were generalizable across a large population of
teachers and students; as such, the RCT intentionally recruited a large number of
teachers throughout Texas and did not have a critical mass of teachers in any one
local area. SunBay Math made the explicit design decision to recruit a relatively
small number of teachers, located in a small subset of schools in the district, and
to support these teachers in forming a strong teacher community. We expected this
small teacher community to provide the core of expertise in the district, and this
community could then be leveraged as a resource to aid in scaling the program to
the entire district (House, 1994; Kennedy, 2005; Penuel and Riel, 2007).

The RCT required randomly assigning teachers to a treatment or control group,
required a significant amount of data generation and collection on the part of par-
ticipating teachers, and had a monetary incentive for participating teachers so they
would complete the data collection activities. While teachers participating in the
RCT were enthusiastic about the project, factors from within PCS, as well as factors
related to the project’s philosophy about sustainability, argued against making the
same demands on teachers in the SunBay project. PCS was strongly against mak-
ing significant demands on teachers, especially those teachers who were not using
the SunBay Math materials. Furthermore, the district did not want to have a con-
trol group (or even a comparison group), as they felt that this would cause divisions



186 P. Vahey et al.

amongst the teachers. In addition, part of the project philosophy was that, to accept
the intervention as part of their regular practice, teachers must not be burdened with
a large number of demands that are not part of their regular practice or be rewarded
with significant incentives to meet such demands. As a result, our research design
was based on a one-group sample, with only minor data collection demands placed
on teachers.

2.3 Additional Sustainability Challenges

We next address three important considerations identified by Fishman et al. (2011)
and Hegedus et al. (2009) that we considered when moving from the research-based
RCT to a large-scale sustainability effort: maintaining high-quality classroom prac-
tice outside of hothouse research environments, teacher perceptions of coherence
and value, and teacher expectations related to student prior mathematics achieve-
ment.

2.3.1 Classroom Practice Outside of the “Hothouse”

Well-funded RCTs are “hothouse environments” in which support, funding, and en-
couragement are plentiful (Fishman et al., 2011). Once the research is over, this
support typically fades, leaving teachers to fend for themselves when using the ma-
terials. Without ongoing support, teachers may unintentionally create “lethal mu-
tations” (Brown and Campione, 1996), in which the materials are used in a way
that is at odds with the designers’ original intent. This may be especially likely in
cases such as ours where the materials require teachers to deviate from their existing
methods of teaching.

We took, as part of our challenge, the creation of an environment that was per-
ceived by teachers to have the positive aspects of a hothouse environment, but that
could be sustained without significant ongoing external investment (of course, ini-
tial investment was required, and, expansion to additional curriculum units would
also require investment). For the program to be self-sustaining, it would have to ul-
timately be run by a local organization whose own sustainability model was aligned
with the program goal of teacher support and professional development. SRI In-
ternational (SRI), the research institute that initiated the program was not such an
organization. The University of South Florida St. Petersburg (USFSP) College of
Education was a natural partner, as it is the primary provider of professional devel-
opment to PCS, and USFSP was interested in expanding its capacity in both middle
school mathematics teacher education and the use of technology. To create a sup-
portive environment that could address the concern of lethal mutations, USFSP and
SRI began collaboration on two parallel tracks: material-specific professional devel-
opment (PD) and a five-course graduate certificate to increase teacher Mathematical
Knowledge for Teaching (MKT) (Hill et al., 2004) and Technological Pedagogical
Content Knowledge (TPCK) (Mishra and Koehler, 2006) in the district more gener-
ally.
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2.3.1.1 Material-Specific Professional Development

The SRI and USFSP teams designed a 3-day workshop as well as a series of monthly
PD meetings for participating teachers. The goals of the workshop were to introduce
the teachers to the SunBay Math project, the SimCalc MathWorlds® software, and
the Managing the Soccer Team replacement unit. While the PD was based on the
PD provided in the RCT, changes were made to align the experience with state
and district expectations and requirements. During the monthly PD meetings, which
were not part of the RCT, teachers investigated the target pedagogies, mathematics,
and technologies.

The SRI and USFSP teams worked together to create a plan by which SRI Inter-
national would lead the initial PD sessions, but as the program progressed, USFSP
would take more responsibility for leading the PD, until USFSP would be the sole
organization delivering the PD. This has resulted in SunBay PD becoming a stan-
dard USFSP offering, not an extraordinary program that requires outside support.

2.3.1.2 Program to Increase Teacher MKT and TPCK

The USFSP team also began to design a Certificate program in Middle Grades Dig-
itally Enhanced Mathematics Education (MG DEME). The certificate is composed
of five courses. Three courses focus on the foundation of higher mathematics in
grades 7 through 12 and beyond: (1) algebraic thinking, (2) geometry and measure-
ment, and (3) the processes of mathematics and data analysis. These courses in-
tegrate software such as SimCalc MathWorlds®, Geometer’s Sketchpad®, GeoGe-
bra, and TinkerPlots® with activities that exemplify how representation-rich tech-
nology environments can transform mathematics teaching and learning. Another
course was designed to increase middle school mathematics teachers’ technologi-
cal pedagogical content knowledge based on common classroom technologies such
as graphing calculators and presentation software. The final course provides mid-
dle school teachers with explorations of reading in the content area strategies. The
certificate program was designed with the expectation that approximately 20 % of
middle school teachers in the district would participate in the program. Ideally, each
middle school in the district will have at least one teacher who has gone through the
program, and therefore each school will have one local expert on technology-based
approaches to teaching advanced mathematics to all students.

Taken together, these efforts were designed to provide a supportive but sustain-
able environment for the use of the SimCalc-based materials. By building capacity
within USFSP and reducing the role of SRI, a local PD provider is now able to
support the program as part of its normal operations. As the program continues,
these programs could be supported by ongoing sources of funding, such as local
foundations, district funds set aside for professional development, or tuition fees.
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2.3.2 Perceived Coherence and Value

Coherence refers to the alignment between the innovation and the myriad other
demands placed on teachers (Fishman et al., 2011; Hegedus et al., 2009). These de-
mands include messages from school and district administration about instructional
priorities, accountability requirements, and challenges resulting from the makeup
of the local school population. Teachers who perceive an innovation to be coherent
with other messages and demands are more likely to adopt the innovation. Value
is a set of personal perceptions about the likely benefit of an innovation (Fishman
et al., 2011; Hegedus et al., 2009). While we would expect teachers to value ma-
terials with high coherence, this valuation may not always be the case. Materials
may be coherent with district requirements, but, if teachers believe that the school’s
existing approach is more effective than the innovation, they may not value the new
materials. For teachers to commit to using a new approach to teaching, we would
expect that the materials would have to have high value as well as high coherence.

One place to look for coherence is in the materials themselves. The materials
used in the SunBay Math project are based on the prior Texas RCT. While that
study showed that Managing the Soccer Team replacement unit resulted in statis-
tically significant student learning gains on complex concepts in the areas of rate
and proportionality when used in Texas (Roschelle et al., 2010), it was not clear that
teachers in Pinellas County Florida would consider these materials to be coherent
with their local demands. SRI and USFSP formed a review team to investigate the
relevance of the materials to district standards and textbooks, to Florida’s Next Gen-
eration Sunshine State Standards (NGSSS), and more recently, to the Common Core
State Standards for Mathematics (Florida Department of Education, n.d.; National
Governors Association Center for Best Practices, Council of Chief State School Of-
ficers, 2010). The review team found that the materials needed minor changes to
be appropriate for use in Pinellas County. Some changes were purely cosmetic—
for instance, in the original unit, the soccer team traveled from one Texas city to
another, and the cities were changed to cities in Florida. Some changes were more
germane to the mathematics in the unit, such as ensuring that graphs and mathe-
matics terminology were consistent with Florida content standards. Fortunately, the
mathematics content was appropriate once these relatively superficial changes were
made. The review team then created a mapping between the district’s curriculum
scope and sequence and the unit to help teachers understand how teaching the unit
would help them meet their accountability requirements. Finally, USFSP and SRI
worked with district personnel to modify the district pacing guide for teachers in the
study, again to allow teachers to build a sense of coherence between the materials
and their accountability requirements.

To further increase coherence between the district messages and the materials, we
worked with the district superintendent and the mathematics coordinator for grades
6–12 to ensure that they understood how the project goals aligned with district goals.
Once the district personnel saw the value of the project, they were willing to make
public statements in support of the project, including appearances at the PD sessions,
during which they made clear that the use of dynamic representation environments
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was a strategic direction for the district that could help teachers meet upcoming
high-stakes assessments.

To address teachers’ perception of value, we built upon conversations between
SRI, USFSP, and district personnel, that showed general agreement that issues re-
lated to the core mathematics content in the unit, rate and proportionality, were
difficult to teach using traditional means. In the PD, we made explicit the innova-
tiveness of the SunBay Math materials and the ways in which the integration of
technology and paper-based activities made this content area more engaging and
accessible to students. These activities gave the design team confidence that as we
move away from being a “hothouse environment,” teachers can still experience the
support necessary to use the materials effectively, while avoiding lethal mutations.

2.3.3 Teacher Expectations Relative to Students’ Prior Mathematics
Achievement

Fishman et al. (2011) and Hegedus et al. (2009) discuss the “Matthew Effect” (Wal-
berg and Tsai, 1983), which refers to a passage in the Gospel according to Matthew
in which those who have gain more, but those with little lose what they have.
This has been used to describe the common finding that teachers provide oppor-
tunities to learn deep and conceptual mathematics only to high-achieving students
(who also tend to be students from high socioeconomic [SES] backgrounds), and so
low-achieving (and low-SES) students fall even farther behind. Unfortunately, the
“Matthew Effect” was found in their analyses of sustainability based on the RCT.
Their analysis of which teachers chose to continue using SimCalc after the formal
RCT had ended showed that the greater the students’ prior mathematics knowledge
and the higher the students’ SES, the more likely teachers were to continue using the
materials. This was particularly disappointing because the SimCalc materials used
in the RCT, which are also the basis for the SunBay Math program, were found
to be effective for a wide range of students, including traditionally low-achieving
students (Roschelle and Shechtman this volume; Vahey et al., 2010). Clearly, then,
simply having materials that are effective is not enough to convince teachers to con-
tinue using those materials with their low-achieving students: in SunBay Math, we
chose to explicitly address the Matthew Effect. However, there is a danger in focus-
ing solely on students with low prior achievement in mathematics—teachers may
then consider the materials to be part of a remedial intervention, resulting in the
perception that they should be used only with students with low prior achievement.

The team decided that the best way to address the Matthew Effect, while also me-
diating the risk of being considered a remedial intervention, would be to ensure that
classrooms in the first year of use would be chosen such that students with a wide
range of prior achievement scores were included in the study. In addition, the project
made clear to district personnel, especially the teachers, district superintendent, and
K-8 mathematics coordinator, that the project was focused on a wide range of learn-
ers. We believed that only through an explicit focus on how the materials were useful
to a wide range of students would teachers recognize the value of the SunBay Math
materials and hence advocate for the use of the materials with all their students.
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3 Implementing the Program: Year 1

3.1 Starting Up

Investigation into funding of the project found that two local foundations were will-
ing to fund the initiative, and, in June 2009 the Helios Education Foundation, the
Pinellas Education Foundation, and PCS itself provided funding for the pilot year
of the SunBay Digital Mathematics program.

While the overarching goal of the program was scale-up and sustainability, all
parties involved in the project agreed that the materials would have to be shown to be
effective before it was worth the investment in scaling up. So, although the program
was designed from the beginning to eventually scale up to a district-wide program,
the initial year was focused on documenting student learning. In addition, the project
had to build the infrastructure necessary to engage in the research and sustainability
activities. This included recruiting the teachers, determining those classes and stu-
dents who would be the subject of study, building local capacity, and determining
when in the school year the SunBay Math curriculum units would be taught.

Recruitment was led by the mathematics supervisor for grades 6–12 in Pinellas
County, who invited 10 schools to participate in the study. Seven of these schools
accepted the invitation, and these schools represent the wide variety of schools in
Pinellas County. Two of the schools were high-poverty (greater than 50 % of the
students were on the free or reduced-price lunch program), and these high-poverty
schools were also majority-minority schools. Two teachers per school were chosen
to participate. Due to teacher transfers between the time of recruitment and the be-
ginning of the school year, a total of 13 teachers in 7 schools participated in the first
year of the study.

We used a “target class” approach to determine with which classes these teachers
would use the materials. We have used this approach in prior research, including
the RCT in Texas. In this approach, the research team designates a class period for
each participating teacher for which they are required to use the materials: this is
the target class. Teachers also have the option of using the materials with their other
classes. Data is collected only on the target class for each teacher, even if the ma-
terials are used with other classes. This strategy has a number of advantages over
other methods of determining the population of students to be researched. This al-
lowed the SunBay Math project to purposefully select classrooms with a wide range
of prior student mathematics achievement, while minimizing demands on partici-
pating teachers in this pilot year. To select the target classes for the SunBay Math
project, we required each participating teacher to send to SRI a summary of stu-
dents’ prior year Florida Comprehensive Achievement Test (FCAT) scores for each
of their seventh-grade mathematics classes. SRI used this data to categorize classes
into one of three levels of prior student mathematics achievement: low (average
FCAT score of below 2, on a scale of 1 to 5), medium (average FCAT score between
2.4 and 3.2), and high (average FCAT score higher than 3.2). The team chose the
target classes to ensure a wide range of student prior mathematics achievement: four
classes were classified as being low prior achievement, five classes were classified
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as being medium prior achievement, and four classes were classified as being high
prior achievement.

3.2 Methods

To investigate student learning while addressing the district’s concern of not having
a control or comparison group of teachers, we conducted a replication study that
did not include a control condition; instead the research team, in consultation with
USFSP and the district, decided to compare our results to those from the RCT in
Texas. Because the instructional materials and the assessments were essentially the
same except for superficial changes, they were deemed similar enough to allow a
comparison of the results of the SunBay Math students to those of the RCT. As
in the RCT, we used a pretest administered immediately before the Managing the
Soccer Team unit and an identical posttest administered immediately after the unit
to determine student learning. A student’s gain score was calculated by subtracting
the pretest score from the corresponding posttest score.

To investigate teacher perceptions of the program, at every PD session (both the
initial 3-day workshop and the monthly sessions) we had participating teachers com-
plete an evaluation form. The form consisted of 16 questions asking teachers to rate
specific dimensions on a scale of 1 to 5 (5 being the highest) and provided a set of
open-ended questions.

In addition, all 13 teachers that participated in the program were interviewed to
capture data that might have been difficult to surface using other sources. These
one-on-one interviews were scheduled after each of the teachers completed teach-
ing the Managing the Soccer Team unit and prior to the final monthly PD session.
Each one-on-one interview was conducted by a member of the SunBay Math team,
and teachers were asked about their experiences when teaching the unit, their im-
pressions of the professional development, their impressions of students’ learning
of the mathematics in the unit, their use of technology, and lastly, school-based and
district support.

3.3 Results

3.3.1 Comparison of Student Populations and Pretest Scores

There was no statistically significant difference between the SunBay Math students
and the students in the RCT (both treatment and control) on pretest mean or standard
deviation, as shown in Fig. 2. Thus, the pretest scores provide evidence that the prior
mathematical knowledge of the Pinellas County students and the Texas students was
comparable.

3.3.2 Comparison of Student Gain Scores

Figure 3 shows the gain scores for three populations of students: SimCalc Control
students from the RCT (who did not use SimCalc), SimCalc Treatment students
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Fig. 2 Comparison of
SimCalc RCT and SunBay
pretest scores

Fig. 3 Comparison of Texas
and SunBay learning gains

from the RCT, and SunBay Math students. The gain scores are a measure of student
learning and are calculated by subtracting each student’s pretest score from their
posttest score. As shown in Fig. 3, the SunBay Math gain scores were almost identi-
cal to the SimCalc Treatment gain scores, and both are significantly greater than the
SimCalc Control gain scores. Figure 3 shows two different gain scores (black and
gray), which represent two types of items on the test. The black part of the graph
represents simple �

� = �
� , y = kx problems, or questions calling for straightforward

graph and table reading (often called “the basics”), which the SimCalc study called
M1 mathematics knowledge. The gray part of the graph represents more complex
proportional reasoning, such as requiring a functional approach (e.g., in which stu-
dents must map between a domain and range) or requiring reasoning across two or
more representations, which the SimCalc study called M2 mathematics knowledge.
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Fig. 4 Comparison of Texas
and SunBay distributions

While the graph indicates that the M1 gain for SunBay students is slightly greater
than the M1 gain for the Texas SimCalc students, and the M2 gain is slightly less
than that of the Texas SimCalc students, these differences are not statistically sig-
nificant (see Roschelle and Shechtman, this volume, for more detail on results from
the RCT).

In addition to comparing the gain scores of the SunBay Math and RCT students,
we also compared the spread of gains. That is, we investigated the possibility that
the SunBay Math student gains are somehow differently distributed across students.
Figure 4 shows that this was not the case: the distribution of scores for the Sun-
Bay SimCalc students was nearly identical to that of the SimCalc Texas Treatment
students.

As further confirmation that the materials were effective across the range of all
teachers in both studies, Fig. 5 shows that teachers who did not use the SimCalc
materials had limited learning gains (indicated by the large number of “Texas Con-
trol” teachers grouped to the left of the graph), whereas all teachers who used the
SimCalc materials had greater learning gains than half the control teachers, and all
PCS teachers (labeled “Florida Intervention” in Fig. 4) who used the SunBay Math
materials had greater learning gains than approximately two-thirds of the control
teachers.

Finally, we explicitly investigated the Matthew Effect by analyzing the relation-
ship between prior mathematics knowledge and learning gains. For the SunBay
Math students, there is a strong and statistically significant relationship between
the mean classroom prior mathematics FCAT scores and scores on the SimCalc
pretest (see Fig. 6). That is, classrooms with low FCAT scores also had low pretest
scores. This finding is expected because the pretest assessment (which is identical
to the posttest) and the FCAT have some overlap in the content being assessed. In
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Fig. 5 The spread of mean classroom student gains shows the consistent effectiveness of the Sun-
Bay approach in both Florida and Texas

Fig. 6 Classroom FCAT
levels and pretest scores are
highly correlated

addition, it is worth noting that even the classrooms that score highest on the pretest
had significant room for growth, as no classroom had an average score greater than
60 %.

Looking next at the relationship between learning gains and prior FCAT scores,
we see that prior mathematics achievement is not a statistically significant predictor
of student learning (Fig. 7). This result provides strong evidence that the SunBay
Mathematics program is effective for students from a variety of prior mathematics
backgrounds.

Taken together, these results provide substantial evidence that the SunBay Math
materials were effective for the range of students and teachers who participated in
the first year of the sustainability study.
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Fig. 7 Classroom FCAT
levels and gain scores are not
significantly correlated

3.3.3 Teacher Perceptions of Support

To investigate teacher perceptions of professional support, at each PD session, we
asked teachers to rate how prepared they felt to: (1) teach the mathematics content,
(2) use the materials, (3) use the software, and (4) engage in the pedagogy needed
to teach the unit. The average rating was 4.54 out of 5, indicating that teachers were
very satisfied with the support they received in terms of teaching the materials. In
the one-on-one interviews, the teachers made the following statements about the
support they received:

The lessons that we did together, it was much easier to teach, because you already knew
where it was going, and what the next lesson was. And, without going through the entire
thing, if I had walked in blind, and just started with the first lesson, and taught it through,
and not known where it [Managing the Soccer Team] was going, you know, I might not have
been able to bring out as many thing to the kids, so it was good to know where it started and
where it ended, and know what the progression was.

I think that without that [initial three-day PD], the program would not have been success-
ful, because it [PD] served as an introduction, and then we had, which we don’t normally
have, more extensive training prior to beginning something. When we field test something,
normally we are just thrown in cold, and you have to sink or swim. I think they [the Sun-
Bay team] provided us with a pretty good foundation and an overall view of what the goals
of the program were. I think they modeled, there was a lot of modeling so that you can
see alternative strategies for teaching it [Managing the Soccer Team], and sometimes when
you’ve taught for quite a while, you tend to get in a rut, so it is nice to see best practices and
current practices modeled, and I think that was really great! They handled that really well.

It [PD] helped us prepare because we got to look at the program, and actually go through
the unit and see how it all tied together; that was I think the big thing. . . I remember a light
bulb going off, oh, that is why they are not talking about this yet, because here it is you
know 4 days later. I thought that helped immensely.

They [the monthly PD sessions] were good; I liked the fact that they [the project team]
seemed to be concerned not only just about the field test, but also opening us up to ideas
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and strategies that maybe we had forgotten or never learned. So I felt like, I learned stuff
not necessarily just about SimCalc but something to help me be a better teacher.

As House (1994) pointed out, one feature that leads to a successful PD program
is for teachers to use networking and interactions with other teachers as a support
structure when trying new instructional approaches. This approach allows teachers
to receive feedback, encouragement, and novel ideas from colleagues. As such, an-
other aspect of the teachers’ perception of support was the support they provided to
each other during the project. As the teachers stated during their one-on-one inter-
views:

It was interesting to listen to obstacles and challenges that arose when they [other teachers]
were teaching the lessons and how they handled them.

When you work with the same people for very long, you tend to become stagnant, and, you
know, you run out of new ideas, but when we were out with other people. . . you get another
perspective.

I think it was nice to hear them [other teachers] share what was working at their school and
then also what was not working.

It was interesting to see all of the different, you know, obstacles that other people were
going through, to see what other teachers were going through. I think it was good that we
knew people to talk to, had people who were going through the same stuff that we were
going through, to help each other out.

Usually, pro-ed meetings could go on and on. I really liked these meetings, and I think it
is because of the partnering up with the university. . . It [the PD] is a lot more collaborative
than regular canned pro-ed. So I think a lot of it, working with the other middle school
teachers was helpful, you know, cause obviously we could bounce ideas off each other, and
the professors, I think, really helped with that.

3.3.4 Teacher Perceptions of the Materials: Perceived Coherence and Value

To investigate teacher perceptions of coherence and value, at each PD session we
asked teachers to answer the items on a scale ranging from 1 to 5 (5 being the high-
est). The items asked the teachers: (1) How useful was the workshop to you as a
teacher?; (2) Would you recommend the workshop to a colleague?; and (3) Overall,
how satisfactory did you find the workshop? The average rating was 4.7 out of 5, in-
dicating that teachers were very satisfied, finding the materials to be very useful and
related to their work in the district. Teachers stated during one-on-one interviews:

I think you know looking at the big ideas of the Sunshine State Standards and knowing that
we are going to be using less topics for a longer period of time, I think this will help a lot. I
think this gets into more depth than we have been able to cover and they [students] can see
the connections.

All of [the relevant mathematics content] is in there that we need for rate and proportionality.
I thought it had lots of upper level thinking and critical thinking for going deeper into it.

It definitely met them [the Next Generation Sunshine State Standards’ of rate and propor-
tionality]. Um, I think the great thing about the next generation is, you get to go more in
depth. . . I think this is perfect, especially you wouldn’t feel the pressure to finish it in a
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short amount of time. You can go more in depth and do more things with it; and there is so
much more you can do with that.

I think the unit is perfectly set up for Next Generation Sunshine State Standards. I’m so
excited about these new standards! Actually, I think this surpassed what I thought. . . It’s
meaningful, you know, it’s not going a mile out an inch deep, it’s really delving into it, into
the concepts here. It is definitely worthy [of the time].

I think these [SunBay materials] have done a better job [than the regular textbook], because
the new standards are becoming a bit broader in a sense, I think you are hitting it a little bit
better, instead of us each year hitting 80 something benchmarks, you know, they are going
to cut them down and whatever 40 that we are hitting you really go into more depth.

3.3.5 Teacher Perceptions of the Materials: The Matthew Effect

To investigate the Matthew Effect, we asked teachers in their one-on-one interviews,
“What went well with your target class?” This allowed the teachers to discuss how
the materials met the full range of their students’ mathematical needs. We found
that all teachers believed that the materials could be used effectively with students
of differing prior achievement. Example quotes include the following:

I have mainly 1’s and 2’s [students with very low FCAT scores] in my target class and they
felt success, and students who never want to share were sharing every day. They were able
to tell me the speed, they wanted to share their graphs, they answered questions. It was good
to see the kids that don’t usually get math get it.

The group that was selected for me was as low as low can get, I mean, a co-taught class,
90 % of them were ESE, EBD kids with behavior problems, and they couldn’t read. . . What
I wanted to them to understand is to be able to look at a graph and tell me what kind of
slope it is and explain to me do they understand what rate is, and how to solve the distance
formula, and they were able to do that, so I think I was successful. . . working with low-level
kids, I think it works.

The one thing about the simulation, the children that may not read as well were not bound
to just reading the book, it was more of the kinesthetic way of learning, because they were
touching, and looking. So I think it gives the lower-level kid kind of an advantage.

I had a whole group of kids that were engaged much more than they would be in the regular
math.

I would like to address the English Language Learners, which we have quite a few of, I
think it leveled it a little bit for them in that they could see it. . . this [the unit] in particular
was very leveling for them.

By the end of Year 1 of the SunBay Math program, the team had achieved its pri-
mary goals of building a strong collaborative team, showing that the materials could
increase student learning for a wide range of students, and of building a committed
community of core teachers who valued the program.

4 The Program: Beyond Year 1

At the time of this writing, the SunBay Math program is in its third year. While the
Year 1 implementation was a success, to achieve the program goal of sustainability
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requires that the program continue to be a significant presence in the district for a
number of years. During the second year, the focus of the program was on incre-
mental scaling. Due to teacher turnover, about half of the first year teachers were
either not teaching in the district or not teaching middle school mathematics in the
second year of the program. We recruited 6 new teachers, and the program engaged
a total of 12 teachers (6 continuing and 6 new teachers) and approximately 1,200
students. Six of the Year 2 teachers joined the first cohort of the MG DEME certifi-
cate program. In Year 3 of the program, we are more focused on scaling up, both in
terms of the number of teachers involved and the number of units we are offering.

In this section, we report on a number of factors that indicate that the program is
making progress toward achieving its goal of sustainability: (1) the project has gar-
nered continued local and national support, (2) the district has increased its support
for the program, and (3) the program has continued teacher support.

4.1 Continued Local and National Support

Once Year 1 was shown to be a success, the Helios Education Foundation and the
Pinellas Education Foundation again agreed to fund the program, and the Progress
Energy Foundation agreed to fund the first cohort of the MG DEME certificate pro-
gram.

As a result of the strength of the results from Years 1 and 2, PCS agreed to
fund teacher professional development to allow more teachers to participate in the
program. Soon after the PCS announcement, the SunBay Math team was awarded a
highly competitive Next Generation Learning Challenge (NGLC) grant. This grant
will help the SunBay Math program achieve its goals of increasing the amount of
materials, while also allowing us to pilot technology-based formative assessment
and expand to more teachers. Specifically, the NGLC grant will allow the team to
develop another SimCalc replacement unit (an eighth-grade linear functions unit),
and will allow us to expand to additional teachers in the existing SunBay schools,
as shown in Table 1.

While the program success thus far does not guarantee future success, the signifi-
cant local support, combined with national recognition through the NGLC program,
gives us reason to be optimistic that our scaling will continue in future years.

Table 1 Current and future teachers and students in the SunBay Math program

Status as of July 2011 Expectation for July 2012, under
the NGLC Program

Number of teachers 12 28

Number of schools 6 9

Number of students >1,200 >2,500



Sustainable Use of Dynamic Representational Environments 199

4.2 Increased District Support

The school district has increased support for the program in two ways: through
funding and through public statements. Up to this point, the district has provided
funding for teachers to engage with the SunBay Math program. This funding came
at a time when PCS, along with most other school districts in the country, was facing
significant budget shortfalls. The fact that the district has considered SunBay Math
materials valuable enough to continue funding is a significant sign of support.

In addition, at the beginning of the 2011–12 school year, the SunBay Math pro-
gram was invited by the PCS K-8 district mathematics coordinator to present the
SunBay Digital Mathematics program to all Pinellas County Schools’ middle school
mathematics teachers at the school district’s annual district-wide training. In ad-
dition, nine teachers from the SunBay Math project presented and demonstrated
SunBay Math materials at the training. This highly visible support resulted directly
in increased teacher interest in the program, and the project had to inform several
teachers that they would have to wait for the 2012–13 school year to participate.

4.3 Continued Teacher Support

The teachers that have used SunBay Math materials continue to be the program’s
biggest advocate. Four teachers met with representatives from the Pinellas Educa-
tional Foundation to express the importance of this project and to request that the
foundation work to find ways to fund the program district-wide. As stated above,
teachers were also enthusiastic about representing the SunBay Math program at
the district’s annual district-wide training. This passionate support has resulted in
district word-of-mouth about the program, with several teachers in the district ex-
pressing disappointment that they are not part of the SunBay Math program.

5 Discussion and Risks

Our findings show that, up to this point, the SunBay Math program has been suc-
cessful in becoming a sustainable and integrated part of middle school mathematics
in PCS. That is not to say that the district has fully adopted the SunBay Math ma-
terials. Instead, we have succeeded in reaching our goal of building a small but
enthusiastic teacher community. These teachers are currently the most influential
advocates of the program: they have expressed their satisfaction with the program
with other teachers, with local foundations, and with the mathematics district co-
ordinator. These discussions have built pent-up demand for the SunBay Math ma-
terials, and have resulted in a general sense that the scale-up of the SunBay Math
program should be a priority for the district and local community. We note that
most district-wide mathematics reform efforts are met with substantially less enthu-
siasm by teachers, and many reform efforts are met with active teacher resistance.
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By working closely with a small group of teachers, the SunBay Math program has
found that teachers are its greatest advocates.

While the program has been successful thus far, we have identified several risks
to the ultimate program goal of long-term and district-wide adoption. We discuss
three such risks: continued funding, the technology requirements, and changes in
key personnel.

The SunBay Math program has already found ways to mitigate against the risk
of limited future funding. Because the overall PD and the MG DEME certificate
program are now an integrated component of the USFSP professional development
offerings, there is a mechanism by which teachers can be supported in the effective
use of the SunBay Math materials that does not rely on significant external funding.
However, future funding is still required to expand the SunBay Math curriculum
replacement units beyond the small number we currently have today. For the SunBay
Math program to have large-scale impact, we must still rely on future funding.

The technology requirements also pose a risk to large-scale adoption of Sun-
Bay. The SunBay Math materials have been designed to require what seems to be a
relatively small technology commitment from schools: during each of a small num-
ber of 2- to 3-week units, one low-cost computer is required for every two to three
students. In our initial conversation with district administrators, it seemed that this
commitment would be relatively simple to meet, as the district already had a goal
of one computer for every three students. However, once we got into the schools,
we recognized that the technology was not always available for SunBay use. Some
computers in the schools, often up to 20 %, were broken and waiting repairs. Other
computers were reserved for the library or computer lab, and these rooms were of-
ten booked far in advance. Some computers were reserved for specific tasks, such
as required student assessments. In the first year of implementation, we often found
that our two teachers in the school had to share one laptop cart between them. While
this solution is workable in the case of two teachers in a school where each teaches
one or two classes with the SunBay Math materials, one laptop cart for the entire
middle school mathematics department, where each teacher is using the SunBay
Math materials for multiple classes, clearly will not suffice. As the SunBay Math
program expands, we will be reliant on the technology infrastructure of schools also
expanding.

In addition to the number of computers, the type of software being used is also
a risk. Currently SimCalc is a stand-alone computer application that must be in-
stalled on each individual computer (as are other applications, such as Geometer’s
Sketchpad®). The primary benefit for schools is that SimCalc does not require an
always-on, reliable Internet connection to be used. However, SimCalc does require
system administrators being willing and able to install the software, and the soft-
ware staying on the computer. Unfortunately, these conditions are not always ob-
tainable; in some cases, the computers are configured such that only software appli-
cations that have gone through a rigorous district approval can be installed, making
the installation of SimCalc difficult. Even when SimCalc can be installed, it is not
uncommon for districts to erase all “non-standard” files from computer drives at
certain “refresh” points during the year (e.g., winter break and summer break), re-
quiring that SimCalc be installed multiple times during the year. We are currently
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investigating different models of software deployment, to determine what models
may be most compatible with large-scale use in districts.

The final set of risks we discuss are risks associated with district personnel
turnover. Any new district-wide initiative runs the risk of being associated with
the particular district administration that introduced the initiative. As such, when
the administration changes, the new administration may look to bring in a new set
of initiatives. Because the SunBay Math program has actively worked with a small
community of teachers and with local foundations, we believe that this is less of a
risk than it might be for other initiatives. In fact, shortly before the writing of this
chapter, the PCS District Superintendent left the school district. Fortunately for the
SunBay Math program, this change in the administration has not had an adverse im-
pact on the district’s stance toward SunBay, as the new superintendent has expressed
support for the program. This gives us reason to be optimistic that the SunBay Math
program will soon move even closer to our goal of full district-wide and sustain-
able adoption. As we move forward with PCS, we will investigate questions that are
critical to better understanding widespread adoption of technology-based materials,
such as the types and amounts of support necessary for schools to adopt these ma-
terials for all mathematics teachers, the trade-offs of different technology uses (e.g.,
tablets and laptops), and the forms of professional development necessary to ensure
that teachers and district leaders are prepared to implement SunBay in all middle
school mathematics classes.

Acknowledgements This material is based on work supported by the National Science Founda-
tion under Grant No. 0437861, an EDUCAUSE Next Generation Learning Challenge grant, and
grants from the Helios Foundation, Pinellas Education Foundation, the Pinellas County Schools,
and the Progress Energy Foundation. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation, The Next Generation Learning Challenge, Pinellas Education Foun-
dation, the Helios Foundation, or the Pinellas County Schools. The authors would like to thank the
teachers in Texas and Florida who were willing to use our materials and provide feedback to the
team. The authors would also like to thank the teams at SRI International and the University of
South Florida St. Petersburg.

References

Brown, A. L., & Campione, J. C. (1996). Psychological theory and the design of innovative learn-
ing environments: on procedures, principles and systems. In L. Schauble & R. Glaser (Eds.),
Innovations in learning: new environments for education (pp. 289–325). Hillsdale: Erlbaum.

Fishman, B., Penuel, W. R., Hegedus, S., & Roschelle, J. (2011). What happens when the re-
search ends? Factors related to the sustainability of a technology-infused mathematics curricu-
lum. Journal of Computers in Mathematics and Science Teaching, 30(4), 329–353. Chesapeake:
AACE.

Florida Department of Education (n.d.). Next generation sunshine state standards: mathematics.
Retrieved November 14, 2011, http://floridastandards.org/Standards/FLStandardSearch.aspx.

Hegedus, S., Dalton, S., Brookstein, A., Beaton, D., Moniz, R., Fishman, B., & Roschelle, J.
(2009). Scaling up SimCalc project: diffusion of a research-based innovation in terms of sustain-
ability and spread. Fairhaven: Kaput Center for Research and Innovation in STEM Education,
University of Massachusetts Dartmouth.

http://floridastandards.org/Standards/FLStandardSearch.aspx


202 P. Vahey et al.

Hill, H. C., Schilling, S. G., & Ball, D. L. (2004). Developing measures of teachers’ mathematics
knowledge for teaching. Elementary School Journal, 105(1), 11–30.

House, P. A. (1994). Empowering K-12 teachers for leadership: a districtwide strategy for change.
In A. F. Coxford (Series Ed.) & D. B. Aichele (Vol. Ed.), Professional development for teach-
ers of mathematics: 1994 yearbook (pp. 214–226). Reston: National Council of Teachers of
Mathematics.

Kaput, J. (1994). Democratizing access to calculus: new routes using old roots. In A. Schoenfeld
(Ed.), Mathematical thinking and problem solving (pp. 77–155). Hillsdale: Erlbaum.

Kaput, J., & Roschelle, J. (1998). The mathematics of change and variation from a millennial
perspective: new content, new context. In C. Hoyles, C. Morgan, & G. Woodhouse (Eds.), Re-
thinking the mathematics curriculum (pp. 155–170). London: Falmer Press.

Kennedy, M. M. (2005). Inside teaching: how classroom life undermines reform. Cambridge: Har-
vard University Press.

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: a framework
of teacher knowledge. Teachers College Record, 108(6), 1017–1054.

National Governors Association Center for Best Practices, Council of Chief State School Offi-
cers (2010). Common core state standards for mathematics. Washington: National Governors
Association for Best Practices, Council of Chief State School.

Penuel, W. R., & Riel, M. (2007). The “new” science of networks and the challenge of school
change. Phi Delta Kappan., 88(8), 611–615.

Roschelle, J., Shechtman, N., Tatar, D., Hegedus, S., Hopkins, B., Empson, S., Knudsen, J., & Gal-
lagher, L. (2010). Integration of technology, curriculum, and professional development for ad-
vancing middle school mathematics: three large-scale studies. American Educational Research
Journal, 47(4), 833–878.

Vahey, P., Knudsen, J., Rafanan, K., & Lara-Meloy, T. (in press). Curricular activity systems sup-
porting the use of dynamic representations to foster students’ deep understanding of mathemat-
ics. In C. Mouza & N. Lavigne (Eds.), Emerging technologies for the classroom: a learning
sciences perspective.

Vahey, P., Lara-Meloy, T., & Carriere, S. (2010). Middle school students’ mathematics learning:
an analysis of a student population in Texas (SimCalc Technical Report 09). Menlo Park: SRI
International.

Walberg, H. J., & Tsai, S.-L. (1983). Matthew effects in education. American Educational Research
Journal, 20(3), 359–373.



Impact of Classroom Connectivity on Learning
and Participation
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1 Introduction: History of Classroom Connectivity

We have studied the potential of combining the representational innovations of
the computational medium (Kaput and Roschelle, 1998; Roschelle et al., 1998,
2000) through the development of SimCalc MathWorlds® software and curricu-
lum (hereon collectively referred to as SimCalc) with the new connectivity affor-
dances of increasingly robust and inexpensive hand-held devices in wireless net-
works (Roschelle and Pea, 2002) linked to larger computers (Kaput, 2002; Kaput
and Hegedus, 2002). We chose to address the mathematics of change and variation,
a core school mathematics strand (National Council for Teachers of Mathematics
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[NCTM], 2000) that is representationally demanding and is studied at many levels
by all students, from early algebra through calculus (Kaput, 1994).

Classroom Connectivity (CC) identifies a particular type of learning environment
that uses various technologies to connect student work in a variety of represen-
tational forms (see Brady, White, Davis, and Hegedus, this volume). It has roots
in more than a decade of classroom response systems, most notably ClassTalk™

(Abrahamson, 1998, 2000), which enable instructors to collect, aggregate and dis-
play (often as histograms) student responses to questions. Once this is done, new
levels of interaction appear in large classrooms and in various domains including
mathematics in secondary schools and physics at the undergraduate level (Burn-
stein and Lederman, 2001; Crouch and Mazur, 2001; Dufresne et al., 1996; Hake,
1998; Littauer, 1972; Piazza, 2002; White, 2006). The review by Roschelle et al.
(2003) shows remarkably consistent positive impacts across multiple domains and
levels.

Our work is situated within this domain but moves beyond classroom response
systems by studying the following new CC affordances:

• The mobility of multiple representations of mathematical objects such as func-
tions as reflected in the ability to pass these bi-directionally and flexibly between
teacher and students and among students.

• The ability to flexibly harvest, aggregate, manipulate, and display to the whole
classroom representationally-rich student constructions, and to broadcast mathe-
matical objects to the class.

• The opportunity to engineer classroom activity structures in concert with the
mathematics to be taught and learned that engage students in new ways.

• Teachers can arrange, organize, and analyze sets of whole-class contributions at
once, while students can make sense of their work in a social context, reasoning,
and generalizing about their contribution with respect to their peers’ work.

Curricular materials and software documents were created to be used in conjunc-
tion with SimCalc and are aligned with the new classroom connectivity affordances
listed above. Our integrated software and curriculum was designed to support stu-
dent participation in mathematically meaningful ways and, in doing so, aim to im-
prove student understanding and success with mathematics. In order to investigate
the impact of such an approach on learning and participation, we designed a mixed
methods study, which we report here.

2 Theoretical Commitments and Research Focus

Our program of work posited classroom connectivity (CC) as a critical means to
unleash the long-unrealized potential of computational media in education (Cuban,
2001), because we saw its potential impact as direct and at the communicative heart
of everyday classroom instruction. The work we report on here shares insights into
how those new ingredients, in combination, may provide the concrete means by
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which that potential may be realized by enabling students to express themselves in
mathematically meaningful ways (Hegedus and Moreno-Armella, 2009).

The student experience of “being mathematical” (cf. Nemirovsky and Noble,
1997; Nemirovsky et al., 1998) becomes a joint experience, shared in the social
space of the classroom in new ways as student constructions are aggregated in com-
mon representations similar to those of a participatory simulation (Resnick et al.,
2000; Stroup, 2003; Stroup et al., 2005; Wilensky, 1991; Wilensky and Resnick,
1999; Wilensky and Stroup, 1999, 2000). Cognitive activity is distributed in the
socio-material space (Hutchins, 1996). Similarly changed are how students inter-
act mathematically with each other and their teacher, and, critically, how their per-
sonal identity manifests in their shared mathematical experience in the classroom
(Cobb et al., 1992a,b). Renninger (2009) focuses on how identity and interest de-
velop through interactions and refers to “the learner’s self-representation as a person
who pursues particular content and the processes that inform the development of this
self-representation” (p. 106). Our present work extends this by understanding how
identity can be projected as a mathematical representation into a public display of
self, infused with personal feelings of ownership as a mathematically meaningful
form of participation.

Based on such prior work, we focused on how learning and attitudes towards par-
ticipation can be improved through mathematically meaningful activity structures
where all students can contribute by personally constructing mathematical functions
or models of scientific phenomena. We distinguished “activity structures” as prop-
erties of tasks and their descriptions from “participation structures” that are putative
organizations of the classroom interaction phenomena that result from carrying out a
designed task. From this basis, we focused our study through the following research
question:

How can the SimCalc connected learning environment improve learning in Algebra class-
rooms through enhancing mathematically meaningful participation?

In order to address our question, we operationalized learning as the acquisition
of algebraic concepts and skills. Intersecting the learning of core algebraic ideas
with students’ attitudes created an opportunity to assess the impact of participation
structures within such learning environments. Hence the outcome measures of our
intervention were the demonstration of knowledge of algebraic concepts, and of atti-
tudes towards working individually and collaboratively. We conclude our report with
specific forms of participation under which we observed successful learning occur-
ring in various classrooms; these conditions were correlated with students’ positive
attitudes regarding classroom participation compared within treatment (SimCalc)
and comparison (“business-as-usual”) classrooms even in the cases with greatest
learning gains.

Before we present the specific details and findings of our study, we outline the de-
sign of our intervention, how our curriculum relates to the learning expectations of a
standardized set of learning frameworks in a U.S. context, and what mathematically-
meaningful participation means.
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3 Intervention Design: Integrating Classroom Connectivity
and Content

3.1 Overview of SimCalc Environments

The SimCalc software allows students to create mathematical objects on graphing
calculators and see dynamic representations of these functions through the anima-
tion of actors whose motions are driven by the defined functions. Students are then
able to send their work to a teacher computer. Calculators are connected to hubs
that wirelessly communicate to the teacher’s computer via a local access point. Due
to advances in wireless communication and interactivity between desktop PCs and
Texas Instruments graphing calculators, the flow of data around a classroom can be
very fast allowing large iterations of activities to be executed during one class. This
is not just an advance in connectivity, but in the development and application of
software that maximizes such an innovation.

We created activities that allow students to generate functions in SimCalc on the
TI-83 Plus or TI-84 Plus graphing calculator, which can then be collected (or “ag-
gregated”) by a teacher into the SimCalc software running in parallel on a computer
using a TI-Navigator™ Wireless network. The activities were part of a curriculum
developed and refined over many years that focus on core high school Algebra ideas
in the United States such as linear functions, simultaneity, covariation and slope-as-
rate versus slope as m in y = mx + b, and that utilize CC to supplement or replace
existing traditional algebra curriculum (Hegedus and Kaput, 2004). Such activities
accompanied the software and were structured to take advantage of the natural social
setup of the classroom to create variation.

Our work defined three broad activity structures, which articulated the unique
aspects of our intervention at the level that intersects curriculum through the class-
room connectivity (CC) technological affordances mentioned in the introduction:
(i) polling students, (ii) mathematical performances—publicizing individual con-
structions, and (iii) aggregation of individual constructions in a common represen-
tation system in a public display–Parametric variation. Specific details of these ac-
tivities can be found elsewhere (Brady et al., this volume; Dalton and Hegedus, this
volume; Hegedus and Moreno-Armella, 2009). These activities illustrate how we
focus on participation in terms of mathematically meaningful work. The contribu-
tion of each student is parametric (i.e., their unique count-off number), situates them
within a group or across groups, and is used to construct a mathematical motion that
is part of a wide family of algebraic functions.

3.2 SimCalc Curriculum as a Replacement Unit

The SimCalc Algebra 1 curriculum, designed for this study, replaces 6 weeks of
instruction on a period (45 minutes) schedule. These activities comprise a package
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of six units dealing with concepts such as relating graphs to events, linking repre-
sentations, families of functions, rate of change, and slope as rate. The first unit in-
troduces piecewise defined Position versus Time graphs as a way of describing and
controlling motion qualitatively, as well as introducing the basic features of Sim-
Calc. Mathematically, this unit concentrates on drawing piecewise defined Position
versus Time graphs and analyzing the table representation of the functions. In the
second unit, students create motions and correlating scenarios or exciting stories for
two actors, A and B, where students manipulate a character’s motion by changing
the slope and domain of a segment, adding segments, and deleting segments to de-
fine a piecewise linear function. After creating them, students are asked to quantify
their piecewise functions. Additions to their exciting stories should include specific
velocities, and specific intervals of time, as well as mathematically correct grammar.
The third unit aims to help students develop ways of writing constant rate situations
via function expressions primarily in the slope-intercept form, y = mx + b. Units 4,
5 and 6 focus on varying the “m” and “b” values in y = mx + b by considering m

as slope as rate (or velocity) and b as starting position of each actor.
The SimCalc Algebra 1 curriculum is mapped to Massachusetts Frameworks

(MA) and the National Council of Teachers of Mathematics (NCTM) Standards.
Approximately 30 % of the 9–10th grade MA frameworks are addressed. The cur-
riculum attends to various topics under the NCTM Standards (NCTM, 2000) in-
cluding Numbers and Operations, Algebra, Geometry, and Measurement as well
as each of the Process Standards particularly: Problem-Solving & Metacognitive
Skills—by allowing students to solve problems across contexts, e.g., graphical in-
terpretation, modeling; Representations—students use multiple-linked representa-
tions to model and interpret social phenomena; and, Communication—collaborative
learning in mathematically meaningful ways.

4 Research Design and Instruments

4.1 Research Design

A goal of the study was to investigate the effect of a SimCalc replacement unit on
learning and participation in mainstream high school classrooms through the use of
repeated measures over time. First, our outcome measures illustrate learning of core
algebraic concepts that are expected not just through a SimCalc intervention (hereon
referred to as treatment) but also in any high school curriculum. This is accom-
plished through a content test. Hence, the SimCalc intervention is mapped to core
curriculum that is normally covered in algebra classrooms. Secondly, we measured
changes in students’ attitudes to participating in mathematics classrooms through
a survey instrument. Our results illustrate the effect of the SimCalc resources on
these intersecting dimensions and conclude with two case studies to explore poten-
tial classroom conditions and pedagogy that can lead to such variation.
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We conducted a quasi-experimental, controlled-study, repeated measures design.
We wished to conduct a slightly underpowered study first to establish under what
ideal conditions learning and participation can be affected, which could later be
used to design an efficacy study. We used two districts—of similar type in terms of
socio-economic status (SES) and achievement. All 16 ninth-grade algebra classes
in these two school districts took part in the study. Eight classes received the Sim-
Calc treatment as a replacement package. A total of five teachers used the SimCalc
curriculum—some taught more than one class. The teachers involved in the study
were not randomly chosen; rather they agreed to be a part of the project for various
reasons such as: to earn graduate credit, a desire to try using new hand-held tech-
nology, or had seen SimCalc before and were interested in implementing it in their
own classrooms. There was a similar distribution of teachers in each group with re-
spect to number of years in teaching. Due to the quasi-experimental nature of the
study, we wished to work with volunteer teachers to observe effect under ideal con-
ditions but we did match the treatment classrooms to other factors in the comparison
classrooms.

The treatment classrooms covered identical algebra topics as outlined in the dis-
tricts chosen curriculum and mapped to the MA frameworks. The SimCalc curricu-
lum introduced these core topics through different activity structures utilizing CC.
Students were placed randomly into classes by the school district and, since we were
collecting data in both college algebra and honors algebra classrooms, our study fo-
cused on a wide representation of students in each school. Originally, there were
160 students in the treatment group and 236 in the comparison group; this was the
whole of the ninth-grade class in the two districts. All students in the study were
baseline tested (as a pretest) at the start of their freshmen year prior to any interven-
tion to compare experimental groups. Our attitude survey was also administered at
this time. No significant differences in pretest scores were found. This pretest score
was used as a covariate in our later analyses.

The content test was administered a second time to students in the treatment
classrooms after the 6-week curriculum was completed. The same test was given to
students in the comparison classrooms at a similar point in the existing curriculum
sequence. We administered our attitude survey at similar points in time.

Video data were collected daily for six of the eight treatment classes and for one
class in the comparison group during the course of the intervention. Video was not
collected in every class due to a teacher’s desire to not be video recorded, project
resources, and time. We collected video data in one classroom from the comparison
group because its schedule did not intersect with other classes. This proved to be
the only viable comparison class in which to collect video data; the teacher was
well experienced and regarded by the school as a highly successful teacher. Such
convenience proved opportune for the project and answering our research question
specifically, as this was the highest achieving comparison class at the end of the
intervention allowing us to conduct a case study at the classroom level that we report
here.

Each class was recorded with two digital cameras—one focused on the teacher
and the whiteboard space where SimCalc software was projected and the other po-
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sitioned at the front of the class focused on the students. This camera used a wide-
angled lens to pan out and observe whole class dynamics as well as small group
interactions. Both cameras were used as roaming cameras when the class was in-
volved in small group work. We used this classroom video data as a qualitative
component that reinforced our quantitative findings because quantitative surveys
and/or structured qualitative (interviews) analyses do not always accurately reflect
the attitude/affect of a student (Goldin, 2008; Ma and Kishor, 1997; Schorr and
Goldin, 2008).

Our final results report on 324 students—187 students in the comparison group
and 137 students in the treatment group. Attrition was due to students moving, ab-
sences, and switching classes. Attrition did not differ significantly between treat-
ment and comparison participants in terms of standard variables (e.g., gender) at the
whole class level.

The SimCalc software and curriculum was implemented with a focus on core
high school Algebra. Teachers who used the SimCalc materials in their classrooms
met over the summer to review curriculum and receive training. The treatment teach-
ers were asked to use the intervention materials to replace their existing curriculum
and the comparison teachers continued using their existing textbooks (which we re-
fer to as “business-as-usual”). The treatment teachers were asked to not discuss the
software, intervention, or curriculum with each other until at a final meeting after
everyone completed the intervention.

The central research question of our study focuses on understanding the com-
plex interaction between learning and participation. We also examine what student
and teacher interactions look like when these interactions correlate in strong and
weak ways through analyzing classrooms with lowest and highest learning gains.
We collected data on learning as knowledge acquisition through a content test and
changing attitudes to participate in classrooms through a survey and classroom ob-
servation (video) to analyze discourse patterns.

4.2 Measuring Learning Outcomes

Learning outcomes of students in our study were measured using an instrument that
was developed by assessment developers and the research team (see http://tinyurl.
com/6dgjpfp for a copy of the full test).

We constructed the instrument by following the principled assessment design ap-
proach (Mislevy et al., 2003). In this approach, we identified the specific knowledge
or skills to be tested and then articulated an evidence model that specified the kinds
of tasks (e.g., problem solving, application, open-ended, multiple-choice) that are
likely to reveal whether students have mastered the target knowledge base and skill
set. Next, in collaboration with an external advisory group, we created specific prob-
lems for students. The evidence model was refined through piloting and procedures
for ensuring the technical quality of assessments.

In order to improve content validity, the instrument was primarily developed us-
ing standardized test items from high-stakes examinations, items from textbooks,

http://tinyurl.com/6dgjpfp
http://tinyurl.com/6dgjpfp
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research literature and NAEP items. Ten percent of the items were situated within a
SimCalc activity context and covered two broad types of questions: (i) mathematics
related to our content areas that students are expected to know on 10th-grade Mas-
sachusetts (MA) statewide examinations, and (ii) questions that require advanced
mathematical ability that draw on deeper links between algebra and calculus. A to-
tal of 60 test items were compiled from various high stakes U.S. State assessment
tests, such as the Massachusetts Comprehensive Assessment System (MCAS), as
well as National Assessment of Educational Progress (NAEP) items, and Advanced
Placement Calculus items. A few non-standardized items designed by the research
team were included. These items had previously been used as assessment items in
undergraduate SimCalc classrooms. In order to attend to improving face and content
validity, all 60 items were reviewed by a panel of experts including members of the
research team, mathematics professors, high school administrators, and teachers. As
a result, 22 items were selected for a pilot study.

The assessment developers piloted this set of questions with similar students as
in the study and revised them to ensure that the items were not too easy for stu-
dents (p > 0.80) and that items could discriminate effectively between different
performance levels. We also recruited undergraduate mathematics students, in a pre-
service mathematics education preparation program, to complete the test in order to
set limits on how long the test should take. The final instrument was composed of
22 items. The test was designed to take no more than 45 minutes to complete—on
average it took 30 minutes for our pilot participants to complete.

Twenty of the 22 test items were multiple choice and worth one point. There
was one short answer question and one long answer question from a previous Mas-
sachusetts state assessment test. The short answer question was worth a maximum of
two points—one point for partial credit. The long answer question was worth a max-
imum of four points—partial credit was also given. The scoring for both questions
followed the rubric outlined by the state of Massachusetts. Three different raters
scored the two questions. The three raters reached an inter-rater reliability of 92 %
(r = 0.92). A content validation study was conducted to ensure instrument validity.
A panel of four experts in mathematics education was surveyed for the study. The
survey asked panel members to rate items on the content test for clarity, represen-
tativeness, inclusion in the subscales created for the assessment, and overall com-
prehensiveness as outlined by Rubio et al. (1999). Panel members demonstrated an
inter-rater reliability of 80.9 %, supporting content validity of the instruments (see
Tapper, 2011, for further details).

The content test was composed of the following content categories and focused
on principled mathematical concepts and skills (NCTM, 2000): graphical interpre-
tation (nine items), rate and proportion (five items), computational/procedural (one
item), and making connections across representations or multiple representations
(seven items). These proportions are aligned with coverage in the MA frameworks
and intensity of coverage in our curriculum. We used these content categories in
our analyses, as they were more representative of a set of general algebraic thinking
skills.
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4.3 Measuring Changes in Attitudes to Participate

The Student Attitude Survey was constructed under a principled assessment design
approach (as described earlier) using items selected from a variety of established
instruments (Longitudinal Study of American Youth, 1990; Ma and Kishor, 1997)
including previous SimCalc research on affect and attitude (Goldin et al., 2007;
Schorr and Goldin, 2008) and the Circumplex Scale of Interpersonal Values (Locke,
2000).

Various issues were addressed over the course of instrument development. First,
the interval of the Likert-scale was changed from 1–7 to 1–5—to preserve stabil-
ity given the notion of attitude towards certain activities measured by various items
was less than well agreed upon amongst the age group we were observing. Second,
certain items did not address affect but instead attitudes (the name of the final in-
strument), given there was a mixture of “attitude-towards-mathematics” questions
mixed up with “sociability” questions. Later on in this paper, we present a fac-
tor analysis, which breaks the overall survey into components that relate to such
broad areas in a statistically reliable way. Third, the overall structure of the survey
was modified through various iterations. The order of questions changed so similar
items were not in a sequence. Social desirability questions were modified or elimi-
nated to attend to affective-response behavior. To attend to this behavior, we added
some items with reversibility, i.e., we negated some items and checked for reverse
responses among our respondents to ensure reliability. To this end, the valency of
the potentially coupled items were adjusted to address the positivity or negativity of
the terminology used.

To further explore instrument concurrent validity, the Attitude Survey was com-
pared to a similar instrument—the Fennema-Sherman (F-S) Mathematics Attitude
Scale (Fennema and Sherman, 1976). Details can be found elsewhere (see http://
tinyurl.com/6dgjpfp). Slight differences were observed but were not significant.

The final 27-item attitude questionnaire was administered to all participants in
both experimental conditions during the first two weeks of their freshmen year—
near the same time as the content test. It took approximately five to ten minutes to
complete. It was administered again to both groups at the completion of the inter-
vention.

In order to detect sensitive changes in attitudes and make correlations with
changes in difference scores on other outcome measures, it was necessary to re-
duce the dataset into quantifiable chunks that were meaningful in addressing the
main research question. This process relied on establishing factors that we used to
create four attitude factor scores to measure correlations with learning scores.

We conducted an exploratory factor analysis on items from the student attitude
survey with the data collected in this study (Group 1, n = 283) to investigate the
factor structure proposed by our theory regarding changes in attitude. We cross-
validated the factor structure using a confirmatory factor analysis on a separate data
set (Group 2, n = 153) that was collected at a later time (see http://tinyurl.com/
5uw7xmn for more technical details on the analysis). We used principal compo-
nents analysis (PCA) because our purpose was to compute composite scores for
dimensions on the survey in order to measure change in attitude over time.

http://tinyurl.com/6dgjpfp
http://tinyurl.com/6dgjpfp
http://tinyurl.com/5uw7xmn
http://tinyurl.com/5uw7xmn
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Four components explained 48 % of the total variance in our sample. The first
factor, which we called Positivity towards learning mathematics and school (α =
0.782), explained 20.8 % of the variance. These items collectively gave us a sense
of relatively stable student beliefs and attitudes towards math and school, which we
predicted would not change over the course of the short intervention. The second
factor, which explained 11.4 % of the variance, was labeled Publicizing work and
related affect (α = 0.739). The items in this factor illustrated students’ attitudes to
participate within the classroom. We did expect that responses to these items would
change as a result to our intervention. The next component, Working privately (α =
0.754), explained 8.5 % of the variance. Our activities were centered around group
work so, although changes due to the intervention could be interesting, we made no
claims of the effect on student outcome. The last component, Use of technology (α =
0.610), explained 7.3 % of the variance. This component was focused on attitudes
towards the use of technology in class. See Table 1 for a summary of the items in
the factors.

Table 1 Factors from the attitude survey

Factor Item

Positivity towards
learning mathematics
and school
(Attitude 1)

I do not like school.

In middle school, my math teachers listened carefully to what I had
to say.

I think mathematics is important in life.

In middle school, I learned more from talking to my friends then
from listening to my teacher.

I like math.

I enjoy hearing the thoughts and ideas of my peers in math class.

Mathematics interests me.

Publicizing work and
related affect
(Attitude 2)

I sometimes feel nervous talking out-loud in front of my classmates.

I do not like to speak in public.

When I see a math problem, I am nervous.

I do not participate in many group activities outside school.

I like to go to the board or share my answers with peers in math class.

I am not eager to participate in discussions that involve mathematics.

I feel confident in my abilities to solve mathematics problems.

In the past, I have not enjoyed math class.

I receive good grades on math tests and quizzes.

Working Privately
(Attitude 3)

I enjoy working in groups better than alone in math class.

I prefer working alone rather than in groups when doing
mathematics.

I learn more about mathematics working on my own.

Use of Technology
(Attitude 4)

I enjoy using a computer when learning mathematics.

When using technology for learning mathematics, I feel like I am in
my own private world.

Technology can make mathematics easier to understand.
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5 Analysis

We first present our analyses of how students in the treatment and comparison
classrooms compare on the content and attitude instruments pre to post (difference
scores). We then disaggregate the data to illustrate how particular content categories
of mathematical concepts/skills, e.g., graphical interpretation, can be improved by
using SimCalc. The second part of our analysis focuses on correlations between
differences in content scores and attitude in terms of the content categories and the
four attitude factor scores outlined in the previous section.

The final part of our analysis looks quantitatively and qualitatively at the com-
parison classroom from which we collected video data and a similarly achieving
treatment classroom, as measured by our mathematics content test. When we exam-
ined all the comparison classes, we found that the comparison classroom in which
we collected daily video data during the intervention was the highest achieving.
In order to conduct case study analysis, we paired this comparison classroom with
a similar achieving treatment classroom (approximately, on average, 3 points gain
out of a total 26 points from pre to post). We present evidence that there were dif-
ferences between treatment and comparison groups in these high achieving class-
rooms. There were no correlations between learning gains and attitudinal changes
in the comparison classroom, but in the treatment classroom we observed statisti-
cally significant correlations. Using discourse methods from prior work (Hegedus
and Penuel, 2008), we discovered that students took speech turns with each other
in a progressively increasing manner over the course of the intervention whereas
there was no change with how students interacted with each other or the teacher
over time in the high achieving comparison classroom. We also observed quite dif-
ferent styles of discourse. We offer examples that highlight important aspects of the
SimCalc classroom that we believe interpret why we saw such strong learning gains
intersecting with changes in attitudes to participate in mathematical activity.

Through this analysis, we aim to support our two final conclusions as to why the
SimCalc learning environment had such significant impact on learning: (i) the par-
ticipatory nature of the classrooms was fundamentally different, which is illustrated
in our turn-taking charts and (ii) discourse was personal and identity-laden. Students
related and personified their mathematical contributions in public. There was a deep
sense of ownership.

5.1 Comparing Groups

In our statistical analyses, we used parametric techniques where the assumptions
for such tests were met. These included independent t-test, ANCOVA and Pearson
correlation coefficients. For some of our categories, the data deviated from normality
slightly. In such cases, to achieve greater statistical power, we used non-parametric
counterparts including Wilcoxon Signed rank test and Spearman’s rho.

Our main effect was statistically significant and showed that students in the treat-
ment group had a higher gain on items related to linear functions, slope as rate,
proportion, linear variation, seeing across representations, and graphical interpreta-
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Fig. 1 Mean difference
scores by individual classes

tion. Both groups were not statistically different on the pre-test, which addressed
concerns about selection bias. In the treatment group, the mean gain was approx-
imately two points out of a total of 26 points. In the comparison group, the mean
gain was approximately one point. This group difference was statistically signifi-
cant, t (322) = 2.711, p = 0.007. This represented a medium effect size d = 0.34
(or r = 0.17). Please note that we are actually referring to difference scores (post
minus pre) but will use “gain” from now on (unless specified) as all differences
were positive. We further looked at analyzing posttest scores using the pretest as
a covariate for the non-honors students given the honors population was small and
unequal across both groups. Using an ANCOVA, we found that the covariate—
the student pretest score—was significantly related to the students posttest score,
F(1,250) = 113.360, p < 0.001 and the non-honors students who used SimCalc
learned more than those who did not after controlling for the effects of pretest score
(F(1,250) = 17.405, p < 0.001, r = 0.26).

The majority of teachers who used the SimCalc intervention package had the
most significant gains (see Fig. 1).

Figure 1 highlights variation in difference scores across classrooms in both
groups. This illustrates robustness of the study (Roschelle et al., 2010), that alge-
braic learning is occurring across both settings, and that the content instrument is
sensitive to measuring change. It also illustrates that the test is not biased to learn-
ing in a SimCalc setting alone. While there were some low gains in some SimCalc
classes there was an overall intervention effect.

5.2 Mathematical Item Analysis

The SimCalc environment allows teachers and/or curriculum developers to show
and hide various representations in an activity. This is a very valuable tool in
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Table 2 Odds ratio
calculation Post-test Pre-test

Success A B

Failure C D

terms of facilitating classroom flow and allowing connections to be seen and
made by students. An example of this would be building a tabular representation
from a motion-based representation, or an executable representation (Hegedus and
Moreno-Armella, 2009). The ability to work with showing or hiding representa-
tions can be extended into higher order thinking skills, i.e., write a general rule for
the family of functions that is shown. A functional representation may be hidden
from the students, but can later be revealed to the students at the discretion of the
teacher. The activities were written to take advantage of this important feature and
exploit it in meaningful ways. They were designed to guide and engage students in
discovery and learning.

In particular, the treatment group had a significantly greater gain than the com-
parison group on multiple representation items t (322) = −4.771, p < 0.001, which
represents a medium sized effect, d = 0.53 (r = 0.26). These items deal with gen-
eralizing relationships and making connections across representations. Conceptual
transfer across multiple representations of a mathematical concept or object is an
important theme in mathematics education and one of the NCTM process standards
(NCTM, 2000).

Because of the dynamicity and linked representations that exist in the SimCalc
software and the promotion of linking representations in the curriculum, we fo-
cused on the multiple representation items. For example: which function expression
describes the given table of data? These items involve making mathematical connec-
tions among ideas in symbols, graphs, diagrams, and words and require a different
type of thought than interpreting a graph, or determining a pattern amongst a given
set of data would.

We present an item-by-item analysis of mean scores from pre to posttest high-
lighting questions of statistically significant gain for either group. Table 2 highlights
the results of the multiple-choice items on the pre and posttest for the treatment and
comparison groups. Since we are analyzing dichotomous data, we calculated the
odds ratio rather than parametric or non-parametric tests. Odds Ratios (OR) are
simply the ratio of odds of success in one event to odds of success in another event.
Table 2 shows a 2 × 2 contingency table can be set up for both groups, where the
ratio of odds (OR) is AD/BC.

In a controlled-design, we used a modified version, which incorporates both
groups into one contingency table (see Table 3). A 95 % Confidence Interval (CI) is
defined by (eY , eX) where Y = ln(OR)− (1.96∗SE) and X = ln(OR)+ (1.96∗SE).
So, the estimated risk for the treatment on a particular item is OR × 100 % of
the comparison with a 95 % confidence interval of (eY , eX) as defined above.
Hence, we wish to see ORs of significantly less than 1. A z-statistic is defined as
z = ln(OR)/SE for significance testing.
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Table 3 Modified odds ratio
Incorrect on post Correct on post &

incorrect on pre

Treatment A B

Comparison C D

We observed significant gains for 7 out of the 20 multiple-choice items in the
treatment group relative to just one for the comparison group (see Table 4). Four of
the items fell into the multiple representation content category—two were graphical
interpretation items, and one was a pattern recognition item. We will extract two
items that illustrate the fundamental mathematical ideas that were addressed in this
intervention.

Table 4 Odds ratio by item

OR Content/skill SE CI

Low Up p

1 0.44 Identify correct algebraic expression that
corresponds to graph given

0.502 0.164 1.177 0.051†

2 0.69 Development of an algebraic expression
describing real life quantities

0.333 0.359 1.324 0.132

3 1.78 Interpretation of a Graph; Development of an
algebraic understanding of a verbal expression

0.322 0.944 3.340 0.963

4 0.47 Open response; Understanding of real life
quantities expressed algebraically

0.407 0.210 1.033 0.030*

5 0.61 Recognizing a relationship between two
algebraic equations

0.307 0.334 1.113 0.053

6 0.19 Identify pattern in quadratic sequence to predict
additional terms

0.301 0.104 0.337 0.000

7 1.36 Concept of average velocity given a position
function

0.736 0.322 5.768 0.663

8 0.76 Solve for unknown variable 0.279 0.441 1.316 0.165

9 0.82 Understanding of parallelism through an
algebraic expression

0.323 0.436 1.545 0.270

10 0.44 Given a quadratic function relate the area of a
square to one of its sides

0.272 0.257 0.748 0.001**

11 0.60 Determine the lengths of the sides of a rectangle
given its area and perimeter. System of
equations: use one to solve another

0.258 0.361 0.994 0.024*

12 0.68 System of equations; Comprehension in
graphical context

0.264 0.407 1.145 0.074

14 0.52 Understanding parallelism expressed
algebraically with additional constraints

0.247 0.322 0.845 0.004**

15 0.67 Determine whether two lines intersect given
their functions and understand the process of
calculation in order to derive answer

0.267 0.397 1.130 0.067
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Table 4 (Continued)

OR Content/skill SE CI

Low Up p

16 1.03 Relationship between speed and position 0.300 0.571 1.850 0.536

17 1.10 Recognition of a pattern between two variables
that can be expressed algebraically

0.308 0.604 2.017 0.626

18 0.89 System of equations; Interpretation of a graph;
Intersection of two functions

0.296 0.498 1.588 0.346

20 0.58 Transform a verbal expression into an algebraic
1 in order to develop a system of equations

0.325 0.308 1.099 0.048*

21 0.60 Manipulation of a parabolic function and how it
will change graphically.

0.293 0.340 1.070 0.042*

22 0.81 Determine y-intercept of function; Formal
notation

0.294 0.458 1.114 0.242

†p < 0.10; *p < 0.05; **p < 0.01
Note: OR = odds ratio; SE = standard error; CI = confidence interval

Fig. 2 Content test Item 21

Item #21 (see Fig. 2) presented a formula representing a linear relationship. Stu-
dents were asked to identify the graphical representation of that linear relationship.
The estimated risk for the treatment group on this item was 60 % of the comparison
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Fig. 3 Content test Item 10

group, with a 95 % confidence interval of (0.34, 1.07). The formula C = π ∗ d had
never been identified or discussed in the SimCalc curriculum. The relevant mathe-
matical topics and problem solving skills needed were as follows: Patterns, relations
and algebra; proportional reasoning; understanding of constant rate, graphically and
algebraically. This item is a potential example of cognitive transfer of skills in terms
of graphical interpretation across models and contexts.

Item #10 (see Fig. 3) involved interpreting a graph and identifying slope from a
graphical representation by using two points on a line. Both groups had a gain on this
item pre to post. Gain for the treatment group was almost two standard deviations
above the mean. The estimated risk for the treatment group on this item is 44 % of
the comparison group, with a 95 % confidence interval of (0.26, 0.75).

Immersing students in the SimCalc environment encourages and demands that
they use multiple representations with the aim of making connections across repre-
sentations that they may not otherwise recognize. Reasoning across representations
is an important and difficult skill, which is explicitly focused on in the SimCalc
learning environment. This has been classified as a conceptually difficult skill in
other related work (see Roschelle et al., 2010).

5.3 Intersection of Learning and Attitudes

Only 214 students (80 treatment and 134 comparison) completed both content tests
and attitude surveys. We use this constrained sample for the purposes of the second
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Table 5 Two-tailed correlations between changes in student attitudes with changes in student
outcome measures for the treatment group (n = 80)

� MC � GI � R & P � C/P � MR � Att. 1 � Att. 2 � Att. 3 � Att. 4

� Total
Pts.

0.979** 0.581** 0.626** 0.280* 0.659** 0.108 0.001 −0.055 −0.126

� MC 0.603** 0.555** 0.306** 0.650** 0.117 −0.012 −0.048 −0.118

� GI 0.189† 0.070 0.108 −0.016 0.013 0.092 −0.040

� R & P 0.141 0.172 −0.050 0.021 −0.229* −0.161

� C/P 0.080 −0.053 0.039 0.006 0.027

� MR 0.152 −0.108 0.005 −0.053

� Att.1 −0.130 0.121 0.275*

� Att. 2 −0.045 −0.029

� Att. 3 −0.069

†p < 0.10; *p < 0.05; **p < 0.01
Note: Correlations are Spearman Rho. MC = Multiple Choice Items; GI = Graphical Interpreta-
tion; R & P = Rate & Proportion; C/P = Computational/Procedural; MR = Multiple Representa-
tions; Att. = Attitude

part of our analysis focusing on correlations between learning and attitudes towards
participation as measured by our content and survey instruments.

Gain on the proportion and rate content category was negatively correlated with
changes in attitude regarding preferences to work alone (Attitude 3), rs(80) =
−0.229, p = 0.041, for treatment students. Students who gained on this content
subscale tended to agree less with statements such as “I prefer working alone rather
than in groups when doing mathematics” on the post-survey compared to the pre-
survey.

There were no significant correlations between gain on content categories and
attitude components at the p = 0.05 level for two-tailed and one-tailed correlations
for the comparison group. Tables 5 and 6 display all correlations between content
categories and attitude subscales for the treatment and comparison groups respec-
tively.

5.4 Comparing High Achieving Classes from Each Experimental
Group

The final part of our analysis focuses on a comparison classroom (C5) and a similar
achieving treatment classroom (C13). The comparison classroom, in which daily
video data was collected, was the highest achieving comparison classroom. Both
the treatment and comparison classes gained approximately 3 points, on average,
from pre to post, and had similar numbers of students when we visited their class-
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Table 6 Two-tailed correlations between changes in student attitudes with changes in student
outcome measures for the comparison group (n = 134)

� MC � GI � R & P � C/P � MR � Att. 1 � Att. 2 � Att. 3 � Att. 4

� Total
Pts.

0.983** 0.729** 0.470** 0.133 0.549** 0.018 0.015 0.095 −0.043

� MC 0.744** 0.387** 0.133 0.572** 0.010 0.036 0.088 −0.039

� GI 0.092 0.057 0.169† −0.027 0.113 0.102 −0.003

� R & P −0.011 0.008 0.071 −0.072 0.040 0.011

� C/P −0.078 0.074 −0.036 −0.068 0.067

� MR −0.001 −0.026 0.072 −0.099

� Att.1 −0.130 0.229** 0.058

� Att. 2 0.072 −0.161†

� Att. 3 −0.047

†p < 0.10; *p < 0.05; **p < 0.01
Note: Correlations are Spearman Rho. MC = Multiple Choice Items; GI = Graphical Interpreta-
tion; R & P = Rate & Proportion; C/P = Computational/Procedural; MR = Multiple Representa-
tions; Att. = Attitude

rooms (C5, n = 22; C13, n = 19). Both classes were non-honors college preparation
courses.

5.4.1 Correlations Between Changes in Content Test Scores with Changes
in Attitudes

Changes in attitudes did not significantly correlate with one another for compari-
son students in C5. However, for treatment students in C13, changes in positivity
towards math and school were positively related to students agreeing more strongly
with statements such as “I enjoy using a computer when learning mathematics” on
the post-survey, rs(18) = 0.601, p = 0.008.

In these high achieving classrooms, there were no correlations between learning
gains and attitudinal changes in the comparison classroom (p < 0.05). However,
in the treatment classroom, we observed several statistically significant correlations
(see Tables 7 and 8).

5.4.2 Turn-Taking as an Indicator of Differences in Participation

We used classroom video data to conduct discourse analysis to investigate reasons
for such strong correlations between changes in learning and participation at the
classroom level through analyzing differences in participation as described in our
theoretical overview. One way to examine discourse is to examine the number of
utterances that are made by students compared with those made by the teacher.
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Table 7 Two-tailed correlations between changes in student attitudes with changes in student
outcome measures for a treatment class (C13) (n = 18)

� MC � GI � R & P � C/P � MR � Att. 1 � Att. 2 � Att. 3 � Att. 4

� Total
Pts.

0.979** 0.687** 0.458 0.371 0.635** 0.353 −0.360 0.166 0.185

� MC 0.733** 0.428 0.367 0.608** 0.363 −0.261 0.165 0.218

� GI 0.131 0.029 0.169 0.352 0.116 0.215 0.359

� R & P 0.284 0.050 0.003 −0.083 −0.214 0.246

� C/P 0.058 0.129 −0.442† −0.174 0.258

� MR 0.140 −0.563* 0.415† −0.288

� Att.1 −0.112 −0.030 0.601**

� Att. 2 −0.202 0.178

� Att. 3 −0.222

†p < 0.10; *p < 0.05; **p < 0.01
Note: Correlations are Spearman Rho. MC = Multiple Choice Items; GI = Graphical Interpreta-
tion; R & P = Rate & Proportion; C/P = Computational/Procedural; MR = Multiple Representa-
tions; Att. = Attitude

Table 8 Two-tailed correlations between changes in student attitudes with changes in student
outcome measures for a comparison class (C5) (n = 18)

� MC � GI � R & P � C/P � MR � Att. 1 � Att. 2 � Att. 3 � Att. 4

� Total
Pts.

0.982** 0.752** 0.542* 0.609** 0.767** 0.062 −0.051 0.401† −0.034

� MC 0.757** 0.442* 0.630** 0.794** 0.032 −0.014 0.349 −0.058

� GI 0.270 0.738** 0.435† 0.251 −0.089 0.395 0.060

� R & P 0.072 0.090 −0.196 −0.132 0.345 0.189

� C/P 0.523* 0.264 −0.293 0.183 0.107

� MR 0.072 −0.008 −0.029 −0.150

� Att.1 −0.131 −0.037 0.131

� Att. 2 0.184 −0.263

� Att. 3 0.049

†p < 0.10; *p < 0.05; **p < 0.01
Note: Correlations are Spearman rho. MC = Multiple Choice Items; GI = Graphical Interpretation;
R & P = Rate & Proportion; C/P = Computational/Procedural; MR = Multiple Representations;
Att. = Attitude

Looking at the proportion of student-talk provides a sense of who dominates dis-
course; however, one also needs to know when the teacher is speaking to understand
student-domination within the discourse. There could be an equal number of ut-
terances made by students and teachers, but the student contributions could all be
prompted by the teachers (as in a question-and-answer sequence); therefore, it is
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useful to consider how many adjacency pairs there are that involve teacher-student
interchanges as opposed to student-student interchanges.

An evaluation of utterances and adjacency pairs is one way to understand the par-
ticipation framework of the classroom. A count of student-student versus teacher-
student adjacency pairs represents how discourse is structured and is potentially
dominated by various participants. To evaluate this, we analyzed digital video and
transcripts of our two high achieving classrooms over the course of our intervention
(C5 and C13). We visited the treatment classroom 25 times during the course of
the experimental intervention and we visited the comparison classroom 11 times—
when similar algebra material was covered. Since the comparison classroom was
meeting for twice as long each class relative to the treatment classroom (90 min-
utes versus 45 minutes), we plotted our counts with respect to units of time (i.e.,
45-minute class period) to represent similar periods of time across our complete in-
tervention. This allowed us to do some comparable regression analysis. Five-minute
segments were randomly selected from the video and transcript corpus of data for
our two high achieving classrooms. The only requirement for selection was that seg-
ments showed similar content, in a similar time, with students with similar baseline
scores (entering high school freshmen). The clips were randomly selected, so there
was no selection bias.

The dark plot (see Fig. 4) illustrates the treatment class (with annotated dashed
regression line) and the gray plot illustrates the comparison class (with an annotated
solid regression line). The comparison class (C5) shows a stable student-to-student
turn taking sequence over the course of the observation period and it also represents
a lower proportion than the treatment class. But more importantly, the treatment
classroom exhibits a greater proportion with a steadily increasing rate over time and
an extremely high correlation (R2 = 0.53). This rate equates to one more student-to-
student turn take per 5 minutes per class, which strongly suggests a steadily evolving

Fig. 4 Ratio of student-student turns to total student turns in the class
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class norm in the discourse patterns of students as a representation of their partici-
pation. Interestingly, the teacher-to-student adjacency pairs (not plotted here) do not
differ significantly between the groups, which addresses, in part, a possible reaction
to these findings that teachers are letting students talk more amongst themselves at
the expense of their own interaction with them.

5.4.3 Students’ Personification of Mathematical Contributions

To complete the analysis with a finer level of granularity that we believe is nec-
essary and sufficient to substantiate our claims, we exemplify the different forms
of turn-taking in these two classes to unpack the steady state and progressions of
discourse moves illustrated previously. These examples shed some light on the con-
trasting participatory natures of these classrooms with respect to the mathematical
content and representation. This is one of three methods of analyzing discourse to
explore different forms of participation in classrooms that were presented in de-
tail in Hegedus and Penuel (2008). These are: (i) analyzing bids for attending and
seeing to phenomena, (ii) participant structures as a frame for analyzing classroom
participation, and (iii) studying identity by analyzing use of deictic markers.

Students’ discourse was infused with personal value. It was evident that their
contributions, through the affordances of the SimCalc environment and the network,
framed the participatory nature of the class in a meaningful way. Identity was en-
hanced as evidenced by the specific use of deictic markers.

Talk is an arena for displaying competence and expertise, especially to differ-
entiate oneself from another person in the setting (Goodwin, 1986). In some class-
rooms, students can display competence by responding correctly to teacher ques-
tions. They do not necessarily use their turns on the floor of the classroom to con-
vince peers or their teacher of a particular point of view. However, as we have illus-
trated, this classroom structure appears to have been reformatted by the affordances
of a connected classroom. In particular, students attempted to help their peers “see”
what they were doing and contributed as they moved their mathematical product
from a private to a public affair, often in ways that supported their position in an
argument.

In the treatment class (C13), we observed evidence for this in such turns (which
relate back to the original activity at the start of the paper). Even when some stu-
dents referred to the animated actors in SimCalc in a way that might be expected—
as objects that are created by individuals, rather than as objects that stand in for
individuals—the identification with objects often reappeared in the exchange [S1,
S2, S3—Students; T—Teacher]:

S1: Everyone’s gonna have their own dot but there’s gonna be. . . they’re gonna be on top
of each other. So every group, like, every. . .

S2: No.
S1: . . .if you have 3 people then there’s gonna be 3 dots. . .
S3: He’s lying.
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S1: . . .then there’s gonna be 2 more dots under that 1 dot.
T: So let’s do, let’s do a scenario. There’s three people in this group. They’re gonna, you’re

saying they’re gonna be stacked on top of each other.

Here the phrase “on top of” expresses solidarity of identity and consolidation of
identity, which has mathematical consequences in terms of interpreting the utter-
ance. Even though each student’s contribution was individualized as a simulation
representing a function that moves in the public space, there is similarity—in fact,
identical graphical forms of the same function. For a function to be identical, they
must be mapped onto the same set of values on the same domain. This was infor-
mally described in this clip as being “stacked on top of each other.”

Such personal terms were not evident in the comparison classroom, which fo-
cused on a similar activity involving graphical representations. Instead we saw dis-
course patterns such as “that graph.” In addition, even when students were working
collaboratively and had shared their mathematical contributions on the whiteboard
to interpret a rate problem using a graphical representation, they did not use personal
language. The language is within the content and context of the problem statement
and no more. In our observed classroom it was the rate of apples falling from a tree,
which was an example used in the textbook that the school adopted. Another such
example was the distance from home plate when running the bases in an American
baseball game. Both examples were used to convey the idea of slope as rate. Neither
the tree nor the apples, nor the rate had any personal relevance to the studies in the
class. The SimCalc materials, on the other hand, presented this idea through a mo-
tion scenario in which the students were creating an “exciting” race in which their
direction and speed changed at least once during the race.

One student (S1) explains:

In the middle of September, you’re startin’ to pick them so it doesn’t take the whole month
to pick apples off a tree so they go down extremely sharply then it stays dormant through
the coldest part of the winter. Then it starts going up gradually, summer. Then there’s fall
and they kinda stay on the tree, they get extremely. . . whatever.

A second student (S2) followed up with her graph and a description:

Okay, well, um. The apples start growing like in September, err, I don’t know. So they grow
up to here and then they stop growing and then they either are picked or fall off.

Deictic markers and indicators such as “the apples,” “them,” “they,” “it,” and
“I don’t know”—which could refer to not knowing when apples start growing on
trees—were used. When the teacher asked the class if the graphs were similar or
different, S1 says “different” and then adds “similar.” The teacher asked him why,
and S1 said: “because they both have the gradual rise and the gradual fall. . . one has
the gradual rise and gradual fall, the other one has a. . .” Again, note his use of the
terms “they,” “one has,” and “the other one has.” This is interesting since one of the
graphs was his own—he came up with a graph for apples falling off a tree and it was
his own created description of his graph.

There was no personal investment of their self or identity and whilst this class did
well on questions on graphical interpretation, we attribute the lack of correlations
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with their success in learning as measured by the content test with this basic syntac-
tic and semiotic feature of the class. The students did not own the representations.
Whilst students knew the representations and knew how to operate with them, there
was no personal value or need for investment in this classroom exercise. Finally,
some students had drawn piecewise linear functions and some students had drawn
piecewise quadratic functions or quadratic functions, but the students appeared to be
talking similarly about their graphs: “apples growing,” “apples falling,” or “getting
picked.” There was no discussion about the rate of growth or rate of depletion of
apples.

6 Conclusions

Many activities deliberately bring to bear student identification with their construc-
tion to serve very specific learning goals, e.g., coordinating multiple representations
and objects (Sfard, 1991; Thompson and Sfard, 1994). And they do so by “lifting”
such traditional activity structures from the closed, individual cognitive space me-
diated by a single-device technology to the social space of the classroom (Stroup
et al., 2002). Similar cognitive and perceptual actions are at work in identifying and
relating features across representations. But these actions take place in a greatly en-
hanced context—a social space—with all the resources of the social context and
conversation available to come into play (Roschelle, 1992, 1996), especially for
“irregular” items. A frequent occurrence involves students collectively, in rapid and
energetic cascades of interchange across several students, publicly “sleuthing” to de-
termine, for example, the ownership of an outlier position graph (“Who was speed-
ing?”). More importantly, the searches typically involved intimate mixes of logic
and data interpretation of exactly the sort, which are prized in curriculum standards.
Further, personal ownership drives attentional focus for students to locate them-
selves, and, through task and representation design (e.g., “Where are you?”), we
ensure that the act of doing so pulls intense attention to the desired mathematical
features.

Students do not need to belong to a community or become participants, but are
actively involved in a mathematical activity space from the start that structures
the classroom interaction. Wenger (1998) also denies any participation to the non-
living—citing computers as an example of something that does not participate. As
we have described, our position embraces a particular form of technology, which
is a significant participant in representing multiple voices and feedback in a public
space that projects students’ personal work and promotes their identity. Their work
can be identified in a public space with contrasts and comparisons being possible at
a whole class level. Our definition of identity is less broad than Wenger. Students’
identities are within the various mathematical representations they can share publi-
cally and can be infused with personal feelings of ownership (not membership) as a
mathematically meaningful form of participation. It is in this way that students can
relate and personify their mathematical contributions in public.
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It is a striking result that specific intersecting patterns in learning and attitude
change are positive in SimCalc classrooms versus similar algebra classrooms. Pro-
found changes occur in the participation frameworks of such classrooms—in par-
ticular with the discourse patterns. And, peer-to-peer discourse not only increase in
frequency of occurrence, but increase steadily over time. We believe that the inter-
section of a dynamic representational infrastructure in cohort with a fluid commu-
nication infrastructure is the most specific reason for such change.

The potential of CC can be realized only if we understand it sufficiently to inform
the design and improvement of (i) its technologies; (ii) classroom activities, teaching
practices, and forms of assessment that optimally exploit it; and (iii) the preparation
and support of teachers to utilize this new constellation of technologies, activities,
practices, and assessments. This will require a new, highly interdisciplinary domain
of educational research—one that is now in its early stages—uncovering the new
phenomena to be investigated, formulating issues, descriptive languages, candidate
theories, research agendas, and building research communities to extend and elabo-
rate the inquiry.
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Mathematical Discourse as a Process
that Mediates Learning in SimCalc Classrooms

Jessica Pierson Bishop

While the infrastructure of the SimCalc MathWorlds® (hereon referred to as Sim-
Calc) technology provides unique opportunities for students to wrestle with com-
plex and conceptually difficult mathematics in developmentally appropriate ways,
the degree to which students engage in “doing” mathematics varies widely across
classrooms. Some classrooms provide minimal opportunities for students to con-
jecture, justify, and exemplify, whereas in other classrooms these activities are an
indispensable part of their day-to-day operations. One of the primary mechanisms
by which students can be encouraged to engage in authentic mathematical activities
is through the use of appropriately challenging discourse. In this chapter, I describe
discursive norms and patterns observed across multiple SimCalc classrooms in or-
der to better understand the interaction between discourse and technology in the
broader classroom environment.

SimCalc technology and curriculum has particular affordances embedded into
its design. These affordances include: (a) animations of real-world situations that
bring the phenomena of motion to life, (b) dynamic linking of multiple represen-
tations that provide opportunities to explore relationships between graphs, tables,
equations, and real-world scenarios in ways that non-interactive, static representa-
tions do not afford, (c) representational forms other than the formal, symbolic no-
tational system that allow mathematical ideas to be presented in ways that leverage
visual and graphical representations of a concept, and (d) visually editable graphs
that allow students to manipulate problem parameters or the graph itself and dis-
cover the implications of these changes through immediate feedback. However, the
existence of these affordances is not a guarantee that students are prepared to, or
necessarily will, take advantage of them. Other factors mediate whether, and how,
technology is used and to what degree students can leverage certain features of the
technology.
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For example, some classrooms may not be designed to take advantage of the
possibility for student-directed exploration made possible by the software. Perhaps
resources are allocated such that the teacher is the only one with access to the soft-
ware. Or perhaps participant structures and classroom norms allow little freedom
for students to explore and conjecture; instead activities and interactions are tightly
controlled and funnelled through the teacher. Or students may simply not recognize
the significance or meaning of a particular affordance without appropriate scaffold-
ing from someone more knowledgeable.

Cohen and Ball incorporated these ideas into their model of classroom instruc-
tion. They describe instruction as what the teacher and students do together—their
interactions with one another and with educational materials around mathematical
content (Cohen and Ball, 2001; Cohen et al., 2003). Learning, then, is a “function
of the interaction among these elements [teachers, students, resources], not the sole
province of any single one, such as teachers’ knowledge and skill or curriculum”
(Cohen and Ball, 1999, p. 2). Or, I might add, technology. Clearly technology plays
an important role in learning, but its influence is mediated by a number of features
of classroom environments. In this chapter, I will consider one particular factor
mediating students’ engagement with technology and the underlying mathemati-
cal concepts—classroom discourse. The following section outlines the conceptual
framework for the study, offers a rationale for the discursive focus in this paper, and
provides an overview of research related to the discursive constructs that emerged
as significant in this study.

1 Conceptual Framework

1.1 Discourse and the Interactive Work of Teaching

The primary mode of interaction in schools involves discourse. In many ways, dis-
course is the heart of the classroom. Whether discourse itself is the main activity
(e.g., engaging in a mathematics discussion) or the means to engage in the activ-
ity (e.g., creating a mathematical model), most of the doing in classrooms is dis-
cursive. Further, different opportunities to learn mathematics are created by habitu-
alized, moment-to-moment choices teachers make in scaffolding everyday conver-
sations in math classes. Over time, ways of responding in-the-moment are inter-
nalized and eventually become recognized and accepted ways of doing things in the
classroom community (Gutierrez, 1994; Kennedy, 2005). Thus, variation in the nor-
mative discursive routines and kinds of mathematical discourse across classrooms
is likely to affect the ways in which teachers and students engage with resources,
including technology, and mathematics itself.

My approach to classroom discourse is consistent with an interactionist perspec-
tive of learning wherein meanings emerge for individuals as they interact socially
within a community (Blumer, 1969; Cobb and Bauersfeld, 1995; Cobb and Yackel,
1996; Voigt, 1994). Though individuals make statements and pose questions, those
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statements and questions exist and have meaning within a larger classroom commu-
nity with a unique set of norms, expectations, and routines. The classroom culture
and even the mathematical content within that community are emergent proper-
ties that are jointly constructed by participants (Cobb and Bauersfeld, 1995; Voigt,
1994). Teachers and students mutually influence one another’s discourse so that
acceptable patterns of interacting are not imposed by the teacher but negotiated col-
lectively. In this sense, discourse both reflects and creates not only the classroom
microculture, but mathematical learning itself.

1.2 Key Discursive Constructs—Intellectual Work
and Mathematical-Connectedness

Lemke (1990) claims that the common patterns of discourse pervasive in American
classrooms reinforce the social norm that “they [the students] are there to listen to
the teacher, not each other. . . what matters officially in the classroom is that each in-
dividual student pays attention to the teacher” (p. 78; see also research on Initiation-
Response-Evaluation [IRE] patterns as described by Mehan, 1979 and Wells, 1999).
Traditional models of schooling and many of the familiar, taken-for-granted prac-
tices of education position the teacher as the subject-matter expert whose job is to
provide clear explanations of difficult mathematical topics that most children will
probably never understand. The students’ primary job is to remember what they
have been told. These traditional and well-established models of schooling give rise
to an interesting question: What happens if classroom responsibilities are shifted
and students are expected to explain, elaborate, and evaluate for themselves?

Research indicates that encouraging students to make conjectures, generate ideas,
verbalize their thinking, and provide justification for claims can support coherence
and clarity in thinking, help students organize and restructure new information into
prior experiences, create opportunities for participation and engagement, and in-
crease metacognitive awareness (Chi et al., 1989; Piaget, 1952; vanZee and Min-
strell, 1997; Vygotsky, 1978; Webb, 1991). Consequently, one of the discursive con-
structs I explored in this study was the intellectual work required of students. I use
the term intellectual work to reflect the cognitive work set in motion and required of
students within a given turn of talk. Intellectual work can be thought of in terms of
the cognitive activities in which students are asked to engage during real-time, class-
room conversations. Over time, if students routinely make sense of mathematics,
struggle with complex problems, reason for themselves, generate multiple solution
paths, and communicate their understandings, the potential for deeper mathemati-
cal understanding increases. Higher levels of intellectual work are invitations to do
exactly this, to engage deeply with the processes and content of mathematics.

The second discursive construct that emerged from this study was mathematical-
ly-connected discourse. Hiebert and Grouws (2007) identify “explicit attention to
connections [emphasis added] among ideas, facts, and procedures” as a feature
of classroom interactions that facilitates conceptual understanding of mathemat-
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ics (p. 391). They describe the discourse arising from this kind of teaching as co-
herent, connected, and structured around big mathematical ideas. I use the term
mathematically-connected discourse to describe the coherent selection, sequencing,
and discursive enactment of curricular activities in order to achieve specific mathe-
matical goals. In this study, mathematically-connected discourse reflects the degree
to which classroom activities, as enacted through discourse, support the primary
mathematical activity of interpreting graphs of motion and their relationships to rate
and variation.

2 Methods

2.1 Participants

This study was conducted as part of a larger program of research, Scaling Up
SimCalc (Roschelle et al., 2010; Tatar et al., 2008). The Scaling Up study imple-
mented a new, technology-rich curricular unit on rate and proportionality in middle
school classrooms across the state of Texas. It used realistic problem contexts and
simulations of motion to teach the foundational mathematical concepts of varia-
tion and covariation. The data for this paper comes from video footage of the same
lesson being taught across 13 seventh-grade classrooms during the 2005–2006 aca-
demic year. All teachers were implementing the curricular unit and using SimCalc
for the first time. The video-recorded lesson occurred during the middle of the unit
and addressed rates of change through piecewise linear graphs of motion.

2.2 Data and Analysis

To facilitate a focused analysis of the mathematical discourse across classrooms, all
the video recordings were transcribed. I then analyzed transcripts, video footage,
and field notes through an open coding process (Strauss and Corbin, 1998) to deter-
mine common themes and categories, focusing specifically on teacher and student
discourse surrounding the use of and engagement with SimCalc. In particular, my
goal was to identify characteristics of discourse that both enhanced and limited the
ways that the technology was used across classrooms. Given my discursive focus, I
briefly describe my use of the term. I define discourse to be the spoken and written
words, representations, and gestures of classroom participants as they use language
to communicate, interact, and act (Johnstone, 2002; see also Gee, 2005; Wetherell,
2001). Though discourse includes written text and nonverbal communication, in this
study, I restrict discourse primarily to conversation.

2.2.1 Coding Intellectual Work

My coding of intellectual work took into account the distinction between giving and
requesting information as well as the cognitive action required of the participant.
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Table 1 Intellectual work coding scheme

Request Give

Low-level
Moves that provide basic
information such as
reading values off
graphs/charts,
performing calculations,
giving an interpretation
with no justification or
evidence, or requesting
these activities from
others. Also includes
positive or negative
evaluations of others’
comments.

So look at the graph, how
many hours did it take
the bus to get to Dallas?

It took 2 hours to get to Dallas.

Yes, 2 hours. That’s right.

The distance was 180 miles
and it took us 3 hours. What
was the speed?

Distance equals rate times time.
So you have to figure out your
distance.

Look at your x-axis, what is
it showing you?

The bus is speeding up. Well, it
maybe it changes directions.

High-level

Moves facilitating
engagement in
mathematical
argumentation and
justification, engaging
with another’s thinking
in a sophisticated way,
or requesting these kinds
of activities from others.

How do you know that the
bus had stopped?

The bus stopped because the distance
stayed the same but the time kept
going (student makes horizontal
gesture).How does the graph show

that the van turned around?
It’s [the line] going down. The
distance, the distance is less, and
time is still going.

First, I developed codes to track the flow of information (is the speaker giving in-
formation or requesting information). Then, within the give and request categories,
I defined two levels of intellectual work (high and low). High levels of intellectual
work extend student thinking and include discursive moves such as providing justi-
fications, examples, conjectures, explanations, and challenges; making connections
across representations; generating problems and scenarios (contextualizing); or re-
questing these activities from students (Hiebert and Wearne, 1993; Pierson, 2008;
Stein et al., 1996; Webb et al., 2006). Low levels of intellectual work include re-
questing or giving basic information (a recalled formula, definition, etc.), values
read from a chart or graph, the result of a calculation, or making evaluative com-
ments. Note that the high and low categories of intellectual work are defined and as-
signed with respect to the cognitive activity of students. For example, if a teacher’s
turn of talk is assigned a code reflecting a high level of intellectual work (i.e., high
request or high give), this does not mean that the request itself involved a high level
of intellectual work for the teacher, but that this move positions the respondent for
a high level of intellectual work. Table 1 displays the categories of intellectual work
with relevant examples. (See Pierson, 2008 for a more detailed description of the
coding scheme.)
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I coded each transcript turn by turn indicating the level of intellectual work
present and whether the move was a give or a request through the use of four in-
tellectual work codes—high request, low request, high give, and low give. Note that
a single turn of talk can receive multiple intellectual work codes. In the next sec-
tion, I report the results of my analysis through the use of illustrative excerpts from
SimCalc classrooms.

3 Findings

The primary finding from my study was that discourse mediated how teachers
and students interacted with the SimCalc technology and, therefore, the underlying
mathematics. In the following sections, I identify and describe how two characteris-
tics of discourse—intellectual work and mathematical connectedness—can enhance
or limit the affordances of the SimCalc technology by providing examples of these
discursive constructs in action.

3.1 Intellectual Work—Limiting or Enhancing the Affordances
of Technology?

To illustrate how discourse can mediate students’ interactions with technology,
I share two whole-class discussions of the same task from different classrooms.
Both classes are considering the position-time graph of a trip from Abilene to Dal-
las and its corresponding simulation of motion as shown in Fig. 1.

Students in Teacher L’s classroom have run the simulation and described both
the graph and the motion of the vehicles as “curving.” Based on these comments,
Teacher L suspects that some students may view a position-time graph as having
“map-like” properties wherein the vehicles’ paths are represented by the lines and
the bus is literally turning after 2 hours. She is attempting to correct the students’
interpretation by drawing their attention back to what the graph represents (see Ta-
ble 2).

A careful inspection of this sequence reveals that the students’ primary discursive
responsibilities are to respond to basic questions and accept the teacher’s interpreta-
tion for the given position-time graph. Opportunities for students to conjecture and
reason about graphs of motion are minimal; instead, students are asked to remem-
ber formulas and recall facts related to position-time graphs. Overall, the intellectual
work required of students in this excerpt is relatively low. For example, the students
in this class are told that certain shapes and orientations on the position-time graph
(e.g., “curving” in this exchange) represent different types of motion but are not
asked to explain, nor are they given an explanation for why this is the case. Using
“the graph bends” to justify the claim that an object is slowing down does not ad-
dress the meaning embedded in the graphical representation. The question of why
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Fig. 1 Screenshot of a SimCalc MathWorlds® road trip simulation

a “bend” or “curve” represents a change in speed remains. It is easy to imagine
a student repeatedly associating “bending” or “curving” with a change of speed
and never understanding why the association exists. Contrast that with a student
who notices that when going over one unit on the x-axis both before and after the
“bend” (i.e., holding horizontal distance the same), the distance traversed vertically
changes. Because the vertical distance decreases, the position-time graph is not as
steep and appears to “bend” down. In terms of speed, the distance the vehicle cov-
ered in one hour changes from 60 miles to 40 miles which results in a decrease in
speed.

Encouraging students to interpret the meaning behind graphical representations
in this fashion is precisely what SimCalc is designed to do. However, to realize this
goal, teachers must step up the intellectual work they require of their students by
posing questions that can help students to make connections among the different
representations of the motion situation. How exactly does one do this? In the next
transcript excerpt (see Table 3), we see a teacher use higher levels of intellectual
work to deepen students’ understanding of rate and variation as she leverages some
of the unique affordances of SimCalc. Students in Teacher E’s class are also consid-
ering the graph of motion in Fig. 1. They have opened the simulation and, as they
are running it, have been asked to offer possible connections between the simulation
and the graph of motion.

One noteworthy aspect of this exchange is the way that Teacher E uses intel-
lectually demanding discursive moves to make connections between the simulation
and the graph of motion. Students first made observations based on the simulation,
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Table 2 Transcript excerpt from teacher L’s classroom: Interpreting graphs of motion

Turn Speaker Text Level of intellectual work

1 Teacher L What are we measuring on this graph? We’re
measuring miles and time. And when we put
them together, what do we, what do we get
when we put the miles and the times together?

Low give & Low request

2 Student 1 Um, how long like. Low give

3 Teacher L No. What do we do? Miles per hour. What is
that?

Low request

4 Student 2 Uh you divide the hours by miles. . . . Low give

5 Teacher L What did we get when we did that, when we
did their, their meters per second? What do
we call that?

Low request

6 Student 2 A formula? Low give

7 Teacher L We used a formula, but wasn’t that the speed?
. . . So these lines are telling us about the
speed. So if, if this graph’s measuring our
speed what happened to the bus’s speed?
What happened to the bus’s speed and what
happened to the van’s speed?

Low give & High request
(request interpretation)

8 Student 3 The bus started to get in front but whenever it
curved the van sped up and caught it.

Low give (no justification
of interpretation)

9 Teacher L Now you said the bus started out in front, but
they both started in the same place didn’t
they?

Low request

10 Student 3 Yes ma’am but when– Low give

11 Teacher L –No ‘cuz the lines have nothing to do with
which direction they went. The lines are their
speed. So what do we see, what is the
difference between the bus’s speed and the
van’s speed?

Low give & High request
(request comparison)

12 Student 4 They started at the same time but whenever
the race started the bus pulled out in front.

Low give

13 Teacher L OK so the bus was ahead of the van. Is that
what you’re saying, the bus was going faster
than the van?

Low give & Low request

14 Student 4 Yes. Low give

15 Teacher L OK then what happened when the change in
the bus’s line?

High request

16 Student 4 It got slower. Low give

17 Teacher L It got slower. It slowed down. So do you see
that that bend in the graph doesn’t say that the
bus turned in any way. It just said that it
slowed down because it’s speed changed. The
graph changed. Does everybody see that? Can
you see in the simulation where the bus
changes its speed?

Low give & Low request
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Table 2 (Continued)

Turn Speaker Text Level of intellectual work

18 Student 5 I think he, it looked like he curved at Ft.
Worth.

Low give

19 Teacher L No. He didn’t curve, he’s still going the same
route as the van.

Low give

20 Student 6 He doesn’t even curve on this thing. Low give

21 Teacher L No there’s no curve. The curve is where he
changes his speed.

Low give

and, because the position-time graph was created simultaneously, they could con-
nect changes in physical movement as depicted in the simulation to attributes of the
graph itself. She then used students’ observations as the basis to extend their rea-
soning about the relationships between motion and the corresponding position-time
graph representations. For example, Teacher E used more intellectually demanding
discourse when she asked students, “How do you know that the bus slowed down
according to your graph?” and then later when she problematized a possible inter-
pretation of a graph as a map and pushed students to provide explicit justification
for why they disagreed with this common conception of position-time graphs.

Additionally, notice who is doing the intellectual work and mathematical reason-
ing in this exchange. Students are asked to make observations, connect the observed
features of motion to graphical representations, consider alternative interpretations
of motion, and justify their thinking. It is the students who are doing the mathe-
matics, and in doing so they are refining their collective thinking about speed, rate,
variation, and representations of these phenomena. Some might argue that this sub-
tlety is unimportant as long as a correct, mathematically robust explanation is pro-
vided. However, not only are the activities of observing, conjecturing, justifying,
and considering counterclaims central to the discipline of mathematics into which
these students are being enculturated (Ernest, 1991; Kline, 1980; Lakatos, 1976),
but engaging in these activities leads to deeper, more connected learning (Hiebert
and Wearne, 1993; Kawanaka and Stigler, 1999; Pierson, 2008; Stein et al., 1996).
Teacher E skillfully used discourse to help her students leverage the affordances of
the SimCalc technology in order to connect visual traits of the graph with the motion
observed in the simulation.

3.2 Mathematically-Connected Discourse—Making Conceptual
Connections Embedded in Technology Apparent

SimCalc has affordances that can make conceptual connections more obvious; how-
ever, it relies on skillful teachers to sequence instruction, organize classroom ac-
tivity, select specific tasks, pose questions, and facilitate conversations to help stu-
dents make these desired mathematical connections. Earlier I introduced the term
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Table 3 Two transcript excerpts from teacher E’s classroom: Interpreting graphs of motion

Turn Speaker Text Level of intellectual work

1 Teacher E I want you to run that simulation and see what
happened.

Low give

2 Abel Uh–

3 Nolan Oh, they–

4 Teacher E Mara? Low request

5 Zane They uh–

6 Teacher E Okay, hold on Zane, let’s let Mara answer this
one.

Low give

7 Mara The bus went at a constant speed but the red
slowed down but sped back up.

Low give

8 Teacher E Mara you feel like the bus stayed at a constant
speed but the van didn’t?

Low request (request
confirmation)

9 Nolan No, the bus went– Low give

10 Abel Which one is the bus? Low request

11 Teacher E (laughing) The bus is the big yellow one. Low give

12 Nolan The van (with emphasis) was at a constant speed. Low give

13 Teacher E The van was at a constant speed? It’s kind of
hard to tell. And you might have to get your
position controls so you can see it.

Low request

14 Mara Oh! The red one did stay at a constant speed. Low give

15 Teacher E The red one, which is the van, stayed at a
constant speed. And what happened to the bus?

Low give & High request

16 Mara The bus slowed down. Low give

17 Teacher E It slowed down. Can you look at your graph. Is
that what you see on your graph?

Low give & High request

18 Students Uh-huh. Yeah. Low give

19 Teacher E How do you know that the bus slowed down
according to your graph? Kelsy?

High request

20 Kelsy The, if you look at the van, it’s like a constant
rate and it stays straight. And the bus, like, leans
forward.

High give

mathematically-connected discourse to describe the degree to which classroom ac-
tivities and the mathematics content itself are coherently connected to the founda-
tional mathematical ideas for a given topic through the medium of discourse. Data
indicated that the mathematical discourse across SimCalc classrooms varied in its
connectedness and coherence.

We see an example of mathematically-connected discourse in Teacher E’s class-
room (see Table 3). Generally speaking, she framed discussions using core mathe-
matical concepts to organize the lesson’s trajectory. Discussions had a sense of co-
hesion, and procedures and formulas were introduced as a natural part of answering
central questions related to the big ideas of rate, variation, and speed. This resulted
in longer sequences of talk where she and the students continued to work together
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Table 3 (Continued)

Turn Speaker Text Level of intellectual work

1* Teacher E Leans forward. That’s not the bus turning the
corner, or is it? Is the bus changing direction?
(pause) This angle, where this is actually two
lines (points to position-time graph), does it
show that the bus went off this direction?
(Teacher gestures upward motion following the
path of the first linear segment in the van’s path.)
And then came this direction (teacher gestures
horizontally)?

High request

2* Students Some students indicate disagreement Low give

3* Teacher E No, do you disagree? Low give (request
confirmation)

4* Student 1 Yes. Low give

5* Teacher E Why do you disagree? High request

6* Student 1 Because it doesn’t, it’s not showing you the
direction it’s showing you how many miles they
traveled.

High give

*Note that Turns 1–6 are from a different episode

to understand a task or problem (note that the entire interaction in Table 3 is one
sequence). She provided students sufficient time to grapple with problems and re-
sisted decreasing the cognitive demand of the task by breaking problems down into
a series of smaller steps or procedures that students might have experienced success
with more quickly. Teacher E expected her students to play an active role in dis-
cussion and knowledge-generation. She probed student thinking and allowed their
observations and conjectures to be the impetus for further class discussion. Addi-
tionally, the connectedness reflected in Teacher E’s discourse was supported by the
way she blended classroom activities in an instructionally sound manner using sim-
ulations, calculations of speed, and generating real-world scenarios to support the
primary mathematical activity of interpreting graphs of motion. She explicitly ref-
erenced previous tasks and problems to help students notice potential connections
and provide a sense of lesson and unit coherence. In these ways, she leveraged the
affordances of the technology to support students’ mathematical thinking.

Unsurprisingly, in some classrooms, the discourse was less mathematically-
connected. For example, Teacher A was more procedure-oriented and preferred to
present mathematics as a series of small, manageable tasks and calculations. Con-
nections to the big mathematical ideas of rate and variation were largely absent.
This was reflected in shorter sequences of talk, shorter turns of talk for students,
and less uptake of student ideas (because few student ideas were present to take up).
As an example, consider the excerpt in Table 4 from a whole-class discussion in
Teacher A’s class. They are discussing the graph of motion in Fig. 1.

Sequences 1–5 were orchestrated to accomplish Teacher A’s goal of calculating
the speeds for the van and bus. Notice that this larger goal was not revealed to the
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Table 4 Transcript excerpt from teacher A’s classroom: Interpreting graphs of motion

Turn Speaker Text

Sequence 1

1 Teacher A Can you see when you replay the simulation when the bus started to
slow down?

2 Student 1 Yes.

3 Teacher A Right before it got to the end, correct? OK at what?

4 Student 1 140.

Sequence 2

5 Teacher A OK. So now let me ask you some questions. What, how long did it take
them for this trip? Raise your hand. How long did it take ‘em for this
trip? Chris.

6 Chris Three hours.

7 Teacher A How do you know it went three hours?

8 Chris Cuz it ends, the line ends at three.

9 Teacher A Very good, cuz the line for the bus or the van?

10 Mult S’s Both.

11 Teacher A Both end at what?

12 Mult S’s Three hours.

13 Teacher A Three hours. So you know it took them three hours.

Sequence 3

14 Teacher A Now, was the speed of the two vehicles the same?

15 Mult S’s No.

16 Teacher A No. You know that by how?

17 Student 2 They’re not the same.

18 Teacher Because of the (pause) graph right? And because of running the
simulation. They didn’t stay right beside each other, did they?

Sequence 4

19 Teacher A OK, umm, how far did they go in 3 hours? Raise your hand. How far
did they go in three hours? Charles?

20 Charles 180

21 Teacher A How’d you know that?

22 Charles ** (unintelligible)

23 Teacher A 180 miles where? (pause – no student response). It’s on the graph,
right?

Sequence 5

24 Teacher A OK. And let’s see if you can calculate the speed. See if you can
calculate the speed for the van and then calculate the speed for the bus
and then also calculate the speed for the bus when it started to slow
down since you guys have told me it started to slow down.
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students until the last sequence (see Turn 24). Instead, it remained obscured in a se-
ries of known-answer and, from the students’ perspective, loosely related questions
whose answers provided the necessary components for calculating speed. Generally
speaking, we might describe the lesson organization as a piecemeal collection of
tasks and procedures with few explicit connections made among the activities or to
the big ideas of variation, function, and rate.

Also noteworthy was the peripheral role technology played in this exchange.
Presumably, if the lesson had been taught without the SimCalc software there would
be few, if any, differences in the discourse or task selection and sequencing. This
is because the technology was primarily used to verify calculations of speed. In
Teacher A’s class, the technology was often in the background so that students could,
in the teacher’s words, “calculate and do some math” (personal communication,
January 23, 2006).

Additionally, as seen in this excerpt, little control or responsibility is given to
the students as the teacher generated and controlled the topic of discussion. There
was little room for student ideas to shape the discussion. Teacher A heard student
responses but did not incorporate them substantially into the flow of the lesson. In
fact, there was very little of substance for her to incorporate since students’ roles
were limited to paying attention, performing basic calculations, recalling formulas,
and answering yes/no or short-answer questions. One might wonder, though, if this
kind of scripted activity and interaction could, in some cases, lead to more connected
mathematical discourse, particularly if the ‘script’ was based on the core, conceptual
ideas for a topic. I would distinguish scriptedness and planfulness. Although both
involve deliberate and intensive planning for the activities and related discourse,
the difference is the extent to which a teacher is comfortable improvising based on
his or her assessment of student needs in-the-moment. Planful discourse is purpose-
fully designed to respond to and incorporate student ideas into the discourse, thereby
adding to the connectedness and coherence of the discourse. Scripted discourse does
not improvise and respond based on student ideas because of an inability or unwill-
ingness to do so. (I realize that others might define and use these terms differently.)
A scripted interaction, even when following a good “script,” is not interaction in the
true sense of the word, and trying to fit a student’s comments into a predetermined
script diminishes the coherence and connectedness of the discourse.

To summarize, I found that the presence of intellectually demanding discourse
and the degree to which discourse was mathematically-connected mediated the ways
in which students and teachers made use of technology to reason about the math-
ematics of rate and change. In particular, the more mathematically-connected and
intellectually demanding the discourse, the more opportunities students had to take
advantage of the affordances the SimCalc MathWorlds® technology offered.

4 Discussion and Implications

In each of the classrooms described in this chapter, students learned. In fact, all three
of these classrooms produced higher mean learning gains, in the larger Scaling Up
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study, than their control group counterparts who did not use SimCalc (Teacher A’s
mean gain score: x̄ = 5.62, Teacher E’s mean gain score: x̄ = 10.25, and Teacher L’s
mean gain score: x̄ = 3.88, control group’s mean gain score: x̄ = 1.50). It seems that
providing students opportunities to interact with linked, dynamic representations
of quantitative relationships, most of which involve the phenomena of motion, is
positively related to student learning. Even though the effect of the technology is
robust (p < 0.0001, student-level effect size of 0.63; see Roschelle et al., 2010),
each of these teachers experienced varying degrees of success in helping students to
fully leverage the affordances SimCalc provided. In this chapter, I provided evidence
that the effectiveness of SimCalc can be mediated by the mathematical discourse in
which teachers and students engage. However, SimCalc is one instance of many
existing and possible tools that can support student engagement in conceptually-
oriented mathematics activities in the classroom. It seems likely that the discourse
moves identified here are not limited to SimCalc but would apply across many such
technologies.

4.1 Purposefully Planning for Productive Discourse

The intellectually demanding, mathematically-connected discourse in Teacher E’s
classroom was not a fortuitous event that happened merely by chance. Nor was her
discourse scripted so that the outcome was predetermined. The reality is that this
conversation was possible, in part, because Teacher E was familiar with the tech-
nology, tasks, and the underlying mathematics she wanted her students to learn.
Because of this, she was able to recognize the potential mathematical ideas in stu-
dents’ contributions and weave those ideas together in order to meet her mathemat-
ical objectives. Thus, one implication I draw from this study is the importance of
purposefully planning for productive discourse.

At first glance, facilitating conversations based on students’ ideas and using
those ideas to extend and deepen mathematical understanding seems daunting. How
does one know what question to ask next, especially when a student’s comment
is unclear and you have only a few seconds to respond? Smith and Stein (2011)
encourage teachers to view the sometimes overwhelming demands of responding
to students in-the-moment through the lens of planning. They argue that plan-
ning helps teachers to better manage the improvisation required to skillfully facili-
tate real-time mathematics discussions. Anticipating possible student contributions,
considering ways to respond to these contributions, and then deciding how to se-
quence and connect student ideas in a way that helps them reach their mathemati-
cal goals for the day, decreases the need for on-the-spot improvisation (Smith and
Stein, 2011). The result is that mathematical conversations feel more manageable.
Given this, I see two primary avenues to support teachers in planning for produc-
tive discourse in technology-rich classrooms—designing discursive supports into
the curriculum itself and explicitly attending to discourse during professional devel-
opment.
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Designing instruction that can use discourse in powerful ways to leverage the
affordances of a given technology starts with clear instructional goals. How can
a teacher make decisions about which strategy to highlight or which connection
to make without knowing the mathematical goal she wants to help her students
reach? Thus, one way to design for powerful mathematical discourse is to identify
specific mathematics goals for each lesson in the curriculum itself. For example,
in existing SimCalc teacher materials, seven broad mathematical goals are listed
in the unit introduction, and a “big idea” is given for each lesson. However, the
big idea often does not clearly link back to the initial mathematical goals or may
not be sufficiently explicit with respect to the tasks for that lesson. This curricular
feature would help provide direction to teachers as they decide which strategies
to highlight, which ideas to focus on, and how to effectively use the features of
the technology for specific problems. During professional development, this feature
could be highlighted, and teachers could be asked to personalize goals for particular
lessons.

Additionally, for each task the curricular materials could provide multiple stu-
dent responses, both correct and incorrect, along with the corresponding mathe-
matical idea related to each response (see Smith and Stein, 2011). This informa-
tion would familiarize teachers with unexpected and alternative approaches to tasks
so that the first time they encountered new strategies would not be during the les-
son itself. This type of curricular support could assist teachers in knowing what
mathematical idea to highlight or problematize for a given strategy. During pro-
fessional development, teachers might engage in producing this information them-
selves by anticipating possible responses to a subset of tasks, identifying the corre-
sponding mathematical ideas in each response, and writing questions that might
help students to notice connections across responses and to the mathematics it-
self.

And finally, sample classroom discussions around a set of tasks could be included
in the curriculum and incorporated into professional development experiences. An
example of a real classroom conversation gives one a sense for how he or she might
put all of this information together using mathematically-connected and intellectu-
ally demanding discourse. However, these examples should not be viewed as scripts
to be recited but as one of many discursive possibilities. Additionally, during profes-
sional development sessions, video of excerpts included in the curriculum materials
could be used to compare and contrast whole-class discussions of the same task.
Professional development facilitators might encourage teachers to reflect on differ-
ences in the video clips, particularly focusing on the selection and sequencing of
tasks and students’ solution strategies as well as the intellectual work reflected in
both the teachers’ and students’ discourse.

In summary, technology can provide opportunities for students to grapple with
fundamental mathematics ideas. Discourse, though, plays a mediating role in a
class’s ability to leverage the unique affordances of a given technology. Both tech-
nology and discourse are resources whose most compelling effects are seen in the
hands of a skillful teacher. Perhaps the true mediating factor in the classroom is the
teacher herself.
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Scaling Up Innovative Mathematics
in the Middle Grades: Case Studies
of “Good Enough” Enactments

Susan B. Empson, Steven Greenstein, Luz Maldonado, and Jeremy Roschelle

The reality for those who wish to reform mathematics instruction in schools is that
a tension exists between achieving innovation and reaching scale. Reformers con-
cerned with scale aim to reach a large number of students in many types of class-
rooms. Those concerned with innovation aim to maximize the possibilities inherent
in a new curriculum. When an ambitious, innovative curriculum is implemented on
a large scale, the question is, “What quality of implementation is realistic and ‘good
enough’ to achieve the substantive goals?” rather than the question often asked in
small-scale design research, “What quality of implementation is possible and most
transformative given the potential of new technologies?”

We address the former question using case studies of the classroom implementa-
tion of a SimCalc-based curriculum replacement unit for seventh-grade mathematics
focused on rate and proportionality in the context of linear functions. The random-
ized experimental study from which the cases were drawn documented a significant
main effect on student achievement (Roschelle et al., 2010b). Student achievement
gains were robust across demographic and regional variation, and attributable to a
combination of factors that the experiment treated as integrated, including profes-
sional development, the curriculum materials, and the technology. The experimental
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study was not designed to document the complexity of instruction as it unfolded
or the multiplicity of resources that supported student engagement, and so infer-
ences about how instruction resulted in gains in student outcomes are limited. Our
goal was to examine teachers’ enactments of the SimCalc replacement unit and to
identify those factors that appeared to successfully support student engagement and
learning. Because we assume that any set of curriculum materials will be enacted in
a variety of ways and that these enactments will have different impacts on student
outcomes, we also ask just what constitutes “good enough” instruction in a scaled
up intervention?

We use the idea of “good enough” enactments to signal an affinity with the idea
of good enough parenting (Winnicott, 1971). Rather than using it to evaluate the
teacher, we use it to refer to the set of possibilities created for students in a teacher’s
enactment of the curriculum replacement unit. Teachers’ enactments will naturally
vary. We argue, however that to be good enough, they need to provide resources that
support opportunities to learn for all students.

1 Framework

1.1 Learning Resources

A set of curriculum materials can be provided to teachers, but as a resource it is
not “self-acting” (Cohen et al., 2003). It takes teachers’ and students’ personal and
collective resources to enact the curriculum and promote learning. We use learn-
ing resources to refer to what teachers and students use to enact the curriculum and
engage with the content. This definition is consistent with Grubb’s (2008) defini-
tion of resources as “those practices and programs within schools and classrooms
(including the human resources) that improve valued outcomes” (p. 106). Learn-
ing resources fall into several categories and are created and used synergistically
by teachers and students as they engage in tasks. These categories include mate-
rial resources, such as curriculum workbooks and computer simulations; personal
resources, such as teacher knowledge or student understanding and disposition; col-
lective resources, such as activity structures or interactional norms; and abstract
resources such as instructional coherence over time (Cohen et al., 2003; Gresalfi,
2009; Grubb, 2008).

Different configurations of resource use during lessons are possible, thereby pro-
viding different opportunities for student engagement. For example, one teacher
may use cooperative group work to engage students in complex problem solving
tasks using a configuration of resources that include complex tasks designed to re-
quire multiple types of input, routines for interacting with peers, and the teacher’s
management of the groups. Another teacher may use one-on-one dialogue with in-
dividual students to examine and extend their thinking about mathematical ideas
using a configuration of resources that include tasks designed to be solved indepen-
dently of the teacher, the teacher’s repertoire of questioning to probe and extend
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students’ thinking, and teachers’ knowledge of students and the mathematics they
understand.

The content of the replacement unit used by teachers in the experimental study
was based on SimCalc MathWorlds® and used computer simulations of motions
linked with graphs, tables, and equations to teach the big ideas of rate and propor-
tionality with a focus on linear function. To explore students’ access to learning
resources during the curriculum unit, we focused on the development of concepts
across lessons and the quantity and quality of connections among ideas that were
made by teachers and students within lessons.

1.2 Making Connections and Expending Effort

We used connectedness as a lens through which to examine the nature of mathe-
matics content as it was presented and developed during instruction. Connected-
ness is associated with learning with understanding and the coherence of instruction
(Bransford et al., 1999). Cohen and colleagues (2003) emphasized that, “coordinat-
ing instruction. . . depends on making connections among teachers’ and students’
ideas, among students’ ideas, among both over time, and between both and ele-
ments in the environment” (p. 126). Consistent with this claim, Hiebert and Grouws
(2007) synthesized evidence from a variety of studies to argue that teaching for un-
derstanding is associated with explicit attention by students and teachers to making
“connections among ideas, facts, and procedures” (p. 391).

Hiebert and Grouws (2007) also argued that to develop conceptual understand-
ing, students must have opportunities to expend intellectual effort to make connec-
tions. Students might make such connections while they are listening to a teacher’s
explanation or watching a computer simulation, but the opportunities to learn pre-
sented by activities that do not afford students’ active participation tend to be taken
up by a only small number of students. We therefore expected good enough teach-
ing to support a plurality of students to expend effort to make the connections that
supported their sense-making.

2 Methods

We selected three case study teachers from a total of 37 in the treatment group for
Year 2 of the experimental study. We chose teachers who had a range of achieve-
ment gains in Year 1 and who had a range of Mathematics Knowledge for Teaching
(MKT) as measured by an MKT assessment administered to all teachers at the con-
clusion of the first summer’s workshop (Shechtman et al., 2010).

The materials and software were developed for ease of use by teachers who were
working with the technology for the first time. A four-day teacher training focused
on understanding the content, using computers, and experiencing the unit as learn-
ers.
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All case-study teachers were observed teaching five lessons (out of 10) from the
unit. One lesson sometimes stretched over two or three class sessions. All lessons
were video-recorded.1

We focused our analysis in particular on three lessons that involved significant
new content and where we expected to see the greatest opportunity for learning.
These lessons included “A Race Day,” which involved the introduction to using
position-time graphs to represent linear motion; “On the Road,” which involved
students’ first experiences with piece-wise linear graphs including graphs repre-
senting backwards motion and stopped motion (Fig. 1); and “Salary Negotiations,”
which involved the transfer of content involving motion in a new context, earning
money.

We collected data on student outcomes to measure the impact of students’ access
to learning resources. All students were given a written test before and after the unit.
Midway through the unit, we interviewed a subset of seven students from each class
representing a range of prior achievement levels about their views on the unit and
their participation.

We transcribed all lessons and segmented the transcripts into episodes. We cre-
ated Content Maps to represent the content and connectedness of classroom talk in
these episodes. Like concept maps (Novak, 1990), Content Maps are composed of
links and nodes. Nodes include mathematical ideas, assertions, propositions, pro-
cedures, predictions, reasons, and story lines. Links between nodes represent rela-
tionships that are explicitly stated or implied in what participants say or do. Nodes
and links are organized in clusters that corresponded to instructional episodes focus-
ing on a task. Unlike concept maps, which are intended to represent the knowledge
structures of an individual, Content Maps are based on classroom interactions and
are meant to represent the enacted content—the substance of what teachers and stu-
dents talked about and otherwise attended to. In deciding what to include in our
maps, we looked for content that was valued or emphasized by the teacher or a stu-
dent. For example, in the following exchange in which the class is discussing the
graph that appears in Fig. 1b, students are oriented to the content shown in bold
(nodes) by a variety of talk moves that alert students to its value. Table 1 associates
these talk moves with nodes that would appear in a Content Map of this exchange.

1 T: I already heard Mara say that the van traveled at this constant rate
2 of speed. Now I heard several people say that. . . . And she said
3 that the bus did what?
4 . . .
5 Abel: It would have been going, like, you said a straight line (using
6 pencil to point to horizontal graph on the computer to teacher) is
7 like this.
8 T: Ah, remember if we have a horizontal—remember they’re all
9 straight.

1All data collection, summaries, and transcripts were completed by mathematics education doc-
toral students Theodore Chao, Steven Greenstein, Luz Maldonado, and Jessica Pierson Bishop at
the University of Texas Austin.
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Fig. 1 The graphical component of a task in which (a) the bus and van slow down after two hours;
(b) the bus stopped after two hours; and (c) the van returned to Abilene before making its way to
Dallas
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Table 1 Corresponding discourse move for each node

Line # Node Supporting talk move

1–2 Constant rate of speed Revoice: “I heard Mara say. . . Now I heard
several people say that”

5–9 Straight line, they’re all straight Draw attention: “Ah, remember. . . ”

11–12 Horizontal line means stopped Monitor content and remind of correct claim
in response to student’s ambiguous claim: “If
we have a horizontal line. . . stopped”

16–17 Speed declined Confirm and reinforce: “. . . I love that”

10 Student: Maybe it slowed down to wait for cars.
11 T: If we have a horizontal line, that’s when they’re stopped. What
12 do you think happened? At what time did that happen?
13 Neil: At 2 hours.
14 T: At 2 hours, what happened?
15 Neil: The bus, uh, uh.
16 Abel: Speed declined.
17 T: The speed declined. I love that.
18 Zane: I wish we could get there in 2 seconds.
19 T: If we could get there in 2 seconds?
20 Zane: Or 3.
21 T: It feels like it takes forever, particularly, I tell you, from Abilene to
22 Dallas does feel that way.

There are several ways in which discourse—usually in the form of moves made
by the teacher—orients students to content, including by confirming or reinforc-
ing what is correct, monitoring content, selecting content, controlling access to
content, taking up student contributions, repetition, and reinforcing desired prac-
tices and processes (Mercer, 2000). As we created Content Maps, we examined
our transcripts to determine what content was expressed, valued, and reinforced
through discourse and then created nodes to represent that content. If two nodes are
not linked, then there were no connections made between them in classroom talk.
The frequency with which a link was reiterated is shown in the thickness of the
link.

To test reliability of our maps, each member of the research team created a Con-
tent Map of a lesson previously mapped by another team member. We compared
the maps by identifying primary and secondary nodes for each cluster, according to
the number of links to these nodes. In cases of ties, we listed both (or all) nodes as
primary or secondary. We then counted the number of matching nodes, aiming to
achieve 80 % or higher in matches. In all cases, the percentage matched was 86 %
or higher.

We augmented our analysis of Content Maps with analyses of classroom tran-
scripts, student interviews, and teacher interviews to examine other factors that ap-
peared to influence students’ access to learning resources.
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3 Good Enough Curriculum Enactments

Our questions concerned identifying the resources for learning that were used dur-
ing the replacement unit and identifying similarities and differences in configura-
tions of resource use from one classroom to the next. We found that student learning
was supported by different configurations of resources. In some configurations, the
teacher was more central to supporting engagement, and in others, the use of mate-
rials figured more prominently. In one case, students’ frequent use of the curriculum
materials and computer simulations appeared to offset difficulties the teacher had
expressing and managing the content.

We present three cases. Each case represents the use of a different configura-
tion of resources. Table 2 includes information on the three case-study teachers and
student gains in their classrooms in Years 1 and 2 of the study.2

Ms. Garfield and Mr. Simmons, in particular, present a surprising combination of
features. Ms. Garfield’s MKT score was significantly below average, yet her mean
class gain was above average for both years. In contrast, Mr. Simmons’s MKT score
was among the highest of all the treatment teachers, yet his mean class gain was
consistently below average. Further, the standard deviation of students’ achievement
gains in his class was the largest among our cases and significantly above the aver-
age standard deviation of the treatment sample, suggesting differences in students’
learning were more pronounced in this classroom. We unpack these features below.
Most notable were instances in which high MKT was not necessarily put to effective
use as a learning resource, and interacting with the computer simulation appeared to
compensate for weaker MKT resources in other components of instruction. Teach-
ers’ MKT was reflected in particular in the Content Maps of their lessons. However,
as we detail in our analyses below, Content Maps also provided information about
the quality of the connections that the teacher and students were making.

Table 2 Information about the three case study teachers

Teacher Region MKT* Track Student achievement

Mean SD Mean SD

pretest** pretest gain gain

All 48 teachers various n/a 13.57 5.60 5.24 3.87

Driver suburban 16 accelerated 19.42 3.27 5.21 2.82

Garfield rural/oil 7 non-tracked 13.36 6.00 6.45 2.94

Simmons rural/farm 18 non-tracked 8.05 3.34 3.90 4.79

*Total possible was 24. Average MKT score at completion of Year 1 workshop was 13.1
**Total possible on assessment was 30

2Each teacher’s mean achievement gain is consistent with the phenomenon of regression to the
mean between Years 1 and 2 of the study. That is, in Year 2 of the study, each mean gain was closer
to the mean of the entire sample than in Year 1. None of the mean achievement gains appear to be
a result of a ceiling effect.
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3.1 Coherence, Connectedness, and Computers:
Case of Ms. Driver

Ms. Driver was a 28-year veteran mathematics teacher who taught in a mid-sized
city in north Texas, USA. She held a certificate to teach Grades 4–8 mathematics.
Ms. Driver’s MKT score—16 out of 24—was above the average of 13.1 for the treat-
ment sample, suggesting relatively strong content knowledge. Her students’ average
gain in Year 2 was about average. She taught in a high-ability classroom, which was
reflected in her students’ pretest scores.

Ms. Driver represents a case in which teacher knowledge and practices and the
use of the computer technology all served as resources for students’ engagement.
We noted in particular the coherence of instruction with respect to rich, whole-group
discussions of the big idea of rate.

3.1.1 Connectedness and Coherence of Whole-Group Instruction

Whole-group recitation in Ms. Driver’s classroom provided students with multiple
opportunities to make connections involving the big ideas of the unit. Content Maps
of Ms. Driver’s lesson showed how rate, in particular, was linked to related con-
cepts, examples and counter-examples, narratives, and procedures for calculating
speed and slope. Further, they revealed a strong coherence in the development of
this content over time.

To illustrate, in the second lesson, “A Race Day,” the majority of whole-group
discussion focused on “speed.” Simulations of two girls running races were pre-
sented and students were asked to compare and then calculate their speeds. The
clusters of talk involving “speed” in the Content Map of this lesson show that the
teacher and students verbalized several interconnected meanings (Fig. 2). Specifi-
cally, speed was defined as the “ratio of distance traveled in a certain time” and was
linked to “unit rate” which was, in turn, linked to examples of rates, including miles
per hour, meters per second, and feet per second. In the same cluster, speed was
calculated several times by dividing the distance by the number of seconds to yield
a “rate of speed.” By explicitly using and interrelating a mathematically robust defi-
nition, several examples and procedures within the same episode of talk, instruction
provided opportunities for students to interconnect and deepen their understanding
of speed.

Whole-group discussion in a later lesson, “On the Road,” exemplified the coher-
ence of instruction. Ms. Driver again focused on speed but framed it in relationship
to new content, including the constructs of rate and slope, providing students with
opportunities to deepen their understanding by interconnecting speed with more so-
phisticated concepts. Specifically, she used the phrase “unit rate” to refer to speed
and explicitly linked the concept to “slope” (Fig. 3). The link between unit rate and
ratio was articulated several times, in definitional statements—such as speed is “dis-
tance in time”—and in characterizing unit rates as a type of “per change” unit. As
before, their discussion included a constellation of procedures, category exemplars,
and interpretations, such as motion, consumption, and cost.
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Fig. 2 Cluster from Ms. Driver’s Content Map for discussion of speed in “A Race Day” lesson

3.1.2 Pressing for Reasons and Facilitating Argumentation

A second feature of Ms. Driver’s instruction that provided opportunities for students
to expend effort and make connections was the practice of pressing for reasons for
students’ claims. The quality of these elicitations distinguished her from the other
case-study teachers and provided students with opportunities to make and deepen
connections within a single content strand. Ms. Driver tended to use these prac-
tices in the context of developing new and sometimes challenging content but not
necessarily as part of routine recitation.

For example, in “On the Road,” Ms. Driver addressed the most challenging idea
of this lesson—interpreting a line segment with a negative slope (Fig. 1c)—by press-
ing students for explanations that linked a downward sloping position-time graph
with backwards motion. One student reasoned that the van must have turned around
because the “distance decreased.” Another argued that the speed for the first hour
and a half must be equal to the speed returning to the origin during the second hour
and a half because they covered the same amount of distance in the same amount
of time. Other students provided counter-arguments to a claim that a sideways V-
shaped segment represents the van’s return to the origin by arguing that “he can’t
go back in time” and “he can’t be in two places at one time.” Ms. Driver did not
consistently press for reasons, however, and at times talked substantially more than
students.

3.1.3 Simulation Software

Reflections by target students on the unit and how they benefitted from it corroborate
our finding that Ms. Driver’s instruction provided adequate access to learning re-



260 S.B. Empson et al.

F
ig

.3
C

lu
st

er
fr

om
M

s.
D

ri
ve

r’
s

C
on

te
nt

M
ap

fo
r

di
sc

us
si

on
of

co
ns

ta
nt

ra
te

of
sp

ee
d

in
“O

n
th

e
R

oa
d”

le
ss

on



Scaling up Innovative Mathematics in the Middle Grades 261

sources. In particular, students reported that engaging with the simulation was chal-
lenging and intellectually satisfying. Six out of the seven target students described
the use of MathWorlds as “fun.” More importantly, this enjoyment was accompa-
nied by the view that interacting with the simulation helped them to understand the
material and to appreciate its applications. For example, Jorge3 said, “It’s more fun
[than usual mathematics instruction] because we’re learning more stuff.” Nadi said,
“Well, what we used to do in math class, we would, we would look at graphs and
write the information down from them. But in the MathWorlds thingie, when you
do graphs, you like, you dissect it. Like you look at each part, what it means, what
it’s showing, how to explain it.”

3.2 Social Relationships and Simulations: Case of Ms. Garfield

Ms. Garfield taught in a small town in west Texas. She had been teaching for 18
years and had an elementary generalist certification for grades 1–8. She had taught
mathematics every year. Ms. Garfield’s MKT score—7 out of 24—was significantly
lower than the average MKT score in the treatment sample and the lowest score of
our case study teachers. Yet Ms. Garfield’s students had above average gains in both
years of the study, a puzzling exception to the claim that high student achievement
depends on high teacher content knowledge (e.g., Hill et al., 2005).

Ms. Garfield and her students were part of a close-knit community and it was not
unusual for them to interact outside of school. She was familiar with many of her
students’ families and their situations.

At first glance, the learning resources in Ms. Garfield’s instruction were not obvi-
ous. Her Content Maps showed a focus on procedural explanations. The emphasis in
whole-group discussion was often on answering questions quickly and correctly—
chorally as a group. Some of these observations were consistent with Ms. Garfield’s
relatively low MKT score. However, further analysis revealed an instructional sys-
tem in which memorable narratives, social cohesion, and adequate time to work with
partners and the computer simulation enhanced students’ opportunities to expend ef-
fort to make mathematical connections. We unpack these findings in the following
sections.

3.2.1 Lack of Connectedness Within and Across Lessons

Ms. Garfield’s Content Maps revealed a focus on declarative knowledge and proce-
dures. Classroom talk was teacher-driven and many of the critical connections were
made by the teacher rather than by students.

3The number of letters in a student’s pseudonym indicates achievement level on pretest: 3 for low,
4 for medium, 5 for high.



262 S.B. Empson et al.

Fig. 4 Clusters from Ms. Garfield’s Content Map for discussion of rate formula in “On the Road”
lesson

In contrast to Ms. Driver, speed and motion were discussed in terms of how to
calculate them, with few connections to the big idea of rate. Rather than making
conceptual connections, Ms. Garfield focused on the mechanics of computations.
She also animated this content with examples from students’ daily lives.

For example, in “A Race Day,” the distance formula, d = rt, was by far the most
talked about content followed by “speed.” A good deal of this talk focused on how
to apply the distance formula and syntactic aspects of the coordinate plane. Students
were asked to chorally repeat the distance formula several times. Speed was defined
rather opaquely as “moving [while] time is passing.” Ms. Garfield provided exam-
ples of people walking at different speeds in the park and had students embody the
idea by walking across the room while watching the clock.

Speed was addressed descriptively and procedurally in later lessons, as well.
When varying rates including slowing, resting, and returning and their associated
piecewise graphs were introduced in “On the Road” (Fig. 1), Ms. Garfield focused
on relationships of association, such as a “line bending” means the bus “slowed
down” (Fig. 4). The horizontal line segment in Fig. 1b was interpreted as “wait-
ing,” because the bus “got more time but didn’t go further.” There was no further
discussion of either of these new situations.

Lessons in which students were called on to create narratives that explained
what happened in a graph tended to elicit greater than usual participation from a
wider range of students, including Cal and Bea, two low-prior-knowledge students
in Ms. Garfield’s class. For example, in “On the Road,” when students were asked
for conjectures as to why one vehicle returned to the origin, they enthusiastically
offered all kinds of reasons, such as forgetting sunglasses, money, or food. These
narratives may have served as memorable examples for some of the key learning
goals of the unit. Evan, a student who was quiet during whole-group recitation, ap-
parently continued to think about these examples once the unit was over. His mother
reported to Ms. Garfield that as they were driving to another town, Evan used the
distance they had to travel and the speed at which they were traveling to figure out
how long the trip would be.
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If whole-group recitation provided few opportunities for students to make con-
nections among concepts, facts, and procedures, where did these opportunities ap-
pear?

3.2.2 Partner Time and Computer Use

In comparison to participation in whole-group instruction, working with partners to
interact with the computer simulation appeared to provide students with more op-
portunities to engage with the content of the unit and to make connections between
ideas, facts, and procedures. Students in Ms. Garfield’s class worked with partners
for substantial periods of time in 10 out of the 12 sessions that we observed. Usu-
ally this work involved interacting with each other and the computer simulation. The
small size of the class allowed all students to sit in the first two rows at computers,
allowing Ms. Garfield to interact with them individually. Consequently, students did
not need to choose between orienting their bodies and attention towards the com-
puter or towards the teacher, as was the case in Mr. Simmons’s classroom.

This arrangement also facilitated informal conversations among students as they
worked in pairs, and Ms. Garfield actively fostered a classroom culture in which
students were expected to assist each other in ways that are consistent with the tenets
of cooperative learning (Webb and Palinscar, 1996). For example, when a third of
the class was absent on the first day of the unit, Ms. Garfield allowed the students
to fully investigate the simulation software. As the students worked, Ms. Garfield
reminded them that they were going to be the “teachers” the next day for those
students who had been absent. The next day, Ms. Garfield paired students who had
been present with students who had been absent to share the discoveries they had
made about the software.

Six out of the seven target students singled out partner work as helpful to their
learning. All three students, who were identified as having low prior knowledge, re-
ported partner work as beneficial, and one of them—Cal—said that while he some-
times found the teacher’s explanations confusing, he felt comfortable relying on
other students to help him out. Drew said that working together helped him to clar-
ify his understanding. He reported that he worked well with Bobby and described
how they would often “work it out and, like, see if whoever got a different an-
swer.”

3.3 Access Restricted: Case of Mr. Simmons

Mr. Simmons was in his fourth year of teaching, all at the same high-poverty school
located in an agricultural region in south Texas. Before participating in a one-year
alternative credentialing program to teach mathematics in grades 4–8, Mr. Simmons
was a technical professional. Like Ms. Driver, Mr. Simmons’s MKT score—18 out
of 24—was above average and suggestive of strong content knowledge. In contrast,
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his students’ average gain of 3.55 in Year 2 was well below the average gain of 5.31
for the treatment sample and the lowest within our set of case-study teachers.

The most salient feature of Mr. Simmons’s curriculum enactment involved how
he managed students’ access to learning resources. By constraining the ways in
which students participated in whole group discussion and restricting students’ ac-
cess to explorations of computer simulations, he essentially reduced students’ op-
portunities to make meaningful connections involving the big ideas of the replace-
ment unit.

3.3.1 Differential Levels of Participation

Whole-group recitation in Mr. Simmons’s class was dominated by a small group of
students. These six students, all male, took more opportunities to engage with the
content than the other 20 students who talked less frequently, if at all, during this
part of the lesson. The mean number of turns of talk per day among this group was
more than 11 times the frequency with which other students contributed.

Differential participation of this sort was not unusual in our cases. For exam-
ple, a small group in Ms. Garfield’s classroom also tended to participate more fre-
quently in whole-group instruction than other students. However, the difference in
relative frequencies of participation between the two groups was more pronounced
in Mr. Simmons’s classroom than in the other teachers’ classrooms.

3.3.2 Connections as Associations

Participation in whole-group discussion in Mr. Simmons’s class tended to be limited
to short responses to closed questions. As a result, relationships between ideas in
Mr. Simmons’s classroom were better characterized as associations than as well-
developed conceptual relationships.

The simple connections among ideas illustrated in the following episodes typify
these relationships. In the second lesson, “A Race Day,” the majority of whole-group
discussion in Mr. Simmons’s classroom focused on “speed.” Speed was defined by
the teacher as equal to “distance divided by time” and as “meters over seconds.”
Speeds were calculated using these formulas and the results were tied to units sug-
gested by students, including miles per hour and meters per second. Similarly, in
“On the Road,” Mr. Simmons’s treatment of slope (Fig. 5) was nearly equivalent to
his treatment of speed. Once slope was established as synonymous with speed, the
discussion became about speed and a formula for calculating it. The “spine” in the
map that extends the length of the cluster is darkened six times to indicate the num-
ber of times in the lesson that Mr. Simmons presented slope as “distance divided by
time” and then used the “endpoint technique” to calculate the slope of a segment of
a piecewise linear graph using its endpoints.

By limiting the treatments of speed and slope to procedural applications, the
instruction provided fewer opportunities for students to develop an enriched under-
standing. Ms. Driver’s treatment of speed provides an explicit contrast.
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Fig. 5 Cluster from Mr. Simmons’s Content Map for discussion of speed in “On the Road” lesson

3.3.3 Use of Computer Simulations

During whole-group discussion, students sat at tables while Mr. Simmons operated a
computer, LCD projector, and overhead projector at a podium. This was in contrast
to both Ms. Driver’s and Ms. Garfield’s enactments in which students had access
to computers during whole-group recitation and were observed on occasion to au-
tonomously operate the simulation to explore or answer questions. In fact, Mr. Sim-
mons reported that he told the students, “Forget about the computers and come to
the table and then just pay attention.” When it was time to work with the simulation,
Mr. Simmons’s students moved from the tables to sit in front of individual desktop
computers.

For the first 8 of the 10 days we observed, class was conducted in the lab and was
split between whole-group recitation and computer activity. On three of these days,
Mr. Simmons interrupted students’ interactions with the software and instructed
them to return to the tables. Once he told them, “Some of you are confused, so
let’s go back to the tables and I’m going to show you something on the [computer].”
On the ninth day, the class was moved from the computer lab to Mr. Simmons’s
classroom—which contained just one computer and LCD projector—where the re-
mainder of the unit was implemented. Mr. Simmons explained the rationale for his
decision: “The reason why we are here right now, guys, and we didn’t go to the lab
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today. . . yesterday, I saw a lot of you that were not getting this program, or maybe
you were doing something else, OK? You were spending, like, maybe, half an hour
on just the first. . . problem.”

Similarly to students in other classrooms, all seven target students reported that
the computer simulations were helpful to them. One said that the computers “help us
learn and help us do things. They make it easier.” Another said that computers “make
it easier to participate.” Still another said, “it’s more entertaining at the computers”
and “you get bored” when you are away from them. Despite their enjoyment of
using the computer and their ability to learn from it, Mr. Simmons, in contrast with
Ms. Driver and Ms. Garfield, limited students’ access to computers and, when they
were working at the computers, managed their interactions with the software in
ways that curtailed opportunities for them to make connections.

4 Discussion

What constitutes a good enough curriculum enactment? Our cases help us begin to
answer this question by identifying how learning resources were created and man-
aged in each of the classrooms. Content Maps revealed differences in how teachers’
expressed MKT in instructional talk and in the kinds of content connections that the
teachers emphasized. Other resources that were related to the quality of students’
engagement included the computer simulation and social relations.

Both Ms. Driver and Ms. Garfield had high gains, but used learning resources in
different ways. Ms. Driver had high MKT and pressed for reasons in full group dis-
cussions. Mathematical conversations in her classroom featured rich connections.
In contrast, Ms. Garfield had lower MKT and full group discussions in her class-
room had less variety and depth of connections. Students had to work harder to
extract meaning from these discussions. However, Ms. Garfield supported students’
use of the software and interactions with their peers as resources by providing am-
ple time, a facilitative classroom layout, and a supportive culture for engagement.
Although Ms. Driver had a somewhat more teacher-directed approach to instruction
and Ms. Garfield had a somewhat more materials-centered approach (software and
workbook), both teachers had classrooms in which students had high mean learning
gains.

The case of Mr. Simmons provides a contrast. Students in his classroom had a
low mean gain despite the teacher’s high MKT. The reasons appeared to have to do
with students’ restricted access to learning resources. Although students sensed the
intellectual potential of the materials and Mr. Simmons sensed the students’ concep-
tual struggles with the mathematics, Mr. Simmons tended to respond by reiterating
the same procedural connections and limiting students’ time using the software.

Further, the learning that occurred was unevenly distributed. The standard devi-
ation of learning gains in Mr. Simmons’s classroom was 4.8, compared to 2.8 for
Ms. Driver’s class and 2.9 for Ms. Garfield’s class (and 3.9 for the sample). Some
of Mr. Simmons’s students had large gains, about 25 % had no gains, and another
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25 % had small gains.4 There were learning resources in Mr. Simmons’s classroom,
but they appeared to be accessed by, at most, about half the students. By almost any
standard this is not good enough (e.g., Roschelle et al., 2010a).

These case studies do not exhaust the possible configurations of learning re-
sources described in prior small-scale design research (Roschelle et al., 2008). For
example, some configurations involve projecting student work with the software to
a classroom display and more extensively involving students in clarifying, refining,
consolidating, and justifying their ideas. While both Ms. Driver and Ms. Garfield
had this potential, we did not see student work with the software move from indi-
vidual to full group contexts. Another possibility hinted at in Ms. Garfield’s case
would be a more explicit focus on organizing students to work in groups. Full class
discussion might be less influential, but more attention to managing opportunities
for students to create and explore connections in the context of group work would
be necessary (e.g., Cohen and Goodlad, 1994).

Another notable aspect of the contrast in these cases concerns the contribution of
teachers’ mathematics knowledge for teaching. Although Ms. Driver and Mr. Sim-
mons had high MKT, their classrooms featured remarkably different configurations
of learning resources. Assessing how a teacher uses what she or he knows about a
given topic to direct tasks and interact with students, such as we did with Content
Maps, may be a more accurate characterization of teacher knowledge as a learning
resource than a teacher’s score on a content knowledge assessment.

Across all three case studies, we observed patterns in classroom interactions
that resonate with how the developers of SimCalc viewed its potential as a learn-
ing resource. For example, the developers believed that giving students ample op-
portunity to use the software is critical. This belief is tested most convincingly in
Ms. Garfield’s case—as student interaction with the software seemed to be the pri-
mary learning resource. In Ms. Driver’s case, student interaction with the software
functioned as a complementary resource to full class discussions, and in Mr. Sim-
mons’s case, lack of support for student use of the software contributed to weaker
gains for many students.

5 Conclusion

These case studies were drawn from a larger empirical project that established that
the new curricular materials and professional development were effective in most
classrooms and for a wide range of teachers and students. Within this context of pos-
itive results, the role of these case studies has been to fill in details of how learning
gains were achieved—what did “good enough enactments” with these new materials
look like?

When we examined classrooms that had good enough enactments to obtain
strong mean learning gains with the new materials, we found that the more success-

4Although the class’s relatively low mean pretest score may seem to have put the class at a disad-
vantage for learning gains, the experiment found no significance differences in mean gain scores
across differential pretest scores (Roschelle et al., 2010b).
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ful enactments were not all alike. The main theoretical idea that we have advanced
to explain these findings is that the same software and workbook materials can be
realized in different ”configurations” and that those configurations that exemplify
good enough enactments support students to make connections and to expend intel-
lectual effort to make sense of the content of the unit. Both more teacher-centered
and more student-centered configurations sufficed and seemed to emerge on the ba-
sis of the teachers’ level of mathematics knowledge and their pedagogical beliefs
and practices. In contrast, it is plausible that what less successful enactments have
in common is that they limit access to learning resources for all but a small minority
of students.

An important implication is that “scale up” may require more attention to sup-
porting teachers to use the same materials in different configurations. More specifi-
cally, beyond basic recommendations that students have adequate access to technol-
ogy and enough time to complete curricular tasks, it may be counter-productive to
over-specify a preferred way of teaching. Instead, recommendations for particular
configurations need to be sensitive to teachers’ level of mathematical knowledge,
their pedagogical beliefs, and their instructional practices. Measures of “implemen-
tation fidelity” need to be revised to allow for a wider range of viable variation, if
not replaced by measures that acknowledge curriculum implementation as a mutu-
ally adaptive system (McLaughlin, 1976) admitting several possible configurations
of learning resources.

In any case, no case-study teacher implemented the curriculum in ways that fully
embodied the SimCalc developers’ vision. Given the complexities of instruction and
variations in teaching approaches, it would be unrealistic to expect all or even most
teachers to reproduce on a large scale the “ideal” teaching documented in small,
proof-of-concept studies. Scaling up instructional innovations will entail trade-offs.
Recognizing the inevitability of these trade-offs can help educators support teachers
to embrace and implement innovative curriculum materials and to recognize that
the interface between innovations and teachers can be organized around multiple
“good enough” configurations of learning resources rather than the idea that there is
a one-size-fits-all best approach.
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Changing from the Inside Out: SimCalc Teacher
Changes in Beliefs and Practices

John Tapper

1 Overview

This chapter examines ways teacher beliefs and practices changed as a result of us-
ing SimCalc as a replacement for traditional content in high school algebra classes.
SimCalc is a part of our investigation in three ways:

1. as SimCalc MathWorlds®, software that runs on calculators and computers;
2. as the SimCalc approach, which we operationalize as the instructional practices

that come from the inquiry-based curriculum and materials that accompany Sim-
Calc MathWorlds®; and

3. as the SimCalc intervention, a specific application of software, curriculum, and
approach used by the Kaput Center for Research and Innovation in STEM Edu-
cation for a specific research study.

Interviews with SimCalc teachers in the IES-funded study, “Democratizing Ac-
cess to Core Mathematics Across Grades 9–121” (hereon called Democratizing Ac-
cess study) led to unexpected insights into instructional practices—and teacher be-
liefs that informed those practices. We found that working with SimCalc, over time,
changed some of teachers’ routine instructional practices and challenged them to
reconsider their views about how children learn math. These transformations were
different across teachers but patterns emerged that could be linked to the amount
of time teachers spent in the project, and to the instructional approaches inherent in
SimCalc.

1The project was funded by the U.S. Department of Education, Institute of Education Sciences
(IES), Grant No. R305B070430.
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2 SimCalc’s Theory of Change

Berube et al. (2010) suggest that a curriculum’s theory of change (ToC) comes from
the designers’ “intentions and expectations.” These intentions include assumptions
about how learners understand and develop mathematical concepts. Taken together,
intentions, assumptions about learning, and the nature of mathematics form a theory
about the way curriculum—through the lens the teachers brings to it—will influence
math learning. A ToC in a curriculum puts a theory about teaching and learning into
practice. Travers (1993) called the constellation of theory, intention, and curriculum,
“the intended curriculum.”

The SimCalc ToC is built around the affordances that come from interactions
between students, mathematics, and technology. SimCalc is a dynamic visualiza-
tion environment that makes use of graphing calculators and connectivity technol-
ogy. It links representations of functions to each other and to simulations, allowing
graphical and algebraic editing of piecewise-defined functions. In particular, the en-
vironment allows students’ work to be aggregated to a teacher computer that can
be projected publicly, allowing each student to be part of a larger set of varying
mathematical objects.

While teachers in our study held a wide variety of views of what SimCalc was
and how it should be implemented, the intervention itself (in its iteration as part
of the Democratizing Access study) was designed with certain goals in mind. The
most obvious of these (to an observer) was that SimCalc was created to leverage
meaningful communication about key mathematical concepts between students, the
algebra curriculum, and the technology in the program. We came to think of this
communication as the learning conversation. For a variety of reasons, teachers using
SimCalc were not always aware of the affordances in the learning conversation, but
this understanding seemed to change over time.

While it can be argued that technology is simply a tool for accessing algebra con-
tent, this assertion would misrepresent the role of SimCalc in the learning process.
The technology can (and should) be conceptualized in SimCalc as a participant in
learning because students pose conjectures, ask questions, and test hypotheses that
could only be answered in a dynamic virtual environment that can respond to these
probes (Means et al., 2003; Stroup et al., 2002). Technology acted as a participant
in the learning conversation when emerging student ideas were challenged by re-
sults that SimCalc delivered. This role of technology in the learning conversation
is defined in the ToC. The curriculum played a role in this conversation by initiat-
ing the topics around which discourse could grow. Learning, from the perspective
of SimCalc design, was an iterative learning conversation through which students
developed ever more sophisticated concepts in the domain of algebra. While not
every teacher was faithful to this intention, teachers reported that SimCalc moved
them continuously toward a learning conversation and (often) away from previous
notions of classroom discourse.

SimCalc pedagogy leveraged both constructivist (Fosnot, 1996; Steffe and Gale,
1995; von Glasersfeld, 2002) and constructionist (Harel and Papert, 1991) elements
of pedagogy. The notion that students need to build their own understanding of key
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concepts based on their experiences with SimCalc explorations draws on a con-
structivist view that thinking is transformed by the process of creation. In this view
learners develop an understanding of linear functions (a key concept for algebra) by
creating, manipulating, and describing them. The SimCalc approach is situated in
a constructivist pedagogy because the curriculum is designed to place learners into
situations where they learn concepts through exploration.

SimCalc is also emphatically a constructionist pedagogy as the learning conver-
sation, the framework that holds it together, is dependent on discussion of the arti-
facts of student exploration. The curriculum and technology in SimCalc are never
used for the sole purpose of individual exploration but always for rich conversa-
tions about the meanings of students’ constructions, both conceptual and virtual.
The learning conversation cannot exist in classes without the constructions that
are the work of the class using the SimCalc curriculum and approach. The use,
or lack thereof, of artifacts of exploration was one of the characteristics of Sim-
Calc teachers’ early use of the curriculum. The ability of teachers to make use of
mathematical artifacts to help students develop deep conceptual understanding of
algebra concepts—like slope and intercept—was closely linked to prolonged use of
SimCalc software and curricula.

Implementing constructionist curricula can be demanding for teachers. A cur-
riculum that promotes student understanding through the interaction of students
with meaningful mathematical artifacts demands that teachers prepare thoroughly.
Teachers must also find ways to include the diverse learners in their classrooms in
the essential learning conversations, and confront their own tendencies to control
the flow of information (Han and Bhattacharya, 2001). SimCalc teachers struggled
with these issues as they implemented the intervention. Changes in implementation
of constructionist curricula were among the most important changes we observed in
SimCalc teachers over time.

Chapman (2006) suggests that reflection is a key element in the construction-
ist learning process. Often students do not revisit artifacts (real or conceptual) to
reflect deeply on learning. This lack of reflection limits the benefits that students de-
rive from the learning conversations in their classes. In our retrospective analysis of
teachers’ interactions with SimCalc we have found a similar pattern: Those teachers
who engaged in reflection over time (in our case two or more years) tended to have
deeper insight into both the SimCalc theory of change and the mathematics upon
which it was built. The focus of this chapter is the insights that teachers reveal as a
result of that reflection.

3 Data Collection Methods

The SimCalc intervention for Algebra 1 and Algebra 2 was used in high-school
classrooms (and a couple of middle school classrooms) in Southeastern Mas-
sachusetts, USA, over a four-year period as part of a research study that investigated
changes in content knowledge and motivation. The Democratizing Access study in-
volved the use of SimCalc curricula for Algebra 1 and Algebra 2 courses. As part
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of the data collection for this study, we conducted yearly interviews with teachers
implementing SimCalc. Interviews were conducted at the end of each school year
for the last three years of the study and last approximately 45 minutes. A total of 18
teachers were interviewed. Twelve teachers were interviewed more than once. Some
of the schools and teachers only participated in the study for one or two years, while
others were in the study for the whole duration of the project.

During interviews, teachers were probed about their retrospective perceptions of
the impact of the SimCalc intervention on instruction, learning, communication and
engagement, and the use of the technology and intervention curriculum. Interviews
were semi-structured, allowing for follow up questions not included in the script.
All teachers were asked a set of questions created by the research team. Sample
questions included:

• “Has using SimCalc influenced the math content you use? If so, in what ways?”
• “Algebra uses important algorithms and formulas to compute solutions. The

quadratic formula and the slope-intercept formula are two examples. Has Sim-
Calc had an impact on understanding and using algebraic procedures and algo-
rithms?”

A phenomenographic approach to analysis of these interviews was used ini-
tially to record participant perceptions and organize them into conceptual categories
(Goransson et al., 1998; Marten, 1988). Analyses of phenomenographic data were
summarized in yearly reports (see Tapper, 2010). We used a constant comparison
method with raw data from interviews and phenomenographic analysis from the
yearly reports to compare cases, identify unifying themes, and create a cohesive
theory.

The initial purpose of the interviews was evaluative, that is, they were conducted
as part of an external evaluation for grant review. During the interviews, teachers
reflected on their instructional practices and the effects of these on students. Over
time, these retrospective reflections increasingly centered on changes teachers made
in their instruction as a result of the impact SimCalc had on their students.

4 Towards a Teaching Continuum: An Analytical Framework

To describe and organize the changing interaction between teachers and SimCalc,
we have constructed a framework to characterize the salient features of three stages
in the interaction: initial, developing, and experienced. The initial stage is charac-
terized by the ways SimCalc interacted with teachers’ default pedagogical stance.
The developing stage showed marked similarities in the ways teachers responded to
SimCalc. Finally, in the experienced stage, teachers described the ways that SimCalc
challenged some of their beliefs and how they struggled to reconcile this new under-
standing with the demands of their current teaching. We present these three stages as
a framework for researchers to monitor and analyze changes in perceptions of Sim-
Calc teachers over time. We document the movement of teachers toward a greater
understanding of the SimCalc ToC and pedagogy.
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4.1 Initial Stage of the Teacher-SimCalc Learning Conversation

It was very different at first. . . By the time I really was starting to get used to it I wish I
could have started it again and I tried it from scratch.

Instructional change is never swift. Implementation with SimCalc was not an ex-
ception to this truism. While teachers who volunteered for the project were given
approximately seven, 3-hour sessions of professional development on the SimCalc
software and approach, my interviews with teachers demonstrated that they tended
to see the algebra intervention through the lenses of their own pedagogical stances.
Teachers universally reported that SimCalc was interactive, inquiry-based, and dif-
ferent from their regular curriculum. How they interpreted each of these assertions,
seemed to depend on the beliefs they had already possessed about how mathematics
is taught and learned.

One teacher, Marcia, described her initial teaching with SimCalc as, “very dif-
ferent” from her regular algebra instruction. Marcia’s usual instruction followed a
fairly typical representational pedagogy (Cobb et al., 1992) of demonstrating formu-
las and procedures for students to replicate and then having students practice them.
When using SimCalc, she took what she believed to be the intention of the program
and filtered it through her particular pedagogical preferences. The result was that
lessons began with teacher presentation, contained periods when the students were
given calculators, problems and told to “go for it,” and ended with teacher explana-
tion of the correct answers.

While students in Marcia’s class had access to SimCalc problems and resources,
the resources were predominantly used as practice problems to support the concepts
Marcia wanted them to learn. There was no real learning conversation because stu-
dents did not “converse” with the technology or curriculum. They did not pose con-
jectures that could be tested, or shared as public artifacts of learning for the purpose
of conceptual development. Observations of students during periods when they were
supposed to be working together to solve problems using SimCalc showed that they
frequently waited until Marcia was there to engage them. Marcia’s demonstrated
preference was to ask convergent questions directed at the correct answer. In several
video episodes, Marcia even wrote the correct answer on student papers for each
student with which she was working. These actions seemed to demonstrate a ped-
agogical preference for executing the correct procedure to find the correct answer.
While this may be a worthwhile pedagogy, it is at odds with the intention of SimCalc
to engage students in a learning conversation.

In our interview, Marcia expressed concern that allowing students to explore
problems without a predetermined outcome opened the possibility for students to
work fruitlessly. She repeatedly worried aloud that, in using SimCalc, her students
were missing out on important parts of the curriculum.

[We spent our time] discussing as a group first what exactly is going on here and what
we need to do rather than let them do full discovery because then I felt like we wouldn’t
accomplish enough in the time constraint that I needed to. So what does full discovery look
like? He has, he has the handout, go for it read it yourself, try to understand what you are
doing. My kids were not at that level to be able to handle that and I have, you know I had
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a college algebra class I think would have been a little chaotic and I only have a forty-five,
we have a forty-seven minute class so we would have wasted a lot of time I thought.

While some might argue that divergence between the intended curriculum and
the enacted curriculum (Schmidt et al., 1993) occurred because SimCalc was not a
good fit for Marcia’s instructional style, even teachers with more constructivist ten-
dencies did not, though, tend to leverage student conversations with each other—a
critical element in the SimCalc ToC. Some of the teachers who identified themselves
as having constructivist pedagogy placed inquiry into a framework of teacher-posed
questions and student responses. The elements of conjecture and investigation, im-
portant for the learning conversation, were not part of this view of inquiry.

Craig identified himself as a teacher who believed in the importance of students
constructing their own understanding of mathematics. The emphasis on exploring
concepts before teaching conventions, however, “upset the normal instructional flow
in my classroom.” Craig also said that, “We pose questions to them (students). We
believe in inquiry. But SimCalc is just too much. On the whole I think their under-
standing is good. There are just too many gaps.” Craig expressed his dissatisfaction
with his own understanding of the way SimCalc approached algebraic learning. He
also shared what would become a common theme in teacher comments, student
unhappiness with a departure from a representational approach:

I think that for myself and for probably you (gesturing to colleague) as well, had the training
been over the course of a year for teachers to really understand where it was and where it
was going and how we could fill in those gaps of the quadratic formula or factoring, I think
the program would be much more solid. By the end of where we are now, by the end of
May, I had kids saying, “Let’s just go back to a lecture”. Getting and not having some of
that from years past, I think that’s the hardest for kids to acclimatize themselves to.

Like Marcia, Craig brought the activities of SimCalc into his own preferred ped-
agogy and found that the fit was not good. Unlike Marcia, though, Craig continued
to use SimCalc over the next two years. Over this time, Craig’s understanding of
the learning conversation that underlies SimCalc learning, and his experience with
it, changed his beliefs about both the program and math learning.

One key feature of the SimCalc intervention was the ability for the teacher to
“harvest” the representations students created on their calculators. When the group
found solutions, they sent their solutions to the teacher’s computer. The teacher then
chose which solutions to share with the class and use for discussion. Since Sim-
Calc is grounded in constructionism, the intention was for the products of inquiry to
become artifacts for public discussion and the creation of deeper conceptual under-
standing. While this was the intention in the curriculum, student representations in
the initial stage of SimCalc use also tended to reflect prior pedagogical preferences.

Many teachers in their first year with SimCalc reported being relatively careful
with the student graphs they chose to share with the group. The majority of teachers,
in their first year with SimCalc, reported, for example, that they did not use shared
student work as a catalyst for discussion. A typical assertion from teachers in the
initial phase was that students were not able or willing to talk about their work
publically.
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I tended to be more choosy with what I put up. . . I mean I collect everything. . . you know
but. . . there were still kids who were very, very not interested in having, saying about what
they are thinking.

Some teachers said that they chose student work to share publically that would
demonstrate the correct solution. Others reported consistently showing all the stu-
dents’ work (rather than selecting samples). Even some of these teachers reported
that they continued to use the display of student thinking as a chance for students to
demonstrate the correct solutions or procedure, rather than to engage students in a
conversation about their thinking:

You know it is interesting when you collect student’s data. You know how you don’t want it
all to be correct because you want to talk about it? And I always thank the kids when they
make mistakes and I make a big deal about it because I think we learn more from mistakes
than if we see everything done correctly because the mistakes allow you to talk about it.

In the initial implementation of SimCalc, teachers, who demonstrated a tendency
toward representational pedagogy2 (demonstration and repeated practice), tended
to use SimCalc as a resource to support the instruction of algebra concepts. These
teachers used the functions produced by SimCalc experiences as demonstrations
of ideas that they wanted students to learn, rather than as explorations from which
students could make meaning. For teachers with a pedagogical stance that favored
more student construction of understanding, SimCalc explorations were more faith-
fully implemented. However, the construction of deeper conceptual understanding,
as a result of the learner conversation, was not always realized.

4.2 Developing Stage of the Teacher-SimCalc Learning
Conversation

I feel more comfortable teaching SimCalc the second time around. I know what to expect.

In the second year of our interviews with teachers, several features character-
ized the teachers’ relationship with SimCalc. Implementation of SimCalc, while
still delivered through individual teacher preferences, looked more similar between
teachers than in Year 1. During these developing stage interviews, teachers reported
that SimCalc curriculum was created “backwards.” By this, teachers meant that Sim-
Calc put exploration of math concepts and problems solving before work on discrete
skills and algorithms, while textbooks typically start with these skills. Teachers had
a variety of opinions on whether this was helpful or problematic. They also began,
during the interviews, to point to the ways different students responded to their Sim-
Calc experience.

2Teachers sometimes identified themselves as embracing constructivist pedagogy, rather than a
more traditional representational view. Video samples of their teaching often did not support these
claims. In all likelihood, what the teacher believed to be a constructivist stance was different from
the understanding of the researcher.
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4.2.1 SimCalc Implementation Looks More Similar in Developing Stage
Teachers

As teachers discussed their work with SimCalc in their second year of implementa-
tion, pedagogy varied less than in the previous year. Some of this was because some
of the schools and/or teachers who participated dropped out. There were a variety
of reasons for the attrition of schools in the study. In one case, attrition was caused
by a change in school leadership. In another, the school felt that participation in
the study was not in the best interest of students and staff. Even with the loss of
some schools, the potential for variety in implementation still existed among the
remaining schools.

While teachers reported some differences in pedagogy between schools, inter-
views also revealed a number of common observations. These common observa-
tions included the necessity to offer students the opportunity to share their work
publically, the importance of student comments on their work, and the realization
that not all students were comfortable with the role of constructing mathematical
understanding.

Many of the teachers commented on their growing realization that when students
commented on their work, they gained understanding they could not get any other
way. During interviews, teachers made explicit links between discussions around
the public display of student work and student learning and engagement.

Even for kids who are unsure. . . They did the work. They said, ’what if. . .?’ I was able to
show the student work, ask the group, pose the question and not answer it. They did answer
it.

I ask questions before I put the graphs up. ’What do you expect to see?’ If something comes
up that we didn’t expect to see, we have to figure out what’s going on. Sometimes the
students have already made conjectures about what the class data will look like. We put
everything up to see if it’s correct. It’s fun to figure out why, if things are off.

They’re trying to figure out how theirs is different from everyone else—what’s the differ-
ence? What are the changes? They don’t see only their picture, they see their picture in
relation to others.

Several teachers also suggested that some of their students had difficulty becom-
ing involved in conversations about their graphs. According to the teachers we in-
terviewed, much of this had to do with struggling students expectations about math-
ematics from their previous math courses. These students had difficulty, according
to several of the teachers, because their SimCalc experience was at odds with their
expectations.

These are kids who are not accustomed to any opportunity to do it on their own. These
are kids who have been the traditional—I don’t mean traditional is bad—but their idea of
school is, see it, do it, see it do it. Pete—repeat. Drill and kill. That’s all they’ve done. So
there isn’t that conceptual foundation of what are we doing. Where are we going? Why are
we doing this?
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4.2.2 The SimCalc Curriculum is “Backwards”

Another recurring comment from teachers in their second year of SimCalc imple-
mentation was that the curriculum was “backwards.”

In my textbook we start by introducing the concepts and then build up to working on prob-
lems. SimCalc starts with the problems and then, sometimes, moves to the skills.

We start with a problem that the kids have to solve in the World. Usually these come at
the end of a unit or on a test. I’ve noticed that the AP (Advanced Placement) tests ask
application questions like the ones in SimCalc. The ones in the book are always practice
versions of the skill we’ve just learned.

The recognition that SimCalc began by building key concepts through explo-
ration was the beginning of teachers’ understanding of the theory of change in the
curriculum. Though not every teacher in the program embraced the idea that begin-
ning with exploration was positive, all acknowledged that SimCalc was created with
this intention in mind.

One of the interviewees went so far as to suggest that he believed the way Sim-
Calc engaged students in mathematical thinking was superior to the model used by
his textbooks. However, he felt that, although SimCalc held more promise for de-
veloping mathematical understanding, developing concepts through inquiry would
not allow him to cover the content required of him by his schools and department.

4.2.3 Teachers Note That Students Sometimes Resist the SimCalc Approach

One of the more interesting reports from teachers in Year 2 was that there was some
pushback from students about using SimCalc. This resistance was characterized as
difficulty dealing with a different kind of mathematics class and a concern that an
inquiry approach to learning might have a negative effect on grades.

One of the first comments we received about student resistance to SimCalc came
when one of the interviewed teachers talked about students in her honors algebra
class. She told us that, towards the end of the SimCalc intervention, students had
begun to complain about their difficulties whenever they did not quickly find the
answer to a problem. In some instances, according to teachers, parents had called
the school with concerns that using SimCalc would disadvantage their children on
state math exams. In that class, from the teacher’s perspective, students were asked
to understand mathematical content from more than a procedural point of view. The
teacher believed that students were not used to demonstrating their depth of under-
standing and it was undermining their ability to count on good grades in mathemat-
ics because they could no longer simply repeat the teacher’s work.

We heard from all the teachers in the second year interviews that students were
sometimes frustrated because the learning conversation was so different from the
way they learned math in previous classes.

It’s like they said, we know how to get an A if you teach us the way we’re used to.

They (the students) like the routine of the regular math class. They understand what’s re-
quired. They’re going to feel more comfortable with what they’ve done for 13 years.
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When we find new ways that are more engaging, it takes them out of their comfort zone.

Because they weren’t doing as many practice problems they might not have thought about
it as doing math. Toward the end some of them said, ‘When are we going to go back to the
textbook.’

It’s like those kids we sometimes talk about. They know how to get A’s and B’s but they
might not really understand.

Teachers in this study identified student frustrations clearly. This could be seen
as evidence that they were beginning to notice the conflicts between the kind of
in-depth learning conversation that SimCalc required and the type of representa-
tional instruction to which they and their students were accustomed. In discussing
student conflicts with new pedagogy, teachers also considered whether the peda-
gogy “demanded” by SimCalc offered deeper conceptual learning than their current
practices. Reflecting on student behaviors and beliefs appeared to cause teachers to
reflect on their own behaviors and beliefs—something that played a key role in the
final year of the program.

4.3 Experienced Stage of the Teacher-SimCalc Learning
Conversation

(My opinion about SimCalc) has definitely changed from the first year when it was, oh my
god, this is tough. But that was my discomfort.

The final stage in the experience continuum was available to teachers who had
more than two years of experience with SimCalc. All of these teachers taught at
least one section of both the Algebra 1 and Algebra 2 curricula. Several in the group
taught four or more SimCalc classes. Teachers who had participated in the SimCalc
program for three or more years developed a better understanding of the SimCalc
theory of change, communicated very similar insights into their students’ lack of
deep understanding of math concepts and reported that their experience with Sim-
Calc had changed their teaching.

Experienced SimCalc teachers reported instructional practices that were more in
line with the intentions of the SimCalc learning conversation. We were particularly
interested when teachers mentioned pedagogy that supported student inquiry, or the
discussion of public artifacts to arrive at new mathematical understanding. Both
of these practices were mentioned in every teacher interview. In several cases, for
example, teachers reported more attention to preparing questions to ask students,
than to material they would cover.

I’ve grown as a teacher. I am much more focused on asking appropriate questions than I am
on providing information to students on how to solve a problem. I think that the use of the
technology is as absolute. . . What have to use technology. I’ve used graphing calculators.
This is a step beyond that.

I’m kind of like a math psychologist. I can tell what they’re thinking and what I should ask
them.
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Teachers reported concerns about how well their students were able to make
use of the math they were learning. Teachers suggested that, perhaps, too much
attention to memorization was detrimental to student understanding of concepts.
Several teachers said that “usual” math instruction did not prepare students well for
the AP exams.

I think it (SimCalc) gives what those kids were lacking when they entered AP calc, was
just an understanding of concepts beyond memorization. They’d memorized a lot of trig
information but they don’t understand trigonometry as an idea, as a concept. Kids don’t
understand quadratics when they’re doing them out of the textbook. The real world is motion
and acceleration like its (SimCalc) saying.

The experienced teachers reported using harvested graphs as points for conver-
sation, rather than demonstration. For these teachers, the “up front” space where
graphs were displayed had taken on a different role for instruction. Rather than be-
ing a place to review what students had done, up front displays of graphs became
the place where artifacts of mathematical thinking were displayed for the purpose of
generating the learning conversation. This was a marked difference in the teachers’
approach to SimCalc and evidence of closer alignment to the SimCalc ToC.

A lot of the time the class would all want to see their work. I’d put everything up and ask
the group, OK which one of these makes sense to you and which ones don’t.

Sometimes I get kids who purposely put the wrong ones (graphs) up there. I ask them (the
whole class) what’s going on here? How could we get an answer like that?

One of the most notable changes in teachers’ reflections on their teaching from
the initial stage of SimCalc experience to the experienced stage was the improve-
ment in how articulate teachers were about students’ understanding (Nardi et al.,
2005). Initial interviews with teachers revealed general assertions about students’
math abilities. Teachers used terms, like “fast” or “slower” “higher” or “lower,”
to describe students’ mathematical ability. In interviews in the final year, teachers
tended to focus on the depth of student understanding and their ability to make use
of the mathematics they learned.

I saw the uncomfortableness with students trying to figure out, ‘How am I going to do this?
What do I have to do? Just TELL me. Just tell me.’ ‘Am I doing it right?’ was often the
question.

A majority of the teachers interviewed noted that students did not make mean-
ing from mathematics. These teachers asserted that this was not an artifact associ-
ated with SimCalc, but rather something they had begun to notice in all their math
classes. The experience of teaching with a curriculum that stressed the meaning of
mathematical operations, combined with the self reflection that is often part of par-
ticipation in a research study, seemed to have made teachers aware of the degree to
which their students did not “think mathematically.”

While experienced teachers suggested that SimCalc “forced” them to focus on
the meaning of algebraic operations and likewise made them create communica-
tion structures that enhanced understanding, they were not ready to adopt SimCalc
wholesale as a means for improving understanding of algebra. Teachers cited de-
partmental restrictions, or concerns about how students in SimCalc would score on
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state tests as reasons they could only use SimCalc as a supplementary resource. All
but one of the teachers also expressed a belief that “SimCalc is not for everyone.”
The evidence of teachers’ experience with SimCalc led most of them to the conclu-
sion that many of their students were too steeped in traditional pedagogy to benefit
from an inquiry approach to math learning and/or had a disposition that would only
allow them to learn mathematics if it were first demonstrated to them.

4.4 Changing Beliefs

During the Democratizing Access study, SimCalc curricula, software, and profes-
sional development offered math teachers the opportunity to explore new pedagog-
ical practices and to ask themselves, “What works best?” The chance to compare
new and old ways of thinking about math learning side-by-side is rare in profes-
sional development. As teachers reflected on their experience retrospectively, they
gave voice to the way their knowledge, beliefs, and practices evolved. Teachers re-
ported, though, that they would not continue to use a constructivist/constructionist
approach in future classes without SimCalc software and curricula. We found that
further investigation is needed regarding the tension between what experienced Sim-
Calc teachers identified as practices leading to deep learning for their students and
the agency teachers had for implementing those practices.

Teachers reported a variety of reasons for their beliefs that the construc-
tivist/constructionist pedagogy built into the SimCalc ToC might not work in ev-
eryday instruction. In some cases teachers said that a “SimCalc approach” would
be too different from the practices in other classes. These teachers felt that students
in their classes would be getting a significantly different experience than in others.
This was seen (at one site) as problematic. Other teachers reported concerns that
parents (or students) might object to this new kind of instruction, that textbooks do
not support inquiry learning, or that the math department initiatives at their school
would make a SimCalc approach to algebra difficult to implement.

Rather than refute the factuality of claims that implementing a SimCalc approach
to algebra in the long-term is problematic, we would rather focus on potential ap-
proaches for bridging teacher beliefs in the effectiveness of this approach with cur-
rent classroom practices. Peterson (1991) reports that instructional practices are the
result of complex systems of beliefs, knowledge, and personal theories. Interaction
with SimCalc appears to have operated on these beliefs, knowledge, and theories.
What is missing from a more complete transformational model of teacher practice
is deliberate and prolonged reflection and interaction between teachers in the pro-
cess of change and the support of school leaders for innovation that leads to deeper
student understanding.

5 Conclusions

As we researched this intervention, we expected that student learning and motiva-
tion would change as a result of experiences with SimCalc. What was less expected
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was the long-term effect on teachers as a result of their participation in the project.
Teacher interviews showed that professional growth can be an iterative process if
teachers reflect on the nature and results of their instructional practice with an inno-
vative resource.

In working with SimCalc over time, teachers described the ways the curriculum
and technology changed their teaching: the learning conversation built into SimCalc
migrated to teachers. Teachers’ learning conversations involved SimCalc, their stu-
dents’ experiences and understanding, and teachers’ own beliefs about teaching and
learning mathematics. In this dynamic conversation—which seemed to need time to
develop—teachers found that they were able to look at their own practices through
a new lens and gain deeper insights into how students understand mathematics.

Manouchehri (1998) and Reys et al. (1998) suggest that ongoing discussion of
instructional practices, and student responses, is key to changing pedagogy in the
long-term. The Democratizing Access study was not a study of professional develop-
ment, but rather of the efficacy of the SimCalc software, curriculum, and approach.
One bridge to implementing the instructional practices that experienced SimCalc
teachers developed might be ongoing professional development to support and en-
hance teachers’ new insights into constructivist/constructionist practices. Hearing
about, and reflecting on, the experiences of self and others, supports continuing
professional growth (Reys et al., 1998). If SimCalc teachers from the Democratiz-
ing Access study continued to meet with the goal of refining instructional practices
developed while participating in the study, they might develop greater agency for
continuing to implement these practices. Confirming the usefulness of instructional
techniques, and the observed growth in student understanding, can be powerful mo-
tivation for changing practice.

Support for developing pedagogy related to SimCalc use from school leaders
could also have a positive effect. In their work with schools in Canada, Leithwood
and Jantzi (1990) found that collaborative work between innovative teachers and
school principals is beneficial to institutionalizing change. Conversations about the
norms and expectations, like ones that teachers identified as challenging to new math
practices, are key to supporting changes in instructional practice.

From interviews with SimCalc teachers over time, we learned that teaching the
SimCalc intervention helped teachers develop new instructional strategies that they
reported led to deeper student engagement and conceptual understanding of algebra.
Although teachers felt a lack of agency to bring those strategies into the mainstream
of instructional practice at their high schools, the change in their knowledge and
beliefs have created the potential for more long-term change in practice. If provided
with the opportunity for ongoing reflection with other SimCalc teachers, and with
support from school leaders, what began as an experiment may end in long-term
changes in teaching.
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Connection Making: Capitalizing
on the Affordances of Dynamic Representations
Through Mathematically Relevant Questioning

Chandra Hawley Orrill

1 Introduction

Learning is, at its core, about making connections between different ideas in such
a way that underlying structures emerge (e.g., Bransford et al., 1999; diSessa,
2006; Hiebert and Carpenter, 1992). To successfully make connections between
and among mathematical ideas, students need scaffolding that supports connection
making (e.g., Franke et al., 2009). Questioning serves this scaffolding role in class-
rooms. Questioning allows the teacher to support students in seeing mathematics as
a set of related ideas that can be drawn upon to address novel situations rather than
only as a set of discrete operations (National Council of Teachers of Mathematics
[NCTM], 2000). However, questioning strategies in the mathematics classroom are
often uncomfortable for teachers who have not experienced mathematics in this way
as teachers or as learners (e.g., Cohen and Ball, 1990). Because of this, even well-
intentioned teachers may not ask the important questions necessary for connection
making.

In this chapter, questioning is considered from the perspective of how questions
in the SimCalc classroom rely on representations and the mathematical entailments
of the questions. Building from existing literature (e.g., Franke et al., 2011, 2009;
Kazemi and Stipek, 2001), four teachers’ questioning strategies during a single Al-
gebra 1 lesson called Sack Race were considered. Sack Race1 is a classic SimCalc
activity in which students create motion by editing graphs, then writing stories about
their character’s performance in a sack race. The goal of this exploratory study was
to investigate interactions among the representational affordances of the technology,

1Download the Sack Race activity software/curriculum documents at: http://www.kaputcenter.
umassd.edu/products/curriculum_new/algebra1/units/unit2/.
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the mathematics, and the questions the teachers asked that were the most promis-
ing for engaging students with mathematical ideas and increasing student learning.
The chapter concludes with a discussion of implications of this research for teacher
learning.

2 Framework

The theoretical framework for this analysis considers how mathematics and repre-
sentation interact through questioning. This extends from the small, but growing
body of literature suggesting that the nature of discourse in mathematics classrooms
is critical to students’ learning (Franke et al., 2009), specifically that the role of
mathematics in questioning is critical. In the SimCalc environment, there is a unique
opportunity to consider not only the role of the mathematics in the questions, but
also the role of the dynamic representation, thus offering additional insights into the
ways that questioning can shape students’ engagement with mathematics.

In mathematics education, promising research on effective classroom discourse
has focused on the unique role mathematics plays in the questions that can be asked.
For example, Wood et al. (2006), found two different over-arching questioning
strategies in classrooms they were observing. The first was a line of questioning
that led to strategy sharing and reporting, while the second pattern pushed beyond
that to include questions of why and how. Questions in this second category, termed
inquiry/argument by the authors, necessitate engagement in analysis of mathemat-
ical ideas in ways that reporting results does not. In their analysis of 42 lessons
across 5 classrooms of 7- to 8-year-olds, the researchers found that the complexity
of ideas expressed by the students was related to the kind of questioning strategies
they experienced.

Kazemi and Stipek (2001) analyzed fourth and fifth grade classrooms to deter-
mine whether they were high or low press. High press classrooms were those in
which students had to provide mathematical arguments rather than descriptions, as
well as consider relationships among ideas. In the high press classrooms, errors led
to reconceptualizations. High press classrooms were deemed to provide students
with more opportunities for conceptual learning.

Pierson (2008) also considered discourse in her study of SimCalc as it was used
with seventh grade students. She found correlations between teachers’ responsive-
ness to student comments and student achievement. She also found that classrooms
with high levels of intellectual work were correlated to student achievement. Com-
bined, these results led her to conclude, “There is tremendous and often unrealized
power in the ways teachers talk with their students” (p. 125).

Given the clear importance of the idea of press, argumentation, and intellectual
work, it stands to reason that specific aspects of discourse in the mathematics class-
room matters (e.g., Franke et al., 2007). Achieving discourse that rises to these
levels, however, relies on teachers’ abilities and willingness to ask questions that
engage students in higher-level reasoning. However, teachers continue to struggle
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to ask such questions, thus the need for research to identify and characterize more
effective questioning strategies.

This chapter explores the kinds of questions that lead to high press (Kazemi and
Stipek, 2001); inquiry/argumentation (Wood et al., 2006); or achieve high levels
of intellectual work (Pierson, 2008) which, in this study, are considered higher-
order questions. SimCalc provides an environment that is rich with opportunity for
promoting higher-order thinking in the mathematics classroom. To do so requires
teachers to coordinate the mathematics and the representations to promote students’
connection making. However, there is clear evidence presented in the studies cited
above that crafting rich participatory learning experiences can be daunting for some
teachers without using innovations such as SimCalc. Thus, it is important to under-
stand what happens to participation when the complexity and opportunities of the
classroom are increased through the inclusion of interactive technology designed
to support representation and communication (Hegedus and Penuel, 2008). These
include questions that move students beyond fill-in-the-blank kinds of answers. In-
stead, students need to be asked to explain, predict, or assess the mathematics ideas
with which they are engaging.

3 Methods

For this exploratory study, videotapes from four teachers’ classrooms were ana-
lyzed to determine whether there were, in fact, differences in the ways that teachers
scaffolded student learning through questioning when using SimCalc. The teach-
ers were purposively selected from a random sample of teachers participating in
a larger study2 to represent a range of classroom questioning techniques. Two of
the teachers, Kevin and Barb (all names are pseudonyms) had classrooms in which
there appeared to be high levels of student engagement, high levels of attention to
the simulation and graphs, and rich discussions. Conversely, in initial screenings,
Cecilia and Deborah seemed to have classes in which students were less actively
engaged in the activities and in which the teacher maintained a stronger control. In
all of the data presentation tables, the teachers are ordered from the lowest to the
highest levels of higher-order questioning.

One lesson, Sack Race, was the focus of analysis. This lesson occurs fairly early
in the SimCalc Algebra 1 curriculum.3 The lesson is focused on aligning a story
to a graph. The students create a virtual race so that their runner, Runner B, ties
with Runner A (the computer). Then, they are asked to write a story that recounts
the details of the race including important mathematical information such as the

2The project was funded by the U.S. Department of Education, Institute of Education Sciences
(IES), Grant No. R305B070430.
3To find out more information on the Algebra 1 curriculum and download the associated soft-
ware/curriculum documents, visit: http://www.kaputcenter.umassd.edu/products/curriculum_new/
algebra1/.

http://www.kaputcenter.umassd.edu/products/curriculum_new/algebra1/
http://www.kaputcenter.umassd.edu/products/curriculum_new/algebra1/
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Table 1 Summary of
questions for each teacher Number of

questions asked
Minutes of whole
class instruction

Questions
per minute

Deborah 115 51 2.3

Cecilia 148 51 2.9

Barb 167 49 3.4

Kevin 160 38 4.2

distances, starting and ending positions, velocities, and times. The entire segment
lasts 20 seconds and students are asked to find imaginative ways to explain their
runner’s paths. This lesson was selected for analysis because it is the first lesson in
which the students had an opportunity to link what happens in the World (where
students see their runners moving) to what happens in the Graph. Because much
of the lesson is focused on analyzing students’ stories, the lesson provides clear
opportunities for the teachers to ask the students questions—both to understand the
students’ stories and to help the students make initial connections between the Graph
and the World.

Every question asked during each teacher’s whole-class instruction was tran-
scribed and coded. Interactions between teachers and small groups—outside of
whole-class instruction—were not considered in this study. The coding scheme was
created to capture the kind of question being asked, the way in which the representa-
tion was included in that question, and the way in which mathematics was included
in the question. Teacher questioning data are included in Table 1. Most questions
were coded for question type, where type was an indicator of the way in which the
question was posed (thus, a hybrid of form and purpose). Questions that were purely
logistical (e.g., asking a the class who has not yet read their story) were only coded
in the Other category and not for question type. Only those that included a role
for the representation and/or mathematics were included in those categories. Each
question was coded for a maximum of one question type, one use of representation,
and one link to mathematics (see Table 2 for the explanation of each code). Two
additional categories were noted in the analysis: questions concerned with teaching
students how to use the technology (e.g., how to add a line segment) and questions
concerned with classroom logistics (e.g., asking a student to read a Sack Race story
to the group). Questions focused on teaching the technology were not coded for rep-
resentation or for mathematics as their focus was on specific use of the technology.
However, logistical questions might include representation or mathematics elements
and were coded accordingly.

Assessment results were also considered to determine whether there was any
potential relationship between teacher questioning and student performance. Two
assessments were administered to the students during the course of the study (see
Dalton et al., 2011 for a complete description of the instrument). Each assessment
was given as a pretest and again as a posttest as the relevant units were taught. For
the purposes of this analysis, we consider only the students’ performance on Test 1,
which aligns to the content and focus of the Sack Race activity. The assessment
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Table 2 Codes used analysis

Question type

Self-answered A question the teacher answers in the process of asking without allowing
the students an opportunity to answer. For example, “That means
heading back where? To where we started?”

Fill-in-the-blank A question with a single correct answer. For example, “How long will
the runners run?”

Who is this A question that asks the students to identify which characters represent
which students in the World. For example, “Who is this? Who was over
here?”

Follow-up A question asked in response to a student’s question or answer (other
than those follow-ups that asked for justifications). For example, when a
student indicates that he wants the runner to go “wicked fast,” the
teacher adjusts the graph and asks, “Is that wicked fast enough?”

Open-ended A question that might have a number of appropriate answers. For
example, “What might have happened to the guy when he ran
backwards?”

Assess idea A question asking students to decide whether an idea in the conversation
is acceptable or appropriate. For example, “Do you agree?”

Justification/
argument

A question that requires the student to provide a rationale or argument
for a point. For example, “How do you know?”

Use of representation

Analyze something
on screen

The question requires students to make sense of something they can see
on the projected screen. For example, asking which runner is faster
while looking at the graph.

Make a prediction The question requires students to predict what the graph or the motion of
the runners will look like once it is projected. For example, after setting
up a graph, the teacher asks, “What’s going to happen in the animation?”

Make a connection The question explicitly requires students to make connections between
this lesson and earlier SimCalc lessons, between the Graph and the
World display, or between mathematical ideas they have been discussing
and what is happening in the Graph or World. For example, asking
students what they might see in the World based on what they did with
their calculators.

Link to mathematics

Recall The question requires students to answer with vocabulary or
previously-known facts. For example asking “What is that called when
the line goes like this (indicating horizontal with arm)?”

Apply The question requires students to apply a mathematical idea to the
situation. For example, “Which graph shows the runner moving faster?”
Requires that the students analyze the graph by applying their
understanding of slope and how it relates to speed.

Analyze/evaluate The question requires students to make sense of what is happening in the
graph. For example, having to explain what is happening to the runner if
the line is going down requires analysis of the graph.

Reflect The question requires students to reflect upon the mathematics that is the
focus of the lesson. For example, “Mathematically, what are you
supposed to understand from this?”
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Table 3 Snapshot of student
performance on Test 1 Pretest mean Gain on

posttest
SD pre SD post

Deborah 11.24 0.38 3.129 3.263

Cecilia 18.52 1.4 2.646 2.646

Barb 15.13 0.13 4.893 3.865

Kevin 13.47 2.47 4.19 2.774

was comprised of 22 items worth a maximum of 26 points. Most of the items were
multiple-choice items, but there was one short answer and one open response item.
Table 3 shows a snapshot of the class-level performance on this assessment.

4 Findings

In the initial observations of the videos, some key differences in the ways the teach-
ers used the representations and in the ways they engaged students in the scenario
were evident. For example, Deborah and Cecilia never asked students to identify
themselves on screen except when their actor was the only actor showing. Instead,
Deborah and Cecilia’s interactions with their classes were largely focused on stu-
dents correctly identifying aspects of the mathematical ideas and of the assignment
criteria. Conversely, Kevin and Barb readily engaged students in conversations that
were simultaneously situated in the stories represented on-screen and in the math-
ematical idea, thus linking them together. Even before systematic analysis, it was
clear that these classrooms differed in important ways in terms of the patterns of
interaction. Through the analysis, some interesting patterns emerged that provided
insight into ways that innovations, like SimCalc, could be used as the basis for ques-
tioning in support of student learning. In this section, relevant findings are presented
in terms of the kinds of questions asked and the ways in which mathematics con-
cepts interacted with representations in those questions.

4.1 Question Types: Prevalence

Table 4 describes the results of coding the questions asked by each teacher. Each
question was coded in four independent dimensions: question type, representation,
mathematics, and other. Each question is coded into a maximum of one category
(e.g., fill-in-the-blank) for each dimension. The percentages shown in Table 4 refer
to the frequency of a particular code within a dimension, for example, 73 % of all
of the questions Deborah asked were fill-in-the-blank questions. The uncategorized
row for each dimension shows the number of questions asked by the teacher that
were not included in any of the categories for that dimension. For example, a logisti-
cal question such as whether all of the students had read their Sack Race story would
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Table 4 Questions asked during whole class instruction by each teacher

Deborah Cecilia Barb Kevin

Question type

Self-answered 4 (3 %) 0 4 (2 %) 1 (1 %)

Fill-in-the-blank 84 (73 %) 98 (66 %) 116 (70 %) 70 (44 %)

Who is this 0 0 14 (8 %) 5 (3 %)

Follow-up 6 (5 %) 25 (17 %) 17 (10 %) 29 (18 %)

Open-ended 9 (8 %) 16 (11 %) 12 (7 %) 28 (18 %)

Assess idea 1 (1 %) 1 (1 %) 2 (1 %) 11 (7 %)

Justification/argument 2 (2 %) 7 (5 %) 2 (1 %) 7 (4 %)

Uncategorized 9 (8 %) 1 (1 %) 0 9 (6 %)

Representation

Analyze something on screen 59 (51 %) 33 (22 %) 76 (46 %) 58 (36 %)

Make a prediction 9 (8 %) 18 (12 %) 5 (3 %) 15 (9 %)

Make a connection 10 (9 %) 23 (16 %) 25 (15 %) 27 (17 %)

Uncategorized 38 (33 %) 74 (50 %) 61 (37 %) 60 (38 %)

Mathematics

Recall 32 (3 %) 23 (16 %) 22 (13 %) 8 (5 %)

Apply 39 (34 %) 27 (18 %) 36 (21 %) 16 (10 %)

Analyze/evaluate 6 (5 %) 12 (8 %) 3 (2 %) 9 (6 %)

Reflect 0 0 0 1 (1 %)

Uncategorized 38 (33 %) 87 (59 %) 106 (63 %) 126 (79 %)

Other

Teaching the technology 31 (27 %) 31 (21 %) 20 (12 %) 17 (11 %)

Logistics 39 (34 %) 53 (36 %) 51 (31 %) 43 (27 %)

Uncategorized 44 (38 %) 64 (43 %) 90 (54 %) 99 (62 %)

not be coded under question type because it is only coded under other as logistics.
Note, though, that every question asked was coded for at least one dimension.

Consistent with informal observations, important differences emerged through
the analysis. For example, Barb and Kevin asked noticeably more higher-order ques-
tions such as open-ended questions, questions assessing an idea, and questions re-
questing a justification. This suggests that their students had more opportunity to
engage in the kinds of rich mathematical discussions characterized in the literature
as leading to better mathematics thinking.

Barb and Kevin fostered ownership through the questions they asked. Their
questions focused on connecting students to their characters in the World by ask-
ing specific questions about characters. Barb and Kevin asked questions such as,
“Whose guy is this?” or “Who is that running backwards?” These questions fos-
tered student ownership and, sometimes, opened up other conversations. For ex-
ample, when Kevin noticed a runner ending in the wrong place in the World, he
asked a connection-making question, “What could you have done to fix this?” In
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Table 5 Relationship of representation questions to mathematics questions

Questions about:

Representations Mathematics Representations
and mathematics

Representation &
recall of mathematics

Deborah 77 (67 %) 77 (67 %) 59 (51 %) 17 (15 %)

Cecilia 74 (50 %) 61 (41 %) 40 (27 %) 12 (8 %)

Barb 106 (63 %) 61 (37 %) 18 (11 %) 3 (2 %)

Kevin 100 (63 %) 34 (21 %) 23 (14 %) 3 (2 %)

contrast, Deborah and Cecilia only asked questions about what was happening on-
screen with no connection to the students in the classroom. Without focusing on
which actors represent particular students in the World, questions can only be asked
in the abstract, which removes the benefits of having the actors on the screen.

Assessing ideas and reflecting on learning are important for promoting higher-
order thinking. Kevin differentiated himself from the others in these two categories.
He asked more assess ideas questions such as, “Did we accomplish what we were
trying to accomplish?” which required students to determine whether they agreed
that a goal had been met. Kevin was also the only teacher in this sample to ask a re-
flection question. His assess ideas and reflection questions held students responsible
for gauging their own learning progress, thus fostering ownership. These questions
also required the students to engage with other ideas in the classroom to determine
whether those ideas were sound. Engagement in argumentation-rich activity such as
assessing the ideas of others was all but missing in the other three classrooms.

SimCalc offers a unique environment in which questions that relate to represen-
tations can be pursued. This is because of the public nature of the representations
and the ways in which SimCalc supports both traditional and nontraditional repre-
sentation. For example, graphs are a traditional representation displayed at the same
time as the World, which is a nontraditional representation. Asking questions that
promote students’ sense making about mathematics in a representation-rich envi-
ronment should foster meaningful connection making. Interestingly, Deborah asked
relatively more questions that linked mathematics and representations than the other
teachers in this study (Table 5). This may be because of the limited number of ques-
tions she chose to ask students about their stories and the relationships of the stories
to the mathematics. Upon further analysis of Deborah’s questioning, it was clear
that while her questions connected the mathematics to the representation, the nature
of the questions tended to be recall-level. She asked relatively fewer open-ended
questions or questions that engaged higher-order thinking. She also asked fewer
representation questions requiring predictions or connection making. This suggests
that in Deborah’s classroom, the students were not engaged in applying their learn-
ing to new situations, rather they were focused on completing just the task at hand.
Based on this analysis and her classroom outcomes, it seems that simply focusing
on the relationship between the representation and the mathematics is not adequate.
The question type also matters.
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4.2 Question Types: Descriptive Analysis

To understand the question type analysis, additional descriptive analysis is neces-
sary. Such analysis allows for the moving beyond considering question type alone
to understanding the role the questioning, as a whole, played in the classroom. For
example, below, short segments from Deborah and Kevin’s classes are presented as
examples of the difference in questions that is evident only when looking across
all three categories (question type, mathematics, and representation). In both class-
rooms, the teachers used questioning to ensure their students understood what was
being displayed and the point of the lesson. For each teacher, a one-minute period
during the launch of the lesson is presented. Deborah used questioning to focus
students on one aspect of Sack Race at a time with little focus on the relationship
between the representations and the mathematics. She also provided students with
little opportunity to elaborate on their answers. For example, in minute 13 of class,
she asked 5 questions in a row that were typical of her questioning pattern:

1. “What is it called when the line goes like this [indicating horizontal]?”
2. “What’s the velocity of that person when they are stopping?”
3. “What else will we see? Will the graphs have anything in common?”
4. “Are there any going backwards?”
5. “What’s their velocity going to be if they’re going backwards?”

This series of questions required no more than looking at the graph or recalling
definitions. For example, in Question 1, she was looking for the word “horizontal”
to label a segment. Then, she asked a question that required students to understand
that a stopped person had a velocity of zero. The third question started out open-
ended, but ended up being a simple yes/no question. Question 4 required students
to look at the graph or recall the animation to tell what they see. While this does
require analysis, it is not a mathematically rich question. Finally, the fifth question
is like the second in that it required students to recall that negative velocities relate
to backwards motion.

Kevin’s questions were more varied in the thinking required and the ways they
interacted with the mathematics and the representations that were needed. From
minute 5:40 to 7:00, Kevin asked his students the following questions:

1. “How long does the red guy go for?”
2. “What else do you notice about the red line?”
3. “He comes back? Are you sure?”
4. “What about the red line? What is the red motion guy going to do?”
5. “What’s going to happen in the animation?”
6. “What are we looking for? What are some words we’ve used before?”
7. “Can you tell from the graph what the speed and velocity will be?”

Only two questions, 1 and 7, were asked as fill-in-the-blank. Questions 2 and 4
required the students to look at the representation and, in their own words, report
what was important. Question 3 followed up on an incorrect student response while
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Question 6 explicitly engaged students in thinking about how their previous activi-
ties in this class could inform the activity. Finally, Question 7 required students to
apply mathematical understanding to determine whether the representations could
support them in this way. The students were required to do more than reply to recall-
level questions.

In short, the analysis showed a difference in the teachers’ approaches to ques-
tioning during this lesson. Notably, the number of mathematics and representation
questions was relatively small (ranging from 11–51 % of the questions asked across
teachers). This was likely because of the nature of this particular lesson and the
coding scheme used. For example, to a large degree in Kevin and Barb’s classroom
and to a lesser degree in Cecilia’s classroom, many questions focused on the sto-
ries the students wrote and the way those connected to the World. While there were
certainly mathematical connections in these questions (e.g., “Why did your guy run
backwards?” or “What’s going to happen in the animation?”) the questions were not
explicitly mathematical and were not coded as such, though they were valuable for
meeting the goals of the lesson.

4.3 Interactions Between Key Questioning Categories

Based on the qualitative analysis and initial observations of the video, it was clear
that to understand patterns of questioning in these classrooms, the interactions of
certain question attributes needed to be considered. For this study, the points of
intersection most likely to engage students in higher-order thinking were considered
(see Table 6). Specifically, all of the questions that were coded in both categories
(e.g., Open Question and Use Representation to Make a Predication) were counted
for each pairing. The goal was to understand how teachers used facets of the rich
SimCalc environment in their questioning.

This analysis further differentiated Deborah from the others and showed that
Kevin differed somewhat from Cecilia and Barb. Deborah generally did not ask stu-
dents to make connections in any kind of open-ended or higher order way. Instead,
her representation questions were focused on fill-in-the-blank answers and analysis
of something being shown on the screen (e.g., “What direction is that according to
our picture?”). In contrast, Kevin asked some questions that focused attention on the
representations while also pushing students beyond fill-in-the-blank. Interestingly,
this differentiation did not show up in the analysis of the mathematics questions in
which all of the teachers were relatively similar. It also did not appear in the repre-
sentation and mathematics analysis.

In short, the analysis that seemed to differentiate among these teachers focused
on the nature of the questions about representations being asked. Of particular note,
Kevin asked the most higher-order questions that dealt with technology, but asked
the fewest focused on teaching the technology. This suggested that he and his stu-
dents had a relatively high comfort level with the technology. Building from this, it
is plausible that the teachers’ comfort levels with the technology or their perceptions
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Table 6 Questions asked that were coded into both named categories

Deborah Cecilia Barb Kevin

Question type × Representation

Open × Predict 0 3 (2 %) 0 2 (1 %)

Open × Connect 3 (2 %) 4 (3 %) 3 (2 %) 10 (6 %)

Assess × Connect 0 0 0 2 (1 %)

Justify × Connect 0 2 (1 %) 1 (1 %) 2 (1 %)

Question type × Mathematics

Open × Apply 2 (2 %) 5 (3 %) 4 (2 %) 1 (1 %)

Open × Analysis 2 (2 %) 1 (1 %) 0 0

Assess × Apply 0 0 0 1 (1 %)

Justify × Apply 1 (1 %) 2 (1 %) 1 (1 %) 3 (2 %)

Justify × Analysis 0 3 (2 %) 0 0

Representation × Mathematics

Connect × Apply 6 (5 %) 8 (5 %) 12 (7 %) 4 (3 %)

Connect × Analysis 1 (2 %) 3 (2 %) 2 (1 %) 2 (1 %)

about students’ comfort levels with technology may shape aspects of the dialogue in
the classroom. The findings here suggest that further analysis of interactions among
question categories might help differentiate teachers and explain differences in stu-
dent outcomes.

5 Discussion

Why does questioning matter? As pointed out in the theoretical framework, stu-
dents in classrooms that feature higher-order questions promoting student reasoning
about mathematics support higher levels of reasoning and argument (e.g., Wood
et al., 2006). Further, we know that SimCalc was built on a vision of shared expe-
rience, of engaging in a cycle of learning that includes making predictions, testing
them, and reflecting, and connecting the mathematical world to the students’ expe-
riences (Roschelle et al., 2010). In this study, questioning mattered because of the
role it played in allowing students’ ideas to become public. Where there were rela-
tively fewer questions asked, such as in Deborah’s class, it was not possible to ask
rich follow-up questions. Without this kind of discourse tool, students’ ideas were
not to the foreground for examination by others. In contrast, Kevin’s class had more
open-ended and higher-order questions as well as high levels of student idea sharing.
This allowed a culture that supported high level of student-initiated interaction. In
fact, there were not only many more questions and other utterances initiated by the
students, but also more instances of Kevin providing guidance on how the students
should interact with each other’s ideas. For example, when one student told another
to “shut up” during the whole class episode, Kevin immediately remarked about the
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inappropriateness of the situation, thus fostering an environment in which students
are safe to explore ideas. In short, using the connection-making questions opened
opportunities for discussion, allowed students to engage in activities of mathemati-
cal argument, and promoted reflection.

Even in the rich environment created by the introduction of SimCalc, the over-
all levels of higher-order questioning remained relatively low. The relative number
of questions linking mathematics with the representations in ways that promoted
higher-order thinking also remained low. That may be a by-product of the particular
lesson because of its focus on writing and sharing stories, which were not coded
as linking representations to mathematics except where questions were raised about
the graphs. However, it may also be that while these teachers understood that they
should ask questions, they needed additional guidance on the kinds of questions
that might be most productive in their classroom. Based on this analysis, it appears
that teachers were not planning for asking questions that required students to make
predictions or to make connections between representations, between mathematics
and the technology, or between the SimCalc activity and the mathematics they know.
More explicit attention to these kinds of questions would support greater and clearer
gains in student reasoning.

6 Conclusion

This chapter opened with questions about how teachers would mediate the inter-
actions between technology and mathematics in the questions they posed in their
classrooms. The analysis suggested that technology-focused, representationally-rich
classrooms have many opportunities for higher-order questioning. However, the
four teachers in this study varied in their use of higher-order questions. This lim-
ited students’ opportunities to make connections between the representations in the
SimCalc environment, between the SimCalc activities and their other mathematics
learning, and between mathematics and other aspects of their lives.

The analysis for this study focused on classifying questions in terms of the kind
of question, the role of representations in the question, and the connection to math-
ematics. The coding scheme used for this analysis provided a promising tool for
better understanding questioning. Based on the analyses presented here from this
exploratory study of only four teachers, the interactions between question type, role
of representations, and links to mathematics seemed to matter. This is evidenced in
two ways. First, the differences between Kevin’s class and Deborah’s class provide a
compelling glimpse into the different discourse that can exist related to the questions
the teacher asks. Second, while there were not clear gains on the posttest attributable
to participation in higher-level thinking classrooms, there was a decrease in standard
deviation from the pretest to the posttest in those classrooms. In short, it may not be
that questioning alone matters or that particular questions matter. Rather, the ways
in which teachers help students make connections between their experiences and
the content of interest might be what matters for promoting learning (e.g., diSessa,
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2006). This coding scheme uncovered categories that seem to be important in sepa-
rating teachers.

Based on the findings in this exploratory study, more work looking at the interac-
tion of these three facets may yield important results. This could be done expanding
the analysis presented above to include more SimCalc lessons and/or more SimCalc
teachers so that trends could emerge across class periods. Looking at the interac-
tions may also benefit from more sophisticated approaches such as epistemic net-
work analysis (Shaffer et al., 2009), which provides statistical methods for looking
at connections between categories. Such a tool could allow more patterns to emerge.

Better understanding of the role of questioning in supporting student connec-
tion making between mathematics and representations could lead to more effective
guidance for teachers. This is important because, in practice, teachers vary in their
degree of adherence to intended curricula (Remillard, 2005). Finding new ways of
supporting teachers in understanding how and why to promote connection making
could, perhaps, increase the amount of higher-level thinking occurring in SimCalc
classrooms. And, that, in turn, could lead to different kinds of learning experiences
for students.
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“They Need to Be Solid in Standard Skills
First”: How Standards Can Become the Upper
Bound

Margaret Dickey-Kurdziolek and Deborah Tatar

1 Introduction

The National Council of Teachers of Mathematics, the Mathematical Association
of America, and the National Research Council in the United States have all pub-
lished reports that convey the importance of students developing deep and intercon-
nected understandings of mathematical concepts. Furthermore, international studies
of math performance show that American students are behind their international
peers in math achievement beginning in middle school and are less likely to mas-
ter more complex and conceptually difficult mathematics (Schmidt et al., 2001;
Suter, 2002). These same studies have suggested that shallow curriculum content
is one possible cause of the learning gap. Countries that demonstrate superior stu-
dent mathematical learning gains have one thing in common: curriculum units that
explore particular topics thoroughly and deeply (Schmidt et al., 2001; Suter, 2002).
This suggests that American mathematics classes could benefit from introducing
more conceptually difficult topics that encourage students to engage in deep math-
ematical thinking. According to Kaput (1994), classrooms must be communities in
which mathematical sense-making of the kind we hope to have students develop is
practiced.

To facilitate the growth of students’ mathematical understanding, activities must
be designed and used that expose students to meaningful tasks that are difficult
yet encourage the exploration of mathematical ideas. Incorporating these activities
into classroom curriculum is a challenge that can be addressed by well-developed
educational software and curriculum. Such educational programs hold the promise
of helping teachers scaffold complex math concepts for their students.
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SimCalc MathWorlds® (hereon called SimCalc) is an example of one such math-
ematics education program. SimCalc embodies an approach that emphasizes giving
students access to algebraic concepts graphically, dynamically and in relationship to
simulations before and along with algebraic functions, thereby allowing students to
experience the mathematical constructs of algebra and calculus as dynamic, motion-
based events. SimCalc has been used, with success, in a number of small-scale stud-
ies over the past 15 years, and more recently, the Scaling-Up SimCalc study has
demonstrated that a wide variety of students in a wide variety of classroom contexts
can benefit from the use of SimCalc.

While the history of SimCalc’s success suggests that students benefit from its
use, the nature and degree of its impact hinges on school and teacher cooperation
and adoption. Particularly in the United States, teachers and administrators must
see SimCalc resources as a means to facilitate student learning of state adopted
standards. In this report, we examine teachers’ perceptions regarding their use of
SimCalc in relation to meeting state-adopted curriculum standards and preparing
students for standardized exams. We find that while teachers largely observed that
SimCalc pushed beyond the state standards goals, they did not always view this as
coherent with their goal of preparing students for statewide high-stakes assessment
exams.

2 Tension Between the Ideal and Reality of Mathematics
Education

We can envision teachers and students as actors in classroom environments that are
nested within larger communities. For example, classrooms can be seen as nested
within schools, that are nested within communities, that are nested within states,
and so on. Each of the encompassing environmental levels effect the “ecosystems”
or environments contained within them. Furthermore, at each of these environmen-
tal levels, we find articulations of an ideal vision of mathematics education as well as
an enacted reality of mathematics education. For example, at the state level, we see
the ideal purpose of mathematics education articulated through the adoption of stan-
dards while the enacted reality of mathematics education includes the utilization of
standardized exams with inherent limitations. At the district and school environmen-
tal level, we see the ideal articulated through the adoption of goals and standards,
yet the reality includes the struggle to allocate limited resources and funding. The
differences between these ideal visions and enacted realities have been the subject
of learning sciences research and political debate for decades.

Teachers and students experience this tension first hand through the course of
managing classroom activities and their relationships with one another. Pais (2009)
described the tension between the ideal and the enacted from a teacher’s perspective.
In his essay, he describes the “strange things” that have to do with “the presence of
thirty children with wills, fears, desires, problems, and families” (p. 53) that are not
accounted for in any articulation of what mathematics education should be for yet
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the reality of mathematics instruction must account for. He describes how the cur-
riculum his school adopted explicitly mentioned the “importance of working with
students on topics of mathematics and society” (p. 54), but that the “always present”
high-stakes tests made it impossible to stray from a very narrow and specific math-
ematical content. Pais describes schools as a place of conflict, where the fissure
between the ideal and the reality of teacher practice resides.

In some ways, SimCalc represents an ideal model of mathematics education that
has been proven to work in the reality of classroom spaces. This has been demon-
strated through the Scaling-Up SimCalc study (see Roschelle and Shechtman, this
volume) in which we obtained statistically significant results indicating that stu-
dents in the treatment condition had higher learning gains than their peers in control
condition classrooms. The Scaling-Up SimCalc results can be simply articulated as
a treatment (SimCalc) having a direct effect on outcome measures (student gains).
However, while true, this account is incomplete. Students’ relationship to much of
the material and content SimCalc provided is filtered through teachers, in the sense
that teachers received the SimCalc materials and were ultimately the ones who de-
cided how and when the students accessed those resources. Teacher practice, as
Pais (2009) described, resides within a space of tension and conflict between the
ideal and reality of education. Therefore, when teachers were asked to incorporate
SimCalc into their teaching practice, they were ultimately asked to find a place
for SimCalc within that conflict. When we consider what and how resources are
incorporated into classroom environments, we see that teachers are ultimately the
gatekeepers to resource adoption. In the terms of Zhao and Frank (2003), teachers
are the “keystone species” in the classroom ecosystem.

Zhao and Frank (2003) presented an ecosystem model to explain factors influenc-
ing technology adoption and use in classrooms. All actors in the ecosystem interact
with one another and those interactions are vital to any actor’s “survival” in the en-
vironment. However, in order for students to interact with meaningful content, they
rely on their teacher to make the content accessible. Also, in order for any resource
(technological or otherwise) to “survive” in the classroom climate, the teacher has
to recognize its value and make it available for student use. With this metaphor,
the teacher is the keystone species, computer use is a “living” species, and the in-
troduction of new resources, such as external educational innovations, can be seen
as the “invasions of exotic species” (p. 811). Zhao and Frank argue that classroom
ecosystems, like biological ecosystems, exist in a state of homeostasis—where the
environment is in balance and each species has their role, or niche, in the hierarchy.
Therefore, invading species, such as new educational technologies or educational
interventions, are unlikely to survive or last unless they are compatible with the
established teaching and learning environment.

In their evaluations of the ecosystem model of classrooms, Zhao and Frank
(2003) found that teacher-niche in the school ecosystem, as well as their relationship
to other “species” in the ecosystem influenced their use of technology. Teachers who
perceived pressure from colleagues were more likely to use computers only for their
own purposes and were especially resistant to using technology that would require a
reconfiguration of their teaching practices. While teachers who received help from
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colleagues, and had opportunities to experiment with software, were more likely
to use computers with their students than for their own purposes. Remarkably, the
perceived relative advantage of student use of technology had no statistically sig-
nificant effects on what technologies were used in the classrooms. This illustrates
that teacher rationale for using technology depends most directly on their own uses
and needs, supporting their classification as keystone species in the environment.
Zhao and Frank (2003) conclude that innovations cannot be implemented without
a regard to the internal social structures of schools, especially teacher-level factors,
and expect to survive in the classroom context. An “evolutionary rather than revo-
lutionary” (p. 833) approach to change in school computer use is needed.

The empirical results from the Scaling-Up SimCalc study, as well as the repeated
success of SimCalc in over a decade of varied small-scale studies, suggest that we
can expect to find significant student learning gains when teachers are given the Sim-
Calc package (professional development, curriculum, and the SimCalc software).
While some may see this point in SimCalc’s history as a point of finality or con-
clusion, we see this as the beginning. Now that we have found a set of learning
resources that can be used with success, how can we ensure that it will be used with
success?

There are obvious questions in relation to long-term adoption and spread, such
as, “will the teachers in our study continue to use SimCalc in the future?” and “how
can we ‘spread the word’ about SimCalc?”. These questions of adoption and spread
highlight the importance of teacher perceptions for an innovation’s success. As Eu-
gene Judson (2006) put it, “[w]hen establishing any classroom innovation, it is the
teacher who is the key determinant of implementation” (p. 583). In order to tell a
story about SimCalc’s long-term prospects for widespread success, we need to know
how teachers define and see SimCalc in relation to their objectives in teaching math-
ematics. We need to understand teacher perceptions of what SimCalc is, what it is
good for, and when it should be used. While increased student learning is the cen-
tral goal of the SimCalc project, we must recognize that teachers act as gatekeepers
to classroom resources, or are the “keystone” species in the classroom ecosystem
(Zhao and Frank, 2003).

3 Research Questions: Do Teachers Need to See Students
as “Solid in Their Standard Skills” First?

The SimCalc researchers who developed the replacement unit intended for the cur-
riculum to be more advanced than the usual seventh grade curriculum yet still on par
with an average seventh graders ability. Our Year 1 and Year 2 learning gain results
suggest that students in treatment classrooms gained just as much (if not more) than
their peers on the “simple” portion of the test, which were questions similar to those
found on the yearly TAKS exam. Furthermore, students in treatment classrooms
gained significantly more than their peers on the “complex” portion of the test. This
suggests that students in treatment classrooms were able to learn the mathematics
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outlined on their state standards while simultaneously engaging with more concep-
tually difficult mathematics.

When we turn to the corpus of phone interviews conducted with every participat-
ing teacher, we see that most teachers discussed the SimCalc curriculum in relation
to their state standards and/or standard exams (76 out of 95), and many teachers (48
out of 95) also expressed that SimCalc contained “more” than what was typically
addressed in their usual curriculum or in the state standards for seventh grade. Be-
low is an example of a teacher describing the conceptual difficulty of the SimCalc
unit as compared to their usual unit on rate and proportionality:

I saw the whole unit as being pretty pre-algebra unit, not a pre pre-algebra unit. It struck
me as a regular 8th grade, advanced 7th grade type curriculum, even towards the beginning
part. And, I feel pretty good that we’re teaching aligned with what the Essential Knowledge
and Skills [TEKS] are for the 7th grade, as far as 7th graders. But, I love the stretch. I don’t
want to say I don’t want to do that. It’s just that I might do the more required earlier because
we’ve got to make sure their solid in all their standard skills first.
–Year 1 Interview, Immediate Treatment Teacher

While teachers largely recognized and described the SimCalc unit as being more
conceptually difficult than their usual curriculum, they did not always express con-
fidence that this was within the realm of their students’ abilities. Several, like the
teacher quoted above, expressed in their interviews that students needed to be “solid
in all their standard skills” before tackling the conceptually more difficult content
of the SimCalc unit. Furthermore, some teachers made curriculum changes in re-
sponse to what they felt was within the capability of their students and within the
scope of the statewide seventh grade mathematics standards. Specifically, 45 of the
68 teachers who completed both years of the study discussed making changes to
the SimCalc curriculum in the future and 38 (of the 68) discussed omitting and/or
reducing sections of the SimCalc curriculum.

The teacher perceptions of the scope and aim of seventh grade mathematics, as
well as how the teachers see the scope of seventh grade mathematics in relation
to the SimCalc intervention, may well impact the success of the SimCalc project.
If teachers do not see the SimCalc resources as being in line with their views of
what seventh grade mathematics entails, then they may make decisions regarding
their curriculum that either (1) does not include the use of SimCalc at all or (2)
represent a “mutation” of the SimCalc curriculum that does not lead to increased
student learning gains (Brown and Campione, 1996). In this chapter, we turn to the
teacher interviews to answer the following two questions:

1. How did teachers in our study describe the fit of SimCalc resources and instruc-
tion in relation to their view of the state standards and standardized exams?

2. How do the teachers’ perception of the scope of seventh grade mathematics im-
pact their decisions regarding SimCalc curriculum and resource use?

While the answers to these questions may help us to understand the potential
adoption of SimCalc in the future, they more broadly represent an issue to be ad-
dressed if we hope to encourage the exploration of more conceptually difficult math-
ematics in K-12 education.
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4 Phone Interview Data and Analysis

In both years of the seventh grade study, all of the participating teachers were in-
terviewed within ten days of their administration of the posttest to their students.
We used a semi-structured interview protocol, which started with general questions
about their teaching experience (“how did the rate and proportionality (SimCalc)
unit go?” “what went well?” “what went poorly?”). From that point, the interviewer
would lead the teacher to discuss topics in the following six categories: teaching
experience, mathematics, technology, students, colleague collaboration, administra-
tive support, and participating in research. There were also additional “wrap-up”
questions at the end of the interview. An outside corporation transcribed all of the
interviews.

4.1 Phone Interview Data

During the first year of the study, 95 interviews were collected: 48 interviews with
delayed treatment (control) teachers and 47 interviews with treatment teachers (Ta-
ble 1). The average control interview lasted 50 minutes while the average treatment
interview lasted 59 minutes.

After the first year of the study, 27 of the Year 1 participants decided to dis-
continue their participation and did not complete the second year of the study. We
gathered a total of 68 interviews with the remaining participants: 31 interviews with
delayed treatment teachers and 37 interviews with immediate treatment teachers
(Table 1). The average Year 2 delayed treatment interview lasted 59 minutes and the
average Year 2 immediate treatment interview lasted 57 minutes.

4.2 Analysis

An important question to ask before beginning the analysis of our data is, “what
exactly can the interviews tell us?” Specifically to this research, what data is and is
not in teacher phone interviews? It has been recorded that a teacher’s self report of

Table 1 Number of interviews collected in each condition per year

Year 1 Year 2 Total interviews collected in
each condition across years

Delayed treatment (control) 48 31 79

Immediate treatment 47 37 84

Total interviews collected in each year 95 68 Total interviews collected
overall: 163
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their teaching pedagogy can differ greatly from what they do in practice (Judson,
2006). Clifford Geertz (1973) described culture, and the subject of anthropological
inquiry, as “stories people tell themselves about themselves” (p. 448). These phone
interviews, accordingly, are the stories teachers told us about themselves. These
stories tell us what happened in the classroom through the teachers’ eyes, as well as
the teachers’ opinions on the classroom events and environment.

To collect and categorize the teachers’ stories, we developed a set of categories
that were used to code the interview transcripts. These categories served as a means
to collect similar opinions expressed by a variety of teachers. To ensure that the
categories accurately captured our data, the categorization-scheme was developed
from the goals and reasoning in conducting the interviews, and from questions di-
rectly asked in phone interview protocol. Once all of the phone interview transcripts
had gone through the initial broad category-coding phase, each category was then
brought to light and broken down further into smaller sub-codes for in depth analy-
sis. Instead of initially imposing important themes upon the interviews, the coding
scheme evolved over time as the interview transcripts were analyzed. This process
allowed for us to identify the most pertinent emerging themes.

Throughout the course of the interview transcript analysis, a total of 64 sepa-
rate sub-codes—nested within 13 broader categories—were identified. The cate-
gories included discussion topics such as classroom management, teaching philos-
ophy, school and community description, teacher classification of students, project
perceptions, technological resources, administration and collegial support, mathe-
matics, and instructional decision-making. (For a more complete description and
analysis of the interview data, please refer to Kurdziolek, 2007.) In this report, we
will focus specifically on teachers’ discussion of the Texas curriculum standards and
standardized tests as they relate to their teaching of SimCalc.

5 Findings

Throughout the course of the interviews, and in talking about the mathematical con-
tent of the SimCalc unit or their usual unit on rate and proportionality, the teachers
in our study would discuss what they saw to be the scope of seventh grade mathe-
matics. Furthermore, they would describe the scope of seventh grade mathematics
as it had been communicated to them through multiple sources—such as their state-
adopted standards, colleagues, and administrators. These views on what seventh
grade mathematics is, or should be, varied and were not always in agreement. The
teachers in our study, like most across the United States, are held accountable for
teaching the state-mandated standards to their students, report to their administration
on enactment of those standards, and often take cues from colleagues and admin-
istrators on how to enact standards-based instruction in their classrooms. Since in
the Scaling-Up SimCalc study we were not only concerned with the immediate suc-
cess of our intervention, but also in the continued use and success of the SimCalc
materials, the teachers’ discussion of the scope of seventh grade mathematics was
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important for us to record. In the following sections, we outline (1) the teachers
discussion of SimCalc with regards to curricular standards, and (2) the instructional
decisions made in response to SimCalc’s relation to standards.

5.1 Teachers’ Discussion of SimCalc in Relation to Curricular
Standards

We restrict our current discussion to teachers’ description of standards and standard-
ized exams in relation to their implementation of SimCalc. Specifically, we review
teacher discussion of important TEKS-related to rate and proportionality, the degree
to which SimCalc covered, or did not cover, important seventh grade standards, and
the teachers’ concerns regarding student performance on standardized exams.

5.1.1 SimCalc: More than or “Beyond” what Is Typically Addressed
in Seventh Grade Standards

A total of 59 (out of 95) teachers mentioned standards (TEKS) and/or testing
(TAKS) at least once in either their Year 1 or Year 2 (or both) post-unit phone
interviews. The majority of these teachers (48 out of 95) expressed that the SimCalc
curriculum contained “more” than what was typically addressed in their usual cur-
riculum for seventh grade. Below is an excerpt from a Year 1 interview conducted
with an immediate treatment teacher.

INTERVIEWER: Sometimes when teachers are teaching a new curriculum, they get into
the middle and discover something is a lot more confusing than they
thought initially? Did this ever happen to you?

INTERVIEWEE: Because I don’t teach slope, I had forgotten how to do run over rise and
figure out slope so that’s something I had to go to an 8th grade teacher
and re-learn because I just hadn’t used it in years. So, got to that part and
I had to re-learn run over rise and teach that and so just some concepts
that I normally don’t cover, which is not required on the TEKS. So, that
kind of—I kind of panicked about and re-learned that real quick and they
got the concept of run over rise by going to a stairway and lifting their
foot and putting it on the step and learning run over rise in that way.

–Year 1 Interview, Immediate Treatment Teacher

In this quote, the teacher says that the SimCalc unit presented slope, which is
typically part of eighth grade rather than seventh grade curriculum. The teacher
states that she “kind of panicked” and sought out the help of a colleague so she
could “re-learn” slope for the purposes of teaching that particular lesson.

While the teacher quoted above did not express an opinion as to whether the
inclusion of specific mathematic topic outside the scope of seventh grade standards
was favorable or unfavorable in her eyes, other teachers in our study did. In some
cases, teachers discussed SimCalc’s reach beyond typical topics found in the Texas
seventh grade standards as favorable or positive. Below is an example quote from a
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teacher expressing the sentiment that SimCalc curriculum was more than, or went
beyond, what they typically taught and that this was a positive aspect of utilizing the
SimCalc curriculum.

INTERVIEWER: Regarding the math content, is it consistent with the directions your
school has been moving towards and the things people are worried about?
Like, as far as TAKS tasks and. . .

INTERVIEWEE: Yes.
INTERVIEWER: And what about the concept of slope? Even though, it’s not normally a

seventh grade concept, how is that viewed? That you guys are covering
it—that you’re using it with your seventh graders?

INTERVIEWEE: I think the exposure is awesome because—okay, they were presented to
it in seventh grade. Eighth grade, if they’re presented again, the concept
is a little bit stronger. So, those kids that have algebra in eighth grade,
this will be awesome. Now, those kids that have algebra in ninth grade?
When they finally see it the third time, they’re going to rock the boat.
They are going to blow it out of this world because it’s there. You know,
like I said, repetition is the only way to learn.

–Year 1 Interview, Immediate Treatment Teacher

In the quote above, the teacher remarks that exposing students to conceptually
difficult material not required in the seventh grade standards will ultimately help the
students succeed in mathematics in later years.

In other cases, teachers described the “stretch” of the SimCalc curriculum as
potentially problematic, unfavorable, unnecessary, and/or time consuming. Below
is an example of a teacher discussing the tradeoffs she saw with regards to teaching
more than what was required of her by the TAKS:

INTERVIEWER: So in years past you guys, you have just shown them how to set up the
ratio, how to cross multiply.

INTERVIEWEE: Yeah and divide.
INTERVIEWER: And divide and not really look at the graphs or the tables and then if they

can find the ratio and make their comparisons, they can see the pattern?
INTERVIEWEE: Yeah.
INTERVIEWER: So this year was very different for you.
INTERVIEWEE: Yes it was.
INTERVIEWER: And how do you feel about it? I mean just I don’t know. What are your

thoughts on it? Did you like it better? Do you have some issues with it?
INTERVIEWEE: I like part of it better because when the TAKS test they take in high

school has a lot of graphing on it that we don’t even get into until they
are freshman. Because the middle school’s test, like they have to know
how to read on the quadrant. Like there will be point ‘J’ and they will say
this is quadrant 3 or 2. Kind of like that. So then in the freshman year, it
seems like our scores always drop really bad because simply there is all
this graphing there and they want to know what the slope is and what’s
happening with lines. And so in that sense that they have been exposed
to more of the graphing and they understand what, I think they have an
idea what’s going on. So to me that was a good thing. I guess the other
part of me is like. . . when we take the test in April, there is not going
to be anything on that from this unit. So then part of me is like ‘is this
a waste of their time for this year’s test or will it actually help them?’ I
mean I know it definitely is better that they see something now that will
make it easier on these kids in the ninth grade test. But I guess when I
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look at the little tiny picture, then I am like ‘was that worth the days I
have been on that part of it on the whole?’

–Year 2 Interview, Delayed Treatment Teacher

In her interview, this teacher discusses the value of teaching with SimCalc as it
relates to her students’ performance on the yearly TAKS test. In her quote, we see
that she sees SimCalc’s potential to be beneficial in terms of her students long-term
success, but she questions what, if any, effect SimCalc instruction will have on her
students exam scores for the current year.

5.1.2 SimCalc Curriculum and Coverage of Important TEKs

In all of the post-unit phone interviews, teachers were asked to discuss specific math-
ematics topics that they covered with their students. Throughout the course of these
discussions, 15 (out of 95) teachers discussed a specific TEK or mathematics topic
within the scope of “rate and proportionality instruction” they felt was left out or
missing from the SimCalc curriculum. These topics included scale drawings, sim-
ilar figures, indirect measurement, and percent proportions. These are all specific
topics students must demonstrate understanding of on the yearly TAKS exam. Be-
low is an excerpt from a Year 2 interview conducted with an immediate treatment
teacher in which the teacher describes topics that were not covered in the SimCalc
curriculum.

INTERVIEWER: Now in terms to these nitpicky things as you call them, can you charac-
terize some of those or do you know what kinds of things those are that
SimCalc kind of leaves out or doesn’t cover?

INTERVIEWEE: There wasn’t a whole lot like as far as percentages, I think there would
maybe one and maybe it was because we didn’t get that, we didn’t get
through the entire book. I know there was one activity in the workbook
that dealt with percentages, yeah it was “suiting up” and we didn’t get
that far. It was like page 55 and there is 60 pages in the book so we didn’t
get to look at the percentage aspect when it ties into proportion. So that’s
something I am going to have to come back and teach, the percent of
change, percent proportions like finding 60 % of something or 30 % or
60 % of something, things like that I am going to have to come back and
teach.

INTERVIEWER: Anything else off the top of your head?
INTERVIEWEE: Yeah scale factors as far as setting up a proportion and seeing scale fac-

tors. There wasn’t a whole lot of the A over B equals C over D kind of
thing but I do have to come back on some of that. And I think if I would
have allowed more time on the unit, I could have tied more stuff into it.

INTERVIEWER: Right, right could have tied it to the SimCalc material.
INTERVIEWEE: Yeah SimCalc.
INTERVIEWER: Now just so I understand this. These things are things that are on the

TAKS test that’s in your regular curriculum, is that right that you didn’t
feel like they were covered?

INTERVIEWEE: Yes.
–Year 2 Interview, Immediate Treatment Teacher

In this teacher’s view, there were a number of topics related to proportionality that
SimCalc did not cover. She explicitly mentions percent proportions, scale factors,
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and solving “a/b = c/d” kind of problems. Also, this particular teacher did not
teach the entire SimCalc unit with her students because otherwise she would not
have had enough time to teach the rest of the TEKs she needed to cover.

Two of the immediate treatment teachers in their Year 1 interviews reported that
what SimCalc covered and defined as “proportionality” was different than what they
or their district defined as proportionality.

INTERVIEWEE: It was a pretty good experience. My kids didn’t get as much out of it
as I thought but I think a lot of it has to do with the difference between
what our district considers proportionality and what was actually taught
as proportionality in the unit.

INTERVIEWER: Okay. So, what would—could you give me an example of the difference?
INTERVIEWEE: For instance, the unit was more or less just being able to relate tables and

graphs and finding the proportions inside a table and taking that infor-
mation and then applying it to the real life. Whereas our district wants
you to be able to take it even further than that and apply it to the real
world and changing from metric—into the metric system and changing
in a customary system and all of that and so my kids really struggled
with being able to take the graph and apply it to what the District needed
us to do.

–Year 1 Interview, Immediate Treatment Teacher

INTERVIEWER: Is there anything you wanted your students to learn that they didn’t learn?
INTERVIEWEE: Well, we didn’t actually do that much with proportions, I didn’t feel like.

And that is something that I tried to really get into in the seventh grade so
that—because there’s so many word problems that they can work using
a proportion.

–Year 1 Interview, Immediate Treatment Teacher

In the first quote, the teacher conceptualizes the SimCalc curriculum as “just be-
ing able to relate tables and graphs and finding the proportions inside a table and
taking that information and then applying it to the real life.” This, she states, is in-
sufficient in terms of the district standards. In the second quote the teachers says that
with the SimCalc curriculum they “didn’t actually do that much with proportions”
and that was a central component of seventh grade mathematics. This perception
is surprising since the Scaling Up SimCalc materials were explicitly designed to
instruct students on the mathematics of proportional relationships in terms of rate
and change. However, these quotes suggest that for these teachers, and potentially
others, the presentations of proportionality in the SimCalc materials was so differ-
ent from how they typically see it, and conceptualize it, that they did not perceive
SimCalc as related to proportionality at all.

5.1.3 TAKS Exam Performance Concerns

As mentioned previously, a total of 59 (out of 95) teachers mentioned standards
(TEKS) and/or testing (TAKS) at least once in either their Year 1 and/or Year 2
post-unit phone interviews. Of these teachers, 23 explicitly mentioned concerns that
they, or their administration, had in relation to student performance on the annual
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benchmark and TAKS exams. These concerns included the amount of time the Sim-
Calc unit took to teach (and therefore, the reduction of time spent on other topics),
whether students would need to review or be “re-taught” proportionality before the
exam, and whether the students would be able to translate what they learned in the
SimCalc unit to what was on the test. The following quote represents an exemplar
of typical a teacher discussion of the SimCalc curriculum in relation to their exam
performance concerns.

INTERVIEWER: How about the math content that the study has? Is it consistent with the
directions your school has been moving towards and things people are
worried about?

INTERVIEWEE: Well, there are a few other things. In the way that it’s tested, that’s mainly
it, I think. The material is there. I think we would have to add a few
more things to it about similarities, then the proportions, the rest of the
objectives—but I think it’s okay. It’s mainly how it would be tested be-
cause of course the tests are very, very important. So, if it were in the
format, certain things in the format that the TAKS test would be in, I
think that would be more not pleasing but it would be more helpful. It
would be easier for the kids to make the connection of what they’re learn-
ing and then show how they’re going to tested because, if they’ve learned
it this way, but it’s not tested in that format, I think that’s something that
we need to go through and come up with to use that material but the
format that we’re going to be tested in and that would be combined, it
would help.

–Year 1 Interview, Immediate Treatment Teacher

In the quote above, we see that not only was the teacher concerned about the con-
tent of the SimCalc curriculum, but also the format in which content was presented
to the students. To this teacher, preparing students for the TAKS exam includes
preparing them for the format of questions. Pais (2009) could describe this as an ex-
ample of the conflict between “ideal” and “reality” of the mathematics classroom:
Ideally teachers would focus on student learning of the mathematics, but the reality
(at least for this teacher) includes preparing students for the specific format of a test.
This is one articulation of the reality of the mathematics classroom that potentially
should be accounted for in future iterations of SimCalc design and research if it
stands in the path of teacher adoption.

5.2 Instructional Decisions Based on Teacher Perception
of SimCalc and its Relation to Standards and Testing

In the previous sections, we presented examples of how teachers from the Scaling-
Up SimCalc study viewed and described SimCalc curriculum in relation to state
standards (TEKS) and state standardized exams (TAKS). Largely, teachers in our
study saw SimCalc curriculum as “more” or beyond what they typically taught.
However, some teachers expressed concern that the SimCalc curriculum did not
cover important TEKS related to rate and proportionality, and some experienced
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pressure (potentially from their administration) to hurry through SimCalc instruc-
tion so they could move on to other TEK topics. The teachers’ perceptions of Sim-
Calc’s fit within what they see, and what their administrators see, as the scope of
seventh grade mathematics ultimately influenced the teachers’ decisions regarding
future SimCalc instruction.

As mentioned previously, 45 of the 68 teachers who completed both years of
the study discussed making changes to the SimCalc curriculum in the future. These
changes included adding additional worksheets or student activities to SimCalc in-
struction, reordering particular SimCalc activities, and changing the timing of Sim-
Calc instruction within the school year. There were a few observations regarding the
teachers’ future instructional decisions that could prove problematic for the future
adoption and success of SimCalc. Eight out of the 68 teachers who completed both
years of the study (9 out of the total 95 in the study) discussed adding a “pre-unit” on
“basic proportionality” prior to beginning SimCalc instruction. A significant number
of teachers (38 of the 68/42 out of 95) discussed omitting and/or reducing sections
of the SimCalc curriculum. Furthermore, 3 out of 68 (or 4 out of 95) teachers ex-
plicitly said they would only use SimCalc materials with certain groups of students,
such as their “advanced” or “gifted and talented” students.

In the following sections, we will discuss teachers’ reasoning for making some of
these notable instructional decisions. In particular, we review teacher discussion of
adding a “pre-unit” to their SimCalc instruction and skipping or omitting sections
of the SimCalc curriculum. We also review one example of a teacher discussing
the conditions under which she would discontinue using SimCalc altogether. These
instructional decisions, and the rationale behind them, highlight the importance for
teachers’ perceptions on innovation adoption and use.

5.2.1 Pre-unit Instruction

As mentioned previously, 8 out of the 68 teachers who completed both years of the
study (9 out of the total 95 participating teachers) discussed adding a “pre-unit”
prior to beginning SimCalc instruction. The pre-units were typically described as
units on “basic skills” or “traditional proportionality.” The following quote is an
exemplar of a teacher discussing their rationale behind teaching a pre-unit.

INTERVIEWEE: I think we found after teaching it last year that this year we needed to
teach them some of the basic proportionality and just how to setup a
proportion, how to work it out, how to read a word problem that we could
use a proportion to solve and we didn’t find that connection is closing the
project. And again I think it’s TAKS test related and it’s our benchmark
related. We knew those were the kinds of questions that these kids would
be tested over the benchmarks as well as on the TAKS and so we thought
like we needed to spend sometime going over some of those basic skills
with them as well.

INTERVIEWER: So were there things that you introduced before the unit or before certain
parts of the unit or how did you know when to integrate them based on
how things went last year?
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INTERVIEWEE: Last year we did it after the unit, this year we chose to do it before the
unit because our benchmark exam was before the unit. So we thought
like we needed to get that part of the material in before we started the
project.

–Year 2 Interview, Immediate Treatment Teacher

In this quote, the teacher describes the “basic skills” that her students need for
solving the kinds of questions they will see on the TAKS exam. She decided to teach
a pre-unit on these basic skills before teaching with SimCalc. This particular teacher
also goes on to say, later in her interview, that she did not teach the entire SimCalc
unit. She stopped her SimCalc instruction after seven instructional days while the
SimCalc unit itself was designed to be a 10-day unit.

5.2.2 Omitting Sections of SimCalc Curriculum

Several teachers (38 of the 68/42 out of 95) discussed omitting and/or reducing
sections of the SimCalc curriculum in either their Year 1 or Year 2 interview. When
teachers discussed why they chose to omit portions of the SimCalc curriculum, they
most frequently sited a lack of time, the necessity of moving on to other TEKS,
or the complexity of the SimCalc unit itself as their rationale. The following quote
provides and example of all three of these rationale types:

INTERVIEWEE: Anyway that’s what I was trying to say is that some of those later lessons
included more complex things that I didn’t feel like we had time to look
at because I needed to focus on what they had to actually know for the
rest of the school year.

INTERVIEWER: And how closely did you follow the curriculum and individual lessons?
INTERVIEWEE: I had done it really closely. I mean I really didn’t skip anything until the

very end.
INTERVIEWER: And that was the salary negotiations you mentioned that.
INTERVIEWEE: It was the salary negotiation part and then there was, we looked at the

miles per gallon but we skipped like the thing before that. . . Like I didn’t
assign homework for them, we did all that stuff in class because there
would be no way I would get those books back. And if we could just get
the basic idea without diving into it more, then that’s where we kind of
stopped at and moved on to the next thing.

–Year 2 Interview, Immediate Treatment Teacher

In this quote, the teacher explains that she didn’t skip any part of the unit “until
the very end.” She states that the later lessons contained more “complex things” that
she felt they did not have time to spend doing since she had to prepare her students
for “what they had to actually know for the rest of the school year.” She goes on to
say that if her students could “just get the basic idea” without diving into it further
then they would stop and move on, presumably to the next lesson.

In this quote and in others, the teachers expressed a notion of what was necessary
to teach, or what was within the boundaries of seventh grade mathematics instruc-
tion. This was often expressed generally as “the point that needed to be made” or
“what they actually had to know” for the rest of the school year. None of the teacher
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quotes indicate that they found the units they skipped to be “sub par” or of no in-
structional value, rather their rationale centered on having limited time and specific
targets to teach—targets that SimCalc went “beyond.” For all of these teachers, they
decided to omit or skip sections of SimCalc curriculum when those sections went
beyond the perceived boundaries of seventh grade mathematics. This suggests that
two environmental factors can lead to the reduction of SimCalc use: perception of
time spent and time needed for the instruction of mathematics, as well as the per-
ceived “scope” of instruction as communicated by standards.

5.2.3 Administrative Support for Teacher Participation

While the teachers themselves discussed their personal concerns over the SimCalc
unit and its usefulness in preparing their students for standardized exams, the teach-
ers also reflected on their administrator’s concerns about TAKS test preparation.
The following is an exemplar quote that demonstrates how a particular teacher in-
terpreted and described their administrator’s concerns.

INTERVIEWER: How about the principal?
INTERVIEWEE: Well, he really didn’t have much interest either. He did sign the permis-

sion slip though. First thing he said was, ‘well what you are just cover-
ing right now is probability and rate. I mean, in Texas, that’s one of the
TEKS out of all those things.’ The TAKS is composed of more objectives
than all the objectives you cover right now. So, how long is it going to
take you? Pressure. Finish it. Finish it. Go onto other objectives in the
TAKS. A little bit of pressure by him. Either complete it or they’re going
to score low. You just hope there’s only one objective or two objectives
when there’s other four or five objectives to cover.

–Year 1 Interview, Immediate Treatment Teacher

Overall, many teachers described their administrators as supportive (or at least,
apathetic or unaware) of their participation in the Scaling-Up SimCalc study. How-
ever, a few teachers described their administration as actively unsupportive of their
participation. Several teachers, such as the one quoted above, discussed pressure
from their administration to quickly finish their SimCalc instruction and move on to
other topics. In one extreme case, a teacher reported in her first year interview that
she would not continue her participation if she was at the same school or had the
same administration (interview excerpt below).

INTERVIEWER: Did they [colleagues and administrator] all feel the same way or did any
of them feel differently?

INTERVIEWEE: No, they were all at first really excited about it. It was just the fact that—
and they lost interest because we took so long to get through it because
of the fact that the breaks and—with anything with a child, there’s got to
be continuity and we didn’t have the continuity this year. And because
of that, I’m not going to teach it next year if I’m at that school because
you’ve got to have the administration’s support and I don’t feel we got
it. Now, if I go to another school, yes, I will let them know that I’ve
already been trained, already been through it one year—can I go through
the second year. Any principal that worth their salt would let you do it.

. . .(later in the same interview). . ..



314 M. Dickey-Kurdziolek and D. Tatar

INTERVIEWER: Were you excited about learning the SimCalc?
INTERVIEWEE: Yes, I was. I was happy that I was selected. I thought it was a great honor.
INTERVIEWER: Do you still feel the same way about it now?
INTERVIEWEE: I would teach it again in another school. I will not teach it in this same

school.
–Year 1 Interview, Immediate Treatment Teacher

Unfortunately, this teacher did not continue her participation in the Scaling-Up
SimCalc study past the first year.

6 Discussion and Conclusions

We can envision the classroom environment nested within the larger communities
of which the students and teachers are members. For example, classrooms can be
seen as nested within schools, that are nested within communities, that are nested
within the state, and so on. Each of the encompassing environmental levels effect
the “ecosystems” or environments contained within them. In the case of the teachers
participating in the Scaling-Up SimCalc study, they discussed the purpose and scope
of seventh grade mathematics with regards to the different environments of which
they are members. Specifically, they discussed the purpose and scope of seventh
grade mathematics with regards to what they saw in their own classrooms, what was
communicated to them through the colleagues and administrators in their school,
and what was presented to them in the form of state-level standards and assessments.
In this report, we have focused on the teachers’ discussion of the state standards
and assessment as they reflected on their use of SimCalc materials and rate and
proportionality instruction.

While the Scaling-Up SimCalc materials were explicitly designed to be within
seventh grade mathematics students’ abilities and in line with the mathematics top-
ics identified by the Texas standards (TEKS), the teachers in our study often de-
scribed SimCalc as being outside the usual bounds of seventh grade mathematics or
“more” than what was typically taught in seventh grade. Teachers in our study also
discussed important TEKS related to rate and proportionality that the SimCalc study
did not cover. This included what was largely described as “basic proportionality”
or “a/b = c/d” proportionality. What the teachers described as “basic proportion-
ality” could be likened to what is typically needed to pass proportionality questions
on annual TAKS exams, and what in the Scaling-Up SimCalc study was deemed the
“simple” portion of the pre and posttests.

Students in classrooms utilizing SimCalc resources largely out performed their
peers in the control condition on the pre and posttests of the study. When we fo-
cus our attention to student performance on the “simple” portion of the test, or the
portion of the test that resembled state standardized exams, we see that SimCalc
students gained just as much as (or more than) their no-SimCalc peers. While there
was no detectable loss due to the SimCalc intervention, several treatment teachers
still expressed their concerns regarding the scope of the SimCalc materials and their
students’ performance on annual TAKS exam.
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Not only did teachers in our study discuss their concerns related to student per-
formances on TAKS exams and the “stretch” of SimCalc’s reach beyond the scope
of the TEKS, they also made instructional decisions based on these observations.
Several felt that their students needed to be “solid in basic skills” before moving to
more complex mathematical ideas. This resulted in some teachers deciding to teach
a “pre-unit” on basic proportionality before beginning SimCalc instruction. Addi-
tionally, several teachers discussed the possibility of using SimCalc materials only
within the short span of time between TAKS exam administration and the end of the
school year. Most troubling was the large number of teachers who discussed cutting
SimCalc instruction short in order to review what they considered important TEKS
not covered by the unit.

In recent years, the education boards in every state in the United States have
adopted sets of standards in order to facilitate the selection of curriculum and con-
tent areas for major subject areas and grade levels. However, while the intended
message of the state-adopted standards and assessment may be seen as inclusive and
extendable at the statewide policy level, we have shown here that the message may
be interpreted and enacted by teachers as boundary lines defining the scope of what
is and is not part of seventh grade mathematics instruction. Zhao and Frank (2003)
would describe this phenomenon in terms of the “keystone species” of the classroom
(the teacher) dealing with stressful environmental factors—environmental factors
that in the case of the Scaling Up SimCalc study led some teachers to make instruc-
tional decisions that ultimately restricted if not prohibited SimCalc’s chances for
“survival.” Pais (2009) would describe this as one of the “fissures” between ideal ar-
ticulations of classrooms and what the reality of classrooms must entail. In an ideal
classroom, teachers would perceive both the value of SimCalc resources as well as
their fit within state guidelines and standards. However, the reality of classrooms
include, in some cases, teachers spending time preparing students for the specific
format of their high-stakes exam as well as its content (reported in Sect. 5.1.3),
dealing with uncooperative colleagues and administration (reported in Sect. 5.2.3),
and presenting mathematical ideas (such as proportionality) only in terms of what
is presented on the exam (reported in Sect. 5.1.2). Furthermore, when the environ-
mental pressures prove to be overwhelming, and/or the perceived relative advantage
of an innovation is low, the reality of the classroom includes teaching more of what
has been described as “basic skills” in lieu innovative instruction that goes beyond
(reported in Sects. 5.2.1 and 5.2.2).

While teachers and students can benefit from more and better resources to use,
in some cases, the reality of the classroom space makes using such resources pro-
hibitive. In this chapter, we see the interpretation and enactment of standards in-
struction as an environmental factor that could critically reduce SimCalc’s potential
for impact. Future iterations of design and research should attend to and account
for teacher perceptions of SimCalc’s “fit” within the classroom ecosystem to reduce
barriers to SimCalc’s adoption. Furthermore, by attending to the fissures between
“ideal” and “reality” in classrooms, we can move towards more robust theories of
innovation design and classroom practice.
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Developing and Enhancing Elementary School
Students’ Higher Order Mathematical Thinking
with SimCalc

Demetra Pitta-Pantazi, Paraskevi Sophocleous, and Constantinos Christou

1 Introduction

Nowadays, there is a greater demand for our schools to produce graduates who
are highly creative and critical, and able to demonstrate more complex thinking
processes (European Commission, 2011). The mathematics curricula of a num-
ber of countries stress that students must develop the mathematical knowledge and
skills necessary to further their education, careers and everyday lives, as produc-
tive and independent members of society (Ministry of Education and Culture in
Cyprus, Cyprus Pedagogical Institute, and Development Programs Service, 2010;
National Council of Teachers of Mathematics [NCTM], 2000). Despite this realiza-
tion, the results of several studies show that students have limited abilities in prob-
lem solving, lack conceptual understanding, and have inadequate critical thinking
skills (Henningsen and Stein, 1997; Hiebert and Carpenter, 1992). It can be argued
that we have not yet sufficiently developed the kinds of environments that facilitate
students’ content knowledge, critical, creative and complex thinking.

According to a number of researchers, such environments can be developed
through the use of technology (Clements et al., 2008; Jonassen, 2000; Jonassen
et al., 2008; Slangen et al., 2008). Clements et al. (2008) suggest that the various
environments that support learning with the use of technology can enhance students’
learning in new dynamic ways. Technology, as a mindtool, might offer students the
opportunity to develop higher order thinking (Heid and Blume, 2008; Pea, 1987).
However, it is not yet clear which pedagogical principles are necessary to maximize
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the potential that technology has to offer to mathematical thinking and learning (La-
grange et al., 2003).

In this chapter, we describe the design of six lessons, using SimCalc MathWorlds®

(hereon called SimCalc), which were aimed to enhance elementary school students’
higher order mathematical thinking. We illustrate the way in which this software and
the organization of the lessons supported the development of elementary school stu-
dents’ higher order thinking in mathematics. To this end, Sect. 2 offers an overview
of the advances that the use of technology might offer, and in particular the poten-
tial SimCalc creates for higher order mathematical thinking. Then, we concentrate
on the pedagogical role of technology in the teaching of mathematics. Section 3
considers the purpose of this chapter and related research questions, while Sect. 4
provides information about the design of the lessons. The outcomes of the imple-
mentation of the proposed lessons are presented in Sect. 5, and in Sect. 6 we draw
some conclusions and consider implications for teaching.

2 Theoretical Background

2.1 Technology as a MindTool: Changes in Students’ Thinking
and Learning in Mathematics

According to Jonassen (2000), the use of new technologies supports students’ learn-
ing in a way that is meaningful to them. However, technology by itself cannot bring
change or positive results in the learning and understanding of mathematics (Heid
and Blume, 2008). It appears that it may be beneficial for students to be engaged in
active, constructive, authentic activities and cooperative learning, and to be offered
opportunities to explore situations and interpret the results of their interventions.
This can be promoted by the use of technology as mindtools. Mindtools are tech-
nological tools and learning environments which have been developed or adopted
so as to be used as intellectual partners, requiring students to think critically or use
higher order thinking (Jonassen, 2000). Clements et al. (2008) and Tall et al. (2008)
suggested that the use of appropriate technological tools gives students the oppor-
tunity for reflection, and allows them to understand in greater depth mathematical
ideas and procedures. It is therefore important to investigate the types of thinking
that it is possible to develop through the use of cognitive technology in mathemat-
ics.

Using the Integrated Thinking Model by Iowa Department of Education (1989),
Jonassen (2000) suggested that cognitive technology can promote higher order
thinking. More specifically, he suggested that students might develop more com-
plex processes of thinking in a technological environment, which includes:

The goal-directed, multi-step, strategic processes, such as designing, decision making and
problem solving. This is the essential core of higher order thinking, the point at which
thinking intersects with or impinges on action (Iowa Department of Education, 1989, p. 7).
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Fig. 1 Integrated Thinking Model (Iowa Department of Education, 1989)

For someone to reach higher order thinking, a combination of content/basic knowl-
edge, critical thinking and creative thinking is necessary (see Fig. 1). These three
components should be interrelated and dependent on each other. According to
Jonassen (2000) and NAACE and BECTA (2001), these three components can be
developed and supported by cognitive technology.

Students’ content/basic knowledge is the knowledge that they can retrieve di-
rectly from what they have learned (Jonassen, 2000). This knowledge refers to both
procedural and conceptual knowledge, i.e., what and why an operation is executed.
Critical thinking is the ability to reorganize the knowledge using the processes of
analyzing, connecting, and evaluating in accepted knowledge (Iowa Department of
Education, 1989). The process of analyzing involves breaking a whole into mean-
ingful parts, recognizing patterns and understanding interrelationships. Connecting
refers to the ability to find similarities in and differences between things, and con-
struct relationships within and between systems. The evaluation process involves
making judgments based on criteria and information, and investigating the implica-
tions or results of a hypothesis in order to confirm or reject it (Iowa Department of
Education, 1989). Creative thinking involves “using and going beyond the accepted
and reorganized knowledge to generate new knowledge” (Iowa Department of Ed-
ucation, 1989, p. 7). More specifically, creative knowledge is the new knowledge
brought about by imagining, synthesizing and elaborating processes (Iowa Depart-
ment of Education, 1989). Creative thinking involves imagining processes, which
require original ideas through intuition, visualization, prediction, and fluency. It also
involves synthesizing skills, which depend on the ability to combine parts to form a
new whole using analogies, to summarize key ideas succinctly, to hypothesize and
to plan a process. Elaborating refers to the ability to develop an idea fully by expan-
sion, extension and modification (Iowa Department of Education, 1989). Finally,
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complex thinking, as mentioned above, combines the skills and knowledge types of
the other three kinds of thinking, to produce an integration of accepted, reorganized
and generated knowledge. In other words, complex thinking is not a separate kind of
thinking, but incorporates critical and creative thinking skills in various ways. This
kind of thinking includes processes such as problem solving, designing and deci-
sion making. Problem solving is the process of using systematic methods to reach
a goal. Designing refers to the invention of any type of creation to fit some goal or
purpose, while decision making is defined as the ability to choose from alternatives
systematically (Iowa Department of Education, 1989).

This Integrated Thinking Model has been used in different ways in the research
field of educational technology. For example, Jonassen (2000) used this model to
evaluate different technological tools as mindtools. Michko et al. (2003) used the
dimensions of critical thinking as criteria to analyze the potential of specific math-
ematical software. Slangen et al. (2008) used this model to develop a checklist in
order to investigate the type of thinking skills that eight grade students applied when
using the microworld Techno-Logica. They found that students tended to apply the
evaluating skills rather than the connecting, synthesizing and analyzing skills. How-
ever, they suggested that further investigation is needed to examine the type of think-
ing skills stimulated by various microworlds.

Jonassen (2000) suggests that SimCalc, as well as a number of other mi-
croworlds, allow students to develop their critical, creative, and complex think-
ing processes. He also suggests that compared with other technological tools, mi-
croworlds engage students in more critical and creative procedures, such as the
recognition of patterns, inductive reasoning, hypothetical reasoning, and flexible
manipulation of situations. In particular, it is suggested that SimCalc can develop
students’ critical thinking by offering them the possibility to assess available infor-
mation, decide upon the criteria for selecting information, recognize patterns, iden-
tify causal relationships and use logical reasoning to support their answers induc-
tively or deductively (Dalton and Hegedus, this volume; Jonassen, 2000; Jonassen
and Carr, 2000). For example, students who work in SimCalc can assess and con-
nect information presented to them in different representations of the microworld:
the world, the table and the distance-time graph or velocity-graph (Dalton and Hege-
dus, this volume). Furthermore, SimCalc can develop students’ creative thinking by
offering an environment where students can expand their thinking to something new:
it has the fluency and flexibility to provide multiple solutions to a problem. For ex-
ample, students can expand the given graphs in SimCalc to fit specific instructions.
Such activities were used by Dalton and Hegedus (this volume) in their implemen-
tation in high school Algebra 2 classrooms. In particular, students had to edit the ve-
locity function symbolically and graphically to control the motion of a rocket to fit
given instructions. Finally, SimCalc supports the development of complex thinking
by engaging students in situations which require competence in problem solving, de-
signing solutions, and decision making (Jonassen, 2000; Mousoulides, this volume).
For example, students can design a graph in SimCalc to fit specific instructions or to
find the solution to a problem. In a similar way, complex modeling activities were
used by Mousoulides (this volume). In particular, he invited elementary school stu-
dents to construct models in the SimCalc environment to fit specific instructions. In



Higher Order Mathematical Thinking and SimCalc 323

addition to this, Bishop (this volume) and Orrill (this volume) underlined that de-
spite the opportunities offered by SimCalc environment to solve complex problem
solving activities in a meaningful way, SimCalc offers students the opportunity to
be engaged in a more productive discourse in the classroom.

2.2 Pedagogical Role of Technology in Mathematics Teaching
and Learning

A technological tool is not sufficient in itself to become a mindtool. Heid and Blume
(2008) argue that the effects of technology on teaching and learning are the result of
a range of configurations of technologies, teachers’ and students’ actions, as well as
the nature and organization of the curriculum and mathematical content. Based on
this idea, Pierce and Stacey (2010) described the ways in which technology may be
used to bring pedagogical advantages in terms of three levels—subject, classroom
organization, and tasks.

Subject level refers to the opportunities that technology offers to “provoke or
support new or changed goals or teaching methods for a mathematics course as a
whole and to provide its users with new insights into the subject matter that they
are teaching” (Pierce and Stacey, 2010, p. 10). Technology might be used to alter
the balance in teaching skills, concepts and applications, and to build metacognition
abilities and higher order thinking skills.

The second level of Pierce and Stacey’s (2010) pedagogical map, the classroom
level, focuses on the changes that occur in the interpersonal dimension of the class-
room when compared with the traditional classroom. Pierce and Stacey (2010) ar-
gue, for example, that the use of technology changes classroom social dynamics,
with teachers facilitating rather than dictating, and it also encourages group work,
with students working collaboratively and engaging in mathematical discussion. In
addition to this, technology engages students in expressive and exploratory activities
(Doerr and Pratt, 2008), where students with the same technological tool can create
their own construction or investigate using a prepared environment.

At the task level of their pedagogical map, Pierce and Stacey (2010) present dif-
ferent uses of technology, which may enhance mathematical activities in the class-
room. It appears that the functionalities of some software provide an opportunity to
use real world data or to explore regularity and variation. Moreover, some software
offers the opportunity to elaborate simulations and/or link different representations,
which promotes students’ understanding.

3 Purpose and Research Questions

Taking into consideration both the possibilities that SimCalc may offer as a mind-
tool, as well as Pierce and Stacey’ s (2010) pedagogical map, the aim of this study
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was to examine whether SimCalc could be used as a mindtool to enhance students’
higher order thinking in mathematics. Our aim was to design a learning environment
and analyze the ways in which SimCalc enhanced students’ content knowledge and
critical, creative, and complex thinking in mathematics. In particular, we investi-
gated the following research questions:

• Is SimCalc MathWorlds® software a useful mindtool to facilitate elementary
school students’ high order thinking in mathematics?

• Can we observe active high order mathematical thinking in the SimCalc environ-
ment?

4 Designing a Learning Environment with SimCalc

Many researchers stress that it is high time to search for the ways in which comput-
ers bring added value to and can transform education, supporting the development
of different types of thinking and abilities (Heid and Blume, 2008; Papert, 2006). In
the following section, we analyze the learning environment that we designed with
SimCalc (Kaput and Roschelle, 1998). We will present the aims of the lessons, their
structure and examples of activities employed.

4.1 Aims of the Lessons with SimCalc

The aims of these lessons addressed the four components: content knowledge, criti-
cal thinking, creative thinking, and complex thinking. The underlying assumption is
that content knowledge is achieved through students’ involvement with the interpre-
tation and invention of linear graphs. Critical thinking is built with the requirements
for students to find similarities and differences between different graphs and link
the various representations in the SimCalc environment. Creative thinking is tar-
geted through multiple solution tasks, and finally complex thinking is required in
designing solutions to fit a given purpose. In particular, the aims of the lessons were
to help students to: (a) interpret distance-time graphs and velocity-time graphs and
identify similarities and differences between them; (b) link verbal descriptions with
distance-time and velocity-time graphs; (c) provide multiple solutions to mathemat-
ical problems in the SimCalc environment; and (d) design graphs using SimCalc to
fit given instructions.

4.2 Description of the Learning Environment with SimCalc

To design the learning environment using SimCalc, we adopted Pierce and Stacey’s
(2010) pedagogical map and concentrated on the subject, classroom organization,
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Fig. 2 Structure of the learning environment with SimCalc

and tasks levels. By subject level, we mean the mathematics that students should
learn, including mathematical thinking skills. We define classroom level as the way
in which we organized the classroom setting, i.e., the role of students, teachers, and
technology in the classroom. Finally, by task level, we refer to the advantages of
SimCalc and the way in which these are incorporated in the activities of the learning
environment.

4.2.1 Subject Level

Figure 2, offers a description of the way in which we designed our lessons in an at-
tempt to address the subject. Our aim was that by the end of the six lessons, students
would have developed their content knowledge of distance-time and velocity-time
graphs, and also critical, creative, and complex thinking about these mathematical
concepts. Thus, at the beginning of the lesson, students were asked to explore a real
life situation. They were shown a video of a race from the 2008 Olympic Games
without any commentary. Students were asked to find a way to present this race
in a diagram. In the next stage, students were asked to think critically—analyzing
the meaning of different representations presented in SimCalc—and investigate the
similarities and differences between them (see, for example, “Distance-Time Graph
Versus Velocity-Time Graph,” Fig. 3). Once these activities were completed, stu-
dents were asked to work with tasks that required creative thinking. In particular,
students were asked to elaborate given distance-time graphs, to visualize the verbal
instructions they were given, and to produce as many graphical solutions as possi-
ble (see, for example, “Time for Creation!!!,” Fig. 3). Lastly, students were engaged
in complex thinking activities. They were asked to sketch a graph with SimCalc in
order to fit specific instructions (see, for example, “Article in the Sport Section of
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Fig. 3 Critical thinking, creative thinking and complex thinking activity in SimCalc
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Fig. 3 (Continued)

a Newspaper,” Fig. 3) and to design their own race using SimCalc, and ask their
partner to describe it (see, for example, “Our Race,” Fig. 3).

4.2.2 Classroom Organization Level

With regard to the classroom organization level, students were asked to work in
pairs. For the majority of the lesson, students were working without any guidance
from their teacher. They were reading, exploring and completing the activities that
they had been given in collaboration with their partner. The teacher only interfered
if students needed clarification about a task. The teacher also addressed the whole
class for a few minutes at the beginning and at the end of the lesson. This was done
in order to give students the opportunity to present their results, make connections
and comparisons between the various solutions, and exchange ideas and experiences
gained while they were working with SimCalc.

4.2.3 Task Level

Finally, at the task level (Pierce and Stacey, 2010), students were given the op-
portunity to use real data about races—velocity, distance, and time. They had the
opportunity to simulate these situations and explore the similarities and differences
between simulations, graphs and tables. Students could link and make comparisons
between the various representations and learn from the feedback provided by the
computer. In addition, students were also asked to “teach” the computer to simulate
a narrative story in a visual form.
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5 Implementing the Designed Learning Environment
with SimCalc in an Elementary School Classroom

5.1 Participants and Setting

Fifteen 5th and 6th grade students (10 and 11-year-olds, 6 boys and 9 girls) of a rural
elementary school in Cyprus participated in the study. The students participated in
six 40-minute lessons taught by one of the authors. These lessons were conducted
during a 3-week period. The participants had never used SimCalc or any similar
computer program beforehand.

To answer the research questions, we collected students’ written responses and
the electronic SimCalc files which they produced for each activity. For the purposes
of the current chapter, all responses and collected material were translated into En-
glish. In addition to this, detailed observation notes were taken of students’ actions
and discussions, both with their peers and their teacher. Particularly, an observa-
tion protocol was used which was based on the Integrated Thinking Model (Iowa
Department of Education, 1989). We recorded students’ statements that showed:
(a) critical thinking processes in terms of analysis, connection and evaluation (e.g.,
students’ statements which suggested construction of hypothesis, prediction of out-
comes, comparison of similarities and differences, analysis of situations, generaliza-
tion, connection between concepts and procedures, logical thinking, verification of
arguments etc.); (b) creative thinking processes in terms of imagining, synthesizing
and elaborating (e.g., statements that showed students synthesis of data in order to
provide answers and original ideas etc.); and (c) complex thinking processes (e.g.,
statements that showed the way that students solved complex thinking tasks). For
each of the above processes, researcher indicated the task which students were en-
gaged with and the time that these processes occurred.

In the following section, we will present the results of the implementation of the
lessons with SimCalc on students’ higher order thinking in mathematics. For the
data analysis, the constant comparative method was used (Maykut and Morehouse,
1994). This method combines “inductive category coding with a simultaneous com-
parison of all units of meaning obtained” (Glaser and Strauss, 1967, as cited as
Maykut and Morehouse, 1994, p. 134). In particular, we were informed by the lit-
erature about the components of conceptual understanding of linear graphs and the
various types of processes involved in critical, creative and complex thinking. Based
on these, we created categories, organized the data collected from multiple sources,
and presented the results of our analysis.

5.2 Students’ Performance

With regard to students’ performance, at the end of the six lessons, we compared
students’ initial inventions of a distance-time graph and their final inventions, as
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Fig. 4 Students’ diagrams of Olympic Games race prior to the use of SimCalc

Fig. 5 One student’s invention of distance-time graphs

well as students’ initial interpretations of the distance-time graphs with their final
interpretations. Students’ responses and actions were grouped into the above cate-
gories using the constant comparative method analysis.

At the beginning of the first lesson, students were asked to represent the Olympic
Games race, which they had watched on video, in a diagram. Six of the students
presented the race in a static form (see Fig. 4a), five tried to show the motion of the
athletes, drawing bent arms and legs (see Fig. 4b), and four tried to show the motion
by presenting multiple figures for every runner (see Fig. 4c).

After students’ engagement with SimCalc, all of them were able to invent
distance-time graphs to represent a race of two or more athletes, both on paper and
in the SimCalc environment. One student’s drawings of distance-time graphs are
displayed in Fig. 5. Figure 5a shows, as the student said, “the blue runner finishing
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Table 1 Students’ initial interpretations of distance-time graphs

(a) (b) (c)

Students’ initial
interpretation of
distance-time
graph (a)

Number
of
students

Students’ initial
interpretation of
distance-time
graph (b)

Number
of
students

Students’ initial
interpretation of
distance-time
graph (c)

Number
of
students

“I think that the
graph shows the
two runners’
times and the
number of
meters they ran.”

8 “I think that the
graph shows that
the blue runner is
much further
ahead than the
red runner.”

7 “I think that the
graph shows that
the red and the
blue runners
finished their
race.”

8

“I think that the
graph shows the
way in which the
red and the blue
athletes ran”

3 “I think that the
graph shows the
time that the two
runners needed
to finish the
race.”

3 “I think that the
graph shows that
the red runner
started his race
from the 2 meter
mark.”

3

“I think that the
graph shows the
movement of two
runners.”

2 “I think that the
graph show the
number of
meters run by
two runners.”

3 “I think that the
graph shows that
the two athletes
ran equally fast.”

2

“I think that the
graph shows that
the blue line is
on the 10th
position, but the
red line is much
further away.”

2 “I think that the
graph shows that
the red athlete
ran 10 meters,
while the blue
athlete ran 20
meters.”

2 “I think that the
graph shows that
the two runners
started from two
different points
and finished at the
same point.”

2

a 20 meter race in 1 second, while the red runner needs 10 seconds to complete the
race”. Figure 5b shows another graph designed by the same student, which accord-
ing to him is “a 25 kilometer race with four cars.”

At the beginning of the study, students were also asked to interpret three distance-
time graphs. Their initial interpretations of these graphs are presented in Table 1. It
appears that, at the beginning of the lessons, students were not able to give accurate
interpretations of the distance-time graphs. Most of them interpreted the graphs as
if they were static pictures. For the distance-time graph (a), most students (8 out of
15) concentrated on the names of the axes, and claimed that they showed the two
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runners’ times and the number of meters they ran. The other students claimed that
this graph showed the movement of two runners. For the distance-time graph (b),
seven students hypothesized that the blue runner came first, since his line graph
was “bigger.” The others interpreted the graph as a picture—they concentrated on
its characteristics (meters, position, seconds). For the distance-time graph (c), eight
students said that the two athletes finished their race. We hypothesize that they may
have reached this conclusion because the two line graphs intercepted. It is a classic
graph interpretation given by students. Three students concentrated only on the start-
ing point of the red runner, and two described the two runners beginning from two
different points but finishing at the same point (they probably saw the black points
on the graph), while two students maintained that the two athletes ran equally fast
since they finished at the same point.

After students’ engagement with SimCalc, they were able to interpret distance-
time graphs. This is illustrated by the responses they provided when asked to write
a description of the races that these graphs demonstrated. It is noteworthy that all
students carried out this task correctly after the lessons with SimCalc (see, for ex-
ample, Fig. 6).

5.3 Students’ Higher Order Thinking in Mathematics

The second research question was about whether we could observe active higher or-
der mathematical thinking in the SimCalc environment. The answer to this question
is positive. In the following section, we demonstrate evidence of students’ critical,
creative, and complex thinking using the constant comparative method analysis of
data. In particular, we looked carefully at the data collected from the classroom (stu-
dents’ responses, actions, and discussions) and identified thinking processes that fit
into the three categories of thinking: (a) critical thinking processes in terms of analy-
sis, connection and evaluation, (b) creative thinking processes in terms of imagining,
synthesizing and elaborating, and (c) complex thinking processes.

5.3.1 Critical Thinking

During the lessons with SimCalc, students employed critical processes to respond
to the tasks, namely analysis, connection, and evaluation of information.

5.3.1.1 Analysis

At the beginning of the first lesson, students were asked to watch the video of the
Olympic race and explain “why” the runner came first. Six students claimed that,
“This athlete ran faster than the rest,” five students argued that “He trained very well
and he was confident,” two students commented that “This runner had more support
from the spectators,” and two students said that “His strides were bigger than those
of the other runners.” From these responses we can see that some students referred
to velocity, whereas others had other ideas.
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Fig. 6 A student’s answer in the assessment activity

As the lesson unfolded, students’ explanations became more mathematical and
also more specific. For example, in one of the tasks students were asked to talk
about a 20 m race with two athletes that they saw in the SimCalc simulation. All
students simply said that the red runner finished the race first. Eleven claimed that,
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“This athlete came first, because he was running faster than the other runner,” while
four students added, “The red athlete came first and had a large distance difference
from the blue athlete.” As time elapsed students analyzed what they saw in the
simulation using the various functionalities of SimCalc, and their responses became
more specific. All students argued that, “The red athlete came first in the 20 m
race. His time was 10 seconds. The blue athlete only managed to run 10 m during
these 10 seconds.” To facilitate students’ understanding and highlight the difference
between the two athletes, the teacher invited the students to use the marking option
and describe what they saw in the simulation. Nine students commented that “The
red athlete runs 2 m every second, while the blue runner runs 1 m every second. For
example, when the red athlete has run 6 meters, the blue runner has run 3.” In other
words, the marking option gave them the opportunity to break the race into parts
and see the pattern of the motion of the two runners. The other six students were
not able to understand this pattern completely. They stated that: “The red athlete
did long strides, while the blue athlete did short strides. This is why the red athlete
covered twice the distance that the blue athlete covered.”

When students were asked to discuss the numbers presented in the SimCalc ta-
ble, they again started with more general comments. As time elapsed, they were
able to identify patterns and understand interrelationships. All students’ initial com-
ments about the table were that “the table shows time and meters.” Once the teacher
suggested that they should pay more attention to the information provided on the
computer screen, students started making connections between the data in the table
and the simulation. All students were able to identify some patterns. Five students
stated that: “The two athletes run at different speeds. The red athlete covers twice
the distance that the blue athlete covers in the same time.” Four argued that, “The
time is the same for the two athletes. When the blue athlete has run 4 meters, the
red athlete has run 8 meters,” and six students commented that, “We noticed that the
red athlete did strides of two meters, while the blue athlete did strides of one meter.”
In other words, all the students attended to the relationships between the simulation
and the information in the table, but only five of them reached a conclusion about
the different rates of the two athletes.

5.3.1.2 Connection

In another task, students were asked to identify the similarities and differences be-
tween three different distance-time graphs (see figures (a), (b), (c) in Table 1). All
students claimed that the three distance-time graphs showed the distances that two
athletes covered in a specific period of time, and all of them noticed that in fig-
ure (c) “the two athletes finished at the same time, while in the other two graphs the
red athlete finished first.”

When students were asked to compare these distance-time graphs with their re-
spective velocity-time graphs (Fig. 3), they were able to say that the distance-time
and the velocity-time graphs showed the same race but provided different informa-
tion. They claimed that one of the graphs showed the distance that the athletes cov-
ered, whereas the other showed the athletes’ velocity. Three pairs of students pointed
out that “In the velocity-time graph the lines are horizontal and straight. This does
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not appear in the distance-time graph.” They also noticed that “In the distance-time
graph the athletes’ lines started from 0, while in the velocity-time graph the two
runners’ lines started from 2 and 1.” It appeared that these students’ comments were
more descriptive than showing any evidence of conceptual understanding. For this
reason, the teacher suggested that the students use the marking option and look for
connections between the marks and the velocity shown on the graph. Six students
commented that “The red athlete had velocity 2, since he covered 2 meters every
second, while the blue athlete had velocity equal to 1, since he covered 1 meter ev-
ery second.” Moreover, two pairs of students noticed that the athletes’ velocity was
constant. They argued that “the distance that the runners covered each second did
not change.”

All students were able to understand the relationship between the two graphs.
This was achieved by dragging the line of one of the graphs and observing the
changes appearing on the other graph. Indicative of this was the following dialogue
between two boys:

GS: Move further up the red straight line in the velocity-time graph. Move it to number
eight. What happens to the simulation?

AP: I think that the red athlete will run faster now. I will press “play” to see it.
GS: You are right. When we drag the line upwords in the velocity-time graph the athlete

runs faster than before. . . See, the red line in the distance-time graph also moves (He
pointed with his hand).

AP: Yes. But the red athlete continues and finishes the race at 20 m.
GS: I think that we can conclude that every action on one graph influences the appearance

of the other graph.

5.3.1.3 Evaluation

During these lessons all students frequently checked their hypotheses, explana-
tions, and connections by “exploring the microworld.” One student said that he was
“watching very carefully what was happening on the screen to check my answers.”
In another incident, a student asked his partner: “How many seconds does the red
athlete need to run 20 m in this graph (pointing to the distance-time graph) and how
many seconds does he need in this graph (pointing to the velocity-time graph)?”
“What are the distances that every athlete runs in this graph and in this graph? (He
pointed to both graphs).” His partner responded that both graphs referred to the
same distance. We could argue that discussions like these suggest that all students
became more engaged in the activities, and examined the information presented to
them critically.

5.3.2 Creative Thinking

During the lessons with SimCalc, students employed creative processes to respond
to the tasks, namely: imagining, synthesizing, and elaborating.

According to Leikin and Lev (2007), multiple solution tasks are a useful instru-
ment to develop and also measure students’ creative thinking. This is the reason we
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asked students to provide multiple solutions in two of the tasks presented to them. In
one of these tasks, students were asked to draw distance-time graphs showing that
the blue runner finishes the 20 m race first and the red runner second. The second
creativity task required the students to add an actor (a car) in a given 2-car race (see
Figs. 8a, 8b, 8c, 8d), and have this new actor overtake the previous two actors in
the race. The two creativity tasks were presented to the students in two 40-minute
lessons, which took place one week apart.

5.3.2.1 Imagining

From the students’ behavior in the classroom, it appears that they all tried to imagine
what they needed to do before designing the graphs. As the teacher moved around
the students and asked them to describe what they had to do, all of them stated that
they had to draw lines in such a way as to show that the blue runner would finish the
20 m race first. Students were moving their hands along the screen to indicate the
directions of the two lines, frequently maintaining that there were many different
solutions. Indicative of this is the following comment by one of the students: “I am
sure that there are more than 20 graphs that I could sketch to show that the blue
runner finished the race first.” In the next section, we analyze the procedure students
used to provide more than one solution in the two creativity tasks.

5.3.2.2 Synthesizing

With regard to students’ creative processes in the first creativity task, we identified
two strategies used. The first is illustrated in Fig. 7a. In particular, we observed that
eight students initially moved the graph of the blue runner slightly away from the
horizontal axis but did not change the graph of the red runner. Then, they dragged
the graph of the blue runner up a little towards the y-axis and then even closer to
it. When the teacher asked a pair of students what they observed, they claimed that,
“When the blue runner runs very fast, the angle created by his “line” graph and the
horizontal axis becomes bigger.”

The second strategy is illustrated in Fig. 7b. In particular we observed that the
rest of the students (seven) initially moved the blue line and covered the red line and
then they dragged the red line “slightly below the graph of the blue runner.” As one
of the students said: “First, we set the blue runner to cover 20 m in 10 seconds. Then
we moved the red runner slightly below the blue runner’s line.”

All students drew at least four different distance-time graphs to show the 20 m
race with the blue runner winning and the red runner coming second, using one of
the two strategies described above.

5.3.2.3 Elaborating

Elaboration processes were obvious in students’ solution processes in the second
creativity task. In this task, all students originally created an actor similar to those
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Fig. 7 The two strategies students used to draw distance-time graphs where the blue runner fin-
ishes the 20 m race before the red runner

Fig. 8 Creations of a new actor who finishes the race first

that they had already observed. Indicative of this was one student’s comment to
her partner: “To finish first, the graph needs to be “steeper,” nearer to the vertical
axis. We need to do it in the same way as we did before” (in the first creativity
task, see Fig. 8a). As students became more familiar with SimCalc and appeared to
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gain a better understanding of the graphs, they started presenting more elaborated
solutions. For example, three pairs of students set their car to initially move with
small velocity and then increased its velocity and overtake the other two cars (see
Fig. 8b). Two other pairs of students decided to set their cars to move forward for
a few seconds, stop for a while, then move forward again and then backwards for
some seconds (see Figs. 8c and 8d).

5.3.3 Complex Thinking Processes

In the final two activities, students were asked (a) to design a distance-time graph to
fit given data, and (b) to design their own race in SimCalc. These activities require
complex thinking processes, since students need to apply a combination of critical
and creative approaches to provide solutions for them.

In the first design task, students identified the goal of the task and then analyzed
the data that they had been given. Then one student in each pair drew a graph on the
empty grid of SimCalc, which their partner then checked. The following dialogue
between two students exemplifies the thinking involved:

MC: It is easier to create a car that travels 20 km in 8 minutes.
KX: OK. I will do it. . . . What does it mean when it says that the second car “in the first

4 minutes”? Do we draw it here? (He points at point (0,4) on the distance axes)
MC: No! According to the instructions the second car is leading the race for the first 4 min-

utes. It is not written that the car starts from the 4th km. Then, this car moves for
10 minutes.

KX: OK, like this (he draws the graph)?
MC: Yes. I will press play, to check if we are correct.
KX: It is cool!

These students were able to analyze the instructions step by step, design a graph
to fit the given data, and check their solution by activating the simulation. In other
words, they applied complex thinking processes to provide their solutions, since
they used critical thinking processes (analyzing, evaluating) and creative thinking
processes (synthesizing).

In the activity where students were asked to create their own race and describe
it, four of them created three races, four more created two races and six created one
race. Students’ designs were quite elaborate and they used existing SimCalc Worlds,
such as Cars, Fishy and Rockets. Their objects did not simply move forward; They
also moved backwards or stopped for some time. During this task students produced
races with many “changes.” A pair of students put it nicely: “we designed a “crazy”
race.”

The processes that students followed to design their own races were common,
but their products were very different. First of all, they set their goal, then they
planned their design and simultaneously sketched it on the SimCalc grid. Once hav-
ing finished, they evaluated their design by activating the simulation and checking
whether it was presenting the story that they had in mind. This SimCalc functionality
allowed students to co-act and verify their responses. Below is a dialogue between
two boys:
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VA: I want to design a car race.
RO: Me too. I want my car to stop for a while.
VA: Yes!!! We should sketch it in a similar way to the one we saw before.
RO: The car which will finish the race first we have to draw it near this axis (The boy

points on the y-axis on the screen).

For every race that students designed a graph, they also had to write a story. All
students were able to connect the visual forms (graphs and simulated motions) with
narrative stories. One such story, written by a pair of students, is presented below.

The green fish starts at 6 m, then goes for 2.5 m and continues for 15 m. Then he stops for
1 second. Then he continues to 19 m and in 9 seconds he reaches his destination which is at
24 m. The blue fish goes straight to 24 m, then he returns to 15 m. He stops for 2 seconds
and then continues for 3 m. He stops for 1 second. Then he goes to 24 m in 7 seconds. The
red fish starts at 10 m. Then he goes for 5 m, stops for one second and then goes to 14 m.
Then he goes for 3 m and stops for 1 second. Then he starts again to reach his destination
at 24 m. He returns to 20 m, he makes a stop for one second and then returns to 24 m. This
is the crazy ride we thought of!

6 Conclusions

The purpose of this chapter was to examine whether SimCalc could be used as
a mindtool, and to describe and analyze the ways in which it might develop and
enhance elementary school students’ higher order thinking in mathematics. The re-
sults of the study showed that SimCalc can be used as a mindtool in elementary
schools. SimCalc provides students with the opportunity to be engaged in activities,
which may facilitate not only their content knowledge, but also their higher order
thinking.

After the implementation of lessons with SimCalc, students showed evidence
of development in their content knowledge, critical, creative, and complex think-
ing. With regard to content knowledge, students were able to interpret distance-time
and velocity-time graphs flexibly and discuss their similarities and differences. The
SimCalc environment also gave students the opportunity to develop their critical
abilities. These seem to have been developed though the possibilities that SimCalc
offered them to analyze visual (graphs and simulated motion) and linguistic (num-
bers and algebraic symbols) forms, to connect various types of representations, and
to evaluate their responses by the feedback provided. Furthermore, SimCalc appears
to enhance students’ creative abilities, allowing them to expand their thinking to new
answers, and offering them the fluency and flexibility to provide more than one so-
lution. Finally, it developed students’ complex thinking by allowing them to design
solutions.

The findings from our study provide evidence that SimCalc offers students the
potential to be actively engaged in authentic activities, and to construct knowledge in
a meaningful way. Until now, these types of activities were absent from the Cypriot
mathematics classrooms. More intensive implementation of SimCalc is needed in
the Cypriot mathematics classrooms. It will be interesting to investigate if the posi-
tive effects of SimCalc appear both in quantitative and qualitative form. In particular,
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our future work involves the investigation of the effects of SimCalc on elementary
school students’ thinking compared to students’ thinking in regular classrooms.

As illustrated in this chapter, in order to achieve higher order thinking, it appears
to be necessary to consider not only the subject to be taught, but also classroom
organization and tasks. For this, it will be interesting if future research concentrates
in more detail on the way that the mathematical subject is taught, classroom or-
ganization, and the impact of the various types of tasks. In particular, do different
types of learning environments (subject, class organization and tasks) with SimCalc
activate different aspects of thinking? It will be necessary to carry out further re-
search on SimCalc to discover the specific effects of these learning environments.
For example, do learning environments with SimCalc, which address the topic of
proportional reasoning activate higher order thinking skills? In addition to this, it
will be interesting to investigate the degree of impact on different student variables
(e.g., students’ efficacy, students’ argumentation).
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Adapting SimCalc to Different School
Mathematics Cultures: A Case Study
from Brazil

Rosana Nogueira de Lima, Lulu Healy, and Tânia M.M. Campos

1 Introduction

When SimCalc is initialised, four windows appear: a position-time graph, a table of
values, an algebraic expression of function, and the “World” (see Fig. 1). The first
three of these representations are very familiar to mathematics teachers in Brazil.
They are found in Brazilian Mathematics textbooks, as well as in the software graph-
ing packages that are available for use in schools. This is not the case, however, for
the World. The central character, or characters, in the World are known as actors—
they can be fish (two fish are the actors shown in Fig. 1), clowns, cars or some other
such creatures—and they move in time, according to the function represented. In
this way, the actors bring motion to the concept of function, a representation that
is likely to be much less familiar, if familiar at all, to teachers in Brazil—and com-
pletely new to their students.

If teachers are to make use of the SimCalc software in their mathematics classes,
they first need to make their own sense of the behaviour of the actors in the World.
But what might this sense-making process involve and what kinds of interpretations
might the teachers develop for these dynamic representations? Perhaps an important
step is a matter of integrating all four of the representations, analysing what they
have in common and how they can be connected. SimCalc integrates them on a
single screen, enabling the user to see the simultaneous changes that occur when the
data displayed in one of the windows is modified. Such integration should be part
of teachers’ work in classroom when they are dealing with functions.
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Fig. 1 SimCalc and its four windows

A second question is how we, as researchers, might interpret the teachers’ at-
tempts to make sense of all the information presented on the SimCalc screen.
Since the screen brings information of various different natures—visual, numeric
and symbolic, as well as dynamic movements, all “controlled” by an underlying
formalism—we decided to use as our theoretical lens the framework of three worlds
of mathematics (Tall, 2004, 2008), because it integrates embodiment, symbolism
and formalism. That is, this theoretical framework is based on the premise that there
are at least three different kinds of objects in mathematics, constituting three differ-
ent worlds, the conceptual embodied world, the proceptual symbolic world and the
formal axiomatic world.

The conceptual embodied world is the world of perceptions, in which the indi-
vidual observes an object, its properties and makes sense of it by describing it. In
the proceptual symbolic world, mathematical entities are symbolised, and actions
can be performed upon them by the use of procedures that may be flexibly seen as
both a procedure and the product of this procedure, the concept, in the duality of
procepts (Gray and Tall, 1994). The formal axiomatic world is the world of axioms,
properties, definitions and theorems that make it possible to construct the body of
mathematics by using formal proof.

Perhaps the best way to exemplify this framework is by using it to present our
view of interacting with SimCalc and by considering the relationships of each of the
four windows that are presented when SimCalc is initialised to the three worlds of
mathematics.
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The world window presents a scenario with one or more actors that move accord-
ing to the function it represents. Such movement, the actor itself and the scenario
are, in our view, part of embodied world, since making sense of changes in this win-
dow involves users in analysing what they see, visualising how the position and the
speed of the actor change over time and extracting properties from these perceptions
of the proposed function by observing and describing the within window behaviour.
Actors may leave dots (called Marks) behind, while they “walk,” to mark their po-
sition in each step, which can also be part of this visual analysis of the behaviour of
the functions these actors represent.

When there is more than one actor in the World, and the functions that are rep-
resented in their actions have different domains, an actor stops and turns grey at the
points for which the function it represents are not defined, while the others continue
to walk, swim or drive across the screen. This might give the impression that an actor
has been temporarily “turned off,” an interesting metaphor perhaps to help make an
embodied sense of the behaviour of functions with different domains, which could
subsequently be revisited in the light of more formal characteristics.

The position window, or more specifically the Cartesian position-time graph
displayed within it, also has characteristics of the embodied world (Lima and De
Souza, 2007). Since it presents a visual representation of a function, it is possible to
perceive—bodily—aspects of the function’s behaviour, such as, for instance, max-
imum and minimum points. This would be true of any position-time graph, but the
SimCalc representation includes also a dynamic element: It is possible to “follow”
the actor’s movement in the graph by observing a vertical line that passes through
the graph, showing the actor’s position as the graph is played out dynamically over
time, and offering another way of feeling the movement associated with the function
in question. This vertical line also serves as a visual trace connecting the World and
position window; making this connection involves evoking the characteristics of the
formal world which dictate how Cartesian graphs are to be constructed.

The graph presented in the position window might also be representative of a
procept (Gray and Thomas, 2001), and hence, an inhabitant of the symbolic world.
That is, the position-time graph might be treated as simultaneously representing the
process of linking independent and dependent variables, and the concept of function.
Furthermore, because the graph is plotted according to mathematical rules that are
part of the formal world (Lima and De Souza, 2007), the graph and the actors within
the World are also ruled by the formal world.

Considering the symbolic world, it is also possible to find example characteris-
tics in the function window. This window shows the algebraic expression that de-
termines what is displayed in the graph and World. As it represents the function
algebraically, it has symbolic characteristics, representative again of the process by
which function pairs might be calculated as well as the relation between the image
and domain—a central feature of the concept of function. Finally in the table win-
dow, the displayed table of values can also be argued to be part of symbolic world,
since the table brings specific values for both independent and dependent variables
that were calculated, based either on the algebraic expression, or collected from the
graph, and translated into numbers.
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Like the World and position window, the function and table windows also carry
within them parts of the formal world. For instance, interpreting the algebraic ex-
pression requires a very sophisticated level of thought on the part of SimCalc users.
It is written using x for the independent variable and y for the dependent variable.
This is the usual terminology and one with which mathematics teachers and their
students are familiar, but the axes in the position window do not have the same
names, at least in the default case. The default is for the horizontal axis to be la-
belled “Time (Seconds)” and the vertical axis “Position (Meters).” Of course, there
may be a “natural” response from the user of the software that the representations
are of the same function, but, for those who may not be so familiar with position
graphs, it is quite complex to relate “x” to “Time (Seconds)” and “y” with “Position
(Meters).” This relation demands formal characteristics and may not be straightfor-
ward to all. The same happens with the table of values that have columns for time
and position of each actor in the World.

Analysing the SimCalc screen and tools in the light of the three worlds of math-
ematics made it possible for us to realise that SimCalc does not only integrate four
different representations of the same function, but, at least potentially, the windows
also integrate characteristics from all three worlds of mathematics. The possibility
to dynamically combine these four representations may be important for the teach-
ing of functions and enrich the user’s view of the concept. Those, like the Brazilian
mathematics teachers who worked with us, already familiar with conventional repre-
sentations of functions, might start to make sense of the World, by searching within
it for characteristics of the concept of function they know from using the other rep-
resentations. In this way, the integration, and the enrichment of their ideas about
function, can be made by connecting different worlds of mathematics.

2 Teachers’ Exploration of SimCalc

In an attempt to examine teachers’ reactions to the SimCalc software and espe-
cially to investigate their ideas about the possible role of the world window as a
means of introducing a new manifestation of functions and their behaviour to their
students, we worked together with a group of mathematics teachers studying for
post-graduation qualifications in mathematics education at Bandeirante University
of São Paulo, in Brazil. As part of their studies, they were participating in a course
which focussed on the use of digital technologies in mathematics classrooms. The
work with SimCalc was carried out as part of this course. In total, fourteen mathe-
matics teachers participated. Our aim was that they would get to know some of the
characteristics of the software and how it works, and that they would be encouraged
to reflect upon how they might utilise the software in their own classes (amongst
the group were teachers of middle school, high school and university mathematics).
In particular, after a period of familiarisation, they were expected to work in groups
to design a SimCalc activity for a (school-level) classroom of their choice. Of the
fourteen participants, three attending this course had previous experiences with the
SimCalc software, as they intend to use it in their research, but the others had not
previously seen or used the software.
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Although the teachers attending this course were interested in the use of tech-
nologies in classrooms, either for their research or for their practise as teachers,
they all reported that they did not currently use it systematically in their teaching.
Reasons for this were varied, but most frequently related to difficulties associated
with the access to computers in the institutions in which they worked. Schools in
São Paulo do not always have ideal conditions for working with technologies. They
have a computer lab, but often with only somewhere between 10 to 15 computers,
not usually enough for the whole class, making it necessary to work with 3 or 4 stu-
dents per computer. Internet connections also are not always very reliable or even
available in the laboratories.

To explore the SimCalc software, the teachers first worked with an activity which
involved analysing the movement of an elevator travelling at different speeds. The
activity culminated in the creation, by each student group, of an actor in the World
that would go from “hell” to “heaven” (or from “heaven” to “hell”), using any kind
of function, and any of SimCalc’s tools. To tackle these activities, the participants
worked in pairs or triplets.

The first activity was based on an activity developed by the Kaput Center. We
chose this activity because it involved aspects that were likely to be familiar to the
participating teachers, as well as aspects which were probably much less familiar.
On the unfamiliar side, the activity involves a piecewise function, which is a type
of function which receives little attention in the Brazilian mathematics curriculum.
On the other hand, the function consisted of three linear pieces, which are extremely
familiar entities in the Brazilian mathematics curriculum. The idea was that by com-
bining the familiar and the unfamiliar, the teachers would begin to interpret the role
of the world window, which initially was the only window displayed on the screen.
In an activity reminiscent of the “black-box” tasks of dynamic geometry (Kynigos,
2004), in which the behaviour of dynamic geometry figures are explored, observed
and then reproduced, the teachers were asked to create their own actor which rep-
resented a second elevator with identical behaviour to the one provided. To do this,
the teachers had to think about how the action of the elevator should be represented
on a position-time graph.

In the activity of creating an actor—a rocket—who would pass from “heaven”
to “hell,” all group discussions quickly turned to considerations of functions and
the notion of positive and negative infinity. The metaphorical association of heaven
and hell with the infinities occurred spontaneously with no explicit discussion be-
tween groups. Interestingly this association has previously been reported in relation
to the narratives students construct to make sense of dynamic graphs with asymp-
totes which tend to positive and negative infinity (Sinclair et al., 2009). Perhaps we
can interpret this association as a kind of connection involving all three worlds of
mathematics—the formal, the embodied and the symbolic: formal because the no-
tion of limit is inherent; symbolic since the teachers had to think of how they might
represent symbolically the process of moving from very high values on the vertical
axis of the graph to very low values; and embodied—or at least almost embodied—
by allowing heaven and hell to represent “physical” places, located high in the sky
or deep in the depths (of course, this too is a metaphorical association).
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Fig. 2 Students’ functions from hell to heaven

In total, three different functions which satisfied the required conditions were
constructed: the reciprocal function, the tangent function, and the function y = x3,
as shown in Fig. 2. As they compared their different solutions, the teachers became
involved in discussing similarities and differences in the voyages of their respective
actors—how some went from heaven to hell, while others apparently traversed the
opposite direction or moved very slowly around zero, while others were very fast a
little after zero.

Following this activity, some of the teachers became interested in thinking about
what would happen in the World for other types of functions, such as, for example,
trigonometric ones. To this end, they created an actor, choosing a periodic function.
They were working with the Fishy world, and they were particularly interested in
how the fish turns around when it has to swim from one side to the other. This effect
gave them the idea that the fish was pacing forwards and backwards, as if it was wor-
ried. Changes in the function, and the resulting changes in the fish’s movement, gave
raise to new stories for these teachers. Depending on the period of the function, the
actor would swim faster or slower, bringing about the idea that the fish was more or
less worried, while the amplitude of the function determined how far the fish would
go. The interesting thing about these stories is that while they bring elements that are
not strictly mathematical, these elements motivated the teachers to look more deeply
at the functions they were creating, and to make mathematically valid connections
between the shape of the functions and the movements of the actors.

This example shows the impact that this new representation had for the teachers.
It caught their interest, and their discussions were always triggered by the actor’s
movements. Indeed, for some of the teachers the world window was becoming an
essentially important part of the software that should be integrated into any learning
activity. This brings us to the second part of our work, in which the teachers worked
on designing SimCalc activities for use in their own classrooms. The starting point
for these activities was the curriculum material developed by the São Paulo State’s
Secretariat of Education for use in São Paulo schools.
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3 The Curriculum Proposal of the State of São Paulo

In 2008, São Paulo State public schools began to use a new curriculum, the Cur-
riculum Proposal of the State of São Paulo. The aims of its developers are

to support the work done in state public schools and to contribute to the improvement of its
students’ learning quality (São Paulo, 2008, p. 8)

and to

assure to all a common base of knowledge and competences, so that our schools function
as a network. (São Paulo, 2008, p. 8)

The material is composed of documents regarding both the principles of the
curriculum and its management in schools, respectively entitled the Presentation
Guide, and Orientations for Management of the Curriculum in School, along with
material for the development of each discipline’s contents within the classrooms of
all state schools in São Paulo: the teacher’s booklet and the student’s booklet.

The two booklets for the mathematics discipline were designed by a group of
mathematics educators, taking into consideration previous studies conducted by the
State of São Paulo Secretariat of Education, as well as the experiences of state public
schools teachers (São Paulo, 2008). In the teacher’s booklet there are suggestions for
activities to guide the development of teachers’ work with students in classrooms.
The student’s booklet contains the same activities.

3.1 Teacher’s and Student’s Booklets and the Concept of Function

The student’s booklets are used by middle school students from 6th to 9th grades
(11–14 years old), and the 1st, 2nd and 3rd years of high school (15–17 years old).
Each school year has four volumes of booklets, each one used bimonthly. In addi-
tion to these booklets, students also have mathematics textbooks provided by the
government.

The teacher’s booklets start with a general orientation about the booklets and
how they are to be used, which is a text common to all booklets, independent of
the discipline in question. The teacher’s booklets also include information regard-
ing the basic contents of each volume; and the proposed learning situations. At the
end of each booklet, there is also a section called Resources to Enrich Teachers’
and Students’ Perspectives and Understanding About the Theme, and another on
Considerations Regarding Assessment.

In relation to the teaching of function, in the sixth and seventh grade, students
(11–12 years old) are taught about direct and indirect proportionality between two
quantities, by emphasising the relationship between those quantities and coordinates
of points in a Cartesian plane. In the 8th and 9th grade (13–14 years old), the ideas
of number sets, inequalities, location of points in Cartesian planes, and analysis of
graphs are discussed. It is in the ninth grade (14 years old) that the notion of func-
tion is formally introduced. In the second volume of the mathematics booklets for
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this school year, students are introduced to basic notions of functions, ideas of vari-
ation, first and second-degree polynomial functions and their graphs, and algebraic
expressions of functions and tables of their values. They return to the concept of
function a year later, in the first year of high school (1st year, Volume 2), when rela-
tions between quantities, proportionality and polynomial functions are revisited. In
the same school year (1st year, Volume 3), students are also taught about exponen-
tial and logarithmic functions. Trigonometric functions are taught in the 2nd year
of high school (2nd year, Volume 1); and in the 3rd year of high school (3rd year,
Volume 3), graphs from all those functions are studied in terms of growth, values of
the function in particular intervals, translations and reflections (São Paulo (Estado)
Secretaria da Educação, 2008b, pp. 52–59).

Considerations presented for teachers in their booklets make it clear that the de-
signers of the mathematics activities in the proposal intend that relations between
different representations of a function—for instance the graph, algebraic expression
and table of values—will form the foundation for the study of functions. Also, it
is intended that teachers will build upon the material presented to students in previ-
ous school years. When presenting the plotting and analysing of graphs, teachers are
supposed to involve their students in comparing graphs and discussing what changes
in shape the change of parameters bring to the graph of a function. This shows the
designers’ concerns in integrating various registers of functions in the teaching of
the concept.

It is also suggested that the teacher could use software to explore the relationships
between these representations, although this is left as an open option. Considering
this, the question arises as to whether SimCalc might prove to be a suitable tool to be
used with activities related to the concept of function as proposed in the curriculum
that the teachers who we were working with are using in their classrooms. In theory,
the answer should be yes, since it is possible to integrate the means of representing
all the functions discussed in the document (and more) in a single screen. In addi-
tion, the curriculum guidelines also stress how it is expected that the mathematics
teacher will integrate mathematical content from other disciplines, such as Physics.
SimCalc would appear to be an excellent tool for this purpose, since, as the actor in
the World moves, there is a chronometer to measure how long the movement lasts,
and it is possible to analyse position and velocity graphs. But will teachers share
this view? And will they see fruitful ways of using SimCalc in the context of the ac-
tivities proposed in the booklets—activities they are currently obliged to work upon
with their students?

3.2 Technology and the Proposal

SimCalc, like some other digital technologies, brings, to the study of functions,
dynamic representations that differ from the conventional static paper-and-pencil
based ones. For this reason, we thought it would be useful to find out what sug-
gestions were given to teachers regarding the use of technology in the curriculum
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proposal for São Paulo and whether such new possibilities are considered. What we
found was that the curriculum guides do not offer advice on the use of technology in
the teaching of any specific content area of mathematics. Our next step was to look
for any suggestions regarding the use of technology for teaching in the mathematics
teacher’s booklets. In the section of the booklet that deals with general orientations,
it did mention the use of different materials for the learning of mathematics:

Whenever it is possible, within each booklet, available materials (texts, software, sites,
videos, among others) in sintonicity with the proposed approach, that can be used by the
teacher to enrich his/her lessons, are presented (São Paulo, 2008, p. 8).

Considering this, we looked for suggestions about the use of any software in all
teacher’s booklets that involve the study of functions: 9th year Volume 2; 1st year
of High School, Volumes 2 and 3; 2nd year, Volume 1; and 3rd year, Volume 3. We
found some indications in all of them. Student’s booklets from 1st year Volume 2,
and 2nd and 3rd years of High School also mention the use of software.

Looking more closely at these indications, however, we realised they are of a
rather superficial nature, with suggestions only at the level of what software might
be used (the ones mentioned are Graphmatica and Winplot) and to what ends (to
plot graphs and analyse translations and dilations). None of the learning situations
presented in the booklets come “ready” to be used with software, and there are
no instructions or suggestions about how to design an activity for the learning of
functions with the use of software.

Although the material from the Secretariat of Education makes relatively few
mentions regarding the use of technology, this same Secretariat has provided each
school with a computer lab of 10 or 15 computers. This would suggest that, to some
degree, it is expected that teachers would integrate the use of the new proposal’s
material with computer labs available to them. Returning to our study, with this in
mind, our proposal for the design of an activity using SimCalc involved adapting or
being inspired by the student’s booklets activities. In this way, we were interested in
understanding the challenges involved for the teachers in adapting the material they
are obliged to teach for use with a software which, as well as the various represen-
tation of functions explicitly cited in the curriculum material, brings a new form of
thinking about expressions of functions.

4 The Teachers’ Activities

In order to work on the design of the SimCalc integrated function activities, the
teachers grouped themselves as they wished. As shown in Table 1, a total of six
groups were formed, composed of one, two or three teachers.

When the activities were ready, the teachers from each group presented their
work to the whole group and discussed their choices, the content behind the adapted
activity, and how they believed the students to whom the activity was addressed
(probably their own students) would deal with the proposed activity. These presen-
tations were video recorded with the agreement of the participants.
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Table 1 Teachers grouped
for the design of activities Group Teachers

G1 Priscilla and Edson

G2 Laura, William and Miriam

G3 John and Peter

G4 Celia and Iran

G5 Felicity

G6 Brian, Charles and Janine

In possession of their activities, we have analysed them in the light of the three
worlds of mathematics, looking for what kind of characteristics were privileged
in their design. We have also analysed which aspects of the software the teachers
intended to be used in the course of their activities. It is important to stress that, to
our knowledge, the teachers did not know the theoretical framework, and were not
aware that we would use it to analyse their work.

The first activity was presented by Priscilla, from G1. G1 chose an activity re-
garding the movement of a car, from Volume 2 of the 1st year student’s booklet.
In the booklet’s activity, a graph representing the velocity of a car over time was
presented. This was a graph of a piecewise function in three pieces: a line with a
positive slope for 10 seconds, a constant for another 10 seconds and a line with a
negative slope in the last 10 seconds. We found it interesting that this group had
managed to find an activity which most closely resembled their own first experience
with SimCalc—and one of the very few occasions in which attention was directed
to a piecewise function in this curriculum.

In their adapted activity, the idea was that the student would first construct a
position-time graph of an actor who moved according to the definition of a piece-
wise function. The teachers designed an actor in a SimCalc file that would move
forward 10 meters in 10 seconds, remain stationary for 10 seconds then move back-
wards 10 meters in 10 seconds. That is, the behaviour of the actor they created was
governed NOT by the piecewise function of the velocity-time graph presented in the
booklet, but by a function whose position-time graph was visually identical. The
teachers hid the graph they had created, in order to ask students to create a new ac-
tor to behave just like theirs. In this activity, the teachers intended for their students
to use animation, analyse position and velocity graphs, and create their own actor.
They also indicated that once different student groups created their own actors, they
would make use of SimCalc’s connectivity possibilities and combine all the func-
tions into one file—again perhaps influenced by the “Heaven and Hell” activity, in
which this facility had also been used.

In the description that accompanied their activity, the teachers suggested that
their students would be dealing with the concept of average velocity (something
indicated in the original booklet activity). But, although there are some questions
regarding the velocity of the car, the velocity had a minor role in the SimCalc activ-
ity they were proposing to the students. Their activity aimed solely at the analysis of
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the actor’s behaviour in the World. For the student dealing with this activity, a suc-
cessful outcome depends on observing the graph, deciding what kind of function
that movement represents, and creating an actor using this function. In this way,
the activity integrates the World and position-time graph, although essentially from
only an embodied point of view—that is, the symbolic characteristics of the graph
may become subordinated to the embodied in this task. Perhaps one way of moti-
vating connections between the embodied and symbolic world would be to include
analysis of the associated velocity-time graph (the graph originally shown in the
paper-and-pencil activity). However, it was only during the discussions that accom-
panied the presentation of this task that the teachers of G1 perceived the difference
between their task and the one presented in the booklet.

Further analysing this activity in the light of the three worlds of mathematics,
we understand that G1’s attempt was initiated by characteristics of the embodied
world, which could be used to model formal characteristics. In theory, if students
were able to create the actor which correctly modelled the behaviour of a piece-
wise velocity-time graph then, they could use the software to analyse position-time
graphs as well as explore the window displaying the algebraic expression—relating
all three worlds of mathematics. However, although G1’s activity made use of var-
ious features of the SimCalc software—the teachers created an actor, hid its rep-
resentations, used “marks on,” and it was their intention to use the connectivity of
the software to collect and compare students’ productions—the task they created
reduced the complexity of its paper-and-pencil inspiration. This is because “down-
grading” from velocity-time graphs to position-time graphs makes the connection
between the graph and movement much more direct (perceptually speaking). The
teachers were not originally aware that they had made this change. Even when one
of the teachers, Pricilla, decided to try out the activity with her students, she re-
mained unaware of the change. Her first evaluation of the students’ responses was
that they did not understand velocity, since they argued that the horizontal section
of the graph indicated that their actor was stationary (which it did in the SimCalc
version of the task). Priscilla was expecting that her students would associate the
horizontal section with movement at a constant velocity (the intention in the paper-
and-pencil version of the task).

Perhaps one of the problems was that, in choosing to construct an activity that
closely resembled the one the teachers had previously experienced with SimCalc,
the aims of the SimCalc activity and the activity of the booklet became confused.
Priscilla knew the correct response to the paper-and-pencil activity, and seemed to
be more salient to her when her students worked on the task versus actually seeing
it on the SimCalc screen. In the event, the unplanned mismatch between the two
versions of the activity perturbed the members of G1 somewhat. However, it is worth
stressing that an activity involving the use of actors to create particular velocity-
time graphs is not only possible, it could offer a means by which students could be
motivated to mobilise and connect all three mathematical worlds.

William presented G2’s activity to the whole class. The group was inspired by the
idea of comparing exponential and linear growth presented in the student’s booklet
for the 1st year of High School (Volume 3), and used the concept of interest to
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Fig. 3 G2’s activity

discuss the difference of such growth. To accomplish this, the group intended to
create a conflict to challenge the common sense belief that compound interest is
always greater than simple interest. With this in mind, they designed an activity
in which they created a situation that required the student to think what choice of
interest would be best for a short term loan: simple or compound. Their conjecture
was that most would initially choose simple interest. They prepared two actors in a
SimCalc file (see Fig. 3), each one representing one kind of interest. Their aim was
to show that when the loan is for a period of less than one month, the compound
interest would gain a better return for the person who took the loan. However, to be
able to present a situation in which the difference was clearly visible, they needed
to use a 50 % interest with a loan of R$1,000.00—a rate of interest which, as they
stressed, is rather unusual!

It seemed that what they wished to show was that in the interval (0, 1), the ex-
ponential growth was smaller than the linear growth, and they tried to connect this
with compound and simple interests. To work with this situation in a classroom,
they argued that it would be important for students to be familiar with the concepts
of interest, and with linear and exponential functions. The first question of the ac-
tivity was for the students to choose between the two kinds of interest for a short
term loan. Then, students were asked to work on SimCalc, to look at the actors’
movements and reconsider their first choice. After that, they were asked to provide
algebraic expressions for both movements.

In our view, this activity starts by discussing formal characteristics of interests
(or growth of two different functions), and moves to embodied characteristics of
functions, given by the movement of the two actors. After observing this moving,
the teachers intended for the students to transform what they analysed in the World
and the graphs into algebraic expressions that inhabit the symbolic world. The task
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hence attempted to involve students in analysing the whole situation—graphs, ex-
pressions and movements—and to integrate all three worlds of mathematics in the
same activity.

Regarding the use of the software, this group used it mainly for the purposes
of visualisation, and there were no requirements that the students create anything in
SimCalc for themselves: the idea was to explore a teacher-given model. Members of
G2 explained that they wanted the World to be used as a means of analysing the dif-
ference between the movements of two actors. This embodied situation needed some
adjustments in the software. Since they used one second to represent one month, and
they were interested in looking at what was happening between 0 and 1, they had to
change the steps from 1 to 0.1, and to turn “marks on.” By doing this, the teachers
felt it would be easier for students to see what they intended for them to see. In addi-
tion, the students would be able to use SimCalc to visualise the algebraic behaviour
used to create the actors and their graphs. As they presented their ideas, the mem-
bers of G2 explained how they had specifically looked for an activity in the booklets
that involved analysing the behaviour of functions over time. Though they felt the
activity they developed did exploit the dynamic representation of the World, they
highlighted some concerns about the task that they had designed. First they were
slightly uncomfortable with the fact that in order for the differences in behaviour
between the functions be visible, the values for interest had to be completely unre-
alistic. And, they felt the task presumed a high degree of previous knowledge about
the behaviour of different functions and expressed a desire of creating a task that
could contribute more to the construction of this knowledge, rather than relying on
its mobilisation.

Just like G1, the members of G2 also made the World the star of the activity. Their
intention was to explore the movement in this window in order to discuss different
growth patterns. To accomplish this, some other of SimCalc’s resources, such as
marks and the vertical line that follows the graph according to the movement of the
actor were exploited in ways that made this activity different from one presented in
a paper and pencil environment.

Not all groups, however, attributed such a central role to the world window. Some
of them privileged other tools such as the graph window. G3 was one such case.
They selected two activities from the student’s booklet for the 1st year of high school
(Volume 2). In Activity 1, students were asked to plot, in SimCalc, the graphs of
eight functions in the form f (x) = ax2, with a = ±1,±2,±10,±1/10. No specific
questions were asked. The students were required only to plot the graphs. Activity 2
involved launching a rocket and a missile. The trajectories of these objects were
presented in the activity sheet on a graph y-position-x-position, as is also the case
in the booklet from which the activity was drawn (Fig. 4). In this case, the x-axis
did not represent time. In the activity presented in the booklet, it was explained that
the missile was fired in order to intercept the rocket before it reached the ground and
the functions representing the trajectories of both objects were given and the task
for the students was to determine the height above the ground that the objects would
intercept. The same objective was given in the SimCalc version.

In relation to Activity 1, the members of G3 justified their choice, arguing that
the SimCalc tools would enable students to plot the graphs quickly and easily, and
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Fig. 4 Figure of G3’s
Activity 2 (São Paulo
(Estado) Secretaria da
Educação, 2008b, p. 51)

hence concentrate on comparing their properties. It seems that G3, in choosing Ac-
tivity 1, was attempting to relate symbolic and embodied worlds in order to connect
to characteristics of the formal world: that is, by plotting graphs from their alge-
braic expression, the students might be able to identify formal aspects related to
how changes to the coefficient of x2 influence the shape of the graph. What is miss-
ing from this activity is an obvious role for the World. Indeed, this kind of activity
is a classic one for use with more traditional graphing packages.

In Activity 2, Peter and John intended for their students to make use of the given
functions to create actors to represent the missile and the rocket so they could see,
in the SimCalc representations, where the missile would intercept the rocket in its
fall. They themselves created these actors in order to present the activity to the other
groups (Fig. 5).

As they presented the second activity to the whole group, a heated discussion
ensued: the graph and the animation suggested that the missile would be launched
at the same time of the rocket, as if it was known a priori that the rocket would
fall. It was only after the original booklet activity was re-consulted that it became
clear that this was not the case at all. At first, a general worry emerged: since the
graph in the booklet was not a postion-time graph, but a graph of vertical-horizontal
distance, perhaps SimCalc was not an appropriate tool for its solution. This stim-
ulated a debate about the pros and cons of using software in which the x-axis is
designed to represent time. During this debate, the issue shifted from limitations of
the software to questions of task design—perhaps instead of investigating the x and
y coordinates of given trajectories, the task could be modified to that of determining
the possible trajectories given specific launching times or exploring the heights at
which the interception might occur under particular conditions. Figure 6 presents a
possible example.

In terms of the three worlds framework, this activity certainly does have an em-
bodied situation to be discussed. There is a story to be analysed and understood, but
the graph presented initially gave the misleading idea that both rocket and missile
were leaving the base at the same time. What was most interesting in the discussion
that accompanied the whole group’s consideration of Activity 2 was the questioning
of how to deal with the fact that the SimCalc x-axis represents time, something that
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Fig. 5 G3’s SimCalc file

was not the case for the majority of the function activities presented in the booklets.
In Activity 2, once this had been realised, it was possible to create more sensible
graphical representations, but this was not always the case, as an example to follow
will illustrate.

Both of G3’s activities required that actors be created, by using the algebraic ex-
pressions of the functions, and the important representation for them was the graph
window. For Activity 2, functions were also entered by their expressions, but it was
necessary for students to decide the domain of each function—the rocket and the
missile—in order to make the missile leave the base at the right time to put the
rocket down. It is possible that teachers of G3 were trying to use SimCalc as a plot-
ter, like Graphmatica or Winplot, and had not appropriated all of the peculiarities of
SimCalc.

G4 chose an activity involving the concept of proportionality in relation to the
movement of a braking bus, adapted from 9th year student’s booklet, (Volume 2).
In the student’s booklet, the situation involved a quadratic function relating velocity
and distance (d = 10v2), and, by looking at a table of values, students were asked
to find the constant of proportionality. Since it is not possible to directly construct a
velocity-distance graph in SimCalc—rather the graph comes about as a consequence
of the actor’s movement—Celia and Iran decided to construct an actor, a red bus
that moves for 7 seconds at a speed of 5 m/s, to represent a linear function relating
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Fig. 6 Missile reaching the rocket

distance and time (d = 5t). In this way, Celia and Iran brought questions of time
to an activity, which previously related only velocity and distance. This turned out
to make quite a considerable difference to what was expected of the student. In the
case of the SimCalc activity, the function used was more elementary than the one
in the original task. The work of the students involved observing the movement of
the actor in the World and to completing a table of values in order to determine the
constant of proportionality in the linear function. Perhaps to preserve the connection
with velocity, the students were also required to plot the velocity-time graph (v = 5).

G5’s activity was of the same kind as G4’s. Felicity adapted an activity regarding
the movement of a car, from the 1st year student’s booklet (Volume 2) which again
involves the concept of proportionality. With this activity, her goal was that the stu-
dents would analyse the idea of direct proportionality as a function (essentially what
G4 ended up exploring), by interacting with several different representations, such
as the algebraic expression, position graph and table of values. On paper, Felicity
presented her students with a table of values relating time and distance, asked them
to find the algebraic expression by which the variables were related, and to plot the
graph of the function identified. In order to build the table of values, Felicity, in fact,
gave the solutions she was hoping for, to the students, in a SimCalc file with an actor
that would move 90 km/h and with the algebraic expression, position and velocity
graphs displayed. Hence, the only activity left for the student was to observe what
was shown in each window.
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Fig. 7 Figure for G4’s
activity as in the booklet (São
Paulo (Estado) Secretaria da
Educação, 2008a, p. 42)

The teachers in G4 and G5 created activities, both centred around the concept of
proportionality, which closely resembled each other—despite having been based on
different activities in their original form in the curriculum booklets. Both activities
involved a lot of symbolic characteristics and, since a table of values was given
in the activity sheets in both cases, it would be possible for students to find the
algebraic expression that related the independent variable to the dependent without
actually using SimCalc. The last item of G4’s activity, which asks for the velocity
graph, does bring a potential role for the SimCalc software, since by plotting the
velocity graph the students could see how, in the case of the given linear function,
the constant of proportionality was equal to the velocity.

For these two groups, the use of SimCalc was mainly confined to plotting—or
consulting—graphs. Our view is that rather little was gained by using the software.
Indeed, it might be argued that the transference from paper-and-pencil to SimCalc
was associated with a reduction in the complexity of the mathematical demands of
the tasks as they were presented in their original paper-and-pencil form. It is also the
case that the world window did not make much difference for either activity—and
could be ignored by the students. In terms of the three worlds of mathematics, these
activities principally inhabit the symbolic world, and the possibilities of integrating
this with the other worlds are not yet obviously exploited.

Brian, Charles and Janine, from G6, chose a different activity to bring to the
discussion. They selected an activity from Volume 2 of 9th year student’s booklet,
which they attempted to tackle almost without adaption. Instead, their idea was to
solve the activity as presented in the booklet with the aid of SimCalc. As it turned
out, this was by no means straightforward. The booklet activity involved the rela-
tionship between the area of a figure being projected and the distance of the projector
from the screen. Figure 7 shows the situation as presented in the booklet. Members
of G6 indicated that their aim also was for students to explore the given quadratic
function. They devised an activity sheet in which a table of values was displayed
and students were asked to generalise the table and decide what algebraic expres-
sion represented the relationship between area and distance.

The figure presented on the sheet developed by the teachers of G6 was a little
different from the one in booklet (see Fig. 8). The values presented in the tables
were of the areas of squares with sides measuring 1 m, 2 m, and 3 m, while the
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Fig. 8 Figure in G4’s activity
sheet

figure in the booklet showed the projector and the distance between it and the screen
where the projection was being made.

Alongside this sheet, the members of G6 created a SimCalc file with two ac-
tors: one to represent the distance of the projector from the screen, and the other
to represent a quadratic function corresponding to the area of the squares. Their in-
tention was that the students would relate both functions by looking at their graphs.
Although G6 attempted to make use the World in their activity, their attempt was
not as successful as those of G1 and G2. Looking at the actors’ movement (or the
two functions graphed in the position window) did not offer any particular insights
that would help relate the quantities represented. Only the symbolic characteristics
from the activity were needed to solve the situation, and it was not useful to look
for these on the SimCalc screen—they had to be known in order to create the ac-
tors. The members of G6 described their activity as an unsuccessful attempt to use
SimCalc. However, it is important to emphasise that they had wanted to utilise the
World to aid the explorations of the functions (unlike G4 and G5). The problem was
that, perhaps as a result of the task they had chosen to adapt, they were just not able
to use the World in a meaningful way.

In the end, the characteristics privileged in this activity are, once again, mainly
symbolic ones. Students were asked to complete a table of values, analyse it and
find an algebraic expression relating area and distance. The movement represented
in the World was not helpful in relating the symbolic characteristics with embodied
ones. Furthermore, just as in some of the previous activities, it would be possible to
respond to the questions presented in the task simply by looking at the activity sheet
on paper, with no need of interactions with SimCalc.

In Table 2, we present a summary of the analysis we made from the adapted
activities. We show our understanding of the aim of the activity, SimCalc tools that
would be necessary to work with the activity, and the mathematical worlds involved.

Before finishing this section, it is important to stress that the six groups of teach-
ers described the task of creating a SimCalc activity as extremely challenging. They
felt that they were still very much at the stage of beginners in terms of their familiar-
ity with the software and its possibilities, something they referred to continually dur-
ing the presentations of the proposed activities. We note, in particular, that the fea-
tures of the software associated with connectivity, which were especially new to the
teachers, were hardly integrated. On the positive side, in relation to another “new”
feature, all groups were attracted by the possibility, offered by the world window, of
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Table 2 Activities, SimCalc tools and mathematical worlds

Group Activity SimCalc tools Mathematical
worlds

G1 Constructing an actor to
reproduce a given position-time
graph

World; position-time graph;
create an actor; marks on.

Embodied

G2 Comparing simple and
compound interest

World; position-time graph;
algebraic expression; marks on;
steps (visualisation purposes)

Formal;
embodied;
symbolic.

G3 1. Perceptual comparison of
graphs

1. Position-time graph; create an
actor by the algebraic expression

1. Embodied

2. Intercepting a missile with a
rocket

2. Create an actor; position-time
graph

2. Embodied

G4 Observing the movement of an
actor to find a constant of
proportionality

Task could be solved without
using SimCalc

Symbolic

G5 Analysing the idea of direct
proportionality as a function

Task could be solved without
using SimCalc

Symbolic

G6 Relating the area of a figure
being projected with the distance
of the projector from the screen

Task could be solved without
using SimCalc

Symbolic

bringing a dynamic quality to functions and their representations. However, most of
the teachers felt rather insecure as to how best to monopolise on this possibility.

One major difficulty the teachers reported was how the World—and indeed the
SimCalc software as a whole—seemed to privilege working only with functions in
which the independent variable was associated with time. In some cases, this had
led them to search specifically for examples in the students’ booklets, which corre-
sponded to this condition. They did not find many and those that they did find did
not translate directly to the SimCalc environment (like the rocket launching activ-
ity of G3) or could be translated in a way that left the software a little redundant
(G4 and G5). It was the association of the x-axis with the variable time that was
cited most frequently as a disadvantage of using the software and apparently none
of the groups thought about how the movement displayed in the World might be
“detached” from contexts specifically associated with time. For example, in their
own exploration of the software, the behaviour of function, devoid of “real world”
contexts, had been experienced as an interesting phenomenon in its own right. But,
this was not reflected in the activities they constructed, despite the fact that some
teachers listed, amongst the advantages brought by the software, the possibility to
compare movement and graphs. Indeed, the only activity specifically concerned with
comparing different functions in a purely mathematical context emphasised simi-
larities in the visual properties of classes of functions and made very little use of
dynamism.

Easy visualisation was, in fact, an advantage that the teachers associated with us-
ing the software—a feature that they also linked to encouraging the making and ex-
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ploring of conjectures. The teachers also saw the connectivity options of SimCalc as
a positive aspect, even though it was still too new for them to know how to exploit it.

5 Reflections

In this paper, we attempted to view the possibilities for teaching and learning func-
tions with SimCalc through the lens of the three worlds of mathematics. Our con-
siderations come from a Brazilian context and more specifically involve a group
of post-graduate students, all of whom were teachers of mathematics and most of
whom worked in schools from the public system of the State of São Paulo. Our
goal was to examine the potential of SimCalc in the making connections between
manifestations of function in embodied, symbolic and formal forms. In particular,
we are interested in examining the appropriation by teachers of the representation
displayed in the World, which is a dynamic representation in which a computational
actor moves across the screen according to an underlying function—defined either
by means of an algebraic expression or by an interactively constructed position-time
graph.

We have described how access to this world encouraged the teachers to build
narratives—or stories—in which they made sense of the behaviour of particular
functions by linking them simultaneously with imaginary situations which took
them beyond the realm of mathematics while still being connected to it. That is, no-
tions such as Heaven and Hell were associated with positive and negative infinites,
the incessant to-ing and fro-ing of trigonometric fish was interpreted as a sense of
worry and so on. In this way, as the teachers explored the software for themselves,
they were encouraged to forage into all three of Tall’s mathematical worlds.

However, these teachers have become much more used to dealing with symbolic
characteristics and with software that are used to plot conventional graphical rep-
resentations. Perhaps because of these previous encounters with functions, along
with their rather limited experience with the SimCalc software, not all of them were
able to design activities, which meaningfully integrated the animations of move-
ment within the World in models of change and variation. Indeed, this difficulty
may have been exacerbated by the mathematics curriculum currently in use in all
public schools overseen by the State of São Paulo. Although the philosophy be-
hind these materials is one in which connections between different representations
of functions are valued and encouraged, the activities presented in the booklets for
teachers and students seem to further reinforce activity within only the symbolic
world of mathematics. When activity is confined to only one of the three worlds,
the danger is that it becomes procedural in nature—where learners are able to inter-
pret processes also as objects in a proceptual manner. The making of connections
within a world, in this case the symbolic world, may be associated with mathematics
learning, but what frequently happens is that learners seek meaning for the process
in the embodied world without maintaining connections to mathematics (for more
details, see Lima and Tall, 2008). Given this scenario, one of the gains of working
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with a new means of expressing mathematics is the opportunity to become aware of
one’s own “vices,” that is, to avoid developing ways of working with functions that
become so routine that reflecting on anything that deviates from the usual no longer
occurs. There were certainly moments in the discussions of the proposed activities
during which the teachers had to engage in “rescuing” buried ideas about function.
On the other hand, we also evinced a certain unconscious tendency to reduce the
mathematical complexity of paper-and-pencil tasks as they were modified for the
SimCalc environment. Again, the teachers only became aware that they had ma-
nipulated the complexity of the activities during the whole group discussions. We
are not able to pinpoint precisely what motivated this tendency, perhaps it was their
unfamiliarity with the software that led them to somehow try to make things easier
for their students, or perhaps too this also related to the presence of routine ways of
working with function that were difficult to break out of.

The challenge for the teachers who participated in this study was twofold. First
they need to be convinced that the dynamic possibilities of the SimCalc software
could contribute to the process of making sense of functions. Our impression is that
most of the teachers, even if not all, could incorporate the dynamic representations
effectively into activities adapted from the mathematics curriculum they currently
teach. The second challenge relates exactly to this curriculum: the teachers need to
be convinced that this software has a role in supporting students to appropriate the
views of function as it demands. We are not sure that the majority of teachers were
ready to attribute such legitimacy to the software. In fact, we might go further and
question whether the curriculum developers themselves have considered how digital
representations change the ways by which the concept of function might be learned.
This raises an important question for further reflection—to what extent are all of
us involved the mathematics education community in Brazil prepared to change the
curriculum to really monopolise on the kinds of interactivity and dynamism offered
by software such as SimCalc?
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Mathematical Modeling with SimCalc:
Enhancing Students’ Complex Problem Solving
Skills Using a Modeling Approach

Nicholas G. Mousoulides

1 Introduction

In recent decades the world has become governed by complex systems—in commu-
nications, engineering, finance, health, and in education. For all citizens, and espe-
cially for students, an appreciation and understanding of complex systems is crucial
for making effective decisions about life, future studies, and roles as community
members (Jacobson and Wilensky, 2006; Lesh, 2006). This radical increase of use
of complex systems in the economy and society created a worldwide demand for
new mathematical solutions to complex problems and has led to an appreciation of
the power of cross-disciplinary research within the mathematical sciences and with
other disciplines. Handling, explaining and predicting the behavior of such systems
cannot only focus on their components, but mostly should focus on the behavior
that arises from their interconnectedness (English, 2011; English and Mousoulides,
2011).

The study of these complex systems also received emphasis in recent years. At
the school level, there is emphasis on interdisciplinary problem solving to fulfill
the economy and work force’s demands for school graduates that are able to pos-
sess flexible and creative mathematical problem solving abilities and to effectively
use technological tools in working collaboratively in demanding projects (English,
2011). It is becoming increasingly recognized that future-oriented problem solving
experiences in mathematics and science require interdisciplinary contexts and ap-
proaches. Interdisciplinary problem solving that involves core ideas from engineer-
ing, mathematics, technology, and science can empower students to tackle the many
real-world problems society faces now and in the future (English, 2011; English and
Mousoulides, 2011).
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With regard to technology, the ideas presented here are in line with the recom-
mendations from Roschelle and Kaput (1996) and Ares (this volume) who proposed
that educational technology should enable more students to engage in more sophis-
ticated subject matter at a younger age. In this chapter, I first discuss the need for
education that encourages innovation, especially in dealing with complex systems,
and propose technology based interdisciplinary modeling activities as a means to en-
hance students’ learning in the mathematical sciences and related STEM fields, and
as a means to develop students’ general competencies for success beyond school.
I then address how SimCalc MathWorlds® (hereon called SimCalc), a conceptual
technological tool, enriches student explorations and understandings while solving
complex modeling problems. Students’ results in the “CAN.Be.Gr8 Planet,” an in-
terdisciplinary modeling activity, are presented followed by a discussion on the role
of technology-supported, engineering modeling activities in complex problem solv-
ing at the elementary school level.

2 Theoretical Framework

The advent of digital technologies changes not only the world of work but also the
classroom environment (English, 2011; Roschelle et al., 2000). Due to the availabil-
ity of increasingly sophisticated technology, classroom practices and pedagogies
need to follow the changes in the way mathematics and science are being used in
work place settings. These new tools not only change the way mathematics and sci-
ence are used, but also stress the need for school graduates to develop a significant
number of new competencies (English et al., 2008). Among these competencies,
those identified as key elements of students’ success are: (a) Problem solving skills,
including working collaboratively in multidisciplinary teams on complex real world
problems, (b) designing, analyzing, handling, explaining, and predicting the behav-
ior of complex systems, (c) selecting, operating, analyzing, and transforming com-
plex data sets, (d) developing personal and interpersonal skills, like communication,
goal setting, working in groups, and leadership, and (e) effectively and creatively
applying algebraic and spatial reasoning, in making sound judgments, in decision
making problems (English, 2011; English et al., 2008).

The situation discussed above suggests that we need to rethink the nature of
the mathematical and scientific problem solving experiences, without underestimat-
ing the necessity to introduce the study of complex systems in the school subjects
of mathematics, science and technology (English and Sriraman, 2010). In particu-
lar, what is needed is a greater recognition to the complex learning that children
are capable of doing, especially when provided with appropriate tools and con-
texts (Curious minds, 2008; English, 2004; English and Mousoulides, 2011; Lee
and Ginsburg, 2007; Mousoulides, 2011; Perry and Dockett, 2008). Results from
our previous work (e.g., English and Mousoulides, 2011; Mousoulides and English,
2009) revealed that young students, even at the lower elementary school level, have
access to a wide range of powerful ideas and processes and they can use them effec-
tively in solving complex problems, traditionally addressed to high school students.
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Students have opportunities to elicit their own mathematical and scientific ideas,
usually following a cyclic process of problem interpretation, selecting and manip-
ulating problem information, identifying variables and operations that may lead to
new data, and creating meaningful representations using the available technological
tools (Lesh et al., 2007; Mousoulides et al., 2007).

These findings further underline the challenge to find ways to utilize the pow-
erful mathematical and scientific potential students develop in the early years as a
springboard for further development of the mathematical and scientific competen-
cies, required for success in complex problem solving. Following English’s (2011)
suggestions to address this challenge, we need to recognize that learning is based
within contexts and environments that we, as educators shape (Lehrer and Schauble,
2007) and create learning activities that are of a high cognitive demand and can
promote active processing (Curious minds, 2008; Silver et al., 2009). One means
that proved successful in developing such appropriate contexts and environments is
SimCalc. The SimCalc environment has particular affordances embedded into its
design, making it an appropriate tool to assist students’ investigations in modeling
and solving complex, real-world problems. In particular, SimCalc’s environment in-
cludes rich animations of real-world situations (e.g., car racing, rocket trajectory),
dynamic linking of multiple representations that provide opportunities to explore
relationships between graphs, tables, equations, and animations, and editable repre-
sentations (graphs) that allow students to manipulate problem parameters (Pierson-
Bishop, this volume).

In the following section of the chapter, I give consideration to these suggestions,
by proposing mathematical modeling as an appropriate approach to promoting com-
plex learning through intellectually challenging interdisciplinary tasks.

2.1 Interdisciplinary Model Eliciting Activities

Mathematical models and modeling have been defined variously in the literature
(e.g., Blum and Niss, 1991; Greer et al., 2007). I adopt here the perspective that
models are “systems of elements, operations, relationships, and rules that can be
used to describe, explain, or predict the behavior of some other familiar system”
(Doerr and English, 2003, p. 112). A cyclic process could represent modeling. This
cyclic process of modeling includes the following steps: a problem situation is inter-
preted; initial ideas (initial models, designs) for solving the problem are called on; a
fruitful idea is selected and expressed in a testable form; the idea is tested and resul-
tant information is analyzed and used to revise (or reject) the idea; the revised (or a
new) idea is expressed in testable form; etc. The cyclic process is repeated until the
idea (model or design) meets the constraints specified by the problem (Zawojewski
et al., 2008).

Mathematical modeling has been considered to be an effective medium to pre-
pare students to deal with unfamiliar situations by thinking flexibly and creatively
and to solve real-world problems (English, 2006; Lesh and Doerr, 2003). Following
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the calls from professional organizations (National Council of Teachers of Mathe-
matics, 2000; National Research Council, 2001), a modeling perspective in problem
solving can provide students with purposeful activities along with skillful question-
ing to promote the understanding of relationships among mathematical ideas. These
recommendations can be pushed further and modeling activities can be used as a
way to cultivate students’ critical thinking and critical literacy. The effectiveness of
mathematical modeling is also addressed in a number of related research studies, in
which results revealed that students’ work with modeling activities could help them
to build on their existing understandings, allow for students’ multiple interpretations
and approaches, promote intrinsic motivation and self-regulation, and engagement
in thought-provoking, multifaceted, complex problems (English, 2006; Lesh and
Doerr, 2003; Mousoulides, 2011; Zawojewski et al., 2008).

Following Lesh and colleagues’ perspective (this volume), a models and mod-
eling perspective and SimCalc share the tradition of investigating. Students direct
their investigations towards the nature of new and “flexible” types of “mathematical
thinking” that is needed beyond school, the ways that these concepts and abilities
develop, and new ways development can be cultivated, documented, and assessed
(Lesh, English, Sevis, and Riggs, this volume). Furthermore, MMP and SimCalc
share the same important goals, aiming at providing democratic access to powerful
ideas and foundations for the future in mathematics thinking and learning (Hegedus
and Roschelle, 2012; Kaput and Nemirovsky, 1995).

In adopting a modeling perspective, students are presented with complex real
world activities that involve model development, and in which students repeat-
edly express, test, and refine or revise their current ways of thinking as they en-
deavor to create models that provide significant solutions—solutions that comprise
core ideas and processes that can be used in structurally similar problems (Lesh
and Doerr, 2003). The problems necessitate the use of important, yet underrepre-
sented, mathematical processes such as constructing, describing, explaining, pre-
dicting, and representing, together with quantifying, coordinating, and organizing
data (Mousoulides, 2011). The problems are designed so that multiple solutions of
varying mathematical and scientific sophistication are possible and students with
a range of personal experiences and knowledge can participate. The products stu-
dents create are documented in various forms, including written symbols and for-
mulae, interconnected representations, technological artifacts, and designs. These
products are shareable, reusable, and modifiable models that provide, at the same
time, teachers with a window into their students’ conceptual understandings. Fur-
thermore, these modeling activities might assist students in building their communi-
cation (oral and written) and teamwork skills, both of which are essential to success
beyond the classroom (English and Mousoulides, 2011).

Recent studies reported that the availability of technological tools, such as Sim-
Calc, can influence students’ explorations, model development, and therefore im-
prove students’ mathematical understandings in working with modeling activities
(Lesh et al., this volume; Lesh et al., 2007; Mousoulides, 2011; Mousoulides et al.,
2008). Mousoulides and colleagues (2007, 2011) reported that students’ work with a
spatial geometry software broadened students’ explorations and visualization skills
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through the process of constructing visual images and these explorations assisted
students in reaching models and solutions that they could not probably do without
using the software. In concluding, authors reported that the inclusion of appropri-
ate software in modeling activities could provide a pathway in better understanding
how students approach complex real world based mathematical tasks and how their
conceptual understanding develops (Mousoulides and English, 2011; Mousoulides
et al., 2007).

This chapter builds on, and extends previous SimCalc research (e.g., Hegedus
and Moreno-Armella, this volume; Pitta-Pantazi, Sofokleous, and Christou, this vol-
ume; Roschelle and Hegedus, this volume; Roschelle et al., 2000; Roschelle and
Shechtman, this volume) by examining how SimCalc, a conceptual dynamic tool
for algebra (Kaput, 1992), can provide a pathway in better understanding how stu-
dents approach and solve a real-world, complex problem, how the software’s fea-
tures and capabilities influence students’ explorations and model development, and
how students interact with the software in developing technology-based solutions
for a complex interdisciplinary problem.

3 The Present Study

3.1 The Purpose of the Study

The purpose of the study was twofold: first to examine students’ modeling and math-
ematization processes as they worked on a complex modeling problem using Sim-
Calc and second to investigate how its interactive components assisted and enhanced
student explorations and investigations in creating several different models for solv-
ing the problem.

The problem addressed in this study, “CAN.Be.Gr8 Planet,” required students
to send a rocket to a recently discovered planet. During the activity, students con-
structed different models for accelerating a rocket to escape earth’s gravity and fly
off into space. Specifically, students were provided with background information
on the basics of rocket science, appropriate for elementary school students, and
the context of the modeling activity. Based on the provided information, students
were invited to construct different models using SimCalc, as to succeed in sending
a rocket to the CAN.Be.Gr8 planet.

3.2 Participants, Modeling Activity, and Procedure

One class of eighteen nine-year-olds (10 females and 8 males) and their teacher
worked on the “CAN.Be.Gr8 Planet” modeling activity as part of their participa-
tion in a longitudinal 3-year study. The study focuses on exploring students’ devel-
opment of models and problem solving skills, while working on interdisciplinary
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engineering-based modeling problems. The students were from a public K-6 ele-
mentary school in the urban area of Nicosia, Cyprus. Although students had not
met such problems before as the mathematics curriculum in Cyprus rarely includes
any modeling activities, due to their participation in the research project, students
were familiar with working in groups, developing models for solving quite complex
problems, and presenting and documenting their results (English and Mousoulides,
2011). Specifically, students worked on the “CAN.Be.Gr8 Planet” during the second
year of their participation in Primas research project. Primas, a longitudinal four-
year study, was co-funded by the European Commission, under the FP7 framework
in Science in Society call. Primas activities focus on enhancing students’ inquiry
skills in mathematics, science, and engineering (e.g., decision making) and on ex-
ploring students’ development of modeling competences.

Prior to working on the activity, students spent one 40-minute session to familiar-
ize themselves with the SimCalc software and its dynamic features. SimCalc intro-
duces novel dynamic, graphical, and symbolic notations and representations (Kaput,
1992) to provide tools that engage students’ conceptual resources, enable mathemat-
ical communication, and support growth towards more sophisticated understandings
(Hegedus and Roschelle, 2012; Kaput, 1992). During this first session, students fa-
miliarize themselves with SimCalc while working on the “Warm Up” and “Rockets
to the Moon” activities.1 These activities provided, at the same time, opportunities
for the students to explore the software and build an understanding of velocity as a
rate. The problem was implemented by the author, two postgraduate students, and
the classroom teacher. Students worked for four 40-minute sessions to find a solu-
tion for the problem presented in the “CAN.Be.Gr8 Planet” activity. The problem
assigned to students was the following:

Two months ago, National Aeronautics and Space Administration (NASA) announced the
discovery of a new planet, named CAN.Be.Gr8. Today, NASA invited school students to
participate in their next competition. During last missions to the moon and space, NASA
discovered that although the design of their rockets was fine, the engine system used to
produce thrust could be improved. In order to fulfill these needs, students are encouraged to
explore the motion of rockets, using the SimCalc MathWorlds® software, and propose the
best possible method for sending a rocket to the CAN.Be.Gr8 planet.

The design of the “CAN.Be.Gr8 Planet” modeling activity followed the design
principles for developing modeling activities that are based on the work of teachers
and researchers and that have subsequently been refined by Lesh and his colleagues
(this volume, Lesh and Doerr, 2003; as well as English and Mousoulides, 2011).
These design principles for modeling activities are integrated with the design prin-
ciples of the SimCalc environment (Kaput and Blanton, 2002), in further improving
the design and development of SimCalc-based, model eliciting activities. The first is
the Personal Meaningfulness Principle. It is important that students can relate to and
make sense of the problem situation that is presented—such situations should reflect
real-life scenarios that build on students’ existing knowledge and experiences. Fur-

1To obtain the software and curriculum documents for these activities, please contact kaputcenter@
umassd.edu.

mailto:kaputcenter@umassd.edu
mailto:kaputcenter@umassd.edu
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thermore, if such problems address current topics or themes in existing curricula,
they are less likely to be treated as “add-ons” in already over-crowded school pro-
grams. The “CAN.Be.Gr8 Planet” modeling activity required students to interpret
the activity meaningfully from their own different levels of mathematical ability
and prior knowledge in mathematics and science and reflected a topic that regularly
appears on the news (satellites, GPS systems, rocketry).

Engineering-based problems adopting a models and modeling perspective should
also require students to develop a model that addresses the underlying structural
characteristics (key ideas and their relationships) of the engineering situation be-
ing addressed (the Model Construction Principle). This principle, also ensures that
the solution to the activity requires the construction of an explicit description, ex-
planation, procedure, or justified prediction for a given mathematically significant
situation. In the “CAN.Be.Gr8 Planet,” students had to identify the structural char-
acteristics and key elements of a rocket’s motion (distance, velocity, acceleration,
time) and use these characteristics in modeling a rocket’s movement to the recently
discovered planet.

It is important that students’ model constructions be documented so that their
thinking and reasoning can be externalized in a variety of ways including simula-
tions, graphs and diagrams, and tables of data (the Model Documentation Principle).
Furthermore, the models students construct need to involve a detailed description
and explanation of the steps taken in constructing their models. In the “CAN.Be.Gr8
Planet” activity, students were encouraged to write a letter to NASA, presenting in
an analytic form the way they worked in solving the problem, by making, if needed,
comparisons between the different models that had developed.

The Self-Assessment Principle maintains that students should be provided with
sufficient criteria for determining whether their final model is an effective one and
adequately meets the client’s (NASA’s) needs (e.g., a rocket that moves in an appro-
priate way, taking into account escape velocity and other problem requirements).
Such criteria should also enable students to progressively assess and revise their
creations as they work the problem. Finally, the Model Generalization Principle
(Share-Ability and Re-Usability and Effective Prototype) emphasizes that the mod-
els students create should be applicable to other related problem situations (e.g., mo-
tion problems). Others could use students’ solutions beyond the immediate situation,
which are as simple as possible, yet mathematically and scientifically significant.

The purpose of the activity was to provide students with opportunities to explore
the relationships between variables (distance, velocity, acceleration, and time), ex-
plore families of linear functions, build an understanding of velocity as a rate, ex-
plore and develop links between graphical, tabular and symbolic representations
as to explore concepts in motion, and to develop appropriate models for solving
the rocket problem. During the first session, which lasted around 20 minutes, stu-
dents were presented with a number of articles and videos from NASA’s web-
site, with an aim to familiarize students with background information on rockets
(http://www.nasa.gov/audience/foreducators/rocketry/). These articles and videos
followed by readiness questions, aimed to familiarize students with the context of
the activity. Among the readiness questions were the following: “What is a rocket?”

http://www.nasa.gov/audience/foreducators/rocketry/
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“What are the main components of a rocket?” “Explain in your own words how and
why rockets fly.” During the modeling stage of the activity (90–100 minutes) stu-
dents worked in groups of three, using SimCalc, to solve the “CAN.Be.Gr8 Planet”
problem. In the last session, students presented their models in whole class presenta-
tions for reviewing and discussing with their peers. Finally, a whole class discussion
focused on the key mathematical and scientific ideas and processes, and on the Sim-
Calc constructions that were developed during the modeling activity.

3.3 Data Sources and Analysis

The data sources were collected through audio- and video-tapes of the students’ re-
sponses to the modeling activity, together with the SimCalc software files, student
worksheets, and researchers’ field notes. Data were analyzed using interpretative
techniques (Miles and Huberman, 1994). Audio and video records helped us to iden-
tify the unique ways in which the software facilitated students’ work in developing
a model for solving the rocket problem, as well as the sequence of the modeling
processes and strategies used by students during the solution of the problem. De-
tailed analysis of all data was used to develop categories of the mathematization and
modeling processes of students, and to identify developments in the model creations
with respect to the ways in which the students: (a) interpreted and understood the
problem, and (b) used and interacted with the software capabilities and features in
solving the modeling problem.

In the next section, I summarize the model developments of the student groups
in their attempts to solve the “Rocket to the CAN.Be.Gr8 Planet” activity.

4 Results

Six groups of students worked on the problem. Each group consisted of three stu-
dents. Two groups of students succeeded in developing appropriate models for solv-
ing the problem, using a quite sophisticated approach. Two more groups succeeded
in understanding the core question of the problem and in handling the problem re-
lated data and requirements, and in exploring the software’s capabilities and func-
tions for developing a model for the rocket problem. However, those two groups
were not successful enough in providing a coherent solution to the rocket prob-
lem, and they partially solved the problem. The last two groups of students that
participated in the activity failed to understand and therefore did not provide any
appropriate models for solving the problem.

Students in these two groups faced a number of difficulties in understanding the
core question of the rocket problem, which was modeling the rocket’s trip to the
space. At first, students’ efforts focused on exploring the different representations
provided by the software. Students failed in connecting the different representations
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(animation world and the graphs) provided in the software’s environment and they
consequently failed in connecting the requirements of the problem with the soft-
ware’s environment. The latter is in line with the findings of other studies (e.g.,
Moreno-Armella and Hegedus, this volume; Mousoulides, 2011), which indicate
that making connections between the different representations is not an easy task
for students. Further, the difficulties these students faced focused on an understand-
ing of the relation between distance and velocity. This might have happened because
students could not observe the proportional relation between the two variables and
their interconnectedness, probably due to their limited understandings in graphs and
in the basic principles of kinematics (not part of the Science curriculum at the ele-
mentary school level). Consequently, students spent most of their time on randomly
modifying the speed (constant velocity) of various rockets, without connecting their
efforts with the problem requirements.

The model developments of the four groups of students that adequately solved the
rocket problem are presented next. Those successful approaches correspond to three
models that are presented in the next session. Results for each model are presented
in terms of: (a) the modeling processes and (b) the mathematization processes. The
results of the modeling processes appeared in students’ work are presented with
regard to the steps of the modeling procedure (Description, Manipulation, Prediction
of the Problem, and Solution Verification). The respective students’ mathematical
developments are presented in cycles of increased sophistication of mathematical
thinking.

4.1 Model A

Two groups of students partially solved the problem. With regard to the model-
ing processes, they failed to fully understand the problem, which was to success-
fully build an understanding of the rocket velocity and how this might change as
the rocket travels from earth to space. Students in both groups understood the core
question of the problem but they did not succeed in connecting the core question
with the provided information and data. Specifically, students were provided with
information on the ‘escape velocity,’ which is the velocity needed by a vehicle to
escape earth’s gravity and information on ‘orbital velocity,’ which is the velocity
needed to balance between gravity’s pull on the rocket (satellite) and the inertia of
the satellite’s motion.

Following their work with the “Rockets to the Moon” preliminary activity, stu-
dents understood that a rocket could reach space, using different, yet constant,
speed. During problem manipulation, both groups of students created more than
three rockets, traveling to space at different speeds. When asked to modify their
rockets, as to travel at different speeds, but covering the same distance, students
experienced a number of difficulties. Specifically, students failed to create appropri-
ate connections between the velocity-time and distance-time graphs and the rocket
world. At first, when asked to model two or more rockets each reaching a distance
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Fig. 1 Three rockets traveling at different speed cover the same distance

of 100 km, by modifying the velocity-time graph, students in both groups failed,
although using for several times a trial and error approach. Researcher and class-
room teacher encouraged them to use the distance-time graph to get the rockets to a
distance of 100 kilometers. Students in both groups successfully created two rockets
traveling at 100 km (see Fig. 1) using the distance-time graph. However, when stu-
dents were prompted by the researcher to send one more actor (rocket) at a distance
of 100 km, by only using the velocity-time graph, they failed in doing so, probably
because they did not make all necessary links between the two graphs.

One of the reasons students’ solutions were not that successful was the fact
that students did not succeed in manipulating the relations between velocity, time
and distance. More specifically, students failed to intuitively approach the function
velocity ∗ time = distance. Some students identified the relation between velocity
and time, when distance was constant, but they could not transfer this knowledge
in the software’s environment. For instance, students in one of these two groups
reported that the more the velocity, the less time needed to cover the distance of
100 km. However, velocity-time graph manipulation was not easy, and students’
work resulted in rocket behaviors like those presented in Fig. 2.

Students failed to make the appropriate connections between the two graphs and
the rocket world. As a consequence, the appropriateness of their models was limited
and they could not provide a coherent solution for the problem. There were debates,
for example, on how to modify a rocket’s behavior as to meet activity’s requirements
(specific velocity and/or distance), but without success. A possible reason was that
students might lack the necessary mathematical concepts to better mathematize the
real problem and therefore to construct better models.

At a second stage, students were prompt by the classroom teacher to create a
new rocket, following NASA’s requirements for a rocket to escape earth’s gravity
(final velocity 40.000 km/h) or to balance earth’s gravity (27.000 km/h at 242 km).
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Fig. 2 Student approaches to create an actor using the velocity-time graph

Students in both groups failed to use a systematic approach to reach both the re-
quired velocity and distance, without using a non-constant velocity approach. Con-
sequently, students did not actually verify their solution within the context of the
real problem, which required students to work with acceleration-based approaches.
What was evident in students’ work was the difficulty to distinguish between faster
motion (increased velocity) and accelerated motion, and they therefore failed to use
an accelerated rocket in their solutions.

With regard to the mathematical developments, students’ work in these two
groups was limited to lower levels of sophistication of mathematical thinking. Stu-
dents commenced the “CAN.Be.Gr8 Planet” activity by first exploring the rocket
(animated) world and exploring the main characteristics of the two graphs. Only
limited mathematical thinking was displayed in students’ unsystematic work. This
was also evident in students’ comments: “Look! My rocket is faster than yours.”
When prompt to link the Rocket World to the graphs, students failed to distinguish
between the two graphs or to link one or both graphs to the animation. In general,
most of their comments were rather descriptive: “This is my line (point to the corre-
sponding colour). Here is the second one (points to the second graph). Look! They
have the same colour.”

When prompted to examine the relationship between the graphs and the Rocket
World, the only connections they managed to document were the link between
the speed of the rocket and its motion, and the link between the end point in the
distance-time graph and the end point in the animation world. During the second
cycle of mathematical developments, students’ work could be characterized by the
identification of the notion of velocity. Students successfully discussed the notion
of velocity as the rate at which the rocket changed its position. Although this was
a quite significant accomplishment, students failed to connect it with the require-
ments of the real problem, and therefore failed to develop a better solution for the
rocket problem. A possible reason for this was students’ difficulties to link the var-
ious representations provided by the software, and especially to explicitly link the
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velocity-time and the distance-time graphs. The latter was among the major dif-
ferences between the work on these two groups and the work of the third group
presented in the next session.

4.2 Model B

This group’s work was quite similar to the work of Model A’s groups with regard
to the first part of the modeling activity—namely the creation of different rockets
going to the moon. What was different in this group’s work was their modeling and
mathematical developments with regard to the identification of the various connec-
tions between the two graphs and between the graphs and the animation world. Fur-
ther, this group successfully used the software’s capabilities for constructing various
rockets and finally developed successful models for the NASA competition.

Students’ first attempts focused on drawing connections between the two graphs.
Although they could not explicitly discuss and draw on the relations between the
two graphs, they managed to identify the relation between the velocity graph and
the rocket’s position in the animation world. In contrast to student work in the pre-
vious model, students in this group identified and clearly stated that the distance
covered by the rocket could be calculated by multiplying velocity with time. How-
ever, although prompted, students failed to connect the distance with the area under
the velocity graph. Students also failed to make the connection between the velocity
(as a rate) and the slope of the distance graph. The latter was among the achieve-
ments of the group’s work presented next.

This group’s proposed model for the next NASA rocket consisted of a two-part
velocity function. What was evident in students’ model was the ability to work with
piecewise functions and change the velocity of the rocket. However, there are some
constrains in this model, namely the lack of a third segment in the velocity-time
graph, representing the decrease in the rocket velocity when the rocket runs out of
fuel, but still moves away from earth. The researcher challenged students to care-
fully examine the behavior of their rocket at the end of its trip, and to propose a
modification in their rocket, so the rocket would not suddenly stop, but rather slow
down. Students attempted to modify their rocket, but without success, as they con-
tinued increasing rocket speed at a slower rate (acceleration). Their final model is
presented in Fig. 3.

4.3 Model C

The model presented by the next group was far more sophisticated than the Model A
and Model B. Students in this group used SimCalc’s functionalities and tools to
explore the relations between the notions of velocity, distance, and acceleration.
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Fig. 3 Students’ final model for the NASA competition

Students managed to connect the dynamic representations of the software’s envi-
ronment and they explicitly identified all necessary relations for developing a com-
prehensive model, appropriate enough for solving the rocket problem. Similar to
previous group’s work, students in this group easily explored the relations between
the animation world and the position-time and the velocity-time graphs. In the case
of constant velocity, students also found appropriate connections between the two
graphs (velocity/time and distance/time). Without having access to the distance/time
graph, the students set a hypothesis for the rocket’s position before running the ex-
periment. Also, when prompted to calculate the velocity of a rocket by only us-
ing the position graph, the students intuitively discussed the notion of slope. The
first two parts of students’ work were quite similar to students’ efforts presented
for Model B. Therefore, only the mathematical understandings and the third part
of students’ work—namely the model development of an accelerated rocket—are
presented next.

Given that students rarely meet similar activities in their textbooks, students’
work in identifying trends and relations in their data and graphs was impressive.
Initially, students, without using any formulae, observed that they could calculate
the position of the rocket using the velocity graph. Students stated a hypothesis and
then ran four different experiments, as to make sure that their hypothesis was correct.
They ended this first exploration by documenting that “you can find the velocity of
the rocket by dividing the total distance by time.”

Their next efforts focused on calculating the position, using the velocity graph.
This task appeared to be more difficult than the calculation of the velocity, using the
position graph. Students focused their efforts on identifying the relation, without
connecting this relation to the area below the velocity/time graph. When students
concluded that they could find the position by multiplying velocity by time, the re-
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Fig. 4 Students exploring the relations between the position-time and velocity-time graphs

searcher prompted them to think in terms of the area of the different shapes appear
in the graph. This hint was not enough, as students spent a lot of time without reach-
ing an appropriate formula. On the contrary, they finally succeeded in ‘sending’ a
rocket to the position of 80 km, without using the position graph (see Fig. 4).

The second dimension of student work that clearly distinguished this group from
other groups was the final model for the NASA rocket. Based on their previous
explorations, students spent a lot of time discussing, exploring and using trial and
error to reach the correct piecewise function that could represent the velocity of
their rocket. Although straightforward, this approach was not easy, especially when
working with the position graph. Since students were not familiar with curves (see,
for instance, Fig. 5), they decided to work with the velocity graph to model the
behavior of their rocket.

Students’ first attempt resulted in an accelerated rocket. During a discussion with
the researcher, students were encouraged to refine their model so that the rocket
could function in a more realistic way. Specifically, he prompted students to take
into account the real-world data, indicating that at a certain point of the rocket’s
trip, the velocity would decrease when the engines of the rocket stopped producing
thrust. Students realized that the velocity would reach zero at the same time the
rocket escaped or balanced the earth’s gravity.

In concluding, students designed a three-piece function to model rocket’s behav-
ior (see Fig. 5). Reflection on the appropriateness of their model was a distinct char-
acteristic of students’ work on this group (in contrast to students’ solutions in the
other groups). Although it was apparent that the students’ model was quite appropri-
ate and adequately solved the problem, students questioned the appropriateness of
their model by extensively discussing how they could further improve their model.
These developments were not only appropriate for improving their model, but they
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Fig. 5 A refined model for NASA rocket competition

were also important with regard to “students’ modeling awareness.” Following the
guidelines of the Model Generalization Principle (see earlier in this chapter), an ap-
propriate model should be appropriate not only for a specific problem, but rather for
a large number of structurally similar problems (for instance elementary kinematics
problems). Consequently, students refined their last model by discussing how the
rocket’s graphs would change if the rocket stayed in earth’s atmosphere. Although
they expressed their willingness to explore this new dimension, they failed to do so,
probably due to their limited understanding on negative numbers (in the case rocket
would change direction and return to earth).

5 Discussion

Based on the premise that young learners are capable of dealing with complex prob-
lems and contemporary technological tools, in this chapter, I have emphasized the
need to design and implement interdisciplinary problem solving activities that draw
on the domain of engineering. I have argued that the inclusion of engineering-based
problems within the elementary school mathematics and science curricula can en-
gage students in creative and innovative real-world problem solving and can increase
their awareness of the role of mathematics, science, engineering, and technology in
their environment. These activities place greater recognition on students’ learning
capabilities, and show young students are increasingly complex learners who are
capable of dealing with cognitively demanding tasks.

Students’ results in the Rocket modeling activity, especially those presented in
Models C and B are in line with findings from other researchers (see the contri-
butions from Dickey-Kurdziolek and Tatar, this volume and Moreno-Armella and
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Hegedus, this volume). Modeling explorations in the environment of SimCalc en-
able students to use the interplay between the communicational and representational
affordances to engage in representational expressivity, which enables students to
better express their models and solutions. A significant finding of the present study
is the role cognitive tools, like the SimCalc, might play in students’ model develop-
ment and problem solving. Computer-based learning environments for mathemati-
cal modeling, at the school level, are a seductive notion in mathematics education.
Based on the findings presented, which are in line with findings from previous stud-
ies (English and Mousoulides, 2011; Mousoulides et al., 2007), we can claim that
the capabilities of dynamic tools, such as SimCalc, can positively influence students’
explorations and understandings in complex problem solving. Results showed that
students, even at the age of nine, were able to successfully work with a complex
mathematical modeling activity on Rocketry, when appropriate technological tools
and representations were available. When working on the problems presented in this
chapter, students progressed through a number of modeling cycles, from focusing
on subsets of information through to applying mathematical operations in dealing
with the data sets, and finally, identifying some trends and relationships. In doing
so, students successfully employed the animation world, the velocity and position
graphs in the environment of the software and succeeded in making connections
between the real world and the world of mathematical modeling.

An interesting aspect of this study lies in the students’ engagement in self eval-
uation, through the use of software’s features and tools: at least four groups were
constantly questioning the validity of their solutions and wondering about the repre-
sentativeness of their models (see Self-Assessment Principle earlier in this chapter).
This helped them progress from focusing on partial data to generalizing their solu-
tions and identifying trends and relationships to create better models. Two groups
progressed to even more advance models, by displaying surprising sophistication in
their mathematical thinking. The students’ developments took place in the absence
of any formal instruction and without any direct input from the classroom teacher.

In quite complex problems, like the one presented here, students cannot simply
follow a predefined procedure or strategy. On the contrary, they have to be creative,
explore alternatives, reflect on their own developments, and take advantage of avail-
able tools and resources. This “reflective and more flexible” thinking was a distinct
characteristic of the last group that was presented in Model C.

There are some more interesting insights into young learners’ abilities and think-
ing, insights that are needed to guide classroom instruction and assessment. Al-
though the results of this study cannot be generalized, it can be claimed that before
any formal instruction on the laws of motion and algebra, students at the early el-
ementary school can hold and successfully employ complex problem solving skills
and intuitive thinking. The results provide some evidence that young learners, when
presented with appropriate technology-based modeling tasks, have the ability to do
and understand scientific inquiry and explore the position and motion of objects,
understand complex patterns and functions, connect different representations, or-
ganize, display and examine data, and make judgments on decision-making prob-
lems.
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The results from the modeling activity presented here revealed that SimCalc pro-
vides unique opportunities for students to deal with complex and conceptually dif-
ficult mathematical ideas in developmentally appropriate ways, while solving com-
plex modeling problems. However, only a limited number of the software’s capa-
bilities were exploited here. Next steps should focus on the software’s particular
features of connectedness, which appeared to be important mediators to scaffold
and leverage the effectiveness of groups to construct powerful mathematical learn-
ing and communication in solving complex problems (Ares, this volume; Hegedus
and Penuel, 2008).

Clearly, more research is needed to examine the extent to which technology-
based modeling activities, like the “CAN.Be.Gr8 Planet,” influence the development
of abilities and thinking of elementary school students in complex problem solving
and to identify the critical steps in students’ development of these competencies.
Such research would result in a more pervasive description of students’ problem
solving thinking and could be even more useful in informing instruction in elemen-
tary school.
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Approaching Calculus with SimCalc: Linking
Derivative and Antiderivative

Patricia Salinas

1 Introduction

When browsing through a standard calculus textbook, it is easy to get an idea about
what is involved in teaching calculus. As a matter of fact, a logical order that es-
tablishes derivative before integral can be noticed. These notions remain apart until
about halfway through the book, when their deep connection is stated with the Fun-
damental Theorem of Calculus.

The usual treatment given to these notions relegates the Fundamental Theorem
to a strictly technical role: calculating antiderivatives in order to evaluate a definite
integral. It seems that the connection between these notions serves the purpose of
an algorithmic process necessary for integral calculus.

College students in Mexico receive a Differential Calculus course and the next
semester, Integral Calculus. When the derivative is introduced, students receive the
classic geometrical representation with a curve and its tangent line at a specified
point. In turn, when the integral is presented, they receive the classic geometrical
representation of the area under a curve between two given points. The geometric
interpretation of finding the tangent line of the graph of a function and computing the
area under a function are the most common ways to give meaning to the fundamental
notions of derivative and integral, respectively. Figure 1 shows common images
associated with the introduction of these notions.

Once our students get to know the Fundamental Theorem, they know how to op-
erate the algebraic representation of derivative. They have learned how to calculate,
by heart, the derivative of a variety of functions. Applying the Fundamental The-
orem of Calculus to an algebraic representation of a function means that once the
derivative of the function is calculated, if an antiderivative is taken, we obtain the
original algebraic representation of the function (for a specified initial value). Also,
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Fig. 1 Geometrical representations for derivative and integral

taking an antiderivative of a function and then obtaining its derivative returns it to
the original function. It is easy to deal with this relationship confined to the alge-
braic representation of the functions, but in terms of the geometric representations
in Fig. 1, the relationship is not clear.

Recently in Mexico, the high school level has followed a trend to increase its
academic period to three years following the 9 years of primary and secondary
education. It is noticeable that calculus courses are introduced at this level in an
algebraic-accentuated perspective—one that accepts the standard order of first Dif-
ferential Calculus and then Integral Calculus. Also, incorporating calculus into the
high school curriculum using American textbooks is a custom that conditions the
way calculus is conceived by teachers and students.

On the other hand, our educational institution in northern Mexico has undertaken
an academic process of redesigning the courses at university level, promoting the use
of technology and addressing other issues. This has been an opportunity to analyze
the problem of having courses of differential and integral calculus repeated in both
high school and university levels. We seek to do this by taking a deeper look into
the problem of learning calculus. Salinas and Alanís (2009) and Salinas et al. (2010)
provide elements for assessing the research and the curriculum design that has been
conducted to respond to this situation. They bring an approach to calculus where
derivative and integral appear simultaneously from the beginning of the first course.
A wide research project has been supported by the institution with the intention to
offer students meaning for calculus topics that are useful for applied courses they
will further take in their major areas.

In this chapter, I share the way in which SimCalc has been appreciated as a medi-
ator favoring this approach in the classroom. The Fundamental Theorem of Calculus
is embedded in SimCalc and offers an environment where students have the expe-
rience of visualizing the graphical representation for derivative and antiderivative
linked together. The image including the derivative and antiderivative graphical rep-
resentations, suggests taking them simultaneously and making their relationship an
object of study in the classroom.

2 Literature Review

Dealing with the learning of mathematics, Duval’s framework (2006a, 2006b, 2008)
highlights the influence of the different semiotic representations when analyzing
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cognitive processes. Here we are concerned with numeric, algebraic, graphical, and
linguistic representations. His contribution is useful in trying to deepen our inten-
tions to provide students with an appropriate avenue for comprehension. Today,
when dealing with didactical design, we must take into account that we have several
systems of semiotic representations that must be coordinated during mathematical
activity.

Duval sets two types of transformations of semiotic representations: treatment
and conversion. The first one refers to the changes made within the same represen-
tation, while the latter refers to the ability to change a representation—including
the transformation of linguistic statements. For the learning of mathematics, both
processes—treatment and conversion—are independent sources of cognitive prob-
lems. Apparently, changing representations (conversion) is more complex than mak-
ing changes within the same kind of representation (treatment). Problems reported
on students’ difficulties with this process give the impression that it constitutes a
cognitive leap, not governed by rules and basic associations, and, also, is not subject
to coding. In classrooms, the conversion process often appears as a trick that cannot
be well learned and that is not taught (Duval 2002, 2006a, 2006b, 2008).

Duval has broadly identified different levels of cognitive processes when dealing
with mathematics representations. His analyses reveal that it is not possible to expect
that by showing the numeric, algebraic, graphical and linguistic representations of
a notion together, the problems with its learning will disappear. Students should be
able to discern significant elements not only in the representation where the thinking
process starts, but also in the representation you want them to reach. “This condition
is particularly strong when cognitive representations are linguistic or visual, and not
purely symbolic” (Duval, 2008, p. 11). This is exactly the situation we want to ad-
dress through the use of SimCalc—linguistic and visual representations. We suggest
that confronting students with the graphical semiotic representation (for derivative
and antiderivative) together with the simulation will offer a better opportunity to
place the linguistic description of the graphs and the movement.

The way we understand that SimCalc affects the calculus classroom is influenced
by the theoretical perspective of Moreno-Armella and Hegedus (2009)—illustrated
by means of an effective integration that transforms communication. They argue that
“with the new advances in design of dynamic media, the accessibility of mathemat-
ical ideas and the nature of symbolization are transformed with the creation of new
forms of symbol-mediated experience” (p. 509). The characteristic they refer to as
executability of representation transforms the kind of interaction a student can have
with the embedded mathematics.

SimCalc is a continuous dynamic media offering co-action; which means that
the student, through the hotspots, guides an action with an intentional attitude upon
the environment, from which the student is being guided. This is possible because
the interaction that SimCalc allows becomes a sustainable bi-directional process
where it is possible to identify the relationship stated by the Fundamental Theorem
(Hegedus and Moreno-Armella, 2010).

We suggest that SimCalc in the classroom, through its visual scenario—including
the link between derivative, antiderivative, and the simulation they represent—will
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give rise to an interaction that encourages an intentional handling in order to ac-
knowledge a relationship between these three elements that could be stated in a
general way.

Generalization and symbolization are central cognitive acts of mathematical rea-
soning. Moreno-Armella et al. (2008) state that producing a generalization is to refer
to all multiple instances by means of a unifying expression, as if they all were just
one thing. But the sort of symbolic structure this expression requires makes us re-
alize that symbolization serves generalization, now part of the field of reference of
the symbol. We suggest that by using SimCalc, a process of generalization can be
triggered.

By considering educational goals, we must be certain that the use of computers
can transform mathematical knowledge. Noss and Hoyles (2004) have been looking
for new theoretical and methodological tools to cast light on the learning process
related to technology integration. By means of a situated abstraction, they refer
to a way by which a community of students can develop a common discourse and
coincide with their teacher in talking about the same mathematical abstractions, thus
making the students’ expressions gain some mathematical legitimacy. SimCalc is a
truly transformative example of software “in terms of their potential for changing
not simply how mathematics is learned, but what mathematics can be learned” (Noss
et al., 2009, p. 493).

Exploration with computational tools allows students to reorganize strategies for
problem solving. First, they can make some situated observations that may relate to
a certain property, theorem or formula where the environment facilitates its iden-
tification. This constitutes a situated proof, the result of a systematic exploration
purposely exploited inside a computational environment in order to “prove” mathe-
matical relationships. Throughout the historical development of mathematics, some
kind of natural swing between inductive and deductive approaches is recognized, so,
proof does not affect a theorem that was conceived in the past without the modern
standards of rigor. Maybe looking at mathematical results emerging from human
activity could bring more appropriate elements to the classroom’s cultural environ-
ment. “The theorem is the embodied idea: the proof reflects the level of understand-
ing of successive generations of mathematicians” (Moreno-Armella and Sriraman,
2005, p. 133).

By means of a situated proof, we suggest that SimCalc may function as the medi-
ator for the establishment of generalizations about the relationship between deriva-
tive and antiderivative; those generalizations refer to differential calculus theorems
that relate the sign and behavior of derivative and the behavior of the function graph
(antiderivative).

In order to understand the nature of the mediation role of computing tools in
learning, Moreno-Armella and Sriraman (2010) distinguish tool from instrument
using the established idea that any cognitive activity is a mediated activity. The
importance of the way a tool can mediate the cognitive processes of a user by trans-
forming cognition becomes clear, because intentional actions are performed giving
rise to new dialectical interactions between the user and the tool. When this is so,
we are dealing with a computer as an instrument; one that could affect the cogni-
tion of the user by allowing the reorganization of ideas, like written language does.
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“Computers had made feasible a new way of looking at symbols, looking through
them, and transforming the resources of mathematical cognition” (p. 215).

We are clear that in the classroom, the intentional actions that students may ex-
perience are subject to the conditions they are faced with each time. Certainly, we
can expect that the use of SimCalc promotes the students’ interaction with the soft-
ware, where the mathematical content is embedded, but the teacher’s research at-
titude becomes a relevant element of this social environment in order to identify
the signs arising and stating that some learning is taking place. We suggest that
integrating SimCalc through a didactical sequence according to the approach to cal-
culus we are using in our institution in Mexico, the emergence of signs will allow
a dialogic discourse, one that embodies the assumption that there is more than one
perspective and it is worthwhile to think together and discuss—“Knowledge is most
fully achieved in the dialogue between people who are together trying to solve a
problem, construct an explanation, or decide on a course of action” (Wells, 2007,
p. 264).

At the convergence of representational and communication infrastructures, Hege-
dus and Moreno-Armella (2009) place a kind of transformation of expression that
they prefer to call representational expressivity. On one hand, computational and
visual affordances allow mathematically valid and viable connections to interact
with the learner. On the other hand, communication is shown by means of human
actions in terms of speech or physical movement (gestures) and also with digital
inscriptions through the interface. In this way, learners can express themselves with
intentionality, showing an intrinsic motivation to participate in the classroom.

This expression, shared from a local to the public place of the classroom, brings
the opportunity for students to consolidate identities and defend and reason their
work. Some informal mathematics registers, in terms of speech and actions, encour-
age students to identify themselves with the mathematical attributes of the object
through the embodiment of the mathematical idea as a personal expression (Hege-
dus and Penuel, 2008).

In this chapter, I will share our experience utilizing SimCalc in a Mexican class-
room paying particular attention to the semiotic means to which students make sense
of the relationship between the graphs of the derivative and antiderivative. Hope-
fully this work outlines the importance of understanding the role of discourse in the
classroom and of the reasoning expressed by signs and body actions.

3 Incorporation of SimCalc into the Classroom

In this section, I will share some basic elements that clarify the way our approach
privileges the meaning of notions and procedures in order to solve problems related
to change and variation by addressing the prediction of the values of a magnitude.
Then, I will describe a sequence of activities that integrate SimCalc in the classroom
with the visual scenario for the prediction of the position of an object moving over
a straight line.



388 P. Salinas

Supported by systematic observations and analyses according to a qualitative
approach to these educational events, I describe the actions we have taken for the
development of the sequence. I describe the dynamic symbolization process taking
place in the classroom between the students and the teacher in order to support the
learning of differential calculus theorems. We use this sequence of activities in the
regular first mathematics course in our institution in Mexico, following the approach
with the textbook Applied Calculus (Salinas et al., 2011).

3.1 Some Basic Elements

The approach to calculus mentioned considers prediction as a thread around which
calculus is structured and identified as the mathematics of change. We offer students
plenty of situations in which it is important to predict, however, didactically, the
position of an object moving in a straight line is the suitable scenario to support
cognitive processes. In this way, the velocity of an object will be similarly addressed
as the idea of the rate of change and, in turn, the position of the object corresponds
to cumulative change. Through SimCalc, we can graphically generate this scenario
and surround it by the transversal educational goal of symbolizing and generalizing.
The position graph is the “metaphor” of a magnitude M that is changing with respect
to another, firstly rooted in time, but eventually becoming any other magnitude on
which M depends.

It is important to state some basic elements about the way we address the situa-
tion. For a specific magnitude M(t), we simultaneously consider its rate of change
r(t) and its accumulation of changes

∑
�M over a given interval of time [a, b].

This offers a new way of dealing with the Fundamental Theorem of Calculus be-
cause it is implied as the simple idea of thinking that the change of the magnitude
can be approximated by �M = M(t + �t) − M(t) ≈ r(t)�t , which assumes that
the rate of change, r(t), stays constant on the small interval, [t, t +�t]. This idea—
possible because of the continuity property for the derivative—supports the idea that
calculus is concerned with the problems of prediction.

With this approach, we carry the numerical approximation process of adding the
different changes the magnitude accumulates over the small intervals where inter-
val [a, b] has been divided. Then, we take to the “extreme” the sums through a
spreadsheet—using the benefits of the technological media—making the intervals
of variation for time smaller and thinking in a “limit” process whose outcome is a
numeric value for the change in magnitude.

By means of an induction process, carried out through the spreadsheet, the in-
terrelationship between the natural power function f (x) = xn and its derivative
f ′(x) = nxn−1 is associated algebraically. This process is kept on the algebraic
semiotic representation, and its performance is algorithmic in such a way that stu-
dents can obtain the derivative and the antiderivative of any polynomial function.
Once the numeric approach brings the answer algebraically to the prediction ques-
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tion for these functions, we propose the introduction of the graphical semiotic rep-
resentation to visualize the kind of behavior the magnitude shows and the relation it
has with its rate of change (Salinas et al., 2011).

3.2 SimCalc and Uniform Rectilinear Motion

Using SimCalc, we introduce the scenario of motion to the classroom in our institu-
tion in Mexico. The character, “Ryan,” moves with a constant velocity. The SimCalc
document reflects a design where the arrangement of graphs and numeric values are
considered to manage the situation the best way possible when changing the con-
ditions for the motion. Simultaneous graphs of velocity and position are handled
in exactly that order—so the teacher promotes the presence of velocity immersed
in the position graph. When working with this document, the teacher emphasizes
numerically that the slope of the position graph is related to the constant velocity
(see Fig. 2).

Looking at the velocity graph, one can see the “height” at any value of time,
thus, indicating the constant velocity value. Meanwhile, since velocity is the rate
of change of position over change in time, looking at the position graph, we can
sketch a triangle where the numeric operation of dividing �x over �t provides
the constant velocity value. Both visual perceptions (height on velocity graph and
triangle on position graph) should be carried out on the same time value for both
graphs, even though this feature stands for the complete image.

At this point, the teacher asks students to interact with the SimCalc document
through the hotspot on the velocity graph, and to dynamically visualize different
motions of constant velocity. A collective production of signs emerges in our class-
room indicating that the numeric data for velocity relates to the character motion
to the left or to the right. Students begin to use gestures to show what do with
the velocity graph. Using the teacher’s computer, which is projected in front of the
room, a student guides the hotspots in order to reach the challenges proposed by the
activity.

Fig. 2 Pictures that evoke motion with constant velocity
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Fig. 3 One velocity graph corresponding to several position graphs with a different initial position
value

At this time, we see the visual expression that Fig. 2 reveals through symboli-
zation—every time the teacher asks for a motion to the right, the velocity should
be positive, and a motion to the left indicates that the velocity should be negative.
Upon looking at the position graph, the teacher identifies an increasing and a de-
creasing graph related to the positive or negative sign of constant velocity. Before
ending the activity, the teacher gives the algebraic representation for position func-
tion and velocity function: v(t) = v0 and x(t) = x0 + v0t . Figure 3 emphasizes
the identification done during a discussion about a velocity and a position graph
where one velocity graph corresponds to several position graphs with different ini-
tial positions—creating a “marching” performance.

3.3 SimCalc and a Rectilinear Motion by Intervals

Next, we give students the same SimCalc document but allow the velocity graph to
be editable. This gives students the opportunity to create a motion where velocity
remains constant for a short period of time, and then changes in the next period of
time, and so on. In the classroom, students work in pairs with one laptop. Students
are asked to create four motions: (1) the actor, Ryan, must go to the right, but pro-
gressively faster, (2) Ryan must go to the left, also progressively faster, (3) Ryan
must move to the right, but now progressively slower, and (4) Ryan must move to
the left, also progressively slower. Each pair of students produces one motion, which
is then collected in the teacher’s computer and shared with the class. Even though
the graphs do not look the same, students are able to identify commonalities in each
of the motions and identify the linguistic description for the motion interpreting the
features of the velocity graph. Figure 4 provides an example of the work collected
from a group of students.

As can be seen in Fig. 4, the position graph consists of line segments—joined
one by one—creating the visual perception of a curve. It is here that the concavity
property of a curve begins to inform students about the features of the motion. Here
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Fig. 4 Image with the
collection of the four kinds of
motion

again, the dialogic discourse we observed offered evidence that students began to
make sense of the relationship between the graphs of velocity and position.

This same SimCalc document can potentially show students how it is possible to
conceive a linear velocity as the “extreme” case of uniform motions by intervals. The
teacher edits the document reducing the time intervals, and the co-action, provided
by SimCalc reflected on the position graph, gives the visual perception of a linear
velocity and a corresponding position graph—where the slopes of the line segments
allow us to conceive the shape of a curve (see Fig. 5).

3.4 SimCalc and Motion with Linear Velocity

Once students support the idea that velocity changes uniformly through its graphi-
cal representation, we offer them the next SimCalc activity, Ryan’s Stories. Again,
students work in pairs in a new document designed so that they can edit and add
constant or linear velocity segments. In this activity, students are asked to create
the motion simulation based upon 15 stories, which summarize the motions done
before and include others as well. Students have access to the text document con-
taining the linguistic description of each of these stories. After the students create
each motion, they must take a screenshot of the SimCalc’s image and edit the text
document to add the image corresponding to the motion’s description. The features
of velocity and position graphs should be associated with their own words for each
of the stories.

Fig. 5 Conceiving a linear velocity through uniform motions by intervals
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Fig. 6 Ryan moves according to different given descriptions where motion stays always to the
right, or to the left, but not with the same features

During the class, while students work with SimCalc, the teacher encourages them
to notice these features. It is worth noting that it is not easy for students to look at a
graph and think about its positive values, or the increasing behavior it has even when
it stays in the negative zone of the vertical axis. Issues like that relate to the cognitive
process of conversion that should be considered in order to strengthen the experience
through SimCalc. That is why the activity requires the teacher’s assistance to guide
the teams’ reflections. For homework, students are asked to report whether they
are able to find some kind of pattern in their complete document. For example,
looking at the images where the velocity graph is positive, is there something in
common with the corresponding position graphs? And if the feature we wish to
address is the increasing behavior of velocity, do position graphs have something
in common? Figure 6 shows two screenshots where the position graph is affected
by the location of the velocity graph. The descriptions (“story”) of the motions in
Fig. 6 are: Ryan moves to the right progressively faster, and then continues to the
right progressively slower, and Ryan moves to the left progressively slower, and
without stopping, decides to continue to the left progressively faster.

During the next class, the teacher discusses students’ work in such a way as to
achieve the establishment of mathematical theorems situated in the motion scenario
provided by SimCalc. The relationship between positive/negative signs of velocity
and increasing/decreasing behavior of the position graph is once again proven, and
the increasing/decreasing behavior of the velocity graph is related to the concave
upward/downward behavior of the position graph. Even with the limitations of hav-
ing combinations of linear velocity segments, it is possible to associate the change
of concavity on the position graph to the existence of a maximum or minimum value
for the velocity graph.

Also, the stories that the students perform in SimCalc include the situations
where the maximum or the minimum value on the position graph corresponds to
the velocity graph crossing the time axis from positive to negative values or from
negative to positive values, respectively. Figure 7 visually states a sign that has been
identified on students’ writings, where they evoke the situation for the maximum
and minimum value of a magnitude in terms of its rate of change. The results relate
to theorems in the chapter of “Applications of the Derivative” in any standard text-
book. We refer to the test for relative extrema (maximum and minimum) and test for
concavity to obtain the inflection points of a given function’s graph.
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Fig. 7 Ryan moves according to different descriptions; he moves to the right (or left) and decides
to return to the left (or right)

3.5 Toward the Establishment of Symbolization

The previous experience with SimCalc prepares students for activities that can be
performed without the software. An example of such an activity is: Two different
motions over a horizontal axis are performed by a particle, upon which the velocity
(meters/second) is changing with respect to time, according to the graphs. At the
start, (t = 0), the particle’s position was 1 meter (see Fig. 8).

On each coordinate system (see Fig. 9), students are asked to draw the corre-
sponding graph of position function x = x(t) in such a way that one can describe
from it the motion behavior performed by the particle that is modeled through that
function.

It is possible to qualitatively recognize the graphical behavior that the position
function should have, but it is also possible to obtain its algebraic representation be-
cause of the process of antiderivation—which was established previously in this
approach. We are proposing to bring together both of the graphs—velocity and

Fig. 8 Particle’s motion with
an initial position of 1 meter

Fig. 9 Velocity graphs
representing different motions
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Fig. 10 Velocity and position
graphs together, symbolizing
the relationship between
velocity and position

position—in order to state the relationship between the two graphs visually and
associate numeric values in the same coordinate system.

The solution to this problem can be seen in Fig. 10. Students argue that position
graph for the first velocity goes “up and down” and the second “the opposite.” Upon
asking for reasons, the students describe that the motion is to the right and then to
the left. At this time, the teacher challenges these informal descriptions and encour-
ages the students to go further and try to include the way the motion is done: how is
it done, progressively faster or slower? Finally, the algebraic representation for posi-
tion is obtained as the antiderivative for the velocity function, which is a straight line
with initial value 1 and crosses the horizontal axes at time 2.5. The concavity data
can be identified through the velocity graph; increasing graph for velocity reveals
position graph is concave upward; and decreasing velocity graph reveals concave
downward position graph.

We believe that students’ cognitive processes are strengthened through this type
of activity where the images could be regarded as signs that bring some kind of
symbolization in the service of the generalization that we are asking to take place.
Figure 10 is a referent for the theorems mentioned above. Here, SimCalc has been
used to create a different kind of symbolization.

3.6 Generalization

By splitting these images (look at scissors in Fig. 11), we can identify four typical
behaviors for the magnitude—represented by the x variable.

In the four final images in Fig. 11, the axes were introduced to promote the iden-
tification of four key behaviors where position (function) and velocity (derivative)
are interrelated. This visual insight of four disjoint images that were jointed before,
symbolizes the results about the qualitative behavior of a magnitude.

At this stage, we should refer to magnitude as it relates to position and the veloc-
ity as it relates to its rate of change; or else, position as the function and velocity as
the derivative.
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Fig. 11 Obtaining four final
images with position and
velocity graphs in the same
coordinate system

Fig. 12 The four different
behaviors of a magnitude
associated with different
linguistic representation and
with different behavior for
derivative and function

Figure 12 shows the generalization that becomes a visual referent for the rela-
tionship between a magnitude and its rate of change.

Here we have the following interpretations: magnitude increasing progressively
slower, magnitude decreasing progressively faster, magnitude decreasing progres-
sively slower, and magnitude increasing progressively faster. And we can visually
prove four results: (1) an increasing graph representing the function corresponds
with a positive graph of the derivative function, (2) a decreasing graph representing
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the function corresponds with a negative graph of the derivative function, (3) a con-
cave upward graph representing the function corresponds with an increasing graph
for the derivative function, and (4) a concave downward graph representing the func-
tion corresponds with a decreasing graph for the derivative function.

4 Reflections About Dialogue in the Classroom

Every time we used SimCalc in the classroom, we paid particular attention to the
semiotic means to which the students resorted in order to make sense of the graphs’
behavior. The activities we have been discussing concentrate on graphical interpre-
tation, namely, the linguistic representation of the magnitude behavior. In fact, we
are concerned with the identification of four graphical shapes that allow students to
represent different kinds of behavior that a magnitude might have.

We have been systematically observing how students perform a drawing in the
air with their finger to represent the graphical shape for the behavior of a magnitude
that increases progressively slower, for example; or how they bend their hand to
represent the behavior of a magnitude that decreases progressively faster. Students
in Fig. 13 show this kind of gesture, drawing with their finger or bending their hand
when they have the graph of the rate of change in front and they are asked to express
the magnitude’s behavior.

Once we identified that these gestures emerge naturally, we promoted their use
in general in the classroom to help students internalize the action of relating the
behaviors between the derivative and function. Every time a student used it, we
asked him/her to repeat that sign for the rest of the class. Figure 13 shows two
events of gesture. Note the attentiveness of the students to the sign performance.

We consider that this body gesture synthesizes the cognitive process completed
when asking for the graphical representation of a magnitude whose rate of change
is represented by its graphical representation. This kind of body language has been
a resource that students use when trying to explain what happens under different
conditions—the four conditions provided in Fig. 12. They get used to symbolizing
that a magnitude increases (decreases) progressively faster (slower) with their hands.

Figure 14 presents the image that students were shown in class when they per-
formed the gestures in Fig. 13. The gestures were performed to visualize the graph

Fig. 13 Signs and gestures shown by students, drawing in the air and bending their hand
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Fig. 14 Picture presented in
class with three derivative
graphs to think on the
corresponding antiderivatives
in a qualitatively way

that is obtained as the antiderivative of each of these graphs that represent the deriva-
tive of a function.

We use Fig. 14 as a group activity. The objective is to make a linguistic de-
scription of the differences in the behavior of the functions whose derivatives are
given. The experience with this activity enables us to conjecture that favorable con-
ditions for an active process of “knowing together” could be created in the class-
room. Once a solution is expressed with gestures, we invite students to deepen their
visual perceptions and address the differences between the first graph and the other
two graphs, as well as what makes the second and third graphs different when ex-
periencing the visualization of the three antiderivatives. One can notice a special
location for the inflection point in the function with respect to the derivative graph.

Finally, we give the students a printout of the image and we ask them to produce
their drawings individually. While they do this, the uncertainties due to the lack of
the algebraic representation for the derivatives are seen, so we give the students the
quadratic functions and the numeric value they have to assign to 0. As homework,
students must perform the algebraic treatment necessary in order to bring to class
the graphs with all the numeric information marked in a complete image.

5 Thinking with SimCalc

Executable representations serve to externalize cognitive processes done beforehand
by people who did not have the technological device. That happens every time we
graph a function with a computer, however, the challenge for the learning of math-
ematics lies in using that executability to generate a way to transform graphs into a
resource for thinking. This is a matter regarding the features of the software and for
the teacher, who must design a way to interact with the software for the students.

By means of a situated abstraction and through SimCalc, we try to develop the
students’ establishment of general propositions in terms of the environmental lan-
guage where they experience the mathematical exploration. In doing so, we de-
signed a SimCalc document to meet our intentions.
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The existence of “hot-links” between the velocity, position, and simulations be-
come key elements of SimCalc’s features, which in addition to editable piecewise-
definable graphs of functions, allows the creation of a visual scenario inviting the
learner to become a part of the performance. We encourage the idea of using com-
puter software as an instrument that works for students to confront them with their
own cognition, transforming the way they interpret mathematical knowledge. Sim-
Calc offers a valuable semiotic potential in the construction of knowledge.

The picture proposed here, with the movement simulation and graphs of velocity
and position (in that order), helped us avoid conflicts of conversion in terms of
Duval’s framework. Both graphs must be interpreted in the same kind of graphical
representation, where velocity and position are visualized as the “height” of the
vertical line arising from the horizontal axis.

The teacher’s attitude is essential to foster the evolution of signs that are rooted in
the activity performed with SimCalc. It is not easy for all students to generate their
own individual production of signs, but the teacher can take advantage of students
expressing, out loud, their thoughts.

SimCalc within our classroom has allowed the incorporation of a social activity.
With the students, we make use of the system of signs and the semiotic processes
that contribute to the creation of an environment for socialization where we engage
in a discussion full of meanings and gestures. In this way, students become conver-
sant with calculus and make sense of its notions and procedures.

Having a motion scenario to deal with these ideas, brings the opportunity to trans-
fer the meaning to other scenarios. If the prediction situation deals with a magnitude
(a function) with a known rate of change (the derivative of the function), then the as-
sociation of magnitude with “position” and its rate of change with “velocity” allows
the interpretation of the magnitude’s behavior. As a result, theorems correspond-
ing to the Applications of Derivatives, the final chapter in a Differential Calculus
course, can now be situated at the beginning of the discourse on calculus—giving
the graphical representation the power to interpret behaviors.

Allowing SimCalc in the classroom provides an opportunity to transform the
learning of calculus, which has been isolating its fundamental notions. This is the
opportunity to deal with the Fundamental Theorem of Calculus from the beginning.
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You Can Lead a Horse to Water. . .: Issues
in Deepening Learning Through Deepening
Teaching

John Mason

1 Introduction

At issue is the elaboration of ways of working with learners so as to maximize the
opportunities learners have for engaging substantively with the topics being taught.
How to teach well is not an engineering problem about promulgating specific prac-
tices or actions. Human beings do not take to social engineering. Rather, how to
teach well is a human problem of promoting and supporting flexibility of response
to situations as they develop. This involves an interplay between the:

• cognitive components (appropriate challenge; pertinent mathematical constructs;
multiplicity of modes of thinking; connections to both the familiar and the as yet
unfamiliar; encounters with pervasive mathematical themes, common heuristics
and use of human powers for mathematical purposes);

• behavioral components (internalized actions being called upon; new actions being
encountered; suitable language introduced and called upon); and

• affective components (personal dispositions, interests and engagement; origins
of the problems the topic addresses; places where the topic, constructs and tech-
niques have proved fruitful);

bearing in mind as well that affect provides the energy or impulse to encounter
and engage with the cognitive, through appropriate behavior. At the heart of these
actions lies attention: its focus and its form or structure. Jessica Bishop (this volume)
asks, “What happens. . . if. . . responsibilities are shifted and students are expected
to explain, elaborate, and evaluate for themselves?” (p. 235).

This chapter is one attempt to address that question, building on insights from
Bishop’s chapter and others, and data from some of those chapters.

J. Mason (B)
Department of Education, University of Oxford, Oxford OX2 6PY, UK
Department of Mathematics, Statistics and Computing, The Open University, Milton Keynes,
Buckinghamshire MK7 6AA, UK
e-mail: j.h.mason@open.ac.uk

S.J. Hegedus, J. Roschelle (eds.), The SimCalc Vision and Contributions,
Advances in Mathematics Education, DOI 10.1007/978-94-007-5696-0_22,
© Springer Science+Business Media Dordrecht 2013

403

mailto:j.h.mason@open.ac.uk
http://dx.doi.org/10.1007/978-94-007-5696-0_22


404 J. Mason

2 Metaphors

Lakoff and Johnson (1980) continued the enterprise begun by Jakobson (1951) to
revivify sophisticated Greek grammatical insights concerning the role of metaphor
and metonymy in human actions and interactions. Metonymies usually act below the
surface of consciousness, triggering affective associations, which direct the flow of
interaction between people and the flow of energies within them. Metaphors bring to
mind thoughts and actions through structural resonance with past experience. Some
metaphors are “frozen” in that the metaphoric content has either evaporated or is
overlooked; others lie at the core of “commonplaces” (St. Maurice, 1991), which
evoke resonance and unconsidered agreement among audiences. A prime example
is “deepening learning.” This phrase acts as a commonplace, since it evokes positive
agreement and acceptance as a “good thing.” It also invokes a spatial metaphor as-
sociated with substance and essence, in contrast to “broadening learning,” which
might unhelpfully be associated metonymically with “surface learning” (Marton
et al., 1997). The gerund “deepening” evokes a process, as distinct from a quali-
fication such as “deeper.” It also contrasts with “higher learning” or “heightening
learning,” which might be associated with more abstract, less practical learning.
Knowing a great deal about very little is usually contrasted with knowing a little
about a great deal. Our aim as educators is surely to acknowledge that, “every stick
has two ends”; that grasping one end or the other is at best unwieldy, while seeking
a balance between breadth and depth affords access in both directions. This is an
instance of Aristotle’s “golden mean.”

Being aware of frozen metaphors affords access to questioning hidden assump-
tions: for example, classifying some students as having “only” the goal to “get
through” the course, to “acquire” such tools and techniques as might be required for
their particular future intended practices. Of course the power of the commonplace-
provoked sentiment is that all students would benefit from “understanding more
fully,” for although behavior can be trained, it is awareness that can be educated,
and it is awareness that enables checks and offers flexibility when novel situations
or contexts are encountered (Mason and Johnston-Wilder, 2004a, 2004b).

The chapter title is intended to evoke the adage that “you can lead a horse to
water, but you can’t make it drink” in the form “you can challenge and disturb stu-
dents, you can expound and explain to them, but you can’t make them think, and
you can’t make them learn.” You can, however, create conditions in which their
natural, mathematical sense-making powers are (likely to be) invoked. Various con-
structs are used to probe the import of “create conditions,” both for a system such
as SimCalc and for teachers with or without that assistance.

3 Richness

A current commonplace in mathematics education aligned with deepening learning
is the phrase rich tasks, evoking a contrast with “poor” or “impoverished” or perhaps
“watered down” tasks. The sentiment is one of potential, of opportunity and affor-
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dances. However, tasks are simply tasks, usually either ink on paper or verbal in-
struction. What matters is what activity arises from undertaking a task (Christiansen
and Walther, 1986). The nature of that activity will depend strongly on what stu-
dents attend to, and also how they attend to it. . . which will be discussed more fully
later. The gap between the author’s intention, the teacher’s presentation, and the task
as interpreted by students has been studied in some detail (Gravemeijer, 1994; Stein
et al., 2007); the issue of student engagement and motivation has been ubiquitous
in educational writing for thousands of years. I suggest that it is not the task that is
either “rich” or “impoverished,” and not even the activity. Activity provides expe-
rience through participation in action. That experience may be dominated by desire
to get the task done as quickly as possible or with the minimum of effort (which can
have positive but also negative results); it may be dominated by “going through the
motions,” even to the extent of simply appearing to be engaged; and it may be dom-
inated by engagement at some level of intensity and commitment, among other foci.

With unwitting resonances with Hegel’s remarks on learning from history (Hegel,
1975), it seems evident that. “one thing we do not learn from experience is that we
do not often learn from experience alone” (Mason, 1994, p. 179).

Connected with this is a succinct summary of an insight of Franz Brentano (1988)
and similar ideas of Immanuel Kant (Dainton, 2010), that “a succession of experi-
ences does not add up to an experience of that succession” (Davis and Mason, 1988,
pp. 488), matching an aphorism of William James (1950) that “a succession of feel-
ings does not add up to a feeling of succession” (p. 628).

Something more is required in order to “learn from experience(s).” Resonant
with Schön (1983), reflection both in and on practice are—if not required—at least
helpful to a majority of students. Put another way, the shift from acting on objects to
becoming aware of acting, and then again to becoming aware of those actions as ob-
jects themselves, sometimes requires intervention. Various authors have addressed
this issue, using constructs such as reflective abstraction (Piaget, 2001; see also Si-
mon and Tzur, 2004), procepts (Gray and Tall, 1994), reification (Sfard 1991, 1994),
and reflexive situation (Brousseau, 1997) among others. A major role for teachers
is to prompt students to withdraw from action and to reflect upon that action: what
was effective and what not so effective; what powers were used, why and how and
what brought them to mind; what themes and other connections were encountered;
what would be useful to have come-to-mind in the future in a similar situation; what
constitutes a “similar situation”; etc. Chandra Orrill (this volume, p. 292) states that
only one of the four teachers she observed asked questions which either initiated
or even simplify indicated an explicitly reflective stance, so overt reflection cannot
be assumed to be a part of every teachers’ pedagogical practice. Furthermore, ques-
tions are often projected into the teacher-student-mathematics space in such quick
succession that there is no room for interactions such as explaining by students to
each other, exploring, expressing or even exercising.

To achieve learner immersion in mathematical themes and thinking, and to
achieve the development of powers to enable both critical and creative mathematical
thinking in novel situations as espoused for example by Pitta-Pantazi, Sophocleous,
and Christou (this volume, p. 319) requires more than rich tasks, more than complex
activity arising from engaging with and in tasks, more even than rich experience of
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such activity. It requires some form of reflective stance by the student so as to inform
future practice (Mason and Johnston-Wilder, 2004a).

4 Interaction and Ways of Thinking

Jim Kaput designed SimCalc so as to maximize a range of two-way interactions:
student-student, student-graphs, student-formulae, student-simulation, and hence
for the student to coordinate graphs, formulae and situations. Such coordination is a
form of modeling as elaborated on by Lesh, English, Sevis, and Riggs (this volume,
p. 419). This leads me to ask what forms of interaction are possible in a mathematics
classroom?

Elsewhere (Mason 1979, 2002) I have, following the theory of Systematics (Ben-
nett, 1966), suggested six forms of interaction based on each of the teacher, student
and content taking on one of the three roles necessary for an effective action (initi-
ating, responding and reconciling-mediating). The six modes of interaction form a
framework for considering possible modes of interaction, and are for convenience
known as the six Ex’s: Expounding, Explaining, Exploring, Examining, Expressing,
Exercising.

Each of these interactions takes place within a milieu and a domain. The milieu
includes institutional affordances and constraints, including classroom and institu-
tional social norms and demands. The domain includes the focal world(s) or spaces
of the participants. Usually this consists of the mental worlds in which people dwell
and from which they express their insights, but the presence of virtual screen-worlds
provides a more explicitly taken-as-shared world of experience, namely the world
of phenomena acted out, and interacted with, on a screen (Mason, 2007).

The key feature for our considerations here is the mediating or reconciling role
of one of the impulses or agents so as both to permit the other two to be in re-
lationship, and to sustain them in relationship, leading to a result that can partake
in further actions. For example, expounding is best when the presence of students
(actual or virtual) brings the teacher into contact with the mathematics in a fresh
and meaningful way, as the students are drawn into the world of experience of the
teacher. The phenomenon of planning a lesson and being aware of a rich range of
possibilities speaks to this. By contrast, explaining is used here to describe the ac-
tion in which it is the mathematics that brings the student and teacher into contact
as the teacher tries to enter the world of the student. The tendency for teachers to
slip from explaining to expounding (“Ah, that’s where the difficulty lies. . .”) is but
one of the many common phenomena captured by this six-fold structure to interac-
tion. Software designers are just as prone to expounding (presenting things clearly),
whereas explaining (in the sense here) is really a teacher responsibility.

Seeing examining as an action highlights the qualities of the mathematics being
that which brings the student to approach the teacher in order to check their own cri-
teria against that of an expert (rather than usual assessment practices involving the
regurgitating of memorized procedures applied to routine tasks). Seeing express-
ing as an action acknowledges that the student experiences desire to express (to
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themselves, to peers, to a teacher or even more widely) in which the mathematical
content or insight initiates, the student responds, and the teacher or other audience
mediates and facilitates the action. When teachers complain that students do not ask
questions or initiate discussion, it means that expressing is not being experienced.
Prompting withdrawal from action and reflection upon that action is one form of
expressing as an interaction.

These modes take place within a classroom and wider institutional milieu. By
treating students as full participants and enabling all six modes to be experienced,
the issue of respectfulness, highlighted particularly by Ares (this volume, pp. 92–93)
is more likely to be taken into account. By developing a conjecturing atmosphere
in which every statement is treated as a conjecture to be tested mathematically or
in experience, and where disagreement is phrased in terms of “inviting a modifi-
cation of a conjecture,” complete respect for all participants by all participants can
be modeled, enacted, and experienced. Balancing occurrence of all six modes also
contributes to the provision of spaces, both public and private in which students
can exercise their powers (Ares, this volume). As Ares puts it, the exploration of
interactions and communication patterns such as those by Schorr and Goldin (2008)

illustrate how the participation structures that characterize SimCalc classrooms involve not
only social and cultural resources (e.g., language, collaboration) but also provide space and
opportunity for students to experience interactions that can help to ameliorate the limitations
of the social and cultural contexts of schooling found too often in urban settings. (p. 135)

Students expressing themselves as a mode of interaction is much valued, to the
extent of forming a commonplace, but difficult to sustain in a content-heavy syl-
labus, and it can be difficult to know how to deal with what gets expressed. As
Hegedus and Moreno-Armella (this volume) put it, “the evolution of meaning is
enhanced as traditional forms of expression are transformed or enabled (p. 49)”.
Multiple media afford opportunities not only for multiple expressions but for deep-
ening appreciation of that which is trying to be expressed through making con-
nections. SimCalc-centered classroom networks encourage student constructions to
move from the local and private to the public and shared display. Students often
show a preference for learning from each other’s explaining and expounding. Be-
ing able to contrast and compare their work to that of others in mathematically
meaningful ways provides access to participation in modes of interaction involving
different agents (other students rather than official teachers). Appreciation and un-
derstanding are experienced as integration and coordination of multiple expressions,
not the elimination of the many in favor of some one. diSessa (1993) captured this
neatly when he valued software that was both expressive and manipulable, enabling
users to express their thinking without great obstacles, and to manipulate those ex-
pressions so as to form more complex expressions that actually perform actions.
Put another way, representational expressivity together with participatory structure
(Hegedus and Moreno-Armella, this volume), such as is experienced in a conjec-
turing atmosphere, are essential requirements for effective software to contribute to
effective learning in the world of the social.

The scope, range, and variety of questions and prompts used by a teacher provide
a world of experience which can profoundly influence what students take to be the
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Fig. 1 Two axes of an
activity

enterprise and the ways of working in mathematics. In Watson and Mason (1998),
we collected a variety of prompts and questions designed to promote mathematical
thinking beyond the superficial, based on some probes used by Zygfryd Dyrslag and
translated for us by Anna Sierpinska (1994). This is a contribution to one aspect of
Bishop’s notion of “purposefully planning for productive discourse” (Bishop, this
volume, p. 246), which lies at the core of professional development.

Action is essentially dynamic and unpredictable and results may not be mani-
fested immediately, certainly when human beings are involved. Teaching involves
actions that take place in time, whereas learning is something that takes place over
time (Griffin, 1989). Looking for immediate consequences of engaging in discourse
or working with software is bound to disappoint. Becoming stuck in routine habits—
whether in the ways of working on mathematics in a classroom, or in the modes of
interaction used in a classroom, or even in the ways of talking about mathemat-
ics with each other—is to lose the dynamic affordances of action and to revert to
mechanicality and habit which are trained, ingrained and enculturated. This helps
account for the observation of Bishop (this volume) that “the existence of. . . affor-
dances is not a guarantee that students are prepared to, or necessarily will, take ad-
vantage of them” (p. 233). An action cannot be guaranteed because of the complex
mix of factors that can influence the initiation, continuation, and successful fulfill-
ment. Not only are there constraints arising from past experience and expectations
of all the agents, including the milieu but in the sense of my title, no teacher act, nor
institutional act or policy, can cause learning. Actions have to be invoked or trig-
gered simply so that transformations in student awareness (learning) are possible.

In order to see what is possible with a specific technology such as SimCalc, it
is necessary to extend beyond the triads of action. Bishop (this volume) observed
that “the intellectual work required of students naturally varies based on the current
goal, the nature of the task/activity, students’ prior knowledge, and issues related to
affect and motivation” (p. 235). In Systematics, this is expressed—at least in part—
through seeing activity as a four-fold structure, built around a motivational axis and
a means axis (see Fig. 1).

The motivation axis encompasses a tension or gap between current state and
goal state (which may be variously interpreted or even experienced by different
participants). The means axis encompasses a tension or gap between resources and
tasks. There are four sub-triads, each constituting actions, and it is in the balance
of these that effective activity takes place. For example, the resources need to be
adequate and appropriate for the tasks to afford access to the desired goals, the tasks
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need to call upon available resources effectively, and the tasks need to be appropriate
so as to afford the possibility of spanning the gap between current and goal states.

In this light, SimCalc represents a resource, which, with suitable tasks, is in-
tended to provoke learners to move from a mechanistic, calculational perspective of
mathematics as arithmetic, to a view of mathematics as a mode of enquiry, interpre-
tation and justification through invoking student use of mental imagery and other
powers required to co-ordinate graphical, symbolic, and tabular presentations of re-
lationships. A core feature is the expressivity in conjunction with manipulability, so
that interaction is two-way.

To explore the potential of something, Systematics calls upon a five-fold struc-
ture, in which the essence or core of something is revealed through the least and
most it can be, and between what feeds or serves it, and what it feeds or serves.
In the case of software such as SimCalc, the least it offers is a collection of com-
plex tasks involving interpretation, negotiation of meaning, and analysis of reason-
ing. The least its use can fulfill is to challenge students, to awaken them to the
possibilities of mathematics as a way to appreciate and to express relationships be-
tween mutually dependent changing quantities, in this case connected to motion.
If tasks are effective, activity productive and engaging, and reflection stimulated,
then the use of SimCalc can awaken students to the very nature of mathematical
thinking through experience of and reflection on the shifts of attention involved in
co-ordinating (re)presentations and perceiving those relationships as instances of
more general properties.

SimCalc offers even more, for it manifests visually different components of what
Tall and Vinner (1981) call the concept images and what Gattegno called the aware-
nesses associated with modeling motion graphically and algebraically. In addition
to the graphical and tabular possibilities, there is the facility to “drop marks” on
a number line at uniform time intervals. It is in the multiplicity of sense-making,
experience-related awarenesses which, being manifested on screen, can not only be
drawn to students’ attention explicitly, but through multiple windows, serve as stim-
uli to promote shifts of attention between these components of understanding, that
provides SimCalc’s power as a learning environment.

5 Attention

A longstanding and ubiquitous conjecture of mine is that it is helpful to become
aware not only of possible differences in what a teacher is attending to compared
to what students are attending to, but also in how they are attending. Even when
people are attending to the same thing, they may be attending differently (Mason,
1982, 1989, 1998). When this happens, it is likely that communication is at best im-
poverished, if not breaking down altogether, reducing the effectiveness of whatever
mode of interaction is taking place.

Some of the potential of SimCalc can be explored by looking at extracts from
transcripts (appearing elsewhere in this volume) and asking, simply on the basis of
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verbal evidence, what the teacher and the students might be attending to, and what
form of interaction is being activated. I have drawn particularly on Bishop’s chapter
(this volume) because there is sufficient detail in her observations to make it possible
to get a glimpse of students’ focus of attention.

From Table 3 of Bishop (this volume, pp. 242–243)

19 Teacher E How do you know that the bus slowed down according High demand
to your graph? Kelsy?

The teacher is clearly attending to what Kelsey had just said (“the bus slowed
down”), although we do not know what else is not being expressed explicitly con-
cerning the teacher’s awareness of possible confusions, issues in interpreting of line
graphs, and so on. In addition, we do not know whether Kelsy is attending to the
image of the bus slowing down, or to a graphical presentation of (a mathematical
model of) that action. Coded as “high demand” by Bishop, the teacher’s intervention
may be seeking information about what students (Kelsy) are attending to in relation
to “bus” and “slowed down.” The teacher may also be attending to this coordina-
tion, or only to the desirability for such a coordination. In other words, the teacher
may have an answer in mind already, or, when Kelsey answers, may discover that a
certain response was expected (Love and Mason, 1992).

What is being sought could be a co-ordinating action between discourse and
graph, or even the generating of a narrative from a graph. Earlier in the episode
from which this is taken there are moments when students confuse the graph colour
and the vehicle it signifies. Their focus shifts without maintaining colour-signifying
coordination. If this is not sorted out, then all subsequent discourse becomes highly
problematic mathematically. The intervention could be considered to be a form of
model eliciting activity (Lesh et al., this volume), because the “high demand” request
is for interpreting or modeling the slowing down of the bus in terms of the graph
(though couched in terms of questions about the model, that is, the graph).

20 Kelsy The, if you look at the van, it’s like a constant rate and it stays High give
straight. And the bus, like, leans forward.

Attention shifts to the van, but used metaphorically to mean the graph of the
van’s distance against time, and this analysis is validated by the “it stays straight,”
with “it,” referring to the graph, not the van. Attention then shifts to the bus, again
metaphorically, but the use of the indefinite pronoun creates ambiguity in the de-
scription “leans forward.” Is the student attending to the graph, to the relation be-
tween the graphs associated with the van and the bus, or perhaps, the bus driver in
some curious mixture of metaphor and metonymy. The structure of attention seems
to be centered, in natural language expression of recognized relationships between
graphs, or perhaps between vehicle motions. Of course the teacher is aware both
of properties of graphs and of their instantiation in this specific setting. This a way
of attending which it is intended the students achieve. In-the-moment or in-flight
(McNair 1978a, 1978b) reactions and responses by the teacher are likely to assume
that the learners are attending to what the teacher attends to when cued by the stu-
dents’ words and gestures, and also attending in the same way as the teacher. Often
apparent student confusion arises because this assumption turns out to be a conjec-
ture in need of modification!
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1 Teacher E Leans forward. That’s not the bus turning the corner, or High demand
is it? Is the bus changing direction? (pause) This angle,
where this is actually two lines (points to position-time
graph), does it show that the bus went off this direction?
(Teacher gestures upward motion following the path of
the first linear segment in the van’s path.) And then
came this direction (teacher gestures horizontally)?

Teacher attention immediately shifts to the verbal expression “leans forward.”
This might be a diversion from attending to mathematical relationships, or it might
be a probing of the relationship being attended to by Kelsey when uttering “leans
forward.” Alert to possible misinterpretations of graphs, the teacher may have a
possible instance come-to-mind and may choose to express (or finds him/herself ex-
pressing) what it is not. . . typical of questioning on the fly, when something starts
being expressed, and the realization of its origins and role come to mind. Evidence
for this is the switch to “or is it?” (Love and Mason, 1992). The teacher then recov-
ers ground by rehearsing the same doubt in a different form (“bus went off”). The
teacher appears to be attending to (the possibility that Kelsey is attending to) the
straight-line segments of the graph as directions of travel. This shift in discourse by
the teacher has the potential to set up a disturbance or conflict for the learner: is the
teacher focusing my attention because that is where it should be, or am I expected
to disagree? In the subsequent transcript, some students disagree.

Solely on the basis of the transcript, without access to voice tones, pausing, eye-
lines, posture or gesture, it seems reasonable to conjecture that the teacher is of-
fering a world of his/her perception or attention, to the student, characteristic of
expounding, rather than trying to enter the world as perceived by the student which
is a characteristic of explaining. Sensitivity to epistemological obstacles (Bachelard,
1980; Cornu, 1991, p. 159) can appear to be forms of explaining but the student ex-
perience may be more expounding, since their attention is being shifted to match
that of the teacher.

The “high demand” and “high give” categorizations used by Bishop for this in-
terchange is reflected in the shifting of attention of the teacher, and the cognitive
demand made with the alternative interpretation or modeling of the mathematics.
Attending to the relationship between the graph and what it presents in the SimCalc
animation—recalled as images and a sense-of motion—the interaction works at co-
ordinating the relationship between graph and situation, constantly eliciting models.
Sometimes the mathematics models the situation and sometimes the situation (as
narrative) models the mathematics.

By way of contrast, the following extract from Bishop, Table 2 (this volume,
pp. 240–241) also shows shifting and directing of attention, but in a different way.

1 Teacher L What are we measuring on this graph? We’re measuring Low give &
miles and time. And when we put them together, what Low demand
do we, what do we get when we put the miles and the
times together?

2 Student 1 Um, how long like. Low give

3 Teacher L No. What do we do? Miles per hour. What is that? Low demand
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The teacher is attending to the meaning of the axes (distance, or at least “miles”)
and time, and how these relate to, combine, or are coordinated in order to give
speed. The wording “put together” is (probably unintentionally) ambiguous, be-
cause it could be that the teacher is attending to the graph, and wants students to
attend to the graph as distance coordinated (literally) with time, although the subse-
quent intervention indicates that it is the measure of speed that is to be focused on.
But where on the graph or in the simulation is the speed experienced?

7 Teacher L We used a formula, but wasn’t that the speed? . . .So Low give & High
these lines are telling us about the speed. So if, if this demand (request
graph’s measuring our speed what happened to the interpretation)
bus’s speed? What happened to the bus’s speed and
what happened to the van’s speed?

The speeds can only be discerned by attending to the slopes of the line segments,
but there has been nothing specific for students to focus on in order to be able to
“read” or otherwise interpret relationships of speeds. The teacher offers one focus
of attention, then repeats it and augments it, suggesting that attention has shifted to a
relationship. The format of the questioning might indeed direct student attention to a
relationship, or simply to two distinct tasks. One student tries to develop a narrative.

8 Student 3 The bus started to get in front but whenever it curved Low give (no
the van sped up and caught it. justification of

interpretation)

The student is discerning the graph (re)presenting the bus, and the van, or perhaps
is referring to memory of the SimCalc simulation of the movements. The student
then falls into the classic trap of interpreting the line as a map-position rather than as
distance coordinated with time. The line becomes “path” rather than co-ordination
of distance and time.

The teacher has focused on “started” but in so doing misinterprets the student’s
“started to get” as “started initially.” Teacher attention has shifted to the start, so the
discourse shifts, and the students have to discern the shift of focus.

10 Student 3 Yes ma’am but when– Low give

11 Teacher L –No ‘cuz the lines have nothing to do with which Low give & High
direction they went. The lines are their speed. So demand (request
what do we see, what is the difference between the comparison)
bus’s speed and the van’s speed?

What sense are students to make of “the lines are their speed”? The teacher is
caught in a metonymy: the slope of the lines is the speed; “the lines” is used to refer
to the associated quality of speed. The students still do not have anything specific to
refer to, to discern, in order to relate the speeds of the two vehicles. Meanwhile the
discourse of “turning” and “map positioning” remains in the background.

Similar analysis can be developed for the subsequent interaction. What is demon-
strated clearly is that being unaware of a metonymy and of what is actually to be
attended to, the discourse is likely to be at best confusing and at worst uncontrollable
by students. Being aware of what you are attending to—as what you want students
to attend to—is vital for effective interaction.
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In the language of the six Ex’s, in this interaction the teacher is in a mixture of
expounding mode—trying to draw students into the teacher’s world of perception;
testing students—while trying to operate in explaining mode—entering the world of
the students. Asking “testing” questions feels like examining in its common usage,
but misses the point that in the interaction mode examining it is the student who
presents themselves to be tested in order to check that their own criteria are coming
into alignment with the expert’s criteria. As Bishop comments, there is minimal
opportunity for students regarding other modes such as exploring, for engaging in
mathematical (as opposed to pedagogic) reasoning, or even expressing what they
are thinking.

In Sequence 3 of Table 4 (Bishop, this volume), there is another example of the
obstacles arising when teacher and students are discerning different things.

Sequence 3

14 Teacher A Now, was the speed of the two vehicles the same?

15 Mult S’s No.

16 Teacher A No. You know that by how?

17 Student 2 They’re not the same.

18 Teacher Because of the (pause) graph right? And because of running the
simulation. They didn’t stay right beside each other, did they?

Testing comprehension, the teacher performs a pedagogical move to make ex-
plicit a socio-mathematical norm or classroom rubric, that it is not sufficient to know
what is the case, because you also have to be able to justify it by reasoning on the
basis of properties. But then the teacher dilutes this by referring to the graph but not
to what it is about the graph that is being discerned, related and seen as an instanti-
ation of a property, namely comparison of slopes. Instead there is parallel reference
to the graph and to the simulation. Presumably the teacher is attending to the coor-
dination of these two, to the way in which each models the other. Whether there is
sufficient detail for students to pick up on that, coordination and mutual modeling
cannot be discerned from the transcript presented.

One of the classic traps when evaluating or assessing student understanding—
even in the weak version of the examining mode in which the teacher imposes the
interaction of the students—is to switch from listening-to, to listening-for (Davis,
1996). Here “listening” is taken metaphorically to include observing behavior and
reading written work. Once it has been decided what language patterns are expected,
what techniques are required, what forms of reasoning are necessary, what behav-
ior is expected, it becomes much harder to “really listen” in the fullest sense. The
didactic tension (Brousseau 1984, 1997; see also Laborde, 1989) as I formulate it,
is almost always in play: “the more clearly the teacher indicates the behavior being
sought, the easier it is for the students to display that behavior without generating it,
or experiencing it deeply.”

Take, for example, an extract from the chapter Pitta-Pantazi et al. (this volume,
p. 337):

. . .What does it mean when it says that “the second car in the first four minutes. . .”? do we
draw it here [points to [0, 4]]?
No! according to the instructions the second car is leading the race for the first 4 minutes.
It is not written that the car starts from the 4th km. Then this car moves for 10 minutes.
OK, like this [he draws the graph]? (p. 337)
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The first student shows that he is attending to a phrase whose meaning (whose
instantiation in the graph as model) is not clear. Pointing to the [0, 4] coordinate
point suggests that attention is dominated by the “4 minutes” perhaps obscuring or
back-grounding “first.” The dynamic nature of the situation being modeled is tem-
porarily lost. The second student not only discerns the details of the instruction but
also of the first student’s sense of the role of the 4 minutes, and is able to relate them
and to agree to one and deny the other. His attention seems to be on the movement
throughout, the original situation to be modeled. The second student acknowledges
a shift of focus, and proceeds to draw a graph, presumably correctly, and to check it
via the animation.

An important component of Bishop’s Planning for Participation Discourse in-
volves locating relevant and potentially misleading foci of attention and experienc-
ing freshly for oneself so as to be sensitized to student shifts and non-shifts of atten-
tion.

6 Deeping Understanding

Understanding is taken here to mean clarity in articulating narratives that link differ-
ent mathematical objects (such as graphs, formulae and situations). It is a complex
collection of acts of modeling and interpreting relationships, together with reasoning
on the basis of properties, which are perceived as being instantiated in those relation-
ships. Understanding can be displayed in any of the interaction modes, but perhaps
most particularly in expressing and examining, when students withdraw from action
and reflect upon those actions. Thus to broaden understanding is to discern more
finely, become aware of, and more articulate about, connections and relationships
between discerned objects. To deepen understanding is to become aware of relation-
ships in the particular as instances of properties that can hold in many situations,
together with relationships or properties that are consequences of these properties.
This perspective is closely aligned with the notion of horizontal and vertical math-
ematization (Freudenthal, 1991; Treffers, 1987; Treffers and Goffree, 1985).

Teachers want students to develop flexibility in modes of thinking, in what and
how they attend, and in what resources they call upon. To be flexible, for example
between using graphs and using formulae, requires some degree of confidence and
facility in each mode. It also involves co-ordinating them, recognizing relationships
between them, and perceiving relationships as instantiations of the act of coordinat-
ing graphs and formulae. It is a reasonable conjecture that the greater the teacher’s
own flexibility in and between modes, the more likely it is that students will develop
similar flexibility.

Burke, Hegedus, and Robidoux (this volume) describe how Jim Kaput’s desire to
be able to respond flexibly to student thinking that arose in class led to developments
in the software so that users could similarly respond flexibly. If it is not easy or
even possible to develop a line of thinking, a conjecture or an exploration, then
students are likely to get the impression of mathematics as a fixed and formatted
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subject—rather than as a creative and engaging discipline, a form of enquiry. Having
different pedagogic strategies come to mind in the moment. For example, having
different modes of interaction with students come to mind, which are supported by
the resources at hand, and acting upon these, makes the milieu in which students are
embedded and participate, mathematically rich, thereby affording the opportunity to
deepen understanding by deepening teaching possibilities.

In looking for student understanding, traditional questions involving calculations
can at best reveal something of student facility but as is well known by any teacher—
students can get correct answers while understanding superficially (the didactic ten-
sion again), and sometimes students who do understand get incorrect or unexpected
answers because their thinking takes them beyond the assumptions of the question
setter.

Pitta-Pantazi et al. (this volume) report effective use of more discerning probes

In another task students were asked to identify the similarities and differences amongst three
different distance-time graphs [see their chapter]. Students answered that the three distance-
time graphs showed the distances that two athletes run in a specific time interval. When
students were asked to compare these distance-time graphs with their respective velocity-
time graphs, they were able to say that the distance-time and the velocity-tine graphs showed
the same race but provided different information. They claimed that one of the graphs shows
the distance that the athletes run whereas the other graph shows the athletes velocity (p. 333)

Here we have summaries of what was said by students in response, but with-
out sufficient detail, to determine what features students were attending to that they
were expressing verbally, and how they justify their reasoning by reference to prop-
erties being instantiated as relationships in the particular graphs. By being aware of
the importance of attention and the different ways of attending, more specific evi-
dence could be given of the depth of student understanding. Invoking expressing and
examining could provide more evidence. Planning for appropriate attention-shifts,
productive discourse, and suitable experience on which to reflect is the basis for
effective design.

7 Conclusions

Teacher actions and reactions can have a profound influence on student experience.
In the presence of on-screen-locally-networked stimuli, such as SimCalc provides,
the system can have a similar impact. The combination of system and teacher pro-
vides a potent combination when they run in harmony.

Bishop (this volume) concludes from her study that purposeful planning for pro-
ductive discourse is an important part of lesson preparation. (pp. 246). The same
applies to the milieu afforded by systems such as SimCalc. As Hegedus et al. (this
volume) notes, the SimCalc system can amplify affordances for providing reactions,
both from the mathematical phenomenon and from peers as well as the teacher.
Preparation is not simply an assembling of a sequence of tasks, however well de-
signed and formulated, but rather a preparation of the teacher, in terms of being
alerted to and aware of what would be helpful to have come-to-mind in the moment,
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when it is needed. But alignment and harmony between system values, teacher val-
ues, and propensities seems vital.

At the heart of the matter is fostering students’ use of their own mathematical
powers and access to (awareness of) pervasive mathematical themes. This is sup-
ported and sustained when students’ make connections to other topics and concepts.
This, in turn, is achieved by making use of a range of mathematically oriented and
didactically structured questions and prompts—some of which can perhaps be em-
bedded in the system. At a more subtle level, being aware of possible states of atten-
tion, general pedagogic strategies, which include facility in arranging for different
modes of enquiry and action-balanced activities, and particular didactic tactics en-
able the system and the teacher to engage with students and influence what and how
the students are learning.

Particularly important is self-awareness by the teacher and the system designers
of, for example, the desire to shift into exposition rather than holding back, to in-
tervene more heavily than is necessary (that is, trying to do for learners only what
they cannot yet do for themselves). What matters most is the spirit and ethos, the
atmosphere of engagement with mathematics—and this depends strongly on what
comes-to-mind in the moment. What does come-to-mind arrives through structural
resonance (metaphor) and affective associations (metonymies).

From a Systematics perspective, purposely planning for productive discourse is
one contribution to lesson preparation for expanding the opportunities for deepen-
ing understanding. Gauging the task affordances, the balances between resources
and tasks in relation to the gap between current and goal state is also essential for
engaging and productive activity. Alerting oneself to possible shifts of attention in-
volved in getting to grips with the topic (epistemological obstacles) through episte-
mological analysis (Brousseau, 1997) is also essential. Of course, discourse plays
a major role in how students are encouraged and provoked to do this—augmented
and amplified by a correspondingly appropriate classroom ethos. Withdrawing from
activity and promoting reflection on that activity are also vital for many if not most
students.

The success of a teaching episode depends on the shifting focus and structure
of attention, of both teacher and students, on what comes-to-mind (again for both
students and particularly, the teacher) in the way of mathematically cognitive, peda-
gogically enactive, and dispositionally affective choices made in the moment. Above
all, engagement in action followed by reflection upon that action is necessary for
most students to learn efficiently.
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Modeling as a Means for Making Powerful Ideas
Accessible to Children at an Early Age

Richard Lesh, Lyn English, Serife Sevis, and Chanda Riggs

1 Introduction

Our research and development activities are based on a models & modeling perspec-
tive (MMP) on mathematics problem solving, learning, and teaching (Lesh, 2007;
Lesh and Doerr, 2003; Lehrer and Lesh, 2011). This chapter reports results from
a project in which children in a typical first grade classroom worked in teams of
three on model-eliciting activities (MEAs1) which were designed to be simulations
of “real life” problem solving situations that children are likely to encounter in their
everyday lives outside of schools in the 21st century. Although these MEAs were
simulations of situations in which some important type of mathematical thinking is
useful beyond school, they were set in the context of children’s stories—because

1Explicit principles for designing model-eliciting activities have been published in a variety of re-
cent publications (e.g., English, 2009; English and Mousoulides, 2011; Lesh et al., 2000). And,
these standards also have been specially adapted for the development of teacher-level MEAs (Za-
wojewski et al., 2009) or MEAs for older students in fields such as engineering (Haljmarson and
Lesh, 2008).
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young children’s “realities” are not necessarily the same as those of adults. The pri-
mary criteria that were used to assess the “realness” of tasks were: (a) do the children
try to make sense of the problem using their own “real life” experiences—instead
of simply trying to do what they believe some authority (e.g., their teacher) consid-
ers to be correct (even if it doesn’t make sense to the children)? and (b) when the
children are aware of several different ways of thinking about a given problem, are
they themselves able to assess the strengths and weaknesses of these alternatives—
without needing to ask their teacher or some other authority? When the preceding
two criteria are satisfied, results of our work have consistently shown that most aver-
age ability children are able to go from “first-draft thinking” to “N th-draft thinking”
without heavy guidance from an outside authority. Furthermore, even though their
first-draft responses might have been unimpressive, their N th-draft responses are
often very impressive indeed.

Results reported here provide an existence proof showing some powerful concep-
tual tools that primary school children are capable of producing which: (a) involve
some remarkably advanced “big ideas” from much later in the K-12 mathematics
curriculum, and (b) are generalizable in the sense of being sharable (with other
people), and reusable (in other situations). In particular, our goal is to demonstrate
that primary school children also are able to develop powerful ways of thinking
about problem solving situations which involve: (a) interactions among two or more
different types of functions (or types of quantities) and (b) issues such as maxi-
mization, minimization, stabilization, compensation, which traditional curriculum
materials have treated as if they needed to be postponed until after students have
been taught Calculus. However, our results also suggest that such achievements are
unlikely to occur unless most of the design “specs” for MEAs are satisfied. Among
other things, these design “specs” state that: (a) children must clearly recognize the
need for the kind of thinking that is desired, (b) their sense-making must be based on
extensions of their own personal knowledge gained through “real life” experiences,
and (c) their thinking must be expressed in the form of artifacts or tools whose use-
fulness (power, sharability, reusability) can be tested by students themselves (Kelly
et al., 2009).

2 The Relevance of Our Work to Themes Emphasized
in the Kaput Center

The research reported in this paper involves links among four themes that have
played central roles in both MMP research and research associated with the Ka-
put Center: representational fluency, foundations for the future, democratic access
to powerful ideas, and capitalizing on developmental perspectives to make power-
ful ideas accessible to children at an early age. For example, in SimCalc-related
research, attention focused on the development of students’ thinking about the
mathematics of change and variation. Signature insights involved the development
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of children’s understandings about interactions between (a) continuously chang-
ing quantities and (b) accumulating quantities—i.e., understandings that eventually
evolve into the Fundamental Theorem of Calculus. But, beyond topics associated
with Calculus, a Kaputian research agenda generally has focused on investigat-
ing what it means to “understand” many of the most important concepts in K-16
mathematics—and on how these understandings develop. In particular, this research
agenda has investigated how early conceptions (as well as misconceptions) of “big
ideas” often begin to develop much earlier than most of research perspectives have
expected.

The preceding points are especially noteworthy because Kaput himself did not
begin his work with the (fallacious) assumption that: I am a mathematician; there-
fore, I understand all that needs to be known about (a) what it means to understand
the most important “big ideas” in K-12 mathematics, (b) what early conceptions
(and misconceptions) of relevant concepts look like, (c) how and why these un-
derstandings develop and change, (d) how critical aspects of development can be
documented and assessed, and (e) what concepts, and what levels and types of un-
derstanding, are needed to support new kinds of mathematical thinking that are in-
creasingly important beyond school in a technology-based age of information? For
example, even in his earliest research and development activities, some of the most
important characteristics of Kaput’s research focused on “representational fluency”
(see Fig. 1) and its roles in the development of students’ thinking in Algebra and Cal-
culus (Harel and Kaput, 1991; Kaput, 1987, 1989a, 1989b, Kaput, 1999; Kaput and
Goldin, 1996). In particular, Kaput’s early research and development activities of-
ten focused on what he referred to as the “big three” representational modes: tables,
graphs, equations—and translations within and among them (see the three ovals at
the top of Fig. 1). Similarly, a large share of early MMP research focused on K-8
mathematics and on what Kaput sometimes referred to as the “little five” modes of
representation: written symbols, spoken language, pictures & diagrams, experience-
based metaphors, and concrete manipulate-able models (see the five ovals at the bot-
tom of Fig. 1). As Fig. 1 suggests, however, by the 1980s both Kaput and MMP had
migrated toward technology-based representational media, and toward issues aimed
at providing both: (a) democratic access to powerful ideas and (b) foundations for
the future in mathematics thinking and learning.

Distinctive characteristics of this later research agenda increasingly emphasized
both “situated” and “social” aspects of mathematical understanding. For example,
in the case of situated understandings, our research increasingly emphasized that,
from beginners to experts, and from pure to applied mathematical thinking, math-
ematical thinking tends to be organized around experience at least as much as it is
organized around abstractions (Lesh et al., 2007). And, in the case of socially me-
diated understandings, we recognized that learners and problem solvers are not just
isolated individuals. They may be (for example) learning communities, or teams of
specialists with continually evolving tools for communication, collaboration, and
conceptualization (Kaput, 1989a).
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Fig. 1 A merged Kaput-Lesh diagram for thinking about representational fluency

3 What Other Theoretical Foundations Underlie MMP Research
& Development Activities?

Another of the most important assumptions underlying MMP research is based on
the recognition that, in virtually every area of human endeavor where learning sci-
entists have investigated the development of expertise, exceptionally capable people
not only DO things differently but they also INTERPRET (see, hear, feel, taste)
things differently. For example, just as exceptionally capable teachers (or chess
players, or chefs, or business managers) recognize patterns where others see only
fragmented pieces of information, children also need to develop powerful models
for making sense of situations where quantification or some other types of math-
ematization processes are needed.

Concepts are used to conceptualize situations; and, in elementary mathematics,
conceptualizing is about quantifying, coordinatizing, dimensionalizing, or in other
ways mathematizing situations. In other words, conceptualizing is about describing
or designing—or, in short, modeling. So, when MMP research investigates what
kinds of elementary mathematical thinking is most useful beyond school, we look
beyond counting and calculating situations to also ask: What kinds of situations do
children need to be able to describe using the natural numbers: 1,2,3, . . . (or other
basic ideas involving topic areas such as geometry, algebra, calculus, probability,
or statistics)? We recognize that, in modern societies, outside of school classrooms,
young children are surrounded by situations in which numbers refer to many things
in addition to counts and in which numbers are used for many purposes in addition to
calculations. For example, numbers may refer to locations (addresses, positions, or
coordinates), composite units (units of units), actions (exchanges, transformations),
continuous measurements (lengths, distances, areas), quantities that have both a
magnitude and a direction (vectors), signed quantities (negative numbers), exchange
rates or ratios, and a wide range of “ness” quantities (orange-ness, rough-ness,
sweet-ness), “per” quantities (raisins per cookie), “ity” quantities (density, proba-
bility), or accumulating quantities. Furthermore, many of these situations involve
information that is given in concrete, graphic, or tabular forms—so that SimCalc’s
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longstanding emphasis on representational fluency is highlighted (Lehrer and Lesh,
2011). Many situations involve interactions among several different kinds of quan-
tities or “agents,” whose interactions cannot be described using a single arithmetic
sentence, or input-output rule. Instead, such situations may involve feedback loops,
second-order effects, and issues such as maximization, minimization, accumulation,
equalization, modularization, stabilization, which traditional curriculum materials
have treated as if they must be postponed until after Calculus has been taught.

MMP uses the term models to refer to the interpretation systems that prob-
lem solvers develop to make sense of the preceding kinds of problem solving or
decision-making situations (Kaput, 1991). What is a model? According to MMP,
an entry-level definition is: A model is a system for describing another system for
some specific purpose (Lesh and Doerr, 2003). What is the most important distin-
guishing characteristic that makes mathematical models different than other types
of models—such as those used in chemistry, biology, history, or music? Mathe-
matics is the study of structure. So: Mathematical models focus on the structural (or
systemic) properties of the systems-as-a-whole that they are used to describe. Some-
times, these properties of the system-as-a-whole are referred to as emergent proper-
ties of the system. But, in any case, in mathematics, such properties of systems-as-a-
whole include not only properties such as symmetry, invariance, and centrality; they
also include properties which often appear as “undefined terms” within the axiom
systems that define different kinds of mathematical structures. Examples of such
“undefined terms” include “points” and “lines” in the axioms that define Euclidean
Geometry; and, they include “identity elements” or “inverse elements” within the
axiom systems that define metric spaces or counting numbers (e.g., see Peano’s
Postulates).

What does it mean to be an “undefined term” in a mathematical system? It means
that all of the mathematical meanings of these terms come from the systems-as-a-
whole in which they reside. So, the psychological counterpart of this claim can
be seen in Piaget-inspired research showing what children’s thinking is like before
their interpretations of these “undefined terms are based on relevant systems of op-
erations, relations, and patterns.

An important point to emphasize here is that models are not facts; nor are they
skills. Yet, MMP considers them to be among the most important types of knowl-
edge that students need to develop in order to be able to use mathematics in real
life situations beyond school. This is because models are used to conceptualize (i.e.,
mathematize) situations in ways so that mathematical tools can be used. Conse-
quently, MMP research expects models to provide the conceptual systems that un-
derlie the most important concepts that citizens of the 21st century need to develop.
So, a primary goal of MMP research is to clarify the nature of these continually
adapting models.

What are model-eliciting activities (MEAs). In MMP-based research, MEAs are
problem solving situations which are designed precisely to cultivate, document, and
assess the development of models related to the most important “big ideas” in K-
12 mathematics (Doerr and Lesh, 2010). Unlike most “problems” that children en-
counter in school textbooks or tests, MEAs are designed explicitly to be tools for re-
search. In particular, they are designed to provide rich contexts for investigating: (a)
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what it means to “understand” the half-dozen-to-a-dozen most important concepts
or abilities within any given course or grade level in the K-12 curriculum, (b) how
these understandings develop, and (c) how development can be cultivated, docu-
mented, and assessed. So, MEAs are designed to be situations in which important
aspects of children’s thinking can be observed directly—by researchers, by teachers,
and (most importantly) by children themselves. Furthermore, because MEAs focus
on conceptual change, and not just computational proficiency, they are designed to
optimize the chances that significant conceptual adaptations will occur within sin-
gle 30–90 minute problem solving sessions. In fact, in properly designed MEAs,
children’s thinking often develops from Piaget-like stage# N to stage# (N + 2 or
N + 3) within sufficiently brief periods of time so that many of the most important
processes that give rise to development can be observed directly (Harel and Lesh,
2003; Lesh and Harel, 2007; Lesh and Kaput, 1998; Lesh and Yoon, 2004).

This learning effectiveness of MEAs should not be surprising. Models are, at their
simplest, purposeful descriptions. So, if children recognize the need for a specific
kind of description, if they are able to make sense of the situation using the same
kind of sense-making abilities that they use outside school, and if their thinking is
expressed in the form of tools and artifacts which can be tested in ways that also test
underlying ways of thinking, then they are likely to go through several first-draft,
second-draft, and nth-draft ways of thinking within relatively brief periods of time.
Consequently, during the past decade, more than fifty research reports have been
published which included analyses of transcriptions in which the modeling cycles
that students went through often resembled Piaget-like stages of development for
relevant concepts (see Hamilton et al., 2008; Lesh and Doerr, 2003, 2011; Lesh
et al., 2010, 2007; Lehrer and Lesh, 2011; Lesh and Zawojewski, 2007; Zawojewski
et al., 2009).

The preceding results demonstrate that, even though MEAs are designed for
research purposes, they also are proving to be remarkably effective learning
activities—especially if attention shifts beyond low-level facts and skills toward
an emphasis on deeper and higher-order understandings associated with the most
important elementary-but-deep concepts in the elementary school curriculum (Lesh
and Zawojewski, 2007; Lesh and Doerr, 2003). In fact, MEAs are proving to be
doubly effective because they contribute to both teacher development and student
development. One reason this is true is because MEAs are designed to make im-
portant aspects of students’ thinking visible, and because helping teachers become
insightful connoisseurs of students’ thinking is one of the most effective ways to
improve teaching practices (Zawojewski et al., 2008).

4 An Example of MEAs Leading to Extraordinary
Achievements by Young Children

Figures 2a–2f describes a Proper Hop Activity that is typical of the story-based prob-
lems that have been emphasized in MMP research focusing on children in grades
K-2. Like all MEAs, the children described here worked on the Proper Hop Activity
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Fig. 2 The Proper Hop activity
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(a) (b)

Fig. 3 (a) As a warm-up for the Proper Hop activity, students are asked to put a mark (X) to show
the location of the possible home pad for Beauregard. Then, put another marker 5 hops way from
Beauregard. The student must find all the other pads that are exactly 5 hops from Beauregard.
(Note: This same basic task can be repeated for other locations of X and other numbers of hops.)
(b) Displays the solution to the task described in (a)

in groups of three; and, they usually stayed intensely engaged for at least one hour.
In fact, after class, many children continued to work even longer; and, the teacher
found it easy to create her own follow-up activities to emphasize the basic skills
emphasized in her school’s accountability testing programs. Furthermore, because
the Proper Hop activities were designed to be thought-revealing activities, she was
able to focus on specific strengths and weaknesses of individual children.

The following points are especially significant to emphasize about children’s re-
sponses to the Proper Hop Activity. First, the activity is a minimization problem
that involves integrating several interacting counting, measuring, coordinatizing,
and systematizing problems. So, the results clearly showed that primary school chil-
dren were able to develop insightful ways to deal with such problems. Second, most
children’s solution processes involved using numbers to describe a variety of dif-
ferent types of mathematizable “objects” (locations of lily pads, hops along paths,
distances between lily pads, equivalent paths, and patterns similar to the kinds of lo-
cus of points that occur in analytic geometry). So again, the results clearly showed
that primary school children were able to “think mathematically” about relation-
ships among several such properties. Third, each group worked on versions of the
problem where the locations of the homes were different for Beauregard’s three
friends. Therefore, because the children knew that they needed to write a letter to
Beauregard explaining their procedure, they realized that their procedure needed to
be powerful (in the given situations), sharable (with other people) and reusable (in
a variety of similar situations). So, the ways of thinking that the children developed
were generalizable. Fifth, because the method that is illustrated in Figs. 2d and 2e
quickly spread throughout the class for recording information to “explain things to
Beauregard,” the children’s final solutions shifted beyond dealing with pieces of
information toward noticing patterns of information—like the diamond-shaped pat-
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(a) (b)

Fig. 4 (a) The activity asks students to put markers at two points A and B, and put another marker
at a point that is the same distance from both point A and point B. The child’s task is to find more
such points. (Note: Some locations for A and B don’t have any points that are the same distance
from both of them.) (b) Displays all of the points that satisfy the task described in (a)

tern of numbers in Fig. 2e. Furthermore, in the teacher-led whole-class activities
(see Figs. 3 and 4) that followed the Proper Hop Activity, several children noticed
(and everybody understood) that the “best location” for Beauregard was always at
the intersection of the two dotted lines in Fig. 2f. In other words, the children under-
stood that the best location for Beauregard’s pad will always be at the intersection
point for the horizontal median and the vertical median (even though they didn’t
use this kind of formal terminology). So, even though the “letters” that the children
wrote to Beauregard were primitive in terms of objective communication, the goal
of “writing letters to Beauregard” was to make it as clear as possible to the chil-
dren that their tools and ways of thinking needed to be sharable and reusable, which
means memorable and transferrable.

5 Two More Multiple-Concept MEAs for Young Children

Figure 5a shows one result from an MEA that is based on a story about a horse
named Isabelle who loves to eat apples in the shade of apple trees. The children’s
task is to write a letter to Tom, Isabelle’s owner, describing how, for a given orchard,
the largest number of trees can be enclosed inside a fence of a given length—where
the fence is a string of soda straws on a loop of string. The children’s solution must
take into account the fact that, each month, when Isabelle has eaten all of the apples
in a given area, Tom must move the location of his fence to a new location where the
trees are distributed differently. So, their solution needs to be sharable and reusable.
Similarly, Fig. 5b shows an activity that is based on a story about Fussy Rugbugs
(whose homes are represented as colored post-it notes). The children’s task is to
describe how to locate the most rugbug homes within a given loop of string, when
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(a) (b)

Fig. 5 (a) A group of children’s solution to the MEA about Isabella the horse who loves to eat
apples in the shade of apple trees. (b) A group of children’s solution to the MEA, Fussy Rugbugs

the rugbugs insist that their rugs must be put together so they “just touch” but “never
overlap.”

Notice that both of the preceding problems involve issues of maximization and
minimization, and that both problems again involve relationships between perime-
ters and “areas” (or “counts”). Furthermore, both problems require children to pro-
duce results that are not only powerful in the specific situation, but that are also
sharable and reusable in other similar situations. So, even though the solutions that
children develop are highly situated (i.e., shaped by the context and purposes of the
problem), the results represent more than context-specific knowledge. Sharability
and reusability again indicates generalizable achievements.

6 Results

For all three of the problems described in this paper, every child in the class partici-
pated in a group in which the “last draft” responses to the problems ended up being
successful at developing solutions that embodied quite adult-like ways of think-
ing about the situations that were given. Furthermore, in follow-up interviews and
quizzes, every child in the class was able to explain his or her group’s results; and, in
follow-up problems, these children also were able to generalize their understandings
to problem situations that would have been inaccessible before their MEA experi-
ences.

Of course, the letters that children produced were not expected to be objectively
communicable to others. Nonetheless, in this study, the school had made a school-
wide commitment to focus on writing. By asking the children to work together with
help from their teacher, they were able craft letters which emphasized to them that:
(a) their goal was to produce a tool that provides solutions to more than a single
situation, and (b) “someone else” needs to use the tool that they produced. In other
words, the tool that they produced needed to be sharable and reusable.
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7 Conclusions

The goals of this study were to provide “existence proofs” showing what’s possi-
ble in mathematics learning activities for primary grade children. The results that
will be emphasized in this section focus on six issues that tend to be emphasized in
modern curriculum standards documents: (a) the importance of focusing on con-
ceptual knowledge as well as factual and procedural knowledge; (b) the impor-
tance of focusing on a small number of “big ideas”; (c) the importance of focus-
ing on usefulness outside of school; (d) the importance of focusing on higher-
order processes such as modeling; (e) the importance of focusing on research-
based learning progressions; and (f) the importance of focusing on accountabil-
ity.

7.1 Concerning Conceptual Understandings

As we stated earlier, mathematical concepts are tools for conceptualizing. Concep-
tualizing is about describing and designing; and, in mathematics and science, de-
scribing and designing are about modeling. So, when MMP researchers investigate
the nature of conceptual understandings in primary school mathematics, we look
beyond counting and computing skills to also ask: What kinds of situations should
primary school children be able to use whole numbers to describe?

This paper has given examples of tasks in which average ability primary school
children used numbers to describe situations that involve not only counts (i.e., the
cardinality of sets of discrete objects) but also locations (i.e., ordinality for se-
quences of objects, or coordinates for systems of objects), actions (e.g., operations
or transformations), continuous measures (e.g., lengths, areas, volumes), signed
quantities (i.e., positive and negative quantities), directed quantities (i.e., vectors), a
variety of “per,” “ness,” or “ity” quantities, patterns, and so on. Furthermore, we in-
vestigate problem solving situations which cannot be understood using only a single
arithmetic sentence and which often involve issues such as maximization, minimiza-
tion, stabilization, or equalization,

Our results bear witness to the fact that, even though children’s first-draft re-
sponses usually were unimpressive, their nth-draft responses were often impres-
sive—if the children themselves are able to assess the usefulness of their own re-
sponses. Furthermore, because important aspects of students thinking tend to be
visible in children’s responses to MEAs, readers who wish to replicate our work
will have no difficulty observing, documenting, and assessing the kind of concep-
tual strengths and weaknesses we have described.

7.2 Concerning a Small Number of Big Ideas

Even if attention is focused on only computation-related understandings, it has been
known since the seminal work of William Brownell in the 1940s that “varied prac-
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tice” is far more effective than “routine practice” (focusing on drills that are re-
peated again and again). Brownell identified three kinds of varied practice. The first
type involves mixed activities in which attention shifts among several skills—rather
than emphasizing just one. This is effective partly because “understanding” involves
more than knowing how to do something; it also involves knowing when to do it.
The second type of varied practice involves practicing skills in a full range of sit-
uations in which they are intended to be useful. This is effective partly because
useful skills need to be flexible, not rigid. And, the third type of varied practice
involves using skills during complex activities—similar to the way excellent chefs
not only know how to use each of the tools sold in chef’s catalogues, but they also
know how to orchestrate the use of these tools during the development of complex
meals.

This paper has given examples of activities in which primary school children are
capable of making sense of a wide range of situations in which numbers are used to
describe quantities and quantitative relationships that involve much more than sim-
ple counts. This means that, if a goal is to increase the usefulness of school skills
beyond schools, then the half-dozen to a dozen “big ideas” that should be empha-
sized in the K-2 curriculum can (and should) focus on using numbers to describe
a wide variety of situations—not just those involving counts of discrete sets of ob-
jects.

7.3 Concerning Emphasizing Future-Oriented Goals

During the past 25 years, enormous changes have been occurring in the kinds situa-
tions in which new levels and types of “mathematical thinking” are needed outside
of school classrooms. So, one question that should be asked about any curriculum
framework is: What is being said that could not have been said 50 years ago? If the
answer is nothing, then it is very unlikely that serious attention has been given to the
new kinds of mathematical thinking that are needed beyond school in a technology-
based age of information.

Look at a modern daily newspaper, like USA Today. In sections ranging from
sports to business, readers need to be able to make sense of mathematical descrip-
tions that involve graphs, tables, diagrams, metaphors, and mathematical ideas that
are embodied in other media. Furthermore, the things being described often include
systems involving global economies, knowledge industries, intelligent tools, and hy-
phenated sciences, and a variety of other situations that cannot be understood using
only a single function going in one direction.

We have shown that primary school children are quite capable of dealing with
a wide range of problem solving or decision making situations that involve several
interacting agents (or functions, or arithmetic sentences), feedback loops, second-
order effects, as well as issues such as maximization, minimization, stabilization,
or others that once were thought of as being unmanageable until students had been
taught Calculus. Furthermore, many such problems are accessible to quite young
children using elementary arithmetic tools rather than Calculus.
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7.4 Concerning Higher-Order Mathematical Practices
such as Modeling

Modeling is becoming widely recognized as one of the most powerful and impor-
tant kinds of abilities that should be emphasized in school mathematics. Yet, mod-
eling is often conceived as involving nothing more than “applying mathematics that
(students have already been taught) to solve problems arising in everyday life.”
This conception of modeling completely ignores the perspective that: (a) models
for mathematizing experiences may be, in themselves, among the most important
goals of the K-16 mathematics curriculum, and (b) the development of these models
represents an important part of what it means to develop “conceptual” understand-
ings of even traditionally emphasized concepts and processes, and (c) proficiency at
model development is directly related to a range of higher-order competencies that
most curriculum frameworks claim to emphasize (Lesh and Zawojewski, 2007).

Three types of metacognitive understandings are easy to observe as primary
school children work on the kind of MEA’s described in this paper. One involves
thinking about (the process of) thinking. Another involves thinking about oneself
as a learner or problem solver. And, a third involves thinking about the nature of
mathematics or problem solving experiences.

For thinking about thinking, the children in our studies clearly learned that:
(a) the problems we gave were going to take full class periods to solve (i.e., 30–
60 minutes), and (b) without asking the teacher, they themselves would be able to
judge “Am I done yet?” and “Is what I’m doing useful?”

For thinking about oneself as a learner or problem solver, the children in our
studies clearly learned that productive teams often involve individuals who shift
among a variety of roles (recorders, planners, checkers, etc.). So, many children
who had never exhibited much interest or ability in mathematics were enthusiastic
about participating in the MEAs described in this paper. And, most of the students
remained highly engaged for the entire problem solving session.

For thinking about mathematics, or about the nature of problems in which “math-
ematical thinking” is useful, the children in our studies clearly learned that doing
things “correctly” (in ways that make the teacher smile) is different than doing
things that are sensible or productive (in ways that they themselves could judge).
However, because their experiences working on our problems were so different than
their past experiences with mathematics and problem solving, most of the children
talked about their experiences with MEAs as if they were not “mathematics” (as
they had understood mathematics to be).

7.5 Concerning Accountability

MEA’s are designed to be thought-revealing activities (1993). So, teachers are able
to observe and document many levels and types of understandings that are sel-
dom addressed using exercises in traditional textbooks and tests. In fact, even in
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the newest Common Core State Curriculum Standards (CCSC), almost none of
the deeper or higher-level goals are “operationally defined” in ways that are mea-
surable. Make sense of problems. Reason abstractly. Construct viable arguments.
Model with mathematics. Use appropriate tools strategically. Attend to precision.
Look for structure. Look for regularity. What does it mean to “understand” any of
these practices? How can these understandings be documented and assessed? Af-
ter characterizing such goals using lofty-sounding-but-vague-language, curriculum
standards documents tend to reduce such goals to lists of facts and skills. But, in
MMP research and development, the mastery of nearly all such goals is consid-
ered to be closely associated with the development of a toolkit filled with powerful,
sharable, and reusable models associated with the most important concepts in any
given course or grade level. Furthermore, documenting the power, sharability, and
reusability of these tools is often as straightforward as assessing the power, shara-
bility, and reusability of a spreadsheet that has been created to for paying income
taxes, purchasing a home or a car, or analyzing statistics in athletic contests. This
is because tools that are designed to be powerful (in a given situation), sharable (by
other people), and reusability (in other similar situations), have characteristics that
are not shared by lower quality tools.

7.6 Concerning Research-Based Learning Progressions

Similar to the wave and particle models for describing the behaviors of light in
physics, MMP supports two significantly different descriptions of learning and prob-
lem solving in school mathematics. On the one hand, Piaget-inspired mathematics
educators have produced detained and extensive descriptions of the conceptual sys-
tems that children must develop in order to “think operationally” (or “systemically)
about many of the most important “big ideas” in the K-16 mathematics curriculum.
They have described many of the most important characteristics of pre-operational
thinking; and, they have described intermediate stages between pre-operational and
operational thinking. However, ever since Piaget’s original studies of children’s
mathematical thinking), these descriptions of cognitive development have resulted
in learning progressions that lead to exceedingly pessimistic views about possi-
bilities for accelerating development. Furthermore, whereas the strength of these
learning progressions is that they clarify the importance of structure in mathemat-
ics learning, both Vygotsky’s notion of zones of proximal development and Piaget’s
notion of decalage imply that: (a) tasks characterized by the same structure are of-
ten significantly different in difficulty, and (b) the difficulty of a single task can be
changed significantly by changing only seemingly superficial (non-structural) char-
acteristics of the task. So, a strength of Piaget-inspired “constructivist” conceptions
of cognitive development results from it’s emphasis on structure, a weakness is that
knowledge is organized around experience at least as much as it is organized around
abstractions (i.e., cognitive structures). In modern research in the learning sciences,
this latter perspective on cognition often is referred to as situated cognition; and, in
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research focusing on situated cognition, significant conceptual changes often occur
quite rapidly.

MEAs focus on model development and, in mathematics, the models that stu-
dents develop tend to be both situated and structural. That is, structure is an im-
portant characteristic of the models that students construct. Yet, these conceptual
systems often develop evolve quite rapidly; they usually are strongly shaped by the
context of the tasks; and, the tools that are developed often integrate concepts and
procedures associated with a variety of textbook topic areas. Yet, model develop-
ment is not just context-specific learning. This is because the models that students
develop are expressed as tools, which are designed to be powerful, sharable, and
reusable. So, the underlying models that students develop tend to be both situated
and structural, and both specific and general.

Overall, MMP research suggests that it is at best a half-truth to imagine that the
way mathematics concepts develop is primarily via a process of putting together and
integrating lower-level concepts and processes. In many cases, children’s early con-
ceptions of important ideas involve the development of models (or ways of thinking)
that integrate (and gradually begin to differentiate) constructs associated with a va-
riety of different textbook topic areas. So, cognitive development often resembles
the kind of “star burst” displays that can be seen in firecracker extravaganzas during
national holidays in many countries.

8 Concluding Remarks

This paper emphasizes the shared MMP and SimCalc tradition of investigating:
(a) the nature of new types of “mathematical thinking” that is needed beyond school,
(b) the levels and types of mathematical concepts and abilities that are needed in the
preceding situations, (c) what it means to “understand” the preceding concepts and
abilities, (d) the ways that these concepts and abilities develop with special attention
being given to early conceptions and misconceptions of these concepts and abilities,
and (e) new ways development can be cultivated, documented, and assessed in ways
that don’t reduce “understanding” to the “mastery” of lists of low-level facts and
skills?

A basic principle underlying this entire agenda is that measurable goals for
instruction should be established through research rather than through political
consensus-building proclamations of the type that have characterized the develop-
ment of all recent curriculum standards documents.

Clearly, the kinds of mathematical thinking that will be needed by citizens of
the 21st century is quite different than what has been offered in traditional curricu-
lum materials where the primary goal of each course appears to be about preparing
students for the next course in programs that gave little attention to the kinds of
mathematical understandings and abilities that are needed outside of mathematics
classrooms (Kaput, 1995b; Lesh et al., 2007).
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The results described in this paper are especially intended to emphasize the fact
that the seeds of many of the most powerful, useful, sharable, and reusable con-
cepts in the K-12 mathematics curriculum are accessible to children at much earlier
ages than traditional curriculum materials have assumed (Blanton and Kaput, 2000,
2001a, 2001b, Blanton and Kaput, 2002, 2004; Hegedus, in press; Kaput, 1995a,
1998; Kaput and Blanton, 2001, 2005; Lehrer and Lesh, 2011; Lins and Kaput,
2004). So, capitalizing on these affordances is one of the most effective ways to
provide both democratic access to powerful ideas and foundations for the future in
mathematics thinking and learning—which have always been the most important
goals of both MMP and SimCalc research agendas (Hegedus and Roschelle, 2012;
Kaput and Nemirovsky, 1995).
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The Kaputian Program and Its Relation
to DNR-Based Instruction: A Common
Commitment to the Development
of Mathematics with Meaning

Guershon Harel

This paper is about two programs: the Kaputian program for mathematics of change
and variation and DNR-based instruction in mathematics (DNR, for short). It out-
lines some of the central goals and characteristics of the Kaputian program and the
DNR theoretical perspective, and further discusses how the former is juxtaposed
with the latter. The purpose of this juxtaposition is to point to the common com-
mitment of the two programs to the development of mathematics with meaning.
Specifically, the two programs are rooted in the empirically-founded perspective
that quantitative reasoning and gradual development of computation fluency an-
chored in meaning must be a central focus of instruction. Collectively, the paper
aims at stepping up the long-standing call for the adoption of this perspective in
school mathematics, especially now when the Common Core State Standards Initia-
tive (http://www.corestandards.org/the-standards/mathematics) is underway.

1 Characteristics of the Kaputian Program

The ultimate goal of the Kaputian program has been democratizing access to the
mathematics of change, a ubiquitous phrase in Kaput’s writings. The following
quote reflects Kaput’s concern about equitable access to mathematical knowledge,
in general, and that of the mathematics of change and variation, in particular:

Mathematics of change and variation is essential to understanding ubiquitous phenomenon
in science, engineering, and economics. Its concepts are needed to participate in the physi-
cal, social, and life sciences of the twenty-first century, and hence they are needed to make
informed decisions in one’s personal and political lives. But, Calculus is offered at the end
of a long series of prerequisites, filters out 90 % of the population. Students from eco-
nomically poorer neighborhoods and families are underrepresented among the 10 % of the
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students who do take this course. And even the 10 % who do have nominal access to cal-
culus courses develop mostly symbol manipulation skill but little understanding. (Kaput,
1994b)

Kaput’s commitment to equitable access to mathematics manifest itself in numer-
ous research and implementation projects throughout his career. In what follows, I
will discuss one of the many facets of this commitment: the role of mathematical
notation and representation. These terms will be defined as the section unfolds.

Kaput viewed the traditional mathematical notation as an obstacle to an equi-
table access to calculus. He believed that this notation evolved among intellectual
elites “to serve the conceptual and communicative purposes of knowledge produc-
ers, without regard to the needs of the wider population to whom we now attempt to
teach it.” (Kaput, 1994a, p. 385). Kaput aimed at creating a new notational system
which would be accessible to a wider range of the student population—a system that
is compatible with the conceptual development of the learner. He wanted to shift the
focus of instruction from formalism to quantitative meaning, and rejected the com-
mon instructional practice of “you don’t really know it unless you can express it
formally.” (Kaput, 1994a, p. 385). He argued:

. . .the mathematics of change and variation, as represented by calculus in most current cur-
ricula, is accessible only to those who have survived a long series of algebraically oriented
prerequisites. The net result of this prerequisite structure is that, at least in the US, 10 per-
cent of the population has contact with the mathematics of change and variation, and most
of those are at the college level. Moreover, most of their contact is with the notation of
calculus rather than its conceptual core.

The Kaputian program aimed at building on and extending what others started:
experimenting with the construction of alternative notational systems to connect
mathematical representation and concepts directly, whereby enabling students ac-
quire the conceptual core of the mathematics of change and variation.

It is a mistake, however, to think that Kaput intended to completely or even par-
tially alter the traditional notational system; rather, his goal was to increase the
teachers’ sensitivity to the correspondence between the symbolic representation of
a concept and the level of conceptualization of that concept by an individual. From
this perspective, the subject matter of calculus is reformed and restructured with the
objective that students learn it “before, during, and after algebra.” (Kaput, 1994a,
p. 393) The calculus curriculum in a Kaputian program, thus, evolves through a
gradual process of formalization and elaboration from early grades up to adulthood.

A crucial element in this Kaputian perspective is the development of an interac-
tive media. While building on early educational development of computer technol-
ogy, the Kaputian program ventured in a new approach—one that puts the complex-
ity of authentic human experience at the center of the developmental effort.

. . .Representational uses of technology in mathematics education. . . have been primarily
used to assist activity and movement on the island [of formal mathematics], not to connect
with the mainland of real human experience. (Kaput, 1994a, p. 383)

In contrast, the Kaputian program aimed at:

[electronic technology that enables] students to act on traditional mathematical notations in
more natural ways, as when in a computer environment, for example, one uses a pointing
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device and graphical interface to act directly on coordinate graphs by sliding, bending,
reflecting, and so forth (as with Function Probe, Confrey, 1992). This is a subtle exploitation
of the rich knowledge based in kinesthetic experience to act on mathematical notations, and
hence to effect mental operations on mathematical objects, that is, functions.

In sum, the Kaputian program envisions dynamic and interactive properties of
electronic media that utilize naturally developing human perceptual and conceptual
powers.

Underlying this perspective is Kaput’s distinction between two inseparable
sources of mathematical experience: mental and physical, where ultimately the for-
mer is the result of the latter. Following Piaget (1985), he often characterizes this
distinction in terms of the representing world (the signified, or external) and the rep-
resented world (the signifier, or internal) (Kaput, 1987). The structuring of students’
mathematical experience should, according to this perspective, begin by structur-
ing physical actions, followed with gradual structuring of “notational objects whose
properties and relationships are defined mathematically and are mediated only indi-
rectly by their physical properties. Competence in the use of these notation systems
is built upon mental structures and operations that embody the mathematics and,
again, relate only indirectly to the perceptual features of the systems.” The impli-
cation of this perspective to the learning and teaching of calculus is then that it is
imperative to conceive the mathematics of change and accumulation of quantity as
rooted in and generated from everyday experience and, in addition, as the experi-
ence through which representational strategies (e.g., algebra) should emerge and be
learned.

The conceptual core of the mathematics of change and variation is anchored in
one’s ability to reason directly about covariation of quantities. Algebraic represen-
tations of such reasoning are increasingly “built up from situations through the use
of numerical tables, graphs, and other less stringently formal means before the writ-
ing of algebraic equations.” (Kaput, 1994a, p. 384). These algebraic representations
serve, in turn, as a source for quantitative reasoning:

. . .the development of algebra as an action notation system made possible the inheritance
of powerful means of quantitative reasoning, and Leibniz’ notations for calculus likewise
made available an immensely powerful system of thought. In some sense, the most potent
intellectual contributions, leading to cultural inheritances, are embedded in these “ways of
worldmaking,” to borrow Nelson Goodman’s phrase (Goodman, 1978). Some of the most
important work of the masters is embodied and handed down, not in the form of facts or
even theorems and principles, but rather in the syntax of the representation systems that
they enable us to think with.

It is appropriate to mention here the work Kaput and I did on the roles of mathe-
matical notation (Harel and Kaput, 1991). In this publication, we discussed how “us-
ing [traditional] mathematical notations, complex ideas or mental processes can be
chunked and thus represented by physical notations which, in turn, can be reflected
on or manipulated to generate new ideas” (p. 88), and how such notation “either
help encapsulate mathematical concepts as entities or supplant conceptual entities
in reasoning processes” (p. 90). Among the various examples we discussed, one is
particularly relevant to calculus. It pertains to degree of elaboration of symbols. The
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extent to which a notation is elaborated is determined by the extent to which it cor-
responds to one’s conceptual development: what is elaborated for one person may
appear tacit for another. For example, two different symbols are usually used to rep-
resent the composition of two functions f and g, g : f (g(x)) and (f ◦ g)(x). The
symbol f (g(x)) is amenable to the understanding of a function as a process, and de-
pends on the prior knowledge of input-output relations expressed using the standard
f (x) notation. It expresses the process in which the two functions are composed:
the input x in the function-machine g produces the output g(x), where g(x) now
acts as an input of in the function-machine f to produce the output f (g(x)). On the
other hand, the symbol (f ◦ g)(x) describes an operation between two functions,
f and g, which produces a third one, (f ◦ g)(x). This symbol, thus, describes f

and g as inputs in the function-machine ◦. As such, it is understood as an operation
between two objects, f and g. The distinction between elaborated symbols and tacit
symbols has important consequences for learnability and usability.

In all, Kaput’s work on the mathematics of change and variation may be viewed
as a research program—a program for which Kaput paved the foundations and of-
fered a path for progress. Such a program can be characterized as one that pays a
serious attention to: equity, quantitative meaning, gradual development (from ele-
mentary school onward), advanced-technology-based curriculum that is grounded
in classroom context, and consistent epistemology. For this reason it is appropri-
ate to talk about the Kaputian program rather than Kaput’s program. A Kaputian
program is a research program whose goal is to offer a mathematics-of-change-and-
variation curriculum that has these characteristics. More specifically, using a narra-
tive adopted from Kaput’s own words, a Kaputian program examines the nature of
the mathematics content of calculus, its objectives, methodologies, and representa-
tion; it attempts to deeply understand the experiences, resources, and skills students
can bring to the subject matter of the mathematics of change; it seeks to create the
conditions in which students experience growth in their capability to solve and un-
derstand ever more challenging problems; it researches the means for representing
important calculus ideas in way that reflects their origins in the study of change; it
reassesses the proper place of calculus in the curriculum path that so many students
seem unable or unwilling to complete; it looks at possibilities for an approach to
the mathematics of change for all students; it begins the exposure to the mathemat-
ics of change in elementary school and builds gradually toward the formal system
that is now identified as calculus; and it gives ordinary children the opportunities,
experiences, and resources they need to develop profound understanding and skill
with mathematical of change and variation. In this respect, SimCalc is a model that
instantiates all of the Kaputian characteristics. In particular, SimCalc is a model that
exploits the capability of novel dynamic, graphical notations and representations to
provide tools that engage students’ conceptual resources and linguistic resources,
and support growth towards more sophisticated understandings, including more for-
mal notations and forms of reasoning.

The five characteristics listed above are inextricably linked, and it is beyond the
scope of this paper to discuss them thoroughly and in separation from each other.
They manifest themselves in the work of Kaput (e.g., Kaput, 1994a) and his col-
leagues (e.g., Roschelle et al. (2000) and Roschelle et al. (2007b)).
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2 Relation of the Kaputian Program to DNR-Based Instruction1

DNR-based instruction in mathematics (DNR, for short) is a theoretical framework
for the learning and teaching of mathematics. It aims to serve as a framework that
provides a language and tools to formulate and address critical curricular and in-
structional concerns. DNR has been developed from a long series of teaching exper-
iments in elementary, secondary, and undergraduate mathematics courses, as well
as teaching experiments in professional development courses for teachers at each of
these levels. Briefly, DNR can be thought of as a system consisting of three cate-
gories of constructs: premises (explicit assumptions underlying the DNR concepts
and claims), concepts (referred to as DNR determinants), and claims. These claims
include instructional principles: assertions about the potential effect of teaching ac-
tions on student learning. Not every instructional principle in the system is explicitly
labeled as such. The system states three foundational principles: the duality princi-
ple, the necessity principle, and the repeated-reasoning principle (to be formulated
below); hence, the acronym DNR. The other principles in the system are derivable
from and organized around these three principles. For a fuller discussion on DNR
see Harel, 2008a,b.

In what follows, I will focus on two common features of the Kaputian program
and DNR: the uncompromising attention to quantitative reasoning and the instruc-
tional treatment to algebraic notation.

As was mentioned earlier, the conceptual core of the mathematics of change and
variation in the Kaputian program is one’s ability to reason directly about covari-
ation of quantities. Quantitative reasoning is defined in DNR as a way of thinking
by which one reasons with quantities and about relations among quantities. It en-
tails the habits of creating a coherent image of the problem at hand; considering
the units involved; continually attending to the meaning of quantities, in addition to
how to compute them; and having multiple images of a concept and being flexible in
transitioning among them. The attention to quantitative reasoning by the Kaputian
program and DNR, as well by other programs, most notably the research program set
by Patrick Thompson (1993), is the result of the overwhelming evidence indicating
that students across the grades do not learn to reason quantitatively; their mathemat-
ical reasoning is mostly quantitative-reasoning free. They manipulate symbols but
the manipulation is often divorced from quantitative referents (Stigler et al., 1999;
Stigler and Hiebert, 1999), and they focus on what operation the teacher expects
them to choose rather than what operations are logically entailed (Sowder, 1988).
The lack of attention to quantitative reasoning accounts for this phenomenon as
well as for many other troubling occurrences in students’ understanding of key con-
cepts across the grades. Relevant to this paper is the example that rate of change, a
fundamental concept in calculus, is not well understood by undergraduate students
(Hackworth, 1995). Another example, relevant to algebra, is that the equal sign—
perhaps the most ubiquitous symbol in school curricula—is largely interpreted by

1Part of this section is an unpublished research perspective on the concepts of number and quantity,
which was solicited by the founders of the Common Core Mathematics Standards initiative.
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middle school students as a command to perform an operation rather than as a re-
lation between two quantities, and no improvement in equal sign understanding has
been found across the middle grades (Knuth et al., 2006). This and other studies also
show—not surprisingly—a strong correlation between students’ equal sign under-
standing and their performance in algebra, especially in solving equations (Booth,
1989; Freiman and Lee, 2004).

The concern here goes beyond the understanding of the equal sign and the ability
to solve equations. The question of concern by the Kaputian program and by DNR
is how to achieve computational fluency? In DNR, computational fluency is a way
of thinking comprised of two inseparable abilities: the ability to decontextualize—to
abstract a given situation and represent it symbolically and manipulate the repre-
senting symbols as if they have a life of their own, without necessarily attending
to their referents—and the ability to contextualize—to pause as needed during the
manipulation process in order to probe into the referential meanings for the sym-
bols involved in the manipulation. The literature on students’ difficulty with algebra
led me and others, especially Kaputian scholars, to the conclusion that a necessary
condition for the development of computational fluency (as defined here) is uncom-
pressing attention to quantitative reasoning throughout the curriculum.

In passing, I mention that these DNR definitions of quantitative reasoning and
computational fluency were adopted almost verbatim by the Common Core Stan-
dards (regrettably without adequate attribution), as can be seen in following quote
from the Common Core Mathematics Standards.

Reason Abstractly and Quantitatively
Mathematically proficient students make sense of quantities and their relationships in prob-
lem situations. They bring two complementary abilities to bear on problems involving quan-
titative relationships: the ability to decontextualize—to abstract a given situation and repre-
sent it symbolically and manipulate the representing symbols as if they have a life of their
own, without necessarily attending to their referents—and the ability to contextualize, to
pause as needed during the manipulation process in order to probe into the referents for
the symbols involved. Quantitative reasoning entails habits of creating a coherent represen-
tation of the problem at hand; considering the units involved; attending to the meaning of
quantities, not just how to compute them; and knowing and flexibly using different prop-
erties of operations and objects. (http://www.corestandards.org/the-standards/mathematics/
introduction/standards-for-mathematical-practice/)

Results from studies on the implementation of SimCalc (e.g., Roschelle et al.,
2000, 2007a, 2007b), as well as other studies, show that students can be taught to
acquire this ability. For example, students in the middle school should be expected to
have developed the ability to reason quantitatively about additive situations. Studies
show that this can be done (Carpenter and Moser, 1984; Carpenter et al., 1982; Fu-
son et al., 1997; Thompson, 1993). High-school students should be expected to rea-
son multiplicatively and understand related phenomena such as exponential growth.
Studies show that students can be taught to acquire these ideas (Confrey, 1994; Con-
frey and Smith, 1995). Calculus students should be expected to understand rate of
change, accumulation functions, and the Fundamental Theorem of Calculus. Stud-
ies show that students can be taught to acquire these concepts (Carlson et al., 2003;
Thompson and Silverman, 2008).

http://www.corestandards.org/the-standards/mathematics/introduction/standards-for-mathematical-practice/
http://www.corestandards.org/the-standards/mathematics/introduction/standards-for-mathematical-practice/


The Kaputian Program and Its Relation to DNR-Based Instruction 443

How should students be taught to reason quantitatively? This is one of the central
research questions of the Kaputian program—it has been addressed theoretically
and examined empirically through programs such as the SimCalc. In what follows,
I will outline DNR’s guiding framework for this question:

A common feature of the successful quantitatively-based curricula mentioned
earlier is that they were designed on the basis of results of detailed conceptual anal-
yses that connect concepts and skills to ways of thinking—those that have been ac-
quired and those to be acquired. The fundamental premise behind these analyses—
and this is the epistemological reason for their effectiveness—is that, in quantitative
reasoning, concepts are formed in continual dependence on their natural founda-
tions, and their mathematical meanings are abstracted from natural, concrete expe-
riences. The underlying approach of these analyses can be abstracted into a general
principle, called the duality principle (represented by the letter D in DNR) because
of the dual nature between its two assertions:

(a) Students at any grade level come with a set of ways of thinking (practices, dispositions,
beliefs, etc.), some desirable and some undesirable, that inevitably affect the way they
will understand concepts and skills we intend to teach them, and

(b) Students develop desirable ways of thinking only through proper understanding of con-
cepts and skills.

This principle may seem obvious until one observes that mathematics curricula
grounded in its premises are rare. The principle entails that long-term curricular
planning is essential, and absence of such planning can have harmful consequences,
because the ways of thinking students acquire now will affect the quality of the con-
cepts and skills they will learn later. The principle also entails the need to take into
account students’ current ways of thinking in designing curriculum and instruction,
because these determine what students can and cannot learn and the quality of what
they will learn.

In a curriculum that is based on the duality principle, desirable ways of thinking
do not wait until students take advanced mathematics courses. Consider, for exam-
ple, the concept of fraction. In current mathematics teaching, even when students
learn mathematics symbolism in context, the context is usually limited. For exam-
ple, the most common interpretation of fraction among students is the part-whole
interpretation (m/n means “m out of n objects”). Many students never move be-
yond this limited interpretation and, as a result, encounter difficulties in developing
meaningful knowledge of fraction arithmetic (Lamon, 2001) and beyond (Puste-
jovsky, 1999). Seldom do students get accustomed to the other interpretations of
fractions: as ratios, operators, quotients, and measures (Behr et al., 1992; Post et al.,
1991). While this range of interpretations is one of the predominant factors con-
tributing to the complexities of teaching and learning fractions, it can also be a
source for desirable—indeed, crucial—ways of thinking, such as (1) mathematical
concepts can be understood in different ways, and (2) it is advantageous to change
interpretation in the process of solving problems. These ways of thinking will be
needed in the development of future concepts. Indeed, without them, students are
bound to encounter difficulties in other parts of mathematics. In calculus, for exam-
ple, depending upon the problem at hand, one would need to interpret the phrase
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“derivative of a function at a,” or the symbol f ′(a), as “the slope of a line tangent to
the graph of a function at a” or “the limh→0(f (a + h) − f (a))/h” or “the instanta-
neous rate of change at a” or “the slope of the best linear approximation to a function
near a.” Likewise, in solving linear algebra problems, it is often necessary—or at
least advantageous—to convert one interpretation into another interpretation by us-
ing the equivalence among problems on systems of linear equations, matrices, and
linear transformations.

Likewise, within a curriculum that is designed on the basis of the duality prin-
ciple, and consistent with the Kaputian program, algebraic reasoning and (infor-
mal) proving are not delayed until one learns “Algebra” and “Geometry.” Rather,
they emerge in mathematical activities at all levels. Thinking in terms of ways of
thinking in curriculum design, one is compelled to recognize the algebraic nature of
arithmetic and the role of early arithmetic to laying foundations for processes of con-
jecture and proof (Blanton and Kaput, 2002; Mason et al., 1985; Rico et al., 1996).

Conceptual analyses that lead to successful curricula take—often implicitly—a
particular stance on the meaning of learning. Learning is viewed as a developmen-
tal process that proceeds through a continual tension between assimilation and ac-
commodation, directed toward a (temporary) equilibrium (Piaget, 1985; Thompson,
1985). The implication for instruction of this view is the necessity principle (repre-
sented by the letter N in DNR):

For students to learn what we intend to teach them, they must have a need for it, where
‘need’ refers to intellectual need.

Intellectual need is different from motivation. Motivation has to do with peo-
ple’s desire, volition, interest, self-determination, and the like. Intellectual need, on
the other hand, has to do with disciplinary knowledge born out of people’s cur-
rent knowledge through engagement in problematic situations conceived as such by
them. Relevant to curriculum design, the necessity principle entails that new con-
cepts and skills should emerge from problems understood and appreciated as such
by the students, and these problems should demonstrate to the student the intellec-
tual benefit of the concept at the time of its introduction. The following example is
relevant to quantitative reasoning.

Textbooks often introduce the idea of building equations to solve word problems
through trivial, one-step addition or multiplication word problems (Harel, 2009).
This approach is contrived, and is unlikely to intellectually necessitate this idea
since students can easily solve such problems with tools already available to them.
To make this point clearer, it is worth presenting an alternative approach—one that
is more likely to intellectually necessitate algebraic tools to solve word problems.
In this approach, students first learn to solve non-trivial word problems, such as the
following, quantitatively, without any explicit use of variables and equations:

Towns A and B are 280 miles apart. At noon, a car leaves A toward B, and a truck leaves B
toward A. The car drives at 80 m/h and the truck at 60 m/h. When will they meet?
Students can do so by, for example, reasoning as follows:
After 1 hour, the car drives 80 miles and truck 60 miles. Together they drive 140 miles. In
2 hours, the car drives 160 miles and the truck 120 miles. Together they drive 280 miles.
Therefore, they will meet at 2 PM.
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Through this kind of reasoning, students develop the habits of attending to quan-
tities and building coherent images for the problems—habits they often lack. These
problems can then be gradually modified—in context, as well as in quantities—so
as to make them harder to solve with arithmetic tools alone, thereby necessitating
the use of algebraic tools. For example, varying the distance between the two towns
through the sequence of numbers, 420, 350, 245, 309, results in a new sequence of
problems with increasing degrees of difficulty. Students still can solve these prob-
lems with their arithmetic tools but the problems become harder as the relationship
between the given distance and the quantity 140 (the sum of the two given speeds)
becomes less obvious. For example, for the case where the distance is 245 miles, the
time it takes the vehicles to meet must be between 1 and 2 hours, and so one might
search through the values: 1 hour and 15 minutes (80(75/60) + 60(75/60) = 245),
1 hour and 30 minutes (80(90/60) + 60(90/60) = 245), 1 hour and 45 minutes
(80(105/60) + 60(105/60) = 245), and find that the last value is the solution to the
problem. This activity of varying the time needed can give rise to the concept of
variable (or unknown) and, in turn, to the equation, 80x + 60x = 140. Granted, this
is not the only approach to intellectually necessitate the use of algebraic tools for
solving word problems. However, whatever approach is used, it is critical to give
students ample opportunities to repeatedly reason about the problems quantitatively
and with their available arithmetic tools. The goal is for students to learn to build
coherent mental representations for the quantities involved in the problem and to
intellectually necessitate the use of equations to represent these relationships. An
added value of this approach is the development of computational fluency as this
term was defined earlier.

Even if concepts and skills are intellectually necessitated, there is still the task of
ensuring that students internalize, organize, and retain this knowledge. This concern
is addressed by a third principle, called the repeated-reasoning principle:

Students must practice reasoning in order to internalize, organize, and retain ways of under-
standing and ways of thinking.

Research has shown that repeated experience is a critical factor in these cognitive
processes (Cooper et al., 1996). Repeated reasoning, not mere drill and practice of
routine problems, is essential to the process of internalization—a conceptual state
where one is able to apply knowledge autonomously and spontaneously—and reor-
ganization of knowledge. The sequence of problems must continually call for rea-
soning through the situations and solutions, and they must respond to the students’
changing intellectual needs.

In all, both the Kaputian and DNR are rooted in the perspective that quantitative
reasoning and gradual development of computation fluency anchored in meaning
must be a central focus of instruction. In DNR, an explicit attention is given to
the intellectual need of the student. To address this need, a subjective approach to
knowledge is necessary, since the construction of new knowledge does not take
place in a vacuum but is shaped by one’s current knowledge—a view central in the
Kaputian program as well. This fundamental, well-documented fact has far-reaching
instructional implications, and is the basis for both DNR and the Kaputian program.
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The Evolution of Technology
and the Mathematics of Change and Variation:
Using Human Perceptions and Emotions
to Make Sense of Powerful Ideas

David Tall

1 The Changing Nature of Technology

Anyone who presumes to describe the roles of technology in mathematics education faces
challenges akin to describing a newly active volcano—the mathematical mountain is chang-
ing before our eyes. . . (Kaput, 1992, p. 515)

This quote from Jim Kaput, written two decades ago, is just as apt today as it was
then. As I began preparing this chapter, my iPad rang and my three-year-old grand-
son came on line, demanding to speak to Tufty, our cat. Modern technology provides
us with astounding ways of operating and communicating that were unimaginable
not long ago. Yet while three-year-old children are embracing technology in a natu-
ral way, educators are having great difficulty in coming to terms with how to use it
in teaching and learning.

The difficulty is not hard to diagnose. The speed of change of technology is so
much faster than the possibilities of curriculum change, which, in turn, must take
account of the rate of cultural change. Thus, while a child may pick up an iPad, with
software carefully designed for ease of use, and discover ways to use it for personal
benefit, the curriculum designer must take time to reflect deeply on the complex
issues that arise in our society and change over the longer term. Kaput succinctly
formulated his own version of the situation in the following quote from near the
beginning of this book where I have added italics to highlight important aspects that
will be reflected upon in this chapter.

While our universe of experience can be apprehended and organized in many ways—
through the arts, the humanities, the physical and social sciences—important aspects of our
experience can be approached through systematic study of patterns. In addition, mathemat-
ics embodies languages for expressing, communicating, reasoning, computing, abstracting,
generalizing, and formalizing—all extending the limited powers of the human mind. Finally,
mathematics embodies systematic forms of reasoning and argument to help establish the
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certainty, generality, and reliability of our mathematical assertions. We take as a starting
point that all of these aspects of mathematics change over time, and that they are especially
sensitive to the media and representation systems in which they are instantiated. (Kaput and
Roschelle, this volume, p. 13)

Having written a calculus text (Fleming and Kaput, 1979), Kaput went on to
rail against the standard approaches to algebra and calculus that had the effect of
steadily reducing the number of individuals that make sense of the subject, seeking
instead a natural way to allow the wider population to gain the insight necessary for
them to function as citizens with full democratic rights and access to knowledge. He
saw this through the full development of “expressing, communicating, reasoning,
computing, abstracting, generalizing and formalizing” (Kaput and Roschelle, this
volume, p. 13) but he also realized that these aspects change and “are especially
sensitive to the media and representations in which they are instantiated” (Kaput
and Roschelle, this volume, p. 14).

This applies not only to the technology that we use and develop, but also to
our own personal development based on our previous experiences in life that may
support or hinder our grasp of new ideas. I will illustrate this fundamental issue by
recalling a difference of vision that occurred between Jim Kaput and myself that I
now see in terms of his own insightful vision of the changing nature of technology
as “the mathematical mountain is changing before our eyes” (Kaput, 1992, p. 515).

2 A Challenging Difference and a Resolution Using Technology

Over the years Jim Kaput and I met in various parts of the world to share ideas.
Though our goals in building from personal experiences to increasingly sophisti-
cated ideas were broadly consistent, our own personal developments caused us to
focus on different aspects. His experience with the “big three” representations using
expressions, graphs, and tables saw him focusing on ways of making links between
them using technology.

He found the particular technology of “pointing and clicking” a mouse could
quickly draw a curve graphically to represent a real life story to give a new foun-
dation for these fundamental ideas of the calculus prior to the use of expressions or
tables. It encourages a much more general notion of function than is possible in tra-
ditional calculus, which essentially focuses on the symbolic manipulation of regular
expressions using the “rules of calculus” to derive the rate of change or to integrate
to find the growth of a changing quantity.

My concern was more elemental. I wanted to “see” and “feel” change in a human
sense through drawing a graph by the dynamic continuous movement of a finger or
the use of a pencil.

We also differed in the extent of our vision. Jim focused on the wider democratic
and social issues and had no desire to follow through to the formal development of
traditional mathematical analysis, which he saw as the province of a privileged few. I
wished to understand the full journey through the human development of mathemat-
ics itself, from the early experiences of the child to its eventual formalization and on
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to the frontiers of mathematical research. I also wished to develop a framework that
predicted and explained why students followed such different paths of development
in mathematics where the traditional curriculum seemed to steadily deny access to
more and more learners.

Jim’s use of pointing and clicking gave him a notion of “piecewise linear” graphs
which could be described precisely, based on his own formal experience of math-
ematics, such as calculating a piecewise linear approximation to the area under a
curve. My own very different experience, included teaching non-standard analysis
to undergraduates who had already met standard analysis, where I could prove a for-
mal theorem that “a differentiable function,” when “locally magnified by an infinite
scaling factor,” would “look like a straight line” (Tall, 1981, 2009).

Both of us were imprisoned in our own cultural experiences, which proved to be
obstacles in our attempts to communicate our ideas to each other. I saw his piece-
wise linear functions as a fine mathematical idea that was well-known to mathemati-
cians and worked well for calculating areas. Yet, for me, it had the flaw in calculat-
ing derivatives that the graph of its rate of change consisted of discrete horizontal
line segments. Thus his vision took natural “continuous” change and represented its
“rate of change” in a form that is certainly not continuous in any intuitive human
sense.

Meanwhile my idea of “infinite magnification” of an “infinitesimal” part of a
graph flew against current trends in mathematical analysis where infinitesimals were
seen to be an aberration of the past that had been replaced by the inscrutable but
mathematically sound notion of the epsilon-delta definition of a limit. Even though
I produced software that allowed the user to magnify graphs on the screen to see
what is termed “local straightness,” my insights were seen as an interesting starting
point to a calculus industry that remained wedded to its traditional development
based on an “intuitive” version of the formal limit concept with technology “added
on.”

On reflection, I can now see how both our visions may be explained in terms of
his general theoretical perspective and how the changing technology has affected
conceptions that are “especially sensitive to the media and representations in which
they are instantiated.”

In the chapter Burke, Hegedus, and Robidoux (this volume), the long history of
SimCalc has shown how theoretical ideas have to be adapted to fit with the changing
technology, just as the technology changes to fit new ideas. Theoretical frameworks
and technological innovations co-evolve (Hegedus and Moreno-Armella, this vol-
ume).

The iPad, which appeared only in 2010, was initially misunderstood with de-
risory comments from the cognoscenti such as Bill Gates who declared, “It’s a nice
reader, but there’s nothing on the iPad I look at and say, ‘Oh, I wish Microsoft had
done it.’ ” (Bill Gates, 2010).

Now in its fourth iteration, the iPad boasts a “retina display” so that what one sees
on the screen, held at a comfortable distance, is at the maximum level of accuracy
that can be seen by the receptors on the human retina.

The iPad also offers radical new modes of operation. One of these is to draw a
graph with a movement of a finger, and another is to control the display of an already
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Fig. 1 Smoothing a graph

drawn graph—which has an appropriate method of computation, such as a function
formula—to picture it at any desired scale.

The drawing of a graph with a finger on the current iPad lacks precision, although
it might be possible to draw a graph more accurately with a yet-to-be designed com-
bination of enactive finger pointing and more precise action using a pen or mouse.
This idea, favored by Bill Gates, exists on Wacom Bamboo tablets and is beginning
to appear on touch screens. But even here, the precision of drawing is limited to that
of a retina display and graphs need to be imagined as being suitably smooth for it to
have a continuously changing derivative.

Adobe Illustrator, using a mouse or tablet interface on a computer, already has the
facility for drawing a graph with a pencil and then selecting another tool to smooth
parts of the graph (Fig. 1).

I can see Jim in my imagination now, as he would turn up at a conference in the
80s and 90s to show the latest software, such as Excel in its earlier incarnations, that
allowed him to imagine linking together symbolism and visualization in creative
ways. Only now he might be looking at the iPad, drawing not with a point and click
mouse, but with a finger, or with a more accurate pen, and then smoothing out the
graph he had drawn. He might also organize his input to touch specific points on
the graph to type their actual values, or touch a part of the curve between specific
points to input a formula. He might smooth the graph as in Illustrator, so that it
becomes locally straight, or if he wished, he could use techniques already existing
in Illustrator to draw a corner with different left and right tangents.

Such software would enable the learner to use a finger or pointer to draw a suit-
ably accurate representation of a suitably smooth graph, and to “crystallize” it (in
the sense of Moreno-Armella and Hegedus, this volume) from a dynamic move-
ment into a static picture where now its rate of change could again be dynamically
continuous.

Visually a differentiable function is “locally straight” in the sense that, if the
graph—through a point where the function is differentiable—is magnified, it will
successively look less and less curved until, under high magnification, its graph
looks like a straight line (Tall, 1985). We already have multi-touch technology such
as the iPad where the user can touch the screen with finger and thumb and move
them apart to cause the screen to be magnified. If this is programmed to keep the
horizontal and vertical scales the same, then the slope of the curve can be seen
under high magnification as the slope of a highly magnified segment that is visually
a straight line. If two windows are available, one to show the graph and another to
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show the magnified part of the graph, it is possible to trace the finger along the graph
and see the changing slope of the magnified part.

On the other hand, if the program offers a separate facility to stretch the graph
horizontally and not vertically, then a continuous graph will “pull flat,” as I have
long advocated (Tall 1986, 2009, 2012). In this way, continuity and differentiability
have simple interpretations in terms of different kinds of change of scale.

3 The Evolution of Ideas Using Technology

This single example of different views of a complex issue illustrates a profound
fundamental aspect of the evolution of ideas. As mere mortals we can only focus
on a small number of factors and the differing ways in which we do so affect, and
are affected by, the development of technology. It is not enough just to reflect on the
nature of the changing technology or on the nature of mathematics as we see it at
the time and on children’s growing conceptions and misconceptions. We need also
be confident enough to reflect on the validity of our own ideas as our cultures evolve
and technology changes.

Harel (this volume) has characterized Kaput’s work on the mathematics of
change and variation as follows:

In all, Kaput’s work on the mathematics of change and variation may be viewed as a re-
search program—a program for which Kaput paved the foundations and offered a path
for progress. Such a program can be characterized as one that pays a serious attention
to: equity, quantitative meaning, gradual development (from elementary school onward),
advanced-technology-based curriculum that is grounded in classroom context, and consis-
tent epistemology. (Harel, this volume, p. 440)

This formulates what he terms “the Kaputian program” as a broader research
enterprise focusing on the mathematics of change and variation. It must be taken
in conjunction with Kaput’s ideas expressed earlier that seek to address the whole
framework of building powerful mathematical ideas developing from the child’s per-
sonal experience through modes of “expressing, communicating, reasoning, com-
puting, abstracting, generalizing, and formalizing—all extending the limited powers
of the human mind” (Kaput and Roschelle, this volume, p. 13).

Kaput’s reference to the limited powers of the human mind applies not just to the
children we teach or to the politicians who set the legal agenda for the mathemat-
ics curriculum, they also apply to us “experts” and to Kaput himself. The amazing
feature of his program is that it contains within it a vision that foresees the need to
modify and evolve our own theories, even his own.

His program operates at two levels: the specific level of how we plan and deliver
the curriculum using technological facilities such as SimCalc and the meta-level
in which we constantly refresh and evolve the ways in which we think about how
individuals make sense of mathematics.

Kaput’s theory is a grand design, much bigger than the specifics of SimCalc.
Though the implementation of SimCalc is vast in terms of the number of research
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studies that have been devoted to it and it focuses on issues beyond the mathematical
content alone, in practice it has so far concentrated on a new vision of school algebra
and the early development of mathematical variability and change.

Kaput crucially extends his vision of mathematics in school saying “finally,
mathematics embodies systematic forms of reasoning and argument to help estab-
lish the certainty, generality, and reliability of our mathematical assertions” (Kaput
and Roschelle, this volume, p. 13). This potent vision extends his program through
to the frontiers of mathematical thinking at the highest levels of mathematical re-
search.

4 Extending the Kaputian Program

In the 1990s, the Advanced Mathematical Thinking group of PME worked together
to extend mathematics education to the formal mathematics experienced at univer-
sity in which Harel and Kaput (1991) extended ideas to more formal aspects of
functions and calculus. In particular, they distinguished between the pointwise, lo-
cal and global aspects of the calculus. Formal mathematics focuses initially on the
limit concept at a specific point involving local behavior near that point and then
extends definitions of continuity and differentiability by varying that point over the
whole domain, leading to further formal distinctions between pointwise continuity
and uniform continuity over an interval.

An embodied approach works locally and dynamically, shifting a finger over an
interval in time and space as the moving finger leaves a trace of the underlying vari-
ation. It does not build from a technical definition of continuity at a single point
to then apply this pointwise definition to every individual point over an interval.
Dynamic continuity is a single gestalt, shifting attention along an interval as dy-
namically changing quantities vary together. It is peculiarly well-suited to the use of
dynamic interactive technology.

Reflecting on many aspects of learning over many years, with the help of col-
leagues and students, has led me to extend childhood experiences of perception and
action to ideas of advanced mathematical thinking as used at a more formal level
(Tall, 2006; Tall et al., 2001). This builds on human perceptions and actions and
their consequences in terms of symbolism and proof. It is based on the concep-
tual embodiment of our perception and action where our actions—such as count-
ing, measuring, adding, subtracting, evaluating, differentiating, integrating—may
be symbolized and compressed into operational symbolism and then formalized in
various ways. Formal thinking is expressed in terms of definitions and deductions.

However, as Kaput says insightfully, “mathematics embodies systematic forms
of reasoning and argument” (Kaput and Roschelle, this volume, p. 13) and the forms
of reasoning are different in different contexts. They may be verbal expressions of
embodied principles in Euclidean geometry (such as congruence which embodies
the idea of placing one triangle precisely on top of another, or parallel lines where a
line is shifted dynamically maintaining corresponding angles and related properties



Using Human Perceptions and Emotions to Make Sense of Powerful Ideas 455

such as those of alternate angles). The principles may be based on observed regular-
ities of arithmetic that are formulated as “rules” to act as a basis for algebraic proof.
Later they may be reformulated once more in terms of set-theoretic definitions of
axiomatic systems and reasoning in terms of formal proof.

This framework has been applied to SimCalc by Lima, Healy, and Campos (this
volume). They interpret SimCalc as relating real life activities to the mathematical
worlds of conceptual embodiment of dynamic graphical representations. Reasoning
is verbalized and communicated in terms of conceptual embodiment and operational
symbolism, but not yet in terms of axiomatic formalism.

Their analysis includes a significant new reflection on what happens as learners
encounter new contexts where their previous experience in terms of ideas that they
have “met before” may be supportive or problematic. Using the terminology of Lima
and Tall (2008) and McGowen and Tall (2010), supportive “met-befores” encourage
generalization while problematic met-befores impede the learner in making sense of
the new situation.

This is coupled with an analysis of emotional reactions using the goal-oriented
theory of Skemp (1979), where previous success can increase confidence and en-
courage students to meet conflict with a determination to overcome difficulties and
seek the pleasure of making sense. Alternatively, problematic aspects may lead ei-
ther to a desire to satisfy external requirements to learn procedures to pass examina-
tions, or worse, to a spiral in which failure leads to avoidance of doing mathematics
which in turn leads to more failure and increasing anxiety (Baroody and Costlick,
1998). This link between cognitive success or failure and emotional pleasure or
anxiety sheds new light on the nature of the long-term decrease of the number of
learners who make sense of mathematics until only a small proportion end up even
attempting to succeed in the more sophisticated ideas of the calculus.

It gives a broader view of the whole enterprise of mathematical thinking conso-
nant with Kaput’s program for understanding “mathematical change and variation.”
It suggests that technology may be used to give insight into dynamically continu-
ous change through crystallizing the rate of change graphically based on the idea of
changing slope built on the notion of local straightness. This may then be expressed
symbolically not only in terms of algebraic expressions but more importantly in
terms of local linearity which has the potential to develop formally in terms of the
traditional definition of limit. It also offers a new vision of the limit concept consis-
tent with the Kaput program which can be constructed from meaningful experiences
of conceptual embodiment and operational symbolism.

Modern technology enhances human abilities to make sense of dynamic change
through the interactive ability to physically control the variability of motion crys-
tallized as manipulable representations of graphs. It also has the internal capacity
to process expressions numerically and symbolically to enable the learner to see
the effects of their actions and to share their ideas through human and technologi-
cal interaction. However, although technology can be used to compute numerically,
manipulate symbolically and represent ideas visually, so that it offers the human
mind possibilities for future developments, it does not yet have the human capacity
to imagine new conceptions and to create new theories. It is therefore important to
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recognize those aspects that can be supported by technology and those that humans
need to develop by using their own mental facilities.

My own personal view is that we need to understand more about how individual
human thinkers build mathematical ideas in increasingly sophisticated contexts and
how their interpretation of new contexts is affected by fundamentally different emo-
tional reactions to supportive and problematic changes in meaning. We also need to
consider these changes not only in terms of the children’s own learning but also in
ourselves as teachers, mathematics educators and theory builders.

5 Building on the Confidence of Success

The transition to new ways of thinking needs to take into account the emotional
reactions that feed back into learners’ attitudes that can develop cycles of success
encouraging more determination to solve new problems or of failure building anxi-
eties that impede future development. This suggests the need to take account of the
success of student’s thinking processes at one level and to use the confidence that it
generates in one situation to be able to realize what is necessary to succeed in new
situations.

One possibility in the mathematics of variation and change is to build from the
confidence in using piecewise linear physical drawing in SimCalc to shift to the use
of a locally straight approach to develop more sophisticated levels of insight in the
calculus.

However, the successive changes of meaning—from distances varying in time
to the change of distance with respect to time (velocity), then velocity changing
in time (acceleration) and acceleration changing in time (jerk)—gives a succession
of different meanings that may impede the generality of the mathematics of change.
For instance, in the case of simple harmonic motion, the distance is x = sin t velocity
is cos t , acceleration is − sin t and “jerk” is − cos t . In what sense can the smooth
trigonometric function − cos t be considered a jerk?

The concept of rate of change itself may be better served by the rate of change
of a locally straight graph that may be seen by looking along the graph to see the
derivative. If the derivative is again locally straight, then the process may be repeated
for higher derivatives as long as they are also locally straight.

This extends the Kaput program to local straightness in functions of a single
variable. This can be generalized to “local flatness” of a function of many variables
to deal with multi-dimensional calculus, and the same ideas extend to integration,
differential equations, partial derivatives, so that the relationship between continuity
and local straightness is the foundation of the whole of calculus at all levels (Tall,
1985, 1986, 1989, 2009, 2012).

In the historical vision of the calculus, curves were imagined as polygons with
an infinite number of infinitesimal sides. But unlike Kaput, who focused on the
finite version of this idea using polygonal curves, I imagined a dynamic version un-
der arbitrary magnification, where I see locally straight curves as looking straight
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Fig. 2 Drawing a continuous graph

everywhere when highly magnified. Unlike the original vision of such great mathe-
maticians as Barrow, Newton, and Leibniz who saw curves with infinitesimal sides
and corners that turned through an infinitesimal angle, I encourage today’s learn-
ers to use technology to see a differentiable function to look straight under high
magnification everywhere, with no corners.

This is the resolution of a three-and-a-half century conundrum that is now ratio-
nalized in the embodied vision of modern technology. It also happens, by chance,
that going back in history to my own PhD supervisor, and then to his supervisor,
and back to mentors of mentors before PhDs were invented, I am one of thousands
of mathematicians alive today who can trace his ancestry back 14 generations to
Sir Isaac Newton and one further generation to Barrow, who also inspired Leibniz.
This is a tenuous link, but it is gratifying to see the vision of the originators of the
calculus as a simple dynamic idea that can be democratically shared with the wider
population in our technological society.

Building on the dynamic idea of a continuous function that can be drawn with the
stroke of a pencil on a sheet of paper, it is simple to translate the embodied idea of
continuity to the formal epsilon-delta definition and vice-versa—to show that using
a pencil whose point makes a mark covering a square of side length 2ε it is possible
to draw a formally continuous function f from a point (a, f (a)) to another point
(b, f (b)) as a (thick) dynamic pencil line that covers the graph of the theoretical
function. (Figure 2. Full details are given in Tall, 2012.)

Starting with a continuous function, it may be integrated to give a locally straight
area function whose derivative is continuous. Integrating a second time gives a func-
tion that is differentiable twice with a second derivative that is continuous. Integrat-
ing n times gives a function that can be differentiated n times to give a function
that is continuous. If we define a Cn function to be a function whose nth deriva-
tive is continuous, then we see a continuous function as the case n = 0 at the root
of a whole hierarchy of increasingly smooth functions. At the apex, we may see
C∞ functions that are infinitely differentiable. A simple case is a polynomial that
may be differentiated as often as desired and this suggests a generalization from
polynomials to power series.

However, as in Kaput’s program, we need to develop “systematic forms of rea-
soning and argument to help establish the certainty, generality, and reliability of
our mathematical assertions” (Kaput and Roschelle, this volume, p. 13). Contrary
to the natural expectation that infinitely differentiable functions are expressible as
power series, we find that there are counter-examples. For instance, the function
f (x) = e−1/x2

, where we take f (0) = 0, has graph that is so very flat at the origin
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that all its higher derivatives are zero, so that the power series associated with it is
zero while the function itself is not. To be able to cope with such ideas requires a
systematic form of reasoning that establishes the reliability of our assertions with
clearly defined assumptions. It is for this reason that the calculus requires exten-
sion to more formal systematic modes of thinking such as those in mathematical
analysis.

While this level of operation is certainly not necessary for the majority of the
population, it is essential that we—who reflect on the full range of the mathematics
of change and variation—encourage teachers in Science, Technology, Engineering
and Mathematics (STEM) to have a grasp of the bigger picture.

6 Views of Calculus Appropriate to the Needs of the Individual

Kaput’s view of democracy in terms of making sense of mathematics for the wider
community can now be seen in its widest sense—to take account of how individu-
als play diverse roles in society, each offering his or her own contributions to make
the whole so much greater than the sum of its parts. In How Humans Learn to
Think Mathematically (Tall, 2013), I study the development of mathematical think-
ing as individuals mature from newborn children to adults in a wide spectrum of
differing ways. This mathematical development builds from perception and action,
through the use of symbolism and natural language, to successively more sophisti-
cated forms of mathematical thinking.

In school, mathematics is seen as a blend of what I term conceptual embodiment,
involving the static and dynamic physical and mental pictures of objects and their
properties, and operational symbolism, which begins with actions on objects such as
counting, measuring and sharing that are encapsulated into thinkable objects such
as whole numbers and generalized as fractions, negatives, decimals, rationals and
irrationals, real and complex numbers, and the generalized arithmetic of algebra.
For a small minority, there is a development in university to the axiomatic formalism
of formal definition and proof.

At every stage, there is a divergence in performance in different individuals as
some aspects of previous personal experience feature as supportive met-befores in
generalizing to a new situation, while other aspects are problematic met-befores that
impede conceptual development (Tall, 2013, Chapter 3).

As human perceptions and operations become more sophisticated through the
development of human reasoning, I use van Hiele’s (1986) ideas to see mathematics
developing broadly through levels of recognition, description, definition, and de-
duction. I see this more as a broad development that encourages children to make
sense of mathematics in a meaningful way, rather than performing a micro-analysis
of various levels to be used in assessment that often provokes teachers to teach to
the test. Broadly speaking, over time, I suggest that three major stages of mathemat-
ics occur: practical mathematics, theoretical mathematics, and formal mathematics
(Tall, 2013, Chapter 1).
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Practical mathematics occurs in the geometry of space and shape, through recog-
nition and description of visual and spatial concepts. In arithmetic it occurs through
the practical activities of number and measurement, including the recognition and
description of properties of arithmetic of whole numbers, fractions, decimals, and
negative numbers (which may be introduced in a practical fashion, before or after
fractions).

Theoretical mathematics occurs in geometry with the introduction of definitions
of figures and their practical constructions using a straight edge and a pair of com-
passes to draw lines and circles. It continues with the deduction of theorems in
Euclidean geometry. In arithmetic, the shift to theoretical mathematics occurs as
observed properties of arithmetic are used in the definition of properties of whole
numbers such as even, odd, prime, composite and the deduction of theorems such as
the fact that there is an infinity of primes and that every whole number is expressed
uniquely as a product of primes. In algebra, the “rules of arithmetic” are used as def-
initions leading to the deduction of various algebraic identities using an algebraic
form of proof.

Calculus blends together both embodiment and symbolism in a theoretical ap-
proach based on local straightness. It builds on embodiment and symbolism through
the perception and recognition of the dynamic changing slope of a graph and the de-
scription of the slope function to see the slope functions.

However, to be able to compute the derivatives of composite functions such as
ex sin(x2), which quickly become too complicated to guess by just looking, it be-
comes necessary to give a more coherent theoretical definition of the limit concept
to be able to develop the rules of differentiation to be able to compute derivatives
symbolically (Tall, 2012). This definition of a derivative may be formulated in a sim-
ple way, as the stabilized picture of the practical derivative (f (x + h) − f (x))/h

through the variable point x and for small values of h, as h is taken increasingly
small.

It is therefore possible to have a theoretical approach to the calculus that does
not introduce the concept of limit until it is seen by the learner to be a necessary
construct to make sense of computing derivatives.

While the vast majority of the population can make sense of a practical approach
to the calculus—as found in SimCalc or in a subsequent development—those who
need mathematics in technical applications may be well-served by a theoretical ap-
proach to calculus and only the small minority who need to make sense of mathe-
matical analysis may require a formal approach.

The precise nature of practical and theoretical approaches will change as the
available technology evolves and affords new ways of making sense of the dynamic
notions of continuity and the mathematics of change and variation. SimCalc is a
pioneering beginning that has evolved as the technology has evolved. But where
will it go in future?

It is time for a vision that builds on the evolution of ideas over the millennia and
the use of dynamic interactive technology to see and sense the ideas of the local rate
of change and of dynamic growth building from human perception and action to the
frontiers of mathematical research.
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The framework presented here, as an extension of the Kaput program, encom-
passes the full range of mathematical development while addressing the wider issues
of individual freedom and democracy. It encourages the whole population to gain
access to the practical mathematics required for mathematical literacy in a demo-
cratic society, for those requiring a more technical approach to build a theoretical
form of mathematics of use in applications, and for the pure mathematician to retain
an unyielding belief in the necessity of formal mathematics.

It builds on the vision of Jim Kaput to reveal the potential to move into the fu-
ture, to take advantage of new technologies that give the learner a natural dynamic
interface to manipulate enactive imagery and to communicate ideas socially using
new technological modes of representation and communication.

7 Reflections

Looking back on this chapter in particular, and this book as a whole, I have chosen to
consider the bigger picture of the Kaput program that is instantiated in the SimCalc
program from which a much wider evolution of mathematical change and variation
may grow. In using the framework of Kaput to review the practicalities of SimCalc
and suggesting new developments for the future, I trust that the reader will not think
that I fail to show respect to his memory.

On the contrary, it is the very robustness of the overall Kaput program that
enables reflective criticism to encourage us to evolve from current ideas into a
future as yet unknown. I affirm that much of my own development has bene-
fited from his profound insights. Indeed, every paper of his that I have read—
whether I understood or agreed with everything he said at the time—has contained
quotable pearls of wisdom that have profoundly affected my own personal develop-
ment.

Jim Kaput was the first person to alert me clearly to the active volcano of technol-
ogy where the mathematical mountain is changing before our eyes. He first made
me aware of the relevancy of different symbol systems, though, at the time, I did
not fully understand his ideas with any clarity. He was also prescient in the way
that he saw even his own insights would need to change as ideas evolve. His pro-
found overall program contains, within it, the elements for this necessary evolu-
tion.

In practice, Kaput developed the SimCalc software to represent ideas in the math-
ematics of variability and change and to give democratic access to profound math-
ematical ideas not expressible within the standard curriculum. His program also
extended beyond his remit for working with multiple representations of change and
variability, to move on to “systematic forms of reasoning and argument to help es-
tablish the certainty, generality, and reliability of our mathematical assertions” (Ka-
put and Roschelle, this volume, p. 13).

It is appropriate to close this chapter with Jim Kaput’s own vision, as follows:
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We see new technologies creating a possibility to reconnect mathematical representations
and concepts to directly perceived phenomena, as well as to strengthen students’ under-
standing of connections among different forms of mathematical representation. By starting
from more familiar antecedents, such as graphs and motion, both in kinesthetic and cyber-
netic form, and developing towards more compact and formal mathematical representations,
we see an opportunity to create a new path of access to mathematics that has too often re-
mained the province of a narrow elite. (Kaput and Roschelle, this volume, p. 23)
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Conversation About SimCalc, Its Evolution
and Lessons Along the Way

Eric Hamilton and Nora Sabelli

1 Why Do We Consider SimCalc a “Successful” Technology
Worthy of the Volume? How Does Its “Success” Compare
to that of Other NSF Curriculum Projects?

Eric Hamilton: SimCalc opened new ways to see the roles that learners play in
their own learning. It exposed new possibilities and it equipped learners with tools
that allowed them to drill into some large mathematical ideas that were beyond the
typical reach of modern mathematics curriculum.

One significant development in learning technologies has involved participa-
tory content development, by which learners become actively engaged, especially
through simulations, in creating what they are learning about. This takes many forms
that have multiplied since the advent of SimCalc, but few approaches have been as
dynamic or as interesting as those appearing in SimCalc. By giving learners control
of mathematical objects in simulations, SimCalc gave rise to new forms of learner
agency. It helped learners shift the understanding of themselves as actively affect-
ing mathematics—by placing mathematical objects into a manipulable social space.
That meant new ways for learners to see themselves as mathematics “doers” and to
see mathematics as responsive to their actions—and those of their peers. Of course,
this required new representational systems given to kids and developed by kids. The
systems were dynamic and mediated a new view—literally and metaphorically—of
mathematics.
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Nora Sabelli: What is missing in your answer, from my point of view, is how
the framing of calculus implied by SimCalc spoke to the education constituencies
outside mathematics education and even outside education. The significance of Sim-
Calc to them lies in two aspects of the role that “the mathematics of change” plays
in education: one is as an opening to a deep mathematical way of thinking in ways
that are consequential outside the discipline and not limited to the specific needs of
a mathematics curriculum, and another is as a gatekeeper to higher education. Sim-
Calc uses the first to open the second. Its transformative nature can be seen in the
importance of helping teachers understand the content takes that SimCalc’s imple-
mentation had in later work, and by a pedagogy that does not start by purely abstract
concepts of calculus. Jim Kaput corrected me more than once when I used terms like
“calculus” to describe SimCalc; he wanted to use rather the label “the mathematics
of change.” I tie Jim’s approach to his learning about calculus pedagogy from the
remedial College mathematics courses he often ran.

Eric Hamilton: Yes, your point is well-taken. The SimCalc formulation spoke
to constituencies outside of mathematics education. It was a sort of vindication for
people who suspected that they could have and should have experienced mathemat-
ics differently. Jim looked at mathematics through the gatekeeper lens you mention,
whether in SimCalc or those courses, it is crucial to understanding his legacy. As
he saw it, if youngsters could have more access to mathematics, and acquire and
use advanced mathematical ideas proficiently, it was like giving them the keys to
the gate. In some ways, the ensemble of simulations, mathematics of motion, so-
cial space for mathematics learning—was all part of a full-throated effort to make
mathematics immediately accessible to all learners. It was like throwing out all the
stops and finding whatever levers for seeing, learning and doing mathematics were
possible.

But what was it like for you, coming into the NSF’s education directorate as a
chemist, trying to get your own thoughts around what sort of research would have
the most impact in the field and for the most students? You had not been there long
before SimCalc came to you, were you?

Nora Sabelli: When Jim brought the SimCalc idea to NSF, I was a new program
officer working with advanced technologies. (For those that don’t know me, I am a
computational chemist, which is basically somebody that uses computers to invert
matrices.) The initial arguments that Jim made for the affordances of the new forms
of agency, did not fit well with the mathematics curriculum ideas targeted for the
grades where the project would end up making most sense, nor did it conform to the
expected innovation in the requirements for advanced technology uses in education.
The rationale for the project was neither curriculum nor technology oriented; rather
it was both intellectual—in terms of what mathematics learning should entail—and
policy-oriented—in terms of what barriers to further study imply for society. Basi-
cally, many of the arguments being expressed now for broadening STEM education
were at the basis of SimCalc, long before they were shown to be necessary.

SimCalc had to be “rescued” from curriculum programs and seen as pedagogical
research that responded to needs beyond the mathematics curriculum per se. Do not
underestimate the fact that many people did not believe that everyone could learn
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calculus—many still do not believe it. Also, your comments below on the problems
with technology show why it could not be considered purely as a technology project.
The feasibility and impact of the original ideas had to be demonstrated as high-risk,
high-gain “research” in the AAT program before they were accepted as worthy of
funding and a viable part of the mathematics “curriculum.”

I still remember that in one of the first AAT Principal Investigators Meeting at
NSF that I attended, SimCalc immediately got the attention of several senior scien-
tists looking at other projects—biologists, if I remember correctly—who saw in its
ideas “the makings of a real winner” that would impact all STEM education, and
that may have led to parallel thinking in other disciplines. It would be interesting to
know if and how this shift in focus at the start, since the proposal had to be rewritten,
impacted the development of the ideas and curriculum materials.

2 Undoubtedly, SimCalc’s Success Is Based on the Powerful
and Relevant Idea It Embodies. Is the Power of This Idea
that Led SimCalc to a 17-year History of Support? What
Allowed SimCalc to Survive the Gauntlet of Different Awards,
Reviews and Expectations? Has Its Success Depended
on the Time It Has Taken to Implement and Test the Core
Ideas?

Eric Hamilton: SimCalc was hobbled and limited by technological constraints in
those early years, as I saw it, and these limitations contributed to a longer time-
line than Jim ever wanted. Jim and the team were always struggling with hand-held
bandwidth, memory size, and limitations in the programming and visualization tools
of the day. These matters are important. They underscore that placing deep mathe-
matical ideas with the grasp of learners requires certain technological affordances.
Making ideas accessible drove the technology, in contrast to a more common pat-
tern of educational technology driving the learning. The technology had to be able
to support learners so that their intuitions and experience could give them power
to deal with the mathematics of change. The idea transcended the specifics of the
technology, but the technology was a key to the power of the idea. In other words,
the SimCalc concept was larger than the technological containers available at the
time. Or maybe it is better to say that the SimCalc framework was larger, because
the framework structured many different powerful concepts that the SimCalc team
and then SimCalc users connected.

Nora Sabelli: I understand your answer, but it does not really explain why Sim-
Calc, in difference to many other projects, continued to push ahead and not be de-
terred by the continuous changes in its technology core. If the answer to “what it
took to get SimCalc funded” is that there had to be a research-oriented home at NSF
to see its potential, then the answer to this question may lay either with the expecta-
tion that research is an iterative process that builds on its short-term successes and
failures, rather than a development that ends with a deliverable product, or with the
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commitment of the team to “solve a problem” rather than conducting a research or
an R&D project.

If you think about it, a project like the 17-year SimCalc one, requires multiple
(evolving) types of expertise and research interests—and therefore methods. The
existence of teams capable of deploying this expertise and evolving their focus is
not a given. In fact, NSF could play a more active role in promoting such evolution
of work that builds on a strong intellectual component.

3 Is SimCalc’s Long Time Frame also Related to Its Attempt
to ‘Radicalize’ the Curriculum and the Mathematical Vision
Behind It?

Eric Hamilton: I think that the long-term time frame is more associated with the
technological work-arounds. The challenges that the SimCalc team faced were not
only in enacting a new paradigm for teaching, learning, and mathematics in tech-
nology, it was also in creating the technology that could enact that vision, and the
strive to make it make sense to a constituency of policy-makers, teachers, students,
and funders.

Nora Sabelli: I would say that the second part of your answer is crucial. . . the
striving to make sense to those charged with implementation. It is what I meant by
Jim wanting to “solve a problem” and not “run a project.” The audience for any
evidence of a project’s success, and the audience for a transformative view of the
mathematics curriculum are different. Most likely, the evidence provided by Sim-
Calc at the start and at the end of its long life are quite different, while in both cases
based on the interplay between deep goals and more specific learning measures.

Eric Hamilton: I would add a couple of comments in reply. I remember in 1991,
just after Luther Williams came to lead the Education and Human Resources Direc-
torate, that Luther gave an important speech at a PI meeting. Everyone wanted to
hear more about changes they felt he would be making, and PIs were more than a
little intimidated. I was recently funded to run a center to address minority underrep-
resentation in STEM fields in Chicago. Luther spoke clearly, saying in exact words
that are not hard to remember, “we are here to solve a problem, not to fund pro-
grams.” Maybe that does not seem like such a radical concept now, but at the time,
those were considered fighting words by grantees in the audience. In my naïve way, I
did not understand how much Luther was challenging the way things were. Instead,
I felt a powerful resonance—like the tumblers of a combination lock falling into
place. Luther’s pronouncement eventually played out in many ways, but he shared
Jim’s determination to use money to solve problems instead of to fund programs. It
is fair to say that Luther cherished deeply and was profoundly informed and moved
by Jim’s vision and determination.

In this respect, some comments Dick Lesh of Indiana University made to me
about Jim are also appropriate. Dick said he was always impressed by how Jim
responded when he learned something new about how kids think or learn, or when
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he had to back out of one path and try another. There was a sense almost of giddiness
that he had gone one step further in learning about kids thinking, and was a step
closer to solving the problem of how to help kids navigate to success in acquiring
and manipulating mathematics. Instead of trying to get teachers and students to
use his program the way he conceptualized it, he was more interested in learning
how to create pathways that would be most productive. If anything, as Dick would
point out, because Jim was a bona fide research mathematician, he had plenty of
reason to plow ahead with the way he thought kids should learn mathematics. But
he knew that knowing mathematics was not the same thing as understanding how
youngsters learn mathematics. In pushing forward with SimCalc, Jim Kaput was a
deliberate and humble observer, “delighted,” to use Dick Lesh’s word, every time he
saw something new about how kids acquire and use important mathematical ideas.
That continual freshness about discovery helped to fuel SimCalc and keep it as a
vibrant part of the EHR portfolio.

Nora Sabelli: To add to Dick’s second point—Jim being a mathematician, is
very important for science education, but not necessarily in the way education re-
search uses scientists’ deep understanding of their discipline as it is continuously
evolving. We tend to use scientists, with a few meritorious exceptions, on the ba-
sis of curriculum needs, not on the basis of breaking barriers to deep and complex
ideas. Chemistry, my discipline, plays a gatekeeping role for STEM in college.

4 Much of SimCalc’s History Takes Place After the Main
Technological Hurdles Were Conquered. Where
the Technological and Pedagogical Advances Simultaneous?
Was the Process of Having to Submit Many Proposals
an Intellectual Help or a Hindrance? One Could Argue
that Rather than a Hindrance, the Need to Rethink Approach
and Research Steps Could Have Been of Intellectual Help

Eric Hamilton: All of the above. Well-written Requests for Proposals (RFPs) make
ideas stronger and sharper. Nora, I was always impressed when I moved from the
systemic reform division at NSF to the education research division to see how you
framed ideas in an RFP—leaving the field both led and with more capacity to lead.
At its best, a good RFP can contain guidance that is knowledgable, moving and
practical. Good RFPs find ways to entice both new and current “performers,” to use
NSF’s term, to come forward with fresh conceptualizations and questions responsive
to whatever the evolving conditions of a research community.

Getting the right mix of projects, and getting them properly reviewed, is always
the challenge for a funding agency, however. I think NSF generally has held the
view that a diversified portfolio of research investments, not only across disciplines
but also of varying size, would furnish the most promising yield of advances and
voices in the research community. This still leaves open questions about the blend
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of large and small projects, with tradeoffs associated with each. When should an
agency focus resources on a few large projects over a long period of time, versus
encouraging a larger number of small projects? SimCalc was always in the mix of
these types of conversations at NSF.

Another issue that is easier to observe in retrospect than in real-time goes back
to the mismatch between concept and technology—what I think was a primary ob-
stacle in SimCalc development. It is difficult to predict trendlines for hardware,
software, and human resource costs in learning technology research investments.
The mobile devices and networking tools available to Jim and the SimCalc team
were evolving vehicles for the enduring concept of engagement in deep and partic-
ipatory mathematics. Those vehicles came at a high overhead. A great deal of time
and money was spent programming around limitations that eventually disappeared.
A great deal of energy was devoted to a corporate partnership involving a bountiful
good will but also cultural differences between academia and business—differences
that were never fully resolved. I came to NSF’s education research division shortly
after SimCalc started making the rounds there.

My context was very different than yours. For several years before coming to
the agency, I had been funded by NSF to run Young Scholars Projects where we
drew middle and high school students with no more than a beginning algebra back-
ground into deep ideas of the infinitesimal, of summed rectangles, of tangent slopes,
and exponential functions. We had seventh through tenth grade students engaged in
multiple unexpected discovery events involving calculus. We did not call it calcu-
lus, and we did not tell kids they were learning derivatives or integrals, because
our interest was not in differentiating or integrating per se but rather in introduc-
ing students to a path of producing their own numerical method tools to understand
mathematical behavior.

Numerical methods (as rendered in the circuitry of a calculator), of course, is the
very path Jim and SimCalc relied on to put mathematical ideas in reach of more
kids. In our case, we drew youngsters into the experience of writing computer pro-
grams that, for example, summed large numbers of rectangles or that experimented
with the delta term of a secant slope approximation. These were sublime discovery
experiments that traded on intuition, though perhaps not quite as sublime as Jim’s
formulations of the mathematics of change for kids that age and younger. But the
mathematics was very visible and arrived at powerfully with cheap desktop comput-
ers that kids built from the bottom up.

Computers in the 1990s simply were far more powerful than TI graphing calcu-
lators. Jim was on a moral mission, to make mathematics affordable and reachable.
He never wavered from his conviction that the right vehicle was a mobile rather
than desktop technology. But there was a great practical tradeoff. I was frustrated
that he devoted so many cognitive cycles dealing with technology limitations. We
never had a conversation about SimCalc without references he made to bandwidth
and coding challenges. I had come out of a computer science department, so perhaps
these discussions and observing how quickly technology could get out of the way
after bringing kids to new mathematics shaped my view that SimCalc was limited
by the constraints of mobile devices. I saw the technology challenges perhaps more
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prominently than others at NSF. The path that the SimCalc team took to overcoming
those challenges successfully to produce a scalable approach to the mathematics of
variation is a tremendous legacy. My guess is that you may concur with some of
these observations but point out other issues that you see missing in this analysis.

Nora Sabelli: Though what you say is all true, and I agree with most of it, there
are structural issues that perhaps should be discussed, since they may point to what
is missing in the research portfolio, not only of NSF but of education research in
general. But first, a comment on the readiness of technology. The technology “to
think” with in education exists in the work of the disciplines we want to teach, inde-
pendently and collectively. So there is no real reason not to think about introducing
deep STEM concepts; though there may be a delay in translating them into robust
materials and software, often the basic new ways of looking at the concepts do not
depend solely on the technology. A good example of the way I look at the interplay
between technology and concepts in science is illustrated by Elliot Soloway’s Mod-
elit software—unfortunately I think a victim of technology advances. What Modelit
did for modeling in science was to move from quantitative analysis to qualitative
analysis—does the oxygen level in water go up or down when the temperature goes
up? By a little or by a lot? The computer does the programming, and the concepts,
not the numbers, are emphasized.

Education research is still to a some degree imbued with linear thinking and with
the twin concepts of “dissemination” and “scaling up” successful materials, both of
which imply that if something—curriculum or technology—is worthwhile, it will
be picked up by somebody else and carried to the finished line. It forgets that both
the initial R&D and follow-up scaling-up need research support. Linear thinking
focuses on the developers of materials, while the more up-to-date nonlinear thinking
adds implementers’ needs to the mix. Materials are “adopted” by practice, but also
“adapted” to local conditions. Research gives general answers, but all education is
local.

The linear view is not limited to education, see for example the emphasis being
placed in medicine on “translation research,” that is to say, research on the process
of translation to practice itself. The ideas are starting to take hold in education as
implementation research, which involves collaborations between researchers and
practitioners, including the policy, organizational and contextual situations in which
practice takes place.

In fact, the process of developing appropriate scaling-up research strategies that
focus on “education for all” (or the democratization of mathematics, as Jim would
have said) is still going on with an emphasis on “implementation research” in many
fields beyond education. So one lesson about long timelines for research intended
to transform practice is the time it takes to build on the importance of the interplay
between pedagogies and ideas.

You may remember a short-lived interagency program (IERI, Interagency Edu-
cation Research Initiative) that originated in the Office of Science and Technology
Policy of the White House. IERI had two characteristics that speak to my structural
concerns: it looked for already promising materials to focus on their adaptation to
practice contexts (the translational research aspect) and had a award length of five
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years, to allow for sufficient in depth experimentation. In fact, SimCalc received an
IERI award for its second phase. It would be interesting to know if the award was
for five years; if it was, how the five year life affected the project.

5 Is Another of the Lessons That Curriculum Development
About Deep Ideas and not About Specific Curricular Needs
Should Be Treated as Research, and a Strategy that NSF
Needs to Employ More Often as Science Becomes More
Interdisciplinary?

Nora Sabelli: I believe that NSF needs to re-think curriculum development at least
as much as this question suggests, and start developing the powerful ideas enabled
by new advances in the sciences—the barriers between scientific disciplines and
between them and mathematics are not serving the needs of the future very well.

SimCalc and the mathematics of change are well positioned to help do this.
Among the original group of projects generated by the SimCalc team was work by
TERC that introduced physical models (such as trains in train tracks) that paralleled
SimCalc simulations. But the curricular separation between physics and mathemat-
ics did not generate enough interest to allow for exploration and building on the real
(physics) versus ideal (mathematics) nature of the concepts involved. I am still sorry
that this aspect was not studied.

Eric Hamilton: In fact, with new tools coming online, I believe it is timely to
consider placing curriculum development more firmly in the hands of teachers and
students. There is a great deal of room for using current technology to emancipate
and empower teachers and students to play a more participatory role in curriculum
development. Yes, of course, move across grades. And move across people we ex-
pect to be the curriculum makers.

Nora Sabelli: Can you say why you expect that placing curriculum development
more firmly in the hands of teachers and students would help with respect to a more
integrated curriculum

There is complementarity between new ideas coming from content advances and
from cognitive research, and new pedagogical approaches coming from the experi-
ences of practice. I do not see this as an issue of top down versus bottom up. Both are
equally important, in my view, but for different reasons. Bottom up, unfortunately,
is often dependent of policies that mistrust teachers and begrudge them the time
needed to exercise their profession. And, of course, on how teachers are educated.

Eric Hamilton: Agree!
Nora Sabelli: One way of looking at your question is that the three areas have to

be in place for real, sustainable and meaningful advances to take place. I agree that
what happens in the classroom needs to recognize the crucial role of the appropria-
tion by teachers in its development. But I do not expect the teachers by themselves
to fully conceptualize content in novel ways that reflect the advances being made
in content areas, not expect them to have the time to do the cognitive research on
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pedagogy that learning scientists do. I would like to see teacher as highly regarded
professionals like the physicians whose main job is to diagnose the needs of the pa-
tient, use her knowledge of current research to devise a plan of action, and closely
monitor the success of the treatment. In education terms, I expect the materials to be
“educative” for the teacher, as Joe Krajcik would say, or, as Louis Gomez proposed,
to be templates that make visible the design criteria so that teachers can effectively
adapt it to their students’ needs. Fidelity of implementation implies fidelity to the
design principles and lesson learned from use, but cannot bypass adaptation to local
contexts.

Another way of looking at the question, more policy and funding oriented, is to
read it as top down via agency goals and RFPs, versus bottom up as field-initiated
research. Again, I see both as needed, though in practice they are not as integrated as
they should be. SimCalc may be a unique example where the top down—rethinking
math education—and the bottom-up—instantiating it—were merged. But I don’t
see similar examples on other areas that need it. Take the quintessential interdisci-
plinary topic of nanoscience, where NSF has issued education RFPs. The process
of “rethinking” the science curriculum is different from the processes of teaching
nanoscience as a topic and integrating nanoscience into disciplinary curricula, and
may not arise in response to an RFP, or in the review process for submissions to that
RFP unless specifically sought. That process is taking place instead in the science
frameworks movement and may, in effect, be reflected in the new standards derived
from them; we just have to wait and see. There has to be a more top-down push for
“science” as opposed to separate scientific disciplines—and I consider mathematics
as one of the disciplines.

Eric Hamilton: Let me respond to your question about teachers and students
being more involved in content and curriculum development.

I do think that there is a lot of implicit top-down structure and subordination in
curriculum development that places teachers—and students—on the “down” side,
as in curriculum is handed down for teachers to teach and students to learn. It is not
a way of doing things that fully fits the times, I believe. We live in an odd season of
more tools than we have ever had to produce or generate content (exciting), more
reliance on borrowed or depleted fiscal resources than in generations (depressing),
and more teacher angst and dissatisfaction with accountability demands they often
consider demeaning and always consider limiting (depressing). There is also more
knowledge produced by our global society than ever to “pack in” to the school expe-
rience (challenging). More digital tools to engage learners, individually and socially
to reveal mathematical and scientific structure (exciting) and more digital author-
ing tools than ever (also exciting). There are many ways that all of these variables
can shake out, but a path I see is one whereby both teachers and students become
far more integrated into the process of customizing the development of digital cur-
riculum artifacts to meet local needs within a broader accountability and standards
context. For example, the Common Core State Standards in Mathematics (CCSSM)
have been increasingly adopted around the country. Whether or not CCSSM reflects
lessons from the work of Jim Kaput and others is an important question. But there
is no question that with frameworks of this nature, and with media-making tools,
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teachers are taking more control over producing curriculum materials for students
to match the needs of their students and the accountability requirements they face.
My argument—and the subject of research we carry out in Los Angeles—is that we
should not only acknowledge an ascendant role of teachers in generating curricu-
lum content, but actively furnish support and a creative space for them, even as they
work with visionaries like Jim. We are finding that when teachers engage students
in helping to produce curriculum materials, all kinds of positive and truly delightful
dynamics emerge. Effectively, the tools add a massive infusion of problem-solving
capital, imagination, unanticipated approaches to recurrent problems, and evolving
technological expertise. And teachers find themselves far more empowered, and stu-
dents find themselves more empowered, when they became engaged in a more active
role in curriculum making. We are at the very early stages of watching what happens
when we give permission for different agency and identity for teachers and students,
and it is exciting. I believe this sense of creative agency in producing mathematical
ideas is of kindred spirit to SimCalc. As far as that last term you used, “integrated
curriculum,” though, I cannot comment. I see a long path before we can reach an
equilibrium on curriculum.

6 How Relevant Is the Strategy of Scaling-Up by Small
Steps to Its Success? Was the Choice of Partners
and Implementation Sites Instrumental to SimCalc’s Success?

Eric Hamilton: I think that the scale-up strategy of small steps evolved in a set of
conditions during the SimCalc developmental years that are not necessarily so appli-
cable currently. The testing that SRI undertook, I believe, eventually was crucial—it
provided the empirical results needed to convince skeptics and to make developers
more attuned to making approaches work across a cross-section of populations. But
I resist the notion of planned scale-up, though, in that it still has a top-down feel to
it. In contrast, I believe that most innovation is a blend of emergent practice that can-
not be externally organized by a funder and evolving policy structures that change
every month. The miss ratio on all the scale-up funding by NSF was too high, I
think. SimCalc was one of the few successes.

Nora Sabelli: I don’t really know. I think it was of help to SimCalc, since it
allowed for planning work and proposals in response to advances in field conversa-
tion about methodology and adaptation versus plain scaling-up. But this may have
been an advantage while the time lost in terms of research flexibility may have been
more relevant. I am a chemist, and I know in my field that the goals and methods
of research evolve with the research. I also know that the first year of any research
project is spent on building the team and calibrating the equipment—in the case
of education, assessments and survey protocols, not counting parental agreements.
This leaves the second year’s work to be oriented towards obtaining data, and the
third year to analyzing that data. But in education, one year of data is not ideal, and
having to recompete with data that has not been subjected to iterations may stop
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promising transformative projects in their tracks. We know that it takes at least two
years for teachers to become comfortable enough with new pedagogies to deploy
them well.

7 In Summary, Why Is SimCalc Worth Its $20M Investment?
How Can We Choose Technologies and Curricula that Merit
Such an Investment?

Nora Sabelli: In the years since NSF began funding SimCalc, the agency has in-
vested well over two billion research dollars in STEM education research, and the
investment in SimCalc represented less than 1 % of that amount. Its impact on
the conceptual frameworks for research, for altering and deepening the learning
of mathematics through affordances of technology, are far greater than such a fig-
ure might suggest.

Choosing technologies and curricula to merit an investment is what you call the
holy grail of the program staff at agencies that fund this work. There are no magic
bullets or easy answers, but there are some pathways that are important. But focus-
ing on a powerful and intellectually central idea, one that is at the same time an
educational gatekeeper, like the mathematics of change, and expanding its access is
a good starting criterion. SimCalc benefitted from a political focus on mathematics.
Other NSF-funded work (in science), that could have paralleled SimCalc, suffered
by being “off the radar” for schools.

Eric Hamilton: Scale-up implies intentionality to alter the behavior of large sys-
tems and the people in them. In that sense, it is unmistakably an impositional inten-
tionality that takes on and tries—usually in vain, in turned out—to surmount the
tendency of systems to resist change. NSF has devoted large sums to efforts that
could not attain planned goals because the nature of systems and system change has
(still) not been fully understood.

The portfolio analyses that NSF has undertaken in recent years should be juxta-
posed with an analysis of “self-organizing scale-up” constructs that have arisen in a
social media age, including viral media, crowd-sourcing, and rapidly communicated
and improvised constructs such as classroom-flipping.

Nora Sabelli: I agree with your views, but think that there should be a policy-
oriented study with questions appropriate to what we ask: how to choose technolo-
gies and curricula that merit such an investment? While I was at NSF, we supported
a discussion meeting with members of the Education Commission of the States,
mostly State legislators in education committees, and researchers using technology
to advance education. Jim Kaput was one of the researchers invited. There were
no presentations, just conversations about needs and about what research could and
could not do. The most salient outcome of the meeting was, in my view, a comment
from a legislator that the most important thing he would take back was that, if well
implemented, technology can help everybody learn calculus. The details did not
matter, it was the possibility of democratizing mathematics that resonated. None of
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the other examples received a similar response; there was interest but not an “aha!”
moment for them. Which justifies Jim’s ideas that solving a problem should be the
goal, and emphasizing the point. And that often we aim too low.

Eric Hamilton: My final thought on the scale-up question begins with the
thought that the different conceptual and technological tools he marshaled gives cre-
ative thinkers like Jim far more running room than he would have had in a pre-digital
era. Beyond that, his scale-up impact is not written in the language of electrons and
technology but in terms of fairness, access to mathematical power, and the human
quest to learn.

Nora Sabelli: Agreed.
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65–67, 85, 92, 94, 106, 119, 125–127,
130, 141, 145, 147, 156, 158, 159, 163,
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201, 208, 212, 225, 233, 234, 236, 238,
241, 243, 245–247, 251, 253, 258, 268,
272–275, 280, 283, 285, 287, 288, 291,
294–296, 301, 302, 304, 319–323, 325,
348, 349, 363, 364, 367, 377–379, 384,
386, 408, 421, 430, 438, 440, 449–460,
463–466, 468–470, 473, 474

affordances, 56, 243, 285, 473
Texas, 22, 50, 74, 75, 78, 127–129, 131–133,

140, 141, 148, 170, 172–175, 177, 185,
188, 190–194, 201, 206, 236, 254, 258,
261, 263, 305, 306, 313, 314

Theory of Change, 272, 273, 279, 280
Three worlds of mathematics, 342, 344, 345,

350, 351, 353, 357, 360

U
Uniform continuity, 454

V
Visual perception, 389–391, 397

W
Ways of thinking, 282, 366, 406, 420, 424,
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