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Preface

Many math and some statistics departments offer a one-semester graduate course in
statistical theory using texts such as Casella and Berger (2002), Bickel and Doksum
(2007) or Mukhopadhyay (2000, 2006). The course typically covers minimal and
complete sufficient statistics, maximum likelihood estimators (MLEs), method of
moments, bias and mean square error, uniform minimum variance unbiased esti-
mators (UMVUEs) and the Fréchet–Cramér–Rao lower bound (FCRLB), an intro-
duction to large sample theory, likelihood ratio tests, and uniformly most powerful
(UMP) tests and the Neyman–Pearson Lemma. A major goal of this text is to make
these topics much more accessible to students by using the theory of exponential
families.

One of the most important uses of exponential families is that the theory often
provides two methods for doing inference. For example, minimal sufficient statis-
tics can be found with either the Lehmann Scheffé theorem or by finding T from
the exponential family parameterization. Similarly, if Y1, . . . ,Yn are iid from a one-
parameter regular exponential family with complete sufficient statistic T (Y ), then
one-sided UMP tests can be found by using the Neyman–Pearson lemma or by using
exponential family theory.

The prerequisite for this text is a calculus-based course in statistics at the level
of Hogg and Tanis (2005), Larsen and Marx (2011), Wackerly et al. (2008), or
Walpole et al. (2006). Also see Arnold (1990), Gathwaite et al. (2002), Spanos

(1999), Wasserman (2004), and Welsh (1996).
The following intermediate texts are especially recommended: DeGroot and

Schervish (2012), Hogg et al. (2012), Rice (2006), and Rohatgi (1984).
A less satisfactory alternative prerequisite is a calculus-based course in probabil-

ity at the level of Hoel et al. (1971), Parzen (1960), or Ross (2009).
A course in Real Analysis at the level of Bartle (1964), Gaughan (2009),

Rosenlicht (1985), Ross (1980), or Rudin (1964) would be useful for the large sam-
ple theory chapter.

The following texts are at a similar to higher level than this text: Azzalini (1996),
Bain and Engelhardt (1992), Berry and Lindgren (1995), Cox and Hinkley (1974),
Ferguson (1967), Knight (2000), Liero and Zwanzig (2012), Lindgren (1993),

v
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Lindsey (1996), Mood et al. (1974), Roussas (1997), and Silvey (1970). Also see
online lecture notes Marden (2012).

The texts Bickel and Doksum (2007), Lehmann and Casella (1998), and Rohatgi
and Ehsanes Saleh (2001) are at a higher level as are Poor (1994) and Zacks (1971).
The texts Bierens (2004), Cramér (1946), Keener (2010), Lehmann and Romano
(2005), Rao (1973), Schervish (1995), and Shao (2003) are at a much higher level.

Some other useful references include a good low-level probability text Ash
(1993) and a good introduction to probability and statistics Dekking et al. (2005).
Also see Ash (2011), Spiegel (1975), Romano and Siegel (1986), and online lecture
notes Ash (2013).

Many of the most important ideas in statistics are due to Fisher, Neyman, E.S.
Pearson and K. Pearson. For example, David (2006–7) says that the following terms
were due to Fisher: consistency, covariance, degrees of freedom, efficiency, infor-
mation, information matrix, level of significance, likelihood, location, maximum
likelihood, multinomial distribution, null hypothesis, pivotal quantity, probability
integral transformation, sampling distribution, scale, statistic, Student’s t, studenti-
zation, sufficiency, sufficient statistic, test of significance, uniformly most powerful
test and variance.

David (2006–7) says that terms due to Neyman and E.S. Pearson include alter-
native hypothesis, composite hypothesis, likelihood ratio, power, power function,
simple hypothesis, size of critical region, test criterion, test of hypotheses, and type
I and type II errors. Neyman also coined the term confidence interval.

David (2006–7)says that terms due to K. Pearson include binomial distribution,
bivariate normal, method of moments, moment, random sampling, skewness, and
standard deviation.

Also see, for example, David (1995), Fisher (1922), Savage (1976), and Stigler
(2007). The influence of Gosset (Student) on Fisher is described in Zabell (2008)
and Hanley et al. (2008). The influence of Karl Pearson on Fisher is described in
Stigler (2008).

This book covers some of these ideas and begins by reviewing probability, count-
ing, conditional probability, independence of events, the expected value, and the
variance. Chapter 1 also covers mixture distributions and shows how to use the
kernel method to find E(g(Y )). Chapter 2 reviews joint, marginal, and conditional
distributions; expectation; independence of random variables and covariance; condi-
tional expectation and variance; location–scale families; univariate and multivariate
transformations; sums of random variables; random vectors; the multinomial, mul-
tivariate normal, and elliptically contoured distributions. Chapter 3 introduces ex-
ponential families, while Chap. 4 covers sufficient statistics. Chapter 5 covers maxi-
mum likelihood estimators and method of moments estimators. Chapter 6 examines
the mean square error and bias as well as uniformly minimum variance unbiased es-
timators, Fisher information, and the Fréchet–Cramér–Rao lower bound. Chapter 7
covers uniformly most powerful and likelihood ratio tests. Chapter 8 gives an in-
troduction to large sample theory, while Chap. 9 covers confidence intervals. Chap-
ter 10 gives some of the properties of 54 univariate distributions, many of which
are exponential families. Chapter 10 also gives over 30 exponential family param-
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eterizations, over 28 MLE examples, and over 27 UMVUE examples. Chapter 11
gives a brief introduction to Bayesian methods, and Chap. 12 gives some hints for
the problems.

Some highlights of this text are as follows:

• Exponential families, indicator functions, and the support of the distribution are
used throughout the text to simplify the theory.

• Section 1.5 describes the kernel method, a useful technique for computing the
expected value of a function of a random variable, E[g(Y )].

• Theorem 2.2 shows the essential relationship between the independence of ran-
dom variables Y1, . . . ,Yn and the support in that the random variables are depen-
dent if the support is not a cross product. If the support is a cross product and if
the joint pdf or pmf factors on the support, then Y1, . . . ,Yn are independent.

• Theorems 2.17 and 2.18 give the distribution of ∑Yi when Y1, . . . ,Yn are iid for a
wide variety of distributions.

• Chapter 3 presents exponential families. The theory of these distributions greatly
simplifies many of the most important results in mathematical statistics.

• Corollary 4.6 presents a simple method for finding sufficient, minimal sufficient
and complete statistics for k-parameter exponential families.

• Section 5.4.1 compares the “proofs” of the MLE invariance principle due to
Zehna (1966) and Berk (1967). Although Zehna (1966) is cited by most texts,
Berk (1967) gives a correct elementary proof.

• Theorem 6.5 compares the UMVUE and the estimator that minimizes the MSE
for a large class of one-parameter exponential families.

• Theorem 7.3 provides a simple method for finding uniformly most powerful tests
for a large class of one-parameter exponential families. Power is examined in
Example 7.12.

• Theorem 8.4 gives a simple proof of the asymptotic efficiency of the complete
sufficient statistic as an estimator of its expected value for one-parameter regular
exponential families.

• Theorem 8.21 provides a simple limit theorem for the complete sufficient statistic
of a k-parameter regular exponential family.

• Chapter 10 gives information for 54 “brand name” distributions.
• Chapter 11 shows how to use the shorth to estimate the highest posterior density

region.

In a semester, I cover Sects. 1.1–1.6, 2.1–2.9, 3.1, 3.2, 4.1, 4.2, 5.1, 5.2, 6.1, 6.2,
7.1, 7.2, 7.3, 8.1–8.4, and 9.1.

Much of the text material is on parametric frequentist methods, but the most
used methods in statistics tend to be semi-parametric. Many of the most used meth-
ods originally based on the univariate or multivariate normal distribution are also
semi-parametric methods. For example, the t-interval works for a large class of
distributions if σ2 is finite and n is large. Similarly, least squares regression is a
semi-parametric method. Multivariate analysis procedures originally based on the
multivariate normal distribution tend to also work well for a large class of ellipti-
cally contoured distributions.
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Warning: For parametric methods that are not based on the normal distribution,
often the methods work well if the parametric distribution is a good approximation
to the data, but perform very poorly otherwise.
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Chapter 1
Probability and Expectations

The first two chapters of this book review some of the tools from probability that
are useful for statistics. These two chapters are no substitute for the prerequisite of
a calculus-based course in probability and statistics at the level of Hogg and Tanis
(2005), Larsen and Marx (2011), Wackerly et al. (2008), Walpole et al. (2006),
DeGroot and Schervish (2012), Hogg et al. (2012), Rice (2006), or Rohatgi (1984).

Most of the material in Sects. 1.1–1.4 should be familiar to the reader and might
be reviewed in one 50-min lecture. Section 1.5 covers the kernel method, a useful
technique for computing the expectation of a function of a random variable, while
Sect. 1.6 introduces mixture distributions.

Definition 1.1. Statistics is the science of extracting useful information from
data.

1.1 Probability

The following terms from set theory should be familiar. A set consists of distinct
elements enclosed by braces, e.g., {1,5,7}. The universal set S is the set of all ele-
ments under consideration while the empty set Ø is the set that contains no elements.
The set A is a subset of B, written A ⊆ B, if every element in A is in B. The union
A∪B of A with B is the set of all elements in A or B or in both. The intersection
A∩B of A with B is the set of all elements in A and B. The complement of A, written
A or Ac, is the set of all elements in S but not in A. The following theorem is used to
find complements of unions and intersections of two sets.

Theorem 1.1. DeMorgan’s Laws:

a) A∪B = A∩B.
b) A∩B = A∪B.
c) (∪∞

i=1Ai)
c = ∩∞

i=1Ac
i .

d) (∩∞
i=1Ai)

c = ∪∞
i=1Ac

i .

D.J. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4 1,
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2 1 Probability and Expectations

Proof. The proofs of a) and b) are similar to those of c) and d), and “iff” means
“if and only if.”

c) (∪∞
i=1Ai)

c occurred iff ∪∞
i=1Ai did not occur, iff none of the Ai occurred, iff all

of the Ac
i occurred, iff ∩∞

i=1Ac
i occurred.

d) (∩∞
i=1Ai)

c occurred iff not all of the Ai occurred, iff at least one of the Ac
i

occurred, iff ∪∞
i=1Ac

i occurred. �

If S = {1,2,3,4,5},A= {1,2} and B = {4,5}, then A∪B= {1,2,4,5}c = {3}=
{3,4,5}∩{1,2,3}=A∩B. Similarly, A∩B=Øc = S= {3,4,5}∪{1,2,3}= A∪B.

Sets are used in probability, but often different notation is used. For example, the
universal set is called the sample space S.

Definition 1.2. The sample space S is the set of all possible outcomes of an ex-
periment.

Definition 1.3. Let B be a special field of subsets of the sample space S forming
the class of events. Then A is an event if A ∈B.

In the definition of an event above, the special field of subsets B of the sample
space S forming the class of events will not be formally given. However,B contains
all “interesting” subsets of S and every subset that is easy to imagine. The point is
that not necessarily all subsets of S are events, but every event A is a subset of S.

Definition 1.4. If A ∩ B = Ø, then A and B are mutually exclusive or disjoint
events. Events A1,A2, . . . are pairwise disjoint or mutually exclusive if Ai ∩A j = Ø
for i �= j.

If Ai and A j are disjoint, then P(Ai ∩A j) = P(Ø) = 0. A simple event is a set that
contains exactly one element si of S, e.g., A = {s3}. A sample point si is a possible
outcome. Simple events {si} and {s j} are disjoint if si �= s j .

Definition 1.5. A discrete sample space consists of a finite or countable number
of outcomes.

Notation. Generally we will assume that all events under consideration belong
to the same sample space S.

The relative frequency interpretation of probability says that the probability of
an event A is the proportion of times that event A would occur if the experiment was
repeated again and again infinitely often.

Definition 1.6: Kolmogorov’s Definition of a Probability Function. Let B be
the class of events of the sample space S. A probability function P : B → [0,1] is
a set function satisfying the following three properties:

P1) P(A)≥ 0 for all events A,
P2) P(S) = 1, and
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P3) if A1,A2, . . . are pairwise disjoint events, then P(∪∞
i=1Ai) = ∑∞

i=1 P(Ai).

Example 1.1. Flip a coin and observe the outcome. Then the sample space S =
{H,T}. Note that {H} and {T} are disjoint simple events. Suppose the coin is
biased with P({H}) = 1/3. Then P({T}) = 2/3. Often the notation P(H) = 1/3
will be used.

Theorem 1.2. Let A and B be any two events of S. Then

i) 0 ≤ P(A)≤ 1.
ii) P(Ø) = 0 where Ø is the empty set.

iii) Complement Rule: P(A) = 1−P(A).
iv) General Addition Rule: P(A∪B) = P(A)+P(B)−P(A∩B).
v) If A ⊆ B, then P(A)≤ P(B).

vi) Boole’s Inequality: P(∪∞
i=1Ai) ≤ ∑∞

i=1 P(Ai) for any events A1,A2, . . .. vi)
Bonferonni’s Inequality: P(∩n

i=1Ai) ≥ ∑n
i=1 P(Ai)− (n − 1) for any events

A1,A2, . . . ,An.

Note that A and A are disjoint and A∪ A = S. Hence 1 = P(S) = P(A∪ A) =
P(A)+P(A), proving the complement rule. Note that S and Ø are disjoint, so 1 =
P(S) = P(S∪Ø) = P(S)+P(Ø). Hence P(Ø) = 0. If A ⊆ B, let C = A∩B. Then A
and C are disjoint with A∪C = B. Hence P(A)+P(C) = P(B), and P(A) ≤ P(B)
by i). The general addition rule for two events is very useful. Given three of the 4
probabilities in iv), the 4th can be found. P(A∪B) can be found given P(A), P(B)
and that A and B are disjoint or independent. So if P(A) = 0.2, P(B) = 0.3, and
A and B are disjoint, then P(A∪ B) = 0.5. The addition rule can also be used to
determine whether A and B are independent (see Sect. 1.3) or disjoint.

Following Casella and Berger (2002, p. 13), P(∪n
i=1Ac

i ) = P[(∩n
i=1Ai)

c] = 1−
P(∩n

i=1Ai)≤ ∑n
i=1 P(Ac

i ) = ∑n
i=1[1−P(Ai)] = n−∑n

i=1 P(Ai), where the first equal-
ity follows from DeMorgan’s Laws, the second equality holds by the complement
rule, and the inequality holds by Boole’s inequality P(∪n

i=1Ac
i )≤∑n

i=1 P(Ac
i ). Hence

P(∩n
i=1Ai)≥ ∑n

i=1 P(Ai)− (n− 1), and Bonferonni’s inequality holds.

1.2 Counting

The sample point method for finding the probability for event A says that if S =
{s1, . . . ,sk}, then 0 ≤ P(si) ≤ 1, ∑k

i=1 P(si) = 1, and P(A) = ∑i:si∈A P(si). That is,
P(A) is the sum of the probabilities of the sample points in A. If all of the outcomes
si are equally likely, then P(si) = 1/k and P(A) = (number of outcomes in A)/k if S
contains k outcomes.

Counting or combinatorics is useful for determining the number of elements in
S. The multiplication rule says that if there are n1 ways to do a first task, n2 ways to
do a 2nd task, . . . , and nk ways to do a kth task, then the number of ways to perform
the total act of performing the 1st task, then the 2nd task, . . . , then the kth task is
∏k

i=1 ni = n1 ·n2 ·n3 · · ·nk.
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Techniques for the multiplication principle:

a) Use a slot for each task and write ni above the ith task. There will be k slots, one
for each task.

b) Use a tree diagram.

Definition 1.7. A permutation is an ordered arrangement using r of n distinct ob-
jects and the number of permutations = Pn

r . A special case of permutation formula is

Pn
n = n! = n · (n− 1) · (n− 2) · (n−3) · · ·4 ·3 ·2 ·1=

n · (n− 1)! = n · (n− 1) · (n− 2)!= n · (n− 1) · (n− 2) · (n− 3)!= · · · . Generally n
is a positive integer, but define 0! = 1. An application of the multiplication rule can

be used to show that Pn
r = n · (n− 1) · (n−2) · · ·(n− r+ 1) =

n!
(n− r)!

.

The quantity n! is read “n factorial.” Typical problems using n! include the num-
ber of ways to arrange n books, to arrange the letters in the word CLIPS (5!), etc.

Example 1.2. The formula for n! can be derived using n slots and the multipli-
cation rule. Suppose there are n distinct books to be arranged in order. The first slot
corresponds to the first book, which can be chosen in n ways. Hence an n goes in
the first slot. The second slot corresponds to the second book, which can be chosen
in n− 1 ways since there are n− 1 books remaining after the first book is selected.
Similarly, the ith slot is for the ith book after the first i−1 books have been selected.
Since there are n− (i− 1) = n− i+ 1 books left, an n− i+ 1 goes in ith slot for
i = 1,2, . . . ,n. The formula for the number of permutations Pn

r can be derived in a
similar manner, with r slots. Hence if r people are chosen from n and made to stand
in a line, the ith slot corresponds to the ith person in line, i− 1 people have already
been chosen, so n− i+ 1 people remain for the ith slot for i = 1,2, . . . ,r.

A story problem is asking for the permutation formula if the story problem has r
slots and order is important. No object is allowed to be repeated in the arrangement.
Typical questions include how many ways are there to “to choose r people from n
and arrange in a line,” “to make r letter words with no letter repeated,” or “to make 7
digit phone numbers with no digit repeated.” Key words include order, no repeated
and different.

Notation. The symbol ≡ below means the first three symbols are equivalent and
equal, but the fourth term is the formula used to compute the symbol. This notation
will often be used when there are several equivalent symbols that mean the same
thing. The notation will also be used for functions with subscripts if the subscript
is usually omitted, e.g., gX(x) ≡ g(x). The symbol

(n
r

)
is read “n choose r” and is

called a binomial coefficient.

Definition 1.8. A combination is an unordered selection using r of n distinct
objects. The number of combinations is

C(n,r)≡Cn
r ≡

(
n
r

)
=

n!
r!(n− r)!

.
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Combinations are used in story problems where order is not important. Key
words include committees, selecting (e.g., four people from ten), choose, random
sample and unordered.

1.3 Conditional Probability and Independence

Definition 1.9. The conditional probability of A given B is

P(A|B) = P(A∩B)
P(B)

if P(B)> 0.

It is often useful to think of this probability as an experiment with sample space
B instead of S.

Definition 1.10. Two events A and B are independent, written A B, if

P(A∩B) = P(A)P(B).

If A and B are not independent, then A and B are dependent.

Definition 1.11. A collection of events A1, . . . ,An are mutually independent if for
any subcollection Ai1 , . . . ,Aik ,

P(∩k
j=1Aij ) =

k

∏
j=1

P(Aij).

Otherwise the n events are dependent.

Theorem 1.3. Assume that P(A) > 0 and P(B) > 0. Then the two events A and
B are independent if any of the following three conditions hold:

i) P(A∩B) = P(A)P(B),
ii) P(A|B) = P(A), or

iii) P(B|A) = P(B).

If any of these conditions fails to hold, then A and B are dependent.

The above theorem is useful because only one of the conditions needs to be
checked, and often one of the conditions is easier to verify than the other two condi-
tions. If P(A)= 0.5 and P(B) = 0.8, then A and B are independent iff P(A∩B)= 0.4.

Theorem 1.4. a) Multiplication rule: If A1, . . . ,Ak are events with
P(A1 ∩A2 ∩·· ·∩Ak−1)> 0, then
P(∩k

i=1Ai) = P(A1)P(A2|A1)P(A3|A1 ∩A2) · · ·P(Ak|A1 ∩A2 ∩·· ·∩Ak−1).
In particular, P(A∩B) = P(A)P(B|A) = P(B)P(A|B).
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b) Multiplication rule for independent events: If A1,A2, . . . ,Ak are independent, then
P(A1 ∩A2 ∩·· ·∩Ak) = P(A1) · · ·P(Ak). If A and B are independent (k = 2), then
P(A∩B) = P(A)P(B).

c) Addition rule for disjoint events: If A and B are disjoint, then P(A∪B) = P(A)+
P(B). If A1, . . . ,Ak are pairwise disjoint, then P(∪k

i=1Ai) =P(A1∪A2∪·· ·∪Ak)=

P(A1)+ · · ·+P(Ak) = ∑k
i=1 P(Ai).

Example 1.3. The above rules can be used to find the probabilities of more com-
plicated events. The following probabilities are closely related to Binomial experi-
ments. Recall that for Bernoulli trials there are two outcomes called “success” and
“failure” where a “success” is the outcome that is counted. Suppose that there are
n independent identical trials, that Y counts the number of successes and that ρ =
probability of success for any given trial. Let Di denote a success in the ith trial.
Then

i) P(none of the n trials were successes) = (1−ρ)n = P(Y = 0) =
P(D1 ∩D2 ∩·· ·∩Dn).

ii) P(at least one of the trials was a success) = 1− (1−ρ)n = P(Y ≥ 1) =

1−P(Y = 0) = 1−P(none) = P(D1 ∩D2 ∩·· ·∩Dn).
iii) P(all n trials were successes) = ρn = P(Y = n) = P(D1 ∩D2 ∩·· ·∩Dn).
iv) P(not all n trials were successes) = 1−ρn = P(Y < n) = 1−P(Y = n) = 1 −

P(all).
v) P(Y was at least k ) = P(Y ≥ k).

vi) P(Y was at most k) = P(Y ≤ k).

If A1,A2, . . . are pairwise disjoint and if ∪∞
i=1Ai = S, then the collection of sets

A1,A2, . . . is a partition of S. By taking A j = Ø for j > k, the collection of pairwise
disjoint sets A1,A2, . . . ,Ak is a partition of S if ∪k

i=1Ai = S.

Theorem 1.5: Law of Total Probability. If A1,A2, . . . ,Ak form a partition of S
such that P(Ai)> 0 for i = 1, . . . ,k, then

P(B) =
k

∑
j=1

P(B∩A j) =
k

∑
j=1

P(B|A j)P(A j).

Theorem 1.6: Bayes’ Theorem. Let A1,A2, . . . ,Ak be a partition of S such that
P(Ai)> 0 for i = 1, . . . ,k, and let B be an event such that P(B)> 0. Then

P(Ai|B) = P(B|Ai)P(Ai)

∑k
j=1 P(B|A j)P(A j)

.

Proof. Notice that P(Ai|B) = P(Ai ∩ B)/P(B) and P(Ai ∩ B) = P(B|Ai)P(Ai).
Since B = (B∩A1)∪·· ·∪ (B∩Ak) and the Ai are disjoint, P(B) =∑k

j=1 P(B∩A j) =

∑k
j=1 P(B|A j)P(A j). �

Example 1.4. There are many medical tests for rare diseases and a positive result
means that the test suggests (perhaps incorrectly) that the person has the disease.
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Suppose that a test for disease is such that if the person has the disease, then a
positive result occurs 99 % of the time. Suppose that a person without the disease
tests positive 2 % of the time. Also assume that 1 in 1,000 people screened have the
disease. If a randomly selected person tests positive, what is the probability that the
person has the disease?

Solution: Let A1 denote the event that the randomly selected person has the dis-
ease and A2 denote the event that the randomly selected person does not have the
disease. If B is the event that the test gives a positive result, then we want P(A1|B).
By Bayes’ theorem,

P(A1|B) = P(B|A1)P(A1)

P(B|A1)P(A1)+P(B|A2)P(A2)
=

0.99(0.001)
0.99(0.001)+ 0.02(0.999)

≈ 0.047. Hence instead of telling the patient that she has the rare disease, the doctor
should inform the patient that she is in a high risk group and needs further testing.

Bayes’ theorem is very useful for including prior information into a statistical
method, resulting in Bayesian methods. See Chap. 11. Chapters 3–10 cover frequen-
tist methods which are based on the relative frequency interpretation of probability
discussed above Definition 1.6.

1.4 The Expected Value and Variance

Definition 1.12. A random variable Y is a real valued function with a sample space
as a domain: Y : S → R where the set of real numbers R= (−∞,∞).

Definition 1.13. Let S be the sample space and let Y be a random variable. Then
the (induced) probability function for Y is PY (Y = yi)≡ P(Y = yi) =
PS({s ∈ S : Y (s) = yi}). The sample space of Y is
SY = {yi ∈ R : there exists an s ∈ S with Y (s) = yi}.

Definition 1.14. The population is the entire group of objects from which we
want information. The sample is the part of the population actually examined.

Example 1.5. Suppose that 5-year survival rates of 100 lung cancer patients are
examined. Let a 1 denote the event that the ith patient died within 5 years of being
diagnosed with lung cancer, and a 0 if the patient lived. The outcomes in the sample
space S are 100-tuples (sequences of 100 digits) of the form s = 1010111 · · ·0111.
Let the random variable X(s) = the number of 1’s in the 100-tuple = the sum of
the 0’s and 1’s = the number of the 100 lung cancer patients who died within 5
years of being diagnosed with lung cancer. Then the sample space of X is SX =
{0,1, . . . ,100}. Notice that X(s) = 82 is easier to understand than a 100-tuple with
82 ones and 18 zeroes. Note that there are 2100 outcomes in S and 101 outcomes
in SX .
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For the following definition, F is a right continuous function if for every
real number x, limy↓x F(y) = F(x). Also, F(∞) = limy→∞ F(y) and F(−∞) =
limy→−∞ F(y).

Definition 1.15. The cumulative distribution function (cdf) of any random
variable Y is F(y) = P(Y ≤ y) for all y ∈ R. If F(y) is a cumulative distribution
function, then F(−∞) = 0, F(∞) = 1, F is a nondecreasing function and F is right
continuous.

Definition 1.16. A random variable is discrete if it can assume only a finite or
countable number of distinct values. The collection of these probabilities is the prob-
ability distribution of the discrete random variable. The probability mass func-
tion (pmf) of a discrete random variable Y is f (y) = P(Y = y) for all y ∈ R where
0 ≤ f (y)≤ 1 and ∑y: f (y)>0 f (y) = 1.

Remark 1.1. The cdf F of a discrete random variable is a step function with a
jump of height f (y) at values of y for which f (y)> 0.

Definition 1.17. A random variable Y is continuous if its distribution function
F(y) is absolutely continuous.

The notation ∀y means “for all y.”

Definition 1.18. If Y is a continuous random variable, then a probability density
function (pdf) f (y) of Y is an integrable function such that

F(y) =
∫ y

−∞
f (t)dt (1.1)

for all y ∈ R. If f (y) is a pdf, then f (y) is continuous except at most a countable
number of points, f (y)≥ 0 ∀y, and

∫ ∞
−∞ f (t)dt = 1.

Theorem 1.7. If Y has pdf f (y), then f (y) = d
dy F(y) ≡ F ′(y) wherever the

derivative exists (in this text the derivative will exist and be continuous except for at
most a finite number of points in any finite interval).

Theorem 1.8. i) P(a < Y ≤ b) = F(b)−F(a).
ii) If Y has pdf f (y), then P(a < Y < b) = P(a < Y ≤ b) = P(a ≤ Y < b) =

P(a ≤ Y ≤ b) =
∫ b

a f (y)dy = F(b)−F(a).
iii) If Y has a probability mass function f (y), then Y is discrete and P(a <Y ≤ b) =

F(b)−F(a), but P(a ≤ Y ≤ b) �= F(b)−F(a) if f (a)> 0.

Definition 1.19. Let Y be a discrete random variable with probability mass func-
tion f (y). Then the mean or expected value of Y is

EY ≡ E(Y ) = ∑
y: f (y)>0

y f (y) (1.2)
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if the sum exists when y is replaced by |y|. If g(Y ) is a real valued function of Y ,
then g(Y ) is a random variable and

E[g(Y )] = ∑
y: f (y)>0

g(y) f (y) (1.3)

if the sum exists when g(y) is replaced by |g(y)|. If the sums are not absolutely
convergent, then E(Y ) and E[g(Y )] do not exist.

Example 1.6. Common low level problem. The sample space of Y is SY =
{y1,y2, . . . ,yk} and a table of y j and f (y j) is given with one f (y j) omitted. Find the
omitted f (y j) by using the fact that ∑k

i=1 f (yi) = f (y1)+ f (y2)+ · · ·+ f (yk) = 1.
Hence if SY = {1,2,3} with f (1) = 0.01 and f (2) = 0.1, then f (3) = 0.89. Thus
E(Y ) = 0.01+ 2(0.1)+ 3(0.89)= 2.88.

Definition 1.20. If Y has pdf f (y), then the mean or expected value of Y is

EY ≡ E(Y ) =
∫ ∞

−∞
y f (y)dy (1.4)

and
E[g(Y )] =

∫ ∞

−∞
g(y) f (y)dy (1.5)

provided the integrals exist when y and g(y) are replaced by |y| and |g(y)|. If the
modified integrals do not exist, then E(Y ) and E[g(Y )] do not exist.

Definition 1.21. If E(Y 2) exists, then the variance of a random variable Y is

VAR(Y )≡ Var(Y )≡V Y ≡V (Y ) = E[(Y −E(Y))2]

and the standard deviation of Y is SD(Y ) =
√

V (Y ). If E(Y 2) does not exist, then
V (Y ) does not exist.

The notation E(Y ) = ∞ or V (Y ) = ∞ when the corresponding integral or sum
diverges to ∞ can be useful. The following theorem is used over and over again,
especially to find E(Y 2) = V (Y ) + (E(Y ))2. The theorem is valid for all random
variables that have a variance, including continuous and discrete random variables.
If Y is a Cauchy (μ ,σ) random variable (see Chap. 10), then neither E(Y ) nor V (Y )
exist.

Theorem 1.9: Short cut formula for variance.

V (Y ) = E(Y 2)− (E(Y))2. (1.6)

If Y is a discrete random variable with sample space SY = {y1,y2, . . . ,yk}, then

E(Y ) =
k

∑
i=1

yi f (yi) = y1 f (y1)+ y2 f (y2)+ · · ·+ yk f (yk)
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and E[g(Y )] =
k

∑
i=1

g(yi) f (yi) = g(y1) f (y1)+ g(y2) f (y2)+ · · ·+ g(yk) f (yk). In

particular,
E(Y 2) = y2

1 f (y1)+ y2
2 f (y2)+ · · ·+ y2

k f (yk).

Also

V (Y ) =
k

∑
i=1

(yi −E(Y ))2 f (yi) =

(y1 −E(Y))2 f (y1)+ (y2 −E(Y))2 f (y2)+ · · ·+(yk −E(Y ))2 f (yk).

For a continuous random variable Y with pdf f (y), V (Y ) =
∫ ∞
−∞(y−E[Y ])2 f (y)dy.

Often using V (Y ) = E(Y 2)− (E(Y ))2 is simpler.

Example 1.7: Common low level problem. i) Given a table of y and f (y),
find E[g(Y )] and the standard deviation σ = SD(Y ). ii) Find f (y) from F(y). iii)
Find F(y) from f (y). iv) Given that f (y) = c g(y), find c. v) Given the pdf f (y),
find P(a < Y < b), etc. vi) Given the pmf or pdf f (y) find E[Y ], V (Y ), SD(Y ), and
E[g(Y )]. The functions g(y) = y, g(y) = y2, and g(y) = ety are especially common.

Theorem 1.10. Let a and b be any constants and assume all relevant expectations
exist.

i) E(a) = a.
ii) E(aY + b) = aE(Y )+ b.

iii) E(aX + bY) = aE(X)+ bE(Y).
iv) V (aY + b) = a2V (Y ).

Definition 1.22. The moment generating function (mgf) of a random variable
Y is

m(t) = E[etY ] (1.7)

if the expectation exists for t in some neighborhood of 0. Otherwise, the mgf does
not exist. If Y is discrete, then m(t) =∑y ety f (y), and if Y is continuous, then m(t) =∫ ∞
−∞ ety f (y)dy.

Definition 1.23. The characteristic function of a random variable Y is c(t) =
E[eitY ], where the complex number i =

√−1.

Moment generating functions do not necessarily exist in a neighborhood of zero,
but a characteristic function always exists. This text does not require much knowl-
edge of theory of complex variables, but know that i2 = −1, i3 = −i and i4 = 1.
Hence i4k−3 = i, i4k−2 = −1, i4k−1 = −i and i4k = 1 for k = 1,2,3, . . .. To compute
the characteristic function, the following result will be used.

Proposition 1.11. Suppose that Y is a random variable with an mgf m(t) that
exists for |t| < b for some constant b > 0. Then the characteristic function of Y is
c(t) = m(it).
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Definition 1.24. Random variables X and Y are identically distributed, written
X ∼ Y or Y ∼ FX , if FX(y) = FY (y) for all real y.

Proposition 1.12. Let X and Y be random variables. Then X and Y are identically
distributed, X ∼ Y , if any of the following conditions hold.

a) FX(y) = FY (y) for all y,
b) fX (y) = fY (y) for all y,
c) cX(t) = cY (t) for all t or
d) mX(t) = mY (t) for all t in a neighborhood of zero.

Definition 1.25. For positive integers k, the kth moment of Y is E[Y k] while the
kth central moment is E[(Y −E[Y ])k].

Theorem 1.13. Suppose that the mgf m(t) exists for |t| < b for some constant
b > 0, and suppose that the kth derivative m(k)(t) exists for |t| < b. Then E[Y k] =

m(k)(0) for positive integers k. In particular, E[Y ] = m′(0) and E[Y 2] = m
′′
(0).

Notation. The natural logarithm of y is log(y) = ln(y). If another base is wanted,
it will be given, e.g., log10(y).

Example 1.8. Common problem. Let h(y), g(y), n(y), and d(y) be functions.
Review how to find the derivative g′(y) of g(y) and how to find the kth derivative

g(k)(y) =
dk

dyk g(y)

for integers k ≥ 2. Recall that the product rule is

(h(y)g(y))′ = h′(y)g(y)+ h(y)g′(y).

The quotient rule is

(
n(y)
d(y)

)′
=

d(y)n′(y)− n(y)d′(y)
[d(y)]2

.

The chain rule is
[h(g(y))]′ = [h′(g(y))][g′(y)].

Know the derivative of log(y) and ey and know the chain rule with these functions.
Know the derivative of yk.

Then given the mgf m(t), find E[Y ] = m′(0), E[Y 2] = m′′(0) and V (Y ) = E[Y 2]−
(E[Y ])2.

Definition 1.26. Let f (y) ≡ fY (y|�) be the pdf or pmf of a random variable Y .
Then the set Y� = {y| fY (y|�)> 0} is called the sample space or support of Y . Let
the set Θ be the set of parameter values � of interest. Then Θ is the parameter
space of Y . Use the notation Y = {y| f (y|�) > 0} if the support does not depend
on � . So Y is the support of Y if Y� ≡ Y ∀� ∈Θ .
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Definition 1.27. The indicator function IA(x) ≡ I(x ∈ A) = 1 if x ∈ A and
IA(x) = 0, otherwise. Sometimes an indicator function such as I(0,∞)(y) will be de-
noted by I(y > 0).

Example 1.9. Often equations for functions such as the pmf, pdf, or cdf are given
only on the support (or on the support plus points on the boundary of the support).
For example, suppose

f (y) = P(Y = y) =

(
k
y

)
ρy(1−ρ)k−y

for y = 0,1, . . . ,k where 0 < ρ < 1. Then the support of Y is Y = {0,1, . . . ,k}, the
parameter space isΘ = (0,1) and f (y) = 0 for y not ∈Y . Similarly, if f (y) = 1 and
F(y) = y for 0 ≤ y ≤ 1, then the support Y = [0,1], f (y) = 0 for y < 0 and y > 1,
F(y) = 0 for y < 0 and F(y) = 1 for y > 1.

Since the pmf and cdf are defined for all y ∈ R= (−∞,∞) and the pdf is defined
for all but countably many y, it may be better to use indicator functions when giving
the formula for f (y). For example,

f (y) = 1I(0 ≤ y ≤ 1)

is defined for all y ∈ R.

1.5 The Kernel Method

Notation. Notation such as E(Y |�)≡ E�(Y ) or fY (y|�) is used to indicate that the
formula for the expected value or pdf are for a family of distributions indexed by
� ∈Θ . A major goal of parametric inference is to collect data and estimate � from
the data.

Example 1.10. If Y ∼ N(μ ,σ2), then Y is a member of the normal family of
distributions with � = (μ ,σ) ∈ Θ = {(μ ,σ)| −∞ < μ < ∞ and σ > 0}. Then
E[Y |(μ ,σ)] = μ and V (Y |(μ ,σ)) = σ2. This family has uncountably many mem-
bers.

The kernel method is a widely used technique for finding E[g(Y )].

Definition 1.28. Let fY (y) be the pdf or pmf of a random variable Y and suppose
that fY (y|�) = c(�)k(y|�). Then k(y|�) ≥ 0 is the kernel of fY and c(�)> 0 is the
constant term that makes fY sum or integrate to one. Thus

∫ ∞
−∞ k(y|�)dy = 1/c(�)

or ∑y∈Y k(y|�) = 1/c(�).

Often E[g(Y )] is found using “tricks” tailored for a specific distribution. The
word “kernel” means “essential part.” Notice that if fY (y) is a pdf, then E[g(Y )] =∫ ∞
−∞ g(y) f (y|�)dy =

∫
Y g(y) f (y|�)dy. Suppose that after algebra, it is found that

E[g(Y )] = a c(�)
∫ ∞

−∞
k(y|�)dy
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for some constant a where � ∈ Θ and Θ is the parameter space. Then the kernel
method says that

E[g(Y )] = a c(�)
∫ ∞

−∞

c(�)
c(�)

k(y|�)dy =
a c(�)
c(�)

∫ ∞

−∞
c(�)k(y|�)dy

︸ ︷︷ ︸
1

=
a c(�)
c(�)

.

Similarly, if fY (y) is a pmf, then

E[g(Y )] = ∑
y: f (y)>0

g(y) f (y|�) = ∑
y∈Y

g(y) f (y|�),

where Y = {y : fY (y)> 0} is the support of Y . Suppose that after algebra, it is found
that

E[g(Y )] = a c(�) ∑
y∈Y

k(y|�)

for some constant a, where � ∈Θ . Then the kernel method says that

E[g(Y )] = a c(�) ∑
y∈Y

c(�)
c(�)

k(y|�) = a c(�)
c(�) ∑

y∈Y
c(�)k(y|�)

︸ ︷︷ ︸
1

=
a c(�)
c(�)

.

The kernel method is often useful for finding E[g(Y )], especially if g(y) = y,
g(y) = y2 or g(y) = ety. The kernel method is often easier than memorizing a trick
specific to a distribution because the kernel method uses the same trick for every
distribution: ∑y∈Y f (y) = 1 and

∫
y∈Y f (y)dy = 1. Of course sometimes tricks are

needed to get the kernel f (y|�) from g(y) f (y|�). For example, complete the square
for the normal (Gaussian) kernel.

Example 1.11. To use the kernel method to find the mgf of a gamma (ν,λ ) dis-
tribution, refer to Chap. 10 and note that

m(t) = E(etY ) =

∫ ∞

0
ety yν−1e−y/λ

λνΓ (ν)
dy =

1
λνΓ (ν)

∫ ∞

0
yν−1 exp

[
−y

(
1
λ
− t

)]
dy.

The integrand is the kernel of a gamma (ν,η) distribution with

1
η

=
1
λ
− t =

1−λ t
λ

so η =
λ

1−λ t
.

Now ∫ ∞

0
yν−1e−y/λdy =

1
c(ν,λ )

= λνΓ (ν).
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Hence

m(t) =
1

λνΓ (ν)

∫ ∞

0
yν−1 exp[−y/η ]dy = c(ν,λ )

1
c(ν,η)

=

1
λνΓ (ν)

ηνΓ (ν) =
(η
λ

)ν
=

(
1

1−λ t

)ν

for t < 1/λ .

Example 1.12. The zeta(ν) distribution has probability mass function

f (y) = P(Y = y) =
1

ζ (ν)yν
,

where ν > 1 and y = 1,2,3, . . .. Here the zeta function

ζ (ν) =
∞

∑
y=1

1
yν

for ν > 1. Hence

E(Y ) =
∞

∑
y=1

y
1

ζ (ν)
1
yν

=
1

ζ (ν)
ζ (ν− 1)

∞

∑
y=1

1
ζ (ν− 1)

1
yν−1

︸ ︷︷ ︸
1=sum of zeta(ν−1) pmf

=
ζ (ν− 1)
ζ (ν)

if ν > 2. Similarly

E(Y k) =
∞

∑
y=1

yk 1
ζ (ν)

1
yν

=
1

ζ (ν)
ζ (ν − k)

∞

∑
y=1

1
ζ (ν− k)

1
yν−k

︸ ︷︷ ︸
1=sum of zeta(ν−k) pmf

=
ζ (ν− k)
ζ (ν)

if ν− k > 1 or ν > k+ 1. Thus if ν > 3, then

V (Y ) = E(Y 2)− [E(Y)]2 =
ζ (ν − 2)
ζ (ν)

−
[
ζ (ν− 1)
ζ (ν)

]2

.

Example 1.13. The generalized gamma distribution has pdf

f (y) =
φyφν−1

λφνΓ (ν)
exp(−yφ/λφ ),
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where ν,λ ,φ and y are positive, and

E(Y k) =
λ kΓ (ν+ k

φ )

Γ (ν)
if k >−φν.

To prove this result using the kernel method, note that

E(Y k) =

∫ ∞

0
yk φyφν−1

λφνΓ (ν)
exp(−yφ/λφ )dy =

∫ ∞

0

φyφν+k−1

λφνΓ (ν)
exp(−yφ/λφ )dy.

This integrand looks much like a generalized gamma pdf with parameters νk, λ , and
φ , where νk = ν+(k/φ) since

E(Y k) =

∫ ∞

0

φyφ(ν+k/φ)−1

λφνΓ (ν)
exp(−yφ/λφ )dy.

Multiply the integrand by

1 =
λ kΓ (ν+ k

φ )

λ kΓ (ν+ k
φ )

to get

E(Y k) =
λ kΓ (ν+ k

φ )

Γ (ν)

∫ ∞

0

φyφ(ν+k/φ)−1

λφ(ν+k/φ)Γ (ν+ k
φ )

exp(−yφ/λφ )dy.

Then the result follows since the integral of a generalized gamma pdf with parame-
ters νk, λ , and φ over its support is 1. Notice that νk > 0 implies k >−φν .

1.6 Mixture Distributions

Mixture distributions are often used as outlier models. The following two definitions
and proposition are useful for finding the mean and variance of a mixture distribu-
tion. Parts a) and b) of Proposition 1.14 below show that the definition of expectation
given in Definition 1.30 is the same as the usual definition for expectation if Y is a
discrete or continuous random variable.

Definition 1.29. The distribution of a random variable Y is a mixture distribution
if the cdf of Y has the form

FY (y) =
k

∑
i=1

αiFWi(y) (1.8)

where 0<αi < 1, ∑k
i=1αi = 1, k ≥ 2, and FWi(y) is the cdf of a continuous or discrete

random variable Wi, i = 1, . . . ,k.
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Definition 1.30. Let Y be a random variable with cdf F(y). Let h be a function
such that the expected value E[h(Y )] exists. Then

E[h(Y )] =
∫ ∞

−∞
h(y)dF(y). (1.9)

Proposition 1.14. Assume all expectations exist. a) If Y is a discrete random
variable that has a pmf f (y) with support Y , then

E[h(Y )] =
∫ ∞

−∞
h(y)dF(y) = ∑

y∈Y
h(y) f (y).

b) If Y is a continuous random variable that has a pdf f (y), then

E[h(Y )] =
∫ ∞

−∞
h(y)dF(y) =

∫ ∞

−∞
h(y) f (y)dy.

c) If Y is a random variable that has a mixture distribution with cdf FY (y) =
∑k

i=1αiFWi(y), then

E[h(Y )] =
∫ ∞

−∞
h(y)dF(y) =

k

∑
i=1

αiEWi [h(Wi)],

where EWi [h(Wi)] =
∫ ∞
−∞ h(y)dFWi(y).

Example 1.14. Proposition 1.14c implies that the pmf or pdf of Wi is used to
compute EWi [h(Wi)]. As an example, suppose the cdf of Y is F(y) = (1− ε)Φ(y)+
εΦ(y/k), where 0 < ε < 1 and Φ(y) is the cdf of W1 ∼ N(0,1). Then Φ(x/k) is the
cdf of W2 ∼ N(0,k2). To find E[Y ], use h(y) = y. Then

E[Y ] = (1− ε)E[W1]+ εE[W2] = (1− ε)0+ ε0= 0.

To find E[Y 2], use h(y) = y2. Then

E[Y 2] = (1− ε)E[W2
1 ]+ εE[W2

2 ] = (1− ε)1+ εk2 = 1− ε+ εk2.

Thus VAR(Y ) = E[Y 2]− (E[Y ])2 = 1−ε+εk2. If ε = 0.1 and k = 10, then EY = 0,
and VAR(Y ) = 10.9.

Remark 1.2. Warning: Mixture distributions and linear combinations of ran-
dom variables are very different quantities. As an example, let

W = (1− ε)W1 + εW2,

where ε , W1, and W2 are as in the previous example and suppose that W1 and W2 are
independent. Then W , a linear combination of W1 and W2, has a normal distribution
with mean

E[W ] = (1− ε)E[W1]+ εE[W2] = 0
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and variance

VAR(W ) = (1− ε)2VAR(W1)+ ε2VAR(W2) = (1− ε)2 + ε2k2 < VAR(Y )

where Y is given in the example above. Moreover, W has a unimodal normal dis-
tribution while Y does not follow a normal distribution. In fact, if W1 ∼ N(0,1),
W2 ∼N(10,1), and W1 and W2 are independent, then (W1+W2)/2∼N(5,0.5); how-
ever, if Y has a mixture distribution with cdf

FY (y) = 0.5FW1(y)+ 0.5FW2(y) = 0.5Φ(y)+ 0.5Φ(y− 10),

then the pdf of Y is bimodal. See Fig. 1.1.

Remark 1.3. a) If all of the Wi are continuous random variables, then the pdf of
Y is fY (y) = ∑k

i=1αi fWi(y), where fWi(y) is the pdf corresponding to the random
variable Wi.

This result can be proved by taking the derivative of both sides of Eq. (1.8).
b) If all of the Wi are discrete random variables, then the pmf of Y is fY (y) =
∑k

i=1αi fWi(y), where fWi(y) is the pmf corresponding to the random variable Wi.
This result can be proved using Proposition 1.14c and the indicator function

h(x) = I(y = x) = 1 if y = x and h(x) = I(y = x) = 0 if y �= x. Then f (x) =
P(Y = x) = E[h(Y )] =∑k

i=1αiEWi [h(Wi)] =∑k
i=1αi fWi(x). Replace the dummy vari-

able x by y to get the result.
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Fig. 1.1 PDF f of (W1 +W2)/2 and f = 0.5 f1(y)+0.5 f2(y)

Assume that all expectations exist. If each Wi is continuous, then by Remark 1.3
a), E[h(Y )] =

∫ ∞
−∞ h(y) fY (y)dy =

∫ ∞
−∞ h(y)

[
∑k

i=1αi fWi(y)
]

dy =

∑k
i=1αi[

∫ ∞
−∞ h(y) fWi(y)dy] = ∑k

i=1αiEWi [h(Wi)]. If each Wi is discrete, then by Re-
mark 1.3 b), E[h(Y )] =∑y h(y) fY (y) =∑k

i=1αi
[
∑y h(y) fWi(y)

]
=∑k

i=1αiEWi [h(Wi)],
where the sum ∑y can be taken over all y such that at least one of fWi(y) > 0 for
i = 1, . . . ,k.
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1.7 Summary

Referring to Chap. 10, memorize the pmf or pdf f , E(Y ) and V (Y ) for the fol-
lowing 10 random variables. You should recognize the mgf of the binomial, χ2

p,
exponential, gamma, normal and Poisson distributions. You should recognize
the cdf of the exponential, normal and uniform distributions. The Gamma func-
tion Γ (x) is defined in Definition 10.3.

1) beta(δ ,ν)

f (y) =
Γ (δ +ν)
Γ (δ )Γ (ν)

yδ−1(1− y)ν−1

where δ > 0, ν > 0 and 0 ≤ y ≤ 1.

E(Y ) =
δ

δ +ν
.

VAR(Y ) =
δν

(δ +ν)2(δ +ν+ 1)
.

2) Bernoulli(ρ) = binomial(k = 1,ρ) f (y) = ρy(1−ρ)1−y for y = 0,1.
E(Y ) = ρ .
VAR(Y ) = ρ(1−ρ).

m(t) = [(1−ρ)+ρet].

3) binomial(k,ρ)

f (y) =

(
k
y

)
ρy(1−ρ)k−y

for y = 0,1, . . . ,k where 0 < ρ < 1.
E(Y ) = kρ .
VAR(Y ) = kρ(1−ρ).

m(t) = [(1−ρ)+ρet]k.

4) Cauchy(μ ,σ )

f (y) =
1

πσ
[
1+

(y−μ
σ
)2
]

where y and μ are real numbers and σ > 0.
E(Y ) = ∞= VAR(Y ).

5) chi-square(p) = gamma(ν = p/2,λ = 2)

f (y) =
y

p
2 −1e−

y
2

2
p
2Γ ( p

2 )

where y > 0 and p is a positive integer.
E(Y ) = p.
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VAR(Y ) = 2p.

m(t) =

(
1

1− 2t

)p/2

= (1− 2t)−p/2

for t < 1/2.
6) exponential(λ )= gamma(ν = 1,λ )

f (y) =
1
λ

exp
(
− y
λ

)
I(y ≥ 0)

where λ > 0.
E(Y ) = λ ,
VAR(Y ) = λ 2.

m(t) = 1/(1−λ t)

for t < 1/λ .
F(y) = 1− exp(−y/λ ), y ≥ 0.

7) gamma(ν,λ )

f (y) =
yν−1e−y/λ

λνΓ (ν)

where ν,λ , and y are positive.
E(Y ) = νλ .
VAR(Y ) = νλ 2.

m(t) =

(
1

1−λ t

)ν

for t < 1/λ .
8) N(μ ,σ2)

f (y) =
1√

2πσ2
exp

(−(y− μ)2

2σ2

)

where σ > 0 and μ and y are real.
E(Y ) = μ . VAR(Y ) = σ2.

m(t) = exp(tμ+ t2σ2/2).

F(y) =Φ
(

y− μ
σ

)
.

9) Poisson(θ )

f (y) =
e−θθ y

y!

for y = 0,1, . . ., where θ > 0.
E(Y ) = θ = VAR(Y ).

m(t) = exp(θ (et − 1)).
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10) uniform(θ1,θ2)

f (y) =
1

θ2 −θ1
I(θ1 ≤ y ≤ θ2).

F(y) = (y−θ1)/(θ2 −θ1) for θ1 ≤ y ≤ θ2.
E(Y ) = (θ1 +θ2)/2.
VAR(Y ) = (θ2 −θ1)

2/12.

From an introductory course in statistics, the terms sample space S, events, dis-
joint, partition, probability function, sampling with and without replacement, condi-
tional probability, Bayes’ theorem, mutually independent events, random variable,
cdf, continuous random variable, discrete random variable, identically distributed,
pmf, and pdf are important.

I) Be able to find E[g(Y )], especially E(Y ) = m′(0), E(Y 2) = m′′(0), V (Y ) =
E(Y 2)− [E(Y)]2 and the mgf m(t) = mY (t) = E[etY ].

II) Let fY (y|�) = c(�)k(y|�) where k(y|�) is the kernel of fY . Thus
∫ ∞
−∞ k(y|�)dy

= 1/c(�). The kernel method is useful for finding E[g(Y )] if E[g(Y )] =

a c(�)
∫ ∞

−∞
k(y|�)dy = a c(�)

1
c(�)

∫ ∞

−∞
c(�)k(y|�)dy =

a c(�)
c(�)

for some constant a. Replace the integral by a sum for a discrete distribution.
III) If the cdf of X is FX(x) = (1− ε)FZ(x)+ εFW (x) where 0 ≤ ε ≤ 1 and FZ and

FW are cdfs, then E[g(X)] = (1−ε)E[g(Z)]+εE[g(W)]. In particular, E(X2) =
(1− ε)E[Z2]+ εE[W2] = (1− ε)[V(Z)+ (E[Z])2]+ ε[V(W )+ (E[W ])2].

1.8 Complements

Kolmogorov’s definition of a probability function makes a probability function a
normed measure. Hence many of the tools of measure theory can be used for proba-
bility theory. See, for example, Ash and Doleans-Dade (1999), Billingsley (1995),
Dudley (2002), Durrett (1995), Feller (1971), and Resnick (1999). Feller (1957) and
Tucker (1984) are good references for combinatorics.

1.9 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL. Refer to
Chap. 10 for the pdf or pmf of the distributions in the problems below.

1.1∗. Consider the Binomial(k,ρ) distribution.

a) Find E Y .
b) Find Var Y .
c) Find the mgf m(t).
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1.2∗. Consider the Poisson(θ ) distribution.

a) Find E Y .
b) Find Var Y . (Hint: Use the kernel method to find E Y (Y − 1).)
c) Find the mgf m(t).

1.3∗. Consider the Gamma(ν,λ ) distribution.

a) Find E Y .
b) Find Var Y .
c) Find the mgf m(t).

1.4∗. Consider the Normal(μ ,σ2) (or Gaussian) distribution.

a) Find the mgf m(t). (Hint: complete the square to get a Gaussian kernel.)
b) Use the mgf to find E Y .
c) Use the mgf to find Var Y .

1.5∗. Consider the Uniform(θ1,θ2) distribution.

a) Find E Y .
b) Find Var Y .
c) Find the mgf m(t).

1.6∗. Consider the Beta(δ ,ν) distribution.

a) Find E Y .
b) Find Var Y .

1.7∗. See Mukhopadhyay (2000, p. 39). Recall integrals by u-substitution:

I =
∫ b

a
f (g(x))g′(x)dx =

∫ g(b)

g(a)
f (u)du =

∫ d

c
f (u)du =

F(u)|dc = F(d)−F(c) = F(u)|g(b)g(a) = F(g(x))|ba = F(g(b))−F(g(a))

where F ′(x) = f (x), u = g(x), du = g′(x)dx, d = g(b), and c = g(a).
This problem uses the Gamma function and u-substitution to show that the nor-

mal density integrates to 1 (usually shown with polar coordinates). When you per-
form the u-substitution, make sure you say what u = g(x), du = g′(x)dx, d = g(b),
and c = g(a) are.

a) Let f (x) be the pdf of a N(μ ,σ2) random variable. Perform u-substitution on

I =
∫ ∞

−∞
f (x)dx

with u = (x− μ)/σ .
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b) Break the result into two parts,

I =
1√
2π

∫ 0

−∞
e−u2/2du+

1√
2π

∫ ∞

0
e−u2/2du.

Then perform u-substitution on the first integral with v =−u.
c) Since the two integrals are now equal,

I =
2√
2π

∫ ∞

0
e−v2/2dv =

2√
2π

∫ ∞

0
e−v2/2 1

v
vdv.

Perform u-substitution with w = v2/2.
d) Using the Gamma function, show that I = Γ (1/2)/

√
π = 1.

1.8. Let X be a N(0,1) (standard normal) random variable. Use integration by
parts to show that EX2 = 1. Recall that integration by parts is used to evaluate∫

f (x)g′(x)dx =
∫

udv = uv− ∫
vdu where u = f (x), dv = g′(x)dx, du = f ′(x)dx,

and v = g(x). When you do the integration, clearly state what these four terms are
(e.g., u = x).

1.9. Verify the formula for the cdf F for the following distributions. That is,
either show that F ′(y) = f (y) or show that

∫ y
−∞ f (t)dt = F(y) ∀y ∈ R.

a) Cauchy (μ ,σ).
b) Double exponential (θ ,λ ).
c) Exponential (λ ).
d) Logistic (μ ,σ).
e) Pareto (σ ,λ ).
f) Power (λ ).
g) Uniform (θ1,θ2).
h) Weibull W (φ ,λ ).

1.10. Verify the formula for the expected value E(Y ) for the following
distributions.

a) Double exponential (θ ,λ ).
b) Exponential (λ ).
c) Logistic (μ ,σ). (Hint from and deCani and Stine (1986): Let Y = [μ +σW ] so

E(Y ) = μ+σE(W) where W ∼ L(0,1). Hence

E(W ) =
∫ ∞

−∞
y

ey

[1+ ey]2
dy.

Use substitution with

u =
ey

1+ ey .

Then

E(W k) =

∫ 1

0
[log(u)− log(1− u)]kdu.
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Also use the fact that
lim
v→0

v log(v) = 0

to show E(W ) = 0.)
d) Lognormal (μ ,σ2).
e) Pareto (σ ,λ ).
f) Weibull (φ ,λ ).

1.11. Verify the formula for the variance VAR(Y ) for the following distributions.

a) Double exponential (θ ,λ ).
b) Exponential (λ ).
c) Logistic (μ ,σ). (Hint from deCani and Stine (1986): Let Y = [μ + σX ] so

V (Y ) = σ2V (X) = σ2E(X2) where X ∼ L(0,1). Hence

E(X2) =

∫ ∞

−∞
y2 ey

[1+ ey]2
dy.

Use substitution with

v =
ey

1+ ey .

Then

E(X2) =
∫ 1

0
[log(v)− log(1− v)]2dv.

Let w = log(v)− log(1− v) and du = [log(v)− log(1− v)]dv. Then

E(X2) =

∫ 1

0
wdu = uw|10 −

∫ 1

0
udw.

Now
uw|10 = [v log(v)+ (1− v) log(1− v)] w|10 = 0

since
lim
v→0

v log(v) = 0.

Now

−
∫ 1

0
udw =−

∫ 1

0

log(v)
1− v

dv−
∫ 1

0

log(1− v)
v

dv = 2π2/6 = π2/3

using ∫ 1

0

log(v)
1− v

dv =
∫ 1

0

log(1− v)
v

dv =−π2/6.)

d) Lognormal (μ ,σ2).
e) Pareto (σ ,λ ).
f) Weibull (φ ,λ ).
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Problems from old quizzes and exams.

1.12. Suppose the random variable X has cdf FX(x) = 0.9 Φ(x−10)+0.1 FW (x),
where Φ(x − 10) is the cdf of a normal N(10,1) random variable with mean
10 and variance 1 and FW (x) is the cdf of the random variable W that satisfies
P(W = 200) = 1.

a) Find E W .
b) Find E X .

1.13. Suppose the random variable X has cdf FX(x) = 0.9 FZ(x) + 0.1 FW (x),
where FZ is the cdf of a gamma(α = 10,β = 1) random variable with mean 10
and variance 10 and FW (x) is the cdf of the random variable W that satisfies
P(W = 400) = 1.

a) Find E W .
b) Find E X .

1.14. Suppose the cdf FX(x) = (1− ε)FZ(x)+ εFW (x), where 0 ≤ ε ≤ 1, FZ is
the cdf of a random variable Z, and FW is the cdf of a random variable W. Then
E g(X) = (1− ε)EZ g(Z)+ εEW g(W ), where EZ g(Z) means that the expectation
should be computed using the pmf or pdf of Z. Suppose the random variable X has
cdf FX(x) = 0.9 FZ(x)+0.1 FW (x), where FZ is the cdf of a gamma(α = 20,β = 1)
random variable with mean 20 and variance 20 and FW (x) is the cdf of the random
variable W that satisfies P(W = 400) = 1.

a) Find E W .
b) Find E X .

1.15. Let A and B be positive integers. A hypergeometric random variable
X =W1 +W2 + · · ·+Wn, where the random variables Wi are identically distributed
random variables with P(Wi = 1) = A/(A+B) and P(Wi = 0) = B/(A+B).

a) Find E(W1).
b) Find E(X).

1.16. Suppose P(X = xo) = 1 for some constant xo.

a) Find E g(X) in terms of xo.
b) Find the moment generating function m(t) of X .

c) Find m(n)(t) =
dn

dtn m(t). (Hint: find m(n)(t) for n = 1,2, and 3. Then the pattern

should be apparent.)

1.17. Suppose P(X = 1) = 0.5 and P(X = −1) = 0.5. Find the moment gener-
ating function of X .

1.18. Suppose that X is a discrete random variable with pmf f (x) = P(X = x)

for x = 0,1, . . . ,n so that the moment generating function of X is m(t) =
n

∑
x=0

etx f (x).
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a) Find
d
dt

m(t) = m′(t).
b) Find m′(0).

c) Find m′′(t) =
d2

dt2 m(t).

d) Find m′′(0).

e) Find m(k)(t) =
dk

dtk m(t). (Hint: you found m(k)(t) for k = 1,2, and the pattern

should be apparent.)

1.19. Suppose that the random variable W = eX , where X ∼ N(μ ,σ2). Find
E(W r) = E[(eX)r] by recognizing the relationship of E[(eX )r] with the moment gen-
erating function of a normal(μ ,σ2) random variable.

1.20. Let X ∼ N(μ ,σ2) so that EX = μ and Var X = σ2.

a) Find E(X2).
b) If k ≥ 2 is an integer, then E(Xk) = (k− 1)σ2E(Xk−2)+ μE(Xk−1). Use this

recursion relationship to find E(X3).

1.21∗. Let X ∼ gamma(ν,λ ). Using the kernel method, find EXr where r >−ν .

1.22. Find
∫ ∞

−∞
exp(−1

2
y2)dy.

(Hint: the integrand is a Gaussian kernel.)

1.23. Let X have a Pareto (σ ,λ = 1/θ ) pdf

f (x) =
θσθ

xθ+1

where x > σ , σ > 0 and θ > 0. Using the kernel method, find EXr where θ > r.

1.24. Let Y ∼ beta (δ ,ν). Using the kernel method, find EY r where r >−δ .

1.25. Use the kernel method to find the mgf of the logarithmic (θ ) distribution.

1.26. Suppose that X has pdf

f (x) =
h(x)eθx

λ (θ )

for x ∈X and for −∞< θ <∞ where λ (θ ) is some positive function of θ and h(x)
is some nonnegative function of x. Find the moment generating function of X using
the kernel method. Your final answer should be written in terms of λ ,θ , and t.

1.27. Use the kernel method to find E(Y r) for the chi (p,σ) distribution.

1.28. Suppose the cdf FX(x) = (1− ε)FZ(x)+ εFW (x), where 0 ≤ ε ≤ 1, FZ is
the cdf of a random variable Z, and FW is the cdf of a random variable W . Then
E g(X) = (1− ε)EZ g(Z)+ εEW g(W ), where EZ g(Z) means that the expectation
should be computed using the pmf or pdf of Z.
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Suppose the random variable X has cdf FX(x) = 0.9 FZ(x) + 0.1 FW (x), where
FZ is the cdf of a gamma (ν = 3,λ = 4) random variable and FW (x) is the cdf of a
Poisson (10) random variable.

a) Find E X .
b) Find E X2.

1.29. If Y has an exponential distribution truncated at 1, Y ∼ T EXP(θ ,1), then
the pdf of Y is

f (y) =
θ

1− e−θ e−θy

for 0 < y < 1, where θ > 0. Find the mgf of Y using the kernel method.

1.30. Following Morris (1982), let

f (y) =
cos(θ )

2cosh(πy/2)
exp(θy)

where y is real and |θ |< π/2. Find the mgf of Y using the kernel method.

1.31. If Y has a log-gamma distribution, the pdf of Y is

f (y) =
1

λνΓ (ν)
exp

(
νy+

(−1
λ

)
ey
)

where y is real, ν > 0, and λ > 0. Find the mgf of Y using the kernel method.

1.32. If Y has an inverted gamma distribution, Y ∼ INVG(ν,λ ), then the pdf of
Y is

f (y) =
1

yν+1Γ (ν)
I(y > 0)

1
λν exp

(−1
λ

1
y

)

where λ , ν , and y are all positive. Using the kernel method, show

E(Y r) =
Γ (ν− r)
λ rΓ (ν)

for ν > r.

1.33. If Y has a zero truncated Poisson distribution, Y ∼ ZT P(θ ), then the pmf
of Y is

f (y) =
e−θ θ y

(1− e−θ) y!

for y = 1,2,3, . . ., where θ > 0. Find the mgf of Y using the kernel method.

1.34. If Y has a Zipf distribution, Y ∼ Zipf(ν), then the pmf of Y is

f (y) =
1

yν z(ν)
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where y ∈ {1, . . . ,m} and m is known, ν is real and

z(ν) =
m

∑
y=1

1
yν

.

Using the kernel method, show

E(Y r) =
z(ν− r)

z(ν)

for real r.

1.35. If Y has a Lindley distribution, then the pdf of Y is

f (y) =
θ 2

1+θ
(1+ y)e−θy

where y > 0 and θ > 0. Using the kernel method, find the mgf of Y .

1.36. The Lindley distribution has cdf FY (y) = (1− ε)FZ(y) + εFW (y), where
ε = θ/(1+ θ ), θ > 0, FZ is the cdf of a gamma (ν = 2,λ = 1/θ ) random vari-
able Z, and FW is the cdf of an EXP(1/θ ) random variable W . Then E g(Y ) =
(1− ε)EZ g(Z)+ εEW g(W ), where EZ g(Z) means that the expectation should be
computed using the pmf or pdf of Z.

a) Find E Y .
b) Find E Y 2.

1.37. According to and Consonni and Veronese (1992), if Y is a random variable
with pdf

f (y) =
1−θ 2

2
exp(θy)

where −∞< y < ∞ and −1 < θ < 1, then Y is a one-parameter regular exponential
family with an mgf that can be found using the kernel method.

a) Assuming f (y) is a pdf, find the mgf of Y using the kernel method.
b) Show that f (y) is not a pdf by showing

∫ ∞
−∞ f (y)dy �= 1.

(Problem 1.30 may have the correct pdf.)



Chapter 2
Multivariate Distributions and Transformations

This chapter continues the review of some tools from probability that are useful for
statistics, and most of the material in Sects. 2.1–2.3, 2.5, and 2.6 should be familiar
to the reader. The material on elliptically contoured distributions in Sect. 2.10 may
be omitted when first reading this chapter.

2.1 Joint, Marginal, and Conditional Distributions

Often there are n random variables Y1, . . . ,Yn that are of interest. For example, age,
blood pressure, weight, gender, and cholesterol level might be some of the random
variables of interest for patients suffering from heart disease.

Notation. Let Rn be the n-dimensional Euclidean space. Then the vector y =
(y1, . . . ,yn) ∈ R

n if yi is an arbitrary real number for i = 1, . . . ,n.

Definition 2.1. If Y1, . . . ,Yn are discrete random variables, then the joint pmf
(probability mass function) of Y1, . . . ,Yn is

f (y1, . . . ,yn) = P(Y1 = y1, . . . ,Yn = yn) (2.1)

for any (y1, . . . ,yn) ∈ R
n. A joint pmf f satisfies f (y)≡ f (y1, . . . ,yn)≥ 0 ∀y ∈ R

n

and
∑ · · ·∑ f (y1, . . . ,yn) = 1.

y : f (y)> 0

For any event A ∈R
n,

P[(Y1, . . . ,Yn) ∈ A] = ∑ · · ·∑ f (y1, . . . ,yn).
y : y ∈ A and f (y)> 0

Definition 2.2. The joint cdf (cumulative distribution function) of Y1, . . . ,Yn is
F(y1, . . . ,yn) = P(Y1 ≤ y1, . . . ,Yn ≤ yn) for any (y1, . . . ,yn) ∈ R

n.

D.J. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4 2,
© Springer International Publishing Switzerland 2014
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30 2 Multivariate Distributions and Transformations

Definition 2.3. If Y1, . . . ,Yn are continuous random variables, then the joint pdf
(probability density function) of Y1, . . . ,Yn is a function f (y1, . . . ,yn) that satisfies
F(y1, . . . ,yn) =

∫ yn−∞ · · ·
∫ y1−∞ f (t1, . . . , tn)dt1 · · ·dtn, where the yi are any real numbers.

A joint pdf f satisfies f (y)≡ f (y1, . . . ,yn)≥ 0 ∀y ∈ R
n and∫ ∞

−∞ · · ·
∫ ∞
−∞ f (t1, . . . , tn)dt1 · · ·dtn = 1. For any event A ∈ R

n,

P[(Y1, . . . ,Yn) ∈ A] =
∫ · · ·∫ f (t1, . . . , tn)dt1 · · ·dtn.

A

Definition 2.4. If Y1, . . . ,Yn has a joint pdf or pmf f , then the sample space or
support of Y1, . . . ,Yn is

Y = {(y1, . . . ,yn) ∈ R
n : f (y1, . . . ,yn)> 0}.

If Y comes from a family of distributions f (y|�) for � ∈Θ , then the support Y� =
{y : f (y|�)> 0} may depend on � .

Theorem 2.1. Let Y1, . . . ,Yn have joint cdf F(y1, . . . ,yn) and joint pdf
f (y1, . . . ,yn). Then

f (y1, . . . ,yn) =
∂ n

∂y1 · · ·∂yn
F(y1, . . . ,yn)

wherever the partial derivative exists.

Definition 2.5. The marginal pmf of any subset Yi1, . . . ,Yik of the coordinates
(Y1, . . . ,Yn) is found by summing the joint pmf over all possible values of the other
coordinates where the values yi1, . . . ,yik are held fixed. For example,

fY1,...,Yk(y1, . . . ,yk) = ∑
yk+1

· · ·∑
yn

f (y1, . . . ,yn)

where y1, . . . ,yk are held fixed. In particular, if Y1 and Y2 are discrete random vari-
ables with joint pmf f (y1,y2), then the marginal pmf for Y1 is

fY1(y1) =∑
y2

f (y1,y2) (2.2)

where y1 is held fixed. The marginal pmf for Y2 is

fY2(y2) =∑
y1

f (y1,y2) (2.3)

where y2 is held fixed.

Remark 2.1. For n = 2, double integrals are used to find marginal pdfs (defined
below) and to show that the joint pdf integrates to 1. If the region of integration
Ω is bounded on top by the function y2 = φT (y1), on the bottom by the func-
tion y2 = φB(y1) and to the left and right by the lines y1 = a and y2 = b, then∫ ∫

Ω f (y1,y2)dy1dy2 =
∫ ∫

Ω f (y1,y2)dy2dy2 =
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∫ b

a

[∫ φT (y1)

φB(y1)
f (y1,y2)dy2

]
dy1.

Within the inner integral, treat y2 as the variable, anything else, including y1, is
treated as a constant.

If the region of integration Ω is bounded on the left by the function y1 = ψL(y2),
on the right by the function y1 = ψR(y2) and to the top and bottom by the lines
y2 = c and y2 = d, then

∫ ∫
Ω f (y1,y2)dy1dy2 =

∫ ∫
Ω f (y1,y2)dy2dy2 =

∫ d

c

[∫ ψR(y2)

ψL(y2)
f (y1,y2)dy1

]
dy2.

Within the inner integral, treat y1 as the variable, anything else, including y2, is
treated as a constant. See Example 2.3.

Definition 2.6. The marginal pdf of any subset Yi1, . . . ,Yik of the coordinates
(Y1, . . . ,Yn) is found by integrating the joint pdf over all possible values of the other
coordinates where the values yi1, . . . ,yik are held fixed. For example, f (y1, . . . ,yk) =∫ ∞
−∞ · · ·

∫ ∞
−∞ f (t1, . . . , tn)dtk+1 · · ·dtn, where y1, . . . ,yk are held fixed. In particular, if

Y1 and Y2 are continuous random variables with joint pdf f (y1,y2), then the marginal
pdf for Y1 is

fY1(y1) =

∫ ∞

−∞
f (y1,y2)dy2 =

∫ φT (y1)

φB(y1)
f (y1,y2)dy2 (2.4)

where y1 is held fixed (to get the region of integration, draw a line parallel to the
y2 axis, and use the functions y2 = φB(y1) and y2 = φT (y1) as the lower and upper
limits of integration). The marginal pdf for Y2 is

fY2(y2) =
∫ ∞

−∞
f (y1,y2)dy1 =

∫ ψR(y2)

ψL(y2)
f (y1,y2)dy1 (2.5)

where y2 is held fixed (to get the region of integration, draw a line parallel to the
y1 axis, and use the functions y1 = ψL(y2) and y1 = ψR(y2) as the lower and upper
limits of integration).

Definition 2.7. The conditional pmf of any subset Yi1, . . . ,Yik of the coordinates
(Y1, . . . ,Yn) is found by dividing the joint pmf by the marginal pmf of the remaining
coordinates assuming that the values of the remaining coordinates are fixed and that
the denominator > 0. For example,

f (y1, . . . ,yk|yk+1, . . . ,yn) =
f (y1, . . . ,yn)

f (yk+1, . . . ,yn)

if f (yk+1, . . . ,yn) > 0. In particular, the conditional pmf of Y1 given Y2 = y2 is a
function of y1 and

fY1|Y2=y2
(y1|y2) =

f (y1,y2)

fY2(y2)
(2.6)
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if fY2(y2)> 0, and the conditional pmf of Y2 given Y1 = y1 is a function of y2 and

fY2|Y1=y1
(y2|y1) =

f (y1,y2)

fY1(y1)
(2.7)

if fY1(y1)> 0.

Definition 2.8. The conditional pdf of any subset Yi1, . . . ,Yik of the coordinates
(Y1, . . . ,Yn) is found by dividing the joint pdf by the marginal pdf of the remaining
coordinates assuming that the values of the remaining coordinates are fixed and that
the denominator > 0. For example,

f (y1, . . . ,yk|yk+1, . . . ,yn) =
f (y1, . . . ,yn)

f (yk+1, . . . ,yn)

if f (yk+1, . . . ,yn) > 0. In particular, the conditional pdf of Y1 given Y2 = y2 is a
function of y1 and

fY1|Y2=y2
(y1|y2) =

f (y1,y2)

fY2(y2)
(2.8)

if fY2(y2)> 0, and the conditional pdf of Y2 given Y1 = y1 is a function of y2 and

fY2|Y1=y1
(y2|y1) =

f (y1,y2)

fY1(y1)
(2.9)

if fY1(y1)> 0.

Example 2.1. Common Problem. If the joint pmf f (y1,y2) =
P(Y1 = y1,Y2 = y2) is given by a table, then the function f (y1,y2) is a joint pmf if
f (y1,y2)≥ 0, ∀y1,y2 and if

∑
(y1,y2): f (y1,y2)>0

f (y1,y2) = 1.

The marginal pmfs are found from the row sums and column sums using Def-
inition 2.5, and the conditional pmfs are found with the formulas given in
Definition 2.7. See Example 2.6b and 2.6f.

Example 2.2. Common Problem. Given the joint pdf f (y1,y2) = kg(y1,y2) on
its support, find k, find the marginal pdfs fY1(y1) and fY2(y2), and find the conditional
pdfs fY1|Y2=y2

(y1|y2) and fY2|Y1=y1
(y2|y1). Also,

P(a1 < Y1 < b1,a2 < Y2 < b2) =
∫ b2

a2

∫ b1
a1

f (y1,y2)dy1dy2.
Tips: Often using symmetry helps.

The support of the marginal pdf does not depend on the second variable.
The support of the conditional pdf can depend on the second variable. For

example, the support of fY1|Y2=y2
(y1|y2) could have the form 0 ≤ y1 ≤ y2.
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The support of continuous random variables Y1 and Y2 is the region where
f (y1,y2) > 0. The support is generally given by one to three inequalities such as
0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, and 0 ≤ y1 ≤ y2 ≤ 1. For each variable, set the inequali-
ties to equalities to get boundary lines. For example 0 ≤ y1 ≤ y2 ≤ 1 yields 5 lines:
y1 = 0,y1 = 1, y2 = 0,y2 = 1, and y2 = y1. Generally y2 is on the vertical axis and
y1 is on the horizontal axis for pdfs.

To determine the limits of integration, examine the dummy variable used in
the inner integral, say dy1. Then within the region of integration, draw a line par-
allel to the same (y1) axis as the dummy variable. The limits of integration will
be functions of the other variable (y2), never of the dummy variable (dy1). See the
following example.

Example 2.3. Suppose that the joint pdf of the random variables Y1 and Y2 is
given by

f (y1,y2) = 2, if 0 < y1 < y2 < 1

and f (y1,y2) = 0, otherwise.

a) Show that f (y1,y2) is a pdf.
b) Find the marginal pdf of Y1. Include the support.
c) Find the marginal pdf of Y2. Include the support.
d) Find the conditional pdf fY1|Y2=y2

(y1|y2). Include the support.
e) Find the conditional pdf fY2|Y1=y1

(y2|y1). Include the support.

Solution. Refer to Remark 2.1. The support is the region of integration Ω which
is the triangle with vertices (0,0), (0,1), and (1,1). This triangle is bounded by the
lines y1 = 0,y2 = 1, and y2 = y1. The latter line can also be written as y1 = y2.

a) Hence
∫ ∞
−∞

∫ ∞
−∞ f (y1,y2)dy1dy2 =

∫ 1
0 [
∫ y2

0 2dy1]dy2 =
∫ 1

0 [2y1|y2
0 ]dy2 =

∫ 1
0 2y2dy2 =

2y2
2/2|10 = 1. Here ψL(y2)≡ 0 and ψR(y2) = y2. Alternatively,

∫ ∞
−∞

∫ ∞
−∞ f (y1,y2)dy2dy1 =

∫ 1
0 [
∫ 1

y1
2dy2]dy1 =

∫ 1
0 [2y2|1y1

]dy1 =
∫ 1

0 2(1− y1)dy1 =

2(y1 − y2
1/2)|10 = 2(1/2) = 1. Here φB(y1) = y1 and φT (y1)≡ 1.

b) Now fY1(y1) =
∫ ∞
−∞ f (y1,y2)dy2 =

∫ 1
y1

2dy2 = 2y2|1y1
= 2(1− y1),0 < y1 < 1.

c) Now fY2(y2) =
∫ ∞
−∞ f (y1,y2)dy1 =

∫ y2
0 2dy1 = 2y1|y2

0 = 2y2,0 < y2 < 1.
d) By Definition 2.8,

fY1|Y2=y2
(y1|y2) =

f (y1,y2)

fY2(y2)
=

2
2y2

=
1
y2
, 0 < y1 < y2.

Note that for fixed y2, the variable y1 can run from 0 to y2.
e) By Definition 2.8,

fY2|Y1=y1
(y2|y1) =

f (y1,y2)

fY1(y1)
=

2
2(1− y1)

=
1

1− y1
, y1 < y2 < 1.

Note that for fixed y1, the variable y2 can run from y1 to 1.
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2.2 Expectation, Covariance, and Independence

For joint pmfs with n = 2 random variables Y1 and Y2, the marginal pmfs and con-
ditional pmfs can provide important information about the data. For joint pdfs the
integrals are usually too difficult for the joint, conditional and marginal pdfs to be of
practical use unless the random variables are independent. (Exceptions are the multi-
variate normal distribution and the elliptically contoured distributions. See Sects. 2.9
and 2.10.)

For independent random variables, the joint cdf is the product of the marginal
cdfs, the joint pmf is the product of the marginal pmfs, and the joint pdf is the
product of the marginal pdfs. Recall that ∀ is read “for all.”

Definition 2.9. i) The random variables Y1,Y2, . . . ,Yn are independent if
F(y1,y2, . . . ,yn) = FY1(y1)FY2(y2) · · ·FYn(yn) ∀y1,y2, . . . ,yn.

ii) If the random variables have a joint pdf or pmf f , then the random vari-
ables Y1,Y2, . . . ,Yn are independent if f (y1,y2, . . . ,yn) = fY1(y1) fY2(y2) · · · fYn(yn)
∀y1,y2, . . . ,yn.

If the random variables are not independent, then they are dependent.
In particular random variables Y1 and Y2 are independent, written Y1 Y2, if

either of the following conditions holds.

i) F(y1,y2) = FY1(y1)FY2(y2) ∀y1,y2.
ii) f (y1,y2) = fY1(y1) fY2 (y2) ∀y1,y2. Otherwise, Y1 and Y2 are dependent.

Definition 2.10. Recall that the support Y of (Y1,Y2, . . . ,Yn) is
Y = {y : f (y)> 0}. The support is a cross product or Cartesian product if

Y = Y1 ×Y2 ×·· ·×Yn = {y : yi ∈ Yi for i = 1, . . . ,n}

where Yi is the support of Yi. If f is a joint pdf then the support is rectangular if
Yi is an interval for each i. If f is a joint pmf then the support is rectangular if the
points in Yi are equally spaced for each i.

Example 2.4. In applications the support is often rectangular. For n = 2 the sup-
port is a cross product if

Y = Y1 ×Y2 = {(y1,y2) : y1 ∈ Y1 and y2 ∈ Y2}

where Yi is the support of Yi. The support is rectangular if Y1 and Y2 are intervals.
For example, if

Y = {(y1,y2) : a < y1 < ∞ and c ≤ y2 ≤ d},

then Y1 = (a,∞) and Y2 = [c,d]. For a joint pmf, the support is rectangular if the
grid of points where f (y1,y2)> 0 is rectangular.
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Cross Product of (1,2,3,4,9) with (1,3,4,5,9)

Fig. 2.1 Cross product for a joint PMF

Figure 2.1 shows the cross product of Y1 ×Y2 where Y1 = {1,2,3,4,9} and
Y2 = {1,3,4,5,9}. Each dot occurs where f (y1,y2) > 0. Notice that each point in
Y1 occurs with each point in Y2. This support would not be a cross product if any
point was deleted, but would be a cross product if any row of dots or column of
dots was deleted. Note that the cross product support is not rectangular. The cross
product of Y1 = {1,2,3,4} with Y2 = {3,4,5} is rectangular.

Theorem 2.2a below is useful because it is often immediate from the formula
for the joint pdf or the table for the joint pmf that the support is not a cross product.
Hence Y1 and Y2 are dependent. For example, if the support of Y1 and Y2 is a triangle,
as in Example 2.3, then Y1 and Y2 are dependent. A necessary condition for inde-
pendence is that the support is a cross product. Theorem 2.2b is useful because
factorizing the joint pdf on cross product support is easier than using integration
to find the marginal pdfs. Many texts give Theorem 2.2c, but 2.2b is easier to use.
Recall that ∏n

i=1 ai = a1a2 · · ·an. For example, let n = 3 and ai = i for i = 1,2,3.
Then ∏n

i=1 ai = a1a2a3 = (1)(2)(3) = 6.

Theorem 2.2. a) Random variables Y1, . . . ,Yn with joint pdf or pmf f are de-
pendent if their support Y is not a cross product. In particular, Y1 and Y2 are
dependent if Y does not have the form Y = Y1 ×Y2.

b) If random variables Y1, . . . ,Yn with joint pdf or pmf f have support Y that is a
cross product, then Y1, . . . ,Yn are independent iff f (y1,y2, . . . ,yn) = h1(y1)h2(y2)
· · ·hn(yn) for all y ∈Y , where hi is a positive function of yi alone. In particular, if
Y =Y1×Y2, then Y1 Y2 iff f (y1,y2) = h1(y1)h2(y2) for all (y1,y2) ∈Y where
hi(yi)> 0 for yi ∈ Yi and i = 1,2.

c) Y1, . . . ,Yn are independent iff f (y1,y2, . . . ,yn) = g1(y1)g2(y2) · · ·gn(yn) for all y
where gi is a nonnegative function of yi alone.

d) If discrete Y1 and Y2 have cross product support given by a table, find the row and
column sums. If f (y1,y2) �= fY1(y1) fY2(y2) for some entry (y1,y2), then Y1 and
Y2 are dependent. If f (y1,y2) = fY1(y1) fY2(y2) for all table entries, then Y1 and
Y2 are independent.
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Proof. a) If the support is not a cross product, then there is a point y such that
f (y) = 0 but fYi(yi)> 0 for i = 1, . . . ,n. Hence f (y) �=∏n

i=1 fYi(yi) at the point
y and Y1, . . . ,Yn are dependent.

b) The proof for a joint pdf is given below. For a joint pmf, replace the integrals
by appropriate sums. If Y1, . . . ,Yn are independent, take hi(yi) = fYi(yi) > 0 for
yi ∈ Yi and i = 1, . . . ,n.

If f (y) = h1(y1) · · ·hn(yn) for y ∈Y =Y1×·· ·×Yn then f (y) = 0 = fY1(y1)
· · · fYn(yn) if y is not in Y . Hence we need to show that f (y) = fY1(y1) · · · fYn(yn)
= h1(y1) · · ·hn(yn) if y ∈ Y . Since f is a joint pdf,

1 =

∫
· · ·
∫

Y
f (y) dy =

n

∏
i=1

∫

Yi

hi(yi) dyi =
n

∏
i=1

ai

where ai =
∫
Yi

hi(yi) dyi > 0. For yi ∈ Yi, the marginal pdfs fYi(yi) =

∫

Yn

· · ·
∫

Yi+1

∫

Yi−1

· · ·
∫

Y1

h1(y1) · · ·hi(yi) · · ·h(yn) dy1 · · ·dyi−1dyi+1 · · ·dyn

= hi(yi)
n

∏
j=1, j �=i

∫

Y j

h j(y j) dy j = hi(yi)
n

∏
j=1, j �=i

a j = hi(yi)
1
ai
.

Thus ai fYi(yi) = hi(yi) for yi ∈ Yi. Since ∏n
i=1 ai = 1,

f (y) =
n

∏
i=1

hi(yi) =
n

∏
i=1

ai fYi(yi) =

(
n

∏
i=1

ai

)(
n

∏
i=1

fYi(yi)

)

=
n

∏
i=1

fYi(yi)

if y ∈ Y .

c) Take

gi(yi) =

{
hi(yi), if yi ∈ Yi

0, otherwise.

Then the result follows from b).
d) Since f (y1,y2) = 0 = fY1(y1) fY2(y2) if (y1,y2) is not in the support of Y1 and Y2,

the result follows by the definition of independent random variables. �

The following theorem shows that finding the marginal and conditional pdfs or
pmfs is simple if Y1, . . . ,Yn are independent. Also subsets of independent ran-
dom variables are independent: if Y1, . . . ,Yn are independent and if {i1, . . . , ik} ⊆
{1, . . . ,n} for k ≥ 2, then Yi1 , . . . ,Yik are independent.

Theorem 2.3. Suppose that Y1, . . . ,Yn are independent random variables with
joint pdf or pmf f (y1, . . . ,yn). Then

a) the marginal pdf or pmf of any subset Yi1 , . . . ,Yik is f (yi1 , . . . ,yik )=∏k
j=1 fYi j

(yi j ).
Hence Yi1 , . . . ,Yik are independent random variables for k ≥ 2.
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b) The conditional pdf or pmf of Yi1 , . . . ,Yik given any subset of the remaining ran-
dom variables Yj1 = y j1 , . . . ,Yjm = y jm is equal to the marginal: f (yi1 , . . . ,yik |y j1 ,

. . . ,y1 jm) = f (yi1 , . . . ,yik) =∏k
j=1 fYi j

(yi j ) if f (y j1 , . . . ,y jm)> 0.

Proof. The proof for a joint pdf is given below. For a joint pmf, replace the
integrals by appropriate sums. a) The marginal

f (yi1 , . . . ,yik ) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

[
n

∏
j=1

fYi j
(yi j )

]

dyik+1 · · ·dyin

=

[
k

∏
j=1

fYi j
(yi j )

][
n

∏
j=k+1

∫ ∞

−∞
fYi j

(yi j ) dyi j

]

=

[
k

∏
j=1

fYi j
(yi j )

]

(1)n−k =
k

∏
j=1

fYi j
(yi j ).

b) follows from a) and the definition of a conditional pdf assuming that
f (y j1 , . . . ,y jm)> 0. �

Definition 2.11. Suppose that random variables Y = (Y1, . . . ,Yn) have support
Y and joint pdf or pmf f . Then the expected value of the real valued function
h(Y ) = h(Y1, . . . ,Yn) is

E[h(Y )] =
∫ ∞

−∞
· · ·
∫ ∞

−∞
h(y) f (y) dy =

∫
· · ·
∫

Y
h(y) f (y) dy (2.10)

if f is a joint pdf and if
∫ ∞

−∞
· · ·
∫ ∞

−∞
|h(y)| f (y) dy

exists. Otherwise the expectation does not exist. The expected value is

E[h(Y )] =∑
y1

· · ·∑
yn

h(y) f (y) = ∑
y∈Rn

h(y) f (y) = ∑
y∈Y

h(y) f (y) (2.11)

if f is a joint pmf and if ∑y∈Rn |h(y)| f (y) exists. Otherwise the expectation does
not exist.

The notation E[h(Y )] =∞ can be useful when the corresponding integral or sum
diverges to ∞. The following theorem is useful since multiple integrals with smaller
dimension are easier to compute than those with higher dimension.

Theorem 2.4. Suppose that Y1, . . . ,Yn are random variables with joint pdf or pmf
f (y1, . . . ,yn). Let {i1, . . . , ik} ⊂ {1, . . . ,n}, and let f (yi1 , . . . ,yik) be the marginal pdf
or pmf of Yi1 , . . . ,Yik with support YYi1 ,...,Yik

. Assume that
E[h(Yi1 , . . . ,Yik )] exists. Then
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E[h(Yi1 , . . . ,Yik )] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(yi1 , . . . ,yik ) f (yi1 , . . . ,yik) dyi1 · · ·dyik =

∫
· · ·
∫

YYi1
,...,Yik

h(yi1 , . . . ,yik ) f (yi1 , . . . ,yik ) dyi1 · · ·dyik

if f is a pdf, and

E[h(Yi1 , . . . ,Yik)] =∑
yi1

· · ·∑
yik

h(yi1 , . . . ,yik ) f (yi1 , . . . ,yik)

= ∑
(yi1 ,...,yik

)∈YYi1
,...,Yik

h(yi1 , . . . ,yik ) f (yi1 , . . . ,yik )

if f is a pmf.

Proof. The proof for a joint pdf is given below. For a joint pmf, replace the
integrals by appropriate sums. Let g(Y1, . . . ,Yn) = h(Yi1 , . . . ,Yik ). Then E[g(Y )] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(yi1 , . . . ,yik) f (y1, . . . ,yn) dy1 · · ·dyn =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h(yi1 , . . . ,yik )

[∫ ∞

−∞
· · ·
∫ ∞

−∞
f (y1, . . . ,yn) dyik+1 · · ·dyin

]
dyi1 · · ·dyik

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
h(yi1 , . . . ,yik) f (yi1 , . . . ,yik ) dyi1 · · ·dyik

since the term in the brackets gives the marginal. �

Example 2.5. Typically E(Yi),E(Y 2
i ) and E(YiYj) for i �= j are of primary inter-

est. Suppose that (Y1,Y2) has joint pdf f (y1,y2). Then E[h(Y1,Y2)]

=

∫ ∞

−∞

∫ ∞

−∞
h(y1,y2) f (y1,y2)dy2dy1 =

∫ ∞

−∞

∫ ∞

−∞
h(y1,y2) f (y1,y2)dy1dy2

where −∞ to ∞ could be replaced by the limits of integration for dyi. In particular,

E(Y1Y2) =

∫ ∞

−∞

∫ ∞

−∞
y1y2 f (y1,y2)dy2dy1 =

∫ ∞

−∞

∫ ∞

−∞
y1y2 f (y1,y2)dy1dy2.

Since finding the marginal pdf is usually easier than doing the double inte-
gral, if h is a function of Yi but not of Yj, find the marginal for Yi : E[h(Y1)] =∫ ∞
−∞

∫ ∞
−∞ h(y1) f (y1,y2)dy2dy1 =

∫ ∞
−∞ h(y1) fY1(y1)dy1. Similarly, E[h(Y2)] =∫ ∞

−∞ h(y2) fY2 (y2)dy2.
In particular, E(Y1) =

∫ ∞
−∞ y1 fY1(y1)dy1, and E(Y2) =

∫ ∞
−∞ y2 fY2(y2)dy2. See

Example 2.8.

Suppose that (Y1,Y2) have a joint pmf f (y1,y2). Then the expectation
E[h(Y1,Y2)] =∑y2 ∑y1

h(y1,y2) f (y1,y2) = ∑y1 ∑y2
h(y1,y2) f (y1,y2). In particular,
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E[Y1Y2] =∑
y1

∑
y2

y1y2 f (y1,y2).

Since finding the marginal pmf is usually easier than doing the double summa-
tion, if h is a function of Yi but not of Yj, find the marginal for pmf for Yi: E[h(Y1)] =

∑y2 ∑y1
h(y1) f (y1,y2) = ∑y1

h(y1) fY1(y1). Similarly, E[h(Y2)] = ∑y2
h(y2) fY2(y2).

In particular, E(Y1) = ∑y1
y1 fY1(y1) and E(Y2) = ∑y2

y2 fY2(y2). See Example 2.6.

For pdfs it is sometimes possible to find E[h(Yi)], but for k ≥ 2 these expected
values tend to be very difficult to compute unless f (y1, . . . ,yk) = c yi1

1 · · ·yik
k for small

integers i j on rectangular or triangular support. Independence makes finding some
expected values simple.

Theorem 2.5. Let Y1, . . . ,Yn be independent random variables. If hi(Yi) is a func-
tion of Yi alone and if the relevant expected values exist, then

E[h1(Y1)h2(Y2) · · ·hn(Yn)] = E[h1(Y1)] · · ·E[hn(Yn)].

In particular, E[YiYj] = E[Yi]E[Yj] for i �= j.

Proof. The result will be shown for the case where Y = (Y1, . . . ,Yn) has a joint
pdf f . For a joint pmf, replace the integrals by appropriate sums. By independence,
the support of Y is a cross product: Y = Y1 ×·· ·×Yn. Since f (y) =∏n

i=1 fYi(yi),
the expectation E[h1(Y1)h2(Y2) · · ·hn(Yn)] =

∫
· · ·
∫

Y
h1(y1)h2(y2) · · ·hn(yn) f (y1, . . . ,yn) dy1 · · ·dyn

=

∫

Yn

· · ·
∫

Y1

[
n

∏
i=1

hi(yi) fYi(yi)

]

dy1 · · ·dyn

=
n

∏
i=1

[∫

Yi

hi(yi) fYi(yi) dyi

]
=

n

∏
i=1

E[hi(Yi)]. �

Corollary 2.6. Let Y1, . . . ,Yn be independent random variables. If h j(Yi j ) is a
function of Yi j alone and if the relevant expected values exist, then

E[h1(Yi1) · · ·hk(Yik)] = E[h1(Yi1)] · · ·E[hk(Yik)].

Proof. Method 1: Take Xj = Yi j for j = 1, . . . ,k. Then X1, . . . ,Xk are indepen-
dent and Theorem 2.5 applies.

Method 2: Take h j(Yi j )≡ 1 for j = k+ 1, . . . ,n and apply Theorem 2.5. �

Theorem 2.7. Let Y1, . . . ,Yn be independent random variables. If hi(Yi) is a
function of Yi alone and Xi = hi(Yi), then the random variables X1, . . . ,Xn are
independent.
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Definition 2.12. The covariance of Y1 and Y2 is

Cov(Y1,Y2) = E[(Y1 −E(Y1))(Y2 −E(Y2))]

provided the expectation exists. Otherwise the covariance does not exist.

Theorem 2.8: Short cut formula. If Cov(Y1,Y2) exists then
Cov(Y1,Y2) = E(Y1Y2)−E(Y1)E(Y2).

Theorem 2.9. a) Let Y1 and Y2 be independent random variables.
If Cov(Y1,Y2) exists, then Cov(Y1,Y2) = 0.

b) The converse is false: Cov(Y1,Y2) = 0 does not imply Y1 Y2.

Example 2.6. When f (y1,y2) is given by a table, a common problem is to
determine whether Y1 and Y2 are independent or dependent, find the marginal
pmfs fY1(y1) and fY2(y2) and find the conditional pmfs fY1|Y2=y2

(y1|y2) and
fY2|Y1=y1

(y2|y1). Also find E(Y1),E(Y2),V (Y1),V (Y2),E(Y1Y2), and Cov(Y1,Y2).
Suppose that the joint probability mass function of Y1 and Y2 is f (y1,y2) is tabled

as shown.

y2

f (y1,y2) 0 1 2
0 1/9 2/9 1/9

y1 1 2/9 2/9 0/9
2 1/9 0/9 0/9

a) Are Y1 and Y2 independent? Explain.
b) Find the marginal pmfs.
c) Find E(Y1).
d) Find E(Y2).
e) Find Cov(Y1,Y2).
f) Find fY1|Y2=y2

(y1|y2).

Solution: a) No, the support is not a cross product. Alternatively, f (2,2) = 0 <
fY1(2) fY2(2).

b) Find fY1(y1) by finding the row sums. Find fY2(y2) by finding the column sums.
In both cases, fYi(0) = fYi(1) = 4/9 and fYi(2) = 1/9.

c) E(Y1) = ∑y1 fY1(y1) = 0 4
9 + 1 4

9 + 2 1
9 = 6

9 ≈ 0.6667.
d) E(Y2)≈ 0.6667 is found as in c) with y2 replacing y1.
e) E(Y1Y2) = ∑∑y1y2 f (y1,y2) =

0+ 0+ 0
+0+(1)(1) 2

9 + 0
+0+ 0+ 0 = 2

9 . Hence Cov(Y1,Y2) = E(Y1Y2)− E(Y1)E(Y2) =
2
9 − ( 6

9 )(
6
9 ) =

− 2
9 ≈−0.2222.

f) Now fY1|Y2=y2
(y1|y2) = f (y1,y2)/ fY2(y2). If y2 = 2, then fY1|Y2=2(y1|2) =

f (0,2)/ fY2(2) = 1 for y1 = 0. If y2 = 1, then fY1|Y2=(y1|1) = f (y1,2)/ fY2(1) =
1/2 for y1 = 0,1. If y2 = 0, then fY1|Y2=0(0|0) = 1/4, fY1|Y2=0(1|0) = 1/2 and
fY1|Y2=0(2|0) = 1/4.
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Example 2.7. Given the joint pdf f (y1,y2) = kg(y1,y2) on its support, a common
problem is to find k, find the marginal pdfs fY1(y1) and fY2(y2) and find the con-
ditional pdfs fY1|Y2=y2

(y1|y2) and fY2|Y1=y1
(y2|y1). Also determine whether Y1 and

Y2 are independent or dependent, and find E(Y1),E(Y2),V (Y1),V (Y2),E(Y1Y2), and
Cov(Y1,Y2).

Suppose that the joint pdf of the random variables Y1 and Y2 is given by

f (y1,y2) = 10y1y2
2, if 0 < y1 < y2 < 1

and f (y1,y2) = 0, otherwise. a) Find the marginal pdf of Y1. Include the support. b)
Is Y1 Y2?

Solution: a) Notice that for a given value of y1, the joint pdf is positive for y1 <
y2 < 1. Thus

fY1(y1) =

∫ 1

y1

10y1y2
2dy2 = 10y1

y3
2

3

∣∣
∣
∣

1

y1

=
10y1

3
(1− y3

1),0 < y1 < 1.

b) No, the support is not a cross product.

Example 2.8. Suppose that the joint pdf of the random variables Y1 and Y2 is
given by

f (y1,y2) = 4y1(1− y2), if 0 ≤ y1 ≤ 1,0 ≤ y2 ≤ 1

and f (y1,y2) = 0, otherwise.

a) Find the marginal pdf of Y1. Include the support.
b) Find E(Y1).
c) Find V (Y1).
d) Are Y1 and Y2 independent? Explain.

Solution: a) fY1(y1) =
∫ 1

0 4y1(1 − y2)dy2 = 4y1

(
y2 − y2

2
2

)∣∣
∣
1

0
= 4y1(1 − 1

2) =

2y1,0 < y1 < 1.

b) E(Y1) =
∫ 1

0 y1 fY1(y1)dy1 =
∫ 1

0 y12y1dy1 = 2
∫ 1

0 y2
1dy1 = 2

y3
1
3

∣
∣∣
1

0
= 2/3.

c) E(Y 2
1 ) =

∫ 1
0 y2

1 fY1(y1)dy1 =
∫ 1

0 y2
12y1dy1 = 2

∫ 1
0 y3

1dy1 = 2 y4
1
4

∣∣
∣
1

0
= 1/2. So V (Y1) =

E(Y 2
1 )− [E(Y1)]

2 = 1
2 − 4

9 = 1
18 ≈ 0.0556.

d) Yes, use Theorem 2.2b with f (y1,y2) = (4y1)(1− y2) = h1(y1)h2(y2) on cross
product support.

2.3 Conditional Expectation and Variance

Notation. Y |X = x is a single conditional distribution while Y |X is a family of
distributions. For example, if Y |X = x ∼ N(c+ dx,σ2), then Y |X ∼ N(c+ dX ,σ2)
is the family of normal distributions with variance σ2 and mean μY |X=x = c+ dx.
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Think of Y = weight and X = height. There is a distribution of weights for each
value x of height where X = x, and weights of people who are x = 60 in. tall will on
average be less than weights of people who are x = 70 in. tall. This notation will be
useful for defining E[Y |X ] and VAR[Y |X] in Definition 2.15.

Definition 2.13. Suppose that f (y|x) is the conditional pmf or pdf of Y |X = x
and that h(Y ) is a function of Y . Then the conditional expected value E[h(Y )|X = x]
of h(Y ) given X = x is

E[h(Y )|X = x] =∑
y

h(y) f (y|x) (2.12)

if f (y|x) is a pmf and if the sum exists when h(y) is replaced by |h(y)|. In particular,

E[Y |X = x] =∑
y

y f (y|x). (2.13)

Similarly,

E[h(Y )|X = x] =
∫ ∞

−∞
h(y) f (y|x)dy (2.14)

if f (y|x) is a pdf and if the integral exists when h(y) is replaced by |h(y)|. In partic-
ular,

E[Y |X = x] =
∫ ∞

−∞
y f (y|x)dy. (2.15)

Definition 2.14. Suppose that f (y|x) is the conditional pmf or pdf of Y |X = x.
Then the conditional variance

VAR(Y |X = x) = E(Y 2|X = x)− [E(Y |X = x)]2

whenever E(Y 2|X = x) exists.
Recall that the pmf or pdf f (y|x) is a function of y with x fixed, but

E(Y |X = x) ≡ m(x) is a function of x. In the definition below, both E(Y |X) and
VAR(Y |X) are random variables since m(X) and v(X) are random variables. Now
think of Y = weight and X = height. Young children 36 in. tall have weights that
are less variable than the weights of adults who are 72 in. tall.

Definition 2.15. If E(Y |X = x) = m(x), then the random variable E(Y |X) =
m(X). Similarly if VAR(Y |X = x) = v(x), then the random variable VAR(Y |X) =
v(X) = E(Y 2|X)− [E(Y |X)]2.

Example 2.9. Suppose that Y = weight and X = height of college students. Then
E(Y |X = x) is a function of x. For example, the weight of 5 ft tall students is less
than the weight of 6 ft tall students, on average.

Notation. When computing E(h(Y )), the marginal pdf or pmf f (y) is used.
When computing E[h(Y )|X = x], the conditional pdf or pmf f (y|x) is used. In a
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formula such as E[E(Y |X)] the inner expectation uses f (y|x) but the outer expecta-
tion uses f (x) since E(Y |X) is a function of X . In the formula below, we could write
EY (Y ) = EX [EY |X(Y |X)], but such notation is usually omitted.

Theorem 2.10. Iterated Expectations. Assume the relevant expected values
exist. Then

E(Y ) = E[E(Y |X)].

Proof: The result will be shown for the case where (Y,X) has a joint pmf f . For
a joint pdf, replace the sums by appropriate integrals. Now

E(Y ) =∑
x
∑
y

y f (x,y) =∑
x
∑
y

y fY |X(y|x) fX (x)

=∑
x

[

∑
y

y fY |X(y|x)
]

fX (x) =∑
x

E(Y |X = x) fX (x) = E[E(Y |X)]

since the term in brackets is E(Y |X = x). �
Theorem 2.11: Steiner’s Formula or the Conditional Variance Identity.

Assume the relevant expectations exist. Then

VAR(Y ) = E[VAR(Y |X)]+VAR[E(Y |X)].

Proof: Following Rice (1988, p. 132), since VAR(Y |X) = E(Y 2|X)− [E(Y |X)]2

is a random variable,

E[VAR(Y |X)] = E[E(Y 2|X)]−E([E(Y |X)]2).

If W is a random variable, then E(W ) = E[E(W |X)] by Theorem 2.10 and
VAR(W ) = E(W 2)− [E(W)]2 by the shortcut formula. Letting W = E(Y |X) gives

VAR(E(Y |X)) = E([E(Y |X)]2)− (E[E(Y |X)])2.

Since E(Y 2) = E[E(Y 2|X)] and since E(Y ) = E[E(Y |X)],

VAR(Y ) = E(Y 2)− [E(Y)]2 = E[E(Y 2|X)]− (E[E(Y |X)])2.

Adding 0 to VAR(Y ) gives

VAR(Y ) = E[E(Y 2|X)]−E([E(Y |X)]2)+E([E(Y |X)]2)− (E[E(Y |X)])2

= E[VAR(Y |X)]+VAR[E(Y |X)]. �
A hierarchical model models a complicated process by a sequence of models

placed in a hierarchy. Interest might be in the marginal expectation E(Y ) and
marginal variance VAR(Y ). One could find the joint pmf from f (x,y) = f (y|x) f (x),
then find the marginal distribution fY (y) and then find E(Y ) and VAR(Y ). Alterna-
tively, use Theorems 2.10 and 2.11. Hierarchical models are also used in Bayesian
applications. See Chap. 11.
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Example 2.10. Suppose Y |X ∼ BIN(X ,ρ) and X ∼ Poisson (λ ). Then
E(Y |X) = Xρ , VAR(Y |X) = Xρ(1 − ρ), and E(X) = VAR(X) = λ . Hence
E(Y ) = E[E(Y |X)] = E(Xρ) = ρE(X) = ρλ and VAR(Y ) = E[VAR(Y |X)] +
VAR[E(Y |X)] = E[Xρ(1−ρ)]+VAR(Xρ) = λρ(1−ρ)+ρ2VAR(X) =
λρ(1−ρ)+ρ2λ = λρ .

2.4 Location–Scale Families

Many univariate distributions are location, scale, or location–scale families. Assume
that the random variable Y has a pdf fY (y).

Definition 2.16. Let fY (y) be the pdf of Y. Then the family of pdfs fW (w) =
fY (w−μ) indexed by the location parameter μ , −∞< μ <∞, is the location family
for the random variable W = μ+Y with standard pdf fY (y).

Definition 2.17. Let fY (y) be the pdf of Y. Then the family of pdfs fW (w) =
(1/σ) fY (w/σ) indexed by the scale parameter σ > 0 is the scale family for the
random variable W = σY with standard pdf fY (y).

Definition 2.18. Let fY (y) be the pdf of Y. Then the family of pdfs fW (w) =
(1/σ) fY ((w−μ)/σ) indexed by the location and scale parameters μ , −∞< μ <∞,
and σ > 0 is the location–scale family for the random variable W = μ +σY with
standard pdf fY (y).

The most important scale family is the exponential EXP(λ ) distribution. Other
scale families from Chap. 10 include the chi (p,σ) distribution if p is known, the
Gamma G(ν,λ ) distribution if ν is known, the lognormal (μ ,σ2) distribution with
scale parameter τ = eμ if σ2 is known, the one-sided stable OSS(σ ) distribution, the
Pareto PAR(σ ,λ ) distribution if λ is known, and the Weibull W (φ ,λ ) distribution
with scale parameter σ = λ 1/φ if φ is known.

A location family can be obtained from a location–scale family by fixing the
scale parameter while a scale family can be obtained by fixing the location param-
eter. The most important location–scale families are the Cauchy C(μ ,σ), double
exponential DE(θ ,λ ), logistic L(μ ,σ), normal N(μ ,σ2), and uniform U(θ1,θ2) dis-
tributions. Other location–scale families from Chap. 10 include the two-parameter
exponential EXP(θ ,λ ), half Cauchy HC(μ ,σ), half logistic HL(μ ,σ), half nor-
mal HN(μ ,σ), largest extreme value LEV(θ ,σ), Maxwell Boltzmann MB(μ ,σ),
Rayleigh R(μ ,σ), and smallest extreme value SEV(θ ,σ) distributions.

2.5 Transformations

Transformations for univariate distributions are important because many “brand
name” random variables are transformations of other brand name distributions.
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These transformations will also be useful for finding the distribution of the com-
plete sufficient statistic for a one-parameter exponential family. See Chap. 10.

Example 2.11: Common problem. Suppose that X is a discrete random variable
with pmf fX (x) given by a table. Let the transformationY = t(X) for some function
t and find the probability function fY (y).

Solution: Step 1) Find t(x) for each value of x.
Step 2) Collect x : t(x) = y, and sum the corresponding probabilities:

fY (y) = ∑
x:t(x)=y

fX (x), and table the resulting pmf fY (y) of Y .

For example, if Y = X2 and fX (−1) = 1/3, fX(0) = 1/3, and fX (1) = 1/3, then
fY (0) = 1/3 and fY (1) = 2/3.

Definition 2.19. Let h : D → R be a real valued function with domain D. Then
h is increasing if h(y1) < h(y2), nondecreasing if h(y1) ≤ h(y2), decreasing if
h(y1) > h(y2) and nonincreasing if h(y1) ≥ h(y2) provided that y1 and y2 are any
two numbers in D with y1 < y2. The function h is a monotone function if h is either
increasing or decreasing.

0.0 1.5 3.0

0
2

4
6

8

X

Y

Increasing t(x)
a b

0.0 1.5 3.0

0
2

4
6

8

X

Y

Decreasing t(x)

Fig. 2.2 Increasing and decreasing t(x). (a) Increasing t(x); (b) decreasing t(x)

Recall that if h is differentiable on an open interval D or continuous on a closed
interval D and differentiable on the interior of D, then h is increasing if h′(y) > 0
for all y in the interior of D and h is decreasing if h′(y) < 0 for all y in the interior
of D. Also if h is increasing then −h is decreasing. Similarly, if h is decreasing then
−h is increasing.
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Suppose that X is a continuous random variable with pdf fX (x) on support X .
Let the transformation Y = t(X) for some monotone function t. Then there are two
ways to find the support Y of Y = t(X) if the support X of X is an interval with
endpoints a < b where a = −∞ and b = ∞ are possible. Let t(a) ≡ limy↓a t(y) and
let t(b) ≡ limy↑b t(y). A graph can help. If t is an increasing function, then Y is
an interval with endpoints t(a) < t(b). If t is a decreasing function, then Y is an
interval with endpoints t(b)< t(a). The second method is to find x = t−1(y). Then
if X = [a,b], say, solve a ≤ t−1(y)≤ b in terms of y.

If t(x) is increasing then P({Y ≤ y}) = P({X ≤ t−1(y)}) while if t(x) is
decreasing P({Y ≤ y}) = P({X ≥ t−1(y)}). To see this, look at Fig. 2.2. Sup-
pose the support of Y is [0,9] and the support of X is [0,3]. Now the height of the
curve is y = t(x). Mentally draw a horizontal line from y to t(x) and then drop a ver-
tical line to the x-axis. The value on the x-axis is t−1(y) since t(t−1(y)) = y. Hence
in Fig. 2.2a t−1(4) = 2 and in Fig. 2.2b t−1(8) = 1. If w < y then t−1(w) < t−1(y)
if t(x) is increasing as in Fig. 2.2a, but t−1(w) > t−1(y) if t(x) is decreasing as in
Fig. 2.2b. Hence P(Y ≤ y) = P(t−1(Y )≥ t−1(y)) = P(X ≥ t−1(y)).

Theorem 2.12: The CDF Method or Method of Distributions: Suppose that
the continuous cdf FX(x) is known and that Y = t(X). Let Y be the support of Y .

i) If t is an increasing function, then FY (y) = P(Y ≤ y) = P(t(X)≤ y) =
P(X ≤ t−1(y)) = FX(t−1(y)).

ii) If t is a decreasing function, then FY (y) = P(Y ≤ y) = P(t(X)≤ y) =
P(X ≥ t−1(y)) = 1−P(X < t−1(y)) = 1−P(X ≤ t−1(y)) = 1−FX(t−1(y)).

iii) The special case Y = X2 is important. If the support of X is positive, use i). If
the support of X is negative, use ii). If the support of X is (−a,a) (where a = ∞
is allowed), then FY (y) = P(Y ≤ y) =
P(X2 ≤ y) = P(−√

y ≤ X ≤√
y) =

∫ √
y

−√
y

fX (x)dx = FX(
√

y)−FX(−√
y), 0 ≤ y < a2.

After finding the cdf FY (y), the pdf of Y is fY (y) =
d
dy

FY (y) for y ∈ Y .

Example 2.12. Suppose X has a pdf with support on the real line and that the
pdf is symmetric about μ so fX (μ−w) = fX (μ+w) for all real w. It can be shown
that X has a symmetric distribution about μ if Z = X − μ and −Z = μ −X have
the same distribution. Several named right skewed distributions with support y ≥ μ
are obtained by the transformation Y = μ + |X − μ |. Similarly, let U be a U(0,1)
random variable that is independent of Y , then a symmetric random variable X can
be obtained from Y by letting X = Y if U ≤ 0.5 and X = 2μ−Y if U > 0.5. Pairs
of such distributions include the exponential and double exponential, normal and
half normal, Cauchy and half Cauchy, and logistic and half logistic distributions.
Figure 2.3 shows the N(0,1) and HN(0,1) pdfs.
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Fig. 2.3 Pdfs for N(0,1) and HN(0,1) distributions

Notice that for y ≥ μ ,

FY (y) = P(Y ≤ y) = P(μ+ |X − μ | ≤ y) = P(|X − μ | ≤ y− μ) =

P(μ− y ≤ X − μ ≤ y− μ) = P(2μ− y ≤ X ≤ y) = FX(y)−FX(2μ− y).

Taking derivatives and using the symmetry of fX gives fY (y) =

fX (y)+ fX(2μ− y) = fX (μ+(y− μ))+ fX(μ− (y− μ)) = 2 fX (μ+(y− μ))

= 2 fX(y) for y ≥ μ . Hence fY (y) = 2 fX(y)I(y ≥ μ).
Then X has pdf

fX (x) =
1
2

fY (μ+ |x− μ |)

for all real x, since this pdf is symmetric about μ and fX (x) = 0.5 fY (x) if x ≥ μ .

Example 2.13. Often the rules of differentiation such as the multiplication, quo-
tient, and chain rules are needed. For example if the support of X is [−a,a] and if
Y = X2, then

fY (y) =
1

2
√

y
[ fX (

√
y)+ fX(−√

y)]

for 0 ≤ y ≤ a2.

Theorem 2.13: The Transformation Method. Assume that X has pdf fX (x) and
support X . Let Y be the support of Y = t(X). If t(x) is either increasing or decreas-
ing on X and if t−1(y) has a continuous derivative on Y , then Y = t(X) has pdf

fY (y) = fX (t
−1(y))

∣
∣
∣∣
dt−1(y)

dy

∣
∣
∣∣ (2.16)

for y ∈ Y . As always, fY (y) = 0 for y not in Y .
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Proof: Examining Theorem 2.12, if t is increasing then FY (y) = FX(t−1(y)) and

fY (y) =
d
dy

FY (y)

=
d
dy

FX(t
−1(y)) = fX (t

−1(y))
d
dy

t−1(y) = fX (t
−1(y))

∣
∣
∣
∣
dt−1(y)

dy

∣
∣
∣
∣

for y ∈ Y since the derivative of a differentiable increasing function is positive.
If t is a decreasing function, then from Theorem 2.12, FY (y) = 1−FX(t−1(x)).

Hence

fY (y) =
d
dy

[1−FX(t
−1(y))] =− fX (t

−1(y))
d
dy

t−1(y) = fX (t
−1(y))

∣
∣
∣
∣
dt−1(y)

dy

∣
∣
∣
∣

for y ∈ Y since the derivative of a differentiable decreasing function is negative. �

Tips: To be useful, formula (2.16) should be simplified as much as possible.

(a) The pdf of Y will often be that of a gamma random variable. In particular, the
pdf of Y is often the pdf of an exponential(λ ) random variable.

(b) To find the inverse function x = t−1(y), solve the equation y = t(x) for x.
(c) The log transformation is often used. Know how to sketch log(x) and ex for

x > 0. Recall that in this text, log(x) is the natural logarithm of x.
(d) If X is an interval with endpoints a and b, find

Y = (min{t(a), t(b)},max{t(a), t(b)})

as described two paragraphs above Theorem 2.12.

Example 2.14. Let X be a random variable with pdf

fX (x) =
1

x
√

2πσ2
exp

(−(log(x)− μ)2

2σ2

)

where x > 0, μ is real and σ > 0. Let Y = log(X) and find the distribution of Y .

Solution: X = eY = t−1(Y ). So

∣
∣∣
∣
dt−1(y)

dy

∣
∣∣
∣= |ey|= ey,

and

fY (y) = fX (t
−1(y))

∣∣
∣
∣
dt−1(y)

dy

∣∣
∣
∣= fX (e

y)ey

=
1

ey
√

2πσ2
exp

(−(log(ey)− μ)2

2σ2

)
ey
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=
1√

2πσ2
exp

(−(y− μ)2

2σ2

)

for y ∈ (−∞,∞) since x > 0 implies that y = log(x) ∈ (−∞,∞). Notice that X is
lognormal (μ ,σ2) and Y ∼ N(μ ,σ2).

Example 2.15. If Y has a Topp–Leone distribution, then pdf of Y is

f (y) = ν(2− 2y)(2y− y2)ν−1

for ν > 0 and 0 < y < 1. Notice that F(y) = (2y − y2)ν for 0 < y < 1 since
F ′(y) = f (y). Then the distribution of W = − log(2Y −Y 2) will be of interest for
later chapters.

Let X = Y − 1. Then the support of X is (−1,0) and FX(x) =
P(X ≤ x) = P(Y − 1 ≤ x) = P(Y ≤ x+ 1) = FY (x+ 1)

= (2(x+ 1)− (x+ 1)2)ν = ((x+ 1)(2− (x+ 1)))ν = [(x+ 1)(1− x)]ν = (1− x2)ν .

So FX(x) = (1− x2)ν for −1 < x < 0. Now the support of W is w > 0 and FW (w) =
P(W ≤ w) = P(− log(2Y −Y 2)≤ w) = P(log(2Y −Y 2)≥−w) =
P(2Y −Y 2 ≥ e−w) = P(2Y −Y 2 − 1 ≥ e−w − 1) = P(−(Y − 1)2 ≥ e−w − 1) =
P((Y − 1)2 ≤ 1− e−w). So FW (w) = P(X2 ≤ 1− e−w) =
P(−√

a ≤ X ≤√
a) where a = 1− e−w ∈ (0,1). So FW (w) =

FX(
√

a)−FX(−√
a) = 1−FX(−√

a) = 1−FX(−
√

1− e−w)

= 1− [1− (−
√

1− e−w)2]ν = 1− [1− (1− e−w)]ν = 1− e−wν

for w > 0. Thus W =− log(2Y −Y 2)∼ EXP(1/ν).
Transformations for vectors are often less useful in applications because the

transformation formulas tend to be impractical to compute. For the theorem below,
typically n = 2. If Y1 = t1(X1,X2) is of interest, choose Y2 = t2(X1,X2) such that
the determinant J is easy to compute. For example, Y2 = X2 may work. Find-
ing the support Y can be difficult, but if the joint pdf of X1,X2 is g(x1,x2) =
h(x1,x2) I[(x1,x2) ∈X ], then the joint pdf of Y1,Y2 is

f (y1,y2) = h(t−1
1 (y), t−1

2 (y)) I[(t−1
1 (y), t−1

2 (y)) ∈X ] |J|,

and using I[(t−1
1 (y), t−1

2 (y)) ∈ X ] can be useful for finding Y . The fact that
∏k

j=1 IA j(y) = I∩k
j=1A j

(y) can also be useful. Also sketch X with x1 on the hori-

zontal axis and x2 on the vertical axis, and sketch Y with y1 on the horizontal axis
and y2 on the vertical axis. See the following two examples and Problem 2.67.

Theorem 2.14. The Multivariate Transformation Method. Let X1, . . . ,Xn be
random variables with joint pdf g(x1, . . . ,xn) and support X . Let Yi = ti(X1, . . . ,Xn)
for i = 1, . . . ,n. Suppose that f (y1, . . . ,yn) is the joint pdf of Y1, . . . ,Yn and that the
multivariate transformation is one to one. Hence the transformation is invertible and
can be solved for the equations xi = t−1

i (y1, . . . ,yn) for i = 1, . . . ,n. Then the Jaco-
bian of this multivariate transformation is
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J = det

⎡

⎢
⎢
⎢
⎣

∂ t−1
1

∂y1
. . .

∂ t−1
1

∂yn
...

...
∂ t−1

n
∂y1

. . .
∂ t−1

n
∂yn

⎤

⎥
⎥
⎥
⎦
.

Let |J| denote the absolute value of the determinant J. Then the pdf of Y1, . . . ,Yn is

f (y1, . . . ,yn) = g(t−1
1 (y), . . . , t−1

n (y)) |J|. (2.17)

Example 2.16. Let X1 and X2 have joint pdf

g(x1,x2) = 2e−(x1+x2)

for 0 < x1 < x2 <∞. Let Y1 = X1 and Y2 = X1 +X2. An important step is finding the
support Y of (Y1,Y2) from the support of (X1,X2)

=X = {(x1,x2)|0 < x1 < x2 < ∞}.

Now x1 = y1 = t−1
1 (y1,y2) and x2 = y2 − y1 = t−1

2 (y1,y2). Hence x1 < x2 implies
y1 < y2 − y1 or 2y1 < y2, and

Y = {(y1,y2)|0 < 2y1 < y2}.

Now
∂ t−1

1

∂y1
= 1,

∂ t−1
1

∂y2
= 0,

∂ t−1
2

∂y1
=−1,

∂ t−1
2

∂y2
= 1,

and the Jacobian

J =

∣
∣∣
∣

1 0
−1 1

∣
∣∣
∣= 1.

Hence |J|= 1. Using indicators,

gX1,X2(x1,x2) = 2e−(x1+x2)I(0 < x1 < x2 < ∞),

and

fY1,Y2(y1,y2) = gX1,X2(y1,y2 − y1)|J|= 2e−(y1+y2−y1)I(0 < y1 < y2 − y1)1 =

2e−y2I(0 < 2y1 < y2).

Notice that Y1 and Y2 are not independent since the support Y is not a cross
product. The marginals
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fY1(y1) =

∫ ∞

−∞
2e−y2I(0 < 2y1 < y2)dy2 =

∫ ∞

2y1

2e−y2dy2

=−2e−y2

∣
∣
∣∣

∞

y2=2y1

= 0−−2e−2y1 = 2e−2y1

for 0 < y1 < ∞, and

fY2(y2) =

∫ ∞

−∞
2e−y2I(0 < 2y1 < y2)dy1 =

∫ y2/2

0
2e−y2dy1

= 2e−y2y1

∣∣
∣
∣

y1=y2/2

y1=0
= y2e−y2

for 0 < y2 < ∞.

Example 2.17. Following Bickel and Doksum (2007, pp. 489–490) , let X1 and
X2 be independent gamma (νi,λ ) random variables for i = 1,2. Then X1 and X2 have
joint pdf g(x1,x2) = g1(x1)g2(x2) =

xν1−1
1 e−x1/λ

λν1Γ (ν1)

xν2−1
2 e−x2/λ

λν2Γ (ν2)
=

1
λν1+ν2Γ (ν1)Γ (ν2)

xν1−1
1 xν2−1

2 exp[−(x1 + x2)/λ ]

for 0 < x1 and 0 < x2. Let Y1 = X1 +X2 and Y2 = X1/(X1 +X2). An important step
is finding the support Y of (Y1,Y2) from the support of (X1,X2)

=X = {(x1,x2)|0 < x1 and 0 < x2}.

Now y2 = x1/y1, so x1 = y1y2 = t−1
1 (y1,y2) and x2 = y1 − x1 = y1 − y1y2 =

t−1
2 (y1,y2). Notice that 0 < y1 and 0 < x1 < x1 + x2. Thus 0 < y2 < 1, and

Y = {(y1,y2)|0 < y1 and 0 < y2 < 1}.

Now

∂ t−1
1

∂y1
= y2,

∂ t−1
1

∂y2
= y1,

∂ t−1
2

∂y1
= 1− y2,

∂ t−1
2

∂y2
=−y1,

and the Jacobian

J =

∣∣
∣
∣

y2 y1

1− y2 −y1

∣∣
∣
∣=−y1y2 − (y1 − y1y2) =−y1,

and |J|= y1. So the joint pdf
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f (y1,y2) = g(t−1
1 (y), t−1

2 (y)) |J|= g(y1y2,y1 − y1y2)y1 =

1
λν1+ν2Γ (ν1)Γ (ν2)

yν1−1
1 yν1−1

2 yν2−1
1 (1− y2)

ν2−1 exp[−(y1y2 + y1 − y1y2)/λ ]y1 =

1
λν1+ν2Γ (ν1)Γ (ν2)

yν1+ν2−1
1 yν1−1

2 (1− y2)
ν2−1e−y1/λ =

1
λν1+ν2Γ (ν1 +ν2)

yν1+ν2−1
1 e−y1/λ Γ (ν1 +ν2)

Γ (ν1)Γ (ν2)
yν1−1

2 (1− y2)
ν2−1.

Thus f (y1,y2)= f1(y1) f2(y2) onY , and Y1 ∼ gamma(ν1+ν2,λ ) Y2 ∼ beta(ν1,ν2)
by Theorem 2.2b.

2.6 Sums of Random Variables

An important multivariate transformation of the random variables Y = (Y1, . . . ,Yn)
is T (Y1, . . . ,Yn) = ∑n

i=1 Yi. Some properties of sums are given below.

Theorem 2.15. Assume that all relevant expectations exist. Let a, a1, . . . ,an and
b1, . . . ,bm be constants. Let Y1, . . . ,Yn, and X1, . . . ,Xm be random variables. Let
g1, . . . ,gk be functions of Y1, . . . ,Yn.

i) E(a) = a.
ii) E[aY ] = aE[Y ]

iii) V (aY ) = a2V (Y ).
iv) E[g1(Y1, . . . ,Yn)+ · · ·+ gk(Y1, . . . ,Yn)] = ∑k

i=1 E[gi(Y1, . . . ,Yn)].
Let W1 = ∑n

i=1 aiYi and W2 = ∑m
i=1 biXi.

v) E(W1) =
n

∑
i=1

aiE(Yi).

vi) V (W1) = Cov(W1,W1) =
n

∑
i=1

a2
i V (Yi)+ 2

n−1

∑
i=1

n

∑
j=i+1

aia jCov(Yi,Yj).

vii) Cov(W1,W2) =
n

∑
i=1

m

∑
j=1

aib jCov(Yi,Xj).

viii) E(∑n
i=1 Yi) =

n

∑
i=1

E(Yi).

ix) If Y1, . . . ,Yn are independent, V (∑n
i=1 Yi) =

n

∑
i=1

V (Yi).

Let Y1, . . . ,Yn be iid random variables with E(Yi) = μ and V (Yi) = σ2, then the

sample mean Y =
1
n

n

∑
i=1

Yi. Then

x) E(Y ) = μ and
xi) V (Y ) = σ2/n.
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Hence the expected value of the sum is the sum of the expected values, the
variance of the sum is the sum of the variances for independent random variables,
and the covariance of two sums is the double sum of the covariances. Note that ix)
follows from vi) with ai ≡ 1, viii) follows from iv) with gi(Y ) = Yi or from v) with
ai ≡ 1, x) follows from v) with ai ≡ 1/n, and xi) can be shown using iii) and ix)
using Y = ∑n

i=1(Yi/n).
The assumption that the data are iid or a random sample is often used in a first

course in statistics. The assumption will also be often used in this text. The iid
assumption is useful for finding the joint pdf or pmf, and the exact or large sample
distribution of many important statistics.

Definition 2.20. Y1, . . . ,Yn are a random sample or iid if Y1, . . . ,Yn are indepen-
dent and identically distributed (all of the Yi have the same distribution).

Example 2.18: Common problem. Let Y1, . . . ,Yn be independent random vari-
ables with E(Yi) = μi and V (Yi) = σ2

i . Let W = ∑n
i=1Yi. Then

a) E(W ) = E(∑n
i=1 Yi) = ∑n

i=1 E(Yi) = ∑n
i=1 μi, and

b) V (W ) =V (∑n
i=1Yi) = ∑n

i=1 V (Yi) = ∑n
i=1σ2

i .

A statistic is a function of the data (often a random sample) and known con-
stants. A statistic is a random variable and the sampling distribution of a statistic
is the distribution of the statistic. Important statistics are ∑n

i=1 Yi, Y = 1
n ∑

n
i=1 Yi and

∑n
i=1 aiYi, where a1, . . . ,an are constants. The following theorem shows how to find

the mgf and characteristic function of such statistics.

Theorem 2.16. a) The characteristic function uniquely determines the distribu-
tion.

b) If the moment generating function exists, then it uniquely determines the distri-
bution.

c) Assume that Y1, . . . ,Yn are independent with characteristic functions φYi(t). Then
the characteristic function of W = ∑n

i=1 Yi is

φW (t) =
n

∏
i=1

φYi(t). (2.18)

d) Assume that Y1, . . . ,Yn are iid with characteristic functions φY (t). Then the char-
acteristic function of W = ∑n

i=1 Yi is

φW (t) = [φY (t)]
n. (2.19)

e) Assume that Y1, . . . ,Yn are independent with mgfs mYi(t). Then the mgf of W =

∑n
i=1 Yi is

mW (t) =
n

∏
i=1

mYi(t). (2.20)

f) Assume that Y1, . . . ,Yn are iid with mgf mY (t). Then the mgf of W = ∑n
i=1 Yi is

mW (t) = [mY (t)]
n. (2.21)
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g) Assume that Y1, . . . ,Yn are independent with characteristic functions φYi(t). Then
the characteristic function of W = ∑n

j=1(a j + b jYj) is

φW (t) = exp

(

it
n

∑
j=1

a j

)
n

∏
j=1

φYj (b jt). (2.22)

h) Assume that Y1, . . . ,Yn are independent with mgfs mYi(t). Then the mgf of W =

∑n
i=1(ai + biYi) is

mW (t) = exp

(

t
n

∑
i=1

ai

)
n

∏
i=1

mYi(bit). (2.23)

Proof of g): Recall that exp(w) = ew and exp(∑n
j=1 d j) =∏n

j=1 exp(d j). It can be
shown that for the purposes of this proof, that the complex constant i in the charac-
teristic function (cf) can be treated in the same way as if it were a real constant. Now

φW (t) = E(eitW ) = E

(

exp

[

it
n

∑
j=1

(a j + b jYj)

])

= exp

(

it
n

∑
j=1

a j

)

E

(

exp

[
n

∑
j=1

itb jYj

])

= exp

(

it
n

∑
j=1

a j

)

E

(
n

∏
i=1

exp[itb jYj]

)

= exp

(

it
n

∑
j=1

a j

)
n

∏
i=1

E[exp(itb jYj)]

since by Theorem 2.5 the expected value of a product of independent random
variables is the product of the expected values of the independent random vari-
ables. Now in the definition of a cf, the t is a dummy variable as long as t is
real. Hence φY (t) = E[exp(itY )] and φY (s) = E[exp(isY )]. Taking s = tb j gives
E[exp(itb jYj)] = φYj (tb j). Thus

φW (t) = exp

(

it
n

∑
j=1

a j

)
n

∏
i=1

φYj (tb j). �

The distribution of W = ∑n
i=1 Yi is known as the convolution of Y1, . . . ,Yn. Even

for n = 2, convolution formulas tend to be hard; however, the following two
theorems suggest that to find the distribution of W = ∑n

i=1 Yi, first find the mgf or
characteristic function of W using Theorem 2.16. If the mgf or cf is that of a brand
name distribution, then W has that distribution. For example, if the mgf of W is a
normal (ν,τ2) mgf, then W has a normal (ν,τ2) distribution, written W ∼ N(ν,τ2).
This technique is useful for several brand name distributions. Chapter 10 will show
that many of these distributions are exponential families.
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Theorem 2.17. a) If Y1, . . . ,Yn are independent binomial BIN(ki,ρ) random vari-
ables, then

n

∑
i=1

Yi ∼ BIN

(
n

∑
i=1

ki,ρ

)

.

Thus if Y1, . . . ,Yn are iid BIN(k,ρ) random variables, then ∑n
i=1 Yi ∼ BIN(nk,ρ).

b) Denote a chi-square χ2
p random variable by χ2(p). If Y1, . . . ,Yn are independent

chi-square χ2
pi

, then

n

∑
i=1

Yi ∼ χ2

(
n

∑
i=1

pi

)

.

Thus if Y1, . . . ,Yn are iid χ2
p, then

n

∑
i=1

Yi ∼ χ2
np.

c) If Y1, . . . ,Yn are iid exponential EXP(λ ), then

n

∑
i=1

Yi ∼ G(n,λ ).

d) If Y1, . . . ,Yn are independent Gamma G(νi,λ ) then

n

∑
i=1

Yi ∼ G

(
n

∑
i=1

νi,λ

)

.

Thus if Y1, . . . ,Yn are iid G(ν,λ ), then

n

∑
i=1

Yi ∼ G(nν,λ ).

e) If Y1, . . . ,Yn are independent normal N(μi,σ2
i ), then

n

∑
i=1

(ai + biYi)∼ N

(
n

∑
i=1

(ai + biμi),
n

∑
i=1

b2
i σ

2
i

)

.

Here ai and bi are fixed constants. Thus if Y1, . . . ,Yn are iid N(μ ,σ2), then Y ∼
N(μ ,σ2/n).

f) If Y1, . . . ,Yn are independent Poisson POIS(θi), then

n

∑
i=1

Yi ∼ POIS

(
n

∑
i=1

θi

)

.
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Thus if Y1, . . . ,Yn are iid POIS(θ ), then

n

∑
i=1

Yi ∼ POIS(nθ ).

Theorem 2.18. a) If Y1, . . . ,Yn are independent Cauchy C(μi,σi), then

n

∑
i=1

(ai + biYi)∼C

(
n

∑
i=1

(ai + biμi),
n

∑
i=1

|bi|σi

)

.

Thus if Y1, . . . ,Yn are iid C(μ ,σ), then Y ∼C(μ ,σ).
b) If Y1, . . . ,Yn are iid geometric geom(p), then

n

∑
i=1

Yi ∼ NB(n, p).

c) If Y1, . . . ,Yn are iid inverse Gaussian IG(θ ,λ ), then

n

∑
i=1

Yi ∼ IG(nθ ,n2λ ).

Also

Y ∼ IG(θ ,nλ ).

d) If Y1, . . . ,Yn are independent negative binomial NB(ri,ρ), then

n

∑
i=1

Yi ∼ NB

(
n

∑
i=1

ri,ρ

)

.

Thus if Y1, . . . ,Yn are iid NB(r,ρ), then

n

∑
i=1

Yi ∼ NB(nr,ρ).

Example 2.19: Common problem. Given that Y1, . . . ,Yn are independent ran-
dom variables from one of the distributions in Theorem 2.17, find the distribution
of W = ∑n

i=1Yi or W = ∑n
i=1 biYi by finding the mgf or characteristic function of W

and recognizing that it comes from a brand name distribution.
Tips: a) in the product, anything that does not depend on the product index i is

treated as a constant.

b) exp(a) = ea and log(y) = ln(y) = loge(y) is the natural logarithm.
c)

n

∏
i=1

abθi = a∑
n
i=1 bθi = ab∑n

i=1 θi .
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In particular,
n

∏
i=1

exp(bθi) = exp

(
n

∑
i=1

bθi

)

= exp

(

b
n

∑
i=1

θi

)

.

Example 2.20. Suppose Y1, . . . ,Yn are iid IG(θ ,λ ) where the mgf

mYi(t) = m(t) = exp

[
λ
θ

(

1−
√

1− 2θ 2t
λ

)]

for t < λ/(2θ 2). Then

m∑n
i=1 Yi(t) =

n

∏
i=1

mYi(t) = [m(t)]n = exp

[
nλ
θ

(

1−
√

1− 2θ 2t
λ

)]

= exp

[
n2λ
n θ

(

1−
√

1− 2(nθ )2 t
n2λ

)]

which is the mgf of an IG(nθ ,n2λ ) random variable. The last equality was obtained

by multiplying nλ
θ by 1 = n/n and by multiplying 2θ2t

λ by 1 = n2/n2. Hence

∑n
i=1 Yi ∼ IG(nθ ,n2λ ).

2.7 Random Vectors

Definition 2.21. Y =(Y1, . . . ,Yp) is a 1× p random vector if Yi is a random variable
for i = 1, . . . , p. Y is a discrete random vector if each Yi is discrete, and Y is a
continuous random vector if each Yi is continuous. A random variable Y1 is the
special case of a random vector with p = 1.

In the previous sections each Y =(Y1, . . . ,Yn) was a random vector. In this section
we will consider n random vectors Y 1, . . . ,Y n. Often double subscripts will be used:
Y i = (Yi,1, . . . ,Yi,pi) for i = 1, . . . ,n.

Notation. The notation for random vectors is rather awkward. In most of the
statistical inference literature, Y is a row vector, but in most of the multivariate
analysis literature Y is a column vector. In this text, if X and Y are both vectors,
a phrase with Y and XT means that Y is a column vector and XT is a row vector
where T stands for transpose. Hence in the definition below, first E(Y ) is a p× 1
row vector, but in the definition of Cov(Y ) below, E(Y ) and Y −E(Y ) are p× 1
column vectors and (Y −E(Y ))T is a 1× p row vector.

Definition 2.22. The population mean or expected value of a random 1× p ran-
dom vector (Y1, . . . ,Yp) is

E(Y ) = (E(Y1), . . . ,E(Yp))
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provided that E(Yi) exists for i = 1, . . . , p. Otherwise the expected value does not
exist. Now let Y be a p×1 column vector. The p× p population covariance matrix

Cov(Y ) = E(Y −E(Y ))(Y −E(Y ))T = (σi, j)

where the i j entry of Cov(Y ) is Cov(Yi,Yj) = σi, j provided that each σi, j exists.
Otherwise Cov(Y ) does not exist.

The covariance matrix is also called the variance–covariance matrix and variance
matrix. Sometimes the notation Var(Y ) is used. Note that Cov(Y ) is a symmetric
positive semi-definite matrix. If X and Y are p×1 random vectors, a a conformable
constant vector and A and B are conformable constant matrices, then

E(a+X) = a+E(X) and E(X+Y ) = E(X)+E(Y ) (2.24)

and

E(AX) =AE(X) and E(AXB) =AE(X)B. (2.25)

Thus

Cov(a+AX) = Cov(AX) =ACov(X)AT . (2.26)

Definition 2.23. Let Y 1, . . . ,Y n be random vectors with joint pdf or pmf
f (y1, . . . ,yn). Let fY i

(y i) be the marginal pdf or pmf of Y i. Then Y 1, . . . ,Y n

are independent random vectors if

f (y1, . . . ,yn) = fY 1
(y1) · · · fY n

(yn) =
n

∏
i=1

fY i
(y i).

The following theorem is a useful generalization of Theorem 2.7.

Theorem 2.19. Let Y 1, . . . ,Y n be independent random vectors where Y i is a
1× pi vector for i = 1, . . . ,n. and let hi : Rpi → R

p ji be vector valued functions
and suppose that hi(yi) is a function of y i alone for i = 1, . . . ,n. Then the random
vectors Xi = hi(Y i) are independent. There are three important special cases.

i) If p ji = 1 so that each hi is a real valued function, then the random variables
Xi = hi(Y i) are independent.

ii) If pi = p ji = 1 so that each Yi and each Xi = h(Yi) are random variables, then
X1, . . . ,Xn are independent.

iii) Let Y = (Y1, . . . ,Yn) and X = (X1, ..,Xm) and assume that Y X. If h(Y ) is a
vector valued function of Y alone and if g(X) is a vector valued function of X
alone, then h(Y ) and g(X) are independent random vectors.

Definition 2.24. The characteristic function (cf) of a random vector Y is

φY (t) = E(eitTY )

∀t ∈R
n where the complex number i =

√−1.
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Definition 2.25. The moment generating function (mgf) of a random vector
Y is

mY (t) = E(et
TY )

provided that the expectation exists for all t in some neighborhood of the origin 0.

Theorem 2.20. If Y1, . . . ,Yn have mgf m(t), then moments of all orders exist and
for any nonnegative integers k1, . . . ,k j,

E(Y k1
i1

· · ·Y kj
i j
) =

∂ k1+···+k j

∂ tk1
i1
· · ·∂ t

k j
i j

m(t)

∣∣
∣
∣
t=0

.

In particular,

E(Yi) =
∂m(t)

∂ ti

∣
∣
∣∣
t=0

and

E(YiYj) =
∂ 2m(t)

∂ ti∂ t j

∣
∣∣
∣
t=0

.

Theorem 2.21. If Y1, . . . ,Yn have a cf φY (t) and mgf mY (t) then the marginal cf
and mgf for Yi1 , . . . ,Yik are found from the joint cf and mgf by replacing ti j by 0 for
j = k+ 1, . . . ,n. In particular, if Y = (Y 1,Y 2) and t = (t1, t2), then

φY 1
(t1) = φY (t1,0) and mY 1

(t1) = mY (t1,0).

Proof. Use the definition of the cf and mgf. For example, if Y 1 = (Y1, . . . ,Yk)
and s = t1, then m(t1,0) =

E[exp(t1Y1 + · · ·+ tkYk + 0Yk+1+ · · ·+ 0Yn)] = E[exp(t1Y1 + · · ·+ tkYk)] =

E[exp(sTY 1)] = mY 1
(s), which is the mgf of Y 1. �

Theorem 2.22. Partition the 1 × n vectors Y and t as Y = (Y 1,Y 2) and t =
(t1, t2). Then the random vectors Y 1 and Y 2 are independent iff their joint cf factors
into the product of their marginal cfs:

φY (t) = φY 1
(t1)φY 2

(t2) ∀t ∈R
n.

If the joint mgf exists, then the random vectors Y 1 and Y 2 are independent iff their
joint mgf factors into the product of their marginal mgfs:

mY (t) = mY 1
(t1)mY 2

(t2)

∀t in some neighborhood of 0.
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2.8 The Multinomial Distribution

Definition 2.26. Assume that there are m iid trials with n outcomes. Let Yi be the
number of the m trials that resulted in the ith outcome and let ρi be the probability of
the ith outcome for i = 1, . . . ,n where 0 ≤ ρi ≤ 1. Thus ∑n

i=1 Yi = m and ∑n
i=1ρi = 1.

Then Y = (Y1, . . . ,Yn) has a multinomial distribution, written Y ∼Mn(m,ρ1, . . . ,ρn),
if the joint pmf of Y is
f (y1, . . . ,yn) = P(Y1 = y1, . . . ,Yn = yn)

=
m!

y1! · · ·yn!
ρy1

1 ρy2
2 · · ·ρyn

n = m!
n

∏
i=1

ρyi
i

yi!
. (2.27)

The support of Y is Y = {y : ∑n
i=1 yi = m and 0 ≤ yi ≤ m for i = 1, . . . ,n}.

The multinomial theorem states that for real xi and positive integers m and n,

(x1 + · · ·+ xn)
m = ∑

y∈Y

m!
y1! · · ·yn!

xy1
1 xy2

2 · · ·xyn
n . (2.28)

Taking xi = ρi shows that (2.27) is a pmf.

Since Yn and ρn are known if Y1, . . . ,Yn−1 and ρ1, . . . ,ρn−1 are known, it is con-
venient to act as if n− 1 of the outcomes Y1, . . . ,Yn−1 are important and the nth
outcome means that none of the n− 1 important outcomes occurred. With this rea-
soning, suppose that {i1, . . . , ik−1} ⊂ {1, . . . ,n}. Let Wj = Yi j , and let Wk count the

number of times that none of Yi1 , . . . ,Yik−1 occurred. Then Wk = m−∑k−1
j=1 Yi j and

P(Wk) = 1−∑k−1
j=1ρi j . Here Wk represents the unimportant outcomes and the joint

distribution of W1, . . . ,Wk−1,Wk is multinomial Mk(m,ρi1 , . . . ,ρik−1 ,1−∑k−1
j=1ρi j).

Notice that ∑k
j=1Yi j counts the number of times that the outcome “one of the out-

comes i1, . . . , ik occurred,” an outcome with probability ∑k
j=1ρi j . Hence ∑k

j=1 Yi j ∼
BIN(m,∑k

j=1ρi j ).
Now consider conditional distributions. If it is known that Yi j = yi j for

j = k + 1, . . . ,n, then there are m−∑n
j=k+1 yi j outcomes left to distribute among

Yi1 , . . . ,Yik . The conditional probabilities of Yi remains proportional to ρi, but the
conditional probabilities must sum to one. Hence the conditional distribution is
again multinomial. These results prove the following theorem.

Theorem 2.23. Assume that (Y1, . . . ,Yn) has an Mn(m,ρ1, . . . ,ρn) distribution
and that {i1, . . . , ik} ⊂ {1, . . . ,n} with k < n and 1 ≤ i1 < i2 < · · ·< ik ≤ n.

a) (Yi1 , . . . ,Yik−1 ,m−∑k−1
j=1 Yi j ) has an Mk(m,ρi1 , . . . ,ρik−1 ,1−∑k−1

j=1ρi j ) distribution.

b) ∑k
j=1Yi j ∼ BIN(m,∑k

j=1ρi j). In particular, Yi ∼ BIN(m,ρi).
c) Suppose that 0 ≤ yi j < m for j = k+ 1, . . . ,n and that 0 ≤ ∑n

j=k+1 yi j < m.

Let t = m−∑n
j=k+1 yi j and let πi j = ρi j/∑

k
j=1ρi j for j = 1, . . . ,k. Then the condi-

tional distribution of Yi1 , . . . ,Yik |Yik+1 = yik+1 , . . . ,Yin = yin is the Mk(t,πi1 , . . . ,πik)
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distribution. The support of this conditional distribution is
{(yi1 , . . . ,yik) : ∑k

j=1 yi j = t, and 0 ≤ yi j ≤ t for j = 1, . . . ,k}.

Theorem 2.24. Assume that (Y1, . . . ,Yn) has an Mn(m,ρ1, . . . ,ρn) distribution.
Then the mgf is

m(t) = (ρ1et1 + · · ·+ρnetn)m, (2.29)

E(Yi) = mρi, VAR(Yi) = mρi(1−ρi) and Cov(Yi,Yj) =−mρiρ j for i �= j.

Proof. E(Yi) and V (Yi) follow from Theorem 2.23b, and m(t) =

E[exp(t1Y1 + · · ·+ tnYn)] =∑
Y

exp(t1y1 + · · ·+ tnyn)
m!

y1! · · ·yn!
ρy1

1 ρy2
2 · · ·ρyn

n

=∑
Y

m!
y1! · · ·yn!

(ρ1et1)y1 · · ·(ρnetn)yn = (ρ1et1 + · · ·+ρnetn)m

by the multinomial theorem (2.28). By Theorem 2.20,

E(YiYj) =
∂ 2

∂ ti∂ t j
(ρ1et1 + · · ·+ρnetn)m

∣
∣
∣
∣
t=0

=

∂
∂ t j

m(ρ1et1 + · · ·+ρnetn)m−1ρie
ti

∣∣
∣
∣
t=0

=

m(m− 1)(ρ1et1 + · · ·+ρnetn)m−2ρie
tiρ je

t j

∣
∣
∣∣
t=0

= m(m− 1)ρiρ j.

Hence Cov(Yi,Yj) = E(YiYj)−E(Yi)E(Yj) = m(m− 1)ρiρ j −mρimρ j

=−mρiρ j. �

2.9 The Multivariate Normal Distribution

Definition 2.27 (Rao 1973, p. 437). A p×1 random vector X has a p−dimensional
multivariate normal distribution Np(�,˙ ) iff tTX has a univariate normal distribu-
tion for any p× 1 vector t .

If ˙ is positive definite, then X has a joint pdf

f (z) =
1

(2π)p/2|˙ |1/2
e−(1/2)(z−�)T ˙−1(z−�) (2.30)

where |˙ |1/2 is the square root of the determinant of ˙ . Note that if p = 1, then
the quadratic form in the exponent is (z−μ)(σ2)−1(z−μ) and X has the univariate
N(μ ,σ2) pdf. If ˙ is positive semi-definite but not positive definite, then X has a
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degenerate distribution. For example, the univariate N(0,02) distribution is degen-
erate (the point mass at 0).

Some important properties of MVN distributions are given in the following three
propositions. These propositions can be proved using results from Johnson and
Wichern (1988, pp. 127–132).

Proposition 2.25. a) If X ∼ Np(�,˙ ), then E(X) = � and

Cov(X) = ˙ .

b) If X ∼ Np(�,˙ ), then any linear combination tTX = t1X1 + · · · + tpXp ∼
N1(t

T �, tT ˙ t). Conversely, if tTX ∼ N1(t
T �, tT ˙ t) for every p× 1 vector t ,

then X ∼ Np(�,˙ ).
c) The joint distribution of independent normal random variables is MVN.

If X1, . . . ,Xp are independent univariate normal N(μi,σ2
i ) random vec-

tors, then X = (X1, . . . ,Xp)
T is Np(�,˙ ) where � = (μ1, . . . ,μp)

T and
˙ = diag(σ2

1 , . . . ,σ
2
p) (so the off diagonal entries σi, j = 0 while the diago-

nal entries of ˙ are σi,i = σ2
i .)

d) If X ∼ Np(�,˙ ) and if A is a q× p matrix, then AX∼ Nq(A�,A˙AT ). If a is
a p× 1 vector of constants, then a+X ∼ Np(a+�,˙ ).

It will be useful to partition X, �, and ˙ . Let X1 and �1 be q×1 vectors, let X2

and �2 be (p− q)× 1 vectors, let ˙11 be a q× q matrix, let ˙12 be a q× (p− q)
matrix, let ˙21 be a (p− q)× q matrix, and let ˙22 be a (p− q)× (p− q) matrix.
Then

X =

(
X1

X2

)
, � =

(
�1

�2

)
, and ˙ =

(
˙11 ˙12

˙21 ˙22

)
.

Proposition 2.26. a) All subsets of a MVN are MVN: (Xk1 , . . . ,Xkq)
T ∼

Nq(�̃, ˜̇ ) where �̃i = E(Xki) and ˜̇ i j = Cov(Xki ,Xkj ). In particular,
X1 ∼ Nq(�1,˙11) and X2 ∼ Np−q(�2,˙22).

b) If X1 and X2 are independent, then Cov(X1,X2) = ˙12 =
E[(X1 −E(X1))(X2 −E(X2))

T ] = 0, a q× (p− q) matrix of zeroes.
c) If X ∼ Np(�,˙ ), then X1 and X2 are independent iff ˙12 = 0.
d) If X1 ∼ Nq(�1,˙11) and X2 ∼ Np−q(�2,˙22) are independent, then

(
X1

X2

)
∼ Np

((
�1

�2

)
,

(
˙11 0

0 ˙22

))
.

Proposition 2.27. The conditional distribution of a MVN is MVN. If
X ∼ Np(�,˙ ), then the conditional distribution of X1 given that X2 = x2 is
multivariate normal with mean �1 + ˙12˙−1

22 (x2 − �2) and covariance matrix
˙11 −˙12˙−1

22 ˙21. That is,

X1|X2 = x2 ∼ Nq(�1 +˙12˙−1
22 (x2 −�2),˙11 −˙12˙−1

22 ˙21).
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Example 2.21. Let p = 2 and let (Y,X)T have a bivariate normal distribution.
That is,

(
Y
X

)
∼ N2

((
μY

μX

)
,

(
σ2

Y Cov(Y,X)
Cov(X ,Y ) σ2

X

))
.

Also recall that the population correlation between X and Y is given by

ρ(X ,Y ) =
Cov(X ,Y )

√
VAR(X)

√
VAR(Y )

=
σX ,Y

σXσY

if σX > 0 and σY > 0. Then Y |X = x ∼ N(E(Y |X = x),VAR(Y |X = x)) where the
conditional mean

E(Y |X = x) = μY +Cov(Y,X)
1

σ2
X

(x− μX) = μY +ρ(X ,Y)

√
σ2

Y

σ2
X

(x− μX)

and the conditional variance

VAR(Y |X = x) = σ2
Y −Cov(X ,Y )

1

σ2
X

Cov(X ,Y )

= σ2
Y −ρ(X ,Y)

√
σ2

Y

σ2
X

ρ(X ,Y)
√

σ2
X

√
σ2

Y

= σ2
Y −ρ2(X ,Y )σ2

Y = σ2
Y [1−ρ2(X ,Y )].

Also aX + bY is univariate normal with mean aμX + bμY and variance

a2σ2
X + b2σ2

Y + 2ab Cov(X ,Y ).

Remark 2.2. There are several common misconceptions. First, it is not true that
every linear combination tTX of normal random variables is a normal ran-
dom variable, and it is not true that all uncorrelated normal random variables
are independent. The key condition in Proposition 2.25b and Proposition 2.26c is
that the joint distribution of X is MVN. It is possible that X1,X2, . . . ,Xp each has a
marginal distribution that is univariate normal, but the joint distribution of X is not
MVN. Examine the following example from Rohatgi (1976, p. 229). Suppose that
the joint pdf of X and Y is a mixture of two bivariate normal distributions both with
EX = EY = 0 and VAR(X) = VAR(Y ) = 1, but Cov(X ,Y ) =±ρ . Hence

f (x,y) =
1
2

1

2π
√

1−ρ2
exp

( −1
2(1−ρ2)

(x2 − 2ρxy+ y2)

)
+

1
2

1

2π
√

1−ρ2
exp

( −1
2(1−ρ2)

(x2 + 2ρxy+ y2)

)
≡ 1

2
f1(x,y)+

1
2

f2(x,y)
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where x and y are real and 0 < ρ < 1. Since both marginal distributions of fi(x,y)
are N(0,1) for i = 1 and 2 by Proposition 2.26a, the marginal distributions of X and
Y are N(0,1). Since

∫ ∫
xy fi(x,y)dxdy = ρ for i = 1 and −ρ for i = 2, X and Y are

uncorrelated, but X and Y are not independent since f (x,y) �= fX (x) fY (y).

Remark 2.3. In Proposition 2.27, suppose that X = (Y,X2, . . . ,Xp)
T . Let X1 =Y

and X2 = (X2, . . . ,Xp)
T . Then E[Y |X2] = β1 +β2X2 + · · ·+βpXp and VAR[Y |X2]

is a constant that does not depend on X2. Hence Y |X2 = β1 +β2X2+ · · ·+βpXp+e
follows the multiple linear regression model.

2.10 Elliptically Contoured Distributions

Definition 2.28 (Johnson 1987, pp. 107–108). A p×1 random vector has an ellip-
tically contoured distribution, also called an elliptically symmetric distribution, if X
has joint pdf

f (z) = kp|˙ |−1/2g[(z−�)T ˙−1(z−�)], (2.31)

and we say X has an elliptically contoured ECp(�,˙ ,g) distribution.
If X has an elliptically contoured (EC) distribution, then the characteristic func-

tion of X is

φX(t) = exp(itT �)ψ(tT ˙ t) (2.32)

for some function ψ . If the second moments exist, then

E(X) = � (2.33)

and
Cov(X) = cX˙ (2.34)

where
cX =−2ψ ′(0).

Definition 2.29. The population squared Mahalanobis distance

U ≡ D2 = D2(�,˙ ) = (X−�)T ˙−1(X−�) (2.35)

has pdf

h(u) =
π p/2

Γ (p/2)
kpup/2−1g(u). (2.36)

For c > 0, an ECp(�,cI ,g) distribution is spherical about � where I is the p× p
identity matrix. The multivariate normal distribution Np(�,˙ ) has kp = (2π)−p/2,
ψ(u) = g(u) = exp(−u/2), and h(u) is the χ2

p density.
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The following lemma is useful for proving properties of EC distributions without
using the characteristic function (2.32). See Eaton (1986) and Cook (1998, pp. 57,
130).

Lemma 2.28. Let X be a p × 1 random vector with 1st moments; i.e., E(X)
exists. Let B be any constant full rank p× r matrix where 1 ≤ r ≤ p. Then X is
elliptically contoured iff for all such conforming matrices B,

E(X|BT X) = �+MBB
T (X−�) = aB +MBB

TX (2.37)

where the p× 1 constant vector aB and the p× r constant matrix MB both depend
on B.

A useful fact is that aB and MB do not depend on g:

aB = �−MBB
T � = (I p −MBB

T )�,

and

MB = ˙B(BT ˙B)−1.

Notice that in the formula for MB, ˙ can be replaced by c˙ where c > 0 is a
constant. In particular, if the EC distribution has second moments, Cov(X) can be
used instead of ˙ .

To use Lemma 2.28 to prove interesting properties, partition X, �, and ˙ . Let
X1 and �1 be q×1 vectors, let X2 and �2 be (p−q)×1 vectors. Let ˙11 be a q×q
matrix, let ˙12 be a q× (p−q) matrix, let ˙21 be a (p−q)×q matrix, and let ˙22

be a (p− q)× (p− q)matrix. Then

X =

(
X1

X2

)
, � =

(
�1

�2

)
, and ˙ =

(
˙11 ˙12

˙21 ˙22

)
.

Also assume that the (p+ 1)× 1 vector (Y,XT )T is ECp+1(�,˙ ,g) where Y is a
random variable, X is a p× 1 vector, and use

(
Y
X

)
, � =

(
μY

�X

)
, and ˙ =

(
ΣYY ˙Y X

˙XY ˙XX

)
.

Proposition 2.29. Let X ∼ ECp(�,˙ ,g) and assume that E(X) exists.

a) Any subset of X is EC, in particular X1 is EC.
b) (Cook 1998 p. 131, Kelker 1970). If Cov(X) is nonsingular,

Cov(X|BTX) = dg(B
TX)[˙ −˙B(BT ˙B)−1BT ˙ ]

where the real valued function dg(B
TX) is constant iff X is MVN.

Proof of a). Let A be an arbitrary full rank q× r matrix where 1 ≤ r ≤ q. Let

B =

(
A

0

)
.
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Then BTX =ATX1, and

E[X|BTX] = E

[(
X1

X2

)
|ATX1

]
=

(
�1

�2

)
+

(
M1B

M2B

) (
AT 0T

) (X1 −�1

X2 −�2

)

by Lemma 2.28. Hence E[X1|ATX1] = �1 +M1BA
T (X1 −�1). Since A was arbi-

trary, X1 is EC by Lemma 2.28. Notice that MB = ˙B(BT ˙B)−1 =

(
˙11 ˙12

˙21 ˙22

) (
A

0

) [
(
AT 0T

)
(

˙11 ˙12

˙21 ˙22

)(
A

0

)]−1

=

(
M1B

M2B

)
.

Hence

M1B = ˙11A(AT ˙11A)−1

and X1 is EC with location and dispersion parameters �1 and ˙11. �
Proposition 2.30. Let (Y,XT )T be ECp+1(�,˙ ,g) where Y is a random

variable.

a) Assume that E[(Y,XT )T ] exists. Then E(Y |X) = α+ˇTX where
α = μY −ˇT �X and

ˇ = ˙−1
XX ˙XY .

b) Even if the first moment does not exist, the conditional median

MED(Y |X) = α+ˇTX

where α and ˇ are given in a).

Proof. a) The trick is to choose B so that Lemma 2.28 applies. Let

B =

(
0T

I p

)
.

Then BT ˙B = ˙XX and

˙B =

(
˙Y X

˙XX

)
.

Now

E

[(
Y
X

)
| X

]
= E

[(
Y
X

)
| BT

(
Y
X

)]

= �+˙B(BT ˙B)−1BT
(

Y − μY

X−�X

)
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by Lemma 2.28. The right-hand side of the last equation is equal to

�+

(
˙Y X

˙XX

)
˙−1

XX (X−�X) =

(
μY −˙YX˙−1

XX �X +˙YX˙−1
XXX

X

)

and the result follows since

ˇT = ˙Y X˙−1
XX .

b) See and Croux et al. (2001) for references.

Example 2.22. This example illustrates another application of Lemma 2.28.
Suppose that X comes from a mixture of two multivariate normals with the same
mean and proportional covariance matrices. That is, let

X ∼ (1− γ)Np(�,˙ )+ γNp(�,c˙ )

where c > 0 and 0 < γ < 1. Since the multivariate normal distribution is elliptically
contoured (and see Proposition 1.14c),

E(X|BTX) = (1− γ)[�+M1B
T (X−�)]+ γ[�+M2B

T (X−�)]

= �+[(1− γ)M1 + γM2]B
T (X−�)≡ �+MBT (X−�).

Since MB only depends on B and ˙ , it follows that M1 =M2 =M =MB. Hence
X has an elliptically contoured distribution by Lemma 2.28.

2.11 Summary

1. Y1 and Y2 are dependent if the support Y = {(y1,y2)| f (y1,y2) > 0} is not a
cross product.

2. If the support is a cross product, then Y1 and Y2 are independent iff f (y1,y2) =
h1(y1)h2(y2) for all (y1,y2) ∈ Y where hi(yi) is a positive function of yi alone.
If no such factorization exists, then Y1 and Y2 are dependent.

3. If Y1, . . . ,Yn are independent, then the functions h1(Y1), . . . ,hn(Yn) are indepen-
dent.

4. Given f (y1,y2), find E[h(Yi)] by finding the marginal pdf or pmf fYi(yi) and
using the marginal distribution in the expectation.

5. E[Y ] = E[E(Y |X)] and V (Y ) = E[V (Y |X)]+V [E(Y |X)].
6. Find the pmf of Y = t(X) and the (sample space =) support Y given the pmf of

X by collecting terms x : y = t(x).
7. For increasing or decreasing t, the pdf of Y = t(X) is

fY (y) = fX (t
−1(y))

∣
∣∣
∣
dt−1(y)

dy

∣
∣∣
∣

for y ∈ Y . Also be able to find the support Y .
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8. Find the joint pdf of Y1 = t1(X1,X2) and Y2 = t2(X1,X2): fY1,Y2(y1,y2)
= fX1,X2(t

−1
1 (y1,y2), t

−1
2 (y1,y2))|J|. Finding the support Y is crucial. Using in-

dicator functions can help. Know that ∏k
j=1 IA j(y) = I∩k

j=1A j
(y). The Jacobian

of the bivariate transformation is

J = det

⎡

⎢
⎢
⎣

∂ t−1
1

∂y1

∂ t−1
1

∂y2

∂ t−1
2

∂y1

∂ t−1
2

∂y2

⎤

⎥
⎥
⎦ ,

and |J| is the absolute value of the determinant J. Recall that

det

[
a b
c d

]
=

∣
∣
∣
∣
a b
c d

∣
∣
∣
∣= ad− bc.

To find t−1
i (y1,y2), use yi = ti(x1,x2) and solve for x1 and x2 where i = 1,2.

9. If Y1, . . . ,Yn are independent with mgfs mYi(t), then the mgf of W = ∑n
i=1 Yi is

mW (t) =
n

∏
i=1

mYi(t).

10. If Y1, . . . ,Yn are iid with mgf mY (t), then the mgf of W = ∑n
i=1Yi is

mW (t) = [mY (t)]
n,

and the mgf of Y is

mY (t) = [mY (t/n)]n.

11. Know that if Y1, . . . ,Yn are iid with E(Y ) = μ and V(Y ) = σ2, then E(Y ) = μ
and V(Y ) = σ2/n.

12. Suppose W = ∑n
i=1 Yi or W = Y where Y1, . . . ,Yn are independent. For several

distributions (especially Yi iid gamma(ν,λ ) and Yi independent N(μi,σ2
i )), be

able to find the distribution of W , the mgf of W , E(W ), Var(W ), and E(W 2) =
V (W )+ [E(W)]2.

13. If X ∼ Np(�,˙ ), then tTX = t1X1 + . . .+ tpXp ∼ N(tT �, tT ˙ t).
14. If X ∼ Np(�,˙ ) and if A is a q× p matrix, then AX ∼ Nq(A�,A˙AT ). If a

is a p× 1 vector of constants, then a+X ∼ Np(a+�,˙ ).
Suppose X1 is q× 1 and

X =

(
X1

X2

)
, � =

(
�1

�2

)
, and ˙ =

(
˙11 ˙12

˙21 ˙22

)
.

15. X1 ∼ Nq(�1,˙11).
16. If X ∼ Np(�,˙ ), then the conditional distribution of X1 given that X2 = x2 is

multivariate normal with mean �1 +˙12˙−1
22 (x2 −�2) and covariance matrix

˙11 −˙12˙−1
22 ˙21. That is,



2.13 Problems 69

X1|X2 = x2 ∼ Nq(�1 +˙12˙−1
22 (x2 −�2),˙11 −˙12˙−1

22 ˙21).

17.
ρ(Xi,Xj) =

σi, j√σiiσ j j
= Cov(Xi,Xj)/

√
V (Xi)V (Xj).

18. Know that (X ,Y ) can have a joint distribution that is not multivariate normal,
yet the marginal distributions of X and Y are both univariate normal. Hence X
and Y can be normal, but aX + bY is not normal. (Need the joint distribution of
(X ,Y ) to be MVN for all linear combinations to be univariate normal.)

2.12 Complements

Panjer (1969) provides generalizations of Steiner’s formula.
Johnson and Wichern (1988), Mardia et al. (1979) and Press (2005) are good

references for multivariate statistical analysis based on the multivariate normal dis-
tribution. The elliptically contoured distributions generalize the multivariate normal
distribution and are discussed (in increasing order of difficulty) in Johnson (1987),
Fang et al. (1990), Fang and Anderson (1990), and Gupta and Varga (1993).

Fang et al. (1990) sketch the history of elliptically contoured distributions while
Gupta and Varga (1993) discuss matrix valued elliptically contoured distributions.
Cambanis et al. (1981), Chmielewski (1981) and Eaton (1986) are also important

references. Also see Muirhead (1982, pp. 30–42).
Broffitt (1986), Kowalski (1973), Melnick and Tenebien (1982) and Seber and

Lee (2003, p. 23) give examples of dependent marginally normal random vari-
ables that have 0 correlation. The example in Remark 2.1 appears in Rohatgi (1976,
p. 229) and Lancaster (1959).

See Abuhassan (2007) for more information about the distributions in Prob-
lems 2.52– 2.59.

2.13 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.

Theorem 2.16 is useful for Problems 2.1∗– 2.7∗.

2.1∗. Let X1, . . . ,Xn be independent Poisson(λi). Let W = ∑n
i=1 Xi. Find the mgf

of W and find the distribution of W .

2.2∗. Let X1, . . . ,Xn be iid Bernoulli(ρ). Let W =∑n
i=1 Xi. Find the mgf of W and

find the distribution of W .
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2.3∗. Let X1, . . . ,Xn be iid exponential (λ ). Let W = ∑n
i=1 Xi. Find the mgf of W

and find the distribution of W .

2.4∗. Let X1, . . . ,Xn be independent N(μi,σ2
i ). Let W = ∑n

i=1(ai + biXi) where
ai and bi are fixed constants. Find the mgf of W and find the distribution of W .

2.5∗. Let X1, . . . ,Xn be iid negative binomial (1, ρ). Let W = ∑n
i=1 Xi. Find the

mgf of W and find the distribution of W .

2.6∗. Let X1, . . . ,Xn be independent gamma (νi,λ ). Let W = ∑n
i=1 Xi. Find the

mgf of W and find the distribution of W .

2.7∗. Let X1, . . . ,Xn be independent χ2
pi

. Let W =∑n
i=1 Xi. Find the mgf of W and

find the distribution of W .

2.8. a) Let fY (y) be the pdf of Y. If W = μ+Y where −∞< μ < ∞, show that
the pdf of W is fW (w) = fY (w− μ) .

b) Let fY (y) be the pdf of Y. If W = σY where σ > 0, show that the pdf of W is
fW (w) = (1/σ) fY (w/σ).

c) Let fY (y) be the pdf of Y. If W = μ+σY where −∞< μ < ∞ and σ > 0, show
that the pdf of W is fW (w) = (1/σ) fY ((w− μ)/σ).

2.9. a) If Y is lognormal LN(μ ,σ2), show that W = log(Y ) is a normal N(μ ,σ2)
random variable.

b) If Y is a normal N(μ ,σ2) random variable, show that W = eY is a lognormal
LN(μ ,σ2) random variable.

2.10. a) If Y is uniform (0,1), Show that W =− log(Y ) is exponential (1).
b) If Y is exponential (1), show that W = exp(−Y ) is uniform (0,1).

2.11. If Y ∼ N(μ ,σ2), find the pdf of

W =

(
Y − μ
σ

)2

.

2.12. If Y has a half normal distribution, Y ∼ HN(μ ,σ2), show that
W = (Y − μ)2 ∼ G(1/2,2σ2).

2.13. a) Suppose that Y has a Weibull (φ ,λ ) distribution with pdf

f (y) =
φ
λ

yφ−1e−
yφ
λ

where λ ,y, and φ are all positive. Show that W = log(Y ) has a smallest extreme
value SEV(θ = log(λ 1/φ ),σ = 1/φ) distribution.

b) If Y has a SEV(θ = log(λ 1/φ ),σ = 1/φ) distribution, show that W = eY has a
Weibull (φ ,λ ) distribution.
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2.14. a) Suppose that Y has a Pareto(σ ,λ ) distribution with pdf

f (y) =
1
λ σ

1/λ

y1+1/λ

where y ≥ σ , σ > 0, and λ > 0. Show that W = log(Y )∼ EXP(θ = log(σ),λ ).
b) If Y as an EXP(θ = log(σ),λ ) distribution, show that W = eY has a Pareto(σ ,λ )

distribution.

2.15. a) If Y is chi χp, then the pdf of Y is

f (y) =
yp−1e−y2/2

2
p
2 −1Γ (p/2)

where y ≥ 0 and p is a positive integer. Show that the pdf of W = Y 2 is the χ2
p

pdf.
b) If Y is a chi-square χ2

p random variable, show that W =
√

Y is a chi χp random
variable.

2.16. a) If Y is power POW(λ ), then the pdf of Y is

f (y) =
1
λ

y
1
λ −1,

where λ > 0 and 0 < y < 1. Show that W = − log(Y ) is an exponential (λ )
random variable.

b) If Y is an exponential(λ ) random variable, show that W = e−Y is a power
POW(λ ) random variable.

2.17. a) If Y is truncated extreme value TEV(λ ) then the pdf of Y is

f (y) =
1
λ

exp

(
y− ey − 1

λ

)

where y > 0, and λ > 0. Show that W = eY − 1 is an exponential (λ ) random
variable.

b) If Y is an exponential(λ ) random variable, show that W = log(Y + 1) is a trun-
cated extreme value TEV(λ ) random variable.

c) If Y has an inverse exponential distribution, Y ∼ IEXP(θ ), show that W = 1/Y ∼
EXP(1/θ ).

d) If Y has an inverse Weibull distribution,Y ∼ IW(φ ,λ ), show that 1/Y ∼W (φ ,λ ),
the Weibull distribution with parameters φ and λ .

e) If Y has a log-gamma distribution, Y ∼ LG(ν,λ ), show that W = eY ∼
gamma (ν,λ ).

f) If Y has a two-parameter power distribution, Y ∼ power(τ,λ ), show that W =
− log(Y )∼ EXP(− log(τ),λ ).



72 2 Multivariate Distributions and Transformations

2.18. a) If Y is BurrXII(φ ,λ ), show that W = log(1+Yφ ) is an exponential(λ )
random variable.

b) If Y is an exponential(λ ) random variable, show that W = (eY − 1)1/φ is a
BurrXII(φ ,λ ) random variable.

2.19. a) If Y is Pareto PAR(σ ,λ ), show that W = log(Y/σ) is an exponential(λ )
random variable.

b) If Y is an exponential(λ ) random variable, show that W = σeY is a Pareto
PAR(σ ,λ ) random variable.

2.20. a) If Y is Weibull W (φ ,λ ), show that W = Y φ is an exponential (λ ) ran-
dom variable.

b) If Y is an exponential(λ ) random variable, show that W = Y 1/φ is a Weibull
W (φ ,λ ) random variable.

2.21. If Y is double exponential (θ ,λ ), show that W = |Y −θ | ∼ EXP(λ ).

2.22. If Y has a generalized gamma distribution, Y ∼ GG(ν,λ ,φ), show that
W = Y φ ∼ G(ν,λφ ).

2.23. If Y has an inverted gamma distribution, Y ∼ INVG(ν,λ ), show that W =
1/Y ∼ G(ν,λ ).

2.24. a) If Y has a largest extreme value distribution Y ∼ LEV(θ ,σ), show that
W = exp(−(Y −θ )/σ)∼ EXP(1).

b) If Y ∼ EXP(1), show that W = θ −σ log(Y )∼ LEV(θ ,σ).

2.25. a) If Y has a log–Cauchy distribution, Y ∼ LC(μ ,σ ), show that W =
log(Y ) has a Cauchy(μ ,σ ) distribution.

b) If Y ∼C(μ ,σ) show that W = eY ∼ LC(μ ,σ ).

2.26. a) If Y has a log–logistic distribution,Y ∼LL(φ ,τ), show that W = log(Y )
has a logistic L(μ =− log(φ),σ = 1/τ) distribution.

b) If Y ∼ L(μ =− log(φ),σ = 1/τ), show that W = eY ∼ LL(φ ,τ).

2.27. If Y has a Maxwell–Boltzmann distribution, Y ∼ MB(μ ,σ), show that
W = (Y − μ)2 ∼ G(3/2,2σ2).

2.28. If Y has a one-sided stable distribution,Y ∼OSS(σ), show that W = 1/Y ∼
G(1/2,2/σ).

2.29. a) If Y has a Rayleigh distribution, Y ∼ R(μ ,σ), show that W =
(Y − μ)2 ∼ EXP(2σ2).

b) If Y ∼ EXP(2σ2), show that W =
√

Y + μ ∼ R(μ ,σ).

2.30. If Y has a smallest extreme value distribution, Y ∼ SEV(θ ,σ), show that
W =−Y has an LEV(−θ ,σ) distribution.

2.31. Let Y ∼ C(0,1). Show that the Cauchy distribution is a location–scale
family by showing that W = μ+σY ∼C(μ ,σ) where μ is real and σ > 0.
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2.32. Let Y have a chi distribution, Y ∼ chi(p,1) where p is known. Show that
the chi(p,σ) distribution is a scale family for p known by showing that W = σY ∼
chi(p,σ) for σ > 0.

2.33. Let Y ∼ DE(0,1). Show that the double exponential distribution is a
location–scale family by showing that W = θ + λY ∼ DE(θ ,λ ) where θ is real
and λ > 0.

2.34. Let Y ∼ EXP(1). Show that the exponential distribution is a scale family
by showing that W = λY ∼ EXP(λ ) for λ > 0.

2.35. Let Y ∼ EXP(0,1). Show that the two-parameter exponential distribution
is a location–scale family by showing that W = θ +λY ∼ EXP(θ ,λ ) where θ is
real and λ > 0.

2.36. Let Y ∼ LEV(0,1). Show that the largest extreme value distribution is a
location–scale family by showing that W = θ +σY ∼ LEV(θ ,σ) where θ is real
and σ > 0.

2.37. Let Y ∼ G(ν,1) where ν is known. Show that the gamma (ν,λ ) distribu-
tion is a scale family for ν known by showing that W = λY ∼ G(ν,λ ) for λ > 0.

2.38. Let Y ∼ HC(0,1). Show that the half Cauchy distribution is a location–
scale family by showing that W = μ+σY ∼ HC(μ ,σ) where μ is real and σ > 0.

2.39. Let Y ∼HL(0,1). Show that the half logistic distribution is a location–scale
family by showing that W = μ+σY ∼ HL(μ ,σ) where μ is real and σ > 0.

2.40. Let Y ∼ HN(0,1). Show that the half normal distribution is a location–
scale family by showing that W = μ+σY ∼ HN(μ ,σ2) where μ is real and σ > 0.

2.41. Let Y ∼ L(0,1). Show that the logistic distribution is a location–scale fam-
ily by showing that W = μ+σY ∼ L(μ ,σ) where μ is real and σ > 0.

2.42. Let Y ∼ MB(0,1). Show that the Maxwell–Boltzmann distribution is a
location–scale family by showing that W = μ +σY ∼ MB(μ ,σ) where μ is real
and σ > 0.

2.43. Let Y ∼ N(0,1). Show that the normal distribution is a location–scale
family by showing that W = μ+σY ∼ N(μ ,σ2) where μ is real and σ > 0.

2.44. Let Y ∼ OSS(1). Show that the one-sided stable distribution is a scale
family by showing that W = σY ∼ OSS(σ) for σ > 0.

2.45. Let Y ∼ PAR(1,λ ) where λ is known. Show that the Pareto (σ ,λ ) dis-
tribution is a scale family for λ known by showing that W = σY ∼ PAR(σ ,λ )
for σ > 0.

2.46. Let Y ∼ R(0,1). Show that the Rayleigh distribution is a location–scale
family by showing that W = μ+σY ∼ R(μ ,σ) where μ is real and σ > 0.
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2.47. Let Y ∼ U(0,1). Show that the uniform distribution is a location–scale
family by showing that W = μ + σY ∼ U(θ1,θ2) where μ = θ1 is real and σ =
θ2 −θ1 > 0.

2.48. Examine the proof of Theorem 2.2b for a joint pdf and prove the result for
a joint pmf by replacing the integrals by appropriate sums.

2.49. Examine the proof of Theorem 2.3 for a joint pdf and prove the result for
a joint pmf by replacing the integrals by appropriate sums.

2.50. Examine the proof of Theorem 2.4 for a joint pdf and prove the result for
a joint pmf by replacing the integrals by appropriate sums.

2.51. Examine the proof of Theorem 2.5 for a joint pdf and prove the result for
a joint pmf by replacing the integrals by appropriate sums.

2.52. If Y ∼ hburr(φ ,λ ), then the pdf of Y is

f (y) =
2

λ
√

2π
φyφ−1

(1+ yφ)
exp

(−[log(1+ yφ)]2

2λ 2

)
I(y > 0)

where φ and λ are positive.

a) Show that W = log(1 + Y φ ) ∼ HN(0,λ ), the half normal distribution with
parameters 0 and λ .

b) If W ∼ HN(0,λ ), then show Y = [eW − 1]1/φ ∼ hburr(φ ,λ ).

2.53. If Y ∼ hlev(θ ,λ ), then the pdf of Y is

f (y) =
2

λ
√

2π
exp

(−(y−θ )
λ

)
exp

[

−1
2

[
exp

(−(y−θ )
λ

)]2
]

where y and θ are real and λ > 0.

a) Show that W = exp(−(Y −θ )/λ )∼ HN(0,1), the half normal distribution with
parameters 0 and 1.

b) If W ∼ HN(0,1), then show Y =−λ log(W )+θ ∼ hlev(θ ,λ ).

2.54. If Y ∼ hpar(θ ,λ ), then the pdf of Y is

f (y) =
2

λ
√

2π
1
y

I[y ≥ θ ]exp

[−(log(y)− log(θ ))2

2λ 2

]

where θ > 0 and λ > 0.

a) Show that W = log(Y )∼ HN(μ = log(θ ),σ = λ ). (See the half normal distribu-
tion in Chap. 10.)

b) If W ∼ HN(μ ,σ), then show Y = eW ∼ hpar(θ = eμ ,λ = σ).
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2.55. If Y ∼ hpow(λ ), then the pdf of Y is

f (y) =
2

λ
√

2π
1
y

I[0,1](y) exp

[−(log(y))2

2λ 2

]

where λ > 0.

a) Show that W = − log(Y ) ∼ HN(0,σ = λ ), the half normal distribution with
parameters 0 and λ .

b) If W ∼ HN(0,σ), then show Y = e−W ∼ hpow(λ = σ).

2.56. If Y ∼ hray(θ ,λ ), then the pdf of Y is

f (y) =
4

λ
√

2π
(y−θ )I[y ≥ θ ]exp

[−(y−θ )4

2λ 2

]

where λ > 0 and θ is real.

a) Show that W = (Y −θ )2 ∼ HN(0,σ = λ ), the half normal distribution with pa-
rameters 0 and λ .

b) If W ∼ HN(0,σ), then show Y =
√

W +θ ∼ hray(θ ,λ = σ).

2.57. If Y ∼ hsev(θ ,λ ), then the pdf of Y is

f (y) =
2

λ
√

2π
exp

(
y−θ
λ

)
exp

(
−1
2

[
exp

(
y−θ
λ

)]2
)

where y and θ are real and λ > 0.

a) Show that W = exp[(y−θ )/λ ]∼ HN(0,1).
b) If W ∼ HN(0,1), then show Y = λ log(W )+θ ∼ hsev(θ ,λ ).

2.58. If Y ∼ htev(λ ), then the pdf of Y is

f (y) =
2

λ
√

2π
exp

(
y− (ey − 1)2

2λ 2

)
=

2

λ
√

2π
ey exp

(−(ey − 1)2

2λ 2

)

where y > 0 and λ > 0.

a) Show that W = eY −1 ∼ HN(0,σ = λ ), the half normal distribution with param-
eters 0 and λ .

b) If W ∼ HN(0,σ), then show Y = log(W + 1)∼ htev(λ = σ).

2.59. If Y ∼ hweib(φ ,λ ), then the pdf of Y is

f (y) =
2

λ
√

2π
φ yφ−1 I[y > 0] exp

(−y2φ

2λ 2

)

where λ and φ are positive.
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a) Show that W =Y φ ∼HN(0,σ = λ ), the half normal distribution with parameters
0 and λ .

b) If W ∼ HN(0,σ), then show Y =W 1/φ ∼ hweib(φ ,λ = σ).

Problems from old quizzes and exams. Problems from old qualifying exams
are marked with a Q since these problems take longer than quiz and exam problems.

2.60. If Y is a random variable with pdf

f (y) = λyλ−1 for 0 < y < 1

where λ > 0, show that W =− log(Y ) is an exponential(1/λ ) random variable.

2.61. If Y is an exponential(1/λ ) random variable, show that W = e−Y has pdf

fW (w) = λwλ−1 for 0 < w < 1.

2.62. If Y ∼ EXP(λ ), find the pdf of W = 2λY .

2.63∗. (Mukhopadhyay 2000, p. 113): Suppose that X |Y ∼ N(β0 +β1Y,Y 2), and
that Y ∼ N(3,10). That is, the conditional distribution of X given that Y = y is
normal with mean β0 +β1y and variance y2 while the (marginal) distribution of Y is
normal with mean 3 and variance 10.

a) Find EX .
b) Find Var X .

2.64∗. Suppose that
⎛

⎜
⎜
⎝

X1

X2

X3

X4

⎞

⎟
⎟
⎠∼ N4

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

49
100
17
7

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

3 1 −1 0
1 6 1 −1
−1 1 4 0
0 −1 0 2

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ .

a) Find the distribution of X2.
b) Find the distribution of (X1,X3)

T .
c) Which pairs of random variables Xi and Xj are independent?
d) Find the correlation ρ(X1,X3).

2.65∗. Recall that if X∼Np(�,˙ ), then the conditional distribution of X1 given
that X2 = x2 is multivariate normal with mean
�1 +˙12˙−1

22 (x2 −�2) and covariance matrix ˙11 −˙12˙−1
22 ˙21.

Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal distribution
(

Y
X

)
∼ N2

((
49

100

)
,

(
16 σ12

σ12 25

))
.

a) If σ12 = 0, find Y |X . Explain your reasoning.
b) If σ12 = 10 find E(Y |X).
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c) If σ12 = 10, find Var(Y |X).

2.66. Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal dis-
tribution

(
Y
X

)
∼ N2

((
15
20

)
,

(
64 σ12

σ12 81

))
.

a) If σ12 = 10 find E(Y |X).
b) If σ12 = 10, find Var(Y |X).
c) If σ12 = 10, find ρ(Y,X), the correlation between Y and X .

2.67∗. (Mukhopadhyay 2000, p. 197): Suppose that X1 and X2 have a joint pdf
given by

f (x1,x2) = 3(x1 + x2)I(0 < x1 < 1)I(0 < x2 < 1)I(0 < x1 + x2 < 1).

Consider the transformation Y1 = X1 +X2 and Y2 = X1 −X2.

a) Find the Jacobian J for the transformation.
b) Find the support Y of Y1 and Y2.
c) Find the joint density fY1,Y2(y1,y2).
d) Find the marginal pdf fY1(y1).
e) Find the marginal pdf fY2(y2).

Hint for d) and e): IA1(y)IA2(y)IA3(y) = I∩3
j=1A j

(y) = IY (y) where Y is a trian-

gle.

2.68∗Q. The number of defects per yard Y of a certain fabric is known to have a
Poisson distribution with parameter λ . However, λ is a random variable with pdf

f (λ ) = e−λ I(λ > 0).

a) Find E(Y).
b) Find Var(Y).

2.69. Let A and B be positive integers. A hypergeometric random variable X =
W1+W2+ · · ·+Wn where the random variables Wi are identically distributed random
variables with P(Wi = 1) = A/(A+B) and P(Wi = 0) = B/(A+B). You may use
the fact that E(W1) = A/(A+B) and that E(X) = nA/(A+B).

a) Find Var(W1).

b) If i �= j, then Cov(Wi,Wj) =
−AB

(A+B)2(A+B− 1)
. Find Var(X) using the formula

Var

(
n

∑
i=1

Wi

)

=
n

∑
i=1

Var(Wi)+ 2
n−1

∑
i=1

n

∑
j=i+1

Cov(Wi,Wj).

(Hint: the sum ∑n−1
i=1 ∑n

j=i+1 has (n− 1)n/2 terms.)
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2.70. Let X = W1 +W2 + · · ·+Wn where the joint distribution of the random
variables Wi is an n-dimensional multivariate normal distribution with E(Wi) = 1
and Var(Wi) = 100 for i = 1, . . . ,n.

a) Find E(X).
b) Suppose that if i �= j, then Cov(Wi,Wj) = 10. Find Var(X) using the formula

Var

(
n

∑
i=1

Wi

)

=
n

∑
i=1

Var(Wi)+ 2
n−1

∑
i=1

n

∑
j=i+1

Cov(Wi,Wj).

(Hint: the sum ∑n−1
i=1 ∑n

j=i+1 has (n− 1)n/2 terms.)

2.71. Find the moment generating function for Y1 if the joint probability mass
function f (y1,y2) of Y1 and Y2 is tabled as shown.

y2

f (y1,y2) 0 1 2
0 0.38 0.14 0.24

y1

1 0.17 0.02 0.05

2.72. Suppose that the joint pdf of X and Y is f (x,y) =

1
2

1

2π
√

1−ρ2
exp

( −1
2(1−ρ2)

(x2 − 2ρxy+ y2)

)

+
1
2

1

2π
√

1−ρ2
exp

( −1
2(1−ρ2)

(x2 + 2ρxy+ y2)

)

where x and y are real and 0 < ρ < 1. It can be shown that the marginal pdfs are

fX (x) =
1√
2π

exp

(−1
2

x2
)

for x real and

fY (y) =
1√
2π

exp

(−1
2

y2
)

for y real. Are X and Y independent? Explain briefly.

2.73∗. Suppose that the conditional distribution of Y |P = ρ is the binomial(k,ρ)
distribution and that the random variable P has a beta(δ = 4,ν = 6) distribution.

a) Find E(Y).
b) Find Var(Y).

2.74∗. Suppose that the joint probability mass function f (y1,y2) of Y1 and Y2 is
given in the following table.
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y2

f (y1,y2) 0 1 2
0 0.38 0.14 0.24

y1

1 0.17 0.02 0.05

a) Find the marginal probability function fY2(y2) for Y2.
b) Find the conditional probability function f (y1|y2) of Y1 given Y2 = 2.

2.75∗. Find the pmf of Y = X2 + 4 where the pmf of X is given below.

_______________________________________________
X | -2 -1 0 1 2

Probability | 0.1 0.2 0.4 0.2 0.1
-----------------------------------------------

2.76. Suppose that X1 and X2 are independent with X1 ∼ N(0,1) and X2 ∼
N(0,4) so Var(X2) = 4. Consider the transformation Y1 = X1+X2 and Y2 = X1−X2.

a) Find the Jacobian J for the transformation.
b) Find the joint pdf f (y1,y2) of Y1 and Y2.
c) Are Y1 and Y2 independent? Explain briefly. Hint: can you factor the joint pdf so

that f (y1,y2) = g(y1)h(y2) for every real y1 and y2?

2.77. This problem follows Severini (2005, p. 236). Let W ∼ N(μW ,σ2
W ) and let

X ∼ Np(�,˙ ).

a) Write down the moment generating function (mgf) mW (t) of W .
b) Suppose W = tTX. Then W ∼ N(μW ,σ2

W ). What are μW and σW ?

c) The mgf of X is mX(t) = E(et
TX) = E(eW ) = mW (1). Using a) and b), find

mX(t).

2.78. Consider k insect eggs. Eggs may not hatch. If the egg hatches into a ju-
venile, the juvenile may not survive long enough to turn into an adult. Let ρ be the
probability that the egg hatches into a juvenile that eventually turns into an adult.
Let X1 be the number of eggs that turn into a juvenile, and let X2 be the number
of juveniles that turn into adults = the number of eggs that turn into juveniles that
turn into adults. Assuming that such events are iid, then X2 ∼ binomial (k,ρ). Let
ρ1 be the probability that an egg hatches into a juvenile, and let ρ2 be the proba-
bility that a juvenile turns into an adult. Then X2|X1 ∼ binomial(X1,ρ2) and X1 ∼
binomial(k,ρ1). Part a) below will show that ρ = ρ1ρ2.

a) Find E(X2).
b) Find V (X2) using Steiner’s formula.



Chapter 3
Exponential Families

Suppose the data is a random sample from some parametric brand name distribution
with parameters � . This brand name distribution comes from a family of distribu-
tions parameterized by � ∈Θ . Each different value of � in the parameter space Θ
gives a distribution that is a member of the family of distributions. Often the brand
name family of distributions is from an exponential family.

The theory of exponential families will be used in the following chapters to
study some of the most important topics in statistical inference such as mini-
mal and complete sufficient statistics, maximum likelihood estimators (MLEs),
uniform minimum variance estimators (UMVUEs), and the Fréchet–Cramér–Rao
lower bound (FCRLB), uniformly most powerful (UMP) tests and large sample
theory.

3.1 Regular Exponential Families

Often a “brand name distribution” such as the normal distribution will have three
useful parameterizations: the usual parameterization with parameter space ΘU is
simply the formula for the probability distribution or mass function (pdf or pmf,
respectively) given when the distribution is first defined. The k-parameter exponen-
tial family parameterization with parameter spaceΘ , given in Definition 3.1 below,
provides a simple way to determine if the distribution is an exponential family, while
the natural parameterization with parameter space Ω , given in Definition 3.2 below,
is used for theory that requires a complete sufficient statistic. See Chaps. 4 and 6.

Definition 3.1. A family of joint pdfs or joint pmfs { f (y|�) : � = (θ1, . . . ,θ j) ∈
Θ} for a random vector Y is an exponential family if

f (y|�) = h(y)c(�)exp

[
k

∑
i=1

wi(�)ti(y)

]

(3.1)
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for all y where c(�)≥ 0 and h(y) ≥ 0. The functions c,h, ti, and wi are real valued
functions. The parameter � can be a scalar and y can be a scalar. It is crucial that
c,w1, . . . ,wk do not depend on y and that h, t1, . . . , tk do not depend on � . The support
of the distribution is Y and the parameter space is Θ . The family is a k-parameter
exponential family if k is the smallest integer where (3.1) holds.

Notice that the distribution of Y is an exponential family if

f (y|�) = h(y)c(�)exp

[
k

∑
i=1

wi(�)ti(y)

]

(3.2)

and the distribution is a one-parameter exponential family if

f (y|θ ) = h(y)c(θ )exp[w(θ )t(y)]. (3.3)

The parameterization is not unique since, for example, wi could be multiplied by a
nonzero constant a if ti is divided by a. Many other parameterizations are possible.
If h(y) = g(y)IY (y), then usually c(�) and g(y) are positive, so another parameteri-
zation is

f (y|�) = exp

[
k

∑
i=1

wi(�)ti(y)+ d(�)+ S(y)

]

IY (y) (3.4)

where S(y) = log(g(y)), d(�) = log(c(�)), and Y does not depend on � .

To demonstrate that { f (y|�) : � ∈Θ} is an exponential family, find h(y),c(�),
wi(�) and ti(y) such that (3.1), (3.2), (3.3) or (3.4) holds.

Theorem 3.1. Suppose that Y 1, . . . ,Y n are iid random vectors from an exponen-
tial family. Then the joint distribution of Y 1, . . . ,Y n follows an exponential family.

Proof. Suppose that fY i
(y i) has the form of (3.1). Then by independence,

f (y1, . . . ,yn) =
n

∏
i=1

fY i
(yi) =

n

∏
i=1

h(yi)c(�)exp

[
k

∑
j=1

wj(�)t j(yi)

]

=

[
n

∏
i=1

h(yi)

]

[c(�)]n
n

∏
i=1

exp

[
k

∑
j=1

wj(�)t j(y i)

]

=

[
n

∏
i=1

h(yi)

]

[c(�)]n exp

(
n

∑
i=1

[
k

∑
j=1

wj(�)t j(yi)

])

=

[
n

∏
i=1

h(yi)

]

[c(�)]n exp

[
k

∑
j=1

wj(�)

(
n

∑
i=1

t j(y i)

)]

.

To see that this has the form (3.1), take h∗(y1, . . . ,yn)=∏n
i=1 h(yi), c∗(�) = [c(�)]n,

w∗
j(�) = wj(�) and t∗j (y1, . . . ,yn) = ∑n

i=1 t j(yi). �
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The parameterization that uses the natural parameter � is especially useful for
theory. See Definition 3.3 for the natural parameter space Ω .

Definition 3.2. Let Ω be the natural parameter space for �. The natural param-
eterization for an exponential family is

f (y|�) = h(y)b(�)exp

[
k

∑
i=1

ηiti(y)

]

(3.5)

where h(y) and ti(y) are the same as in Eq. (3.1) and � ∈Ω . The natural parameter-
ization for a random variable Y is

f (y|�) = h(y)b(�)exp

[
k

∑
i=1

ηiti(y)

]

(3.6)

where h(y) and ti(y) are the same as in Eq. (3.2) and � ∈Ω . Again, the parameteri-
zation is not unique. If a �= 0, then aηi and ti(y)/a would also work.

Notice that the natural parameterization (3.6) has the same form as (3.2) with
�∗ = �, c∗(�∗) = b(�) and wi(�

∗) = wi(�) = ηi. In applications often � and Ω are
of interest while b(�) is not computed.

The next important idea is that of a regular exponential family (and of a full expo-
nential family). Let di(x) denote ti(y), wi(�) or ηi. A linearity constraint is satisfied
by d1(x), . . . ,dk(x) if ∑k

i=1 aidi(x) = c for some constants ai and c and for all x (or ηi)
in the sample or parameter space where not all of the ai = 0. If ∑k

i=1 aidi(x) = c for
all x only if a1 = · · · = ak = 0, then the di(x) do not satisfy a linearity constraint.
In linear algebra, we would say that the di(x) are linearly independent if they do not
satisfy a linearity constraint.

For k = 2, a linearity constraint is satisfied if a plot of d1(x) versus d2(x) falls on
a line as x varies. If the parameter space for the η1 and η2 is a nonempty open set,
then the plot of η1 versus η2 is that nonempty open set, and the ηi cannot satisfy a
linearity constraint since the plot is not a line.

Let Ω̃ be the set where the integral of the kernel function is finite:

Ω̃ =

{

� = (η1, . . . ,ηk) :
1

b(�)
≡
∫ ∞

−∞
h(y)exp

[
k

∑
i=1

ηiti(y)

]

dy < ∞

}

. (3.7)

Replace the integral by a sum for a pmf. An interesting fact is that Ω̃ is a convex
set. If the parameter space Θ of the exponential family is not a convex set, then the
exponential family cannot be regular. Example 3.2 shows that the χ2

p distribution is
not regular since the set of positive integers is not convex.

Definition 3.3. Condition E1: the natural parameter space Ω = Ω̃ .
Condition E2: assume that in the natural parameterization, neither the ηi nor the ti
satisfy a linearity constraint.
Condition E3: Ω is a k-dimensional nonempty open set.
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If conditions E1), E2) and E3) hold then the exponential family is a k-parameter
regular exponential family (REF).
If conditions E1) and E2) hold then the exponential family is a k-parameter full
exponential family.

Notation. A kP-REF is a k-parameter regular exponential family. So a 1P-REF
is a one-parameter REF and a 2P-REF is a two-parameter REF.

Notice that every REF is full. Any k-dimensional nonempty open set will con-
tain a k-dimensional nonempty rectangle. A k-fold cross product of nonempty open
intervals is a k-dimensional nonempty open set. For a one-parameter exponential
family, a one-dimensional rectangle is just an interval, and the only type of function
of one variable that satisfies a linearity constraint is a constant function. In the defi-
nition of an exponential family and in the usual parameterization, � is a 1× j vector.
Typically j = k if the family is a kP-REF. If j < k and k is as small as possible, the
family will usually not be regular. For example, a N(θ ,θ 2) family has � = θ with
j = 1 < 2 = k, and is not regular. See Example 3.8 for more details.

Some care has to be taken with the definitions of Θ and Ω since formulas (3.1)
and (3.6) need to hold for every � ∈Θ and for every � ∈ Ω . Let ΘU be the usual
parameter space given for the distribution. For a continuous random variable or vec-
tor, the pdf needs to exist. Hence all degenerate distributions need to be deleted from
ΘU to form Θ and Ω . For continuous and discrete distributions, the natural param-
eter needs to exist (and often does not exist for discrete degenerate distributions).
As a rule of thumb, remove values from ΘU that cause the pmf to have the form 00.
For example, for the binomial(k,ρ) distribution with k known, the natural parameter
η = log(ρ/(1−ρ)). Hence instead of usingΘU = [0,1], use ρ ∈Θ = (0,1), so that
η ∈Ω = (−∞,∞).

These conditions have some redundancy. If Ω contains a k-dimensional rect-
angle (e.g., if the family is a kP-REF, then Ω is a k-dimensional open set and
contains a k-dimensional open ball which contains a k-dimensional rectangle), no ηi

is completely determined by the remaining η ′
js. In particular, the ηi cannot satisfy a

linearity constraint. If the ηi do satisfy a linearity constraint, then the ηi lie on a hy-
perplane of dimension at most k, and such a surface cannot contain a k-dimensional
rectangle. For example, if k = 2, a line cannot contain an open box. If k = 2 and
η2 = η2

1 , then the parameter space is not a two-dimensional open set and does not
contain a two-dimensional rectangle. Thus the family is not a 2P-REF although η1

and η2 do not satisfy a linearity constraint. Again, see Example 3.8.

The most important 1P-REFs are the binomial (k,ρ) distribution with k known,
the exponential (λ ) distribution, and the Poisson (θ ) distribution.

Other 1P-REFs are discussed in Chap. 10, including the Burr type III (λ ,φ ) dis-
tribution with φ known, the Burr Type X (τ) distribution, the Burr type XII (φ ,λ )
distribution with φ known, the double exponential (θ ,λ ) distribution with θ known,
the two-parameter exponential (θ ,λ ) distribution with θ known, the generalized
negative binomial (μ ,κ) distribution if κ is known, the geometric (ρ) distribution,
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the Gompertz (θ ,ν) distribution with θ > 0 known, the half normal (μ ,σ2) distri-
bution with μ known, the inverse exponential (θ ) distribution, the inverse Weibull
(φ ,λ ) distribution with φ known, the largest extreme value (θ ,σ) distribution if
σ is known, the smallest extreme value (θ ,σ) distribution if σ is known, the in-
verted gamma (ν,λ ) distribution if ν is known, the logarithmic (θ ) distribution, the
Maxwell–Boltzmann (μ ,σ ) distribution if μ is known, the modified DeMoivre’s
law (θ ,φ) distribution if θ is known, the negative binomial (r,ρ) distribution if r
is known, the one-sided stable (σ ) distribution, the Pareto (σ ,λ ) distribution if σ
is known, the power (λ ) distribution, the Rayleigh (μ ,σ ) distribution if μ is known,
the Topp–Leone (ν) distribution, the two-parameter power (τ,λ ) distribution with τ
known, the truncated extreme value (λ ) distribution, the Weibull (φ ,λ ) distribution
if φ is known, the zero truncated Poisson (θ ) distribution, the Zeta (ν) distribution,
and the Zipf (ν) distribution.

A one-parameter exponential family can often be obtained from a k-parameter
exponential family by holding k−1 of the parameters fixed. Hence a normal (μ ,σ2)
distribution is a 1P-REF if σ2 is known. When data is modeled with an exponential
family, often the scale, location, and shape parameters are unknown. For example,
the mean and standard deviation are usually both unknown.

The most important 2P-REFs are the beta (δ ,ν) distribution, the gamma (ν,λ )
distribution and the normal (μ ,σ2) distribution. The chi (p,σ ) distribution, the
inverted gamma (ν,λ ) distribution, the log-gamma (ν,λ ) distribution, and the log-
normal (μ ,σ2) distribution are also 2P-REFs. Example 3.9 will show that the inverse
Gaussian distribution is full but not regular. The two-parameter Cauchy distribution
is not an exponential family because its pdf cannot be put into the form of Eq. (3.1).

The natural parameterization can result in a family that is much larger than the
family defined by the usual parameterization. See the definition of Ω = Ω̃ given by
Eq. (3.7). Casella and Berger (2002, p. 114) remarks that

{� : � = (w1(�), . . . ,wk(�))|� ∈Θ} ⊆Ω , (3.8)

but often Ω is a strictly larger set.

Remark 3.1. For the families in Chap. 10 other than the χ2
p and inverse Gaussian

distributions, make the following assumptions if dim(Θ) = k = dim(Ω). Assume
that ηi = wi(�). Assume that the usual parameter space ΘU is as big as possible
(replace the integral by a sum for a pmf):

ΘU =

{
� ∈ R

k :
∫

f (y|�)dy = 1

}
,

and let

Θ = {� ∈ΘU : w1(�), . . . ,wk(�) are defined }.
Then assume that the natural parameter space satisfies condition E1) with
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Ω = {(η1, . . . ,ηk) : ηi = wi(�) for � ∈Θ}.

In other words, simply define ηi = wi(�). For many common distributions, � is a
one-to-one function of � , and the above map is correct, especially if ΘU is an open
interval or cross product of open intervals.

Remark 3.2. Chapter 10 has many examples showing that a distribution is a
1P-REF or 2P-REF.

Example 3.1. Let f (x|μ ,σ) be the N(μ ,σ2) family of pdfs. Then � = (μ ,σ)
where −∞ < μ < ∞ and σ > 0. Recall that μ is the mean and σ is the standard
deviation (SD) of the distribution. The usual parameterization is

f (x|�) = 1√
2πσ

exp

(−(x− μ)2

2σ2

)
IR(x)

where R = (−∞,∞) and the indicator IA(x) = 1 if x ∈ A and IA(x) = 0 otherwise.
Notice that IR(x) = 1 ∀x. Since

f (x|μ ,σ) = 1√
2πσ

exp

(−μ2

2σ2

)

︸ ︷︷ ︸
c(μ,σ)≥0

exp

⎛

⎜⎜
⎜
⎝

−1
2σ2
︸︷︷︸
w1(�)

x2
︸︷︷︸
t1(x)

+
μ
σ2
︸︷︷︸
w2(�)

x︸︷︷︸
t2(x)

⎞

⎟⎟
⎟
⎠

IR(x)︸ ︷︷ ︸
h(x)≥0

,

this family is a two-parameter exponential family. Hence η1 = −0.5/σ2 and η2 =
μ/σ2 if σ > 0, and Ω = (−∞,0)× (−∞,∞). Plotting η1 on the horizontal axis
and η2 on the vertical axis yields the left half plane which certainly contains a two-
dimensional rectangle. Since t1 and t2 lie on a quadratic rather than a line, the family
is a 2P-REF. Notice that if X1, . . . ,Xn are iid N(μ ,σ2) random variables, then the
joint pdf f (x|�) = f (x1, . . . ,xn|μ ,σ) =

[
1√

2πσ
exp

(−μ2

2σ2

)]n

︸ ︷︷ ︸
C(μ,σ)≥0

exp

⎛

⎜
⎜
⎜
⎜
⎝

−1
2σ2
︸︷︷︸
w1(�)

n

∑
i=1

x2
i

︸ ︷︷ ︸
T1(x)

+
μ
σ2
︸︷︷︸
w2(�)

n

∑
i=1

xi

︸︷︷︸
T2(x)

⎞

⎟
⎟
⎟
⎟
⎠

1︸︷︷︸
h(x)≥0

,

and is thus a 2P-REF.

Example 3.2. The χ2
p distribution is not a 1P-REF since the usual parameter

space ΘU for the χ2
p distribution is the set of positive integers, which is neither

an open set nor a convex set. Nevertheless, the natural parameterization is the
gamma(ν,λ = 2) family which is a 1P-REF. Note that this family has uncountably
many members while the χ2

p family does not.
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Example 3.3. The binomial(k,ρ) pmf is

f (x|ρ) =
(

k
x

)
ρx(1−ρ)k−x I{0,...,k}(x)

=

(
k
x

)
I{0,...,k}(x)

︸ ︷︷ ︸
h(x)≥0

(1−ρ)k

︸ ︷︷ ︸
c(ρ)≥0

exp

⎡

⎢
⎢⎢
⎣

log

(
ρ

1−ρ

)

︸ ︷︷ ︸
w(ρ)

x︸︷︷︸
t(x)

⎤

⎥
⎥⎥
⎦

where ΘU = [0,1]. Since the pmf and η = log(ρ/(1−ρ)) are undefined for ρ = 0
and ρ = 1, we have Θ = (0,1). Notice that Ω = (−∞,∞).

Example 3.4. The uniform(0,θ ) family is not an exponential family since the
support Yθ = (0,θ ) depends on the unknown parameter θ .

Example 3.5. If Y has a half normal distribution, Y ∼ HN(μ ,σ ), then the pdf of
Y is

f (y) =
2√

2π σ
exp

(−(y− μ)2

2σ2

)

where σ > 0 and y ≥ μ and μ is real. Notice that

f (y) =
2√

2π σ
I(y ≥ μ)exp

[( −1
2σ2

)
(y− μ)2

]

is a 1P-REF if μ is known. Hence Θ = (0,∞), η = −1/(2σ2) and Ω = (−∞,0).
Notice that a different 1P-REF is obtained for each value of μ when μ is known
with support Yμ = [μ ,∞). If μ is not known, then this family is not an exponential
family since the support depends on μ .

The following two examples are important examples of REFs where
dim(Θ)> dim(Ω).

Example 3.6. If the ti or ηi satisfy a linearity constraint, then the number of
terms in the exponent of Eq. (3.1) can be reduced. Suppose that Y1, . . . ,Yn follow the
multinomial Mn(m,ρ1, . . . ,ρn) distribution which has dim(Θ) = n if m is known.
Then ∑n

i=1 Yi = m, ∑n
i=1ρi = 1 and the joint pmf of Y is

f (y) = m!
n

∏
i=1

ρyi
i

yi!
.

The support of Y is Y = {y : ∑n
i=1 yi = m and 0 ≤ yi ≤ m for i = 1, . . . ,n}.

Since Yn and ρn are known if Y1, . . . ,Yn−1 and ρ1, . . . ,ρn−1 are known, we can use
an equivalent joint pmf fEF in terms of Y1, . . . ,Yn−1. Let
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h(y1, . . . ,yn−1) =

[
m!

∏n
i=1 yi!

]
I[(y1, . . . ,yn−1,yn) ∈ Y ].

(This is a function of y1, . . . ,yn−1 since yn = m−∑n−1
i=1 yi.) Then Y1, . . . .,Yn−1 have a

Mn(m,ρ1, . . . ,ρn) distribution if the joint pmf of Y1, . . . ,Yn−1 is

fEF (y1, . . . ,yn−1) = exp

[
n−1

∑
i=1

yi log(ρi)+

(

m−
n−1

∑
i=1

yi

)

log(ρn)

]

h(y1, . . . ,yn−1)

= exp[m log(ρn)] exp

[
n−1

∑
i=1

yi log(ρi/ρn)

]

h(y1, . . . ,yn−1). (3.9)

Since ρn = 1−∑n−1
j=1 ρ j, this is an n− 1 dimensional REF with

ηi = log(ρi/ρn) = log

(
ρi

1−∑n−1
j=1 ρ j

)

and Ω = R
n−1.

Example 3.7. Similarly, let � be a 1× j row vector and let ˙ be a j × j pos-
itive definite matrix. Then the usual parameterization of the multivariate normal
MVN j(�,˙ ) distribution has dim(Θ) = j + j2 but is a j + j( j + 1)/2 parame-
ter REF.

A curved exponential family is a k-parameter exponential family where the
elements of � = (θ1, . . . ,θk) are completely determined by d < k of the elements.
For example if � = (θ ,θ 2), then the elements of � are completely determined by
θ1 = θ . A curved exponential family is not regular since it places a restriction on

−4 −3 −2 −1 0

−
3

−
2

−
1

0
1

2
3

eta1

et
a2

Fig. 3.1 The parameter space is a quadratic, not a two-dimensional open set
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the parameter space Ω resulting in a new “natural parameter space” ΩC where ΩC

does not contain a k-dimensional rectangle and is not a k-dimensional open set.

Example 3.8. The N(θ ,θ 2) distribution is a two-parameter exponential family
with η1 =−1/(2θ 2) and η2 = 1/θ . To see this, note that

f (y|θ ) = 1

θ
√

2π
exp

(−(y−θ )2

2θ 2

)
=

1

θ
√

2π
exp

[ −1
2θ 2 (y

2 − 2θy+θ 2)

]
=

1

θ
√

2π
exp(−1/2)exp

[ −1
2θ 2 y2 +

1
θ

y

]
.

Thus the “natural parameter space” is

ΩC = {(η1,η2)|η1 =−0.5η2
2 ,−∞< η1 < 0,−∞< η2 < ∞,η2 �= 0}.

To be a 2P-REF, the parameter space needs to be a two-dimensional open set.
A k-dimensional open set contains a k-dimensional open ball which contains a k-
dimensional open set. The graph of the “natural parameter space” is a quadratic and
cannot contain a two-dimensional rectangle. (Any rectangle will contain points that
are not on the quadratic, so ΩC is not a two-dimensional open set.) See Fig. 3.1
where the small rectangle centered at (−2,2) contains points that are not in the
parameter space. Hence this two-parameter curved exponential family is not a
2P-REF.

3.2 Properties of (t1(Y ), . . . , tk(Y ))

This section follows Lehmann (1983, pp. 29–35) closely, and several of the results
will be used in later chapters. Write the natural parameterization for the exponential
family as

f (y|�) = h(y)b(�)exp

[
k

∑
i=1

ηiti(y)

]

= h(y)exp

[
k

∑
i=1

ηiti(y) − a(�)

]

(3.10)

where a(�) =− log(b(�)). The kernel function of this pdf or pmf is

h(y)exp

[
k

∑
i=1

ηiti(y)

]

.

Lemma 3.2. Suppose that Y comes from an exponential family (3.10) and that
g(y) is any function with E�[|g(Y )|] < ∞. Then for any � in the interior of Ω , the
integral

∫
g(y) f (y|�)dy is continuous and has derivatives of all orders. These deriva-
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tives can be obtained by interchanging the derivative and integral operators. If f is
a pmf, replace the integral by a sum.

Proof. See Lehmann (1986, p. 59).

Hence
∂
∂ηi

∫
g(y) f (y|�)dy =

∫
g(y)

∂
∂ηi

f (y|�)dy (3.11)

if f is a pdf and

∂
∂ηi

∑g(y) f (y|�) =∑g(y)
∂
∂ηi

f (y|�) (3.12)

if f is a pmf.

Remark 3.3. If Y comes from an exponential family (3.1), then the derivative
and integral (or sum) operators can be interchanged. Hence

∂
∂θi

∫
. . .

∫
g(y) f (y|�)dy =

∫
. . .

∫
g(y)

∂
∂θi

f (y|�)dy

for any function g(y) with Eθ |g(Y )|< ∞.

The behavior of (t1(Y ), . . . , tk(Y )) will be of considerable interest in later
chapters. The following result is in Lehmann (1983, pp. 29–30). Also see Johnson
et al. (1979).

Theorem 3.3. Suppose that Y comes from an exponential family (3.10). Then a)

E(ti(Y )) =
∂
∂ηi

a(�) =− ∂
∂ηi

log(b(�)) (3.13)

and b)

Cov(ti(Y ), t j(Y )) =
∂ 2

∂ηi∂η j
a(�) =− ∂ 2

∂ηi∂η j
log(b(�)). (3.14)

Notice that i = j gives the formula for VAR(ti(Y )).

Proof. The proof will be for pdfs. For pmfs replace the integrals by sums. Use
Lemma 3.2 with g(y) = 1 ∀y. a) Since 1 =

∫
f (y|�)dy,

0 =
∂
∂ηi

1 =
∂
∂ηi

∫
h(y)exp

[
k

∑
m=1

ηmtm(y) − a(�)

]

dy

=

∫
h(y)

∂
∂ηi

exp

[
k

∑
m=1

ηmtm(y) − a(�)

]

dy
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=

∫
h(y)exp

[
k

∑
m=1

ηmtm(y) − a(�)

]

(ti(y)− ∂
∂ηi

a(�))dy

=

∫
(ti(y)− ∂

∂ηi
a(�)) f (y|�)dy

= E(ti(Y ))− ∂
∂ηi

a(�).

b) Similarly,

0 =

∫
h(y)

∂ 2

∂ηi∂η j
exp

[
k

∑
m=1

ηmtm(y) − a(�)

]

dy.

From the proof of a),

0 =

∫
h(y)

∂
∂η j

[

exp

[
k

∑
m=1

ηmtm(y) − a(�)

]

(ti(y)− ∂
∂ηi

a(�))

]

dy

=

∫
h(y)exp

[
k

∑
m=1

ηmtm(y) − a(�)

]

(ti(y)− ∂
∂ηi

a(�))(t j(y)− ∂
∂η j

a(�))dy

−
∫

h(y)exp

[
k

∑
m=1

ηmtm(y) − a(�)

](
∂ 2

∂ηi∂η j
a(�)

)
dy

= Cov(ti(Y ), t j(Y ))− ∂ 2

∂ηi∂η j
a(�)

since ∂
∂η j

a(�) = E(t j(Y )) by a). �

Theorem 3.4. Suppose that Y comes from an exponential family (3.10), and let
T = (t1(Y ), . . . , tk(Y )). Then for any � in the interior of Ω , the moment generating
function of T is

mT (s) = exp[a(�+ s)− a(�)] = exp[a(�+ s)]/exp[a(�)].

Proof. The proof will be for pdfs. For pmfs replace the integrals by sums. Since
� is in the interior of Ω there is a neighborhood of � such that if s is in that neigh-
borhood, then �+ s ∈ Ω . (Hence there exists a δ > 0 such that if ‖s‖ < δ , then
�+ s ∈Ω .) For such s (see Definition 2.25),

mT (s) = E

[

exp

(
k

∑
i=1

siti(Y )

)]

≡ E(g(Y )).

It is important to notice that we are finding the mgf of T , not the mgf of Y . Hence
we can use the kernel method of Sect. 1.5 to find E(g(Y )) =

∫
g(y) f (y)dy without

finding the joint distribution of T . So
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mT (s) =

∫
exp

(
k

∑
i=1

siti(y)

)

h(y)exp

[
k

∑
i=1

ηiti(y) − a(�)

]

dy

=
∫

h(y)exp

[
k

∑
i=1

(ηi + si)ti(y) − a(�+ s) + a(�+ s) − a(�)

]

dy

= exp[a(�+ s) − a(�)]
∫

h(y)exp

[
k

∑
i=1

(ηi + si)ti(y) − a(�+ s)

]

dy

= exp[a(�+ s) − a(�)]
∫

f (y|[�+ s])dy = exp[a(�+ s) − a(�)]

since the pdf f (y|[�+ s]) integrates to one. �

Theorem 3.5. Suppose that Y comes from an exponential family (3.10), and let
T = (t1(Y ), . . . , tk(Y )) = (T1, . . . ,Tk). Then the distribution of T is an exponential
family with

f (t |�) = h∗(t)exp

[
k

∑
i=1

ηiti − a(�)

]

.

Proof. See Lehmann (1986, p. 58).

The main point of this section is that T is well behaved even if Y is not. For
example, if Y follows a one-sided stable distribution, then Y is from an exponential
family, but E(Y ) does not exist. However the mgf of T exists, so all moments of
T exist. If Y1, . . . ,Yn are iid from a one-parameter exponential family, then T ≡
Tn = ∑n

i=1 t(Yi) is from a one-parameter exponential family. One way to find the
distribution function of T is to find the distribution of t(Y ) using the transformation
method, then find the distribution of ∑n

i=1 t(Yi) using moment generating functions
or Theorems 2.17 and 2.18. This technique results in the following two theorems.
Notice that T often has a gamma distribution.

Theorem 3.6. Let Y1, . . . ,Yn be iid from the given one-parameter exponential
family and let T ≡ Tn = ∑n

i=1 t(Yi).

a) If Yi is from a binomial (k,ρ) distribution with k known, then t(Y ) = Y ∼
BIN(k,ρ) and Tn =∑n

i=1 Yi ∼ BIN(nk,ρ).
b) If Y is from an exponential (λ ) distribution then, t(Y ) = Y ∼ EXP(λ ) and

Tn = ∑n
i=1 Yi ∼ G(n,λ ).

c) If Y is from a gamma (ν,λ ) distribution with ν known, then t(Y ) = Y ∼ G(ν,λ )
and Tn = ∑n

i=1Yi ∼ G(nν,λ ).
d) If Y is from a geometric (ρ) distribution, then t(Y ) = Y ∼ geom(ρ) and

Tn = ∑n
i=1 Yi ∼ NB(n,ρ) where NB stands for negative binomial.

e) If Y is from a negative binomial (r,ρ) distribution with r known, then t(Y ) =Y ∼
NB(r,ρ) and Tn = ∑n

i=1 Yi ∼ NB(nr,ρ).
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f) If Y is from a normal (μ ,σ2) distribution with σ2 known, then t(Y ) = Y ∼
N(μ ,σ2) and Tn = ∑n

i=1 Yi ∼ N(nμ ,nσ2).
g) If Y is from a normal (μ ,σ2) distribution with μ known, then t(Y ) = (Y −μ)2 ∼

G(1/2,2σ2) and Tn = ∑n
i=1(Yi − μ)2 ∼ G(n/2,2σ2).

h) If Y is from a Poisson (θ ) distribution, then t(Y ) = Y ∼ POIS(θ ) and Tn =

∑n
i=1 Yi ∼ POIS(nθ ).

Theorem 3.7. Let Y1, . . . ,Yn be iid from the given one-parameter exponential
family and let T ≡ Tn = ∑n

i=1 t(Yi).

a) If Yi is from a Burr type XII (φ ,λ ) distribution with φ known, then t(Y ) =
log(1+Yφ )∼ EXP(λ ) and Tn = ∑ log(1+Yφ

i )∼ G(n,λ ).
b) If Y is from a chi(p,σ ) distribution with p known, then t(Y ) =Y 2 ∼G(p/2,2σ2)

and Tn = ∑Y 2
i ∼ G(np/2,2σ2).

c) If Y is from a double exponential (θ ,λ ) distribution with θ known, then t(Y ) =
|Y −θ | ∼ EXP(λ ) and Tn = ∑n

i=1 |Yi −θ | ∼ G(n,λ ).
d) If Y is from a two-parameter exponential (θ ,λ ) distribution with θ known, then

t(Y ) = Yi −θ ∼ EXP(λ ) and Tn = ∑n
i=1(Yi −θ )∼ G(n,λ ).

e) If Y is from a generalized negative binomial GNB(μ ,κ) distribution with κ
known, then Tn = ∑n

i=1 Yi ∼ GNB(nμ ,nκ)
f) If Y is from a half normal (μ ,σ2) distribution with μ known, then t(Y ) =
(Y − μ)2 ∼ G(1/2,2σ2) and Tn = ∑n

i=1(Yi − μ)2 ∼ G(n/2,2σ2).
g) If Y is from an inverse Gaussian IG(θ ,λ ) distribution with λ known, then

Tn = ∑n
i=1 Yi ∼ IG(nθ ,n2λ ).

h) If Y is from an inverted gamma (ν,λ ) distribution with ν known, then t(Y ) =
1/Y ∼ G(ν,λ ) and Tn = ∑n

i=1 1/Yi ∼ G(nν,λ ).
i) If Y is from a lognormal (μ ,σ2) distribution with μ known, then t(Y ) =
(log(Y )− μ)2 ∼ G(1/2,2σ2) and Tn = ∑n

i=1(log(Yi)− μ)2 ∼ G(n/2,2σ2).
j) If Y is from a lognormal (μ ,σ2) distribution with σ2 known, then t(Y ) =

log(Y )∼ N(μ ,σ2) and Tn = ∑n
i=1 log(Yi)∼ N(nμ ,nσ2).

k) If Y is from a Maxwell–Boltzmann (μ ,σ) distribution with μ known, then t(Y ) =
(Y − μ)2 ∼ G(3/2,2σ2) and Tn = ∑n

i=1(Yi − μ)2 ∼ G(3n/2,2σ2).
l) If Y is from a one-sided stable (σ ) distribution, then t(Y ) = 1/Y ∼ G(1/2,2/σ)

and Tn = ∑n
i=1 1/Yi ∼ G(n/2,2/σ).

m) If Y is from a Pareto (σ ,λ ) distribution with σ known, then t(Y ) = log(Y/σ)∼
EXP(λ ) and Tn = ∑n

i=1 log(Yi/σ)∼ G(n,λ ).
n) If Y is from a power (λ ) distribution, then t(Y ) =− log(Y )∼ EXP(λ ) and Tn =

∑n
i=1[− log(Yi)]∼ G(n,λ ).

o) If Y is from a Rayleigh (μ ,σ ) distribution with μ known, then t(Y ) = (Y −μ)2 ∼
EXP(2σ2) and Tn = ∑n

i=1(Yi − μ)2 ∼ G(n,2σ2).
p) If Y is from a Topp–Leone (ν) distribution, then t(Y ) =

− log(2Y −Y 2)∼ EXP(1/ν) and Tn = ∑n
i=1[− log(2Yi −Y 2

i )]∼ G(n,1/ν).
q) If Y is from a truncated extreme value (λ ) distribution, then t(Y ) = eY − 1 ∼

EXP(λ ) and Tn = ∑n
i=1(e

Yi − 1)∼ G(n,λ ).
r) If Y is from a Weibull (φ ,λ ) distribution with φ known, then t(Y ) = Y φ ∼

EXP(λ ) and Tn = ∑n
i=1 Y φ

i ∼ G(n,λ ).
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3.3 Summary

1. Given the pmf or pdf of Y or that Y is a brand name distribution from Sect. 1.7,
know how to show whether Y belongs to an exponential family or not using

f (y|�) = h(y)c(�)exp

[
k

∑
i=1

wi(�)ti(y)

]

or
f (y|θ ) = h(y)c(θ )exp[w(θ )t(y)].

Tips: a) The F, Cauchy, logistic, t and uniform distributions cannot be put in form
1) and so are not exponential families.
b) If the support depends on an unknown parameter, then the family is not an
exponential family.

2. If Y belongs to an exponential family, set ηi = wi(�) and typically set the natural
parameter space Ω equal to the cross product of the ranges of ηi. For a kP-REF,
Ω is an open set that is typically a cross product of k open intervals. For a
1P-REF, Ω is an open interval.

3. If Y belongs to an exponential family, know how to show whether Y belongs to
a k-dimensional regular exponential family. Suppose Θ is found after deleting
values of � fromΘU such that the pdf or pmf is undefined and such that wi(�) is
undefined. Assume dim(Θ) = k = dim(Ω). Typically we assume that condition
E1) is true: that is, Ω is given by (3.7). Then typically Ω is the cross product
of the ranges of ηi = wi(�). If Ω contains a k-dimensional rectangle, e.g., if Ω
is a k-dimensional open set, then η1, . . . ,ηk do not satisfy a linearity constraint.
In particular, if p = 2 you should be able to show whether η1 and η2 satisfy a lin-
earity constraint and whether t1 and t2 satisfy a linearity constraint, to plot Ω and
to determine whether the natural parameter space Ω contains a two-dimensional
rectangle.

Tips: a) If dim(Θ) = k = dim(Ω ), then the usual parameterization has k param-
eters, and so does the kP-REF parameterization.
b) If one of the two parameters is known for the usual parameterization, then the
family will often be a 1P-REF with η =w(θ ) where θ is the unknown parameter.
c) If the family is a two-dimensional exponential family with natural parameters
η1 and η2, but the usual parameterization is determined by one-parameter θ , then
the family is probably not regular. The N(aμ ,bμ2) and N(aσ ,bσ2) families are
typical examples. If dim(Θ) = j < k = dim(Ω), the family is usually not regular.
If η1 is a simple function of η2, then the “natural parameter space” is not a cross
product of the ranges of ηi. For example, if η1 = η2

2 , then the “natural parameter
space” is a parabola and is not a two-dimensional open set, and does not contain
a two-dimensional rectangle.
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3.4 Complements

Theorem 3.8. Suppose Y has a pdf that is a kP-REF, and that X = t0(Y ) where t0(y)
is a parameter free monotone differentiable transformation. Then X has a pdf that is
a kP-REF.

Proof. Let fY (y|�) = h(y)b(�)exp
[
∑k

i=1ηiti(y)
]

where the ηi and the ti(y) do
not satisfy a linearity constraint. Then

fX (x|�) = h(t−1
0 (x))

∣
∣
∣
∣∣
dt−1

0 (x)

dx

∣
∣
∣
∣∣
b(�)exp

[
k

∑
i=1

ηiti(t
−1
0 (x))

]

= h∗(x)b(�)exp
[
∑k

i=1ηit∗i (x)
]

which is an exponential family. The family is a
kP-REF since the ηi and natural parameter space Ω are the same as for Y , and
neither the ηi nor the t∗i (x) satisfy a linearity constraint. To see this, note that if the
t∗i (x) satisfy a linearity constraint, then ∑k

i=1 aiti(t−1
0 (x)) = ∑k

i=1 aiti(y) = c where
not all ai = 0. But this contradicts the fact that the ti(y) do not satisfy a linearity
constraint. �

If Y is a k-parameter exponential family, then X = t0(Y ) is an exponential family
of dimension no larger than k since

fX (x|�) = h(t−1
0 (x))

∣
∣∣
∣
∣
dt−1

0 (x)

dx

∣
∣∣
∣
∣
c(�)exp

[
k

∑
i=1

wi(�)ti(t
−1
0 (x))

]

.

Notice that for a one-parameter exponential family with t0(y)≡ t(y), the above result
implies that t(Y ) is a one-parameter exponential family. This result is a special case
of Theorem 3.5. The chi distribution and log gamma distribution are 2P-REFs since
they are transformations of the gamma distribution. The lognormal distribution is
a 2P-REF since it is a transformation of the normal distribution. The power and
truncated extreme value distributions are 1P-REFs since they are transformations of
the exponential distributions.

Example 3.9. Following Barndorff–Nielsen (1978, p. 117), if Y has an inverse
Gaussian distribution, Y ∼ IG(θ ,λ ), then the pdf of Y is

f (y) =

√
λ

2πy3 exp

[−λ (y−θ )2

2θ 2y

]

where y,θ ,λ > 0.
Notice that

f (y) =

√
λ
2π

eλ/θ
√

1
y3 I(y > 0)exp

[−λ
2θ 2 y− λ

2
1
y

]

is a two-parameter exponential family.
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Another parameterization of the inverse Gaussian distribution takes θ =
√

λ/ψ
so that

f (y) =

√
λ
2π

e
√

λψ

√
1
y3 I[y > 0]exp

[−ψ
2

y− λ
2

1
y

]
,

where λ > 0 and ψ ≥ 0. Here Θ = (0,∞)× [0,∞), η1 = −ψ/2, η2 = −λ/2 and
Ω = (−∞,0]× (−∞,0). Since Ω is not an open set, this is a two-parameter full
exponential family that is not regular. If ψ is known then Y is a 1P-REF, but if λ
is known, then Y is a one-parameter full exponential family. When ψ = 0, Y has a
one- sided stable distribution.

The following chapters show that exponential families can be used to simplify
the theory of sufficiency, MLEs, UMVUEs, UMP tests, and large sample theory.
Barndorff–Nielsen (1982) and Olive (2008) are useful introductions to exponential
families. Also see Bühler and Sehr (1987). Interesting subclasses of exponential
families are given by Rahman and Gupta (1993), and Sankaran and Gupta (2005).
Most statistical inference texts at the same level as this text also cover exponential
families. History and references for additional topics (such as finding conjugate
priors in Bayesian statistics) can be found in Lehmann (1983, p. 70), Brown (1986)
and Barndorff–Nielsen (1978, 1982).

Barndorff–Nielsen (1982), Brown (1986), and Johanson (1979) are post-PhD
treatments and hence very difficult. Mukhopadhyay (2000) and Brown (1986) place
restrictions on the exponential families that make their theory less useful. For ex-
ample, Brown (1986) covers linear exponential distributions. See Johnson and Kotz
(1972).

3.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.

3.1∗. Show that each of the following families is a 1P-REF by writing the pdf or
pmf as a one-parameter exponential family, finding η = w(θ ) and by showing that
the natural parameter space Ω is an open interval.

a) The binomial (k,ρ) distribution with k known and ρ ∈Θ = (0,1).
b) The exponential (λ ) distribution with λ ∈Θ = (0,∞).
c) The Poisson (θ ) distribution with θ ∈Θ = (0,∞).
d) The half normal (μ ,σ2) distribution with μ known and σ2 ∈Θ = (0,∞).

3.2∗. Show that each of the following families is a 2P-REF by writing the pdf or
pmf as a two-parameter exponential family, finding ηi = wi(θ ) for i = 1,2 and by
showing that the natural parameter space Ω is a cross product of two open intervals.
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a) The beta (δ ,ν) distribution with Θ = (0,∞)× (0,∞).
b) The chi (p,σ ) distribution with Θ = (0,∞)× (0,∞).
c) The gamma (ν,λ ) distribution with Θ = (0,∞)× (0,∞).
d) The lognormal (μ ,σ2) distribution with Θ = (−∞,∞)× (0,∞).
e) The normal (μ ,σ2) distribution with Θ = (−∞,∞)× (0,∞).

3.3. Show that each of the following families is a 1P-REF by writing the pdf or
pmf as a one-parameter exponential family, finding η = w(θ ) and by showing that
the natural parameter space Ω is an open interval.

a) The generalized negative binomial (μ ,κ) distribution if κ is known.
b) The geometric (ρ) distribution.
c) The logarithmic (θ ) distribution.
d) The negative binomial (r,ρ) distribution if r is known.
e) The one-sided stable (σ ) distribution.
f) The power (λ ) distribution.
g) The truncated extreme value (λ ) distribution.
h) The Zeta (ν) distribution.

3.4∗. Show that each of the following families is a 1P-REF by writing the pdf or
pmf as a one-parameter exponential family, finding η = w(θ ) and by showing that
the natural parameter space Ω is an open interval.

a) The N(μ ,σ2) family with σ > 0 known.
b) The N(μ ,σ2) family with μ known and σ > 0.

(See Problem 3.12 for a common error.)
c) The gamma (ν,λ ) family with ν known.
d) The gamma (ν,λ ) family with λ known.
e) The beta (δ ,ν) distribution with δ known.
f) The beta (δ ,ν) distribution with ν known.

3.5. Show that each of the following families is a 1P-REF by writing the pdf or
pmf as a one-parameter exponential family, finding η = w(θ ) and by showing that
the natural parameter space Ω is an open interval.

a) The Burr Type XII (φ ,λ ) distribution with φ known.
b) The double exponential (θ ,λ ) distribution with θ known.
c) The two-parameter exponential (θ ,λ ) distribution with θ known.
d) The largest extreme value (θ ,σ) distribution if σ is known.
e) The smallest extreme value (θ ,σ) distribution if σ is known.
f) The inverted gamma (ν,λ ) distribution if ν is known.
g) The Maxwell–Boltzmann (μ ,σ ) distribution if μ is known.
h) The Pareto (σ ,λ ) distribution if σ is known.
i) The Rayleigh (μ ,σ ) distribution if μ is known.
j) The Weibull (φ ,λ ) distribution if φ is known.

3.6∗. Determine whether the Pareto (σ ,λ ) distribution is an exponential family
or not.
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3.7. Following Kotz and van Dorp (2004, pp. 35–36), if Y has a Topp–Leone
distribution, Y ∼ TL(ν), then the cdf of Y is F(y) = (2y− y2)ν for ν > 0 and 0 <
y < 1. The pdf of Y is

f (y) = ν(2− 2y)(2y− y2)ν−1

for 0 < y < 1. Determine whether this distribution is an exponential family or not.

3.8. In Spiegel (1975, p. 210), Y has pdf

fY (y) =
2γ3/2
√
π

y2 exp(−γ y2)

where γ > 0 and y is real. Is Y a 1P-REF?

3.9. Let Y be a (one-sided) truncated exponential T EXP(λ ,b) random variable.
Then the pdf of Y is

fY (y|λ ,b) =
1
λ e−y/λ

1− exp(− b
λ )

for 0 < y ≤ b where λ > 0. If b is known, is Y a 1P-REF? (Also see O’Reilly and
Rueda (2007).)

3.10. Suppose Y has a Birnbaum Saunders distribution. If t(Y ) = Y
θ +

θ
Y −2, then

t(Y )∼ ν2χ2
1 . If θ is known, is this distribution a regular exponential family?

3.11. If Y has a Burr Type X distribution, then the pdf of Y is

f (y) = I(y > 0) 2 τ y e−y2
(1− e−y2

)τ−1 =

I(y > 0) 2y e−y2
τ exp[(1− τ)(− log(1− e−y2

))]

where τ > 0 and − log(1− e−Y2
) ∼ EXP(1/τ). Is this distribution a regular expo-

nential family?

Problems from old quizzes and exams.

3.12∗. Suppose that X has a N(μ ,σ2) distribution where σ > 0 and μ is known.
Then

f (x) =
1√

2πσ
e−μ2/(2σ2) exp

[
− 1

2σ2 x2 +
1
σ2 μx

]
.

Let η1 = −1/(2σ2) and η2 = 1/σ2. Why is this parameterization not the regular
exponential family parameterization? (Hint: show that η1 and η2 satisfy a linearity
constraint.)

3.13. Let X1, . . . ,Xn be iid N(μ ,γ2
o μ2) random variables where γ2

o > 0 is known
and μ > 0.
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a) Find the distribution of ∑n
i=1 Xi.

b) Find E[(∑n
i=1 Xi)

2].
c) The pdf of X is

fX (x|μ) = 1

γoμ
√

2π
exp

[− (x− μ)2

2γ2
oμ2

]
.

Show that the family { f (x|μ) : μ > 0} is a two-parameter exponential family.
d) Show that the “natural parameter space” is a parabola. You may assume that

ηi = wi(μ). Is this family a regular exponential family?

3.14. Let X1, . . . ,Xn be iid N(ασ ,σ2) random variables where α is a known real
number and σ > 0.

a) Find E[∑n
i=1 X2

i ].
b) Find E[(∑n

i=1 Xi)
2].

c) Show that the family { f (x|σ) : σ > 0} is a two-parameter exponential family.
d) Show that the “natural parameter space” is a parabola. You may assume that

ηi = wi(σ). Is this family a regular exponential family?

3.15. If Y has a Lindley distribution, then the pdf of Y is

f (y) =
θ 2

1+θ
(1+ y)e−θy

where y > 0 and θ > 0. Is Y a 1P-REF?

3.16. Suppose the pdf of Y is

f (y) =
θ

(1+ y)θ+1

where y > 0 and θ > 0. Is Y a 1P-REF?

3.17. Suppose the pdf of Y is

f (y) =
θ

2(1+ |y|)θ+1

where −∞< y < ∞ and θ > 0. Is Y a 1P-REF?



Chapter 4
Sufficient Statistics

A statistic is a function of the data that does not depend on any unknown parameters,
and a statistic is a random variable that has a distribution called the sampling dis-
tribution. Suppose the data is a random sample from a distribution with unknown
parameters � . Heuristically, a sufficient statistic for � contains all of the informa-
tion from the data about � . Since the data contains all of the information from the
data, the data (Y1, . . . ,Yn) is a sufficient statistic of dimension n. Heuristically, a
minimal sufficient statistic is a sufficient statistic with the smallest dimension k,
where 1 ≤ k ≤ n. If k is small and does not depend on n, then there is considerable
dimension reduction.

The Factorization Theorem is used to find a sufficient statistic. The Lehmann–
Scheffé Theorem and a theorem for exponential families are useful for finding a
minimal sufficient statistic. Complete sufficient statistics are useful for UMVUE
theory in Chap. 6.

4.1 Statistics and Sampling Distributions

Suppose that the data Y1, . . . ,Yn is drawn from some population. The observed data is
Y1 = y1, . . . ,Yn = yn where y1, . . . .,yn are numbers. Let y = (y1, . . . ,yn). Real valued
functions T (y1, . . . ,yn) = T (y) are of interest as are vector valued functions T (y) =
(T1(y), . . . ,Tk(y)). Sometimes the data Y1, . . . ,Yn are random vectors. Again interest
is in functions of the data. Typically the data has a joint pdf or pmf f (y1, . . . ,yn|�)
where the vector of unknown parameters is � = (θ1, . . . ,θk). (In the joint pdf or pmf,
the y1, . . . ,yn are dummy variables, not the observed data.)

Definition 4.1. A statistic is a function of the data that does not depend on any
unknown parameters. The probability distribution of the statistic is called the sam-
pling distribution of the statistic.

D.J. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4 4,
© Springer International Publishing Switzerland 2014
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Let the data Y = (Y1, . . . ,Yn) where the Yi are random variables. If T (y1, . . . ,yn)
is a real valued function whose domain includes the sample space Y of Y , then
W = T (Y1, . . . ,Yn) is a statistic provided that T does not depend on any unknown
parameters. The data comes from some probability distribution and the statistic is a
random variable and hence also comes from some probability distribution. To avoid
confusing the distribution of the statistic with the distribution of the data, the dis-
tribution of the statistic is called the sampling distribution of the statistic. If the
observed data is Y1 = y1, . . . ,Yn = yn, then the observed value of the statistic is
W = w = T (y1, . . . ,yn). Similar remarks apply when the statistic T is vector valued
and when the data Y 1, . . . ,Y n are random vectors.

Often Y1, . . . ,Yn will be iid and statistics of the form

n

∑
i=1

aiYi and
n

∑
i=1

t(Yi)

are especially important. Chapter 10 and Theorems 2.17, 2.18, 3.6, and 3.7 are use-
ful for finding the sampling distributions of some of these statistics when the Yi

are iid from a given brand name distribution that is usually an exponential family.
The following example lists some important statistics.

Example 4.1. Let Y1, . . . ,Yn be the data.

a) The sample mean

Y =
∑n

i=1 Yi

n
. (4.1)

b) The sample variance

S2 ≡ S2
n =

∑n
i=1(Yi −Y)2

n− 1
=

∑n
i=1 Y 2

i − n(Y)2

n− 1
. (4.2)

c) The sample standard deviation S ≡ Sn =
√

S2
n.

d) If the data Y1, . . . ,Yn is arranged in ascending order from smallest to largest and
written as Y(1) ≤ ·· · ≤ Y(n), then Y(i) is the ith order statistic and the Y(i)’s are
called the order statistics.

e) The sample median

MED(n) = Y((n+1)/2) if n is odd, (4.3)

MED(n) =
Y(n/2) +Y((n/2)+1)

2
if n is even.

f) The sample median absolute deviation is

MAD(n) = MED(|Yi −MED(n)|, i = 1, . . . ,n). (4.4)
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g) The sample maximum

max(n) = Y(n) (4.5)

and the observed max y(n) is the largest value of the observed data.
h) The sample minimum

min(n) = Y(1) (4.6)

and the observed min y(1) is the smallest value of the observed data.

Example 4.2. Usually the term “observed” is dropped. Hence below “data” is
“observed data,” “observed order statistics” is “order statistics,” and “observed value
of MED(n)” is “MED(n).”
Let the data be 9,2,7,4,1,6,3,8,5 (so Y1 = y1 = 9, . . . ,Y9 = y9 = 5). Then the
order statistics are 1,2,3,4,5,6,7,8,9. Then MED(n) = 5 and MAD(n) = 2 =
MED{0,1,1,2,2,3,3,4,4}.

Example 4.3. Let Y1, . . . ,Yn be iid N(μ ,σ2). Then

Tn =
∑n

i=1(Yi − μ)2

n

is a statistic iff μ is known.

The following theorem is extremely important and the proof follows Rice (1988,
pp. 171–173) closely.

Theorem 4.1. Let the Y1, . . . ,Yn be iid N(μ ,σ2).

a) The sample mean Y ∼ N(μ ,σ2/n).
b) Y and S2 are independent.
c) (n− 1)S2/σ2 ∼ χ2

n−1. Hence ∑n
i=1(Yi −Y )2 ∼ σ2χ2

n−1.

d)
√

n(Y−μ)
S = (Y−μ)

S/
√

n ∼ tn−1.

Proof. a) This result follows from Theorem 2.17e.
b) The moment generating function of (Y ,Y1 −Y , . . . ,Yn −Y) is

m(s, t1, . . . , tn) = E(exp[sY + t1(Y1 −Y)+ · · ·+ tn(Yn −Y )]).

By Theorem 2.22, Y and (Y1 −Y , . . . ,Yn −Y ) are independent if

m(s, t1, . . . , tn) = mY (s) m(t1, . . . , tn)

where mY (s) is the mgf of Y and m(t1, . . . , tn) is the mgf of (Y1 −Y , . . . ,Yn −Y ).
Now

n

∑
i=1

ti(Yi −Y ) =
n

∑
i=1

tiYi −Ynt =
n

∑
i=1

tiYi −
n

∑
i=1

tYi
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and thus

sY +
n

∑
i=1

ti(Yi −Y ) =
n

∑
i=1

[ s
n
+(ti − t )

]
Yi =

n

∑
i=1

aiYi.

Now ∑n
i=1 ai =∑n

i=1[
s
n +(ti − t )] = s and

n

∑
i=1

a2
i =

n

∑
i=1

[
s2

n2 + 2
s
n
(ti − t )+ (ti− t )2

]
=

s2

n
+

n

∑
i=1

(ti − t )2.

Hence

m(s, t1, . . . , tn) = E

(

exp

[

sY +
n

∑
i=1

ti(Yi −Y)

])

= E

[

exp

(
n

∑
i=1

aiYi

)]

= mY1,...,Yn(a1, . . . ,an) =
n

∏
i=1

mYi(ai)

since the Yi are independent. Now

n

∏
i=1

mYi(ai) =
n

∏
i=1

exp

(
μai +

σ2

2
a2

i

)
= exp

(

μ
n

∑
i=1

ai +
σ2

2

n

∑
i=1

a2
i

)

= exp

[

μs+
σ2

2
s2

n
+

σ2

2

n

∑
i=1

(ti − t )2

]

= exp

[
μs+

σ2

2n
s2
]

exp

[
σ2

2

n

∑
i=1

(ti − t )2

]

.

Now the first factor is the mgf of Y and the second factor is m(t1, . . . , tn) =
m(0, t1, . . . , tn) since the mgf of the marginal is found from the mgf of the
joint distribution by setting all terms not in the marginal to 0 (i.e., set s = 0
in m(s, t1, . . . , tn) to find m(t1, . . . , tn)). Hence the mgf factors and

Y (Y1 −Y , . . . ,Yn −Y).

Since S2 is a function of (Y1 −Y , . . . ,Yn −Y), it is also true that Y S2.
c) (Yi − μ)/σ ∼ N(0,1) so (Yi − μ)2/σ2 ∼ χ2

1 and

1
σ2

n

∑
i=1

(Yi − μ)2 ∼ χ2
n .

Now

n

∑
i=1

(Yi − μ)2 =
n

∑
i=1

(Yi −Y +Y − μ)2 =
n

∑
i=1

(Yi −Y)2 + n(Y − μ)2.
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Hence

W =
1
σ2

n

∑
i=1

(Yi − μ)2 =
1
σ2

n

∑
i=1

(Yi −Y )2 +

(
Y − μ
σ/

√
n

)2

=U +V.

Since U V by b), mW (t) = mU(t) mV (t). Since W ∼ χ2
n and V ∼ χ2

1 ,

mU(t) =
mW (t)
mV (t)

=
(1− 2t)−n/2

(1− 2t)−1/2
= (1− 2t)−(n−1)/2

which is the mgf of a χ2
n−1 distribution.

d)

Z =
Y − μ
σ/

√
n
∼ N(0,1),

and

S2/σ2 =

(n−1)S2

σ2

n− 1
∼ 1

n− 1
χ2

n−1.

Suppose Z ∼ N(0,1), X ∼ χ2
n−1 and Z X . Then Z/

√
X/(n− 1)∼ tn−1. Hence

√
n(Y − μ)

S
=

√
n(Y − μ)/σ
√

S2/σ2
∼ tn−1.

�

Theorem 4.2. Let Y1, . . . ,Yn be iid with cdf FY and pdf fY .

a) The pdf of T = Y(n) is

fY(n) (t) = n[FY (t)]
n−1 fY (t).

b) The pdf of T = Y(1) is

fY(1) (t) = n[1−FY(t)]
n−1 fY (t).

c) Let 2 ≤ r ≤ n. Then the joint pdf of Y(1),Y(2), . . . ,Y(r) is

fY(1),...,Y(r) (t1, . . . , tr) =
n!

(n− r)!
[1−FY(tr)]

n−r
r

∏
i=1

fY (ti).

Proof of a) and b). a) The cdf of Y(n) is

FY(n) (t) = P(Y(n) ≤ t) = P(Y1 ≤ t, . . . ,Yn ≤ t) =
n

∏
i=1

P(Yi ≤ t) = [FY (t)]
n.
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Hence the pdf of Y(n) is

d
dt

FY(n)(t) =
d
dt
[FY (t)]

n = n[FY (t)]
n−1 fY (t).

b) The cdf of Y(1) is

FY(1) (t) = P(Y(1) ≤ t) = 1−P(Y(1) > t) = 1−P(Y1 > t, . . . ,Yn > t)

= 1−
n

∏
i=1

P(Yi > t) = 1− [1−FY(t)]
n.

Hence the pdf of Y(n) is

d
dt

FY(n)(t) =
d
dt
(1− [1−FY(t)]

n) = n[1−FY(t)]
n−1 fY (t). �

To see that c) may be true, consider the following argument adapted from Mann
et al. (1974, p. 93). Let Δti be a small positive number and notice that P(E)≡

P(t1 < Y(1) < t1 +Δt1, t2 < Y(2) < t2 +Δt2, . . . , tr < Y(r) < tr +Δtr)

=

∫ tr+Δtr

tr
· · ·
∫ t1+Δt1

t1
fY(1),...,Y(r) (w1, . . . ,wr)dw1 · · ·dwr

≈ fY(1),...,Y(r) (t1, . . . , tr)
r

∏
i=1

Δti.

Since the event E denotes the occurrence of no observations before t1, exactly one
occurrence between t1 and t1 +Δt1, no observations between t1 +Δt1 and t2 and so
on, and finally the occurrence of n− r observations after tr +Δtr, using the multino-
mial pmf shows that

P(E) =
n!

0!1! · · ·0!1!(n− r)!
ρ0

1ρ
1
2ρ0

3ρ
1
4 · · ·ρ0

2r−1ρ
1
2rρn−r

2r+1

where
ρ2i = P(ti < Y < ti +Δti)≈ f (ti)Δti

for i = 1, . . . ,r and

ρ2r+1 = P(n− r Y ′s > tr +Δtr)≈ (1−F(tr))
n−r.

Hence

P(E)≈ n!
(n− r)!

(1−F(tr))
n−r

r

∏
i=1

f (ti)
r

∏
i=1

Δti

≈ fY(1),...,Y(r) (t1, . . . , tr)
r

∏
i=1

Δti,

and result c) seems reasonable.
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Example 4.4. Let Y1, . . . ,Yn be iid from the following distributions.

a) Bernoulli(ρ): Then Y(1) ∼ Bernoulli(ρn).
b) Geometric(ρ): Then Y(1) ∼ Geometric(1− (1−ρ)n).
c) Burr Type XII (φ ,λ ): Then Y(1) ∼ Burr Type XII (φ ,λ/n).
d) EXP(λ ): Then Y(1) ∼ EXP(λ/n).
e) EXP(θ ,λ ): Then Y(1) ∼ EXP(θ ,λ/n).
f) Pareto PAR(σ ,λ ): Then Y(1) ∼ PAR(σ ,λ/n).
g) Gompertz Gomp(θ ,ν): Then Y(1) ∼ Gomp(θ ,nν).
h) Rayleigh R(μ ,σ): Then Y(1) ∼ R(μ ,σ/

√
n).

i) Truncated Extreme Value TEV(λ ) : Then Y(1) ∼ TEV(λ/n).
j) Weibull W (φ ,λ ) : Then Y(1) ∼W (φ ,λ/n).

Proof: a) Yi ∈ {0,1} so Y(1) ∈ {0,1}. Hence Y(1) is Bernoulli, and P(Y(1) = 1) =
P(Y1 = 1, . . . ,Yn = 1) = [P(Y1 = 1)]n = ρn.

b) P(Y(1) ≤ y) = 1−P(Y(1) > y) = 1− [1−F(y)]n =

1− [1− (1− (1−ρ)�y�+1]n = 1− [(1−ρ)n]�y�+1 = 1− [1− (1− (1−ρ)n)]�y�+1

for y ≥ 0 which is the cdf of a Geometric(1− (1−ρ)n) random variable.
Parts c)-j) follow from Theorem 4.2b. For example, suppose Y1, . . . ,Yn are
iid EXP(λ ) with cdf F(y) = 1 − exp(−y/λ ) for y > 0. Then FY(1)(t) =

1− [1− (1− exp(−t/λ ))]n = 1− [exp(−t/λ )]n = 1− exp[−t/(λ/n)] for t > 0.
Hence Y(1) ∼ EXP(λ/n).

4.2 Minimal Sufficient Statistics

For parametric inference, the pmf or pdf of a random variable Y is f�(y) where
� ∈ Θ is unknown. Hence Y comes from a family of distributions indexed by � ,
and quantities such as E�(g(Y )) depend on � . Since the parametric distribution
is completely specified by � , an important goal of parametric inference is finding
good estimators of � . For example, if Y1, . . . ,Yn are iid N(μ ,σ2), then � = (μ ,σ) is
fixed but unknown, � ∈Θ = (−∞,∞)× (0,∞) and E�(Y ) ≡ E(μ,σ)(Y ) = μ . Since
V�(Y ) ≡ V(μ,σ)(Y ) = σ2/n, Y is a good estimator for μ if n is large. The notation
f�(y)≡ f (y|�) is also used.

The basic idea of a sufficient statistic T (Y ) for � is that all of the information
needed for inference from the data Y1, . . . ,Yn about the parameter � is contained
in the statistic T (Y ). For example, suppose that Y1, . . . ,Yn are iid binomial(1,ρ)
random variables. Hence each observed Yi is a 0 or a 1 and the observed data
is an n-tuple of 0’s and 1’s, e.g., 0,0,1,. . . ,0,0,1. It will turn out that ∑n

i=1 Yi, the
number of 1’s in the n-tuple, is a sufficient statistic for ρ . From Theorem 2.17a,
∑n

i=1 Yi ∼ BIN(n,ρ). The importance of a sufficient statistic is dimension reduc-
tion: the statistic ∑n

i=1 Yi has all of the information from the data needed to perform
inference about ρ , and the statistic is one-dimensional and thus much easier to un-
derstand than the n dimensional n-tuple of 0’s and 1’s. Also notice that all n-tuples
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with the same number of 1’s have the same amount of information needed for infer-
ence about ρ : the n-tuples 1,1,1,0,0,0,0 and 0,1,0,0,1,0,1 both give ∑n

i=1 Yi = 3. The
ordering of the observed sequences of 0’s and 1’s does not contain any information
about the parameter ρ because the observations are iid.

Definition 4.2. Suppose that (Y 1, . . . ,Y n) have a joint distribution that depends
on a vector of parameters � for � ∈ Θ where Θ is the parameter space. A statis-
tic T (Y 1, . . . ,Y n) is a sufficient statistic for � if the conditional distribution of
(Y 1, . . . ,Y n) given T = t does not depend on � for any value of t in the support of
T .

Example 4.5. Let the random vector Y denote the data.

a) Suppose T (y) ≡ 7 ∀y. Then T is a constant and any constant is independent of
a random vector Y . Hence the conditional distribution f�(y|T ) = f�(y) is not
independent of � . Thus T is not a sufficient statistic.

b) Let T (Y ) ≡ Y , and let W have the same distribution as Y |Y = y. Since
P(Y = y|Y = y) = 1, the pmf fW (w) of W is equal to 1 if w = y and is
equal to 0, otherwise. Hence the distribution of Y ||Y = y is independent of � ,
and the data Y is a sufficient statistic. Of course there is no dimension reduction
when the data is used as the sufficient statistic.

Often T and Y i are real valued. Then T (Y1, . . . ,Yn) is a sufficient statistic if
the conditional distribution of Y = (Y1, . . . ,Yn) given T = t does not depend on � .
The following theorem provides such an effective method for showing that a statis-
tic is a sufficient statistic that the definition should rarely be used to prove that the
statistic is a sufficient statistic.

Regularity Condition F.1: If f (y|�) is a family of pmfs for � ∈Θ , assume that
there exists a set {yi}∞i=1 that does not depend on � ∈Θ such that ∑∞

i=1 f (y i|�) = 1
for all � ∈ Θ . (This condition is usually satisfied. For example, F.1 holds if the
support Y is free of � or if y = (y1, . . . ,yn) and yi takes on values on a lattice such
as yi ∈ {1, . . . ,θ} for θ ∈ {1,2,3, . . .}.)

Theorem 4.3: Factorization Theorem. Let f (y|�) for � ∈Θ denote a family
of pdfs or pmfs for Y . For a family of pmfs, assume condition F.1 holds. A statistic
T (Y ) is a sufficient statistic for � iff for all sample points y and for all � in the
parameter space Θ ,

f (y|�) = g(T (y)|�) h(y)

where both g and h are nonnegative functions. The function h does not depend on �

and the function g depends on y only through T (y).

Proof for pmfs. If T (Y ) is a sufficient statistic, then the conditional distribution
of Y given T (Y ) = t does not depend on � for any t in the support of T . Taking
t = T (y) gives

P�(Y = y|T (Y ) = T (y))≡ P(Y = y|T (Y ) = T (y))
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for all θ in the parameter space. Now

{Y = y} ⊆ {T (Y ) = T (y)} (4.7)

and P(A) = P(A∩B) if A ⊆ B. Hence

f (y|�) = P�(Y = y) = P�(Y = y and T (Y ) = T (y))

= P�(T (Y ) = T (y))P(Y = y|T (Y ) = T (y)) = g(T (y)|�)h(y).
Now suppose

f (y|�) = g(T (y)|�) h(y)

for all y and for all � ∈Θ . Now

P�(T (Y ) = t) = ∑
{y:T (y)=t}

f (y|�) = g(t |�) ∑
{y :T (y)=t}

h(y).

If Y = y and T (Y ) = t , then T (y) = t and {Y = y} ⊆ {T (Y ) = t}. Thus

P�(Y = y|T (Y ) = t) =
P�(Y = y,T (Y ) = t)

P�(T (Y ) = t)
=

P�(Y = y)

P�(T (Y ) = t)

=
g(t |�) h(y)

g(t |�)∑{y:T (y)=t} h(y)
=

h(y)

∑{y :T (y)=t} h(y)

which does not depend on � since the terms in the sum do not depend on � by
condition F.1. Hence T is a sufficient statistic. �

Remark 4.1. If no such factorization exists for T , then T is not a sufficient statis-
tic. The “iff” in the Factorization Theorem is important.

Example 4.6. a) To use factorization to show that the data Y = (Y1, . . . ,Yn) is a
sufficient statistic, take T (Y ) = Y , g(T (y)|�) = f (y|�), and h(y) = 1∀ y.

b) For iid data with n > 1, the statistic Y1 is not a sufficient statistic by the Fac-
torization Theorem since f (y|�) = f (y1|�)∏n

i=2 f (yi|�) cannot be written as
f (y|�) = g(y1|�)h(y) where g depends on y only through y1 and h(y) does not
depend on � .

Example 4.7. Let X1, . . . ,Xn be iid N(μ ,σ2). Then

f (x1, . . . ,xn) =
n

∏
i=1

f (xi) =

[
1√

2πσ
exp

(−μ2

2σ2

)]n

exp

(
−1
2σ2

n

∑
i=1

x2
i +

μ
σ2

n

∑
i=1

xi

)

= g(T (x)|�)h(x)
where � = (μ ,σ) and h(x) = 1. Hence T (X) = (∑n

i=1 X2
i ,∑

n
i=1 Xi) is a sufficient

statistic for (μ ,σ) or equivalently for (μ ,σ2) by the Factorization Theorem.



110 4 Sufficient Statistics

Example 4.8. Let Y1, . . . ,Yn be iid binomial(k,ρ) with k known and pmf

f (y|ρ) =
(

k
y

)
ρy(1−ρ)k−y I{0,...,k}(y).

Then

f (y|ρ) =
n

∏
i=1

f (yi|ρ) =
n

∏
i=1

[(
k
yi

)
I{0,...,k}(yi)

]
(1−ρ)nk

(
ρ

1−ρ

)∑n
i=1 yi

.

Hence by the Factorization Theorem, ∑n
i=1 Yi is a sufficient statistic.

Example 4.9. Suppose X1, . . . ,Xn are iid uniform observations on the interval
(θ ,θ + 1), −∞< θ < ∞. Notice that

n

∏
i=1

IA(xi) = I(all xi ∈ A) and
n

∏
i=1

IAn(x) = I∩n
i=1Ai(x)

where the latter holds since both terms are 1 if x is in all sets Ai for i = 1, . . . ,n and
both terms are 0 otherwise. Hence f (x|θ ) =

n

∏
i=1

f (xi|θ ) =
n

∏
i=1

1I(xi ≥ θ )I(xi ≤ θ + 1) = 1I(min(xi)≥ θ )I(max(xi)≤ θ + 1).

Then h(x) ≡ 1 and g(T (x)|θ ) = I(min(xi) ≥ θ )I(max(xi) ≤ θ + 1), and T (X) =
(X(1),X(n)) is a sufficient statistic by the Factorization Theorem.

Remark 4.2. i) Suppose Y1, . . . ,Yn are iid from a distribution with sup-
port Yi ≡ Y ∗ and pdf or pmf f (y|�) = k(y|�)I(y ∈ Y ∗). Then f (y|�) =
∏n

i=1 k(yi|�)∏n
i=1 I(yi ∈ Y ∗). Now the support of Y is the n-fold cross product

Y = Y ∗ × · · ·×Y ∗, and I(y ∈ Y ) =∏n
i=1 I(yi ∈ Y ∗) =

I( all yi ∈ Y ∗). Thus f (y|�) =∏n
i=1 k(yi|�)I( all yi ∈ Y ∗).

ii) If Y ∗ does not depend on � , then I( all yi ∈ Y ∗) is part of h(y). If Y ∗ does
depend on unknown � , then I( all yi ∈ Y ∗) could be placed in g(T (y)|�). Typ-
ically Y ∗ is an interval with endpoints a and b, not necessarily finite. For pdfs,
∏n

i=1 I(yi ∈ [a,b]) = I(a ≤ y(1) < y(n) ≤ b) = I[a ≤ y(1)]I[y(n) ≤ b]. If both a and
b are unknown parameters, put the middle term in g(T (y)|�). If both a and b
are known, put the middle term in h(y). If a is an unknown parameter and b is
known, put I[a ≤ y(1)] in g(T (y)|�) and I[y(n) ≤ b] in h(y).

iii) ∏n
i=1 I(yi ∈ (−∞,b)) = I(y(n) < b).

∏n
i=1 I(yi ∈ [a,∞)) = I(a ≤ y(1)), et cetera.

iv) Another useful fact is that ∏k
j=1 I(y ∈ A j) = I(y ∈ ∩k

j=1A j).

Example 4.10. Try to place any part of f (y|�) that depends on y but not on
� into h(y). For example, if Y1, . . . ,Yn are iid U(θ1,θ2), then f (y|�) =

n

∏
i=1

f (yi|�) =
n

∏
i=1

1
θ2 −θ1

I(θ1 ≤ yi ≤ θ2) =
1

(θ2 −θ1)n I(θ1 ≤ y(1) < y(n) ≤ θ2).
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Then h(y)≡ 1 and T (Y ) = (Y(1),Y(n)) is a sufficient statistic for (θ1,θ2) by factor-
ization.

If θ1 or θ2 is known, then the above factorization works, but it is better to make
the dimension of the sufficient statistic as small as possible. If θ1 is known, then

f (y|�) = 1
(θ2 −θ1)n I(y(n) ≤ θ2)I(θ1 ≤ y(1))

where the first two terms are g(T (y)|θ2) and the third term is h(y). Hence
T (Y ) = Y(n) is a sufficient statistic for θ2 by factorization. If θ2 is known, then

f (y|�) = 1
(θ2 −θ1)n I(θ1 ≤ y(1))I(y(n) ≤ θ2)

where the first two terms are g(T (y)|θ1) and the third term is h(y). Hence T (Y ) =
Y(1) is a sufficient statistic for θ1 by factorization.

There are infinitely many sufficient statistics (see Theorem 4.8 below), but typi-
cally we want the dimension of the sufficient statistic to be as small as possible since
lower dimensional statistics are easier to understand and to use for inference than
higher dimensional statistics. Dimension reduction is extremely important and the
following definition is useful.

Definition 4.3. Suppose that Y1, . . . ,Yn have a joint distribution that depends on
a vector of parameters � for � ∈Θ where Θ is the parameter space. A sufficient
statistic T (Y ) for � is a minimal sufficient statistic for � if T (Y ) is a function of
S(Y ) for any other sufficient statistic S(Y ) for � .

Remark 4.3. A useful mnemonic is that S = Y is a sufficient statistic, and
T ≡ T (Y ) is a function of S.

A minimal sufficient statistic T (Y ) = gS(S(Y )) for some function gS where
S(Y ) is a sufficient statistic. If S(Y ) is not a minimal sufficient statistic, then S(Y )
is not a function of the minimal sufficient statistic T (Y ). To see this, note that there
exists a sufficient statistic W (Y ) such that S(Y ) is not a function of W (Y ). Suppose
S(Y ) = h[T (Y )] for some function h. Then S(Y ) = h[gW (W (Y ))], a function of
W (Y ), which is a contradiction. If T 1 and T 2 are both minimal sufficient statistics,
then T 1 = g(T 2) and T 2 = h(T 1). Hence g(h(T 1)) = T 1 and h(g(T 2)) = T 2.
Hence h and g are inverse functions which are one to one and onto, and T 1 and T 2

are equivalent statistics. Following Lehmann (1983, p. 41), if the minimal sufficient
statistic T (Y ) = g(S(Y )) where g is not one to one, then T (Y ) provides greater
reduction of the data than the sufficient statistic S(Y ). Hence minimal sufficient
statistics provide the greatest possible reduction of the data.

Complete sufficient statistics, defined below, are primarily used for the theory of
uniformly minimum variance estimators covered in Chap. 6.
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Definition 4.4. Suppose that a statistic T (Y ) has a pmf or pdf f (t |�). Then T (Y )
is a complete sufficient statistic for � if E� [g(T (Y ))] = 0 for all � implies that
P� [g(T (Y )) = 0] = 1 for all � . The function g cannot depend on any unknown
parameters.

The statistic T (Y ) has a sampling distribution that depends on n and on � ∈Θ .
Hence the property of being a complete sufficient statistic depends on the family of
distributions with pdf or pmf f (t |�). Regular exponential families will have a com-
plete sufficient statistic T (Y ). The criterion used to show that a statistic is complete
places a strong restriction on g, and the larger the family of distributions, the greater
is the restriction on g. Following Casella and Berger (2002, p. 285), suppose n = 1
and T (Y ) = Y ∼ N(θ ,1). The family of N(θ ,1) distributions for θ ∈Θ = (−∞,∞)
is a 1P-REF, and it will turn out that Y is a complete sufficient statistic for this fam-
ily when n = 1. Suppose instead that the only member of the family of distributions
is the N(0,1) distribution. Then Θ = {0}. Using g(Y ) = Y gives E0(Y ) = 0 but
P0(Y = 0) = 0, not 1. Hence Y is not complete when the family only contains the
N(0,1) distribution.

The following two theorems are useful for finding minimal sufficient statistics.

Theorem 4.4: Lehmann–Scheffé Theorem for Minimal Sufficient Statistics
(LSM). Let f (y|�) be the pmf or pdf of an iid sample Y . Let cx,y be a constant.
Suppose there exists a function T (y) such that for any two sample points x and y,
the ratio Rx,y(�) = f (x|�)/ f (y|�) = cx,y for all � in Θ iff T (x) = T (y). Then
T (Y ) is a minimal sufficient statistic for � .

In the Lehmann–Scheffé Theorem, for R to be constant as a function of � , define
0/0 = cx,y . Alternatively, replace Rx,y(�) = f (x|�)/ f (y|�) = cx ,y by f (x|�) =
cx,y f (y|�) in the above definition.

Finding sufficient, minimal sufficient, and complete sufficient statistics is often
simple for a kP-REF (k-parameter regular exponential family). If the family given
by Eq. (4.8) is a kP-REF, then the conditions for Theorem 4.5a–d are satisfied
as are the conditions for e) if � is a one-to-one function of � . In a), k does not need
to be as small as possible. In Corollary 4.6 below, assume that Eqs. (4.8) and (4.9)
hold.

Note that any one-to-one function is onto its range. Hence if � = τ(�) for any
� ∈ Ω where τ is a one-to-one function, then τ : Θ → Ω is one to one and onto.
Thus there is a one-to-one (and onto) inverse function τ−1 such that � = τ−1(�) for
any � ∈Θ .

Theorem 4.5: Sufficiency, Minimal Sufficiency, and Completeness of Expo-
nential Families. Suppose that Y1, . . . ,Yn are iid from an exponential family

f (y|�) = h(y)c(�)exp [w1(�)t1(y)+ · · ·+wk(�)tk(y)] (4.8)

with the natural parameterization
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f (y|�) = h(y)b(�)exp [η1t1(y)+ · · ·+ηktk(y)] (4.9)

so that the joint pdf or pmf is given by

f (y1, . . . ,yn|�) =
(

n

∏
j=1

h(y j)

)

[b(�)]n exp

[

η1

n

∑
j=1

t1(y j)+ · · ·+ηk

n

∑
j=1

tk(y j)

]

which is a k-parameter exponential family. Then

T (Y ) =

(
n

∑
j=1

t1(Yj), . . . ,
n

∑
j=1

tk(Yj)

)

is

a) a sufficient statistic for � and for �,
b) a minimal sufficient statistic for � if η1, . . . ,ηk do not satisfy a linearity con-

straint,
c) a minimal sufficient statistic for � if w1(�), . . . ,wk(�) do not satisfy a linearity

constraint,
d) a complete sufficient statistic for � if Ω contains a k-dimensional rectangle,
e) a complete sufficient statistic for � if � is a one-to-one function of � and if Ω

contains a k-dimensional rectangle.

Proof. a) Use the Factorization Theorem.
b) The proof expands on remarks given in Johanson (1979, p. 3) and Lehmann

(1983, p. 44). The ratio

f (x|�)
f (y|�) =

∏n
j=1 h(x j)

∏n
j=1 h(y j)

exp

[
k

∑
i=1

ηi(Ti(x)−Ti(y))

]

is equal to a constant with respect to � iff

k

∑
i=1

ηi[Ti(x)−Ti(y)] =
k

∑
i=1

ηiai = d

for all ηi where d is some constant and where ai = Ti(x)− Ti(y) and Ti(x) =

∑n
j=1 ti(x j). Since the ηi do not satisfy a linearity constraint, ∑k

i=1ηiai = d for all
� iff all of the ai = 0. Hence

T (Y ) = (T1(Y ), . . . ,Tk(Y ))

is a minimal sufficient statistic by the Lehmann–Scheffé LSM Theorem.
c) Use almost the same proof as b) with wi(�) in the place of ηi and � in the place

of �. (In particular, the result holds if ηi = wi(�) for i = 1, . . . ,k provided that
the ηi do not satisfy a linearity constraint.)

d) See Lehmann (1986, p. 142).
e) If � = τ(�) then � = τ−1(�) and the parameters have just been renamed.

Hence E� [g(T )] = 0 for all � implies that E�[g(T )] = 0 for all �, and thus
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P�[g(T (Y )) = 0] = 1 for all � since T is a complete sufficient statistic for � by
d). Thus P� [g(T (Y )) = 0] = 1 for all � , and T is a complete sufficient statistic
for � .

Corollary 4.6: Completeness of a kP-REF. Suppose that Y1, . . . ,Yn are iid from
a kP-REF (k-parameter regular exponential family)

f (y|�) = h(y)c(�)exp [w1(�)t1(y)+ · · ·+wk(�)tk(y)]

with � ∈Θ and natural parameterization given by (4.9) with � ∈Ω . Then

T (Y ) =

(
n

∑
j=1

t1(Yj), . . . ,
n

∑
j=1

tk(Yj)

)

is

a) a minimal sufficient statistic for � and for �,
b) a complete sufficient statistic for � and for � if � is a one-to-one function of � .

Proof. The result follows by Theorem 4.5 since for a kP-REF, the wi(�) and ηi

do not satisfy a linearity constraint and Ω contains a k-dimensional rectangle. �
Theorem 4.7: Bahadur’s Theorem. A finite dimensional complete sufficient

statistic is also minimal sufficient.

Theorem 4.8. A one-to-one function of a sufficient, minimal sufficient, or com-
plete sufficient statistic is sufficient, minimal sufficient, or complete sufficient,
respectively.

If T 1(Y ) = g(T 2(Y )) where g is a one-to-one function, then T 2(Y ) =
g−1(T 1(Y )) where g−1 is the inverse function of g. Hence T 1 and T 2 provide
an equivalent amount reduction of the data. Also see the discussion below Re-
mark 4.3. Note that in a kP-REF, the statistic T is k-dimensional and thus T is
minimal sufficient by Theorem 4.7 if T is complete sufficient. Corollary 4.6 is
useful because often you know or can show that the given family is a REF. The
theorem gives a particularly simple way to find complete sufficient statistics for
one-parameter exponential families and for any family that is known to be a REF. If
it is known that the distribution is regular, find the exponential family parameteriza-
tion given by Eq. (4.8) or (4.9). These parameterizations give t1(y), . . . , tk(y). Then
T (Y ) = (∑n

j=1 t1(Yj), . . . ,∑n
j=1 tk(Yj)).

Example 4.11. Let X1, . . . ,Xn be iid N(μ ,σ2). Then the N(μ ,σ2) pdf is

f (x|μ ,σ) = 1√
2πσ

exp

(−μ2

2σ2

)

︸ ︷︷ ︸
c(μ,σ)≥0

exp

⎛

⎜
⎜
⎜
⎝

−1
2σ2
︸︷︷︸
w1(�)

x2
︸︷︷︸
t1(x)

+
μ
σ2
︸︷︷︸
w2(�)

x︸︷︷︸
t2(x)

⎞

⎟
⎟
⎟
⎠

IR(x)︸ ︷︷ ︸
h(x)≥0

,

with η1 = −0.5/σ2 and η2 = μ/σ2 if σ > 0. As shown in Example 3.1, this is a
2P–REF. By Corollary 4.6, T = (∑n

i=1 Xi,∑n
i=1 X2

i ) is a complete sufficient statistic
for (μ ,σ2). The one-to-one functions
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T 2 = (X ,S2) and T 3 = (X ,S)

of T are also complete sufficient where X is the sample mean and S is the sam-
ple standard deviation. T ,T 2 and T 3 are minimal sufficient by Corollary 4.6 or by
Theorem 4.7 since the statistics are two dimensional.

Example 4.12. Let Y1, . . . ,Yn be iid binomial(k,ρ) with k known and pmf

f (y|ρ) =
(

k
y

)
ρy(1−ρ)k−y I{0,...,k}(y)

=

(
k
y

)
I{0,...,k}(y)

︸ ︷︷ ︸
h(y)≥0

(1−ρ)k

︸ ︷︷ ︸
c(ρ)≥0

exp

⎡

⎢
⎢
⎢
⎣

log

(
ρ

1−ρ

)

︸ ︷︷ ︸
w(ρ)

y
︸︷︷︸
t(y)

⎤

⎥
⎥
⎥
⎦

where Θ = (0,1) and Ω = (−∞,∞). Notice that η = log( ρ
1−ρ ) is an increasing and

hence one-to-one function of ρ . Since this family is a 1P-REF, Tn = ∑n
i=1 t(Yi) =

∑n
i=1 Yi is complete sufficient statistic for ρ .

Compare Examples 4.7 and 4.8 with Examples 4.11 and 4.12. The exponential
family theorem gives more powerful results than the Factorization Theorem, but of-
ten the Factorization Theorem is useful for suggesting a potential minimal sufficient
statistic.

Example 4.13. In testing theory, a single sample is often created by combin-
ing two independent samples of iid data. Let X1, . . . ,Xn be iid exponential (θ ) and
Y1, . . . ,Ym iid exponential (θ/2). If the two samples are independent, then the joint
pdf f (x,y|θ ) belongs to a regular one-parameter exponential family with complete
sufficient statistic T = ∑n

i=1 Xi + 2∑m
i=1 Yi. (Let Wi = 2Yi. Then the Wi and Xi are iid

and Corollary 4.6 applies.)

Rule of thumb 4.1: A k-parameter minimal sufficient statistic for a d-dimensional
parameter where d < k will not be complete. In the following example d = 1< 2= k.
(A rule of thumb is something that is frequently true but cannot be used to rigor-
ously prove something. Hence this rule of thumb cannot be used to prove that the
minimal sufficient statistic is not complete.)

Warning: Showing that a minimal sufficient statistic is not complete is a problem
that often appears in qualifying exams on statistical inference.

Example 4.14 ( Cox and Hinkley 1974, p. 31). Let X1, . . . ,Xn be iid N(μ ,γ2
o μ2)

random variables where γ2
o > 0 is known and μ > 0. Then this family has a one-

dimensional parameter μ , but

f (x|μ) = 1
√

2πγ2
oμ2

exp

(−1
2γ2

o

)
exp

( −1
2γ2

oμ2 x2 +
1

γ2
oμ

x

)
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is a two-parameter exponential family with Θ = (0,∞) (which contains a one-
dimensional rectangle), and (∑n

i=1 Xi,∑n
i=1 X2

i ) is a minimal sufficient statistic.
(Theorem 4.5 applies since the functions 1/μ and 1/μ2 do not satisfy a linear-
ity constraint.) However, since Eμ(X2) = γ2

oμ2 + μ2 and ∑n
i=1 Xi ∼ N(nμ ,nγ2

oμ2)
implies that

Eμ

⎡

⎣

(
n

∑
i=1

Xi

)2
⎤

⎦= nγ2
oμ

2 + n2μ2,

we find that

Eμ

⎡

⎣n+ γ2
o

1+ γ2
o

n

∑
i=1

X2
i −

(
n

∑
i=1

Xi

)2
⎤

⎦=
n+ γ2

o

1+ γ2
o

nμ2(1+ γ2
o)− (nγ2

oμ
2 + n2μ2) = 0

for all μ so the minimal sufficient statistic is not complete. Notice that

Ω =

{
(η1,η2) : η1 =

−1
2

γ2
oη

2
2

}

and a plot of η1 versus η2 is a quadratic function which cannot contain a two-
dimensional rectangle. Notice that (η1,η2) is a one-to-one function of μ , and thus
this example illustrates that the rectangle needs to be contained in Ω rather than Θ .

Example 4.15. The theory does not say that any sufficient statistic from a REF
is complete. Let Y be a random variable from a normal N(0,σ2) distribution with
σ2 > 0. This family is a REF with complete minimal sufficient statistic Y 2. The data
Y is also a sufficient statistic, but Y is not a function of Y 2. Hence Y is not minimal
sufficient and (by Bahadur’s Theorem) not complete. Alternatively Eσ2(Y ) = 0 but
Pσ2(Y = 0) = 0 < 1, so Y is not complete.

Theorem 4.9. Let Y1, . . . ,Yn be iid.

a) If Yi ∼ U(θ1,θ2), then (Y(1),Y(n)) is a complete sufficient statistic for (θ1,θ2).
See David (1981, p. 123.)

b) If Yi ∼U(θ1,θ2) with θ1 known, then Y(n) is a complete sufficient statistic for θ2.
c) If Yi ∼U(θ1,θ2) with θ2 known, then Y(1) is a complete sufficient statistic for θ1.
d) If Yi ∼U(−θ ,θ ), then max(|Yi|) is a complete sufficient statistic for θ .
e) If Yi ∼ EXP(θ ,λ ), then (Y(1),Y ) is a complete sufficient statistic for (θ ,λ ). See

David (1981, pp. 153–154).
f) If Yi ∼ EXP(θ ,λ ) with λ known, then Y(1) is a complete sufficient statistic for θ .
g) If Yi ∼ Cauchy(μ ,σ) with σ known, then the order statistics are minimal suffi-

cient.
h) If Yi ∼ Double Exponential(θ ,λ ) with λ known, then the order statistics

(Y(1), . . . ,Y(n)) are minimal sufficient.
i) If Yi ∼ logistic(μ ,σ), then the order statistics are minimal sufficient.
j) If Yi ∼ Weibull(φ ,λ ), then the order statistics (Y(1), . . . ,Y(n)) are minimal

sufficient.



4.2 Minimal Sufficient Statistics 117

A common midterm, final, and qual question takes X1, . . . ,Xn iid
U(hl(θ ),hu(θ )) where hl and hu are functions of θ such that hl(θ ) < hu(θ ). The
function hl and hu are chosen so that the min = X(1) and the max = X(n) form the
two-dimensional minimal sufficient statistic by the LSM theorem. Since θ is one
dimensional, the rule of thumb suggests that the minimal sufficient statistic is not
complete. State this fact, but if you have time find Eθ [X(1)] and Eθ [X(n)]. Then show
that Eθ [aX(1) + bX(n) + c]≡ 0 so that T = (X(1),X(n)) is not complete.

Example 4.16. The uniform distribution is tricky since usually
(X(1),X(n)) is minimal sufficient by the LSM theorem, since

f (x) =
1

(θ2 −θ1)n I(θ1 < x(1) < x(n) < θ2)

if n > 1. But occasionally θ1 and θ2 are functions of the one-dimensional param-
eter θ such that the indicator can be written as I(θ > T ) or I(θ < T ) where the
minimal sufficient statistic T is a one-dimensional function of (X(1),X(n)). If X ∼
U(c1 + d1θ ,c2 + d2θ ) where d1,d2,c1,c2 are known and d1 < 0 and d2 > θ , then

T = max

(
X(1)− c1

d1
,

X(n)− c2

d2

)

is minimal sufficient.
Let X1, . . . ,Xn be iid U(1−θ ,1+θ ) where θ > 0 is unknown. Hence

fX (x) =
1

2θ
I(1−θ < x < 1+θ )

and
f (x)
f (y)

=
I(1−θ < x(1) ≤ x(n) < 1+θ )
I(1−θ < y(1) ≤ y(n) < 1+θ )

.

This ratio may look to be constant for all θ > 0 iff (x(1),x(n)) = (y(1),y(n)), but it is
not. To show that T 1 = (X(1),X(n)) is not a minimal sufficient statistic, note that

fX (x) =
1

2θ
I(θ > 1− x)I(θ > x− 1).

Hence
f (x)
f (y)

=
I(θ > max(1− x(1),x(n)− 1))

I(θ > max(1− y(1),y(n)− 1))

which is constant for all θ > 0 iff T2(x) = T2(y) where T2(x) =
max(1− x(1),x(n) − 1). Hence T2 = T2(X) = max(1 − X(1),X(n) − 1) is minimal
sufficient by the LSM theorem. Thus T 1 is not a minimal sufficient statistic (and so
not complete) since T 1 is not a function of T2.
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To show that T 1 is not complete using the definition of complete statistic, first
find E(T 1). Now

FX(t) =
∫ t

1−θ

1
2θ

dx =
t +θ − 1

2θ

for 1−θ < t < 1+θ . Hence by Theorem 4.2a),

fX(n)
(t) =

n
2θ

(
t +θ − 1

2θ

)n−1

for 1−θ < t < 1+θ and

Eθ (X(n)) =

∫
x fX(n)

(x)dx =
∫ 1+θ

1−θ
x

n
2θ

(
x+θ − 1

2θ

)n−1

dx.

Use u–substitution with u = (x+θ − 1)/2θ and x = 2θu+ 1−θ . Hence x = 1+θ
implies u = 1, and x = 1−θ implies u = 0 and dx = 2θdu. Thus

Eθ (X(n)) = n
∫ 1

0

2θu+ 1−θ
2θ

un−12θdu =

= n
∫ 1

0
[2θu+ 1−θ ]un−1du = 2θn

∫ 1

0
undu+(n− nθ )

∫ 1

0
un−1du =

2θn
un+1

n+ 1

∣
∣∣
∣

1

0
+ n(1−θ )

un

n

∣
∣∣
∣

1

0
=

2θ
n

n+ 1
+

n(1−θ )
n

= 1−θ+ 2θ
n

n+ 1
.

Note that Eθ (X(n))≈ 1+θ as you should expect.
By Theorem 4.2b),

fX(1)
(t) =

n
2θ

(
θ − t + 1

2θ

)n−1

for 1−θ < t < 1+θ and thus

Eθ (X(1)) =

∫ 1+θ

1−θ
x

n
2θ

(
θ − x+ 1

2θ

)n−1

dx.

Use u–substitution with u = (θ − x+ 1)/2θ and x = θ + 1− 2θu. Hence x = 1+θ
implies u = 0, and x = 1−θ implies u = 1 and dx =−2θdu. Thus

Eθ (X(1)) =

∫ 0

1

n
2θ

(θ + 1− 2θu)un−1(−2θ )du = n
∫ 1

0
(θ + 1− 2θu)un−1du =

n(θ+1)
∫ 1

0
un−1du−2θn

∫ 1

0
undu=(θ+1)n/n−2θn/(n+1)= θ+1−2θ

n
n+ 1

.
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To show that T 1 is not complete try showing Eθ (aX(1) +bX(n)+ c) = 0 for some
constants a,b, and c. Note that a = b = 1 and c = −2 works. Hence Eθ (X(1) +
X(n)− 2) = 0 for all θ > 0 but Pθ (g(T 1) = 0) = Pθ (X(1) +X(n)− 2 = 0) = 0 < 1
for all θ > 0. Hence T 1 is not complete. (To see that Pθ (g(T 1) = 0) = 0, note that
if random variables Y1, . . . ,Yn have a joint pdf, then a nonzero linear combination
of the random variables is a random variable W with a pdf by Theorem 2.14. So
P(W = 0) = 0 since the probability that a random variable W is equal to a constant
is 0 if W has a pdf. The order statistics have a joint pdf by Theorem 4.2 c). Thus the
linear combination W = g(T 1) has a pdf and P(W = 0) = 0.)

Definition 4.5. Let Y1, . . . ,Yn have pdf or pmf f (y|θ ). A statistic W (Y ) whose
distribution does not depend on θ is called an ancillary statistic.

Theorem 4.10, Basu’s Theorem. Let Y1, . . . ,Yn have pdf or pmf f (y|θ ). If T (Y )
is a k-dimensional complete sufficient statistic, then T (Y ) is independent of every
ancillary statistic.

Remark 4.4. Basu’s Theorem says that if T is minimal sufficient and complete,
then T R if R is ancillary. Application: If T is minimal sufficient, R ancillary
and R is a function of T (so R = h(T ) is not independent of T ), then T is not
complete. Since θ is a scalar, usually T (Y ) is not complete unless k = 1: then write
the minimal sufficient statistic as T (Y ).

Example 4.17. Suppose X1, . . . ,Xn are iid uniform observations on the interval
(θ ,θ + 1), −∞ < θ < ∞. Let X(1) = min(X1, . . . ,Xn), X(n) = max(X1, . . . ,Xn) and
T (X)= (X(1),X(n)) be a minimal sufficient statistic. Then R=X(n)−X(1) is ancillary
since R=max(X1−θ , . . . ,Xn−θ )+θ− [min(X1−θ , . . . ,Xn−θ )+θ ] =U(n)−U(1)
where Ui = Xi −θ ∼U(0,1) has a distribution that does not depend on θ . R is not
independent of T , so T is not complete.

Example 4.18. Let Y1, . . . ,Yn be iid from a location family with pdf fY (y|θ ) =
fX (y− θ ) where Y = X + θ and fX (y) is the standard pdf for the location family
(and thus the distribution of X does not depend on θ ).
Claim: W = (Y1 −Y , . . . ,Yn −Y) is ancillary.

Proof: Since Yi = Xi +θ ,

W =

(

X1 +θ − 1
n

n

∑
i=1

(Xi +θ ), . . . ,Xn +θ − 1
n

n

∑
i=1

(Xi +θ )

)

= (X1−X , . . . ,Xn −X)

and the distribution of the final vector is free of θ . �
Application: Let Y1, . . . ,Yn be iid N(μ ,σ2). For any fixed σ2, this is a location

family with θ = μ and complete sufficient statistic T (Y ) =Y . Thus Y W by Basu’s
Theorem. Hence Y S2 for any known σ2 > 0 since

S2 =
1

n− 1

n

∑
i=1

(Yi −Y )2

is a function of W . Thus Y S2 even if σ2 > 0 is not known.
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4.3 Summary

1. A statistic is a function of the data that does not depend on any unknown
parameters.

2. For parametric inference, the data Y1, . . . ,Yn comes from a family of para-
metric distributions f (y|�) for � ∈ Θ . Often the data are iid and f (y|�) =
∏n

i=1 f (yi|�). The parametric distribution is completely specified by the un-
known parameters � . The statistic is a random vector or random variable and
hence also comes from some probability distribution. The distribution of the
statistic is called the sampling distribution of the statistic.

3. For iid N(μ ,σ2) data, Y S2, Y ∼ N(μ ,σ2/n) and ∑n
i=1(Yi −Y )2 ∼ σ2χ2

n−1.
4. For iid data with cdf FY and pdf fY , fY(n) (t) = n[FY (t)]n−1 fY (t) and fY(1) (t) =

n[1−FY(t)]n−1 fY (t).
5. A statistic T (Y1, . . . ,Yn) is a sufficient statistic for � if the conditional distribu-

tion of (Y1, . . . ,Yn) given T does not depend on � .
6. A sufficient statistic T (Y ) is a minimal sufficient statistic if for any other suffi-

cient statistic S(Y ), T (Y ) is a function of S(Y ).
7. Suppose that a statistic T (Y ) has a pmf or pdf f (t |�). Then T (Y ) is a complete

statistic if E� [g(T (Y ))] = 0 for all � ∈Θ implies that
P� [g(T (Y )) = 0] = 1 for all � ∈Θ .

8. A one-to-one function of a sufficient, minimal sufficient, or complete sufficient
statistic is sufficient, minimal sufficient, or complete sufficient, respectively.

9. Factorization Theorem. Let f (y|�) denote the pdf or pmf of a sample Y .
A statistic T (Y ) is a sufficient statistic for � iff for all sample points y and
for all � in the parameter space Θ ,

f (y|�) = g(T (y)|�) h(y)

where both g and h are nonnegative functions.
Tips: i) for iid data with marginal support Yi ≡ Y ∗, IY (y) = I(all yi ∈ Y ∗). If
Y ∗ = (a,b), then IY (y) = I(a < y(1) < y(n) < b) = I(a < y(1))I(y(n) < b). Put
I(a < y(1)) in g(T (y)|�) if a is an unknown parameter but put I(a < y(1)) in
h(y) if a is known. If both a and b are unknown parameters, put I(a < y(1) <
y(n) < b) in g(T (y)|�). If b = ∞, then IY (y) = I(a < y(1)). If Y ∗ = [a,b], then
IY (y) = I(a ≤ y(1) < y(n) ≤ b) = I(a ≤ y(1))I(y(n) ≤ b). ii) Try to make the
dimension of T (y) as small as possible. Put anything that depends on y but not
� into h(y).

10. Minimal and complete sufficient statistics for k-parameter exponential
families: Let Y1, . . . ,Yn be iid from an exponential family
f (y|�) = h(y)c(�)exp[∑k

j=1 wj(�)t j(y)] with the natural parameterization

f (y|�) = h(y)b(�)exp[∑k
j=1η jt j(y)]. Then T (Y ) = (∑n

i=1 t1(Yi), . . . ,∑n
i=1 tk(Yi))

is
a) a minimal sufficient statistic for � if the η j do not satisfy a linearity constraint

and for � if the wj(�) do not satisfy a linearity constraint.
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b) a complete sufficient statistic for � and for � if � is a one-to-one function of �

and if Ω contains a k-dimensional rectangle.
11. Completeness of REFs: Suppose that Y1, . . . ,Yn are iid from a kP-REF

f (y|�) = h(y)c(�)exp [w1(�)t1(y)+ · · ·+wk(�)tk(y)] (4.10)

with � ∈Θ and natural parameter � ∈Ω . Then

T (Y ) =

(
n

∑
i=1

t1(Yi), . . . ,
n

∑
i=1

tk(Yi)

)

is

a) a minimal sufficient statistic for � and for � ,

b) a complete sufficient statistic for � and for � if � is a one-to-one function of �

and if Ω contains a k-dimensional rectangle.
12. For a two-parameter exponential family (k = 2), η1 and η2 satisfy a linearity

constraint if the plotted points fall on a line in a plot of η1 versus η2. If the
plotted points fall on a nonlinear curve, then T is minimal sufficient but Ω does
not contain a two-dimensional rectangle.

13. LSM Theorem: Let f (y|�) be the pmf or pdf of a sample Y . Let cx,y be a
constant. Suppose there exists a function T (y) such that for any two sample
points x and y, the ratio Rx,y(�) = f (x|�)/ f (y|�) = cx,y for all � in Θ iff
T (x) = T (y). Then T (Y ) is a minimal sufficient statistic for � . (Define 0/0 ≡
cx,y .)

14. Tips for finding sufficient, minimal sufficient and complete sufficient statistics.

a) Typically Y1, . . . ,Yn are iid so the joint distribution f (y1, . . . ,yn) =∏n
i=1 f (yi)

where f (yi) is the marginal distribution. Use the factorization theorem to
find the candidate sufficient statistic T .

b) Use factorization to find candidates T that might be minimal sufficient statis-
tics. Try to find T with as small a dimension k as possible. If the support of
the random variable depends on θ , often Y(1) or Y(n) will be a component
of the minimal sufficient statistic. To prove that T is minimal sufficient, use
the LSM theorem. Alternatively prove or recognize that Y comes from a
regular exponential family. T will be minimal sufficient for � if Y comes
from an exponential family as long as the wi(�) do not satisfy a linearity
constraint.

c) To prove that the statistic is complete, prove or recognize that Y
comes from a regular exponential family. Check whether dim(Θ) = k. If
dim(Θ)< k, then the family is usually not a kP-REF and Theorem 4.5 and
Corollary 4.6 do not apply. The uniform distribution where one endpoint is
known also has a complete sufficient statistic.

d) Let k be free of the sample size n. Then a k-dimensional complete sufficient
statistic is also a minimal sufficient statistic (Bahadur’s Theorem).
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e) To show that a statistic T is not a sufficient statistic, either show that
factorization fails or find a minimal sufficient statistic S and show that S
is not a function of T .

f) To show that T is not minimal sufficient, first try to show that T is not a
sufficient statistic. If T is sufficient, find a minimal sufficient statistic S and
show that T is not a function of S. (Of course S will be a function of T .)
The Lehmann–Scheffé (LSM) theorem cannot be used to show that a
statistic is not minimal sufficient.

g) To show that a sufficient statistics T is not complete, find a function g(T )
such that E�(g(T )) = 0 for all � but g(T ) is not equal to the zero with
probability one. Finding such a g is often hard, unless there are clues. For
example, if T = (X ,Y , . . . .) and μ1 = μ2, try g(T ) = X −Y . As a rule of
thumb, a k-dimensional minimal sufficient statistic will generally not be
complete if k > dim(Θ). In particular, if T is k-dimensional and � is j-
dimensional with j < k (especially j = 1 < 2 = k) then T will generally
not be complete. If you can show that a k-dimensional sufficient statistic T

is not minimal sufficient (often hard), then T is not complete by Bahadur’s
Theorem. Basu’s Theorem can sometimes be used to show that a minimal
sufficient statistic is not complete. See Remark 4.4 and Example 4.17.

15. A common question takes Y1, . . . ,Yn iid U(hl(θ ),hu(θ )) where the min = Y(1)
and the max = Y(n) form the two-dimensional minimal sufficient statistic. Since
θ is one dimensional, the minimal sufficient statistic is probably not complete.
Find Eθ [Y(1)] and Eθ [Y(n)]. Then show that Eθ [aY(1) + bY(n) + c] ≡ 0 so that
T = (Y(1),Y(n)) is not complete.

4.4 Complements

Some minimal sufficient statistics and complete sufficient statistics are given in
Theorem 4.9 for distributions that are not exponential families.

Stigler (1984) presents Kruskal’s proof that Y S2 when the data are iid N(μ ,σ2),
but Zehna (1991) states that there is a flaw in the proof.

The Factorization Theorem was developed with increasing generality by Fisher,
Neyman, and Halmos and Savage (1949).

Bahadur’s Theorem is due to Bahadur (1958) and Lehmann and Scheffé (1950).
Basu’s Theorem is due to Basu (1959). Also see Koehn and Thomas (1975) and

Boos and Hughes-Oliver (1998). An interesting alternative method for proving in-
dependence between two statistics that works for some important examples is given
in Datta and Sarker (2008).

Some techniques for showing whether a statistic is minimal sufficient are illus-
trated in Sampson and Spencer (1976).
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4.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.

4.1. Let X1, . . . ,Xn be a random sample from a N(μ ,σ2) distribution, which is an
exponential family. Show that the sample space of (T1,T2) contains an open subset
of R2, if n ≥ 2 but not if n = 1.

Hint: Show that if n ≥ 2, then T1 = ∑n
i=1 Xi and T2 = ∑n

i=1 X2
i . Then T2 = aT 2

1 +
b(X1, . . . ,Xn) for some constant a where b(X1, . . . ,Xn) = ∑n

i=1(Xi −X)2 ∈ (0,∞).
So range(T1,T2) = { (t1, t2)|t2 ≥ at2

1 }. Find a. If n = 1 then b(X1)≡ 0 and the curve
cannot contain an open two-dimensional rectangle.

4.2. Let X1, . . . ,Xn be iid exponential(λ ) random variables. Use the Factorization
Theorem to show that T (X) = ∑n

i=1 Xi is a sufficient statistic for λ .

4.3. Let X1, . . . ,Xn be iid from a regular exponential family with pdf

f (x|�) = h(x)b(�)exp

[
k

∑
i=1

ηiti(x)

]

.

Let T (X) = (T1(X), . . . ,Tk(X)) where Ti(X) =∑n
j=1 ti(Xj).

a) Use the Factorization Theorem to show that T (X) is a k-dimensional sufficient
statistic for �.

b) Use the Lehmann Scheffé LSM theorem to show that T (X) is a minimal suffi-
cient statistic for �.
(Hint: in a regular exponential family, if ∑k

i=1 aiηi = c for all � in the natural pa-
rameter space for some fixed constants a1, . . . ,ak and c, then a1 = · · ·= ak = 0.)

4.4. Let X1, . . . ,Xn be iid N(μ ,γ2
o μ2) random variables where γ2

o > 0 is known
and μ > 0.

a) Find a sufficient statistic for μ .
b) Show that (∑n

i=1 Xi,∑n
i=1 X2

i ) is a minimal sufficient statistic.
c) Find Eμ [∑n

i=1 X2
i ].

d) Find Eμ [(∑n
i=1 Xi)

2].
e) Find

Eμ

⎡

⎣n+ γ2
o

1+ γ2
o

n

∑
i=1

X2
i −

(
n

∑
i=1

Xi

)2
⎤

⎦ .

(Hint: use c) and d).)
f) Is the minimal sufficient statistic given in b) complete? Explain.
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4.5. If X1, . . . ,Xn are iid with f (x|θ ) = exp[−(x− θ )]for x > θ , then the joint
pdf can be written as

f (x|θ ) = enθ exp
(−∑xi

)
I[θ < x(1)].

By the Factorization Theorem, T (X) = (∑Xi,X(1)) is a sufficient statistic. Show
that R(θ ) = f (x|θ )/ f (y|θ ) can be constant even though T (x) �= T (y). Hence
the Lehmann–Scheffé Theorem does not imply that T (X) is a minimal sufficient
statistic.

4.6. Find a complete minimal sufficient statistic if Y1, . . . ,Yn are iid from the
following 1P-REFs.

a) Y ∼ binomial (k,ρ) with k known.
b) Y ∼ exponential (λ ).
c) Y ∼ gamma (ν,λ ) with ν known.
d) Y ∼ geometric (ρ).
e) Y ∼ negative binomial (r,ρ) with r known.
f) Y ∼ normal (μ ,σ2) with σ2 known.
g) Y ∼ normal (μ ,σ2) with μ known.
h) Y ∼ Poisson (θ ).

4.7. Find a complete minimal sufficient statistic if Y1, . . . ,Yn are iid from the
following 1P-REFs.

a) Y ∼ Burr Type XII (φ ,λ ) with φ known.
b) Y ∼ chi(p,σ ) with p known
c) Y ∼ double exponential (θ ,λ ) with θ known.
d) Y ∼ two-parameter exponential (θ ,λ ) with θ known.
e) Y ∼ generalized negative binomial (μ ,κ) with κ known.
f) Y ∼ half normal (μ ,σ2) with μ known.
g) Y ∼ inverse Gaussian (θ ,λ ) with λ known.
h) Y ∼ inverted gamma (ν,λ ) with ν known.
i) Y ∼ lognormal (μ ,σ2) with μ known.
j) Y ∼ lognormal (μ ,σ2) with σ2 known.
k) Y ∼ Maxwell-Boltzmann (μ ,σ) with μ known.
l) Y ∼ one-sided stable (σ ).

m) Y ∼ Pareto (σ ,λ ) with σ known.
n) Y ∼ power (λ ).
o) Y ∼ Rayleigh (μ ,σ ) with μ known.
p) Y ∼ Topp–Leone (ν).
q) Y ∼ truncated extreme value (λ ).
r) Y ∼ Weibull (φ ,λ ) with φ known.

4.8. Find a complete minimal sufficient statistic T if Y1, . . . ,Yn are iid from the
following 2P-REFs.
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a) The beta (δ ,ν) distribution.
b) The chi (p,σ ) distribution.
c) The gamma (ν,λ ) distribution.
d) The lognormal (μ ,σ2) distribution.
e) The normal (μ ,σ2) distribution.

4.9. i) Show that each of the following families is a 1P-REF. ii) Find a complete
minimal sufficient statistic if Y1, . . . ,Yn are iid from the 1P-REF.

a) Let

f (y) =
log(θ )
θ − 1

θ y

where 0 < y < 1 and θ > 1.
Comment:

F(y) =
θ y − 1
θ − 1

for 0 < y < 1, and the mgf

m(t) =
log(θ )
θ − 1

e(t+log(θ))− 1
t + log(θ )

.

b) Y has an inverse Weibull distribution.
c) Y has a Zipf distribution.

4.10. Suppose Y has a log-gamma distribution, Y ∼ LG(ν,λ ).

i) Show the Y is a 2P-REF.
ii) If Y1, . . . ,Yn are iid LG(ν,λ ), find a complete minimal sufficient statistic.

iii) Show W = eY ∼ gamma (ν,λ ).

Problems from old quizzes and exams. Problems from old qualifying exams
are marked with a Q since these problems take longer than quiz and exam problems.

4.11. Suppose that X1, . . . ,Xm;Y1, . . . ,Yn are iid N(μ ,1) random variables. Find
a minimal sufficient statistic for μ .

4.12. Let X1, . . . ,Xn be iid from a uniform U(θ − 1,θ + 2) distribution. Find a
sufficient statistic for θ .

4.13. Let Y1, . . . ,Yn be iid with a distribution that has pmf Pθ (X = x) =
θ (1−θ )x−1, x = 1,2, . . ., where 0 < θ < 1. Find a minimal sufficient statistic for θ .

4.14. Let Y1, . . . ,Yn be iid Poisson(λ ) random variables. Find a minimal suffi-
cient statistic for λ using the fact that the Poisson distribution is a regular exponen-
tial family (REF).
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4.15. Suppose that X1, . . . ,Xn are iid from a REF with pdf (with respect to the
natural parameterization)

f (x) = h(x)c∗(�)exp

[
4

∑
i=1

ηiti(x)

]

.

Assume dim(Θ) = 4. Find a complete minimal sufficient statistic T (X) in terms of
n, t1, t2, t3, and t4.

4.16. Let X be a uniform U(−θ ,θ ) random variable (sample size n= 1). a) Find
EθX . b) Is T (X) = X a complete sufficient statistic? c) Show that |X |=max(−X ,X)
is a minimal sufficient statistic.

4.17. A fact from mathematics is that if the polynomial
P(w) = anwn + an−1wn−1 + · · ·+ a2w2 + a1w+ a0 ≡ 0 for all w in a domain that
includes an open interval, then an = · · · = a1 = a0 = 0. Suppose that you are trying
to use the Lehmann Scheffé (LSM) theorem to show that (∑Xi,∑X2

i ) is a minimal
sufficient statistic and that you have managed to show that

f (x|μ)
f (y|μ) ≡ c

iff

− 1
2γ2

oμ2

[
∑x2

i −∑y2
i

]
+

1
γ2

oμ
[
∑xi −∑yi

]≡ d (4.11)

for all μ > 0. Parts a) and b) give two different ways to proceed.

a) Let w = 1/μ and assume that γo is known. Identify a2, a1 and a0 and show that
ai = 0 implies that (∑Xi,∑X2

i ) is a minimal sufficient statistic.
b) Let η1 = 1/μ2 and η2 = 1/μ . Since (4.11) is a polynomial in 1/μ , can η1 and

η2 satisfy a linearity constraint? If not, why is (∑Xi,∑X2
i ) a minimal sufficient

statistic?

4.18. Let X1, . . . ,Xn be iid Exponential(λ ) random variables and Y1, . . . ,Ym iid
Exponential(λ/2) random variables. Assume that the Yi’s and Xj’s are independent.
Show that the statistic (∑n

i=1 Xi,∑m
i=1 Yi) is not a complete sufficient statistic.

4.19. Let X1, . . . ,Xn be iid gamma(ν,λ ) random variables. Find a complete, min-
imal sufficient statistic (T1(X),T2(X)). (Hint: recall a theorem for exponential fam-
ilies. The gamma pdf is (for x > 0)

f (x) =
xν−1e−x/λ

λνΓ (ν)
.)

4.20. Let X1, . . . ,Xn be iid uniform(θ− 1,θ + 1) random variables. The follow-
ing expectations may be useful:
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EθX = θ , EθX(1) = 1+θ − 2θ
n

n+ 1
, EθX(n) = 1−θ + 2θ

n
n+ 1

.

a) Find a minimal sufficient statistic for θ .
b) Show whether the minimal sufficient statistic is complete or not.

4.21. Let X1, . . . ,Xn be independent identically distributed random variables with
pdf

f (x) =

√
σ

2πx3 exp
(
− σ

2x

)

where x and σ are both positive. Find a sufficient statistic T (X) for σ .

4.22. Suppose that X1, . . . ,Xn are iid beta(δ ,ν) random variables. Find a minimal
sufficient statistic for (δ ,ν). Hint: write as a two-parameter REF.

4.23. Let X1, . . . ,Xn be iid from a distribution with pdf

f (x|θ ) = θx−2, 0 < θ ≤ x < ∞.

Find a sufficient statistic for θ .

4.24. Let X1, . . . ,Xn be iid with a distribution that has pdf

f (x) =
x
σ2 exp

( −x
2σ2

)

for x > 0 and σ2 > 0. Find a minimal sufficient statistic for σ2 using the Lehmann–
Scheffé Theorem.

4.25. Let X1, . . . ,Xn be iid exponential (λ ) random variables. Find a minimal
sufficient statistic for λ using the fact that the exponential distribution is a 1P-REF.

4.26. Suppose that X1, . . . ,Xn are iid N(μ ,σ2). Find a complete sufficient statis-
tic for (μ ,σ2).

4.27Q. Let X1 and X2 be iid Poisson (λ ) random variables. Show that T = X1 +
2X2 is not a sufficient statistic for λ . (Hint: the Factorization Theorem uses the word
iff. Alternatively, find a minimal sufficient statistic S and show that S is not a function
of T .)

4.28Q. Suppose that X1, . . . ,Xn are iid N(σ ,σ) where σ > 0.

a) Find a minimal sufficient statistic for σ .
b) Show that (X ,S2) is a sufficient statistic but is not a complete sufficient statistic

for σ .

4.29. Let X1, . . . ,Xn be iid binomial(k= 1,θ ) random variables and Y1, . . . ,Ym iid
binomial(k = 1,θ/2) random variables. Assume that the Yi’s and Xj’s are indepen-
dent. Show that the statistic (∑n

i=1 Xi,∑m
i=1 Yi) is not a complete sufficient statistic.
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4.30. Suppose that X1, . . . ,Xn are iid Poisson(λ ) where λ > 0. Show that (X ,S2)
is not a complete sufficient statistic for λ .

4.31Q. Let X1, . . . ,Xn be iid beta(θ ,θ ). (Hence δ = ν = θ .)

a) Find a minimal sufficient statistic for θ .
b) Is the statistic found in a) complete? (prove or disprove)

4.32Q. Let X1, . . . ,Xn be independent identically distributed random variables
with probability mass function

f (x) = P(X = x) =
1

xνζ (ν)

where ν > 1 and x = 1,2,3, . . .. Here the zeta function

ζ (ν) =
∞

∑
x=1

1
xν

for ν > 1.

a) Find a minimal sufficient statistic for ν .
b) Is the statistic found in a) complete? (prove or disprove)
c) Give an example of a sufficient statistic that is strictly not minimal.

4.33. Let X1, . . . ,Xn be a random sample from a half normal distribution with
pdf

f (x) =
2√

2π σ
exp

(−(x− μ)2

2σ2

)

where σ > 0 and x > μ and μ is real.
Find a sufficient statistic T = (T1,T2, . . . ,Tk) for (μ ,σ) with dimension k ≤ 3.

4.34. Let X(1) = min1≤i≤n Xi. If X1, . . . ,Xn are iid exponential(1) random vari-
ables, find E(X(1)).

4.35. Let X(n) =max1≤i≤n Xi. If X1, . . . ,Xn are iid uniform(0,1) random variables,
find E(X(n)).

4.36Q. Let X1, . . . ,Xn be iid uniform(θ ,θ+1) random variables where θ is real.

a) Find a minimal sufficient statistic for θ .
b) Show whether the minimal sufficient statistic is complete or not.

4.37Q. Let Y1, . . . ,Yn be iid from a distribution with pdf

f (y) = 2 τ y e−y2
(1− e−y2

)τ−1

for y > 0 and f (y) = 0 for y ≤ 0 where τ > 0.

a) Find a minimal sufficient statistic for τ .
b) Is the statistic found in a) complete? Prove or disprove.



Chapter 5
Point Estimation I

A point estimator gives a single value as an estimate of a parameter. For example,
Y = 10.54 is a point estimate of the population mean μ . An interval estimator gives a
range (Ln,Un) of reasonable values for the parameter. Confidence intervals, studied
in Chap. 9, are interval estimators. The most widely used point estimators are the
maximum likelihood estimators, and method of moments estimators are also widely
used. These two methods should be familiar to the reader. Uniformly minimum
variance unbiased estimators are discussed in Chap. 6.

5.1 Maximum Likelihood Estimators

Definition 5.1. Let f (y|�) be the pmf or pdf of a sample Y with parameter spaceΘ .
If Y = y is observed, then the likelihood function is L(�)≡ L(�|y) = f (y|�). For
each sample point y = (y1, . . . ,yn), let �̂(y) ∈ Θ be a parameter value at which
L(�) ≡ L(�|y) attains its maximum as a function of � with y held fixed. Then a
maximum likelihood estimator (MLE) of the parameter � based on the sample Y

is �̂(Y ).

The following remarks are important.

I) It is crucial to observe that the likelihood function is a function of � (and that
y1, . . . ,yn act as fixed constants). Note that the pdf or pmf f (y|�) is a function
of n variables while L(�) is a function of k variables if � is a 1×k vector. Often
k = 1 or k = 2 while n could be in the hundreds or thousands.

II) If Y1, . . . ,Yn is an independent sample from a population with pdf or pmf f (y|�),
then the likelihood function

L(�)≡ L(�|y1, . . . ,yn) =
n

∏
i=1

f (yi|�). (5.1)
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L(�) =
n

∏
i=1

fi(yi|�)

if the Yi are independent but have different pdfs or pmfs.
III) If the MLE �̂ exists, then �̂ ∈Θ . Hence if �̂ is not in the parameter space Θ ,

then �̂ is not the MLE of � .
IV) If the MLE is unique, then the MLE is a function of the minimal sufficient

statistic. See Levy (1985) and Moore (1971). This fact is useful since exponen-
tial families tend to have a tractable log likelihood and an easily found minimal
sufficient statistic.

Theorem 5.1: Invariance Principle. If �̂ is the MLE of � , then h(�̂) is the MLE
of h(�) where h is a function with domain Θ .

This theorem will be proved in Sect. 5.4. Really just needΘ ∈ dom(h) so h(�̂) is
well defined: can’t have log(−7.89) or

√−1.57.

There are four commonly used techniques for finding the MLE.

• Potential candidates can be found by differentiating log L(�), the log likelihood.
• Potential candidates can be found by differentiating the likelihood L(�).
• The MLE can sometimes be found by direct maximization of the likelihood L(�).
• Invariance Principle: If �̂ is the MLE of � , then h(�̂) is the MLE of h(�).

The one-parameter case can often be solved by hand with the following tech-
nique. To show that θ̂ is the MLE of θ is equivalent to showing that θ̂ is the
global maximizer of logL(θ ) on Θ where Θ is an interval with endpoints a and
b, not necessarily finite. Suppose that logL(θ ) is continuous on Θ . Show that
logL(θ ) is differentiable on (a,b). Then show that θ̂ is the unique solution to the
equation d

dθ logL(θ ) = 0 and that the second derivative evaluated at θ̂ is negative:
d2

dθ 2 logL(θ )
∣
∣
∣
∣
θ̂
< 0. See Remark 5.1V below.

Remark 5.1. From calculus, recall the following facts.

I) If the function h is continuous on an interval [a,b], then both the max and min
of h exist. Suppose that h is continuous on an interval [a,b] and differentiable
on (a,b). Solve h′(θ ) ≡ 0 and find the places where h′(θ ) does not exist.
These values are the critical points. Evaluate h at a, b, and the critical points.
One of these values will be the min and one the max.

II) Assume h is continuous. Then h has a local max at the critical point θo if h
is increasing for θ < θo in a neighborhood of θo and if h is decreasing for
θ > θo in a neighborhood of θo (and θo is a global max if you can remove the
phrase “in a neighborhood of θo”). The first derivative test is often used: if h
is continuous at θo and if there exists some δ > 0 such that h′(θ )> 0 for all θ
in (θo − δ ,θo) and h′(θ ) < 0 for all θ in (θo,θo + δ ), then h has a local max
at θo.
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Fig. 5.1 The local max in (a) is a global max, but the local max at θ =−1 in (b) is not the global
max

III) If h is strictly concave ( d2

dθ2 h(θ )< 0 for all θ ∈Θ ), then any local max of h
is a global max.

IV) Suppose h′(θo) = 0. The second derivative test states that if
d2

dθ 2 h(θo)< 0,

then h has a local max at θo.
V) If h(θ ) is a continuous function on an interval with endpoints a < b (not

necessarily finite), differentiable on (a,b) and if the critical point is unique,
then the critical point is a global maximum if it is a local maximum. To
see this claim, note that if the critical point is not the global max, then there
would be a local minimum and the critical point would not be unique. Also
see Casella and Berger (2002, p. 317). Let a =−2 and b = 4. In Fig. 5.1a, the
critical point for g(θ ) = −θ 2 + 25 is at θ = 0, is unique, and is both a local
and global maximum. In Fig. 5.1b, h(θ ) = θ 3 − 1.5θ 2 − 6θ + 11, the critical
point θ =−1 is not unique and is a local max but not a global max.

VI) If h is strictly convex ( d2

dθ2 h(θ )> 0 for all θ ∈Θ ), then any local min of h
is a global min. If h′(θo) = 0, then the second derivative test states that if
d2

dθ2 h(θo)> 0, then θo is a local min.
VII) If h(θ ) is a continuous function on an interval with endpoints a < b (not

necessarily finite), differentiable on (a,b) and if the critical point is unique,
then the critical point is a global minimum if it is a local minimum. To see
this claim, note that if the critical point is not the global min, then there would
be a local maximum and the critical point would not be unique.
Tips: a) exp(a) = ea and log(y) = ln(y) = loge(y) is the natural logarithm.
b) log(ab) = b log(a) and log(eb) = b.
c) log(∏n

i=1 ai) = ∑n
i=1 log(ai).

d) logL(θ ) = log(∏n
i=1 f (yi|θ )) = ∑n

i=1 log( f (yi|θ )).
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e) If t is a differentiable function and t(θ ) �= 0, then d
dθ log(|t(θ )|) = t′(θ)

t(θ)
where t ′(θ ) = d

dθ t(θ ). In particular, d
dθ log(θ ) = 1/θ .

f) Any additive term that does not depend on θ is treated as a constant with
respect to θ and hence has derivative 0 with respect to θ .

Showing that �̂ is the global maximizer of log(L(�)) is much more difficult in
the multiparameter case. To show that there is a local max at �̂ often involves using
a Hessian matrix of second derivatives. Calculations involving the Hessian matrix
are often very difficult. Often there is no closed form solution for the MLE and a
computer needs to be used. For hand calculations, Remark 5.2 and Theorem 5.2 can
often be used to avoid using the Hessian matrix.

Definition 5.2. Let the data be Y1, . . . ,Yn and suppose that the parameter � has
components (�1, . . . ,�k). Then �̂i will be called the MLE of �i. Without loss of
generality, assume that � = (�1,�2), that the MLE of � is (�̂1, �̂2) and that �̂2

is known. The profile likelihood function is LP(�1) = L(�1, �̂2(y)) with domain
{�1 : (�1, �̂2) ∈Θ}.

Remark 5.2. Since L(�1,�2) is maximized overΘ by (�̂1, �̂2), the maximizer of
the profile likelihood function and of the log profile likelihood function is �̂1. The
log profile likelihood function can often be maximized using calculus if �1 = θ1 is
a scalar.

Theorem 5.2: Existence of the MLE for a REF (Barndorff–Nielsen 1982):
Assume that the natural parameterization of the kP-REF (k-parameter regular exp-
onential family) is used so that Ω is an open k-dimensional convex set (usually an
open interval or cross product of open intervals). Then the log likelihood function
log[L(�)] is a strictly concave function of �. Hence if �̂ is a critical point of
log[L(�)] and if �̂ ∈ Ω , then �̂ is the unique MLE of �. Hence the Hessian ma-
trix of second derivatives does not need to be checked! Moreover, the critical point

�̂ is the solution to the equations Tj(y) =∑n
m=1 t j(ym)

set
=∑n

m=1 E[t j(Ym)] = E[Tj(Y )]
for j = 1, . . . ,k.

Proof Sketch. The proof needs several results from nonlinear programming,
which is also known as optimization theory. Suppose that h(�) is a function with
continuous first and second derivatives on an open convex set Ω . Suppose the h(�)
has Hessian (or Jacobian) matrix H ≡H (�) with i j entry

H i j(�) =
∂ 2

∂ηi∂η j
h(�).

Let the critical point �̂ be the solution to

∂
∂ηi

h(�)
set
= 0
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for i = 1, . . . ,k. If H (�) is positive definite on Ω , then h is strictly convex and �̂ is a
global minimizer of h. Hence −h is strictly concave and �̂ is a global maximizer of
h. See Peressini et al. (1988, pp. 10–13, 54).

Suppose Y comes from a k-parameter exponential family. Then the distribution
of (t1(Y ), . . . , tk(Y )) is a k-parameter exponential family by Theorem 3.5 that has
a covariance matrix ˙t by Theorem 3.4. An important fact is that ˙t is positive
definite.

Let Y1, . . . ,Yn be iid from a kP-REF with pdf or pmf

f (y|�) = h(y)b(�)exp

[
k

∑
i=1

ηiti(y)

]

.

As stated above Definition 3.3,Ω is an open convex set. Now the likelihood function
L(�) =∏n

m=1 f (ym|�) =
[

n

∏
m=1

h(ym)

]

[b(�)]n exp

[

η1

n

∑
m=1

t1(ym)+ · · ·+ηk

n

∑
m=1

tk(ym)

]

.

Hence the log likelihood function

log[L(�)] = d + n log(b(�))+
k

∑
j=1

η jTj

where Tj ≡ Tj(y) = ∑n
m=1 t j(ym).

Now

∂
∂ηi

log[L(�)] = n
∂
∂ηi

log(b(�))+Ti =−nE[ti(Y )]+Ti =

−
n

∑
m=1

E[ti(Ym)]+
n

∑
m=1

ti(ym)

for i = 1, . . . ,k by Theorem 3.3a. Since the critical point �̂ is the solution to the

k equations ∂
∂ηi

log[L(�)]
set
= 0, the critical point �̂ is also a solution to Ti(y) =

∑n
m=1 ti(ym)

set
= ∑n

m=1 E[ti(Ym)] = E[Ti(Y )] for i = 1, . . . ,k.
Now

∂ 2

∂ηi∂η j
log[L(�)] = n

∂ 2

∂ηi∂η j
log(b(�)) =−nCov(ti(Y ), t j(Y ))

by Theorem 3.3b, and the covariance matrix ˙t with i j entry Cov(ti(Y ), t j(Y )) is
positive definite. Thus h(�) = − log[L(�)] has a positive definite Hessian and is
strictly convex with global min �̂ if �̂ ∈ Ω . So log[L(�)] is strictly concave with
global max �̂ if �̂ ∈Ω .
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Remark 5.3. For k-parameter exponential families with k > 1, it is usually easier
to verify that the family is regular than to calculate the Hessian matrix. For 1P-REFs,
check that the critical point is a global maximum using standard calculus tech-
niques such as calculating the second derivative of the log likelihood logL(�). For
a 1P-REF (one-parameter regular exponential family), verifying that the family is
regular is often more difficult than using calculus. Also, often the MLE is desired
for a parameter space ΘU which is not an open set (e.g., for ΘU = [0,1] instead of
Θ = (0,1)).

Remark 5.4. (Barndorff–Nielsen 1982). The MLE does not exist if �̂ is not
in Ω , an event that occurs with positive probability for discrete distributions. If T is
the complete sufficient statistic and C is the closed convex hull of the support of T ,
then the MLE exists iff T ∈ int C where int C is the interior of C.

Remark 5.5. Suppose L(�) = f (y|�) = g(y|�)I(y ∈ Y�) =
g(y|�)I(� ∈ Ay) = g(y|�)I(� ∈ Ay)+0I(� ∈ Ac

y) where Ac
y is the complement of

Ay . Then log(L(�)) = log[g(y|�)]I(� ∈ Ay)+ (−∞)I(� ∈ Ac
y). Neither L(�) nor

log(L(�)) is maximized for � ∈ Ac
y , and for � ∈ Ay , the log likelihood log(L(�)) =

log[g(y|�)]I(y ∈ Y�) = log[g(y|�)]I(� ∈ Ay). Thus if L(�) = g(y|�)I(y ∈ Y�),
do not do anything to the indicator when finding log(L(�)), but only consider
values of � for which the indicator is equal to one when maximizing log(L(�)).

Remark 5.6. As illustrated in the following examples, the second derivative is
evaluated at θ̂(y). The MLE is a statistic and Tn(y) = θ̂ (y) is the observed value
of the MLE Tn(Y ) = θ̂ (Y ). Often y and Y are suppressed. Hence in the following
example, θ̂ = y is the observed value of the MLE, while θ̂ = Y is the MLE.

Example 5.1. Suppose that Y1, . . . ,Yn are iid Poisson (θ ). This distribution is a
1P-REF with Θ = (0,∞). The likelihood

L(θ ) = c e−nθ exp[log(θ )∑yi]

where the constant c does not depend on θ , and the log likelihood

log(L(θ )) = d − nθ + log(θ )∑yi

where d = log(c) does not depend on θ . Hence

d
dθ

log(L(θ )) =−n+
1
θ ∑yi

set
= 0,

or ∑yi = nθ , or
θ̂ = y.

Notice that θ̂ is the unique solution and

d2

dθ 2 log(L(θ )) =
−∑yi

θ 2 < 0
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unless ∑yi = 0. Hence for ∑yi > 0 the log likelihood is strictly concave and Y is the
MLE of θ . The MLE does not exist if ∑n

i=1 Yi = 0 since 0 is not in Θ .
Now suppose that Θ = [0,∞). This family is not an exponential family since the

same formula for the pmf needs to hold for all values of θ ∈Θ and 00 is not defined.
Notice that

f (y|θ ) = e−θθ y

y!
I[θ > 0]+ 1 I[θ = 0,y = 0].

Now

IA(θ )IB(θ ) = IA∩B(θ )

and IØ(θ ) = 0 for all θ . Hence the likelihood

L(θ ) = e−nθ exp

[

log(θ )
n

∑
i=1

yi

]
1

∏n
i=1 yi!

I[θ > 0]+ 1 I

[

θ = 0,
n

∑
i=1

yi = 0

]

.

If ∑yi �= 0, then y maximizes L(θ ) by the work above. If ∑yi = 0, then L(θ ) =
e−nθ I(θ > 0)+ I(θ = 0) = e−nθ I(θ ≥ 0) which is maximized by θ = 0 = y. Hence
Y is the MLE of θ if Θ = [0,∞).

By invariance, t(Y ) is the MLE of t(θ ). Hence (Y )2 is the MLE of θ 2. sin(Y ) is
the MLE of sin(θ ), etc.

Example 5.2. Suppose that Y1, . . . ,Yn are iid N(μ ,σ2) where σ2 > 0 and μ ∈
R= (−∞,∞). Then

L(μ ,σ2) =

(
1√
2π

)n 1

(σ2)n/2
exp

[
−1
2σ2

n

∑
i=1

(yi − μ)2

]

.

Notice that
d

dμ

n

∑
i=1

(yi − μ)2 =
n

∑
i=1

−2(yi− μ) set
= 0

or ∑n
i=1 yi = nμ or μ̂ = y. Since μ̂ is the unique solution and

d2

dμ2

n

∑
i=1

(yi − μ)2 = 2n > 0,

μ̂ = y is the minimizer of h(μ) = ∑n
i=1(yi − μ)2. Hence y is the maximizer of

exp

[
−1
2σ2

n

∑
i=1

(yi − μ)2

]

regardless of the value of σ2 > 0. Hence μ̂ = Y is the MLE of μ and the MLE of
σ2 can be found by maximizing the profile likelihood

LP(σ2) = L(μ̂(y),σ2) =

(
1√
2π

)n 1

(σ2)n/2
exp

[
−1
2σ2

n

∑
i=1

(yi − y)2

]

.
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Writing τ = σ2 often helps prevent calculus errors. Then

log(Lp(τ)) = d − n
2

log(τ)+
−1
2τ

n

∑
i=1

(yi − y)2

where the constant d does not depend on τ . Hence

d
dτ

log(Lp(τ)) =
−n
2

1
τ
+

1
2τ2

n

∑
i=1

(yi − y)2 set
= 0,

or

nτ =
n

∑
i=1

(yi − y)2

or

τ̂ =
1
n

n

∑
i=1

(yi − y)2

and the solution τ̂ is the unique critical point. Note that

d2

dτ2 log(LP(τ)) =
n

2(τ)2 − ∑(yi − y)2

(τ)3

∣
∣
∣
∣
τ=τ̂

=
n

2(τ̂)2 − nτ̂
(τ̂)3

2
2

=
−n

2(τ̂)2 < 0.

Hence σ̂2 = τ̂ = 1
n ∑

n
i=1(Yi −Y )2 is the MLE of σ2 by Remark 5.1 V). Thus

(Y , 1
n ∑

n
i=1(Yi −Y )2) is the MLE of (μ ,σ2).

Example 5.3. Following Pewsey (2002), suppose that Y1, . . . ,Yn are iid
HN(μ ,σ2) where μ and σ2 are both unknown. Let the ith order statistic Y(i) ≡ Yi:n.
Then the likelihood

L(μ ,σ2) = cI[y1:n ≥ μ ]
1
σn exp

[( −1
2σ2

)

∑(yi − μ)2
]
.

For any fixed σ2 > 0, this likelihood is maximized by making ∑(yi − μ)2 as small
as possible subject to the constraint y1:n ≥ μ . Notice that for any μo < y1:n, the terms
(yi − y1:n)

2 < (yi − μo)
2. Hence the MLE of μ is

μ̂ = Y1:n

and the MLE of σ2 is found by maximizing the log profile likelihood

log(LP(σ2)) = log(L(y1:n,σ2)) = d − n
2

log(σ2)− 1
2σ2 ∑(yi − y1:n)

2,

and
d

d(σ2)
log(L(y1:n,σ2)) =

−n
2(σ2)

+
1

2(σ2)2 ∑(yi − y1:n)
2 set
= 0.
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Or ∑(yi − y1:n)
2 = nσ2. So

σ̂2 ≡ wn =
1
n∑(yi − y1:n)

2.

Since the solution σ̂2 is unique and

d2

d(σ2)2 log(L(y1:n,σ2)) =

n
2(σ2)2 − ∑(yi − μ)2

(σ2)3 )

∣
∣
∣∣
σ2=σ̂2

=
n

2(σ̂2)2 − nσ̂2

(σ̂2)3

2
2
=

−n
2σ̂2 < 0,

(μ̂ , σ̂2) = (Y1:n,Wn) is MLE of (μ ,σ2).

Example 5.4. Suppose that the random vectors X1, . . . ,Xn are iid from a multi-
variate normal Np(�,˙ ) distribution where ˙ is a positive definite matrix. To find
the MLE of (�,˙ ) we will use three results proved in Anderson (1984, p. 62).

i)
n

∑
i=1

(xi −�)T ˙−1(xi −�) = tr(˙−1A)+ n(x−�)T ˙−1(x−�)

where

A=
n

∑
i=1

(xi −x)(xi −x)T .

ii) Let C and D be positive definite matrices. Then C = 1
nD maximizes

h(C) =−n log(|C|)− tr(C−1D)

with respect to positive definite matrices.
iii) Since ˙−1 is positive definite, (x−�)T ˙−1(x−�)≥ 0 as a function of � with
equality iff � = x.

Since

f (x|�,˙ ) =
1

(2π)p/2|˙ |1/2
exp

[
−1

2
(x−�)T ˙−1(x−�)

]
,

the likelihood function

L(�,˙ ) =
n

∏
i=1

f (xi|�,˙ )

=
1

(2π)np/2|˙ |n/2
exp

[

−1
2

n

∑
i=1

(xi −�)T ˙−1(xi −�)

]

,
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and the log likelihood log(L(�,˙ )) =

−np
2

log(2π)− n
2

log(|˙ |)− 1
2

n

∑
i=1

(xi −�)T ˙−1(xi −�)

=−np
2

log(2π)− n
2

log(|˙ |)− 1
2

tr(˙−1A)− n
2
(x−�)T ˙−1(x−�)

by i). Now the last term is maximized by � = x by iii) and the middle two terms are
maximized by 1

nA by ii) since ˙ and A are both positive definite. Hence the MLE
of (�,˙ ) is

(�̂, ˆ̇ ) =

(

X,
1
n

n

∑
i=1

(Xi −X)(Xi −X)T

)

.

Example 5.5. Let X1, . . . ,Xn be independent identically distributed random vari-
ables from a lognormal (μ ,σ2) distribution with pdf

f (x) =
1

x
√

2πσ2
exp

(−(log(x)− μ)2

2σ2

)

where σ > 0 and x > 0 and μ is real. Assume that σ is known.

a) Find the maximum likelihood estimator of μ .
b) What is the maximum likelihood estimator of μ3? Explain.

Solution: a)

μ̂ =
∑ log(Xi)

n

To see this note that

L(μ) =
(

∏ 1

xi

√
2πσ2

)
exp

(−∑(log(xi)− μ)2

2σ2

)
.

So

log(L(μ)) = log(c) − ∑(log(xi)− μ)2

2σ2

and the derivative of the log likelihood wrt μ is

∑2(log(xi)− μ)
2σ2 .

Setting this quantity equal to 0 gives nμ =∑ log(xi) and the solution μ̂ is unique.
The second derivative is −n/σ2 < 0, so μ̂ is indeed the global maximum.

b) (
∑ log(Xi)

n

)3

by invariance.
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Example 5.6. Suppose that the joint probability distribution function of
X1, . . . ,Xk is

f (x1,x2, . . . ,xk|θ ) = n!
(n− k)!θ k exp

(−[(∑k
i=1 xi)+ (n− k)xk]

θ

)

where 0 ≤ x1 ≤ x2 ≤ ·· · ≤ xk and θ > 0.

a) Find the maximum likelihood estimator (MLE) for θ .
b) What is the MLE for θ 2? Explain briefly.

Solution: a) Let t = [(∑k
i=1 xi) + (n − k)xk]. L(θ ) = f (x|θ ) and log(L(θ )) =

log( f (x|θ )) =
d− k log(θ )− t

θ
.

Hence
d

dθ
log(L(θ )) =

−k
θ

+
t
θ 2

set
= 0.

Hence

kθ = t

or

θ̂ =
t
k
.

This is a unique solution and

d2

dθ 2 log(L(θ )) =
k
θ 2 − 2t

θ 3

∣
∣
∣
∣
θ=θ̂

=
k

θ̂ 2
− 2kθ̂

θ̂ 3
=− k

θ̂ 2
< 0.

Hence θ̂ = T/k is the MLE where T = [(∑k
i=1 Xi)+ (n− k)Xk].

b) θ̂ 2 by the invariance principle.

Example 5.7. Let X1, . . . ,Xn be independent identically distributed random vari-
ables with pdf

f (x) =
1
λ

x
1
λ −1,

where λ > 0 and 0 < x ≤ 1.

a) Find the maximum likelihood estimator of λ .
b) What is the maximum likelihood estimator of λ 3? Explain.

Solution: a) For 0 < x ≤ 1

f (x) =
1
λ

exp

[(
1
λ
− 1

)
log(x)

]
.
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Hence the likelihood

L(λ ) =
1
λ n exp

[(
1
λ
− 1

)

∑ log(xi)

]
,

and the log likelihood

log(L(λ )) =−n log(λ )+
(

1
λ
− 1

)

∑ log(xi).

Hence
d

dλ
log(L(λ )) =

−n
λ

− ∑ log(xi)

λ 2
set
= 0,

or −∑ log(xi) = nλ , or

λ̂ =
−∑ log(xi)

n
.

Notice that λ̂ is the unique solution and that

d2

dλ 2 log(L(λ )) =
n
λ 2 +

2∑ log(xi)

λ 3

∣
∣
∣
∣
λ=λ̂

=
n

λ̂ 2
− 2nλ̂

λ̂ 3
=

−n

λ̂ 2
< 0.

Hence λ̂ =−∑ log(Xi)/n is the MLE of λ .
b) By invariance, λ̂ 3 is the MLE of λ .

2.0 2.5 3.0 3.5 4.0

0.
00

06
0.
00

10

theta

L

L(theta) for U(2,4) data

Fig. 5.2 Sample size n = 10
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Example 5.8. Suppose Y1, . . . ,Yn are iid U(θ − 1,θ + 1). Then

L(θ ) =
n

∏
i=1

f (yi) =
n

∏
i=1

1
2

I(θ − 1 ≤ yi ≤ θ + 1) =
1
2n I(θ − 1 ≤ all yi ≤ θ + 1)

=
1
2n I(θ − 1 ≤ y(1) ≤ y(n) ≤ θ + 1) =

1
2n I(y(n)− 1 ≤ θ ≤ y(1) + 1).

Let 0 ≤ c ≤ 1. Then any estimator of the form θ̂c = c[Y(n)− 1]+ (1− c)[Y(1) + 1]
is an MLE of θ . Figure 5.2 shows L(θ ) for U(2,4) data with n = 10,y(1) = 2.0375
and y(n) = 3.7383. The height of the plotted line segment is 1/210 ≈ 0.00098.

Remark 5.7. Chapter 10 has many MLE examples.

5.2 Method of Moments Estimators

The method of moments is another useful way for obtaining point estimators. Let
Y1, . . . ,Yn be an iid sample and let

μ̂ j =
1
n

n

∑
i=1

Y j
i and μ j ≡ μ j(�) = E�(Y

j) (5.2)

for j = 1, . . . ,k. So μ̂ j is the jth sample moment and μ j is the jth population
moment. Fix k and assume that μ j = μ j(θ1, . . . ,θk). Solve the system

μ̂1
set
= μ1(θ1, . . . ,θk)

...
...

μ̂k
set
= μk(θ1, . . . ,θk)

for �̃ .

Definition 5.3. The solution θ̃ = (θ̃1, . . . , θ̃k) is the method of moments est-
imator of � . If g is a continuous function of the first k moments and h(�) =
g(μ1(�), . . . ,μk(�)), then the method of moments estimator of h(θ ) is

g(μ̂1, . . . , μ̂k).

Definition 5.3 is similar to the invariance principle for the MLE, but note that
g needs to be a continuous function, and the definition only applies to a function
of (μ̂1, . . . , μ̂k) where k ≥ 1. Hence Y is the method of moments estimator of the
population mean μ , and g(Y ) is the method of moments estimator of g(μ) if g is a
continuous function. Sometimes the notation θ̂MLE and θ̂MM will be used to denote
the MLE and method of moments estimators of θ , respectively. As with maximum
likelihood estimators, not all method of moments estimators exist in closed form,
and then numerical techniques must be used.
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Example 5.9. Let Y1, . . . ,Yn be iid from a distribution with a given pdf or pmf
f (y|θ ).
a) If E(Y ) = h(θ ), then θ̂MM = h−1(Y ).
b) The method of moments estimator of E(Y ) = μ1 is μ̂1 = Y .
c) The method of moments estimator of VARθ (Y ) = μ2(θ )− [μ1(θ )]2 is

σ̂2
MM = μ̂2 − μ̂2

1 =
1
n

n

∑
i=1

Y 2
i − (Y )2 =

1
n

n

∑
i=1

(Yi −Y )2 ≡ S2
M.

Method of moments estimators need not be unique. For example both Y and S2
M

are method of moment estimators of θ for iid Poisson(θ ) data. Generally the method
of moments estimators that use small j for μ̂ j are preferred, so use Y for Poisson
data.

Proposition 5.3. Let S2
M = 1

n ∑
n
i=1(Yi −Y )2 and suppose that E(Y ) = h1(θ1,θ2)

and V (Y ) = h2(θ1,θ2). Then solving

Y
set
= h1(θ1,θ2)

S2
M

set
= h2(θ1,θ2)

for �̃ is a method of moments estimator.

Proof. Notice that μ1 = h1(θ1,θ2) = μ1(θ1,θ2) while μ2 − [μ1]
2 = h2(θ1,θ2).

Hence μ2 = h2(θ1,θ2)+ [h1(θ1,θ2)]
2 = μ2(θ1,θ2). Hence the method of moments

estimator is a solution to Y
set
= μ1(θ1,θ2) and 1

n ∑
n
i=1 Y 2

i
set
= h2(θ1,θ2)+ [μ1(θ1,θ2)]

2.

Equivalently, solve Y
set
= h1(θ1,θ2) and

1
n ∑

n
i=1 Y 2

i − [Y ]2 = S2
M

set
= h2(θ1,θ2). �

Example 5.10. Suppose that Y1, . . . ,Yn be iid gamma (ν,λ ). Then μ̂1
set
= E(Y ) =

νλ and μ̂2
set
= E(Y 2) = VAR(Y )+ [E(Y)]2 = νλ 2 +ν2λ 2 = νλ 2(1+ν). Substitute

ν = μ̂1/λ into the second equation to obtain

μ̂2 =
μ̂1

λ
λ 2
(

1+
μ̂1

λ

)
= λ μ̂1 + μ̂2

1 .

Thus

λ̃ =
μ̂2 − μ̂2

1

μ̂1
=

S2
M

Y
and ν̃ =

μ̂1

λ̃
=

μ̂2
1

μ̂2 − μ̂2
1

=
[Y ]2

S2
M

.

Alternatively, solve Y
set
= νλ and S2

M
set
= νλ 2 = (νλ )λ . Hence λ̃ = S2

M/Y and

ν̃ =
Y

λ̃
=

[Y ]2

S2
M

.
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5.3 Summary

Let f (y|�) be the pmf or pdf of a sample Y . If Y = y is observed, then the likeli-
hood function L(�) = f (y|�). For each sample point y = (y1, . . . ,yn), let �̂(y) be
a parameter value at which L(�|y) attains its maximum as a function of � with y

held fixed. Then a maximum likelihood estimator (MLE) of the parameter � based
on the sample Y is �̂(Y ).

Note: it is crucial to observe that the likelihood function is a function of � (and
that y1, . . . ,yn act as fixed constants).

Note: If Y1, . . . ,Yn is an independent sample from a population with pdf or pmf
f (y|�) then the likelihood function

L(�) = L(�|y1, . . . ,yn) =
n

∏
i=1

f (yi|�).

Note: If the MLE �̂ exists, then �̂ ∈Θ .
Potential candidates for the MLE can sometimes be found by differentiating

L(�), by direct maximization, or using the profile likelihood. Typically the log like-
lihood is used as in A) below.

A) Let Y1, . . . ,Yn be iid with pdf or pmf f (y|θ ). Then L(θ ) =∏n
i=1 f (yi|θ ). To find

the MLE,

i) find L(θ ) and then find the log likelihood logL(θ ).
ii) Find the derivative d

dθ logL(θ ), set the derivative equal to zero and solve for θ .
The solution is a candidate for the MLE.

iii) Invariance Principle: If θ̂ is the MLE of θ , then τ(θ̂ ) is the MLE of τ(θ ).
iv) Show that θ̂ is the MLE by showing that θ̂ is the global maximizer of logL(θ ).

Often this is done by noting that θ̂ is the unique solution to the equation
d

dθ logL(θ ) = 0 and that the second derivative evaluated at θ̂ is negative:
d2

dθ 2 logL(θ )|θ̂ < 0.

B) If logL(θ ) is strictly concave ( d2

dθ2 logL(θ )< 0 for all θ ∈Θ ), then any local
max of logL(θ ) is a global max.

C) Know how to find the MLE for the normal distribution (including when μ or σ2

is known). Memorize the MLEs

Y , S2
M =

1
n

n

∑
i=1

(Yi −Y )2,
1
n

n

∑
i=1

(Yi − μ)2

for the normal and for the uniform distribution. Also Y is the MLE for several
brand name distributions. Notice that S2

M is the method of moments estimator
for V (Y ) and is the MLE for V (Y ) if the data are iid N(μ ,σ2).

D) On qualifying exams, the N(μ ,μ) and N(μ ,μ2) distributions are common. See
Problems 5.4, 5.30, and 5.35.
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E) Indicators are useful. For example,∏n
i=1 IA(yi) = I(all yi ∈ A) and ∏k

j=1 IA j(y) =
I∩k

j=1A j
(y). Hence I(0 ≤ y ≤ θ ) = I(0 ≤ y)I(y ≤ θ ), and ∏n

i=1 I(θ1 ≤ yi ≤ θ2) =

I(θ1 ≤ y(1) ≤ y(n) ≤ θ2) = I(θ1 ≤ y(1))I(y(n) ≤ θ2).
F) Suppose X1, . . . ,Xn are iid with pdf or pmf f (x|λ ) and Y1, . . . ,Yn are iid with pdf

or pmf g(y|μ). Suppose that the X’s are independent of the Y ’s. Then

sup
(λ ,μ)∈Θ

L(λ ,μ |x,y)≤ sup
λ

Lx(λ )sup
μ

Ly(μ)

where Lx(λ ) =∏n
i=1 f (xi|λ ). Hence if λ̂ is the marginal MLE of λ and μ̂ is the

marginal MLE of μ , then (λ̂ , μ̂) is the MLE of (λ ,μ) provided that (λ̂ , μ̂) is in
the parameter space Θ .

G) Let μ̂ j =
1
n ∑

n
i=1 Y j

i , let μ j = E(Y j) and assume that μ j = μ j(θ1, . . . ,θk). Solve
the system

μ̂1
set
= μ1(θ1, . . . ,θk)

...
...

μ̂k
set
= μk(θ1, . . . ,θk)

for the method of moments estimator �̃ .
H) If g is a continuous function of the first k moments and h(�) =

g(μ1(�), . . . ,μk(�)), then the method of moments estimator of h(�) is
g(μ̂1, . . . , μ̂k).

5.4 Complements

Optimization theory is also known as nonlinear programming and shows how to
find the global max and min of a multivariate function. Peressini et al. (1988) is an
undergraduate text. Also see Sundaram (1996) and Bertsekas (1999).

Maximum likelihood estimation is widely used in statistical models. See
Pawitan (2001) and texts for Categorical Data Analysis, Econometrics, Multiple
Linear Regression Generalized Linear Models, Multivariate Analysis, and Survival
Analysis.

Suppose that Y = t(W ) and W = t−1(Y ) where W has a pdf with parameters � ,
the transformation t does not depend on any unknown parameters, and the pdf of
Y is

fY (y) = fW (t−1(y))

∣
∣
∣
∣
dt−1(y)

dy

∣
∣
∣
∣ .

If W1, . . . ,Wn are iid with pdf fW (w), assume that the MLE of � is �̂W (w) where the
wi are the observed values of Wi and w = (w1, . . . ,wn). If Y1, . . . ,Yn are iid and the
yi are the observed values of Yi, then the likelihood is

LY (�) =

(
n

∏
i=1

∣
∣
∣
∣
dt−1(yi)

dy

∣
∣
∣
∣

)
n

∏
i=1

fW (t−1(yi)|�) = c
n

∏
i=1

fW (t−1(yi)|�).
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Hence the log likelihood is log(LY (�)) =

d +
n

∑
i=1

log[ fW (t−1(yi)|�)] = d+
n

∑
i=1

log[ fW (wi|�)] = d+ log[LW (�)]

where wi = t−1(yi). Hence maximizing the log(LY (�)) is equivalent to maximizing
log(LW (�)) and

�̂Y (y) = �̂W (w) = �̂W (t−1(y1), . . . , t
−1(yn)). (5.3)

Compare Meeker and Escobar (1998, p. 175).

Example 5.11. Suppose Y1, . . . ,Yn are iid lognormal (μ ,σ2). Then Wi =
log(Yi)∼ N(μ ,σ2) and the MLE (μ̂ , σ̂2) = (W , 1

n ∑
n
i=1(Wi −W)2).

One of the most useful properties of the maximum likelihood estimator is the
invariance property: if θ̂ is the MLE of θ , then τ(θ̂ ) is the MLE of τ(θ ). Olive
(2004) is a good discussion of the MLE invariance principle. Also see Pal and Berry
(1992). Many texts either define the MLE of τ(θ ) to be τ(θ̂ ), say that the property
is immediate from the definition of the MLE, or quote Zehna (1966). A little known
paper, Berk (1967), gives an elegant proof of the invariance property that can be
used in introductory statistical courses. The next subsection will show that Berk
(1967) answers some questions about the MLE which cannot be answered using
Zehna (1966).

5.4.1 Two “Proofs” of the Invariance Principle

“Proof” I) The following argument of Zehna (1966) also appears in Casella and
Berger (2002, p. 320). Let � ∈Θ and let h :Θ →Λ be a function. Since the MLE

�̂ ∈Θ , h(�̂) = �̂ ∈Λ .

If h is not one to one, then many values of � may be mapped to �. Let

Θ� = {� : h(�) = �}

and define the induced likelihood function M(�) by

M(�) = sup
�∈Θ�

L(�). (5.4)

Then for any � ∈Λ ,

M(�) = sup
�∈Θ�

L(�) ≤ sup
�∈Θ

L(�) = L(�̂) = M(�̂). (5.5)
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Hence h(�̂) = �̂ maximizes the induced likelihood M(�). Zehna (1966) says that
since h(�̂) maximizes the induced likelihood, we should call h(�̂) the MLE of h(�),
but the definition of MLE says that we should be maximizing a genuine likelihood.

This argument raises two important questions.

• If we call h(�̂) the MLE of h(�) and h is not one to one, does h(�̂) maximize a
likelihood or should

• h(�̂) be called a maximum induced likelihood estimator?
• If h(�̂) is an MLE, what is the likelihood function K(h(�))?

Some examples might clarify these questions.

• If the population come from a N(μ ,σ2) distribution, the invariance principle says
that the MLE of μ/σ is X/SM where

X =
1
n

n

∑
i=1

Xi and S2
M =

1
n

n

∑
i=1

(Xi −X)2

are the MLEs of μ and σ2. Since the function h(x,y) = x/
√

y is not one to one
(e.g., h(x,y) = 1 if x =

√
y), what is the likelihood K(h(μ ,σ2)) = K(μ/σ) that

is being maximized?
• If Xi comes from a Bernoulli(ρ) population, why is Xn(1 − Xn) the MLE of

ρ(1−ρ)?

Proof II) Examining the invariance principle for one-to-one functions h is also
useful. When h is one to one, let � = h(�). Then the inverse function h−1 exists and
� = h−1(�). Hence

f (x|�) = f (x|h−1(�)) (5.6)

is the joint pdf or pmf of x. So the likelihood function of h(�) = � is

L∗(�)≡ K(�) = L(h−1(�)). (5.7)

Also note that

sup
�

K(�|x) = sup
�

L(h−1(�)|x) = L(�̂ |x). (5.8)

Thus

�̂ = h(�̂) (5.9)

is the MLE of � = h(�) when h is one to one.

If h is not one to one, then the new parameters � = h(�) do not give enough
information to define f (x|�). Hence we cannot define the likelihood. That is, a
N(μ ,σ2) density cannot be defined by the parameter μ/σ alone. Before concluding
that the MLE does not exist if h is not one to one, note that if X1, . . . ,Xn are iid
N(μ ,σ2) then X1, . . . ,Xn remain iid N(μ ,σ2) even though the investigator did not
rename the parameters wisely or is interested in a function h(μ ,σ) = μ/σ that is
not one to one. Berk (1967) said that if h is not one to one, define

w(�) = (h(�),u(�)) = (�,�) = � (5.10)
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such that w(�) is one to one. Note that the choice

w(�) = (h(�),�)

works. In other words, we can always take u to be the identity function.
The choice of w is not unique, but the inverse function

w−1(�) = �

is unique. Hence the likelihood is well defined, and w(�̂) is the MLE of �. �

Example 5.12. Following Lehmann (1999, p. 466), let

f (x|σ) = 1√
2π σ

exp

(−x2

2σ2

)

where x is real and σ > 0. Let η = σ k so σ = η1/k = h−1(η). Then

f ∗(x|η) = 1√
2π η1/k

exp

( −x2

2η2/k

)
= f (x|σ = h−1(η)).

Notice that calling h(�̂) the MLE of h(�) is analogous to calling Xn the MLE
of μ when the data are from a N(μ ,σ2) population. It is often possible to choose
the function u so that if � is a p× 1 vector, then so is �. For the N(μ ,σ2) example
with h(μ ,σ2) = h(�) = μ/σ we can take u(�) = μ or u(�) = σ2. For the Ber(ρ)
example, w(ρ) = (ρ(1−ρ),ρ) is a reasonable choice.

To summarize, Berk’s proof should be widely used to prove the invariance prin-
ciple, and

I) changing the names of the parameters does not change the distribution of the
sample, e.g., if X1, . . . ,Xn are iid N(μ ,σ2), then X1, . . . ,Xn remain iid N(μ ,σ2)
regardless of the function h(μ ,σ2) that is of interest to the investigator.

II) The invariance principle holds as long as h(�̂) is a random variable or random
vector: h does not need to be a one-to-one function. If there is interest in � =
h(�) where h is not one to one, then additional parameters � = u(�) need
to be specified so that w(�) = � = (�,�) = (h(�),u(�)) has a well-defined
likelihood K(�) = L(w−1(�)). Then by Definition 5.2, the MLE is �̂ = w(�̂) =
w(h(�̂),u(�̂)) and the MLE of � = h(�) is �̂ = h(�̂).

III) Using the identity function � = u(�) = � always works since � = w(�) =
(h(�),�) is a one-to-one function of � . However, using u(�) such that � and �

have the same dimension is often useful.
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5.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.

5.1∗. Let Y1, . . . ,Yn be iid binomial (k = 1,ρ).

a) Assume that ρ ∈Θ = (0,1) and that 0 < ∑n
i=1 yi < n. Show that the MLE of ρ

is ρ̂ = Y .
b) Now assume that ρ ∈Θ = [0,1]. Show that f (y|ρ) =

ρy(1−ρ)1−yI(0 < ρ < 1)+ I(ρ = 0,y = 0)+ I(ρ = 1,y = 1). Then show that

L(ρ) = ρ∑y(1−ρ)n−∑yI(0 < ρ < 1)+ I(ρ = 0,∑y = 0)+ I(ρ = 1,∑y = n).

If ∑y = 0 show that ρ̂ = 0 = y. If ∑y = n show that ρ̂ = 1= y. Then explain why
ρ̂ = Y if Θ = [0,1].

5.2. Let (X ,Y ) have the bivariate density

f (x,y) =
1

2π
exp

(−1
2

[(x−ρ cosθ )2 +(y−ρ sinθ )2]

)
.

Suppose that there are n independent pairs of observations (Xi,Yi) from the above
density and that ρ is known. Assume that 0 ≤ θ ≤ 2π . Find a candidate for the max-
imum likelihood estimator θ̂ by differentiating the log likelihood log(L(θ )). (Do
not show that the candidate is the MLE, it is difficult to tell whether the candidate,
0 or 2π is the MLE without the actual data.)

5.3∗. Suppose a single observation X = x is observed where X is a random vari-
able with pmf given by the table below. Assume 0 ≤ θ ≤ 1, and find the MLE
θ̂MLE(x). (Hint: drawing L(θ ) = L(θ |x) for each of the four values of x may help.)

x 1 2 3 4
f (x|θ ) 1/4 1/4 1+θ

4
1−θ

4

5.4. Let X1, . . . ,Xn be iid normal N(μ ,γ2
o μ2) random variables where γ2

o > 0 is
known and μ > 0. Find the log likelihood log(L(μ |x1, . . . ,xn)) and solve

d
dμ

log(L(μ |x1, . . . ,xn)) = 0

for μ̂o, a potential candidate for the MLE of μ .

5.5. Suppose that X1, . . . ,Xn are iid uniform U(0,θ ). Use the factorization theo-
rem to write f (x|θ ) = g(T (x)|θ )I[x(1) ≥ 0] where T (x) is a one-dimensional suf-
ficient statistic. Then plot the likelihood function L(θ ) = g(T (x)|θ ) and find the
MLE of θ .
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5.6. Let Y1, . . . ,Yn be iid Burr Type XII(λ ,φ) with φ known. Find the MLE of λ .

5.7. Let Y1, . . . ,Yn be iid chi(p,σ ) with p known. Find the MLE of σ2.

5.8. Let Y1, . . . ,Yn iid double exponential DE(θ ,λ ) with θ known. Find the
MLE of λ .

5.9. Let Y1, . . . ,Yn be iid exponential EXP(λ ). Find the MLE of λ .

5.10. If Y1, . . . ,Yn are iid gamma G(ν,λ ) with ν known, find the MLE of λ .

5.11. If Y1, . . . ,Yn are iid geometric geom(ρ), find the MLE of ρ .

5.12. If Y1, . . . ,Yn are iid inverse Gaussian IG(θ ,λ ) with λ known, find the
MLE of θ .

5.13. If Y1, . . . ,Yn are iid inverse Gaussian IG(θ ,λ ) with θ known, find the
MLE of λ .

5.14. If Y1, . . . ,Yn are iid largest extreme value LEV(θ ,σ) where σ is known,
find the MLE of θ .

5.15. If Y1, . . . ,Yn are iid negative binomial NB(r,ρ) with r known, find the
MLE of ρ .

5.16. If Y1, . . . ,Yn are iid Rayleigh R(μ ,σ) with μ known, find the MLE of σ2.

5.17. If Y1, . . . ,Yn are iid Weibull W (φ ,λ ) with φ known, find the MLE of λ .

5.18. If Y1, . . . ,Yn are iid binomial BIN(k,ρ) with k known, find the MLE of ρ .

5.19. Suppose Y1, . . . ,Yn are iid two-parameter exponential EXP(θ ,λ ).

a) Show that for any fixed λ > 0, the log likelihood is maximized by y(1). Hence

the MLE θ̂ = Y(1).

b) Find λ̂ by maximizing the profile likelihood.

5.20. Suppose Y1, . . . ,Yn are iid truncated extreme value TEV(λ ). Find the
MLE of λ .

Problems from old quizzes and exams. Problems from old qualifying exams
are marked with a Q since these problems take longer than quiz and exam problems.

Note: Problem 5.21 would be better if it replaced “λ ≥ 0” by “λ > 0, and
assume ∑xi > 0.” But problems like 5.21 are extremely common on exams and
in texts.

5.21. Suppose that X1, . . . ,Xn are iid Poisson with pmf

f (x|λ ) = P(X = x|λ ) = e−λλ x

x!

where x = 0,1, . . . and λ ≥ 0.
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a) Find the MLE of λ . (Make sure that you prove that your estimator maximizes
the likelihood.)

b) Find the MLE of (1−λ )2.

5.22. Suppose that X1, . . . ,Xn are iid U(0,θ ). Make a plot of L(θ |x1, . . . ,xn).

a) If the uniform density is f (x) = 1
θ I(0 ≤ x ≤ θ ), find the MLE of θ if it exists.

b) If the uniform density is f (x) = 1
θ I(0 < x < θ ), find the MLE of θ if it exists.

5.23Q. Let X1, . . . ,Xn be a random sample from a normal distribution with
known mean μ and unknown variance τ .

a) Find the maximum likelihood estimator of the variance τ .
b) Find the maximum likelihood estimator of the standard deviation

√
τ . Explain

how the MLE was obtained.

5.24. Suppose a single observation X = x is observed where X is a random vari-
able with pmf given by the table below. Assume 0 ≤ θ ≤ 1. and find the MLE
θ̂MLE(x). (Hint: drawing L(θ ) = L(θ |x) for each of the values of x may help.)

x 0 1
f (x|θ ) 1+θ

2
1−θ

2

5.25. Suppose that X is a random variable with pdf f (x|θ ) = (x− θ )2/3 for
θ − 1 ≤ x ≤ 2+ θ . Hence L(θ ) = (x− θ )2/3 for x− 2 ≤ θ ≤ x+ 1. Suppose that
one observation X = 7 was observed. Find the MLE θ̂ for θ . (Hint: evaluate the
likelihood at the critical value and the two endpoints. One of these three values has
to be the MLE.)

5.26. Let X1, . . . ,Xn be iid from a distribution with pdf

f (x|θ ) = θx−2, 0 < θ ≤ x < ∞.

a) Find a minimal sufficient statistic for θ .
b) Find the MLE for θ .

5.27. Let Y1, . . . ,Yn be iid from a distribution with probability mass function

f (y|θ ) = θ (1−θ )y, where y = 0,1, . . . and 0 < θ < 1.

Assume 0 < ∑yi < n.

a) Find the MLE of θ . (Show that it is the global maximizer.)
b) What is the MLE of 1/θ 2? Explain.

5.28Q. Let X1, . . . ,Xn be independent identically distributed random variables
from a half normal HN(μ ,σ2) distribution with pdf

f (x) =
2√

2π σ
exp

(−(x− μ)2

2σ2

)
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where σ > 0 and x > μ and μ is real. Assume that μ is known.

a) Find the maximum likelihood estimator of σ2.
b) What is the maximum likelihood estimator of σ? Explain.

5.29. Let X1, . . . ,Xn be independent identically distributed random variables
from a lognormal (μ ,σ2) distribution with pdf

f (x) =
1

x
√

2πσ2
exp

(−(log(x)− μ)2

2σ2

)

where σ > 0 and x > 0 and μ is real. Assume that σ is known.

a) Find the maximum likelihood estimator of μ .
b) What is the maximum likelihood estimator of μ3? Explain.

5.30Q. Let X be a single observation from a normal distribution with mean θ
and with variance θ 2, where θ > 0. Find the maximum likelihood estimator of θ 2.

5.31. Let X1, . . . ,Xn be independent identically distributed random variables with
probability density function

f (x) =
σ1/λ

λ
exp

[
−
(

1+
1
λ

)
log(x)

]
I[x ≥ σ ]

where x ≥ σ , σ > 0, and λ > 0. The indicator function I[x ≥ σ ] = 1 if x ≥ σ and 0,
otherwise. Find the maximum likelihood estimator (MLE) (σ̂ , λ̂ ) of (σ ,λ ) with the
following steps.

a) Explain why σ̂ = X(1) = min(X1, . . . ,Xn) is the MLE of σ regardless of the value
of λ > 0.

b) Find the MLE λ̂ of λ if σ = σ̂ (that is, act as if σ = σ̂ is known).

5.32. Let X1, . . . ,Xn be independent identically distributed random variables with
pdf

f (x) =
1
λ

exp

[
−
(

1+
1
λ

)
log(x)

]

where λ > 0 and x ≥ 1.

a) Find the maximum likelihood estimator of λ .
b) What is the maximum likelihood estimator of λ 8? Explain.

5.33. Let X1, . . . ,Xn be independent identically distributed random variables with
probability mass function

f (x) = e−2θ 1
x!

exp[log(2θ )x],

for x = 0,1, . . ., where θ > 0. Assume that at least one Xi > 0.
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a) Find the maximum likelihood estimator of θ .
b) What is the maximum likelihood estimator of (θ )4? Explain.

5.34. Let X1, . . . ,Xn be iid with one of two probability density functions. If θ = 0,
then

f (x|θ ) =
{

1, 0 ≤ x ≤ 1
0, otherwise.

If θ = 1, then

f (x|θ ) =
{

1
2
√

x , 0 ≤ x ≤ 1

0, otherwise.

Find the maximum likelihood estimator of θ .

Warning: Variants of the following question often appear on qualifying exams.

5.35Q. Let Y1, . . . ,Yn denote a random sample from a N(aθ ,θ ) population.

a) Find the MLE of θ when a = 1.
b) Find the MLE of θ when a is known but arbitrary.

5.36. Suppose that X1, . . . ,Xn are iid random variable with pdf

f (x|θ ) = (x−θ )2/3

for θ − 1 ≤ x ≤ 2+θ .

a) Assume that n = 1 and that X = 7 was observed. Sketch the log likelihood func-
tion L(θ ) and find the maximum likelihood estimator (MLE) θ̂ .

b) Again assume that n = 1 and that X = 7 was observed. Find the MLE of

h(θ ) = 2θ − exp(−θ 2).

5.37Q. Let X1, . . . ,Xn be independent identically distributed (iid) random vari-
ables with probability density function

f (x) =
2

λ
√

2π
ex exp

(−(ex − 1)2

2λ 2

)

where x > 0 and λ > 0.

a) Find the maximum likelihood estimator (MLE) λ̂ of λ .
b) What is the MLE of λ 2? Explain.

5.38Q. Let X1, . . . ,Xn be independent identically distributed random variables
from a distribution with pdf
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f (x) =
2

λ
√

2π
1
x

exp

[−(log(x))2

2λ 2

]

where λ > 0 where and 0 ≤ x ≤ 1.

a) Find the maximum likelihood estimator (MLE) of λ .
b) Find the MLE of λ 2.

5.39. Suppose that X1, . . . ,Xn are iid U(θ ,θ + 1) so that

L(θ ) = 1nI[x(1) ≥ θ ]I[x(n) ≤ θ + 1] = I[x(n)− 1 ≤ θ ≤ x(1)].

a) Sketch L(θ ).
b) An MLE of θ is θ̂MLE(x) = t for some fixed t ∈ [c,d]. Find [c,d].

5.40. Let Y1, . . . ,Yn be independent identically distributed random variables with
pdf

fY (y) =
2γ3/2
√
π

y2 exp(−γ y2)

where γ > 0 and y is real.

a) Find the maximum likelihood estimator of γ . (Make sure that you prove that your
answer is the MLE.)

b) What is the maximum likelihood estimator of 1/γ? Explain.

5.41Q. Suppose that X has probability density function

fX (x) =
θ

x1+θ , x ≥ 1

where θ > 0.

a) If U = X2, derive the probability density function fU(u) of U .
b) Find the method of moments estimator of θ .
c) Find the method of moments estimator of θ 2.

5.42Q. Suppose that the joint probability distribution function of X1, . . . ,Xk is

f (x1,x2, . . . ,xk|θ ) = n!
(n− k)!θ k exp

(−[(∑k
i=1 xi)+ (n− k)xk]

θ

)

where 0 ≤ x1 ≤ x2 ≤ ·· · ≤ xk and θ > 0.

a) Find the maximum likelihood estimator (MLE) for θ .
b) What is the MLE for θ 2? Explain briefly.

5.43Q. Let X1, . . . ,Xn be iid with pdf

f (x) =
cos(θ )

2cosh(πx/2)
exp(θx)

where x is real and |θ |< π/2.
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a) Find the maximum likelihood estimator (MLE) for θ .
b) What is the MLE for tan(θ )? Explain briefly.

5.44Q. Let X1, . . . ,Xn be a random sample from a population with pdf

f (x) =
1
σ

exp

(
− x− μ

σ

)
, x ≥ μ ,

where −∞< μ < ∞, σ > 0.

a) Find the maximum likelihood estimator of μ and σ .
b) Evaluate τ(μ ,σ) = Pμ,σ [X1 ≥ t] where t > μ . Find the maximum likelihood

estimator of τ(μ ,σ).

5.45Q. Let Y1, . . . ,Yn be independent identically distributed (iid) random
variables from a distribution with probability density function (pdf)

f (y) =
1

2
√

2π

(
1
θ

√
θ
y
+

θ
y2

√
y
θ

)
1
ν

exp

[ −1
2ν2

(
y
θ

+
θ
y

− 2

)]

where y > 0,θ > 0 is known and ν > 0.

a) Find the maximum likelihood estimator (MLE) of ν .
b) Find the MLE of ν2.

5.46Q. Let Y1, . . . ,Yn be independent identically distributed (iid) random vari-
ables from a distribution with probability density function (pdf)

f (y) = φ y−(φ+1) 1
1+ y−φ

1
λ

exp

[−1
λ

log(1+ y−φ)

]

where y > 0,φ > 0 is known and λ > 0.

a) Find the maximum likelihood estimator (MLE) of λ .
b) Find the MLE of λ 2.

5.47Q. Let Y1, . . . ,Yn be independent identically distributed (iid) random vari-
ables from an inverse half normal distribution with probability density function (pdf)

f (y) =
2

σ
√

2π
1
y2 exp

( −1
2σ2y2

)

where y > 0 and σ > 0.

a) Find the maximum likelihood estimator (MLE) of σ2.
b) Find the MLE of σ .

5.48Q. Let Y1, . . . ,Yn be independent identically distributed (iid) random vari-
ables from a distribution with probability density function (pdf)
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f (y) =
θ
y2 exp

(−θ
y

)

where y > 0 and θ > 0.

a) Find the maximum likelihood estimator (MLE) of θ .
b) Find the MLE of 1/θ .

5.49Q. Let Y1, . . . ,Yn be independent identically distributed (iid) random vari-
ables from a Lindley distribution with probability density function (pdf)

f (y) =
θ 2

1+θ
(1+ y)e−θy

where y > 0 and θ > 0.

a) Find the maximum likelihood estimator (MLE) of θ . You may assume that

d2

dθ 2 log(L(θ ))
∣
∣
∣∣
θ=θ̂

< 0.

b) Find the MLE of 1/θ .

5.50. Let Y1, . . . ,Yn be iid random variables from a distribution with pdf

f (y) =
θ

(1+ y)θ+1

where y > 0 and θ > 0. Find the MLE of θ .

5.51. Let Y1, . . . ,Yn be iid random variables from a distribution with pdf

f (y) =
θ

2(1+ |y|)θ+1

where −∞< y < ∞ and θ > 0. Find the MLE of θ .

5.52. Let Y1, . . . ,Yn be iid random variables from a distribution with pdf

f (y) =
2

σ
√

2π
1

1+ y
exp

[ −1
2σ2 [log(1+ y)]2

]

where y > 0 and σ > 0. Find the MLE of σ .



Chapter 6
Point Estimation II

Unbiased estimators and mean squared error should be familiar to the reader.
A UMVUE is an unbiased point estimator, and complete sufficient statistics are
crucial for UMVUE theory. Want point estimators to have small bias and small vari-
ance. An estimator with bias that goes to 0 and variance that goes to the FCRLB
as the sample size n goes to infinity will often outperform other estimators with
bias that goes to zero. Hence the FCRLB will be useful for large sample theory in
Chap. 8.

Warning: UMVUE theory is rarely used in practice unless the UMVUE Un of
θ satisfies Un = anθ̂MLE where an is a constant that could depend on the sample
size n. UMVUE theory tends to be useful if the data is iid from a 1P-REF if Un =
an∑n

i=1 t(Yi).

6.1 MSE and Bias

Definition 6.1. Let the sample Y = (Y1, . . . ,Yn) where Y has a pdf or pmf f (y|�) for
� ∈Θ . Assume all relevant expectations exist. Let τ(�) be a real valued function
of �, and let T ≡ T (Y1, . . . ,Yn) be an estimator of τ(�). The bias of the estimator T
for τ(�) is

B(T )≡ Bτ(�)(T )≡ Bias(T )≡ Biasτ(�)(T ) = E�(T )− τ(�). (6.1)

The mean squared error (MSE) of an estimator T for τ(�) is

MSE(T )≡ MSEτ(�)(T ) = E� [(T − τ(�))2]

= Var�(T )+ [Biasτ(�)(T )]
2. (6.2)

T is an unbiased estimator of τ(�) if

E�(T ) = τ(�) (6.3)

D.J. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4 6,
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158 6 Point Estimation II

for all � ∈Θ . Notice that Biasτ(�)(T ) = 0 for all � ∈Θ if T is an unbiased estimator
of τ(�).

Notice that the bias and MSE are functions of � for � ∈ Θ . If MSEτ(�)(T1)
< MSEτ(�)(T2) for all � ∈Θ , then T1 is “a better estimator” of τ(�) than T2. So est-
imators with small MSE are judged to be better than ones with large MSE. Often T1

has smaller MSE than T2 for some � but larger MSE for other values of �.

Often θ is real valued. A common problem considers a class of estimators Tk(Y )
of τ(θ ) where k ∈Λ . Find the MSE as a function of k and then find the value ko ∈Λ
that is the global minimizer of MSE(k) ≡ MSE(Tk). This type of problem is a lot
like the MLE problem except you need to find the global min rather than the global
max. This type of problem can often be done if Tk = kW1(X)+(1−k)W2(X) where
both W1 and W2 are unbiased estimators of τ(θ ) and 0 ≤ k ≤ 1.

Example 6.1. If X1, . . . ,Xn are iid N(μ ,σ2), then ko = n+ 1 will minimize the
MSE for estimators of σ2 of the form

S2(k) =
1
k

n

∑
i=1

(Xi −X)2

where k > 0. See Problem 6.2.

Example 6.2. Find the bias and MSE (as a function of n and c) of an estimator
T = c∑n

i=1 Yi or (T = bY ) of μ when Y1, . . . ,Yn are iid with E(Y1) = μ = θ and
V (Yi) = σ2.
Solution: E(T ) = c∑n

i=1 E(Yi) = ncμ , V (T ) = c2∑n
i=1 V (Yi) = nc2σ2, B(T ) =

E(T )− μ and MSE(T ) =V (T )+ [B(T)]2. (For T = bY , use c = b/n.)

Example 6.3. Suppose that Y1, . . . ,Yn are independent binomial(mi,ρ) where the
mi ≥ 1 are known constants. Let

T1 =
∑n

i=1 Yi

∑n
i=1 mi

and T2 =
1
n

n

∑
i=1

Yi

mi

be estimators of ρ .
a) Find MSE(T1).

b) Find MSE(T2).

c) Which estimator is better?
Hint: by the arithmetic–geometric–harmonic mean inequality,

1
n

n

∑
i=1

mi ≥ n

∑n
i=1

1
mi

.
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Solution: a)

E(T1) =
∑n

i=1 E(Yi)

∑n
i=1 mi

=
∑n

i=1 miρ
∑n

i=1 mi
= ρ ,

so MSE(T1) =V (T1) =

1
(∑n

i=1 mi)2 V (
n

∑
i=1

Yi) =
1

(∑n
i=1 mi)2

n

∑
i=1

V (Yi) =
1

(∑n
i=1 mi)2

n

∑
i=1

miρ(1−ρ)

=
ρ(1−ρ)
∑n

i=1 mi
.

b)

E(T2) =
1
n

n

∑
i=1

E(Yi)

mi
=

1
n

n

∑
i=1

miρ
mi

=
1
n

n

∑
i=1

ρ = ρ ,

so MSE(T2) =V (T2) =

1
n2 V

(
n

∑
i=1

Yi

mi

)

=
1
n2

n

∑
i=1

V

(
Yi

mi

)
=

1
n2

n

∑
i=1

V (Yi)

(mi)2 =
1
n2

n

∑
i=1

miρ(1−ρ)
(mi)2

=
ρ(1−ρ)

n2

n

∑
i=1

1
mi

.

c) The hint

1
n

n

∑
i=1

mi ≥ n

∑n
i=1

1
mi

implies that

n

∑n
i=1 mi

≤ ∑n
i=1

1
mi

n
and

1

∑n
i=1 mi

≤ ∑n
i=1

1
mi

n2 .

Hence MSE(T1)≤ MSE(T2), and T1 is better.

6.2 Exponential Families, UMVUEs, and the FCRLB

In the class of unbiased estimators, the UMVUE is best since the UMVUE has
the smallest variance, hence the smallest MSE. Often the MLE and method of
moments estimator are biased but have a smaller MSE than the UMVUE. MLEs
and method of moments estimators are widely used because they often have good
statistical properties and are relatively easy to compute. Sometimes the UMVUE,
MLE, and method of moments estimators for θ are the same for a 1P-REF when
θ̂ = 1

n ∑
n
i=1 t(Yi) and θ = E(θ̂ ) = E[t(Y )]. See Chap. 10 for examples.
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Definition 6.2. Let the sample Y = (Y1, . . . ,Yn) where Y has a pdf or pmf f (y|θ )
for θ ∈Θ . Assume all relevant expectations exist. Let τ(θ ) be a real valued function
of θ , and let U ≡ U(Y1, . . . ,Yn) be an estimator of τ(θ ). Then U is the uniformly
minimum variance unbiased estimator (UMVUE) of τ(θ ) if U is an unbiased est-
imator of τ(θ ) and if Varθ (U) ≤ Varθ (W) for all θ ∈ Θ where W is any other
unbiased estimator of τ(θ ).

The following theorem is the most useful method for finding UMVUEs since
if Y1, . . . ,Yn are iid from a 1P-REF f (y|θ ) = h(y)c(θ ) exp[w(θ )t(y)] where η =
w(θ ) ∈ Ω = (a,b) and a < b are not necessarily finite, then T (Y ) = ∑n

i=1 t(Yi) is a
complete sufficient statistic. It will turn out that Eθ [W (Y )|T (Y )]≡ E[W (Y )|T (Y )]
does not depend on θ . Hence U = E[W (Y )|T (Y )] is a statistic.

Theorem 6.1, Lehmann–Scheffé UMVUE (LSU) Theorem: If T (Y ) is a com-
plete sufficient statistic for θ , then

U = g(T (Y )) (6.4)

is the UMVUE of its expectation Eθ (U) = Eθ [g(T (Y ))]. In particular, if W (Y ) is
any unbiased estimator of τ(θ ), then

U ≡ g(T (Y )) = E[W (Y )|T (Y )] (6.5)

is the UMVUE of τ(θ ). If Vθ (U)< ∞ for all θ ∈Θ , then U is the unique UMVUE
of τ(θ ) = Eθ [g(T (Y ))].

The process (6.5) is called Rao–Blackwellization because of the following
theorem. The theorem is also called the Rao–Blackwell–Lehmann–Scheffé theorem.
Theorem 6.2 shows that if W is an unbiased estimator, then φ(T ) = E(W |T ) is a
better unbiased estimator than W in that MSEθ (φ(T ))≤ MSEθ (W ) for all θ ∈Θ .

Theorem 6.2, Rao–Blackwell Theorem. Let W ≡W (Y ) be an unbiased estima-
tor of τ(θ ) and let T ≡ T (Y ) be a sufficient statistic for θ . Then φ(T ) = E[W |T ] is
an unbiased estimator of τ(θ ) and VARθ [φ(T )]≤ VARθ (W ) for all θ ∈Θ .

Proof. Notice that φ(T ) does not depend on θ by the definition of a sufficient
statistic, and that φ(T ) is an unbiased estimator for τ(θ ) since τ(θ ) = Eθ (W ) =
Eθ (E(W |T )) = Eθ (φ(T )) by iterated expectations (Theorem 2.10). By Steiner’s
formula (Theorem 2.11), VARθ (W ) =

Eθ [VAR(W |T )]+VARθ [E(W |T )]≥ VARθ [E(W |T )] = VARθ [φ(T )]. �

Tips for finding the UMVUE:

i) From the LSU Theorem, if T (Y ) is complete sufficient statistic and g(T (Y ))
is a real valued function, then U = g(T (Y )) is the UMVUE of its expectation
Eθ [g(T (Y ))].
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ii) Given a complete sufficient statistic T (Y ) (e.g., T (Y ) = ∑n
i=1 t(Yi) if the data

are iid from a 1P-REF), the first method for finding the UMVUE of τ(θ ) is to guess
g and show that Eθ [g(T (Y ))] = τ(θ ) for all θ .

iii) If T (Y ) is complete, the second method is to find any unbiased estimator
W (Y ) of τ(θ ). Then U(Y ) = E[W (Y )|T (Y )] is the UMVUE of τ(�).

This problem is often very hard because guessing g or finding an unbiased est-
imator W and computing E[W (Y )|T (Y )] tend to be difficult. Write down the two
methods for finding the UMVUE and simplify E[W (Y )|T (Y )]. If you are asked to
find the UMVUE of τ(θ ), see if an unbiased estimator W (Y ) is given in the problem.
Also check whether you are asked to compute E[W (Y )|T (Y ) = t] anywhere. Note
that W (Y ) = I[Y1 = k] has E[W (Y )] = P(Y1 = k), and the UMVUE of P(Y1 = k)
is E(I(Y1 = k)|T (Y )] = P[Y1 = k|T (Y )] which needs to be simplified. The equality
holds since Z ≡ I(Y1 = k)|T (Y ) is 1 with probability equal to P[Y1 = k|T (Y )], and
Z = 0 with probability equal to 1−P[Y1 = k|T (Y )]. See a similar calculation in
Example 6.6 a).

iv) The following facts can be useful for computing the conditional expectation
via Rao–Blackwellization (see Problems 6.7, 6.10, and 6.12). Suppose Y1, . . . ,Yn

are iid with finite expectation.
a) Then E[Y1|∑n

i=1 Yi = x] = x/n.
b) If the Yi are iid Poisson(θ ), then (Y1|∑n

i=1Yi = x)∼ bin(x,1/n).
c) If the Yi are iid Bernoulli Ber(ρ), then (Y1|∑n

i=1 Yi = x)∼ Ber(x/n).
d) If the Yi are iid N(μ ,σ2), then (Y1|∑n

i=1 Yi = x)∼ N[x/n,σ2(1− 1/n)].

Result a) follows since the Yi|∑n
i=1 Yi = x have the same distribution. Hence

E[Yi|∑n
i=1 Yi = x] = c for i = 1, . . . ,n and some constant c. Then nc =

E[∑n
i=1 Yi|∑n

i=1 Yi = x] = x. For b), let k ∈ {0,1, . . . ,x}. Let W ≡Y1|∑n
i=1 Yi = x. Then

P(W = k) = P(Y1 = k|∑n
i=1 Yi = x) =

P(Y1 = k,∑n
i=1 Yi = x)

P(∑n
i=1 Yi = x)

=
P(Y1 = k,∑n

i=2 Yi = x− k)
P(∑n

i=1 Yi = x)
=

P(Y1 = k)P(∑n
i=2 Yi = x− k)

P(∑n
i=1Yi = x)

by independence. Now Y1 ∼ Poisson(θ ), ∑n
i=2 Yi ∼ Poisson ((n−1)θ ) and ∑n

i=1 Yi ∼
Poisson (nθ ). Algebra will then give result b). For part c), W ≡ Y1|∑n

i=1 Yi = x
is Bernoulli(π) since W = 0 or W = 1. Hence π = E(W ) = x/n by a). For
part d), normality follows by Proposition 2.27 and the mean is x/n by a).
In Proposition 2.27, Σ11 = V (Y1) = σ2, Σ22 = V (∑n

i=1Yi) = nσ2 and Σ12 =
Cov(Y1,∑n

i=1 Yi) = ∑n
i=1 Cov(Y1,Yi) = Cov(Y1,Y1) = σ2. Hence the variance

is equal to Σ11 −Σ12Σ−1
22 Σ21 = σ2 −σ2(nσ2)−1σ2 = σ2(1− 1/n).

Example 6.4. Let X1, . . . ,Xn be a random sample from a Poisson (λ ) distribution.
Let X and S2 denote the sample mean and the sample variance, respectively.
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a) Show that X is uniformly minimum variance unbiased (UMVU) estimator
of λ .

b) Show that E(S2|X) = X .

c) Show that Var(S2)≥ Var(X).

d) Show that Var(S2)> Var(X).

Solution: a) Since f (x) =
1
x!

exp[log(λ )x]I(x ∈ {0,1, . . .}) is a 1P-REF,∑n
i=1 Xi is

a complete sufficient statistic and E(X) = λ . Hence X = (∑n
i=1 Xi)/n is the UMVUE

of λ by the LSU theorem.
b) E(S2) = λ is an unbiased estimator of λ . Hence E(S2|X) is the unique

UMVUE of λ by the LSU theorem. Thus E(S2|X) = X by part a).
c) Note that X is the UMVUE and S2 is an unbiased estimator of λ . Hence

V (X) ≤ V (S2) by the definition of a UMVUE, and the inequality is strict for at
least one value of λ since the UMVUE is unique.

d) By Steiner’s formula, V (S2) = V (E(S2|X)) + E(V (S2|X)) = V (X) +
E(V (S2|X))>V (X).

Often students will be asked to compute a lower bound on the variance of unbi-
ased estimators of η = τ(θ ) when θ is a scalar. Some preliminary results are needed
to define the lower bound, known as the FCRLB. The Fisher information, defined
below, is also useful for large sample theory in Chap. 8 since often the asymptotic
variance of a good estimator of τ(θ ) is 1/In(τ(θ )). Good estimators tend to have a
variance ≥ c/n, so the FCRLB should be c/n for some positive constant c that may
depend on the parameters of the distribution. Often c = [τ ′(θ )]2/I1(θ ).

Definition 6.3. Let Y = (Y1, . . . ,Yn) have a pdf or pmf f (y|θ ). Then the infor-
mation number or Fisher Information is

IY (θ )≡ In(θ ) = Eθ

([
∂
∂θ

log( f (Y |θ ))
]2
)

. (6.6)

Let η = τ(θ ) where τ ′(θ ) �= 0. Then

In(η)≡ In(τ(θ )) =
In(θ )

[τ ′(θ )]2.
(6.7)

Theorem 6.3. a) Equations (6.6) and (6.7) agree if τ ′(θ ) is continuous, τ ′(θ ) �=
0, and τ(θ ) is one to one and onto so that an inverse function exists such that θ =
τ−1(η).

b) If the Y1 ≡Y is from a 1P-REF, then the Fisher information in a sample of size
one is

I1(θ ) =−Eθ

[
∂ 2

∂θ 2 log( f (Y |θ ))
]
. (6.8)

c) If the Y1, . . . ,Yn are iid from a 1P-REF, then

In(θ ) = nI1(θ ). (6.9)



6.2 Exponential Families, UMVUEs, and the FCRLB 163

Hence if τ ′(θ ) exists and is continuous and if τ ′(θ ) �= 0, then

In(τ(θ )) =
nI1(θ )
[τ ′(θ )]2

. (6.10)

Proof. a) See Lehmann (1999, pp. 467–468).

b) The proof will be for a pdf. For a pmf replace the integrals by sums.
By Remark 3.3, the integral and differentiation operators of all orders can be int-
erchanged. Note that

0 = E

[
∂
∂θ

log( f (Y |θ ))
]

(6.11)

since

∂
∂θ

1 = 0 =
∂
∂θ

∫
f (y|θ )dy =

∫ ∂
∂θ

f (y|θ )dy =
∫ ∂

∂θ f (y|θ )
f (y|θ ) f (y|θ )dy

or

0 =
∂
∂θ

∫
f (y|θ )dy =

∫ [
∂
∂θ

log( f (y|θ ))
]

f (y|θ )dy

which is (6.11). Taking second derivatives of the above expression gives

0 =
∂ 2

∂θ 2

∫
f (y|θ )dy =

∂
∂θ

∫ [
∂
∂θ

log( f (y|θ ))
]

f (y|θ )dy =

∫ ∂
∂θ

([
∂
∂θ

log( f (y|θ ))
]

f (y|θ )
)

dy =

∫ [
∂ 2

∂θ 2 log( f (y|θ ))
]

f (y|θ )dy+
∫ [

∂
∂θ

log( f (y|θ ))
][

∂
∂θ

f (y|θ )
]

f (y|θ )
f (y|θ )dy

=
∫ [

∂ 2

∂θ 2 log( f (y|θ ))
]

f (y|θ )dy+
∫ [

∂
∂θ

log( f (y|θ ))
]2

f (y|θ )dy

or

I1(θ ) = Eθ

[(
∂
∂θ

log f (Y |θ )
)2
]

=−Eθ

[
∂ 2

∂θ 2 log( f (Y |θ ))
]
.

c) By independence,

In(θ ) = Eθ

⎡

⎣
(

∂
∂θ

log

(
n

∏
i=1

f (Yi|θ )
))2

⎤

⎦= Eθ

⎡

⎣
(

∂
∂θ

n

∑
i=1

log( f (Yi|θ ))
)2
⎤

⎦=

Eθ

[(
∂
∂θ

n

∑
i=1

log( f (Yi|θ ))
)(

∂
∂θ

n

∑
j=1

log( f (Yj |θ ))
)]

=
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Eθ

[(
n

∑
i=1

∂
∂θ

log( f (Yi|θ ))
)(

n

∑
j=1

∂
∂θ

log( f (Yj |θ ))
)]

=

n

∑
i=1

Eθ

[(
∂
∂θ

log( f (Yi|θ ))
)2
]

+

∑
i �=
∑

j

Eθ

[(
∂
∂θ

log( f (Yi|θ ))
)(

∂
∂θ

log( f (Yj |θ ))
)]

.

Hence

In(θ ) = nI1(θ )+ ∑
i �=
∑

j
Eθ

[(
∂
∂θ

log( f (Yi|θ ))
)]

Eθ

[(
∂
∂θ

log( f (Yj |θ ))
)]

by independence. Hence

In(θ ) = nI1(θ )+ n(n− 1)

[
Eθ

(
∂
∂θ

log( f (Yj |θ ))
)]2

since the Yi are iid. Thus In(θ ) = nI1(θ ) by Eq. (6.11) which holds since the Yi are
iid from a 1P-REF. �

Definition 6.4. Let Y = (Y1, . . . ,Yn) be the data, and consider τ(θ ) where
τ ′(θ ) �= 0. The quantity

FCRLBn(τ(θ )) =
[τ ′(θ )]2

In(θ )

is called the Fréchet–Cramér–Rao lower bound (FCRLB) for the variance of unb-

iased estimators of τ(θ ). In particular, if τ(θ ) = θ , then FCRLBn(θ ) =
1

In(θ )
. The

FCRLB is often called the Cramér Rao lower bound (CRLB).

Theorem 6.4, Fréchet–Cramér–Rao Lower Bound or Information Inequal-
ity. Let Y1, . . . ,Yn be iid from a 1P-REF with pdf or pmf f (y|θ ). Let W (Y1, . . . ,Yn) =
W (Y ) be any unbiased estimator of τ(θ )≡ EθW (Y ). Then

VARθ (W (Y ))≥ FCRLBn(τ(θ )) =
[τ ′(θ )]2

In(θ )
=

[τ ′(θ )]2

nI1(θ )
=

1
In(τ(θ ))

.

Proof. By Definition 6.4 and Theorem 6.3c,

FCRLBn(τ(θ )) =
[τ ′(θ )]2

In(θ )
=

[τ ′(θ )]2

nI1(θ )
=

1
In(τ(θ ))

.

Since the Yi are iid from a 1P-REF, by Remark 3.3 the derivative and integral
or sum operators can be interchanged when finding the derivative of Eθh(Y ) if
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Eθ |h(Y )| < ∞. The following argument will be for pdfs. For pmfs, replace the
integrals by appropriate sums. Following Casella and Berger (2002, pp. 335–8),
the Cauchy Schwarz Inequality is

[Cov(X,Y)]2 ≤ V(X)V(Y), or V(X)≥ [Cov(X,Y)]2

V(Y)
.

Hence

Vθ (W (Y ))≥ (Covθ [W (Y ), ∂
∂θ log( f (Y |θ ))])2

Vθ [
∂
∂θ log( f (Y |θ ))] . (6.12)

Now

Eθ

[
∂
∂θ

log( f (Y |θ ))
]
= Eθ

[
∂
∂θ f (Y |θ )

f (Y |θ )

]

since the derivative of log(h(t)) is h′(t)/h(t). By the definition of expectation,

Eθ

[
∂
∂θ

log( f (Y |θ ))
]
=

∫
· · ·
∫

Y

∂
∂θ f (y|θ )

f (y|θ ) f (y|θ )dy

=
∫
· · ·
∫

Y

∂
∂θ

f (y|θ )dy =
d

dθ

∫
· · ·
∫

Y
f (y|θ )dy =

d
dθ

1 = 0.

Notice that f (y|θ ) > 0 on the support Y , that the f (y|θ ) cancelled in the second
term, that the derivative was moved outside of the integral by Remark 3.3, and that
the integral of f (y|θ ) on the support Y is equal to 1.

This result implies that

Covθ

[
W (Y ),

∂
∂θ

log( f (Y |θ ))
]
= Eθ

[
W (Y )

∂
∂θ

log( f (Y |θ ))
]

= Eθ

⎡

⎣
W (Y )

(
∂
∂θ f (Y |θ )

)

f (Y |θ )

⎤

⎦

since the derivative of log(h(t)) is h′(t)/h(t). By the definition of expectation, the
right-hand side is equal to

∫
· · ·
∫

Y

W (y) ∂
∂θ f (y|θ )

f (y|θ ) f (y|θ )dy =
d

dθ

∫
· · ·
∫

Y
W (y) f (y|θ )dy

=
d

dθ
EθW (Y ) = τ ′(θ ) = Covθ

[
W (Y ),

∂
∂θ

log( f (Y |θ ))
]
. (6.13)

Since

Eθ

[
∂
∂θ

log f (Y |θ )
]
= 0,
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Vθ

[
∂
∂θ

log( f (Y |θ ))
]
= Eθ

([
∂
∂θ

log( f (Y |θ ))
]2
)

= In(θ ) (6.14)

by Definition 6.3. Plugging (6.13) and (6.14) into (6.12) gives the result. �

Theorem 6.4 is not very useful in applications. If the data are iid from a 1P-REF,
then FCRLBn(τ(θ )) = [τ ′(θ )]2/[nI1(θ )] by Theorem 6.4. Notice that W (Y ) is an
unbiased estimator of τ(θ ) since EθW (Y ) = τ(θ ). Hence if the data are iid from
a 1P-REF and if VARθ (W (Y )) = FCRLBn(τ(θ )) for all θ ∈Θ , then W (Y ) is the
UMVUE of τ(θ ); however, this technique for finding a UMVUE rarely works since
typically equality holds only if
1) the data come from a 1P-REF with complete sufficient statistic T , and
2) W = a+ bT is a linear function of T .
The FCRLB inequality will typically be strict for nonlinear functions of T if the
data is iid from a 1P-REF. If T is complete, g(T ) is the UMVUE of its expectation,
and determining that T is the complete sufficient statistic from a 1P-REF is simpler
than computing VARθ (W ) and FCRLBn(τ(θ )). If the family is not an exponential
family, the FCRLB may not be a lower bound on the variance of unbiased estima-
tors of τ(θ ).

Example 6.5. Let Y1, . . . ,Yn be iid random variables with pdf

f (y) =
2√
2πλ

1
y

I[0,1](y)exp

[−(log(y))2

2λ 2

]

where λ > 0. Then [log(Yi)]
2 ∼ G(1/2,2λ 2)∼ λ 2χ2

1 .
a) Find the uniformly minimum variance estimator (UMVUE) of λ 2.

b) Find the information number I1(λ ).
c) Find the Fréchet–Cramér–Rao lower bound (FCRLB) for estimating

τ(λ ) = λ 2.

Solution. a) This is a one-parameter exponential family with complete suf-
ficient statistic Tn = ∑n

i=1[log(Yi)]
2. Now E(Tn) = nE([log(Yi)]

2) = nλ 2. Hence
E(Tn/n) = λ 2 and Tn/n is the UMVUE of λ 2 by the LSU Theorem.

b) Now

log( f (y|λ )) = log(2/
√

2π)− log(λ )− log(y)− [log(y)]2

2λ 2 .

Hence
d

dλ
log( f (y|λ )) = −1

λ
+

[log(y)]2

λ 3 ,

and
d2

dλ 2 log( f (y|λ )) = 1
λ 2 − 3[log(y)]2

λ 4 .
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Thus

I1(λ ) =−E

[
1
λ 2 − 3[log(Y )]2

λ 4

]
=

−1
λ 2 +

3λ 2

λ 4 =
2
λ 2 .

c)

FCRLBn(τ(λ )) =
[τ ′(λ )]2

nI1(λ )
.

Now τ(λ ) = λ 2 and τ ′(λ ) = 2λ . So

FCRLBn(τ(λ )) =
4λ 2

n2/λ 2 =
2λ 4

n
.

Example 6.6. Suppose that X1, . . . ,Xn are iid Bernoulli(p) where n ≥ 2 and 0 <
p < 1 is the unknown parameter.

a) Derive the UMVUE of τ(p) = e2(p(1− p)).

b) Find the FCRLB for estimating τ(p) = e2(p(1− p)).

Solution: a) Consider the statistic W = X1(1−X2) which is an unbiased estimator
of ψ(p) = p(1− p). The statistic T = ∑n

i=1 Xi is both complete and sufficient. The
possible values of W are 0 or 1. Let U = φ(T ) where

φ(t) = E[X1(1−X2)|T = t]

= 0P[X1(1−X2) = 0|T = t]+ 1P[X1(1−X2) = 1|T = t]

= P[X1(1−X2) = 1|T = t]

=
P[X1 = 1,X2 = 0 and ∑n

i=1 Xi = t]
P [∑n

i=1 Xi = t]

=
P[X1 = 1]P[X2 = 0]P [∑n

i=3 Xi = t − 1]
P [∑n

i=1 Xi = t]
.

Now ∑n
i=3 Xi is Bin(n− 2, p) and ∑n

i=1 Xi is Bin(n, p). Thus

φ(t) =
p(1− p)[

(n−2
t−1

)
pt−1(1− p)n−t−1]

(n
t

)
pt(1− p)n−t

=

(n−2
t−1

)

(n
t

) =
(n− 2)!

(t − 1)!(n− 2− t+ 1)!
t(t − 1)!(n− t)(n− t− 1)!

n(n− 1)(n− 2)!
=

t(n− t)
n(n− 1)

=
t
n (n− n t

n)

n− 1
=

t
n n(1− t

n )

n− 1
=

n
n− 1

x(1− x).

Thus n
n−1 X(1−X) is the UMVUE of p(1− p) and e2U = e2 n

n−1 X(1−X) is the
UMVUE of τ(p) = e2 p(1− p).
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Alternatively, X is a complete sufficient statistic, so try an estimator of the form
U = a(X)2 + bX + c. Then U is the UMVUE if Ep(U) = e2 p(1− p) = e2(p− p2).
Now E(X) = E(X1) = p and V (X) =V (X1)/n = p(1− p)/n since ∑Xi ∼ Bin(n, p).
So E[(X)2] = V (X) + [E(X)]2 = p(1− p)/n+ p2. So Ep(U) = a[p(1− p)/n] +
ap2 + bp+ c

=
ap
n

− ap2

n
+ ap2 + bp+ c=

(a
n
+ b

)
p+

(
a− a

n

)
p2 + c.

So c = 0 and a− a
n = a n−1

n =−e2 or

a =
−n

n− 1
e2.

Hence a
n + b = e2 or

b = e2 − a
n
= e2 +

n
n(n− 1)

e2 =
n

n− 1
e2.

So

U =
−n

n− 1
e2(X)2 +

n
n− 1

e2X =
n

n− 1
e2X(1−X).

b) The FCRLB for τ(p) is [τ ′(p)]2/nI1(p). Now f (x) = px(1 − p)1−x, so
log f (x) = x log(p)+ (1− x) log(1− p). Hence

∂ log f
∂ p

=
x
p
− 1− x

1− p

and

∂ 2 log f
∂ p2 =

−x
p2 − 1− x

(1− p)2 .

So

I1(p) =−E

(
∂ 2 log f
∂ p2

)
=−

(−p
p2 − 1− p

(1− p)2

)
=

1
p(1− p)

.

So

FCRLBn =
[e2(1− 2p)]2

n
p(1−p)

=
e4(1− 2p)2p(1− p)

n
.

Example 6.7. Let X1, . . . ,Xn be iid random variables with pdf

f (x) =
1
λ
φxφ−1 1

1+ xφ
exp

[
− 1

λ
log(1+ xφ)

]

where x,φ , and λ are all positive. If φ is known, find the uniformly minimum unbi-
ased estimator of λ using the fact that log(1+Xφ

i )∼ Gamma (ν = 1,λ ).
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Solution: This is a regular one-parameter exponential family with complete
sufficient statistic Tn = ∑n

i=1 log(1+Xφ
i ) ∼ G(n,λ ). Hence E(Tn) = nλ and Tn/n

is the UMVUE of λ .

Example 6.8. If ∑n
i=1 Yi is a complete sufficient statistic for θ , then by the LSU

theorem, et∑n
i=1 Yi is the UMVUE of E[et∑n

i=1 Yi ] = m∑n
i=1 Yi(t), the mgf of ∑n

i=1 Yi.
Refer to Theorems 2.17 and 2.18 for the following special cases.

a) If Y1, . . . ,Yn are iid BIN(k,ρ) where k is known, then ∑n
i=1 Yi ∼ BIN(nk,ρ),

and et∑n
i=1 Yi is the UMVUE of

[(1−ρ)+ρet]nk.

b) If Y1, . . . ,Yn are iid EXP(λ ), then ∑n
i=1 Yi ∼ G(n,λ ), and et∑n

i=1 Yi is the
UMVUE of

(
1

1−λ t

)n

for t < 1/λ .
c) If Y1, . . . ,Yn are iid G(ν,λ ) where ν is known, then ∑n

i=1 Yi ∼ G(nν,λ ), and
et∑n

i=1 Yi is the UMVUE of
(

1
1−λ t

)nν

for t < 1/λ .
d) If Y1, . . . ,Yn are iid N(μ ,σ2) where σ2 is known, then ∑n

i=1 Yi ∼ N(nμ ,nσ2),
and et∑n

i=1 Yi is the UMVUE of

exp(tnμ+ t2nσ2/2).

e) If Y1, . . . ,Yn are iid Poisson(θ ), then ∑n
i=1 Yi ∼ Poisson(nθ ), and et ∑n

i=1 Yi is the
UMVUE of

exp(nθ (et − 1)).

f) If Y1, . . . ,Yn are iid NB(r,ρ) where r is known, then ∑n
i=1 Yi ∼ NB(nr,ρ), and

et∑n
i=1 Yi is the UMVUE of

[
ρ

1− (1−ρ)et

]nr

for t <− log(1−ρ).

Example 6.9. Let X1, . . . ,Xn be a random sample from a Poisson distribution
with mean θ .

a) For a> 0, find the uniformly minimum variance unbiased estimator (UMVUE)
of g(θ ) = eaθ .

b) Prove the identity:

E
[
2X1 |T ]=

(
1+

1
n

)T

.



170 6 Point Estimation II

Solution: a) By Example 6.4, T =∑n
i=1 Xi ∼ Poisson(nθ ) is a complete sufficient

statistic for θ . Hence the mgf of T is

E(etT ) = mT (t) = exp[nθ (et − 1)].

Thus n(et − 1) = a, or et = a/n+ 1, or et = (a+ n)/n, or t = log[(a+ n)/n]. Thus

etT = (et)T =

(
a+ n

n

)T

= exp

[
T log

(
a+ n

n

)]

is the UMVUE of eaθ by the LSU theorem.
b) Let X = X1, and note that 2X is an unbiased estimator of eθ since

2X = elog(2X ) = e(log2)X ,

and E(2X) = mX(log2) = exp[θ (elog2 − 1)] = eθ .

Thus E[2X |T ] is the UMVUE of E(2X) = eθ by the LSU theorem. By part a) with
a = 1,

E[2X |T ] =
(

1+ n
n

)T

.

The following theorem compares the UMVUE with the estimator that minimizes
the MSE for one-parameter exponential families. Note that the constant c cannot
depend on the unknown parameter θ since cT (Y ) needs to be a statistic. Often
θX ∼ θG(1,1)∼ G(1,θ ). Note cM/cU → 1 as n → ∞. Hence the UMVUE and the
estimator that minimizes the MSE behave similarly in terms of MSE for large n. See
Problem 6.35.

Theorem 6.5. Let Y1, . . . ,Yn be iid from a one-parameter exponential family with
pdf or pmf f (y|θ ) with complete sufficient statistic T (Y ) =∑n

i=1 t(Yi) where t(Yi)∼
θX and X has a known distribution with known mean E(X) and known variance
V (X). Let Wn = c T (Y ) be an estimator of θ where c is a constant.

a) The value c that minimizes the MSE is

cM =
E(X)

V (X)+ n[E(X)]2
.

b) The UMVUE of θ is
T (Y )
nE(X)

which uses cU =
1

nE(X)
.

Proof. a) E(Wn) = c∑n
i=1 E(t(Yi)) = cnθE(X), and

V (Wn) = c2∑n
i=1 V (t(Yi)) = c2nθ 2V (X). Hence MSE(c)≡ MSE(Wn) =

V (Wn)+ [E(Wn)−θ ]2 = c2nθ 2V (X)+ (cnθE(X)−θ )2. Thus

d MSE(c)
dc

= 2cnθ 2V (X)+ 2(cnθE(X)−θ )nθE(X)
set
= 0,
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or

c(nθ 2V (X)+ n2θ 2[E(X)]2) = nθ 2E(X),

or

c =
E(X)

V (X)+ n[E(X)]2
,

which is unique. Now

d2 MSE(c)
dc2 = 2[nθ 2V (X)+ n2θ 2[E(X)]2]> 0.

So MSE(c) is convex and c = cM is the minimizer.
b) E[cU T (Y )] = θ , hence cU T (Y ) is the UMVUE of θ by the LSU theorem. �

Remark 6.1. Chapter 10 has several UMVUE examples.

6.3 Summary

1) The bias of the estimator T for τ(�) is

B(T )≡ Bτ(�)(T )≡ Biasτ(�)(T ) = E�T − τ(�)

and the MSE is

MSEτ(�)(T ) = E� [(T − τ(�))2] =V�(T )+ [Biasτ(�)(T )]
2.

2) T is an unbiased estimator of τ(�) if E� [T ] = τ(�) for all � ∈Θ .

3) Let U ≡U(Y1, . . . ,Yn) be an estimator of τ(θ ). Then U is the UMVUE of τ(θ )
if U is an unbiased estimator of τ(θ ) and if VARθ (U) ≤ VARθ (W ) for all θ ∈Θ
where W is any other unbiased estimator of τ(θ ).

4) If Y1, . . . ,Yn are iid from a 1P-REF f (y|θ ) = h(y)c(θ )exp[w(θ )t(y)] where
η = w(θ ) ∈ Ω = (a,b), and if T ≡ T (Y ) = ∑n

i=1 t(Yi), then by the LSU Theorem,
g(T ) is the UMVUE of its expectation τ(θ ) = Eθ (g(T )).

5) Given a complete sufficient statistic T (Y ) and any unbiased estimator W (Y )
of τ(θ ), then U(Y ) = E[W (Y )|T (Y )] is the UMVUE of τ(θ ).

7) In(θ ) = Eθ [(
∂
∂θ log f (Y |θ ))2].

8) FCRLBn(τ(θ )) =
[τ ′(θ )]2

In(θ )
.

9) If Y1, . . . ,Yn are iid from a 1P-REF f (y|θ ) = h(y)c(θ )exp[w(θ )t(y)], then a)

I1(θ ) =−Eθ

[
∂ 2

∂θ 2 log( f (Y |θ ))
]
.
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b)

In(τ(θ )) =
nI1(θ )
[τ ′(θ )]2

.

c)

FCRLBn(τ(θ )) =
[τ ′(θ )]2

nI1(θ )
.

d) Information inequality: Let Y1, . . . ,Yn be iid from a 1P-REF and let W (Y ) be
any unbiased estimator of τ(θ )≡ Eθ [W (Y )]. Then

VARθ (W (Y ))≥ FCRLBn(τ(θ )) =
[τ ′(θ )]2

nI1(θ )
.

e) Rule of thumb for a 1P-REF: Let T (Y ) = ∑n
i=1 t(Yi) and τ(θ ) = Eθ (g(T (Y )).

Then g(T (Y )) is the UMVUE of τ(θ ) by LSU, but the information inequality is
strict for nonlinear functions g(T (Y )). Expect the equality

VARθ (g(T (Y )) =
[τ ′(θ )]2

nI1(θ )

only if g is a linear function, i.e., g(T ) = a+ bT for some fixed constants a and b.

10) If the family is not an exponential family, the FCRLB may not be a lower
bound on the variance of unbiased estimators of τ(θ ).

6.4 Complements

For a more precise statement of when the FCRLB is achieved and for some coun-
terexamples, see Wijsman (1973) and Joshi (1976). Although the FCRLB is not
very useful for finding UMVUEs, similar ideas are useful for finding the asymptotic
variances of UMVUEs and MLEs. See Chap. 8 and Portnoy (1977).

Karakostas (1985) has useful references for UMVUEs. Also see Guenther (1978)
and Hudson (1978).

6.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.

6.1∗. Let W be an estimator of τ(θ ). Show that

MSEτ(θ)(W ) = Varθ (W )+ [Biasτ(θ)(W )]2.
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6.2Q. Let X1, . . . ,Xn be independent identically distributed random variable from
a N(μ ,σ2) distribution. Hence E(X1) = μ and VAR(X1) = σ2. Consider estimators
of σ2 of the form

S2(k) =
1
k

n

∑
i=1

(Xi −X)2

where k > 0 is a constant to be chosen. Determine the value of k which gives the
smallest mean square error. (Hint: Find the MSE as a function of k, then take deriva-
tives with respect to k. Also, use Theorem 4.1c and Remark 5.1 VII.)

6.3. Let X1, . . . ,Xn be iid N(μ ,1) random variables. Find τ(μ) such that
T (X1, . . . ,Xn) = (∑n

i=1 Xi)
2 is the UMVUE of τ(μ).

6.4. Let X ∼ N(μ ,σ2) where σ2 is known. Find the Fisher information I1(μ).

6.5. Let X ∼ N(μ ,σ2) where μ is known. Find the Fisher information I1(σ2).

6.6. Let X1, . . . ,Xn be iid N(μ ,σ2) random variables where μ is known and
σ2 > 0. Then W = ∑n

i=1(Xi − μ)2 is a complete sufficient statistic and W ∼ σ2χ2
n .

From Chap. 10,

EY k =
2kΓ (k+ n/2)

Γ (n/2)

if Y ∼ χ2
n . Hence

Tk(X1, . . . ,Xn)≡ Γ (n/2)W k

2kΓ (k+ n/2)

is the UMVUE of τk(σ2) = σ2k for k > 0. Note that τk(θ ) = (θ )k and θ = σ2.

a) Show that

VarθTk(X1, . . . ,Xn) = σ4k
[

Γ (n/2)Γ (2k+ n/2)
Γ (k+ n/2)Γ (k+ n/2)

− 1

]
≡ ckσ4k.

b) Let k = 2 and show that Varθ [T2]−FCRLB(τ2(θ ))> 0 where FCRLB(τ2(θ ))
is for estimating τ2(σ2) = σ4 and θ = σ2.

6.7Q. Let X1, . . . ,Xn be independent, identically distributed N(μ ,1) random vari-
ables where μ is unknown and n ≥ 2. Let t be a fixed real number. Then the expec-
tation

Eμ(I(−∞,t](X1)) = Pμ(X1 ≤ t) =Φ(t − μ)

for all μ where Φ(x) is the cumulative distribution function of a N(0,1) random
variable.

a) Show that the sample mean X is a sufficient statistic for μ .

b) Explain why (or show that) X is a complete sufficient statistic for μ .
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c) Using the fact that the conditional distribution of X1 given X = x is the
N(x,1− 1/n) distribution where the second parameter 1− 1/n is the variance of
conditional distribution, find

Eμ(I(−∞,t](X1)|X = x) = Eμ [I(−∞,t](W )]

where W ∼ N(x,1− 1/n). (Hint: your answer should be Φ(g(x)) for some func-
tion g.)

d) What is the uniformly minimum variance unbiased estimator for
Φ(t − μ)?

Problems from old quizzes and exams. Problems from old qualifying exams
are marked with a Q.

6.8. Suppose that X is Poisson with pmf

f (x|λ ) = P(X = x|λ ) = e−λλ x

x!

where x = 0,1, . . . and λ > 0. Find the Fisher information I1(λ ).

6.9. Let X1, . . . ,Xn be iid Exponential(β ) random variables and Y1, . . . ,Ym iid
Exponential(β/2) random variables. Assume that the Yi’s and Xj’s are independent.

a) Find the joint pdf f (x1, . . . ,xn,y1, . . . ,ym) and show that this pdf is a regular
exponential family with complete sufficient statistic T = ∑n

i=1 Xi + 2∑m
i=1 Yi.

b) Find the function τ(β ) such that T is the UMVUE of τ(β ). (Hint: find Eβ [T ].
The theorems of this chapter apply since X1, . . . ,Xn,2Y1, . . . ,2Ym are iid.)

6.10. Let X1, . . . ,Xn be independent, identically distributed N(μ ,1) random vari-
ables where μ is unknown.

a) Find Eμ [X2
1 ].

b) Using the fact that the conditional distribution of X1 given X = x is the
N(x,1− 1/n) distribution where the second parameter 1− 1/n is the variance of
conditional distribution, find

Eμ(X
2
1 |X = x).

[Hint: this expected value is equal to E(W 2) where W ∼ N(x,1− 1/n).]

c) What is the MLE for μ2 + 1? (Hint: you may use the fact that the MLE for μ
is X .)

d) What is the uniformly minimum variance unbiased estimator for μ2 + 1?
Explain.

6.11. Let X1, . . . ,Xn be a random sample from a Poisson(λ ) population.

a) Find the Fréchet–Cramér–Rao lower bound FCRLBn(λ 2) for the variance of
an unbiased estimator of τ(λ ) = λ 2.
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b) The UMVUE for λ 2 is T (X1, . . . ,Xn) = (X)2 − X/n. Will Varλ [T ] =
FCRLBn(λ 2) or will Varλ [T ] > FCRLBn(λ 2)? Explain. (Hint: use the rule of
thumb 9e from Sect. 6.3.)

6.12. Let X1, . . . ,Xn be independent, identically distributed Poisson(λ ) random
variables where λ > 0 is unknown.

a) Find Eλ [X
2
1 ].

b) Using the fact that the conditional distribution of X1 given ∑n
i=1 Xi = y is the

Binomial(y,1/n) distribution, find

Eλ

(

X2
1 |

n

∑
i=1

Xi = y

)

.

c) Find τ(λ ) such that Eλ (X
2
1 |∑n

i=1 Xi) is the uniformly minimum variance unbi-
ased estimator for τ(λ ).

6.13. Let X1, . . . ,Xn be iid Bernoulli(ρ) random variables.

a) Find the Fisher information I1(ρ).
b) Find the Fréchet–Cramér–Rao lower bound for unbiased estimators of

τ(ρ) = ρ .
c) The MLE for ρ is X . Find Var(X).

d) Does the MLE achieve the FCRLB? Is this surprising? Explain.

6.14Q. Let X1, . . . ,Xn be independent, identically distributed exponential(θ ) ran-
dom variables where θ > 0 is unknown. Consider the class of estimators of θ

{

Tn(c) = c
n

∑
i=1

Xi | c > 0

}

.

Determine the value of c that minimizes the mean square error MSE. Show work
and prove that your value of c is indeed the global minimizer.

6.15. Let X1, . . . ,Xn be iid from a distribution with pdf

f (x|θ ) = θxθ−1I(0 < x < 1), θ > 0.

a) Find the MLE of θ .
b) What is the MLE of 1/θ 2? Explain.

c) Find the Fisher information I1(θ ). You may use the fact that − log(X) ∼
exponential(1/θ ).

d) Find the Fréchet–Cramér–Rao lower bound for unbiased estimators of
τ(θ ) = 1/θ 2.
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6.16. Let X1, . . . ,Xn be iid random variables with E(X) = μ and Var(X) = 1.
Suppose that T =∑n

i=1 Xi is a complete sufficient statistic. Find the UMVUE of μ2.

6.17. Let X1, . . . ,Xn be iid exponential(λ ) random variables.

a) Find I1(λ ).

b) Find the FCRLB for estimating τ(λ ) = λ 2.

c) If T = ∑n
i=1 Xi, it can be shown that the UMVUE of λ 2 is

W =
Γ (n)

Γ (2+ n)
T 2.

Do you think that Varλ (W ) is equal to the FCRLB in part b)? Explain briefly.

6.18. Let X1, . . . ,Xn be iid N(μ ,σ2) where μ is known and n > 1. Suppose
interest is in estimating θ = σ2. You should have memorized the fact that

(n− 1)S2

σ2 ∼ χ2
n−1.

a) Find the MSE of S2 for estimating σ2.

b) Find the MSE of T for estimating σ2 where

T =
1
n

n

∑
i=1

(xi − μ)2.

6.19Q. Let X1, . . . ,Xn be independent identically distributed random variables
from a N(μ ,σ2) distribution. Hence E(X1) = μ and VAR(X1) = σ2. Suppose that
μ is known and consider estimates of σ2 of the form

S2(k) =
1
k

n

∑
i=1

(Xi − μ)2

where k is a constant to be chosen. Note: E(χ2
m) =m and VAR(χ2

m)= 2m.Determine
the value of k which gives the smallest mean square error. (Hint: Find the MSE as a
function of k, then take derivatives with respect to k.)

6.20Q. Let X1, . . . ,Xn be independent identically distributed random variables
with pdf

f (x|θ ) = 2x
θ

e−x2/θ , x > 0

and f (x|θ ) = 0 for x ≤ 0.

a) Show that X2
1 is an unbiased estimator of θ . (Hint: use the substitution W = X2

and find the pdf of W or use u-substitution with u = x2/θ .)
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b) Find the Cramér–Rao lower bound for the variance of an unbiased estimator
of θ .

c) Find the uniformly minimum variance unbiased estimator (UMVUE) of θ .

6.21Q. See Mukhopadhyay (2000, p. 377). Let X1, . . . ,Xn be iid N(θ ,θ 2) normal
random variables with mean θ and variance θ 2. Let

T1 = X =
1
n

n

∑
i=1

Xi

and let

T2 = cnS = cn

√
∑n

i=1(Xi −X)2

n− 1

where the constant cn is such that Eθ [cnS] = θ . You do not need to find the constant
cn. Consider estimators W (α) of θ of the form.

W (α) = αT1 +(1−α)T2

where 0 ≤ α ≤ 1.

a) Find the variance

Varθ [W (α)] = Varθ (αT1 +(1−α)T2).

b) Find the mean square error of W (α) in terms of Varθ (T1),Varθ (T2) and α .

c) Assume that

Varθ (T2)≈ θ 2

2n
.

Determine the value of α that gives the smallest mean square error. (Hint: Find the
MSE as a function of α , then take the derivative with respect to α . Set the derivative
equal to zero and use the above approximation for Varθ (T2). Show that your value of
α is indeed the global minimizer.)

6.22Q. Suppose that X1, . . . ,Xn are iid normal distribution with mean 0 and vari-

ance σ2. Consider the following estimators: T1 =
1
2 |X1 −X2| and T2 =

√
1
n ∑

n
i=1 X2

i .
a) Is T1 unbiased for σ? Evaluate the mean square error (MSE) of T1.

b) Is T2 unbiased for σ? If not, find a suitable multiple of T2 which is unbiased
for σ .
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6.23Q. Let X1, . . . ,Xn be independent identically distributed random variables
with pdf (probability density function)

f (x) =
1
λ

exp
(
− x
λ

)

where x and λ are both positive. Find the uniformly minimum variance unbiased
estimator (UMVUE) of λ 2.

6.24Q. Let X1, . . . ,Xn be independent identically distributed random variables
with pdf (probability density function)

f (x) =

√
σ

2πx3 exp
(
− σ

2x

)

where x and σ are both positive. Then Xi =
σ
Wi

where Wi ∼ χ2
1 . Find the uniformly

minimum variance unbiased estimator (UMVUE) of
1
σ

.

6.25Q. Let X1, . . . ,Xn be a random sample from the distribution with density

f (x) =

{ 2x
θ2 , 0 < x < θ
0 elsewhere.

Let T = max(X1, . . . ,Xn). To estimate θ consider estimators of the form CT . Deter-
mine the value of C which gives the smallest mean square error.

6.26Q. Let X1, . . . ,Xn be a random sample from a distribution with pdf

f (x) =
2x
θ 2 , 0 < x < θ .

Let T = cX be an estimator of θ where c is a constant.

a) Find the mean square error (MSE) of T as a function of c (and of θ and n).

b) Find the value c that minimizes the MSE. Prove that your value is the mini-
mizer.

6.27Q. Suppose that X1, . . . ,Xn are iid Bernoulli(p) where n ≥ 2 and 0 < p < 1
is the unknown parameter.

a) Derive the UMVUE of ν(p), where ν(p) = e2(p(1− p)).

b) Find the Cramér–Rao lower bound for estimating ν(p) = e2(p(1− p)).

6.28. Let X1, . . . ,Xn be independent identically distributed Poisson(λ ) random
variables. Find the UMVUE of

λ
n
+λ 2.
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6.29. Let Y1, . . . ,Yn be iid Poisson(θ ) random variables.

a) Find the UMVUE for θ .

b) Find the Fisher information I1(θ ).
c) Find the FCRLB for unbiased estimators of τ(θ ) = θ .
d) The MLE for θ is Y . Find Var(Y ).

e) Does the MLE achieve the FCRLB? Is this surprising? Explain.

6.30Q. Suppose that Y1, . . . ,Yn are independent binomial(mi,ρ) where the mi ≥ 1
are known constants. Let

T1 =
∑n

i=1 Yi

∑n
i=1 mi

and T2 =
1
n

n

∑
i=1

Yi

mi

be estimators of ρ .
a) Find MSE(T1).

b) Find MSE(T2).

c) Which estimator is better?
Hint: by the arithmetic–geometric–harmonic mean inequality,

1
n

n

∑
i=1

mi ≥ n

∑n
i=1

1
mi

.

6.31Q. Let Y1, . . . ,Yn be iid gamma(α = 10,β ) random variables. Let T = cY be
an estimator of β where c is a constant.

a) Find the mean square error (MSE) of T as a function of c (and of β and n).
b) Find the value c that minimizes the MSE. Prove that your value is the

minimizer.

6.32Q. Let Y1, . . . ,Yn be independent identically distributed random variables
with pdf (probability density function)

f (y) = (2− 2y)I(0,1)(y) ν exp[(1−ν)(− log(2y− y2))]

where ν > 0 and n > 1. The indicator I(0,1)(y) = 1 if 0 < y < 1 and I(0,1)(y) = 0,
otherwise.

a) Find a complete sufficient statistic.
b) Find the Fisher information I1(ν) if n = 1.
c) Find the Cramér–Rao lower bound (CRLB) for estimating 1/ν.
d) Find the uniformly minimum unbiased estimator (UMVUE) of ν .
Hint: You may use the fact that Tn =−∑n

i=1 log(2Yi −Y 2
i )∼ G(n,1/ν), and

E(T r
n ) =

1
νr

Γ (r+ n)
Γ (n)

for r >−n. Also Γ (1+ x) = xΓ (x) for x > 0.
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6.33Q. Let Y1, . . . ,Yn be iid random variables from a distribution with pdf

f (y) =
θ

2(1+ |y|)θ+1

where θ > 0 and y is real. Then W = log(1+ |Y |) has pdf f (w) = θe−wθ for w > 0.
a) Find a complete sufficient statistic.

b) Find the (Fisher) information number I1(θ ).
c) Find the uniformly minimum variance unbiased estimator (UMVUE) for θ .

6.34Q. Suppose that X1,X2, . . . ,Xn are independent identically distributed ran-
dom variables from normal distribution with unknown mean μ and known vari-
ance σ2. Consider the parametric function g(μ) = e2μ .

a) Derive the uniformly minimum variance unbiased estimator (UMVUE) of
g(μ).

b) Find the Cramér–Rao lower bound (CRLB) for the variance of an unbiased
estimator of g(μ).

c) Is the CRLB attained by the variance of the UMVUE of g(μ)?

6.35. Let Y1, . . . ,Yn be iid from a one-parameter exponential family with pdf or
pmf f (y|θ ) with complete sufficient statistic T (Y ) = ∑n

i=1 t(Yi) where t(Yi) ∼ θX
and X has a known distribution with known mean E(X) and known variance V (X).
Let Wn = cT (Y ) be an estimator of θ where c is a constant. For parts a)-x) complete
i)-iv).

i) Find the mean square error (MSE) of Wn as a function of c (and of n, E(X),
and V (X)).

ii) Find the value of c that minimizes the MSE. Prove that your value is the
minimizer using the first and second derivative of MSE(c).

iii) Find the value of c that minimizes the MSE using Theorem 6.5.
iv) Find the uniformly minimum variance unbiased estimator (UMVUE) of θ .

a) Y1, . . . ,Yn are iid beta(δ = 1,ν), t(Y ) =− log(1−Y)∼ 1
ν

EXP(1), θ = 1/ν .

b) Y1, . . . ,Yn are iid beta(δ ,ν = 1), t(Y ) =− log(Y )∼ 1
δ

EXP(1), θ = 1/δ .

c) Y1, . . . ,Yn are iid Burr type III (φ ,λ ) with φ known,
t(Y ) = log(1+Y−φ )∼ λEXP(1), θ = λ .

d) Y1, . . . ,Yn are iid Burr type X (τ), t(Y ) =− log(1−e−y2
)∼ 1

τ EXP(1), θ = 1/τ .
e) Y1, . . . ,Yn are iid Burr type XII (φ ,λ ) with φ known,

t(Y ) = log(1+Yφ )∼ λEXP(1), θ = λ .
f) Y1, . . . ,Yn are iid chi(p,σ ) with p known, t(Y ) = Y 2 ∼ σ2G(p/2,2), θ = σ2.
g) Y1, . . . ,Yn are iid double exponential (μ ,λ ) with μ known,

t(Y ) = |Y − μ | ∼ λEXP(1), θ = λ .
h) Y1, . . . ,Yn are iid EXP(λ ), t(Y ) = Y ∼ λEXP(1), θ = λ .
i) Y1, . . . ,Yn are iid two-parameter exponential (μ ,λ ) with μ known, t(Y ) =

Yi − μ ∼ λEXP(1), θ = λ .
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j) Y1, . . . ,Yn are iid gamma (ν,λ ) with ν known, t(Y ) = Y ∼ λG(ν,1), θ = λ .

k) Y1, . . . ,Yn are iid Gomp(μ ,ν) with μ known, t(Y ) = eμY − 1 ∼ 1
ν

EXP(μ),
θ = 1/ν .

l) Y1, . . . ,Yn are iid half normal (μ ,σ2) with μ known, t(Y ) = (Y − μ)2 ∼
σ2G(1/2,2), θ = σ2.

m) Y1, . . . ,Yn are iid IEXP(μ), t(Y ) = 1/Y ∼ 1
μ EXP(1), θ = 1/μ .

n) Y1, . . . ,Yn are iid IW(φ ,λ ) with φ known, t(Y ) = 1
Yφ ∼ λEXP(1), θ = λ .

o)Y1, . . . ,Yn are iid inverted gamma (ν,λ ) with ν known, t(Y )= 1/Y ∼ 1
λ G(ν,1),

θ = 1/λ .
p) Y1, . . . ,Yn are iid LG(ν,λ ) with ν known, t(Y ) = eY ∼ λG(ν,1), θ = λ .
q) Y1, . . . ,Yn are iid Maxwell–Boltzmann (μ ,σ) with μ known,

t(Y ) = (Y − μ)2 ∼ σ2G(3/2,2), θ = σ2.
r) Y1, . . . ,Yn are iid MDL(μ ,φ) with μ known, t(Y ) = log( μ

μ−Y ) ∼ 1
φ EXP(1),

θ = 1/φ .
s) Y1, . . . ,Yn are iid N(μ ,σ2) with μ known, t(Y ) = (Y − μ)2 ∼ σ2G(1/2,2),

θ = σ2.
t) Y1, . . . ,Yn are iid one-sided stable (σ ), t(Y ) = 1/Y ∼ 1

σ G(1/2,2),
θ = 1/σ .

u) Y1, . . . ,Yn are iid power (λ ) distribution, t(Y ) =− log(Y )∼ λEXP(1), θ = λ .
v) Y1, . . . ,Yn are iid Rayleigh (μ ,σ ) with μ known, t(Y ) = (Y −μ)2 ∼σ2EXP(2),

θ = σ2.
w) Y1, . . . ,Yn are iid Topp–Leone (ν), t(Y ) = − log(2Y − Y 2) ∼ 1

ν EXP(1),
θ = 1/ν .

x)Y1, . . . ,Yn are iid truncated extreme value (λ ), t(Y )=eY−1 ∼ λEXP(1), θ=λ .

6.36Q. Let Y1, . . . ,Yn be iid from a one-parameter exponential family with pdf or
pmf f (y|θ ) with complete sufficient statistic T (Y ) = ∑n

i=1 t(Yi) where t(Yi) ∼ θX
and X has a known distribution with known mean E(X) and known variance V (X).
Let Wn = cT (Y ) be an estimator of θ where c is a constant.

a) Find the mean square error (MSE) of Wn as a function of c (and of n, E(X),
and V (X)).

b) Find the value of c that minimizes the MSE. Prove that your value is the
minimizer.

c) Find the uniformly minimum variance unbiased estimator (UMVUE) of θ .

6.37Q. Let X1, . . . ,Xn be a random sample from a Poisson (λ ) distribution. Let
X and S2 denote the sample mean and the sample variance, respectively.

a) Show that X is uniformly minimum variance unbiased (UMVU) estimator of λ
b) Show that E(S2|X) = X .
c) Show that Var(S2)> Var(X).

6.38Q. Let X1, . . . ,Xn be a random sample from a Poisson distribution with
mean θ .

a) For a> 0, find the uniformly minimum variance unbiased estimator (UMVUE)
of g(θ ) = eaθ .
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b) Prove the identity:

E
[
2X1 |T ]=

(
1+

1
n

)T

.

6.39Q. Let X1, . . . ,Xn be independent identically distributed from a N(μ ,σ2)
population, where σ2 is known. Let X be the sample mean.

a) Find E(X − μ)2.
b) Using a), find the UMVUE of μ2.
c) Find E(X − μ)3. [Hint: Show that if Y is a N(0,σ2) random variable, then

E(Y 3) = 0].
d) Using c), find the UMVUE of μ3.

6.40Q. Let Y1, . . . ,Yn be iid from a uniform U(0,θ ) distribution where θ > 0.
Then T = max(Y1, . . . ,Yn) is a complete sufficient statistic.

a) Find E(T k) for k > 0.
b) Find the UMVUE of θ k for k > 0.

6.41. Let Y1, . . . ,Yn be iid from a distribution with probability distribution func-
tion (pdf)

f (y) =
θ

(1+ y)θ+1

where y > 0 and θ > 0.
a) Find a minimal sufficient statistic for θ .
b) Is the statistic found in a) complete? (prove or disprove)
c) Find the Fisher information I1(θ ) if n = 1.
d) Find the Cramér–Rao lower bound (CRLB) for estimating θ 2.



Chapter 7
Testing Statistical Hypotheses

A hypothesis is a statement about a population parameter � , and in hypothesis
testing there are two competing hypotheses called the null hypothesis Ho ≡ H0 and
the alternative hypothesis H1 ≡ HA. Let Θ1 and Θ0 be disjoint sets with Θi ⊂ Θ
whereΘ is the parameter space. Then Ho : � ∈Θ0 and H1 : � ∈Θ1.

When a researcher wants strong evidence about a hypothesis, usually this hypoth-
esis is H1. For example, if Ford claims that their latest car gets 30 mpg on average,
then Ho : μ = 30 and H1 : μ > 30 are reasonable hypotheses where θ = μ is the
population mean mpg of the car.

The power of a test, β (�) = P�(Ho is rejected), equals the probability that the
test rejects Ho. For a level α test, the probability of rejecting Ho when � ∈Θ0 =
P� (type I error), and this probability is bounded above by α . Given the bound α
on the type I error, want the power to be high when � ∈Θ1. UMP tests have good
power, and likelihood ratio tests often perform well when UMP tests do not exist.
The Neyman–Pearson lemma and a theorem for exponential families are useful for
finding UMP tests.

7.1 Hypothesis Tests and Power

Definition 7.1. Assume that the data Y = (Y1, . . . ,Yn) has pdf or pmf f (y|�) for
� ∈Θ . A hypothesis test is a rule for rejecting Ho.

Definition 7.2. A type I error is rejecting Ho when Ho is true. A type II error
is failing to reject Ho when Ho is false. P� (reject Ho) = P�(type I error) if � ∈Θ0

while P� (reject Ho) = 1−P�(type II error) if � ∈Θ1.

Definition 7.3. The power function of a hypothesis test is

β (�) = P�(Ho is rejected)

for � ∈Θ .
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Often there is a rejection region R and an acceptance region. Reject Ho if the
observed statistic T (y) ∈ R, otherwise fail to reject Ho. Then
β (�) = P�(T (Y ) ∈ R) = P� (reject Ho).

Definition 7.4. For 0 ≤ α ≤ 1, a test with power function β (�) is a size α test if

sup
�∈Θ0

β (�) = α

and a level α test if
sup

�∈Θ0

β (�)≤ α.

Notice that for θ ∈ Θ0, β (θ ) = Pθ (type I error) and for θ ∈ Θ1, β (θ ) = 1−
Pθ (type II error). We would like β (θ ) ≈ 0 for θ ∈ Θ0 and β (θ ) ≈ 1 for θ ∈ Θ1,
but this may not be possible even if the sample size n is large. The tradeoff is that
decreasing the probability of a type I error increases the probability of a type II error
while decreasing the probability of a type II error increases the probability of a type
I error. The size or level of the test gives an upper bound α on the probability of the
type I error. Typically the level is fixed, e.g., α = 0.05, and then we attempt to find
tests that have a small probability of type II error. The following example is a level
0.07 and size 0.0668 test.

Example 7.1. Suppose that Y ∼ N(μ ,1/9) where μ ∈ {0,1}. Let Ho : μ = 0 and
H1 : μ = 1. Let T (Y ) =Y and suppose that we reject Ho if Y ≥ 0.5. Let Z ∼ N(0,1)
and σ = 1/3. Then

β (0) = P0(Y ≥ 0.5) = P0

(
Y − 0
1/3

≥ 0.5
1/3

)
= P(Z ≥ 1.5)≈ 0.0668.

β (1) = P1(Y ≥ 0.5) = P1

(
Y − 1
1/3

≥ 0.5− 1
1/3

)
= P(Z ≥−1.5)≈ 0.9332.

Definition 7.5. Suppose the null hypothesis is H0 : � = �0, and suppose that a
test statistic Tn(y) is observed. The p-value is the probability, assuming H0 is true,
of getting a test statistic Tn(Y ) at least as extreme as the test statistic Tn(y) actually
observed where “as extreme” depends on the alternative hypothesis. For an α level
test, reject H0 if p-value ≤ α while if p-value > α , fail to reject H0.

Suppose Tn(Y )∼ N(0,1) if H0 : μ = 0 is true. If H1 : μ > 0, then this right tailed
test has p-value = PH0(Tn(Y )≥ Tn(y)) = P(Z ≥ Tn(y)). If H1 : μ < 0, then this left
tailed test has p-value = PH0(Tn(Y ) ≤ Tn(y)) = P(Z ≤ Tn(y)). If H1 : μ �= 0, then
this two tailed test has p-value = PH0(Tn(Y ) ≥ |Tn(y)|) = PH0(Tn(Y ) ≤ −Tn(y))+
PH0(Tn(Y )≥ Tn(y)) = P(Z ≥ |Tn(y)|).

Typically α is small, so H0 is rejected if the p-value is small. If the p-value = 0,
then it is impossible that the test statistic Tn(y) would have occurred if H0 was true.
If the p-value = 1, it is impossible that the test statistic Tn(y) would have occurred
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if H1 was true. If the p-value = δ , then δ is the smallest value of α that would lead
to rejecting H0 when Tn(Y ) = Tn(y).

If the distribution of Tn(Y ) is discrete, then the p-value may only take on a count-
able number of values in [0,1], so p-value = α is impossible for some values of α .
For example, suppose the test is a left tailed test so H0 is rejected if Tn(y) ≤ c for
some constant c. If Tn(Y ) ∼ discrete uniform (1, . . . , 100) when H0 is true, then
p-value = k/100 when Tn(y) = k ∈ {1, . . . ,100}. For a left tailed test, if α = 0.05,
reject H0 when p-value ≤ 0.05 or when Tn(y) ≤ 5. If α = 0.049, reject H0 when
p-value ≤ 0.049 or when p-value ≤ 0.04 or when Tn(y)≤ 4.

7.2 Exponential Families, the Neyman–Pearson Lemma,
and UMP Tests

Definition 7.6. Consider all level α tests of Ho : θ ∈Θ0 vs. H1 : θ ∈ Θ1. A uni-
formly most powerful (UMP) level α test is a level α test with power function
βUMP(θ ) such that βUMP(θ ) ≥ β (θ ) for every θ ∈Θ1 where β is the power func-
tion for any level α test of Ho vs. H1.

The following three theorems can be used to find a UMP test that is both a level
α and a size α test.

Theorem 7.1, The Neyman–Pearson Lemma (NPL). Consider testing
H0 : θ = θ0 vs. H1 : θ = θ1 where the pdf or pmf corresponding to θi is f (y|θi)
for i = 0,1. Suppose the test rejects H0 if f (y|θ1) > k f (y|θ0), and rejects H0 with
probability γ if f (y|θ1) = k f (y|θ0) for some k ≥ 0. If

α = β (θ0) = Pθ0 [ f (Y |θ1)> k f (Y |θ0)]+ γPθ0[ f (Y |θ1) = k f (Y |θ0)],

then this test is a UMP level α test.

Proof. The proof is for pdfs. Replace the integrals by sums for pmfs. Following
Ferguson (1967, p. 202), a test can be written as a test function ψ(y) ∈ [0,1] where
ψ(y) is the probability that the test rejects H0 when Y = y. The Neyman–Pearson
(NP) test function is

φ(y) =

⎧
⎨

⎩

1, f (y|θ1)> k f (y|θ0)
γ, f (y|θ1) = k f (y|θ0)
0, f (y|θ1)< k f (y|θ0)

and α = Eθ0 [φ(Y )]. Consider any level α test ψ(y). Since ψ(y) is a level α test,

Eθ0 [ψ(Y )]≤ Eθ0 [φ(Y )] = α. (7.1)
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Then the NP test is UMP if the power

βψ(θ1) = Eθ1 [ψ(Y )]≤ βφ (θ1) = Eθ1 [φ(Y )].

Let fi(y) = f (y|θi) for i = 0,1. Notice that φ(y) = 1 ≥ ψ(y) if f1(y)> k f0(y) and
φ(y) = 0 ≤ ψ(y) if f1(y)< k f0(y). Hence

∫
[φ(y)−ψ(y)][ f1(y)− k f0(y)]dy ≥ 0 (7.2)

since the integrand is nonnegative. Hence the difference in powers is

βφ (θ1)−βψ(θ1) = Eθ1 [φ(Y )]−Eθ1[ψ(Y )]≥ k(Eθ0 [φ(Y )]−Eθ0 [ψ(Y )])≥ 0

where the first inequality follows from (7.2) and the second inequality from
Eq. (7.1). �

Remark 7.1. A test of hypotheses of the form H0 : f (y) = f0(y) vs. H1 : f (Y ) =
f1(y) can be done using the Neyman–Pearson lemma since Hi : θ = θi indicates that
f (y) = fθi(y) = f (y|θi) where θi = i for i = 0,1.

Theorem 7.2, One-Sided UMP Tests via the Neyman–Pearson Lemma. Sup-
pose that the hypotheses are of the form H0 : θ ≤ θ0 vs. H1 : θ > θ0 or H0 : θ ≥ θ0

vs. H1 : θ < θ0, or that the inequality in H0 is replaced by equality. Also assume that

sup
θ∈Θ0

β (θ ) = β (θ0).

Pick θ1 ∈ Θ1 and use the Neyman–Pearson lemma to find the UMP test for H∗
0 :

θ = θ0 vs. H∗
A : θ = θ1. Then the UMP test rejects H∗

0 if f (y|θ1) > k f (y|θ0),
and rejects H∗

0 with probability γ if f (y|θ1) = k f (y|θ0) for some k ≥ 0 where
α = β (θ0). This test is also the UMP level α test for H0 : θ ∈Θ0 vs. H1 : θ ∈Θ1

if k does not depend on the value of θ1 ∈ Θ1. If R = f (Y |θ1)/ f (Y |θ0), then
α = Pθ0(R > k)+ γPθ0(R = k).

Theorem 7.3, One-Sided UMP Tests for Exponential Families. Let Y1, . . . ,Yn

be a sample with a joint pdf or pmf from a one-parameter exponential family where
w(θ ) is increasing and T (y) is the complete sufficient statistic. Alternatively, let
Y1, . . . ,Yn be iid with pdf or pmf

f (y|θ ) = h(y)c(θ )exp[w(θ )t(y)]

from a one-parameter exponential family where θ is real and w(θ ) is increasing.
Here T (y) = ∑n

i=1 t(yi). I) Let θ1 > θ0. Consider the test that rejects Ho if T (y)> k
and rejects H0 with probability γ if T (y) = k where
α = Pθ0(T (Y )> k)+ γPθ0(T (Y ) = k). This test is the UMP level α test for
a) H0 : θ = θ0 vs. H1 : θ = θ1,
b) H0 : θ = θ0 vs. H1 : θ > θ0, and
c) H0 : θ ≤ θ0 vs. H1 : θ > θ0.
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II) Let θ1 < θ0. Consider the test that rejects H0 if T (y) < k and rejects H0 with
probability γ if T (y) = k where α = Pθ0(T (Y ) < k)+ γPθ0(T (Y ) = k). This test is
the UMP level α test for
d) H0 : θ = θ0 vs. H1 : θ = θ1

e) H0 : θ = θ0 vs. H1 : θ < θ0, and
f) H0 : θ ≥ θ0 vs. H1 : θ < θ0.

Proof. I) Let θ1 > θ0. a) Then

f (y|θ1)

f (y|θ0)
=

[
c(θ1)

c(θ0)

]n exp[w(θ1)∑n
i=1 t(yi)]

exp[w(θ0)∑n
i=1 t(yi)]

> c

iff

[w(θ1)−w(θ0)]
n

∑
i=1

t(yi)> d

iff ∑n
i=1 t(yi)> k since w(θ ) is increasing. Hence the result holds by the NP lemma.

b) The test in a) did not depend on θ1 > θ0, so the test is UMP by Theorem 7.2. c) In
a), θ0 < θ1 were arbitrary, so supθ∈Θ0

β (θ ) = β (θ0) where Θ0 = {θ ∈Θ |θ ≤ θ0}.
So the test is UMP by Theorem 7.2. The proof of II) is similar, but θ1 < θ0 so
[w(θ1)−w(θ0)]< 0, and there is a sign change. �

Remark 7.2. a) The UMP level α tests in Theorems 7.1–7.3 are also UMP size
α tests. b) As a mnemonic, note that the inequality used in the rejection region is
the same as the inequality in the alternative hypothesis. Usually γ = 0 if f is a pdf.
Suppose that the parameterization is

f (y|θ ) = h(y)c(θ )exp[w̃(θ )t̃(y)]

where w̃(θ ) is decreasing. Then set w(θ ) = −w̃(θ ) and t(y) = −t̃(y). In this text,
w(θ ) is an increasing function if w(θ0) < w(θ1) for θ0 < θ1 and nondecreasing
if w(θ0) ≤ w(θ1). Some texts use “strictly increasing” for “increasing” and use
“increasing” for “nondecreasing.” c) A simple hypothesis consists of exactly one
distribution for the sample. A composite hypothesis consists of more than one dis-
tribution for the sample.

If the data are iid from a one-parameter exponential family, then Theorem 7.3 is
simpler to use than the Neyman–Pearson lemma since the test statistic T will have a
distribution from an exponential family by Theorem 3.5. This result makes finding
the cutoff value k easier. To find a UMP test via the Neyman–Pearson lemma, you
need to check that the cutoff value k does not depend on θ1 ∈Θ1 and usually need
to transform the NP test statistic to put the test in useful form. With exponential
families, the transformed test statistic is often T.

Example 7.2. Suppose that X1, . . . ,X10 are iid Poisson with unknown mean λ .
Derive the most powerful level α = 0.10 test for H0 : λ = 0.30 versus H1 : λ = 0.40.
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Solution: Since

f (x|λ ) = 1
x!

e−λ exp[log(λ )x]

and log(λ ) is an increasing function of λ , by Theorem 7.3 the UMP test rejects Ho
if ∑xi > k and rejects Ho with probability γ if ∑xi = k where
α = 0.1 = Pλ=0.3(∑Xi > k)+ γPλ=0.3(∑Xi = k). Notice that

γ =
α−PHo(∑Xi > k)

PHo(∑Xi = k)
. (7.3)

Alternatively use the Neyman–Pearson lemma. Let

r = f (x|0.4)/ f (x|0.3) = e−nλ1λ∑xi
1

∏xi!
∏xi!

e−nλ0λ∑xi
0

= e−n(λ1−λ0)

(
λ1

λ0

)∑xi

.

Since λ1 = 0.4 > 0.3 = λ0, r > c is equivalent to ∑xi > k and the NP UMP test has
the same form as the UMP test found using the much simpler Theorem 7.3.

k 0 1 2 3 4 5
P(T = k) 0.0498 0.1494 0.2240 0.2240 0.1680 0.1008

F(k) 0.0498 0.1992 0.4232 0.6472 0.8152 0.9160

If Ho is true, then T = ∑10
i=1 Xi ∼ Pois(3) since 3 = 10λ0 = 10(0.3). The above

table gives the probability that T = k and F(k) = P(T ≤ k). First find the smallest
integer k such that Pλ=0.30(∑Xi > k) = P(T > k) < α = 0.1. Since P(T > k) =
1−F(k), find the smallest value of k such that F(k)> 0.9. This happens with k = 5.
Next use (7.3) to find γ.

γ =
0.1− (1− 0.9160)

0.1008
=

0.1− 0.084
0.1008

=
0.016
0.1008

≈ 0.1587.

Hence the α = 0.1 UMP test rejects Ho if T ≡ ∑10
i=1 Xi > 5 and rejects Ho with

probability 0.1587 if ∑10
i=1 Xi = 5. Equivalently, the test function φ(T ) gives the

probability of rejecting Ho for a given value of T where

φ(T ) =

⎧
⎨

⎩

1, T > 5
0.1587, T = 5
0, T < 5.

Example 7.3. Let X1, . . . ,Xn be independent identically distributed random vari-
ables from a distribution with pdf

f (x) =
2

λ
√

2π
1
x

exp

[−(log(x))2

2λ 2

]
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where λ > 0 and 0 ≤ x ≤ 1.

a) What is the UMP (uniformly most powerful) level α test for
H0 : λ = 1 vs. H1 : λ = 2?

b) If possible, find the UMP level α test for H0 : λ = 1 vs. H1 : λ > 1.

Solution. a) By the NP lemma reject Ho if

f (x|λ = 2)
f (x|λ = 1)

> k′.

The (left-hand side) LHS =

1
2n exp[−1

8 ∑[log(xi)]
2]

exp[−1
2 ∑[log(xi)]2]

.

So reject Ho if

1
2n exp

[

∑[log(xi)]
2
(

1
2
− 1

8

)]
> k′

or if ∑[log(Xi)]
2 > k where Pλ=1(∑[log(Xi)]

2 > k) = α.
b) In the above argument, with any λ1 > 1, get

∑[log(xi)]
2
(

1
2
− 1

2λ 2
1

)

and
1
2
− 1

2λ 2
1

> 0

for any λ 2
1 > 1. Hence the UMP test is the same as in a).

Theorem 7.3 gives the same UMP test as a) for both a) and b) since the pdf is
a 1P-REF and w(λ 2) = −1/(2λ 2) is an increasing function of λ 2. Also, it can be
shown that ∑[log(Xi)]

2 ∼ λ 2χ2
n , so k = χ2

n,1−α where P(W > χ2
n,1−α)=α if W ∼ χ2

n .

Example 7.4. Let X1, . . . ,Xn be independent identically distributed (iid) random
variables with probability density function

f (x) =
2

λ
√

2π
ex exp

(−(ex − 1)2

2λ 2

)

where x > 0 and λ > 0.

a) What is the UMP (uniformly most powerful) level α test for
H0 : λ = 1 vs. H1 : λ = 2?

b) If possible, find the UMP level α test for H0 : λ = 1 vs. H1 : λ > 1.
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a) By the NP lemma reject Ho if

f (x|λ = 2)
f (x|λ = 1)

> k′.

The LHS =
1
2n exp[−1

8 ∑(exi − 1)2]

exp[−1
2 ∑(exi − 1)2]

.

So reject Ho if

1
2n exp

[

∑(exi − 1)2
(

1
2
− 1

8

)]
> k′

or if ∑(exi − 1)2 > k where P1(∑(eXi − 1)2 > k) = α.
b) In the above argument, with any λ1 > 1, get

∑(exi − 1)2
(

1
2
− 1

2λ 2
1

)

and
1
2
− 1

2λ 2
1

> 0

for any λ 2
1 > 1. Hence the UMP test is the same as in a).

Alternatively, use the fact that this is an exponential family where w(λ 2) =
−1/(2λ 2) is an increasing function of λ 2 with T (Xi) = (eXi − 1)2. Hence the same
test in a) is UMP for both a) and b) by Theorem 7.3.

Example 7.5. Let X1, . . . ,Xn be independent identically distributed random vari-
ables from a half normal HN(μ ,σ2) distribution with pdf

f (x) =
2

σ
√

2π
exp

(−(x− μ)2

2σ2

)

where σ > 0 and x > μ and μ is real. Assume that μ is known.

a) What is the UMP (uniformly most powerful) level α test for
H0 : σ2 = 1 vs. H1 : σ2 = 4?

b) If possible, find the UMP level α test for H0 : σ2 = 1 vs. H1 : σ2 > 1.

Solution: a) By the NP lemma reject Ho if

f (x|σ2 = 4)
f (x|σ2 = 1)

> k′.
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The LHS =
1
2n exp

[(−∑(xi−μ)2

2(4)

)]

exp
[(−∑(xi−μ)2

2

)] .

So reject Ho if

1
2n exp

[

∑(xi − μ)2
(−1

8
+

1
2

)]
> k′

or if ∑(xi − μ)2 > k where Pσ2=1(∑(Xi − μ)2 > k) = α.
Under Ho, ∑(Xi − μ)2 ∼ χ2

n so k = χ2
n (1−α) where P(χ2

n > χ2
n (1−α)) = α.

b) In the above argument,

−1
2(4)

+ 0.5 =
−1
8

+ 0.5 > 0

but
−1

2σ2
1

+ 0.5 > 0

for any σ2
1 > 1. Hence the UMP test is the same as in a).

Alternatively, use the fact that this is an exponential family where w(σ2) =
−1/(2σ2) is an increasing function of σ2 with T (Xi) = (Xi−μ)2. Hence the test in
a) is UMP for a) and b) by Theorem 7.3.

Example 7.6. Let Y1, ....,Yn be iid with pdf

f (y) =
1

2
√

2π θy2

y2 −θ 2
√

y
θ −

√
θ
y

I(y > 0)
1
ν

exp

[ −1
2ν2 t(y)

]

where ν > 0, θ is known and t(y) is a function such that t(Y )∼ ν2χ2
1 .

a) Find the UMP level α test for H0 : ν = 1 versus H1 : ν = 1.19.
b) Suppose n = 12 and α = 0.05. Find the power β (1.19) when ν = 1.19.
Solution: a) This is an exponential family. Note that 2ν2 is increasing, so 1/(2ν2)

is decreasing and w(λ ) = −1/(2ν2) is increasing. Thus the UMP test rejects H0 if
∑n

i=1 t(yi)> k where α = P1(∑n
i=1 t(Yi)> k).

b) Use α to find k and then find the power. If H0 is true so ν = 1, then
∑n

i=1 t(Yi)∼ χ2
12. Thus k = χ2

12(0.95) = 21.03 using a chi-square table. If ν = 1.19,
then ∑n

i=1 t(Yi)∼ (1.19)2χ2
12. So β (1.19) = P1.19(∑n

i=1 t(Yi)> 21.03) =
P(X > 21.03/(1.19)2) = P(X > 14.8506) = 0.25 using a chi-square table where
X ∼ χ2

12.

Example 7.7. Let Y1, . . . ,Yn be independent identically distributed random vari-
ables with pdf
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f (y) =

√
2y2e

−1
2σ2 y2

σ3
√
π

where y ≥ 0 and σ > 0. You may use the fact that W = t(Y ) = Y 2 ∼ σ2χ2
3 .

a) What is the UMP (uniformly most powerful) level α test for
H0 : σ = 1 versus H1 : σ > 1?

b) If n = 20 and α = 0.05, then find the power β (
√

1.8311) of the above UMP
test if σ =

√
1.8311. Let P(χ2

d ≤ χ2
d,δ ) = δ . The tabled values below give χ2

d,δ .

d δ
0.01 0.05 0.1 0.25 0.75 0.9 0.95 0.99

20 8.260 10.851 12.443 15.452 23.828 28.412 31.410 37.566
40 22.164 26.509 29.051 33.660 45.616 51.805 55.758 63.691
60 37.485 43.188 46.459 52.294 66.981 74.397 79.082 88.379

Solution. a) This family is a regular one-parameter exponential family where
w(σ) = −1/(2σ2) is increasing. Hence the level α UMP test rejects H0 when
∑n

i=1 y2
i > k where α = P1(∑n

i=1 Y 2
i > k) = P1(T (Y )> k).

b) Since T (Y )∼ σ2χ2
3n,

T (Y )
σ2 ∼ χ2

3n. Hence

α = 0.05 = P1(T (Y )> k) = P(χ2
60 > χ2

60,1−α),

and k = χ2
60,1−α = 79.082. Hence the power

β (σ) = Pσ (T (Y )> 79.082) = P

(
T (Y )
σ2 >

79.082
σ2

)
= P

(
χ2

60 >
79.082
σ2

)

= P

(
χ2

60 >
79.082
1.8311

)
= P(χ2

60 > 43.188) = 1− 0.05= 0.95.

7.3 Likelihood Ratio Tests

Definition 7.7. Let (Y1, . . . ,Yn) be the data with joint pdf or joint pmf f (y|�) where
� is a vector of unknown parameters with parameter space Θ . Let �̂ be the MLE
of � and let �̂0 be the MLE of � if the parameter space is Θ0 (where Θ0 ⊂ Θ ).
A likelihood ratio test (LRT) statistic for testing H0 : � ∈Θ0 versus H1 : � ∈Θ c

0 is

λ (y) =
L(�̂0|y)
L(�̂|y) =

supΘ0
L(�|y)

supΘ L(�|y) . (7.4)

The likelihood ratio test (LRT) has a rejection region of the form

R = {y|λ (y)≤ c}
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where 0 ≤ c ≤ 1, and α = sup�∈Θ0
P�(λ (Y ) ≤ c). Suppose �0 ∈ Θ0 and

sup�∈Θ0
P�(λ (Y )≤ c) = P�0

(λ (Y )≤ c). Then α = P�0
(λ (Y )≤ c).

Rule of Thumb 7.1: Asymptotic Distribution of the LRT. Let Y1, . . . ,Yn be
iid. Then under strong regularity conditions, −2logλ (Y ) ≈ χ2

j for large n where
j = r−q, r is the number of free parameters specified by � ∈Θ , and q is the number
of free parameters specified by � ∈Θ0. Hence the approximate LRT rejects H0 if
−2logλ (y)> c where P(χ2

j > c) =α. Thus c= χ2
j,1−α where P(χ2

j > χ2
j,1−α) =α .

Often �̂ is called the unrestricted MLE of � , and �̂0 is called the restricted MLE
of � . Often � = θ is a scalar parameter, Θ0 = (a,θ0] and Θ1 = Θ c

0 = (θ0,b) or
Θ0 = [θ0,b) and Θ1 = (a,θ0).

Remark 7.3. Suppose the problem wants the rejection region in useful form.
Find the two MLEs and write L(θ |y) in terms of a sufficient statistic. Then you
should either I) simplify the LRT test statistic λ (y) and try to find an equivalent
test that uses test statistic T (y) where the distribution of T (Y ) is known (i.e., put
the LRT in useful form). Often the LRT rejects H0 if T > k (or T < k). Getting the
test into useful form can be very difficult. Monotone transformations such as log or
power transformations can be useful. II) If you cannot find a statistic T with a simple
distribution, state that the Rule of Thumb 7.1 suggests that the LRT test rejects Ho if
−2logλ (y)> χ2

j,1−α where α = P(−2logλ (Y )> χ2
j,1−α). Using II) is dangerous

because for many data sets the asymptotic result will not be valid.

Example 7.8. Let X1, . . . ,Xn be independent identically distributed random vari-
ables from a N(μ ,σ2) distribution where the variance σ2 is known. We want to test
H0 : μ = μ0 against H1 : μ �= μ0.

a) Derive the likelihood ratio test.

b) Let λ be the likelihood ratio. Show that −2logλ is a function of (X − μ0).

c) Assuming that H0 is true, find P(−2logλ > 3.84).

Solution: a) The likelihood function

L(μ) = (2πσ2)−n/2 exp

[ −1
2σ2 ∑(xi − μ)2

]

and the MLE for μ is μ̂ = x. Thus the numerator of the likelihood ratio test statistic is
L(μ0) and the denominator is L(x). So the test is reject H0 if λ (x) = L(μ0)/L(x)≤ c
where α = Pμ0(λ (X)≤ c).

b) As a statistic, logλ = logL(μ0)− logL(X) =
− 1

2σ2 [∑(Xi − μ0)
2 −∑(Xi −X)2] = −n

2σ2 [X − μ0]
2 since ∑(Xi − μ0)

2 =

∑(Xi −X +X − μ0)
2 = ∑(Xi −X)2 + n(X − μ0)

2. So −2logλ = n
σ2 [X − μ0]

2.

c) −2logλ ∼ χ2
1 and from a chi-square table, P(−2logλ > 3.84) = 0.05.
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Example 7.9. Let Y1, . . . ,Yn be iid N(μ ,σ2) random variables where μ and σ2

are unknown. Set up the likelihood ratio test for Ho : μ = μ0 versus HA : μ �= μ0.
Solution: Under Ho, μ = μ0 is known and the MLE

(μ̂0, σ̂2
0 ) =

(

μ0,
1
n

n

∑
i=1

(Yi − μ0)
2

)

.

Recall that

(μ̂ , σ̂2) =

(

Y ,
1
n

n

∑
i=1

(Yi −Y )2

)

.

Now

L(μ ,σ2) =
n

∏
i=1

1

σ
√

2π
exp

[
1

2σ2 (yi − μ)2
]
.

Thus

λ (y) =
L(μ̂0, σ̂2

0 |y)
L(μ̂ , σ̂2|y) =

1
(σ̂2

0 )
n/2 exp

[
1

2σ̂2
0
∑n

i=1(yi − μ0)
2
]

1
(σ̂2)n/2 exp

[
1

2σ̂2 ∑n
i=1(yi − y)2

] =

(
σ̂2

σ̂2
0

)n/2
exp(n/2)
exp(n/2)

=

(
σ̂2

σ̂2
0

)n/2

.

The LRT rejects Ho iff λ (y)≤ c where supσ2 Pμ0,σ2(λ (Y )≤ c) = α.
On an exam the above work may be sufficient, but to implement the LRT, more

work is needed. Notice that the LRT rejects Ho iff σ̂2/σ̂2
0 ≤ c′ iff σ̂2

0 /σ̂2 ≥ k′. Using

n

∑
i=1

(yi − μ0)
2 =

n

∑
i=1

(yi − y)2 + n(y− μ0)
2,

the LRT rejects Ho iff
[

1+
n(y− μ0)

2

∑n
i=1(yi − y)2

]
≥ k”

iff √
n |y− μ0|

[
∑n

i=1(yi−y)2

n−1

]1/2
=
√

n
|y− μ0|

s
≥ k

where s is the observed sample standard deviation. Hence the LRT is equivalent to
the usual t test with test statistic

T0 =
Y − μ0

S/
√

n



7.3 Likelihood Ratio Tests 195

that rejects Ho iff |T0| ≥ k with k = tn−1,1−α/2 where P(T ≤ tn−1,1−α/2) = 1−α/2
when T ∼ tn−1.

Example 7.10. Suppose that X1, . . . ,Xn are iid N(0,σ2) where σ > 0 is the un-
known parameter. With preassigned α ∈ (0,1), derive a level α likelihood ratio test
for the null hypothesis H0 : σ2 = σ2

0 against an alternative hypothesis HA : σ2 �= σ2
0 .

Solution: The likelihood function is given by

L(σ2) = (2πσ2)−
n
2 exp

(

− 1
2σ2

n

∑
i=1

x2
i

)

for all σ2 > 0, and σ̂2(x) =∑n
i=1 x2

i /n is the MLE for σ2. Under Ho, σ̂2
0 = σ2

o since
σ2

0 is the only value in the parameter space Θ0 = {σ2
0}. Thus

λ (x) =
L(σ̂2

0 |x)
L(σ̂2|x) =

supΘ0
L(σ2|x)

supσ2 L(σ2|x) =
(2πσ2

0 )
−n
2 exp

(
− 1

2σ2
0
∑n

i=1 x2
i

)

(2πσ̂2)
−n
2 exp

(−n
2

) .

So

λ (x) =
(
σ̂2

σ2
0

)n/2

exp

(−nσ̂2

2σ2
0

)
en/2 =

[
σ̂2

σ2
0

exp

(
1− σ̂2

σ2
0

)]n/2

.

The LRT rejects H0 if λ (x)≤ c where Pσ2
0
(λ (X)≤ c) = α.

The function g(u)= ue1−uI(u> 0) monotonically increases for 0< u< d, mono-
tonically decreases for d < u<∞, and attains its maximum at u= d, for some d > 0.
So λ (x) will be small in the two tail areas.

Under H0, T = ∑i=1 X2
i /σ2

0 ∼ χ2
n . Hence the LR test will reject Ho if T < a or

T > b where 0 < a < b. The a and b correspond to horizontal line drawn on the
χ2

n pdf such that the tail area is α. Hence a and b need to be found numerically.
An approximation that should be good for large n rejects Ho if T < χ2

n, α2
or T >

χ2
n,1− α

2
where P(χ2

n < χ2
n,α) = α.

Example 7.11. Consider independent random variables X1, . . . ,Xn, where Xi ∼
N(θi,σ2), 1 ≤ i ≤ n, and σ2 is known.

a) Find the most powerful test of

H0 : θi = 0,∀i, versus H1 : θi = θi0,∀i,

where θi0 are known. Derive (and simplify) the exact critical region for a level α
test.

b) Find the likelihood ratio test of

H0 : θi = 0,∀i, versus H1 : θi �= 0, for some i.
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Derive (and simplify) the exact critical region for a level α test.
c) Find the power of the test in (a), when θi0 = n−1/3,∀i. What happens to this

power expression as n → ∞?

Solution: a) In Neyman–Pearson’s lemma, let θ = 0 if H0 is true and θ = 1 if H1

is true. Then want to find f (x|θ = 1)/ f (x|θ = 0)≡ f1(x)/ f0(x). Since

f (x) =
1

(
√

2π σ)n
exp

[
−1
2σ2

n

∑
i=1

(xi −θi)
2

]

,

f1(x)

f0(x)
=

exp[ −1
2σ2 ∑n

i=1(xi −θi0)
2]

exp[ −1
2σ2 ∑n

i=1 x2
i ]

= exp

(
−1
2σ2

[
n

∑
i=1

(xi −θi0)
2 −

n

∑
i=1

x2
i

])

=

exp

(
−1
2σ2

[

−2
n

∑
i=1

xiθi0 +
n

∑
i=1

θ 2
i0

])

> k′

if −1
2σ2 [−2∑n

i=1 xiθi0 +∑n
i=1 θ 2

i0])> k” or if ∑n
i=1 xiθi0 > k. Under Ho, ∑n

i=1 Xiθi0 ∼
N(0,σ2∑n

i=1θ 2
i0). Thus

∑n
i=1 Xiθi0

σ
√

∑n
i=1 θ 2

i0

∼ N(0,1).

By Neyman–Pearson’s lemma, reject Ho if

∑n
i=1 Xiθi0

σ
√

∑n
i=1 θ 2

i0

> z1−α

where P(Z < z1−α) = 1−α when Z ∼ N(0,1).
b) The MLE under Ho is θ̂i = 0 for i = 1, . . . ,n, while the unrestricted MLE is

θ̂i = xi for i = 1, . . . ,n since xi = xi when the sample size is 1. Hence

λ (x) =
L(θ̂i = 0)

L(θ̂i = xi)
=

exp[ −1
2σ2 ∑n

i=1 x2
i ]

exp[ −1
2σ2 ∑n

i=1(xi − xi)2]
= exp

[
−1
2σ2

n

∑
i=1

x2
i

]

≤ c′

if −1
2σ2 ∑n

i=1 x2
i ≤ c”, or if ∑n

i=1 x2
i ≥ c. Under Ho, Xi ∼ N(0,σ2), Xi/σ ∼ N(0,1), and

∑n
i=1 X2

i /σ2 ∼ χ2
n . So the LRT is reject Ho if ∑n

i=1 X2
i /σ2 ≥ χ2

n,1−α where

P(W ≥ χ2
n,1−α) = 1−α if W ∼ χ2

n .
c) Power = P(reject Ho) =

P

(
n−1/3∑n

i=1 Xi

σ
√

n n−2/3
> z1−α

)

= P

(
n−1/3∑n

i=1 Xi

σ n1/6
> z1−α

)

=
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P

(
n−1/2∑n

i=1 Xi

σ
> z1−α

)

= P

(
n

∑
i=1

Xi > σ z1−α n1/2

)

where
n

∑
i=1

Xi ∼ N(n n−1/3,n σ2)∼ N(n2/3,n σ2). So

∑n
i=1 Xi − n2/3
√

n σ
∼ N(0,1), and power = P

(
∑n

i=1 Xi√
n σ

> z1−α

)
=

P

(
∑n

i=1 Xi − n2/3
√

n σ
> z1−α − n2/3

√
n σ

)

= 1−Φ

(

z1−α − n2/3
√

n σ

)

=

1−Φ

(

z1−α − n1/6

σ

)

→ 1−Φ(−∞) = 1

as n → ∞.

Example 7.12. Let X1, . . . ,Xm be iid from a distribution with pdf

f (x) = μxμ−1,

for 0 < x < 1 where μ > 0. Let Y1, . . . ,Yn be iid from a distribution with pdf

g(y) = θyθ−1,

for 0 < y < 1 where θ > 0. Let

T1 =
m

∑
i=1

log(Xi) and T2 =
n

∑
j=1

log(Yi).

Find the likelihood ratio test statistic for H0 : μ = θ versus H1 : μ �= θ in terms of
T1, T2, and the MLEs. Simplify.

Solution: L(μ) = μm exp[(μ− 1)∑ log(xi)], and
log(L(μ)) = m log(μ)+ (μ− 1)∑ log(xi). Hence

d log(L(μ))
dμ

=
m
μ
+∑ log(xi)

set
= 0.

Or μ ∑ log(xi) =−m or μ̂ =−m/T1, unique. Now

d2 log(L(μ))
dμ2 =

−m
μ2 < 0.

Hence μ̂ is the MLE of μ . Similarly θ̂ =
−n

∑n
j=1 log(Yj)

=
−n
T2

. Under H0 combine

the two samples into one iid sample of size m+ n with MLE
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μ̂0 =
−(m+ n)
T1 +T2

.

Now the likelihood ratio statistic

λ =
L(μ̂0)

L(μ̂ , θ̂ )
=

μ̂m+n
0 exp[(μ̂0 − 1)(∑ log(Xi)+∑ log(Yi))]

μ̂mθ̂ n exp[(μ̂− 1)∑ log(Xi)+ (θ̂ − 1)∑ log(Yi)]

=
μ̂m+n

0 exp[(μ̂0 − 1)(T1 +T2)]

μ̂mθ̂ n exp[(μ̂− 1)T1 +(θ̂ − 1)T2]
=

μ̂m+n
0 exp[−(m+ n)]exp[−(T1 +T2)]

μ̂mθ̂ n exp(−m)exp(−n)exp[−(T1 +T2)]

=
μ̂m+n

0

μ̂mθ̂ n
=

(−(m+n)
T1+T2

)m+n

(
−m
T1

)m(−n
T2

)n .

7.4 Summary

For hypothesis testing there is a null hypothesis Ho and an alternative hypothesis
H1 ≡ HA. A hypothesis test is a rule for rejecting Ho. Either reject Ho or fail to
reject Ho. A simple hypothesis consists of exactly one distribution for the sample.
A composite hypothesis consists of more than one distribution for the sample.

The power β (�) = P� (reject H0) is the probability of rejecting H0 when � is
the true value of the parameter. Often the power function cannot be calculated, but
you should be prepared to calculate the power for a sample of size one for a test
of the form H0 : f (y) = f0(y) versus H1 : f (y) = f1(y) or if the test is of the form
∑t(Yi) > k or ∑t(Yi) < k when ∑t(Yi) has an easily handled distribution under H1,
e.g., binomial, normal, Poisson, or χ2

p. To compute the power, you need to find k
and γ for the given value of α.

For a left tailed test, p-value = PH0(Tn(Y ) ≤ Tn(y)). For a right tailed test, p-
value = PH0(Tn(Y ) ≥ Tn(y)). If the test statistic Tn(Y ) has a sampling distribution
that is symmetric about 0, then for a two tailed test, p-value = PH0(Tn(Y )≥ |Tn(y)|).
Reject Ho if p-value ≤ α .

Consider all level α tests of H0 : θ ∈ Θ0 vs. H1 : θ1 ∈ Θ1. A uniformly most
powerful (UMP) level α test is a level α test with power function βUMP(θ ) such
that βUMP(θ )≥ β (θ ) for every θ ∈Θ1 where β is the power function for any level
α test of H0 vs. H1.

One-Sided UMP Tests for Exponential Families. Let Y1, . . . ,Yn be iid with pdf
or pmf

f (y|θ ) = h(y)c(θ )exp[w(θ )t(y)]
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from a one-parameter exponential family where θ is real and w(θ ) is increasing.
Let T (y) =∑n

i=1 t(yi). Then the UMP test for H0 : θ ≤ θ0 vs. HA : θ > θ0 rejects H0

if T (y)> k and rejects H0 with probability γ if T (y) = k where
α = Pθ0(T (Y )> k)+γPθ0(T (Y ) = k). The UMP test for H0 : θ ≥ θ0 vs. HA : θ < θ0

rejects H0 if T (y)< k and rejects H0 with probability γ if T (y) = k where
α = Pθ0(T (Y )< k)+ γPθ0(T (Y ) = k).

Fact: if f is a pdf, then usually γ = 0. For a pmf and HA : θ > θ0,

γ =
α−Pθ0 [T (Y )> k]

Pθ0 [T (Y ) = k]
.

For a pmf and HA : θ < θ0,

γ =
α−Pθ0 [T (Y )< k]

Pθ0 [T (Y ) = k]
.

As a mnemonic, note that the inequality used in the rejection region is the same
as the inequality in the alternative hypothesis. Suppose that the parameterization is

f (y|θ ) = h(y)c(θ )exp[w̃(θ )t̃(y)]

where w̃(θ ) is decreasing. Then set w(θ ) =−w̃(θ ) and t(y) =−t̃(y).

Recall that w(θ ) is increasing onΘ if w′(θ )> 0 for θ ∈Θ , and w(θ ) is decreas-
ing on Θ if w′(θ )< 0 for θ ∈Θ . Also w(θ ) is nondecreasing on Θ if w′(θ )≥ 0 for
θ ∈Θ , and w(θ ) is nonincreasing on Θ if w′(θ )≤ 0 for θ ∈Θ .

The Neyman–Pearson Lemma: Consider testing H0 : θ = θ0 vs. H1 : θ = θ1

where the pdf or pmf corresponding to θi is f (y|θi) for i = 0,1. Suppose the test
rejects H0 if f (y|θ1) > k f (y|θ0), and rejects H0 with probability γ if f (y|θ1) =
k f (y|θ0) for some k ≥ 0. If

α = β (θ0) = Pθ0 [ f (Y |θ1)> k f (Y |θ0)]+ γPθ0[ f (Y |θ1) = k f (Y |θ0)],

then this test is a UMP level α test and a UMP size α test.

One-Sided UMP Tests via the Neyman–Pearson Lemma: Suppose that the
hypotheses are of the form H0 : θ ≤ θ0 vs. H1 : θ > θ0 or H0 : θ ≥ θ0 vs. H1 : θ < θ0,
or that the inequality in H0 is replaced by equality. Also assume that

sup
θ∈Θ0

β (θ ) = β (θ0).

Pick θ1 ∈ Θ1 and use the Neyman–Pearson lemma to find the UMP test for H∗
0 :

θ = θ0 vs. H∗
A : θ = θ1. Then the UMP test rejects H∗

0 if f (y|θ1) > k f (y|θ0),
and rejects H∗

0 with probability γ if f (y|θ1) = k f (y|θ0) for some k ≥ 0 where
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α = β (θ0). This test is also the UMP level α test for H0 : θ ∈Θ0 vs. H1 : θ ∈Θ1

if k does not depend on the value of θ1 ∈ Θ1. If R = f (Y |θ1)/ f (Y |θ0), then
α = Pθ0(R > k)+ γPθ0(R = k).

Fact: if f is a pdf, then usually γ = 0 and α = Pθ0 [ f (Y |θ1)> k f (Y |θ0)]. So γ is
important when f is a pmf. For a pmf,

γ =
α−Pθ0[ f (Y |θ1)> k f (Y |θ0)]

Pθ0 [ f (Y |θ1) = k f (Y |θ0)]
.

Often it is too hard to give the UMP test in useful form. Then simply specify when
the test rejects H0 and specify α in terms of k (e.g., α = Pθ0(T > k)+ γPθ0(T = k)).

The problem will be harder if you are asked to put the test in useful form. To find

an UMP test with the NP lemma, often the ratio
f (y|θ1)

f (y|θ0)
is computed. The test will

certainly reject H0 if the ratio is large, but usually the distribution of the ratio is not
easy to use. Hence try to get an equivalent test by simplifying and transforming the
ratio. Ideally, the ratio can be transformed into a statistic T whose distribution is
tabled.

If the test rejects H0 if T > k (or if T > k and with probability γ if T = k, or if
T < k, or if T < k and with probability γ if T = k) the test is in useful form if for a
given α , you find k and γ . If you are asked to find the power (perhaps with a table),
put the test in useful form.

Let (Y1, . . . ,Yn) be the data with joint pdf or pmf f (y|�) where � is a vector of
unknown parameters with parameter space Θ . Let �̂ be the MLE of � and let �̂0

be the MLE of � if the parameter space is Θ0 (where Θ0 ⊂Θ ). A LRT statistic for
testing H0 : � ∈Θ0 versus H1 : � ∈Θ c

0 is

λ (y) =
L(�̂0|y)
L(�̂|y) .

The LRT has a rejection region of the form

R = {y|λ (y)≤ c}

where 0 ≤ c ≤ 1 and α = sup�∈Θ0
P�(λ (Y )≤ c).

Fact: Often Θ0 = (a,θ0] and Θ1 = (θ0,b) or Θ0 = [θ0,b) and Θ1 = (a,θ0).

If you are not asked to find the power or to put the LRT into useful form, it
is often enough to find the two MLEs and write L(�|y) in terms of a sufficient
statistic. Simplify the statistic λ (y) and state that the LRT test rejects Ho if λ (y)≤ c
where α = sup�∈Θ0

P�(λ (Y ) ≤ c). If the sup is achieved at �0 ∈ Θ0, then α =
P�0

(λ (Y )≤ c).
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Put the LRT into useful form if asked to find the power. Try to simplify λ or
transform λ so that the test rejects H0 if some statistic T > k (or T < k). Getting
the test into useful form can be very difficult. Monotone transformations such as
log or power transformations can be useful. If you cannot find a statistic T with
a simple distribution, use the large sample approximation to the LRT that rejects
Ho if −2logλ (y) > χ2

j,1−α where P(χ2
j > χ2

j,1−α) = α. Here j = r − q where r
is the number of free parameters specified by θ ∈Θ , and q is the number of free
parameters specified by θ ∈Θ0.

A common LRT problem is X1, . . . ,Xn are iid with pdf f (x|θ ) while Y1, . . . ,Ym are
iid with pdf f (y|μ). H0 : μ = θ and H1 : μ �= θ . Then under H0, X1, . . . ,Xn,Y1, . . . ,Ym

are an iid sample of size n+m with pdf f (y|θ ). Hence if f (y|θ ) is the N(μ ,1) pdf,

then μ̂0(= θ̂0) =
∑n

i=1 Xi +∑m
j=1 Yj

n+m
, the sample mean of the combined sample.

Some distribution facts useful for testing.
Memorize Theorems 2.17 and 4.1.
Suppose Y1, . . . ,Yn are iid N(μ ,σ2). Then Z = Y−μ

σ ∼ N(0,1).

Z = Y−μ
σ/

√
n ∼ N(0,1) while a+ cYi ∼ N(a+ cμ ,c2σ2).

Suppose Z,Z1, . . . ,Zn are iid N(0,1). Then Z2 ∼ χ2
1 .

Also a+ cZi ∼ N(a,c2) while ∑n
i=1 Z2

i ∼ χ2
n .

If Xi are independent χ2
ki
≡ χ2(ki) for i = 1, . . . ,n,

then ∑n
i=1 Xi ∼ χ2(∑n

i=1 ki).

Let W ∼ EXP(λ ) and let c > 0. Then cW ∼ EXP(cλ ).

Let W ∼ gamma(ν,λ ) and let c > 0. Then cW ∼ gamma(ν,cλ ).

If W ∼ EXP(λ )∼ gamma(1,λ ), then
2W/λ ∼ EXP(2)∼ gamma(1,2)∼ χ2(2).

Let k ≥ 0.5 and let 2k be an integer. If W ∼ gamma(k,λ ), then
2W/λ ∼ gamma(k,2)∼ χ2(2k).

Let W1, . . . ,Wn be independent gamma(νi,λ ). Then
∑n

i=1 Wi ∼ gamma(∑n
i=1 νi,λ ).

7.5 Complements

Example 7.13. As an application of this example, see Problem 7.25. Let
Y1, . . . ,Yn be iid from a one-parameter exponential family with pdf f (y|θ ) and com-
plete sufficient statistic T (Y ) = ∑n

i=1 t(Yi) where θ > 0, t(Yi)∼ cθχ2
j and j is some

positive integer, often 1 or 2. Usually the constant c =−1,−1/2,1/2 or 1. Suppose
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w(θ ) is increasing and let P(χ2
d ≤ χ2

d,δ ) = δ . Let a be a positive integer and b > 0

some constant. Then t(Y ) ∼ G( a
2 ,bθ )∼ bθ 2

2 G( a
2 ,1)∼ b

2θG( a
2 ,2) ∼ b

2θχ
2
a . Hence

c = b/2 and j = a. If −t(Y ) ∼ G( a
2 ,bθ ), then t(Y ) ∼ −b

2 θχ2
a . Hence c = −b/2

and j = a. Note that T (Y ) ∼ cθχ2
n j, so T (Y )

cθ ∼ χ2
n j. Consider the UMP test for

H0 : θ = θ0 versus H1 : θ = θ1, or H1 : θ > θ0 or H1 : θ < θ0.
i) Let c > 0 and θ1 > θ0. Then the UMP test rejects H0 if T (Y ) > k where

α = Pθ0(T (Y )> k) =

P

(
T (Y )
cθ0

>
k

cθ0

)
= P(χ2

n j > χ2
n j,1−α),

and k = cθ0χ2
n j,1−α . Hence the power β (θ ) = Pθ (T (Y )> k) =

Pθ (T (Y )> cθ0χ2
n j,1−α) = P

(
T (Y )

cθ
>

θ0

θ
χ2

n j,1−α

)
= P

(
χ2

n j >
θ0

θ
χ2

n j,1−α

)
.

ii) Let c < 0 and θ1 > θ0. Then the UMP test rejects H0 if T (Y ) > k where
α = Pθ0(T (Y )> k) =

P

(
T (Y )
cθ0

<
k

cθ0

)
= P(χ2

n j < χ2
n j,α),

and k = cθ0χ2
n j,α . Hence the power β (θ ) = Pθ (T (Y )> k) =

Pθ (T (Y )> cθ0χ2
n j,α) = P

(
T (Y )

cθ
<

θ0

θ
χ2

n j,α

)
= P(χ2

n j <
θ0

θ
χ2

n j,α).

iii) Let c > 0 and θ1 < θ0. Then the UMP test rejects H0 if T (Y ) < k where
α = Pθ0(T (Y )< k) =

P

(
T (Y )
cθ0

<
k

cθ0

)
= P(χ2

n j < χ2
n j,α),

and k = cθ0χ2
n j,α . Hence the power β (θ ) = Pθ (T (Y )< k) =

Pθ (T (Y )< cθ0χ2
n j,α) = P

(
T (Y )

cθ
<

θ0

θ
χ2

n j,α

)
= P

(
χ2

n j <
θ0

θ
χ2

n j,α

)
.

iv) Let c < 0 and θ1 < θ0. Then the UMP test rejects H0 if T (Y ) < k where
α = Pθ0(T (Y )< k) =

P

(
T (Y )
cθ0

>
k

cθ0

)
= P(χ2

n j > χ2
n j,1−α),

and k = cθ0χ2
n j,1−α . Hence the power β (θ ) = Pθ (T (Y )< k) =
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Pθ (T (Y )< cθ0χ2
n j,1−α) = P

(
T (Y )

cθ
>

θ0

θ
χ2

n j,1−α

)
= P

(
χ2

n j >
θ0

θ
χ2

n j,1−α

)
.

Definition 7.8. Let Y1, . . . ,Yn have pdf or pmf f (y|θ ) for θ ∈Θ . Let T (Y ) be a
statistic. Then f (y|θ ) has a monotone likelihood ratio (MLR) in statistic T if for
any two values θ0,θ1 ∈Θ with θ0 < θ1, the ratio f (y|θ1)/ f (y|θ0) depends on the
vector y only through T (y), and this ratio is an increasing function of T (y) over the
possible values of T (y).

Remark 7.4. Theorem 7.3 is a corollary of the following theorem, because under
the conditions of Theorem 7.3, f (y|θ ) has MLR in T (y) = ∑n

i=1 t(yi).

Theorem 7.4, MLR UMP Tests. Let Y1, . . . ,Yn be a sample with a joint pdf or
pmf f (y|θ ) that has MLR in statistic T (y). I) The UMP test for H0 : θ ≤ θ0 vs.
H1 : θ > θ0 rejects H0 if T (y) > k and rejects H0 with probability γ if T (y) = k
where α = Pθ0(T (Y )> k)+ γPθ0(T (Y ) = k). II) The UMP test for H0 : θ ≥ θ0 vs.
H1 : θ < θ0 rejects H0 if T (y) < k and rejects H0 with probability γ if T (y) = k
where α = Pθ0(T (Y )< k)+ γPθ0(T (Y ) = k).

Proof. I) Pick θ1 > θ0 and consider H∗
0 : θ = θ0 versus H∗

1 : θ = θ1. Let h be the
increasing function such that

f (y|θ1)

f (y|θ0)
= h(T (y))> c

iff T (y)> k. So the NP UMP test is equivalent to the test that rejects H∗
0 if T (y)> k

and rejects H∗
0 with probability γ if T (y) = k where α =

Pθ0(T (Y ) > k) + γPθ0(T (Y ) = k). Since this test does not depend on θ1 > θ0, it
is also the UMP test for H∗

0 : θ = θ0 versus H1 : θ > θ0 by Theorem 7.2. Since
θ0 < θ1 was arbitrary, supθ∈Θ0

β (θ ) = β (θ0) ifΘ0 = {θ ∈Θ |θ ≤ θ0}, and the result
follows. The proof of II) is similar, but θ1 < θ0. Thus h is an increasing function
with respect to f (y|θ0)/ f (y|θ1), but a decreasing function of T (y) with respect to
f (y|θ1)/ f (y|θ0). Thus

f (y|θ1)

f (y|θ0)
= h(T (y))> c

iff T (y)< k. �

Lehmann and Romano (2005) is an authoritative Ph.D. level text on testing statis-
tical hypotheses. Many of the most used statistical tests of hypotheses are likelihood
ratio tests, and several examples are given in DeGroot and Schervish (2012). Scott
(2007) discusses the asymptotic distribution of the LRT test.

Birkes (1990) and Solomen (1975) compare the LRT and UMP tests. Rohatgi
(1984, p. 725) claims that if the Neyman–Pearson and likelihood ratio tests exist for
a given size α , then the two tests are equivalent, but this claim seems to contradict
Solomen (1975). Exponential families have the MLR property, and Pfanzagl (1968)
gives a partial converse.
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7.6 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.

7.1. Let X1, . . . ,Xn be iid N(μ ,σ2), σ2 > 0. Let Θ0 = {(μ0,σ2) : μ0 fixed, σ2 >
0} and let Θ = {(μ ,σ2) : μ ∈ R,σ2 > 0}. Consider testing H0 : θ = (μ ,σ2) ∈Θ0

vs. H1: not H0. The MLE θ̂ = (μ̂ , σ̂2) = (X , 1
n ∑

n
i=1(Xi −X)2) while the restricted

MLE is θ̂0 = (μ̂0, σ̂2
0 ) = (μ0,

1
n

n

∑
i=1

(Xi − μ0)
2).

a) Show that the likelihood ratio statistic

λ (x) = (σ̂2/σ̂2
0 )

n/2 =

[
1+

n(x− μ0)
2

∑n
i=1(xi − x)2

]−n/2

.

b) Show that H0 is rejected iff |√n(X − μo)/S| ≥ k and find k if n = 11 and
α = 0.05. (Hint: show that H0 is rejected iff n(X − μ0)

2/∑n
i=1(Xi −X)2 ≥ c, then

multiply both sides by a constant such that the left-hand side has a (tn−1)
2 distribu-

tion. Use the fact that
X − μ0

S/
√

n
∼ tn−1

under H0. Use a t-table to find k.)

7.2. Let X1, . . . ,Xn be a random sample from the distribution with pdf

f (x|θ ) = xθ−1e−x

Γ (θ )
, x > 0, θ > 0.

For a) and b) do not put the rejection region into useful form.

a) Use the Neyman–Pearson lemma to find the UMP size α test for testing H0 :
θ = 1 vs. H1 : θ = θ1 where θ1 is a fixed number greater than 1.

b) Find the uniformly most powerful level α test of

H0: θ = 1 versus H1: θ > 1.

Justify your steps. Hint: Use the statistic in part a).

7.3. Let H0 : X1, . . . ,Xn are iid U(0,10) and H1 : X1, . . . ,Xn are iid U(4,7). Sup-
pose you had a sample of size n = 1000. How would you decide which hypothesis
is true?

Problems from old quizzes and exams. Problems from old qualifying exams
are marked with a Q.
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7.4. Let X1, . . . ,X10 be iid Bernoulli(p). The most powerful level α = 0.0547
test of Ho : p = 1/2 vs. H1 : p = 1/4 rejects H0 if ∑10

i=1 xi ≤ 2. H0 is not rejected if
∑10

i=1 xi > 2. Find the power of this test if p = 1/4.

7.5. Let X1, . . . ,Xn be iid exponential(β ). Hence the pdf is

f (x|β ) = 1
β

exp(−x/β )

where 0 ≤ x and 0 < β .
a) Find the MLE of β .
b) Find the level α likelihood ratio test for the hypotheses H0 : β = βo vs. H1 :

β �= βo.

7.6Q. Let X1, . . . ,Xn be independent, identically distributed random variables
from a distribution with a beta(θ ,θ ) pdf

f (x|θ ) = Γ (2θ )
Γ (θ )Γ (θ )

[x(1− x)]θ−1

where 0 < x < 1 and θ > 0.
a) Find the UMP (uniformly most powerful) level α test for H0 : θ = 1 vs. H1 :

θ = 2.

b) If possible, find the UMP level α test for H0 : θ = 1 vs. H1 : θ > 1.

7.7. Let X1, . . . ,Xn be iid N(μ1,1) random variables and let Y1, . . . ,Yn be iid
N(μ2,1) random variables that are independent of the X’s.

a) Find the α level likelihood ratio test for H0 : μ1 = μ2 vs. H1 : μ1 �= μ2. You may
assume that (X ,Y ) is the MLE of (μ1,μ2) and that under the restriction μ1 = μ2 = μ ,
say, then the restricted MLE

μ̂ =
∑n

i=1 Xi +∑n
i=1 Yi

2n
.

b) If λ is the LRT test statistic of the above test, use the approximation

−2logλ ≈ χ2
d

for the appropriate degrees of freedom d to find the rejection region of the test in
useful form if α = 0.05.

7.8. Let X1, . . . ,Xn be independent identically distributed random variables from
a distribution with pdf

f (x) =
2

σ
√

2π
1
x

exp

(−[log(x)]2

2σ2

)

where σ > 0 and x ≥ 1.
If possible, find the UMP level α test for H0 : σ = 1 vs. H1 : σ > 1.
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7.9. Let X1, . . . ,Xn be independent identically distributed random variables from
a distribution with pdf

f (x) =
2

σ
√

2π
exp

(−(x− μ)2

2σ2

)

where σ > 0 and x > μ and μ is real. Assume that μ is known.

a) What is the UMP (uniformly most powerful) level α test for
H0 : σ2 = 1 vs. H1 : σ2 = 4?

b) If possible, find the UMP level α test for H0 : σ2 = 1 vs. H1 : σ2 > 1.

7.10Q. Let X1, . . . ,Xn be a random sample from the distribution with pdf

f (x,θ ) =
xθ−1e−x

Γ (θ )
, x > 0, θ > 0.

Find the uniformly most powerful level α test of

H: θ = 1 versus K: θ > 1.

7.11Q. Let X1, . . . ,Xn be independent identically distributed random variables
from a N(μ ,σ2) distribution where the variance σ2 is known. We want to test H0 :
μ = μ0 against H1 : μ �= μ0.

a) Derive the likelihood ratio test.

b) Let λ be the likelihood ratio. Show that −2logλ is a function of (X − μ0).

c) Assuming that H0 is true, find P(−2logλ > 3.84).

7.12Q. Let X1, . . . ,Xn be iid from a distribution with pdf

f (x) =
2x
λ

exp(−x2/λ )

where λ and x are both positive. Find the level α UMP test for H0 : λ = 1 vs.
H1 : λ > 1.

7.13Q. Let X1, . . . ,Xn be iid from a distribution with pdf

f (x|θ ) = (logθ )θ x

θ − 1

where 0 < x < 1 and θ > 1. Find the UMP (uniformly most powerful) level α test
of H0 : θ = 2 vs. H1 : θ = 4.
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7.14Q. Let X1, . . . ,Xn be independent identically distributed random variables
from a distribution with pdf

f (x) =
x2 exp

(
−x2

2σ2

)

σ3
√

2 Γ (3/2)

where σ > 0 and x ≥ 0.

a) What is the UMP (uniformly most powerful) level α test for
H0 : σ = 1 vs. H1 : σ = 2?

b) If possible, find the UMP level α test for H0 : σ = 1 vs. H1 : σ > 1.

7.15Q. Let X1, . . . ,Xn be independent identically distributed random variables
from a distribution with pdf

f (x) =
2

σ
√

2π
1
x

exp

(−[log(x)]2

2σ2

)

where σ > 0 and x ≥ 1.

a) What is the UMP (uniformly most powerful) level α test for
H0 : σ = 1 vs. H1 : σ = 2?

b) If possible, find the UMP level α test for H0 : σ = 1 vs. H1 : σ > 1.

7.16Q. Suppose X is an observable random variable with its pdf given by f (x),
x ∈ R. Consider two functions defined as follows:

f0(x) =

{
3

64 x2 0 ≤ x ≤ 4
0 elsewhere

f1(x) =

{
3
16

√
x 0 ≤ x ≤ 4

0 elsewhere.

Determine the most powerful level α test for H0 : f (x) = f0(x) versus HA : f (x) =
f1(x) in the simplest implementable form. Also, find the power of the test when
α = 0.01

7.17Q. Let X be one observation from the probability density function

f (x) = θxθ−1, 0 < x < 1, θ > 0.

a) Find the most powerful level α test of H0 : θ = 1 versus H1 : θ = 2.

b) For testing H0 : θ ≤ 1 versus H1 : θ > 1, find the size and the power function

of the test which rejects H0 if X >
5
8

.
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c) Is there a UMP test of H0 : θ ≤ 1 versus H1 : θ > 1? If so, find it. If not,
prove so.

7.18. Let X1, . . . ,Xn be iid N(μ ,σ2) random variables where σ2 > 0 is known.
a) Find the UMVUE of μ2.

(Hint: try estimators of the form aT 2 +b where T is the complete sufficient statistic
for μ .)

b) Suppose σ2 = 1 and n= 4. Then the (uniformly) most powerful level α = 0.05
test for H0 : μ = 0 vs. H1 : μ = 2 rejects H0 if and only if

4

∑
i=1

xi > 3.29.

Find the power β (2) of this test if μ = 2.

7.19Q. Let X1, . . . ,Xn be independent identically distributed random variables
from a half normal HN(μ ,σ2) distribution with pdf

f (x) =
2

σ
√

2π
exp

(−(x− μ)2

2σ2

)

where σ > 0 and x > μ and μ is real. Assume that μ is known.

a) What is the UMP (uniformly most powerful) level α test for
H0 : σ2 = 1 vs. H1 : σ2 = 4?

b) If possible, find the UMP level α test for H0 : σ2 = 1 vs. H1 : σ2 > 1.

7.20Q. Suppose that the test statistic T (X) for testing H0 : λ = 1 versus H1 : λ >
1 has an exponential(1/λ1) distribution if λ = λ1. The test rejects H0 if T (X) <
log(100/95).

a) Find the power of the test if λ1 = 1.

b) Find the power of the test if λ1 = 50.
c) Find the p-value of this test.

7.21Q. Let X1, . . . ,Xn be independent identically distributed random variables
from a Burr type X distribution with pdf

f (x) = 2 τ x e−x2
(1− e−x2

)τ−1

where τ > 0 and x > 0.

a) What is the UMP (uniformly most powerful) level α test for
H0 : τ = 2 versus H1 : τ = 4?

b) If possible, find the UMP level α test for H0 : τ = 2 versus H1 : τ > 2.
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7.22Q. Let X1, . . . ,Xn be independent identically distributed random variables
from an inverse exponential distribution with pdf

f (x) =
θ
x2 exp

(−θ
x

)

where θ > 0 and x > 0.

a) What is the UMP (uniformly most powerful) level α test for
H0 : θ = 1 versus H1 : θ = 2?

b) If possible, find the UMP level α test for H0 : θ = 1 versus H1 : θ > 1.

7.23Q. Suppose that X is an observable random variable with its pdf given
by f (x). Consider the two functions defined as follows: f0(x) is the probability
density function of a Beta distribution with α = 1 and β = 2 and and f1(x) is the
pdf of a Beta distribution with α = 2 and β = 1.

a) Determine the UMP level α = 0.10 test for H0 : f (x) = f0(x) versus H1 :
f (x) = f1(x). (Find the constant.)

b) Find the power of the test in a).

7.24Q. The pdf of a bivariate normal distribution is f (x,y) =

1

2πσ1σ2(1−ρ2)1/2
exp

(
−1

2(1−ρ2)

[(
x− μ1

σ1

)2

−2ρ
(

x− μ1

σ1

)(
y− μ2

σ2

)
+

(
y− μ2

σ2

)2
])

where −1 < ρ < 1, σ1 > 0, σ2 > 0, while x, y, μ1, and μ2 are all real. Let
(X1,Y1), . . . ,(Xn,Yn) be a random sample from a bivariate normal distribution.
Let θ̂ (x,y) be the observed value of the MLE of θ , and let θ̂ (X,Y ) be the MLE as
a random variable. Let the (unrestricted) MLEs be μ̂1, μ̂2, σ̂1, σ̂2, and ρ̂ . Then

T1 =
n

∑
i=1

(
xi − μ̂1

σ̂1

)2

=
nσ̂2

1

σ̂2
1

= n, and T3 =
n

∑
i=1

(
yi − μ̂2

σ̂2

)2

=
nσ̂2

2

σ̂2
2

= n,

and T2 =
n

∑
i=1

(
xi − μ̂1

σ̂1

)(
yi − μ̂2

σ̂2

)
= nρ̂.

Consider testing H0 : ρ = 0 vs. HA : ρ �= 0. The (restricted) MLEs for μ1,μ2,σ1, and
σ2 do not change under H0, and hence are still equal to μ̂1, μ̂2, σ̂1, and σ̂2.

a) Using the above information, find the likelihood ratio test for H0 : ρ = 0 vs.
HA : ρ �= 0. Denote the likelihood ratio test statistic by λ (x,y).

b) Find the large sample (asymptotic) likelihood ratio test that uses test statistic
−2log(λ (x,y)).
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7.25. Refer to Example 7.13. Let Y1, . . . ,Yn be iid from a one-parameter expo-
nential family with pdf f (y|θ ) with complete sufficient statistic T (Y ) = ∑n

i=1 t(Yi)
where θ > 0, t(Yi) ∼ c θ χ2

j and j is some positive integer, often 1 or 2. For the
following exponential families, assume w(θ ) is increasing, n = 20, α = 0.05, and
find i) the UMP level α test and ii) the power β (θ1). Let P(χ2

d ≤ χ2
d,δ ) = δ . The

tabled values below give χ2
d,δ .

a) Y1, . . . ,Yn are iid Burr type III (φ = 1,λ ),
t(Y ) = log(1+Y−1)∼ λ

2 χ
2
2 , test H0 : λ = 2 versus H1 : λ = 3.8386.

b) Y1, . . . ,Yn are iid Burr type XII (φ = 1,λ ),
t(Y ) = log(1+Y)∼ λ

2 χ
2
2 , test H0 : λ = 2 versus H1 : λ = 3.8386.

c) Y1, . . . ,Yn are iid BS(ν,μ = 1), t(Y ) ∼ ν2χ2
1 , test H0 : ν = 1 versus H1 : ν =√

3.8027.
d) Y1, . . . ,Yn are iid chi(p= 1,σ ) with p known, t(Y )=Y 2 ∼σ2χ2

1 , test H0 :σ = 1
versus H1 : σ =

√
3.8027.

e) Y1, . . . ,Yn are iid double exponential (μ = 0,λ ),
t(Y ) = |Y | ∼ λ

2 χ
2
2 , test H0 : λ = 2 versus H1 : λ = 3.8386.

f) Y1, . . . ,Yn are iid EXP(λ ), t(Y ) = Y ∼ λ
2 χ

2
2 , test H0 : λ = 2 versus H1 : λ =

3.8386.
g) Y1, . . . ,Yn are iid gamma (ν = 1,λ ), t(Y ) = Y ∼ λ

2 χ
2
2 , test H0 : λ = 2 versus

H1 : λ = 3.8386.
h) Y1, . . . ,Yn are iid half normal (μ = 0,σ2), t(Y ) = Y 2 ∼ σ2χ2

1 , test H0 : σ = 1
versus H1 : σ =

√
3.8027.

i) Y1, . . . ,Yn are iid inverse Weibull IW(φ = 1,λ ), t(Y ) = 1/Y ∼ λ
2 χ

2
2 , test H0 :

λ = 2 versus H1 : λ = 3.8386.
j) Y1, . . . ,Yn are iid inverted gamma (ν = 1,λ ), t(Y ) = 1/Y ∼ λ

2 χ
2
2 , test H0 : λ = 2

versus H1 : λ = 3.8386.

k) Y1, . . . ,Yn are iid LG(ν = 1,λ ), t(Y ) = eY ∼ λ
2
χ2

2 , test H0 : λ = 2 versus

H1 : λ = 3.8386.
l) Y1, . . . ,Yn are iid Maxwell–Boltzmann (μ = 0,σ),

t(Y ) = Y 2 ∼ σ2χ2
3 , test H0 : σ = 1 versus H1 : σ =

√
1.8311.

m) Y1, . . . ,Yn are iid N(μ = 0,σ2), t(Y ) = Y 2 ∼ σ2χ2
1 , test H0 : σ = 1 versus

H1 : σ =
√

3.8027.
n) Y1, . . . ,Yn are iid Pareto (σ = 1,λ ), t(Y ) = log(Y ) ∼ λ

2 χ
2
2 , test H0 : λ = 2

versus H1 : λ = 3.8386.
o) Y1, . . . ,Yn are iid power (λ ) distribution, t(Y ) =− log(Y )∼ λ

2 χ
2
2 , test H0 : λ =

2 versus H1 : λ = 3.8386.
p) Y1, . . . ,Yn are iid Rayleigh (μ = 0,σ ), t(Y ) =Y 2 ∼σ2χ2

2 , test H0 :σ = 1 versus
H1 : σ =

√
1.9193.

q) Y1, . . . ,Yn are iid truncated extreme value (λ ), t(Y ) = eY − 1 ∼ λ
2 χ

2
2 , test H0 :

λ = 2 versus H1 : λ = 3.8386.
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d δ
0.01 0.05 0.1 0.25 0.75 0.9 0.95 0.99

20 8.260 10.851 12.443 15.452 23.828 28.412 31.410 37.566
40 22.164 26.509 29.051 33.660 45.616 51.805 55.758 63.691
60 37.485 43.188 46.459 52.294 66.981 74.397 79.082 88.379

7.26Q. Let Y1, . . . ,Yn be independent identically distributed random variables
with pdf

f (y) = eyI(y ≥ 0)
1
λ

exp

[−1
λ

(ey − 1)

]

where y > 0 and λ > 0.

a) Show that W = eY − 1 ∼ λ
2
χ2

2 .

b) What is the UMP (uniformly most powerful) level α test for
H0 : λ = 2 versus H1 : λ > 2?

c) If n = 20 and α = 0.05, then find the power β (3.8386) of the above UMP test
if λ = 3.8386. Let P(χ2

d ≤ χ2
d,δ ) = δ . The above tabled values give χ2

d,δ .

7.27Q. Let Y1, . . . ,Yn be independent identically distributed N(μ = 0,σ2) ran-
dom variables with pdf

f (y) =
1√

2πσ2
exp

(−y2

2σ2

)

where y is real and σ2 > 0.

a) Show W = Y 2 ∼ σ2χ2
1 .

b) What is the UMP (uniformly most powerful) level α test for
H0 : σ2 = 1 versus H1 : σ2 > 1?

c) If n = 20 and α = 0.05, then find the power β (3.8027) of the above UMP test
if σ2 = 3.8027. Let P(χ2

d ≤ χ2
d,δ ) = δ . The tabled values below give χ2

d,δ .

d δ
0.01 0.05 0.1 0.25 0.75 0.9 0.95 0.99

20 8.260 10.851 12.443 15.452 23.828 28.412 31.410 37.566
30 14.953 18.493 20.599 24.478 34.800 40.256 43.773 50.892
40 22.164 26.509 29.051 33.660 45.616 51.805 55.758 63.691

7.28Q. Let Y1, . . . ,Yn be independent identically distributed random variables
with pdf

f (y) =
y
σ2 exp

[
−1

2

( y
σ

)2
]
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where σ > 0, μ is real, and y ≥ 0.

a) Show W = Y 2 ∼ σ2χ2
2 . Equivalently, show Y 2/σ2 ∼ χ2

2 .
b) What is the UMP (uniformly most powerful) level α test for

H0 : σ = 1 versus H1 : σ > 1?

c) If n = 20 and α = 0.05, then find the power β (
√

1.9193) of the above UMP
test if σ =

√
1.9193. Let P(χ2

d ≤ χ2
d,δ ) = δ . The above tabled values give χ2

d,δ .

7.29Q. Consider independent random variables X1, . . . ,Xn, where Xi ∼N(θi,σ2),
1 ≤ i ≤ n, and σ2 is known.

a) Find the most powerful test of

H0 : θi = 0,∀i, versus H1 : θi = θi0,∀i,

where θi0 are known. Derive (and simplify) the exact critical region for a level α
test.

b) Find the likelihood ratio test of

H0 : θi = 0,∀i, versus H1 : θi �= 0, for some i.

Derive (and simplify) the exact critical region for a level α test.
c) Find the power of the test in (a), when θi0 = n−1/3,∀i. What happens to this

power expression as n → ∞?

7.30. Consider a population with three kinds of individuals labeled 1, 2, and
3 occurring in the proportions p1 = θ 2, p2 = 2θ (1− θ ), p3 = (1 − θ )2, where
0 < θ < 1. For a sample X1, . . . ,Xn from this population, let N1,N2, and N3 denote
the number of Xj equal to 1, 2, and 3, respectively. Consider testing H0 : θ = θ0

versus H1 : θ = θ1, where 0 < θ0 < θ1 < 1. Let θk ∈ {θ0,θ1} for k = i, j.

a) Show that the ratio
f (x|θi)

f (x|θ j)
used in the Neyman–Pearson Lemma is an in-

creasing function of 2N1 +N2. [Hint: Ni ≡ Ni(X). Let ni ≡ ni(x) be the observed
value of Ni. Then f (x|θ ) = dx pn1

1 pn2
2 pn3

3 where the constant dx does not depend on
θ and n1 +n2 +n3 = n. Write f (x|θ ) as a function of θ ,dx ,n,n2, and 2n1 +n2 and
simplify. Then simplify the ratio.]

b) Suppose that c > 0 and 0 < α < 1. Show that the test that rejects H0 if and
only if 2N1 +N2 ≥ c is a most powerful test.

7.31Q. Let X1, . . . ,Xm be iid from a distribution with pdf

f (x) = μxμ−1,

for 0 < x < 1 where μ > 0. Let Y1, . . . ,Yn be iid from a distribution with pdf

g(y) = θyθ−1,
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for 0 < y < 1 where θ > 0. Let

T1 =
m

∑
i=1

log(Xi) and T2 =
n

∑
j=1

log(Yi).

Find the likelihood ratio test statistic for H0 : μ = θ versus H1 : μ �= θ in terms of
T1, T2, and the MLEs. Simplify.



Chapter 8
Large Sample Theory

Large sample theory, also called asymptotic theory, is used to approximate the
distribution of an estimator when the sample size n is large. This theory is extremely
useful if the exact sampling distribution of the estimator is complicated or unknown.
To use this theory, one must determine what the estimator is estimating, the rate of
convergence, the asymptotic distribution, and how large n must be for the approx-
imation to be useful. Moreover, the (asymptotic) standard error (SE), an estimator
of the asymptotic standard deviation, must be computable if the estimator is to be
useful for inference.

This chapter discusses the central limit theorem, the delta method, asymptotically
efficient estimators, convergence in distribution, and convergence in probability.
Results on multivariate limit theorems in Sects. 8.6 and 8.7 may be omitted when
first reading this chapter. Chapter 9 uses large sample theory to create large sample
confidence intervals and large sample tests of hypotheses.

8.1 The CLT, Delta Method, and an Exponential Family
Limit Theorem

Theorem 8.1: The Central Limit Theorem (CLT). Let Y1, . . . ,Yn be iid with
E(Y ) = μ and VAR(Y ) = σ2. Let the sample mean Y n =

1
n ∑

n
i=1 Yi. Then

√
n(Y n − μ) D→ N(0,σ2).

Hence
√

n

(
Y n − μ

σ

)
=
√

n

(
∑n

i=1Yi − nμ
nσ

)
D→ N(0,1).

Note that the sample mean is estimating the population mean μ with a
√

n con-
vergence rate, the asymptotic distribution is normal, and the SE = S/

√
n where S

is the sample standard deviation. For many distributions the central limit theorem
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© Springer International Publishing Switzerland 2014

215



216 8 Large Sample Theory

provides a good approximation if the sample size n > 30. A special case of the CLT
is proven at the end of Sect. 8.4.

Notation. The notation X ∼Y and X
D
=Y both mean that the random variables X

and Y have the same distribution. See Definition 1.24. The notation Yn
D→ X means

that for large n we can approximate the cdf of Yn by the cdf of X . The distribution
of X is the limiting distribution or asymptotic distribution of Yn, and the limiting
distribution does not depend on n. For the CLT, notice that

Zn =
√

n

(
Y n − μ

σ

)
=

(
Y n − μ
σ/

√
n

)

is the z-score of Y . If Zn
D→ N(0,1), then the notation Zn ≈ N(0,1), also written

as Zn ∼ AN(0,1), means approximate the cdf of Zn by the standard normal cdf.
Similarly, the notation

Y n ≈ N(μ ,σ2/n),

also written as Y n ∼ AN(μ ,σ2/n), means approximate the cdf of Y n as if Y n ∼
N(μ ,σ2/n). Note that the approximate distribution, unlike the limiting distribution,
does depend on n. The standard error S/

√
n approximates the asymptotic standard

deviation
√

σ2/n of Y .

The two main applications of the CLT are to give the limiting distribution of√
n(Y n − μ) and the limiting distribution of

√
n(Yn/n− μX) for a random variable

Yn such that Yn = ∑n
i=1 Xi where the Xi are iid with E(X) = μX and VAR(X) = σ2

X .
Several of the random variables in Theorems 2.17 and 2.18 can be approximated
in this way. The CLT says that Y n ∼ AN(μ ,σ2/n). The delta method says that if
Tn ∼ AN(θ ,σ2/n), and if g′(θ ) �= 0, then g(Tn) ∼ AN(g(θ ),σ2[g′(θ )]2/n). Hence
a smooth function g(Tn) of a well-behaved statistic Tn tends to be well behaved
(asymptotically normal with a

√
n convergence rate).

Example 8.1. a) Let Y1, . . . ,Yn be iid Ber(ρ). Then E(Y ) = ρ and VAR(Y ) =
ρ(1−ρ). Hence

√
n(Y n −ρ) D→ N(0,ρ(1−ρ))

by the CLT.

b) Now suppose that Yn ∼ BIN(n,ρ). Then Yn
D
= ∑n

i=1 Xi where X1, . . . ,Xn are iid
Ber(ρ). Hence

√
n

(
Yn

n
−ρ

)
D→ N(0,ρ(1−ρ))

since
√

n

(
Yn

n
−ρ

)
D
=
√

n(Xn −ρ) D→ N(0,ρ(1−ρ))

by a).
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c) Now suppose that Yn ∼ BIN(kn,ρ) where kn → ∞ as n → ∞. Then

√
kn

(
Yn

kn
−ρ

)
≈ N(0,ρ(1−ρ))

or
Yn

kn
≈ N

(
ρ ,

ρ(1−ρ)
kn

)
or Yn ≈ N (knρ ,knρ(1−ρ)).

Theorem 8.2: The Delta Method. If g does not depend on n, g′(θ ) �= 0, and

√
n(Tn −θ ) D→ N(0,σ2),

then √
n(g(Tn)− g(θ )) D→ N(0,σ2[g′(θ )]2).

Example 8.2. Let Y1, . . . ,Yn be iid with E(Y ) = μ and VAR(Y ) = σ2. Then by
the CLT,

√
n(Y n − μ) D→ N(0,σ2).

Let g(μ) = μ2. Then g′(μ) = 2μ �= 0 for μ �= 0. Hence

√
n((Y n)

2 − μ2)
D→ N(0,4σ2μ2)

for μ �= 0 by the delta method.

Example 8.3. Let X ∼ Binomial(n, p) where the positive integer n is large and

0 < p < 1. Find the limiting distribution of
√

n

[

g

(
X
n

)2

− p2

]

.

Solution. Example 8.1b gives the limiting distribution of
√

n(X
n − p). Let

g(p) = p2. Then g′(p) = 2p and by the delta method,

√
n

[ (
X
n

)2

− p2

]

=
√

n

(
g

(
X
n

)
− g(p)

)
D→

N(0, p(1− p)(g′(p))2) = N(0, p(1− p)4p2) = N(0,4p3(1− p)).

Example 8.4. Let Xn ∼ Poisson(nλ ) where the positive integer n is large and
0 < λ .

a) Find the limiting distribution of
√

n

(
Xn

n
− λ

)
.

b) Find the limiting distribution of
√

n

[ √
Xn

n
−

√
λ

]

.
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Solution. a) Xn
D
= ∑n

i=1 Yi where the Yi are iid Poisson(λ ). Hence E(Y ) = λ =
Var(Y ). Thus by the CLT,

√
n

(
Xn

n
−λ

)
D
=
√

n

(
∑n

i=1 Yi

n
−λ

)
D→ N(0,λ ).

b) Let g(λ ) =
√
λ . Then g′(λ ) = 1

2
√
λ

and by the delta method,

√
n

[ √
Xn

n
−

√
λ

]

=
√

n

(
g

(
Xn

n

)
− g(λ )

)
D→

N(0,λ (g′(λ ))2) = N

(
0,λ

1
4λ

)
= N

(
0,

1
4

)
.

Example 8.5. Let Y1, . . . ,Yn be independent and identically distributed (iid) from
a Gamma(α,β ) distribution.

a) Find the limiting distribution of
√

n
(

Y − αβ
)
.

b) Find the limiting distribution of
√

n
(
(Y )2 − c

)
for appropriate constant c.

Solution: a) Since E(Y ) = αβ and V (Y ) = αβ 2, by the CLT√
n
(

Y − αβ
) D→ N(0,αβ 2).

b) Let μ = αβ and σ2 = αβ 2. Let g(μ) = μ2 so g′(μ) = 2μ and [g′(μ)]2 =

4μ2 = 4α2β 2. Then by the delta method,
√

n
(
(Y )2 − c

) D→ N(0,σ2[g′(μ)]2) =
N(0,4α3β 4) where c = μ2 = α2β 2.

Remark 8.1. Note that if
√

n(Tn − k)
D→ N(0,σ2), then evaluate the derivative at

k. Thus use g′(k) where k =αβ in the above example. A common error occurs when
k is a simple function of θ , for example k = θ/2 with g(μ) = μ2. Thus g′(μ) = 2μ
so g′(θ/2) = 2θ/2 = θ . Then the common delta method error is to plug in
g′(θ ) = 2θ instead of g′(k) = θ . See Problems 8.3, 8.34, 8.36, 8.37,
and 8.38.

Barndorff–Nielsen (1982), Casella and Berger (2002, pp. 472, 515), Cox and
Hinkley (1974, p. 286), Lehmann and Casella (1998, Section 6.3), Schervish (1995,
p. 418), and many others suggest that under regularity conditions if Y1, . . . ,Yn are iid
from a one-parameter regular exponential family, and if θ̂ is the MLE of θ , then

√
n(τ(θ̂ )− τ(θ )) D→ N

(
0,

[τ ′(θ )]2

I1(θ )

)
= N[0,FCRLB1(τ(θ ))] (8.1)

where the Fréchet–Cramér–Rao lower bound for τ(θ ) is

FCRLB1(τ(θ )) =
[τ ′(θ )]2

I1(θ )
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and the Fisher information based on a sample of size one is

I1(θ ) =−Eθ

[
∂ 2

∂θ 2 log( f (X |θ ))
]
.

Hence τ(θ̂ )∼ AN[τ(θ ),FCRLBn(τ(θ ))] where FCRLBn(τ(θ )) =
FCRLB1(τ(θ ))/n. Notice that if

√
n(θ̂ −θ ) D→ N

(
0,

1
I1(θ )

)
,

then (8.1) follows by the delta method. Also recall that τ(θ̂ ) is the MLE of τ(θ ) by
the invariance principle and that

I1(τ(θ )) =
I1(θ )

[τ ′(θ )]2

if τ ′(θ ) �= 0 by Definition 6.3.
For a 1P-REF, T n = 1

n ∑
n
i=1 t(Yi) is the UMVUE and generally the MLE of its

expectation μt ≡ μT = Eθ (T n) = Eθ [t(Y )]. Let σ2
t = VARθ [t(Y )]. These values can

be found by using the distribution of t(Y ) (see Theorems 3.6 and 3.7) or by the
following result.

Proposition 8.3. Suppose Y is a 1P-REF with pdf or pmf

f (y|θ ) = h(y)c(θ )exp[w(θ )t(y)]

and natural parameterization

f (y|η) = h(y)b(η)exp[ηt(y)].

Then a)

μt = E[t(Y )] =
−c′(θ )

c(θ )w′(θ )
=

−∂
∂η

log(b(η)), (8.2)

and b)

σ2
t =V [t(Y )] =

−∂ 2

∂θ2 log(c(θ ))− [w′′(θ )]μt

[w′(θ )]2
=

−∂ 2

∂η2 log(b(η)). (8.3)

Proof. The proof will be for pdfs. For pmfs replace the integrals by sums.
By Theorem 3.3, only the middle equalities need to be shown. By Remark 3.3
the derivative and integral operators can be interchanged for a 1P-REF. a) Since
1 =

∫
f (y|θ )dy,

0 =
∂
∂θ

1 =
∂
∂θ

∫
h(y)exp[w(θ )t(y) + log(c(θ ))]dy
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=

∫
h(y)

∂
∂θ

exp[w(θ )t(y) + log(c(θ ))]dy

=

∫
h(y)exp[w(θ )t(y) + log(c(θ ))]

(
w′(θ )t(y)+

c′(θ )
c(θ )

)
dy

or

E[w′(θ )t(Y )] =
−c′(θ )

c(θ )

or

E[t(Y )] =
−c′(θ )

c(θ )w′(θ )
.

b) Similarly,

0 =

∫
h(y)

∂ 2

∂θ 2 exp[w(θ )t(y) + log(c(θ ))]dy.

From the proof of a) and since ∂
∂θ log(c(θ )) = c′(θ )/c(θ ),

0 =
∫

h(y)
∂
∂θ

[
exp[w(θ )t(y) + log(c(θ ))]

(
w′(θ )t(y)+

∂
∂θ

log(c(θ ))
)]

dy

=
∫

h(y)exp[w(θ )t(y) + log(c(θ ))]
(

w′(θ )t(y)+
∂
∂θ

log(c(θ ))
)2

dy

+

∫
h(y)exp[w(θ )t(y) + log(c(θ ))]

(
w′′(θ )t(y)+

∂ 2

∂θ 2 log(c(θ ))
)

dy.

So

E

(
w′(θ )t(Y )+

∂
∂θ

log(c(θ ))
)2

=−E

(
w′′(θ )t(Y )+

∂ 2

∂θ 2 log(c(θ ))
)
. (8.4)

Using a) shows that the left-hand side of (8.4) equals

E

(
w′(θ )

(
t(Y )+

c′(θ )
c(θ )w′(θ )

))2

= [w′(θ )]2 VAR(t(Y ))

while the right-hand side of (8.4) equals

−
(

w′′(θ )μt +
∂ 2

∂θ 2 log(c(θ ))
)

and the result follows. �

The simplicity of the following result is rather surprising. When (as is usually the
case) 1

n ∑
n
i=1 t(Yi) is the MLE of μt , η̂ = g−1( 1

n ∑
n
i=1 t(Yi)) is the MLE of η by the

invariance principle.
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Theorem 8.4. Let Y1, . . . ,Yn be iid from a 1P-REF with pdf or pmf

f (y|θ ) = h(y)c(θ )exp[w(θ )t(y)]

and natural parameterization

f (y|η) = h(y)b(η)exp[ηt(y)].

Let

E(t(Y )) = μt ≡ g(η)

and VAR(t(Y )) = σ2
t .

a) Then

√
n

[
1
n

n

∑
i=1

t(Yi)− μt

]
D→ N(0, I1(η))

where

I1(η) = σ2
t = g′(η) =

[g′(η)]2

I1(η)
.

b) If η = g−1(μt), η̂ = g−1( 1
n ∑

n
i=1 t(Yi)), and g−1′(μt) �= 0 exists, then

√
n[η̂−η ] D→ N

(
0,

1
I1(η)

)
.

c) Suppose the conditions in b) hold. If θ = w−1(η), θ̂ = w−1(η̂), w−1′ exists
and is continuous, and w−1′(η) �= 0, then

√
n[θ̂ −θ ] D→ N

(
0,

1
I1(θ )

)
.

d) If the conditions in c) hold, if τ ′ is continuous and if τ ′(θ ) �= 0, then

√
n[τ(θ̂ )− τ(θ )] D→ N

(
0,

[τ ′(θ )]2

I1(θ )

)
.

Proof. a) The result follows by the central limit theorem if V (t(Y )) = σ2
t =

I1(η) = g′(η). Since log( f (y|η)) = log(h(y))+ log(b(η))+ηt(y),

∂
∂η

log( f (y|η)) = ∂
∂η

log(b(η))+ t(y) =−μt + t(y) =−g(η)+ t(y)

by Proposition 8.3 a). Hence

∂ 2

∂η2 log( f (y|η)) = ∂ 2

∂η2 log(b(η)) =−g′(η),
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and thus by Proposition 8.3 b)

I1(η) =
−∂ 2

∂η2 log(b(η)) = σ2
t = g′(η).

b) By the delta method,

√
n(η̂−η) D→ N(0,σ2

t [g
−1′(μt)]

2),

but

g−1′(μt) =
1

g′(g−1(μt))
=

1
g′(η)

.

Since σ2
t = I1(η) = g′(η), it follows that σ2

t = [g′(η)]2/I1(η), and

σ2
t [g

−1′(μt)]
2 =

[g′(η)]2

I1(η)
1

[g′(η)]2
=

1
I1(η)

.

So
√

n(η̂−η) D→ N

(
0,

1
I1(η)

)
.

c) By the delta method,

√
n(θ̂ −θ ) D→ N

(

0,
[w−1′(η)]2

I1(η)

)

,

but
[w−1′(η)]2

I1(η)
=

1
I1(θ )

.

The last equality holds since by Theorem 6.3c, if θ = g(η), if g′ exists and
is continuous, and if g′(θ ) �= 0, then I1(θ ) = I1(η)/[g′(η)]2. Use η = w(θ ) so
θ = g(η) = w−1(η).

d) The result follows by the delta method. �

Remark 8.2. Following DasGupta (2008, pp. 241–242), let ψ(η)=− log(b(η)).
Then Eη [t(Y1)] = μt = ψ ′(η) = g(η) by Proposition 8.3a, and the MLE η̂ is the

solution of 1
n ∑

n
i=1 t(yi)

set
= Eη [t(Y1)] = g(η) by Theorem 5.2, if the MLE exists. Now

g(η)=Eη [t(Y1)] is an increasing function of η since g′(η) =ψ ′′(η) =Vη(t(Y ))> 0
(1P-REFs do not contain degenerate distributions). So for large n, with probability
tending to one, the MLE η̂ exists and η̂ = g−1( 1

n ∑
n
i=1 t(Yi)). Since g′(η) exists,

g(η) and g−1(η) are continuous and the delta method can be applied to η̂ as in
Theorem 8.4b. By the proof of Theorem 8.4a), ψ ′′(η) = I1(η). Notice that if η̂ is
the MLE of η , then 1

n ∑
n
i=1 t(Yi) is the MLE of μt = E[t(Y1)] by invariance. Hence

if n is large enough, Theorem 8.4a, b is for the MLE of E[t(Y1)] and the MLE of η .
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8.2 Asymptotically Efficient Estimators

Definition 8.1. Let Y1, . . . ,Yn be iid random variables. Let Tn ≡ Tn(Y1, . . . ,Yn) be an
estimator of a parameter μT such that

√
n(Tn − μT )

D→ N(0,σ2
A).

Then the asymptotic variance of
√

n(Tn − μT ) is σ2
A and the asymptotic variance

(AV) of Tn is σ2
A/n. If S2

A is a consistent estimator of σ2
A, then the (asymptotic)

standard error (SE) of Tn is SA/
√

n. If Y1, . . . ,Yn are iid with cdf F , then σ2
A ≡ σ2

A(F)
depends on F .

Remark 8.3. Consistent estimators are defined in the following section. The
parameter σ2

A is a function of both the estimator Tn and the underlying distribu-
tion F of Y1. Frequently nVAR(Tn) converges in distribution to σ2

A, but not always.
See Staudte and Sheather (1990, p. 51) and Lehmann (1999, p. 232).

Example 8.6. If Y1, . . . ,Yn are iid from a distribution with mean μ and variance
σ2, then by the central limit theorem,

√
n(Y n − μ) D→ N(0,σ2).

Recall that VAR(Y n) =σ2/n= AV (Y n) and that the standard error SE(Y n) = Sn/
√

n
where S2

n is the sample variance. Note that σ2
A(F) = σ2. If F is a N(μ ,1) cdf, then

σ2
A(F) = 1; but if F is the G(ν = 7,λ = 1) cdf, then σ2

A(F) = 7.

Definition 8.2. Let T1,n and T2,n be two estimators of a parameter θ such that

nδ (T1,n −θ ) D→ N(0,σ2
1 (F))

and

nδ (T2,n −θ ) D→ N(0,σ2
2 (F)),

then the asymptotic relative efficiency of T1,n with respect to T2,n is

ARE(T1,n,T2,n) =
σ2

2 (F)

σ2
1 (F)

.

This definition brings up several issues. First, both estimators must have the same
convergence rate nδ . Usually δ = 0.5. If Ti,n has convergence rate nδi , then estimator
T1,n is judged to be “better” than T2,n if δ1 > δ2. Secondly, the two estimators need to
estimate the same parameter θ . This condition will often not hold unless the distri-
bution is symmetric about μ . Then θ = μ is a natural choice. Thirdly, estimators are
often judged by their Gaussian efficiency with respect to the sample mean (thus F is
the normal distribution). Since the normal distribution is a location–scale family, it
is often enough to compute the ARE for the standard normal distribution. If the data
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come from a distribution F and the ARE can be computed, then T1,n is judged to be
a “better” estimator (for the data distribution F) than T2,n if the ARE > 1. Similarly,
T1,n is judged to be a “worse” estimator than T2,n if the ARE < 1. Notice that the
“better” estimator has the smaller asymptotic variance.

The population median is any value MED(Y ) such that

P(Y ≤ MED(Y ))≥ 0.5 and P(Y ≥ MED(Y ))≥ 0.5. (8.5)

In simulation studies, typically the underlying distribution F belongs to a
symmetric location–scale family. There are at least two reasons for using such
distributions. First, if the distribution is symmetric, then the population median
MED(Y ) is the point of symmetry and the natural parameter to estimate. Under the
symmetry assumption, there are many estimators of MED(Y ) that can be compared
via their ARE with respect to the sample mean or the maximum likelihood estima-
tor (MLE). Secondly, once the ARE is obtained for one member of the family, it
is typically obtained for all members of the location–scale family. That is, suppose
that Y1, . . . ,Yn are iid from a location–scale family with parameters μ and σ . Then
Yi = μ +σZi where the Zi are iid from the same family with μ = 0 and σ = 1.
Typically

AV[Ti,n(Y )] = σ2AV[Ti,n(Z)],

so

ARE[T1,n(Y ),T2,n(Y )] = ARE[T1,n(Z),T2,n(Z)].

Theorem 8.5. Let Y1, . . . ,Yn be iid with a pdf f that is positive at the population
median: f (MED(Y ))> 0. Then

√
n(MED(n)−MED(Y ))

D→ N

(
0,

1
4[ f (MED(Y ))]2

)
.

Example 8.7. Let Y1, . . . ,Yn be iid N(μ ,σ2), T1,n = Y and let T2,n = MED(n) be
the sample median. Let θ = μ = E(Y ) = MED(Y ). Find ARE(T1,n,T2,n).

Solution: By the CLT, σ2
1 (F) = σ2 when F is the N(μ ,σ2) distribution. By The-

orem 8.5,

σ2
2 (F) =

1
4[ f (MED(Y ))]2

=
1

4
[

1√
2πσ2 exp

(
−0
2σ2

)]2 =
πσ2

2
.

Hence

ARE(T1,n,T2,n) =
πσ2/2
σ2 =

π
2
≈ 1.571
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and the sample mean Y is a “better” estimator of μ than the sample median MED(n)
for the family of normal distributions.

Recall from Definition 6.3 that I1(θ ) is the information number for θ based on a
sample of size 1. Also recall that I1(τ(θ )) = I1(θ )/[τ ′(θ )]2 = 1/FCRLB1[τ(θ )].
See Definition 6.4. The following definition says that if Tn is an asymptotically
efficient estimator of τ(θ ), then
Tn ∼ AN[τ(θ ),FCRLBn(τ(θ ))].

Definition 8.3. Assume τ ′(θ ) �= 0. Then an estimator Tn of τ(θ ) is asymptoti-
cally efficient if

√
n(Tn − τ(θ )) D→ N

(
0,

[τ ′(θ )]2

I1(θ )

)
∼ N(0,FCRLB1[τ(θ )]). (8.6)

In particular, the estimator Tn of θ is asymptotically efficient if

√
n(Tn −θ ) D→ N

(
0,

1
I1(θ )

)
∼ N(0,FCRLB1[θ ]). (8.7)

Following Lehmann (1999, p. 486), if T2,n is an asymptotically efficient estimator
of θ , if I1(θ ) and v(θ ) are continuous functions, and if T1,n is an estimator such that

√
n(T1,n −θ ) D→ N(0,v(θ )),

then under regularity conditions, v(θ )≥ 1/I1(θ ) and

ARE(T1,n,T2,n) =

1
I1(θ)

v(θ )
=

1
I1(θ )v(θ )

≤ 1.

Hence asymptotically efficient estimators are “better” than estimators of the
form T1,n. When T2,n is asymptotically efficient,

AE(T1,n) = ARE(T1,n,T2,n) =
1

I1(θ )v(θ )

is sometimes called the asymptotic efficiency of T1,n.
Notice that for a 1P-REF, T n =

1
n ∑

n
i=1 t(Yi) is an asymptotically efficient estima-

tor of g(η) = E(t(Y )) by Theorem 8.4. T n is the UMVUE of E(t(Y )) by the LSU
theorem.

The following rule of thumb suggests that MLEs and UMVUEs are often asymp-
totically efficient. The rule often holds for location families where the support does
not depend on θ . The rule does not hold for the uniform (0,θ ) family.
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Rule of Thumb 8.1: A “Standard Limit Theorem”: Let θ̂n be the MLE or
UMVUE of θ . If τ ′(θ ) �= 0, then under strong regularity conditions,

√
n[τ(θ̂n)− τ(θ )] D→ N

(
0,
[τ ′(θ )]2

I1(θ )

)
.

8.3 Modes of Convergence and Consistency

Definition 8.4. Let {Zn,n = 1,2, . . .} be a sequence of random variables with cdfs
Fn, and let X be a random variable with cdf F. Then Zn converges in distribution
to X , written

Zn
D→ X ,

or Zn converges in law to X , written Zn
L→ X , if

lim
n→∞

Fn(t) = F(t)

at each continuity point t of F. The distribution of X is called the limiting distribu-
tion or the asymptotic distribution of Zn.

An important fact is that the limiting distribution does not depend on the
sample size n. Notice that the CLT, delta method, and Theorem 8.4 give the
limiting distributions of Zn =

√
n(Y n − μ), Zn =

√
n(g(Tn)− g(θ )), and Zn =√

n[ 1
n ∑

n
i=1 t(Yi)−E(t(Y ))], respectively.

Convergence in distribution is useful because if the distribution of Xn is unknown
or complicated and the distribution of X is easy to use, then for large n we can
approximate the probability that Xn is in an interval by the probability that X is

in the interval. To see this, notice that if Xn
D→ X , then P(a < Xn ≤ b) = Fn(b)−

Fn(a)→ F(b)−F(a) = P(a < X ≤ b) if F is continuous at a and b. Convergence in
distribution is useful for constructing large sample confidence intervals and tests of
hypotheses. See Chap. 9.

Warning: Convergence in distribution says that the cdf Fn(t) of Xn gets close to
the cdf of F(t) of X as n → ∞ provided that t is a continuity point of F . Hence for
any ε > 0 there exists Nt such that if n > Nt , then |Fn(t)−F(t)| < ε . Notice that
Nt depends on the value of t. Convergence in distribution does not imply that the
random variables Xn ≡ Xn(ω) converge to the random variable X ≡ X(ω) for all ω .

Example 8.8. Suppose that Xn ∼U(−1/n,1/n). Then the cdf Fn(x) of Xn is

Fn(x) =

⎧
⎨

⎩

0, x ≤ −1
n

nx
2 + 1

2 ,
−1
n ≤ x ≤ 1

n
1, x ≥ 1

n .
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Sketching Fn(x) shows that it has a line segment rising from 0 at x = −1/n to 1 at
x = 1/n and that Fn(0) = 0.5 for all n ≥ 1. Examining the cases x < 0, x = 0, and
x > 0 shows that as n → ∞,

Fn(x)→
⎧
⎨

⎩

0, x < 0
1
2 x = 0
1, x > 0.

Notice that if X is a random variable such that P(X = 0) = 1, then X has cdf

FX(x) =

{
0, x < 0
1, x ≥ 0.

Since x = 0 is the only discontinuity point of FX(x) and since Fn(x)→ FX(x) for all
continuity points of FX(x) (i.e., for x �= 0),

Xn
D→ X .

Example 8.9. Suppose Yn ∼U(0,n). Then Fn(t)= t/n for 0< t ≤ n and Fn(t)= 0
for t ≤ 0. Hence limn→∞ Fn(t) = 0 for t ≤ 0. If t > 0 and n > t, then Fn(t) = t/n→ 0
as n → ∞. Thus limn→∞ Fn(t) = 0 for all t and Yn does not converge in distribution
to any random variable Y since H(t)≡ 0 is not a cdf.

Definition 8.5. A sequence of random variables Xn converges in distribution to a
constant τ(θ ), written

Xn
D→ τ(θ ), if Xn

D→ X

where P(X = τ(θ )) = 1. The distribution of the random variable X is said to be
degenerate at τ(θ ) or to be a point mass at τ(θ ).

Definition 8.6. A sequence of random variables Xn converges in probability to a
constant τ(θ ), written

Xn
P→ τ(θ ),

if for every ε > 0,

lim
n→∞

P(|Xn − τ(θ )|< ε) = 1 or,equivalently, lim
n→∞

P(|Xn − τ(θ )| ≥ ε) = 0.

The sequence Xn converges in probability to X , written

Xn
P→ X ,

if Xn −X
P→ 0.

Notice that Xn
P→ X if for every ε > 0,

lim
n→∞

P(|Xn −X |< ε) = 1, or,equivalently, lim
n→∞

P(|Xn −X | ≥ ε) = 0.
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Definition 8.7. A sequence of estimators Tn of τ(θ ) is consistent for τ(θ ) if

Tn
P→ τ(θ )

for every θ ∈ Θ . If Tn is consistent for τ(θ ), then Tn is a consistent estimator
of τ(θ ).

Consistency is a weak property that is usually satisfied by good estimators. Tn is
a consistent estimator for τ(θ ) if the probability that Tn falls in any neighborhood
of τ(θ ) goes to one, regardless of the value of θ ∈Θ . The probability P ≡ Pθ is the
“true” probability distribution or underlying probability that depends on θ .

Definition 8.8. For a real number r > 0, Yn converges in rth mean to a random
variable Y , written Yn

r→ Y, if

E(|Yn −Y |r)→ 0

as n → ∞. In particular, if r = 2, Yn converges in quadratic mean to Y , written

Yn
2→ Y or Yn

qm→ Y,

if E[(Yn −Y)2]→ 0 as n → ∞.

Lemma 8.6: Generalized Chebyshev’s Inequality. Let u : R→ [0,∞) be a non-
negative function. If E[u(Y )] exists then for any c > 0,

P[u(Y )≥ c]≤ E[u(Y )]
c

.

If μ = E(Y ) exists, then taking u(y) = |y− μ |r and c̃ = cr gives
Markov’s Inequality: for r > 0 and any c > 0,

P(|Y − μ | ≥ c] = P(|Y − μ |r ≥ cr]≤ E[|Y − μ |r]
cr .

If r = 2 and σ2 = VAR(Y ) exists, then we obtain
Chebyshev’s Inequality:

P(|Y − μ | ≥ c]≤ VAR(Y )
c2 .

Proof. The proof is given for pdfs. For pmfs, replace the integrals by sums. Now

E[u(Y )] =
∫

R

u(y) f (y)dy =
∫

{y:u(y)≥c}
u(y) f (y)dy+

∫

{y:u(y)<c}
u(y) f (y)dy

≥
∫

{y:u(y)≥c}
u(y) f (y)dy
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since the integrand u(y) f (y)≥ 0. Hence

E[u(Y )]≥ c
∫

{y:u(y)≥c}
f (y)dy = cP[u(Y)≥ c]. �

The following proposition gives sufficient conditions for Tn to be a consistent
estimator of τ(θ ). Notice that MSEτ(θ)(Tn)→ 0 for all θ ∈Θ is equivalent to Tn

qm→
τ(θ ) for all θ ∈Θ .

Proposition 8.7. a) If

lim
n→∞

MSEτ(θ)(Tn) = 0

for all θ ∈Θ , then Tn is a consistent estimator of τ(θ ).
b) If

lim
n→∞

VARθ (Tn) = 0 and lim
n→∞

Eθ (Tn) = τ(θ )

for all θ ∈Θ , then Tn is a consistent estimator of τ(θ ).

Proof. a) Using Lemma 8.6 with Y = Tn, u(Tn) = (Tn−τ(θ ))2, and c= ε2 shows
that for any ε > 0,

Pθ (|Tn − τ(θ )| ≥ ε) = Pθ [(Tn − τ(θ ))2 ≥ ε2]≤ Eθ [(Tn − τ(θ ))2]

ε2 .

Hence

lim
n→∞

Eθ [(Tn − τ(θ ))2] = lim
n→∞

MSEτ(θ)(Tn)→ 0

is a sufficient condition for Tn to be a consistent estimator of τ(θ ).
b) Referring to Definition 6.1,

MSEτ(θ)(Tn) = VARθ (Tn)+ [Biasτ(θ)(Tn)]
2

where Biasτ(θ)(Tn) = Eθ (Tn)− τ(θ ). Since MSEτ(θ)(Tn) → 0 if both VARθ (Tn)
→ 0 and Biasτ(θ)(Tn) = Eθ (Tn)− τ(θ )→ 0, the result follows from a). �

The following result shows estimators that converge at a
√

n rate are consistent.
Use this result and the delta method to show that g(Tn) is a consistent estimator of
g(θ ). Note that b) follows from a) with Xθ ∼ N(0,v(θ )). The WLLN shows that Y
is a consistent estimator of E(Y ) = μ if E(Y ) exists.

Proposition 8.8. a) Let Xθ be a random variable with a distribution depending
on θ , and 0 < δ ≤ 1. If

nδ (Tn − τ(θ )) D→ Xθ

for all θ ∈Θ , then Tn
P→ τ(θ ).



230 8 Large Sample Theory

b) If
√

n(Tn − τ(θ )) D→ N(0,v(θ ))

for all θ ∈Θ , then Tn is a consistent estimator of τ(θ ).

Proposition 8.9. A sequence of random variables Xn converges almost every-
where (or almost surely, or with probability 1) to X if

P( lim
n→∞

Xn = X) = 1.

This type of convergence will be denoted by

Xn
ae→ X .

Notation such as “Xn converges to X ae” will also be used. Sometimes “ae” will be
replaced with “as” or “wp1.” We say that Xn converges almost everywhere to τ(θ ),
written

Xn
ae→ τ(θ ),

if P(limn→∞ Xn = τ(θ )) = 1.

Theorem 8.9. Let Yn be a sequence of iid random variables with E(Yi) = μ . Then
a) Strong Law of Large Numbers (SLLN): Y n

ae→ μ , and

b) Weak Law of Large Numbers (WLLN): Y n
P→ μ .

Proof of WLLN when V (Yi) = σ2: By Chebyshev’s inequality, for every ε > 0,

P(|Y n − μ | ≥ ε)≤ V (Y n)

ε2 =
σ2

nε2 → 0

as n → ∞. �

8.4 Slutsky’s Theorem and Related Results

Theorem 8.10: Slutsky’s Theorem. Suppose Yn
D→ Y and Wn

P→ w for some con-
stant w. Then

a) Yn +Wn
D→ Y +w,

b) YnWn
D→ wY, and

c) Yn/Wn
D→ Y/w if w �= 0.

Theorem 8.11. a) If Xn
P→ X then Xn

D→ X .

b) If Xn
ae→ X then Xn

P→ X and Xn
D→ X .

c) If Xn
r→ X then Xn

P→ X and Xn
D→ X .
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d) Xn
P→ τ(θ ) iff Xn

D→ τ(θ ).
e) If Xn

P→ θ and τ is continuous at θ , then τ(Xn)
P→ τ(θ ).

f) If Xn
D→ θ and τ is continuous at θ , then τ(Xn)

D→ τ(θ ).

Suppose that for all θ ∈Θ , Tn
D→ τ(θ ), Tn

r→ τ(θ ) or Tn
ae→ τ(θ ). Then Tn is a

consistent estimator of τ(θ ) by Theorem 8.11. We are assuming that the function τ
does not depend on n.

Example 8.10. Let Y1, . . . ,Yn be iid with mean E(Yi) = μ and variance
V (Yi) = σ2. Then the sample mean Y n is a consistent estimator of μ since i)
the SLLN holds (use Theorem 8.9 and 8.11), ii) the WLLN holds, and iii) the CLT
holds (use Proposition 8.8). Since

lim
n→∞

VARμ(Y n) = lim
n→∞

σ2/n = 0 and lim
n→∞

Eμ(Y n) = μ ,

Y n is also a consistent estimator of μ by Proposition 8.7b. By the delta method and
Proposition 8.8b, Tn = g(Y n) is a consistent estimator of g(μ) if g′(μ) �= 0 for all
μ ∈Θ . By Theorem 8.11e, g(Y n) is a consistent estimator of g(μ) if g is continuous
at μ for all μ ∈Θ .

Theorem 8.12. Assume that the function g does not depend on n. a) Generalized

Continuous Mapping Theorem: If Xn
D→ X and the function g is such that P[X ∈

C(g)] = 1 where C(g) is the set of points where g is continuous, then g(Xn)
D→ g(X).

b) Continuous Mapping Theorem: If Xn
D→ X and the function g is continuous,

then g(Xn)
D→ g(X).

Remark 8.4. For Theorem 8.11, a) follows from Slutsky’s Theorem by taking

Yn ≡ X =Y and Wn = Xn−X . Then Yn
D→Y = X and Wn

P→ 0. Hence Xn =Yn+Wn
D→

Y +0 = X . The convergence in distribution parts of b) and c) follow from a). Part f)
follows from d) and e). Part e) implies that if Tn is a consistent estimator of θ and τ
is a continuous function, then τ(Tn) is a consistent estimator of τ(θ ). Theorem 8.12
says that convergence in distribution is preserved by continuous functions, and even
some discontinuities are allowed as long as the set of continuity points is assigned
probability 1 by the asymptotic distribution. Equivalently, the set of discontinuity
points is assigned probability 0.

Example 8.11 (Ferguson 1996, p. 40). If Xn
D→ X then 1/Xn

D→ 1/X if X is a
continuous random variable since P(X = 0) = 0 and x = 0 is the only discontinuity
point of g(x) = 1/x.

Example 8.12. Show that if Yn ∼ tn, a t distribution with n degrees of freedom,

then Yn
D→ Z where Z ∼ N(0,1).
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Solution: Yn
D
= Z/

√
Vn/n where Z Vn ∼ χ2

n . If Wn =
√

Vn/n
P→ 1, then the

result follows by Slutsky’s Theorem. But Vn
D
=∑n

i=1 Xi where the iid Xi ∼ χ2
1 . Hence

Vn/n
P→ 1 by the WLLN and

√
Vn/n

P→ 1 by Theorem 8.11e.

Theorem 8.13: Continuity Theorem. Let Yn be sequence of random variables
with characteristic functions φn(t). Let Y be a random variable with cf φ(t).

a)

Yn
D→ Y iff φn(t)→ φ(t) ∀t ∈ R.

b) Also assume that Yn has mgf mn and Y has mgf m. Assume that all of the mgfs
mn and m are defined on |t| ≤ d for some d > 0. Then if mn(t)→ m(t) as n → ∞ for

all |t|< c where 0 < c < d, then Yn
D→ Y .

Application: Proof of a Special Case of the CLT. Following
Rohatgi (1984, pp. 569–569), let Y1, . . . ,Yn be iid with mean μ , variance σ2 and mgf
mY (t) for |t|< to. Then

Zi =
Yi − μ
σ

has mean 0, variance 1, and mgf mZ(t) = exp(−tμ/σ)mY (t/σ) for |t|< σ to. Want
to show that

Wn =
√

n

(
Y n − μ

σ

)
D→ N(0,1).

Notice that Wn =

n−1/2
n

∑
i=1

Zi = n−1/2
n

∑
i=1

(
Yi − μ
σ

)
= n−1/2∑

n
i=1 Yi − nμ

σ
=

n−1/2

1
n

Y n − μ
σ

.

Thus

mWn(t) = E(etWn) = E

[

exp(tn−1/2
n

∑
i=1

Zi)

]

= E

[

exp(
n

∑
i=1

tZi/
√

n)

]

=
n

∏
i=1

E[etZi/
√

n] =
n

∏
i=1

mZ(t/
√

n) = [mZ(t/
√

n)]n.

Set ψ(x) = log(mZ(x)). Then

log[mWn(t)] = n log[mZ(t/
√

n)] = nψ(t/
√

n) =
ψ(t/

√
n)

1
n

.

Now ψ(0) = log[mZ(0)] = log(1) = 0. Thus by L’Hôpital’s rule (where the deriva-
tive is with respect to n), limn→∞ log[mWn(t)] =

lim
n→∞

ψ(t/
√

n )
1
n

= lim
n→∞

ψ ′(t/
√

n )[−t/2
n3/2 ]

(−1
n2 )

=
t
2

lim
n→∞

ψ ′(t/
√

n )
1√
n

.
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Now

ψ ′(0) =
m′

Z(0)
mZ(0)

= E(Zi)/1 = 0,

so L’Hôpital’s rule can be applied again, giving limn→∞ log[mWn(t)] =

t
2

lim
n→∞

ψ ′′(t/
√

n )[ −t
2n3/2 ](

−1
2n3/2

) =
t2

2
lim
n→∞

ψ ′′(t/
√

n ) =
t2

2
ψ ′′(0).

Now

ψ ′′(t) =
d
dt

m′
Z(t)

mZ(t)
=

m′′
Z(t)mZ(t)− (m′

Z(t))
2

[mZ(t)]2
.

So

ψ ′′(0) = m′′
Z(0)− [m′

Z(0)]
2 = E(Z2

i )− [E(Zi)]
2 = 1.

Hence limn→∞ log[mWn(t)] = t2/2 and

lim
n→∞

mWn(t) = exp(t2/2)

which is the N(0,1) mgf. Thus by the continuity theorem,

Wn =
√

n

(
Y n − μ

σ

)
D→ N(0,1).

8.5 Order Relations and Convergence Rates

Definition 8.10 (Lehmann 1999, pp. 53–54). a) A sequence of random variables
Wn is tight or bounded in probability, written Wn = OP(1), if for every ε > 0 there
exist positive constants Dε and Nε such that

P(|Wn| ≤ Dε)≥ 1− ε

for all n ≥ Nε . Also Wn = OP(Xn) if |Wn/Xn|= OP(1).
b) The sequence Wn = oP(n−δ ) if nδWn = oP(1) which means that

nδWn
P→ 0.

c) Wn has the same order as Xn in probability, written Wn �P Xn, if for every
ε > 0 there exist positive constants Nε and 0 < dε < Dε such that

P(dε ≤
∣
∣∣
∣
Wn

Xn

∣
∣∣
∣≤ Dε)≥ 1− ε

for all n ≥ Nε .
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d) Similar notation is used for a k×r matrix An = [ai, j(n)] if each element ai, j(n)
has the desired property. For example, An =OP(n−1/2) if each ai, j(n) = OP(n−1/2).

Definition 8.11. Let ˆ̌n be an estimator of a p×1 vector ˇ, and let Wn = ‖ ˆ̌n −ˇ‖.
a) If Wn �P n−δ for some δ > 0, then both Wn and β̂n have (tightness) rate nδ .
b) If there exists a constant κ such that

nδ (Wn −κ) D→ X

for some nondegenerate random variable X , then both Wn and ˆ̌n have convergence
rate nδ .

Proposition 8.14. Suppose there exists a constant κ such that

nδ (Wn −κ) D→ X .

a) Then Wn = OP(n−δ ).
b) If X is not degenerate, then Wn �P n−δ .

The above result implies that if Wn has convergence rate nδ , then Wn has tightness
rate nδ , and the term “tightness” will often be omitted. Part a) is proved, for example,
in Lehmann (1999, p. 67).

The following result shows that if Wn �P Xn, then Xn �P Wn, Wn = OP(Xn), and
Xn = OP(Wn). Notice that if Wn = OP(n−δ ), then nδ is a lower bound on the rate of
Wn. As an example, if the CLT holds then Y n = OP(n−1/3), but Y n �P n−1/2.

Proposition 8.15. a) If Wn �P Xn, then Xn �P Wn.
b) If Wn �P Xn, then Wn = OP(Xn).
c) If Wn �P Xn, then Xn = OP(Wn).
d) Wn �P Xn iff Wn = OP(Xn) and Xn = OP(Wn).

Proof. a) Since Wn �P Xn,

P

(
dε ≤

∣
∣∣
∣
Wn

Xn

∣
∣∣
∣≤ Dε

)
= P

(
1

Dε
≤
∣
∣∣
∣

Xn

Wn

∣
∣∣
∣≤

1
d ε

)
≥ 1− ε

for all n ≥ Nε . Hence Xn �P Wn.
b) Since Wn �P Xn,

P(|Wn| ≤ |XnDε |)≥ P

(
dε ≤

∣
∣
∣
∣
Wn

Xn

∣
∣
∣
∣≤ Dε

)
≥ 1− ε

for all n ≥ Nε . Hence Wn = OP(Xn).
c) Follows by a) and b).
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d) If Wn �P Xn, then Wn = OP(Xn) and Xn = OP(Wn) by b) and c). Now suppose
Wn = OP(Xn) and Xn = OP(Wn). Then

P(|Wn| ≤ |Xn|Dε/2)≥ 1− ε/2

for all n ≥ N1, and

P(|Xn| ≤ |Wn|1/dε/2)≥ 1− ε/2

for all n ≥ N2. Hence

P(A)≡ P

(∣∣
∣
∣
Wn

Xn

∣
∣
∣
∣≤ Dε/2

)
≥ 1− ε/2

and

P(B)≡ P

(
dε/2 ≤

∣
∣∣
∣
Wn

Xn

∣
∣∣
∣

)
≥ 1− ε/2

for all n ≥ N = max(N1,N2). Since P(A∩B) = P(A)+P(B)−P(A∪B)≥ P(A)+
P(B)− 1,

P(A∩B) = P

(
dε/2 ≤

∣
∣
∣
∣
Wn

Xn

∣
∣
∣
∣≤ Dε/2

)
≥ 1− ε/2+ 1− ε/2−1= 1− ε

for all n ≥ N. Hence Wn �P Xn. �

The following result is used to prove the following Theorem 8.17 which says
that if there are K estimators Tj,n of a parameter ˇ, such that ‖Tj,n −ˇ‖= OP(n−δ )

where 0< δ ≤ 1, and if T ∗
n picks one of these estimators, then ‖T ∗

n −ˇ‖=OP(n−δ ).

Proposition 8.16: Pratt (1959). Let X1,n, . . . ,XK,n each be OP(1) where K is
fixed. Suppose Wn = Xin,n for some in ∈ {1, . . . ,K}. Then

Wn = OP(1). (8.8)

Proof.

P(max{X1,n, . . . ,XK,n} ≤ x) = P(X1,n ≤ x, . . . ,XK,n ≤ x)≤

FWn(x)≤ P(min{X1,n, . . . ,XK,n} ≤ x) = 1−P(X1,n > x, . . . ,XK,n > x).

Since K is finite, there exists B > 0 and N such that P(Xi,n ≤ B) > 1− ε/2K and
P(Xi,n > −B) > 1− ε/2K for all n > N and i = 1, . . . ,K. Bonferroni’s inequality
states that P(∩K

i=1Ai)≥ ∑K
i=1 P(Ai) − (K − 1). Thus

FWn(B)≥ P(X1,n ≤ B, . . . ,XK,n ≤ B)≥

K(1− ε/2K)− (K− 1) = K − ε/2−K+ 1 = 1− ε/2
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and

−FWn(−B)≥−1+P(X1,n >−B, . . . ,XK,n >−B)≥
−1+K(1− ε/2K)− (K− 1) =−1+K− ε/2−K+ 1 =−ε/2.

Hence

FWn(B)−FWn(−B)≥ 1− ε for n > N. �

Theorem 8.17. Suppose ‖Tj,n−ˇ‖=OP(n−δ ) for j = 1, . . . ,K where 0< δ ≤ 1.
Let T ∗

n = Tin,n for some in ∈ {1, . . . ,K} where, for example, Tin,n is the Tj,n that
minimized some criterion function. Then

‖T ∗
n −ˇ‖= OP(n

−δ ). (8.9)

Proof. Let Xj,n = nδ‖Tj,n − ˇ‖. Then Xj,n = OP(1) so by Proposition 8.16,
nδ‖T ∗

n −ˇ‖= OP(1). Hence ‖T ∗
n −ˇ‖= OP(n−δ ). �

8.6 Multivariate Limit Theorems

Many of the univariate results of the previous five sections can be extended to ran-
dom vectors. As stated in Sect. 2.7, the notation for random vectors is rather awk-
ward. For the limit theorems, the vector X is typically a k × 1 column vector and

XT is a row vector. Let ‖x‖=
√

x2
1 + · · ·+ x2

k be the Euclidean norm of x.

Definition 8.12. Let Xn be a sequence of random vectors with joint cdfs Fn(x)
and let X be a random vector with joint cdf F(x).

a) Xn converges in distribution to X, written Xn
D→ X, if Fn(x) → F(x) as

n → ∞ for all points x at which F(x) is continuous. The distribution of X is the
limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every ε > 0,

P(‖Xn −X‖> ε)→ 0 as n → ∞.
c) Let r > 0 be a real number. Then Xn converges in rth mean to X, written

Xn
r→X, if E(‖Xn −X‖r)→ 0 as n → ∞.

d) Xn converges almost everywhere to X, written Xn
ae→X, if

P(limn→∞Xn =X) = 1.

Theorems 8.18, 8.19, and 8.21 below are the multivariate extensions of the limit
theorems in Sect. 8.1. When the limiting distribution of Zn =

√
n(g(T n)−g(�))

is multivariate normal Nk(0,˙ ), approximate the joint cdf of Zn with the joint cdf
of the Nk(0,˙ ) distribution. Thus to find probabilities, manipulate Zn as if Zn ≈
Nk(0,˙ ). To see that the CLT is a special case of the MCLT below, let k = 1,
E(X) = μ and V (X) = ˙ = σ2.



8.6 Multivariate Limit Theorems 237

Theorem 8.18: the Multivariate Central Limit Theorem (MCLT). If
X1, . . . ,Xn are iid k× 1 random vectors with E(X) = � and Cov(X) = ˙ , then

√
n(Xn −�)

D→ Nk(0,˙ )

where the sample mean

Xn =
1
n

n

∑
i=1

Xi.

The MCLT is proven after Theorem 8.25. To see that the delta method is a special
case of the multivariate delta method, note that if Tn and parameter θ are real valued,
then Dg(�) = g′(θ ).

Theorem 8.19: The Multivariate Delta Method. If g does not depend on n and

√
n(T n −�)

D→ Nk(0,˙ ),

then √
n(g(T n)−g(�))

D→ Nd(0,Dg(�)˙DT
g(�))

where the d× k Jacobian matrix of partial derivatives

Dg(�) =

⎡

⎢⎢
⎣

∂
∂θ1

g1(�) . . .
∂
∂θk

g1(�)
...

...
∂

∂θ1
gd(�) . . .

∂
∂θk

gd(�)

⎤

⎥⎥
⎦ .

Here the mapping g : Rk → R
d needs to be differentiable in a neighborhood of

� ∈ R
k.

Example 8.13. If Y has a Weibull distribution, Y ∼W (φ ,λ ), then the pdf of Y is

f (y) =
φ
λ

yφ−1e−
yφ
λ

where λ ,y, and φ are all positive. If μ = λ 1/φ so μφ = λ , then the Weibull pdf

f (y) =
φ
μ

(
y
μ

)φ−1

exp

[

−
(

y
μ

)φ
]

.

Let (μ̂ , φ̂ ) be the MLE of (μ ,φ). According to Bain (1978, p. 215),

√
n

((
μ̂
φ̂

)
−
(
μ
φ

))
D→ N

((
0
0

)
,

(
1.109 μ2

φ2 0.257μ
0.257μ 0.608φ2

))

= N2(0,I−1(�)) where I (�) is given in Definition 8.13.
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Let column vectors � = (μ φ)T and � = (λ φ)T . Then

� = g(�) =

(
λ
φ

)
=

(
μφ

φ

)
=

(
g1(�)
g2(�)

)
.

So

Dg(�) =

⎡

⎢
⎣

∂
∂θ1

g1(�)
∂
∂θ2

g1(�)

∂
∂θ1

g2(�)
∂
∂θ2

g2(�)

⎤

⎥
⎦=

⎡

⎢
⎣

∂
∂μ μ

φ ∂
∂φ μ

φ

∂
∂μ φ

∂
∂φ φ

⎤

⎥
⎦=

⎡

⎣
φμφ−1 μφ log(μ)

0 1

⎤

⎦ .

Thus by the multivariate delta method,

√
n

((
λ̂
φ̂

)
−
(
λ
φ

))
D→ N2(0,˙ )

where (see Definition 8.15 below)

˙ = I (�)−1 = [I (g(�))]−1 =Dg(�)I
−1(�)DT

g(�) =

⎡

⎣
1.109λ 2(1+ 0.4635log(λ )+ 0.5482(log(λ ))2) 0.257φλ + 0.608λφ log(λ )

0.257φλ + 0.608λφ log(λ ) 0.608φ2

⎤

⎦ .

Definition 8.13. Let X be a random variable with pdf or pmf f (x|�). Then the
information matrix

I (�) = [I i, j ]

where

I i, j = E

[
∂
∂θi

log( f (X |�)) ∂
∂θ j

log( f (X |�))
]
.

Definition 8.14. An estimator T n of � is asymptotically efficient if

√
n(T n −�)

D→ Nk(0,I
−1(�)).

Following Lehmann (1999, p. 511), if T n is asymptotically efficient and if the
estimator W n satisfies √

n(W n −�)
D→ Nk(0,J (�))

where J (�) and I−1(�) are continuous functions of � , then under regularity condi-
tions, J (�)−I−1(�) is a positive semi-definite matrix, and T n is “better” than W n.
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Definition 8.15. Assume that � = g(�). Then

I (�) = I (g(�)) = [Dg(�)I
−1(�)DT

g(�)]
−1.

Notice that this definition agrees with the multivariate delta method if

√
n(T n −�)

D→ Nk(0,˙ )

where ˙ = I−1(�).

Now suppose that X1, . . . ,Xn are iid random variables from a k-parameter REF

f (x|�) = h(x)c(�)exp

[
k

∑
i=1

wi(�)ti(x)

]

(8.10)

with natural parameterization

f (x|�) = h(x)b(�)exp

[
k

∑
i=1

ηiti(x)

]

. (8.11)

Then the complete minimal sufficient statistic is

T n =
1
n

(
n

∑
i=1

t1(Xi), . . . ,
n

∑
i=1

tk(Xi)

)T

.

Let �T = (E(t1(X), . . . ,E(tk(X)))T . From Theorem 3.3, for � ∈Ω ,

E(ti(X)) =
−∂
∂ηi

log(b(�)),

and

Cov(ti(X), t j(X))≡ σi, j =
−∂ 2

∂ηi∂η j
log(b(�)).

Proposition 8.20. If the random variable X is a kP–REF with pmf or pdf (8.11),
then the information matrix

I (�) = [I i, j]

where

I i, j = E

[
∂
∂ηi

log( f (X |�)) ∂
∂η j

log( f (X |�))
]
=−E

[
∂ 2

∂ηi∂η j
log( f (X |�))

]
.

Several authors, including Barndorff–Nielsen (1982), have noted that the mul-

tivariate CLT can be used to show that
√

n(T n −�T )
D→ Nk(0,˙ ). The fact that

˙ = I (�) appears in Lehmann (1983, p. 127).



240 8 Large Sample Theory

Theorem 8.21. If X1, . . . ,Xn are iid from a k-parameter regular exponential
family, then

√
n(T n −�T )

D→ Nk(0,I (�)).

Proof. By the multivariate central limit theorem,

√
n(T n −�T )

D→ Nk(0,˙ )

where ˙ = [σi, j]. Hence the result follows if σi, j = I i, j. Since

log( f (x|�)) = log(h(x))+ log(b(�))+
k

∑
l=1

ηltl(x),

∂
∂ηi

log( f (x|�)) = ∂
∂ηi

log(b(�))+ ti(X).

Hence

−I i, j = E

[
∂ 2

∂ηi∂η j
log( f (X |�))

]
=

∂ 2

∂ηi∂η j
log(b(�)) =−σi, j. �

To obtain standard results, use the multivariate delta method, assume that both �

and � are k× 1 vectors, and assume that � = g(�) is a one-to-one mapping so that
the inverse mapping is � = g−1(�). If Dg(�) is nonsingular, then

D−1
g(�) =Dg−1(�) (8.12)

(see Searle 1982, p. 339), and

I (�) = [Dg(�)I
−1(�)DT

g(�)]
−1 = [D−1

g(�)]
T I (�)D−1

g(�) =DT
g−1(�)

I (�)Dg−1(�).

(8.13)

Compare Lehmann (1999, p. 500) and Lehmann (1983, p. 127).
For example, suppose that �T and � are k× 1 vectors, and

√
n(�̂−�)

D→ Nk(0,I
−1(�))

where �T =g(�) and �=g−1(�T ). Also assume that T n =g(�̂) and �̂=g−1(T n).
Then by the multivariate delta method and Theorem 8.21,

√
n(T n −�T ) =

√
n(g(�̂)−g(�))

D→ Nk[0,I (�)] = Nk[0,Dg(�)I
−1(�)DT

g(�)].

Hence

I (�) =Dg(�)I
−1(�)DT

g(�).
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Similarly,

√
n(g−1(T n)−g−1(�T )) =

√
n(�̂−�)

D→ Nk[0,I
−1(�)] =

Nk[0,Dg−1(�T )
I (�)DT

g−1(�T )
].

Thus

I−1(�) =Dg−1(�T )
I (�)DT

g−1(�T )
=Dg−1(�T )

Dg(�)I
−1(�)DT

g(�)D
T
g−1(�T )

as expected by Eq. (8.13). Typically �̂ is a function of the sufficient statistic T n

and is the unique MLE of � . Replacing � by � in the above discussion shows that√
n(�̂−�)

D→ Nk(0,I−1(�)) is equivalent to
√

n(T n−�T )
D→ Nk(0,I (�)) provided

that Dg(�) is nonsingular.

8.7 More Multivariate Results

Definition 8.16. If the estimator g(T n)
P→ g(�) for all � ∈Θ , then g(T n) is a con-

sistent estimator of g(�).

Proposition 8.22. If 0 < δ ≤ 1, X is a random vector, and

nδ (g(T n)−g(�))
D→X,

then g(T n)
P→ g(�).

Theorem 8.23. If X1, . . . ,Xn are iid, E(‖X‖)< ∞ and E(X) = �, then

a) WLLN: Xn
P→ � and

b) SLLN: Xn
ae→ �.

Theorem 8.24: Continuity Theorem. Let Xn be a sequence of k × 1 random
vectors with characteristic function φn(t) and let X be a k× 1 random vector with
cf φ(t). Then

Xn
D→X iff φn(t)→ φ(t)

for all t ∈ R
k.

Theorem 8.25: Cramér Wold Device. Let Xn be a sequence of k× 1 random
vectors and let X be a k× 1 random vector. Then

Xn
D→X iff tTXn

D→ tTX

for all t ∈ R
k.
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Application: Proof of the MCLT Theorem 8.18. Note that for fixed t , the tTXi

are iid random variables with mean tT � and variance tT ˙ t . Hence by the CLT,

tT√n(Xn−�)
D→N(0, tT ˙ t). The right-hand side has distribution tTX where X∼

Nk(0,˙ ). Hence by the Cramér Wold Device,
√

n(Xn −�)
D→ Nk(0,˙ ). �

Theorem 8.26. a) If Xn
P→X, then Xn

D→X.
b)

Xn
P→ g(�) iff Xn

D→ g(�).

Let g(n) ≥ 1 be an increasing function of the sample size n: g(n) ↑ ∞, e.g.,
g(n) =

√
n. See White (1984, p. 15). If a k× 1 random vector T n −� converges

to a nondegenerate multivariate normal distribution with convergence rate
√

n, then
T n has (tightness) rate

√
n.

Definition 8.17. Let An = [ai, j(n)] be an r× c random matrix.
a) An = OP(Xn) if ai, j(n) = OP(Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
b) An = op(Xn) if ai, j(n) = op(Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
c) An �P (1/(g(n)) if ai, j(n)�P (1/(g(n)) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
d) Let A1,n = T n −� and A2,n = Cn − c˙ for some constant c > 0. If A1,n �P

(1/(g(n)) and A2,n �P (1/(g(n)), then (T n,Cn) has (tightness) rate g(n).

Remark 8.5. Following Severini (2005, p. 354), let Wn, Xn, Yn and Zn be
sequences of random variables such that Yn > 0 and Zn > 0. (Often Yn and Zn

are deterministic, e.g., Yn = n−1/2.)
a) If Wn = OP(1) and Xn = OP(1), then Wn +Xn = OP(1) and WnXn = OP(1),

thus OP(1)+OP(1) = OP(1) and OP(1)OP(1) = OP(1).
b) If Wn = OP(1) and Xn = oP(1), then Wn+Xn = OP(1) and WnXn = oP(1), thus

OP(1)+ oP(1) = OP(1) and OP(1)oP(1) = oP(1).
c) If Wn = OP(Yn) and Xn = OP(Zn), then Wn + Xn = OP(max(Yn,Zn)) and

WnXn = OP(YnZn), thus OP(Yn)+OP(Zn) = OP(max(Yn,Zn)) and OP(Yn)OP(Zn) =
OP(YnZn).

Recall that the smallest integer function �x� rounds up, e.g., �7.7�= 8.

Definition 8.18. The sample ρ quantile ξ̂n,ρ = Y(�nρ�). The population quantile
ξρ = Q(ρ) = inf{y : F(y)≥ ρ}.

Theorem 8.27 (Serfling 1980, p. 80): Let 0 < ρ1 < ρ2 < · · · < ρk < 1. Sup-
pose that F has a density f that is positive and continuous in neighborhoods of
ξρ1 , . . . ,ξρk . Then

√
n[(ξ̂n,ρ1 , . . . , ξ̂n,ρk)

T − (ξρ1 , . . . ,ξρk)
T ]

D→ Nk(0,˙ )
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where ˙ = (σi j) and

σi j =
ρi(1−ρ j)

f (ξρi) f (ξρ j )

for i ≤ j and σi j = σ ji for i > j.

Theorem 8.28: Continuous Mapping Theorem. Let Xn ∈ R
k. If Xn

D→ X

and if the function g : Rk → R
j is continuous and does not depend on n, then

g(Xn)
D→ g(X).

The following theorem is taken from Severini (2005, pp. 345–349).

Theorem 8.29: Let Xn = (X1n, . . . ,Xkn)
T be a sequence of k×1 random vectors,

let Y n be a sequence of k× 1 random vectors and let X = (X1, . . . ,Xk)
T be a k× 1

random vector. Let W n be a sequence of k× k nonsingular random matrices and let
C be a k× k constant nonsingular matrix.

a) Xn
P→X iff Xin

P→ Xi for i = 1, . . . ,k.

b) Slutsky’s Theorem: If Xn
D→X, if Y n

P→ c for some constant k× 1 vector c,

and if W n
D→ C, then i) Xn +Y n

D→X+ c.

ii) Y T
n Xn

D→ cTX.

iii) W nXn
D→ CX, XT

n W n
D→XTC, W−1

n Xn
D→ C−1X and

XT
n W

−1
n

D→XTC−1.

8.8 Summary

1) CLT: Let Y1, . . . ,Yn be iid with E(Y ) = μ and V (Y ) = σ2. Then√
n(Y n − μ) D→ N(0,σ2).

2) Delta Method: If g′(θ ) �= 0 and
√

n(Tn −θ ) D→ N(0,σ2), then√
n(g(Tn)− g(θ )) D→ N(0,σ2[g′(θ )]2).
3) 1P-REF Limit Theorem: Let Y1, . . . ,Yn be iid from a 1P-REF with

pdf or pmf f (y|θ ) = h(y)c(θ )exp[w(θ )t(y)] and natural parameterization
f (y|η) = h(y)b(η)exp[ηt(y)]. Let E(t(Y )) = μt ≡ g(η) and V (t(Y )) = σ2

t . Then√
n[ 1

n ∑
n
i=1 t(Yi)− μt ]

D→ N(0, I1(η)) where I1(η) = σ2
t = g′(η).

4) Limit theorem for the Sample Median:√
n(MED(n)−MED(Y ))

D→ N
(

0, 1
4 f 2(MED(Y))

)
.

5) If nδ (T1,n − θ ) D→ N(0,σ2
1 (F)) and nδ (T2,n − θ ) D→ N(0,σ2

2 (F)), then the
asymptotic relative efficiency of T1,n with respect to T2,n is

ARE(T1,n,T2,n) =
σ2

2 (F)

σ2
1 (F)

.
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The “better” estimator has the smaller asymptotic variance or σ2
i (F).

6) An estimator Tn of τ(θ ) is asymptotically efficient if

√
n(Tn − τ(θ )) D→ N

(
0,

[τ ′(θ )]2

I1(θ )

)
.

7) For a 1P-REF, 1
n ∑

n
i=1 t(Yi) is an asymptotically efficient estimator of g(η) =

E(t(Y )).
8) Rule of thumb: If θ̂n is the MLE or UMVUE of θ , then Tn = τ(θ̂n) is an

asymptotically efficient estimator of τ(θ ). Hence if τ ′(θ ) �= 0, then

√
n[τ(θ̂n)− τ(θ )] D→ N

(
0,
[τ ′(θ )]2

I1(θ )

)
.

9) Xn
D→ X if

lim
n→∞

Fn(t) = F(t)

at each continuity point t of F.

10) Xn
P→ τ(θ ) if for every ε > 0,

lim
n→∞

P(|Xn − τ(θ )|< ε) = 1 or,equivalently, lim
n→∞

P(|Xn − τ(θ )| ≥ ε) = 0.

11) Tn is a consistent estimator of τ(θ ) if Tn
P→ τ(θ ) for every θ ∈Θ .

12) Tn is a consistent estimator of τ(θ ) if any of the following three conditions
holds:

i) limn→∞ VARθ (Tn) = 0 and limn→∞ Eθ (Tn) = τ(θ ) for all θ ∈Θ .

ii) MSEτ(θ)(Tn)→ 0 for all θ ∈Θ .

iii) E[(Tn − τ(θ ))2]→ 0 for all θ ∈Θ .

13) If √
n(Tn − τ(θ )) D→ N(0,v(θ ))

for all θ ∈Θ , then Tn is a consistent estimator of τ(θ ).
14) WLLN: Let Y1, . . . ,Yn, . . . be a sequence of iid random variables with

E(Yi) = μ . Then Y n
P→ μ . Hence Y n is a consistent estimator of μ .

15) i) If Xn
P→ X , then Xn

D→ X .

ii) Tn
P→ τ(θ ) iff Tn

D→ τ(θ ).
iii) If Tn

P→ θ and τ is continuous at θ , then τ(Tn)
P→ τ(θ ). Hence if Tn is a con-

sistent estimator of θ , then τ(Tn)is a consistent estimator of τ(θ ) if τ is a continuous
function on Θ .

16) Slutsky’s Theorem: If Yn
D→ Y and Wn

P→ w for some constant w, then

YnWn
D→ wY , Yn +Wn

D→ Y +w and Yn/Wn
D→ Y/w for w �= 0.
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8.9 Complements

Some authors state that if Xn
P→ X and g is continuous, then g(Xn)

P→ g(X), but Sen
and Singer (1993, p. 59) says that g needs to be uniformly continuous.

The following extension of the delta method is sometimes useful.

Theorem 8.30. Suppose that g does not depend on n, g′(θ ) = 0, g′′(θ ) �= 0 and

√
n(Tn −θ ) D→ N(0,τ2(θ )).

Then

n[g(Tn)− g(θ )] D→ 1
2
τ2(θ )g′′(θ )χ2

1 .

Example 8.14. Let Xn ∼ Binomial(n, p) where the positive integer n is large and

0 < p < 1. Let g(θ ) = θ 3 −θ . Find the limiting distribution of n

[
g

(
Xn

n

)
− c

]

for appropriate constant c when p =
1√
3

.

Solution: Since Xn
D
= ∑n

i=1 Yi where Yi ∼ BIN(1, p),

√
n

(
Xn

n
− p

)
D→ N(0, p(1− p))

by the CLT. Let θ = p. Then g′(θ ) = 3θ 2 − 1 and g′′(θ ) = 6θ . Notice that

g(1/
√

3) = (1/
√

3)3 − 1/
√

3 = (1/
√

3)

(
1
3
− 1

)
=

−2

3
√

3
= c.

Also g′(1/
√

3) = 0 and g′′(1/
√

3) = 6/
√

3. Since τ2(p) = p(1− p),

τ2(1/
√

3) =
1√
3

(
1− 1√

3

)
.

Hence

n

[
g

(
Xn

n

)
−
( −2

3
√

3

) ]
D→ 1

2
1√
3

(
1− 1√

3

)
6√
3
χ2

1 =

(
1− 1√

3

)
χ2

1 .

A nice review of large sample theory is Chernoff (1956), and there are sev-
eral Ph.D. level texts on large sample theory including, in roughly increas-
ing order of difficulty, Lehmann (1999), Ferguson (1996), Sen and Singer
(1993), and Serfling (1980). Cramér (1946) is also an important reference, and
White (1984) considers asymptotic theory for econometric applications. Lecture
notes are available from (www.stat.psu.edu/∼dhunter/asymp/lectures/). Also see
DasGupta (2008), Davidson (1994), Jiang (2010), Polansky (2011), Sen et al.
(2010) van der Vaart (1998).

www.stat.psu.edu/~dhunter/asymp/lectures/
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In analysis, convergence in probability is a special case of convergence in
measure and convergence in distribution is a special case of weak convergence. See
Ash (1972, p. 322) and Sen and Singer (1993, p. 39). Almost sure convergence is

also known as strong convergence. See Sen and Singer (1993, p. 34). Since Y
P→ μ

iff Y
D→ μ , the WLLN refers to weak convergence. Technically Xn and X need to

share a common probability space for convergence in probability and almost sure
convergence.

Perlman (1972) and Wald (1949) give general results on the consistency of the
MLE while Berk (1972), Lehmann (1980), and Schervish (1995, p. 418) discuss the
asymptotic normality of the MLE in exponential families. Theorems 8.4 and 8.21
appear in Olive (2007). Also see Cox (1984) and McCulloch (1988). A similar result
to Theorem 8.21 for linear exponential families where ti(x)= xi, is given by (Brown,
1986, p. 172). Portnoy (1977) gives large sample theory for unbiased estimators
in exponential families. Although T n is the UMVUE of E(t(Y )) = μt , asymptotic
efficiency of UMVUEs is not simple in general. See Pfanzagl (1993).

Casella and Berger (2002, pp. 112, 133) give results similar to Proposition 8.3.
Some of the order relations of Sect. 8.5 are discussed in Mann and Wald (1943). The
multivariate delta method appears, for example, in Ferguson (1996, p. 45), Lehmann
(1999, p. 315), Mardia et al. (1979, p. 52), Sen and Singer (1993, p. 136) or Serfling
(1980, p. 122).

Suppose � = g−1(�). In analysis, the fact that

D−1
g(�) =Dg−1(�)

is a corollary of the inverse mapping theorem (or of the inverse function theorem).
See Apostol (1957, p. 146), Bickel and Doksum (2007, p. 517), Marsden and Hoff-
man (1993, p. 393) and Wade (2000, p. 353).

According to Rohatgi (1984, p. 616), if Y1, . . . ,Yn are iid with pdf f (y), if Yrn:n is
the rnth order statistic, rn/n → ρ , F(ξρ) = ρ and if f (ξρ)> 0, then

√
n(Yrn:n − ξρ)

D→ N

(
0,

ρ(1−ρ)
[ f (ξρ)]2

)
.

So there are many asymptotically equivalent ways of defining the sample ρ quantile.

8.10 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.
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8.1∗. a) Enter the following R function that is used to illustrate the central limit
theorem when the data Y1, . . . ,Yn are iid from an exponential distribution. The func-
tion generates a data set of size n and computes Y 1 from the data set. This step is
repeated nruns = 100 times. The output is a vector (Y 1,Y 2, . . . ,Y 100). A histogram
of these means should resemble a symmetric normal density once n is large enough.

cltsim <- function(n=100, nruns=100){
ybar <- 1:nruns
for(i in 1:nruns){
ybar[i] <- mean(rexp(n))}

list(ybar=ybar)}

b) The following commands will plot four histograms with n = 1,5,25, and 200.
Save the plot in Word.

> z1 <- cltsim(n=1)
> z5 <- cltsim(n=5)
> z25 <- cltsim(n=25)
> z200 <- cltsim(n=200)
> par(mfrow=c(2,2))
> hist(z1$ybar)
> hist(z5$ybar)
> hist(z25$ybar)
> hist(z200$ybar)

c) Explain how your plot illustrates the central limit theorem.

d) Repeat parts a)–c), but in part a), change rexp(n) to rnorm(n). Then Y1, . . . ,Yn

are iid N(0,1) and Y ∼ N(0,1/n).

8.2∗. Let X1, . . . ,Xn be iid from a normal distribution with unknown mean μ and
known variance σ2. Let

X =
∑n

i=1 Xi

n

Find the limiting distribution of
√

n((X)3 − c) for an appropriate constant c.

8.3Q. Let X1, . . . ,Xn be a random sample from a population with pdf

f (x) =

{
θxθ−1

3θ
0 < x < 3

0 elsewhere

The method of moments estimator for θ is Tn =
X

3−X
.

a) Find the limiting distribution of
√

n(Tn −θ ) as n → ∞.

b) Is Tn asymptotically efficient? Why?

c) Find a consistent estimator for θ and show that it is consistent.
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8.4Q. From Theorems 2.17 and 2.18, if Yn = ∑n
i=1 Xi where Xi is iid from a nice

distribution, then Yn also has a nice distribution. If E(X) = μ and VAR(X) = σ2,
then by the CLT

√
n(Xn − μ) D→ N(0,σ2).

Hence
√

n

(
Yn

n
− μ

)
D→ N(0,σ2).

Find μ , σ2 and the distribution of Xi if

i) Yn ∼ BIN(n,ρ) where BIN stands for binomial.

ii) Yn ∼ χ2
n .

iii) Yn ∼ G(nν,λ ) where G stands for gamma.

iv) Yn ∼ NB(n,ρ) where NB stands for negative binomial.

v) Yn ∼ POIS(nθ ) where POIS stands for Poisson.

vi) Yn ∼ N(nμ ,nσ2).

8.5∗. Suppose that Xn ∼U(−1/n,1/n).
a) What is the cdf Fn(x) of Xn?
b) What does Fn(x) converge to?

(Hint: consider x < 0, x = 0 and x > 0.)

c) Xn
D→ X . What is X?

8.6. Continuity Theorem problem: Let Xn be sequence of random variables with
cdfs Fn and mgfs mn. Let X be a random variable with cdf F and mgf m. Assume that
all of the mgfs mn and m are defined if |t| ≤ d for some d > 0. Thus if mn(t)→ m(t)

as n → ∞ for all |t|< c where 0 < c < d, then Xn
D→ X .

Let

mn(t) =
1

[1− (λ + 1
n )t]

for t < 1/(λ + 1/n). Then what is m(t) and what is X?

8.7. Let Y1, . . . ,Yn be iid, T1,n = Y and let T2,n = MED(n) be the sample median.
Let θ = μ .

Then
√

n(MED(n)−MED(Y ))
D→ N

(
0,

1
4 f 2(MED(Y ))

)

where the population median is MED(Y ) (and MED(Y ) = μ = θ for a) and
b) below).

a) Find ARE(T1,n,T2,n) if F is the cdf of the normal N(μ ,σ2) distribution.

b) Find ARE(T1,n,T2,n) if F is the cdf of the double exponential DE(θ ,λ )
distribution.
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8.8Q. Let X1, . . . ,Xn be independent identically distributed random variables
with probability density function

f (x) = θxθ−1, 0 < x < 1, θ > 0.

a) Find the MLE of
1
θ

. Is it unbiased? Does it achieve the information inequality

lower bound?

b) Find the asymptotic distribution of the MLE of
1
θ

.

c) Show that Xn is unbiased for
θ

θ + 1
. Does Xn achieve the information inequal-

ity lower bound?

d) Find an estimator of
1
θ

from part (c) above using Xn which is different from

the MLE in (a). Find the asymptotic distribution of your estimator using the delta
method.

e) Find the asymptotic relative efficiency of your estimator in (d) with respect to
the MLE in (b).

8.9. Many multiple linear regression estimators ˆ̌ satisfy

√
n( ˆ̌ −ˇ)

D→ Np(0,V ( ˆ̌,F) W ) (8.14)

when
XTX

n
P→W−1, (8.15)

and when the errors ei are iid with a cdf F and a unimodal pdf f that is symmetric
with a unique maximum at 0. When the variance V (ei) exists,

V (OLS,F) =V (ei) = σ2 while V (L1,F) =
1

4[ f (0)]2
.

In the multiple linear regression model,

Yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i ˇ+ ei (8.16)

for i = 1, . . . ,n. In matrix notation, these n equations become

Y =Xˇ+ e, (8.17)

where Y is an n×1 vector of dependent variables, X is an n× p matrix of predictors,
ˇ is a p× 1 vector of unknown coefficients, and e is an n× 1 vector of unknown
errors.

a) What is the i jth element of the matrix

XTX

n
?
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b) Suppose xk,1 = 1 and that xk, j ∼ Xj are iid with E(Xj) = 0 and V (Xj) = 1
for k = 1, . . . ,n and j = 2, . . . , p. Assume that Xi and Xj are independent for i �= j,
i > 1 and j > 1. (Often xk, j ∼ N(0,1) in simulations.) Then what is W−1 for model
(8.16)?

c) Suppose p = 2 and Yi = α+βXi + ei. Show

(XTX)−1 =

⎡

⎢
⎣

∑X2
i

n∑(Xi−X)2
−∑Xi

n∑(Xi−X)2

−∑Xi
n∑(Xi−X)2

n
n∑(Xi−X)2

⎤

⎥
⎦ .

d) Under the conditions of c), let S2
x = ∑(Xi −X)2/n. Show that

n(XTX)−1 =

(
XTX

n

)−1

=

⎡

⎢
⎢
⎣

1
n ∑X2

i
S2

x

−X
S2

x

−X
S2

x

1
S2

x

⎤

⎥
⎥
⎦ .

e) If Xi is iid with variance V (X), then n(XTX)−1 P→W . What is W?

f) Now suppose that n is divisible by 5 and the n/5 of Xi are at 0.1, n/5 at 0.3,
n/5 at 0.5, n/5 at 0.7 and n/5 at 0.9. (Hence if n = 100, 20 of the Xi are at 0.1, 0.3,
0.5, 0.7 and 0.9.)

Find ∑X2
i /n, X , and S2

x . (Your answers should not depend on n.)

g) Under the conditions of f), estimate V (α̂) and V (β̂ ) if L1 is used and if the ei

are iid N(0,0.01).
Hint: Estimate W with n(XTX)−1 and V ( ˆ̌,F) =V (L1,F) = 1

4[ f (0)]2
. Hence

⎛

⎝
α̂

β̂

⎞

⎠≈ N2

⎡

⎢⎢
⎣

⎛

⎝
α

β

⎞

⎠ ,
1
n

1
4[ f (0)]2

⎛

⎜⎜
⎝

1
n ∑X2

i
S2

x

−X
S2

x

−X
S2

x

1
S2

x

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦ .

You should get an answer like 0.0648/n.

Problems from old quizzes and exams. Problems from old qualifying exams
are marked with a Q.

8.10. Let X1, . . . ,Xn be iid Bernoulli(p) random variables.

a) Find I1(p).

b) Find the FCRLB for estimating p.

c) Find the limiting distribution of
√

n( Xn − p ).

d) Find the limiting distribution of
√

n [ (Xn)
2 −c ] for an appropriate constant c.
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8.11. Let X1, . . . ,Xn be iid exponential(β ) random variables.

a) Find the FCRLB for estimating β .
b) Find the limiting distribution of

√
n( Xn −β ).

c) Find the limiting distribution of
√

n [ (Xn)
2 −c ] for an appropriate constant c.

8.12. Let Y1, . . . ,Yn be iid Poisson (λ ) random variables.
a) Find the limiting distribution of

√
n( Y n −λ ).

b) Find the limiting distribution of
√

n [ (Y n)
2 −c ] for an appropriate constant c.

8.13. Let Yn ∼ χ2
n .

a) Find the limiting distribution of
√

n

(
Yn

n
− 1

)
.

b) Find the limiting distribution of
√

n

[ (
Yn

n

)3

− 1

]

.

8.14. Let X1, . . . ,Xn be iid with cdf F(x) = P(X ≤ x). Let Yi =
I(Xi ≤ x) where the indicator equals 1 if Xi ≤ x and 0, otherwise.

a) Find E(Yi).

b) Find VAR(Yi).

c) Let F̂n(x) =
1
n

n

∑
i=1

I(Xi ≤ x) for some fixed real number x. Find the limiting

distribution of
√

n
(
F̂n(x) − cx

)
for an appropriate constant cx.

8.15. Suppose Xn has cdf

Fn(x) = 1−
(

1− x
θn

)n

for x ≥ 0 and Fn(x) = 0 for x < 0. Show that Xn
D→ X by finding the cdf of X .

8.16. Let Xn be a sequence of random variables such that
P(Xn = 1/n) = 1. Does Xn converge in distribution? If yes, prove it by finding X
and the cdf of X . If no, prove it.

8.17. Suppose that Y1, . . . ,Yn are iid with E(Y ) = (1 − ρ)/ρ and VAR(Y ) =
(1−ρ)/ρ2 where 0 < ρ < 1.

a) Find the limiting distribution of

√
n

(
Y n − 1−ρ

ρ

)
.

b) Find the limiting distribution of
√

n
[

g(Y n)− ρ
]

for appropriate function g.
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8.18. Let Xn ∼ Binomial(n, p) where the positive integer n is large and 0< p< 1.

a) Find the limiting distribution of
√

n

(
Xn

n
− p

)
.

b) Find the limiting distribution of
√

n

[ (
Xn

n

)2

− p2

]

.

8.19. Let Y1, . . . ,Yn be iid exponential (λ ) so that E(Y ) = λ and MED(Y) =
log(2)λ .

a) Let T1,n = log(2)Y and find the limiting distribution of√
n(T1,n − log(2)λ ).
b) Let T2,n = MED(n) be the sample median and find the limiting distribution of√

n(T2,n − log(2)λ ).
c) Find ARE(T1,n,T2,n).

8.20. Suppose that η = g(θ ), θ = g−1(η) and g′(θ ) > 0 exists. If X has pdf or
pmf f (x|θ ), then in terms of η , the pdf or pmf is f ∗(x|η) = f (x|g−1(η)). Now

A =
∂
∂η

log[ f (x|g−1(η))] =
1

f (x|g−1(η))
∂
∂η

f (x|g−1(η)) =

[
1

f (x|g−1(η))

] [
∂
∂θ

f (x|θ )
∣
∣
∣
∣
θ=g−1(η)

] [
∂
∂η

g−1(η)
]

using the chain rule twice. Since θ = g−1(η),

A =

[
1

f (x|θ )
] [

∂
∂θ

f (x|θ )
] [

∂
∂η

g−1(η)
]
.

Hence

A =
∂
∂η

log[ f (x|g−1(η))] =
[
∂
∂θ

log[ f (x|θ )]
][

∂
∂η

g−1(η)
]
.

Now show that

I∗1 (η) =
I1(θ )
[g′(θ )]2

.

8.21. Let Y1, . . . ,Yn be iid exponential (1) so that P(Y ≤ y) = F(y) = 1− e−y for
y ≥ 0. Let Y(n) = max(Y1, . . . ,Yn).

a) Show that FY(n)(t) = P(Y(n) ≤ t) = [1− e−t]n for t ≥ 0.

b) Show that P(Y(n) − log(n) ≤ t) → exp(−e−t) (for all t ∈ (−∞,∞) since t +
log(n)> 0 implies t ∈ R as n → ∞).
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8.22. Let Y1, . . . ,Yn be iid uniform (0,2θ ).
a) Let T1,n = Y and find the limiting distribution of

√
n(T1,n −θ ).

b) Let T2,n = MED(n) be the sample median and find the limiting distribution of√
n(T2,n −θ ).
c) Find ARE(T1,n,T2,n). Which estimator is better, asymptotically?

8.23. Suppose that Y1, . . . ,Yn are iid from a distribution with pdf f (y|θ ) and that
the integral and differentiation operators of all orders can be interchanged (e.g., the
data is from a one-parameter exponential family).

a) Show that 0 = E
[

∂
∂θ log( f (Y |θ ))

]
by showing that

∂
∂θ

1 = 0 =
∂
∂θ

∫
f (y|θ )dy =

∫ [
∂
∂θ

log( f (y|θ ))
]

f (y|θ )dy. (*)

b) Take second derivatives of (*) to show that

I1(θ ) = Eθ

[(
∂
∂θ

log f (Y |θ )
)2
]

=−Eθ

[
∂ 2

∂θ 2 log( f (Y |θ ))
]
.

8.24. Suppose that X1, . . . ,Xn are iid N(μ ,σ2).
a) Find the limiting distribution of

√
n
(
Xn − μ

)
.

b) Let g(θ ) = [log(1+θ )]2. Find the limiting distribution of√
n
(
g(Xn)− g(μ)

)
for μ > 0.

c) Let g(θ ) = [log(1+θ )]2. Find the limiting distribution of
n
(
g(Xn)− g(μ)

)
for μ = 0. Hint: Use Theorem 8.30.

8.25. Let Wn = Xn −X and let r > 0. Notice that for any ε > 0,

E|Xn −X |r ≥ E[|Xn −X |r I(|Xn −X | ≥ ε)]≥ εrP(|Xn −X | ≥ ε).

Show that Wn
P→ 0 if E|Xn −X |r → 0 as n → ∞.

8.26. Let X1, . . . ,Xn be iid with E(X) = μ and V (X) = σ2. What is the limiting
distribution of n[(X)2−μ2] for the value or values of μ where the delta method does
not apply? Hint: use Theorem 8.30.

8.27Q. Let X ∼ Binomial(n, p) where the positive integer n is large and
0 < p < 1.

a) Find the limiting distribution of
√

n

(
X
n
− p

)
.

b) Find the limiting distribution of
√

n

[ (
X
n

)2

− p2

]

.
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c) Show how to find the limiting distribution of

[ (
X
n

)3

− X
n

]

when p =
1√
3

.

(Actually want the limiting distribution of

n

([ (
X
n

)3

− X
n

]

− g(p)

)

where g(θ ) = θ 3 −θ .)

8.28Q. Let X1, . . . ,Xn be independent and identically distributed (iid) from a
Poisson(λ ) distribution.

a) Find the limiting distribution of
√

n ( X −λ ).

b) Find the limiting distribution of
√

n [ (X)3 − (λ )3 ].

8.29Q. Let X1, . . . ,Xn be iid from a normal distribution with unknown mean μ
and known variance σ2. Let X =

∑n
i=1 Xi

n and S2 = 1
n−1 ∑

n
i=1(Xi −X)2.

a) Show that X and S2 are independent.

b) Find the limiting distribution of
√

n((X)3 − c) for an appropriate constant c.

8.30. Suppose that Y1, . . . ,Yn are iid logistic(θ ,1) with pdf

f (y) =
exp(−(y−θ ))

[1+ exp(−(y−θ ))]2

where and y and θ are real.
a) I1(θ ) = 1/3 and the family is regular so the “standard limit theorem” for the

MLE θ̂n holds. Using this standard theorem, what is the limiting distribution of√
n(θ̂n −θ )?
b) Find the limiting distribution of

√
n(Y n −θ ).

c) Find the limiting distribution of
√

n(MED(n)−θ ).
d) Consider the estimators θ̂n, Y n and MED(n). Which is the best estimator and

which is the worst?

8.31. Let Yn ∼ binomial(n,p). Find the limiting distribution of

√
n

(

arcsin

(√
Yn

n

)

− arcsin(
√

p)

)

.

(Hint:
d
dx

arcsin(x) =
1√

1− x2
.)



8.10 Problems 255

8.32. Suppose Yn ∼ uniform(−n,n). Let Fn(y) be the cdf of Yn.
a) Find F(y) such that Fn(y)→ F(y) for all y as n → ∞.

b) Does Yn
L→ Y ? Explain briefly.

8.33. Suppose Yn ∼ uniform(0,n). Let Fn(y) be the cdf of Yn.
a) Find F(y) such that Fn(y)→ F(y) for all y as n → ∞.

b) Does Yn
L→ Y ? Explain briefly.

8.34Q. Let Y1, . . . ,Yn be independent and identically distributed (iid) from a dis-
tribution with probability mass function f (y) = ρ(1− ρ)y for y = 0,1,2, . . . and
0 < ρ < 1. Then E(Y ) = (1−ρ)/ρ and VAR(Y ) = (1−ρ)/ρ2.

a) Find the limiting distribution of
√

n

(
Y − 1−ρ

ρ

)
.

b) Show how to find the limiting distribution of g(Y ) = 1
1+Y

. Deduce it com-

pletely. (This bad notation means find the limiting distribution of
√

n(g(Y )− c) for
some constant c.)

c) Find the method of moments estimator of ρ .
d) Find the limiting distribution of

√
n
(
(1+Y)− d

)

for appropriate constant d.
e) Note that 1+E(Y) = 1/ρ . Find the method of moments estimator of 1/ρ .

8.35Q. Let X1, . . . ,Xn be independent identically distributed random variables
from a normal distribution with mean μ and variance σ2.

a) Find the approximate distribution of 1/X̄ . Is this valid for all values of μ?
b) Show that 1/X̄ is asymptotically efficient for 1/μ , provided μ �= μ∗. Iden-

tify μ∗.

8.36Q. Let Y1, . . . ,Yn be independent and identically distributed (iid) from a dis-
tribution with probability density function

f (y) =
2y
θ 2

for 0 < y ≤ θ and f (y) = 0, otherwise.
a) Find the limiting distribution of

√
n
(

Y − c
)

for appropriate constant c.
b) Find the limiting distribution of

√
n
(

log( Y )− d
)

for
appropriate constant d.

c) Find the method of moments estimator of θ k.

8.37Q. Let Y1, . . . ,Yn be independent identically distributed discrete random vari-
ables with probability mass function

f (y) = P(Y = y) =

(
r+ y− 1

y

)
ρ r(1−ρ)y
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for y = 0,1, . . . where positive integer r is known and 0 < ρ < 1. Then
E(Y ) = r(1−ρ)/ρ , and V (Y ) = r(1−ρ)/ρ2.

a) Find the limiting distribution of
√

n

(
Y − r(1−ρ)

ρ

)
.

b) Let g(Y ) =
r

r+Y
. Find the limiting distribution of

√
n
(

g(Y )− c
)

for ap-

propriate constant c.

c) Find the method of moments estimator of ρ .

8.38Q. Let X1, . . . ,Xn be independent identically distributed uniform (0,θ ) ran-
dom variables where θ > 0.

a) Find the limiting distribution of
√

n(X − cθ ) for an appropriate constant cθ
that may depend on θ .

b) Find the limiting distribution of
√

n[(X)2 − kθ ] for an appropriate constant kθ
that may depend on θ .



Chapter 9
Confidence Intervals

Point estimators give a single reasonable (value) estimate of θ and were covered
in Chaps. 5 and 6. Interval estimators, such as confidence intervals, give an interval
of “reasonable” estimated values of the parameter. Large sample confidence inter-
vals and tests are also discussed in this chapter. Section 9.3 suggests that bootstrap
and randomization confidence intervals and tests should use m = max(B, [n log(n)])
samples instead of a fixed number of samples such as B = 1,000.

9.1 Introduction

Definition 9.1. Let the data Y1, . . . ,Yn have joint pdf or pmf f (y|θ ) with parameter
spaceΘ and support Y . Let Ln(Y ) and Un(Y ) be statistics such that Ln(y)≤Un(y),
∀y ∈ Y . Then (Ln(y),Un(y)) is a 100 (1−α)% confidence interval (CI) for θ if

Pθ (Ln(Y )< θ <Un(Y )) = 1−α

for all � ∈Θ . The interval (Ln(y),Un(y)) is a large sample 100 (1−α)% CI for
� if

Pθ (Ln(Y )< θ <Un(Y ))→ 1−α

for all θ ∈Θ as n → ∞.

Definition 9.2. Let the data Y1, . . . ,Yn have joint pdf or pmf f (y|�) with param-
eter space Θ and support Y . The random variable R(Y |�) is a pivot or pivotal
quantity if the distribution of R(Y |�) is independent � . The quantity R(Y ,�) is
an asymptotic pivot or asymptotic pivotal quantity if the limiting distribution of
R(Y ,�) is independent of �.

The first CI in Definition 9.1 is sometimes called an exact CI. The words “exact”
and “large sample” are often omitted. In the following definition, the scaled asymp-
totic length is closely related to asymptotic relative efficiency of an estimator and
high power of a test of hypotheses.

D.J. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4 9,
© Springer International Publishing Switzerland 2014
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Definition 9.3. Let (Ln,Un) be a 100 (1−α)% CI or large sample CI for θ . If

nδ (Un −Ln)
P→ Aα ,

then Aα is the scaled asymptotic length of the CI. Typically δ = 0.5 but supereffi-
cient CIs have δ = 1. For fixed δ and fixed coverage 1−α , a CI with smaller Aα is
“better” than a CI with larger Aα . If A1,α and A2,α are for two competing CIs with
the same δ , then (A2,α/A1,α)

1/δ is a measure of “asymptotic relative efficiency.”

Definition 9.4. Suppose a nominal 100(1−α)% CI for θ has actual coverage
1−δ , so that Pθ (Ln(Y )< θ <Un(Y )) = 1−δ for all θ ∈Θ . If 1−δ > 1−α , then
the CI is conservative. If 1−δ < 1−α , then the CI is liberal. Conservative CIs are
generally considered better than liberal CIs. Suppose a nominal 100(1−α)% large
sample CI for θ has actual coverage 1− δn where δn → δ as n → ∞ for all θ ∈Θ .
If 1− δ > 1−α , then the CI is asymptotically conservative. If 1− δ < 1−α , then
the CI is asymptotically liberal. It is possible that δ ≡ δ (θ ) depends on θ , and that
the CI is (asymptotically) conservative or liberal for different values of θ , in that
the (asymptotic) coverage is higher or lower than the nominal coverage, depending
on θ .

Example 9.1. a) Let Y1, . . . ,Yn be iid N(μ ,σ2) where σ2 > 0. Then

R(Y |μ ,σ2) =
Y − μ
S/

√
n
∼ tn−1

is a pivot or pivotal quantity.
To use this pivot to find a CI for μ , let tp,α be the α percentile of the tp distribu-

tion. Hence P(T ≤ tp,α) = α if T ∼ tp. Using tp,α =−tp,1−α for 0 < α < 0.5, note
that

lll1−α = P

(
−tn−1,1−α/2 ≤

Y − μ
S/

√
n
≤ tn−1,1−α/2

)

= P
(−tn−1,1−α/2 S/

√
n ≤ Y − μ ≤ tn−1,1−α/2 S/

√
n
)

= P
(−Y − tn−1,1−α/2 S/

√
n ≤−μ ≤−Y + tn−1,1−α/2 S/

√
n
)

= P
(
Y − tn−1,1−α/2 S/

√
n ≤ μ ≤ Y + tn−1,1−α/2 S/

√
n
)
.

Thus
Y ± tn−1,1−α/2 S/

√
n

is a 100(1−α)% CI for μ .
b) If Y1, . . . ,Yn are iid with E(Y ) = μ and VAR(Y ) = σ2 > 0, then, by the CLT

and Slutsky’s Theorem,

R(Y |μ ,σ2) =
Y − μ
S/

√
n
=

σ
S

Y − μ
σ/

√
n

D→ N(0,1)

is an asymptotic pivot or asymptotic pivotal quantity.
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To use this asymptotic pivot to find a large sample CI for μ , let zα be the α
percentile of the N(0,1) distribution. Hence P(Z ≤ zα) = α if Z ∼ N(0,1). Using
zα =−z1−α for 0 < α < 0.5, note that for large n,

1−α ≈ P

(
−z1−α/2 ≤

Y − μ
S/

√
n
≤ z1−α/2

)

= P
(−z1−α/2 S/

√
n ≤Y − μ ≤ z1−α/2 S/

√
n
)

= P
(−Y − z1−α/2S/

√
n ≤−μ ≤−Y + z1−α/2 S/

√
n
)

= P
(
Y − z1−α/2 S/

√
n ≤ μ ≤ Y + z1−α/2 S/

√
n
)
.

Thus
Y ± z1−α/2 S/

√
n

is a large sample 100(1−α)% CI for μ .
Since tn−1,1−α/2 > z1−α/2 but tn−1,1−α/2 → z1−α/2 as n → ∞,

Y ± tn−1,1−α/2 S/
√

n

is also a large sample 100(1−α)% CI for μ . This t interval is the same as that in
a) and is the most widely used confidence interval in statistics. Replacing z1−α/2 by
tn−1,1−α/2 makes the CI longer and hence less likely to be liberal.

Large sample theory can be used to find a CI from the asymptotic pivot. Suppose
that Y = (Y1, . . . ,Yn) and that Wn ≡ Wn(Y ) is an estimator of some parameter μW

such that √
n(Wn − μW )

D→ N(0,σ2
W )

where σ2
W/n is the asymptotic variance of the estimator Wn. The above notation

means that if n is large, then for probability calculations

Wn − μW ≈ N(0,σ2
W/n).

Suppose that S2
W is a consistent estimator of σ2

W so that the (asymptotic) standard
error of Wn is SE(Wn) = SW/

√
n. As in Example 9.1, let

P(Z ≤ zα) = α if Z ∼ N(0,1). Then for large n

1−α ≈ P

(
−z1−α/2 ≤

Wn − μW

SE(Wn)
≤ z1−α/2

)
,

and an approximate or large sample 100(1−α)% CI for μW is given by

(Wn − z1−α/2SE(Wn),Wn + z1−α/2SE(Wn)). (9.1)

Since
tp,1−α/2

z1−α/2
→ 1
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if p ≡ pn → ∞ as n → ∞, another large sample 100(1−α)% CI for μW is

(Wn − tp,1−α/2SE(Wn),Wn + tp,1−α/2SE(Wn)). (9.2)

The CI (9.2) often performs better than the CI (9.1) in small samples. The quantity
tp,1−α/2/z1−α/2 can be regarded as a small sample correction factor. The CI (9.2) is
longer than the CI (9.1). Hence the CI (9.2) is more conservative than the CI (9.1).

Suppose that there are two independent samples Y1, . . . ,Yn and X1, . . . ,Xm and
that ( √

n(Wn(Y )− μW (Y ))√
m(Wm(X)− μW (X))

)
D→ N2

((
0
0

)
,

(
σ2

W (Y ) 0
0 σ2

W (X)

))
.

Then
(

(Wn(Y )− μW (Y ))
(Wm(X)− μW (X))

)
≈ N2

((
0
0

)
,

(
σ2

W (Y )/n 0
0 σ2

W (X)/m

))
,

and

Wn(Y )−Wm(X)− (μW (Y )− μW (X))≈ N(0,
σ2

W (Y )
n

+
σ2

W (X)

m
).

Hence SE(Wn(Y )−Wm(X)) =

√
S2

W (Y )

n
+

S2
W (X)

m
=
√
[SE(Wn(Y ))]2 +[SE(Wm(X))]2,

and the large sample 100(1−α)% CI for μW (Y )− μW (X) is given by

(Wn(Y )−Wm(X))± z1−α/2SE(Wn(Y )−Wm(X)). (9.3)

If pn is the degrees of freedom used for a single sample procedure when the
sample size is n, let p = min(pn, pm). Then another large sample 100(1−α)% CI
for μW (Y )− μW (X) is given by

(Wn(Y )−Wm(X))± tp,1−α/2SE(Wn(Y )−Wm(X)). (9.4)

These CIs are known as Welch intervals. See Welch (1937) and Yuen (1974).

Example 9.2. Consider the single sample procedures where Wn = Y n. Then
μW = E(Y ), σ2

W = VAR(Y ), SW = Sn, and p = n− 1. Let tp denote a random vari-
able with a t distribution with p degrees of freedom and let the α percentile tp,α
satisfy P(tp ≤ tp,α) = α. Then the classical t-interval for μ ≡ E(Y ) is

Y n ± tn−1,1−α/2
Sn√

n
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and the t-test statistic for Ho : μ = μo is

to =
Y − μo

Sn/
√

n
.

The right tailed p-value is given by P(tn−1 > to).
Now suppose that there are two samples where Wn(Y ) = Y n and Wm(X) =

Xm. Then μW (Y ) = E(Y ) ≡ μY , μW (X) = E(X) ≡ μX , σ2
W (Y ) = VAR(Y ) ≡ σ2

Y ,
σ2

W (X) = VAR(X)≡ σ2
X , and pn = n− 1. Let p = min(n− 1,m− 1). Since

SE(Wn(Y )−Wm(X)) =

√
S2

n(Y )

n
+

S2
m(X)

m
,

the two sample t-interval for μY − μX

(Y n −Xm)± tp,1−α/2

√
S2

n(Y )

n
+

S2
m(X)

m

and two sample t-test statistic

to =
Y n −Xm√

S2
n(Y )

n + S2
m(X)

m

.

The right tailed p-value is given by P(tp > to). For sample means, values of the
degrees of freedom that are more accurate than p = min(n− 1,m− 1) can be com-
puted. See Moore (2007, p. 474).

The remainder of this section follows Olive (2008b, Section 2.4) closely. Let �x�
denote the “greatest integer function” (so �7.7� = 7). Let �x� denote the smallest
integer greater than or equal to x (so �7.7�= 8).

Example 9.3: Inference with the sample median. Let Un = n−Ln where Ln =
�n/2�−�√n/4 � and use

SE(MED(n)) = 0.5(Y(Un)−Y(Ln+1)).

Let p =Un −Ln − 1. Then a large sample 100(1−α)% confidence interval for the
population median MED(Y ) is

MED(n)± tp,1−α/2SE(MED(n)). (9.5)

Example 9.4: Inference with the trimmed mean. The symmetrically trimmed
mean or the δ trimmed mean

Tn = Tn(Ln,Un) =
1

Un −Ln

Un

∑
i=Ln+1

Y(i) (9.6)
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where Ln = �nδ� and Un = n−Ln. If δ = 0.25, say, then the δ trimmed mean is
called the 25 % trimmed mean.

The trimmed mean is estimating a truncated mean μT . Assume that Y has a prob-
ability density function fY (y) that is continuous and positive on its support. Let yδ
be the number satisfying P(Y ≤ yδ ) = δ . Then

μT =
1

1− 2δ

∫ y1−δ

yδ
y fY (y)dy. (9.7)

Notice that the 25 % trimmed mean is estimating

μT =

∫ y0.75

y0.25

2y fY (y)dy.

To perform inference, find d1, . . . ,dn where

di =

⎧
⎨

⎩

Y(Ln+1), i ≤ Ln

Y(i), Ln + 1 ≤ i ≤Un

Y(Un), i ≥Un + 1.

Then the Winsorized variance is the sample variance S2
n(d1, . . . ,dn) of d1, . . . ,dn,

and the scaled Winsorized variance

VSW(Ln,Un) =
S2

n(d1, . . . ,dn)

([Un −Ln]/n)2 . (9.8)

The standard error of Tn is SE(Tn) =
√

VSW(Ln,Un)/n.
A large sample 100 (1−α)% confidence interval (CI) for μT is

Tn ± tp,1− α
2

SE(Tn) (9.9)

where P(tp ≤ tp,1− α
2
) = 1−α/2 if tp is from a t distribution with p =Un −Ln − 1

degrees of freedom. This interval is the classical t-interval when δ = 0, but δ = 0.25
gives a robust CI.

Example 9.5. Suppose the data below is from a symmetric distribution with
mean μ . Find a 95% CI for μ .

6,9,9,7,8,9,9,7

Solution. When computing small examples by hand, the steps are to sort the
data from smallest to largest value, find n, Ln, Un, Y(Ln), Y(Un), p, MED(n) and
SE(MED(n)). After finding tp,1−α/2, plug the relevant quantities into the formula
for the CI. The sorted data are 6, 7, 7, 8, 9, 9, 9, 9. Thus MED(n) = (8+9)/2= 8.5.
Since n = 8, Ln = �4� − �√2� = 4 − �1.414� = 4 − 2 = 2 and Un = n − Ln =
8− 2 = 6. Hence SE(MED(n)) = 0.5(Y(6)−Y(3)) = 0.5 ∗ (9− 7) = 1. The degrees
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of freedom p = Un −Ln − 1 = 6− 2− 1 = 3. The cutoff t3,0.975 = 3.182. Thus the
95 % CI for MED(Y ) is

MED(n)± t3,0.975SE(MED(n))

= 8.5 ± 3.182(1) = (5.318,11.682). The classical t-interval uses Y = (6 + 7 +
7 + 8 + 9 + 9 + 9 + 9)/8 and S2

n = (1/7)[(∑n
i=1 Y 2

i ) − 8(82)] = (1/7)[(522 −
8(64)] = 10/7 ≈ 1.4286, and t7,0.975 ≈ 2.365. Hence the 95 % CI for μ is
8 ± 2.365(

√
1.4286/8) = (7.001,8.999). Notice that the t-cutoff = 2.365 for

the classical interval is less than the t-cutoff = 3.182 for the median interval and that
SE(Y )< SE(MED(n)).

Example 9.6. In the last example, what happens if the 6 becomes 66 and a 9
becomes 99?

Solution. Then the ordered data are 7, 7, 8, 9, 9, 9, 66, 99. Hence MED(n) = 9.
Since Ln and Un only depend on the sample size, they take the same values as in the
previous example and SE(MED(n)) = 0.5(Y(6)−Y(3)) = 0.5∗ (9−8) = 0.5. Hence
the 95 % CI for MED(Y ) is MED(n)± t3,0.975SE(MED(n)) = 9 ± 3.182(0.5) =
(7.409,10.591).Notice that with discrete data, it is possible to drive SE(MED(n)) to
0 with a few outliers if n is small. The classical confidence interval Y ± t7,0.975S/

√
n

blows up and is equal to (−2.955,56.455).

Example 9.7. The Buxton (1920) data contains 87 heights of men, but five of the
men were recorded to be about 0.75 in. tall! The mean height is Y = 1598.862 and
the classical 95 % CI is (1514.206, 1683.518). MED(n) = 1693.0 and the resistant
95 % CI based on the median is (1678.517, 1707.483). The 25 % trimmed mean
Tn = 1689.689 with 95 % CI (1672.096, 1707.282).

The heights for the five men were recorded under their head lengths, so the out-
liers can be corrected. Then Y = 1692.356 and the classical 95 % CI is (1678.595,
1706.118). Now MED(n) = 1694.0 and the 95 % CI based on the median is
(1678.403, 1709.597). The 25 % trimmed mean Tn = 1693.200 with 95 % CI
(1676.259, 1710.141). Notice that when the outliers are corrected, the three inter-
vals are very similar although the classical interval length is slightly shorter. Also
notice that the outliers roughly shifted the median confidence interval by about 1
mm while the outliers greatly increased the length of the classical t-interval.

9.2 Some Examples

Example 9.8. Suppose that Y1, . . . ,Yn are iid from a one-parameter exponential fam-
ily with parameter τ . Assume that Tn = ∑n

i=1 t(Yi) is a complete sufficient statistic.
Then from Theorems 3.6 and 3.7, often Tn ∼ G(na,2b τ) where a and b are known
positive constants. Then

τ̂ =
Tn

2nab
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is the UMVUE and often the MLE of τ. Since Tn/(b τ)∼ G(na,2), a
100(1−α)% confidence interval for τ is

(
Tn/b

G(na,2,1−α/2)
,

Tn/b
G(na,2,α/2)

)
≈
(

Tn/b

χ2
d (1−α/2)

,
Tn/b

χ2
d (α/2)

)
(9.10)

where d = �2na�, �x� is the greatest integer function (e.g., �7.7�= �7�= 7), P[G ≤
G(ν,λ ,α)] = α if G ∼ G(ν,λ ), and P[X ≤ χ2

d (α)] = α if X has a chi-square χ2
d

distribution with d degrees of freedom.

This confidence interval can be inverted to perform two tail tests of hypotheses.
By Theorem 7.3, if w(θ ) is increasing, then the uniformly most powerful (UMP) test
of Ho : τ ≤ τo versus HA : τ > τo rejects Ho if and only if Tn > k where P[G > k] =α
when G ∼ G(na,2b τo). Hence

k = G(na,2b τo,1−α). (9.11)

A good approximation to this test rejects Ho if and only if

Tn > b τoχ2
d (1−α)

where d = �2na�.
Example 9.9. If Y is half normal HN(μ ,σ ), then the pdf of Y is

f (y) =
2√

2π σ
exp

(−(y− μ)2

2σ2

)

where σ > 0 and y > μ and μ is real. Since

f (y) =
2√

2π σ
I[y > μ ]exp

[( −1
2σ2

)
(y− μ)2

]
,

Y is a 1P-REF if μ is known.
Since Tn =∑(Yi−μ)2 ∼ G(n/2,2σ2), in Example 9.8 take a= 1/2, b= 1, d = n

and τ = σ2. Then a 100(1−α)% confidence interval for σ2 is
(

Tn

χ2
n (1−α/2)

,
Tn

χ2
n (α/2)

)
. (9.12)

The UMP test of Ho : σ2 ≤ σ2
o versus HA : σ2 > σ2

o rejects Ho if and only if

Tn/σ2
o > χ2

n (1−α).

Now consider inference when both μ and σ are unknown. Then the family is no
longer an exponential family since the support depends on μ . Let

Dn =
n

∑
i=1

(Yi −Y1:n)
2. (9.13)
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Pewsey (2002) showed that (μ̂ , σ̂2) = (Y1:n,
1
n Dn) is the MLE of (μ ,σ2), and that

Y1:n − μ
σΦ−1( 1

2 +
1

2n )

D→ EXP(1).

Since (
√

π/2)/n is an approximation to Φ−1( 1
2 +

1
2n) based on a first order Taylor

series expansion such that
Φ−1( 1

2 +
1
2n)

(
√

π/2)/n
→ 1,

it follows that
n(Y1:n − μ)

σ
√π

2

D→ EXP(1). (9.14)

Using this fact, it can be shown that a large sample 100(1−α)% CI for μ is
(
μ̂+ σ̂ log(α) Φ−1

(
1
2
+

1
2n

)
(1+ 13/n2), μ̂

)
(9.15)

where the term (1+13/n2) is a small sample correction factor. See Abuhassan and
Olive (2008).

Note that

Dn =
n

∑
i=1

(Yi −Y1:n)
2 =

n

∑
i=1

(Yi − μ+ μ−Y1:n)
2 =

n

∑
i=1

(Yi − μ)2 + n(μ−Y1:n)
2 + 2(μ−Y1:n)

n

∑
i=1

(Yi − μ).

Hence

Dn = Tn +
1
n
[n(Y1:n − μ)]2 − 2[n(Y1:n − μ)]∑

n
i=1(Yi − μ)

n
,

or

Dn

σ2 =
Tn

σ2 +
1
n

1
σ2 [n(Y1:n − μ)]2 − 2

[
n(Y1:n − μ)

σ

]
∑n

i=1(Yi − μ)
nσ

. (9.16)

Consider the three terms on the right-hand side of (9.16). The middle term
converges to 0 in distribution while the third term converges in distribution to a
−2EXP(1) or −χ2

2 distribution since ∑n
i=1(Yi − μ)/(σn) is the sample mean of

HN(0,1) random variables and E(X) =
√

2/π when X ∼ HN(0,1).
Let Tn−p = ∑n−p

i=1 (Yi − μ)2. Then

Dn = Tn−p +
n

∑
i=n−p+1

(Yi − μ)2 −Vn (9.17)

where
Vn

σ2
D→ χ2

2 .
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Hence
Dn

Tn−p

D→ 1

and Dn/σ2 is asymptotically equivalent to a χ2
n−p random variable where p is an

arbitrary nonnegative integer. Pewsey (2002) used p = 1.
Thus when both μ and σ2 are unknown, a large sample 100(1−α)% confidence

interval for σ2 is (
Dn

χ2
n−1(1−α/2)

,
Dn

χ2
n−1(α/2)

)

. (9.18)

It can be shown that
√

n CI length converges in probability to σ2
√

2(z1−α/2 −
zα/2) for CIs (9.12) and (9.18) while n length CI (9.15) converges in probability to

−σ log(α)
√

π/2.
When μ and σ2 are unknown, an approximateα level test of Ho : σ2 ≤ σ2

o versus
HA : σ2 > σ2

o that rejects Ho if and only if

Dn/σ2
o > χ2

n−1(1−α) (9.19)

has nearly as much power as the α level UMP test when μ is known if n is large.

Example 9.10. Following Mann et al. (1974, p. 176), let W1, . . . ,Wn be iid
EXP(θ ,λ ) random variables. Let

W1:n = min(W1, . . . ,Wn).

Then the MLE

(θ̂ , λ̂ ) =

(

W1:n,
1
n

n

∑
i=1

(Wi −W1:n)

)

= (W1:n,W −W1:n).

Let Dn = nλ̂ . For n > 1, a 100(1−α)% confidence interval (CI) for θ is

(W1:n − λ̂ [(α)−1/(n−1)− 1],W1:n) (9.20)

while a 100(1−α)% CI for λ is
(

2Dn

χ2
2(n−1),1−α/2

,
2Dn

χ2
2(n−1),α/2

)

. (9.21)

Let Tn = ∑n
i=1(Wi −θ ) = n(W −θ ). If θ is known, then

λ̂θ =
∑n

i=1(Wi −θ )
n

=W −θ



9.2 Some Examples 267

is the UMVUE and MLE of λ , and a 100(1−α)% CI for λ is
(

2Tn

χ2
2n,1−α/2

,
2Tn

χ2
2n,α/2

)

. (9.22)

Using χ2
n,α/

√
n ≈ √

2zα +
√

n, it can be shown that
√

n CI length converges to
λ (z1−α/2 − zα/2) for CIs (9.21) and (9.22) (in probability). It can be shown that n
length CI (9.20) converges to −λ log(α).

When a random variable is a simple transformation of a distribution that has an
easily computed CI, the transformed random variable will often have an easily com-
puted CI. Similarly the MLEs of the two distributions are often closely related. See
the discussion above Example 5.11. The first three of the following four examples
are from Abuhassan and Olive (2008).

Example 9.11. If Y has a Pareto distribution,Y ∼ PAR(σ ,λ ), then W = log(Y )∼
EXP(θ = log(σ),λ ). If θ = log(σ) so σ = eθ , then a 100 (1−α)% CI for θ is
(9.20). A 100 (1−α)% CI for σ is obtained by exponentiating the endpoints of
(9.20), and a 100 (1−α)% CI for λ is (9.21). The fact that the Pareto distribution is
a log-location–scale family (W = log(Y ) is from a location–scale family) and hence
has simple inference does not seem to be well known.

Example 9.12. If Y has a power distribution, Y ∼ POW(λ ), then W = − log(Y )
is EXP(0,λ ). A 100 (1−α)% CI for λ is (9.22).

If Y has a two-parameter power distribution, Y ∼ power(τ,λ ), then

F(y) =
( y
τ

)1/λ

for 0 < y ≤ τ. The pdf

f (y) =
1
τλ

( y
τ

) 1
λ −1

I(0 < y ≤ τ).

Then W =− log(Y )∼ EXP(− log(τ),λ ). Thus (9.21) is an exact
100(1− α)% CI for λ , and (9.20) = (Ln,Un) is an exact 100(1 − α)% CI for
− log(τ). Hence (eLn ,eUn ) is a 100(1− α)% CI for 1/τ , and (e−Un ,e−Ln) is a
100(1−α)% CI for τ .

Example 9.13. If Y has a truncated extreme value distribution, Y ∼ TEV(λ ),
then W = eY − 1 is EXP(0,λ ). A 100 (1−α)% CI for λ is (9.22).

Example 9.14. If Y has a lognormal distribution, Y ∼ LN(μ ,σ2), then Wi =
log(Yi)∼ N(μ ,σ2). Thus a (1−α)100% CI for μ when σ is unknown is

(
W n − tn−1,1− α

2

SW√
n
,W n + tn−1,1− α

2

SW√
n

)
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where

SW =
n

n− 1
σ̂ =

√
1

n− 1

n

∑
i=1

(Wi −W)2,

and P(t ≤ tn−1,1− α
2
) = 1−α/2 when t ∼ tn−1.

Example 9.15. Let X1, . . . ,Xn be iid Poisson(θ ) random variables. The classical
large sample 100 (1−α)% CI for θ is

X ± z1−α/2

√
X/n

where P(Z ≤ z1−α/2) = 1−α/2 if Z ∼ N(0,1).

Following Byrne and Kabaila (2005), a modified large sample 100 (1−α)% CI
for θ is (Ln,Un) where

Ln =
1
n

(
n

∑
i=1

Xi − 0.5+ 0.5z2
1−α/2− z1−α/2

√
n

∑
i=1

Xi − 0.5+ 0.25z2
1−α/2

)

and

Un =
1
n

(
n

∑
i=1

Xi + 0.5+ 0.5z2
1−α/2+ z1−α/2

√
n

∑
i=1

Xi + 0.5+ 0.25z2
1−α/2

)

.

Following Grosh (1989, pp. 59, 197–200), let W =∑n
i=1 Xi and suppose that W =

w is observed. Let P(T < χ2
d (α)) = α if T ∼ χ2

d . Then an “exact” 100 (1−α)% CI
for θ is (

χ2
2w(

α
2 )

2n
,
χ2

2w+2(1− α
2 )

2n

)

for w �= 0 and (
0,

χ2
2 (1−α)

2n

)

for w = 0.
The “exact” CI is conservative: the actual coverage (1−δn)≥ 1−α = the nom-

inal coverage. This interval performs well if θ is very close to 0. See Problem 9.3.

Example 9.16. Let Y1, . . . ,Yn be iid bin(1,ρ). Let ρ̂ = ∑n
i=1 Yi/n =

number of “successes”/n. The classical large sample 100 (1−α)% CI for ρ is

ρ̂± z1−α/2

√
ρ̂(1− ρ̂)

n

where P(Z ≤ z1−α/2) = 1−α/2 if Z ∼ N(0,1).
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The Agresti Coull CI takes ñ = n+ z2
1−α/2 and

ρ̃ =
nρ̂+ 0.5z2

1−α/2

n+ z2
1−α/2

.

(The method “adds” 0.5z2
1−α/2 “0’s” and 0.5z2

1−α/2 “1’s” to the sample, so the “sam-

ple size” increases by z2
1−α/2.) Then the large sample 100 (1−α)% Agresti Coull

CI for ρ is

ρ̃± z1−α/2

√
ρ̃(1− ρ̃)

ñ
.

Now let Y1, . . . ,Yn be independent bin(mi,ρ) random variables, let W =∑n
i=1 Yi ∼

bin(∑n
i=1 mi,ρ) and let nw = ∑n

i=1 mi. Often mi ≡ 1 and then nw = n. Let P(Fd1,d2 ≤
Fd1,d2(α)) =α where Fd1,d2 has an F distribution with d1 and d2 degrees of freedom.
Assume W = w is observed. Then the Clopper Pearson “exact” 100 (1−α)% CI for
ρ is

(
0,

1
1 + nw F2nw,2(α)

)
for w = 0,

(
nw

nw + F2,2nw(1−α)
,1

)
for w = nw,

and (ρL,ρU) for 0 < w < nw with

ρL =
w

w+(nw−w+ 1)F2(nw−w+1),2w(1−α/2)

and

ρU =
w+ 1

w+ 1+(nw−w)F2(nw−w),2(w+1)(α/2)
.

The “exact” CI is conservative: the actual coverage (1−δn)≥ 1−α = the nom-
inal coverage. This interval performs well if ρ is very close to 0 or 1. The clas-
sical interval should only be used if it agrees with the Agresti Coull interval. See
Problem 9.2.

Example 9.17. Let ρ̂ = number of “successes”/n. Consider taking a simple ran-
dom sample of size n from a finite population of known size N. Then the classical
finite population large sample 100 (1−α)% CI for ρ is

ρ̂± z1−α/2

√
ρ̂(1− ρ̂)

n− 1

(
N − n

N

)
= ρ̂± z1−α/2SE(ρ̂) (9.23)

where P(Z ≤ z1−α/2) = 1−α/2 if Z ∼ N(0,1).
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Following DasGupta (2008, p. 121), suppose the number of successes Y has a
hypergeometric (C,N −C,n) where p = C/N. If n/N ≈ λ ∈ (0,1) where n and N
are both large, then

ρ̂ ≈ N

(
ρ ,

ρ(1−ρ)(1−λ )
n

)
.

Hence CI (9.23) should be good if the above normal approximation is good.

Let ñ = n+ z2
1−α/2 and

ρ̃ =
nρ̂+ 0.5z2

1−α/2

n+ z2
1−α/2

.

(Heuristically, the method adds 0.5z2
1−α/2 “0’s” and 0.5z2

1−α/2 “1’s” to the sample,

so the “sample size” increases by z2
1−α/2.) Then a large sample 100 (1−α)% Agresti

Coull type (ACT) finite population CI for ρ is

ρ̃± z1−α/2

√
ρ̃(1− ρ̃)

ñ

(
N − n

N

)
= ρ̃± z1−α/2SE(ρ̃). (9.24)

Notice that a 95 % CI uses z1−α/2 = 1.96 ≈ 2.
For data from a finite population, large sample theory gives useful approxima-

tions as N and n → ∞ and n/N → 0. Hence theory suggests that the ACT CI should
have better coverage than the classical CI if the p is near 0 or 1, if the sample size
n is moderate, and if n is small compared to the population size N. The coverage
of the classical and ACT CIs should be very similar if n is large enough but small
compared to N (which may only be possible if N is enormous). As n increases to
N, ρ̂ goes to p, SE(ρ̂) goes to 0, and the classical CI may perform well. SE(ρ̃) also
goes to 0, but ρ̃ is a biased estimator of ρ and the ACT CI will not perform well if
n/N is too large.

Want an interval that gives good coverage even if ρ is near 0 or 1 or if n/N is
large. A simple method is to combine the two intervals. Let (LC,UC) and (LA,UA)
be the classical and ACT 100(1−α)% intervals. Let the modified 100(1−α)%
interval be

(max[0,min(LC,LU)],min[1,max(UC,UA)]). (9.25)

The modified interval seems to perform well. See Problem 9.4.

Example 9.18. If Y1, . . . ,Yn are iid Weibull (φ ,λ ), then the MLE (φ̂ , λ̂ ) must be
found before obtaining CIs. The likelihood

L(φ ,λ ) =
φn

λ n

n

∏
i=1

yφ−1
i exp

[−1
λ ∑yφi

]
,
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and the log likelihood

log(L(φ ,λ )) = n log(φ)− n log(λ )+ (φ − 1)
n

∑
i=1

log(yi)− 1
λ ∑yφi .

Hence
∂
∂λ

log(L(φ ,λ )) =
−n
λ

+
∑yφi
λ 2

set
= 0,

or ∑yφi = nλ , or

λ̂ =
∑yφ̂i

n
.

Now
∂
∂φ

log(L(φ ,λ )) =
n
φ
+

n

∑
i=1

log(yi)− 1
λ ∑yφi log(yi)

set
= 0,

so

n+φ

[
n

∑
i=1

log(yi)− 1
λ ∑yφi log(yi)

]

= 0,

or
φ̂ =

n
1
λ̂ ∑yφ̂i log(yi)−∑n

i=1 log(yi)
.

One way to find the MLE is to use iteration

λ̂k =
∑y

φ̂k−1
i

n

and
φ̂k =

n

1
λ̂k
∑yφ̂k−1

i log(yi)−∑n
i=1 log(yi)

.

Since W = log(Y )∼ SEV(θ = log(λ 1/φ ),σ = 1/φ), let

σ̂R = MAD(W1, . . . ,Wn)/0.767049

and
θ̂R = MED(W1, . . . ,Wn)− log(log(2))σ̂R.

Then φ̂0 = 1/σ̂R and λ̂0 = exp(θ̂R/σ̂R). The iteration might be run until both
|φ̂k − φ̂k−1|< 10−6 and |λ̂k − λ̂k−1|< 10−6. Then take (φ̂ , λ̂ ) = (φ̂k, λ̂k).

By Example 8.13,

√
n

((
λ̂
φ̂

)
−
(
λ
φ

))
D→ N2(0,˙ )
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where ˙ =
⎡

⎣
1.109λ 2(1+ 0.4635log(λ )+ 0.5482(log(λ ))2) 0.257φλ + 0.608λφ log(λ )

0.257φλ + 0.608λφ log(λ ) 0.608φ2

⎤

⎦ .

Thus 1−α ≈ P(−z1−α/2

√
0.608 φ̂ <

√
n(φ̂−φ)< z1−α/2

√
0.608 φ̂ ) and a large

sample 100(1−α)% CI for φ is

φ̂ ± z1−α/2 φ̂
√

0.608/n. (9.26)

Similarly, a large sample 100(1−α)% CI for λ is

λ̂ ± z1−α/2√
n

√
1.109λ̂ 2[1+ 0.4635log(λ̂ )+ 0.5824(log(λ̂ ))2]. (9.27)

In simulations, for small n the number of iterations for the MLE to converge
could be in the thousands, and the coverage of the large sample CIs is poor for
n < 50. See Problem 9.7.

Iterating the likelihood equations until “convergence” to a point �̂ is called a
fixed point algorithm. Such algorithms may not converge, so check that �̂ satisfies
the likelihood equations. Other methods such as Newton’s method may perform
better.

Newton’s method is used to solve g(�) = 0 for � , where the solution is called �̂,
and uses

�k+1 = �k − [Dg(�k)
]−1g(�k) (9.28)

where

Dg(�) =

⎡

⎢⎢
⎣

∂
∂θ1

g1(�) . . .
∂

∂θp
g1(�)

...
...

∂
∂θ1

gp(�) . . .
∂

∂θp
gp(�)

⎤

⎥⎥
⎦ .

If the MLE is the solution of the likelihood equations, then use g(�) =
(g1(�), . . . ,gp(�))

T where

gi(�) =
∂
∂θi

log(L(�)).

Let �0 be an initial estimator, such as the method of moments estimator of � . Let
D =Dg(�). Then

Di j =
∂
∂θ j

gi(�) =
∂ 2

∂θi∂θ j
log(L(�)) =

n

∑
k=1

∂ 2

∂θi∂θ j
log( f (xk|�)),
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and
1
n

Di j =
1
n

n

∑
k=1

∂ 2

∂θi∂θ j
log( f (Xk|�)) D→ E

[
∂ 2

∂θi∂θ j
log( f (X |�))

]
.

Newton’s method converges if the initial estimator is sufficiently close to � , but
may diverge otherwise. Hence

√
n consistent initial estimators are recommended.

Newton’s method is also popular because if the partial derivative and integration
operations can be interchanged, then

1
n
Dg(�)

D→−I (�). (9.29)

For example, the regularity conditions hold for a kP-REF by Proposition 8.20. Then
a 100 (1−α)% large sample CI for θi is

θ̂i ± z1−α/2

√
−D−1

ii (9.30)

where

D−1 =
[
Dg(�̂)

]−1
.

This result follows because
√
−D−1

ii ≈
√
[I−1(�̂)]ii/n.

Example 9.19. Problem 9.8 simulates CIs for the Rayleigh (μ ,σ ) distribution of
the form (9.30) although no check has been made on whether (9.29) holds for the
Rayleigh distribution (which is not a 2P-REF).

L(μ ,σ) =
(

∏ yi − μ
σ2

)
exp

[
− 1

2σ2 ∑(yi − μ)2
]
.

Notice that for fixed σ , L(Y(1),σ) = 0. Hence the MLE μ̂ < Y(1). Now the log like-
lihood

log(L(μ ,σ)) =
n

∑
i=1

log(yi − μ)− 2n log(σ)− 1
2∑

(yi − μ)2

σ2 .

Hence g1(μ ,σ) =

∂
∂μ

log(L(μ ,σ)) =−
n

∑
i=1

1
yi − μ

+
1
σ2

n

∑
i=1

(yi − μ) set
= 0,

and g2(μ ,σ) =

∂
∂σ

log(L(μ ,σ)) =
−2n
σ

+
1
σ3

n

∑
i=1

(yi − μ)2 set
= 0,
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which has solution

σ̂2 =
1
2n

n

∑
i=1

(Yi − μ̂)2. (9.31)

To obtain initial estimators, let σ̂M =
√

S2/0.429204 and μ̂M =Y −1.253314σ̂M.
These would be the method of moments estimators if S2

M was used instead
of the sample variance S2. Then use μ0 = min(μ̂M,2Y(1) − μ̂M) and σ0 =√

∑(Yi − μ0)2/(2n). Now � = (μ ,σ)T and

D ≡Dg(�) =

⎡

⎢
⎣

∂
∂μ g1(�)

∂
∂σ g1(�)

∂
∂μ g2(�)

∂
∂σ g2(�)

⎤

⎥
⎦=

⎡

⎢
⎣
−∑n

i=1
1

(yi−μ)2 − n
σ2 − 2

σ3 ∑n
i=1(yi − μ)

− 2
σ3 ∑n

i=1(yi − μ) 2n
σ2 − 3

σ4 ∑n
i=1(yi − μ)2

⎤

⎥
⎦ .

So

�k+1 = �k −

⎡

⎢
⎣

−∑n
i=1

1
(yi−μk)

2 − n
σ2

k
− 2

σ3
k
∑n

i=1(yi − μk)

− 2
σ3

k
∑n

i=1(yi − μk)
2n
σ2

k
− 3

σ4
k
∑n

i=1(yi − μk)
2

⎤

⎥
⎦

−1

g(�k)

where

g(�k) =

⎛

⎜
⎝

−∑n
i=1

1
(yi−μk)

+ 1
σ2

k
∑n

i=1(yi − μk)

−2n
σk

+ 1
σ3

k
∑n

i=1(yi − μk)
2

⎞

⎟
⎠ .

This formula could be iterated for 100 steps resulting in �101 = (μ101,σ101)
T . Then

take μ̂ = min(μ101,2Y(1)− μ101) and

σ̂ =

√
1

2n

n

∑
i=1

(Yi − μ̂)2.

Then �̂ = (μ̂ , σ̂)T and compute D ≡ Dg(�̂). Then (assuming (9.29) holds) a 100

(1−α)% large sample CI for μ is

μ̂± z1−α/2

√
−D−1

11

and a 100 (1−α)% large sample CI for σ is

σ̂ ± z1−α/2

√
−D−1

22 .
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Example 9.20. Assume that Y1, . . . ,Yn are iid discrete uniform (1,η) where η is
an integer. For example, each Yi could be drawn with replacement from a population
of η tanks with serial numbers 1, 2, . . . , η . The Yi would be the serial number
observed, and the goal would be to estimate the population size η = number of
tanks. Then P(Yi = i) = 1/η for i = 1, . . . ,η . Then the cdf of Y is

F(y) =
�y�
∑
i=1

1
η

=
�y�
η

for 1 ≤ y ≤ η . Here �y� is the greatest integer function, e.g., �7.7�= 7.
Now let Zi = Yi/η which has cdf

FZ(t) = P(Z ≤ t) = P(Y ≤ tη) =
�tη�
η

≈ t

for 0 < t < 1. Let Z(n) = Y(n)/η = max(Z1, . . . ,Zn). Then

FZ(n) (t) = P

(
Y(n)
η

≤ t

)
=

(�tη�
η

)n

for 1/η < t < 1.
Want cn so that

P

(
cn ≤

Y(n)
η

≤ 1

)
= 1−α

for 0 < α < 1. So

1−FZ(n)(cn) = 1−α or 1−
(�cnη�

η

)n

= 1−α

or �cnη�
η

= α1/n.

The solution may not exist, but cn − 1/η ≤ α1/n ≤ cn. Take cn = α1/n then
[

Y(n),
Y(n)
α1/n

)

is a CI for η that has coverage slightly less than 100(1−α)% for small n, but the
coverage converges in probability to 1 as n → ∞.

For small n the midpoint of the 95 % CI might be a better estimator of η than Y(n).
The left endpoint is closed since Y(n) is a consistent estimator of η . If the endpoint
was open, coverage would go to 0 instead of 1. It can be shown that n (length CI)
converges to −η log(α) in probability. Hence n (length 95 % CI) ≈ 3η . Problem 9.9
provides simulations that suggest that the 95 % CI coverage and length is close to
the asymptotic values for n ≥ 10.
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Example 9.21. Assume that Y1, . . . ,Yn are iid uniform (0,θ ). Let Zi = Yi/θ ∼
U(0,1) which has cdf FZ(t) = t for 0 < t < 1. Let Z(n) =Y(n)/θ = max(Z1, . . . ,Zn).
Then

FZ(n)(t) = P

(
Y(n)
θ

≤ t

)
= tn

for 0 < t < 1.
Want cn so that

P

(
cn ≤

Y(n)
θ

≤ 1

)
= 1−α

for 0 < α < 1. So

1−FZ(n)(cn) = 1−α or 1− cn
n = 1−α

or
cn = α1/n.

Then (
Y(n),

Y(n)
α1/n

)

is an exact 100(1−α)% CI for θ . It can be shown that n (length CI) converges to
−θ log(α) in probability.

If Y1, . . . ,Yn are iid U(θ1,θ2) where θ1 is known, then Yi −θ1 are iid
U(0,θ2 −θ1) and (

Y(n)−θ1,
Y(n)−θ1

α1/n

)

is a 100(1−α)% CI for θ2 −θ1. Thus if θ1 is known, then
(

Y(n), θ1

(
1− 1

α1/n

)
+

Y(n)
α1/n

)

is a 100(1−α)% CI for θ2.

Example 9.22. Assume Y1, . . . ,Yn are iid with mean μ and variance σ2. Bickel
and Doksum (2007, p. 279) suggest that

Wn = n−1/2
[
(n− 1)S2

σ2 − n

]

can be used as an asymptotic pivot for σ2 if E(Y 4)< ∞. Notice that Wn =

n−1/2
[
∑(Yi − μ)2

σ2 − n(Y − μ)2

σ2 − n

]
=

√
n

⎡

⎢
⎣
∑
(

Yi−μ
σ

)2

n
− 1

⎤

⎥
⎦ − 1√

n
n

(
Y − μ
σ

)2

= Xn −Zn.
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Since
√

nZn
D→ χ2

1 , the term Zn
D→ 0. Now Xn =

√
n(U − 1)

D→ N(0,τ) by the CLT
since Ui = [(Yi − μ)/σ ]2 has mean E(Ui) = 1 and variance

V (Ui) = τ = E(U2
i )− (E(Ui))

2 =
E[(Yi − μ)4]

σ4 − 1 = κ+ 2

where κ is the kurtosis of Yi. Thus Wn
D→ N(0,τ).

Hence

1−α ≈ P

(
−z1−α/2 <

Wn√
τ
< z1−α/2

)
= P(−z1−α/2

√
τ <Wn < z1−α/2

√
τ)

= P

(
−z1−α/2

√
nτ <

(n− 1)S2

σ2 − n < z1−α/2
√

nτ
)

= P

(
n− z1−α/2

√
nτ <

(n− 1)S2

σ2 < n+ z1−α/2
√

nτ
)
.

Hence a large sample 100(1−α)% CI for σ2 is
(

(n− 1)S2

n+ z1−α/2

√
nτ̂

,
(n− 1)S2

n− z1−α/2

√
nτ̂

)

where

τ̂ =
1
n ∑

n
i=1(Yi −Y )4

S4 − 1.

Notice that this CI needs n > z1−α/2

√
nτ̂ for the right endpoint to be positive. It can

be shown that
√

n (length CI) converges to 2σ2z1−α/2
√
τ in probability.

Problem 9.10 uses an asymptotically equivalent 100(1−α)% CI of the form
(

(n− a)S2

n+ tn−1,1−α/2

√
nτ̂

,
(n+ b)S2

n− tn−1,1−α/2

√
nτ̂

)

where a and b depend on τ̂. The goal was to make a 95 % CI with good coverage
for a wide variety of distributions (with 4th moments) for n ≥ 100. The price is that
the CI is too long for some of the distributions with small kurtosis. The N(μ ,σ2)
distribution has τ = 2, while the EXP(λ ) distribution has σ2 = λ 2 and τ = 8. The
quantity τ is small for the uniform distribution but large for the lognormal LN(0,1)
distribution.

By the binomial theorem, if E(Y 4) exists and E(Y ) = μ then

E(Y − μ)4 =
4

∑
j=0

(
4
j

)
E[Y j](−μ)4− j =

μ4 − 4μ3E(Y )+ 6μ2(V (Y )+ [E(Y)]2)− 4μE(Y3)+E(Y4).
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This fact can be useful for computing

τ =
E[(Yi − μ)4]

σ4 − 1 = κ+ 2.

Example 9.23. Following DasGupta (2008, pp. 402–404), consider the pooled t
CI for μ1 − μ2. Let X1, . . . ,Xn1 be iid with mean μ1 and variance σ2

1 . Let Y1, . . . ,Yn2

be iid with mean μ2 and variance σ2
2 . Assume that the two samples are independent

and that ni → ∞ for i = 1,2 in such a way that ρ̂ = n1
n1+n2

→ ρ ∈ (0,1). Let θ =

σ2
2 /σ2

1 , and let the pooled sample variance

S2
p =

(n1 − 1)S2
1 +(n2 − 1)S2

2

n1 + n2 − 2
.

Then (√
n1(X − μ1)√
n2(Y − μ2)

)
D→ N2(0,˙ )

where ˙ = diag(σ2
1 ,σ2

2 ). Hence

(
1√
n1

−1√
n2

)(√
n1(X − μ1)√
n2(Y − μ2)

)
= X −Y − (μ1 − μ2)

D→ N

(
0,

σ2
1

n1
+

σ2
2

n2

)
.

So
X −Y − (μ1 − μ2)√

S2
1

n1
+

S2
2

n2

D→ N(0,1).

Thus
√

S2
1

n1
+

S2
2

n2

Sp

√
1
n1
+ 1

n2

X −Y − (μ1 − μ2)√
S2

1
n1
+

S2
2

n2

=
X −Y − (μ1 − μ2)

Sp

√
1
n1
+ 1

n2

D→ N(0,τ2)

where
σ2

1
n1

+
σ2

2
n2(

1
n1
+ 1

n2

)
n1σ2

1 +n2σ2
2

n1+n2

=

σ2
1

n1
+

σ2
2

n2

ρ̂σ2
1 +(1− ρ̂)σ2

2

1/σ2
1

1/σ2
1

n1n2

n1 + n2

=

1
n1
+ θ

n2

ρ̂+(1− ρ̂)θ
n1n2

n1 + n2

D→ 1−ρ+ρθ
ρ+(1−ρ)θ

= τ2.

Now let θ̂ = S2
2/S2

1 and

τ̂2 =
1− ρ̂+ ρ̂ θ̂
ρ̂+(1− ρ̂) θ̂

.

Notice that τ̂ = 1 if ρ̂ = 1/2, and τ̂ = 1 if θ̂ = 1.
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The usual large sample (1−α)100% pooled t CI for (μ1 − μ2) is

X −Y ± tn1+n2−2,1−α/2 Sp

√
1
n1

+
1
n2

. (9.32)

The large sample theory says that this CI is valid if τ = 1, and that

X −Y − (μ1 − μ2)

τ̂ Sp

√
1
n1
+ 1

n2

D→ N(0,1).

Hence a large sample (1−α)100% CI for (μ1 − μ2) is

X −Y ± z1−α/2 τ̂ Sp

√
1
n1

+
1
n2

.

Then the large sample (1−α)100% modified pooled t CI for (μ1 − μ2) is

X −Y ± tn1+n2−4,1−α/2 τ̂ Sp

√
1
n1

+
1
n2

. (9.33)

The large sample (1−α)100% Welch CI for (μ1 − μ2) is

X −Y ± td,1−α/2

√
S2

1

n1
+

S2
2

n2
(9.34)

where d = max(1, [d0]), and

d0 =

(
S2

1
n1
+

S2
2

n2

)2

1
n1−1

(
S2

1
n1

)2
+ 1

n2−1

(
S2

2
n2

)2 .

Suppose n1/(n1 + n2) → ρ . It can be shown that if the CI length is multiplied
by

√
n1, then the scaled length of the pooled t CI converges in probability to

2z1−α/2

√
ρ

1−ρ σ
2
1 +σ2

2 while the scaled lengths of the modified pooled t CI and

Welch CI both converge in probability to 2z1−α/2

√
σ2

1 + ρ
1−ρ σ

2
2 .

9.3 Bootstrap and Randomization Tests

Randomization tests and bootstrap tests and confidence intervals are resampling al-
gorithms used to provide information about the sampling distribution of a statistic
Tn ≡ Tn(F) ≡ Tn(Y n) where Y n = (Y1, . . . ,Yn) and the Yi are iid from a distribu-
tion with cdf F(y) = P(Y ≤ y). Then Tn has a cdf Hn(y) = P(Tn ≤ y). If F(y) is
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known, then m independent samples Y ∗
j,n = (Y ∗

j,1, . . . ,Y
∗
j,n) of size n could be gener-

ated, where the Y ∗
j,k are iid from a distribution with cdf F and j = 1, . . . ,m. Then the

statistic Tn is computed for each sample, resulting in m statistics T1,n(F), . . . ,Tm,n(F)
which are iid from a distribution with cdf Hn(y). Equivalent notation Ti,n(F) ≡
T ∗

i,n(Y
∗
i,n) is often used, where i = 1, . . . ,m.

If W1, . . . ,Wm are iid from a distribution with cdf FW , then the empirical cdf Fm

corresponding to FW is given by

Fm(y) =
1
m

m

∑
i=1

I(Wi ≤ y)

where the indicator I(Wi ≤ y) = 1 if Wi ≤ y and I(Wi ≤ y) = 0 if Wi > y. Fix m and
y. Then mFm(y) ∼ binomial (m,FW (y)). Thus E[Fm(y)] = FW (y) and V [Fm(y)] =
FW (y)[1−FW (y)]/m. By the central limit theorem,

√
m(Fm(y)−FW (y))

D→ N(0,FW (y)[1−FW(y)]).

Thus Fm(y)−FW (y) = OP(m−1/2), and Fm is a reasonable estimator of FW if the
number of samples m is large.

Let Wi = Ti,n(F). Then Fm ≡ H̃m,n is an empirical cdf corresponding to Hn. Let
Wi = Yi and m = n. Then Fn is the empirical cdf corresponding to F . Let yn =
(y1, . . . ,yn) be the observed data. Now Fn is the cdf of the population that consists of
y1, . . . ,yn where the probability of selecting yi is 1/n. Hence an iid sample of size d
from Fn is obtained by drawing a sample of size d with replacement from y1, . . . ,yn.
If d = n, let Y ∗

j,n = (Y ∗
j,1, . . . ,Y

∗
j,n) be an iid sample of size n from the empirical

cdf Fn. Hence each Y ∗
j,k is one of the y1, . . . ,yn where repetition is allowed. Take m

independent samples from Fn and compute the statistic Tn for each sample, resulting
in m statistics T1,n(Fn), . . . ,Tm,n(Fn) where Ti,n(Fn)≡ T ∗

i,n(Y
∗
i,n) for i = 1, . . . ,m. This

type of sampling can be done even if F is unknown, and if Tn(Fn)≈ Tn(F), then the
empirical cdf based on the Ti,n(Fn) may be a useful approximation for Hn.

For general resampling algorithms let T ∗
i,n(Y

∗
i,n) be the statistic based on a ran-

domly chosen sample Y ∗
i,n used by the resampling algorithm. Let HA,n be the cdf

of the T ∗
i,n based on all Jn possible samples, and let Hm,n be the cdf of the T ∗

i,n
based on m randomly chosen samples. Often theoretical results are given for HA,n

but are not known for Hm,n. Let GN,n be a cdf based on a normal approximation
for Hn. Central limit type theorems are used and GN,n is often first order accu-
rate: Hn(y)−GN,n(y) = OP(n−1/2). Approximations GE,n based on the Edgeworth
expansion (which is not a cdf) and HA,n are sometimes second order accurate:
Hn(y)−HA,n(y) = OP(n−1). The following two examples follow DasGupta (2008,
pp. 462, 469, 513).

Example 9.24. Let Y1, . . . ,Yn be iid with cdf F. Then the ordinary bootstrap
distribution of Tn is HA,n(y) = PFn(Tn(Y

∗
i,n) ≤ y) where Y ∗

i,n = (Y ∗
i,1, . . . ,Y

∗
i,n) is an

iid sample of size n from the empirical cdf Fn obtained by selecting with rep-
lacement from Y1, . . . ,Yn. Here T ∗

i,n(Y
∗
i,n) = Tn(Y

∗
i,n). Note that there are Jn = nn

ordered samples and nn/n! unordered samples from Fn. The bootstrap distribution
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Hm,n typically used in practice is based on m samples randomly selected with rep-
lacement. Both HA,n and Hm,n are estimators of Hn, the cdf of Tn.

For example, suppose the data is 1, 2, 3, 4, 5, 6, 7. Then n = 7 and the sample
median Tn is 4. Using R, we drew m = 2 bootstrap samples (samples of size n drawn
with replacement from the original data) and computed the sample median T ∗

1,n = 3
and T ∗

2,n = 4.

b1 <- sample(1:7,replace=T)
b1
[1] 3 2 3 2 5 2 6
median(b1)
[1] 3
b2 <- sample(1:7,replace=T)
b2
[1] 3 5 3 4 3 5 7
median(b2)
[1] 4

Heuristically, suppose Tn(Fn) is an unbiased estimator of θ . Let T ∗
i,n = T ∗

i,n(Y
∗
i,n).

Then T ∗
1,n, . . . ,T

∗
m,n each gives an unbiased estimator of θ . If m is large, then typical

values of T ∗
i,n should provide information about θ . For example, the middle 95 %

of the T ∗
i should be an approximate 95% percentile method CI for θ . Then reject

H0 : θ = θ0 if θ0 is not in the CI. This bootstrap inference has two sources of error.
First, n needs to be large enough so that Tn(Fn) ≈ Tn(F). Second, the T ∗

i,n are used
to form an empirical cdf Hm,n corresponding to HA,n, so m needs to be large enough
so that the empirical cdf Hm,n is a good estimator of HA,n.

Example 9.25. Let X1, . . . ,Xk1 be iid with pdf f (y) while Y1, . . . ,Yk2 are iid with
pdf f (y − μ). Let n = k1 + k2 and consider testing H0 : μ = 0. Let Tn ≡ Tk1,k2

be the two sample t-statistic. Under H0, the random variables in the combined
sample X1, . . . ,Xk1 ,Y1, . . . ,Yk2 are iid with pdf f (y). Let Zn be any permutation of
(X1, . . . ,Xk1 ,Y1, . . . ,Yk2) and compute Tn(Zn) for each permutation. Then HA,n is the
cdf based on all of the Tn(Zn). H0 is rejected if Tn is in the extreme tails of HA,n.
The number of ordered samples is Jn = n! while the number of unordered samples is( n

k1

)
. Such numbers get enormous quickly. Usually m randomly drawn permutations

are selected with replacement, resulting in a cdf Hm,n used to choose the appropriate
cutoffs cL and cU .

For randomization tests that used a fixed number m = B of permutations, calcu-
lations using binomial approximations suggest that B = 999 to 5,000 will give a test
similar to those based on using all permutations. See Efron and Tibshirani (1993,
pp. 208–210). Jöckel (1986) shows, under regularity conditions, that the power of
a randomization test is increasing and converges as m → ∞. It is suggested that the
tests have good power if m = 999, but the p-value of such a test is bounded below
by 0.001 since the p-value = (1 + the number of the m test statistics at least as ex-
treme as the observed statistic)/(m+ 1). Buckland (1984) shows that the expected
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coverage of the nominal 100(1−α)% percentile method confidence interval is ap-
proximately correct, but the standard deviation of the coverage is proportional to
1/

√
m. Hence the percentile method is a large sample confidence interval, in that

the true coverage converges in probability to the nominal coverage, only if m → ∞
as n → ∞. These results are good reasons for using m = max(B, [n log(n)]) samples.

The key observation for theory is that Hm,n is an empirical cdf. To see this claim,
recall that HA,n(y)≡ HA,n(y|Y n) is a random cdf: it depends on the data Y n. Hence
HA,n(y) ≡ HA,n(y|yn) is the observed cdf based on the observed data. HA,n(y|yn)
can be computed by finding T ∗

i,n(Y
∗
i,n) for all Jn possible samples Y ∗

i,n. If m samples
are selected with replacement from all possible samples, then the samples are iid
and T ∗

1,n, . . . ,T
∗

m,n are iid with cdf HA,n(y|yn). Hence Fm ≡ Hm,n is an empirical cdf
corresponding to F ≡ HA,n(y|yn).

Thus empirical cdf theory can be applied to Hm,n. Fix n and y. Then
mHm,n(y)∼ binomial (m,HA,n(y|yn)). Thus E[Hm,n(y)] = HA,n(y|yn) and
V [Hm,n(y)] = HA,n(y|yn)[1−HA,n(y|yn)]/m. Also

√
m(Hm,n(y)−HA,n(y|yn))

D→ N(0,HA,n(y|yn)[1−HA,n(y|yn)]).

Thus Hm,n(y)−HA,n(y|yn) = OP(m−1/2). Note that the probabilities and expecta-
tions depend on m and on the observed data yn.

This result suggests that if HA,n is a first order accurate estimator of Hn, then
Hm,n cannot be a first order accurate estimator of Hn unless m is proportional to n.
If m = max(1,000, [n log(n)]), then Hm,n is asymptotically equivalent to HA,n up to
terms of order n−1/2. If m = max(1,000, [0.1n2 log(n)]), then Hm,n asymptotically
equivalent to HA,n up to terms of order n−1.

As an application, Efron and Tibshirani (1993, pp. 187, 275) state that per-
centile method for bootstrap confidence intervals is first order accurate and that

the coefficient of variation of a bootstrap percentile is proportional to
√

1
n +

1
m .

If m = 1,000, then the percentile bootstrap is not first order accurate. If m =
max(1,000, [n log(n)]), then the percentile bootstrap is first order accurate. Simi-
larly, claims that a bootstrap method is second order accurate are false unless m is
proportional to n2. See a similar result in Robinson (1988).

Practical resampling algorithms often use m = B = 1,000, 5,000, or 10,000. The
choice of m = 10,000 works well for small n and for simulation studies since the
cutoffs based on Hm,n will be close to those based on HA,n with high probabil-
ity since V [H10,000,n(y)] ≤ 1/40,000. For the following theorem, also see Serfling
(1980, pp. 59–61).

Theorem 9.1. Let Y 1, . . . ,Y n be iid k×1 random vectors from a distribution with
cdf F(y) = P(Y1 ≤ y1, . . . ,Yk ≤ yk). Let

Dn = sup
y∈Rk

|Fn(y)−F(y)|.

a) Massart (1990) k = 1: P(Dn > d)≤ 2exp(−2nd2) if nd2 ≥ 0.5log(2).
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b) Kiefer (1961) k ≥ 2 : P(Dn > d) ≤C exp(−(2− ε)nd2) where ε > 0 is fixed
and the positive constant C depends on ε and k but not on F .

To use Theorem 9.1a, fix n (and suppressing the dependence on yn), take F =
HA,n computed from the observed data and take Fm = Hm,n. Then

Dm = sup
y∈R

|Hm,n(y)−HA,n(y)|.

Recalling that the probability is with respect to the observed data, consider the
following choices of m.

i) If m = 10,000, then P(Dm > 0.01)≤ 2e−2 ≈ 0.271.
ii) If m = max(10,000, [0.25n log(n)]), then for n > 5,000

P

(
Dm >

1√
n

)
≤ 2exp(−2[0.25n log(n)]/n)≈ 2/

√
n.

iii) If m = max(10,000, [0.5n2 log(n)]), then for n > 70

P

(
Dm >

1
n

)
≤ 2exp(−2[0.5n2 log(n)]/n2)≈ 2/n.

Two tail tests with nominal level α and confidence intervals with nominal cover-
age 1−α tend to use the lower and upper α/2 percentiles from Hm,n. This proce-
dure corresponds to an interval covering 100(1−α)% of the mass. The interval is
short if the distribution corresponding to Hm,n is approximately symmetric. Skew-
ness or approximate symmetry can be checked by plotting the T ∗

i,n. Shorter intervals
can be found if the distribution is skewed by using the shorth(c) estimator where
c = �m(1−α)� and �x� is the smallest integer ≥ x, e.g., �7.7� = 8. See Grübel
(1988). That is, let T ∗

(1), . . . ,T
∗
(m) be the order statistics of the T ∗

1,n, . . . ,T
∗

m,n computed
by the resampling algorithm. Compute T ∗

(c)−T ∗
(1),T

∗
(c+1)−T ∗

(2), . . . ,T
∗
(m)−T ∗

(m−c+1).

Let [T ∗
(s),T

∗
(s+c−1)] correspond to the closed interval with the smallest distance. Then

reject H0 : θ = θ0 if θ0 is not in the interval.
Resampling methods can be used in courses on resampling methods, nonpara-

metric statistics, and experimental design. In such courses it can be stated that it is
well known that Hm,n has good statistical properties (under regularity conditions) if
m → ∞ as n → ∞, but algorithms tend to use m = B between 999 and 10,000. Such
algorithms may perform well in simulations, but lead to tests with p-value bounded
away from 0, confidence intervals with coverage that fails to converge to the nom-
inal coverage, and fail to take advantage of the theory derived for the impractical
all subset algorithms. Since Hm,n is the empirical cdf corresponding to the all sub-
set algorithm cdf HA,n, taking m = max(B, [n log(n)]) leads to a practical algorithm
with good theoretical properties (under regularity conditions) that performs well in
simulations.

Although theory for resampling algorithms given in Lehmann (1999, p. 425) and
Sen and Singer (1993, p. 365) has the number of samples m → ∞ as the sample

size n → ∞, much of the literature suggests using m = B between 999 and 10,000.
This choice is often justified using simulations and binomial approximations. An
exception is Shao (1989) where n/m → 0 as n → ∞. Let [x] be the integer part of x,
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so [7.7] = 7. Then m = [n1.01] may give poor results for n < 900. To combine theory
with empirical results, we suggest using m = max(B, [n log(n)]).

Theory for resampling algorithms such as first order accuracy of the boot-
strap and the power of randomization tests is usually for the impractical algo-
rithm that uses all Jn samples. Practical algorithms use B randomly drawn samples
where B is chosen to give good performance when n is small. We suggest using
m = max(B, [n log(n)]) randomly drawn samples results in a practical algorithm that
is asymptotically equivalent to the impractical algorithm up to terms of order n−1/2

while also having good small sample performance.

Example 9.26. Suppose F is the cdf of the N(μ ,σ2) distribution and Tn(F) =
Y n ∼ N(μ ,σ2/n). Suppose m independent samples (Y ∗

j,1, . . . ,Y
∗
j,n) = Y ∗

j,n of size n

are generated, where the Y ∗
j,k are iid N(μ ,σ2) and j = 1, . . . ,m. Then let the sample

mean T ∗
j,n = Y

∗
j,n ∼ N(μ ,σ2/n) for j = 1, . . . ,m.

We want to examine, for a given m and n, how well do the sample quantiles
T ∗
(�m ρ�) = Y

∗
(�m ρ�),n of the Y

∗
j,n estimate the quantiles ξρ ,n of the N(μ ,σ2/n) dis-

tribution and how well does (T ∗
(�m 0.025�),T

∗
(�m 0.975�)) perform as a 95 % CI for μ .

Here P(X ≤ ξρ ,n) = ρ if X ∼ N(μ ,σ2/n). Note that ξρ ,n = μ + zρσ/
√

n where
P(Z ≤ zρ) = ρ if Z ∼ N(0,1).

Fix n and let fn be the pdf of the N(μ ,σ2/n) distribution. By Theorem 8.27, as
m → ∞ √

m(Y
∗
(�m ρ�),n − ξρ ,n)

D→ N(0,τ2
n )

where

τ2
n ≡ τ2

n (ρ) =
ρ(1−ρ)
[ fn(ξρ)]2

=
ρ(1−ρ)2πσ2

nexp(−z2
ρ)

.

Since the quantile ξρ ,n = μ + zρσ/
√

n, need m fairly large for the estimated
quantile to be good. To see this claim, suppose we want m so that

P(ξ0.975,n − 0.04σ/
√

n < Y
∗
(�m 0.975�),n < ξ0.975,n − 0.04σ/

√
n)> 0.9.

(For N(0,1) data, this would be similar to wanting the estimated 0.975 quantile to
be between 1.92 and 2.00 with high probability.) Then 0.9 ≈

P

(−0.04σ
√

m
τn
√

n
< Z <

0.04σ
√

m
τn
√

n

)
≈ P(−0.01497

√
m < Z < 0.01497

√
m )

or

m ≈
(

z0.05

−0.01497

)2

≈ 12076.

With m = 1,000, the above probability is only about 0.36. To have the probability
go to one, need m → ∞ as n → ∞.

Note that if m = B = 1,000, say, then the sample quantile is not a consistent
estimator of the population quantile ξρ ,n. Also, (Y

∗
(�m ρ�),n −ξρ ,n) = OP(n−δ ) needs
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m ∝ n2δ where δ = 1/2 or 1 are the most interesting cases. For good simulation
results, typically need m larger than a few hundred, e.g., B = 1,000, for small n.
Hence m = max(B, [n log(n)]) combines theory with good simulation results.

The CI length behaves fairly well for large n. For example, the 95 % CI length
will be close to 3.92/

√
n since roughly 95 % of the Y

∗
j,n are between μ−1.96σ/

√
n

and μ+ 1.96σ/
√

n. The coverage is conservative (higher than 95 %) for moderate
m. To see this, note that the 95 % CI contains μ if T ∗

(�m 0.025�) < μ and T ∗
(�m 0.975�) >

μ . Let W ∼ binomial (m,0.5). Then

P(T ∗
(�m 0.975�))> μ)≈ P(W > 0.025m)≈ P

(
Z >

0.025m− 0.5m
0.5

√
m

)
=

P(Z > −0.95
√

m)→ 1 as m → ∞. (Note that if m = 1,000, then T ∗
(�m 0.975�) > μ if

225 or more Y
∗
j,n > μ or if fewer than 975 Y

∗
j,n < μ .)

Since F is not known, we cannot sample from Tn(F), but sampling from Tn(Fn)
can at least be roughly approximated using computer-generated random numbers.
The bootstrap replaces m samples from Tn(F) by m samples from Tn(Fn), that is,
there is a single sample Y1, . . . ,Yn of data. Take a sample of size n with replacement
from Y1, . . . ,Yn and compute the sample mean Y

∗
1,n. Repeat to obtain the bootstrap

sample Y
∗
1,n, . . . ,Y

∗
m,n. Expect the bootstrap estimator of the quantile to perform less

well than that based on samples from Tn(F). So still need m large so that the esti-
mated quantiles are near the population quantiles.

Simulated coverage for the bootstrap percentile 95 % CI tends to be near 0.95
for moderate m, and we expect the length of the 95 % CI to again be near 3.92/

√
n.

The bootstrap sample tends to be centered about the observed value of Y . If there is
a “bad sample” so that Y is in the left or right tail of the sampling distribution, say
Y > μ+1.96σ/

√
n or Y < μ−1.96σ/

√
n, then the coverage may be much less that

95 %. But the probability of a “bad sample” is 0.05 for this example.

9.4 Complements

Guenther (1969) is a useful reference for confidence intervals. Agresti and Coull
(1998), Brown et al. (2001, 2002), and Pires and Amado (2008) discuss CIs for
a binomial proportion. Agresti and Caffo (2000) discuss CIs for the difference of
two binomial proportions ρ1 −ρ2 obtained from two independent samples. Barker
(2002), Byrne and Kabaila (2005), Garwood (1936), and Swift (2009) discuss CIs
for Poisson (θ ) data. Brown et al. (2003) discuss CIs for several discrete exponential
families. Abuhassan and Olive (2008) consider CIs for some transformed random
variables. Also see Brownstein and Pensky (2008).

A comparison of CIs with other intervals (such as prediction intervals) is given
in Vardeman (1992). Also see Frey (2013), Olive (2013), Hahn and Meeker (1991),
and Krishnamoorthy and Mathew (2009). Frey (2013) and Olive (2013) note that
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the shorth intervals are too short (liberal) if the number of bootstrap samples B is
not large, and suggest small sample correction factors.

Newton’s method is described, for example, in Peressini et al. (1988, p. 85).

9.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.

9.1Q. Suppose that X1, . . . ,Xn are iid with the Weibull distribution, that is the com-
mon pdf is

f (x) =

{
b
a xb−1e−

xb
a 0 < x

0 elsewhere

where a is the unknown parameter, but b(> 0) is assumed known.

a) Find a minimal sufficient statistic for a.
b) Assume n = 10. Use the chi-square table and the minimal sufficient statistic

to find a 95% two-sided confidence interval for a.

R Problems

Use a command like source(“G:/sipack.txt”) to download the functions. See
Sect. 12.1. Typing the name of the sipack function, e.g.,
accisimf, will display the code for the function. Use the args command, e.g.,
args(accisimf), to display the needed arguments for the function.

9.2. Let Y1, . . . ,Yn be iid binomial(1,ρ) random variables.
From the website (http://lagrange.math.siu.edu/Olive/sipack.txt), enter the

R function bcisim into R. This function simulates the three CIs (classical,
Agresti Coull, and exact) from Example 9.16, but changes the CI (L,U) to
(max(0,L),min(1,U)) to get shorter lengths.

To run the function for n = 10 and ρ ≡ p = 0.001, enter the R command
bcisim(n=10,p=0.001). Make a table with header “n p ccov clen accov aclen
ecov elen.” Fill the table for n = 10 and p = 0.001, 0.01, 0.5, 0.99, 0.999 and then
repeat for n = 100. The “cov” is the proportion of 500 runs where the CI contained
p and the nominal coverage is 0.95. A coverage between 0.92 and 0.98 gives little
evidence that the true coverage differs from the nominal coverage of 0.95. A cover-
age greater that 0.98 suggests that the CI is conservative while a coverage less than
0.92 suggests that the CI is liberal. Typically want the true coverage ≥ the nomi-
nal coverage, so conservative intervals are better than liberal CIs. The “len” is the
average scaled length of the CI and for large n should be near 2(1.96)

√
p(1− p).

http://lagrange.math.siu.edu/Olive/sipack.txt
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From your table, is the classical estimator or the Agresti Coull CI better? When
is the “exact” interval good? Explain briefly.

9.3. Let X1, . . . ,Xn be iid Poisson(θ ) random variables.
From the website (http://lagrange.math.siu.edu/Olive/sipack.txt), enter the R

function poiscisim into R. This function simulates the three CIs (classical, mod-
ified, and exact) from Example 9.15. To run the function for n = 100 and θ = 5,
enter the R command poiscisim(theta=5). Make a table with header “theta
ccov clen mcov mlen ecov elen.” Fill the table for theta = 0.001, 0.1, 1.0, and 5.

The “cov” is the proportion of 500 runs where the CI contained θ and the nominal
coverage is 0.95. A coverage between 0.92 and 0.98 gives little evidence that the true
coverage differs from the nominal coverage of 0.95. A coverage greater that 0.98
suggests that the CI is conservative while a coverage less than 0.92 suggests that the
CI is liberal (too short). Typically want the true coverage ≥ the nominal coverage,
so conservative intervals are better than liberal CIs. The “len” is the average scaled
length of the CI and for large nθ should be near 2(1.96)

√
θ for the classical and

modified CIs.
From your table, is the classical CI or the modified CI or the “exact” CI better?

Explain briefly. (Warning: in a 1999 version of R, there was a bug for the Poisson
random number generator for θ ≥ 10. The 2011 version of R seems to work.)

9.4. This problem simulates the CIs from Example 9.17.
a) Download the function accisimf into R.
b) The function will be used to compare the classical, ACT, and modified

95 % CIs when the population size N = 500 and p is close to 0.01. The func-
tion generates such a population, then selects 5,000 independent simple random
samples from the population. The 5,000 CIs are made for both types of inter-
vals, and the number of times the true population p is in the ith CI is counted.
The simulated coverage is this count divided by 5,000 (the number of CIs). The
nominal coverage is 0.95. To run the function for n = 50 and p ≈ 0.01, en-
ter the command accisimf(n=50,p=0.01). Make a table with header “n p
ccov clen accov aclen mcov mlen.” Fill the table for n = 50 and then repeat for
n = 100,150,200,250,300,350,400, and 450. The “len” is

√
n times the mean

length from the 5,000 runs. The “cov” is the proportion of 5,000 runs where the
CI contained p and the nominal coverage is 0.95. For 5,000 runs, an observed cov-
erage between 0.94 and 0.96 gives little evidence that the true coverage differs from
the nominal coverage of 0.95. A coverage greater that 0.96 suggests that the CI is
conservative while a coverage less than 0.94 suggests that the CI is liberal. Typi-
cally want the true coverage ≥ the nominal coverage, so conservative intervals are
better than liberal CIs. The “ccov” is for the classical CI, “accov” is for the Agresti
Coull type (ACT) CI, and “mcov” is for the modified interval. Given good coverage
> 0.94, want short length.

http://lagrange.math.siu.edu/Olive/sipack.txt
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c) First compare the classical and ACT intervals. From your table, for what values
of n is the ACT CI better, for what values of n are the three intervals about the same,
and for what values of n is the classical CI better?

d) Was the modified CI ever good?

9.5. This problem simulates the CIs from Example 9.10.
a) Download the function expsim into R.
The output from this function are the coverages scov, lcov, and ccov of the CI for

λ , θ and of λ if θ is known. The scaled average lengths of the CIs are also given.
The lengths of the CIs for λ are multiplied by

√
n while the length of the CI for θ

is multiplied by n.
b) The 5,000 CIs are made for three intervals, and the number of times the true

population parameter λ or θ is in the ith CI is counted. The simulated coverage is
this count divided by 5,000 (the number of CIs). The nominal coverage is 0.95. To
run the function for n = 5, θ = 0 and λ = 1 enter the command expsim(n=5).
Make a table with header
“CI for λ CI for θ CI for λ , θ known.”
Then make a second header “n cov slen cov slen cov slen” where “cov slen” is
below each of the three CI headers. Fill the table for n = 5 and then repeat for
n = 10,20,50,100, and 1,000. The “cov” is the proportion of 5,000 runs where the
CI contained λ or θ and the nominal coverage is 0.95. For 5,000 runs, an observed
coverage between 0.94 and 0.96 gives little evidence that the true coverage differs
from the nominal coverage of 0.95. A coverage greater that 0.96 suggests that the
CI is conservative, while a coverage less than 0.94 suggests that the CI is liberal. As
n gets large, the values of slen should get closer to 3.92, 2.9957, and 3.92.

9.6. This problem simulates the CIs from Example 9.9.
a) Download the function hnsim into R.
The output from this function are the coverages scov, lcov, and ccov of the CI for

σ2, μ and of σ2 if μ is known. The scaled average lengths of the CIs are also given.
The lengths of the CIs for σ2 are multiplied by

√
n, while the length of the CI for μ

is multiplied by n.

b) The 5,000 CIs are made for three intervals, and the number of times the true
population parameter θ = μ or σ2 is in the ith CI is counted. The simulated coverage
is this count divided by 5,000 (the number of CIs). The nominal coverage is 0.95.
To run the function for n = 5, μ = 0 and σ2 = 1 enter the command hnsim(n=5).
Make a table with header
“CI for σ2 CI for μ CI for σ2, μ known.”
Then make a second header “n cov slen cov slen cov slen” where “cov slen” is
below each of the three CI headers. Fill the table for n = 5 and then repeat for
n = 10,20,50,100, and 1,000. The “cov” is the proportion of 5,000 runs where
the CI contained θ and the nominal coverage is 0.95. For 5,000 runs, an observed
coverage between 0.94 and 0.96 gives little evidence that the true coverage differs
from the nominal coverage of 0.95. A coverage greater that 0.96 suggests that the
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CI is conservative while a coverage less than 0.94 suggests that the CI is liberal. As
n gets large, the values of slen should get closer to 5.5437, 3.7546, and 5.5437.

9.7. a) Download the function wcisim into R.
The output from this function includes the coverages pcov and lcov of the

CIs for φ and λ if the simulated data Y1, . . . ,Yn are iid Weibull (φ ,λ ). The scaled
average lengths of the CIs are also given. The values pconv and lconv should
be less than 10−5. If this is not the case, increase iter. 100 samples of size
n = 100 are used to create the 95 % large sample CIs for φ and λ given in Exam-
ple 9.18. If the sample size is large, then sdphihat, the sample standard deviation
of the 100 values of the MLE φ̂ , should be close to phiasd = φ

√
.608. Simi-

larly, sdlamhat should be close to the asymptotic standard deviation lamasd
=
√

1.109λ 2(1+ 0.4635log(λ )+ 0.5282(log(λ ))2).

b) Type the command
wcisim(n = 100, phi = 1, lam = 1, iter = 100)
and record the coverages for the CIs for φ and λ .

c) Type the command
wcisim(n = 100, phi = 20, lam = 20, iter = 100)
and record the coverages for the CIs for φ and λ .

9.8. a) Download the function raysim into R to simulate the CI of Exam-
ple 9.19.

b) Type the command
raysim(n = 100, mu = 20, sigma = 20, iter = 100)
and record the coverages for the CIs for μ and σ .

9.9. a) Download the function ducisim into R to simulate the CI of Exam-
ple 9.20.

b) Type the command
ducisim(n=10,nruns=1000,eta=1000).
Repeat for n = 50,100,500 and make a table with header
“n coverage n 95 % CI length.”
Fill in the table for n = 10,50,100 and 500.

c) Are the coverages close to or higher than 0.95 and is the scaled length close to
3η = 3,000?

9.10. a) Download the function varcisim into R to simulate a modified ver-
sion of the CI of Example 9.22.

b) Type the command varcisim(n = 100, nruns = 1000, type =
1) to simulate the 95 % CI for the variance for iid N(0,1) data. Is the coverage
vcov close to or higher than 0.95? Is the scaled length vlen =

√
n (CI length) =

2(1.96)σ2√τ = 5.554σ2 close to 5.554?
c) Type the command varcisim(n = 100, nruns = 1000, type =

2) to simulate the 95 % CI for the variance for iid EXP(1) data. Is the coverage
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vcov close to or higher than 0.95? Is the scaled length vlen =
√

n (CI length) =
2(1.96)σ2√τ = 2(1.96)λ 2

√
8 = 11.087λ 2 close to 11.087?

d) Type the command varcisim(n = 100, nruns = 1000, type =
3) to simulate the 95 % CI for the variance for iid LN(0,1) data. Is the coverage
vcov close to or higher than 0.95? Is the scaled length vlen long?

9.11. a) Download the function pcisim into R to simulate the three CIs of
Example 9.23. The modified pooled t CI is almost the same as the Welch CI, but
uses degrees of freedom = n1 + n2 − 4 instead of the more complicated formula for
the Welch CI. The pooled t CI should have coverage that is too low if

ρ
1−ρ

σ2
1 +σ2

2 < σ2
1 +

ρ
1−ρ

σ2
2 .

b) Type the command pcisim(n1=100,n2=200,var1=10,var2=1) to
simulate the CIs for N(μi,σ2

i ) data for i = 1,2. The terms pcov, mpcov, and wcov
are the simulated coverages for the pooled, modified pooled, and Welch 95 % CIs.
Record these quantities. Are they near 0.95?

Problems from old qualifying exams are marked with a Q.

9.12Q. Let X1, . . . ,Xn be a random sample from a uniform(0,θ ) distribution. Let
Y = max(X1,X2, . . . ,Xn).

a) Find the pdf of Y/θ .
b) To find a confidence interval for θ , can Y/θ be used as a pivot?
c) Find the shortest (1−α)% confidence interval for θ .

9.13. Let Y1, . . . ,Yn be iid from a distribution with fourth moments and let S2
n be

the sample variance. Then

√
n(S2

n −σ2)
D→ N(0,M4 −σ4)

where M4 is the fourth central moment E[(Y − μ)4]. Let

M̂4,n =
1
n

n

∑
i=1

(Yi −Y )4.

a) Use the asymptotic pivot

√
n(S2

n −σ2)
√

M̂4,n − S4
n

D→ N(0,1)

to find a large sample 100(1−α)% CI for σ2.
b) Use equation (9.4) to find a large sample 100(1−α)% CI for σ2

1 −σ2
2 .



Chapter 10
Some Useful Distributions

This chapter contains many useful examples of parametric distributions, one- and
two-parameter exponential families, location–scale families, maximum likelihood
estimators, method of moment estimators, transformations t(Y ), E(Y ), V (Y ), mo-
ment generating functions, and confidence intervals. Many of the distributions can
be used to create exam questions on the above topics as well as the kernel method,
MSE, and hypothesis testing. Using the population median and median absolute de-
viation, robust estimators of parameters can often be found using the sample median
and median absolute deviation.

Definition 10.1. The population median is any value MED(Y ) such that

P(Y ≤ MED(Y ))≥ 0.5 and P(Y ≥ MED(Y ))≥ 0.5. (10.1)

Definition 10.2. The population median absolute deviation is

MAD(Y ) = MED(|Y −MED(Y )|). (10.2)

Finding MED(Y ) and MAD(Y ) for symmetric distributions and location–scale
families is made easier by the following lemma. Let F(yα) = P(Y ≤ yα) = α for
0 < α < 1 where the cdf F(y) = P(Y ≤ y). Let D = MAD(Y ), M = MED(Y ) = y0.5

and U = y0.75.

Lemma 10.1. a) If W = a+bY, then MED(W ) = a+bMED(Y ) and MAD(W ) =
|b|MAD(Y ).

b) If Y has a pdf that is continuous and positive on its support and symmetric
about μ , then MED(Y ) = μ and MAD(Y ) = y0.75 −MED(Y ). Find M = MED(Y )
by solving the equation F(M) = 0.5 for M, and find U by solving F(U) = 0.75 for
U . Then D = MAD(Y ) =U −M.

c) Suppose that W is from a location–scale family with standard pdf fY (y)
that is continuous and positive on its support. Then W = μ + σY where σ >
0. First find M by solving FY (M) = 0.5. After finding M, find D by solving
FY (M +D)−FY(M−D) = 0.5. Then MED(W ) = μ+σM and MAD(W ) = σD.

D.J. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4 10,
© Springer International Publishing Switzerland 2014
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Definition 10.3. The gamma function Γ (x) =
∫ ∞

0 tx−1e−tdt for x > 0.

Some properties of the gamma function follow.
i) Γ (k) = (k− 1)! for integer k ≥ 1.
ii) Γ (x+ 1) = x Γ (x) for x > 0.
iii) Γ (x) = (x− 1) Γ (x− 1) for x > 1.
iv) Γ (0.5) =

√
π.

Some lower case Greek letters are alpha: α , beta: β , gamma: γ , delta: δ , epsilon:
ε , zeta: ζ , eta: η , theta: θ , iota: ι , kappa: κ , lambda: λ , mu: μ , nu: ν , xi: ξ , omicron:
o, pi: π , rho: ρ , sigma: σ , upsilon: υ , phi: φ , chi: χ , psi: ψ , and omega: ω .

Some capital Greek letters are gamma: Γ , theta: Θ , sigma: Σ , and phi: Φ .
For the discrete uniform and geometric distributions, the following facts on series

are useful.

Lemma 10.2. Let n, n1, and n2 be integers with n1 ≤ n2, and let a be a constant.
Notice that ∑n2

i=n1
ai = n2 − n1+ 1 if a = 1.

a)
n2

∑
i=n1

ai =
an1 − an2+1

1− a
, a �= 1.

b)
∞

∑
i=0

ai =
1

1− a
, |a|< 1.

c)
∞

∑
i=1

ai =
a

1− a
, |a|< 1.

d)
∞

∑
i=n1

ai =
an1

1− a
, |a|< 1.

e)
n

∑
i=1

i =
n(n+ 1)

2
.

f )
n

∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

See Gabel and Roberts (1980, pp. 473–476) for the proof of a)–d).
For the special case of 0 ≤ n1 ≤ n2, notice that

n2

∑
i=0

ai =
1− an2+1

1− a
, a �= 1.

To see this, multiply both sides by (1− a). Then

(1− a)
n2

∑
i=0

ai = (1− a)(1+ a+ a2+ · · ·+ an2−1 + an2) =
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1+ a+ a2+ · · ·+ an2−1 + an2

−a− a2−·· ·− an2 − an2+1

= 1− an2+1 and the result follows. Hence for a �= 1,

n2

∑
i=n1

ai =
n2

∑
i=0

ai −
n1−1

∑
i=0

ai =
1− an2+1

1− a
− 1− an1

1− a
=

an1 − an2+1

1− a
.

The binomial theorem below is sometimes useful.

Theorem 10.3, The Binomial Theorem. For any real numbers x and y and for
any integer n ≥ 0,

(x+ y)n =
n

∑
i=0

(
n
i

)
xiyn−i = (y+ x)n =

n

∑
i=0

(
n
i

)
yixn−i.

For the following theorem, see Marshall and Olkin (2007, pp. 15–16). Note that
part b) follows from part a).

Theorem 10.4. If E(X) exists, then
a) E(X) =

∫ ∞
0 (1−F(x)) dx− ∫ 0

−∞ F(x) dx.
b) If F(x) = 0 for x < 0, then E(X) =

∫ ∞
0 (1−F(x)) dx.

10.1 The Beta Distribution

If Y has a beta distribution, Y ∼ beta(δ ,ν), then the probability density function
(pdf) of Y is

f (y) =
Γ (δ +ν)
Γ (δ )Γ (ν)

yδ−1(1− y)ν−1

where δ > 0, ν > 0 and 0 ≤ y ≤ 1.

E(Y ) =
δ

δ +ν
.

VAR(Y ) =
δν

(δ +ν)2(δ +ν+ 1)
.

Notice that

f (y) =
Γ (δ +ν)
Γ (δ )Γ (ν)

I[0,1](y)exp[(δ − 1) log(y)+ (ν− 1) log(1− y)]

= I[0,1](y)
Γ (δ +ν)
Γ (δ )Γ (ν)

exp[(1− δ )(− log(y))+ (1−ν)(− log(1− y))]
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is a 2P–REF (two-parameter regular exponential family). Hence Θ = (0,∞)×
(0,∞), η1 = 1− δ , η2 = 1−ν and Ω = (−∞,1)× (−∞,1).

If δ = 1, then W =− log(1−Y)∼ EXP(1/ν). Hence Tn =
−∑ log(1−Yi)∼ G(n,1/ν), and if r >−n then T r

n is the UMVUE of

E(T r
n ) =

1
νr

Γ (r+ n)
Γ (n)

.

If ν = 1, then W =− log(Y )∼ EXP(1/δ ). Hence Tn =−∑ log(Yi)∼ G(n,1/δ ),
and if r >−n then [Tn]

r is the UMVUE of

E([Tn]
r) =

1
δ r

Γ (r+ n)
Γ (n)

.

10.2 The Beta-Binomial Distribution

If Y has a beta-binomial distribution, Y ∼ BB(m,ρ ,θ ), then the probability mass
function (pmf) of Y is

f (y) = P(Y = y) =

(
m
y

)
B(δ + y,ν+m− y)

B(δ ,ν)

for y = 0,1,2, . . . ,m where 0 < ρ < 1 and θ > 0. Here δ = ρ/θ and ν = (1−ρ)/θ ,
so ρ = δ/(δ +ν) and θ = 1/(δ +ν). Also

B(δ ,ν) =
Γ (δ )Γ (ν)
Γ (δ +ν)

.

Hence δ > 0 and ν > 0. Then E(Y ) = mδ/(δ + ν) = mρ and V(Y ) =
mρ(1− ρ)[1+(m− 1)θ/(1+ θ )]. If Y |π ∼ binomial(m,π) and π ∼ beta(δ ,ν),
then Y ∼ BB(m,ρ ,θ ).

As θ → 0, the beta-binomial (m,ρ ,θ ) distribution converges to a
binomial(m,ρ) distribution.

10.3 The Binomial and Bernoulli Distributions

If Y has a binomial distribution, Y ∼ BIN(k,ρ), then the pmf of Y is

f (y) = P(Y = y) =

(
k
y

)
ρy(1−ρ)k−y

for y = 0,1, . . . ,k where 0 < ρ < 1.
If ρ = 0, P(Y = 0) = 1 = (1−ρ)k while if ρ = 1, P(Y = k) = 1 = ρk.
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The moment generating function

m(t) = [(1−ρ)+ρet]k,

and the characteristic function c(t) = [(1−ρ)+ρeit]k.

E(Y ) = kρ .

VAR(Y ) = kρ(1−ρ).

The Bernoulli (ρ) distribution is the binomial (k = 1,ρ) distribution.
Pourahmadi (1995) showed that the moments of a binomial (k,ρ) random vari-

able can be found recursively. If r ≥ 1 is an integer,
(0

0

)
= 1 and the last term below

is 0 for r = 1, then

E(Y r) = kρ
r−1

∑
i=0

(
r− 1

i

)
E(Y i)−ρ

r−2

∑
i=0

(
r− 1

i

)
E(Y i+1).

The following normal approximation is often used.

Y ≈ N(kρ ,kρ(1−ρ))

when kρ(1−ρ)> 9. Hence

P(Y ≤ y)≈Φ

(
y+ 0.5− kρ
√

kρ(1−ρ)

)

.

Also

P(Y = y)≈ 1
√

kρ(1−ρ)
1√
2π

exp

(
−1

2
(y− kρ)2

kρ(1−ρ)

)
.

See Johnson et al. (1992, p. 115). This approximation suggests that MED(Y )≈ kρ ,
and MAD(Y ) ≈ 0.674

√
kρ(1−ρ). Hamza (1995) states that |E(Y )−MED(Y )| ≤

max(ρ ,1−ρ) and shows that

|E(Y )−MED(Y )| ≤ log(2).

If k is large and kρ small, then Y ≈ Poisson(kρ).
If Y1, . . . ,Yn are independent BIN(ki,ρ), then ∑n

i=1 Yi ∼ BIN(∑n
i=1 ki,ρ).

Notice that

f (y) =

(
k
y

)
I[y ∈ {0, . . . ,k}](1−ρ)k exp

[
log

(
ρ

1−ρ

)
y

]

is a 1P-REF (one-parameter regular exponential family) in ρ if k is known. Thus
Θ = (0,1),

η = log

(
ρ

1−ρ

)

and Ω = (−∞,∞).
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Assume that Y1, . . . ,Yn are iid BIN(k,ρ), then

Tn =
n

∑
i=1

Yi ∼ BIN(nk,ρ).

If k is known, then the likelihood

L(ρ) = c ρ∑n
i=1 yi (1−ρ)nk−∑n

i=1 yi ,

and the log likelihood

log(L(ρ)) = d + log(ρ)
n

∑
i=1

yi +

(

nk−
n

∑
i=1

yi

)

log(1−ρ).

Hence
d

dρ
log(L(ρ)) = ∑n

i=1 yi

ρ
+

nk−∑n
i=1 yi

1−ρ
(−1)

set
= 0,

or (1−ρ)∑n
i=1 yi = ρ(nk−∑n

i=1 yi), or ∑n
i=1 yi = ρnk or

ρ̂ =
n

∑
i=1

yi/(nk).

This solution is unique and

d2

dρ2 log(L(ρ)) =
−∑n

i=1 yi

ρ2 − nk−∑n
i=1 yi

(1−ρ)2 < 0

if 0 < ∑n
i=1 yi < nk. Hence kρ̂ = Y is the UMVUE, MLE, and MME (method of

moments estimator) of kρ if k is known.
Let ρ̂ = number of “successes”/n and let P(Z ≤ z1−α/2) = 1 − α/2 if Z ∼

N(0,1). Let ñ = n+ z2
1−α/2 and

ρ̃ =
nρ̂+ 0.5z2

1−α/2

n+ z2
1−α/2

.

Then the large sample 100 (1−α)% Agresti Coull confidence interval (CI) for ρ is

p̃± z1−α/2

√
ρ̃(1− ρ̃)

ñ
.

Let W = ∑n
i=1 Yi ∼ bin(∑n

i=1 ki,ρ) and let nw = ∑n
i=1 ki. Often ki ≡ 1 and then

nw = n. Let P(Fd1,d2 ≤ Fd1,d2(α)) = α where Fd1,d2 has an F distribution with d1

and d2 degrees of freedom. Then the Clopper Pearson “exact” 100 (1−α)% CI for
ρ is
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(
0,

1
1 + nw F2nw,2(α)

)
for W = 0,

(
nw

nw + F2,2nw(1−α)
,1

)
for W = nw,

and (ρL,ρU) for 0 <W < nw with

ρL =
W

W +(nw −W + 1)F2(nw−W+1),2W (1−α/2)

and

ρU =
W + 1

W + 1+(nw−W )F2(nw−W),2(W+1)(α/2)
.

10.4 The Birnbaum Saunders Distribution

If Y has a Birnbaum Saunders distribution, Y ∼ BS(ν,θ ), then the pdf of Y is

f (y) =
1

2
√

2π

(
1
θ

√
θ
y
+

θ
y2

√
y
θ

)
1
ν

exp

[ −1
2ν2

(
y
θ

+
θ
y

− 2

)]
=

1

2
√

2π θy2

y2 −θ 2
√

y
θ −

√
θ
y

1
ν

exp

[ −1
2ν2

(
y
θ

+
θ
y

− 2

)]

y > 0,θ > 0 and ν > 0.
The cdf of Y is

F(y) =Φ

[
1
ν

(√
y
θ
−
√

θ
y

)]

where Φ(x) is the N(0,1) cdf and y > 0. Hence MED(Y ) = θ . Let W = t(Y ) =
Y
θ + θ

Y − 2, then W ∼ ν2χ2
1 .

E(Y ) = θ (1+ν2/2) and V (Y ) = (νθ )2 (1+ 5ν2/6).
Suppose θ is known and Y1, . . . ,Yi are iid. Let Wi = t(Yi). Then the likelihood

L(ν) = d
1
νn exp

(
−1
2ν2

n

∑
i=1

wi

)

,

and the log likelihood

log(L(ν)) = c− n log(ν)− 1
2ν2

n

∑
i=1

wi.
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Hence
d

dν
log(L(ν)) =

−n
ν

+
1
ν3

n

∑
i=1

wi
set
= 0,

or

ν̂ =

√
∑n

i=1 wi

n
.

This solution is unique and

d2

dν2 log(L(ν)) =
n
ν2 − 3∑n

i=1 wi

ν4

∣
∣
∣∣
ν=ν̂

=
n
ν̂2 − 3nν̂2

ν̂4 =
−2n
ν̂2 < 0.

Thus

ν̂ =

√
∑n

i=1 Wi

n

is the MLE of ν if ν̂ > 0.
If ν is fixed, this distribution is a scale family with scale parameter θ . If θ is

known this distribution is a 1P-REF. This family of distributions is similar to the
lognormal family.

10.5 The Burr Type III Distribution

If Y has a Burr Type III distribution, Y ∼ BTIII(φ ,λ ), then the pdf of Y is

f (y) = I(y > 0)
φ
λ

y−(φ+1) (1+ y−φ)−( 1
λ +1)

= I(y > 0) φ y−(φ+1) 1
1+ y−φ

1
λ

exp

[−1
λ

log(1+ y−φ)

]

where φ > 0 and λ > 0. This family is a 1P-REF if φ is known.
The cdf

F(y) = (1+ y−φ)−1/λ

for y > 0.
X = 1/Y ∼ BTXII(λ ,φ).
W = log(1+Y−φ )∼ EXP(λ ).
If Y1, . . . ,Yn are iid BTIII(λ ,φ), then

Tn =
n

∑
i=1

log(1+Y−φ
i )∼ G(n,λ ).

If φ is known, then the likelihood

L(λ ) = c
1
λ n exp

[

− 1
λ

n

∑
i=1

log(1+ y−φ
i )

]

,
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and the log likelihood log(L(λ )) = d− n log(λ )− 1
λ ∑n

i=1 log(1+ y−φ
i ). Hence

d
dλ

log(L(λ )) =
−n
λ

+
∑n

i=1 log(1+ y−φ
i )

λ 2
set
= 0,

or ∑n
i=1 log(1+ y−φ

i ) = nλ or

λ̂ =
∑n

i=1 log(1+ y−φ
i )

n
.

This solution is unique and

d2

dλ 2 log(L(λ )) =
n
λ 2 − 2∑n

i=1 log(1+ y−φ
i )

λ 3

∣
∣
∣∣
∣
λ=λ̂

=
n

λ̂ 2
− 2nλ̂

λ̂ 3
=

−n

λ̂ 2
< 0.

Thus

λ̂ =
∑n

i=1 log(1+Y−φ
i )

n

is the UMVUE and MLE of λ if φ is known.
If φ is known and r >−n, then T r

n is the UMVUE of

E(T r
n ) = λ rΓ (r+ n)

Γ (n)
.

10.6 The Burr Type X Distribution

If Y has a Burr Type X distribution, Y ∼ BTX(τ), then the pdf of Y is

f (y) = I(y > 0) 2 τ y e−y2
(1− e−y2

)τ−1 =

I(y > 0)
2y e−y2

1− e−y2 τ exp[τ log(1− e−y2
)]

where τ > 0. This family is a 1P-REF. W = − log(1 − e−Y2
) ∼ EXP(1/τ) and

MED(W ) = log(2)/τ .
Given data Y1, . . . ,Yn, a robust estimator of τ is τ̂ = log(2)/MED(n) where

MED(n) is the sample median of W1, . . . ,Wn and Wi =− log(1− e−Y2
i ).

If Y1, . . . ,Yn are iid BTX(τ), then

Tn =−
n

∑
i=1

log(1− e−Y2
i )∼ G(n,1/τ).
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The likelihood L(τ) = c τn exp[τ ∑n
i=1 log(1 − e−y2

i )], and the log likelihood

log(L(τ)) = d+ n log(τ)+ τ ∑n
i=1 log(1− e−y2

i ).
Hence

d
dτ

log(L(τ)) =
n
τ
+

n

∑
i=1

log(1− e−y2
i )

set
= 0,

or
τ̂ =

n

−∑n
i=1 log(1− e−y2

i )
.

This solution is unique and

d2

dτ2 log(L(τ)) =
−n
τ2 < 0.

Thus
τ̂ =

n

−∑n
i=1 log(1− e−Y2

i )

is the MLE of τ .
Now (n−1)τ̂/n is the UMVUE of τ , and if r >−n, then [Tn]

r is the UMVUE of

E([Tn]
r) =

Γ (r+ n)
τr Γ (n)

.

10.7 The Burr Type XII Distribution

If Y has a Burr Type XII distribution, Y ∼ BTXII(φ ,λ ), then the pdf of Y is

f (y) =
1
λ

φyφ−1

(1+ yφ)
1
λ +1

where y,φ , and λ are all positive. The cdf of Y is

F(y) = 1− exp

[− log(1+ yφ)
λ

]
= 1− (1+ yφ)−1/λ for y > 0.

MED(Y ) = [eλ log(2) − 1]1/φ . See Patel et al. (1976, p. 195).
W = log(1+Yφ ) is EXP(λ ).

Notice that

f (y) = φyφ−1 1
1+ yφ

1
λ

exp

[
− 1
λ

log(1+ yφ )

]
I(y > 0)

is a 1P-REF if φ is known.
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If Y1, . . . ,Yn are iid BTXII(λ ,φ), then

Tn =
n

∑
i=1

log(1+Yφ
i )∼ G(n,λ ).

If φ is known, then the likelihood

L(λ ) = c
1
λ n exp

[

− 1
λ

n

∑
i=1

log(1+ yφi )

]

,

and the log likelihood log(L(λ )) = d− n log(λ )− 1
λ ∑n

i=1 log(1+ yφi ). Hence

d
dλ

log(L(λ )) =
−n
λ

+
∑n

i=1 log(1+ yφi )

λ 2
set
= 0,

or ∑n
i=1 log(1+ yφi ) = nλ or

λ̂ =
∑n

i=1 log(1+ yφi )
n

.

This solution is unique and

d2

dλ 2 log(L(λ )) =
n
λ 2 − 2∑n

i=1 log(1+ yφi )

λ 3

∣
∣∣
∣
∣
λ=λ̂

=
n

λ̂ 2
− 2nλ̂

λ̂ 3
=

−n

λ̂ 2
< 0.

Thus

λ̂ =
∑n

i=1 log(1+Yφ
i )

n

is the UMVUE and MLE of λ if φ is known.
If φ is known and r >−n, then T r

n is the UMVUE of

E(T r
n ) = λ rΓ (r+ n)

Γ (n)
.

10.8 The Cauchy Distribution

If Y has a Cauchy distribution, Y ∼C(μ ,σ), then the pdf of Y is

f (y) =
σ
π

1
σ2 +(y− μ)2 =

1

πσ
[
1+

(y−μ
σ
)2
]
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where y and μ are real numbers and σ > 0. The cumulative distribution function
(cdf) of Y is

F(y) =
1
π

[
arctan

(
y− μ
σ

)
+π/2

]
.

See Ferguson (1967, p. 102). This family is a location–scale family that is symmetric
about μ .

The moments of Y do not exist, but the characteristic function of Y is

c(t) = exp(itμ−|t|σ).

MED(Y ) = μ , the upper quartile = μ+σ , and the lower quartile = μ−σ .
MAD(Y ) = F−1(3/4)−MED(Y ) = σ .
If Y1, . . . ,Yn are independent C(μi,σi), then

n

∑
i=1

aiYi ∼C

(
n

∑
i=1

aiμi,
n

∑
i=1

|ai|σi

)

.

In particular, if Y1, . . . ,Yn are iid C(μ ,σ), then Y ∼C(μ ,σ).
If W ∼U(−π/2,π/2), then Y = tan(W )∼C(0,1).

10.9 The Chi Distribution

If Y has a chi distribution (also called a p-dimensional Rayleigh distribution), Y ∼
chi(p,σ), then the pdf of Y is

f (y) =
yp−1e

−1
2σ2 y2

σ p2
p
2 −1Γ (p/2)

where y > 0 and σ , p > 0. This is a scale family if p is known.

E(Y ) = σ
√

2
Γ ( 1+p

2 )

Γ (p/2)
.

VAR(Y ) = 2σ2

⎡

⎣Γ ( 2+p
2 )

Γ (p/2)
−
(
Γ ( 1+p

2 )

Γ (p/2)

)2
⎤

⎦ ,

and

E(Y r) = 2r/2σ r Γ ( r+p
2 )

Γ (p/2)

for r >−p.
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The mode is at σ
√

p− 1 for p ≥ 1. See Cohen and Whitten (1988, ch. 10).
Note that W = Y 2 ∼ G(p/2,2σ2).

Y ∼ generalized gamma (ν = p/2,λ = σ
√

2,φ = 2).
If p = 1, then Y has a half normal distribution, Y ∼ HN(0,σ2).
If p = 2, then Y has a Rayleigh distribution, Y ∼ R(0,σ).
If p = 3, then Y has a Maxwell–Boltzmann distribution, Y ∼ MB (0,σ).
If p is an integer and Y ∼ chi(p,1), then Y 2 ∼ χ2

p.
Since

f (y) = I(y > 0)
1

2
p
2 −1Γ (p/2)σ p

exp

[
(p− 1) log(y)− 1

2σ2 y2
]
,

this family is a 2P–REF. Notice that Θ = (0,∞)× (0,∞), η1 = p − 1, η2 =
−1/(2σ2), and Ω = (−1,∞)× (−∞,0).

If p is known, then

f (y) =
yp−1

2
p
2 −1Γ (p/2)

I(y > 0)
1
σ p exp

[ −1
2σ2 y2

]

is a 1P-REF.
If Y1, . . . ,Yn are iid chi(p,σ ), then

Tn =
n

∑
i=1

Y 2
i ∼ G(np/2,2σ2).

If p is known, then the likelihood

L(σ2) = c
1

σnp exp

[
−1
2σ2

n

∑
i=1

y2
i

]

,

and the log likelihood

log(L(σ2)) = d − np
2

log(σ2)− 1
2σ2

n

∑
i=1

y2
i .

Hence
d

d(σ2)
log(σ2) =

−np
2σ2 +

1
2(σ2)2

n

∑
i=1

y2
i

set
= 0,

or ∑n
i=1 y2

i = npσ2 or

σ̂2 =
∑n

i=1 y2
i

np
.
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This solution is unique and

d2

d(σ2)2 log(L(σ2)) =
np

2(σ2)2 − ∑n
i=1 y2

i

(σ2)3

∣
∣
∣
∣
σ2=σ̂2

=
np

2(σ̂2)2 − npσ̂
(σ̂2)3

2
2
=

−np
2(σ̂2)2 < 0.

Thus

σ̂2 =
∑n

i=1 Y 2
i

np

is the UMVUE and MLE of σ2 when p is known.
If p is known and r >−np/2, then T r

n is the UMVUE of

E(T r
n ) =

2rσ2rΓ (r+ np/2)
Γ (np/2)

.

10.10 The Chi-Square Distribution

If Y has a chi-square distribution, Y ∼ χ2
p, then the pdf of Y is

f (y) =
y

p
2 −1e−

y
2

2
p
2 Γ ( p

2 )

where y ≥ 0 and p is a positive integer. The mgf of Y is

m(t) =

(
1

1− 2t

)p/2

= (1− 2t)−p/2

for t < 1/2. The characteristic function

c(t) =

(
1

1− i2t

)p/2

.

E(Y ) = p.
VAR(Y ) = 2p.

Since Y is gamma G(ν = p/2,λ = 2),

E(Y r) =
2rΓ (r+ p/2)

Γ (p/2)
, r >−p/2.
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MED(Y ) ≈ p− 2/3. See Pratt (1968, p. 1470) for more terms in the expansion of
MED(Y ). Empirically,

MAD(Y )≈
√

2p
1.483

(
1− 2

9p

)2

≈ 0.9536
√

p.

There are several normal approximations for this distribution. The Wilson–
Hilferty approximation is

(
Y
p

) 1
3

≈ N

(
1− 2

9p
,

2
9p

)
.

See Bowman and Shenton (1988, p. 6). This approximation gives

P(Y ≤ x)≈Φ

[((
x
p

)1/3

− 1+ 2/9p

)
√

9p/2

]

,

and

χ2
p,α ≈ p

(

zα

√
2

9p
+ 1− 2

9p

)3

where zα is the standard normal percentile, α = Φ(zα ). The last approximation is
good if p >−1.24log(α). See Kennedy and Gentle (1980, p. 118).

This family is a one-parameter exponential family, but is not a REF since the set
of integers does not contain an open interval.

10.11 The Discrete Uniform Distribution

If Y has a discrete uniform distribution, Y ∼ DU(θ1,θ2), then the pmf of Y is

f (y) = P(Y = y) =
1

θ2 −θ1 + 1

for θ1 ≤ y ≤ θ2 where y and the θi are integers. Let θ2 = θ1 + τ − 1 where τ =
θ2 −θ1 + 1. The cdf for Y is

F(y) =
�y�−θ1 + 1
θ2 −θ1 + 1

for θ1 ≤ y ≤ θ2. Here �y� is the greatest integer function, e.g., �7.7�= 7. This result
holds since for θ1 ≤ y ≤ θ2,

F(y) =
�y�
∑

i=θ1

1
θ2 −θ1 + 1

.
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E(Y ) = (θ1 +θ2)/2 = θ1 +(τ− 1)/2 while V (Y ) = (τ2 − 1)/12. The result for
E(Y ) follows by symmetry, or because

E(Y ) =
θ2

∑
y=θ1

y
θ2 −θ1 + 1

=
θ1(θ2 −θ1 + 1)+ [0+ 1+ 2+ · · ·+(θ2 −θ1)]

θ2 −θ1 + 1

where last equality follows by adding and subtracting θ1 to y for each of the θ2 −
θ1 + 1 terms in the middle sum. Thus

E(Y ) = θ1 +
(θ2 −θ1)(θ2 −θ1 + 1)

2(θ2 −θ1 + 1)
=

2θ1

2
+

θ2 −θ1

2
=

θ1 +θ2

2

since ∑n
i=1 i = n(n+ 1)/2 by Lemma 10.2 e) with n = θ2 −θ1.

To see the result for V (Y ), let W = Y −θ1 + 1. Then V (Y ) = V (W ) and f (w) =
1/τ for w = 1, . . . ,τ . Hence W ∼ DU(1,τ),

E(W ) =
1
τ

τ

∑
w=1

w =
τ(τ + 1)

2τ
=

1+ τ
2

,

and

E(W 2) =
1
τ

τ

∑
w=1

w2 =
τ(τ+ 1)(2τ+ 1)

6τ
=

(τ+ 1)(2τ+ 1)
6

by Lemma 10.2 e) and f). So

V (Y ) =V (W ) = E(W 2)− (E(W))2 =
(τ+ 1)(2τ+ 1)

6
−
(

1+ τ
2

)2

=

2(τ+ 1)(2τ+ 1)− 3(τ+ 1)2

12
=

2(τ+ 1)[2(τ+ 1)− 1]− 3(τ+ 1)2

12
=

4(τ+ 1)2 − 2(τ+ 1)− 3(τ+ 1)2

12
=

(τ+ 1)2 − 2τ− 2
12

=

τ2 + 2τ+ 1− 2τ− 2
12

=
τ2 − 1

12
.

Let Z be the set of integers and let Y1, . . . ,Yn be iid DU(θ1,θ2). Then the likeli-
hood function L(θ1,θ2) =

1
(θ2 −θ1 + 1)n I(θ1 ≤ Y(1))I(θ2 ≥ Y(n))I(θ1 ≤ θ2)I(θ1 ∈ Z)I(θ2 ∈ Z)

is maximized by making θ2 −θ1−1 as small as possible where integers θ2 ≥ θ1. So
need θ2 as small as possible and θ1 as large as possible, and the MLE of (θ1,θ2) is
(Y(1),Y(n)).
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10.12 The Double Exponential Distribution

If Y has a double exponential distribution (or Laplace distribution), Y ∼ DE(θ ,λ ),
then the pdf of Y is

f (y) =
1

2λ
exp

(−|y−θ |
λ

)

where y is real and λ > 0. The cdf of Y is

F(y) = 0.5exp

(
y−θ
λ

)
if y ≤ θ ,

and

F(y) = 1− 0.5exp

(−(y−θ )
λ

)
if y ≥ θ .

This family is a location–scale family which is symmetric about θ .
The mgf

m(t) = exp(θ t)/(1−λ 2t2)

for |t|< 1/λ , and the characteristic function c(t) = exp(θ it)/(1+λ 2t2).
E(Y ) = θ , and
MED(Y ) = θ .
VAR(Y ) = 2λ 2, and
MAD(Y ) = log(2)λ ≈ 0.693λ .
Hence λ = MAD(Y )/ log(2)≈ 1.443MAD(Y ).
To see that MAD(Y ) = λ log(2), note that F(θ +λ log(2)) = 1− 0.25= 0.75.

The maximum likelihood estimators are θ̂MLE = MED(n) and

λ̂MLE =
1
n

n

∑
i=1

|Yi −MED(n)|.

A 100(1−α)% CI for λ is
(

2∑n
i=1 |Yi −MED(n)|
χ2

2n−1,1− α
2

,
2∑n

i=1 |Yi −MED(n)|
χ2

2n−1, α2

)

,

and a 100(1−α)% CI for θ is

⎛

⎝MED(n)± z1−α/2∑n
i=1 |Yi −MED(n)|

n
√

n− z2
1−α/2

⎞

⎠

where χ2
p,α and zα are the α percentiles of the χ2

p and standard normal distributions,
respectively. See Patel et al. (1976, p. 194).
W = |Y −θ | ∼ EXP(λ ).
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Notice that

f (y) =
1

2λ
exp

[−1
λ

|y−θ |
]

is a one-parameter exponential family in λ if θ is known.
If Y1, . . . ,Yn are iid DE(θ ,λ ) then

Tn =
n

∑
i=1

|Yi −θ | ∼ G(n,λ ).

If θ is known, then the likelihood

L(λ ) = c
1
λ n exp

[
−1
λ

n

∑
i=1

|yi −θ |
]

,

and the log likelihood

log(L(λ )) = d − n log(λ )− 1
λ

n

∑
i=1

|yi −θ |.

Hence
d

dλ
log(L(λ )) =

−n
λ

+
1
λ 2

n

∑
i=1

|yi −θ | set
= 0

or ∑n
i=1 |yi −θ |= nλ or

λ̂ =
∑n

i=1 |yi −θ |
n

.

This solution is unique and

d2

dλ 2 log(L(λ )) =
n
λ 2 − 2∑n

i=1 |yi −θ |
λ 3

∣∣
∣
∣
λ=λ̂

=
n

λ̂ 2
− 2nλ̂

λ̂ 3
=

−n

λ̂ 2
< 0.

Thus

λ̂ =
∑n

i=1 |Yi −θ |
n

is the UMVUE and MLE of λ if θ is known.

10.13 The Exponential Distribution

If Y has an exponential distribution, Y ∼ EXP(λ ), then the pdf of Y is

f (y) =
1
λ

exp

(−y
λ

)
I(y ≥ 0)
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where λ > 0. The cdf of Y is

F(y) = 1− exp(−y/λ ), y ≥ 0.

This distribution is a scale family with scale parameter λ .
The mgf

m(t) = 1/(1−λ t)

for t < 1/λ , and the characteristic function c(t) = 1/(1− iλ t).
E(Y ) = λ ,
and VAR(Y ) = λ 2.
W = 2Y/λ ∼ χ2

2 .
Since Y is gamma G(ν = 1,λ ), E(Y r) = λ rΓ (r+ 1) for r >−1.

MED(Y ) = log(2)λ and
MAD(Y )≈ λ/2.0781 since it can be shown that

exp(MAD(Y )/λ ) = 1+ exp(−MAD(Y )/λ ).

Hence 2.0781 MAD(Y )≈ λ .
The classical estimator is λ̂ = Y n and the 100(1−α)% CI for E(Y ) = λ is

(
2∑n

i=1 Yi

χ2
2n,1− α

2

,
2∑n

i=1 Yi

χ2
2n, α2

)

where P(Y ≤ χ2
2n, α2

) = α/2 if Y is χ2
2n. See Patel et al. (1976, p. 188).

Notice that

f (y) = I(y ≥ 0)
1
λ

exp

[−1
λ

y

]

is a 1P-REF. Hence Θ = (0,∞), η =−1/λ , and Ω = (−∞,0).
Suppose that Y1, . . . ,Yn are iid EXP(λ ), then

Tn =
n

∑
i=1

Yi ∼ G(n,λ ).

The likelihood

L(λ ) =
1
λ n exp

[
−1
λ

n

∑
i=1

yi

]

,

and the log likelihood

log(L(λ )) =−n log(λ )− 1
λ

n

∑
i=1

yi.
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Hence
d

dλ
log(L(λ )) =

−n
λ

+
1
λ 2

n

∑
i=1

yi
set
= 0,

or ∑n
i=1 yi = nλ or

λ̂ = y.

This solution is unique and

d2

dλ 2 log(L(λ )) =
n
λ 2 − 2∑n

i=1 yi

λ 3

∣
∣
∣
∣
λ=λ̂

=
n

λ̂ 2
− 2nλ̂

λ̂ 3
=

−n

λ̂ 2
< 0.

Thus λ̂ = Y is the UMVUE, MLE, and MME of λ .
If r >−n, then T r

n is the UMVUE of

E(T r
n ) =

λ rΓ (r+ n)
Γ (n)

.

10.14 The Two-Parameter Exponential Distribution

If Y has a two-parameter exponential distribution, Y ∼ EXP(θ ,λ ), then the pdf of
Y is

f (y) =
1
λ

exp

(−(y−θ )
λ

)
I(y ≥ θ )

where λ > 0 and θ is real. The cdf of Y is

F(y) = 1− exp[−(y−θ )/λ )], y ≥ θ .

This family is an asymmetric location–scale family.
The mgf

m(t) = exp(tθ )/(1−λ t)

for t < 1/λ , and the characteristic function c(t) = exp(itθ )/(1− iλ t).
E(Y ) = θ +λ ,
and VAR(Y ) = λ 2.

MED(Y ) = θ +λ log(2)

and
MAD(Y )≈ λ/2.0781.

Hence θ ≈ MED(Y )− 2.0781log(2)MAD(Y ). See Rousseeuw and Croux (1993)
for similar results. Note that 2.0781log(2)≈ 1.44.



10.14 The Two-Parameter Exponential Distribution 311

To see that 2.0781MAD(Y )≈ λ , note that

0.5 =

∫ θ+λ log(2)+MAD

θ+λ log(2)−MAD

1
λ

exp(−(y−θ )/λ )dy

= 0.5[−e−MAD/λ + eMAD/λ ]

assuming λ log(2)> MAD. Plug in MAD = λ/2.0781 to get the result.
If θ is known, then

f (y) = I(y ≥ θ )
1
λ

exp

[−1
λ

(y−θ )
]

is a 1P-REF in λ . Notice that Y −θ ∼ EXP(λ ). Let

λ̂ =
∑n

i=1(Yi −θ )
n

.

Then λ̂ is the UMVUE and MLE of λ if θ is known.
If Y1, . . . ,Yn are iid EXP(θ ,λ ), then the likelihood

L(θ ,λ ) =
1
λ n exp

[
−1
λ

n

∑
i=1

(yi −θ )

]

I(y(1) ≥ θ ).

Need y(1) ≥ θ̂ , and for y(1) ≥ θ , the log likelihood

log(L(θ ,λ )) =

[

−n log(λ )− 1
λ

n

∑
i=1

(yi −θ )

]

I(y(1) ≥ θ ).

For any fixed λ > 0, the log likelihood is maximized by maximizing θ . Hence
θ̂ = Y(1), and the profile log likelihood is

log(L(λ |y(1))) =−n log(λ )− 1
λ

n

∑
i=1

(yi − y(1))

is maximized by λ̂ = 1
n ∑

n
i=1(yi − y(1)). Hence the MLE

(θ̂ , λ̂ ) =

(

Y(1),
1
n

n

∑
i=1

(Yi −Y(1))

)

= (Y(1),Y −Y(1)).

Let Dn = ∑n
i=1(Yi −Y(1)) = nλ̂ . Then for n ≥ 2,

(
2Dn

χ2
2(n−1),1−α/2

,
2Dn

χ2
2(n−1),α/2

)

(10.3)
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is a 100(1−α)% CI for λ , while
(

Y(1)− λ̂ [(α)−1/(n−1)− 1],Y(1)
)

(10.4)

is a 100 (1−α)% CI for θ . See Mann et al. (1974, p. 176).
If θ is known and Tn = ∑n

i=1(Yi −θ ), then a 100(1−α)% CI for λ is

(
2Tn

χ2
2n,1−α/2

,
2Tn

χ2
2n,α/2

)

. (10.5)

10.15 The F Distribution

If Y has an F distribution, Y ∼ F(ν1,ν2), then the pdf of Y is

f (y) =
Γ ( ν1+ν2

2 )

Γ (ν1/2)Γ (ν2/2)

(
ν1

ν2

)ν1/2 y(ν1−2)/2

(
1+

(
ν1
ν2

)
y
)(ν1+ν2)/2

where y > 0 and ν1 and ν2 are positive integers.

E(Y ) =
ν2

ν2 − 2
, ν2 > 2

and

VAR(Y ) = 2

(
ν2

ν2 − 2

)2 (ν1 +ν2 − 2)
ν1(ν2 − 4)

, ν2 > 4.

E(Y r) =
Γ ( ν1+2r

2 )Γ ( ν2−2r
2 )

Γ (ν1/2)Γ (ν2/2)

(
ν2

ν1

)r

, r < ν2/2.

Suppose that X1 and X2 are independent where X1 ∼ χ2
ν1

and X2 ∼ χ2
ν2
. Then

W =
(X1/ν1)

(X2/ν2)
∼ F(ν1,ν2).

Notice that E(Y r) = E(W r) =
(
ν2
ν1

)r
E(Xr

1)E(X
−r
2 ).

If W ∼ tν , then Y =W 2 ∼ F(1,ν).

10.16 The Gamma Distribution

If Y has a gamma distribution, Y ∼ G(ν,λ ), then the pdf of Y is

f (y) =
yν−1e−y/λ

λνΓ (ν)
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where ν,λ , and y are positive. The mgf of Y is

m(t) =

(
1/λ
1
λ − t

)ν

=

(
1

1−λ t

)ν

for t < 1/λ . The characteristic function

c(t) =

(
1

1− iλ t

)ν
.

E(Y ) = νλ .
VAR(Y ) = νλ 2.

E(Y r) =
λ rΓ (r+ν)

Γ (ν)
if r >−ν. (10.6)

Chen and Rubin (1986) show that λ (ν − 1/3) < MED(Y ) < λν = E(Y ).
Empirically, for ν > 3/2,

MED(Y )≈ λ (ν− 1/3),

and

MAD(Y )≈ λ
√
ν

1.483
.

This family is a scale family for fixed ν , so if Y is G(ν,λ ) then cY is G(ν,cλ ) for
c > 0. If W is EXP(λ ), then W is G(1,λ ). If W is χ2

p, then W is G(p/2,2).
Some classical estimators are given next. Let

w = log

[
yn

geometric mean(n)

]

where geometric mean(n) = (y1y2 . . .yn)
1/n = exp[ 1

n ∑
n
i=1 log(yi)]. Then

Thom’s estimator (Johnson and Kotz 1970a, p. 188) is

ν̂ ≈ 0.25(1+
√

1+ 4w/3 )

w
.

Also

ν̂MLE ≈ 0.5000876+ 0.1648852w−0.0544274w2

w

for 0 < w ≤ 0.5772, and

ν̂MLE ≈ 8.898919+ 9.059950w+0.9775374w2

w(17.79728+ 11.968477w+w2)

for 0.5772< w ≤ 17. If W > 17, then estimation is much more difficult, but a rough
approximation is ν̂ ≈ 1/w for w > 17. See Bowman and Shenton (1988, p. 46)
and Greenwood and Durand (1960). Finally, λ̂ = Y n/ν̂. Notice that λ̂ may not be
very good if ν̂ < 1/17.
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Several normal approximations are available. The Wilson–Hilferty approxima-
tion says that for ν > 0.5,

Y 1/3 ≈ N

(
(νλ )1/3

(
1− 1

9ν

)
,(νλ )2/3 1

9ν

)
.

Hence if Y is G(ν,λ ) and
α = P[Y ≤ Gα ],

then

Gα ≈ νλ

[

zα

√
1

9ν
+ 1− 1

9ν

]3

where zα is the standard normal percentile, α = Φ(zα ). Bowman and Shenton
(1988, p. 101) include higher order terms.

Notice that

f (y) = I(y > 0)
1

λνΓ (ν)
exp

[−1
λ

y+(ν− 1) log(y)

]

is a 2P–REF. Hence Θ = (0,∞)× (0,∞), η1 = −1/λ , η2 = ν − 1 and Ω =
(−∞,0)× (−1,∞).

If Y1, . . . ,Yn are independent G(νi,λ ), then ∑n
i=1 Yi ∼ G(∑n

i=1 νi,λ ).
If Y1, . . . ,Yn are iid G(ν,λ ), then

Tn =
n

∑
i=1

Yi ∼ G(nν,λ ).

Since

f (y) =
1

Γ (ν)
exp[(ν− 1) log(y)]I(y > 0)

1
λν exp

[−1
λ

y

]
,

Y is a 1P-REF when ν is known.
If ν is known, then the likelihood

L(β ) = c
1

λ nν exp

[
−1
λ

n

∑
i=1

yi

]

.

The log likelihood

log(L(λ )) = d− nν log(λ )− 1
λ

n

∑
i=1

yi.

Hence
d

dλ
log(L(λ )) =

−nν
λ

+
∑n

i=1 yi

λ 2
set
= 0,
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or ∑n
i=1 yi = nνλ or

λ̂ = y/ν.

This solution is unique and

d2

dλ 2 log(L(λ )) =
nν
λ 2 − 2∑n

i=1 yi

λ 3

∣
∣∣
∣
λ=λ̂

=
nν
λ̂ 2

− 2nνλ̂
λ̂ 3

=
−nν
λ̂ 2

< 0.

Thus Y is the UMVUE, MLE, and MME of νλ if ν is known.
The (lower) incomplete gamma function is

γν (x) =
1

Γ (ν)

∫ x

0
tν−1e−tdt.

If ν is a positive integer, then

γν(x) = 1− e−x
ν−1

∑
k=0

xk

k!
.

If Y ∼ G(ν,λ ), then F(y) = γν (y/λ ). Hence if ν > 0 is an integer,

F(y) = γν(y/λ ) = 1−
ν−1

∑
k=0

e−y/λ (y/λ )k

k!
.

For example, if Y ∼ G(ν = 4,λ = 2), then P(Y ≤ 14) = F(14) = γ4(7) and
P(Y ≤ 10) = F(10) = γ4(5).

10.17 The Generalized Gamma Distribution

If Y has a generalized gamma distribution, Y ∼ GG(ν,λ ,φ), then the pdf of Y is

f (y) =
φyφν−1

λφνΓ (ν)
exp(−yφ/λφ )

where ν,λ ,φ , and y are positive.
This family is a scale family with scale parameter λ if φ and ν are known.

E(Y k) =
λ kΓ (ν+ k

φ )

Γ (ν)
if k >−φν. (10.7)

If φ and ν are known, then

f (y) =
φyφν−1

Γ (ν)
I(y > 0)

1
λφν exp

[−1
λφ yφ

]
,

which is a one-parameter exponential family.
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Notice that W = Y φ ∼ G(ν,λφ ). If Y1, . . . ,Yn are iid GG(ν,λ ,φ) where φ and ν
are known, then Tn = ∑n

i=1Y φ
i ∼ G(nν,λφ ), and T r

n is the UMVUE of

E(T r
n ) = λφr Γ (r+ nν)

Γ (nν)

for r >−nν.

10.18 The Generalized Negative Binomial Distribution

If Y has a generalized negative binomial distribution, Y ∼ GNB(μ ,κ), then the pmf
of Y is

f (y) = P(Y = y) =
Γ (y+κ)

Γ (κ)Γ (y+ 1)

(
κ

μ+κ

)κ(
1− κ

μ+κ

)y

for y = 0,1,2, . . . where μ > 0 and κ > 0. This distribution is a generalization of the
negative binomial (κ ,ρ) distribution with ρ = κ/(μ+κ) and κ > 0 is an unknown
real parameter rather than a known integer.

The mgf is

m(t) =

[
κ

κ+ μ(1− et)

]κ

for t <− log(μ/(μ+κ)).
E(Y ) = μ and
VAR(Y ) = μ+ μ2/κ .

If Y1, . . . ,Yn are iid GNB(μ ,κ), then ∑n
i=1 Yi ∼ GNB(nμ ,nκ).

When κ is known, this distribution is a 1P-REF. If Y1, . . . ,Yn are iid GNB(μ ,κ)
where κ is known, then μ̂ = Y is the MLE, UMVUE, and MME of μ .

Let τ = 1/κ . As τ → 0, the GNB(μ ,κ), distribution converges to the
Poisson(λ = μ) distribution.

10.19 The Geometric Distribution

If Y has a geometric distribution, Y ∼ geom(ρ) then the pmf of Y is

f (y) = P(Y = y) = ρ(1−ρ)y

for y = 0,1,2, . . . and 0 < ρ < 1.
The cdf for Y is F(y) = 1− (1−ρ)�y�+1 for y ≥ 0 and F(y) = 0 for y < 0. Here

�y� is the greatest integer function, e.g., �7.7�= 7. To see this, note that for y ≥ 0,

F(y) = ρ
�y�
∑
i=0

(1−ρ)y = ρ
1− (1−ρ)�y�+1

1− (1−ρ)
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by Lemma 10.2a with n1 = 0, n2 = �y� and a = 1−ρ .
E(Y ) = (1−ρ)/ρ .
VAR(Y ) = (1−ρ)/ρ2.
Y ∼ NB(1,ρ).
Hence the mgf of Y is

m(t) =
ρ

1− (1−ρ)et

for t <− log(1−ρ).
Notice that

f (y) = I[y ∈ {0,1, . . .}] ρ exp[log(1−ρ)y]

is a 1P-REF. Hence Θ = (0,1), η = log(1−ρ), and Ω = (−∞,0).
If Y1, . . . ,Yn are iid geom(ρ), then

Tn =
n

∑
i=1

Yi ∼ NB(n,ρ).

The likelihood

L(ρ) = ρn exp

[

log(1−ρ)
n

∑
i=1

yi

]

,

and the log likelihood

log(L(ρ)) = n log(ρ)+ log(1−ρ)
n

∑
i=1

yi.

Hence
d

dρ
log(L(ρ)) =

n
ρ
− 1

1−ρ

n

∑
i=1

yi
set
= 0

or n(1−ρ)/ρ = ∑n
i=1 yi or n− nρ−ρ∑n

i=1 yi = 0 or

ρ̂ =
n

n+∑n
i=1 yi

.

This solution is unique and

d2

dρ2 log(L(ρ)) =
−n
ρ2 − ∑n

i=1 yi

(1−ρ)2 < 0.

Thus
ρ̂ =

n
n+∑n

i=1 Yi

is the MLE of ρ .
The UMVUE, MLE, and MME of (1−ρ)/ρ is Y .



318 10 Some Useful Distributions

10.20 The Gompertz Distribution

If Y has a Gompertz distribution, Y ∼ Gomp(θ ,ν), then the pdf of Y is

f (y) = νeθy exp

[−ν
θ

(eθy − 1)

]

for θ > 0 where ν > 0 and y > 0. If θ = 0, the Gomp(θ = 0,ν) distribution is the
exponential (1/ν) distribution. The cdf is

F(y) = 1− exp

[−ν
θ

(eθy − 1)

]

for θ > 0 and y > 0. For fixed θ this distribution is a scale family with scale param-
eter 1/ν.

This family is a 1P-REF if θ ∈ (0,∞) is known, and W = eθY − 1 ∼ EXP(θ/ν).
Thus etY ∼ EXP(1, t/ν) for t > 0 and E(etY ) = 1+ t/ν for t ≥ 0, but the mgf for Y
does not exist. Note that the kth derivative of (1+ t/ν) is 0 for integer k ≥ 2.

10.21 The Half Cauchy Distribution

If Y has a half Cauchy distribution, Y ∼ HC(μ ,σ ), then the pdf of Y is

f (y) =
2

πσ
[
1+

(y−μ
σ
)2
]

where y ≥ μ , μ is a real number and σ > 0. The cdf of Y is

F(y) =
2
π

arctan

(
y− μ
σ

)

for y ≥ μ and is 0, otherwise. This distribution is a right skewed location–scale
family.

MED(Y ) = μ+σ .
MAD(Y ) = 0.73205σ .

10.22 The Half Logistic Distribution

If Y has a half logistic distribution, Y ∼ HL(μ ,σ), then the pdf of Y is

f (y) =
2exp(−(y− μ)/σ)

σ [1+ exp(−(y− μ)/σ)]2
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where σ > 0, y ≥ μ , and μ are real. The cdf of Y is

F(y) =
exp[(y− μ)/σ ] − 1
1+ exp[(y− μ)/σ)]

for y ≥ μ and 0 otherwise. This family is a right skewed location–scale family.
MED(Y ) = μ+ log(3)σ .
MAD(Y ) = 0.67346σ .

10.23 The Half Normal Distribution

If Y has a half normal distribution, Y ∼ HN(μ ,σ2), then the pdf of Y is

f (y) =
2√

2π σ
exp

(−(y− μ)2

2σ2

)

where σ > 0 and y ≥ μ and μ is real. Let Φ(y) denote the standard normal cdf.
Then the cdf of Y is

F(y) = 2Φ
(

y− μ
σ

)
− 1

for y > μ and F(y) = 0, otherwise.
E(Y ) = μ+σ

√
2/π ≈ μ+ 0.797885σ .

VAR(Y ) =
σ2(π− 2)

π
≈ 0.363380σ2.

This is an asymmetric location–scale family that has the same distribution as
μ + σ |Z| where Z ∼ N(0,1). Note that Z2 ∼ χ2

1 . Hence the formula for the rth
moment of the χ2

1 random variable can be used to find the moments of Y .
MED(Y ) = μ+ 0.6745σ .
MAD(Y ) = 0.3990916σ .
Notice that

f (y) = I(y ≥ μ)
2√

2π σ
exp

[( −1
2σ2

)
(y− μ)2

]

is a 1P-REF if μ is known. Hence Θ = (0,∞), η =−1/(2σ2), and Ω = (−∞,0).
W = (Y − μ)2 ∼ G(1/2,2σ2).
If Y1, . . . ,Yn are iid HN(μ ,σ2), then

Tn =
n

∑
i=1

(Yi − μ)2 ∼ G(n/2,2σ2).
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If μ is known, then the likelihood

L(σ2) = c
1
σn exp

[( −1
2σ2

) n

∑
i=1

(yi − μ)2

]

,

and the log likelihood

log(L(σ2)) = d− n
2

log(σ2)− 1
2σ2

n

∑
i=1

(yi − μ)2.

Hence
d

d(σ2)
log(L(σ2)) =

−n
2(σ2)

+
1

2(σ2)2

n

∑
i=1

(yi − μ)2 set
= 0,

or ∑n
i=1(yi − μ)2 = nσ2 or

σ̂2 =
1
n

n

∑
i=1

(yi − μ)2.

This solution is unique and

d2

d(σ2)2 log(L(σ2)) =

n
2(σ2)2 − ∑n

i=1(yi − μ)2

(σ2)3

∣
∣∣
∣
σ2=σ̂2

=
n

2(σ̂2)2 − nσ̂2

(σ̂2)3

2
2
=

−n
2(σ̂2)2 < 0.

Thus

σ̂2 =
1
n

n

∑
i=1

(Yi − μ)2

is the UMVUE and MLE of σ2 if μ is known.
If r >−n/2 and if μ is known, then T r

n is the UMVUE of

E(T r
n ) = 2rσ2rΓ (r+ n/2)/Γ (n/2).

Example 5.3 shows that (μ̂ , σ̂2) = (Y(1),
1
n ∑

n
i=1(Yi − Y(1))

2) is the MLE of
(μ ,σ2). Following Abuhassan and Olive (2008), a large sample 100(1 − α)%
confidence interval for σ2 is

(
nσ̂2

χ2
n−1(1−α/2)

,
nσ̂2

χ2
n−1(α/2)

)

(10.8)

while a large sample 100(1−α)% CI for μ is
(
μ̂+ σ̂ log(α) Φ−1

(
1
2
+

1
2n

)
(1+ 13/n2), μ̂

)
. (10.9)
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If μ is known, then a 100(1−α)% CI for σ2 is
(

Tn

χ2
n (1−α/2)

,
Tn

χ2
n (α/2)

)
. (10.10)

10.24 The Hypergeometric Distribution

If Y has a hypergeometric distribution, Y ∼ HG(C,N −C,n), then the data set con-
tains N objects of two types. There are C objects of the first type (that you wish to
count) and N −C objects of the second type. Suppose that n objects are selected at
random without replacement from the N objects. Then Y counts the number of the
n selected objects that were of the first type. The pmf of Y is

f (y) = P(Y = y) =

(C
y

)(N−C
n−y

)

(N
n

)

where the integer y satisfies max(0,n−N+C)≤ y≤min(n,C). The right inequality
is true since if n objects are selected, then the number of objects y of the first type
must be less than or equal to both n and C. The first inequality holds since n− y
counts the number of objects of second type. Hence n− y ≤ N −C.

Let p =C/N. Then

E(Y ) =
nC
N

= np

and

VAR(Y ) =
nC(N −C)

N2

N − n
N − 1

= np(1− p)
N− n
N− 1

.

If n is small compared to both C and N −C, then Y ≈ BIN(n, p). If n is large but
n is small compared to both C and N −C, then Y ≈ N(np,np(1− p)).

10.25 The Inverse Exponential Distribution

If Y has an inverse exponential distribution, Y ∼ IEXP(θ ), then the pdf of Y is

f (y) =
θ
y2 exp

(−θ
y

)

where y > 0 and θ > 0. The cdf F(y) = exp(−θ/y) for y > 0. E(Y ) and V (Y ) do
not exist. MED(Y ) = θ/ log(2). This distribution is a 1P-REF and a scale family
with scale parameter θ . This distribution is the inverted gamma(ν = 1,λ = 1/θ )
distribution.

W = 1/Y ∼ EXP(1/θ ).
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Suppose that Y1, . . . ,Yn are iid IEXP(θ ), then

Tn =
n

∑
i=1

1
Yi

∼ G(n,1/θ ).

The likelihood

L(θ ) = c θ n exp

[

−θ
n

∑
i=1

1
yi

]

,

and the log likelihood

log(L(θ )) = d + n log(θ )−θ
n

∑
i=1

1
yi
.

Hence
d

dθ
log(L(θ )) =

n
θ
−

n

∑
i=1

1
yi

set
= 0,

or
θ̂ =

n

∑n
i=1

1
yi

.

Since this solution is unique and

d2

dθ 2 log(L(θ )) =
−n
θ 2 < 0,

θ̂ =
n

∑n
i=1

1
Yi

is the MLE of θ .
If r >−n, then [Tn]

r is the UMVUE of

E([Tn]
r) =

Γ (r+ n)
θ rΓ (n)

.

10.26 The Inverse Gaussian Distribution

If Y has an inverse Gaussian distribution (also called a Wald distribution), Y ∼
IG(θ ,λ ), then the pdf of Y is

f (y) =

√
λ

2πy3 exp

[−λ (y−θ )2

2θ 2y

]
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where y,θ ,λ > 0. The mgf is

m(t) = exp

[
λ
θ

(

1−
√

1− 2θ 2t
λ

)]

for t < λ/(2θ 2). The characteristic function is

φ(t) = exp

[
λ
θ

(

1−
√

1− 2θ 2it
λ

)]

.

E(Y ) = θ and

VAR(Y ) =
θ 3

λ
.

See Datta (2005) and Schwarz and Samanta (1991) for additional properties.
Notice that

f (y) =

√
1
y3 I(y > 0)

√
λ
2π

eλ/θ exp

[−λ
2θ 2 y− λ

2
1
y

]

is a two-parameter exponential family.
If Y1, . . . ,Yn are iid IG(θ ,λ ), then

n

∑
i=1

Yi ∼ IG(nθ ,n2λ ) and Y ∼ IG(θ ,nλ ).

If λ is known, then the likelihood

L(θ ) = c enλ/θ exp

[
−λ
2θ 2

n

∑
i=1

yi

]

,

and the log likelihood

log(L(θ )) = d +
nλ
θ

− λ
2θ 2

n

∑
i=1

yi.

Hence
d

dθ
log(L(θ )) =

−nλ
θ 2 +

λ
θ 3

n

∑
i=1

yi
set
= 0,

or ∑n
i=1 yi = nθ or

θ̂ = y.

This solution is unique and

d2

dθ 2 log(L(θ )) =
2nλ
θ 3 − 3λ ∑n

i=1 yi

θ 4

∣
∣
∣
∣
θ=θ̂

=
2nλ
θ̂ 3

− 3nλ θ̂
θ̂ 4

=
−nλ
θ̂ 3

< 0.

Thus Y is the UMVUE, MLE, and MME of θ if λ is known.
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If θ is known, then the likelihood

L(λ ) = c λ n/2 exp

[
−λ
2θ 2

n

∑
i=1

(yi −θ )2

yi

]

,

and the log likelihood

log(L(λ )) = d +
n
2

log(λ )− λ
2θ 2

n

∑
i=1

(yi −θ )2

yi
.

Hence
d

dλ
log(L(λ )) =

n
2λ

− 1
2θ 2

n

∑
i=1

(yi −θ )2

yi

set
= 0

or

λ̂ =
nθ 2

∑n
i=1

(yi−θ)2

yi

.

This solution is unique and

d2

dλ 2 log(L(λ )) =
−n
2λ 2 < 0.

Thus

λ̂ =
nθ 2

∑n
i=1

(Yi−θ)2

Yi

is the MLE of λ if θ is known.

Another parameterization of the inverse Gaussian distribution takes θ =
√

λ/ψ
so that

f (y) =

√
1
y3 I[y > 0]

√
λ
2π

e
√

λψ exp

[−ψ
2

y− λ
2

1
y

]
,

where λ > 0 and ψ ≥ 0. Here Θ = (0,∞)× [0,∞), η1 = −ψ/2, η2 = −λ/2 and
Ω = (−∞,0]× (−∞,0). Since Ω is not an open set, this is a two-parameter full
exponential family that is not regular. If ψ is known then Y is a 1P-REF, but if λ
is known then Y is a one-parameter full exponential family. When ψ = 0, Y has a
one-sided stable distribution with index 1/2. See Barndorff–Nielsen (1978, p. 117).

10.27 The Inverse Weibull Distribution

Y has an inverse Weibull distribution, Y ∼ IW(φ ,λ ), if the pdf of Y is

f (y) =
φ
λ

1
yφ+1 exp

(−1
λ

1
yφ

)
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where y > 0, λ > 0 and φ > 0 is known. The cdf is

F(y) = exp

(−1
λ

1
yφ

)

for y > 0. This family is a 1P-REF if φ is known.
1/Y ∼W (φ ,λ ) and 1/Y φ ∼ EXP(λ ). See Mahmoud et al. (2003).
If Y1, . . . ,Yn are iid IW(φ ,λ ), then

Tn =
n

∑
i=1

1

Y φ
i

∼ G(n,λ ).

If φ is known, then the likelihood

L(λ ) = c
1
λ n exp

[
−1
λ

n

∑
i=1

1

yφi

]

,

and the log likelihood

log(L(λ )) = d− n log(λ )− 1
λ

n

∑
i=1

1

yφi
.

Hence
d

dλ
log(L(λ )) =

−n
λ

+
1
λ 2

n

∑
i=1

1

yφi

set
= 0,

or

λ̂ =
1
n

n

∑
i=1

1

yφi
.

This solution is unique and

d2

dλ 2 log(L(λ )) =
n
λ 2 − 2

λ 3

n

∑
i=1

1

yφi

∣
∣
∣
∣
∣
λ=λ̂

=
n

λ̂ 2
− 2nλ̂

λ̂ 3
=

−n

λ̂ 2
< 0.

Thus

λ̂ =
1
n

n

∑
i=1

1

Y φ
i

is the MLE of λ if φ is known.
If r >−n and φ is known, then [Tn]

r is the UMVUE of

E([Tn]
r) =

λ rΓ (r+ n)
Γ (n)

.
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10.28 The Inverted Gamma Distribution

If Y has an inverted gamma distribution, Y ∼ INVG(ν,λ ), then the pdf of Y is

f (y) =
1

yν+1Γ (ν)
I(y > 0)

1
λν exp

(−1
λ

1
y

)

where λ , ν , and y are all positive. It can be shown that W = 1/Y ∼ G(ν,λ ). This
family is a 2P-REF. This family is a scale family with scale parameter τ = 1/λ if
ν is known.

E(Y r) =
Γ (ν− r)
λ rΓ (ν)

for ν > r.
If ν is known, this family is a one-parameter exponential family. If Y1, . . . ,Yn

are iid INVG(ν,λ ) and ν is known, then Tn = ∑n
i=1

1
Yi
∼ G(nν,λ ) and T r

n is the
UMVUE of

λ rΓ (r+ nν)
Γ (nν)

for r >−nν.
If W has an inverse exponential distribution, W ∼ IEXP(θ ), then

W ∼ INVG(ν = 1,λ = 1/θ ).

10.29 The Largest Extreme Value Distribution

If Y has a largest extreme value distribution (or Gumbel distribution), Y ∼
LEV(θ ,σ), then the pdf of Y is

f (y) =
1
σ

exp

(
−
(

y−θ
σ

))
exp

[
−exp

(
−
(

y−θ
σ

))]

where y and θ are real and σ > 0. The cdf of Y is

F(y) = exp

[
−exp

(
−
(

y−θ
σ

))]
.

This family is an asymmetric location–scale family with a mode at θ .
The mgf

m(t) = exp(tθ )Γ (1−σ t)

for |t|< 1/σ .
E(Y )≈ θ + 0.57721σ , and
VAR(Y ) = σ2π2/6 ≈ 1.64493σ2.

MED(Y ) = θ −σ log(log(2))≈ θ + 0.36651σ
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and
MAD(Y )≈ 0.767049σ .

W = exp(−(Y −θ )/σ)∼ EXP(1).
Notice that

f (y) = e−y/σ 1
σ

eθ/σ exp
[
−eθ/σe−y/σ

]

is a one-parameter exponential family in θ if σ is known.
If Y1, . . . ,Yn are iid LEV(θ ,σ) where σ is known, then the likelihood

L(σ) = c enθ/σ exp

[

−eθ/σ
n

∑
i=1

e−yi/σ

]

,

and the log likelihood

log(L(θ )) = d+
nθ
σ

− eθ/σ
n

∑
i=1

e−yi/σ .

Hence
d

dθ
log(L(θ )) =

n
σ
− eθ/σ

1
σ

n

∑
i=1

e−yi/σ set
= 0,

or

eθ/σ
n

∑
i=1

e−yi/σ = n,

or
eθ/σ =

n

∑n
i=1 e−yi/σ

,

or

θ̂ = σ log

(
n

∑n
i=1 e−yi/σ

)
.

Since this solution is unique and

d2

dθ 2 log(L(θ )) =
−1
σ2 eθ/σ

n

∑
i=1

e−yi/σ < 0,

θ̂ = σ log

(
n

∑n
i=1 e−Yi/σ

)

is the MLE of θ .

10.30 The Logarithmic Distribution

If Y has a logarithmic distribution, then the pmf of Y is

f (y) = P(Y = y) =
−1

log(1−θ )
θ y

y
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for y = 1,2, . . . and 0 < θ < 1. This distribution is sometimes called the logarithmic
series distribution or the log-series distribution. The mgf

m(t) =
log(1−θet)

log(1−θ )

for t <− log(θ ).

E(Y ) =
−1

log(1−θ )
θ

1−θ
.

V (Y ) =
−θ

(1−θ )2 log(θ )

(
1+

θ
log(1−θ )

)
.

Notice that

f (y) =
−1

log(1−θ )
1
y

exp(log(θ )y)

is a 1P-REF. Hence Θ = (0,1), η = log(θ ) and Ω = (−∞,0).
If Y1, . . . ,Yn are iid logarithmic (θ ), then Y is the UMVUE of E(Y ).

10.31 The Logistic Distribution

If Y has a logistic distribution, Y ∼ L(μ ,σ), then the pdf of Y is

f (y) =
exp(−(y− μ)/σ)

σ [1+ exp(−(y− μ)/σ)]2

where σ > 0 and y and μ are real. The cdf of Y is

F(y) =
1

1+ exp(−(y− μ)/σ)
=

exp((y− μ)/σ)
1+ exp((y− μ)/σ)

.

This family is a symmetric location–scale family.
The mgf of Y is m(t) = πσ teμt csc(πσ t) for |t|< 1/σ , and
the chf is c(t) = π iσ teiμt csc(π iσ t) where csc(t) is the cosecant of t.
E(Y ) = μ , and
MED(Y ) = μ .
VAR(Y ) = σ2π2/3, and
MAD(Y ) = log(3)σ ≈ 1.0986 σ .
Hence σ = MAD(Y )/ log(3).

The estimators μ̂ = Y n and S2 = 1
n−1 ∑

n
i=1(Yi −Y n)

2 are sometimes used.
Note that if

q = FL(0,1)(c) =
ec

1+ ec then c = log

(
q

1− q

)
.
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Taking q = .9995 gives c = log(1999)≈ 7.6.
To see that MAD(Y ) = log(3)σ , note that F(μ+ log(3)σ) = 0.75,
F(μ− log(3)σ) = 0.25, and 0.75 = exp(log(3))/(1+ exp(log(3))).

10.32 The Log-Cauchy Distribution

If Y has a log-Cauchy distribution, Y ∼ LC(μ ,σ ), then the pdf of Y is

f (y) =
1

πσy[1+( log(y)−μ
σ )2]

where y > 0, σ > 0, and μ is a real number. This family is a scale family with scale
parameter τ = eμ if σ is known. It can be shown that W = log(Y ) has a Cauchy(μ ,σ )
distribution.

10.33 The Log-Gamma Distribution

Y has a log-gamma distribution, Y ∼ LG(ν,λ ), if the pdf of Y is

f (y) =
1

λνΓ (ν)
exp

(
νy+

(−1
λ

)
ey
)

where y is real, ν > 0, and λ > 0. The mgf

m(t) =
Γ (t +ν)λ t

Γ (ν)

for t >−ν . This family is a 2P-REF.
W = eY ∼ gamma (ν,λ ).

10.34 The Log-Logistic Distribution

If Y has a log-logistic distribution, Y ∼ LL(φ ,τ), then the pdf of Y is

f (y) =
φτ(φy)τ−1

[1+(φy)τ ]2
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where y > 0, φ > 0, and τ > 0. The cdf of Y is

F(y) = 1− 1
1+(φy)τ

for y > 0. This family is a scale family with scale parameter φ−1 if τ is known.
MED(Y ) = 1/φ .
It can be shown that W = log(Y ) has a logistic(μ = − log(φ),σ = 1/τ) dis-

tribution. Hence φ = e−μ and τ = 1/σ . Kalbfleisch and Prentice (1980, pp. 27–
28) suggest that the log-logistic distribution is a competitor of the lognormal
distribution.

10.35 The Lognormal Distribution

If Y has a lognormal distribution, Y ∼ LN(μ ,σ2), then the pdf of Y is

f (y) =
1

y
√

2πσ2
exp

(−(log(y)− μ)2

2σ2

)

where y > 0 and σ > 0 and μ is real. The cdf of Y is

F(y) =Φ
(

log(y)− μ
σ

)
for y > 0

where Φ(y) is the standard normal N(0,1) cdf. This family is a scale family with
scale parameter τ = eμ if σ2 is known.

E(Y ) = exp(μ+σ2/2)

and
VAR(Y ) = exp(σ2)(exp(σ2)− 1)exp(2μ).

For any r,
E(Y r) = exp(rμ+ r2σ2/2).

MED(Y ) = exp(μ) and
exp(μ)[1− exp(−0.6744σ)]≤ MAD(Y )≤ exp(μ)[1+ exp(0.6744σ)].

Notice that

f (y) =
1
y

I(y ≥ 0)
1√
2π

1
σ

exp

(−μ2

2σ2

)
exp

[ −1
2σ2 (log(y))2 +

μ
σ2 log(y)

]

is a 2P–REF. Hence Θ = (−∞,∞)× (0,∞), η1 =−1/(2σ2), η2 = μ/σ2 and Ω =
(−∞,0)× (−∞,∞).
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Note that W = log(Y )∼ N(μ ,σ2).
Notice that

f (y) =
1
y

I(y ≥ 0)
1√
2π

1
σ

exp

[ −1
2σ2 (log(y)− μ)2

]

is a 1P-REF if μ is known,.
If Y1, . . . ,Yn are iid LN(μ ,σ2) where μ is known, then the likelihood

L(σ2) = c
1
σn exp

[
−1
2σ2

n

∑
i=1

(log(yi)− μ)2

]

,

and the log likelihood

log(L(σ2)) = d − n
2

log(σ2)− 1
2σ2

n

∑
i=1

(log(yi)− μ)2.

Hence
d

d(σ2)
log(L(σ2)) =

−n
2σ2 +

1
2(σ2)2

n

∑
i=1

(log(yi)− μ)2 set
= 0,

or ∑n
i=1(log(yi)− μ)2 = nσ2 or

σ̂2 =
∑n

i=1(log(yi)− μ)2

n
.

Since this solution is unique and

d2

d(σ2)2 log(L(σ2)) =

n
2(σ2)2 − ∑n

i=1(log(yi)− μ)2

(σ2)3

∣
∣∣
∣
σ2=σ̂2

=
n

2(σ̂2)2 − nσ̂2

(σ̂2)3

2
2
=

−n
2(σ̂2)2 < 0,

σ̂2 =
∑n

i=1(log(Yi)− μ)2

n

is the UMVUE and MLE of σ2 if μ is known.
Since Tn = ∑n

i=1[log(Yi)− μ ]2 ∼ G(n/2,2σ2), if μ is known and r >−n/2 then
T r

n is UMVUE of

E(T r
n ) = 2rσ2rΓ (r+ n/2)

Γ (n/2)
.

If σ2 is known,

f (y) =
1√
2π

1
σ

1
y

I(y ≥ 0)exp

( −1
2σ2 (log(y))2

)
exp

(−μ2

2σ2

)
exp

[ μ
σ2 log(y)

]

is a 1P-REF.
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If Y1, . . . ,Yn are iid LN(μ ,σ2), where σ2 is known, then the likelihood

L(μ) = c exp

(−nμ2

2σ2

)
exp

[
μ
σ2

n

∑
i=1

log(yi)

]

,

and the log likelihood

log(L(μ)) = d− nμ2

2σ2 +
μ
σ2

n

∑
i=1

log(yi).

Hence
d

dμ
log(L(μ)) =

−2nμ
2σ2 +

∑n
i=1 log(yi)

σ2
set
= 0,

or ∑n
i=1 log(yi) = nμ or

μ̂ =
∑n

i=1 log(yi)

n
.

This solution is unique and

d2

dμ2 log(L(μ)) =
−n
σ2 < 0.

Since Tn = ∑n
i=1 log(Yi)∼ N(nμ ,nσ2),

μ̂ =
∑n

i=1 log(Yi)

n

is the UMVUE and MLE of μ if σ2 is known.
When neither μ nor σ are known, the log likelihood

log(L(μ ,σ2)) = d− n
2

log(σ2)− 1
2σ2

n

∑
i=1

(log(yi)− μ)2.

Let wi = log(yi). Then the log likelihood is

log(L(μ ,σ2)) = d− n
2

log(σ2)− 1
2σ2

n

∑
i=1

(wi − μ)2,

which has the same form as the normal N(μ ,σ2) log likelihood. Hence the MLE

(μ̂ , σ̂) =

(
1
n

n

∑
i=1

Wi,

√
1
n

n

∑
i=1

(Wi −W )2

)

.
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Hence inference for μ and σ is simple. Use the fact that Wi = log(Yi)∼ N(μ ,σ2)
and then perform the corresponding normal based inference on the Wi. For example,
the classical (1−α)100% CI for μ when σ is unknown is

(
W n − tn−1,1− α

2

SW√
n
,W n + tn−1,1− α

2

SW√
n

)

where

SW =
n

n− 1
σ̂ =

√
1

n− 1

n

∑
i=1

(Wi −W)2,

and P(t ≤ tn−1,1− α
2
) = 1−α/2 when t is from a t distribution with n−1 degrees of

freedom. Compare Meeker and Escobar (1998, p. 175).

10.36 The Maxwell–Boltzmann Distribution

If Y has a Maxwell–Boltzmann distribution (also known as a Boltzmann distribution
or a Maxwell distribution), Y ∼ MB(μ ,σ), then the pdf of Y is

f (y) =

√
2(y− μ)2e

−1
2σ2 (y−μ)2

σ3
√
π

where μ is real, y ≥ μ and σ > 0. This is a location–scale family.

E(Y ) = μ+σ
√

2
1

Γ (3/2)
= μ+σ

2
√

2√
π
.

VAR(Y ) = 2σ2

[
Γ ( 5

2 )

Γ (3/2)
−
(

1
Γ (3/2)

)2
]

= σ2
(

3− 8
π

)
.

MED(Y ) = μ+ 1.5381722σ and MAD(Y ) = 0.460244σ .
This distribution a one-parameter exponential family when μ is known.
Note that W = (Y − μ)2 ∼ G(3/2,2σ2).
If Z ∼ MB(0,σ), then Z ∼ chi(p = 3,σ), and

E(Zr) = 2r/2σ r Γ ( r+3
2 )

Γ (3/2)

for r >−3.
The mode of Z is at σ

√
2.
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10.37 The Modified DeMoivre’s Law Distribution

If Y has a modified DeMoivre’s law distribution, Y ∼ MDL(θ ,φ), then the pdf of Y
is

f (y) =
φ
θ

(
θ − y
θ

)φ−1

for 0 < y < θ where φ > 0 and θ > 0. The cdf of Y is

F(y) = 1−
(

1− y
θ

)φ

for 0 < y < θ .

E(Y ) =
θ

φ + 1
.

Notice that

f (y) =
φ
θ

I(0 < y < θ )
θ

θ − y
exp

[
−φ log

(
θ

θ − y

)]

is a 1P-REF if θ is known. Thus Θ = (0,∞), η =−φ and Ω = (−∞,0).

W = t(Y ) =− log

(
θ −Y
θ

)
= log

(
θ

θ −Y

)
∼ EXP(1/φ).

If Y1, . . . ,Yn are iid MDL(θ ,φ), then

Tn =−
n

∑
i=1

log

(
θ −Y
θ

)
=

n

∑
i=1

log

(
θ

θ −Y

)
∼ G(n,1/φ).

If θ is known, then the likelihood

L(φ) = c φn exp

[

−φ
n

∑
i=1

log

(
θ

θ − yi

)]

,

and the log likelihood

log(L(φ)) = d+ n log(φ)−φ
n

∑
i=1

log

(
θ

θ − yi

)
.

Hence
d

dφ
log(L(φ)) =

n
φ
−

n

∑
i=1

log

(
θ

θ − yi

)
set
= 0,

or
φ̂ =

n

∑n
i=1 log

(
θ

θ−yi

) .
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This solution is unique and

d2

dφ2 log(L(φ)) =
−n
φ2 < 0.

Hence if θ is known, then

φ̂ =
n

∑n
i=1 log

(
θ

θ−Yi

)

is the MLE of φ . If r >−n and θ is known, then T r
n is the UMVUE of

E(T r
n ) =

1
φ r

Γ (r+ n)
Γ (n)

.

10.38 The Negative Binomial Distribution

If Y has a negative binomial distribution (also called the Pascal distribution), Y ∼
NB(r,ρ), then the pmf of Y is

f (y) = P(Y = y) =

(
r+ y− 1

y

)
ρ r(1−ρ)y

for y = 0,1, . . . where 0 < ρ < 1. The moment generating function

m(t) =

[
ρ

1− (1−ρ)et

]r

for t <− log(1−ρ).
E(Y ) = r(1−ρ)/ρ , and

VAR(Y ) =
r(1−ρ)

ρ2 .

Notice that

f (y) = I[y ∈ {0,1, . . .}]
(

r+ y− 1
y

)
ρ r exp[log(1−ρ)y]

is a 1P-REF in ρ for known r. Thus Θ = (0,1), η = log(1−ρ) and Ω = (−∞,0).
If Y1, . . . ,Yn are independent NB(ri,ρ), then

n

∑
i=1

Yi ∼ NB

(
n

∑
i=1

ri,ρ

)

.
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If Y1, . . . ,Yn are iid NB(r,ρ), then

Tn =
n

∑
i=1

Yi ∼ NB(nr,ρ).

If r is known, then the likelihood

L(p) = c ρnr exp

[

log(1−ρ)
n

∑
i=1

yi

]

,

and the log likelihood

log(L(ρ)) = d + nr log(ρ)+ log(1−ρ)
n

∑
i=1

yi.

Hence
d

dρ
log(L(ρ)) =

nr
ρ

− 1
1−ρ

n

∑
i=1

yi
set
= 0,

or
1−ρ
ρ

nr =
n

∑
i=1

yi,

or nr−ρnr−ρ∑n
i=1 yi = 0 or

ρ̂ =
nr

nr+∑n
i=1 yi

.

This solution is unique and

d2

dρ2 log(L(ρ)) =
−nr
ρ2 − 1

(1−ρ)2

n

∑
i=1

yi < 0.

Thus
ρ̂ =

nr
nr+∑n

i=1 Yi

is the MLE of ρ if r is known.
Notice that Y is the UMVUE, MLE, and MME of r(1−ρ)/ρ if r is known.

10.39 The Normal Distribution

If Y has a normal distribution (or Gaussian distribution), Y ∼ N(μ ,σ2), then the pdf
of Y is

f (y) =
1√

2πσ2
exp

(−(y− μ)2

2σ2

)
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where σ > 0 and μ and y are real. Let Φ(y) denote the standard normal cdf. Recall
that Φ(y) = 1−Φ(−y). The cdf F(y) of Y does not have a closed form, but

F(y) =Φ
(

y− μ
σ

)
,

and

Φ(y)≈ 0.5(1+
√

1− exp(−2y2/π) )

for y ≥ 0. See Johnson and Kotz (1970a, p. 57).
The moment generating function is

m(t) = exp(tμ+ t2σ2/2).

The characteristic function is c(t) = exp(itμ− t2σ2/2).
E(Y ) = μ and
VAR(Y ) = σ2.

E[|Y − μ |r] = σ r 2r/2Γ ((r+ 1)/2)√
π

for r >−1.

If k ≥ 2 is an integer, then E(Y k) = (k− 1)σ2E(Y k−2)+ μE(Y k−1). See Stein
(1981) and Casella and Berger (2002, p. 125) .
MED(Y ) = μ and

MAD(Y ) =Φ−1(0.75)σ ≈ 0.6745σ .

Hence σ = [Φ−1(0.75)]−1MAD(Y )≈ 1.483MAD(Y ).
This family is a location–scale family which is symmetric about μ .

Suggested estimators are

Y n = μ̂ =
1
n

n

∑
i=1

Yi and S2 = S2
Y =

1
n− 1

n

∑
i=1

(Yi −Yn)
2.

The classical (1−α)100% CI for μ when σ is unknown is

(
Y n − tn−1,1− α

2

SY√
n
,Y n + tn−1,1− α

2

SY√
n

)

where P(t ≤ tn−1,1− α
2
) = 1−α/2 when t is from a t distribution with n−1 degrees

of freedom.
If α =Φ(zα ), then

zα ≈ m− co + c1m+ c2m2

1+ d1m+ d2m2 + d3m3
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where
m = [−2log(1−α)]1/2,

c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, d3 =
0.001308, and 0.5 ≤ α. For 0 < α < 0.5,

zα =−z1−α .

See Kennedy and Gentle (1980, p. 95) .
To see that MAD(Y ) = Φ−1(0.75)σ , note that 3/4 = F(μ +MAD) since Y is

symmetric about μ . However,

F(y) =Φ
(

y− μ
σ

)

and
3
4
=Φ

(
μ+Φ−1(3/4)σ− μ

σ

)
.

So μ+MAD = μ+Φ−1(3/4)σ . Cancel μ from both sides to get the result.
Notice that

f (y) =
1√

2πσ2
exp

(−μ2

2σ2

)
exp

[ −1
2σ2 y2 +

μ
σ2 y

]

is a 2P–REF. Hence Θ = (0,∞)× (−∞,∞), η1 =−1/(2σ2), η2 = μ/σ2 and Ω =
(−∞,0)× (−∞,∞).

If σ2 is known,

f (y) =
1√

2πσ2
exp

[ −1
2σ2 y2

]
exp

(−μ2

2σ2

)
exp

[ μ
σ2 y

]

is a 1P-REF. Also the likelihood

L(μ) = c exp

(−nμ2

2σ2

)
exp

[
μ
σ2

n

∑
i=1

yi

]

and the log likelihood

log(L(μ)) = d− nμ2

2σ2 +
μ
σ2

n

∑
i=1

yi.

Hence
d

dμ
log(L(μ)) =

−2nμ
2σ2 +

∑n
i=1 yi

σ2
set
= 0,

or nμ = ∑n
i=1 yi, or

μ̂ = y.
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This solution is unique and

d2

dμ2 log(L(μ)) =
−n
σ2 < 0.

Since Tn = ∑n
i=1 Yi ∼ N(nμ ,nσ2), Y is the UMVUE, MLE, and MME of μ if σ2 is

known.
If μ is known,

f (y) =
1√

2πσ2
exp

[ −1
2σ2 (y− μ)2

]

is a 1P-REF. Also the likelihood

L(σ2) = c
1
σn exp

[
−1
2σ2

n

∑
i=1

(yi − μ)2

]

and the log likelihood

log(L(σ2)) = d− n
2

log(σ2)− 1
2σ2

n

∑
i=1

(yi − μ)2.

Hence
d

dσ2 log(L(σ2)) =
−n
2σ2 +

1
2(σ2)2

n

∑
i=1

(yi − μ)2 set
= 0,

or nσ2 = ∑n
i=1(yi − μ)2, or

σ̂2 =
∑n

i=1(yi − μ)2

n
.

This solution is unique and

d2

d(σ2)2 log(L(σ2)) =
n

2(σ2)2 − ∑n
i=1(yi − μ)2

(σ2)3

∣
∣
∣
∣
σ2=σ̂2

=
n

2(σ̂2)2 − nσ̂2

(σ̂2)3

2
2

=
−n

2(σ̂2)2 < 0.

Since Tn = ∑n
i=1(Yi − μ)2 ∼ G(n/2,2σ2),

σ̂2 =
∑n

i=1(Yi − μ)2

n

is the UMVUE and MLE of σ2 if μ is known.
Note that if μ is known and r >−n/2, then T r

n is the UMVUE of

E(T r
n ) = 2rσ2rΓ (r+ n/2)

Γ (n/2)
.
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10.40 The One-Sided Stable Distribution

If Y has a one-sided stable distribution (with index 1/2, also called a Lévy distribu-
tion), Y ∼ OSS(σ), then the pdf of Y is

f (y) =
1

√
2πy3

√
σ exp

(−σ
2

1
y

)

for y > 0 and σ > 0. The cdf

F(y) = 2

[
1−Φ

(√
σ
y

)]

for y > 0 where Φ(x) is the cdf of a N(0,1) random variable.

MED(Y ) =
σ

[Φ−1(3/4)]2
.

This distribution is a scale family with scale parameter σ and a 1P-REF. When
σ = 1, Y ∼ INVG(ν = 1/2,λ = 2) where INVG stands for inverted gamma. This
family is a special case of the inverse Gaussian IG distribution. It can be shown
that W = 1/Y ∼ G(1/2,2/σ). This distribution is even more outlier prone than
the Cauchy distribution. See Feller (1971, p. 52) and Lehmann (1999, p. 76). For
applications see Besbeas and Morgan (2004) .

If Y1, . . . ,Yn are iid OSS(σ ) then Tn = ∑n
i=1

1
Yi
∼ G(n/2,2/σ). The likelihood

L(σ) =
n

∏
i=1

f (yi) =

⎛

⎝
n

∏
i=1

1
√

2πy3
i

⎞

⎠σn/2 exp

(
−σ
2

n

∑
i=1

1
yi

)

,

and the log likelihood

log(L(σ)) = log

⎛

⎝
n

∏
i=1

1
√

2πy3
i

⎞

⎠+
n
2

log(σ)− σ
2

n

∑
i=1

1
yi
.

Hence
d

dσ
log(L(σ)) =

n
2

1
σ
− 1

2

n

∑
i=1

1
yi

set
= 0,

or

n
2
= σ

1
2

n

∑
i=1

1
yi
,

or

σ̂ =
n

∑n
i=1

1
yi

.
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This solution is unique and

d2

dσ2 log(L(σ)) =−n
2

1
σ2 < 0.

Hence the MLE
σ̂ =

n

∑n
i=1

1
Yi

.

Notice that Tn/n is the UMVUE and MLE of 1/σ and T r
n is the UMVUE of

1
σ r

2rΓ (r+ n/2)
Γ (n/2)

for r >−n/2.

10.41 The Pareto Distribution

If Y has a Pareto distribution, Y ∼ PAR(σ ,λ ), then the pdf of Y is

f (y) =
1
λ σ

1/λ

y1+1/λ

where y ≥ σ , σ > 0, and λ > 0. The mode is at Y = σ . The cdf of Y is F(y) =
1− (σ/y)1/λ for y > σ .

This family is a scale family with scale parameter σ when λ is fixed.

E(Y ) =
σ

1−λ

for λ < 1.

E(Y r) =
σ r

1− rλ
for r < 1/λ .

MED(Y ) = σ2λ .
X = log(Y/σ) is EXP(λ ) and W = log(Y ) is EXP(θ = log(σ),λ ).
Notice that

f (y) =
1
y

I[y ≥ σ ]
1
λ

exp

[−1
λ

log(y/σ)
]

is a one-parameter exponential family if σ is known.
If Y1, . . . ,Yn are iid PAR(σ ,λ ) then

Tn =
n

∑
i=1

log(Yi/σ)∼ G(n,λ ).
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If σ is known, then the likelihood

L(λ ) = c
1
λ n exp

[

−
(

1+
1
λ

) n

∑
i=1

log(yi/σ)

]

,

and the log likelihood

log(L(λ )) = d− n log(λ )−
(

1+
1
λ

) n

∑
i=1

log(yi/σ).

Hence
d

dλ
log(L(λ )) =

−n
λ

+
1
λ 2

n

∑
i=1

log(yi/σ)
set
= 0,

or ∑n
i=1 log(yi/σ) = nλ or

λ̂ =
∑n

i=1 log(yi/σ)
n

.

This solution is unique and

d2

dλ 2 log(L(λ )) =
n
λ 2 − 2∑n

i=1 log(yi/σ)
λ 3

∣
∣
∣
∣
λ=λ̂

=

n

λ̂ 2
− 2nλ̂

λ̂ 3
=

−n

λ̂ 2
< 0.

Hence

λ̂ =
∑n

i=1 log(Yi/σ)
n

is the UMVUE and MLE of λ if σ is known.
If σ is known and r >−n, then T r

n is the UMVUE of

E(T r
n ) = λ rΓ (r+ n)

Γ (n)
.

If neither σ nor λ are known, notice that

f (y) =
1
y

1
λ

exp

[
−
(

log(y)− log(σ)
λ

)]
I(y ≥ σ).

Hence the likelihood

L(λ ,σ) = c
1
λ n exp

[

−
n

∑
i=1

(
log(yi)− log(σ)

λ

)]

I(y(1) ≥ σ),
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and the log likelihood is

logL(λ ,σ) =

[

d− n log(λ )−
n

∑
i=1

(
log(yi)− log(σ)

λ

)]

I(y(1) ≥ σ).

Let wi = log(yi) and θ = log(σ), so σ = eθ . Then the log likelihood is

logL(λ ,θ ) =

[

d− n log(λ )−
n

∑
i=1

(
wi −θ
λ

)]

I(w(1) ≥ θ ),

which has the same form as the log likelihood of the EXP(θ ,λ ) distribution. Hence
(λ̂ , θ̂ ) = (W −W(1),W(1)), and by invariance, the MLE

(λ̂ , σ̂ ) = (W −W(1),Y(1)).

Following Abuhassan and Olive (2008) , let Dn = ∑n
i=1(Wi −W1:n) = nλ̂ where

W(1) =W1:n. For n > 1, a 100 (1−α)% CI for θ is

(W1:n − λ̂ [(α)−1/(n−1)− 1],W1:n). (10.11)

Exponentiate the endpoints for a 100 (1−α)% CI for σ . A 100 (1−α)% CI for λ
is (

2Dn

χ2
2(n−1),1−α/2

,
2Dn

χ2
2(n−1),α/2

)

. (10.12)

This distribution is used to model economic data such as national yearly income
data and size of loans made by a bank.

10.42 The Poisson Distribution

If Y has a Poisson distribution, Y ∼ POIS(θ ), then the pmf of Y is

f (y) = P(Y = y) =
e−θθ y

y!

for y = 0,1, . . . , where θ > 0. The mgf of Y is

m(t) = exp(θ (et − 1)),

and the characteristic function of Y is c(t) = exp(θ (eit − 1)).
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E(Y ) = θ , and
VAR(Y ) = θ .

Chen and Rubin (1986) and Adell and Jodrá (2005) show that
−1 < MED(Y )−E(Y)< 1/3.

Pourahmadi (1995) showed that the moments of a Poisson (θ ) random variable
can be found recursively. If k ≥ 1 is an integer and

(0
0

)
= 1, then

E(Y k) = θ
k−1

∑
i=0

(
k− 1

i

)
E(Y i).

The classical estimator of θ is θ̂ = Y n.
The approximations Y ≈ N(θ ,θ ) and 2

√
Y ≈ N(2

√
θ ,1) are sometimes used.

Notice that

f (y) =
1
y!

I[y ∈ {0,1, . . .}] e−θ exp[log(θ )y]

is a 1P-REF. Thus Θ = (0,∞), η = log(θ ) and Ω = (−∞,∞).
If Y1, . . . ,Yn are independent POIS(θi), then ∑n

i=1 Yi ∼ POIS(∑n
i=1θi).

If Y1, . . . ,Yn are iid POIS(θ ), then

Tn =
n

∑
i=1

Yi ∼ POIS(nθ ).

The likelihood

L(θ ) = c e−nθ exp[log(θ )
n

∑
i=1

yi],

and the log likelihood

log(L(θ )) = d− nθ + log(θ )
n

∑
i=1

yi.

Hence
d

dθ
log(L(θ )) =−n+

1
θ

n

∑
i=1

yi
set
= 0,

or ∑n
i=1 yi = nθ , or

θ̂ = y.

This solution is unique and

d2

dθ 2 log(L(θ )) =
−∑n

i=1 yi

θ 2 < 0

unless ∑n
i=1 yi = 0.
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Hence Y is the UMVUE and MLE of θ .
Let W = ∑n

i=1 Yi and suppose that W = w is observed. Let P(T < χ2
d (α)) = α if

T ∼ χ2
d . Then an “exact” 100 (1−α)% CI for θ is

(
χ2

2w(
α
2 )

2n
,
χ2

2w+2(1− α
2 )

2n

)

for w �= 0 and (
0,

χ2
2 (1−α)

2n

)

for w = 0.

10.43 The Power Distribution

If Y has a power distribution, Y ∼ POW(λ ), then the pdf of Y is

f (y) =
1
λ

y
1
λ −1,

where λ > 0 and 0 < y ≤ 1. The cdf of Y is F(y) = y1/λ for 0 < y ≤ 1.
MED(Y ) = (1/2)λ .

W =− log(Y ) is EXP(λ ). Notice that Y ∼ beta(δ = 1/λ ,ν = 1).
Notice that

f (y) =
1
λ

I(0,1](y)exp

[(
1
λ
− 1

)
log(y)

]

=
1
y

I(0,1](y)
1
λ

exp

[−1
λ

(− log(y))

]

is a 1P-REF. Thus Θ = (0,∞), η =−1/λ and Ω = (−∞,0).
If Y1, . . . ,Yn are iid POW(λ ), then

Tn =−
n

∑
i=1

log(Yi)∼ G(n,λ ).

The likelihood

L(λ ) =
1
λ n exp

[(
1
λ
− 1

) n

∑
i=1

log(yi)

]

,

and the log likelihood

log(L(λ )) =−n log(λ )+
(

1
λ
− 1

) n

∑
i=1

log(yi).
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Hence
d

dλ
log(L(λ )) =

−n
λ

− ∑n
i=1 log(yi)

λ 2
set
= 0,

or −∑n
i=1 log(yi) = nλ , or

λ̂ =
−∑n

i=1 log(yi)

n
.

This solution is unique and

d2

dλ 2 log(L(λ )) =
n
λ 2 +

2∑n
i=1 log(yi)

λ 3

∣
∣
∣
∣
λ=λ̂

=
n

λ̂ 2
− 2nλ̂

λ̂ 3
=

−n

λ̂ 2
< 0.

Hence

λ̂ =
−∑n

i=1 log(Yi)

n

is the UMVUE and MLE of λ .
If r >−n, then T r

n is the UMVUE of

E(T r
n ) = λ rΓ (r+ n)

Γ (n)
.

A 100 (1−α)% CI for λ is

(
2Tn

χ2
2n,1−α/2

,
2Tn

χ2
2n,α/2

)

. (10.13)

10.44 The Two-Parameter Power Distribution

Y has a two-parameter power distribution, Y ∼ power(τ,λ ), if the pdf of Y is

f (y) =
1
τλ

( y
τ

) 1
λ −1

I(0 < y ≤ τ)

where τ > 0 and λ > 0. The cdf

F(y) =
( y
τ

)1/λ

for 0 < y ≤ τ. This is a scale family for fixed λ .
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W =− log(Y )∼ EXP(− log(τ),λ ).
If Y1, . . . ,Yn are iid power(τ,λ ), then the likelihood is

L(τ,λ ) =
1

τn/λ I(0 < y(n) ≤ τ)
1
λ n exp

[(
1
λ
− 1

) n

∑
i=1

log(yi)

]

.

For fixed λ , the likelihood L is maximized by minimizing τ . So τ̂ = Y(n).
Then the profile likelihood

Lp(λ ) = L(y(n),λ ) =
1

yn/λ
(n)

1
λ n exp

[(
1
λ
− 1

) n

∑
i=1

log(yi)

]

,

and the log profile likelihood

log(Lp(λ )) = log(L(y(n),λ ) =− n
λ

log(y(n))− n log(λ )+
(

1
λ
− 1

) n

∑
i=1

log(yi).

Hence
d

dλ
log(Lp(λ )) =

n
λ 2 log(y(n))+

−n
λ

− ∑n
i=1 log(yi)

λ 2
set
= 0,

or −nλ + n log(y(n))−∑n
i=1 log(yi) = 0 or −∑n

i=1 log
(

yi
y(n)

)
= nλ , or

λ̂ =
−1
n

n

∑
i=1

log

(
yi

y(n)

)

.

This solution is unique and

d2

dλ 2 log(Lp(λ )) =
n
λ 2 +

2∑n
i=1 log

(
yi

y(n)

)

λ 3

∣∣
∣
∣
∣
∣
λ=λ̂

=
n

λ̂ 2
− 2nλ̂

λ̂ 3
=

−n

λ̂ 2
< 0.

Hence

(τ̂, λ̂ ) =

(

Y(n),
−1
n

n

∑
i=1

log

(
Yi

Y(n)

))

is the MLE of (τ,λ ).
Confidence intervals for τ and λ are given in Example 9.12.
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10.45 The Rayleigh Distribution

If Y has a Rayleigh distribution, Y ∼ R(μ ,σ), then the pdf of Y is

f (y) =
y− μ
σ2 exp

[

−1
2

(
y− μ
σ

)2
]

where σ > 0, μ is real, and y ≥ μ . See Cohen and Whitten (1988, ch. 10) . This is
an asymmetric location–scale family. The cdf of Y is

F(y) = 1− exp

[

−1
2

(
y− μ
σ

)2
]

for y ≥ μ , and F(y) = 0, otherwise.

E(Y ) = μ+σ
√

π/2 ≈ μ+ 1.253314σ .

VAR(Y ) = σ2(4−π)/2≈ 0.429204σ2.

MED(Y ) = μ+σ
√

log(4)≈ μ+ 1.17741σ .
Hence μ ≈ MED(Y )− 2.6255MAD(Y ) and σ ≈ 2.230MAD(Y ).
Let σD = MAD(Y ). If μ = 0, and σ = 1, then

0.5 = exp[−0.5(
√

log(4)−D)2]− exp[−0.5(
√

log(4)+D)2].

Hence D ≈ 0.448453 and MAD(Y )≈ 0.448453σ .
It can be shown that W = (Y − μ)2 ∼ EXP(2σ2).

Other parameterizations for the Rayleigh distribution are possible.
Note that

f (y) = (y− μ)I(y ≥ μ)
1
σ2 exp

[
− 1

2σ2 (y− μ)2
]

is a 1P-REF if μ is known.
If Y1, . . . ,Yn are iid R(μ ,σ), then

Tn =
n

∑
i=1

(Yi − μ)2 ∼ G(n,2σ2).

If μ is known, then the likelihood

L(σ2) = c
1

σ2n exp

[

− 1
2σ2

n

∑
i=1

(yi − μ)2

]

,
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and the log likelihood

log(L(σ2)) = d− n log(σ2)− 1
2σ2

n

∑
i=1

(yi − μ)2.

Hence
d

d(σ2)
log(L(σ2)) =

−n
σ2 +

1
2(σ2)2

n

∑
i=1

(yi − μ)2 set
= 0,

or ∑n
i=1(yi − μ)2 = 2nσ2, or

σ̂2 =
∑n

i=1(yi − μ)2

2n
.

This solution is unique and

d2

d(σ2)2 log(L(σ2)) =
n

(σ2)2 − ∑n
i=1(yi − μ)2

(σ2)3

∣
∣
∣
∣
σ2=σ̂2

=

n
(σ̂2)2 − 2nσ̂2

(σ̂2)3 =
−n

(σ̂2)2 < 0.

Hence

σ̂2 =
∑n

i=1(Yi − μ)2

2n

is the UMVUE and MLE of σ2 if μ is known.
If μ is known and r >−n, then T r

n is the UMVUE of

E(T r
n ) = 2rσ2rΓ (r+ n)

Γ (n)
.

10.46 The Smallest Extreme Value Distribution

If Y has a smallest extreme value distribution (or log-Weibull distribution), Y ∼
SEV(θ ,σ), then the pdf of Y is

f (y) =
1
σ

exp

(
y−θ
σ

)
exp

[
−exp

(
y−θ
σ

)]

where y and θ are real and σ > 0. The cdf of Y is

F(y) = 1− exp

[
−exp

(
y−θ
σ

)]
.



350 10 Some Useful Distributions

This family is an asymmetric location–scale family with a longer left tail than right.
E(Y )≈ θ − 0.57721σ , and
VAR(Y ) = σ2π2/6 ≈ 1.64493σ2.
MED(Y ) = θ −σ log(log(2)).
MAD(Y )≈ 0.767049σ .
Y is a one-parameter exponential family in θ if σ is known.
If Y has a SEV(θ ,σ) distribution, then W =−Y has an LEV(−θ ,σ) distribution.

10.47 The Student’s t Distribution

If Y has a Student’s t distribution, Y ∼ tp, then the pdf of Y is

f (y) =
Γ ( p+1

2 )

(pπ)1/2Γ (p/2)

(
1+

y2

p

)−( p+1
2 )

where p is a positive integer and y is real. This family is symmetric about 0. The
t1 distribution is the Cauchy(0,1) distribution. If Z is N(0,1) and is independent of
W ∼ χ2

p, then
Z

(W
p )

1/2

is tp.
E(Y ) = 0 for p ≥ 2.
MED(Y ) = 0.
VAR(Y ) = p/(p− 2) for p ≥ 3, and
MAD(Y ) = tp,0.75 where P(tp ≤ tp,0.75) = 0.75.

If α = P(tp ≤ tp,α), then Cooke et al. (1982, p. 84) suggest the approximation

tp,α ≈
√

p

[
exp

(
w2
α

p

)
− 1

]

where

wα =
zα(8p+ 3)

8p+ 1
,

zα is the standard normal cutoff: α =Φ(zα ), and 0.5 ≤ α. If 0 < α < 0.5, then

tp,α =−tp,1−α .

This approximation seems to get better as the degrees of freedom increase.
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10.48 The Topp–Leone Distribution

If Y has a Topp–Leone distribution, Y ∼ TL(ν), then pdf of Y is

f (y) = ν(2− 2y)(2y− y2)ν−1

for ν > 0 and 0 < y < 1. The cdf of Y is F(y) = (2y− y2)ν for 0 < y < 1. This
distribution is a 1P-REF since

f (y) = (2− 2y)I(0,1)(y) ν exp[(1−ν)(− log(2y− y2))].

MED(Y ) = 1−
√

1− (1/2)1/ν, and Example 2.15 showed that
W =− log(2Y −Y 2)∼ EXP(1/ν).

The likelihood

L(ν) = c νn
n

∏
i=1

(2yi − y2
i )

ν−1,

and the log likelihood

log(L(ν)) = d+ n log(ν)+ (ν− 1)
n

∑
i=1

log(2yi − y2
i ).

Hence
d

dν
log(L(ν)) =

n
ν
+

n

∑
i=1

log(2yi − y2
i )

set
= 0,

or n+ν∑n
i=1 log(2yi − y2

i ) = 0, or

ν̂ =
−n

∑n
i=1 log(2yi − y2

i )
.

This solution is unique and

d2

dν2 log(L(ν)) =
−n
ν2 < 0.

Hence
ν̂ =

−n

∑n
i=1 log(2Yi −Y 2

i )
=

n

−∑n
i=1 log(2Yi −Y2

i )

is the MLE of ν.
If Tn =−∑n

i=1 log(2Yi −Y 2
i )∼ G(n,1/ν), then T r

n is the UMVUE of

E(T r
n ) =

1
νr

Γ (r+ n)
Γ (n)

for r >−n. In particular, ν̂ = n
Tn

is the MLE and n−1
Tn

is the UMVUE of ν for n > 1.
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10.49 The Truncated Extreme Value Distribution

If Y has a truncated extreme value distribution, Y ∼ TEV(λ ), then the pdf of Y is

f (y) =
1
λ

exp

(
y− ey − 1

λ

)

where y > 0 and λ > 0. This distribution is also called the modified extreme value
distribution, and Y ∼ Gomp(θ = 1,ν = 1/λ ). The cdf of Y is

F(y) = 1− exp

[−(ey − 1)
λ

]

for y > 0.
MED(Y ) = log(1+λ log(2)).
W = eY − 1 is EXP(λ ).

Notice that

f (y) = eyI(y ≥ 0)
1
λ

exp

[−1
λ

(ey − 1)

]

is a 1P-REF. Hence Θ = (0,∞), η =−1/λ and Ω = (−∞,0).
If Y1, . . . ,Yn are iid TEV(λ ), then

Tn =
n

∑
i=1

(eYi − 1)∼ G(n,λ ).

The likelihood

L(λ ) = c
1
λ n exp

[
−1
λ

n

∑
i=1

(eyi − 1)

]

,

and the log likelihood

log(L(λ )) = d − n log(λ )− 1
λ

n

∑
i=1

(eyi − 1).

Hence

d
dλ

log(L(λ )) =
−n
λ

+
∑n

i=1(e
yi − 1)

λ 2
set
= 0,

or ∑n
i=1(e

yi − 1) = nλ , or

λ̂ =
−∑n

i=1(e
yi − 1)

n
.
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This solution is unique and

d2

dλ 2 log(L(λ )) =
n
λ 2 − 2∑n

i=1(e
yi − 1)

λ 3

∣
∣
∣
∣
λ=λ̂

=
n

λ̂ 2
− 2nλ̂

λ̂ 3
=

−n

λ̂ 2
< 0.

Hence

λ̂ =
−∑n

i=1(e
Yi − 1)

n

is the UMVUE and MLE of λ .
If r >−n, then T r

n is the UMVUE of

E(T r
n ) = λ rΓ (r+ n)

Γ (n)
.

A 100 (1−α)% CI for λ is
(

2Tn

χ2
2n,1−α/2

,
2Tn

χ2
2n,α/2

)

. (10.14)

10.50 The Uniform Distribution

If Y has a uniform distribution, Y ∼U(θ1,θ2), then the pdf of Y is

f (y) =
1

θ2 −θ1
I(θ1 ≤ y ≤ θ2).

The cdf of Y is F(y) = (y−θ1)/(θ2 −θ1) for θ1 ≤ y ≤ θ2.
This family is a location–scale family which is symmetric about (θ1 + θ2)/2. By
definition, m(0) = c(0) = 1. For t �= 0, the mgf of Y is

m(t) =
etθ2 − etθ1

(θ2 −θ1)t
,

and the characteristic function of Y is

c(t) =
eitθ2 − eitθ1

(θ2 −θ1)it
.

E(Y ) = (θ1 +θ2)/2, and
MED(Y ) = (θ1 +θ2)/2.
VAR(Y ) = (θ2 −θ1)

2/12, and
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MAD(Y ) = (θ2 −θ1)/4.
Note that θ1 = MED(Y )− 2MAD(Y ) and θ2 = MED(Y )+ 2MAD(Y ).
Some classical estimators are θ̂1 = Y(1) and θ̂2 = Y(n).

10.51 The Weibull Distribution

If Y has a Weibull distribution, Y ∼W (φ ,λ ), then the pdf of Y is

f (y) =
φ
λ

yφ−1e−
yφ
λ

where λ ,y, and φ are all positive. For fixed φ , this is a scale family in σ = λ 1/φ .
The cdf of Y is F(y) = 1− exp(−yφ/λ ) for y > 0.
E(Y ) = λ 1/φ Γ (1+ 1/φ).
VAR(Y ) = λ 2/φΓ (1+ 2/φ) − (E(Y ))2.

E(Y r) = λ r/φ Γ
(

1+
r
φ

)
for r >−φ .

MED(Y ) = (λ log(2))1/φ . Note that

λ =
(MED(Y ))φ

log(2)
.

W = Y φ is EXP(λ ).
W = log(Y ) has a smallest extreme value SEV(θ = log(λ 1/φ ),σ = 1/φ) distri-

bution.
Notice that

f (y) = yφ−1I(y ≥ 0)
φ
λ

exp

[−1
λ

yφ
]

is a one-parameter exponential family in λ if φ is known.
If Y1, . . . ,Yn are iid W (φ ,λ ), then

Tn =
n

∑
i=1

Y φ
i ∼ G(n,λ ).

If φ is known, then the likelihood

L(λ ) = c
1
λ n exp

[
−1
λ

n

∑
i=1

yφi

]

,
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and the log likelihood

log(L(λ )) = d− n log(λ )− 1
λ

n

∑
i=1

yφi .

Hence
d

dλ
log(L(λ )) =

−n
λ

+
∑n

i=1 yφi
λ 2

set
= 0,

or ∑n
i=1 yφi = nλ , or

λ̂ =
∑n

i=1 yφi
n

.

This solution was unique and

d2

dλ 2 log(L(λ )) =
n
λ 2 − 2∑n

i=1 yφi
λ 3

∣
∣∣
∣
∣
λ=λ̂

=
n

λ̂ 2
− 2nλ̂

λ̂ 3
=

−n

λ̂ 2
< 0.

Hence

λ̂ =
∑n

i=1 Y φ
i

n

is the UMVUE and MLE of λ .
If r >−n and φ is known, then T r

n is the UMVUE of

E(T r
n ) = λ rΓ (r+ n)

Γ (n)
.

MLEs and CIs for φ and λ are discussed in Example 9.18.

10.52 The Zero Truncated Poisson Distribution

If Y has a zero truncated Poisson distribution, Y ∼ ZTP(θ ), then the pmf of Y is

f (y) =
e−θ θ y

(1− e−θ) y!

for y = 1,2,3, . . . where θ > 0. This distribution is a 1P-REF. The mgf of Y is

m(t) = exp(θ (et − 1))
1− e−θet

1− e−θ



356 10 Some Useful Distributions

for all t.

E(Y ) =
θ

(1− e−θ)
,

and

V (Y ) =
θ 2 +θ
1− e−θ −

(
θ

1− e−θ

)2

.

The ZTP pmf is obtained from a Poisson distribution where y = 0 values are
truncated, so not allowed. If W ∼ Poisson(θ ) with pmf fW (y), then P(W = 0) =
e−θ , so ∑∞

y=1 fW (y) = 1− e−θ = ∑∞
y=0 fW (y)−∑∞

y=1 fW (y). So the ZTP pmf f (y) =

fW (y)/(1− e−θ) for y �= 0.
Now E(Y ) = ∑∞

y=1 y f (y) = ∑∞
y=0 y f (y) = ∑∞

y=0 y fW (y)/(1− e−θ) =

E(W )/(1− e−θ) = θ/(1− e−θ).
Similarly, E(Y 2) = ∑∞

y=1 y2 f (y) = ∑∞
y=0 y2 f (y) = ∑∞

y=0 y2 fW (y)/(1 − e−θ ) =

E(W 2)/(1− e−θ) = [θ 2 +θ ]/(1− e−θ). So

V (Y ) = E(Y 2)− (E(Y ))2 =
θ 2 +θ
1− e−θ −

(
θ

1− e−θ

)2

.

10.53 The Zeta Distribution

If Y has a Zeta distribution, Y ∼ Zeta(ν), then the pmf of Y is

f (y) = P(Y = y) =
1

yνζ (ν)

where ν > 1 and y = 1,2,3, . . . . Here the zeta function

ζ (ν) =
∞

∑
y=1

1
yν

for ν > 1. This distribution is a one-parameter exponential family.

E(Y ) =
ζ (ν− 1)
ζ (ν)

for ν > 2, and

VAR(Y ) =
ζ (ν− 2)
ζ (ν)

−
[
ζ (ν − 1)
ζ (ν)

]2

for ν > 3.

E(Y r) =
ζ (ν − r)
ζ (ν)

for ν > r+ 1.
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This distribution is sometimes used for count data, especially by linguistics for
word frequency. See Lindsey (2004, p. 154).

10.54 The Zipf Distribution

Y has a Zipf distribution, Y ∼ Zipf(ν), if the pmf of Y is

f (y) =
1

yν z(ν)

where y ∈ {1, . . . ,m} and m is known, ν is real and

z(ν) =
m

∑
y=1

1
yν

.

E(Y r) =
z(ν− r)

z(ν)
for real r. This family is a 1P-REF if m is known.

10.55 Complements

Many of the distribution results used in this chapter came from Johnson and
Kotz (1970ab) and Patel et al. (1976) . Bickel and Doksum (2007), Castillo
(1988), Cohen and Whitten (1988), Cramér (1946), DeGroot and Schervish (2012),
Ferguson (1967), Forbes et al. (2011) , Kennedy and Gentle (1980), Kotz and van
Dorp (2004), Leemis and McQueston (2008), Lehmann (1983), and Meeker and
Escobar (1998) also have useful results on distributions. Also see articles in Kotz
and Johnson (1982ab, 1983ab, 1985ab, 1986, 1988ab). Often an entire book is
devoted to a single distribution, see for example, Bowman and Shenton (1988).

Abuhassan and Olive (2008) discuss confidence intervals for the two-parameter
exponential, two-parameter power, half normal, and Pareto distributions.

A recent discussion of Burr Type III and XII distributions is given in Headrick
et al. (2010).

Brownstein and Pensky (2008) show that if Y = t(X) where X has simple in-
ference and t is a monotone transformation that does not depend on any unknown
parameters, then Y also has simple inference.

Other distributions in this text (including the hburr, hlev, hpar, hpow, hray,
hsev, htev, hweib, inverse half normal, Lindley, and truncated exponential distribu-
tions) are the distributions in Problems 1.29, 1.30, 2.52–2.59, 3.8, 3.9, 3.17, 4.9a,
5.47, 5.51, 5.52, 6.25, and 6.41. The Lindley distribution is discussed in Al-Mutairi
et al. (2013). See Problems 1.35,1.36, 3.15, and 5.49.



Chapter 11
Bayesian Methods

Two large classes of parametric inference are frequentist and Bayesian methods.
Frequentist methods assume that � are constant parameters “generated by nature,”
while Bayesian methods assume that the parameters � are random variables.
Chapters 1–10 consider frequentist methods with an emphasis on exponential
families, but Bayesian methods also tie in nicely with exponential family theory.

This chapter discusses Bayes’ theorem, prior and posterior distributions,
Bayesian point estimation, credible intervals, estimating the highest density region
with the shorth, Bayesian hypothesis testing, and Bayesian computation.

11.1 Bayes’ Theorem

There will be a change of notation in this chapter. Context will be used to determine
whether y or θ are random variables, observed random variables, or arguments in
a pdf or pmf. For frequentist methods, the notation f (y) and f (y|x) was used for
pdfs, pmfs, and conditional pdfs and pmfs. For now, assume that f is replaced by
p, y = (y1, . . . ,yn) and � = (θ1, ..,θk) where the k parameters are random variables.
Then the conditional pdf or pmf p(�|y) is of great interest, and

p(�|y) = p(y,�)
p(y)

=
p(y|�)p(�)

p(y)
=

p(y|�)p(�)
∫

p(y,�)d�
=

p(y|�)p(�)
∫

p(y, t)dt

=
p(y|�)p(�)

∫
p(y|t)p(t)dt

where d� = dt are dummy variables and the integral is used for a pdf. Bayes’
theorem follows by plugging in the following quantities into the above argument.
Replace the integral by a sum for a pmf.

D.J. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4 11,
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Definition 11.1. The prior pdf or pmf π(�) ≡ π�(�) of � corresponds to the
prior distribution of � where � = (η1, . . . ,ηd) is a vector of unknown constant par-
ameters called hyperparameters. The pdf or pmf p(y|�) is the likelihood function
corresponding to the sampling distribution and will be denoted by f (y|�). The pos-
terior pdf or pmf p(�|y) corresponds to the posterior distribution. The marginal pdf
or pmf of y is denoted by m�(y).

Theorem 11.1. Bayes’ Theorem: The posterior distribution is given by

p(�|y) = f (y|�)π(�)
∫

f (y|t)π(t)dt =
f (y|�)π(�)

m�(y)
.

The prior distribution can be interpreted as the prior information about � before
gathering data. After gathering data, the likelihood function is used to update the
prior information, resulting in the posterior distribution for � . Either the prior dis-
tribution or the likelihood function can be multiplied by a constant c > 0 and the
posterior distribution will be the same since the constant c cancels in the denomina-
tor and numerator of Bayes’ theorem.

As in Chaps. 1–10, conditional on � , the likelihood f (y|�) comes from a para-
metric distribution with k parameters θ1, . . . ,θk. However, for Bayesian methods,
the parameters are random variables with prior distribution π(�). Note that condi-
tional on the observed data y, the marginal m�(y) is a constant. Hence p(�|y) ∝
f (y|�)π(�). Often m�(y) is difficult to compute, although there is a large literature
on computational methods. See Sect. 11.4. For exponential families, there is often
a conjugate prior: the prior and posterior come from the same brand name distri-
bution. In this case sometimes the posterior distribution can be computed with the
kernel method of Sect. 1.5.

Note that if the likelihood function corresponds to a brand name pdf or pmf,
then θ almost always takes on values in an interval. Hence the prior and posterior
distributions for θ usually have pdfs instead of pmfs.

Example 11.1, Conjugate Prior for an Exponential Family. Suppose that con-
ditional on � , y comes from a k-parameter exponential family with pdf or pmf

f (y|�) = f (y|�) = h(y)c(�)exp

[
k

∑
j=1

wj(�)t j(y)

]

.

If y1, . . . ,yn are a random sample, then the likelihood function

f (y|�) ∝ [c(�)]n exp

[
k

∑
j=1

wj(�)

(
n

∑
i=1

t j(yi)

)]

= [c(�)]n exp

[
k

∑
j=1

wj(�)ν j

]

where ν j = ∑n
i=1 t j(yi). Then the conjugate prior pdf

π(�) ∝ [c(�)]η exp

[
k

∑
j=1

wj(�)γ j

]
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where the hyperparameters are γ1, . . . ,γk, and η . Hence the posterior pdf

p(�|y) ∝ [c(�)]η+n exp

[
k

∑
j=1

wj(�)[γ j +ν j]

]

.

Let � = (γ1 + ν1, . . . ,γk + νk,η + n). Let t̃ j(�) = wj(�) and η j = γ j + ν j for
j = 1, . . . ,k. Let t̃k+1(�) = log[c(�)], and ηk+1 = η + n. Hence the prior and pos-
terior distributions are from a (k+ 1)-parameter exponential family. So p(�|y) =
h̃(�)b(�)exp

[
∑k+1

j=1 t̃ j(�)η j

]
.

Example 11.2. Suppose y is a random variable and the likelihood function of y
is the binomial(n,ρ) pmf where n is known. Hence y|ρ ∼ binomial(n,ρ). Equiva-
lently, conditional on ρ , there are n iid binomial (1,ρ) random variables w1, . . . ,wn

with y = ∑n
i=1 wi. Then the conjugate prior pdf is the beta(δπ ,νπ ) pdf. Hence the

posterior pdf p(ρ |y) ∝ f (y|ρ)π(ρ) ∝ ρy(1−ρ)n−yρδπ−1(1−ρ)νπ−1 =
ρδπ+y−1(1−ρ)νπ+n−y−1. Thus the posterior pdf is the beta(δπ + y,νπ + n− y) pdf.

Example 11.3. Suppose that conditional on θ , y1, . . . ,yn ∼ Poisson(θ ) where
the conjugate prior is the gamma(νπ ,1/λπ) pdf. Hence the posterior pdf p(θ |y) ∝
f (y|θ )π(θ ) ∝ e−nθθ∑n

i=1 yiθνπ−1e−λπθ = θ (νπ+∑n
i=1 yi)−1e−(λπ+n)θ . Thus the poste-

rior pdf is the gamma (νπ +∑n
i=1 yi,1/(λπ + n)) pdf.

Example 11.4. Suppose that conditional on μ , y1, . . . ,yn ∼ EXP(1/μ) where the
conjugate prior is the gamma(νπ ,1/λπ) pdf. Hence the posterior pdf p(μ |y) ∝
f (y|μ)π(μ) ∝ μne−μ∑n

i=1 yiμνπ−1e−λπμ = μ (n+νπ−1)e−(λπ+∑n
i=1 yi)μ . Thus the pos-

terior pdf is the gamma (n+νπ ,1/(λπ +∑n
i=1 yi)) pdf.

11.2 Bayesian Point Estimation

In frequentist statistics, a point estimator of θ is a one number summary θ̂ . Given a
posterior distribution p(θ |y), a Bayesian point estimator or Bayes estimator is a one
number summary of the posterior distribution. Let T ≡ Tn(y) be the Bayes estimator.
Let L(θ ,a) be the loss function if a is used as the point estimator of θ . The squared
error loss is L(θ ,a) = (θ − a)2 while the absolute error loss is L(θ ,a) = |θ − a|.

Definition 11.2. Given a loss function L(θ ,a) and a posterior distribution
p(θ |y), the Bayes estimator T is the value of a that minimizes Eθ |y [L(θ ,a)]
where the expectation is with respect to the posterior distribution.

Theorem 11.2. The Bayes estimator T is
a) the mean of the posterior distribution if L(θ ,a) = (θ − a)2,
b) the median of the posterior distribution if L(θ ,a) = |θ − a|.



362 11 Bayesian Methods

Note that E[(θ − a)2] is the second moment of θ about a and is minimized
by taking a equal to the population mean μ of θ . This result follows since
E(θ − μ)2 = E(θ − a+ a − μ)2 = E(θ − a)2 + 2E(θ − a)(a − μ) + (a − μ)2 =
E(θ −a)2 − (a−μ)2. Hence E(θ −μ)2 < E(θ −a)2 unless a = μ . It can be shown
that taking a equal to the population median minimizes E[|θ − a|].

Example 11.5. Assume squared error loss is used. For Example 11.2, the Bayes
estimator is T (y) = δπ+y

δπ+νπ+n . For Example 11.3, the Bayes estimator is T (y) =
νπ+∑n

i=1 yi
λπ+n . For Example 11.4, the Bayes estimator is T (y) = νπ+n

λπ+∑n
i=1 yi

.

To compare Bayesian and frequentist estimators, use large sample theory and
the mean square error MSET (θ ) =Vy|θ (T )+Ey |θ (T −θ )2 where the variance and
expectation are taken with respect to the distribution of y|θ and θ is treated as a
constant: the unknown value of θ that resulted in the sample y1, . . . ,yn.

Example 11.6. In Example 11.2, condition on ρ . Then y ∼ binomial(n,ρ) and
the MLE is M = y/n. Then MSEM(ρ) =V (y/n) = ρ(1−ρ)/n.Under squared error

loss, the Bayes estimator is T (y) =
δπ + y

δπ +νπ + n
=

(
n

δπ +νπ + n

)
y
n
+

(1− n
δπ +νπ + n

)
δπ

δπ +νπ
, a linear combination of the MLE y/n and the mean of

the prior distribution
δπ

δπ +νπ
. Then

MSET (ρ) =
nρ(1−ρ)

(δπ +νπ + n)2 +

(
δπ + nρ

δπ +νπ + n
− (δπ +νπ + n)ρ

δπ +νπ + n

)2

=

nρ(1−ρ)+ (δπ− δπρ−νπρ)2

(δπ +νπ + n)2 .

Since √
n(T − y/n) =

√
n
δπ − y

n (δπ +νπ)
δπ +νπ + n

P→ 0

as n → ∞, the Bayes estimator T and the MLE y/n are asymptotically equivalent.

Hence, conditional on ρ ,
√

n(T − ρ) D→ X and
√

n( y
n − ρ) D→ X as n → ∞ where

X ∼N(0,ρ(1−ρ)) by the CLT applied to y/n where y=∑n
i=1 wi as in Example 11.2.

Note that conditional on ρ , if the likelihood y|ρ ∼ binomial(n,ρ) is correct, the
above results hold even if the prior is misspecified.

11.3 Bayesian Inference

Let the pdf of the random variable Z be equal to the posterior pdf p(θ |y) of θ . Let
ξα be the α percentile of Z so that P(Z ≤ ξα) = P(θ ≤ ξα |y) = α where 0 <α < 1.
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Definition 11.3. Let θ have posterior pdf p(θ |y). A 100(1−α)% one-sided
Bayesian credible interval (CIU) for θ with upper credible bound Un is (−∞,Un] =
(−∞,ξ1−α ]. A 100(1−α)% one-sided Bayesian credible interval (CIL) for θ with
lower credible bound Ln is (Ln,∞) = (ξα ,∞). A 100(1−α)% Bayesian credible
interval (BCI) for θ is (Ln,Un] = (ξα1 ,ξ1−α2 ] where α1 +α2 = α . A 100(1−α)%
highest density Bayesian credible interval (HCI) for θ is a 100(1−α)% BCI with
shortest length. The 100(1−α)% highest density region (HDR) for θ is the set Rθ
which is a region with the smallest volume such that P(θ ∈ Rθ |y) = 1−α.
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Fig. 11.1 The 36.8 % highest density region is (0,1)

For a random variable θ , the highest density region is a union of k ≥ 1 disjoint
intervals such that sum of the k interval lengths is as small as possible. Suppose that
p(θ |y) is a unimodal pdf that has interval support, and that the pdf p(θ |y) decreases
rapidly as θ moves away from the mode. Let (a,b) be the shortest interval such that
Fθ |y(b)−Fθ |y(a) = 1−α where the cumulative distribution function Fθ |y(x) =
P(θ ≤ x|y). Then the interval (a,b) is the 100(1−α) highest density region and
is also the 100(1−α)% HCI. To find the (1−α)100% highest density region of a
posterior pdf, move a horizontal line down from the top of the posterior pdf. The line
will intersect the posterior pdf or the boundaries of the support of the posterior pdf
at (a1,b1), . . . ,(ak,bk) for some k ≥ 1. Stop moving the line when the areas under
the posterior pdf corresponding to the intervals is equal to 1−α . As an example, let
p(z|y) = e−z for z > 0. See Fig. 11.1 where the area under the posterior pdf from
0 to 1 is 0.368. Hence (0,1) is the 36.8 %, highest density region. Often the highest
density region is an interval (a,b) where p(a|y) = p(b|y), especially if the support
where p(θ |y)> 0 is (−∞,∞).

The credible intervals are Bayesian analogs of confidence intervals. Similar def-
initions apply for a posterior pmf, but make the coverage ≥ (1−α) since equality
holds only for certain values of α . For example, suppose p(θ |y) = 3/6,2/6 and 1/6
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for θ = 1,2, and 3, respectively. Then the 50 % highest density region is {1}= [1,1].
The (500/6)% highest credible interval is [1,2] while the (500/6)% highest density
region is {1,2}.

Definition 11.4. Assume θ has posterior pdf p(θ |y).
a) For the right tailed test H0 : θ ≤ θ0 versus H1 : θ > θ0, reject H0 if P(θ ≤ θ0|y) =∫ θ0−∞ p(θ |y)dθ < α. Equivalently, reject H0 if θ is not in the 100(1−α)% CIU
(−∞,ξ1−α ]. Otherwise, fail to reject H0.
b) For the left tailed test H0 : θ ≥ θ0 versus H1 : θ < θ0, reject H0 if P(θ ≥ θ0|y) =∫ ∞
θ0

p(θ |y)dθ < α. Equivalently, reject H0 if θ is not in the 100(1− α)% CIL
(ξα ,∞). Otherwise, fail to reject H0.
c) For the two tailed test H0 : θ = θ0 versus H1 : θ �= θ0, reject H0 if θ0 is not in a
100(1−α)% credible interval or highest posterior density region for θ . Otherwise,
fail to reject H0.

For the two tailed test, often the 100(1−α)% credible interval (ξα/2,ξ1−α/2)
is used. This test is good if the posterior pdf is unimodal and approximately sym-
metric since then the BCI approximates the highest posterior density region. The
100(1−α)% highest posterior density region should be used whenever possible.

The shorth(c) estimator or interval can be used to approximate the 100(1−α)%
highest density credible interval which is the 100(1−α)% highest density region
if the posterior pdf is unimodal and the pdf p(θ |y) decreases rapidly as θ moves
away from the mode. Let m=max(100,000,n) and use random numbers to generate
z1, . . . ,zm from a distribution with pdf p(θ |y). Let c = �m(1−α)� where �x� is the
smallest integer ≥ x, e.g., �7.7�= 8. See Grübel (1988). Let z(1), . . . ,z(m) be the or-
der statistics of z1, . . . ,zm. Compute z(c)−z(1),z(c+1)−z(2), . . . ,z(m)−z(m−c+1). Then

the shorth(c) interval is the closed interval [z(s),z(s+c−1)] = [ξ̃α1 , ξ̃1−α2 ] correspond-
ing to the closed interval with the smallest distance. Then the two tailed test rejects
H0 if θ0 is not in the shorth interval. The discussion below Theorem 9.1 suggested
using the shorth(c) estimator for bootstrap tests.

Remark 11.1. It is often useful to plot the prior pdf p(θ ) to see if the prior pdf
represents the researcher’s prior information, and to plot the posterior pdf p(θ |y)
to see if the posterior pdf is unimodal so that the highest density region will be an
interval.

Example 11.7. Following Bolstad (2004, pp. 121, 159), if Z ∼ beta(a,b) with
a > 10 and b > 10, then

Z ≈ N

(
a

a+ b
,

ab
(a+ b)2(a+ b+ 1)

)
,

the normal distribution with the same mean and variance as the beta distribution.
Then an approximate 100(1−α)% BCI is

a
a+ b

± z1−α/2

√
ab

(a+ b)2(a+ b+ 1)
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where P(W ≤ zα ) = α if W ∼ N(0,1). In Example 11.2, suppose a beta(1,1) prior is
used for ρ . This prior is also the U(0,1) noninformative prior. Suppose n = 10 and
y = 8 so the posterior distribution is beta(9,3). Consider testing H0 : ρ ≤ 0.6 versus
H1 : ρ > 0.6 using α = 0.05. Then

P(ρ ≤ 0.6|y) =
∫ 0.6

0

Γ (12)
Γ (3)Γ (9)

ρ2(1−ρ)8dρ = 0.1189 > 0.05 = α.

Hence we fail to reject H0. Use the following R command to evaluate the integral.

pbeta(q=0.6,shape1=9,shape2=3)
[1] 0.1189168

The following R commands shows that the 95 % CIU is [0,0.921) while the 95 %
CIL is (0.530,1]. The qbeta function is used to find the percentile ξδ for δ = 0.95
and δ = 0.05.

qbeta(0.95,shape1=9,shape2=3)
[1] 0.92118
qbeta(0.05,shape1=9,shape2=3)
[1] 0.5299132

Use the text’s sipack function shorth and the following commands to estimate
the 95 % highest density region ≈ [0.5176,0.9613]. The pbeta command com-
putes the cdf F(z) = P(Z ≤ z) when Z ∼ beta(ν = shape1, λ = shape 2).

z <- rbeta(100000,shape1=9,shape2=3)
shorth(z)
$Ln
[1] 0.5175672
$Un
[1] 0.9613357
pbeta(0.9613,shape1=9,shape2=3) -
pbeta(0.5176,shape1=9,shape2=3)
[1] 0.9502639

Now suppose the posterior distribution is beta(10,10). Using the normal approx-
imation, the 95 % highest posterior density region ≈

a
a+ b

± z1−α/2

√
ab

(a+ b)2(a+ b+ 1)
= 0.5± 1.96

√
100

400(21)
= (0.2861,0.7139).

The 95 % highest density region using the shorth is ≈ [0.2878,0.7104]. See the R
commands below.

pbeta(0.7139,shape1=10,shape2=10) -
pbeta(0.2861,shape1=10,shape2=10)
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[1] 0.952977
z <- rbeta(100000,shape1=10,shape2=10)
shorth(z)
$Ln
[1] 0.287823
$Un
[1] 0.7104014
pbeta(0.7104,shape1=10,shape2=10) -
pbeta(0.2878,shape1=10,shape2=10)
[1] 0.9499

Now consider testing H0 : f (y|θ ) = f (y|0) versus H1 : f (y|θ ) = f (y|1) which
is equivalent to testing H0 : θ = 0 versus H1 : θ = 1 where θ is a random variable
taking on values 0 and 1 such that H0 occurs if θ = 0 and H1 occurs if θ = 1. This test
is the Bayesian analog of the frequentist test corresponding to the Neyman–Pearson
lemma. Now θ is discrete so the prior pmf π(θ ) is the Bernoulli(π1) pmf with
π(i)≡ πi for i = 0,1. The posterior pmf is the Bernoulli(p(1|y)) pmf. The previous
discussion usually used prior and posterior distributions that had pdfs. Note that we
can think of H0 and H1 being disjoint events such that H1 is the complement of H0.
Bayes’ theorem for a pmf replaces the integral by a sum in the denominator. Hence
the posterior pmf

p(θ |y) = π(θ ) f (y|θ )
∑1

t=0 π(t) f (y|t) . So p(0|y) = P(H0|y) = π0 f (y|0)
π0 f (y|0)+π1 f (y|1) ,

and

p(1|y) = P(H1|y) = π1 f (y|1)
π0 f (y|0)+π1 f (y|1) .

Let the complement of an event A be denoted by A. Let D denote the “data.” Since
the posterior ∝ (likelihood)(prior), write P(A|D) ∝ P(D|A)P(A), where P(A|D) =
P(D|A)P(A)/P(D). Using A and A,

P(A|D)

P(A|D)
=

P(D|A)
P(D|A)

P(A)

P(A)
,

in the definition below, shows that the posterior odds equals the likelihood ratio
times the prior odds. Let the odds ratio = the posterior odds divided by the prior
odds.

Definition 11.5. The odds for an event A equals the probability of the event oc-
curring divided by the probability of the event not occurring:

odds(A) =
P(A)

1−P(A)
=

P(A)

P(A)
.

The likelihood ratio is the Bayes factor (in favor of A)
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B(D) =
P(D|A)
P(D|A) =

posterior odds
prior odds

.

For testing H0 : f (y|θ ) = f (y|0) versus H1 : f (y|θ ) = f (y|1), use A = H0 and
A = H1 with Bayes’ theorem. Then the prior odds

oddsπ(θ = 0) =
π0

π1
=

π(0)
π(1)

=
P(H0)

P(H1)
,

while the posterior odds

oddsθ |y(θ = 0) =
p(0|y)
p(1|y) =

P(H0|y)
P(H1|y) =

π0 f (y|0)
π1 f (y|1) .

The Bayes factor (in favor of H0)

B(y) =
f (y|0)
f (y|1) =

P(H0|y)/P(H1|y)
P(H0)/P(H1)

=
posterior odds

prior odds
.

Let decision d = 0 if H0 is not rejected and d = 1 if H0 is rejected. Let L(θ =
0,d = 1) = w0 be the loss when a type I error occurs or the loss for rejecting H0

when H0 is true. Let L(θ = 1,d = 0) = w1 be the loss when a type II error occurs
or the loss for failing to reject H0 when H0 is false. Assume there is no loss (L(0,0)
= L(1,1) = 0) for making a correct decision. Then the expected posterior loss for
failing to reject H0 is E[L(θ ,d = 0)] = 0p(H0|y) +w1 p(H1|y) and the expected
posterior loss for rejecting H0 is E[L(θ ,d = 1)] = w0 p(H0|y)+0p(H1|y). The ratio
of the two expected posterior losses for rejecting and failing to reject H0 is

w0 p(H0|y)
w1 p(H1|y) =

w0π0 f (y|0)
w1π1 f (y|1) =

w0π0

w1π1
B(y).

Want the decision d to minimize the expected loss, and rejecting H0 is the better
decision when the above ratio is less than 1, since rejecting H0 has smaller expected
posterior loss than failing to reject H0. This argument proves the following theorem.

Theorem 11.3. The Bayes test for H0 : f (y|θ ) = f (y|0) versus
H1 : f (y|θ ) = f (y|1), rejects H0 if

B(y) =
f (y|0)
f (y|1) <

w1π1

w0π0
,

and fails to reject H0, otherwise.

Berger et al. (1997) suggest using 0–1 loss with w0 = w1 = 1 unit, and π0 =
π1 = 0.5. Then if B(y) < 1, reject H0 and report the posterior probability that H0

is true: P(H0|y) = B(y)
1+B(y)

. If B(y) ≥ 1, fail to reject H0 and report the posterior

probability that H1 is true: P(H1|y) = 1
1+B(y)

.
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11.4 Bayesian Computation

Suppose the data y has been observed, and that the prior π(�) and the likelihood
function f (y|�) have been selected. Then the posterior pdf is

p(�|y) = f (y|�)π(�)
∫

f (y|t)π(t)dt =
f (y|�)π(�)

m�(y)
,

and
∫

f (y|t)π(t)dt = m�(y) needs to be computed or estimated. This computation
can be difficult if the posterior distribution is not a brand name distribution. Let Z
be a random vector with pdf equal to the prior pdf π(z). Since y is observed, y is
treated as a constant. Let the random variable W = ty(Z) = f (y|Z). Then E(W ) =
E[ty(Z)] = E[ f (y|Z)] = ∫

f (y|z)π(z)dz = m�(y). Note that this expected value
exists for a proper prior pdf since marginal pdfs exist. Replace the integral by a sum
for a pmf. Let m=max(K,n) and generateZ1, . . . ,Zm from the distribution with pdf

π(z) and let Wi = f (y|Zi). Then by the law of large numbers, W = ∑m
i=1 Wi/m

P→
E(W ) = m�(y) as m → ∞. If V (W ) < ∞, then by the CLT, W is a

√
n consistent

estimator of m�(y), and taking K to be a large number like K = 100,000 will often
give a good estimate of m�(y).

Normal approximations for the posterior pdf are sometimes used. Let �̃ be the
unique posterior mode of the posterior pdf. Let � be 1× k and let the i jth element
of the k× k matrix I (�̃) be given by

I i j(�̃) =−
[

∂ 2

∂θi∂θ j
log f (y|�)π(�)

]

�=�̃

.

Then under regularity conditions, as n→∞, the posterior pdf p(�|y) can be approx-
imated by the multivariate normal Nk(�̃,I (�̃)

−1) pdf. See Carlin and Louis (2009,
p. 108).

Computational methods can also be used to approximate the posterior pdf p(�|y)
where p(�|y) ∝ f (y|�)π(�) = Ly(�)π(�) where Ly(�) is the likelihood for fixed
y. Then the likelihood is maximized by the maximum likelihood estimator (MLE)
�̂ . Let M = Ly(�̂) = f (y|�̂). Then use the following three steps. 1) Generate �i

from a distribution with pdf π(�). 2) Generate Ui ∼U(0,1). 3) If

Ui ≤
Ly(�)π(�)

Mπ(�)
=

Ly(�)

M
,

then accept �i, otherwise repeat steps 1)–3). Then any accepted �i is a (pseudo)
random variate from a distribution with pdf

Ly(�)π(�)
∫

Ly(�)π(�)d�
= p(�|y).

For a fixed � in the prior distribution, the probability that � is accepted is
Ly(�)/Ly(�̂). See Smith and Gelfand (1992). This rejection sampling technique
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gives a way to generate a pseudo random sample �1, . . . ,�m from a distribution with
pdf p(�|y). This pseudo random sample can be used to estimate the posterior pdf,
the posterior mean, the highest density region, etc.

Markov Chain Monte Carlo is another way to generate pseudo random vari-
ables. The Gibbs Sampler is one technique. Let x be an 1 × b vector from a
distribution with cdf F(x), and let x = (w1,w2, . . . ,wk) where the wi are 1 ×
ai vectors with 2 ≤ k ≤ b and ∑k

i=1 ai = b. Assume that the k full conditional
distributions are known with cdfs F(w1|w2, . . . ,wk), F(w2|w1,w3, . . . ,wk), . . . ,
F(w j|w1, . . . ,w j−1,w j+1, . . . ,wk), . . . , F(wk|w1, . . . ,wk−1). Pick an arbitrary start-
ing value x0 = (w0

1, . . . ,w
0
k) from the support of the unknown distribution of x

which may be a mixture distribution where some of the marginal full conditional
distributions have pdfs and some have pmfs. Typically the full conditional distri-
bution will have a pdf or pmf, but could be a mixture of continuous and discrete
marginal distributions. Generate x1 = (w1

1, . . . ,w
1
k) as follows.

Generate w1
1 from the distribution with cdf F(w1|w0

2, . . . ,w
0
k).

Generate w1
2 from the distribution with cdf F(w2|w1

1,w
0
3, . . . ,w

0
k).

Generate w1
3 from the distribution with cdf F(w3|w1

1,w
1
2,w

0
4, . . . ,w

0
k).

...
Generate w1

j from the distribution with cdf F(w j|w1
1, . . . ,w

1
j−1,w

0
j+1, . . . ,w

0
k).

...
Generate w1

k−1 from the distribution with cdf F(wk−1|w1
1, . . . ,w

1
k−2,w

0
k).

Generate w1
k from the distribution with cdf F(wk|w1

1, . . . ,w
1
k−1).

These k steps generate x1 from x0. Continue the iteration to generate xi from
xi−1 for i = 2, . . . ,d. For large d, xd is a pseudo random vector from the distribution

with cdf F(x), in that under regularity conditions, it can be shown that xd D→ x as
d → ∞, where the random vector x is from the distribution with cdf F(x). Note that
if wi is a random vector from the marginal distribution with cdf F(wi), then wd

i is
a pseudo random vector from that marginal distribution. The Gibbs Sampler could
be used to generate pseudo random vectors xd

1 , . . . ,x
d
m for m = max(K,n) where K

is some integer such as K = 10,000.

Example 11.8. Let b = 2 and ai = 1 for i = 1,2. Let w1 = y and w2 = ρ in
Example 11.2. Then interest might be in the marginal distribution with pmf f (y) =
m�(y). Then y|ρ ∼ binomial(n,ρ) and ρ |y ∼ beta(δπ + y,νπ + n− y). To generate
(y0,ρ0), randomly select an integer from {0,1, ..,n} and ρ0 =U where U ∼U(0,1).
Then generate y1 from a binomial(n,ρ0) random number generator and ρ1 from a
beta(δπ + y1,νπ + n− y1) random number generator, and repeat the iteration d =
1,000 steps. Generate m = 500 pairs of random variables (yd

i ,ρd
i ) for i = 1, . . . ,m.

Suppose the uniform prior with δπ = νπ = 1 is used. Then m̂�(y) = 1
m ∑m

i=1 f (y|ρd
i ).

Note that m�(y) = Eρ [ f (y|ρ)] =
∫

f (y|ρ)π(ρ)dρ , and the ρd
i are a pseudo sample

from the distribution with pdf π(ρ). Of course, for this simple example, π(ρ) is
known, and computing the exact form of the beta-binomial pmf m�(y) is not too
hard, but Gibbs Sampling can be used for harder problems. Can fix t and compute
m̂�(t) = 1

m ∑m
i=1 f (t|ρd

i ) for t = 0,1, . . . ,n. Casella and George (1992) used m = 500
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and d = 10 for this example with a beta(2,4) prior, and showed that the histogram of
m̂�(t) was similar to the true histogram (pmf) of m�(t). Could also make a histogram
of yd

1 , . . . ,y
d
m, or equivalently, use m̃�(t) = 1

m ∑m
i=1 I(yd

i = t) for t = 0,1, . . . ,n. This
estimator tends to be inferior to m̂�(t) since m̃�(t) ignores the parametric structure
of the model.

11.5 Complements

DeGroot and Schervish (2012) and Berry and Lindgren (1995) give good introduc-
tions to frequentist and Bayesian methods, while Carlin and Louis (2009) provides a
good treatment of Bayesian methods. Computational methods are covered by Smith
and Gelfand (1992), Casella and George (1992), and Robert and Casella (2010).
Lavine and Schervish (1999) discuss Bayes factors, and Berger et al. (1997) discuss
Bayes testing. Hyndman (1996) discusses highest density regions, and Frey (2013)
discusses the coverage of the shorth interval. Lindley (1972) and Morris (1983)
show that exponential families have conjugate priors.

Empirical Bayesian models use the data y to estimate the hyperparameters �.
Hierarchical Bayesian models use a prior distribution for the hyperparameters �.
Hence � is a random vector. Then there is a likelihood f (y|�), a prior π(�|�),
and a hyperprior π(�) that depends on chosen parameters �. In a more complicated
hierarchical model, � would be a random vector with a prior. In general, there might
be random vectors �1,�2, . . . ,�k where �k has a prior π(�k) that depends on constant
parameters �k+1.

11.6 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USEFUL.

Refer to Chap. 10 for the pdf or pmf of the distributions in the problems
below.

11.1. Write Bayes’ theorem if p, f and π correspond to pmfs.

As problems 11.2–11.8 illustrate, it is often useful to find the exponential family
form of the pdf or pmf f (y|θ ) and write f (y|θ ) ∝ terms that depend on θ . Terms
that do not depend on θ are treated as constants. The MLE and the Bayes estimator
are very similar for large n for these problems. Note that eθt(y) = e−θ [−t(y)].

11.2. Assume that r is known, and that conditional on ρ , the random vari-
ables y1, . . . ,yn are iid negative binomial NB(r,ρ), so that the likelihood f (y|ρ) ∝
ρnr(1−ρ)∑n

i=1 yi . Then the conjugate prior is the beta(δπ ,νπ) pdf.
a) Find the posterior pdf.
b) For squared error loss, what is the Bayes estimator of ρ?
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11.3. Let θ = 1/λ , and write the pdf of the power distribution as f (y|θ ) =
θy−1eθ log(y) for 0 < y < 1. Assume that conditional on θ , the random variables
y1, . . . ,yn are iid from this power distribution. Then the conjugate prior is the
gamma(ν,1/δ ) pdf.

a) Find the posterior pdf.
b) For squared error loss, what is the Bayes estimator of θ?

11.4. Assume that conditional on θ , the random variables y1, . . . ,yn are iid
from an inverse exponential IEXP(θ ) distribution. Then the conjugate prior is the
gamma(ν,1/λ ) pdf.

a) Find the posterior pdf.
b) For squared error loss, what is the Bayes estimator of θ?

11.5. Assume that conditional on τ, the random variables y1, . . . ,yn are iid from
a Burr type X BTX(τ) distribution. Then the conjugate prior is the gamma(ν,1/λ )
pdf and

f (y|τ) ∝ τ exp(τ log(1− e−y2
)).

a) Find the posterior pdf.
b) For squared error loss, what is the Bayes estimator of τ?

11.6. Assume that conditional on σ , the random variables y1, . . . ,yn are iid
from a one-side stable OSS(σ ) distribution. Then the conjugate prior is the
gamma(ν,1/λ ) pdf and

f (y|σ) ∝ σ1/2 exp(−σ/(2y)).

a) Find the posterior pdf.
b) For squared error loss, what is the Bayes estimator of σ?

11.7. Let θ = 1/λ . Assume that conditional on θ , the random variables
y1, . . . ,yn are iid from a truncated extreme value TEV(θ ) distribution with

f (y|θ ) ∝ θ exp(−θ (ey − 1)).

Then the conjugate prior is the gamma(ν,1/δ ) pdf.
a) Find the posterior pdf.
b) For squared error loss, what is the Bayes estimator of θ?

11.8. Assume that conditional on ν, the random variables y1, . . . ,yn are iid from
a Topp–Leone (ν) distribution with

f (y|ν) ∝ ν exp(−ν[− log(2y− y2)]).

Then the conjugate prior is the gamma(θ ,1/λ ) pdf.
a) Find the posterior pdf.
b) For squared error loss, what is the Bayes estimator of ν?



Chapter 12
Stuff for Students

To be blunt, many of us are lousy teachers, and our efforts to improve are feeble. So
students frequently view statistics as the worst course taken in college.

Hogg (1991)

This chapter tells how to get the book’s R functions in sipack that are useful
for Chaps. 9 and 11. Solutions to many of the text problems are also given. These
problems and solutions should be considered as additional examples.

12.1 R Statistical Software

R is a statistical software package, and R is the free version of Splus. A very useful
R link is (www.r-project.org/#doc).

As of September 2013, the author’s personal computer has Version 2.13.1 (July
8, 2011) of R.

Downloading the book’s R functions sipack.txt into R:

In Chap. 9, several of the homework problems use R functions contained in the
book’s website (http://lagrange.math.siu.edu/Olive/sipack.txt) under the file name
sipack.txt. The command

source("http://lagrange.math.siu.edu/Olive/
sipack.txt")

can be used to download the R functions into R. Type ls(). About 11 R functions
from sipack.txt should appear.

For Windows, the functions can be saved on a flash drive G, say. Then use the
following command.

> source("G:/sipack.txt")

D.J. Olive, Statistical Theory and Inference, DOI 10.1007/978-3-319-04972-4 12,
© Springer International Publishing Switzerland 2014
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Alternatively, from the website (http://lagrange.math.siu.edu/Olive/sipack.txt),
go to the Edit menu and choose Select All, then go to the Edit menu and choose
Copy. Next enter R, go to the Edit menu and choose Paste. These commands also
enter the sipack functions into R.

When you finish your R session, enter the command q(). A window asking “Save
workspace image?” will appear. Click on No if you do not want to save the programs
in R. (If you do want to save the programs then click on Yes.)

This section gives tips on using R, but is no replacement for books such as Becker
et al. (1988), Chambers (2008), Crawley (2005, 2013), Dalgaard (2002) or Venables
and Ripley (2010). Also see MathSoft (1999a,b) and use the website (www.google.
com) to search for useful websites. For example enter the search words R documen-
tation.

The command q() gets you out of R or Splus.
The commands help(fn) and args(fn) give information about the function fn, e.g.,

if fn = rnorm.
Making functions in R is easy.

For example, type the following commands.

mysquare <- function(x){
# this function squares x
r <- xˆ2
r }

The second line in the function shows how to put comments into functions.

Modifying your function is easy.

Use the fix command.
fix(mysquare)

This will open an editor such as Notepad and allow you to make changes.
In Splus, the command Edit(mysquare) may also be used to modify the function

mysquare.

To save data or a function in R, when you exit, click on Yes when the “Save
worksheet image?” window appears. When you reenter R, type ls(). This will show
you what is saved. You should rarely need to save anything for this book. In Splus,
data and functions are automatically saved. To remove unwanted items from the
worksheet, e.g., x, type rm(x),
pairs(x) makes a scatterplot matrix of the columns of x,
hist(y) makes a histogram of y,
boxplot(y) makes a boxplot of y,
stem(y) makes a stem and leaf plot of y,
scan(), source(), and sink() are useful on a Unix workstation.
To type a simple list, use y <− c(1,2,3.5).
The commands mean(y), median(y), var(y) are self explanatory.

http://lagrange.math.siu.edu/Olive/sipack.txt
www.google.com
www.google.com
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The following commands are useful for a scatterplot created by the command
plot(x,y).
lines(x,y), lines(lowess(x,y,f=.2))
identify(x,y)
abline(out$coef), abline(0,1)

The usual arithmetic operators are 2+ 4, 3− 7, 8 ∗ 4, 8/4, and

2ˆ{10}.

The ith element of vector y is y[i] while the ij element of matrix x is x[i, j]. The
second row of x is x[2, ] while the 4th column of x is x[,4]. The transpose of x is t(x).

The command apply(x,1,fn) will compute the row means if fn = mean. The com-
mand apply(x,2,fn) will compute the column variances if fn = var. The commands
cbind and rbind combine column vectors or row vectors with an existing matrix or
vector of the appropriate dimension.

12.2 Hints and Solutions to Selected Problems

1.10. d) See Problem1.19 with Y =W and r = 1.

f) Use the fact that E(Y r) = E[(Y φ )r/φ ] = E(W r/φ ) where W ∼ EXP(λ ). Take
r = 1.

1.11. d) Find E(Y r) for r = 1,2 using Problem1.19 with Y =W.

f) For r = 1,2, find E(Y r) using the fact that E(Y r) = E[(Y φ )r/φ ] = E(W r/φ )
where W ∼ EXP(λ ).

1.12. a) 200

b) 0.9(10)+ 0.1(200)= 29

1.13. a) 400(1) = 400

b) 0.9E(Z)+ 0.1E(W) = 0.9(10)+ 0.1(400)= 49

1.15. a) 1 A
A+B + 0 B

A+B = A
A+B .

b) nA
A+B .

1.16. a) g(xo)P(X = xo) = g(xo)

b) E(etX ) = etxo by a).

c) m′(t) = xoetxo , m′′(t) = x2
oetxo , m(n)(t) = xn

oetxo .

1.17. m(t) = E(etX ) = etP(X = 1)+ e−tP(X =−1) = 0.5(et + e−t).

1.18. a) ∑n
x=0 xetx f (x)
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b) ∑n
x=0 x f (x) = E(X)

c) ∑n
x=0 x2etx f (x)

d) ∑n
x=0 x2 f (x) = E(X2)

e) ∑n
x=0 xketx f (x)

1.19. E(W r) = E(erX ) = mX(r) = exp(rμ+ r2σ2/2) where mX (t) is the mgf of
a N(μ ,σ2) random variable.

1.20. a) E(X2) =V (X)+ (E(X))2 = σ2 + μ2.

b) E(X3) = 2σ2E(X)+ μE(X2) = 2σ2μ+ μ(σ2 + μ2) = 3σ2μ+ μ3.

1.22.
1√
2π

∫ ∞

−∞
exp

(
−1

2
y2
)

dy = 1. So
∫ ∞

−∞
exp

(
−1

2
y2
)

dy =
√

2π.

1.23.
∫ ∞
σ f (x|σ ,θ )dx = 1, so

∫ ∞

σ

1
xθ+1 dx =

1
θσθ . (12.1)

So

EXr =
∫ ∞

σ
xrθσθ 1

xθ+1 dx = θσθ
∫ ∞

σ

1
xθ−r+1 dx =

θσθ

(θ − r)σθ−r

by Eq. (12.1). So

EXr =
θσ r

θ − r

for θ > r.

1.24.

EY r =

∫ 1

0
yr Γ (δ +ν)
Γ (δ )Γ (ν)

yδ−1(1− y)ν−1dy =

Γ (δ +ν)
Γ (δ )Γ (ν)

Γ (δ + r)Γ (ν)
Γ (δ + r+ν)

∫ 1

0

Γ (δ + r+ν)
Γ (δ + r)Γ (ν)

yδ+r−1(1− y)ν−1dy =

Γ (δ +ν)Γ (δ + r)
Γ (δ )Γ (δ + r+ν)

for r >−δ since 1 =
∫ 1

0 beta(δ + r,ν) pdf.

1.25. E(etY ) = ∑∞
y=1 ety −1

log(1−θ)
1
y exp[log(θ )y]. But ety exp[log(θ )y] =

exp[(log(θ )+ t)y] = exp[(log(θ )+ log(et))y] = exp[log(θet)y].
So E(etY ) = −1

log(1−θ) [− log(1−θet)]∑∞
y=1

−1
log(1−θet )

1
y exp[log(θet)y] =

log(1−θet )
log(1−θ) since 1 = ∑ [logarithmic (θet) pmf] if 0 < θet < 1 or 0 < et < 1/θ or

−∞< t <− log(θ ).

1.28. a) EX = 0.9EZ+ 0.1EW = 0.9νλ + 0.1(10) = 0.9(3)(4)+ 1= 11.8.
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b) EX2 = 0.9[V(Z)+ (E(Z))2]+ 0.1[V(W )+ (E(W ))2]
= 0.9[νλ 2 +(νλ )2]+ 0.1[10+(10)2]
= 0.9[3(16)+ 9(16)]+ 0.1(110)= 0.9(192)+ 11= 183.8.

2.8. a) FW (w) = P(W ≤ w) = P(Y ≤ w − μ) = FY (w − μ). So fW (w) =
d

dw FY (w− μ) = fY (w− μ).
b) FW (w) = P(W ≤ w) = P(Y ≤ w/σ) = FY (w/σ). So fW (w) = d

dw FY (w/σ) =
fY (w/σ) 1

σ .

c) FW (w) =P(W ≤w) =P(σY ≤w−μ)=FY (
w−μ
σ ). So fW (w) = d

dw FY (
w−μ
σ ) =

fY (
w−μ
σ ) 1

σ .

2.9. a) See Example 2.14.

2.11. W = Z2 ∼ χ2
1 where Z ∼ N(0,1). So the pdf of W is

f (w) =
w

1
2−1e−

w
2

2
1
2Γ ( 1

2 )
=

1√
w
√

2π
e−

w
2

for w > 0.

2.12. (Y − μ)/σ = |Z| ∼ HN(0,1) where Z ∼ N(0,1). So (Y − μ)2 = σ2Z2 ∼
σ2χ2

1 ∼ G(0.5,2σ2).

2.16. a) y = e−w = t−1(w), and

∣
∣
∣∣
dt−1(w)

dw

∣
∣
∣∣= |− e−w|= e−w.

Now P(Y = 0) = 0 so 0 < Y ≤ 1 implies that W =− log(Y )> 0. Hence

fW (w) = fY (t
−1(w))

∣
∣
∣∣
dt−1(w)

dw

∣
∣
∣∣=

1
λ
(e−w)

1
λ −1e−w =

1
λ

e−w/λ

for w > 0 which is the EXP(λ ) pdf.

2.18. a)

f (y) =
1
λ

φyφ−1

(1+ yφ)
1
λ +1

where y,φ , and λ are all positive. Since Y > 0, W = log(1+Y φ ) > log(1)> 0 and
the support W = (0,∞). Now 1+ yφ = ew, so y = (ew − 1)1/φ = t−1(w). Hence

∣
∣
∣
∣
dt−1(w)

dw

∣
∣
∣
∣=

1
φ
(ew − 1)

1
φ −1ew
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since w > 0. Thus

fW (w) = fY (t
−1(w))

∣
∣
∣∣
dt−1(w)

dw

∣
∣
∣∣=

1
λ

φ(ew − 1)
φ−1
φ

(
1+(ew− 1)

φ
φ

) 1
λ +1

1
φ
(ew − 1)

1
φ −1ew

=
1
λ
(ew − 1)1− 1

φ (ew − 1)
1
φ −1

(ew)
1
λ +1

ew

1
λ

e−w/λ

for w > 0 which is the EXP(λ ) pdf.

2.25. b)

f (y) =
1

πσ [1+( y−μ
σ )2]

where y and μ are real numbers and σ > 0. Now y = log(w) = t−1(w) and W =
eY > 0 so the support W = (0,∞). Thus

∣
∣∣
∣
dt−1(w)

dw

∣
∣∣
∣=

1
w
,

and

fW (w) = fY (t
−1(w))

∣∣
∣
∣
dt−1(w)

dw

∣∣
∣
∣=

1
πσ

1

[1+
(

log(w)−μ
σ

)2
]

1
w

=

1

πσw[1+
(

log(w)−μ
σ

)2
]

for w > 0 which is the LC(μ ,σ) pdf.

2.63. a) EX = E[E[X |Y ]] = E[βo +β1Y ] = β0 + 3β1.

b) V (X) = E[V (X |Y )]+V [E(X |Y )] = E(Y 2)+V(β0 +β1Y ) =
V (Y )+ [E(Y)]2 +β 2

1V (Y ) = 10+ 9+β 2
1 10 = 19+ 10β 2

1 .

2.64. a) X2 ∼ N(100,6).

b) (
X1

X3

)
∼ N2

((
49
17

)
,

(
3 −1
−1 4

))
.

c) X1 X4 and X3 X4.

d)

ρ(X1,X2) =
Cov(X1,X3)√

VAR(X1)VAR(X3)
=

−1√
3
√

4
=−0.2887.
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2.65. a) Y |X ∼ N(49,16) since Y X . (Or use E(Y |X) = μY +Σ12Σ−1
22 (X −μx) =

49+0(1/25)(X−100)= 49 and VAR(Y |X)=Σ11−Σ12Σ−1
22 Σ21 = 16−0(1/25)0=

16.)

b) E(Y |X) = μY +Σ12Σ−1
22 (X − μx) = 49+ 10(1/25)(X− 100) = 9+ 0.4X .

c) VAR(Y |X) = Σ11 −Σ12Σ−1
22 Σ21 = 16− 10(1/25)10= 16− 4= 12.

2.68. Note that the pdf for λ is the EXP(1) pdf, so λ ∼ EXP(1).
a) E(Y ) = E[E(Y |λ )] = E(λ ) = 1.
b) V (Y ) = E[V (Y |λ )]+V [E(Y |λ )] = E(λ )+V(λ ) = 1+ 12 = 2.

2.71.
y 0 1

fY1 (y) = P(Y1 = y) 0.76 0.24

So m(t) = ∑y ety f (y) = ∑y etyP(Y = y) = et00.76+ et10.24
= 0.76+ 0.24et.

2.72. No, f (x,y) �= fX (x) fY (y) = 1
2π exp[−1

2 (x2 + y2)].

2.73. a) E(Y ) = E[E(Y |P)] = E(kP) = kE(P) = k δ
δ+ν = k4/10 = 0.4k.

b) V (Y ) = E[V (Y |P)]+V(E(Y |P)] = E[kP(1−P)]+V(kP) =
kE(P)− kE(P2)+ k2V (P) =

k
δ

δ +ν
− k

[
δν

(δ +ν)2(δ +ν+ 1)
+

(
δ

δ +ν

)2
]

+ k2 δν
(δ +ν)2(δ +ν+ 1)

= k0.4− k[0.021818+0.16]+ k20.021818= 0.021818k2+ 0.21818k.

2:74. a)
y2 0 1 2

fY2 (y2) 0.55 0.16 0.29

b) f (y1|2) = f (y1,2)/ fY2(2) and f (0,2)/ fY2(2) = .24/.29 while
f (1,2)/ fY2(2) = .05/.29

y1 0 1
fY1|Y2

(y1|y2 = 2) 24/29 ≈ 0.8276 5/29 ≈ 0.1724

2.77. c) mX(t) = mW (1) = exp(μW + 1
2σ

2
W ) = exp(tT �+ 1

2 t
T ˙ t).

3.1. a) See Sect. 10.3.
b) See Sect. 10.13.
c) See Sect. 10.42.
d) See Example 3.5.

3.2. a) See Sect. 10.1.
b) See Sect. 10.9.
c) See Sect. 10.16.
d) See Sect. 10.35.
e) See Sect. 10.39.
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3.3. b) See Sect. 10.19.
c) See Sect. 10.30.
d) See Sect. 10.38.
f) See Sect. 10.43.
g) See Sect. 10.49.
h) See Sect. 10.53.

3.4. a) See Sect. 10.39.
b) See Sect. 10.39.
c) See Sect. 10.16.

3.5. a) See Sect. 10.7.
b) See Sect. 10.12.
c) See Sect. 10.14.
d) See Sect. 10.29.
h) See Sect. 10.41.
i) See Sect. 10.45.
j) See Sect. 10.51.

3.10. Yes, the top version of the pdf multiplied on the left by I(y > 0) is in the
form h(y)c(ν)exp[w(ν)t(y)] where t(Y ) is given in the problem, c(ν) = 1/ν and
w(ν) =−1/(2ν2). Hence Ω = (−∞,0).

4.3. See the proof of Theorem 4.5b.

4.4. See Example 4.14.

4.6. The appropriate section in Chap. 10 gives the 1P-REF parameterization.
Then the complete minimal sufficient statistic is Tn given by Theorem 3.6.

4.7. The appropriate section in Chap. 10 gives the 1P-REF parameterization.
Then the complete minimal sufficient statistic is Tn given by Theorem 3.7.

4.8. The appropriate section in Chap. 10 gives the 2P-REF parameterization.
Then the complete minimal sufficient statistic is T = (T1(Y ),T2(Y )) where Ti(Y ) =

∑n
i=1 ti(Yi) by Corollary 4.6.

4.10. b) The 2P-REF parameterization is given in Chap. 10, so (∑n
i=1 Yi,∑n

i=1 eYi)
is the complete minimal sufficient statistic by Corollary 4.6.

4.26. See Example 4.11.

4.30. Method i): Eλ (X − S2) = λ −λ = 0 for all λ > 0, but Pλ (X − S2 = 0)< 1
so T = (X ,S2) is not complete.

Method ii): The Poisson distribution is a 1P-REF with complete sufficient statis-
tic ∑Xi, so X is a minimal sufficient statistic. T = (X ,S2) is not a function of X , so
T is not minimal sufficient and hence not complete.
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4.31.

f (x) =
Γ (2θ )

Γ (θ )Γ (θ )
xθ−1(1− x)θ−1 =

Γ (2θ )
Γ (θ )Γ (θ )

exp[(θ − 1)(log(x)+ log(1− x))],

for 0 < x < 1, a one-parameter exponential family. Hence
∑n

i=1(log(Xi)+ log(1−Xi)) is a complete minimal sufficient statistic.

4.32. a) and b)

f (x) = I{1,2,...}(x)
1

ζ (ν)
exp[−ν log(x)]

is a one-parameter regular exponential family with Ω = (−∞,−1). Hence
∑n

i=1 log(Xi) is a complete minimal sufficient statistic.
c) By the Factorization Theorem, W = (X1, . . . ,Xn) is sufficient, but W is not

minimal since W is not a function of ∑n
i=1 log(Xi).

4.33. f (x1, . . . ,xn) =∏n
i=1 f (xi) =

[
2√
2π

]n 1
σn exp

(−nμ2

2σ2

)
I[x(1) > μ ] exp

(
−1
2σ2

n

∑
i=1

x2
i +

μ
σ2

n

∑
i=1

xi

)

= h(x)g(T (x)|�)
where � = (μ ,σ). Hence T (X) = (X(1),∑n

i=1 X2
i ,∑

n
i=1 Xi) is a sufficient statistic for

(μ ,σ).
4.34. Following the end of Example 4.4, X(1) ∼ EXP(λ/n) with λ = 1, so

E[X(1)] = 1/n.

4.35. FX(n)
(x) = [F(x)]n = xn for 0 < x < 1. Thus fX(n)

(x) = nxn−1 for 0 < x < 1.
This pdf is the beta(δ = n,ν = 1) pdf. Hence

E[X(n)] =

∫ 1

0
x fX(n)

(x)dx =
∫ 1

0
xnxn−1dx =

∫ 1

0
nxndx = n

xn+1

n+ 1

∣
∣
∣
∣

1

0
=

n
n+ 1

.

4.36. Now
fX (x) = I(θ < x < θ + 1)

and
f (x)
f (y)

=
I(θ < x(1) ≤ x(n) < θ + 1)

I(θ < y(1) ≤ y(n) < θ + 1)

which is constant for all real θ iff (x(1),x(n)) = (y(1),y(n)). Hence T = (X(1),X(n)) is
a minimal sufficient statistic by the LSM theorem. To show that T is not complete,
first find E(T ). Now

FX(t) =
∫ t

θ
dx = t −θ
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for θ < t < θ + 1. Hence

fX(n)
(t) = n[FX(t)]

n−1 fx(t) = n(t −θ )n−1

for θ < t < θ + 1 and

Eθ (X(n)) =

∫
t fX(n)

(t)dt =
∫ θ+1

θ
tn(t −θ )n−1dt.

Use u-substitution with u = t−θ , t = u+θ and dt = du. Hence t = θ implies u= 0,
and t = θ + 1 implies u = 1. Thus

Eθ (X(n)) =
∫ 1

0
n(u+θ )un−1du =

∫ 1

0
nundu+

∫ 1

0
nθun−1du =

n
un+1

n+ 1

∣
∣
∣
∣

1

0
+θ n

un

n

∣
∣
∣
∣

1

0
=

n
n+ 1

+
nθ
n

= θ +
n

n+ 1
.

Now
fX(1)

(t) = n[1−FX(t)]
n−1 fx(t) = n(1− t+θ )n−1

for θ < t < θ + 1 and thus

Eθ (X(1)) =
∫ θ+1

θ
tn(1− t+θ )n−1dt.

Use u–substitution with u = (1− t + θ ) and t = 1− u+ θ and du = −dt. Hence
t = θ implies u = 1, and t = θ + 1 implies u = 0. Thus

Eθ (X(1)) =−
∫ 0

1
n(1− u+θ )un−1du = n(1+θ )

∫ 1

0
un−1du− n

∫ 1

0
undu =

n(1+θ )
un

n

∣
∣
∣
∣

1

0
− n

un+1

n+ 1

∣
∣
∣
∣

1

0
= (θ + 1)

n
n
− n

n+ 1
= θ +

1
n+ 1

.

To show that T is not complete try showing Eθ (aX(1) + bX(n) + c) = 0 for some
constants a,b and c. Note that a =−1, b = 1 and c =− n−1

n+1 works. Hence

Eθ (−X(1) +X(n)−
n− 1
n+ 1

) = 0

for all real θ but

Pθ (g(T ) = 0) = Pθ (−X(1) +X(n)−
n− 1
n+ 1

= 0) = 0 < 1

for all real θ . Hence T is not complete.
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4.37. Note that

f (y) = I(y > 0) 2y e−y2
τ exp[(1− τ)

(
− log(1− e−y2

)
)
]

is a one-parameter exponential family with minimal and complete sufficient statistic
−∑n

i=1 log(1− e−Y2
i ).

5.2. The likelihood function L(θ ) =

1
(2π)n exp

(−1
2

[
∑(xi −ρ cosθ )2 +∑(yi −ρ sinθ )2]

)
=

1
(2π)n exp

(−1
2

[
∑x2

i − 2ρ cosθ∑xi +ρ2 cos2 θ +∑y2
i

−2ρ sinθ∑yi +ρ2 sin2 θ
])

=
1

(2π)n exp

(−1
2

[
∑x2

i +∑y2
i +ρ2]

)
exp

(
ρ cosθ∑xi +ρ sinθ∑yi

)
.

Hence the log likelihood log L(θ )

= c+ρ cosθ∑xi +ρ sinθ ∑yi.

The derivative with respect to θ is

−ρ sinθ∑xi +ρ cosθ∑yi.

Setting this derivative to zero gives

ρ∑yi cosθ = ρ∑xi sinθ

or
∑yi

∑xi
= tanθ .

Thus

θ̂ = tan−1
(
∑yi

∑xi

)
.

Now the boundary points are θ = 0 and θ = 2π . Hence θ̂MLE equals 0, 2π , or θ̂
depending on which value maximizes the likelihood.

5.6. See Sect. 10.7.

5.7. See Sect. 10.9.

5.8. See Sect. 10.12.

5.9. See Sect. 10.13.

5.10. See Sect. 10.16.
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5.11. See Sect. 10.19.

5.12. See Sect. 10.26.

5.13. See Sect. 10.26.

5.14. See Sect. 10.29.

5.15. See Sect. 10.38.

5.16. See Sect. 10.45.

5.17. See Sect. 10.51.

5.18. See Sect. 10.3.

5.19. See Sect. 10.14.

5.20. See Sect. 10.49.

5.23. a) The log likelihood is logL(τ) = − n
2 log(2πτ)− 1

2τ ∑
n
i=1(Xi − μ)2. The

derivative of the log likelihood is equal to − n
2τ +

1
2τ2 ∑n

i=1(Xi − μ)2. Setting the

derivative equal to 0 and solving for τ gives the MLE τ̂ =
∑n

i=1(Xi−μ)2

n . Now the
likelihood is only defined for τ > 0. As τ goes to 0 or ∞, logL(τ) tends to −∞.
Since there is only one critical point, τ̂ is the MLE.

b) By the invariance principle, the MLE is
√

∑n
i=1(Xi−μ)2

n .

5.28. This problem is nearly the same as finding the MLE of σ2 when the data
are iid N(μ ,σ2) when μ is known. See Problem 5.23 and Sect. 10.23. The MLE in
a) is ∑n

i=1(Xi − μ)2/n. For b) use the invariance principle and take the square root
of the answer in a).

5.29. See Example 5.5.

5.30.

L(θ ) =
1

θ
√

2π
e−(x−θ)2/2θ2

ln(L(θ )) =− ln(θ )− ln(
√

2π)− (x−θ )2/2θ 2

d ln(L(θ ))
dθ

=
−1
θ

+
x−θ
θ 2 +

(x−θ )2

θ 3

=
x2

θ 3 − x
θ 2 − 1

θ
set
= 0

by solving for θ ,

θ =
x
2
∗ (−1+

√
5),
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and

θ =
x
2
∗ (−1−

√
5).

But, θ > 0. Thus, θ̂ = x
2 ∗ (−1+

√
5), when x > 0, and θ̂ = x

2 ∗ (−1−√
5), when

x < 0.
To check with the second derivative

d2 ln(L(θ ))
dθ 2 = −2θ + x

θ 3 +
3(θ 2 +θx− x2)

θ 4

=
θ 2 + 2θx− 3x2

θ 4

but the sign of the θ 4 is always positive, thus the sign of the second derivative
depends on the sign of the numerator. Substitute θ̂ in the numerator and simplify,
you get x2

2 (−5±√
5), which is always negative. Hence by the invariance principle,

the MLE of θ 2 is θ̂ 2.

5.31. a) For any λ > 0, the likelihood function

L(σ ,λ ) = σn/λ I[x(1) ≥ σ ]
1
λ n exp

[

−
(

1+
1
λ

) n

∑
i=1

log(xi)

]

is maximized by making σ as large as possible. Hence σ̂ = X(1).

b)

L(σ̂ ,λ ) = σ̂n/λ I[x(1) ≥ σ̂ ]
1
λ n exp

[

−
(

1+
1
λ

) n

∑
i=1

log(xi)

]

.

Hence logL(σ̂ ,λ ) =

n
λ

log(σ̂)− n log(λ )−
(

1+
1
λ

) n

∑
i=1

log(xi).

Thus

d
dλ

logL(σ̂ ,λ ) =
−n
λ 2 log(σ̂)− n

λ
+

1
λ 2

n

∑
i=1

log(xi)
set
= 0,

or −n log(σ̂)+∑n
i=1 log(xi) = nλ . So

λ̂ =− log(σ̂)+ ∑n
i=1 log(xi)

n
=

∑n
i=1 log(xi/σ̂)

n
.
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Now

d2

dλ 2 logL(σ̂ ,λ ) =
2n
λ 3 log(σ̂)+

n
λ 2 − 2

λ 3

n

∑
i=1

log(xi)

∣∣
∣
∣
∣
λ=λ̂

=
n

λ̂ 2
− 2

λ̂ 3

n

∑
i=1

log(xi/σ̂) =
−n

λ̂ 2
< 0.

Hence (σ̂ , λ̂ ) is the MLE of (σ ,λ ).

5.32. a) the likelihood

L(λ ) =
1
λ n exp

[
−
(

1+
1
λ

)

∑ log(xi)

]
,

and the log likelihood

log(L(λ )) =−n log(λ )−
(

1+
1
λ

)

∑ log(xi).

Hence
d

dλ
log(L(λ )) =

−n
λ

+
1
λ 2 ∑ log(xi)

set
= 0,

or ∑ log(xi) = nλ or

λ̂ =
∑ log(Xi)

n
.

Notice that
d2

dλ 2 log(L(λ )) =
n
λ 2 − 2∑ log(xi)

λ 3

∣
∣
∣
∣
λ=λ̂

=

n

λ̂ 2
− 2nλ̂

λ̂ 3
=

−n

λ̂ 2
< 0.

Hence λ̂ is the MLE of λ .

b) By invariance, λ̂ 8 is the MLE of λ 8.

5.33. a) The likelihood

L(θ ) = c e−n2θ exp
[
log(2θ )∑xi

]
,

and the log likelihood

log(L(θ )) = d − n2θ+ log(2θ )∑xi.

Hence
d

dθ
log(L(θ )) =−2n+

2
2θ ∑xi

set
= 0,
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or ∑xi = 2nθ , or
θ̂ = X/2.

Notice that
d2

dθ 2 log(L(θ )) =
−∑xi

θ 2 < 0

unless ∑xi = 0.
b) (θ̂ )4 = (X/2)4 by invariance.

5.34. L(0|x) = 1 for 0 < xi < 1, and L(1|x) =∏n
i=1

1
2
√

xi
for 0 < xi < 1. Thus the

MLE is 0 if 1 ≥∏n
i=1

1
2
√

xi
and the MLE is 1 if 1 <∏n

i=1
1

2
√

xi
.

5.35. a) Notice that θ > 0 and

f (y) =
1√
2π

1√
θ

exp

(−(y−θ )2

2θ

)
.

Hence the likelihood

L(θ ) = c
1

θ n/2
exp

[−1
2θ ∑(yi −θ )2

]

and the log likelihood

log(L(θ )) = d − n
2

log(θ )− 1
2θ ∑(yi −θ )2 =

d − n
2

log(θ ) − 1
2

n

∑
i=1

(
y2

i

θ
− 2yiθ

θ
+

θ 2

θ

)

= d − n
2

log(θ ) − 1
2
∑n

i=1 y2
i

θ
+

n

∑
i=1

yi − 1
2

nθ .

Thus
d

dθ
log(L(θ )) =

−n
2

1
θ
+

1
2

n

∑
i=1

y2
i

1
θ 2 − n

2
set
= 0,

or
−n
2

θ 2 − n
2
θ +

1
2

n

∑
i=1

y2
i = 0,

or

nθ 2 + nθ −
n

∑
i=1

y2
i = 0. (12.2)

Now the quadratic formula states that for a �= 0, the quadratic equation ay2 + by+
c = 0 has roots

−b±√
b2 − 4ac

2a
.
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Applying the quadratic formula to (12.2) gives

θ =
−n±

√
n2 + 4n∑n

i=1 y2
i

2n
.

Since θ > 0, a candidate for the MLE is

θ̂ =
−n+

√
n2 + 4n∑n

i=1 Y 2
i

2n
=

−1+
√

1+ 4 1
n ∑

n
i=1 Y 2

i

2
.

Since θ̂ satisfies (12.2),

nθ̂ −
n

∑
i=1

y2
i =−nθ̂ 2. (12.3)

Note that

d2

dθ 2 log(L(θ )) =
n

2θ 2 − ∑n
i=1 y2

i

θ 3 =
1

2θ 3

[

nθ − 2
n

∑
i=1

y2
i

]∣∣
∣
∣
∣
θ=θ̂

=

1

2θ̂ 3

[

nθ̂ −
n

∑
i=1

y2
i −

n

∑
i=1

y2
i

]

=
1

2θ̂ 3

[

−nθ̂ 2 −
n

∑
i=1

y2
i

]

< 0

by (12.3). Since L(θ ) is continuous with a unique root on θ > 0, θ̂ is the MLE.

5.36. a) L(θ ) = (θ − x)2/3 for x − 2 ≤ θ ≤ x + 1. Since x = 7, L(5) = 4/3,
L(7) = 0, and L(8) = 1/3. So L is maximized at an endpoint and the MLE θ̂ = 5.

b) By invariance the MLE is h(θ̂) = h(5) = 10− e−25 ≈ 10.

5.37. a) L(λ ) = c 1
λ n exp

(
−1
2λ 2 ∑n

i=1(e
xi − 1)2

)
.

Thus

log(L(λ )) = d− n log(λ )− 1
2λ 2

n

∑
i=1

(exi − 1)2.

Hence
d log(L(λ ))

dλ
=

−n
λ

+
1
λ 3 ∑(exi − 1)2 set

= 0,

or nλ 2 = ∑(exi − 1)2, or

λ̂ =

√
∑(eXi − 1)2

n
.

Now
d2 log(L(λ ))

dλ 2 =
n
λ 2 − 3

λ 4 ∑(exi − 1)2

∣
∣∣
∣
λ=λ̂

=
n

λ̂ 2
− 3n

λ̂ 4
λ̂ 2 =

n

λ̂ 2
[1− 3]< 0.

So λ̂ is the MLE.
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5.38. a) The likelihood

L(λ ) =∏ f (xi) = c

(

∏ 1
xi

)
1
λ n exp

[
∑−(logxi)

2

2λ 2

]
,

and the log likelihood

log(L(λ )) = d −∑ log(xi)− n log(λ )− ∑(logxi)
2

2λ 2 .

Hence
d

dλ
log(L(λ )) =

−n
λ

+
∑(logxi)

2

λ 3
set
= 0,

or ∑(logxi)
2 = nλ 2, or

λ̂ =

√
∑(logxi)2

n
.

This solution is unique.
Notice that

d2

dλ 2 log(L(λ )) =
n
λ 2 − 3∑(logxi)

2

λ 4

∣
∣
∣∣
λ=λ̂

=
n

λ̂ 2
− 3nλ̂ 2

λ̂ 4
=

−2n

λ̂ 2
< 0.

Hence

λ̂ =

√
∑(logXi)2

n

is the MLE of λ .
b)

λ̂ 2 =
∑(logXi)

2

n

is the MLE of λ 2 by invariance.

5.39. a) The plot of L(θ ) should be 1 for x(n)− 1 ≤ θ ≤ x(1), and 0 otherwise.
b) [c,d] = [x(n)− 1, x(1)].

5.42. See Example 5.6.

5.43. a) L(θ ) =
[cos(θ )]n exp(θ ∑xi)

∏2cosh(πxi/2)
. So log(L(θ )) = c+n log(cos(θ ))+θ ∑xi,

and
d log(L(θ ))

dθ
= n

1
cos(θ )

[−sin(θ )]+∑xi
set
= 0,

or tan(θ ) = x, or θ̂ = tan−1(X).
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Since
d2 log(L(θ ))

dθ 2 =−nsec2(θ )< 0

for |θ |< 1/2, θ̂ is the MLE.
b) The MLE is tan(θ̂ ) = tan(tan−1(X)) = X by the invariance principle.
(By properties of the arctan function, θ̂ = tan−1(X) iff

tan(θ̂ ) = X and −π/2 < θ̂ < π/2.)

5.44. a) This is a two-parameter exponential distribution. So see Sect. 10.14
where σ = λ and μ = θ .

b)

1−F(x) = τ(μ ,σ) = exp

[
−
(

x− μ
σ

)]
.

By the invariance principle, the MLE of τ(μ ,σ) = τ(μ̂ , σ̂)

= exp

[

−
(

x−X(1)

X −X(1)

)]

.

5.45. a) Let

w = t(y) =
y
θ
+

θ
y
− 2.

Then the likelihood

L(ν) = d
1
νn exp

(
−1
2ν2

n

∑
i=1

wi

)

,

and the log likelihood

log(L(ν)) = c− n log(ν)− 1
2ν2

n

∑
i=1

wi.

Hence
d

dν
log(L(ν)) =

−n
ν

+
1
ν3

n

∑
i=1

wi
set
= 0,

or

ν̂ =

√
∑n

i=1 wi

n
.

This solution is unique and

d2

dν2 log(L(ν)) =
n
ν2 − 3∑n

i=1 wi

ν4

∣
∣
∣∣
ν=ν̂

=
n
ν̂2 − 3nν̂2

ν̂4 =
−2n
ν̂2 < 0.
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Thus

ν̂ =

√
∑n

i=1 Wi

n

is the MLE of ν if ν̂ > 0.

b) ν̂2 =
∑n

i=1 Wi

n
by invariance.

5.46. a) The likelihood

L(λ ) = c
1
λ n exp

[

− 1
λ

n

∑
i=1

log(1+ y−φ
i )

]

,

and the log likelihood log(L(λ )) = d− n log(λ )− 1
λ ∑n

i=1 log(1+ y−φ
i ). Hence

d
dλ

log(L(λ )) =
−n
λ

+
∑n

i=1 log(1+ y−φ
i )

λ 2
set
= 0,

or ∑n
i=1 log(1+ y−φ

i ) = nλ or

λ̂ =
∑n

i=1 log(1+ y−φ
i )

n
.

This solution is unique and

d2

dλ 2 log(L(λ )) =
n
λ 2 − 2∑n

i=1 log(1+ y−φ
i )

λ 3

∣
∣
∣∣
∣
λ=λ̂

=
n

λ̂ 2
− 2nλ̂

λ̂ 3
=

−n

λ̂ 2
< 0.

Thus

λ̂ =
∑n

i=1 log(1+Y−φ
i )

n

is the MLE of λ if φ is known.
b) The MLE is λ̂ 2 by invariance.

5.47. a) The likelihood

L(σ2) = c

(
1
σ2

) n
2

exp

[
−1
2σ2

n

∑
i=1

1

y2
i

]

,

and the log likelihood

log(L(σ2)) = d− n
2

log(σ2)− 1
2σ2

n

∑
i=1

1

y2
i

.

Hence
d

d(σ2)
log(L(σ2)) =

−n
2(σ2)

+
1

2(σ2)2

n

∑
i=1

1

y2
i

set
= 0,
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or ∑n
i=1

1
y2

i
= nσ2 or

σ̂2 =
1
n

n

∑
i=1

1

y2
i

.

This solution is unique and

d2

d(σ2)2 log(L(σ2)) =

n
2(σ2)2 −

∑n
i=1

1
y2

i

(σ2)3

∣
∣
∣
∣
∣
∣
σ2=σ̂2

=
n

2(σ̂2)2 − nσ̂2

(σ̂2)3

2
2
=

−n
2σ̂4 < 0.

Thus

σ̂2 =
1
n

n

∑
i=1

1

Y 2
i

is the MLE of σ2.
b) By invariance, σ̂ =

√
σ̂2.

5.48. Solution. a) The likelihood L(θ ) = c θ n exp

[

−θ
n

∑
i=1

1
yi

]

, and the log like-

lihood log(L(θ )) = d + n log(θ )−θ
n

∑
i=1

1
yi
. Hence

d
dθ

log(L(θ )) =
n
θ
−

n

∑
i=1

1
yi

set
= 0, or θ̂ =

n

∑n
i=1

1
yi

.

Since this solution is unique and
d2

dθ 2 log(L(θ )) =
−n
θ 2 < 0,

θ̂ =
n

∑n
i=1

1
Yi

is the MLE of θ .

b) By invariance, the MLE is 1/θ̂ =
∑n

i=1
1
Yi

n
.

5.49. a) The likelihood

L(θ ) = c

(
θ 2

1+θ

)n

exp(−θ
n

∑
i=1

yi),

and the log likelihood

log(L(θ )) = d+ n log

(
θ 2

1+θ

)
−θ

n

∑
i=1

yi.
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Always use properties of logarithms to simplify the log likelihood before taking
derivatives. Note that

log(L(θ )) = d+ 2n log(θ )− n log(1+θ )−θ
n

∑
i=1

yi.

Hence
d

dθ
log(L(θ )) =

2n
θ

− n
(1+θ )

−
n

∑
i=1

yi
set
= 0,

or
2(1+θ )−θ
θ (1+θ )

− y = 0 or
2+θ

θ (1+θ )
− y = 0

or 2+θ = y(θ +θ 2) or yθ 2 +θ (y− 1)− 2= 0. So

θ̂ =
−(Y − 1)+

√
(Y − 1)2 + 8Y

2Y
.

b) By invariance, the MLE is 1/θ̂ .
6.7. a) The joint density

f (x) =
1

(2π)n/2
exp

[
−1

2∑(xi − μ)2
]

=
1

(2π)n/2
exp

[
−1

2

(
∑x2

i − 2μ∑xi + nμ2)
]

=
1

(2π)n/2
exp

[
−1

2∑x2
i

]
exp

[
nμx− nμ2

2

]
.

Hence by the factorization theorem X is a sufficient statistic for μ .

b) X is sufficient by a) and complete since the N(μ ,1) family is a regular one-
parameter exponential family.

c) E(I−(∞,t](X1)|X = x) = P(X1 ≤ t|X = x) =Φ( t−x√
1−1/n

).

d) By the LSU theorem,

Φ(
t −X

√
1− 1/n

)

is the UMVUE.

6.14. Note that ∑Xi ∼ G(n,θ ). Hence MSE(c) = Varθ (Tn(c))+ [EθTn(c)− θ ]2
= c2Varθ (∑Xi)+ [ncEθX −θ ]2 = c2nθ 2 +[ncθ−θ ]2.
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So
d
dc

MSE(c) = 2cnθ 2 + 2[ncθ−θ ]nθ .

Set this equation to 0 to get 2nθ 2[c+nc−1] = 0 or c(n+1) = 1. So c = 1/(n+1).
The second derivative is 2nθ 2+2n2θ 2 > 0 so the function is convex and the local

min is in fact global.

6.17. a) Since this is an exponential family, log( f (x|λ )) =− log(λ )− x/λ and

∂
∂λ

log( f (x|λ )) = −1
λ

+
x
λ 2 .

Hence
∂ 2

∂λ 2 log( f (x|λ )) = 1
λ 2 − 2x

λ 3

and

I1(λ ) =−E

[
∂ 2

∂λ 2 log( f (x|λ ))
]
=

−1
λ 2 +

2λ
λ 3 =

1
λ 2 .

b)

FCRLB(τ(λ )) =
[τ ′(λ )]2

nI1(λ )
=

4λ 2

n/λ 2 = 4λ 4/n.

c) (T = ∑n
i=1 Xi ∼ Gamma(n,λ ) is a complete sufficient statistic. Now E(T 2) =

V (T )+ [E(T)]2 = nλ 2 +n2λ 2. Hence the UMVUE of λ 2 is T 2/(n+n2).) No, W is
a nonlinear function of the complete sufficient statistic T .

6.19.
W ≡ S2(k)/σ2 ∼ χ2

n/k

and
MSE(S2(k)) = MSE(W ) = VAR(W )+ (E(W)−σ2)2

=
σ4

k2 2n+

(
σ2n

k
−σ2

)2

= σ4
[

2n
k2 +(

n
k
− 1)2

]
= σ4 2n+(n− k)2

k2 .

Now the derivative d
dk MSE(S2(k))/σ4 =

−2
k3 [2n+(n− k)2]+

−2(n− k)
k2 .

Set this derivative equal to zero. Then

2k2 − 2nk = 4n+ 2(n− k)2 = 4n+ 2n2− 4nk+ 2k2.
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Hence
2nk = 4n+ 2n2

or k = n+ 2.
Should also argue that k = n+ 2 is the global minimizer. Certainly need k > 0

and the absolute bias will tend to ∞ as k → 0 and the bias tends to σ2 as k → ∞, so
k = n+ 2 is the unique critical point and is the global minimizer.

6.20. a) Let W = X2. Then f (w) = fX (
√

w) 1/(2
√

w) = (1/θ )exp(−w/θ ) and
W ∼ EXP(θ ). Hence Eθ (X2) = Eθ (W ) = θ .

b) This is an exponential family and

log( f (x|θ )) = log(2x)− log(θ )− 1
θ

x2

for x > 0. Hence
∂
∂θ

f (x|θ ) = −1
θ

+
1
θ 2 x2

and
∂ 2

∂θ 2 f (x|θ ) = 1
θ 2 +

−2
θ 3 x2.

Hence

I1(θ ) =−Eθ

[
1
θ 2 +

−2
θ 3 x2

]
=

1
θ 2

by a). Now

CRLB =
[τ ′(θ )]2

nI1(θ )
=

θ 2

n

where τ(θ ) = θ .

c) This is a regular exponential family so ∑n
i=1 X2

i is a complete sufficient statistic.
Since

Eθ

[
∑n

i=1 X2
i

n

]
= θ ,

the UMVUE is ∑n
i=1 X2

i
n .

6.21. a) In normal samples, X and S are independent, hence

Varθ [W (α)] = α2Varθ (T1)+ (1−α)2Varθ (T2).

b) W (α) is an unbiased estimator of θ . Hence MSE[W(α)] ≡ MSE(α) =
Varθ [W (α)] which is found in part a).
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c) Now

d
dα

MSE(α) = 2αVarθ (T1)− 2(1−α)Varθ (T2)
set
= 0.

Hence

α̂ =
Varθ (T2)

Varθ (T1)+Varθ (T2)
≈

θ2

2n
2θ2

2n + θ2

2n

= 1/3

using the approximation and the fact that Var(X̄) = θ 2/n. Note that the second
derivative

d2

dα2 MSE(α) = 2[Varθ (T1)+Varθ (T2)]> 0,

so α = 1/3 is a local min. The critical value was unique, hence 1/3 is the global
min.

6.22. a) X1 −X2 ∼ N(0,2σ2). Thus,

E(T1) =

∫ ∞

0
u

1√
4πσ2

e
−u2

4σ2 du

=
σ√
π
.

E(T 2
1 ) =

1
2

∫ ∞

0
u2 1√

4πσ2
e
−u2

4σ2 du

=
σ2

2
.

V (T1) = σ2( 1
2 − 1

π ) and

MSE(T1) = σ2

[(
1√
π
− 1

)2

+
1
2
− 1

π

]

= σ2
[

3
2
− 2√

π

]
.

b) Xi
σ has a N(0,1) and ∑n

i=1 X2
i

σ2 has a chi-square distribution with n degrees of
freedom. Thus

E(

√
∑n

i=1 X2
i

σ2 ) =

√
2Γ ( n+1

2 )

Γ ( n
2 )

,

and

E(T2) =
σ√

n

√
2Γ ( n+1

2 )

Γ ( n
2 )

.

Therefore,

E(

√
n√
2

Γ ( n
2)

Γ ( n+1
2 )

T2) = σ .
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6.23. This is a regular one-parameter exponential family with complete sufficient
statistic Tn = ∑n

i=1 Xi ∼ G(n,λ ). Hence E(Tn) = nλ , E(T 2
n ) = V (Tn)+ (E(Tn))

2 =
nλ 2 + n2λ 2, and T 2

n /(n+ n2) is the UMVUE of λ 2.

6.24.
1
Xi

=
Wi

σ
∼ χ2

1

σ
.

Hence if

T =
n

∑
i=1

1
Xi
, then E

(
T
n

)
=

n
nσ

,

and T/n is the UMVUE since f (x) is an exponential family with complete sufficient
statistic 1/X .

6.25. The pdf of T is

g(t) =
2nt2n−1

θ 2n

for 0 < t < θ .

E(T ) = 2n
2n+1θ and E(T 2) =

2n
2n+ 2

θ 2.

MSE(CT ) =

(
C

2n
2n+ 1

θ −θ
)2

+C2
[

2n
2n+ 2

θ 2 − (
2n

2n+ 1
θ )2

]

dMSE(CT )
dC

= 2

[
2Cnθ
2n+ 1

−θ
][

2nθ
2n+ 1

]
+ 2C

[
2nθ 2

2n+ 2
− 4n2θ 2

(2n+ 1)2

]
.

Solve dMSE(CT )
dC

set
= 0 to get

C = 2
n+ 1
2n+ 1

.

The MSE is a quadratic in C and the coefficient on C2 is positive, hence the local
min is a global min.

6.26. a) E(Xi) = 2θ/3 and V (Xi) = θ 2/18. So bias of T = B(T ) = EcX − θ =
c 2

3θ −θ and Var(T ) =

Var

(
c∑Xi

n

)
=

c2

n2 ∑Var(Xi) =
c2

n2

nθ 2

18
.

So MSE = Var(T ) + [B(T )]2 =

c2θ 2

18n
+

(
2θ
3

c−θ
)2

.

b)
dMSE(c)

dc
=

2cθ 2

18n
+ 2

(
2θ
3

c−θ
)

2θ
3
.
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Set this equation equal to 0 and solve, so

θ 22c
18n

+
4
3
θ
(

2
3
θc−θ

)
= 0

or

c

[
2θ 2

18n
+

8
9
θ 2
]
=

4
3
θ 2

or

c

(
1

9n
+

8
9

)
θ 2 =

4
3
θ 2

or

c

(
1
9n

+
8n
9n

)
=

4
3

or

c =
9n

1+ 8n
4
3
=

12n
1+ 8n

.

This is a global min since the MSE is a quadratic in c2 with a positive coefficient,
or because

d2MSE(c)
dc2 =

2θ 2

18n
+

8θ 2

9
> 0.

6.27. See Example 6.6.

6.30. See Example 6.3.

6.31. a) E(T ) = cE(Y ) = cαβ = 10cβ .
V (T ) = c2V (Y ) = c2αβ 2/n = 10c2β 2/n.
MSE(T ) =V (T )+ [B(T)]2 = 10c2β 2/n+(10cβ−β )2.

b)
dMSE(c)

dc
=

2c10β 2

n
+ 2(10cβ−β )10β set

= 0

or [20β 2/n] c+ 200β 2 c− 20β 2 = 0
or c/n+ 10c− 1= 0 or c(1/n + 10) = 1
or

c =
1

1
n + 10

=
n

10n+ 1
.

This value of c is unique, and

d2MSE(c)
dc2 =

20β 2

n
+ 200β 2 > 0,

so c is the minimizer.

6.32. a) Since this distribution is a one-parameter regular exponential family,
Tn =−∑n

i=1 log(2Yi −Y 2
i ) is complete.
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b) Note that log( f (y|ν)) = log(ν)+ log(2−2y)+(1−ν)[− log(2y−y2)]. Hence

d log( f (y|ν))
dν

=
1
ν
+ log(2y− y2)

and
d2 log( f (y|ν))

dν2 =
−1
ν2 .

Since this family is a 1P-REF, I1(ν) =−E

(−1
ν2

)
=

1
ν2 .

c)
[τ ′(ν)]2

nI1(ν)
=

ν2

ν4 n
=

1
nν2 .

d) E[T−1
n ] =

1
ν−1

Γ (−1+ n)
Γ (n)

=
ν

n− 1
. So (n− 1)/Tn is the UMVUE of ν by

LSU.

6.33. a) Since f (y) =
θ
2
[exp[−(θ + 1) log(1+ |y|)] is a 1P-REF,

T = ∑n
i=1 log(1+ |Yi|) is a complete sufficient statistic.

b) Since this is an exponential family, log( f (y|θ )) = log(θ/2)−
(θ + 1) log(1+ |y|) and

∂
∂θ

log( f (y|θ )) = 1
θ
− log(1+ |y|).

Hence
∂ 2

∂θ 2 log( f (y|θ )) = −1
θ 2

and

I1(θ ) =−Eθ

[
∂ 2

∂θ 2 log( f (Y |θ ))
]
=

1
θ 2 .

c) The complete sufficient statistic T ∼ G(n,1/θ ). Hence the UMVUE of θ is
(n− 1)/T since for r >−n,

E(T r) = E(T r) =

(
1
θ

)r Γ (r+ n)
Γ (n)

.

So

E(T−1) = θ
Γ (n− 1)
Γ (n)

= θ/(n− 1).

6.34. a) Note that X is a complete and sufficient statistic for μ and X ∼
N(μ ,n−1σ2). We know that E(e2X), the mgf of X when t = 2, is given by
e2μ+2n−1σ2

. Thus the UMVUE of e2μ is e−2n−1σ2
e2X .

b) The CRLB for the variance of unbiased estimator of g(μ) is given by
4n−1σ2e4μ whereas
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V (e−2n−1σ2
e2X̄) = e−4n−1σ2

E(e4X̄)− e4μ (12.4)

= e−4n−1σ2
e4μ+ 1

2 16n−1σ2 − e4μ

= e4μ [e4n−1σ2 − 1]

> 4n−1σ2e4μ

since ex > 1+ x for all x > 0. Hence the CRLB is not attained.

6.36. See Theorem 6.5.
a) E(Wn) = c∑n

i=1 E(t(Yi)) = cnθE(X), and
V (Wn) = c2∑n

i=1 V (t(Yi)) = c2nθ 2V (X). Hence MSE(c)≡ MSE(Wn) =
V (Wn)+ [E(Wn)−θ ]2 = c2nθ 2V (X)+ (cnθE(X)−θ )2.

b) Thus

dMSE(c)
dc

= 2cnθ 2V (X)+ 2(cnθE(X)−θ )nθE(X)
set
= 0,

or
c(nθ 2V (X)+ n2θ 2[E(X)]2) = nθ 2E(X),

or

cM =
E(X)

V (X)+ n[E(X)]2
,

which is unique. Now

d2MSE(c)
dc2 = 2[nθ 2V (X)+ n2θ 2[E(X)]2]> 0.

So MSE(c) is convex and c = cM is the minimizer.

c) Let cU =
1

nE(X)
. Then E[cU T (Y )] = θ , hence cU T (Y ) is the UMVUE of θ

by the Lehmann Scheffé theorem.

6.37. See Example 6.4.

6.38. See Example 6.9.

6.39. a) E(X − μ)2 = Var(X) = σ2

n .

b) From a), E(X
2 − 2μX + μ2) = E(X

2
)− μ2 = σ2

n , or E(X
2
)− σ2

n = μ2, or

E(X
2 − σ2

n ) = μ2.

Since X is a complete and sufficient statistic, and X
2 − σ2

n is an unbiased estima-

tor of μ2 and is a function of X , the UMVUE of μ2 is X
2 − σ2

n by the Lehmann-
Scheffé Theorem.

c) Let Y = X − μ ∼N(0,σ2). Then E(Y 3) =
∫ ∞
−∞ h(y)dy = 0, because h(y) is an

odd function.
d) E(X −μ)3 = E(X

3−3μX
2
+3μ2X −μ3) = E(X

3
)−3μE(X

2
)+3μ2E(X)−

μ3 = E(X
3
)− 3μ

(
σ2

n + μ2
)
+ 3μ3− μ3 = E(X

3
)− 3μ σ2

n − μ3.
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Thus E(X
3
)− 3μ σ2

n − μ3 = 0, so replacing μ with its unbiased estimator X in
the middle term, we get

E

[
X

3 − 3X
σ2

n

]
= μ3.

Since X is a complete and sufficient statistic, and X
3 −3X σ2

n is an unbiased estima-

tor of μ3 and is a function of X̄ , the UMVUE of μ3 is X
3 −3X σ2

n by the Lehmann-
Scheffé Theorem.

6.40. a) The pdf of T is f (t)= ntn−1

θn I(0< t < θ ).Hence E(T k)=

∫ θ

0
tk ntn−1

θ n dt =
∫ θ

0

ntk+n−1

θ n dt =
nθ k+n

(k+ n)θ n =
n

k+ n
θ k.

b) Thus the UMVUE of θ k is
k+ n

n
T k.

7.6. For both a) and b), the test is reject Ho iff ∏n
i=1 xi(1 − xi) > c where

Pθ=1[∏n
i=1 xi(1− xi)> c] = α.

7.10. H says f (x) = e−x while K says

f (x) = xθ−1e−x/Γ (θ ).

The monotone likelihood ratio property holds for ∏xi since then

fn(x,θ2)

fn(x,θ1)
=

(∏n
i=1 xi)

θ2−1 (Γ (θ1))
n

(∏n
i=1 xi)θ1−1(Γ (θ2))n =

(
Γ (θ1)

Γ (θ2)

)n
(

n

∏
i=1

xi

)θ2−θ1

which increases as ∏n
i=1 xi increases if θ2 > θ1. Hence the level α UMP test rejects

H if
n

∏
i=1

Xi > c

where

PH

(
n

∏
i=1

Xi > c

)

= PH
(
∑ log(Xi)> log(c)

)
= α.

7.11. See Example 7.8.

7.13. Let θ1 = 4. By Neyman–Pearson lemma, reject Ho if

f (x|θ1)

f (x|2) =

(
log(θ1)

θ1 − 1

)n

θ∑xi
1

(
1

log(2)

)n 1
2∑xi

> k

iff (
log(θ1)

(θ1 − 1) log(2)

)n(θ1

2

)∑xi

> k
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iff (
θ1

2

)∑xi

> k′

iff

∑xi log(θ1/2)> c′.

So reject Ho iff ∑Xi > c where Pθ=2(∑Xi > c) = α.

7.14. a) By NP lemma reject Ho if

f (x|σ = 2)
f (x|σ = 1)

> k′.

The LHS =
1

23n exp
[−1

8 ∑x2
i

]

exp
[−1

2 ∑x2
i

]

So reject Ho if
1

23n exp

[

∑x2
i

(
1
2
− 1

8

)]
> k′

or if ∑x2
i > k where PHo(∑x2

i > k) = α.
b) In the above argument, with any σ1 > 1, get

∑x2
i

(
1
2
− 1

2σ2
1

)

and
1
2
− 1

2σ2
1

> 0

for any σ2
1 > 1. Hence the UMP test is the same as in a).

7.15. a) By NP lemma reject Ho if

f (x|σ = 2)
f (x|σ = 1)

> k′.

The LHS =
1
2n exp

[−1
8 ∑[log(xi)]

2
]

exp
[−1

2 ∑[log(xi)]2
]

So reject Ho if
1
2n exp

[

∑[log(xi)]
2
(

1
2
− 1

8

)]
> k′

or if ∑[log(Xi)]
2 > k where PHo(∑[log(Xi)]

2 > k) = α.
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b) In the above argument, with any σ1 > 1, get

∑[log(xi)]
2
(

1
2
− 1

2σ2
1

)

and
1
2
− 1

2σ2
1

> 0

for any σ2
1 > 1. Hence the UMP test is the same as in a).

7.16. The most powerful test will have the following form.
Reject H0 iff f1(x)

f0(x)
> k.

But f1(x)
f0(x)

= 4x−
3
2 and hence we reject H0 iff X is small, i.e., reject H0 is X < k

for some constant k. This test must also have the size α , that is we require:
α = P(X < k) when f (x) = f0(x)) =

∫ k
0

3
64 x2dx = 1

64 k3,

so that k = 4α
1
3 .

For the power, when k = 4α
1
3

P[X < k when f (x) = f1(x)] =
∫ k

0
3
16

√
xdx =

√
α .

When α = 0.01, the power is = 0.10.

7.19. See Example 7.5.

7.20. E[T (X)] = 1/λ1 and the power = P(test rejects H0) = Pλ1
(T (X) <

log(100/95)) = Fλ1
(log(100/95))

= 1− exp(−λ1 log(100/95)) = 1− (95/100)λ1.

a) Power = 1− exp(− log(100/95)) = 1− exp(log(95/100)) = 0.05.
b) Power = 1− (95/100)50 = 0.923055.
c) Let T0 be the observed value of T (X). Then p-value = P(W ≤ T0) where W ∼

exponential(1) since under H0, T (X)∼ exponential(1). So p-value = 1−exp(−T0).

7.21. Note that

f (x) = I(x > 0) 2x e−x2
τ exp[(τ− 1)(log(1− e−x2

))]

is a one-parameter exponential family and w(τ) = τ − 1 is an increasing function
of τ. Thus the UMP test rejects H0 if T (x) = ∑n

i=1 log(1− e−x2
i ) > k where α =

Pτ=2(T (X)> k).
Or use NP lemma.
a) Reject Ho if

f (x|τ = 4)
f (x|τ = 1)

> k.

The LHS =
4n

2n
∏n

i=1(1− e−x2
i )4−1

∏n
i=1(1− e−x2

i )
= 2n

n

∏
i=1

(1− e−x2
i )2.
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So reject Ho if
n

∏
i=1

(1− e−x2
i )2 > k′

or
n

∏
i=1

(1− e−x2
i )> c

or
n

∑
i=1

log(1− e−x2
i )> d

where

α = Pτ=2

(
n

∏
i=1

(1− e−x2
i )> c

)

.

b) Replace 4− 1 by τ1 − 1 where τ1 > 2. Then reject H0 if

n

∏
i=1

(1− e−x2
i )τ1−2 > k′

which gives the same test as in a).

7.22. By exponential family theory, the UMP test rejects H0 if
T (x) =−∑n

i=1
1
xi
> k where Pθ=1(T (X)> k) = α .

Alternatively, use the Neyman–Pearson lemma:
a) reject Ho if

f (x|θ = 2)
f (x|θ = 1)

> k′.

The LHS =
2n exp

(
−2∑ 1

xi

)

exp
(
−∑ 1

xi

) .

So reject Ho if

2n exp

[
(−2+ 1)∑ 1

xi

]
> k′

or if −∑ 1
xi
> k where P1(−∑ 1

xi
> k) = α.

b) In the above argument, reject H0 if

2n exp

[
(−θ1 + 1)∑ 1

xi

]
> k′

or if −∑ 1
xi
> k where P1(−∑ 1

xi
> k) = α for any θ1 > 1. Hence the UMP test is

the same as in a).

7.23. a) We reject H0 iff f1(x)
f0(x)

> k. Thus we reject H0 iff 2x
2(1−x) > k. That is

1−x
x < k1, that is 1

x < k2, that is x > k3. Now 0.1 = P(X > k3) when f (x) = f0(x), so
k3 = 1−√

0.1.
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7.24. a) Let k = [2πσ1σ2(1−ρ2)1/2]. Then the likelihood L(�) =

1
kn exp

(
−1

2(1−ρ2)

n

∑
i=1

[(
xi − μ1

σ1

)2

− 2ρ
(

xi − μ1

σ1

)(
yi − μ2

σ2

)
+

(
yi − μ2

σ2

)2
])

.

Hence

L(�̂) =
1

[2πσ̂1σ̂2(1− ρ̂2)1/2]n
exp

( −1
2(1− ρ̂2)

[T1 − 2ρ̂T2 +T3]

)

=
1

[2πσ̂1σ̂2(1− ρ̂2)1/2]n
exp(−n)

and

L(�̂0) =
1

[2πσ̂1σ̂2]n
exp

(−1
2

[T1 +T3]

)

=
1

[2πσ̂1σ̂2]n
exp(−n).

Thus λ (x,y) =
L(�̂0)

L(�̂)
= (1− ρ̂2)n/2.

So reject H0 if λ (x,y) ≤ c where α = sup�∈Θo
P(λ (X,Y ) ≤ c). Here Θo is the set

of � = (μ1,μ2,σ1,σ2,ρ) such that the μi are real, σi > 0 and ρ = 0, i.e., such that
Xi and Yi are independent.

b) Since the unrestricted MLE has one more free parameter than the re-
stricted MLE, −2log(λ (X,Y )) ≈ χ2

1 , and the approximate LRT rejects H0 if
−2logλ (x,y)> χ2

1,1−α where P(χ2
1 > χ2

1,1−α) = α .

7.25. Parts a), b), e), f), g), i), j), k), n), o), and q) are similar with power = 0.9.
Parts c), d), h), and m) are similar with power = 0.99.
l) See Example 7.7.
m) See Problem 7.27.
p) The power = 0.9. See Problem 7.28.
q) See Problem 7.26.

7.26. b) This family is a regular one-parameter exponential family where w(λ ) =
−1/λ is increasing. Hence the level α UMP test rejects H0 when
∑n

i=1(e
yi − 1)> k where α = P2(∑n

i=1(e
Yi − 1)> k) = P2(T (Y )> k).

c) Since T (Y )∼ λ
2
χ2

2n,
2T (Y )

λ
∼ χ2

2n. Hence

α = 0.05 = P2(T (Y )> k) = P(χ2
40 > χ2

40,1−α),
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and k = χ2
40,1−α = 55.758. Hence the power

β (λ ) = Pλ (T (Y )> 55.758)= P

(
2T (Y )

λ
>

2(55.758)
λ

)
= P

(
χ2

40 >
2(55.758)

λ

)

= P

(
χ2

40 >
2(55.758)

3.8386

)
= P(χ2

40 > 29.051) = 1− 0.1= 0.9.

7.27. b) This family is a regular one-parameter exponential family where
w(σ2) =−1/(2σ2) is increasing. Hence the level α UMP test rejects H0 when
∑n

i=1 y2
i > k where α = P1(∑n

i=1 Y 2
i )> k) = P1(T (Y )> k).

c) Since T (Y )∼ σ2χ2
n ,

T (Y )
σ2 ∼ χ2

n . Hence

α = 0.05 = P1(T (Y )> k) = P(χ2
20 > χ2

20,1−α),

and k = χ2
20,1−α = 31.410. Hence the power

β (σ) = Pσ (T (Y )> 31.41) = P

(
T (Y )
σ2 >

31.41
σ2

)
= P

(
χ2

20 >
31.41

3.8027

)

= P(χ2
20 > 8.260) = 1− 0.01= 0.99.

7.28. a) Let X = Y 2/σ2 = t(Y ). Then Y = σ
√

X = t−1(X). Hence

dt−1(x)
dx

=
σ
2

1√
x

and the pdf of X is

g(x) = fY (t
−1(x))

∣
∣
∣∣
dt−1(x)

dx

∣
∣
∣∣=

σ
√

x
σ2 exp

[
−1
2

(
σ
√

x
σ

)2
]

σ
2
√

x
=

1
2

exp(−x/2)

for x > 0, which is the χ2
2 pdf.

b) This family is a regular one-parameter exponential family where w(σ) =
−1/(2σ2) is increasing. Hence the level α UMP test rejects H0 when
∑n

i=1 y2
i > k where α = P1(∑n

i=1 Y 2
i > k) = P1(T (Y )> k).

c) Since T (Y )∼ σ2χ2
2n,

T (Y )
σ2 ∼ χ2

2n. Hence

α = 0.05 = P1(T (Y )> k) = P(χ2
40 > χ2

40,1−α),

and k = χ2
40,1−α = 55.758. Hence the power

β (σ) = Pσ (T (Y )> 55.758) = P

(
T (Y )
σ2 >

55.758
σ2

)
= P

(
χ2

40 >
55.758
σ2

)

= P

(
χ2

40 >
55.758
1.9193

)
= P(χ2

40 > 29.051) = 1− 0.1= 0.9.
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7.29. See Example 7.11.

7.30. a) Suppose the observed values of Ni is ni. Then
f (x|θ ) = dx pn1

1 pn2
2 pn3

3 = dx (θ 2)n1(2θ (1−θ ))n2((1−θ )2)n3 =
2n2θ 2n1+n2(1−θ )n2+2n3 .

Since n2 + 2n3 = 2n− (2n1+ n2), the above is

= dx 2n2θ 2n1+n2(1−θ )2n−(2n1+n2) = dx 2n2

(
θ

1−θ

)2n1+n2

(1−θ )2n.

Then
f (x|θ1)

f (x|θ0)
=

(
θ1

1−θ1

)2n1+n2
(1−θ1)

2n

(
θ0

1−θ0

)2n1+n2
(1−θ0)2n

=

(
θ1

θ0

1−θ0

1−θ1

)2n1+n2
(

1−θ1

1−θ0

)2n

,

which is an increasing function of 2n1 + n2 as 0 < θ0 < θ1 < 1 (since θ1
θ0

> 1

and 1−θ0
1−θ1

> 1 and n is a constant).

(b) Using the NP Lemma, the most powerful test is given by f (x|θ1)
f (x|θ0)

> k, for
some k. Thus, the test that rejects H0 if and only if 2N1 +N2 ≥ c, for some c, is a
most powerful test.

7.31. See Example 7.12.

8.1. c) The histograms should become more like a normal distribution as n in-
creases from 1 to 200. In particular, when n = 1 the histogram should be right
skewed while for n = 200 the histogram should be nearly symmetric. Also the scale
on the horizontal axis should decrease as n increases.

d) Now Y ∼ N(0,1/n). Hence the histograms should all be roughly symmetric,
but the scale on the horizontal axis should be from about −3/

√
n to 3/

√
n.

8.3. a) E(X) = 3θ
θ+1 , thus

√
n(X −E(X))

D→ N(0,V (X)), where
V (X) = 9θ

(θ+2)(θ+1)2 . Let g(y) = y
3−y , thus g′(y) = 3

(3−y)2 . Using the delta method,
√

n(Tn −θ ) D→ N(0, θ(θ+1)2

θ+2 ).

b) It is asymptotically efficient if
√

n(Tn −θ ) D→ N(0,ν(θ )), where

ν(θ ) =
d

dθ (θ )
−E( d2

dθ2 ln f (x|θ ))
.

But, E(( d2

dθ2 ln f (x|θ )) = 1
θ2 . Thus ν(θ ) = θ 2 �= θ(θ+1)2

θ+2 .

c) X → 3θ
θ+1 in probability. Thus Tn → θ in probability.

8.5. See Example 8.8.

8.7. a) See Example 8.7.
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8.13. a) Yn
D
= ∑n

i=1 Xi where the Xi are iid χ2
1 . Hence E(Xi) = 1 and Var(Xi) = 2.

Thus by the CLT,

√
n

(
Yn

n
− 1

)
D
=
√

n

(
∑n

i=1 Xi

n
− 1

)
D→ N(0,2).

b) Let g(θ ) = θ 3. Then g′(θ ) = 3θ 2, g′(1) = 3, and by the delta method,

√
n

[ (
Yn

n

)3

− 1

]
D→ N(0,2(g′(1))2) = N(0,18).

8.23. See the proof of Theorem 6.3.

8.27. a) See Example 8.1b.
b) See Example 8.3.

c) See Example 8.14.

8.28. a) By the CLT,
√

n(X −λ )/
√
λ D→ N(0,1). Hence

√
n(X −λ ) D→ N(0,λ ).

b) Let g(λ ) = λ 3 so that g′(λ ) = 3λ 2 then
√

n[(X)3−(λ )3]
D→ N(0,λ [g′(λ )]2) =

N(0,9λ 5).

8.29. a) X is a complete sufficient statistic. Also, we have
(n− 1)S2

σ2 has a chi

square distribution with d f = n− 1, thus since σ2 is known the distribution of S2

does not depend on μ , so S2 is ancillary. Thus, by Basu’s Theorem X and S2 are
independent.

b) by CLT (n is large )
√

n(X − μ) has approximately normal distribution with
mean 0 and variance σ2. Let g(x) = x3, thus, g

′
(x) = 3x2. Using delta method√

n(g(X)− g(μ)) goes in distribution to N(0,σ2(g
′
(μ))2) or

√
n(X

3 − μ3) goes
in distribution to N(0,σ2(3μ2)2).

8.30. a) According to the standard theorem,
√

n(θ̂n −θ )→ N(0,3).

b) E(Y ) = θ ,Var(Y ) = π2

3 , according to CLT we have
√

n(Y n −θ )→ N(0, π
2

3 ).

c) MED(Y ) = θ , then
√

n(MED(n)−θ )→ N(0, 1
4 f 2(MED(Y))

) and f (MED(Y ))

=
exp(−(θ −θ ))

[1+ exp(−(θ −θ ))]2
= 1

4 . Thus
√

n(MED(n)−θ )→ N(0, 1
4 1

16
)→

√
n(MED(n)−θ )→ N(0,4).

d) All three estimators are consistent, but 3 < π2

3 < 4, therefore the estimator θ̂n

is the best, and the estimator MED(n) is the worst.

8.32. a) Fn(y) = 0.5+ 0.5y/n for −n < y < n, so F(y)≡ 0.5.
b) No, since F(y) is not a cdf.

8.33. a) Fn(y) = y/n for 0 < y < n, so F(y)≡ 0.
b) No, since F(y) is not a cdf.
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8.34. a)
√

n

(
Y − 1−ρ

ρ

)
D→ N

(
0,

1−ρ
ρ2

)

by the CLT.
c) The method of moments estimator of ρ is ρ̂ = Y

1+Y
.

d) Let g(θ ) = 1+θ so g′(θ ) = 1. Then by the delta method,

√
n

(
g(Y )− g

(
1−ρ
ρ

) )
D→ N

(
0,

1−ρ
ρ2 12

)

or √
n

(
(1+Y)− 1

ρ

)
D→ N

(
0,

1−ρ
ρ2

)
.

This result could also be found with algebra since 1 +Y − 1
ρ = Y + 1 − 1

ρ =

Y + ρ−1
ρ = Y − 1−ρ

ρ .

e) Y is the method of moments estimator of E(Y ) = (1−ρ)/ρ , so 1+Y is the
method of moments estimator of 1+E(Y) = 1/ρ .

8.35. a)
√

n(X̄ − μ) is approximately N(0,σ2). Define g(x) = 1
x , g′(x) = −1

x2 .

Using delta method,
√

n( 1
X̄ − 1

μ ) is approximately N(0, σ
2

μ4 ). Thus 1/X is approxi-

mately N( 1
μ ,

σ2

nμ4 ), provided μ �= 0.
b) Using part a)
1

X
is asymptotically efficient for

1
μ

if

σ2

μ4 =

⎡

⎢
⎢
⎢
⎣

(
τ ′(μ)

)2

Eμ

(
∂
∂μ

ln f (X/μ)
)2

⎤

⎥
⎥
⎥
⎦

τ(μ) =
1
μ

τ ′(μ) =
−1
μ2

ln f (x|μ) = −1
2

ln2πσ2 − (x− μ)2

2σ2

E

[
∂
∂μ

ln f (X/μ)
]2

=
E(X − μ)2

σ4

=
1
σ2
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Thus (
τ ′(μ)

)2

Eμ

[
∂
∂μ

ln f (X/μ)
]2 =

σ2

μ4 .

8.36. a) E(Y k)= 2θ k/(k+2) so E(Y ) = 2θ/3, E(Y 2)= θ 2/2 and V (Y )= θ 2/18.

So
√

n

(
Y − 2θ

3

)
D→ N

(
0,

θ 2

18

)
by the CLT.

b) Let g(τ) = log(τ) so [g′(τ)]2 = 1/τ2 where τ = 2θ/3. Then by the delta
method,
√

n

(
log(Y )− log

(
2θ
3

) )
D→ N

(
0,

1
8

)
.

c) θ̂ k = k+2
2n ∑Y k

i .

8.37. a)
√

n

(
Y − r(1−ρ)

ρ

)
D→ N

(
0,

r(1−ρ)
ρ2

)
by the CLT.

b) Let θ = r(1−ρ)/ρ . Then

g(θ ) =
r

r+ r(1−ρ)
ρ

=
rρ

rρ+ r(1−ρ)
= ρ = c.

Now

g′(θ ) =
−r

(r+θ )2 =
−r

(r+ r(1−ρ)
ρ )2

=
−rρ2

r2 .

So

[g′(θ )]2 =
r2ρ4

r4 =
ρ4

r2 .

Hence by the delta method

√
n ( g(Y )−ρ )

D→ N

(
0,

r(1−ρ)
ρ2

ρ4

r2

)
= N

(
0,

ρ2(1−ρ)
r

)
.

c) Y
set
= r(1−ρ)/ρ or ρY = r− rρ or ρY + rρ = r or ρ̂ = r/(r+Y ).

8.38. a) By the CLT,

√
n

(
X − θ

2

)
D→ N

(
0,

θ 2

12

)
.

b) Let g(y) = y2. Then g′(y) = 2y and by the delta method,

√
n

(

X
2 −

(
θ
2

)2
)

=
√

n

(
X

2 − θ 2

4

)
=
√

n

(
g(X)− g

(
θ
2

) )
D→
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N

(

0,
θ 2

12

[
g′
(
θ
2

)]2
)

= N

(
0,

θ 2

12
4θ 2

4

)
= N

(
0,

θ 4

12

)
.

9.1. a) ∑n
i=1 Xb

i is minimal sufficient for a.

b) It can be shown that Xb

a has an exponential distribution with mean 1. Thus,
2∑n

i=1 Xib

a is distributed χ2
2n. Let χ2

2n,α/2 be the upper 100( 1
2α)% point of the chi-

square distribution with 2n degrees of freedom. Thus, we can write

1−α = P

(
χ2

2n,1−α/2 <
2∑n

i=1 Xb
i

a
< χ2

2n,α/2

)

which translates into (
2∑n

i=1 Xb
i

χ2
2n,α/2

,
2∑n

i=1 Xb
i

χ2
2n,1−α/2

)

as a two sided (1−α) confidence interval for a. For α = 0.05 and n = 20, we have
χ2

2n,α/2 = 34.1696 and χ2
2n,1−α/2 = 9.59083. Thus the confidence interval for a is

(
∑n

i=1 Xb
i

17.0848
,
∑n

i=1 Xb
i

4.795415

)
.

9.4c). Tables are from simulated data but should be similar to the table below.

n p ccov acov
50 .01 .4236 .9914 ACT CI better
100 .01 .6704 .9406 ACT CI better
150 .01 .8278 .9720 ACT CI better
200 .01 .9294 .9098 the CIs are about the same
250 .01 .8160 .8160 the CIs are about the same
300 .01 .9158 .9228 the CIs are about the same
350 .01 .9702 .8312 classical is better
400 .01 .9486 .6692 classical is better
450 .01 .9250 .4080 classical is better

9.11. The simulated coverages should be close to the values below. The pooled t
CI has coverage that is too small.

pcov mpcov wcov
0.847 0.942 0.945

9.12. a) Let Wi ∼U(0,1) for i = 1, . . . ,n and let Tn = Y/θ . Then

P(
Y
θ
≤ t) = P(max(W1, . . . ,Wn)≤ t) =
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P(all Wi ≤ t) = [FWi(t)]
n = tn for 0 < t < 1. So the pdf of Tn is

fTn(t) =
d
dt

tn = ntn−1

for 0 < t < 1.
b) Yes, the distribution of Tn = Y/θ does not depend on θ by a).
c) See Example 9.21.

12.3 Tables

Tabled values are F(0.95,k,d) where P(F < F(0.95,k,d)) = 0.95.
00 stands for ∞. Entries produced with the qf(.95,k,d) command in R. The
numerator degrees of freedom are k while the denominator degrees of freedom are d.

k 1 2 3 4 5 6 7 8 9 00
d
1 161 200 216 225 230 234 237 239 241 254
2 18.5 19.0 19.2 19.3 19.3 19.3 19.4 19.4 19.4 19.5
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.37
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.41
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 1.84
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 1.71
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 1.62
00 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.00
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Tabled values are tα ,d where P(t < tα ,d) = α where t has a t distribution with d
degrees of freedom. If d > 29 use the N(0,1) cutoffs d = Z = ∞.

alpha pvalue
d 0.005 0.01 0.025 0.05 0.5 0.95 0.975 0.99 0.995 left tail
1 -63.66 -31.82 -12.71 -6.314 0 6.314 12.71 31.82 63.66
2 -9.925 -6.965 -4.303 -2.920 0 2.920 4.303 6.965 9.925
3 -5.841 -4.541 -3.182 -2.353 0 2.353 3.182 4.541 5.841
4 -4.604 -3.747 -2.776 -2.132 0 2.132 2.776 3.747 4.604
5 -4.032 -3.365 -2.571 -2.015 0 2.015 2.571 3.365 4.032
6 -3.707 -3.143 -2.447 -1.943 0 1.943 2.447 3.143 3.707
7 -3.499 -2.998 -2.365 -1.895 0 1.895 2.365 2.998 3.499
8 -3.355 -2.896 -2.306 -1.860 0 1.860 2.306 2.896 3.355
9 -3.250 -2.821 -2.262 -1.833 0 1.833 2.262 2.821 3.250
10 -3.169 -2.764 -2.228 -1.812 0 1.812 2.228 2.764 3.169
11 -3.106 -2.718 -2.201 -1.796 0 1.796 2.201 2.718 3.106
12 -3.055 -2.681 -2.179 -1.782 0 1.782 2.179 2.681 3.055
13 -3.012 -2.650 -2.160 -1.771 0 1.771 2.160 2.650 3.012
14 -2.977 -2.624 -2.145 -1.761 0 1.761 2.145 2.624 2.977
15 -2.947 -2.602 -2.131 -1.753 0 1.753 2.131 2.602 2.947
16 -2.921 -2.583 -2.120 -1.746 0 1.746 2.120 2.583 2.921
17 -2.898 -2.567 -2.110 -1.740 0 1.740 2.110 2.567 2.898
18 -2.878 -2.552 -2.101 -1.734 0 1.734 2.101 2.552 2.878
19 -2.861 -2.539 -2.093 -1.729 0 1.729 2.093 2.539 2.861
20 -2.845 -2.528 -2.086 -1.725 0 1.725 2.086 2.528 2.845
21 -2.831 -2.518 -2.080 -1.721 0 1.721 2.080 2.518 2.831
22 -2.819 -2.508 -2.074 -1.717 0 1.717 2.074 2.508 2.819
23 -2.807 -2.500 -2.069 -1.714 0 1.714 2.069 2.500 2.807
24 -2.797 -2.492 -2.064 -1.711 0 1.711 2.064 2.492 2.797
25 -2.787 -2.485 -2.060 -1.708 0 1.708 2.060 2.485 2.787
26 -2.779 -2.479 -2.056 -1.706 0 1.706 2.056 2.479 2.779
27 -2.771 -2.473 -2.052 -1.703 0 1.703 2.052 2.473 2.771
28 -2.763 -2.467 -2.048 -1.701 0 1.701 2.048 2.467 2.763
29 -2.756 -2.462 -2.045 -1.699 0 1.699 2.045 2.462 2.756
Z -2.576 -2.326 -1.960 -1.645 0 1.645 1.960 2.326 2.576
CI 90% 95% 99%

0.995 0.99 0.975 0.95 0.5 0.05 0.025 0.01 0.005 right tail
0.01 0.02 0.05 0.10 1 0.10 0.05 0.02 0.01 two tail
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