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Preface

Fifty years ago, enthused by successes in creating digital computers and the DNA
model of heredity, scientists were confident that solutions to the problems of under-
standing biological intelligence and creating machine intelligence were within their
grasp. Progress at first seemed rapid. Giant ‘brains’ that filled air-conditioned rooms
were shrunk into briefcases. The speed of computation doubled every two years.

What these advances revealed is not the solutions but the difficulties of the prob-
lems. We are like the geographers who ‘discovered’ America, not as a collection
of islands but as continents seen only at shores and demanding exploration. We are
astounded less by the magnitude of our discoveries about how brains cogitate than
by the enormity of the tasks we have undertaken, to explain and replicate the higher
functions of brains.

Five decades of brain research have led to the emergence of a new field, which
spans the entire range of brain cognition from quantum fields to social interactions,
and which is combined by the conceptions of nonlinear neurodynamics operating
simultaneously at and across all levels. A new breed of scientists has emerged,
schooled in multiple academic disciplines, comfortable in working with data from
different levels, and conversant with the mathematical tools that are essential to
cross boundaries.

Cognition in its essence is dynamic and multilayered, and pursuit of new clues
inevitably leads from one layer to the next, both reductive and holistic. Something
more is needed to track these clues than the collaboration of experts. It is the self-
education of scientists in each field to journeyman competence in adjacent fields.
Thus, a new scientific branch focused on these topics, cognitive neurodynamics has
been emerged and intrigued scientists and engineers working in various fields.

An international journal “Cognitive Neurodynamics” edited by us was published
early this year by Springer, which may be the first one totally dedicated to this im-
portant new branch and provide a forum for scientists and engineers, including neu-
roscientists, neuropsychologists, cognitive scientists, physicists, mathematicians, IT
engineers, and many other experts to publish their results and exchanges their ideas
and views.

Although there were special sessions with the title of “Neurodynamics” in many
conferences, however, there were very few international meetings focusing all
its themes on cognitive neurodynamics, maybe except for a series of Tamagawa
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Dynamic Brain Forums organized by the Japanese “Gang of Five” on nonlinear
dynamics in the past decade. We are very glad now that the 1st International Con-
ference on Cognitive Neurodynamics was held in Shanghai, China Nov. 17–21,
which is sponsored and organized by East China University of Science & Tech-
nology, Shanghai Society for Biophysics, the journal “Cognitive Neurodynamics”,
and cosponsored by The National Natural Science Foundation of China (NSFC),
Shanghai Association for Science & Technology, Beijing University of Aeronau-
tics and Astronautics, Beijing University of Technology, Brain Science Center of
Tamagawa University, Brain Science Research Center of KAIST, CAS-MPG Part-
ner Institute for Computational Biology (PICB), Chinese Society for Neuroscience
(CSN), Chinese Society of Theoretical and Applied Mechanics (CSTAM), IEEE
Singapore Computational Intelligence Chapter, International Neural Network Soci-
ety (INNS), Japanese Neural Network Society (JNNS), Nanjing University Aero-
nautics and Astronautics, Research Center for Brain Science of Fudan University,
RIKEN Brain Science Institute (BSI), Shanghai Jiaotong University, Shanghai So-
ciety for Nonlinear Science (SSNS), Shanghai University, Tongji University, Xi’an
Jiaotong University, Zhejiang University. We are also very glad that the conference
has warmly welcomed by the scientists and engineers working in this field. We have
10 plenary talks given by the leading scientists in this field and 14 mini-symposia
organized by some of them and other outstanding experts. In addition, we have other
8 special sessions and one poster session. The topics of the contributions almost
cover all the fields of cognitive neurodynamics, from micro-, meso- to macroscopic
cognitive neurodyanmics, their applications and some related topics. Within our
knowledge, this conference is the biggest one wholly dedicated to this topic up to
now. It’s also our great pleasure to notice the high quality of the contributions, which
come from about 30 countries and areas all over the world. We hope the readers will
also enjoy and be inspired by the papers in this book.

We hope this is only the first step to create a forum for the scientists and engineers
working in the field to show their latest progress, to exchange their ideas and views,
and discuss the perspective of this fast growing interdisciplinary area. We hope this
book is only the 1st volume of a book series on cognitive neurodynamics.

We would like to express our sincere gratitude to all the sponsors and the con-
tributors, this book could not be published without their supports.

Rubin Wang
Fanji Gu

Enhua Shen
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Part I
Microscopic Cognitive Neurodynamics



Chapter 1
Dynamic Interaction Networks and Global
Ontology-Based Modelling of Brain Dynamics

Nikola Kasabov and Lubica Benuskova

Abstract With the advancements of bioinformatics and brain research technologies
more and more data becomes available tracing the activity of genes, neurons, neural
networks and brain areas over time. How can such data be used to create dynamic
models that capture dynamic interactions at a particular functional level and across
levels over time? The paper addresses these questions through dynamic interac-
tion network (DIN) modelling: first, at a genetic level, a Gene Regulatory Network
(GRN) model can be created from a time series gene expression data; second, at
a cognitive level, a DIN can be created from a time series of data (e.g. LFP/EEG
data) related to perceptual or cognitive functions; and third, a DIN model can
be developed for cross-level dynamic interactions, e.g. between GRN and brain
signals measured as LFP/EEG. We conclude with introducing brain-gene ontol-
ogy integrated environment for representing and modelling brain-gene dynamic
relations.

Keywords Dynamic interaction networks · gene regulatory networks ·
neuroinformatics · brain-gene ontology · gene expression data · EEG

Introduction

The brain is a dynamic information processing system that evolves its structure and
functionality in time through information processing at different levels (Table 1.1),
i.e. quantum-, molecular (genetic)-, single neuron-, ensemble of neurons-, cognitive-,
and evolutionary. These states can change, and evolve under certain conditions.

N. Kasabov
Knowledge Engineering and Discovery Research Institute, Auckland University of Technology,
585 Great South Rd, Penrose, 1135 Auckland, New Zealand
e-mail: nkasabov@aut.ac.nz
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Table 1.1 Functional levels and processes in the brain

Level Process

6th-level Evolutionary (population/generation) processes

5th-level Cognitive processes

4th-level System information processing (neural ensembles)

3rd-level Information processing in a cell (neuron)

2nd-level Molecular information processing (genes, proteins)

1st-level Quantum information processing

General Framework

Focusing on levels 2–5 from Table 1.1, a future state of a molecule M′ or a group
of molecules (e.g. genes, proteins) is represented as a function of its current state M
and external signals Em:

M′ = Fm (M,Fm) (1.1)

A future state N′ of a neuron, or an ensemble of neurons, is represented as a
function of its current state N, the state of the molecules M (e.g. genes) and external
signals En:

N′ = Fn (N, M, En) (1.2)

A future cognitive state C′ of the brain is represented as a function of its current
state C, the neuronal – N, and the molecular – M state and the external stimuli Ec:

C′ = Fc (C,N,M,Ec) (1.3)

The above set of equations (or algorithms) is a general one and in different cases
it can be implemented differently as introduced and described in [1].

DIN and GRN Models

DINs represent a generalization of GRN models used to model the expression of
many biological genes over time. A node N j (t) in the model represents an object’s
(e.g. a gene G j (t)) activation (expression) at a particular time t and the weighted
arcs Wi j represent the degree of interaction between the objects (e.g. genes Gi and
G j ) (for i = 1, 2, . . . , n) at two consecutive time moments t and (t + 1). In order
to evaluate N j (t + 1) a function Fj (Ni , Wi j ; i = 1, 2, . . . , n) is used.

The DIN (GRN in the example above) is created through an optimization proce-
dure that optimizes the connection weight matrix W and the functions Fj ( j =
1, 2, . . . , n) to match a time course data of gene expressions. To define the
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connection weight matrix W from a time series data of all objects (e.g. genes)
different learning and optimization methods can be used as already illustrated on
GRNinference:

– Kalman filters [2, 3] (a Matlab SW GNetXP available free from www.kedri.info);
– Neural networks and evolving connectionist systems (ECOS) [4, 5]. In this case

an ECOS is trained on [input, output] vectors of the activation values of the genes
at the time (t) and (t + 1) e.g. [G(t), G(t + 1)].

– Evolutionary computation, and more specifically – genetic algorithms, where a
population of GRN is evolved over generations to optimize a fitness function
measuring the model generated time series vs. the real time series data as in [6].

DIN of Brain Signal Transition Rules from EEG Time Series

We formulate a general brain signal transition rule in the following general form:

IF < certain stimulus is present > and < the current state of the brain is C(t) >

THEN < the next state of the brain is C(t +Δt) >
(1.4)

We assume, that a state of activity of the brain at a moment t is represented by
an EEG channel vector C(t), each channel ci (t) representing the activity of an area
of the brain at the moment t . An DIN is incrementally trained (evolved) from a
time series of EEG channel vectors C(t0), C(t1), C(t2), . . ., representing the values
of the channels. If ECOS neural network modeling technique is used, consecutive
vectors C(t) and C(t + Δt) are used as input and output vectors respectively in an
ECOS model [7, 8]. After training of an ECOS on the data, brain signal transitional
rules are extracted. Each rule represents a transition between a current and a next
state of the brain measured via EEG signals at the channels. All rules together form
a DIN representation of the transitional processes when a stimulus is presented. By
modifying a threshold for rule extraction, one can extract in an incremental way
stronger, or weaker patterns of transitions. Using a specialized ECOS model called
Dynamic Evolving Neuro-Fuzzy Inference Systems (DENFIS) [9] more elaborate
types of transitional rules can be extracted, e.g. where the cluster for which the value
of the variable ci is defined is a fuzzy cluster represented through Gaussian mem-
bership functions. Rules may change with the addition of new data, thus making it
possible to identify stable versus dynamic parts of the transitional brain areas.

DIN and Computational NeuroGenetic Models (CNGM)

Genetic studies show that human EEG has a strong genetic basis [10]. Therefore
we use DIN as part of computational neurogenetic models (CNGM) to model the
dependency of neural electrical activity upon internal gene interactions in order to
account for the spectral differences in the LFP in different brain conditions [11].
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The hierarchical model of LFP generation introduced in [12, 13] has the following
components: neuronal genes and their expression levels; protein expression levels;
interactions between genes; receptor and ion channels related functions; generation
of electric signals in neurons; and generation of a local field potential (LFP). Each
neuron within a spiking neural network (SNN) is represented as an internal DIN
model – an abstract GRN. Genes are related to neuronal parameters like excita-
tion and inhibition and thus their expression levels determine the value of these
parameters. For simplicity we assume all GRN to be the same. We can optimize
the GRN interactions W to match the DIN output with the real signal. The found
CNGM that incorporates significant gene interactions constitutes the main result for
further experimental testing. Through the obtained model, it should be theoretically
possible to simulate the effect of gene knockouts on the brain activity.

Conclusion

Capturing the so far available data, information and knowledge about all levels of
the functioning of the brain in one global repository and using it to develop complex
multi-model systems is an ultimate goal that cannot yet be achieved. A step towards
this goal is to create an open source, multiple-access evolving ontology. So far, a
prototype brain-gene ontology (BGO) of about 500 genes has been developed [14].

Acknowledgments Supported by KEDRI (http://www.kedri.info), AUT and the FRST grant
AUTX02001 (2002–2007). We would like to thank the PhD students V. Jain and S. G. Wysoski for
their contributions to BGO and CNGM, respectively.
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Chapter 2
The Cauchy Problem for Spiking
Neuron Models

Romain Brette

Abstract I consider spiking neuron models defined by a differential equation and
a reset – i.e., neuron models of the integrate-and-fire type. I address the question of
the existence and uniqueness of a solution on R for a given initial condition. It turns
out that the reset introduces a countable and ordered set of backward solutions for
a given initial condition. I discuss the implications of these mathematical results in
terms of neural coding and spike timing precision.

Spiking Neuron Models

Integrate-and-fire models are defined by a differential equation governing the
dynamics of the membrane potential x :

dx

dt
= f (x, t) (2.1)

and a reset: when x(t) reaches a threshold xt , then a spike is produced and x(·) is
instantaneously reset to xr . Up to a change of variables, one can set xt = 1 and
xr = 0. We assume that the differential equation (without reset) admits a flow on R.
I previously showed that two particular classes of spiking models have especially
interesting properties [1]:

– leaky models, such that � f
�x ≤ α < 0;

– reflecting models, such that f (0, t) ≥ 0 for all t .

Standard integrate-and-fire models are leaky (and � f
�x = g/C , where g is total

conductance and C is the membrane capacitance), the quadratic model is reflecting.
In particular, these models have a unique firing rate (independent of initial
condition). An important mathematical object for these models is the spike map
ϕ, which is defined such that a spike train produced by the model is the orbit of

R. Brette
Equipe Odyssée (INRIA/ENS/ENPC), Département d’Informatique, Ecole Normale Supérieure,
45, rue d’Ulm, F-75230 Paris Cedex 05, France
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the first spike time under ϕ. More precisely, ϕ(t) is the minimal s ≥ t such that
the forward solution starting at (t, 0) reaches 1 at time s. For leaky and reflecting
models, the spike map is (strictly) increasing on its range but often discontinuous.

Even though Eq. (2.1) defines a flow, the spiking dynamical system only admits
a semi-flow because of the resets. The question of existence and uniqueness of
solutions on R for a given initial condition (the Cauchy problem) is not only of
mathematical interest, but it also has important implications in terms of neural cod-
ing. Indeed, consider that Eq. (2.1) reflects the synaptic integration of a number
of input spike trains, which are then encoded in an output spike train via the reset
mechanism. The set of possible output spike trains in response to the given input
spike trains corresponds to the set of solutions defined on R. In section ‘The Cauchy
Problem’, I describe the structure of backward spiking trajectories. In section ‘Im-
plication for Neural coding’, I argue that the set of meaningful solutions on R is in
general not very large and I conjecture that for random realizations of input spike
trains, the spiking dynamical system actually defines a single-valued function input
spike trains �→ output spike train.

The Cauchy Problem

Let us consider the set S of solutions x(·) of the spiking dynamical system defined
on R, i.e., the set of piecewise differentiable functions x(·) such that x(t+) = 0
whenever x(t) = 1, and which satisfy the differential equation (1) everywhere else.
We examine the solutions x(·) ∈ S that satisfy a given initial condition x(t0) = x0.
By construction, there is a single solution on [t0,+∞[, which we shall call the
forward solution. However, a backward solution on ]−∞, t0] does not necessarily
exist. For example, consider the (continuous) solution u(·) to equation (1) such that
u(t0) = x0; if there is an s < t0 such that u(s) = 1 and u(t) > 0 on [s, t0], then
clearly there can be no backward solution, and thus no solution on R. The following
theorem makes this remark more precise:

Theorem 1 (Existence). Let (t0, x0) be an initial condition (x0 < 1) and let u(·) be
the (non-spiking) solution to equation (1) such that u(t0) = x0. There is a solution
to the spiking dynamical system on R with initial condition (t0, x0) if and only if
u(t) < 1 for all t < t0.

Theorem 1 holds for any one-dimensional model (even non leaky and non
reflecting).

When a backward solution exists, it is in general not unique. A construction of a
set of backward solutions is sketched in Fig. 2.1: every time a backward trajectory
reaches 0, it can split between a continuous and a spiking trajectory.

The following theorem makes this statement more precise:

Theorem 2 (Structure of solutions on R). Assume the model is leaky or reflecting.
Let (t0, x0) be an initial condition (x0 < 1). There is a countable set of solutions to
the spiking dynamical system on R satisfying the initial condition. Let N ∈ N ∪{∞}
be the number of solutions. There is a decreasing sequence of spike times sN−1 <
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Fig. 2.1 Backward
trajectories split at reset

splitting points

1

0

(x
0
,t

0
)

. . . < s2 < s1 ≤ t0 such that the spike times of every backward solution corresponds
to a subset of that sequence of the form sk < . . . < s1.

The integer N is called the degree of the initial condition (t0, x0), and the solution
with N − 1 spikes is called the maximal solution.

Note that a solution to a spiking dynamical system is uniquely defined by its set of
spike times.

The following proposition characterizes the bounded solutions, which can be
thought of as the only realistic solutions (since physiologically, the membrane po-
tential is constrained by the reversal potentials of ions):

Proposition 1 (Bounded solutions). We assume the model is leaky and f is
bounded. Then a solution is bounded if and only if it has infinite degree (infinitely
many spikes on R−), unless the model is silent before some time t0 (i.e., no solution
on R can spike before t0).

Thus, for a given Eq. (2.1), i.e., for a given set of inputs, the set of solutions with
infinite degree defines the possible outputs of the neuron model.

Implications for Neural Coding

Our interest for solutions on R can be rephrased as follows. Since an integrate-and-
fire model transforms input spike trains into an output spike train through a dynamic
state variable, its output for a given set of inputs depends on its state at some point
(the initial condition). However, we have seen that not all states are possible if we
consider that the neuron has a past; only initial conditions with an infinite degree
lead to bounded solutions on R, which constrains the possible outputs of the model.

What is the set Ω of times t such that there is a bounded solution spiking at
time t? In terms of the spike map ϕ defined in section ‘Spiking Neuron Models’,
and since a bounded solution has infinitely many spikes on R− (except for silent
models), it can be written simply as:

Ω =
⋂

n

ϕn(R)
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This is the intersection of a decreasing sequence of sets. When ϕ is continuous,
we simply have Ω = R, i.e., any spike time is admissible. However this is not
a physiologically plausible situation for cortical neurons. Indeed, spikes of cortical
neurons in vivo are known to be triggered by fast fluctuations of the synaptic current,
the average of which is far from threshold [2]. In terms of spiking models, this fact
means that most of the time f (1, t) < 0 (outward current at threshold), and we
know that ϕ(R) ⊂ {t ∈ R| f (1, t) ≥ 0} [1]. Thus, ϕ(R) is already a small set,
which suggests that Ω is much smaller. In a previous paper [3], I showed that such
a construction generally leaves only a finite number of solutions for periodic inputs,
and seems to leave a single solution for aperiodic inputs (realizations of noise),
although this latter fact is still lacking a rigorous proof.

Thus, I conjecture that a spiking model defined by Eq. 2.1, where f is deter-
mined by a given realization of random inputs, has a single solution on R, which
determines its unique output to the given inputs. In this way, spiking neuron models
encode their inputs into specific sequences of precisely timed spikes. This conjecture
is consistent with the experimental finding that cortical neuron respond reliably to
time-varying currents injected in vitro at the soma [4].
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Chapter 3
On the Dynamics of Spectro-Temporal
Tuning in Auditory Cortex

Didier A. Depireux, Heather D. Dobbins and Barak Shechter

Abstract We have previously characterized the steady state tuning of auditory
cortical cells with a linear model called the spectro-temporal receptive field. It
describes the steady-state tuning of cells with respect to the spectro-temporal en-
velope of a stable sound. On the other hand, speech and other natural sounds have
spectro-temporal features that change dramatically over milliseconds. We explore
the time evolution of spectro-temporal tuning in primary auditory cortex following
a transient in spectro-temporal content and study how cortical cells stabilize to their
asymptotic tuning following presentation of a new sound of given spectro-temporal
content.

Dynamics of the Tuning to Spectro-Temporal Features

The question addressed in this work is: What is the time-evolution of neural tuning
to spectro-temporal features during the presentation of a complex sound? Neurons
in primary auditory cortex (AI) can be characterized by their steady-state response
to ongoing broadband sounds with well defined spectro-temporal content. We have
previously used auditory gratings, sometimes called ripples [1, 2], to describe the
response of AI neurons and predict their response to new sounds, using an essen-
tially linear model called the spectro-temporal receptive field (STRF). In general
terms, the cortical response to the presentation of a spectro-temporally rich sound is
made up of two components: part of the response is to the level or the change in level
(level transient) and part of the response is to the spectro-temporal content or change
in spectro-temporal content (feature transient). Our goal is to understand how and
on what time scales a cortical neuron reaches its steady-state tuning. We use sounds
with a constant mean level, and study the responses near feature transients with
a well-defined spectro-temporal envelope emerging from flat spectral noise. One
advantage of our stimuli is that the sound is derived from an analytically defined
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spectro-temporal envelope, allowing for feature transients to exist independent of
level transients, something difficult to control when using natural sounds.

Reference [3] detailed some important properties of STRFs in cortex: in particular
the “separability” of the STRF can be modeled as arising from the existence of two
populations of cells earlier in the auditory pathway, called lagged and non-lagged
cells [4]. If the observed cortical separability arises from lagged and non-lagged
cells (and we have since found there exist two such populations in the inferior col-
liculus), it implies that the tuning of a cortical cell should evolve in time: upon
new spectro-temporal content, the non-lagged cells will provide the early input to
the cortical cells, and therefore, the initial tuning. At longer lags in the presence
of an unchanging spectro-temporal content, lagged cells will provide an additional,
delayed excitatory input and modify the input to cortical cells as provided by thala-
mic cells.

Methods

We recorded from 183 single units from awake ferrets implanted with a chronic
12-moveable-electrode system as described in [5]. Steady-state STRFs were mea-
sured with Temporally Orthogonal Ripple Combinations (TORC) [1, 6]. Briefly,
the TORC stimuli are the sum of periodic auditory gratings each having a spectro-
temporal profile modulated sinusoidally in spectrum and in time. Each of the grat-
ings comprising a TORC has the same spectral density and depth, but differs in
angular frequency. In the TORC stimulus, the amplitude S(x, t) of each tone of
frequency f , with x = log2( f/ f0) and f0 the lower edge of the spectrum, is then
adjusted as

S(x, t) = L[1+ΔA ·Σi cos(2 ∗ π ∗ (Ω · x + wi · t)+ φi )]

L is the overall intensity base of the stimulus and φi are the starting phases of each
of the component gratings in the TORC.

Stimulus Set for Transient Tuning and Analysis

To measure the dynamics of tuning, we use the broadband transient grating stimuli
illustrated in Fig. 3.1. A typical spectro-temporal envelope is flat with the exception
of eight 50 ms intervals (transients) of modulation randomly distributed throughout
the stimulus. Each 50 ms transient is effectively an auditory grating with specific
spectral density, angular frequency and starting phase. In a given waveform, the
eight transients have the same density and angular frequency, but random starting
phases. A 3-ms ramp is applied to the onset and offset of the transient envelope.
Effectively, except for the randomness of the phase, the transients corresponds to
switching ΔA from 0 to 1 for 50 ms intervals in the equation above.
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Fig. 3.1 (Top) Spectro-temporal envelope of a transient grating. The stimulus has a flat envelope
with eight 50 ms transient gratings. Each transient has the same density (Ω) and angular frequency
(w), but a random phase (φ). (Middle) Response of a neuron. We compute a tMTF for each lag τ
after the transient onsets by computing the average spiking rate in a window (gray box) of duration
(8 ·w)−1 s for each starting phase. (Bottom) Spiking rates evoked by each phase of the modulation
are Fourier transformed and the amplitude and phase of the first harmonic extracted. This provides
a tMTF for each lag τ msec for each (Ω, w) pair

We compute a lag-dependent or transient modulation transfer function (tMTF)
for a set of lags τ after the onset of feature transients (Fig. 3.1). We compute the
average spiking rate starting at τ ms after each of the eight transients’ onsets. We
compensate for the phase shift in the stimulus due to the time elapsed post-transient
onset to the center of the window. We combine the rates obtained for each of the
eight phases and calculate the Fourier transform. The phase-locking and lag of the
response with respect to the feature transient at τ ms after its onset is extracted by
taking the amplitude and phase, respectively, of the first component in the transform.
This is effectively the modulation of the neural response as a function of the initial
phase of the transient and of the lag. We obtain a tMTF as a function of lag post-
transient onset.
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Once we obtain a set of tMTFs, we can analyze how the tMTF evolves into the
steady-state MTF, as measured here by the TORC stimuli. Several parameters have
been developed to characterize steady-state STRFs and can be directly adapted to
the present situation [1]. Because of space constraints, here we will only consider
the asymmetry of the spectral aspect (αs) and temporal aspect (αt ) of the transfer
functions around Ω = 0 and w = 0, respectively (see [1]). Together, these two
indices afford another way of analyzing the time-dependent build-up of direction
selectivity towards the steady state, by quantifying how asymmetric the transfer
functions are with respect to down-moving versus up-moving components of the
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Fig. 3.2 (a) Lag-dependent STRFs. Each frame shown is a reverse correlation with the transient
grating stimuli, using the method depicted in Fig. 3.1. The analysis window used for each frame
is started at τ ms post-transient onset. The lag-dependent STRF shows sideband inhibitory regions
at intermediate lags (from 20 to 40 ms), but these regions are not seen with the steady-state TORC
method onset. (b) The steady state STRF obtained through reverse correlation with TORC stimuli.
(c) The total power in the transient modulation transfer functions plotted as a function of lag post-
transient onset. This value is used to determine whether there is a sufficient phase-locking response
to the transient gratings
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spectro-temporal envelope. Values near 0 correspond to symmetric transfer func-
tions, whereas values near 1 correspond to asymmetry of the corresponding aspect
of the transfer function. We have previously shown that steady state STRFs in AI
of the ferret are by and large temporally symmetric (αt = 0) [7]. Since most cells
in cortex show quadrant separability in the steady-state [1] and a large percent-
age of cells had an initially separable transient receptive field, we expected αs to
have a low value for small lags τ . Given the low steady-state value of αt , the
temporal progression of αs would determine the degree of separability, and thus
indirectly, the cell’s direction selectivity. Most cells (61%) exhibited this type of
behavior, where αs was initially low and then climbed to a non-zero steady-state
value (see Fig. 3.2).

The onset of a spectro-temporal feature should produce a low αs that indicates
spectral symmetry, since the spectrum of sounds is almost instantaneously repre-
sented in the cochlea using a unique and complex time-frequency representation.
Spectral asymmetry should therefore take a certain integration time before direction
selectivity, measured by αs as a function of lag, could be manifest.

Conclusions: Are Transient Sounds Coded Differently
from Unchanging Sounds?

We look at dynamics of tuning: how does one go from only spectral information
(at the beginning of a complex sound) to the full steady state tuning to spectro-
temporal content? Altogether, our findings show that the linear STRF model should
be complemented by including a lag-dependence, so that when the spectro-temporal
content of a sound is unchanging or slowly changing, the linear STRF is appropri-
ate, but near a transient such as seen in running speech, cortical neurons are better
described as an adaptive filter.
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Chapter 4
A European Collaboration on Cerebellar
LTD and Pattern Recognition

Erik De Schutter and Volker Steuber

Abstract We review the main results of a study on how the effects of cerebellar
long-term depression are reflected in Purkinje cell spiking. An initial modeling study
produced surprising results: when actual spike trains were simulated it was predicted
that synaptic depression resulted in an increase of the spiking output. Subsequent
collaboration with another team led to the confirmation of the main results using
patch clamp recordings in in vitro cerebellar slices, which suggested additional
modeling. A third team provided supporting data from in vivo cerebellar record-
ings. This group effort provides useful insights into ethical and professional issues
concerning collaborations between modelers and experimentalists in neuroscience.

Introduction

During 1999 a modeling study was started by Dr. V. Steuber at the Laboratory of
Theoretical Neurobiology of the University of Antwerp, Belgium, which eventually
led to the publication of an extensive paper in a high profile journal [1]. The present
paper reviews the main results of this study but also focuses on the historical process
that led to 8 years between start of the initial work and final publication.

The Initial Modeling Study

Dr. V. Steuber started working in Antwerp end of 1999, supported by a fellowship
from the Human Frontier Science Program. He wanted to combine an interest in
cerebellar learning by Purkinje cells, which had been the topic of his PhD thesis,
with the more detailed compartmental modeling in which the Antwerp group has
a lot of expertise. We decided to study the consequences of cerebellar long-term
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depression (LTD) of parallel fiber (PF) synapses [2] on Purkinje cell output, in the
form of simple spike trains, from a pattern recognition perspective. PF synaptic plas-
ticity is supposed to be the substrate of cerebellar motor learning and it is generally
assumed that LTD leads to decreased Purkinje cell output [2].

To make this modeling study possible within acceptable run times we decided to
simulate the recognition of PF activity patterns in a previously constructed complex
Purkinje cell model [3] in two steps. In the first step, binary input patterns were
generated and stored in a corresponding artificial neural network. The resulting
vector of synaptic strengths was then transferred to the Purkinje cell model. The
responses of this model to both learned and novel patterns were compared and the
pattern recognition capabilities of the system were measured as a signal (response
to learned pattern) to noise (response to novel patterns) ratio for different features
of the spike train. Detailed procedures can be found in [1].

This work led already in 2000 to a very surprising conclusion. In the presence
of simulated in vivo simple spike firing, the only criterion that could be used to
distinguish the responses to learned patterns was the length of the simple spike pause
that followed the presentation of a PF pattern. Contrary to the classic view, learned
patterns elicited shorter pauses and resulted therefore in an increased Purkinje cell
output. These results raised doubts concerning one of the predictions of classic the-
ories of cerebellar learning.

Preliminary results of this work were presented at scientific meetings in 2000 and
a subset of the results, describing the effect of cerebellar LTD on somatic excitatory
postsynaptic potentials and their dependence on pattern number and size was pub-
lished as a conference proceeding [4]. A first manuscript describing the modeling
results was submitted to the journal Neuron end of 2002, but returned without review
as the editor did not consider a modeling study without experimental verification
of sufficient general interest. It was subsequently submitted to two other journals,
where it was sent out for review but not accepted because of similar concerns from
the reviewers.

Experimental Verification

Early in 2004 we decided that it would be better to delay publication and get experi-
mental verification of the data. In the meantime, Dr. Steuber had moved to a second
postdoc position at University College London (UCL). Research groups led by Dr.
Häusser and Dr. Silver at UCL are specialized in patch clamp recording from in
vitro cerebellar slices. Together with the team in Antwerp and several other teams in
Europe they received funding from the European Commission to study computation
and plasticity in the cerebellar system and it was therefore relatively easy to start a
collaboration. Dr. W. Mittmann, then a PhD student in Dr. Häusser’s lab, started the
first experiments in spring 2004. These confirmed that there was a positive relation
between the strength of a PF stimulus and the length of the pause in the simple
spike firing, a crucial prediction of the model. This work was done with inhibition
blocked to ensure that the pause was not caused by inhibition. Unfortunately it took
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quite some time to confirm these initial results. One factor was the sensitivity to the
experimental condition. While it was easy to reproduce the effect using attached-cell
mode it was much more variable under the more standard whole-cell mode condi-
tion, presumably because of wash-out [1]. In addition, these experiments were a side
project for the student who was at the same time performing several other studies.

So it took more than a year before the experimental work was completed. By
that time it also included experiments demonstrating that induction of LTD of the
PFs, using a standard protocol, had the predicted effect on the pause [1], making
the experimental verification much stronger. With additional authors involved it
took quite a bit of time to revise the manuscript and it was not until May 2006
that the manuscript was resubmitted to Neuron. Fortunately it was now sent out for
review and the reviewers were quite positive, but insisted on additional work. First
they wanted proof that the effects could also be demonstrated in the presence of
normal inhibition of Purkinje cells, which required additional modeling and exper-
iments [1]. Second, they wanted evidence that the effect was also present in vivo.
Such data were not available to the research labs involved. However, an additional
partner of the European consortium, Dr. De Zeeuw, did have in vivo data and an
analysis showed that, as predicted, there were longer pauses in Purkinje cell spike
trains from transgenic mice lacking LTD [1]. A final revised paper was submitted in
February 2007 and published 2 months later.

Lessons Learned

A number of useful conclusions can be drawn from this experience. The good news
is that modelers and experimentalists can work together productively and that this
can result in exciting findings and high impact papers. It is also a success story for
the European funding system, which brings together strong scientific teams from
different countries in joint projects [5]. But it took a lot of attention to detail, several
visits to each other’s laboratories and extensive phone calls to make it all work.

In hindsight it has become clear that it was worthwhile to take the longer route
and wait for experimental verification as opposed to publish just the modeling re-
sults in a lower impact journal. But this was not so evident initially. First, doing so
entailed a risk for the postdoc, who spent almost 2 years on the modeling study.
If the experimental work had not confirmed the modeling predictions, but instead
contradicted them, it would have been ethically impossible to publish the work.
So in some aspects waiting was a gamble, or a question of belief in the strength
of our modeling approach. Moreover, because of the multiple partners involved,
who all had also other ongoing projects, it took considerable time to accomplish
the requested complete experimental verification. This could have had a negative
impact on the career of the postdoc and students involved. In fact, Dr. Steuber had
moved on to an independent academic position before the paper got published.
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Chapter 5
The Role of Layer 6 Feedback Cells
in the Primary Visual Cortex

Wei Wang

Abstract The abiding challenge in vision is to unravel the role of the extensive
feedback systems that parallel the ascending feed-forward pathways. Feed-forward
projections in the cerebral cortex, which transmit bottom-up information away from
sensory receptors, are matched by feedback projections that can transmit top-down
signals. The role of layer 6 feedback cells in visual processing is of particular ap-
pealing for those cells in the visual cortex sit in a crucial place in the circuitry
involved in the early processing of the visual input in higher mammals such as cats
and primates [1, 2, 3]. They make connections that straddle both the relay of infor-
mation from retinal afferents to LGN cells and the transfer of information from LGN
cells to layer 4 of the visual cortex. In simple numerical terms the connections from
layer 6 cells to LGN and layer 4 of the visual cortex greatly exceed the contribution
from the axons carrying the ascending input [4, 5, 6, 7, 8]. This suggests that layer
6 cells play a special role in controlling the access of the visual input to the cortex.
The question is what is this role?

It is hard to get direct evidence for this issue but recently we have developed a
method to get insight into the functional role of layer 6 feedback cells. Basically
with a very small, focal iontophoretic application of GABAb antagonist CGP to
layer 6 simple cells, we made simultaneously recording both a group of relay cells
in LGN with multi electrode array and the visual responses of layer 6 cells [9].
With this experimental approach we are able to manipulate the visual responses of
feedback cells and isolate the effects of such a change on LGN cells in a controlled
fashion. We observed that focal enhancement of the gain of visual responses in the
layer 6 of primary visual cortex can switch the transmission mode of cells in the
visual thalamus in either direction between tonic and burst patterns [3, 10]. This
refreshes the view that the two firing modes reflect mechanisms tuned to separate
tasks in visual processing [11]. Specifically we speculate that a focus of enhanced
visual responses in the visual cortex provides a “feedback searchlight” [12].
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Since the classical work of Hubel and Wiesel, it has been recognized that the
orientation and the on- and off-zones of receptive fields of layer 4 simple cells in
the visual cortex are linked to the spatial alignment and properties of the cells in
the visual thalamus that relay the retinal input [13]. Whether or not the feedback
from layer 6 to the LGN is organised in a reciprocal way? For the first time we
presented evidence showing that the orientation and the on- and off-zones of recep-
tive fields of layer 6 simple cells in cat visual cortex that provide feedback to the
thalamus are similarly linked to the alignment and properties of the receptive fields
of the thalamic cells they contact. However, the pattern of influence linked to on-
and off-zones is phase-reversed [2, 3]. This has important functional implications
and underlines the importance of the way by which the functional connectivity in
relation to orientation and spatial phase seems to be conserved and coordinated in
the bidirectional interactions between visual cortex and LGN.

We further examined the precision of the firing patterns of simultaneously
recorded cell pairs in the A laminae of the LGN to moving stimuli with and without
feedback. We have quantified the precision in the synchronization by plotting tuning
curves from the synchronized spikes as we vary the orientation of the drifting con-
tour in small steps, which serve to create a varying delay in the timing of the arrival
of the contour over one receptive field with respect to the other. We constructed
orientation tuning curves from the central 5 msecs in the raw cross-correlograms
of the outputs of pairs of LGN cells and this revealed much sharper tuning with
feedback [14]. Our data show a remarkable difference in the precision of the re-
sponses of LGN cells with and without corticofugal feedback. This documents an
emergent temporal precision for moving stimuli from the operation of the cortico-
geniculate-geniculo-cortical circuit as a whole. The significance of these data for
cortical function suggests the precision in stimulus linked firing in the LGN appears
as an emergent factor from the cortico-thalamic interaction [15, 16, 17].

By lifting the focal gain of layer 6 cells visually driven responses in a controlled
fashion, we also revealed that most affected thalamus cells with the corticofugal
elicited excitation or inhibition were located retinotopic relevant to the extraction of
the orientation of contours in their parent cells. Furthermore, the enhanced visually
driven feedback restructured the receptive field spatial profiles of those thalamic
cells and caused its spatial focus shifting [9]. These results highly indicate that the
dynamic and specific positive influences of feedback rather than generic roles con-
tributed to the visual system to adapt rapidly to constantly changing scenes of visual
environment. This is relevant to our understanding of not only the functional orga-
nization of the visual system but also other sensory systems with the same circuitry,
concerning fundamental brain mechanisms and how the brain acquires, processes
and stores information.
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Chapter 6
What Language is Spoken Here?
Conversations Between Neurons
in Primate Visual Cortex

Vivien A. Casagrande, Xin Chen and Walter J. Jermakowicz

Abstract In this review we summarize results of our recent studies examining the
role of spike timing between cells across early primate visual areas. Using methods
that allowed us to examine spike timing between both pairs and larger groups of
neurons we provide evidence that spike timing may be an important mechanism
for propagating feed forward signals between the primary, secondary and tertiary
cortical visual areas and that the propagation of this form of local cooperativity in
the network is supported by oscillatory activity in the gamma frequency range.

Keywords Synchrony · coding · vision · primate · oscillations

Perception requires that we transform physical energy, such as patterns of pho-
tons for vision, into an interpretable pattern of neural impulses, or spikes. Patterns
of sensory spikes must ultimately be transmitted through the different regions of
our brains to muscles in order to result in measurable behavior. The question of
how the nervous system codes information in the form of spikes to represent our
sensory world is still not fully resolved. Traditionally, experts have assumed that
firing rate codes information. But firing rate for individual cells can vary across
features, making it difficult to understand how complex objects such as faces can be
represented. This coding problem is compounded as one considers that more than
30 distinct visual areas appear to specialize in coding different feature attributes of
objects in primates.

One highly controversial hypothesis suggests that cells cooperate by synchro-
nizing spikes to represent features in a dynamic way in local networks [1, 2, 3, 4].
We recently examined this hypothesis by determining the degree to which small
networks of neurons in primate visual cortex can synchronize their conversations
to represent simple visual features, and testing how well this code is transmitted
between visual areas. We had two primary questions: (1) Is neuronal gain more
dependent on spike firing rate or synchrony? (2) How efficiently are changes in
firing rate and synchrony propagated between the early cortical visual areas?
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We used a 100-electrode array (Cyberkinetics, Neurotechnology Inc.) to
simultaneously record single-cell activity in primary visual cortex (V1) and the sec-
ond and third visual areas (V2 and V3) in the bush baby, a prosimian primate. In this
species area V1 sends it main projection to area V2 but also connects to V3 and area
V2 sends it main projection to V3. All experiments were done in accordance with
guidelines set by the American Physiological Society and Vanderbilt University’s
Animal Care and Use Committee under an approved protocol.

Bush babies were anesthetized with propofol and N2O and paralyzed with
pancuronium bromide. The dura was exposed and removed, and the 100-electrode
array was pneumatically inserted into layers 2/3 of V1, V2 and V3 as determined us-
ing stereotaxic coordinates. Receptive fields (RFs) of each electrode were manually
mapped with a light bar. The placement of the array was later confirmed by remov-
ing the array, fixing the brain in 2% formaldehyde, flattening the cortex, cutting
tangential sections and staining for cytochrome oxidase (CO) to reveal CO blobs
in V1. The V1-V2 border was defined based on the presence of CO blobs in V1.
The V2-V3 border was delineated based on large changes in average receptive field
(RF) sizes (V3 RFs are significantly larger than those in V1 or V2). In addition to
these criteria we used known differences in mean spatial and temporal frequency
preference to further confirm the location of each electrode.

Stimuli were presented on a Monitronix monitor with a 120-Hz refresh rate. Full-
screen drifting sine-wave gratings (0.5 cyc/deg) varying in orientation (0–170◦, 10◦

intervals) were presented at 60% contrast. Only cells whose firing rates exceeded
4 sps/s and whose responses to the preferred orientations exceeded the responses to
nonpreferred orientations by a factor of two were included in our analysis. To test
how well changes in either firing rate or synchrony were propagated between visual
areas 200 2 s trials of 30 drifting sine-wave grating stimuli varying in orientation
(0–170◦), spatial frequency (0.2–1.2 cyc/deg) and temporal frequency (0.5–10.0 Hz)
were presented. Spike sorting was used to isolate the most robust units and remove
noise and artifacts on each channel [5].

Two different methods were used to correlate spike times. The first method, de-
scribed earlier [6, 7] was the Joint Peristimulus Time Histogram (JPSTH) Method.
To distinguish changes in effective connectivity from changes caused by the co-
variation of firing rates, we subtracted the cross-product of PSTHs from the raw
JPSTH and divided by the standard deviation of the PSTH predictor. We quantified
the magnitude of spike synchrony as the percentage of maximum possible effec-
tive connectivity, ranging from −100% to 100%. All cross-correlation histograms
(CCHs) computed with this method between cells with similar orientation tuning
(within 10◦) and firing rate above 4 sps/s were used for subsequent analyses.

The second method we developed [8, 9] specifically for quantitative comparison
of the propagation of changes in firing rate and synchrony between larger neuron
groups in spatially segregated visual areas. Method 1 only allowed us to exam-
ine correlations between pairs of neurons. For both methods we selected groups
of neurons with similar orientation preferences and overlapping receptive fields
in the three visual areas. We then calculated two different peristimulus time his-
tograms (PSTHs) for each group, one representing raw spikes (firing rate) and
one representing coincident spikes (synchrony). The latter was corrected using a
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standard shift predictor. We correlated these PSTHs for the different cells groups
at all time lags, see also [7, 9]. If, for example, firing rate is better propagated be-
tween areas V1-V2 than changes in synchrony, the firing rate PSTHs should be more
correlated at the 4–6 ms time lag than the synchrony PSTHs.

To examine the relationships of firing rate and synchrony to neuronal gain, we
correlated these response properties with neuronal driving efficacy. We quantified
driving efficacy by computing cross correlation histograms (CCHs) between neu-
rons in different visual areas with similar orientation preferences and overlapping
RFs. The majority of the CCHs (89%) had correlation peaks at 4–6 ms. This peak
in the CCH was used as the value to define driving efficacy. The synchrony between
neurons in one visual area was highly correlated (0.66) with how well these same
neurons drove spikes in target area neurons. In contrast, firing rate correlated poorly
with downstream driving efficacy (0.06). These in vivo data are the first to support
recent simulation studies that show that neuronal gain is better predicted by input
synchrony than input firing rate [10].

Our original correlation method, described above, was used to compare propaga-
tion of synchrony and firing rate through both feedforward and feedback pathways
between V1-V2, V2-V3 and V1-V3. In every case, changes in synchrony correlated
better than firing rate at time lags representative of the axonal conduction delays be-
tween visual areas, suggesting that coincident spikes provide a more efficient means
of communication between early cortical visual areas. The results were consistent
even when correlations were made across more than two cells using method 2. Inter-
estingly, synchronous spikes among all cell groups within visual areas occurred in
conjunction with oscillations in the mid-gamma band (65–80 Hz) range. In addition,
the JPSTH method demonstrated that oscillations at this same frequency also oc-
curred between neurons in different visual areas that preferred the same orientation
and whose RFs overlapped.

Our findings suggest that neuronal conversations in the form of synchronous re-
sponses may be a fundamental mechanism used to propagate visual information
between early visual areas. Neurons are highly sensitive to input spike synchrony.
Synchrony increases the probability of generating precisely timed action potentials
in the target, leading to the efficient propagation of synchronous responses through
the hierarchy to higher order visual areas in a manner that oscillations could support.
As suggested previously [1, 2, 3, 4], the oscillations could increase the probability
of spike-timing precision among functionally related groups of neurons.
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Chapter 7
On the Emergence of Orientation Biases in V1

Mehdil and Nouri Shirazi

Abstract Though the site of the emergence of orientation biases in the primary
visual cortex (V1) is still debated, it seems that the consensus is converging on the
idea originally suggested by Hubel and Wiesel in early 1960’s; the idea that the
convergence of spatially-arranged geniculate inputs on single cortical cells is the
source of orientation biases in V1. But, is the Hubel–Wiesel type of geniculocortical
connectivity is the only choice V1 has to generate orientation biases?

Introduction

Intracellular recordings [1] provided strong evidence that the excitatory centers of
the RFs of the studied orientation-selective simple cells were nearly circular. In
addition, experimental studies based on blocking the cortical GABAergic inhibition
by intracortical administration of bicuculline [2] demonstrated that the orientation
selectivity of the studied simple cells were reversibly abolished to a degree that
their RFs became virtually circular, or that even in some cases, the cells’ origi-
nal orientation preferences were reversibly changed. These pieces of experimental
evidence, firstly, imply the existence of non-thalamic source of orientation biases
in the responses of cortical cells, and secondly indicate that the convergence of
spatially-arranged non-oriented geniculate inputs is by no means the only possible
mechanism that enables V1 to generate orientation biases.

Research Goal

The main goal is to construct a spiking neuromorphic model in order to demonstrate
how foveal V1’s neural circuitry could generate orientation biases from non-oriented
thalamic inputs without resorting to a Hubel–Wiesel type of geniculocortical-
connectivity mechanism.
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Method

In my previous article [3], I developed a physiologically-plausible computational
model for showing how a mature foveal V1 could, in principle, create cortical excita-
tory/inhibitory orientation biases from non-oriented thalamic inputs. To develop the
model, I adopted the Marr’s information-theoretic approach. According to Marr’s
prescription, in order to understand the intracortical information processing that un-
derlies the emergence of orientation biases in V1, we need to answer the following
interrelated questions: (1) what is the computational goal of V1? (2) how does V1
achieve its computational goal? and (3) how does the V1’s hardware implement its
computational goal? In that article, I provided an answer to the first question by
formulating a probabilistic computational theory for the emergence of orientation
selectivity in V1. The formulated theory comprised: (1) a computational scenario,
(2) a two-layer hierarchical Markov random field, which was assumed to generate
the the activity patterns of the lateral geniculate nucleus (LGN) cells, and (3) a
Maximum-A-Posteriori (MAP) estimation of the activity pattern of the orientation-
selective cortical cells for a given LGN activity pattern, which was envisaged as the
computational goal of V1. There, an answer was also provided for the second ques-
tion by developing a physiologically-plausible parallel algorithm that enables V1
to achieve its computational goal. In this article, I introduce, very briefly, a spiking
neuromorphic model as an answer to the last question.

The Orientation-selective Computational Models

For the sake of concreteness, let’s consider the following system of local up-
dating rules and doubleton-clique energies which describe a horizontally-tuned
physiologically-plausible Bayes–Markovian computational model.

The Local Updating Rules

x̃i j (n + 1) = arg max
xi j∈{X ,X}

⎧
⎨

⎩−
∑

C∈CY
i j

E(yi j , yC ′ | xi j ;β, T )

−max

⎧
⎨

⎩−
∑

C∈CY
i j

E(yi j , yC ′ | xi j ;β, T ),
∑

C∈CY
i j

E(yi j , yC ′ | xi j ;β, T )

⎫
⎬

⎭

−
∑

C∈CX
i j

E(xi j , x̃C ′ (n); γ (n))

⎫
⎬

⎭ (7.1)

for all (i, j) ∈ L, where L denotes an N × N rectangular lattice.
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The Doubleton Clique Energies

For all horizontal doubleton cliques of the LGN process,

E(yi j , yC ′ | X ;β, T ) = −βS(yi j , yC ′ ; T )+ βS(yi j , yC ′ ; T ) (7.2)

and

E(yi j , yC ′ | X ;β, T ) = βS(yi j , yC ′ ; T )− βS(yi j , yC ′ ; T ) (7.3)

whereas, for the non-horizontal doubleton-cliqes,

E(yi j , yC ′ | X ;β, T ) = βS(yi j , yC ′ ; T )− βS(yi j , yC ′ ; T ) (7.4)

and

E(yi j , yC ′ | X ;β, T ) = −βS(yi j , yC ′ ; T )+ βS(yi j , yC ′ ; T ) (7.5)

and finally for all doubleton cliques of the SCI process,

E
(
xi j , x̃C ′ (n); γ (n)

) = −γ (n)I
(
xi j , x̃C ′ (n)

)
(7.6)

where β > 0, γ0 > 0, Γ (0) = 0, limn→∞ Γ (n) = 1, furthermore S(◦, ◦), S(◦, ◦),
and I (◦, ◦) denote similarity, dissimilarity, and identity operators, respectively. (For
a clear understanding of the computational model, its Bayes–Markovian architec-
ture, dynamics, and computations, and the definitions of the symbols and parameters
used in describing the model, see [3].)

A Spiking Horizontally-tuned Neuromorphic Model

A recurrent neural network of Hodgkin–Huxley (HH) type spiking cells was con-
structed to implement the computational model. The network consists of four layers
as shown in Fig. 7.1. The spiking neural network stands between the LGN layer
and a layer of orientation-selective, horizontally-tuned, striate cortical (OSC) cells,
receives inputs from the LGN layer, and generates signals that control the states
of the OSC cells. The four-layered neural network consists of spatially interactive
modules which are in a retinotopically one-to-one relationship to the LGN cells.
Each module comprises a network of neuromorphic spiking microcircuits designed
to implement the computational model’s local binary operators.

Figure 7.1 shows the excitatory/inhibitory synaptic connections of the ijth mod-
ule projected on the plane that passes through the module’s principal LGN and OSC
cells, i.e., the ijth LGN and OSC cells, and their corresponding horizontally-aligned
neighboring LGN and OSC cells. The excitatory/inhibitory synaptic connections
projected on the planes that pass through the ijth LGN and OSC cells and their cor-
responding 45◦-, 90◦-, and 135◦-aligned neighboring LGN and OSC counterparts
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Fig. 7.1 The ijth module’s excitatory/inhibitory connectivity pattern projected on the plane passing
through the horizontally-aligned neighboring LGN and OSC cells. All cells are assumed to be
HH-type spiking cells. Synapses are characterized by three parameters, vrev(mV), ds (ms), and
gs (�S), where vres denotes the synaptic reversal potential, ds denotes the synaptic delay, and gs

the synaptic conductance. Synapses with vrev = −67(mV) are inhibitory and those with vrev = 0
are excitatory

are exactly the same as shown in Fig. 7.1 except the excitatory synapses associated
with the sub/supra-threshold contrast cells that should be changed to inhibitory and
vice versa.

Simulation Results

The performance of the orientation-selective spiking neural network was studied by
using the NEURON simulator. Figure 7.2 shows some of our simulation results.
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Fig. 7.2 The 1st and 3rd rows show the activity patterns of 15×15 LGN cells, whereas the 2nd and
4th rows show the response patterns of the corresponding 15 × 15 horizontally-tuned OSC cells.
Dark gray in the 2nd and 4th rows denotes zero action potential (AP) per one LGN AP, whereas
the light gray denotes one AP per one LGN AP. The simulations were carried out for 80(msec)
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Chapter 8
Stress Affects Synaptic Plasticity
and Basal Synaptic Transmission
in the Rat Hippocampus In Vivo

Amer Kamal, Ivan Urban and Willem Hendrik Gispen

Abstract Acute as well as prolonged stress produces cognitive deficits. Long term
potentiation (LTP) and depression (LTD) in the hippocampus are cellular basic
mechanisms implicated in learning and memory. Male Wister rats were used to eval-
uate the effect of stress on hippocampal synaptic plasticity in vivo. The hippocampus
CA1 area was implanted with stimulating and recording electrodes. The field ex-
citatory post synaptic responses were recorded before and after induction of stress
(unexpected 15 electrical shocks to the feet of the animals during 10 min/twice daily
for 2 days). Results showed that the base line synaptic transmission was increased
in the stressed rats compared to the control. The induction of LTP (by 100 Hz trains
of stimulation) was inhibited in the stressed animals. We concluded that this pro-
tocol affected significantly the hippocampal synaptic plasticity. This may explain
the effect of stress on some aspects of hippocampus function like learning and
memory.

Introduction

Exposure to acute as well as prolonged stress produces cognitive deficits ([1],
review) that can be long lasting [2]. Learning is thought to occur through long-
lasting, activity-dependent changes in synaptic efficacy. Two opposite synaptic mod-
ifications, long-term potentiation (LTP) and long-term depression (LTD) have been
identified so far. In many brain areas, including the hippocampus, the direction and
the degree of synaptic changes depend primarily on postsynaptic depolarization:
LTD is obtained following low levels of depolarization whereas LTP is induced
by stronger ones [3]. But the susceptibility to synaptic plasticity also depends on
behaviour. Acute [4] and chronic stressors [5] virtually abolish the induction of
LTP in hippocampus. We showed that chronic stress affected the performance of
rats in water maze, and also inhibited the induction of LTP in the hippocampus
[6]. Treatment of the animals with antidepressants (imipramine) or enrichment of
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their environment [7] reverses these defects. In this study we investigated the effect
of stress (in the form of electrical shock delivered to rats) on the basal synaptic
transmission and LTP induction in the hippocampus in vivo.

Materials and Methods

Young male adult Wister rats (300–350 gm body weight) were used. The hip-
pocampi were implanted with stainless steels wires steriotaxically. The recording
electrodes were surgically implanted in the dendritic layer of CA1 field, and the
recording electrodes were placed on the Schaffer’s Collaterals. Operations were
done under general anesthesia, and the hippocampus was reached steriotaxically.
After implantation, the site of the electrodes was confirmed by stimulating the af-
ferent fibers and recording the specific responses. The electrode wires were then
fixed into sockets which were then screwed to the skull and cemented. The ani-
mals were given 2 weeks to recover from the operation. The animals were placed
in the recording box which connected the rats to the recording machine and the
stimulator. Pulses (of about 70–120 �A) were delivered to the Schaffer collateral
afferent fibers and the responses were recorded and fed into a computer for analysis
(Spike 2 software). The responses for five different current intensities (I1–I5) were
used to evoke threshold to maximum responses. The intensity-response curve was
determined, and the current intensity that evoked half maximum responses was used
to complete the experiment. Stable base line responses were recorded for at least
1 h. Every rat was transferred into a special treatment cage. One group of animals
(n = 5) where subjected into electrical shocks through the metal bars of this cage
into their feet. The shocks were given unexpectedly, and for a period of 10 min (a
total of 15 shocks). This was repeated twice daily for 2 days. Control animals were
placed in the same cages but they did not receive electrical shocks. After that, the
animals were transferred again into the recording box, and the base line responses
were recorded for another 60 min. Three trains of high frequency stimulations (HFS,
100 Hz) were delivered through the recording electrode, and the responses were
recorded for further 50 min.

Results

The data are presented as averages±SEM. The base line responses were set as 100%
and the responses after HFS or while measuring the intensity-response relation were
expressed as a percentage changes from the base line responses. Student t-test was
used to detect significant differences between the groups and before and after HFS.

Figure 8.1 showed that the range of the synaptic responses were not different
between the groups. The responses towards the different five current intensities were
not significantly different between the groups (p ≥ 0.05).The effect of acute stress
on the basal synaptic responses was measured. Responses before and after stress are
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Fig. 8.1 The frequency-response curve in the stressed and control groups of animals. The re-
sponses towards five increasing intensities of stimulation (ranging from threshold to maximum
responses) were not different in both groups. Empty bar = Control, Black bars = Stressed animals

presented in Fig. 8.2a. The slope of the evoked field excitatory post synaptic poten-
tials (fEPSP) elevated from base line values of 92.72 ± 4.47% to 119.51 ± 13.4%
measured 45 min after the shock delivery. (p < 0.05). No significant change in the
fEPSPs slope was recorded in the control animals (100.67±2.64 before the transfer
to the treatment cage, and 90.91± 5.8% after 45 min further recording, p > 0.05).

Figure 8.3 showed results of LTP induction in the CA1 field of the hippocam-
pus in the stressed and control animals. The conditioning stimulations were 100 Hz
(HFS). In the electrically shocked animals there was no significant induction of
LTP by this protocol (base line responses were 107.38 ± 5.12% compared to
110.89 ± 10.28% of the baseline values recorded 1 h after the application of HFS,
p > 0.05, n = 5). In the control animals however, HFS induced significant LTP
induction (base line values were 102.86 ± 7.67%, which were potentiated by HFS
into 143.42± 12.56% of base line values 1 h after the HFS, p < 0.05, n = 6).

Fig. 8.2 The effect of stress (a) and conditioned stress (b) on the synaptic transmission in the
hippocampus. Filled circles refer to stressed group and empty circles to control. Stress potentiates
the baseline responses when compared to the control animals (a). In (b) the graph shows that
conditioned stress has no effect on the baseline values
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Fig. 8.3 LTP induction in the stressed and control animals. Three trains of HFSs resulted in sig-
nificant LTP induction in the control animals (empty circles), while it failed to induce potenti-
ation of the responses in the stressed animals (filled circles). Inset: Typical traces from control
and stressed animals recorded before and 60 min after the HFS. Calibrations: vertical = 1 mV,
Horizontal = 5 ms

Discussions

In this paper we linked between stress and hippocampal synaptic plasticity. It is
well known that the hippocampus is playing a role in learning and memory. We
showed that defects in learning water maze in rats were associated with defects in
hippocampal synaptic plasticity [8]. Our data showed that acute stress induced by
unexpected electrical shock to rats caused an increase in synaptic transmission in the
hippocampus CA1 area in vivo. The slope of the induced fEPSP was significantly
higher after the stress. In the other experiment, placing the animals in the treatment
box without delivering electrical shock (conditioned stress) did not change the slope
of the fEPSP significantly. This could be explained that the responses were already
high, and the threshold for further potentiation was increased. We showed earlier
that potentiation of a synapse depends also on the state of the synapse before the
application of HFS [7]. The same reason may be implicated in the failure of the
HFS in LTP induction in the stressed group of animals. The data demonstrated that
3 trains of HFS (100 Hz) were not successful in LTP induction in these animals,
while there was a significant potentiation of the responses in the control group.
Already potentiated synapses may need more powerful conditioning stimulation to
show further LTP. We demonstrated that a defect in LTP induction in stressed rats
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was associated with increased sensitivity towards LTD induction [6]. The stressed
animals thus showed less LTP but more LTD induction.

In conclusion, our protocol for induction of stress in rats, when applied for 2 days
caused an increase in the amplitude of the responses of the hippocampal synapses in
rats in vivo. The same intensity of current stimulation evoked larger responses after
the electrical shock compared to the responses before the shock-induced stress. The
results showed also that conditioned stress was not effective in changing the fEPSP
responses. This may be due to in part to the fact that the responses were already
potentiated by previous stress induced by the electrical shock. The same mechanism
may be implicated in the failure of stressed rats to show LTP after HFS.
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Chapter 9
Physiological Evidence for Cantor Coding
Output in Hippocampal CA1

Yasuhiro Fukushima, Makoto Yoneyama, Minoru Tsukada, Ichiro Tsuda,
Yutaka Yamaguti and Shigeru Kuroda

Abstract In rat CA1 pyramidal neurons, our previous study showed Cantor coding
like property, which is theoretically proposed by Tsuda and Kuroda. In this study,
we analyzed the clustering properties by one and two steps before the sequences of
electrical stimulation in CA1 pyramidal neurons after many action potentials. The
membrane responses after action potentials were significantly clustered as many as
in a few action potential conditions. Our results suggest that Cantor coding like
processing was also observed in many action potential conditions.

Keywords Cantor coding · hippocampus · clustering property

Introduction

Tsuda and Kuroda [1, 2, 3] theoretically reported the possibility of Cantor coding
in CA3-CA1 network. Cantor coding is an information coding scheme for temporal
sequences of events. Our previous study showed that Cantor coding like property
in hippocampal CA1 neurons, and the clustering property was dependent on input
current strength (Fukushima et al., submitted). However, previous stimulation was
applied continuously, so there’s some possibility to induce neurons’ fatigue when in-
ducing many action potentials by very strong current input. To clarify whether many
action potentials affect subsequent clustering property of the neurons, we changed
the stimulation pattern of random sequences, and analyzed clustering properties in
many action potential conditions.
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Materials and Methods

Patch-clamp recording was made from pyramidal neuron of CA1 area in rat
hippocampal slice. EPSPs were induced by extracellular electrical stimulation using
two theta glass electrodes. The tips of the two electrodes were set to the Schaf-
fer collaterals, proximal and distal sites to the soma Successive ten pulses (33 Hz)
random sequence electrical stimulations, one of four patterns, was applied at 10 s
intervals for 20 min. The four patterns of electrical stimulation were as follows: (1)
electrical stimulation through both electrodes (“11” type), (2) electrical stimulation
through one electrode (“10” type), (3) electrical stimulation through the other elec-
trode (“01” type), and (4) no electrical stimulation (“00” type).

“Cluster index” indicates how well the distribution of responses is clustered by
the patterns of electrical stimulation. Cluster index was calculated as our previous
experiments (Fukushima et al., submitted). Each response was categorized into four
groups by the pattern, one preceding pattern, or two preceding pattern of electrical
stimulation. The clustering index indicates the probability that the distance between
“its value and weighted-center of its own group” is not shortest among the four
distances between “its value and weighted center of all four groups”.

Fig. 9.1 New stimulating pattern

Results and Discussions

Cluster indexes were compared among three conditions: (1) electrical stimulation
induced no action potentials (Vr), (2) electrical stimulation induced a few action
potentials (Vth) (3) electrical stimulation induced many action potentials (Vspikes).
Clustering index in many action potential condition (Vspikes) were significantly
lower than randomized control at one and two steps before the sequences, and were
similar to those in a few action potential conditions (Vth) at clustering by one and
two step before in the sequences (Fig. 9.2).

These properties were similar to theoretical Cantor coding system. In additions,
our results suggest the possibility that action potentials do not cancel the previous
membrane information, but affect subsequent neural processing.
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Fig. 9.2 Cluster index at one and two steps before in the sequences
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Chapter 10
Theta Phase Coding and Suppression
of Irrelevant Plastic Change Through
STDP in the Entorhino-Hippocampal
System amid Background Noise

Jun Igarashi and Hatsuo Hayashi

Abstract We investigated sequence learning in the entorhino-hippocampal system
using a network model of the entorhinal cortex layer II with entorhino-hippocampal
loop connections. Afferent signals to the entorhinal cortex layer II, whose frequen-
cies were different from each other, were encoded by the phase of stellate cell firing
with respect to theta rhythm. It is also demonstrated that a LTD window in the range
of positive spike-timing may suppress enhancement of irrelevant loop connections
due to background noise.

Keywords Entorhinal cortex layer II · network model · loop circuitry · theta-phase
coding · STDP · sequence learning · noisy circumstance

Introduction

The entorhinal cortex (EC) and the hippocampus (HC) are crucial brain areas for
sequence learning. Place cells have been found in HC [1], and it has been supposed
that a sequence of places is encoded by the phase of place cell firing with respect to
theta rhythm (i.e. theta phase coding) [2]. Moreover, the phase of place cell firing
advances when the animal traverses a place field (i.e. phase precession) [3].

EC layer II (ECII) receiving afferent signals from the neocortex sends signals to
HC, and then HC sends signals to EC layer V (ECV). Since projections from ECV to
ECII exist, loop circuitry is formed in the EC-HC system and reverberation activity
in the gamma range occurs. This gamma activity may be superimposed on the theta
rhythm generated in ECII. This is a reminiscence of the theta phase coding.

On the other hand, low-rate random EPSPs (i.e. background noise) occur spon-
taneously in stellate cells. Occasional firing of stellate cells due to the background
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noise may be a cause of plastic change in synaptic weight if synapses in this area
are subject to spike-timing-dependent plasticity (STDP).

In this paper, first, we will show that afferent signals to ECII stellate cells, whose
frequencies are different from each other, are encoded by the phase of stellate cell
firing with respect to theta rhythm, using an ECII network model with loop con-
nections that mimic the EC-HC loop circuitry. Secondly, we will show that a LTD
window in the range of positive spike-timing works to suppress enhancement of
irrelevant loop connections due to background noise.

Theta Phase Coding in the Entorhino-Hippocampal System

The present ECII network model consists of 30 stellate cells and one inhibitory
interneuron (Fig. 10.1a). The EC-HC loop circuitry was mimicked by simple delay
lines (transmission delay = 20 ms) that connected stellate cells in all-to-all fashion,
whereas the stellate cells were not mutually connected through excitatory synapses
within the ECII network. Loop connection weights were subject to a STDP rule. The
stellate cell was a multi-compartmental biophysical model [4] that was obtained by
modifying the stellate cell model developed by Fransén et al. [5]. Interneuron was
exactly the same as that developed by Fransén et al.

The present ECII network model causes theta rhythm as synchronized subthresh-
old oscillations of stellate cells. As stellate cell firing keeps pace with the theta
rhythm, each stellate cell fires around a phase of the theta rhythm determined by
the frequency of the afferent signal to the cell. A 40 Hz afferent signal (pulse train)
was fed to one stellate cell (cell A) and an afferent signal below 40 Hz was fed
to another cell (cell B). When cell B received an afferent signal around 30 Hz, the
spike time difference between the cells, A and B, was about 20 ms and the pre-post
spike-timing (spike-timing between presynaptic spikes entered from cell A to cell
B through the loop connection and postsynaptic spikes of cell B) distributed within
the LTP window of ±10 ms. Consequently, the loop connection was enhanced.

HC + ECV
20 ms delay A B C D

Entorhinal cortex layer II

Stellate cells

Intermeuron

(a) (b)

500 ms

50
 m

V

500 ms

50
 m

V

500 ms

50
 m

V

A

B

C

D

Fig. 10.1 (a) ECII network model with loop connections that mimic EC-HC loop connections
(lines passing through the gray box). Arrows indicate afferent signals. (b) Firing of ECII stellate
cells whose loop connections are potentiated, using a Mexican hat STDP rule. Stellate cell A alone
was stimulated by an afferent signal
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Four afferent signals whose frequencies were 40, 30, 20, and 10 Hz were fed to
four stellate cells, A, B, C, and D, respectively, during the first period of 40 s and
then another four groups of four stellate cells, B-E, C-F, D-G, and E-H, were succes-
sively stimulated by the afferent signals every 40 s on the assumption that the animal
traverses a place field. Consequently, loop connections, A → B, B → C, C →
D, D → E, and E → F, were selectively potentiated. After the establishment of the
potentiation, stellate cell A alone was stimulated by a 40 Hz afferent signal. Firing of
stellate cell A triggered successive firing of stellate cells, B, C, and D (Fig. 10.1b).
This implies that a phase coding was established. Then, stellate cell B alone was
stimulated by the 40 Hz afferent signal. Firing of cell B triggered successive firing
of stellate cells C-E, and those firing phases advanced. This replicates the phase
precession.

Suppression of Plastic Change in Irrelevant Loop Connections

In this section, we used thee types of STDP rules (Fig. 10.2a–c). Loop connections
between stellate cells receiving afferent signals whose frequencies were appropri-
ately different were selectively enhanced regardless of the types of STDP rule. How-
ever, an asymmetric STDP rule being used, irrelevant loop connections between
stellate cells, which received a high-frequency afferent signal and a random signal
each, were potentiated, whereas, the Mexican-hat and the Nishiyama STDP rules
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Fig. 10.2 Leaning rules: (a) Mexican hat, (b) asymmetric, and (c) Nishiyama STDP rules. Con-
nection matrices (d)–(f) correspond to the STDP rules (a)–(c) respectively. Stellate cells, A and B,
were stimulated by afferent signals. Each of the other stellate cells was stimulated by a random
signal alone
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being used, those irrelevant loop connections were not potentiated (Fig. 10.2d–f).
The pre-post spike-timing is positive in this situation and the asymmetric STDP rule
has only a LTP window in the range of positive spike-timing, while Mexican-hat and
Nishiyama STDP rules have a LTD window in the same range.

When the frequency of the afferent signal was below 20 Hz, irrelevant loop
connections were potentiated even in the case of Mexican-hat and Nishiyama
STDP rules. Those potentiated loop connections were however suppressed with
the progress of sequence learning. On the assumption that the animal approaches
the center of the place field, the frequency of the afferent signal increases and
the irrelevant loop connections were finally suppressed. In contrast, in the case
of the asymmetric STDP rule, potentiated irrelevant loop connections remained to
the last.

Discussion

In general, the frequency of sensory signals encodes intensity of sensory stimuli.
Therefore, the frequency of sensory signals that conveys information about places
closely ahead of the animal would be high. In fact, the firing rate of place cells
increases when the animal approaches the center of the place field [3]. Probably, the
frequency of afferent signals to ECII is low when the animal passes the edge of the
place field, and then increases when the animal approaches the center of the place
field. As a result, route information would be stored as a sequence of discrete places
selected by afferent signals whose frequencies are appropriately different.

A LTD window in the range of positive spike timing works to suppress enhance-
ment of irrelevant loop connections between stellate cells receiving afferent and
random signals each, as mentioned above. Another factor in the robust sequence
learning is the transmission delay of loop connections. If the transmission delay is
more than 10 ms, even synaptic weights between stellate cells receiving only ran-
dom signals are depressed, because firing phases of the stellate cells were clustered
together around a later phase of the theta rhythm and the pre-post spike timing
distributes in the range of negative spike timing. STDP rules having a LTD win-
dow in the range of positive spike timing and loop connections having a relatively
long transmission delay are suitable for robust sequence learning amid background
noise.

Acknowledgments This work was supported by the COE program (center #19) granted by MEXT
of Japan and KAKENHI (19500126) granted by JSPS.

References

1. O’Keefe, J., Recce, M.L.: Phase relationship between hippocampal place units and the EEG
theta rhythm. Hippocampus 3 (1993) 317–330.

2. Jensen O., Lisman J.E.: Hippocampal CA3 region predicts memory sequences: accounting for
the phase precession of place cells. Learn. Mem. 3 (1996) 279–287.



10 Theta Phase Coding and Suppression of Irrelevant Plastic Change Through STDP 51

3. Skaggs W.E., McNaughton B.L., Wilson M.A., Barnes C.A.: Theta phase precession in hip-
pocampal neuronal populations and the compression of temporal sequence. Hippocampus 6
(1996) 149–172.

4. Igarashi J., Hayashi H., Tateno K.: Theta phase coding in a network model of the entorhi-
nal cortex layer II with entorhinal-hippocampal loop connections. Cogn. Neurodyn. 1 (2007)
169–184.

5. Fransén E., Alonso A., Hasselmo M.E.: Simulations of the role of the muscarinic-activated
calcium-sensitive nonspecific cation current INCM in entorhinal neuronal activity during de-
layed matching task. J. Neurosci. 22 (2002) 1081–1097.



 

 

 

 

 



Chapter 11
Effect of Low-Frequency Stimulation
on Spontaneous Firing in Cultured
Neuronal Networks

J. van Pelt, I. Vajda, P.S. Wolters, G. Ramakers and A. van Ooyen

Abstract Cultured neuronal networks from dissociated rat cortical tissue show
spontaneous firing activity from about the end of the first week in vitro. Multielec-
trode recordings have shown slow developmental changes in the firing activity at the
individual electrode sites. Here we report that a short period of low-frequency elec-
trical stimulation is able to induce lasting changes in the spontaneous firing activity,
significantly larger than developmental changes over similar periods of time.

Introduction

When dissociated rat cortical tissue is brought into culture, neurons readily grow
out by forming axonal and dendritic arborizations and synaptic connections. These
developing neuronal networks display spontaneous firing activity from about the
end of the first week in vitro. Firing rates, recorded with multielectrode arrays, show
slow developmental changes, small on time scales of hours [1, 2, 3, 4, 5]. Here we
investigated the sensitivity of spontaneous firing activity to short periods of low-
frequency electrical stimulation.

Methods

Cell Cultures on Multielectrode Arrays

Dissociated E18 rat neocortical neurons were cultured on planar multi-electrode
arrays (MEA) from MultiChannel Systems [2, 6]. Hexa-MEA types were mainly
used, with a hexagonal pattern of electrodes with diameters of 10, 20 and 30 �m,
respectively. The latter one was used for electrical stimulation.
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Fig. 11.1 (a) Pattern of low-frequency stimulation, consisting of a train of 40 bipolar pulses of
1.5 V (peak-peak) of 0.2 ms width (single phase), delivered with 5 s intervals (0.2 Hz). (b) Each
pulse train is preceded and followed by a period of about 5 min for recording spontaneous activity
in the network. (c) Pulse trains are successively applied to six different electrodes in the Hexa MEA
multielectrode array

Pattern of Electrical Stimulation

The scheme of electrical stimulation is shown in Fig. 11.1. Individual trains of 40
bipolar pulses at 0.2 Hz were delivered at six successive sites, with a test period of
about 5 min before and after each train. Before stimulation at the first site and after
stimulation at the sixth site, spontaneous activity was measured for a period of at
least 1 h.

Comparing Mean Firing Rates at Individual Sites
Between Two Periods

Scatter plots (Fig. 11.2) were constructed in which each individual site is repre-
sented by a data point with the mean firing rates for pre-stimulus and post-stimulus
periods as coordinates, respectively. Data points at the diagonal line indicate sites
with equal firing rates for both periods. The relative deviation rd of a data point
from the diagonal was calculated as the ratio of its distance to the diagonal and
the 3 standard deviation (3σ ) distance expected for a Poisson distributed spike train
(dashed lines). For a group of data points the mean relative deviation mrd was cal-
culated. Data points outside the ±3σ areas may indicate significant differences in
firing rates between the pre- and post-stimulus period.

Results

Long-Term Effects

Figure 11.3 illustrates the long-term effects of low-frequency stimulation on the
spontaneous firing rates. The left panel compares the firing rates between the first
and the second half of the prestimulus period. All the data points are within the
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Fig. 11.2 (Left panel) Comparison of mean firing rates at individual sites between pre- and post-
stimulus periods. Data points at the diagonal lines indicate sites with equal firing rates for both
pre- and post-stimulus periods. The dashed lines indicate 3-standard deviation (SD) boundaries
assuming a Poisson distributed spike train. (Right panel) The relative deviation of a data point
from the diagonal is expressed by the ratio of the distance of the data point from the diagonal (a)
and the 3-SD distance (b)

area bounded by the dashed lines. The central panel compares the firing rates in the
second half of the prestimulus period with those in the first half of the poststimu-
lus period. Here, many data points scatter outside the dashed line area, indicating
significant changes in firing rates between pre- and post-stimulus period. The right
panel compares between the first and the second half of the post-stimulus period.
Again all data points are within the dashed lines area indicating that the altered
firing rates have maintained in the post-stimulus period. The increased scatter of the
data points in the pre-stim post-stim comparison is also shown by the mrd values
(Fig. 11.4).
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Fig. 11.3 Spontaneous firing rates on individual sites measured one hour before and one hour after
a stimulation session. The left panel compares the first half and second half hour of spontaneous
activity before the stimulation session. The central panel compares the second half hour of the
prestimulation period and the first half hour of the poststimulation period. The right panel com-
pares the first and second half hour of spontaneous activity after the stimulation session. The mean
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each panel
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Fig. 11.4 Individual mrd
values (dots) of 17 stimulus
experiments for the
pre1-pre2, pre2-post1 and
post1-post2 comparisons, as
well as their population
means (circles) and SD and
SEM values (open and closed
bars, respectively)
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Short-Term Comparison

The results of 12 experiments for the spontaneous firing rates before and after an
individual train of 40 stimulus pulses are summarized in the scatter plot of Fig. 11.5.
For each experiment, and for each of the six stimulus trains, the spontaneous firing
rates in the pre- and post-train periods of 200 sec are plotted as an individual symbol.
The symbols appear to scatter equally around the diagonal indicating that there is
no systematic difference between pre- and post stimulus firing rates. Several data
points scatter outside the dashed lines area.

Discussion

Cultured neuronal networks show ongoing spontaneous activity from the end of the
first week in vitro. Firing rates show small developmental changes on time scales of
hours [2, 3], indicating a level of robustness in the patterns of spontaneous firing.
The present study has shown that low-frequency stimulation is able to induce last-
ing changes in these firing patterns, significantly larger than developmental changes
over the same periods of time (data not shown). Short-term comparisons indicated
that even a single stimulus train could be effective. But variable occurrences of
network bursts may also have contributed to the scatter in the data points. These
findings demonstrate that the intrinsic firing dynamics in cultured neuronal networks
maintains a subtle balance between stability under spontaneous conditions and
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Fig. 11.5 Scatter plot of
spontaneous firing rates in a
period of 200s before and
after a stimulus train. Data
from 12 independent
experiments. Dashed lines
denote 3-SD intervals
expected for a Poisson
distributed spike train
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sensitivity for making transitions to other patterns by even low-frequency external
electrical stimulation.
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Chapter 12
Modeling Neurons of the Inferior Colliculus

Harry Erwin, Mark Elshaw, Adrian Rees,
David Perez-Gonzalez and Stefan Wermter

Abstract The MiCRAM project has been developing detailed neural models of the
inferior colliculus (IC) as the basis for understanding the neural networks that un-
derlie early auditory processing at that level. The initial phase of this project has
been to develop biologically plausible models of the physiologically distinct cell
types of the IC. This has led to the recognition that some of the gross behavior
that produces delay sensitivity may be the result of detailed dynamic interactions
between multiple channels.

Keywords Neural modeling · neurodynamics · audition

Introduction

The MiCRAM project is a collaborative study involving the Universities of
Sunderland and Newcastle in developing a biologically plausible model of auditory
processing at the level of the inferior colliculus (IC). This is being done to clarify
the roles of the spectral and temporal representations in the IC and investigate how
they interact with auditory processing to focus attention and select sound sources
for analysis.

The IC is organized tonotopically into parallel frequency lamina, each with a
collection of disc and stellate cells with a variety of response patterns to pure tone
stimuli [1]. The IC might be seen as a large set of full and partial spectral rep-
resentations. Sound sources at different locations or with different characteristics
activate the IC spectral representations differently for different sound sources. Un-
derstanding how this takes place will provide insight into the auditory processes in
acoustically cluttered environments.

The first step towards this goal is the development of biologically realistic
GENESIS [2] models of individual IC. That requires us to explore statistically valid
models of the firing patterns of these cells.
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Fig. 12.1 Pauser cell PTSH,
100 in vivo trials, pure tone
stimulus lasting 75 ms, 1 ms
bins (see [1])
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Fig. 12.2 PTSH showing
effect of
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A number of research groups are doing research into the area of statistically valid
cell models [3, 4, 5]. Since spike trains are binary in form, evaluating goodness of
fit is more difficult than for continuous processes [6]. Although IC disk cells fire
in a reliable way to repeated presentations of the same stimulus, they often respond
quite differently if the intensity or structure of the stimulus is changed, which makes
it difficult to use quantitative models to classify these cells [1].

The PSTH classifications in Rees et al. [1] emphasize the spiking rate modulation
of IC cells in response to pure tone stimuli in vivo and so reflect the cell’s member-
ship in neural networks. This can be seen most clearly in pauser cells that spike a
variable number of times initially, then become quiet for a period, and finally spike
continuously or at a modulated rate (Fig. 12.1). After hyperpolarisation can produce
a similar but distinct pattern (Fig. 12.2), that is more regular with a single spike
reliably appearing in each burst.

The contribution of specific membrane conductances to the generation of these
response patterns has been reported by Sivaramakrishnan and Oliver [7]. The Mi-
CRAM program is modeling these cell types to explore their dynamics and incor-
porate them into large scale network models of the IC.

Methods

The MiCRAM program models these cell types using the GENESIS neural modeling
tool. The channel properties are based on the models in [8]. The simulations repli-
cate their experiments, with a medium goal of constructing networks of different
classes of these cells.



12 Modeling Neurons of the Inferior Colliculus 61

Results

Generally, we have been able to replicate in GENESIS simulations the firing patterns
described in Sivaramakrishnan and Oliver [7]. Of some interest are the dynamics of
the currents in rebound cells. Those cells respond to the end of hyperpolarizing
current injection with a membrane potential rebound to values more depolarized
than the resting potential of the cell. This ‘rebound hump’ is believed to be produced
by the interaction of relatively slow voltage-activated Ca++ channels with the Na+
and K+ Hodgkin-Huxley (HH) channels that drive spike generation. Figure 12.3
illustrates the underlying conductances and the resulting membrane potentials in our
modeling. In vivo the Ca++ rebound appears to be a simple hump of depolarization
with superimposed spikes, but the modeling suggests that it has a more complicated
internal structure, involving the damping of a forced Hodgkin-Huxley system by
Ca++ conductances.

Discussion and Conclusions

The rebound spike mechanism has been suggested as playing a role in measuring
time delays between sounds [9], and the detailed interaction between channels that
we have modeled with GENESIS may play a role in decreasing the variability of
the timing of the rebound spike. Live animals seem to perform accurate measures
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of time delays between sounds – jitter sensitivity of 10–100 ns has been reported by
Simmons et al. [10] – and this channel mechanism may underlie auditory time delay
hyperacuity.
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Chapter 13
Synchronization Effects in Networks
of Striatal Fast Spiking Interneurons –
Role of Gap Junctions

Johannes Hjorth, Lennart Hedlund, Kim T Blackwell
and Jeanette Hellgren Kotaleski

Abstract Recent studies have found gap junctions between striatal fast spiking
interneurons (FSN). Gap junctions between neocortical FSNs cause increased syn-
chrony of firing in response to current injection, but the effect of gap junctions in
response to synaptic input is unknown. To explore this issue, we built a network
model of FSNs. Each FSN connects to 30–40% of its neighbours, as found exper-
imentally, and each FSN in the network is activated by simulated up-state synaptic
inputs. Simulation experiments show that the proportion of synchronous spikes in
coupled FSNs increases with gap junction conductance. Proximal gap junctions
increase the synchronization more than distal gap junctions. During up-states the
synchronization effects in FSNs coupled pairwise with proximal gap junctions are
small for experimentally estimated gap junction conductances; however, higher or-
der correlations are significantly increased in larger FSN networks.

Keywords Fast spiking interneurons · gap junctions · synchronization · striatum ·
computational modeling

Introduction

The input stage of the basal ganglia, the striatum, is populated by four different
neuronal types [1]. The medium spiny projection neurons (MSN), which project
to the output stages of the basal ganglia, account for more than 90% of the neu-
rons. Another neuron type is the fast spiking interneuron (FSN), which provides
strong feed-forward inhibition to the MSNs. Gap junctions between neocortical and
hippocampal FSNs increase spike synchrony; therefore, synchronization of striatal
FSNs through recently discovered FSNs gap junctions [2, 3] may significantly affect
MSN spike timing. We have previously investigated the role of gap junction location
and gap junction conductance for synchronization of pairwise coupled FSNs [4] in
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response to synaptic inputs. Here we extend the previous results and investigate the
global synchronization of FSN networks.

Methodological Approaches

To explore synchronization effects of gap junctions in striatal FSNs, we built a net-
work model of FSNs: Each FSN connects to 30–40% of its neighbours, as found
experimentally [2, 3], and all FSNs in the network are activated by simulated up-
state synaptic inputs (a period of high frequency input). A detailed description of
the FSN model and how the up-state synaptic input is generated can be found
in [5].

Estimates of the number of FSNs that project to one single MSN have varied
between 1–4 [3] and 4–27 [2]. Here we explore the degree of synchronization in a
six cell network forming a ring structure. This structure both fulfills the criteria that
each FSN is coupled to other FSNs with 30–40% probability, and also this number
of cells is within the range of neurons projecting to single MSNs.

To quantify the synchronization between pairs of FSNs a Joint Peristimulus Time
Histogram (JPSTH) was constructed (see Fig. 13.1) and then a previously derived
“surprise” measure [6, 7] was used for estimation of statistical significance.

A different method must be used to evaluate spike synchronization in networks
of multiply connected FSNs, such as the ring structure described above. Each simu-
lated FSN trace was divided into identical bins (10 ms were used), and the total num-
ber of spikes from the six cells was counted in each bin. The number of bins with
zero to >3 were stored in a 2× 5 contingency table, see e.g. [8], and the chi-square
test of independence was used to evaluate the probability that the distribution of
these spike counts differed between the uncoupled and coupled FSNs (significance
level 1%). Data from 100 s of simulated up-states were used.

Fig. 13.1 Synchronization effects in pairwise coupled FSNs. (a) Pairs of FSNs were coupled with
proximal gap junctions, either on the soma or primary dendrites. (b) The “raw” Joint Peristim-
ulus Time Histogram, JPSTH, is shown (gap junction conductance 0.5 nS). The diagonal repre-
sents spike synchronization. (c) Although the proportion of synchronous spikes increases with gap
junction conductance, synchronous effects are moderate for gap junction conductances within the
physiological range
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Results and Discussion

Simulation experiments explored the effects of gap junction location, gap junction
conductance, and type of input on synchrony and firing frequency. Results show
that the proportion of synchronous spikes in pairwise coupled FSNs increases with
increasing gap junction conductance (Fig. 13.1). Proximal gap junctions increase
the synchronization more than distal gap junctions, see e.g. [4]. Nonetheless, the
synchronization effects in FSNs during up-states are moderate for experimen-
tally estimated gap junction conductances (range 0.013–0.586 nS) [9]. This de-
gree of synchrony is in contrast to effects seen when using supra-threshold current
injection.

Simulations are repeated for a ring of six FSNs coupled with 0.5 nS gap junc-
tions located on the primary dendrites. All neurons in the ring had a different set
of synaptic inputs, but the time of the up-states was synchronous. Despite moderate
spike synchronization in pairwise electrically coupled FSNs, the probability of many
cells firing together within a 10 ms time interval was significantly increased in the
six cell network (Fig. 13.2). These simulations differ from previous simulations not
only in using synaptic inputs, but also in using near threshold inputs producing low
firing frequencies [10, 11]. Thus, our simulations predict that small networks of
striatal FSNs may play a role in synchronizing spiking despite the rather low firing
frequency seen during typical up-states [12]. The results are robust when proximal
gap junctions, with conductances in the upper physiological range, are used, and
also applies when each FSN has slightly different current-frequency characteristics
(result not shown).

The present simulation result is in accordance with recent experimental findings
in the retinal network [13]. Future directions of research will address how electrically

Fig. 13.2 Synchronization in networks of electrically coupled FSNs receiving up-state inputs. (a)
Six FSNs coupled to each other with a probability of 30–40% form a ring structure, and were used
in the present study. (b) Histogram of observed simultaneous spikes (within 10 ms). The number
of 10-ms bins with zero to four spikes were counted and compared with the number expected if
assuming the spike trains from each FSN were Poisson distributed and independent of other FSNs.
This latter scenario describes the network behaviour when devoid of gap junctions. A maximum
of four simultaneous spikes were seen in our simulations. The increased occurrences of three and
four simultaneous spikes imply that indirectly coupled FSNs spike simultaneously more often than
expected
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coupled FSNs affect MSN spiking, and which consequences synchronization might
have for the striatal network dynamics.
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Chapter 14
Multilayer In-Place Learning Networks
with Adaptive Lateral Connections: Models
and Simulations

Weiya Shi, Juyang Weng, Mingmin Chi and Xiangyang Xue

Abstract In this paper, the Multilayer In-place Learning Networks with Adaptive
Lateral Connections (MILN-ALC) is proposed to develop both afferent and lat-
eral connections simultaneously, simulating the development of primary visual cor-
tex through sensory experiment. The experimental results using isotropic Gaussian
spots and grating indicate that the lateral connections are statistically strongly cor-
related among nearby neurons, and also show that both afferent and lateral connec-
tions depend on input patterns.

Introduction

Neuroscience studies indicate that the representations in the cerebral cortex are epi-
genetically developed, depending on sensory experience and genetic mechanisms
[1, 2]. Many models have been proposed to simulate the cortical self-organizing
process, at different degrees of biological plausibilities. In these models, the self-
organizing map (SOM) [3] is well known, but lateral connection is not explicitly
modeled. Neurobiological experiments indicate that lateral connections are adaptive
[4]. Alexander et al. [5], Bartsch and van Hemmen [6], and Miikkulainen et al. [7]
proposed several models with adaptive lateral connections.

In our previous work, the Multilayer In-place Learning Networks (MILN) [8]
has been proposed to develop internal representations for cerebral development.
It uses a new model for neuronal development, called Lobe Component Analysis
(LCA) where the learning is automatically and optimally determined based on signal
energy, statistical efficiency, and plasticity scheduling. However, the MILN model
only considers static lateral connections among neurons with a complete connec-
tion between layers. For biological plausibility and further computational studies,
in this paper, we extend the MILN model further with adaptive lateral connections.
In addition, we also consider the local connections among neurons.The proposed
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extended model is called Multilayer In-place Learning Networks with Adaptive
Lateral Connections (MILN-ALC). The results using isotropic Gaussian spots and
grating indicate that the lateral and afferent connections are developed simultane-
ously, forming a rich array of representation that enables further studies.

Proposed MILN–ALC model

It is well-known that all areas in the cerebral cortex have 6 (laminar) layers. Among
the 6 layers, the Layer 4 (L4) and the Layer 2/3 (L2/3) are function ones [9] and
the other layers play assistant roles [10]. For the lack of space, in the paper we only
show the function layers, i.e., L4 and L2/3 in Fig. 14.1. In greater detail, for a given
neuron i in the L2/3, there are three types of connections.

1. Afferent (bottom-up) excitatory connection. It links input patterns from the L4.
2. Lateral excitatory connection. It links other neurons in the same layer to the i-th

neuron within radius d1, the size of lateral excitatory distances.
3. Lateral inhibitory connection. It links other neurons in the same layer to this

neuron within radius d2, the size of lateral inhibitory distances.

Due to limited space, the work reported here does not consider the supervised
signal from the top layer (top–down connections). Therefore, at time t , the response
z from the neuron i can be written as

z(t) = g

(
∑

r1

w(t)
b · y(t) + ae

∑

d1

w(t)
he · z(t−1) − ah

∑

d2

w(t)
hi · z(t−1)

)
(14.1)

where g is the sigmoid function defined by g(x) = 1
1+exp(−x) , y is the input pattern

in the lower layer and z is the response of other neurons in the same layer, r1 is
the size of afferent receptive fields, the constant factors ae and ah represent the
influence strengths of the excitatory and inhibitory lateral connections, respectively.
The weights of a neuron are updated only when the neuron fires and the updating
strategy depends on the pre- and post-synaptic activities shown as follow:

i i+1i–1i–2 i+2

i i+1i–1i–2 i+2

whi

whe
wb

L2/3

L4

Fig. 14.1 Function layers of the MILN–ALC. Only the afferent connection (weights wb), exci-
tatory lateral connections (weights whe) and inhibitory lateral connections (weights whi ) of one
neuron at position i are shown, but all the neurons in the primary visual layer are similarly con-
nected. White and black triangles indicate excitatory and inhibitory connections, respectively
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⎧
⎪⎨

⎪⎩

w(t)
b = w1w(t−1)

b + w2z(t)y(t)

w(t)
he = w1w(t−1)

he + w2z(t)z(t−1)

w(t)
hi = w1w(t−1)

hi + w2z(t)z(t−1)

(14.2)

where w1 and w2 are maturity-dependent weights that control the plastic sched-
ule. We also use the amnesic mean technique [8] for automatic scheduled plasticity
which gradually “forgets” old “observations” in the updating processes.

Experiments

In this experiment, we study what the afferent, lateral excitatory and lateral inhibitory
connections are generated and updated using the MILN–ALC model.

We use isotropic Gaussian spots and grating to simulate the input to the L4. The
L4 has 24× 24 neurons and the L2/3 has 18× 18 neurons. Each neuron in the L2/3
is locally connected to the 7× 7 neurons in the L4. The excitatory lateral radius d1

is set to 5 and the inhibitory lateral radius d2 is set to 15. At the beginning, all the
lateral connections are set to random values.

The algorithm runs for 10,000 stimulus presentations. Figure 14.2 shows the
developed afferent and lateral connections, where each square corresponds to one
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Fig. 14.2 Developed connections of the L2/3 with the 18× 18 neurons trained by isotropic Gaus-
sian spots shown in (a, b, c) and grating shown in (d, e, f). Each square corresponds to one
neuron. (a, d) The developed afferent connections. (b, e) Combined lateral connections (excitatory -
inhibitory connections) of the central 8 × 8 neurons. (c, f) Detailed plot of the combined lateral
connections of the neuron at (10, 10)
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neuron. Figure 14.2a shows the afferent connection of each neuron which develops
into the Gaussian shape covering the Gaussian input patterns in the visual field when
trained using isotropic Gaussian spots. Figure 14.2d shows that the developed affer-
ent connections have different orientation when trained using grating. These results
confirm that the shape of receptive field depends strongly on the input patterns. The
afferent weights of many neurons correspond to oriented local features, consistent
with biological findings [7].

The combined lateral connection (inhibitory connections is subtracted from exci-
tatory connections) is given in Fig. 14.2b and Fig. 14.2e, as well as Fig. 14.2c and
Fig. 14.2f in greater detail. As can be seen, the shape of the combined lateral connec-
tions takes the shape of symmetrical (asymmetrical) Mexican-hat, similar to that of
the models in [7], while our neuronal model is LCA, different from that of [7]. From
the results, we can see that the lateral connections are local and patchy, consistent
with our intuition that nearby inputs have stronger statistical correlations than far-
away inputs, and therefore, picked up effectively by the developed lobe components.

Conclusions

The Multilayer In-place Learning Networks with Adaptive Lateral Connections is a
simple, unified and biologically plausible computational model. Our result of adaptive
lateral connections indicated that neurons that detect similar features are linked by
strong lateral inhibitory connections. The results developed from isotropic Gaussian
spots and grating stimuli indicate that lateral and afferent connections are developed
simultaneously. The lateral connections store information about correlations among
neurons. We plan to further study the properties of adaptive lateral connections.
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Chapter 15
Stimulus-Induced Pairwise Interaction
Can Be Revealed by Information
Geometric Approach

Hiroyuki Nakahara, Masanori Shimono, Go Uchida and Manabu Tanifuji

Abstract Understanding the interaction of neural activities is one of the most im-
portant themes in neuroscience. To resolve this question, cross-covariogram analysis
of two neurons’ activities is one of most extensively used techniques. This analysis
is conducted mostly against the null hypothesis of independent firing. Here, we ar-
gue that an additional analysis is required to understand the role of correlation with
respect to behaviourally relevant parameters such as visual stimulus. Specifically,
we propose conducting this analysis against the null hypothesis of the activity in a
control period. We show that information geometric approach can achieve this task.
Furthermore, we demonstrate the validity of this method using data taken from the
inferior temporal cortex. The results indicate the possible existence of a stimulus-
modulated correlation.

Keywords Pairwise interaction · correlation · information geometry · neural firing ·
inferior temporal cortex

Introduction

The multi-unit recordings of many neural activities have become widely available,
and to make best of such massive data, methods of analysis need to be further de-
veloped. As an attempt to achieve this goal, we previously proposed information
geometry (IG) approach to decipher interactions of neural firing [4]. In this paper,
we illustrate this approach by focusing on the simplest case of analysis, namely an
examination of cross-correlation between two neurons.

We previously noted [1] that, although cross-covariogram analysis usually
examines correlated activity against the null hypothesis of no correlation, it is
often more appropriate to evaluate such correlated activity against the activity
in a control period. Section ‘Preliminaries’ clarifies this issue. The IG approach
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allows us to easily handle such a test, which is explained in Section ‘Information
Geometric-Approach’. In Sections ‘Experimental Setting’ and ‘Results’ we demon-
strate the method by using real data recorded from the inferior temporal (IT) cortex.
The results suggest that a stimulus-modulated correlation exists. Finally, a short
discussion is given in Section ‘Discussion’.

Preliminaries

Cross-Covariogram Analysis

Cross-covariogram analysis is most extensively used for analyzing the cross-
correlation of a pair of two neurons. This analysis implicitly presumes wide-sense
stationarity, so all of the arguments below, are made under this assumption. This
analysis is mostly combined with the shuffled predictor, called the conventional
cross-covariogram analysis in this paper. The shuffled predictor creates a distribu-
tion of the null hypothesis that retains the mean firing rate of each neuron but has
no correlation between their firings, i.e. they are independent firings. Thus, such an
analysis can only reveal whether neural firing is correlated or not within a period of
interest in comparison to no correlation.

Analysis Against the Null Hypotheses of Control Period

We now propose that an equally important test is to examine whether neural firing
in a period is correlated in comparison with the firing in another period.

To understand why this is important, by way of example, let us consider a single-
unit recording using control and test periods. In the control period, the experimental
manipulation is usually kept to a minimum, so activity in this period is regarded as
being in resting mode. In the test period, some manipulations are done, e.g. showing
a visual stimulus, to examine how a neuron responds to the manipulation. The firing
in the test period is tested against the firing in the control period. If significant, the
firing in the test period is considered test-related. Note that we would not call the
firing test-related if we performed the test against zero firing, even if significance
was found by that test.

The same argument can be applied to the cross-covariogram analysis. To examine
whether a test-related correlation exists, we should examine the correlation in the
test period against that in the control period, i.e. against the null hypothesis of the
correlation in the control period, but not as done by conventional cross-covariogram
analysis. Obviously, this type of argument is generalized for examining the firing
between any two periods of interest.

Information-Geometric Approach

Information geometry (IG) provides useful tools and concepts, including the
orthogonality of coordinate parameters and the Pythagoras relation in the



15 Stimulus-Induced Pairwise Interaction Can Be Revealed by IG Approach 73

Kullback-Leibler divergence [2]. Using the IG approach, a novel method can be
constructed to evaluate the interaction of neural firing in a systematic manner [1, 3].
The method allows us to decompose the interactions of neurons of various orders,
e.g. pairwise, triplewise and higher order interactions [1]. It can also be applied
to analyze and compare different models used for a spike train of single neurons
[4]. This further allows us to construct, relatively easily, a hypothesis test under the
framework of a log likelihood ratio test [1]. This generality allows us to examine a
test of correlation against any null hypothesis [1].

For the cross-correlation (under wide-sense stationarity), we use the IG mixed
coordinates (η1, η2, θ3) (see [1] for more details). θ3 is the term measuring the in-
teraction. The Fisher information matrix induces a natural metric, by which we can
verify the orthogonality between η and θ components. Such orthogonality cannot
generally hold if we replace θ3 by the interaction term used by the cross-covariogram
analysis, denoted here by c. In fact, only when c = 0, i.e., there is no correlation,
does the orthogonality hold between η and c, and this is why a cross-covariogram
analysis is convenient only for a test of no correlation.

Experimental Setting

Experimental details are published elsewhere [5, 6], so only a brief summary is
provided here. We conducted simultaneous recording of multi-unit activity from
the IT cortex of two anesthetized macaque monkeys. Both control and stimulus
periods had 1 sec length, where a visual stimulus is presented in the stimulus period.
Correlation is estimated by the IG mixed coordinates for each period, using a 5-ms
bin size. In the following, we report the results of correlation at a time lag of zero,
i.e. simultaneous coincident firing.

Results

In this section, we report the results of 21 pairs of neurons, where each pair is
categorized as either an R-R or R-NR pair. Here, R indicates that one neuron’s firing
is task-related (Wilcoxon test, p < 0.05), whereas NR indicates that one neuron’s
firing is not. We found 11 R-R pairs and 10 R-NR pairs.

First, we tried to perform a conventional cross-covariogram, for which we used
the IG approach by setting the null hypothesis as θ3 = 0, since it is essentially
equivalent. We found that all pairs had significant correlation, even in the control
period, and further that almost all pairs (precisely, all except one R-NR pair) also
had significant correlation in the test period. Thus, in this data, the conventional
cross-covariogram is not informative for comparing the correlation between the two
periods. However, if we still wanted to use this test to determine whether the corre-
lation had changed from the control to the test period, one way might be to indicate
whether the significance had changed between the above two results, i.e. Fig. 15.1
left; in this case, almost all pairs would be classified as unmodulated.



74 H. Nakahara et al.

Fig. 15.1 Correlation in stimulus period is examined in comparison with that in control period,
indirectly (left) or directly (right). See main text for details. Black, white, and hatched bars indi-
cate the percentage of the number of pairs with correlation significantly increased, significantly
decreased, or non-modulated, respectively

Now let us directly examine by the IG approach whether the correlation in the
test period is significantly different from that in the control period (Fig. 15.1 right).
We find that R-NR pairs have more decreased correlation whereas R-R pairs equally
have both increased and decreased correlation. Clearly, this result is more informa-
tive in that it reveals either increased or decreased modulation for more number of
pairs. It appears that the simultaneous correlation may be differentially modulated
for R-R and R-NR pairs. More specifically, given the results of other analyses we
performed [6], it will be particularly interesting if further analysis will lead to the
observation that the correlation is increased for two neurons if both have task-related
activity but decreased for two neurons if one of them does not have task-related
activity. To confirm, though, we still need to examine with a greater number of
samples.

Discussion

We presented one utility of the IG approach, specifically the flexible use of any
null hypothesis, by using real data from the monkey IT cortex in a cross-correlation
analysis. The results are promising for further investigations.
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Chapter 16
A Dynamical Model of Fast Intrinsic Optical
Signal of Neural Burstings

Jianzhong Su, Hanli Liu and Yuanbo Peng

Abstract Recent advances in optical imaging techniques allow us to acquire the
structure of living nerve cells and their changes. While the commonly used dye-
stained extrinsic optical signal mimics the intracellular voltage or the ion currents
of the membrane directly, the fast intrinsic optical signal measures longer term
physiological changes such as cell structure and sub-cellular level properties after
a sustained intracellular spike under the electric and other stimulations. We build a
2-D computational model to simulate the dynamic behavior from neurons’ activity
leading to optical functional imaging. Such a simulation model requires structural
information (cellular volume) at the neuronal level to quantify optical scattering
coefficients and a realistic Hodgkin-Huxley model of the neuron to be constructed.
Initial computational results show the model as a good indication of the fast intrinsic
optical signal.

Keywords Mathematical model · intrinsic optical imaging · bursting neurons

Introduction

Two major neuronal monitoring methods are intrinsic optical imaging (Shtoyerman
et al. [1] 2000 and others) or extrinsic optical imaging with voltage (or calcium)-
sensitive dye. While the dye-stained optical signal mimics the intracellular volt-
age or Ion current of the membrane directly (<1 ms), the considered fast intrinsic
optical signal measures optical properties with a longer term (signals started af-
ter 10–100 ms and lasted several seconds) physiological consequence in functional
imaging (Salzberg et al. [2] 1983 and its references). Yet, this is different from slow
optical signals (in 1–10 s to minutes range) caused by hemodynamic changes that
have used in the standard modality for optical imaging. The fast intrinsic optical
signal/imaging offers a window for studying the links between electrophysiological
activities and functional behavior. However, the fundamental mechanism as how
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neuronal activities at cellular- or subcellular-scale lead to observable changes in
optical imaging is not well understood [3]. It calls for a mathematical modeling
study and improved method for processing the measurement data.

We construct a 2-D computational model to simulate the dynamic behavior from
a single neuron’s activity to optical functional imaging, a process crossing multiple
orders of temporal as well as spatial scales. Such a simulation model requires struc-
tural information (cellular volume) at the neuronal level, and a realistic Hodgkin-
Huxley model of the neuron to be constructed. Later on, we can further perform
calculation of light intensity distribution of optical imaging in continuous wave or
time domain based on these biophysical changes.

Background in Fast Optical Imaging for Neural Activities

The main hypothesis for the fast optical signal is based upon cell (fiber) volume
changes during the action potential change within the 10 ms to several seconds
range after stimulations. This mechanism is well documented by Cohen [4] for giant
axons of squid and many others, and it is considered the dominant signal in the NIR
spectrum region. The cause of change in cell volume and the extra-cellular space
is attributed to the change in osmotic pressure due to ion concentration and water
movement.

Neural Models for Fast Optical Signals

To understand the connection between electrophysiological activities of neurons
and light scattering signals observed from experiments, we start with a modified
Hodgkin-Huxley (HH) model to describe the intracellular electrophysiological ac-
tivities of sensory neuron, and the neuron is assumed (for now) to be a long 1-
dimensional nerve fiber. The function V (x, t) represents the trans-membrane po-
tential, and (m, n, h)(x,t) represents the variables involved in potassium and sodium
currents. To model a specific area of the spinal cord [5], our neural model takes
classical HH parameter values except gna = 50, gl = 0.7, Vl = −77.5, gk = 2.6;

�V

�t
= 1

C M
(DΔV − (gnam3h(V − Vna)+ gkn4(V − Vk)+ gl(V − Vl))+ Iapp);

�h

�t
= (hinf(V )− h)/

τh(V );
�n

�t
= (ninf(V )− n)/

τn(V );

�m

�t
= (m inf(V )− m)/

τm(V ) (16.1)

We denote the difference of ion concentration across the cell membrane as C(x, t),
and cellular water volume as R(x, t), and the diameter of the fiber as D(x, t). Then
it holds:
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Fig. 16.1 The trans-membrane potential and the cell radius varying with time in a single potential
spike (a) and a bursting scenario (b)

�C

�t
= κΔC − (gnam3h(V − Vna)+ gkn4(V − Vk)+ gl(V − Vl))− γ g(C, V )

(16.2a)

�R

�t
= μC (16.2b)

where Eq. (16.2a) describes the concentration change due to intracellular ion flows
as well as leaking and pumping effects, and Eq. (16.2b) reflects the water flow rate
to be proportional to osmotic pressure generated by concentration difference. The
diameter of the nerve fiber, D, is related to volume, R, in R = M D2, and the scat-
tering coefficient of optical signals is given by D′ = K R−n based on Mie theory [6]
(reciprocal of a power of cross-sectional area). The correlation between one spike
and the change in fiber radius is shown in Fig. 16.1a.

When the effect of Calcium flux was included in consideration, experimental
evidence [7] indicated the calcium-dependence of K-channel:

gk = gk,0 + Ca,
�Ca

�t
= ε f (V + VCa,Ca,m, n, h) (16.3)

where we take VCa = −55 mV as the threshold for Ca2+ flow, and Ca2+ is taken
as a simplified model (one threshold). Then bursting is presented in Fig. 16.1b.
Super-imposed is the corresponding changes in radius during the bursting.

Simulated Optical Signals of Neuron Activities

The preliminary model study for optical signals of neuron activities was simulated
for a 50-�m-diameter iso-potential cell, using XPPAUT software [8]. The effect of
soma, myelination was not included in the model. Specific membrane capacitance
was 1 �F/cm2, specific longitudinal resistance was 110 �-cm, and temperature was
20 ◦C. The cell was divided into 99 segments. XPPAUT used the Runge-Kutta
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method for integration (dt = 0.01 ms). The calculation was performed on SGI
Origin 2000 by Unix version of XPPAUT [8].

We set the applied current, Iapp, at zero in our first case. The procedure of nu-
merical simulation was as follows. We raised the membrane potential of the first
segment V1 = −45.0 mV from equilibrium (−77.5 mV) while ion currents remain
at equilibrium. All other segments were left unchanged at equilibrium. An action
potential spike was generated in segment 1 first, and then propagated along the
fiber. We detected the action potential changes in segment 10, immediately followed
by cell radius changes as shown in Fig. 16.1a. This figure demonstrates that the
trans-membrane potential and the cell radius at segment 10 vary with time t. Within
1 ms of the voltage spike, the cell radius increases 30% and then retreats slowly to a
normal level.

In our second simulation, we raised Iapp to 12 �A at a constant value, where as the
neuron was in hyperexcitability state, but otherwise performed the same simulation.
The initial stimulation led to a neuron bursting (a sustained period of intensive spikes
before a large influx of Ca Ions terminated active phase). As shown in Fig. 16.1b, the
radius of the cell is also changed after each spike and accumulated to a greater level
after the active phase before retreating. The two superimposed curves show that the
intensity of the spike forces the continued increase of cell radius. The time interval
between spikes is not long enough to allow retreating to balance. The increase in
radius can be as large as 60% and can provide a much stronger optical signal for the
bursting.

Unlike the single spike case, even in the quiescent phase of bursting, the radius
remains at 16% increase at its low. This is consistent with 20% radius change ob-
served in experiments [9].
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Chapter 17
The Mechanism of Bifurcation-Dependent
Coherence Resonance of Morris-Lecar
Neuron Model

Guangjun Zhang, Jianxue Xu, Jue Wang, Zhifeng Yue,
Chunbo Liu, Hong Yao and Xiangbo Wang

Abstract The mechanism of bifurcation-dependent coherence resonance (CR) of
excited neuron model is related to the system motion random transitions between
attractors on two sides of bifurcation point. In this paper, the relation between the
random transitions and the mechanism of bifurcation-dependent CR is examined in
Morris-Lecar (ML) neuron model. Here we show that there exist different attractors
on two sides of ML neuron model Hopf bifurcation point and that the system motion
may transit between attractors on two sides of bifurcation point at the presence of
noise. And the frequency of transitions tend towards a certain frequency for a certain
optimal noise intensity, the signal-noise-ratio of system response evaluated at this
certain frequency is maximal at the optimal noise intensity, CR occurs.

Keywords Coherence resonance · transition · bifurcation point · Morris-Lecar
neuron model

Introduction

The phenomenon of stochastic resonance (SR) in nonlinear dynamical systems
perturbed by noise has attracted considerable attention over the last two decades
[1, 2]. It is well known that neurons work in a noisy environment, and it is therefore
of great interest to study how information is encoded and transmitted when neurons
work in such a nosy environment. Recent studies have shown that excitable sensory
neurons can use the mechanism of SR to detect weak subthreshold periodic and
aperiodic signals, and noise plays a constructive role in the transmission of infor-
mation in neurons [3, 4, 5]. Other studies [6, 7, 8, 9, 10, 11, 12] has also shown that,
for an excitable neuron model with only noise input, noise activates the excitable
system producing a sequence of pulses and the coherence of the noise-induced
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oscillations is shown maximal for a certain noise intensity. Thus CR, which is an
SR-like resonance phenomenon, has been observed in the noisy excitable neuron
model.

As a noise-induced ordering phenomenon, CR is of particular importance in
neurophysiology, where large ensembles of neurons at the absence of input signal
become orderly due to interaction with a noisy environment. Gong and Xu studied
the factors that have effects on coherence resonance in an excitable neuron [7]. But
in their studies the mechanism of CR is not revealed out. Therefore, it is very nec-
essary to study the mechanism of CR of excitable neuron. Zhang and Xu researched
the mechanism of CR of FHN and HR neuron model [13, 14]. In order to draw
several universal conclusions in this present work, we investigate the mechanism of
bifurcation-dependent CR of Morris-Lecar neuron model.

The Bifurcation Characteristic of the Unforced
ML Neuron Model

We consider the unforced Morris-Lecar neuron model in the following form [15]:

C
dV

dt
= −ḡcam∞(V )(V − VCa)− ḡkw(V − Vk)− ḡL (V − VL )+ (I0 + Diξ1(t))

dw

dt
= φ

[w∞(V )− w]

τw(V )
+ Deξ2(t) (17.1)

With steady states for the Ca2+ and K+ Current fractions and a transition rate:

m∞(V ) = 0.5 ∗ {1+ tanh
[(

V − V1
)
/V2
]}

w∞(V ) = 0.5 ∗ {1+ tanh
[(

V − V3
)
/V4
]}

τ∞(V ) = 1/ cosh
[(

V − V3
)
/
(
2 ∗ V4

)]

Where each parameter in equation above is the same as one in reference [15]. The
variable v is the transmembrane potential and w is a slow recovery variable, which
denotes the open probability for potassium channel. In the paper we fix the values of
the other parameters to V1 = −1.2, V2 = 18, V3 = 2, V4 = 30, ḡCa = 4.4, C =
20, ḡK = 8, ḡL = 2, Vk = −84, VL = −60, VCa = 120, φ = 0.04, only I0 is
considered as control parameters.

According to reference [15] one may see that when I0 = 93.86 a subcritical
Hopf bifurcation occurs. On the left of bifurcation point there exists one stable fixed
point in ML neuron model, on the right of bifurcation point there exists a stable
limit cycle oscillation, a spike or firing occurs in ML neuron model. The attractors
of ML neuron model without noise on two side of Hopf bifurcation point are shown
as Fig. 17.1 respectively.
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Fig. 17.1 The phase figure of attractors of ML neuron model without noise in two cases of bifur-
cation parameter, (a) I0 = 92.1; (b) I0 = 93.9

The Mechanism of Bifurcation-Dependent CR
of ML Neuron Model

In this paper, the Gaussian distributed white noise ξ (t) is used for perturbing the
system. The mean and autocorrelation function are as follows respectively:

{
< ξ (t) >= 0

< ξ (t)ξ (s) >= 0
(17.2)

In this paper it will be denoted as Di and De for the internal and external noise
respectively.

According to the section ‘The Bifurcation Characteristic of the Unforced ML
Neuron Model’, one can see that there exist different attractors respectively on two
sides of bifurcation point. In the small neighborhood of bifurcation point under the
perturbation of noise the system motion may transit between the attractors on two
sides of bifurcation point [13, 14].

To illustrate that the viewpoint above is tenable for ML neuron model, the internal
and external noise are added to Eq. (17.1). Thus, the differential equation of ML
neuron model is:

C
dV

dt
= −ḡcam∞(V )(V − VCa)− ḡkw(V − Vk)− ḡL (V − VL )+ (I0 + Diξ1(t))

dw

dt
= φ

[w∞(V )− w]

τw(V )
+ Deξ2(t) (17.3)

where each parameter in Eq. (17.3) is the same as one in Eq. (17.1).
The stochastic differential Eq. (17.3) is integrated using the fourth-order Runge-

Kutta method with time step Δt = 0.1 ms. After the mean value of bifurcation
parameters of system is fixed to I0 = 92.1 the time history of the system response
in two cases of noise is shown respectively in Fig. 17.2. From Fig. 17.2 one may see
that at the presence of internal noise the motion trajectory of system transits between
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Fig. 17.2 Time history of a realization of ML neuron model response, I0 = 92.1; (a) Di = 4.0;
(b) Di = 0.0

attractors respectively on two sides of bifurcation point. According to reference [16,
17], the bifurcation point of Hopf bifurcation system will slightly shift to the left or
to the right under the perturbation of Gaussian distributed external noise. According
to [13, 14], for the FHN and HR neuron model, the transitions between attractors
on two sides of Hopf bifurcation point induce CR to occur, however, in the present
study, the question whether CR could be induced by this kind of transitions arises
naturally in this context. In order to investigate the frequency of random transitions
of ML neuron model without periodic signal, the spectrum of response of system in
this case is shown in Fig. 17.3. As shown in Fig. 17.3, one may see that under the
perturbation of appropriate noise a peak of power spectrum of system response at a
certain frequency will appear. That is to say that the frequency of random transitions
spontaneously is in accordance with a certain frequency. To measure the coherence
of the system at the certain frequency, as in [12] we define the signal-noise-ratio as
follow:

Fig. 17.3 Power spectrum of
ML neuron model without
periodic stimulus for several
values of external noise
De, I0 = 92.1
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Fig. 17.4 The SNR of ML
neuron model response with
internal noise only versus
internal noise intensity

SN R = H

w
(17.4)

where w = Δω/ωp, ωp is the certain spontaneous frequency above, Δω is width at
the half-maximum height in the power spectrum depends on the noise intensity.
H is the power of system response at the spontaneous frequency �p mentioned
above. When the curve of the SNR defined above as a function of noise intensity
is a unimodal curve coherence resonance occurs [2, 10, 12].

Therefore, after the bifurcation parameter without internal noise being fixed to
a certain value, the SNR of ML neuron model under the perturbation of internal
or external noise is obtained respectively. The curves of SNR as a function of noise
intensity Di or De are shown in Figs. 17.4, 17.5 respectively. As shown in Figs. 17.4,
17.5 in two cases of noise CR occurs, and the value of optimal noise intensity Dopt

Fig. 17.5 The SNR of ML
neuron model response with
external noise only versus
external noise intensity
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decreases as I0 moves close to the critical firing onset value. This is in accordance
with the result of Gong and Xu in [7] and Zhang and Xu in [13, 14]. According
to analysis above the conclusion can be drawn, that the mechanism of bifurcation-
dependent CR of ML neuron model at the presence of internal or external noise is
related to the random transitions between attractors on the two sides of bifurcation
point respectively.

Conclusion

In this paper the mechanism of bifurcation-dependent CR of ML neuron model at
the presence of internal or external noise have been investigated. The results are as
follows:

(1) The random transitions between attractors on two sides of bifurcation point
respectively occur in ML neuron model without periodic signal.

(2) The frequency of motion random transitions spontaneously is in accordance
with a certain frequency under the perturbation of appropriate noise, and the
SNR at the certain frequency as a function of noise intensity is a unimodal
curve. Coherence resonance occurs.

(3) The mechanism of bifurcation-dependent CR of excited neuron model at the
presence of internal or external noise is related to the random transitions be-
tween attractors in the two sides of bifurcation point respectively.
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Chapter 18
Noise-Induced Coherence Resonance
in Morris-Lecar Neuron System

Bao-Hua Wang, Qi-Shao Lu and Xiao-Juan Sun

Abstract Noise-induced coherence resonance of square coupled ML neuron mod-
els is studied. It is found that an intermediate level noise can make the system pro-
duce ordered structure. There also exist optimal fluctuation amplitude and coupling
strength resulting in the maximal coherence.

Keywords Coherence resonance · spatial pattern · neuron

The Stochastic Morris-Lecar Neural Model

The Morris-Lecar model is a simple mathematical model of the barnacle giant
muscle fiber, in which an equivalent electrical circuit for a patch of sarcolemma
membrane is described by the calcium current, the potassium current and the leak
current [1]. In the present work, the pattern formation is induced by Gaussian white
noise in this coupled excitable model, and the effects of noise and coupling on the
spatiotemporal behavior of this system is studied. The optimal noise level and cou-
pling intensity are also analyzed by a measure function β which is related to the
power spectrum of the firing-rate.

The reduced ML model is adopted here, coupled into a two-dimensional lattice
network of N × N neurons (N = 128) with periodic boundary conditions in the
present of noise excitation:

C
dvi, j

dt
=− gCam∞(vi, j )(vi, j − VCa)− gKwi, j (vi, j − VK )− gL (vi, j − VL )

+ I + D(vi−1, j + vi+1, j + vi, j−1 + vi, j+1 − 4vi, j )+ σξi, j , (18.1)
wi, j

dt
= τw(vi, j )(w∞(vi, j )− wi, j ),
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where the subscript (i, j) indicates that the neuron is at the ith unit in the horizontal
and jth unit in the vertical direction, and vi, j is the neural membrane voltage and
wi, j is the corresponding fraction of open K+ channels. The input current is rep-
resented by I . D denotes the coupling strength and σ is the intensity of the noise
ξi, j . Here ξi, j is assumed to be Gaussian white noise satisfying < ξi, j >= 0 and
< ξi, j (t)ξm,n(t ′) >= δ(t − t ′)δi,mδ j,n . m∞(vi, j ) and w∞(vi, j ) are the fractions of the
open Ca2+ and K+ channels at the steady state, respectively, varying in a sigmoid
way with the membrane voltage. The rate constant for the open K+ channel is de-
noted by τw(vi, j ), which is also related to vi, j . The dependence is introduced by the
following functions:

m∞(v) = 0.5

[
1+ tanh

(
v − V1

V2

)]
,

w∞(v) = 0.5

[
1+ tanh

(
v − V3

V4

)]
, (18.2)

τw(v) = φ cosh

(
v − V3

2V4

)
.

The parameters values are taken from [2].

Spatial Wave Patterns

In order to understand the noise influence in the square coupled system, the coupling
strength is fixed at 1 and keeps unchanged at first. Spatial patterns induced by dif-
ferent noise intensities are presented in Fig. 18.1. For a very small noise amplitude,
the neurons cannot fire and there is no visible pattern shown in Fig. 18.1a. When
the noise level increases and exceeds a subthreshold value, regular patterns appear
drastically in the network. The system gains different collectivity actions when the
intensity gradually increases as shown in Fig. 18.1b–e. In Fig. 18.1b there are at least
three sources on the left of the lattice and two on the left at σ = 0.005. Circular wave
structures are formed when the waves diffuse from these local portions to global ar-
eas. These circular waves propagate and then intersect, leading to a triangular wave.
As the noise value is enhanced to 0.02 (Fig. 18.1c), the structure is more regular
with several rings piling up. The waves on the left and right collide to exhibit a
diamond wave. Along with the rising of fluctuation level, similar phenomena appear,
but there are more centers and circles become more dense. It is seemed that bigger
noise values will excite more neurons. Larger noise spoils the resonance and the
pattern becomes rather random as in Fig. 18.1f. From Fig. 18.1 it is evident that a
proper global noise intensity will enhance the excitability of the exciting system and
produce coherence resonance in the lattice.

Besides, the coupling strength can also affect the behavior of stochastic systems
in the present of noise. For a faint value of D, obvious patterns can not be seen since
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(a) σ = 0.002 (b) σ = 0.005 (c) σ = 0.02

(d) σ = 0.2 (e) σ = 2 (f) σ = 60

Fig. 18.1 Patterns in a coupled neuronal lattice with a global noise (D = 1)

the voltage diffuse suffocated at gap junction. While for larger D, local excitations
propagate too quickly beyond the bound before the next wave waking, so spatial
regular structures can’t be observed. As the couple strength takes intermediate val-
ues, special patterns emerge. For a slightly small D, there exist many sources trying
to proliferate such that waves impact each other. At this moment, there is no big
radius circular wave because little D decelerate the propagating velocity of waves.
With D increasing, the circular wave appears and becomes larger. They expand and
collide to bring forth beautiful spatial patterns.

The Coherence Resonance

Considering the influence of noise and coupling strength, it seems that there exist
optimal levels of σ and D such that the coherence trends to achieve the maximal
value. In order to characterize the degree of coherence, a measure β based on the
power spectrum of the firing-rate function Π is employed:

β = H
ωp

Δω
, (18.3)

where wp is the frequency of the main peak for the spectrum of Π , H is the peak
height, and�ω is the half-width of the peak. The neuron fires if the membrane volt-
age vi, j reaches a threshold value. The firing-rate function Π (t) is used to portray
the rate of firing of neurons in the lattice at a given time. When Π = 0, there is
no firing, while for Π = 1 the whole system fires. In Fig. 18.2 several firing-rate
curves are shown for diverse D when σ = 0.2.
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Fig. 18.2 The firing-rate of the system with different coupling strengths at σ = 0.2
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Fig. 18.3 The coherence factor β of the firing-rate: (a) for fixed coupling strength D = 1; (b) for
fixed noise level σ = 0.2

In what follows, the quantity β is computed for different values of the noise
level and the coupling strength, respectively, in which small noise amplitude is
considered. First, the value of D equals 1 and σ is changed, the simulation results
are shown in Fig. 18.3a. With increasing the noise amplitude, β increases at the
beginning, and after attaining the peak it turns to decrease in Fig. 18.3a. So there
must exits an optimal noise level making the coherence resonance maximal. If the
coupling strength varies and the noise level is fixed, from Fig. 18.3b the changing of
β for enhanced coupling strength is similar to the upper case; in other words, there
also exist an optimum coupling intensity at which the coherence resonance is more
pronounced.

Conclusions

To be summarized, coherence resonance is studied for the coupled ML neuron
model in the presence of noise. There exists an intermediate level of external random
forcing and coupling, which can make the square coupled system produce ordered
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spatial wave structure. In addition, there also exist optimal fluctuation amplitude and
coupling strength to make the coherence more distinct.
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Appendix

The parameters values used in this paper [2]: C = 20μF cm−2, gK = 8.0μS cm−2,

gL = 2.0μS cm−2, gCa = 4.4μS cm−2, VCa = 120 mV, VL = −60 mV, VK =
−84 mV, V1 = −1.2 mV, V2 = 18 mV, V3 = 2 mV, V4 = 30 mV, φ =
0.04, I = 88μA cm−2



 

 

 

 

 



Chapter 19
Chaotic Burst Synchronization
in a Small-World Neuronal Network

Yanhong Zheng, Qishao Lu, Qingyun Wang and Fang Han

Abstract The effects of the topological probability, the coupling strength and the
noise intensity on synchronization of a small-world neuronal network are studied.
Chaotic burst synchronization can be observed as the probability and the coupling
strength are large enough. Moreover, the bursting activity and the spatiotemporal
patterns are robust to small noise.

Keywords Neuronal network · small-world burst synchronization

Introduction

Brain is a complex network that can real-time extract and integrate various infor-
mation perfectly from external and internal stimuli. A single neuron in the verte-
brate cortex connects to more than 10,000 postsynaptic neurons via synapses in the
forming of complex neural networks [1]. Clinically, the connection between burst
and synchronization is extremely important, since synchronization in large neural
populations is widely viewed as a hallmark of seizers. It is necessary to explore
how burst synchronization appears or disappears in a neuronal network. Here we
study the burst synchronization in a small-world network of chaotic HR neuron
model with electrical coupling under noise environment. We mainly focus on how
the topological probability, defined as the fraction of random shortcuts, the coupling
strength and the noise intensity affect the spatiotemporal evolution of small-world
neuronal networks.

The Neuronal Network with a Small-World Structure

The three-variable HR model of action potential was proposed as a mathematical
representation of the firing behaviour of neurons. It can display rich dynamics
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including periodic and chaotic behaviour. Dynamics of the HR neuron is described
by a set of differential equations given in [2]. Now we consider the dynamics of a
complex network consisted of N coupled HR neurons with gap junction. Starting
from a regular ring, which comprises N identical chaotic HR neurons, each neuron
is connected to its two nearest neighbors. Links are then randomly added between
non-nearest vertices [3], where the new coupling is to be wired randomly with the
probability p. In the limit case p = 1, all neurons are coupled to each other, that is
to say, globally coupled, the network contains N (N − 1)/2 edges. The dynamics of
the HR neuron network can be described by the following equations:

⎧
⎪⎨

⎪⎩

ẋi = yi − ax3
i + bx2

i − zi + Iext + ξi + g
∑N

j=1 ai j (x j − xi ),

ẏi = c − dx2
i − yi ,

żi = r [s(xi − χ )− zi ],

where i = 1, 2, . . . , N ; N is the number of neurons, xi is the membrane potential,
yi is associated with the fast current Na+ or K+, and zi with the slow current, for ex-
ample, Ca2+. ξi denotes the Gaussian white noise in the i th neuron with< ξi >= 0,
and< ξi (t)ξ j (t ′) >= Dδi, jδ(t − t ′). D represents the noise intensity, g is the cou-
pling strength and the coefficients ai j take 1 or 0 depending on whether or not there
exists electrical coupling between neurons i and j . Here we take the parameters
a = 1, b = 3, c = 1, d = 5, s = 4, r = 0.006, χ = −1.6, and Iext = 3.0 so
as to make any neuron chaotic in the case of without noise and coupling. Numerical
simulation are performed by using the fourth order Runge-Kutta method with a
time step Δt = 0.01 ms. All neurons are identical except for distinct initial states
and noise terms ξ .

Chaotic Burst Synchronization

Firstly, we investigate the effect of the topological probability p on burst synchro-
nization in a small-world neuronal network under weak noisy environment. Here,
we fix the noise intensity D = 0.0005, g = 0.1 and N = 32. Spatiotemporal
patterns of all neurons with electrical coupling in the complex networks are dis-
played in Fig. 19.1. It is shown that burst synchronization among neurons can be
strengthened with the probability increasing. Initially, without random shortcuts, the
coupled neurons locate in chaotic states, and the HR neurons show rather irregular
and nonsynchronous bursts as shown in Fig. 19.1a, where p = 0 corresponds to
a ring structure. However, when a certain number of random shortcuts is added
(e.g. p = 0.015), there appear some regular ones as shown in Fig. 19.1b. As the
topological probability p is increased to 0.3, the coupled neurons eventually achieve
chaotic burst synchronization as showed in Fig. 19.1c. It is evident that the number
of random shortcuts is increased and the synchronous action between neurons is
strengthened. The above results can also be observed under other weak noisy or
noiseless environment.
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Fig. 19.1 Spatiotemporal patterns in a raster plot, the corresponding probability p is: (a) 0, (b)
0.015, (c) 0.3, respectively. Noise intensity D = 0.0005 and g = 0.1 for N = 32

To study the synchronization degree of neuronal networks, a synchronization
parameter δ is introduced as [4]. δ =< δ(k) > with

δ(k) =
√

(1/N )
∑N

j=1(t j (k))2 − ((1/N )
∑N

j=1(t j (k))2

N − 1
, k = 1, 2, . . . , Nmin

where the number of the spike train of the j th neuron is N j ( j = 1, 2, . . . , N )
in the prescribed time interval, and Nmin = min(N1, N2, . . . , NN ). The < · >
denotes the average value of δ(k) over k. It is obvious that the more synchronous is
a neuronal network, the smaller is the synchronization parameter. Synchronization
parameter δ is calculated as illustrated in Fig. 19.2a when N = 16, 32, 48 and
100, respectively. It is shown that δ is decreased as the probability p increases. This
fact implies the enhancement of neural synchronization. Moreover, synchroniza-
tion among neurons may be enhanced with the number of neurons increasing if the
probability p is above a certain value, for example, p > 0.125. On the other hand, a
characteristic correlation time τ is introduced to measure the ordered behaviour of
neurons [4]. τ =< τi,c > with τi,c = 1

N0Δt

∑N
k=1 c2

i (τk)Δt and
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Fig. 19.2 (a) The variation of the synchronization parameter δ, (b) The variation of the character-
istic correlation time τ with respect to the probability p for N = 16, 32, 48 and 100, respectively
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ci (τd ) = < (xi (t)− < xi (t) >) (xi (t + τd )− < xi (t) >) >

< (xi (t)− < xi (t) >)2 >

where xi (t) is the membrane potential of the i th neuron at time t, τd is the time
delay, < · > denotes an average over time, τk = kΔt with Δt being the sampling
time, and N0Δt being the length of time series.The more ordered is a neuronal
network, the longer is its characteristic correlation time. Therefore, it can be used
to measure the degree of spatiotemporal order of the neuronal networks. The curve
of τ versus p is displayed in Fig. 19.2b for N = 16, 32, 48 and 100, respectively.
There is a clear peak in each curve, indicating the occurrence of explicit ordered
temporal behavior. The value of p for the peak becomes smaller with increasing
the number of neurons and the resonance peak becomes narrower. It indicates that
for larger neuron number, the smaller the number of randomly added shortcuts is
needed for the system to achieve chaotic burst synchronization.

Secondly, in order to study the influence of coupling strength, we carried out the
calculations for other three coupling constants g = 0.01, 0.05, 0.1 and 0.15 with
D = 0.0005 and p = 0.2. Similar evolutions of spatiotemporal patterns are found.
It shows that chaotic burst synchronization among neurons can be achieved with the
coupling strength increasing. When g is small, the HR neurons show rather irregular
and nonsynchronous bursts. As g increases to 0.15, the coupled neurons eventually
achieve burst synchronization. This indicates that the spatiotemporal chaos of neu-
rons can behave as burst synchronization with the coupling strength being large
enough.

To check the effect of noise level, the synchronization parameter and charac-
teristic correlation time are also calculated for the other three typical noise levels
D = 0.005, 0.05 and 0.1 at g = 0.05. We find that for different values of D
the spatiotemporal patterns change slightly and the evolution of the characteristic
correlation time keeps little change with changing p. This means that the variation
of the appropriate noise level exerts a slight influence on the bursting activity, and
the spatiotemporal patterns are robust to it.

Conclusion

In this paper, the dynamics of chaotic HR neurons in a small-world network with
noise is investigated. It is observed that chaotic burst neurons in this network can
achieve burst synchronization when the topological probability and the coupling
strength are above a certain value. Burst synchronization likely plays subtle infor-
mation processing roles in healthy neural tissue. The more the number of neurons
is, the easier the burst synchronization for the network shows. However, the burst
synchronization cannot be enhanced when the noise is increasing.These results may
be instructive to understand firing patterns and information transmission in neural
systems under noisy background.
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Chapter 20
A Stochastic Resonance Memory
Mechanism of Hippocampus

Yan Chuankui and Liu Shenquan

Abstract Using the hippocampal cell channel model, the transmission features of
hippocampal system are under the research. The process of memory is simulated
by stochastic resonance. By synaptic model, the hippocampus model is constructed,
which analyzes the summation of postsynaptic currents in the network. The strong
capacity of spatiotemporal encoding in the network indicates the features of CA3
network during the information transmission process in the hippocampus. Ana-
lyzing the memory expression in CA1 under PP signal from entorhinal cortex or
SC postsynaptic current respectively, results show that the reason is that single
subthreshold signal cannot cause memory and stochastic resonance of them. The
modeling result with time delay of the synaptic transmission is in accordance with
the experimental phenomena of action potential in the hippocampus.

Keywords Hippocampus · stochastic resonance · memory pattern · ISI

Introduction

The function of noise was found first when Benzi explained some questions of ice
age. The phenomenon that peak value appears when Signal-to-Noise (SNR) in-
creases rapidly under certain strength of noise is named stochastic resonance [1].
Longtin pointed out that stochastic resonance is very important to neurophysiology
and the noise plays a key role in neuron encoding [2, 3]. Outside signal accepted
from the distal end of nerve is usually very weak when it reaches our brain, which
can be strengthened by noise. A memory recognition process will be explained
based on stochastic resonance.

For the hippocampus, Traub founded a simplification model with 19 pyramidal
cells to describe the structure of CA3 in 1982 [4]. The result of this model shows
that the bursting discharge of a pyramidal cell is very complicated, and that the
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number of cells considered is too less. Afterwards, Traub and Jeffyerses carried
on an improvement over the original model, building up a CA3 network with 100
pyramidal cells [5]. The excitory synapse among pyramidal cells is random, which
indicates that the strong synaptic connection is a necessary condition of the syn-
chronous bursting discharges. In 1998, Tateno, Hayashi and Ishizuka further am-
plified cells scale to 256 pyramidal cells and 25 interneurons in a CA3 network
[6], in which the influence of synaptic strength on action potential had been studied
thoroughly in this model. In various models, CA3 is studied alone, or is investigated
just with CA1; however, the influence of MF connection of DG upon CA3 is often
neglected. This paper is concerned with perfecting the structure of system, adding
DG network and EC’s effects to the system and analyzing the memory process.

The Hippocampal Neuron Model

There are two kinds of cells in the hippocampus: excitory neurons (mainly granulosa
cells in DG and pyramidal cells in CA1 and CA3) and inhibitory neurons (mainly
interneurons in CA1, CA3 and DG). Generally, the following model is employed to
describe excitory neurons:

C
dV

dt
= gNam3h(VNa − V )+ gCas2r (VCa − V )+ gCa(low)s

2
lowrlow(VCa − V )

+ gK(DR)n(VK − V )+ gK(A)ab(VK − V )+ gK(AHP)q(VK − V )

+ gK(C)c min(1, χ/250)(VK − V )+ gL(VK − V )+ gaf(Vsyn(e) − V )

+ Isyn + Istim (20.1)

dz

dt
= αz(1− z)− βz z , z stands for m, h, s, r, slow, rlow, n, a, b, q, c (20.2)

dχ

dt
= −φ ICa − βχχ (20.3)

In addition to a large number of excitory neurons, there are a few interneurons in
CA3 and DG. Despite its small proportion, interneurons play an important role in
maintaining the equilibrium between excitation and inhibition in the hippocampus.
The interneuron model can be described in the following way:

C
dV

dt
= gNam3h(VNa − V )+ gK(DR)n

4(VK − V )+ gL(VL − V )+ Isyn (20.4)

dz

dt
= αz(1− z)− βz z, z stands for m, h, n (20.5)

Equations 4 and 5 can be adopted to describe the interneurons in the hippocampus.
While neurons are connected by synaptic model, these models can analyze the nerve
system of the hippocampus.
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The Hippocampal Memory Model

The Introduction of Network and Synaptic Model

In order to analyze the system of the hippocampus, firstly a network structure should
be constructed. For the sake of convenience, each pyramidal cell excites 8 pyramidal
cells around in the network, and each interneuron inhibits 16 pyramidal cells around,
which is subjected to the excitation from these 16 pyramidal cells. Hence, two ad-
jacent interneurons together inhibit four common pyramidal cells (the shadows in
Fig. 20.1a).

Here suppose DG has the similar network to CA3 (CA1), hence � in Fig. 20.1a
indicates granulosa cells, and then a hippocampal network is attained in Fig. 20.1b.
The cells form network by synaptic connection, which is given below. Each presy-
naptic action potential always causes an impulse of postsynaptic cells.
The impulse of postsynaptic cells is as follows.

Isyn = gsyn(Vsyn − V ) (20.6)

gsyn = Csyn(exp(−t/τ1)− exp(−t/τ2)) (20.7)

Stochastic Resonance Memory Recognition

A memory object “A” is considered. First it was accepted by cortex and converted
into PP current signal which is input into the network of 16× 16. For those neurons
covered, Wperep = 0.08; otherwise, Wperep = 0. The potential of the neurons is
indicated by the grey level from black to white, that is, near black means resting
while near white firing.

Fig. 20.1 (a) CA1, CA3 or DG network: 16× 16.©: pyramidal cell or granulose cell. �: interneu-
ron. (b) hippocampus system structure. Each pyramidal cell in CA3 is exited by 20 granulose
cells with MF connection. Each pyramidal cell in CA1 is exited by 100 pyramidal cells with SC
connection. DG and CA1 are exited by PP signal
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Fig. 20.2 (a) the incomplete memory pattern in the period of sparse pyramidal cells firing; (b) the
complete memory pattern in the period of most pyramidal cells bursting synchronously; (C1) CA1
pyramidal cell fires under the incomplete memory pattern; (C2) CA1 pyramidal cell fires under the
complete memory pattern

A complete hippocampal system memory is concerned. In Fig. 20.2, the memory
is recalled under subthreshold PP signal and SC postsynaptic current in CA1, with
the interval between two pictures 0.6 ms. CA3 in the second line is 1 ms ahead of
CA1 because of the synaptic delay.

The neurons firing spontaneously are random in CA3-DG structure, and presy-
naptic neurons of SC connection are also random; therefore, SC postsynaptic current
can be regarded as a random variable. Since noise with certain strength is applied
into enlarging or detecting subthreshold signals, SC postsynaptic current can be
considered as stochastic noise. Using stochastic resonance in the model, the PP
subthreshold signal is strengthened by SC stochastic noise, and the memory object
is recalled in CA1.

Discussion

A tentative study has been done on the memory mechanism of hippocampus.
Memory, as a function, is explained by stochastic resonance. The recognition of
a single letter “A” is simulated in the model, which is a relatively good memory
expression. Obviously, memory objects in reality are far more complicated than a
letter; as a result, in order to recognize complicated information, the input of PP
signal should be more complicated, for instance, a word “MEMORY” as a memory
object. Suppose the cortex of brain can decompose the object. When it is changed
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Fig. 20.3 CA1 expression patterns when memory object is complicated signal “MEMORY”

into PP signal, the basic unit (letter) in this object is output in turn with the frequency
of 50 Hz. By this, the memory result of CA1 is obtained (see Fig. 20.3).
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Chapter 21
Theta Phase Precession Enhance Single Trial
Learning in an STDP Network

Enhua Shen, Rubin Wang and Zhikang Zhang

Abstract Theta phase precession is an interesting phenomenon in hippocampusand
may enhance learning and memory. Based on Harris KD et al. and Magee JC’s
electrophysiology experiments, a biology plausible spiking neuron model for theta
phase precession was proposed. The model is both simple enough for construct-
ing large scale network and realistic enough to match the biology context. The
numerical results of our model were shown in this paper. The model can capture
the main attributes of experimental result. The relationship of phase shift with place
shift in experiment was well repeated in our model. An STDP network constructed
with our model neurons can memorize place sequence after single time learning
with high accuracy. Such a model can mimic the biological phenomenon of theta
phase precession, and preserve the main physiology factors underline theta phase
precession.

Introduction

Theta phase precession was first discovered by O’Keefe and Recce in rat hippocam-
pus [1]. An important discovery is that the phase shift of individual CA1 neurons
with neighboring place fields is observed to be coherent [2]. That is, the neurons
with neighboring place fields show nearly fixed phase difference, and phase differ-
ences increase with place fields shift. This attribute of theta phase precession will
cause the place sequence the rat passed to be represented by a neuron population
firing pattern lasting for 0.1 s and repeating in each theta cycle. Such a pattern will
enhance the memory of place sequence a lot [3].
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Some theoretical models of theta phase precession have been proposed. Some
models assumed asymmetric connection weights in the network cause the pattern
of theta phase precession [4, 5, 6, 7]. Other models needn’t assuming the initially
asymmetric connections and generate theta phase precession by some mechanisms
in individual neural oscillators [1, 3, 8], while these models are hard to be evaluated
by experiment. Based on Harris KD et al. (2002) [9], Magee JC (2001) [10] and
Kamondi A et al. (1998) [11], we constructed a model with a basic leakage integrate-
and-fire neuron, with adaptation mechanism and slow potassium current. We discard
the computational demanding H-H equation in our model, try to capture the major
attribute of experimental theta phase precession phenomenon [12].

For study the learning enhancing hypothesis of theta phase precession, an STDP
learning network was constructed to study the place sequence memory function in
a near real neuron network. We give the network space information only once, and
observe the learning ability of the network.

Model

Our single neuron model and network coupling between neurons were described in
our previous work [12].

STDP

Spike time dependent of plasticity (STDP) is modeled by following. Take neuron i
as presynaptic neuron and neuron j as postsynaptic neuron (the diagonal weights
are not involved in Learning, i �= j), for each postsynaptic spike δ(t f

j ), f =
1, 2, · · · , SN j , SNj is the total number of spikes neuron j fired, we find a closest
presynaptic spike δ(t f ∗

i ) before it, t f ∗
i < t f

j and t f ∗+1
i > t f

j (or there is no t f ∗+1
i ).

Then an increase of weight Wij occurs at time t f
j . Please note the saturation term

(1−Wi j (t
f
j )).

dWi j (t
f
j )

dt
= Cw • δ(t f

j ) • τ • e
−τ

0.004 •
(

1−Wi j (t
f
j )
)
,

where τ = t f
j − t f ∗

i , Cw is a constant to control the learning rate. (21.1)

For each presynaptic spike δ(t f
i ), f = 1, 2, · · · , SNi , SNi is the total number of

spikes neuron i fired, we find a closest postsynaptic spike δ(t f ∗
j ) before it, t f ∗

j < t f
i

and t f ∗+1
j > t f

i (or there is no t f ∗+1
j ). Then an decrease of weight Wij occurred at

time t f
i .
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dWi j (t
f

i )

dt
= −0.03 • Cw • δ(t f

i ) • √τ • e
−τ

0.008 •Wi j (t
f

i )

where τ = t f
i − t f ∗

j .
An illustration of learning window is given in Fig. 21.2a.

Results

The model was programmed through Simulink of MatLab. We use fixed step ode5
method in simulating. The time step is 0.0002 sec.

Single Neuron Result

The stimulus in simulation of single neuron model is illustrated in Fig. 21.1a. Ac-
cording to [10], in our stimulus, the inhibitory input is: [−0.2 + 0.2∗ sin(10∗π∗t)]
nA (bottom line). We suppose the rat runs through a line with a length of 60 cm. It
will receive a place-specified ramp-like input [10], which illustrated in the top line
of Fig. 21.1a. The exciting input has a constant component of 0.7 nA, and a triangle
ramp centered at 30 cm with a width of 30 cm. The peak strength of the exciting
input is 1.5 nA.

We suppose the rat runs in an average speed of 15 cm/s, with random fluctuations.
That is, P = vt + �, where P is the place of the rat, v is its velocity 15 cm/s, � is a
Gaussian noise with a mean of 0 and a standard deviation of 1.06 cm. The stimulus
strength was selected to match the experiment in [9]. Besides the above we add
white noise to the input, the standard deviation is 0.01 nA, and with a mean of 0.

The firing patterns of our model, subjected to input shown in Fig. 21.1a, are
shown in Fig. 21.1b. Similar to experiment, we overlapped data from about 20 trails
together. It is similar to experiment results in [2]. If we focus on the spikes occur
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the height is 20 nA

before 30 cm, i.e. before the peak of the ramp input, the phase of spikes advances a
lot. While for spikes after 30 cm, the phase doesn’t advance but lags. This lag is due
to the limitation of adaptation mechanism we currently use. In spite of this shortage,
the phase of spike mainly advances in our model.

Place Sequence Memory and Recall in Single-Time-Learning

We constructed a network with 8 model neurons. The connection weights are
changeable according to STDP rules during simulation. The shape of learning win-
dow is shown in Fig. 21.2a. The simulations were separated into two part, first
learning part and then recall part. During the learning part, initial weights were set
to random numbers between 0 ∼ 0.01, which is not significant. Parameter WL in
Eq. (21.09) is set to 4 at this stage. The input in learning part is similar to previous
section. Neighboring exciting ramps are shown in Fig. 21.2b. Simulation at learning
stage lasts for 4 s. So a series of neighboring exciting ramps is feed into the network
only once.

During the recall part, initial weights were got from the final weights in learning
stage. There is no inhibitory theta wave input in this part. The input in recall part is
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Fig. 21.3 Output in recall stage. Each dot in the figure is a spike fired by a neuron. Spikes of one
neuron are plotted along a horizontal line. WL value in (a) is 24, in (b) is 25

two square pulses, only given to neuron 1 and 2. Each pulse lasts for 10 ms and the
strength is 20 nA. The strength is very high and will induce a neuron fire 4 spikes.
Two pulses are shown in Fig. 21.2c. STDP function is still open at this stage. Sim-
ulation in recall stage lasts for 1 s. For effectively activate other neurons, parameter
WL in Eq. (21.9) increases a lot at this stage, about seven times. We find, due to
noises, weight matrix is very different from each other after each learning process.
So at corresponding recall stage, parameter WL need to be set to different value for
adapt different learned weight matrix. The value varied from about 25 ∼ 34.

Figure 21.3 shows recall activity under different WL values. We can see if WL is
low, only a few neurons (except neuron 1 and 2, which receive strong outside inputs)
was activated (a). In a suitable range of WL, most neurons can be activated and
represent memory of place sequence (b). The suitable range is narrow, about 2 ∼ 3.
If WL is larger than suitable range, at first place sequence still can be represented
by spikes, but soon all neurons begin to tonic firing. We can clearly see that in this
case the model successfully recall the place sequences, with minor mistake. Please
note that the recall process last for 0.1 s, about half a theta cycle, while the learning
stimulus last for nearly 4 s.

Not in all cases the model can learn and recall place sequence successfully. In
our simulations, about one trial out of five can perform as good as Fig. 21.3b, but it
is also hard to find such a thoroughly wrong case.

Conclusion

Inspired by [9] and [10]’s electrophysiology research, we propose in this paper a
computational model. In spite of the limitation of adaptation mechanism in this
model, the single neuron model shows a firing pattern reserving the major attributes
of theta phase precession. Model neurons with neighboring place fields can memo-
rize place sequence after single trail learning in a STDP network.
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Chapter 22
A Numerical Mechanism for Square-Wave
or Elliptic Bursting of Bursts in a Map-Based
Neuron Network

Hongjun Cao and Miguel A.F. Sanjuán

Abstract A network of two identical Rulkov map-based neurons coupled by recip-
rocal excitatory or inhibitory electrical synapses as a phenomenological example is
investigated. This is because on the one hand, this network can exhibit many regular
and irregular bursting oscillations, and such behaviors can reflect many functional
roles in real neuron assemblies, especially when the information transmission and
processing of biological neurons are concerned. On the other hand, this is motivated
by experimental studies where the pyloric central pattern generators of the lobster
stomatogastric ganglion are coupled by an artificial dynamical current clamp device
[Phys. Rev. Lett. 81.5692, 1998]. So it is worthwhile to make a detailed study even
for this simple map-based network. Our results demonstrate that there exist multiple
cooperative behaviors of bursts. Moreover they can be well explained and predicted
by two kinds of different strategies by using a fast-slow dynamics technique and
bifurcation analysis. When the electrical coupling is excitatory or inhibitory due to
the artificial electrical coupling, separately, a fast-slow analysis is carried out by
treating the two slow variables as two different bifurcation parameters. The main
contribution of this paper is to present a numerical mechanism for the occurrence
of square-wave or elliptic bursting, which is due to the interaction between multiple
stable branches of fixed points of the fast subsystem or two chaotic oscillations with
different amplitudes. Particularly, the generation of antiphase synchronization of
networks lies in the different switching orders between two pairs of different chaotic
oscillations corresponding to the first neuron and the second neuron, respectively.
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The Coupled Map-Based Neuron System

We consider here a simple neuron network composed of two identical Rulkov map-
based neurons [1, 2] coupled through electrical or gap-junctional coupling

xn+1,1 = α

1+ x2
n,1

+ yn,1 + ε
(
xn,2 − xn,1

)
,

yn+1,1 = yn,1 − η
(
xn,1 − σ

)
,

xn+1,2 = α

1+ x2
n,2

+ yn,2 + ε
(
xn,1 = xn,2

)
,

yn+1,2 = yn,2 − η
(
xn,2 − σ

)
,

(22.1)

where α, ε, η, and σ are parameters. When η is very small, then the evolution of
yn,i (i = 1, 2) is much slower than that of xn,i (i = 1, 2). Thus, we refer to xn,i

as the fast variables and yn,i as the slow variables, and the parameter ε denotes the
electrical synaptic coupling strength.

Motivation

The motivation of this paper is to show that even in this ensemble of two identical
neurons, usually, the two slow variables given in Eq. (22.1) assume different values
at any given time. It seems to be much more reasonable and predictable to use two
different bifurcation parameters rather than to use only one, when bifurcation theory
and geometric singular perturbation theory are applied.

Main Results

The main result of this paper is to propose a mechanism for the occurrence of elliptic
bursting when the electrical coupling is inhibitory. In this case, the fast subsystem in-
cludes two different slow variables no matter how small the coupling strength is. The
elliptic bursting oscillation is due to the interaction between two chaotic oscillations
with different amplitudes. Moreover, the generation of antiphase synchronization
of networks lies in the different switching orders between two pairs of different
chaotic oscillations of the first neuron and the second neuron. The mechanism is in
agreement with experimental studies where two coupled neurons are coupled by an
artificial dynamical current clamp device [3]. Most importantly, these results could
be extended to large-scale networks.
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Chapter 23
Sub-Threshold Oscillation and Transient
Response in Neural Coding

Jianxue Xu

Abstract In this paper, the viewpoints that the information characteristics in neural
coding are not only transmitted by neural firing pulse but also by sub-threshold
oscillation of activity potential of a neuron is provided through the analysis of dy-
namics of two kinds of neuron models. Besides, it is revealed that some information
characteristic of stimulus and steady state responses for a neuron can be found from
transient responses.

Keywords Neural firing pulse · interspike interval · bursting · sub-threshold
oscillation · steady state response · transient state response

Introduction

Neural science has been intersected and combined with nonlinear science for
exhibiting nonlinear properties of its objects studied. Neural coding is viewed as the
quantity and metric of neural activities in the field of bio-neural science. Recently,
nonlinear science (nonlinear dynamics) is well developed, and its theory has been
employed to analyze the behaviors and mechanisms of the neuron activities.

Sensing information outside and adapting and affecting the circumstances are
reached by nerve systems and exhibited the activities of nerves. In the field of neural
science, it is paid much attention to how the information are processed by neuron
fiber in such situations, and how the patterns of the interspike interval (ISI) sequence
of a neuron and the assembly features of neurons caused by stimulus outside and
inner physical and chemical activities and processes are regarded as a kind of neural
coding. In the brain neural science, the neural coding is used to mean a measurement
and metric of neuronal activity [1]. Besides, the Shannon information theory has
also been introduced in studying the problem of neural coding [2].

Recently, a lot of the behaviors and mechanisms of neuron activities is found
and revealed using the nonlinear dynamics theory, see references [3, 4, 5, 6, 7] as
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example. Here, the viewpoints that the information characteristics in neural coding
are not only transmitted by neural firing pulse but also by sub-threshold oscilla-
tion of activity potential of a neuron are provided through the dynamics analysis
of two kinds of neuron models, and some information characteristic of stimulus
and steady state responses for a neuron can be found from transient responses are
presented.

Neural Coding Concept Related with Nonlinear Dynamics

The concept of neural coding from the viewpoint of nonlinear dynamics possesses
three meanings; the generation of various pattern of response information of a neu-
ron resulted by neuron activities under stimulus or by neuron self activities only
(spontaneous firing), the way of information characteristics of specific stimulus
transmitted to response of a neuron, and the forms of elementary element consti-
tuting various neural information.

It is well known that the biology experiments and analysis of neuron model have
provided a lot of evidences that neural activity and neural firing possess rich and
variant nonlinear dynamical behavior of response. These behaviors are regarded
as the neural coding generated from neuron activities under stimulus or neuron
self-activities. This neural coding is expressed by nonlinear steady state response,
transient state response, and slow varying processes response. For instance, for same
periodic stimulus the steady state responses of a neuron can be different: static,
periodic, quasi-periodic, and chaos. The same situation can be met in the sponta-
neous firing of a neuron. The neural coding is also to state how the characteristic of
stimulus after the cooperating or processing by the neuron activity can appear in the
response. The neural coding is also employed for identifying the dynamics behavior
(neural information) in the complicate dynamics behavior, like chaos.

Coding by Sub-Threshold Oscillation Response

It is found that the information characteristics in neural coding are not only trans-
mitted by neural firing pulse but also by sub-threshold oscillation of neuron activity
potential through the dynamics analysis of two kinds of neuron models.

The case of 4-dimension Hodgkin-Huxley neuron under periodic stimulus signal
is studied:

u̇ = I − [120m3h(u + 115)+ 36n4(u − 12)+ 0.3(u + 10.599)
]

ṁ = (1− m)ψ

(
u + 25

10

)
− m

(
4 exp

( u

18

))

ṅ = 0.1(1− n)ψ

(
u + 10

10

)
− n

(
0.125 exp

( u

80

))
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Fig. 23.1 Steady state response of chaotic ISI rhythm of Hodgkin-Huxley neuron model under
sinusoid wave current excitation with amplitude of 12.0: Time wave form in time interval t =
1280–1400 ms, and Phase portrait in time interval t = 1100–1400 ms

ḣ = 0.07(1− h) exp
( u

20

)
− h

/(
1+ exp

(
u + 30

10

))

ψ(x) = x/(exp(x)− 1) (23.1)

By the numerical calculations, the periodic-one, periodic-three, and chaotic ISI
rhythm steady state responses under sinusoid wave (I m sin(1.57t − 48.67)) exci-
tation of amplitudes Im, 11.9, 12.0, and 13.0 are obtained.

In the whole time wave of the chaotic ISI rhythm response including peak pulse
of firing and sub-threshold oscillation, the waves of time interval between two
neighbor sub-threshold oscillation sub-wave peak being approximately equal to the
period, 4 ms of sinusoid wave of current stimulus, I = 12 sin(1.57t − 48.67)
are appeared clearly. which exhibit the characteristics of the periodic stimulus
signal. The time wave of a part of the steady state response (after 1280 ms) of
this chaotic rhythm and its phase portrait are shown in Fig. 23.1. This situation
also occurs in the periodic rhythm case of the periodic stimulus amplitudes 11.9
and 13.

Coding in Transient State Responses

In general situation, a time interval of the transient state response is needed to
study until reaching the steady state response of neural firing of a neuron after
stimulus, and the environment change is sensed through the neuron activity im-
mediately. Hence, the transmitting of information and the corresponding between
stimulus and response at the period of transient state is more important and more
complex.
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Correspondence of Stimulus and Transient Responses

The characteristics of transient responses of a neuron fiber under a stimulus signal
can be described through similar items specified for steady state response case, but
some of those are just viewed as at transient state, for instances: transient chaotic
dynamics natures. During biological neural information are transmitted from stim-
ulus to transient response along a neuron fiber, how the information characteristics
of stimulus signal being coded into the response through neuron activities can also
similarly be provided as those in the steady state response case.

The dynamical analysis of four dimensional Hodgkin-Huxley neuron model un-
der sinusoid excitation and three dimensional �-Rinzel model under constant current
excitation are employed for indicating these argument. For the former, the periodic-
one, chaotic, and periodic-three ISI rhythms transient response under sinusoid wave
I m sin(1.57t−48.67) excitation of amplitudes Im, 11.9, 12.0, and 13.0 are obtained.
After first pulse, it is seen on the figure of chaotic rhythm case (I m = 12.0), that the
sub-threshold oscillation waves of the transient responses with time interval between
two neighbor wave peak being approximately equal to the period of 4 of sinusoid
wave of stimulus have begun occurring, which are just the evidence for exhibiting
the information characteristic of excitation (stimulus). This situation also occurs in
the periodic rhythm case of the periodic stimulus amplitudes 11.9 and 13.

For square wave excitation cases, the same expressions can be inspected.

Corresponding Between Transient Response and Steady
State Response

The �-Rinzel neuron spontaneous firing model of three state variables, V, n, Ca [8]
is studied. The initial conditions are V0 = −40, Ca0 = 0.62, n0 = 0.1.

The dynamics characteristic of the chaotic ISI rhythm steady state response may
occur in the time interval of first several pulse of the transient response in sponta-
neous firing of �–Rinzel neuron of calcium-potassium current constant 26,000. For
the periodic ISI rhythm steady state response case, the steady state response appears
quickly after first several pulse of the transient response. Figure 23.2 shows that the
periodic-7 steady state response of �-Rinzel neuron spontaneous firing model of
calcium-potassium current constant 26,085 appears after just 52 ms.

Coding in the Process Depending Slowly Varying

A kind of processes of neuron activities or neural firing are often met, of which
the dynamics of neuron activities or the patterns of neural firing trains depending
a slowly varying parameter vary qualitatively, substantially, and systematically at
the slowly varying parameter passing some specific values. This qualitative vari-
ation is named as dynamic bifurcation, which is different from usual bifurcation
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Fig. 23.2 Periodic-7 response of �-Rinzel neuron spontaneous firing model with calciumpotas-
sium current constant 26,085 appears after just 52 ms: transient response, and steady state response

of qualitative variation of dynamics resulting from “condensing”, fixing the slowly
varying parameter (as bifurcation parameter) value in its varying process. For in-
stance, the injured end of a neuron of the mouse is immersed in a solution, and the
density of a medicine of this solution varies slowly with time, then, the qualitative
variation of firing patterns of neuron, i.e. dynamic bifurcation may occur. Obviously,
this process is neither transient state nor the steady state, but a long-term dynamic
process, and its neural coding will be very complicate.

Conclusions

In this paper, the emphases are: (1) Not only spike or bursting firing pulses of
responses of neuron activities, but also sub threshold oscillation contains the neural
information and affect the neural coding. (2) The analysis of neural coding in the
transient response is important.

It is expected the consideration of this paper may be of some help to know and
find the mechanisms of the transmitting and processing of bio-neural systems.
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Chapter 24
Setting Up New Memories: The Ideal Job
for The Mammalian Dentate Gyrus

Gergely Papp and Alessandro Treves

Abstract Most of the core memory operations carried out by the hippocampus may
be implemented in the standard cortical circuitry of its CA3 network, largely con-
served from pre-mammalian times. We propose that the new mammalian DG-CA3
circuitry has evolved in order to facilitate one particular process: the formation of
novel memories, uncorrelated from those already stored on CA3 recurrent connec-
tions. Such teaching aid is shown here to be effective not only in producing discrete
memory states, but also for establishing quasi-continuous spatial charts.

Keywords Hippocampus · episodic memory · information theory · one-shot learning

Pattern Completion and Retrieval Capacity

David Marr [1] elaborated ideas about the memory role of the hippocampus and
took them as the starting point to understand the organization of hippocampal cir-
cuits. His theoretical approach has been enormously influential, even though, in
detail, it only ‘explained’ pattern completion by recurrent connections, a prominent
anatomical feature of CA3 pyramidal cells [2] but also presumably of the original,
pre-mammalian paleocortex. Marr thought in terms of discrete memory states, and
he devoted an entire section of his paper to capacity calculations, realizing early
on how they could be a central contribution of mathematical network models. The
model later introduced by John Hopfield [3] proved suitable for such calculation
when it was analyzed by Amit, Gutfreund and Sompolinsky [4]. The generic result
is that an autoassociative memory network with C recurrent connections per unit
can retrieve, i.e. complete, up to

pc ≈ 0.2− 0.3 C/[a ln (1/a)] (24.1)
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patterns of activity, where a is their sparsity value (in the sparse, a << 1 regime;
see [5]). Marr did not conceive of any interesting role for the dentate gyrus (DG),
and he summarily dismissed granule cells as effectively ‘extended dendritic trees’
for CA3 cells, which he accordingly labeled as collector cells.

The Dentate as a Generator of CA3 Activity

With their 1987 review, McNaughton and Morris [6] rekindled interest in the Marr
approach by discussing several ‘Hebb-Marr’ associative memory architectures, in-
cluding some similar to the Hopfield model, and whether they resembled hippocam-
pal networks. The operation of such models can be more readily analyzed if the
memory patterns to be stored are assigned ‘by hand’, rather than self-organized
under the influence of on-going inputs. One can imagine that a system of strong
one-to-one connections from another area may effectively ‘transfer’ a pattern of
activity from the other area, where it is determined by some unspecified process,
to the associative memory network. McNaughton and Morris took the strong ‘det-
onator’ synapses on the MF projections from DG to CA3 as an approximate im-
plementation in the real brain of such one-to-one connections. The distributions of
activity to be stored in memory would be effectively generated in DG, perhaps by
expansion recoding and then simply transferred to CA3. The detonator proposal
thus addresses the most salient feature of the mammalian hippocampus, whereas
many connectionist hippocampal models, like Marr’s, do not really go beyond the
reptilian stage.

A Quantitative Analysis

As clarified by Treves and Rolls [7], for the DG to ‘impose’ a novel pattern of
activity onto CA3, it need not transfer its own, and one-to-one connections are not
necessary. What matters is that the MF synapses be strong, sparse, and conveying
sparse activity from DG. This is sufficient to effectively select a limited ensemble of
CA3 cells to represent a new memory, unrelated to ensembles which are co-activated
in other, previously stored memories, and which would tend to be reinstated by the
collateral effect. Quantitatively, an associative network of N units can retrieve up to

Imax ≈ 0.2− 0.3N · C bits (24.2)

of total information – cumulating the contribution of all memory patterns – an
amount proportional to the number of synapses NC, and which does not depend
much on sparsity. This implies that if patterns are uncorrelated, each should contain
at least

i ≈ N a ln (1/a) bits (24.3)
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of new information. Efficient use of the CA3 retrieval capacity then requires that its
pyramidal units encode this much new information in a pattern of activity. Analytical
estimates derived for a simple model with discrete attractor states [7] suggest that
this challenge can be met by afferent inputs with the characteristics and strength of
the mossy fibers, but not by those, conveyed by the perforant path to CA3, relayed by
synapses which are presumably similar to recurrent synapses, but fewer in number.
To make full contact with experimental recordings of CA3 activity, and with recent
ones of DG activity [8], the argument has to be generalized and applied to models
in which CA3 units encode spatial representations, not just discrete attractor states.

The Random Drawing of a Chart

Samsonovich and McNaughton’s chart model [9] demonstrated how one could con-
ceive of fixed points organized in multiple 2D continuous manifolds, each of which
maps the animal position in a distinct environment. The number of such charts, that
can be held simultaneously in the network, is limited approximately by the critical
value [10].

pcharts ≈ 0.1 C/ ln (1/a) (24.4)

How can such charts be established? As with discrete memories, an important role
may be played by ACh modulation, which is thought to suppress recurrent transmis-
sion while enhancing plasticity during storage [11]. Storing quasi-continuous arrays
of context-dependent position codes poses, however, additional challenges: at short
distances the would-be continuous attractors are fragmented [12]; at longer dis-
tances they easily collapse; and periodic inputs from grid cells in medial Entorhinal
cortex [13] may induce correlation among non-adjacent position codes, expressed
as multiple peaks in CA3 fields.

With simulations, one can investigate the emergence of new charts in models
with and without a layer modeling the DG. Figure 24.1 shows the results of simu-
lations, in which a model CA3 network was trained as a virtual rat explored a new
environment, with model grid cells as its only source of cortical information. The
DG layer, if present, is modeled here with single-field granule units and one-to-
one detonator synapses to CA3 units, and is active only during training. At testing,
DG is turned off, and CA3 cells, activated by the model perforant path and under
the influence of recurrent collaterals, both modified during training, show scattered
spatial responses before training, self-organizing into smoother fields after training.
The DG teaching input modifies, in this simulation, both the perforant path and the
recurrent collateral weights, and both contribute to the response properties of CA3
units. As the perforant path, which at testing relays only a partial cue, is made to
gradually fade over 10 × 12.5 ms iterations, towards the end of the iteration cycle
the cue is largely completed by the collateral effect. If the useful role of DG inputs
is only in establishing new spatial representations in CA3, as in the model of the
figure, lesioning DG or blocking MF transmission should have no effect on memory
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Fig. 24.1 Development of CA3 place field codes with and without a model DG. The percent cor-
rect localization afforded by decoding the entire population of 2500 CA3 units increases with the
first training epoch (a). Examples of firing rate maps of three model CA3 units are shown before
and after 2 × 10′ exploration sessions of a new environment (b). Without DG, the fields never
develop single peaks, the increase in localization accuracy is smaller (dashed line), and it reverses
with successive training epochs. Note that single peaks occurring across the toroidal boundary
conditions appear as double when the torus is displayed as a square box

retrieval. This prediction is so far consistent with behavioral results obtained in two
independent experimental approaches [14, 15].
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Chapter 25
Neural Network Model Generating Symbol
Sequence for Songs of Bengalese Finch

Junichirou Kotani, Yasukuni Mori and Ikuo Matsuba

Abstract Bengalese Finch (Lonchura striata var. domestica) sings more sophis-
ticated songs than other birds and the grammar of their songs has been found to
be described with probabilistic finite state automaton (PFA). In the present paper,
we propose a multilayer neural network model that succeeds in reproducing the
qualitatively similar symbol sequence by taking into account the memory process.
The use of the present method is illustrated for the songs of Bengalese Finch with
particular emphasis on issues of input delay that is necessary to obtain the correct
grammar. It is found that the grammar obtained from the simulated symbol sequence
using the PFA agrees well with the real one.

Introduction

Neurobiology of birdsong started in 1960s and has been studied in more than 60
laboratories. It has now been established that the symbol sequence generated from
the songs of Bengalese Finch is described by the PFA [1, 2]. An important point
for the previous reports is that the hierarchical structure embedded in the symbol
sequence comes from the bird’s cerebral nerve system revealed from physiological
experiments [3]. Little, however, is rigorously known about the correct role of each
nucleus in generating the symbol sequence.

In the present paper, we propose a multilayer neural network model that permits
us to study the symbol sequence generated from the birdsongs and helps in un-
derstanding the basic ingredients underlying their grammar although the proposed
network is a simple one.
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Neurobiology of Birdsong

Birdsong consists of syllables separated by brief periods of silence. Each syllable
represented by an alphabet shown in Fig. 25.1 is grouped into sequential blocks
according to its meaning. Such a sequential block is called chunk, and it turn out that
the birdsong is considered to be a set of chunks. In general, the collective dynamical
behaviors of neural networks emerge from the properties of neurons. From this point
of view, it would be interesting to investigate the grammar using artificial neural
networks, and check whether the similar grammar is obtained.

Figure 25.2 is a known circuit concerned with production of songs in a bird brain
in which RA (Robust Nucleus of the Archistriatum), HVC (High Vocal Center),
NIf (Nucleus Interface), etc. are nuclei which are assemblies of neurons. Experi-
ments carried on these nuclei lead to an idea that the birdsong is generated from a
hierarchical structure of neural networks in which these nuclei play the follwoing
roles:

– RA generates syllables.
– HVC generates chunks from syllables.
– NIf controls the whole system of the song of Bengalese Finch.

Network Model

In this section we propose a simple neural network based on the birdsong control
system. Figure 25.3 shows the proposed network in which only the HVC and the NIf
are considered since we focus on the sequence generation of the birdsong control

Fig. 25.1 Example of a
structure of chunks obtained
from syllables

Fig. 25.2 Circuit concerned
with production of birdsongs
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Fig. 25.3 Schematic diagram
of the proposed network

system and the RA is considered to be responsible only for the transformation of the
signals from HVC to motor signals controlling the vocalization of syllables.

This network is derived based on the following assumptions:

1. The HVC is assumed to play a role to generate a signal pattern that represents a
syllable as a response to a previously input syllable fed back from the ears.

2. The NIf is assumed to store some previously vocalized syllables and to send a
signal to HVC, which gives complexity to the songs of Bengalese finch (It is
well shown that damage to NIf results in structural changes embedded in symbol
sequence [3]).

From the first assumption we model the HVC based on a multilayer perceptron
(MLP) [4]. The MLP is fed a previously generated syllable together with a signal
stored in the NIf. As a response of these signals the MLP outputs a next syllable that
is thus fed back to the NIf and HVC through the ears. From the second assumption
we introduce the NIf that is a layer composed of self-feedback neurons. The self-
feedback has a fixed weight d(0 ≤ d ≤ 1) which represents a degree of decrease
in memorizing of incoming signals. The dynamics of the network is thus defined by
the following equations:

Ot+1 = ϕ
(

Wo−m · ϕ
(
Wm−i · [IT

t CT
t−1]T

) )
,

Ct = dCt−1 + It ,

where It is an input vector representing a syllable at time t, Ot is an output vector,
Wm−i and Wo−m are weight matrices of the MLP, ϕ(·) is a activation function (we use
a sigmoid function here), and Ct is a memory process at time t , namely, it represents
an amount of stored syllables at time t .
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Simulation

To investigate the ability of the proposed network, we performed a numerical simu-
lation. The steps of the simulation are as follows:

1. Generate sequences of symbols according to the automaton shown in Fig. 25.1.
2. Let the network learn the sequences by employing the back propagation method.

The binary encoded data are presented to the network in a continuous stream,
whose input, hidden, and output layer are configured as set of 26, 8, and 13 units.
Output neurons are fed back to the input layer as well as to the NIF network to
extract an inherent structure in sequence.

3. The trained network is used to generate sequences of the symbols as follows.

(a) Input the starting symbol of the grammar ‘a’ at first.
(b) The network outputs a next symbol to ‘a’.
(c) The output symbol is in turn fed back to the network.
(d) The network outputs a second symbol in response to the input of the first

output symbol.
(e) Repeat (a)–(d) until we have an enough number of symbols for the later

analysis.

4. Construct an automaton from the generated sequence by employing the Variable-
length N-gram model [5, 6] by regarding a history of symbol sequence of
variable length as a state of the automaton. Histories having similar probability
distributions of preceding symbols are considered to be in the same state. Simi-
larity of probability distributions is measured by the Kullback-Leibler divergence

D(P(·|α)||P(·|β)) =
∑

w

P(w|α) log
P(w|α)

P(w|β)
, (25.1)

where α and β are symbol sequences, w is a symbol, and P(w|α) is a conditional
probability for w provided α.

To give an idea of chunks obtained by the Variable-length N-gram model, we
perform simulation by varying the transition probability p at Node A in Fig. 25.1
where the automaton moves to ‘hh’ with probability p and to ‘eekfff’ with probabil-
ity 1− p. Other branching nodes are assumed to have fixed transition probabilities.
For p = 0.5, a typical automaton obtained by the trained network is depicted in
Fig. 25.4, which should be compared with the original one illustrated in Fig. 25.1.
The resultant automaton yields chunks with probability q(p) as a function of p as
shown in Fig. 25.5.

Summary

In the present paper, we proposed a multilayer neural network based on the birdsong
control system and let it learn sequences of symbols from which the approximately
correct automaton is obrained. After learning the network extracts correlation
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Fig. 25.4 Syllables and
chunks obrained by the
trained network

Fig. 25.5 Simulated
transition probability q(p) as
a function of p

eekfff

1–p

p

p

q 
( p

 )
A hh

between successive symbols that is enabled by using a history of symbols. It can be
said that songs of Bengalese Finch might be produced by combining two network
modules, (1) memory storing module NIf and (2) symbol transformation module
HVC. The results reported in this paper will prove the assumptions described in
Section ‘Network Model’. To the best of our knowledge, there is no prior theoretical
work on this kind of automaton for the birdsongs.
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Chapter 26
A New Method for Characterizing
the Variability of the Spike Trains

Ying Du, Qi-Shao Lu and Shi-Min Wang

Abstract Characterizing the pattern of a spike train is essential to the study of vari-
ability in neuroscience and genetic sequences in molecular biology. In neuroscience,
traditional methods for sequence comparisons rely on the mean spike count and its
variance measured in short time windows. A new method for encoding patterns of
spike train is introduced for characterizing features of neural spike trains. This new
method is applied to investigate the variability of responses to stimuli and is more
effective compared with other methods.

Keywords Spike train · neural system · stimuli · response

Method

In paper [1], a new method was approached to quantify the temporal structures of
spikes in neural firing. A recorded neural spike train was characterized by a bounded
variation function q(t) called response function as follows:

q(t) = i, ti ≤ t < ti+1, (i = 1, 2, . . . . . .) (26.1)

where ti is the firing moment of the i-th spike, q(t) is a monotonic function of time.
It can completely reflect the temporal rhythm structures (or patterns) of spikes and
the information of stimuli. Then the Newtons methodology is adopted to investigate
the first and second derivative of the response function defined as follows:

The First Formal Derivative

Fr = 1

N0 − 1

N0−1∑

i=1

1

I S I (i)
(26.2)
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Fig. 26.1 The response function of a spike train

where N0 is the total spike count in a time bin T . Fr is an averaged firing rate over
[0 T]. Mathematically, it measures whether spikes gather together or separate each
other within interval.

The Second Formal Derivative

Sr = 1

N0 − 1

N0−1∑

i=1

Fr (i + 1)− Fr (i)

2min[I S I (i), I S I (i + 1)]
(26.3)

It characterizes the spike train by describing the change of two adjacent ISIs, indi-
cates the increasing/decreasing tendency of ISIs.

The Integration of Response Function

The area increment from t0 to t0 + T can be expressed as:

Ar = q(t0) · T + q(t0 + T ) · (T − tN0 )+
N0−1∑

k=1

k · I S I (k) (26.4)

where N0 is the total number of spikes fired within the interval [t0, t0 + T ], tN0 is
the firing moment of the last spike.
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Characterize the Spike Train Variability to Stimuli

Old Measure

Kreiman and Krahe [2] used two methods to quantify inter-trial spike train vari-
ability in response to repeated presentations of the same RAM stimulus. First, they
computed the spike count variance as a function of the mean spike count in fixed
time windows of length T . But this method did not offer a reliable indication of
spike train variability. Then they used a measure of spike timing jitter by using the
notion of spike train distances introduced by Victor and Purpura [3]. This measure
of variability is obtained by computing an average distance between spike trains
obtained in response to the same random electric field AMs(RAMs). This measure
was widely applicable to neuronal responses, irrespective of the type of stimuli used,
but the choice of the spike moving cost q is so discretional, this measure seemed too
intricate.

New Method

First, we use a model of Poisson neuron to produce spike trains. The properties
of the model random threshod determine the variability of the resulting spike
trains, and the mean voltage threshold determines the mean firing rate of the
model [4].

The upper panels of Fig. 26.2, each raster of spikes (10 per panel, 500 ms long)
illustrates the range of responses to repeating RAMs recorded under a variety of
stimulus conditions and mean firing rates. They represent different spike trains of
a Poisson neuron belonging to the same statistical ensemble, which satisfies the
assumption of stationary and ergodicity.

We find that spike trains exhibit a broad range of variability when the parameters
of stimulus change. A clear locking of the responses to the stimulus is usually ob-
served at high firing rate (mfr > 100 spike/s) and cutoff frequencies( fc > 40 Hz)
(Fig. 26.2, upper panels of b and c). Decreasing the cutoff frequency or the mean
firing rate tends to decrease the reproducibility of the spike occurrence times. We
can see from the figure that at low firing rates (mfr < 80 spike/s), P-receptor
afferent responses do not show clear trends of change in reproducibility with stim-
ulus parameters. (Fig. 26.2, upper panels of a and d). These preliminary observa-
tions suggest that the variability across the trials of Poisson neuron spike trains,
which is depended on stimulus parameters as well as on the mean firing rate of the
units.

Then we use two formal derivatives and integration of response function to char-
acterize the variability of spike trains. From the lower panels of Fig. 26.2, when
the spike trains are locking to the stimuli (b and c), the corresponding values of
characteristic variables are close too, but when the patterns of spike trains are widely
disorder(a and d), corresponding values also have large fluctuation.
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(a) (b)

(c) (d)

Fig. 26.2 The features of spike trains can be expressed by three characterizing variables. The
variability of spike trains to the stimulus can also be reflected

Conclusions

In conclusion, a method is presented to quantify spike trains with a group of vari-
ables based on characterizing exact temporal structures of ISI series. The work deal-
ing with spike trains can be transformed to treat a group of data defined at sequential
moments. This method is used to quantify the variability of spike trains reflected
different stimuli. It is seen that this method can characterize the variability more
conveniently through three variables of the response function due to their straight-
forward and intuitionistic quality. If these variables are regarded as the discrete time
history of neural response, this quantification leads to a potential way of relating
spike trains to dynamic stimuli for searching what aspects of stimulus are encoded
in the spike train.
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Chapter 27
Proposed Renormalization Group
Analysis of Nonlinear Brain
Dynamics at Criticality

Walter J. Freeman and Tian Yu Cao

Abstract Perception is characterized by the formation of spatiotemporal patterns
of neural activity that embody mental categories of the material events provided by
the senses. The patterns are constructed by modifications of the background activ-
ity, which is maintained and self-regulated at criticality, such that all frequencies
and wavelengths coexist in neural activity. Patterns form when a null spike in the
Rayleigh noise, which is generated by mutual excitation coincides with the sensory-
selected activity from a Hebbian nerve cell assembly from past learning that is mo-
bilized by the limbic system. The neural mechanisms of the phase transition that
mediates perception may be subject to analysis in terms of renormalization group
theory by systematic segmentation of the temporal spectra of various measures of
brain activity.

Keywords Action-perception · dissipative structure · EEG · non-equilibrium
thermodynamics · phase transition · renormalization · self-organized criticality

Introduction

The central process in perception is the mental construction of categories formed
inductively over repeated sensory samples taken in the material world. The subset of
equivalent microscopic sensory receptors that is activated by each sample is incom-
plete and never twice identical, even if the stimulus is invariant, so material events
are unknowable. The features of each material sample are transduced into generator
potentials in the receptors and conveyed by action potentials in serial neurons to
each primary sensory area in the cerebral cortex. The impact of the sensory-derived
action potentials results in representations of the stimuli by the microscopic firing of
cortical neurons. Thereafter in each sensory area two or three unimodal mesoscopic
activity patterns in frames [1, 2, 3, 4] emerge in rapid succession by interactions
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among cortical and subcortical neurons. These frames are followed by two or more
macroscopic frames that are synchronized across all sensory areas and the limbic
system [5]. The mesoscopic unimodal categorical patterns and subsequent macro-
scopic multimodal conceptual patterns are continually updated with each new sam-
ple, which is taken by limbic controls of sniffs, saccades and whisks, and which
is rendered knowable through the cognitive processes of abstraction and generaliza-
tion. The global patterns are candidates for the neural embodiments of percepts. The
aim of this report is to describe the physics of the construction process in perception
from the particular to the categorical, the microscopic to the mesoscopic, which
constitutes the transposition of matter into mind.

The process is conceived through analysis of observations and measurements of
the spatiotemporal patterns in cortical fields of electric (EEG) and magnetic (MEG)
potential governed by Maxwell’s equations. The fields manifest neural activity that
is measured in scales of time and space ranging from microscopic molecules of
neurotransmitters in chemical gradients through action potentials (spikes, pulses)
measured in �m and ms to mesoscopic local dendritic potentials (waves, ECoG,
LFP) and to macroscopic widespread field potentials observed with EEG, MEG and
fMRI and measured in s and cm. The formation of each pattern of gradients in
potential, spikes and waves requires use by brains of metabolic energy, so the self-
organized mesoscopic and macroscopic patterns qualify as the dissipative structures
of Prigogine and the order parameters of Haken.

The action-perception cycle of Merleau-Ponty [6] occurs across all space-time
scales of brain activity. An intentional act begins at the macroscopic brain level
with the intent to collect information from the world by thrusting the body into
the environment while predicting the microscopic sensory consequences of that ac-
tion at the chemical and atomic level and assimilating to them by synaptic changes
with learning at the mesoscopic neural level [7]. Brains make hypotheses (predic-
tions) by extrapolating from retrieved memories of knowledge that is stored in the
modified synaptic connections that mediate neural interactions. Strengthening of
connections in associative learning creates Hebbian nerve cell assemblies that am-
plify foreground inputs. Habituation to unreinforced input sharpens the assemblies
and attenuates background inputs. Each assembly sustains an attractor in cortical
dynamics that activates a learned category of perception. The collection of learned
inputs that might be expected consequent to an act of observation are predicted
by a landscape of attractors. The synaptic changes in the interdigitated cell assem-
blies support spatiotemporal pattern formation. The patterns are seen in segments
(frames) of EEG that sustain phase-locked oscillatory potentials [8, 9] having carrier
frequencies in the beta (12–30 Hz) and gamma (30–80 Hz) ranges. The patterns are
spatial amplitude modulations (AM) of the common waveform [1, 2]. The processes
of forming and accessing the memory stores are mediated by cortical background
activity [3]. The predictions of the consequences and the updating of memory stores
are by modification of the background activity. Hence background activity offers
a key to unlock the enigma of perception. We propose that renormalization group
theory [10, 11] can turn the key.
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Nonlinear Coupling Among Neurons Creates
Background Activity

Cortical neurons have high packing density (104/mm3) and high spatial diver-
gence/convergence (104 synapses/neuron), yet sparse connectivity (1% of neurons
within the radius of dendritic branches of most neurons (0.1 mm). Cortical neurons
are >80% excitatory and <20% inhibitory; >90% of cortical synapses are by ax-
ons originating intracortically; <10% originate subcortically from sensory neurons.
Therefore, cortical neural interactions are dominated by excitation among excitatory
neurons. Each neuron sustains regenerative activity through positive feedback by
multisynaptic serial transmission of spikes, so it interacts with its surround, not with
any countable neurons in networks. The feedback to a neuron from a single spike
by that neuron can be modeled as a modified 1-D diffusion process [12]. Spike
formation is limited by refractory periods; each spike triggers a recovery process
during which the neuron cannot fire or can only do so with diminished probabil-
ity. Yet connection densities are so great that neurons maintain self-sustained in-
teractions. The spike trains of single neurons from mutual excitation yield interval
histograms that start at zero probability, rise to a peak, and decay exponentially
to a non-zero steady-state baseline, so they can be described as modified Poisson
processes manifesting random walks. Summation over a local interactive excitatory
population (designated KIe [12]) gives a pulse density function of axonal output and
a wave density function of dendritic output, each with a Gaussian amplitude density
distribution and a 1/ f � power spectral density (PSD) in log-log coordinates with
exponent � ranging between 2 and 3 (brown vs. black noise [13], slopes−2 and−3)
depending on the sensitivities of synapses at dendrites (relating mainly to Ca++) and
refractory periods (relating mainly to K+) at the trigger zones of axons [12], which
relate also to the degree of behavioral arousal, as shown by the pulse-wave relation
(Fig. 27.1b).

Owing to these properties the background activity of a KIe population can be
described as that of a lattice with such fine grain that it can be treated as a continuum,
and its dynamics can be modeled with derivatives given by ordinary differential
equations (ODE) [12]. The densities are locally limited by the refractory periods
instead of by their thresholds or by inhibitory interneurons. They are globally con-
trolled by neuromodulatory chemicals that are distributed by subcortical nuclei to
all areas of cortex in the maintenance of appropriate levels of behavioral arousal
and sleep. The continuum of the neuropil is bounded between scales of neurons
(1 ms for spike duration, 1 �m for axon diameter) and scales of brains (cortical cir-
cumference ∼0.5 m, lifespan ∼70 years, 1013.7 neurons and 1017.7 synapses in each
hemisphere). The coupling across scales between ions and spikes is calculated with
the Hodgkin-Huxley equations. That between spikes and waves is calculated from
the normalized probability of spike firing conditional on the amplitude, time delay
and relative frequency of wave amplitude [12]. Sections through the 3-D table of
normalized conditional pulse probability density in time and amplitude yield pulse
probability waves in designated frequency ranges in time and the sigmoid curve
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Fig. 27.1 Calculation of the normalized pulse probability of spikes on EEG amplitude gives the
sigmoid curve and its derivative (a numerical, b analytic) that represents nonlinear gain under light
anesthesia (“rest”) and awake (“arousal”). From [3]

(Fig. 27.1) showing the nonlinear population dependence of pulse density on wave
density. The lower asymptote is imposed by threshold. The upper asymptote Qm

is imposed by refractory periods. The asymmetry reflects the exponential increase
in firing probability of single neurons as the wave amplitude approaches threshold
from below, as modeled by the Hodgkin-Huxley equations. Other couplings across
EEG frequencies are explored with the high temporal resolution enabled by the
Hilbert transform [8, 14].

The derivative of the sigmoid curve with respect to wave density gives the non-
linear part of the forward gain of the two limbs of the feedback loop [12]. The two
values of unity gain designate two operating points (B). Unity at high wave den-
sity designates the stable operating point of steady-state wave and pulse densities
of KIe populations that provide the excitatory bias required by mixed populations
(designated KIIei) of excitatory (KIe) and inhibitory (KIi) neuron populations for
oscillations in negative feedback. KIIei populations generate the oscillatory patterns
observed in the EEG; they have an operating point of unity gain at the lower value
of wave density that designates a conditionally stable operating point of mean pulse
density Po and normalized mean wave density Vo = 0.

Most neurons spend ∼99.9% of their lifetimes in steady state just below their
thresholds, firing ∼1/s for ∼1 ms and mostly randomly with respect to other neu-
rons. This feature and the local statistical continuum enable piece-wise linear ap-
proximation of population dynamics near the two operating points by means of
ODE, in which the nonlinear gain of each local population is replaced by a coef-
ficient given by the slope (Fig. 27.1b) of the tangent to the sigmoid curve at the
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operating point. The KIe population proved [12] to be bistable with a point attractor
at zero activity (as in deep anesthesia) and a non-zero point attractor that determines
a pole at the origin of the complex plane (zero eigenvalue) for every level of arousal
and background activity given by Qm.

The KIIei population described by piece-wise linearization is also bistable. KI-
Iei maintains a conditionally stable limit cycle attractor at a frequency near 40 Hz,
which is represented by a complex conjugate pole pair on the imaginary j-� axis of
the complex plane near 250 rad/s, and which is governed by the KIe point attractor
represented by the real-valued pole at the origin [3, 12]. With no intentional en-
gagement into the environment the KIe population goes to a rest state with a point
attractor that gives output with normally distributed amplitude and near 1/ f 2 PSD
in time (PSDT) and distance (PSDX) [2]. The broad spectra document simultane-
ous genesis of activity densities at all frequencies and wavelengths [3, 10, 11, 15].
Engagement with the environment tends to induce repetitive spontaneous symmetry
breaking [16] with transition between a receiving phase and a transitory transmitting
phase [2, 3, 12]. Arousal from rest is accompanied by emergence of local peaks in
the PSDT of the EEG peaks in the experimentally observed theta (3–7 Hz), alpha
(8–12 Hz), beta and gamma ranges; the PSDX loses its 1/ f � linear relation [1].
These changes reveal the emergence of both local and global spatiotemporal struc-
tures that emerge from the background noise that is generated mutual excitation.

A Far-From-Equilibrium Thermodynamic Model of Cortex

The neural systems that support perception may be regarded as essentially scale-free
in functioning simultaneously at all levels, ranging from the atomic and molecular
events in sensory receptors, trigger zones and central synapses through the micro-
scopic exchanges based in spikes and synaptic potentials in local neural networks,
mesoscopic local field potentials, and multiple spike densities to macroscopic brain
patterns that are visualized with EEG, MEG and fMRI relating to intentional behav-
iors. The correlation distances vary widely and may often include much or perhaps
all of each cerebral hemisphere for both EEG [17, 18] and MEG [19]. The very
broad synchrony over both local and immense correlation distances poses the need
for new theory [16, 18] and provides strong justification for proposing the applica-
bility of renormalization group theory. The scales are imposed by observers owing
to the necessity for measurement at each level of function. Self-similarity in spa-
tiotemporal patterns is indicated by the power-law distributions found in PSDT and
PSDX, and also in measures of the durations, diameters, and recurrence intervals of
phase patterns [2, 3, 8, 9]. Hence transitions of cortical dynamics between receiving
and transmitting phases in the perceptual process take place simultaneously at all
hierarchical levels in forms that must be interrelated between levels [10, 11].

A useful framework for assembling the diverse data is provided by treating
the brain as a thermodynamic system that is operating far from equilibrium. A
convenient starting point is to consider the static phase diagram of water with three
phase boundaries, one of which terminates at a critical point (Fig. 27.2a).
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Fig. 27.2 (a) Static thermodynamic phase diagram adapted from [20]. (b) Dynamic non-
equilibrium states are represented by fixing the origin of the plot at the critical point and intro-
ducing two new dynamic state variables: the rate of increase in order parameter and the mean rate
of energy dissipation. Both quantities are calculated from the EEG recorded from 64 electrodes in
a high-density array on the surface of sensory cortex. From [3]

This phase diagram holds only for closed systems at equilibrium. Brains are
open systems with constant throughput of energy and matter. Chemical energy is
delivered by blood flow in the form of glucose, which is converted to high-energy
phosphate bonds and stored in glycogen and ATP, and mainly in the maintenance
of ionic gradients, which are the most immediate source of potential energy for
conversion to kinetic energy in the form of ionic fluxes that yield the observable
electric and magnetic fields of Faraday and Maxwell. The mobilization of energy
from ionic gradients into electric current is instantaneous compared with the rate of
replacement of the gradients by metabolism [21]; the heat from resistance to current
is likewise instantly taken up by the watery medium, so the energy transformations
are not rate-limiting.

The static portrait in energy vs. entropy is replaced (Fig. 27.2b) by a dynamic por-
trait with rate of increase in order (negentropy) as a function of rate of dissipation of
free energy (power). Derivation of the vectorial order parameter and its scalar index
denoted pragmatic information, He(t), are described elsewhere [8, 9]. The heat that
brains produce by burning glucose is dissipated in blood flow. Brain temperature,
pressure, mass and volume are kept within narrow limits, so they are not useful
variables. The origin in Fig. 27.2b specifies a critical point at zero (“equilibrium”),
when under deep anesthesia the brain waves are flat with no spikes. This state is
symmetric with no dissipation by electric current, so it may serve as a vacuum state
[16]. Recovery through rest into arousal brings increasing order that appears in a
succession of symmetry breakings [16], always based in self-regulated background
activity that is supported by metabolism at steady state. The process of awakening
and arousal is symbolized by the shift of the critical point upwardly along a diagonal
line. The greater is the shift, the greater is the power in the background activity, as
shown by the increase in pulse and wave densities from rest to arousal in Fig. 27.1b
for the KIe set. Pari passu the rate of increase in order increases.

Testing by impulse input shows that the KI and KIIei sets are self-stabilized
at criticality [3, 12]. Analysis of the impulse responses in the near-linear domain
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around the critical point is done by measuring the impulse responses with linear
basis functions and replacing the nonlinear gain curve (Fig. 27.1) with coefficients
from the slopes of tangents fitted to the gain curve at the prevailing operating point.
A phase boundary appears in the linear approximation that corresponds to the imag-
inary j�-axis of the complex plane in the coordinates of frequency in rad/s and
decay rate in 1/s. To the left of the axis is the receiving phase and to the right is
the transmitting phase. In the thermodynamic graph the phase boundary appears in
the coordinates of negentropy and power. The operating point of the KIIei set is
revealed by impulse input to cortex that perturbs the amplitude of cortical dynamics
outside its self-regulated range. That operating point is seen as a non-zero point
attractor that appears as a pair of complex conjugate poles that are located to the
left of the j�-axis in the complex plane but to the right of the phase boundary in
Fig. 27.3a. Sensory input that also activates the KIe set drives the operating point
further in the direction of arousal (Mode 1e) with increased power and increased
order. Centrifugal input that bypasses the KIe set shifts the operating point in the
direction of increased power and decreased order (Mode 1i). Both types of input
move the operating point away from the phase boundary in the direction of enhanced
stability and de-amplification.

When test impulse amplitude is fixed to give an impulse response within the
self-regulated range of output, repeated samples show “spontaneous variation”
along trajectories that converge to a limit cycle attractor [12] with increasing re-
sponse amplitude (Fig. 27.3a). This finding implies that cortex in the receiving

Fig. 27.3 (a) The critical point is translated by arousal toward increased dissipation and order
(right upward). The operating point is displaced toward increased dissipation and decreased order
by input from other parts of the brain (Mode 1i). The conjoint increase in order and dissipation is
replicated by afferent electrical stimulation (Mode 1e). Spontaneous variation leading to symmetry
breaking (Mode 2) is attributed in part to the noise fluctuations shown in Fig. 27.4. The gray area
shows that part of the complex plane that was used for linear analysis [12]. (b) SOC: self-organized
criticality. Early in a phase transition the power and order both decrease. Next order increases;
thereafter power increases; after peaking both decrease to the receiving phase, so that the cycle
rotates clockwise. The ellipse is a projection into the plane of a helix in time, with 2 to 6 repetitions
in an action-perception cycle. From [3]
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phase “spontaneously” tends toward the transition boundary (Mode 2), at which
the amplitude in response to input undergoes marked amplification. The operating
point is translated in the direction of decreased order and decreased dissipation by
spontaneous fluctuations in background power and toward the occult limit cycle
attractor near 250 rad/s in piece-wise linear approximations using the root locus
method [3, 12].

Source of Spontaneous Symmetry Breaking in Rayleigh Noise

The source of the “spontaneous variation” is revealed by the analytic signal from the
Hilbert transform. Analytic amplitude in the receiving phase intermittently plunges
to near zero (<10−4 from peak values) at irregular intervals. The analytic phase is
poorly defined, so the spatial standard deviation of phase at multiple sites increases
markedly, as shown in Fig. 27.4a of [9] and simulated in Fig. 7, B of [2]. These
null spikes resemble vortices: near-zero amplitude and undefined phase; the angular
velocity is imposed by the band pass filtering in the beta or gamma range. The
null spikes are frequency-specific to pass bands determined by inhibitory feedback
delays in local vs. long loops (gamma vs. beta frequency ranges). Return to high
amplitude defines the onset of a frame of variable duration, typically longer for
beta frames than for gamma frames [1]. The analytic frequency (step-wise temporal
phase difference in rad/digitizing step in s) stabilizes to a nearly constant value in
each frame; the center value differs on average in successive frames by±60 rad/s or
more [9]. The spatial pattern of phase values has the form of multiple overlapping
radially symmetric phase gradients (“phase cones”), so that the background activity
in each cortical area resembles a pan of boiling water [2]. Histograms of the dura-
tions and diameters of the phase cones have power-law distributions within limits

Fig. 27.4 (a) Mean analytic amplitude, A(t), and the spatial SDX (t) are inversely correlated. The
inhibitory feedback acts as a band pass filter on the KIe output, which results in episodic decreases
in noise power with amplitude histograms that closely resemble that of Rayleigh noise. The wide
range of feedback frequencies is supported by the power-law distribution of feedback distances and
delays. (b) Simulation is by band pass filtered 1/ f 2 brown noise that can be generated by summing
multiple (e.g., 10,000) time series of random numbers [13]. From [2]
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of observability. These overlapping fluctuations at multiple temporal and spatial
frequencies manifest the maintenance of cortex in a state of self-regulated criticality.

Phase transitions occurred at null spikes, as shown by the initiation of each tran-
sition not with the increase in power expected on the impact of a volley of spikes
from a conditioned stimulus but with decrease in power preceding the emergence
of a categorizable AM pattern that in turn precedes increased power on termination
of the null spike. The categorized frames had durations of three to five cycles of
the carrier frequency; their incidence in histograms of frame duration exceeded the
expected numbers in the resting power-law distribution, and their carrier frequen-
cies appeared as peaks above the resting power-law PSD. These features showed
that the cortical activity during behaviorally correlated EEG frames created dissi-
pative structures that emerged from the background noise. The feature vectors by
which AM patterns were categorized came equally from all electrodes of the array
measuring each AM pattern; contributions were equal from all electrodes whether
their signal amplitudes were high or low. Then the description of each node in the
virtual lattice required subsidiary local functions governing learning processes by
which the connections of each node with near and remote neighbors were formed,
maintained, and updated. The fine details of the innumerable cortical synapses that
effected associative learning and related processes of habituation and normalization
were inaccessible. They were incorporated into matrices of nonlinear ODE as local
averages implemented by modifiable connection matrices serving to coarse-grain
the statistical continuum at the limit of observability. The matrix coefficients played
the same role in modeling as the gain coefficients replacing the nonlinear sigmoid
curve (Fig. 27.1) in the ODE in the procedure for piece-wise linearization: con-
structing and embedding subsidiary describing functions in matrices of ODE. These
techniques employing local averages enabled and facilitated otherwise intractable
analyses owing to the immense number of synapses and the sparseness of those
modified by the different types of learning.

The cortical events postulated in an action-perception are summarized in
Fig. 27.3b. In the receiving phase (A) the rest point (lower right 	 is continually
deflected in the direction of diminished dissipation and order by null spikes that
simultaneously raise the sensitivity of cortex and the signal-to-noise ratio (Mode
2) [12]. Background input deflects the point away from the phase boundary with
increased dissipation and either increased order (receptor input, Mode 1e) or de-
creased order (centrifugal input, Mode 1i). A phase transition occurs during a null
spike only if the receptor input concomitantly contains action potentials that signal
a learned stimulus for long enough to ignite a Hebbian nerve cell assembly, which
then guides the cortical trajectory into a basin of attraction for the category of the
stimulus. When the background activity returns to high power, it bears the AM pat-
tern that is imposed by the attractor to which the cortex converges. In the event that
a novel stimulus has sufficient saliency, it ignites an “I don’t know” attractor that
elicits a non-specific orienting response by which an aroused animal explores the
unknown. An essential step for successful categorization is to normalize each frame
by dividing all 64 values by the frame standard deviation [1]. This normalization
removes the 1/ f 2 dependence of global amplitude on mean carrier frequency, giving
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additional documentation of the self-similarity of AM patterns across the temporal
spectrum and the applicability of renormalization group analysis.

The high signal-to-noise ratio in the null spike can explain how a faint whisper,
odor or glimpse can capture the cortical readout in literally the blink of an eye.
After phase re-setting by a discontinuity and then resynchronization with AM pat-
tern selection, the power and order rise together to a maximum, at which the entire
primary sensory cortex broadcasts a stable pattern for 3–5 cycles of the relatively
fixed carrier frequency and then returns to the receiving phase with no temporal
discontinuity in phase. The cycle repeats two or more times in a helix between
the onsets of stimulus and response [3], with expanding time and space scales that
include multiple areas of the brain, thereby implementing an action-perception cycle
that is completed by assimilation.

Source of Spontaneous Symmetry Breaking in Rayleigh Noise

The property of the cortical dynamics that suggests the suitability of renormalization
group analysis is the unity of events across scales. Yet wave packets emergent by
phase transition are nearly stationary for∼60–160 ms; the transitions by which they
form are shorter by two orders of magnitude; the processes of metabolic energy
replenishment are longer by two orders of magnitude, because concentration gradi-
ents of ions across membranes drive the dendritic and axonal currents. Hence the
coupling of neural events to metabolism and heat dissipation, while essential, is
remote, as evidenced by the disparity in scales between EEG/MEG measurements
in ms and fMRI measurements in s.

It is the coupling of activities at frequencies across spectra that is most in need of
exploration. Given the typical brown noise “1/ f 2” spectrum [13] in awake resting
subjects, a convenient way to segment the spectra for cross-spectral study is to divide
them in multiples of 2 [11] (Table 27.1). Supposing that the sample interval is 2 ms
for a digitizing rate of 500/s, the Nyquist frequency is 250 Hz. A segmentation of
the spectrum that approximates the clinical partitioning in pass bands is given in
multiples of the Nyquist frequency.

The opportunity for renormalization group theory opens by analysis of the cou-
pling between bands. The coupling between action potentials and epsilon activity

Table 27.1 Partitioning of the EEG power spectral density

Name Empirical (Hz) Geometric (Hz) Multiples of
Nyquist

Epsilon 80–250 100–200 1/2.5–1/1.25
High gamma 50–80 50–100 1/5.0–1/2.5
Low gamma 30–50 25–50 1/10–1/5.0
Beta 12–30 12.5–25 1/20–1/10
Alpha 7–12 6.25–12.5 1/40–1/20
Theta 3–7 3.125–6.25 1/80–1/40
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is documented in the chatter of repetitive spike trains in mutual excitation [12].
The coupling between pulse densities and beta/gamma oscillations is documented
by calculating pulse probability conditional on wave amplitude [12]. Gamma-high-
theta and beta-low-theta coupling have been shown in field potentials from cats
and rabbits [1]; beta-theta and beta-alpha coupling have been shown in scalp EEG
[14, 17]. These empirical relationships call for theory. Other properties in need of
explanation are repeated resynchronization over relatively immense correlation dis-
tances; de-amplification of noise-driven activity outside the range of self-regulation;
amplification of input in spontaneous null spikes with approach to a limit cycle
attractor posing a singularity; and the neural mechanisms by which Hebbian and
non-Hebbian modifications of synaptic connectivity support the construction of at-
tractor landscapes. Of special significance here is the Kondo problem, in which
very sparse iron impurities at the atomic level in copper modify the macroscopic
properties of the metal [10]. While not of great importance in itself, the problem
has spawned numerous studies owing to its tractability. The analogy to the effects
on cortical dynamics of modified synapses seen as “impurities” enhances the like-
lihood that renormalization group theory will be useful, if it can be used to model
the multiple “impurities” endowed by Hebbian nerve cell assemblies that support
the attractor landscapes from which diverse AM patterns or “unitarily inequiva-
lent ground states” [16] emerge through the retrieval of memories from knowledge
gained through experience.
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Chapter 28
Regulating Cortical Neurodynamics
at Different Scales

Hans Liljenström

Abstract In this paper, I review some mechanisms by which cortical neurody-
namics may be regulated, at different organisational scales. We use computational
methods to describe the relation between structure, dynamics and function of corti-
cal structures, and focus here on the regulatory mechanisms at subcellular (micro-
scopic), cellular (mesoscopic) and network (macroscopic) levels of neural systems.
The aim is to gain a better understanding of the neural mechanisms responsible for
changes in the neurodynamics, which include phase shifts in the cellular spiking
patterns, as well as in the EEG dynamics.

Keywords Neurodynamics · neuromodulation · ion channel · network
connectivity · EEG · computational model

Introduction

It should be important for the nervous system of any organism to rapidly be able to
change its dynamics, in order to cope with rapid changes in the environment. Such
changes at time scales of fraction of seconds to minutes could be imagined take
place at different levels of neural organization: subcellular (microscopic), cellular
(mesoscopic), network (macroscopic), and systems (super macroscopic) levels. It
could involve the relative composition of ion channels in the membranes of neurons,
the synaptic efficacy and the neuronal excitability, spontaneous activity of certain
neurons, and possibly ephaptic effects due to electromagnetic field effects. Most of
these effects would be due to some neuromodulators, or some collective network
or system effects (top-down), as a reaction to some external stimuli or change of
internal state of the animal.

The functional significance of this behavior is, however, yet to be ascertained.
Supposedly, the dynamics of certain cortical structures, and perhaps of the brain as a
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whole, reflect an evolutionary pressure to make the neural information processing as
efficient as possible [1, 2]. The oscillations could amplify weak signals and sustain
an input pattern for more accurate information processing, and the chaotic behavior
could increase the sensitivity in initial, exploratory states.

Neurodynamical Regulation

The complex neurodynamics of cortical systems can be regulated by various mech-
anisms acting at different levels, influencing neuronal excitability, spiking pattern,
or synaptic transmission. These regulatory mechanisms result in a balance between
stability and flexibility ensuring an efficient information processing [1]. We use a
computational approach as a complement to experimental methods in understand-
ing the complexity of biological systems and processes. For the studies presented
here, we have used different kinds of models, both of the three-layered paleocortex
(olfactory cortex and hippocampus), and neocortex, with either population type or
spiking network units.

Ion Channel Composition

The density of voltage-gated ion channels varies between different neurons and
varies dynamically in a single neuron. These variations can affect the single cell
activity, and possibly also the network neurodynamics. Neurons can supposedly al-
ter their active channel density configurations in response to some cue, resulting in
a switch between oscillatory regions (see [2], and references therein), but a change
could also be due to some externally applied drug. Selective blocking or activation
of ion channels, an important principle in the action of certain anaesthetics and
anti-epileptics, will have different effects on the oscillatory activity, depending on
the relative selectivity and the intrinsic activity of the active network. Likewise, up-
regulation of Na and K channels will induce different activity patterns, depending
on their relative densities. Different combinations of sodium and potassium perme-
ability constants, PNa and PK , cause different oscillatory behaviours at constant
stimulation. There are also regions in the P∗Na/P∗K plane where there are no os-
cillations at all.

In our computational study [3], we have focused on network effects of variations
in the density of certain ion channels in single cells, and investigated the relation
between ion channel density (at the single neuron level) and global connectivity
(at the network level) in a network of Frankenhaueser-Huxley neurons. We show
how parameters at both of these levels can have similar effects on the global dy-
namics. More specifically, we have studied how the dynamics of a simple exci-
tatory/inhibitory neural network model depend on the channel densities in single
neurons and on the synaptic strengths, and we demonstrate the importance of neural
properties in a network consisting of different neuron types.

Our simulations have shown that the network dynamics can change specifically
in response to variations in the density of ion channels and/or network connectivity.
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We have thus demonstrated that similar qualitative changes in the global dynamics
can be obtained by mechanisms at two different levels in the system; either by regu-
lating the K channels in a subsystem of neurons, or by altering the global connection
strength.

Neuromodulatory Effects on Excitability
and Synaptic Transmission

Neuromodulators, such as acetylcholine, influence the neurodynamics of cortical
structures. These neuromodulatory effects may play an important role in setting the
functional properties of cortical regions. In the piriform (olfactory) cortex, appli-
cation of carbachol enhances the persistence of gamma-frequency oscillations in
response to stimulation of the lateral olfactory tract and gradually induces a state
of high amplitude theta rhythm oscillations [4]. Also in the hippocampus, there is
strong evidence for cholinergic induction of theta rhythm oscillations. Understand-
ing the role of acetylcholine in cortical oscillations requires that these influences be
linked to specific neuromodulatory effects of acetylcholine at the cellular level.

We have used our computational model of paleocortical oscillatory dynamics
for examining how the neuromodulatory effects of acetylcholine, by suppressing
neuronal adaptation and synaptic transmission, influence cortical oscillatory prop-
erties [5]. We have shown how implementation of cholinergic modulation within the
model can simulate effectively the effects of cholinergic modulation on the response
to shock stimulation of the lateral olfactory tract (LOT), the development of high
amplitude theta rhythm oscillations in vivo, and the development of theta rhythms
in cortical brain-slice preparations. This work suggests that induction of theta os-
cillatory dynamics in some preparations could depend upon the time constant of
adaptation rather than the time constants of inhibition.

Spontaneous Neuronal Activity (Noise)

Noise appears at the subcellular (microscopic) and cellular (mesoscopic) levels, but
it is uncertain to what degree this noise is affecting the network (macroscopic) level.
Irregular (high-dimensional) chaotic-like behavior could be generated by the inter-
play of neural excitatory and inhibitory activity at the network level. This activity
could also contain noise, but in contrast to a chaotic dynamics, which can be con-
trolled and shifted into oscillatory states, noise is not equally controllable and cannot
shift into completely different dynamics. However, a varied noise intensity would
be comparable to a change in base line activity.

Using our cortical network models, we show that fluctuations can result in state
transitions [6, 7]. An increased noise level in all network units can result in a transi-
tion from a stationary to an oscillatory state, or vice versa, or alternatively, in a shift
between two oscillatory states. Even if only a few network units are noisy (have
a high intrinsic random activity) and the rest are quiescent, coherent oscillatory
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activity can be induced in the whole network under certain circumstances. The onset
of global oscillatory activity depends on, for example, connectivity, the noise level,
the number and density of noisy units, and the duration of the noise activity. The
location and spatial distribution of these units in the network is also important for
the onset of oscillations. If the noisy units are separated beyond a certain distance, or
if the noise level is too low, no oscillations occur. Likewise, no transition to global
oscillations occurs if the noise “frequency” is too low. This is a clear example of
how microscopic events can be amplified and give rise to macroscopic and coherent
oscillations in the entire network.

Attention Modulated Neuronal Synchronization

Recently, we have developed a neural network model of the primary visual cortex,
to investigate cellular and network mechanisms underlying some recent analytical
results from visual attention experimental data [8]. We use our model to simulate
findings that attention to a stimulus causes increased gamma-frequency synchro-
nization in the superficial layers, and increased beta-frequency synchronization in
the deep layers. Our computer simulations suggest that different attention modu-
lation effects on the oscillations at superficial and deep layers are related to the
different functional roles of the neurons, as well as to their connection circuitry
in different layers for visual signal discrimination, selection, amplification, and
integration.

Conclusions

With computational models of cortical neural networks we have shown that changes
at cellular or synaptic levels can, under certain circumstances, have effects at the
network level. For example, a change in neuronal excitability or spiking pattern, as
well as in the synaptic efficacy, can result in the overall network dynamics, causing
a shift between various oscillatory or chaotic modes. The mechanisms discussed
above result in a more efficient information processing, primarily expressed as a
faster and/or more accurate response to an external input pattern. We believe these
results shed new light on the interaction between processes at different neuronal
scales, linking microscopic molecular events to macroscopic cortical dynamics and
cognitive functions and consciousness levels.
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2. Århem, P., Liljenström, H.: Fluctuations in Neural Systems: From Subcellular to Network Lev-
els. In: Moss, F., Gielen, S. (eds.): Handbook of Biological Physics: Neuro-Informatics and
Neural Modelling. North-Holland, Amsterdam (2001) 83–129.
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Chapter 29
A Thermodynamic Model
of the Action-Perception
Cycle in Brain Dynamics

Walter J. Freeman

Abstract Computational models of brain dynamics fall short of performance in
speed and robustness of pattern recognition, especially in detecting minute but
highly significant pattern fragments. A novel model uses the properties of ther-
modynamic systems operating far from equilibrium. Such systems construct order
by dissipating energy. Conditioned stimuli in reinforcement learning establish cat-
egories of patterns in cortical connectivity that create phase domains. Retrieval of
a selected category of stored knowledge is by phase transition that is induced by a
conditioned stimulus. The key property is cortical background noise, which is sim-
ulated by band pass filtering brown noise (1/ f 2) in the beta (12–30 Hz) or gamma
(30–80 Hz) ranges. The noise displays aperiodic null spikes at which analytic am-
plitude approaches zero. These events resemble vortices. Phase transitions in recall
occur at null spikes owing to high signal/noise ratio in the presence of even very
weak activity evoked by conditioned stimuli.

Keywords Action-perception cycle · dissipative structures · ECoG
electrocorticogram · non-equilibrium thermodynamics · phase transition ·
reinforcement learning · self-organized criticality

Introduction

Cognitive neurodynamics describes the process by which brains direct the body
into the world and learn by assimilation from the sensory consequences of their
actions. Repetition of the process constitutes the action-perception cycle by which
knowledge is accumulated in increments, each new step being provided by a frame
of input in each of the sensory cortices. The expanding knowledge base is expressed
in attractor landscapes in each of the cortices. The memory store is based in a rich
hierarchy of landscapes of increasingly abstract generalizations. At the base in the
first step of the acquisition of new knowledge is the landscape of attractors for the
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primary categories of sensory stimuli in each modality, for example, the repertoire
of odorant substances that an animal can seek, identify, and respond to at any one
stage of its experience. Each attractor is based in a nerve cell assembly of cortical
neurons that have been pair-wise co-activated in prior Hebbian learning. Its basin of
attraction is determined by the total subset of receptors that has been accessed during
learning. Convergence in the basin to the attractor gives the process of abstraction
and generalization to the category of the stimulus. This categorization process holds
in all sensory modalities. The convergence and holding of a cortical state by an
attractor provides a frame that typically includes the entire primary sensory cortex
and lasts about a tenth of a second. The action-perception cycle includes 3–5 frames
plus transition times between frames, giving repetition rates in the theta range
(3–7 Hz).

The aim of cognitive neurodynamics is to model the cycle. There is no question
that brains are open thermodynamic systems operating far from equilibrium. Brains
burn glucose to store glycogen and high-energy adenosinetriphosphate (ATP); they
dissipate free energy in driving ionic currents that create the electric and magnetic
fields and mediate the action-perception cycle. Brain imaging techniques such as
fMRI are indirect measures of metabolic dissipation of free energy, relying on sec-
ondary increases in blood flow and oxygen depletion. The dendrites dissipate 95%
of the metabolic energy in summed excitatory and inhibitory ionic currents; the
axons use only 5% in action potentials that carry the summed output of dendrites
by analog pulse frequency modulation. The aim of this report is to show how den-
dritic potentials recorded as electrocorticograms (ECoG) or electroencephalsograms
(EEG) can be used to describe brains as thermodynamic engines that produce mind
and behavior.

Thermodynamic Diagram of States from Dendritic Potentials

Examples of cognitive brain dynamics are drawn from the olfactory system, which
is the simplest and phylogenetically the precursor of the other sensory systems.
Asleep, at rest and engaged with the environment the work of dendrites is revealed
by robust background activity with Gaussian amplitude distributions and canonical
1/ f 2 ‘brown noise’ power spectra. Amplitude increases with arousal (Fig. 29.1a).
Oscillations occur in the gamma range (30–80 Hz) in bursts triggered by inhalations
at frame rates in the theta range (3–7 Hz). In the presence of learned odorant sub-
stances the gamma waves synchronize over the olfactory bulb and carry one of a
set of amplitude modulation (AM) patterns. The patterns are recorded with 8 × 8
electrode arrays and plotted as points in 64-space. Projection into 2-space reveals
clusters that reflect the underlying attractor landscape (Fig. 29.1b).

The bulb is bistable, having a receiving phase during which the landscape is
latent, and a transmitting phase during which the landscape is brought on line by
the sensory receptor input during inhalation. Selection by sensory input of one of
the basins of attraction precipitates spontaneous symmetry breaking [3] in the form
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Fig. 29.1 (a). Cat olfactory cortical ECoG [1]. (b) Olfactory attractor landscape. From [2]

of a phase transition from the receiving phase to the transmitting phase. During
exhalation another phase transition returns the bulb to the receiving phase. These
properties are schematized by adapting the phase diagram for water (Fig. 29.2a),
which is the static relation between energy and entropy at equilibrium, to the re-
lation (B) between the rate of increase in order (negentropy) and power (rate of
energy dissipation). The order parameter is indexed mainly by the inverse of the
Euclidean distance between successive digitizing steps in 64-space (He(t)); a small
step indicates a high degree of order. Power is estimated from mean square ana-
lytic amplitude, A2(t), that is derived applying the Hilbert transform to the ECoG to
calculate the analytic signal [3, 4].

The critical point that governs the cortical system is identified with a non-zero
point attractor, which arises in the course of mutual excitation among neurons
in very large numbers. The interaction is modeled by two 2nd order ordinary

Fig. 29.2 (a) Static thermodynamic phase diagram [4]. (b) Adaptation to pseudo-equilibrium by
translation of the origin to the critical point and introducing two dynamic state variables: the rate
of increase in order parameter and the mean rate of dissipation of energy, both calculated from the
ECoG recorded from 64 electrodes in a high-density array on the surface of sensory cortex. He(t)
is defined in [5, 6] From [7]
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differential equations that form a positive feedback loop between transmitting and
receiving neuron pools that are continuously renewed [1].

The refractory periods of the neurons limit the forward gains, providing a soft
boundary condition. Perturbation in the near-linear range gives impulse responses
that decay to the steady state with a rate constant proportional to the evoked
amplitude [1]. Extrapolation to threshold gives zero decay rate, which implies self-
stabilization at unity gain. This gives the steady state excitatory bias that is necessary
for oscillation by negative feedback, which increases with arousal under brain stem
neurohumoral control, always self-stabilized. The point attractor appears as a closed
loop pole at the origin of the complex plane [1]. In Fig. 29.2b this poleΔ is matched
with the critical point, and the imaginary axis in the upper half of the complex
plane is matched with the phase boundary between the receiving and transmitting
phases [7].

The inhibitory neurons in cortex are required not for stabilization but for the
oscillations in the beta (12–30 Hz) and gamma (30–80 Hz) ranges through a wide
range of feedback delays, giving broad spectral bands (Fig. 29.1) that can be mod-
eled with ODE in multiple negative feedback loops [1]. Superposition holds in
small-signal ranges, so that the pass bands can be simulated with transfer functions
for linear filters. When ECoG is filtered in the beta or gamma range, the analytic
signal from the multichannel ECoG both at rest and at work give fluctuating peaks
of mean amplitude, A(t), separated by sharp null spikes at which A(t) approaches
zero (Fig. 29.3a) [8].

At null spikes the phase, f (t), is undefined, so that the spatial standard deviation
function of time, SDX (t), across channels increases in a sharp spike, contrasting with
the fixed SDX (t) and mean f (t) in the intervening peaks of A(t). The simulation
is undertaken by summing over random numbers [9] to get 1/ f 2 brown noise and
filtering the sum with a band pass filter in the beta or gamma range [10]. This simple

Fig. 29.3 (a). Mean analytic amplitude, A(t), and the spatial SDX (t) are inversely correlated. The
inhibitory feedback acts as a band pass filter on the KIe output, which results in episodic decreases
in noise power with amplitude histograms that closely resemble that of Rayleigh noise. The wide
range of feedback frequencies is supported by the power-law distribution of feedback distances
and delays. (b). Simulation is by band pass filtered 1/ f 2 brown noise that can be generated using
multiple time series of random numbers [9]. From [11]
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operator reproduces the inverse relation between A(t) and SDX (t) (Fig. 29.3b) that
is revealed in the ECoG and EEG [7].

Conclusion

The hypothesis is proposed that the first phase transition in a primary sensory cortex
that initiates the formation of a unimodal wave packet and the second phase tran-
sition that initiates the formation of a multimodal wave packet as the basis for per-
ception are contingent on the coincidence of two endogenous events. One is the
occurrence of a null spike that persists for only 1–3 ms. The other is the arrival of
a surge of input to the sensory cortices, the onset of which is under limbic control,
and the duration of which may be some tens of ms, such that it may coincide with
multiple null spikes, each of which may precipitate the formation of a wave packet.
In this view the phase transition constitutes an event of spontaneous symmetry
breaking [3], in the sense that order in the form of an AM pattern emerges from
unpatterned background activity [2]. It is conceived that the Hebbian cell assemblies
constituting the attractor landscapes in the sensory cortices, which are maintained
under limbic control by corollary discharges, are made accessible by the act of sniff-
ing, whisking, or glancing that destabilizes the cortices (Fig. 29.1). The null spike
reduces the background noise and amplifies the input signal [2, 8], which increases
the signal-to-noise ratio as in the eye of a hurricane and enables the ignition of an
assembly by the action potentials deriving from an expected stimulus. The energy
for the transmission of a wave packet is provided by the background activity now
modulated by the cell assembly, which is determined by synaptic modifications that
embody prior learning and therefore constitute the memory of that category of input.
Hence the AM pattern is not a representation of the stimulus; it is an expression of
the knowledge about the stimulus in the brain of the observer.
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Chapter 30
Dynamic Field Theory as the Interface
Between Neuronal Dynamcis
and Embodied Cognition

Gregor Schöner

Researchers in computational neuroscience aiming to account for of neuronal
function based on detailed biophysically realistic models share two assumptions.
First, neural realism is assumed to provide a firm grounding in experiment and,
second, the insistance that models “compute” is assumed to link to neuronal func-
tion, avoiding epiphenomena. Such work must straddle a deep, historically rooted
devide. The first assumption is linked to the epistomology of the biologically based
neurosciences, based on extensive description. The second assumption is ultimately
linked to psychology, which has approached behavior with an epistomological
framework closer to physics, directed at uncovering laws, regularities, and con-
straints. One obvious reason is that behaviors are not readily reproducible unless
the environmental situation, the behavioral history, or more generally the task are
controlled.

The conceptual framework of information processing has been, perhaps, the
most successful attempt to date to reduce this dependence of behaviors on multiple
factors. Extensive description of cognition would be achieved by identifying the
complete architecture of computational modules with well-defined input-output re-
lationships. The concept of computation suggests such a feedforward directionality
of processing and much current work in computational neuroscience has implicitly
or explictly embraced this framework. Information processing has, however, come
under serious criticism in multiple ways. In neuroscience, the discovery of perva-
sive functional modulation of neuronal networks [1] and pervasive plasticity [2]
have undermined the fixed assigment of function to neuronal circuits. In cognitive
science, the insight arose, that modular information processing architectures make
unreasonable demands on abstraction and invariance [3].

Thus, computational neuroscience must confront the long-standing conflict
between the conceptual frameworks of extensive description vs. constraint discovery
head on. What does it mean that a particular, neuronally realistic and detailed model
“accounts for” a neuronal function? The best work shows how detailed models ex-
hibit the same kind of activity pattern as neuronal recordings from behaving animals
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do and may even provide estimates of behavioral measures such as reaction times
(e.g., [4]). Ironically, these complex and brilliantly conceived dynamical models are
thus tested in paradigms that where defined based on static conceptions of infor-
mation processing. I propose that a strategy to overcome this limitation is to define
a principled interface between neuronal dynamics and behavior that is capable to
dealing with the close link between cognition and sensory and motor processes, with
the dependence on context, behavioral and stimulus history, and is open to learning
and development. Here I sketch the main ideas (see [5, 6] for recent review).

Space-Time Continuity

Behavior unfolds continuously in time and is continuously linked to sensory infor-
mation. There are no behavioral signatures of the temporal discreteness of neuronal
spiking events. Similarly, a continuum of motor behaviors, characterized by move-
ment parameters, is generated by nervous systems. Percepts unfold over continuous
features spaces. Perceptual categories are unrelated to the discreteness of neurons.
Instead, neurons have strongly overlapping and broad tuning curves, so that any
single instance of a stimulus or motor task activates populations of neurons and
different instances activate partially overlapping populations.

The neuronal activation field is thus an oppropriate interface between neuronal
function and behavior. A continuum of activation variables are defined over a rel-
evant behavioral dimension (e.g., movement parameters, retinal space, or feature
dimensions, see Fig. 30.1). Distances along the dimension reflect the metrics of a
perceptual or motor task. Localized peaks of activation are units of representation
indicating both the presence of information through the increased level of activa-
tion as well as the metric estimate of information through the location of the peak.
Although initially tied to the neuroanatomy of cortex and thalamus [7], activation
fields can be constructed for populations of neural activation irrespective of topo-
graphical order [8].

Fig. 30.1 Left: Activation fields defined over relevant behavioral dimensions evolve continuously
in time as described by a field dynamics which integrates inputs and interaction. Right: The generic
interaction of local excitation and global inhibition stabilizes peak solutions against decay and
diffusion
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No Separation Between Estimation, Detection, and Selection

What is the function of activation fields? In classical information processing terms,
activation fields can be viewed as a form of encoding of sensory or motor infor-
mation in a generalization of the space code principle [9]. Time plays a role only
in the sense of delays that reflect computational effort. In real dynamical neuronal
networks, in contrast, activation patterns are continuously coupled both to ongoing
sensory inputs as well as to many other neuronal processes that vie for control.
Similarly, real behavior always comes from somewhere and goes somewhere. The
laboratory situation of waiting for a stimulus to arrive and then producing a single
response is a misleading extreme limit case.

Neuronal patterns that matter for behavior must therefore possess stability, that
is, the capacity to resist perturbations. Such stability is provided by the dynamics
of activation fields as illustrated in Fig. 30.1. The temporal evolution of activation
fields is influenced by inputs (here an input from a memory trace that has preshaped
the field initially and a new input), but also by neuronal interaction. The generic
form of such interaction stabilizes peak solutions as sketched on the right: local
excitatory interaction stabilizes peaks against decay, global inhibitory interaction
stabilizes peaks against diffusion. Sigmoidal nonlinearities arise because only acti-
vated field locations contribute to interaction.

In such dynamic fields, all functional states are attractors. To change state,
dynamic fields go through instabilities. Detection, the decision to generate a peak
in response to input, amounts to an instability, for instance, in which a subthreshold
input-driven solution becomes unstable and the system switches to a peak solu-
tion whose location is dictated by local maxima of input [10]. Once a detection
decision has been made, that decision is stabilized against fluctuating or compet-
ing inputs. Similarly, the capacity to select among multiple inputs arises through
an intability from a fusion regime, in which inputs are averaged. Sustained acti-
vation, the basis for working memory, arises through an instability from the in-
put regime as the relative weight of interaction is increased (see [11] for seminal
analysis). The instabilities lead to qualitatively different dynamics, different modes
of operation as simple, parametric changes are brought about either by chang-
ing inputs or through simple forms of learning (such as from a memory trace
or from Hebbian change of synaptic efficacy). This makes it possible to under-
stand how fields may provide different cognitive function out of the same neu-
ronal structure (see, for instance, [6] for how working memory, selection, update
of reference frames and discrimination all arise in this way out one dynamic field
architecture).

Behavioral Experiment as a Probe of Neural Dynamics

How may theories based on this interface be validated? The strategy is to seek
direct behavioral signatures of the postulated neuronal dynamics, typically in mul-
tiple convergent settings and using convergent measures. The set of well-studied



172 G. Schöner

scenarios includes perseverative reaching in infants [12], the structure of working
spatial memory [13], the preparation and initiation of movement [14, 15], the per-
ceptual organization of visual motion [16], or the habituation to visual stimuli [17].

Conclusion

Dynamic field theory provides a framework for understanding elementary forms
of cognition, that are continously linked to the sensory and motor surfaces and
depend on environmental context, on task, and an behaviral history and learning.
The empirical constraints for this form of theory are rich sets of behavioral and
neuronal data. The goal of providing accounts for neural function on the basis of
biophysically realistic models can be realized by deriving the functional dynamics
of neuronal activation fields rather than by accounting directly from neuronal or
behavioral data.
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Chapter 31
The Task of Cognitive Neuroscience

Christoph von der Malsburg

What is Cognition?

To be concrete, I will work here with a tentative definition of cognition. Our mind
is cognitive in being able to deal with the environment on the basis of insight, in
being able to know what is going on outside and to represent the present situation
for practical purposes, including the ability to imagine potential outcomes. This
cognitive ability is possible only in a world that is dominated by regularities that we
can learn in the past and apply in the future. Only very little information is given
to us directly by our senses in any given situation. If we see an object, we would
like to know how it will look from other perspectives, how it will feel if we touch
it, what operations we could perform with it and so on, and all this information is
available to us only on the basis of previous experience. Psychologists have long
known that the scene that we “see” is to an overwhelming extent a mental construct,
erected on the basis of world knowledge. Given the tremendous variability in detail
of our environment, this ability to actively construct representations cannot be un-
derstood in terms of literal recall. Rather, our cognitive apparatus must be able to
construct new representations by combining structural elements according to rules
of combination. Our mind is a compositional, self-organizing model box. The task
of cognitive neurodynamics is to describe the mechanisms of the neural system to
actively construct scene-representations.

Problems with AI, ANN and Bayes

Artificial Intelligence (AI) is the attempt to instill the computer with intelligence
just by writing appropriate programs. The universality of the computer seems to set
no limit to this project, and one day we will surely have a tin box programmed such
as to be a cognitive system. AI, however, invested the bulk of its activities in writing
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specific programs to deal with specific applications (such as playing chess), instead
of focussing all its energy on the equivalent of neurodynamics. The limits of AI
became clear when it turned out that such applications as vision or language under-
standing are vastly too complicated to be manually programmed into the computer.

The progress with Artificial Neural Networks (ANN) lies with the attempt to
replace the programmer’s insight by mechanisms of learning and self-organization.
There are some impressive demonstrations of that ability, and ANN technology is
actually applied broadly to practical problems. However, a fundamental unsolved
problem with ANN is that they do not scale up to the extent needed to under-
stand cognitive systems. Thus, painful and extended experience teaches that ANN
learning is restricted to applications where input patterns have limited information
content, are all taken from the same context, and where the neural system itself is
relatively small. Beyond these limits, convergence times get out of hand. Learning
structural regularities from examples, the central idea of ANN, has to play, without
any doubt, an important role in cognitive systems, but an important further concep-
tual step will be necessary to unlock its potential.

Similar remarks probably apply to Bayesian networks. There is good reason to
surmise that our whole brain is one very large network of belief propagation, its
nodes corresponding to more or less elementary structures, together with a represen-
tation of uncertainty over a range of alternatives. The links of the network would im-
plement constraints reigning between values represented in the nodes. With proper
construction, these constraints help to reduce uncertainties in the nodes, so that the
network quickly converges to a highly trustworthy representation of the situation.
This “Bayesian dream” is far from realization as a viable theory of brain function,
as the concrete applications realized so far are limited to very small networks which,
moreover rely heavily on human design instead of on learning and self-organization.
Open are issues like how to decide what quantities to represent, how to formulate
the constraints and how to ensure rapid convergence in larger networks. As with
ANN, only very small systems can be realized, and these depend to a large extent
on manual construction.

The Need to Second-Guess the Structure of the World

The reality of our brain stands in stark contradiction to the tight constraints to which
AI, ANN and Bayesian networks are subject. The neural network in our brain is
very large, and it would be very foolish to assume that the evolution process that
has structured it is in any sense equivalent to the manual design of our artificial
models of intelligence. Indeed, the amount of genetic information in our genome,
about a Gigabyte, falls short by a factor of a million of the quantity of information
needed to record the wiring of cortex alone (1015 bits: 1014 synapses, each requiring
33 bits of information to specify one target neuron out of more than 1010). The
genome thus contains enough information to specify a very small part of the network
in detail (perhaps some networks in the mid-brain and the periphery, plus some
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gross aspects of the wiring of the rest), plus information to formulate a game of
self-organization and learning that is responsible for the overwhelming rest of the
structure, overwhelming by a factor of a million.

For a theoretician, this is very good news. It will not be necessary to painstak-
ingly record every detail of the brain’s wiring, all it needs is to find out the rules
of the game, plus a trace of pre-structuring. This is the promise of large booty!
Now, there are cautionary signs, in the form of the no-free-lunch-theorems [1] or
the bias-variance dilemma [2]. There is no catch-all optimization or learning sys-
tem, or stated the other way round, for any given system that is highly success-
ful in some application domain it is easy to construct a nasty sample domain on
which the system miserably fails. The cognitive neurodynamics of our brain evi-
dently is very successful in this world, and the conclusion must be that our world
is not a hodge-podge of disparate structures, such that any cognitive system that
were successful with some of the environmental structures would have to fail on
other, nasty, structures. The fact that an individual can learn for a decade or two
(or that evolution can learn over an eon or two), and then is highly successful in
dealing in future situations with what it has learned in the past, is proof that there
is a tremendous structural coherence in our environment, in spite of all variation in
detail.

If the earthly environment is dominated by one coherent structure, what is it?
This is a question worthy of our collective attention. Indeed it is the crown of
all intellectual ventures. Understanding some phenomenon means reducing all its
particular patterns to some abstract schema. Characterizing the environment to the
extent that it can be captured by our brain means coming up with the abstraction of
all abstractions. Evolution has done the job of developing a cognitive architecture
that is in tune with the world, and we only have to find out the dynamic rules implicit
in the cellular repertoire of our organism and the genetic regulatory structures that
play on that repertoire.

Fortunately we are not at square zero of this guessing game. We know that neu-
ral dynamics is dominated by network self-organization: The stochastic activity in
a network is shaped by excitatory and inhibitory connections such as to express
signal correlations and anticorrelations. These act back on the network by mecha-
nisms of synaptic plasticity, in turn leading to changes in signal correlations. This
interplay comes to a halt (as long as external input is constant) when connectivity
and signal correlations have reached a state of mutual correspondence. The specific
network patterns that are dynamic attractors of this interplay dominate the structure
of the brain, and it is an important issue what they are. It seems clear that attrac-
tor networks are sparse (few connections per node), and that those connections are
optimally cooperative, with several alternate pathways between two given nodes,
which help each other to create those signal correlations in the two nodes that favor
the connections by synaptic plasticity. According to one hypothesis [3], attractor
networks are of topological structure. A topological network can be arranged (un-
der preservation of connections) in a low-dimensional (e.g., two-dimensional) space
such that connectivity is dominated by nearest-neighbor connections. The local (lo-
cal in this display space) cliques of intensely connected neurons create local firing
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events which in turn stabilize the local connectivity, and the total network is, in time,
covered by such local firing events like a topological space by its open sets.

If network self-organization takes place also on the fast functional time scale of
seconds, as I have proposed [3], then the “permanent” connectivity of the brain is, in
a given situation, reduced to a very sparse sub-network between the currently active
neurons. According to this view, the brain is an overlay of many connectivity struc-
tures, each one appropriate to a specific context, and rapid network self-organization
reduces the connectivity to one that implements the functionality and the represen-
tations called for at the moment.

If attractor networks are the universal code of our brain, in what way do they
capture the structure of the world? Let me just give two aspects that cover part of
the territory: differentiation hierarchies and schema application. Space and time in
our world are topological in nature, and the structures that we encounter form nested
hierarchies, such that an individual, detailed, structure can naturally be embedded in
coarse-grained structures. Thus, perception of the scene surrounding us progresses
by first capturing it as an office scene or street scene or what the case may be,
by perceiving the coarse arrangement of elements, then progressing to identifying
objects according to general type (persons, pieces of furniture etc.), then resolving
objects into parts and identifying them individually. The detailed structure that we
eventually perceive at the end of a process of gradual differentiation is thus em-
bedded in a nested hierarchy, without us needing to back-track again and again
in the process. Similarly, before writing down the detailed proof of a theorem,
a mathematician conceives it in vague outline, illustrating again a differentiation
hierarchy.

Of equally fundamental import is the mechanism of schema application. We can
deal with the ever-new structures we encounter only by relating them to abstract
schemas. The recognition of a schema in a concrete object makes it possible for our
brain to engage appropriate behavior and makes it possible to identify that narrow
subsystem of our memory domain where this pattern can be found or is to be stored.
We humans are evidently born with a schematic description of the human face,
allowing the infant to single out faces from the environment as significant pattern,
to store all facial patterns in one narrow part of the brain, and to know what to do in
response to the face. An abstract schema presumably is represented in the brain as a
structured network, with nodes encoding specific features, and links encoding topo-
logical relations between features. The process of schema application then amounts
to graph matching, the problem being to identify a subset of nodes and links in the
instance (e.g., the concrete face in primary visual cortex) that is isomorphic to the
abstract schema network. As modelled in [4], this process of graph matching can be
implemented naturally in terms of network self-organization, the attractor structure
being composed of the schema network, the isomorphic sub-network embedded in
the instance, and the activated links between pairs of corresponding nodes in schema
and instance. If the schema and the instance are of homomorphic topological struc-
ture, the links knitting them together point-by-point just turn them into a larger
topological topological network.
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Conclusion

How do these ideas address the problems of AI, ANN and Bayes networks – limita-
tion to small systems and dependence on manual construction? Manual construction
is replaced by self-organization, by which the system states contract, on several
time scales, to highly structured connectivity states, which form a comparatively
narrow sub-universe of network patterns. This sub-universe captures, in a general
way, the nature of our environment. This process of construction is guided intensely
by the application of abstract schemas. Recognizing a schema in a specific situa-
tion amounts to gaining insight, and induces relations between situations that are
different in detail but agree in terms of applicability of the abstract schema.

The spontaneous, rapid contraction of a network to a topological structure es-
sentially surrounds each node of the network with its own small environment of
other nodes, which all have much to do with each other. Selective attention is an
important aspect of this process of state contraction. Inspection of a complex scene
is organized as a sequence of flashes of attention. As a first step, the whole scene
is taken in, but only in its coarse layout. Recognizing the scene by relation to an
abstract scene schema immediately permits to restrict the memory domain to the
relevant small sub-sector. In consecutive attention flashes, smaller parts of the scene
are singled out, again by relation to schemas, each flash of attention amounting to a
contraction of activity in the brain to a very small sub-system – a small segment of
visual input, a small segment of memory, a specific functional circuit applicable to
the recognized pattern and so on – in which the statistical learning of ANN is now
possible, and in which one may perhaps see the realization of a sparse Bayesian
network. One may speak of schema-based learning: The animal is born with a com-
plement of schematic descriptions of biologically significant scene components (the
schema “coherent object moving relative to the background”, the mother’s face in
the infant, or mother goose in Lorenz’ imprinting paradigm) which helps it single
out patterns in the otherwise confusing environment, extract them selectively and
map them into the appropriate sector of the memory domain.

These ideas may be wrong in detail, but I think it is inescapable that neuro-
dynamic state contraction has to be enlisted to dynamically create the small sub-
systems that ANN learning requires, and that this state contraction must be guided
by principles that put the brain in tune with the structure of the world in a princi-
pled way.
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Chapter 32
Functional Roles of Feedback Signals
from Higher-Order Areas to Lower-Order
Areas in the Visual Cortical Pathways

Tiande Shou

Abstract The functional role of feedback projections from high-order cortical areas
to lower-order areas is an important problem unsolved due to the complex recipro-
cal connections between numeral areas in the visual pathways. Here we described
recent studies on this issue using optical imaging of areas 17 and 18 combined with
pharmacological manipulating the excitation of high-order areas 21a and PMLS in
the cat. The results showed that area 21a feedback not only increased visual re-
sponse of neurons in areas 17 and 18, but also improved their spatial frequency
tuning. Area 21a enhanced the neural oblique effect of area 17 by shifting neurons’
preferred orientations. Area PMLS changed preferred direction of area 17 neurons,
but not orientation preference. We hypothesized that feedback signals from a distinct
higher-order cortex along either the visual motion or form information stream tend
to modulate the same type of information processing in the lower-order cortices.

Keywords Feedback · area 21a · PMLS · area 17 · orientation · direction · visual
cortex · optical imaging

Introduction

In virtually all primates and carnivores with frontally positioned eyes, visual infor-
mation from the outside of the world is originated from the retina and sent to the
visual cortex through the dorsal lateral geniculate nucleus (LGNd) by a number of
largely parallel ‘information channels’ [1, 2, 3]. In the retino-geniculo-cortical path-
way of the cat, the parallel streams of neural signals consist of the so-called W, X and
Y channels. Correspondingly, in macaque monkeys they consist of the analogous, if
not homologous, information processing streams, so-called as koniocellular, parvo-
cellular and magnocellular channels (for reviews see [1]). In monkey’s extrastriate
cortices, the parallel information channels to a large extent, go feedforward through
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two parallel information-processing streams that are often referred to as the ‘what’
and ‘where’ pathways [2, 3] or as the ‘form/pattern’ (‘ventral’ or ‘perception’) and
‘motion’ (‘dorsal’ or ‘action’) streams ([4, 5]; for reviews see [1]).

For more than five decades, a substantial amount of data has also been gathered
concerning the role of the feedforward cortico-cortical, associational, projections
from the ‘lower-order’ cortical areas to ‘higher-order’ cortical areas. On the other
hand, there are equally prominent associational ‘feedback’ projections from the
higher-order visual cortical areas onto the same region (i.e., feedback connections).
Several lines of evidence indicate that in cats or macaque monkeys, the feedback
signals from the higher-order visual cortical areas, such as area posteromedial lat-
eral suprasylvian (PMLS or area MT), area 18 (or area V2), and area 21a (or V4)
modulate many response properties of neurons in the ‘lower-order’ visual cortical
areas [6, 7, 8, 9]. However, the detailed function of the corticocortical feedback
projections has not been fully understood.

In the cat, higher-order cortical areas 21a and PMLS belong to form and motion
visual streams, respectively and send feedback signals to areas 17 and 18. In recent
years, we investigated the functional role of areas 21a and PMLS feedback signals
in modulation of areas 17 and 18 in the visual cortical pathways. The purposes of
the study are to probe (1) the property of corticocortical feedback signals; (2) the
relationship between these properties and visual perception; (3) the general principle
of corticocortical feedback connections.

Using optical imaging based on intrinsic signals combined with single unit elec-
trical recording and local pharmacological methods, the visual responses of neurons
of areas 17 and 18 to stimulus gratings of different spatial orientations and drift-
ing directions were studied in the anesthesed, paralysed cats when the exitation of
areas 21a and PMLS were manipulated by administration of glutamate or GABA
reversely.

Results and Discussion

Previous electrophysiological studies showed that the feedback projections from
area 21a mainly exert an excitatory influence on the responsiveness of area 17 cells
in the cat [9]. However, the detail functions of these feedback projections in a large
cortical area are still unclear. Using optical imaging we showed that the response of
orientation maps of both areas 17 and 18 elicited by grating stimuli was decreased by
microinjecting GABA in area 21a and increased by bicuculline, a GABAa receptor
antigonist [10]. This implies indicating the excitatory modulation from area 21a on
areas 17 and 18. Furthermore, the global spatial frequency tuning curves of both
areas 17 and 18 was flatened by application of GABA or the liquid nitrigen lesion
in area 21a. This suggests that the feedback signal from area 21a plays a role in
sharpening the spatial frequency tuning property of neurons in areas 17 and 18.
Since the results were obtained from anesthesed cats it is speculated that in the
awake animal the promotive effect of the feedback on visual spatial property may
be more significantly.
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Since the intrinsic signal optical imaging has a high spatial resolution (24 ×
24 �m) it allows to do the pixel-by-pixe l analysis of a composition map, which
resulted from several orientation maps evoked by differntly oriented grating stimuli.
Using optical imaging combined with a single unit elelctrophysiological recording,
we discovered that neurons in area 21a were functional organized in a slab-like
architecture in orientation preference like those in area 17, but with a finer structure.
These neurons in area 21a exhibited much stronger neural oblique effect, a well-
known psychological or behavioral phenominon that the visual ability in horizontal
and versitical meridians are better than the oblique ones in humans and animals,
than those in area 17. Figure 32.1 shows a mean overpresentation of horizontal
and vertical preferences in area 21a (24%) was 4.6 times more than that in area 17
(5.2%) of the cat [11]. Obviously, the overpresentation of horizontal and vertical
meridians in area 17 is too small to initiate a psychological or behavioral oblique
effect while the large overpresentation in area 21a is surfficient to do so although
many investigators have referred this effect to the overpresentation of neurons in

Fig. 32.1 Oblique effect revealed by optical imaging based on intrinsic signals in areas 21a and
17 in the cat. (a) and (c) The overall color-coded orientation maps showing functional organization
of areas 21a and 17, respectively. A complete set of 4–6 single-condition orientation maps were
color-coded pixel to pixel on the two maps according to the color code presented in the middle
(b). The preferred orientation was spatially continuous along the surface of the imaged cortical
areas. Scale bar: 1 mm in A. (d) and (e) Preferred orientation histograms of the functional maps of
areas 21a and 17 of a cat, respectively. Note that both the histograms exhibit a W-like distribution
of preferred orientation with two peaks at horizontal (0◦ or 180◦) and vertical (90◦) meridians,
suggesting the neural oblique effect in the two areas (From Huang et al. [11])
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area 17 previously. It remains to study how area 21a become so strong in neuronal
oblique effect.

Generally, the preferred orientation of visual cortical cells were thought to be
rather solid. Surprisedly, we found that activation of area 21a by glutamate appli-
cation altered the preferred orientation in some cortical neurons (about 6%) in area
17 of the cat. These neurons shifted their preferred orientaions from the oblique
toward the horizantal and vertical. On the other hand, inactivation of area 21a by

Fig. 32.2 Changes in neural oblique effect observed in functional orientation maps of area 17 due
to injection of glutamate (0.2 mM) and GABA (400 mM) in area 21a. (a–c) Color-coded orientation
maps recorded under normal (a), glutamate (b) and GABA (c) injection and recovery (d) conditions
for one cat. Scale bar: 1mm. (e–h) Preferred orientation distribution histograms of pixels in the
same region of interest in area 17 under conditions of (a), (b), (c) and (d). Note that the W-shaped
distribution is significantly enhanced by glutamate and reduced by GABA. (i–j) Subtracted his-
tograms of preferred orientation distributions in the region of interest of area 17 obtained for
glutamate injection minus control (i), and GABA minus control (j). The pixels of negative values
mean those pixels in the functional map changed their original preferred orientations to new ones
which were denoted by the positive values. Panel (h) shows that injection of glutamate caused a
clear shift in many pixels from preferring oblique orientations to horizontal and vertical ones; in
panel (i), more pixels turned from preferring horizontal and vertical orientations to oblique ones.
(k) The surface view of the area 17 of the cat studied. The ROI denoted by solid line. A white
dotted line indicates the boundary between areas 17 and 18 which was determined by subtracting
the orientation map elicited by a spatial frequency 0.58 c/d grating from the one by 0.14 c/d. Scale
bar: 1 mm (From Liang et al. [12])
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GABA application induced a preferred orientation shifting from the horizontal and
vertical toward the oblique (Fig. 32.2 [12]). These results provide the first evidence
of the neural besis of the cortical feedback for modulating the oblique effect in
the low-order cortical areas. It is speculated that the coavctivation of areas 21a and
17 would contribute more substantially to the psychological oblique effect in the
normal condition than in anesthesized condition.

In another study, we investigated the influence of feedback signals originating
from area posteromedial lateral suprasylvian (PMLS), the dominant motion-
processing region of the parietal cortex, on responses of cortical neurons’ orientation
and direction maps of cats’ area 17. The inactivation of area PMLS by local applica-
tion of GABA resulted in a reduction of the responses of direction maps of area 17
which is mainly involved in form information processing rather than motion in the
cat. Furthermore, inactivation of area PMLS abolished the global layout of direction
maps in area 17, but did not affect the basic structure of the orientation maps [13].
Therefore, feedback projections from higher-order visual cortex both within and
across information-processing streams are important in information integration in
the visual cortex. Now, we hypothesized a general principle that feedback signals
from a distinct higher-order cortex along either the visual motion or form infor-
mation stream tend to modulate the same type of information processing in the
lower-order visual cortices.
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Chapter 33
Dynamics of Population Decoding
with Strong Inhibition

Thomas Trappenberg

Abstract Decoding information from a population of noisy neurons can be achieved
efficiently with center-surround recurrent networks. Here we study such networks
with continuing external input and investigate the dynamics of decoding with vary-
ing inhibition strength in the network. We find that the best decoding is achieved at
the onset of the memory regime in such networks.

Introduction

In the brain, information is typically represented by a population of neurons. For
example, while individual neurons in the primary visual cortex respond maximally
to specific orientations of line segments, they also respond to a lesser extend to
neighboring orientations. Thus, even with a ‘pure’ image there are many neurons
that respond. This is important as such states are likely to represent probabilities
of specific events [1]. Furthermore, cortical neurons are very noisy and their firing
rates are low so that decoding the information from a population becomes crucial
for reliable information processing in the brain.

Mathematically it is well established how to decode information in specific situ-
ations [2]. For example, if we consider Gaussian tuning curves we could fit a Gaus-
sian through the data points given by the neuron response to achieve a maximum
likelihood (ML) estimate of the stimulus which is optimal with these assumptions.
While optimal decoding is of some theoretical and practical interest, much more
important for brain processing is its efficient implementation. Several researcher
have pointed out that ML estimation in the above mentioned case can be achieved
with recurrent networks [3, 4]. This is significant as these networks enable fast
computation consistent with the functional mechanisms of the cortex as captured
by neural fields theory [5, 6, 7]. Furthermore, while the optimality can be proven
in some cases [4], optimality in a statistical sense is not fundamentally required.
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Instead, it is possible that this is the principle decoding mechanism in the brain and
this mechanism should therefore be studied in more general circumstances, such as
in the case of multiple inputs.

Decoding mechanisms with neural fields have been studied mainly in a model
where noisy input was applied as initial states of the network and where the asymp-
totic state of sustained activity packets (bubbles) are used for optimal decoding.
In this paper we explore the dynamics of decoding when input is sustained for
some time, resembling more closely transient input in the brain. We then explore
the regime with strong lateral inhibition and show that this regime is well suited for
fast population decoding.

Population Decoding with Recurrent Networks

We consider a standard recurrent rate neural network model with N nodes in which
the time evolution of the internal state ui is given by

τ
dui (t)

dt
= −ui (t)+

∑

j

wi j r j (t)Δx + I ext
i (t), (33.1)

where τ is a time constant, I ext
i is the external input applied to the network and

Δx = 2π/N is a scale factor. The rate ri is related to ui by a sigmoidal gain function
g(u) = 1/(1 + exp(−βu)) with a slope parameter β = 0.1. Applications of this
model to population decoding commonly use a gain function with divisive inhibition
[8], but the principal findings reported here do not depend critically on the form of
the gain function. The weight matrix, w, describes center-surround interactions in
the network with a shifted Gaussian profile,

wi j = Aw

(
e−((i− j)∗Δx)2/2σ 2

w − C
)
. (33.2)

This dynamic model exhibits several regimes characterized by different possi-
ble asymptotic states [7]. If the inhibition, C , is low compared to excitation in the
network, then the excitation will spread through the network resulting in runaway
activity. In contrast, if inhibition is dominating, then any activity in the field will
decay without external reinforcement. In an intermediate regime it is possible to
have activity packets where localized activity is stable. We call this mode of the
model the memory regime.

The later two regimes are depicted in Fig. 33.1 in the context of population de-
coding. In these experiments we supply a static noisy input to the field over 20
timesteps. This input was chosen as a Gaussian around the middle node (x0 = 50)
with additive white noise of strength nη = 0.5,

Iext = I0 + A(e−((i− j)∗Δx)2/2σ 2 + ηηη, (33.3)
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Fig. 33.1 Noisy population decoding with weak and strong inhibition in neural fields. The noisy
input derived from the dashed line on the left is applied until t = 20 to the neural fields shown on
the right

where I0 is a background field and η is a normal distributed random number. When
an inhibition constant of c = 0.05 is used, the field developed into a clean bubble
around the middle node after the input was removed at time t = 20, demonstrating
perfect decoding. The sustained localized activity in the neural field without external
input demonstrates the above mentioned memory regime.

Traces of the noisy input are not apparent in the c = 0.05 case, and it seems one
has to wait until the bubble forms to perform accurate decoding. This is different
when running the same simulation with larger inhibition. Figure 33.1 shows the
case for c = 0.07. Traces of the noisy input are now also visible during the time
the external input is supplied, which is partly enhanced by the fact that a smaller
range of values is depicted by the gray scale in the figure. The inhibition is now too
large to sustain an activity packet after input is removed. However, the increased
competition facilitates a cleaning of the signal even during the time when the signal
is applied so that some form of population decoding is supported. While this might
be less accurate than in the previous case, an advantage would certainly be that
the decoding can be achieved much earlier. This assertion is investigated in Section
‘Quality of Decoding with Varying Inhibition Over Time’.

Quality of Decoding with Varying Inhibition Over Time

To assess the quality of decoding with time and different inhibition constants we ran
decoding experiments over 100 trials in each condition. While we have used signals
with static noise in Fig. 33.1, we report now on the results when changing the noise
after each unit of time, simulating ongoing fiuctuations in the input signal over time.
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(b)

(c)

(a)

Fig. 33.2 Temporal aspects and decoding quality with different levels of inhibition

This represents a more plausible implementation of decoding conditions in the brain
although we found similar results in the static noise case.

To assess the decoding quality we use a center of mass scheme to determine
the prediction of the feature value encoded in the neural field. This was done for
the original input signal and at each time step during the dynamic decoding in the
recurrent network. An example trace of the decoding error is shown in Fig. 33.2a.
For the shown strength of inhibition, the decoding error continuously decreases even
while external input is supplied. The decoding error only improves slightly after the
external input is removed at t = 20. The decoding error increases with increasing
noise level as shown in Fig. 33.2b, but the decoding error at t = 20 is always much
smaller than the center of mass decoding of the original signal. Finally, a major ques-
tion motivating this study was to determine which network regime, in terms of inhi-
bition strength, would be most suitable for decoding in such networks. The results of
these studies are summarized in Fig. 33.2c which shows the decoding improvement
at different time steps for different inhibition parameters. Early on there is little
dependence of the results on the strength of inhibition, but later there is some ad-
vantage for inhibition values around 0.06. Interestingly, this is close to the transition
region between the domain of decaying input and the domain of sustained activity.

Conclusion

In this study we analyzed population decoding with recurrent networks with biologi-
cally motivated modifications. We thereby included sustained input, a simplified and
non-global gain function, and different levels of inhibition. We found that population
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decoding with such competitive networks is very powerful even when continuously
driven by external input. We also found that inhibition levels at the onset of the
memory regime showed best decoding performances.
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Chapter 34
Global Oscillations of CA3 Neural Fields

Francesco Ventriglia

Abstract The conditions which cause in the hippocampal CA3 field global oscilla-
tory activities behaviorally important for their links to learning and memory, such
as theta and gamma rhythms, have been analyzed with great details. To this aim,
the theoretical framework devised years ago by the present author for the study of
activities of large neural fields, has been enhanced in such a way to take into account
basic biological features. By using that methodology, a two-dimensional model of
the entire CA3 field has been described and its activity, originated by the several
external inputs impinging on it, has been computer simulated. As a consequence of
these investigations, a hypothesis has been elaborated on the relationship between
global oscillatory activities of CA3 and engram formation.

Introduction

The Hippocampus is a fundamental station in the chain of neural structures along
which the neural information flows in brain, going from the primary (sensorial)
cortices to superior areas and back. In fact, several lines of evidence remark the
great importance of this structure for learning and memory in rat, monkey and
man [1, 2, 3, 4]. The modality according which the information is coded within the
activities of the neural fields of Hippocampus and the way with which they produce
the laying in brain of memory traces, or engrams, specifically related to sensory
events, constitute a very elusive problem and no clear elucidation about its nature
exists yet.

A hypothesis on the possible rules governing the production of engrams is pre-
sented in this article. It takes into account global oscillatory activities of neural
populations of Hippocampus. In fact, synchronous waves of activity constitute one
of the most characteristic aspects of the working brain and are associated closely
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to essential behavioral states. Rhythmic oscillations in the theta (4–12 Hz) and in
the gamma (20–80 Hz) ranges are among the most prominent patterns of activity in
Hippocampus, and neuroscientists believe that both rhythms reflect aspects of the
hippocampal functions related to learning and memory. It is commonly supposed
that activity coming from Medial Septum and Entorhinal Cortex are nedeed to in-
duce the theta rhythm in Hippocampus. Vice versa, the hypothesis that the gamma
rhythm is generated intrinsically by the network of inhibitory interneurons in Hip-
pocampus is supported by recent experimental and theoretical articles. Both rhythms
are present during the exploratory activity in awake animals.

The Kinetic Model

The kinetic theory of neural systems, formulated several years ago [5, 6] to describe
the activity of large neural fields, has been utilized here for the description of the
activity of the CA3 neural field. The most original aspect of such a theory is the
statistical description of the neuronal interaction. In fact, the action potentials trav-
eling along the axonic branches are represented as massless particles, the impulses,
having only statistical links to the axonic structure. They move freely within the
neural field until they collide with a neuron. The collision can possibly result in the
absorption by the neuron of the impulse and, hence, in the increasing or decreas-
ing of its subthreshold membrane potential. If the threshold value is exceeded, the
neuronal firing occurs and a stream of new impulses is emitted within the neural
field.

The functions fs(r, v, t) and gs ′(r, e, t) describe, respectively, the velocity
distribution of impulses and the distribution of the subthreshold neuronal excitation
within the neural field. The function ψs ′ (r) denotes the local density of neurons.

Differently from the assumptions of earlier articles, we surmise here that the
impulses can be absorbed by large extension of the neural field, reflecting the span
of the dendritic trees. In this setting, defined as non-local absorption model, it can
be demonstrated that the time evolution of the distribution functions fs(r, v, t) and
gs ′(r, e, t) is governed by the following set of coupled differential equations:

∇t fs(r, v, t)+ v · ∇r fs(r, v, t)+ fs(r, v, t)

(
Σs ′

∫

D(r)
ψs ′ (r′) | v | σs ′sdr′

)
=

Ss(r, v, t)δ(s − sex )+ f ∗s (r, v)Ns ′ (r, t)δ(s − sin)

+ f 0
s (v)

∫

A
ξs ′s(r, r′) dr′

∫
f
′
(v′)Ns ′

(
r′, t − |r− r′|

v′

)
dv′δ(s − sin)

(34.1)

∇t gs ′(r, e, t)+ μ(er − e)∇egs ′(r, e, t) =
[gs ′(r, e − ε, t)− gs ′(r, e, t)] (1− δ(ε))

+Ns ′ (r, t − τs ′ )δ(e − er )+ Ms ′ (r, t)θ (ε)δ(e − e0)

(34.2)
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Where, ε (the net excitatory effect on single neurons), Ns ′ (r, t) and Ms ′ (r, t) (the
probable number of neurons in firing or hyperpolarized state, respectively), can be
computed as functions of f and g. Moreover, f ∗(r, v), f 0(v) are structural pa-
rameters linked to the velocity spectra of impulses emitted in different conditions
and ξs ′s(r, r′) is an origin/destination matrix for long-range impulses, while f ′(v′)
denotes the velocity distribution along these paths. This matrix is based on experi-
mental data about the geometry of pyramidal association projections along Schaffer
collaterals (C A3 � C A3) [7].

Ca3 Global Activity Simulation

The non-local model has been utilized to carry out several series of computer sim-
ulations to study the activity of the entire CA3 field of the rat – as reported in the
Atlas of Rat Brain [8]. The neuronal densities and parameters of connectivity have
been computed from values in literature (see [9], where estimates of several struc-
tural parameters are reported). According to those values, the neuronal families of
the simulated CA3 field were constituted by about 300.000 pyramidal neurons and
30.000 fast and 30.000 slow inhibitory neurons. As regards to the inputs, it is well
known that pyramidal neurons of Entorhinal Cortex (EC) innervate CA3 both via
Dentate Gyrus (through the mossy fibers) and by a direct path. Dentate Gyrus is also
under the inhibitory control of the Hilus, an hippocampal field which receives input
from several sub-cortical nuclei, such as Medial Septum (MS) and diagonal band,
Raphe and Corpus Coeruleus, related to attentional or emotional reactions [10].

In all the computer simulations, stimuli caming from Entorhinal Cortex, Dentate
Gyrus, and Medial Septum were simulated. In some simulations inhibitory input, se-
lectively inhibiting the inhibitory neural populations of CA3, have been considered.

The space-time course of some macroscopic parameters computed by fs(r, v, t)
and gs ′(r, e, t) – i.e. local frequency of spikes, local mean sub-threshold excitation,
number of firing neurons – which have close analogy with the in vivo recorded
activity of the hippocampal CA3 field (i.e., population spike trains, local field poten-
tials) has been analyzed in the search of parameter values which induced oscillating
hippocampal activity.

Results and Discussion

The computer simulation of the neural activity of the CA3 field shed light on
some remarkable features of its dynamics. Under appropriate driving inputs, self-
organized activities within the pyramidal neuronal population spread to the entire
CA3 region. In their wake, stable oscillatory activities occurred within the inhibitory
neural populations. They presented a persistent remnant, or trace, of the spatio-
temporal behavior of the vanishing pyramidal activity, lasting for much longer time
than that of pyramidal one. During this time, the pyramidal neurons could not
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generate new activities, being very efficiently inhibited. The inhibition of the slow
inhibitory neurons could modulate the duration of the inhibitory periods. This was
obtained by simulating an inhibitory input on CA3 inhibitory populations origi-
nating from Medial Septum. In different simulations the frequency of the global
pyramidal activity could range from 3 Hz to 11 Hz. Hence, the global activity of the
CA3 field was organized in such a way to present specific time windows for the gen-
eration of pyramidal (excitatory) activities, separated by long periods of patterned
inhibition. This suggests that a sort of temporal coding is associated to the function
of the entire CA3 field, which seems to operate as follows. Among all the inputs
arriving to CA3 through EC, only those which reach it in appropriate time intervals,
which are also under the control of activities in emotion-linked sub-cortical nuclei
(like Locus Coeruleus and Median Raphe), are able to trigger global activities and
to produce effects on the brain regions driven by CA3. Other cortical activities,
which arrive either too late or too early with respect to the time windows imposed
by attentional-emotional control, are unable to modify the ongoing CA3 activity,
and the information they convey is not allowed to go beyond CA3. In such a way,
a free period of time with a duration of 50–80 ms is reserved to the successful cor-
tical inputs to CA3, during which they can drive activities in other cortical regions
without interferences by competing inputs. They may result in learning, memory
and other cognitive effects.
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Chapter 35
Behaviour Signatures of Continuous Attractors

Si Wu

Abstract Continuous attractors are promising models for describing the encoding
of continuous stimuli in neural systems. In this study we investigated two general
properties associated with the unique dynamics of continuous attractors, namely, the
logarithm reaction time and the asymmetric neural correlation. These two behaviour
signatures can serve as important clues for experimental data to check whether con-
tinuous attractors are really applied in neural systems.

Introduction

The recent progress in both experimental and theoretical studies have suggested that
there may exist a new form of memory structure, called continuous attractor, in bio-
logical systems (see [1, 2] and references therein). This type of attractor is appealing
for encoding continuous stimuli, such as the orientation, the moving direction and
the spatial location of objects, or the continuous features of a class of objects that
underlying their categorization.

In a continuous attractor, the stationary states of the system are properly aligned
in the state space according to the stimulus values they represent. They form a
continuous parameter space, on which the system is neutrally stable. This neutral
stability is the key that distinguishes a continuous attractor from a discrete one.
Intuitively think, neutral stability implies that the system state can be easily changed
along the attractor space under a small external drive. For a discrete attractor, such
as the Hopefield model [3], the memory states are trapped in their basins (see the
illustration in Fig. 35.1a,b).

A continuous attractor has many computationally desirable properties, for in-
stance, it enables a neural system to track time-varying stimuli in real-time, a

S. Wu
Department of Informatics, University of Sussex, UK
e-mail: siwu@sussex.ac.uk

R. Wang et al. (eds.), Advances in Cognitive Neurodynamics,
C© Springer Science+Business Media B.V. 2008

197



198 S. Wu

the stable point 

A

C D the stable valley 

B

0 0.05 0.1 0.15 0.2
80

100

120

140

160

180

200

220

240

Stimulus Change

R
ea

ct
io

n 
T

im
e

−2 0 2−3 3

−2x 10−3

−1

0

1

2

C

R
0.

4π
,c

Fig. 35.1 (a) An example of a discrete point attractor. The system is only stable at the bottom of
the bowl. (b) An example of line attractor, the one-dimensional version of continuous attractor. The
system is neutrally stable along the valley. (c) The reaction time vs. the abrupt stimulus change. (d)
Illustrating the asymmetric neural correlation

capacity which is crucial for the brain to carry out many important tasks, such as
motion control and spatial navigation. Although continuous attractors have these
attracting properties, their implementation in neural systems has not been fully
confirmed. In this study we will explore two behaviour signatures associated with
the unique dynamics of continuous attractors, namely, the logarithm reaction time
and the asymmetrical neural correlation. They can serve as important clues for ex-
perimental data to check whether continuous attractors are really applied in neural
systems.

Dynamics of Continuous Attractors

For simplicity, we will consider a simple continuous attractor model, which allows
us to solve the network dynamics analytically. The final conclusions, however, can
be easily extended to general cases.

Consider a one-dimensional continuous stimulus x is encoded by an ensemble of
neural clusters, whose preferred stimuli are denoted as c, with c ∈ (−∞, ∞). We
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denote γc the firing rate of the cluster c, and Uc the population-averaged input. The
network dynamics is given by

τ
dUc

dt
= −Uc + ρ

∫

c′
Jc,c′γc′dc′ + I ext

c , (35.1)

γc = U 2
c

1+ kρ
∫

c′ U
2
c′dc′

, (35.2)

where τ the time constant, ρ the neural cluster density, k a small positive con-
stant and I ext

c the external input. The recurrent interaction Jc,c′ is set to be Jc,c′ =
Je−(c−c′)2/2a2

/(
√

2πa) with J a constant.
It is straightforward to check that the network holds a continuous family of sta-

tionary states when I ext
c = 0, i.e.,

Ūc(z) = Aρ J√
2

e−(c−z)2/4a2
, (35.3)

γ̄c(z) = Ae−(c−z)2/2a2
, (35.4)

where A is a proper constant. These stationary states are of the Gaussian-bell shape,
agreeing with the experimental data. They are parameterized by a single free vari-
able z ∈ (−∞, ∞), i.e., the peak position of the bump.

We choose the external drive I ext
c to be

I ext
c = αŪc(x)+ σξc(t), (35.5)

where both α and σ are small positive constants, and ξc(t) is Gaussian white noise
with zero mean and unit variance. The first term, αŪc(x), represents the stimulus
signal, whose effect is to drive the system to the location of the stimulus x .

To proceed, let us first see how neutral stability shapes the network dynamics.
Suppose the discrepancy, δUc = Uc(z) − Ūc(z), is sufficiently small, we linearize
eq. (1) in the vicinity of a stationary state peaked at z, and obtain

τ
dδUc

dt
= −δUc + ρ

∫

c′
Fc,c′δUc′dc′ + I ext

c , (35.6)

where the matrix Fc,c′ (z) = ∫c′′ Jc,c′′ (�r̄c′′ (z)/�Ūc′(z))dc′′.
Neutral stability implies that the matrix F(z) has one right eigenvector whose

eigenvalue is one and all the other eigenvalues are smaller than one. It can be
checked this is indeed the case. The eigenvector of unit eigenvalue is along the
tangent of the attractor space, which is given by

eI
c (z) ∼ Ū ′

c(z) = DI (c − z)e−(c−z)2/4a2
. (35.7)
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The fact that eI (z) = {eI
c (z)} is the right eigenvector of F(z) with unit eigenvalue im-

plies that the projection of {δUc(z)} on eI (z), corresponding to the bump movement
along the valley, is sustained under the attractor dynamics; whereas, the projections
of δUc(z) on the other directions, corresponding to the distortion of the bump shape,
decay exponentially. This tells us that the dynamics of a continuous attractor under
the driving of small external inputs is dominated by its position shift along the at-
tractor space. Therefore, we can reasonably project the network dynamics Eq. (35.1)
on the direction eI (z), and simplify it as a one-dimensional Ornstein-Uhlenbeck
process, which is given by

τ
dz

dt
= −α(z − x)+ βε(t), (35.8)

where β is given by β = σ/

√∫
c[Ū ′

c(z)]2dc. The meaning of this equation is straight-

forward: when the bump is not at the stimulus position, the stimulus signal generates
a force,−α(z−x), which pulls the bump to the stimulus position (z = x). The noise
effect, βε(t), on the other hand, tends to shift the bump position randomly.

Based on Eq. (35.8), we now investigate two properties associated with the con-
tinuous attractor dynamics. Firstly, we quantify the reaction time for the system to
catch up abrupt stimulus change. Consider a scenario in which the stimulus value is
abruptly changed from initial z(0) to 0. The reaction time is measured by the mean
of the first passage time for the bump peak crossing 0. We get

〈T 〉 = τ

α

√
π

∫ 0

d1

eu2
[1+ er f (u)] du, (35.9)

where d1 = −z(0)
√
ατ/β. This equation reveals that the reaction time of the con-

tinuous attractor increases logarithmically with the size of abrupt stimulus change
|z(0)| (see Fig. 35.1c).

Secondly, we calculate the correlation between neural response variabilities,
which is defined to be

Rc,c′ =< (rc − r̄c)(rc − r̄c′) > . (35.10)

Since the network dynamics is dominated by the bump movement along the attractor
space, we have rc(z) ≈ r̄c(x)+ r̄ ′c(x)(x − z). Therefore, we get

Rc,c′ ∼ r̄ ′c(x)r̄ ′c(x),

∼ (x − c)(x − c′)e−(c−x)2/2a2
e−(c′−x)2/2a2

. (35.11)

This correlation structure is asymmetric with respect to the stimulus value, in the
sense of that Rc,c′ > 0 if (x − c)(x − c′) > 0, and Rc,c′ < 0 if (x − c)(x − c′) < 0
(see the illustration in Fig. 35.1d).
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Conclusions

The present study investigated two general properties of continuous attractors,
namely, the logarithm reaction time and the asymmetric neural correlation. Since
these two properties are determined by the unique neutral stability of continuous
attractors, they can serve as important clues for checking in experiments whether
continuous attractors are really applied in neural systems. For instances, the log-
arithm reaction time may be checked by the mental rotation experiment, and the
asymmetrical neural correlation may be checked by the multi-unit recording. We
will carry out research to confirm these two properties in our future work.
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Chapter 36
Statistical Outliers in Neuron Population
and Myelinated Fiber Development
in Human Neocortex

David L. Cooper, James E. Gentle and James L. Olds

Abstract Between 1939 and 1967, JL Conel performed detailed histological
examinations of 54 human subjects at eight observations ages ranging from new-
borns to 6 years old. He made detailed observations of neuron densities, Weigert
and Golgi-Cox stained fibers, fiber diameters, and cell sizes by neocortical layer for
up to 43 neocortical areas for each age. Here we use this data to construct standard
sample columns to calculate changes between observation ages, and show that it
is well matched by a gamma distribution. We then show that a developmental dis-
tance metric (DDM) transformation facilitates a statistical exploration of inter-area
differences during development.

Keywords Developmental distance · gamma distribution

Introduction

JL Conel’s [1] four million observations of neuron density, layer thickness, somal
size, Golgi-Cox and Weigert-stained fiber densities from human subjects through
6 years of age (N = 54), provides a unique source of information below current
imaging resolution. Shankle et al. [2] used a multivariate ordination technique called
correspondence analysis to reduce Conel’s data into 1727 feature profiles for the
43 regions of the human neocortex that Conel examined. The profiles reveal dis-
tinct time-phased changes; for example, neuron packing density decreases with age,
while fiber myelinization increases. This analysis provided a compelling argument
for a broad developmental pattern of changes across individuals.

However, correspondence analysis does not preserve information on the distri-
butions of change for the individual measurements, and thus does not highlight
differences between neocortical areas. Those differences, if they existed, might well
be of functional importance. Here we apply a novel transformation method that
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preserves that information on distributions, while expanding information on the
temporal details of development. We show that the measurement of neurons and
myelinated fibers in the human neocortex during development conforms to gamma
distributions.

Methods

We employed two transformations to Conel’s neuron density and Weigert-stained
(myelinated) fiber density. The first transformation was to convert density infor-
mation by cortical area and layer into standard sample columns (SSCs). In the
case of neuron populations, Conel made his measurements for standard volumes
of 100 �m3. For fiber populations, he counted stained fibers in a sample volume
of 50 �m × 50 �m × 25 �m. SSCs were constructed using Conel’s layer thickness
measurements for these unit volumes. When Conel reported the densities for sub-
layers rather than complete layers, we used the mean density for the layer. Here, we
produced SSCs corresponding to 19 sample Brodmann Areas related to audio and
visual processing.

The second transformation was to create DDMs using the changes between ages
within each SSC type (neuron or fiber). We treated Conel’s measurements at the
eight observation ages as eight experiments on a neocortical macroarray, compara-
ble to microarray analysis of gene or protein expression (for example, [3]). Similar
to Strand et al., we first took the log proportion of neuron or fiber populations within
each observation age [Eq. (36.1)]. Next, rather than the z-score method used in
Strand et al., we normed changes to the log proportions across observation ages by
using the pooled variance [Eq. (36.2)]. Finally, as in Strand et al., we examined for
clustering of the scores by taking the Euclidean distances between the normed scores
area-by-area. Conel made his observations at eight different ages from newborn to
6 years of age, so the DDMs provide cumulative double-normed measures for seven
sets of changes.

L P(Areai ) = log(Counti/
∑

j
Count j ) (36.1)

D = (μ1 − μ2)2/(σ 2
1 + σ 2

2 ) (36.2)

To examine the change data, we first measured unadjusted SSC change data for
each layer, and then examined the distributions created by double-normed DDMs.

Results

Overall neuron change data for the 54 brains shows a negative mean and negative
skewness (Fig. 36.1a). On average, a layer lost 36.9 neurons within a 100 �m2 cross-
section between any two observation ages. Skewness for an entire SSC was −1.74.
The myelinated fiber changes have positive skewness (2.36 for the SSC) and a
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Fig. 36.1 Neuron and myelinated fiber distributions. Neuron histograms use solid lines. Fiber his-
tograms use dashed lines. (a) changes to neuron and fiber counts in a layer for 19 neocortical areas.
(b) comparison of change data for neuron losses and fiber increases by layer. (c) DDM neuron and
fiber distributions

positive mean (23.2 for a 50 �m2 cross-section for each layer). To test for a gamma
fit, we compared neuron losses to myelinated fiber gains (Fig. 36.1b). We reflected
the neuron change data about an axis equal to the maximum value, and translated
fiber data toward the origin, excluding the six disconnected negative outliers in
Fig. 36.1a. The distributions then became positively skewed over a non-negative
range. We compared these empirical distributions to both a gamma distribution and
a lognormal distribution with corresponding values based on maximum likelihood
estimates. We then applied a Kolmogorov-Smirnov goodness-of-fit test for these
distributions against a cumulative density function equal to the mean of a 10,000-
iteration random function with the corresponding estimated parameters. P-values
appear in Table 36.1. This reveals that a gamma distribution models the empirical
data well.

For an SSC, maximum likelihood estimates for gamma parameters for neurons
are � = 5.4764 (95 pct confidence interval = [4.9787, 6.0239]), and � = 0.0745
(95 pct confidence interval = [0.0675, 0.0824]). The P-value from a Kolmogorov-
Smirnov goodness-of-fit test is 0.3116. For myelinated fibers � = 4.3359 (95 pct
confidence interval = [3.8409, 4.8946]), and � = 24.8831 (95 pct confidence in-
terval = [21.8824, 28.2952]). The associated P-value is 0.3334.

Although double-normed DDMs are gamma-like (the Kolmogorov-Smirnov
P-value is 0.1546 for 48 and 72 months for neurons, and higher for myelinated
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Table 36.1 P-values associated with Kolmogorov-Smirnov goodness-of-fit tests for gamma and
lognormal distributions compared to the mean cumulative density function from 10,000 iterations
using estimated parameters for neuron population and myelinated fiber data by layer

P-value Neuron gamma Neuron
lognormal

Fiber gamma Fiber lognormal

Layer I 0.3759 0.3755 0.4219 0.4169
Layer II 0.3582 0.3428 0.4038 0.4026
Layer III 0.2435 0.1405 0.3553 0.3391
Layer IV 0.3899 0.3897 0.2671 0.3045
Layer V 0.3840 0.3649 0.3732 0.3618
Layer VI 0.3839 0.3605 0.2961 0.1588

fibers), their histograms appear to be multimodal (Fig. 36.1c). A 50-bin histogram
of the cumulative distances at 72 months, for example, has two local maxima to
the left of the overall maximum, and has several local maxima at the right tail
separated from the rest of the distribution by empty bins. Generally, the shortest
double-normed neuron distances correspond to Layer IV (the thalamic input layer)
for most of the 19 areas, whereas the longest double-normed distances pertain to
primary visual cortex (BA 17), the anterior cingulate cortex (BA 24), and the dorso-
lateral prefrontal cortex (BA 9). Extreme distances for fibers correspond to primary
motor cortex (BA 4).

Discussion

DDMs appear to “unfold” the state-space associated with neuron losses and myeli-
nated fiber gains during development from birth through 6-years of age. The dis-
tance metric embeds the change data in a higher-dimensional manifold and enables
the separation of change factors that are initially nearly adjacent in state space [4].
The presence of layer or area-specific associations in the outlier areas indicates that
this is a promising avenue to pursue in future research.
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Chapter 37
Studies on Synchronization Using KIV Model

Mark H. Myers, Robert Kozma and Walter J. Freeman

Abstract The KIV model is a biologically inspired neural network that can exhibit
non-linear electrical brain activity found in the limbic system of the brain. One
such behavior exhibited in brain activity is cognitive processing. Spatial patterns
of beta-gamma EEG emerged following sudden jumps in cortical activity called
“phase transitions”. The interaction between entorhinal cortex (EC), amygdala, and
hippocampal and cortical areas in vertebrate brains is studied using the dynamical K
model approach. Other biological attributes defined by Freeman et al. [1] are applied
to display the biological relevance of the KIV model.

Keywords Chaotic neurodynamics ·KIV model · EEG · cognitive phase transitions
· Hilbert transform

Introduction

Sensory input differentiates itself from the periodic oscillations of the background
noise of the cortex, and has an amplitude and phase modulation that is different
from the periodic oscillations. The synchronization of the myriad of neuron domains
can be quantitatively measured by the phase differences of the EEG electrode data
collection channels [2]. Hilbert Transformation decomposes the EEG time series
into Analytic Amplitude (AA) and Analytic Phase (AP) [3]. Through the use of
Hilbert transformations, we can calculate the phase differences over time which
correspond to the rapid firing of the large domains of neurons and provide a means
to display the synchronizations of those domains when the cortex is exhibiting a
cognitive or learning process [4]. Details of the model simulations are given by
the next section, followed by the results of the analysis of various spatio-temporal
characteristics. The obtained results may provide a basis for the interpretation of
experimental EEG data measured in various cognitive states.
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The KIV Model

The KIV model is a biologically inspired neural network [5]. K-set family includes
hierarchy of K models of increasing complexity. They represent different aspects
of the vertebrate brain. KIV is the mathematical model of the hemisphere. It has
the functionality of sensory perception and action selection. Figure 37.1 provides
the architecture of the KIV model which is represented by three major parts; the
KIII cortex, KIII hippocampus and the KII amygdala. Hippocampus models include
navigation functions. The cortex models sensory processing and pattern recogni-
tion in various sensory modalities. The amygdala is the unit where the activations
from the cortex and hippocampus are projected and decision is made concerning
the next action, based on the fusion of the signals from other brain areas. With
proper weight selection between the components of KIV, this network can maintain
non-convergent chaotic oscillations. The balanced weights between these chaotic
networks, WA, WB, and WC provide the manner in which we can model electrical
neuronal activity found in a human EEG.

Signal Processing Methodology

Hilbert Transformations decomposes the EEG time series, one for Analytic Am-
plitude (AA), and the other for Analytic Phase (AP) [4]. Once the complex part
of the signal is calculated through Hilbert Transformations, the analytical phase
is calculated by the arctangent of the ratio of the imaginary part to the real part.
The average unwrapped phase is calculated by adding Π radians on each chan-
nel. The average unwrapped phase was marked by repeated jumps known as
“phase slip” above or below the mean difference [3]. A raster plot of the curves
and phase slip were plotted, and upward or downward deviation from the mean
differences.

Fig. 37.1 Analytic amplitude with standard deviation of phase slips
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KIV Simulations

The weights connecting the two KIII networks and the KII network are increased,
while the signal bias in the KIII is set to a value much greater value (1.5) than the
bias of the signal generated from the KII network (0.1). Noise is not added to the
network, which would normally aid in amplifying the signal to display phase syn-
chronizations [6]. Lower parameter values for the weighting between the networks,
as well as lower biases in the KIII networks did not display phase synchronizations
over time. The standard deviation of the phase differences across time display the
phase slips across the mean of the phases, see Fig. 37.2. The standard deviation of
phase differences measures the synchronization in the system. Low values of stan-
dard deviation (SDt) indicate where we would expect to find the synchronizations of
the analytic amplitude; whereas high values of SDt of the phase differences isolate
and bookend where the analytic amplitude of the phase should occur. The high val-
ues of SDt revealed the time periods when spatial patterns were changing rapidly [1].
Figure 37.3 shows a example of the oscillating SDt during a 4 s long experimental
period.

A series of experiments have been conducted with a range of initial conditions
in order to derive statistically relevant information on the phase transitions. A his-
togram of the standard deviation of the phase differences SDt is shown in Fig. 37.4a,
in semilogx coordinate.

For SDt < 0.1, the distribution is log-normal, however, the phase transitions
are manifested in a long tail of the distribution function from SDt = 0.1 to the max
value of aboutΠ rad. The tail of the distribution is analyzed in detail in Fig. 37.4b, in
loglog coordinates. A regression analysis shows, that the size of the jumps in SDt has
a scale-free fractal distribution, with regression behavior log (phase) = 0.41–0.98
log(SDt). Time domain analysis yields a waiting time of 189±89 ms between jumps,
while the jumps take just 6 ms in average.

Fig. 37.2 The 12 columns show the near-coincidence of the sudden phase jumps
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Fig. 37.3 Standard deviation of analytic phase differences across the cortical array

Fig. 37.4a–b Histogram of the phase standard deviation SDt. The left panel shows details of the
phase jumps

Conclusion

By using Hilbert transforms we were able to capture fast global synchronized spatial
patterns of amplitude modulation. Our results indicate various phase transitions in
the cortex which has been observed in EEG patients engaged in cognitive tasks.
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Chapter 38
Synchronous Firing and Its Control in Neuronal
Population with Time Delay

Xianfa Jiao and Rubin Wang

Abstract We propose a stochastic model of a neuronal population in cases where
synaptic delays and also inhibitory coupling are present. We investigate the firing
patterns and its control of a neuronal population by means of Fokker-Planck ap-
proach. Numerical simulations show that synaptic transmission delay can suppress
oscillatory synchronization of neuronal firing and enhance synchronized firing be-
havior. Neuronal stimulation also indicate that effective desynchronization occur by
external stimulation.

Introduction

Synchronous firing in a neuronal population has received considerable attention as
a possible candidate mechanism for neural information processing. For instance,
Kreiter and Singer demonstrated that neurons in the monkey brain that responded to
two independent images of a bar fired asynchronously when the bars were moving
in different directions, but fired synchronously when the same bars moved together
[1]. It appeared that two different aspects of the same object were encoded by syn-
chronous firing of neurons in a neuronal population. Eckhron, Singer have suggested
that synchronous oscillation in primary visual cortex link distant neurons involved
in representing different aspects (color, shape, movement, etc.) of the same visual
perceptions and bind together features of a sensory stimulus [2, 3].

Taking into account stochastic aspect in the nervous system, collective behaviors
of a neuronal population have been investigated by using Fokker-Planck approach
[4, 5, 6, 7, 8, 9]. Tass has investigated collective firing patterns in a neuronal
population by considering the cluster of oscillators as a model of interacting neurons,
where the single neuron is approximated by means of a phase oscillator [4].

In this paper, motivated by real nervous system where synaptic transmission de-
lay can be significant, we explore the synchronized firing patterns of a neuronal
population in cases where synaptic delays and also inhibitory coupling are present.
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Stochastic Model

We consider the dynamics of a neuronal population with excitatory and inhibitory
connection. For convenience, we assume that the coupling strength between ex-
citatory neurons is time dependent, and the coupling strength between inhibitory
neurons is a constant. The dynamical equation is described by the following set of
equations:

ψ̇i =ωi + 1

N

N1∑

j=1

Ki j M(ψ j − ψi )+ 1

N

N∑

j=N1+1

aQ(ψ j − ψi )

+ S(ψI )+ ξi (t) (38.1)

K̇i j =− 1

τ
Ki j + αH (ψ j − ψi )+ ηi j (t) (i = 1, . . . , N ; j = 1, . . . , N1) (38.2)

where ψi describes the phase of the i th neuronal oscillator, ωi is its eigenfre-
quency without mutual interacting. M(ψ j − ψi ) and Q(ψ j − ψi ) are coupling
functions representing, respectively, excitatory and inhibitory interactions. Ki j is
a time-dependent coupling strength between excitatory oscillators, the second term
on the right-hand side describes the contribution of active level of two excitatory
oscillators connected to the coupling strength, we assume that it is the function of
phase difference with amplitude α. a is a time-independent coupling strength be-
tween inhibitory oscillators. ξi (t) and ηi j (t) are random forces acting on the phase
and the coupling strength, respectively. For the sake of simplicity, the random forces
are modeled by Gaussian white noise with following first-order and second-order
moments:

〈ξi (t)〉 = 0
〈
ξi (t)ξ j (t

′)
〉 = 2D1δi jδ(t − t ′)

〈
ηi j (t)

〉 = 0,

〈
ηi j (t)ηmn(t ′)

〉 = 2D2δimδ jnδ(t − t ′)
〈
ξi (t)ηmn(t ′)

〉 = 0,

where 〈 〉 denotes an ensemble average, constants D1 and D2 are the intensities of
the Gaussian white noises.

If η is short transmission delay compared to the period of an oscillation, we
assume that the transmission delay creates only a simple phase shift in function
H, namely H (ψ j (t − η) − ψi ) = H (ψ j − ψi − θ ), the case is considered as
in [10].

To investigate the collective behavior of neural networks, in the limit of N →
∞, N1 → ∞, nE (ψ, K , t) denotes the average number density of neuronal oscil-
lators with phase ψ and coupling strength K in the excitatory population at time
t, nI (ψ, t) denotes the average number density of neuronal oscillators with phase
ψ in the inhibitory population at time t . nE (ψ, K , t), nI (ψ, t) is governed by fol-
lowing equations, which is derived as in [8].
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�nE

�t
= −ω �nE

�ψ
− �

�ψ
[nE S(ψ)]− �

�ψ

[
nE

∫ 2π

0

∫ +∞

0
K ′M(ψ − ψ ′)nE (ψ ′, K ′, t)dψ ′d K ′

]

−a
�

�ψ

[
nE

∫ 2π

0
Q(ψ − ψ ′)nI (ψ ′)dψ ′

]
+ 1

τ

�

�K
(K nE )

−α �

�K

∫ 2π

0
H (ψ − ψ ′)nE (ψ ′, K , t)dψ ′ + D1

�2nE

�ψ2
+ D2

�2nE

�K 2 (38.3)

�nI

�t
= −ω �nI

�ψ
− �

�ψ

[
nI

∫ 2π

0

∫ +∞

0
K ′M(ψ − ψ ′)nE (ψ ′, K ′, t)dψ ′d K ′

]

−a
�

�ψ

[
nI

∫ 2π

0
Q(ψ − ψ ′)nI (ψ ′)dψ ′

]
+ D1

�2nI

�ψ2 (38.4)

In order to analyze the firing pattern of neural population, we consider the marginal
probability distribution nE (ψ, t) = ∫ +∞

0 nE (ψ, K , t)d K . We took n(ψ, t) as a
number density of the same phase in the neuronal population, viz. n(ψ, t) =
nE (ψ, t)+ nI (ψ, t). For spiking neurons, a neuron is modeled by means of a phase
generating a spike whenever its phase equals ψ0, where ψ0 is a constant. Therefore,
p(t) = n(ψ0, t), called “population activity”, describes the density of firing neurons
at time t, which serves as a link between the experimentally observed firing of a
population of neurons and the ensemble dynamics.

Numerical Simulations

The functions M(x), Q(x), S(x) and H (x) are all 2π -periodic functions, which are
expanded by Fourier modes for numerical simulation. For simplicity’s sake, we take
M(x) = sin(x), Q(x) = cos(x), H (x) = cos(x), here I is stimulation amplitude.
We also assume that a coupling strength between two excitatory neurons can’t in-
crease unboundedly, in the present paper, the variation of coupling strength K is
in the interval (0, 2). Transmission delay phase θ = 0.01π . Synchronized firing
patterns in a neuronal population are represented by peaks in p(t). Numerical sim-
ulation indicates that inhibitory connection can cause the oscillatory synchronized
firing in a neuronal population (Fig. 38.1a). Whereas synaptic transmission delay
is taken into account in our model, we find that synaptic transmission delay can
decrease oscillation, and enhance synchronized firing (Fig. 38.1b).

Synchronized firing in a neuronal population is important for neuronal informa-
tion processing. However, synchronization is not always desirable. For instance,
several neurological diseases, such as essential tremor and Parkinson’s disease, are
caused by oscillatory synchronized firing in the neuronal population. To explore an
effective desynchronized neuronal firing pattern by external stimulation, we take
stimulation pattern S(x) = I cos(x) for numerical simulations. The result of nu-
merical simulation is presented in Fig. 38.2. Our result indicates that appropriate
external stimulation can effectively control synchronized firing behavior.
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Fig. 38.1 Firing patterns of the neuronal population. (a) without transmission delay, (b) with trans-
mission delay. Parameters:Ω = 2π, τ = 20, D1 = 0.5, D2 = 0.2, α = 0.01, a = 0.5, θ = 0.01π

Fig. 38.2 Firing patterns of the neuronal population with transmission delay. Parameters: Ω =
2π, τ = 20, D1 = 0.5, D2 = 0.2, α = 0.01, a = 0.5, θ = 0.01π, I = 10

Conclusions

We have taken into account the property of real neuronal population, and proposed
the stochastic model of a neuronal population in cases where synaptic delays and
also inhibitory coupling are present. We investigate the firing patterns and its control
of a neuronal population by means of Fokker-Planck approach. Numerical simula-
tions show that synaptic transmission delay can suppress oscillatory synchronization
of neuronal firing and enhance synchronized firing behavior. Neuronal stimulation
also indicate that effective desynchronization occur by external stimulation.
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Chapter 39
Sequence Memory with Dynamic Synapses and
Chaotic Neurons

Min Xia, Zhijie Wang and Jian’an Fang

Abstract A sequence memory with dynamic synapses and chaotic neurons is
proposed. Ascribing to dynamic synapses, the sequence memory has features of
short transition time and high stability of sequence. Owing to chaotic neurons, the
steady-state period in the sequence memory can be adjusted by changing the param-
eter values of chaotic neurons. Simulation results demonstrating the performance of
the sequence memory are presented.

Keywords Sequence memory · dynamic synapse · chaotic neurons

Introduction

Sequential information processing, for instance the sequence memory, plays an
important role on many functions of brain. Neural networks are often utilized to
model the sequence memory. Unlike a conventional autoassociative neural network
which evolves to settle at a stable steady state [1], a neural network model for se-
quence memory switches orderly among the patterns that stored in the network.
This requires the neural network model to have an ability to get out of a stable
equilibrium [2]. Several neural network models have been proposed to model the
sequential learning and memory [3, 4, 5, 6, 7, 8].

Based on the strategy of asymmetric synaptic weight [3] (SMAS), the present
paper first proposes a sequence memory with dynamic synapses (SMDS), then gives
a sequence memory with chaotic neurons (SMCN), finally constructs a sequence
memory with dynamic synapses and chaotic neurons (SMDSCN). The present pa-
per investigates the performances of SMDSCN by comparing it with other models
through simulation. Ascribing to dynamic synapses, the sequence memory in SMDS
has features of short transition time and high stability of the sequence. Owing to
chaotic neurons, the steady-state period in SMCN can be adjusted by changing the
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parameter values of chaotic neurons. The simulation results further indicate that
SMDSCN benefits from both the effects of dynamic synapses and chaotic neurons.

Model of the Sequence Memory

The neuron in the network is characterized by binary state {si }Ni=1 = {−1, 1}. A set
of patterns

{
xu = (xu

1 , . . . , xu
N )
}

are stored in the network, where u = 1, 2, . . . , p.
Each element xu

i is generated with prob
[
xu

i = 1
] = prob

[
xu

i = −1
] = 0.5. The

sequence consists of q stored patterns with q ≤ p.Traditional sequence mem-
ory models usually use the asymmetric synapses (SMAS). The synaptic weights
are composed of a symmetric part mc

i j and an asymmetric part wc
i j . In Eq. (39.2)

xq+1
i = x1

i .

mi j
c = 1

n

p∑

u=1

xu
i xu

j f or i �= j. (39.1)

wi j
c = 1

n

q∑

u=1

xu+1
i xu

j for i �= j. (39.2)

The state of each neuron in the network is updated as follows:

si (t + 1) =
{

1

−1
hi (t) ≥ 0,
hi (t) < 0,

(39.3)

hi (t) =
n∑

j=1

mi j (t)s j (t)+
n∑

j=1

wi j (t)
λ

G

t∑

k=1

ϕ (k)s j (k), (39.4)

where mi j (t) = mc
i j , wi j (t) = wc

i j for the model of SMAS Eqs. 1–4.
1
G

∫ G
0 ϕ(t)dt = 1. We assume ϕ(k) ≡ 1. G is the total number of time steps of

the simulation. The closeness between the s(t) and the xu is defined by:

zu(t) = 1

N

N∑

i=1

xu
i si (t). (39.5)

The synaptic weight mi j (t) and wi j (t), evolve with time t as follows [9]:

wi j (t + 1) = wi j
cr j (t) (39.6)

mi j (t + 1) = mi j
cr j (t) (39.7)
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r j (t + 1) =

⎧
⎪⎨

⎪⎩

r j (t)+ 1− r j (t)

τ1
− δ1r j (t) if s j (t) = 1,

r j (t)+ 1− r j (t)

τ2
+ δ2r j (t) if s j (t) = −1,

(39.8)

where r j (t) denotes the fraction of synaptic resources available for a postsynaptic
current, τ1, τ2 (τ1, τ2 > 1) and δ1, δ2 (δ1, δ2 < 1) are the parameters for synaptic
depression. The model of SMDS can be described by Eqs. 1–4 and 6–8.The SMCN
is constructed and is described by Eqs. 1, 2, 4, and 9–11:

hi (t + 1) = hi (t)+ βhi (t), (39.9)

ci (t + 1) =
⎧
⎨

⎩
α1ci (t)− θ1s j (t)+ a1 if s j (t) = 1,

α2ci (t)− θ2s j (t)+ a2 if s j (t) = −1,
(39.10)

si (t + 1) =
{

1 f (ci ) ≥ ζ

−1 f (ci ) < ζ
ζ ∈ (0, 1), (39.11)

where a1 ≥ 0 and a2 ≥ 0 denote the sum of the threshold and the temporally
constant external input, θ1 ≥ 0 and θ2 ≥ 0 are the refractory scaling parameters.
f (ci ) = 1/(1 + exp(−(hi (t + 1) + ci (t + 1))/ε)) is the logistic function with the
steepness parameter ε. hi (t+1) and ci (t+1) are the internal states of neuron i . α1, α2

are the decay parameters for the refractoriness, and β is the decay parameters for
the feedback inputs.The SMDSCN is described by Eqs. 1, 2, 4, and 6–11.

Simulation Results

As the transition time is defined as the time period during which the network
switches from one pattern to anther. It is denoted by Δt . Figure 39.1 shows that
the transition time for SMDS is shorter than that for SMAS. Figure 39.1 also shows
that during some steps (for example T) the network wander beyond stored patterns
of SMAS. Therefore, the stability of the sequence1 of SMDS is higher than that
of SMAS.

Figure 39.2 presents the numerical results for SMCN. The SMCN switches more
frequently between the patterns than SMAS, viz., the average steady-state period2 of
SMCN is smaller than that of SMAS. Figure 39.2 also implies that the steady-state
period can be adjusted by the parameter values of θ1 − a1 and θ2 + a2.

1 Stability of the sequence is defined in this paper as ρ = χ
/

G, where χ is the number of the time
steps, at each of which one of the stored patterns is recalled exactly.G is the total time steps of the
simulation.
2 Steady-state period defined in this paper is the period during which the network settles at one
pattern in a cycle.
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Fig. 39.1 Simulation results of SMDS and SMAS. The parameter values are N = 400, p=6, q =
4, λ = 1, G = 80, and zu(t) ≥ 0.88. The the parameters for synaptic depression in (a) are
τ1 = τ2 = 1.2, δ1 = 0.02, δ2 = 0

Fig. 39.2 Simulation results of SMCN. The parameter values are N = 300, p = 6, q = 4, λ =
1, G = 80, β = 0.12, α1 = α2 = 1, ξ = 0.26, and zu(t) ≥ 0.88. In (a) θ1−a1 = 0.5, θ2+a2 =
0.4, in (b) θ1 − a1 = 0.18, θ2 + a2 = 0.15

Fig. 39.3 Simulation results of SMDSCN. The parameter values of the chaotic neurons in SMD-
SCN (Fig. 39.3a and b) are set the same as that in SMDS (Fig. 39.2a and b, the dynamic synapses
in SMDSCN (Fig. 39.3) are set the same as that in SMDS (Fig. 39.1a)

Figure 39.3 presents the numerical results for SMDSCN. SMDSCN in Fig. 39.3
has the features of short steady-state period, which is similar to that of SMDS in
Fig. 39.2. Figure 39.3 shows that SMDSCN has also the features of short transition
time and high stability of sequence owing to the dynamic synapses. Thus, SMDSCN
possesses of both the characteristics of SMDS and SMCN.

Summary

We investigated the influence of dynamic synapses and chaotic neurons on the
performance of the sequence memory. By introducing dynamic synapses into a
sequence memory, the transition time between patterns in the sequence can be
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shortened and that the stability of the sequence can be enhanced. Owing to chaotic
neurons, the steady-state period in the sequence memory can be adjusted by changing
the parameter values of chaotic neurons.
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Chapter 40
Interacting Turing and Hopf Instabilities
Drive Pattern Formation in a Noise-Driven
Model Cortex

Moira L. Steyn-Ross, D.A. Steyn-Ross, M.T. Wilson and J.W. Sleigh

Abstract Using a recently reported analysis of gap-junction density in the cat visual
cortex, we have augmented a standard mean-field model of the cortex to include a
dense network of diffusive connections between inhibitory neurons. Provided the
diffusive connection strength exceeds a critical threshold, our augmented cortical
model predicts the spontaneous emergence of Turing structures, patterned regions
of high- and low-firing cortical activity distributed across the brain. In this paper
we demonstrate that these patterns will become self-modulating if a second model
parameter, the rate-constant for the inhibitory post-synaptic potential, is made suf-
ficiently small, allowing a low-frequency Hopf temporal instability to emerge. This
interaction between Turing and Hopf instabilities may explain the slow oscillations
in coherent brain activity observed in BOLD (blood oxygen-level-dependent) im-
agery, and may have relevance to brain pathologies which are characterized by ab-
normally low (e.g., schizophrenia) or abnormally high (e.g., Parkinson’s disease)
levels of cross-cortical neural synchrony.

Keywords Cortical modeling · pattern formation · gap junctions · schizophrenia ·
Parkinson’s disease

Background

The formation of spatiotemporal patterns in network models of the cerebral cortex
has been the focus of considerable research activity over many years (e.g., [1, 2, 3]).
Unlike these earlier continuum models that are based on neuron communication
via chemical synapses, the present work investigates the implications of incorpo-
rating a dense reticulum of electrical or gap-junction synapses linking the den-
drites of neighbouring inhibitory neurons. We have demonstrated theoretically [4]
that inhibitory gap-junction coupling can lead to the spontaneous formation of
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Turing patterns: spatially structured regions of high- and low-firing neuron activity
distributed across the brain. This prediction is based on a detailed analysis of a
standard synaptic-transmission model of the cortex that has been supplemented with
gap-junctions providing direct resistive connections between adjacent neurons. The
standard model, used previously to study the induction of anesthesia [5] and the
cycles of natural sleep [6, 7], describes the interaction behaviors of populations of
excitatory and inhibitory neurons in terms of their population-averaged firing rates
(rather than spike generation in individual neurons). It uses physiologically-based
parameters that represent the spatially averaged properties of the ∼ 105 neurons
contained within ∼1 mm3 of cortical tissue, so provides a reasonable match with
what can be measured with on-scalp or on-cortex EEG electrodes.

The incorporation of gap-junction connectivity into the standard model is
motivated by a recent report by Fukuda et al. [8] that provides convincing evidence
for dense gap-junction connectivity between inhibitory neurons in the cat visual cor-
tex, each neuron making 60 ± 12 (mean ± SD) gap-junction dendritic connections
not only with proximal inhibitory neurons, but also with distal inhibitory neurons
in adjoining orientation columns. These resistive connections provide a source of
diffusive current to the receiving neuron, supplementing the chemical-synaptic cur-
rents generated by incoming action-potential spike activity. Fukuda et al. [8] de-
scribe how the gap junctions form a dense and homogeneous electrical coupling of
interneurons, and propose that this diffusion-coupled network provides the substrate
for synchronization of neuronal populations. Our schematic representation for the
synaptic and diffusive current sources is illustrated in Fig. 40.1.
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Fig. 40.1 Cortex modelled as a 2D rectangular network of diffusively-coupled neurons. Each neu-
ron is an RC integrator of membrane resistance Rm and capacitance C . The neuron at node (x, y)
receives diffusive currents from the four neighboring diffusion cells labeled N, S, W, E. (From [4].)
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Model for Diffusive Coupling in the Cortex

Our continuum model is expressed in terms of the population-average excitatory
and inhibitory soma voltages, Ve and Vi ,

τe
�Ve

dt
= V rest

e − Ve + [ρeψeeΦee + ρiψieΦie]+ D1∇2Ve, (40.1)

τi
�Vi

dt
= V rest

i − Vi + [ρeψeiΦei + ρiψi iΦi i ]+ D2∇2Vi . (40.2)

where τe,i are the neuron time-constants, V rest
e,i are the respective resting voltages,

ρaψabΦab (with labels a, b ∈ {e, i}) are the voltage perturbations due to spike-
rate activity Φab from distant and local neurons of type a arriving at the soma of
a neuron of type b; ψab are normalized synaptic reversal-potential functions; and
ρe,i are chemical-synaptic strengths with ρe > 0, ρi < 0. The four Φab fluxes obey
second-order differential equations; two of these (for Φee and Φei ) are driven by
long-range and local spike flux, plus white-noise sources representing non-specific
cortical stimulation from the subcortex.

The terms in square brackets [. . .] are elements of the standard mean-field cortical
model whose derivation has been described in detail previously [5]. The new feature
is the addition of excitatory, (inhibitory) diffusive voltage terms D1∇2Ve, (D2∇2Vi ).
While inhibitory (i ↔ i) gap junctions are plentiful, excitatory (e↔ e) gap junctions
are rare, so we assume D1 is a small fraction of D2. Applying simple mean-field
arguments, we have derived an expression for the inhibitory coupling strength, D2,

D2 = aN gap

4
· Rm

Rg
, (40.3)

where N gap is the number of gap-junction contacts per neuron, a is the per-neuron
area of diffusive sensitivity, Rm is the membrane resistance of the soma, and Rg is
the resistance of a single gap-junction connection. Using Fukuda’s measurements
we obtain D2 = 0.6 cm2.

Predictions: Turing Structures and Hopf Oscillations

We apply a linear stability analysis, and, intriguingly, find that this D2 = 0.6 cm2

value for the diffusive coupling strength is close to the critical value required to
destabilize the homogeneous steady state: larger values of D2 cause the cortex
to crystallize into random maze-like Turing structures (see Fig. 40.2). These are
centimetre-scale spatial patterns in which regions of high-firing activity are inter-
mixed with regions of low-firing activity. Such structuring may be the basis for
the large-scale brain-activity images detected from the BOLD (blood oxygen-level-
dependent) signal reported by Fox et al. [9].
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Fig. 40.2 Selection of diffusion-induced Turing patterns in a square cortex of side 25 cm.
Inhibitory diffusion, D2, increases to the right with values a. 0; b. 1; c. 3; d. 6 cm2. Each panel
shows a snapshot of the noise-driven cortex after 4 s of evolution from a homogeneous initial
state. Panel-a shows the case of zero diffusion: the cortex organizes into a diffuse, cloud-like
pattern, but fails to generate a Turing structure. All other cases evolve into stable serpentine Tur-
ing patterns containing alternating regions of low- (blue) and high-firing (red) states. (Modified
from [4].)

Thus strong inhibitory diffusion can provoke a Turing instability. From previous
work [7], we know that the standard cortical model possesses a low-frequency
(∼ 1 Hz) Hopf instability that emerges when γi , the rate-constant for the IPSP (in-
hibitory post-synaptic potential) is reduced (i.e., the time-to-peak for the hyperpo-
larizing GABA response is delayed). This raises the interesting possibility that the
Hopf and Turing instabilities might interact to produce modulated Turing patterns
whose amplitudes oscillate at the slow Hopf frequency. This is illustrated in the
Fig. 40.3 firing-rate time-series recorded for 30 sample points, regularly spaced
across the 25-cm width of the model cortex: the evolution into stable “up” (ac-
tive) and “down” (quiescent) firing states in Fig. 40.3a is replaced by a coherent
whole-cortex slow oscillation of patterned neural activity in Fig. 40.3b.
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Fig. 40.3 Ten-second simulation runs showing that the precipitation into stable Turing states in
(a) is replaced by Turing structures that oscillate in place when the Hopf instability is triggered.
Settings: (a) γi = 58.6 s−1; (b) γi = 29.3 s−1. Diffusion strength is D2 = 1.0 cm2 for both
runs
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Clinical Relevance

There is now a body of clinical evidence suggesting that unusual gap-junction
densities in the brain might be relevant to certain neural pathologies such as
schizophrenia and Parkinson’s disease. The neurotransmitter dopamine – a po-
tent gap-junction blocker [10] – is implicated in both of these brain dysfunctions:
dopamine is present in excess in schizophrenia patients, and is markedly deficient in
the brains of Parkinson’s sufferers. For the schizophrenic brain, our theory predicts
that the excess dopamine will close gap junctions and disrupt Turing formation,
diminishing the likelihood of long-range correlated neural activity. This prediction
is consistent with recently reported observations from fMRI/BOLD studies that
schizophrenics exhibit weaker low-frequency correlations between specific regions
of the cortex than is observed in normals [11]. This lack of long-range synchrony is
also seen in the EEG signals recorded from schizophrenics [12].

Reversing our prediction for the case of Parkinson’s disease, if the dopamine
is present in levels far below normal, then the gap-junction-mediated Turing con-
nections might become “too strong,” plausibly resulting in the abnormal levels of
synchronous neuronal firing that typify Parkinsonian tremors.
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Chapter 41
Context-Dependent Processing
of Spatiotemporal Patterns Based
on Interaction Between Neurodynamical
Systems

Takashi Hasuo, Ken Yamane and Masahiko Morita

Abstract Dynamics of traditional neural network models are generally time-invari-
ant. For that reason, they have limitations in context-dependent processing. We
present a new method, dynamic desensitization, of varying neurodynamics continu-
ously and construct a basic model of interaction between neurodynamical systems.
This model comprises two nonmonotone neural networks storing sequential patterns
as trajectory attractors. The dynamics of respective networks are modified according
to the states of other networks. Using numerical experiments, we also show that
the model can recognize and recall complex sequences with identical patterns in
different positions.

Introduction

The brain can be regarded as an assemblage of dynamical systems comprising many
neurons that perform spatio-temporal pattern processing. Consequently, neurody-
namical systems comprising artificial neural networks with recurrent connections
and continuous-time dynamics are thought to offer great potential for brain-like
information processing. However, existing neurodynamical systems have limited
capability, particularly in terms of context-dependent processing.

Two explanations for this limited ability are the following. First, the dynamics
are usually time-invariant (at least in the short run). For that reason, the system
always makes the same transition at the same state unless it receives external in-
put. Second, no appropriate method is known for making different neurodynamical
systems interact. If two networks are interconnected in a usual manner, they consti-
tute a single neurodynamical system with time-invariant dynamics, rather than two
different systems. In such a case, the influence of system A on system B depends on
the state of A, but not on that of B.
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In this paper, we propose a method of varying the dynamics of a recurrent neural
network according to another network. We construct a model for context-dependent
processing such as recognition and recall of complex sequential patterns.

Dynamic Desensitization

As a method of varying the dynamics of a neural network discretely, Morita et al.
[1] proposed selective desensitization. This method desensitizes about half of the
neurons or renders their output as neutral, depending on a given modification pat-
tern. Through this operation, the modified state of the network is projected onto
a subspace of the state space, and produces transitions according to the dynamics
in the subspace. If trajectory attractors [2] are formed in different subspaces, the
network state reaches different target patterns according to modification patterns, as
shown schematically in Fig. 41.1a.

In this model, however, the modification pattern is restricted to a static pattern so
that trajectory attractors can be formed within individual subspaces. For that reason,
we call this “static desensitization.”

Here we propose “dynamic desensitization” by extending the modification pat-
tern of static desensitization to a dynamic or spatiotemporal pattern. Then the set
of desensitized neurons, or the subspace onto which the network state is projected,
varies continuously with time, as depicted in Fig. 41.1b. In this case, a single trajec-
tory attractor to the target state cannot be formed. If the change of the modification
pattern is sufficiently slow, however, the network state makes short transitions in
each of a series of subspaces and can thereby reach the target.

Model

Using the method described above, we constructed a basic model of interaction
between neurodynamical systems (Fig. 41.2). This model consists of two nonmono-
tone neural networks that have the same number of neurons and obey the same
dynamic equation.

Fig. 41.1 Methods of varing
neurodynamics: Thick arrows
represent trajectories of the
network state. Planes
represent subspaces. The
dashed arrows represent
trajectory attractors in the
subspaces

C
1

C 2

c(t)
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Fig. 41.2 Model structure

Specifically, the i-th neuron (i = 1, . . . , n) of either network acts according to

τ
dui

dt
= −ui +

n∑

j=1

wi j y j + zi , yi = g(vi ) · f (ui ), (41.1)

where ui denotes the instantaneous potential, yi is the output, zi is the external input.
In addition, wi j represents the synaptic weight from the j-th neuron of the same
network, vi is the instantaneous potential of the corresponding neuron of the other
network, and τ is a time constant. Also, g(vi ) is a sigmoid function which takes a
value from 0 to 1, and f (ui ) is a nonmonotonic output function [2]. If vi takes a
positive large value, the output is yi � f (ui ), but if vi takes a negative large value,
then g(vi ) and yi are nearly zero, which means that the neuron is desensitized. Here
we consider xi ≡ sgn(ui ) (sgn(u) = 1 for u > 0 and −1 for u ≤ 0) and refer to the
binary vector x = (x1, . . . , xn) as the current state of the network.

The two networks have a similar structure, but they differ in function (Fig. 41.3).
One network receives an input of complex spatiotemporal patterns from the outside
and stores them. This network is termed the input part, but it also shows the re-
called pattern when no input pattern is fed. The other network, termed the context
part, does not receive the external input directly, but it autonomously changes its
state from a fixed initial state O ′, via some branch points, to a terminal state Cμ in
accordance with the state transitions of the input part.

Computer Simulation

We carried out simulation experiments using the 10 spatiotemporal patterns s1, . . . ,

s10 presented in Table 41.1. Their dimensions (and size of each network) were
n = 800 and their temporal length was T = 20τ . We also generated cμ =
{O ′ • • • Cμ}T (μ = 1, . . . , 10) corresponding to sμ, where • represents a branch
point described above. Subsequently, we trained the model by giving sμ and cμ as



234 T. Hasuo et al.

Fig. 41.3 State transition
diagram
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C D
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O

Table 41.1 Input sequences: Letters represent n-dimensional binary patterns selected randomly;
{O ABC D}T denotes a spatiotemporal pattern changing from a pattern O via A, B and C into D
over a period of T . Each trajctory overlaps with others in every unit section, e.g., {AB} is included
in s1, s2 and s3, and {BC} is included in s1, s2 and s5

s1 = {O ABC D}T s2 = {O ABC B}T
s3 = {O AB DC}T s4 = {O AC B D}T
s5 = {O BC B D}T s6 = {O B D AC}T
s7 = {OC ADB}T s8 = {OC AD A}T
s9 = {O D ADC}T s10 = {O DC D A}T

learning signals to the input and context parts, respectively, to store them as trajec-
tory attractors (see references [2] and [1] for the learning algorithm).

After completion of 30 training cycles, we gave various input patterns and ex-
amined the behavior of the model. Figure 41.4 presents two examples in which (a)
s2 was fed with 10% noise and with temporal expansion and contraction, and (b)
only short sections of s9 were fed. The state of the context part reaches C2 in (a)
and C9 in (b), meaning that the model recognized the input pattern as s2 or s9. It is
also apparent that a spatiotemporal pattern similar to the original is recalled in the
input part.

This result, together with those of many other experiments, indicates that the two
networks act autonomously and cooperatively through mutual dynamic desensitiza-
tion.

Concluding Remarks

We have proposed a dynamic desensitization method to modify a neurodynamical
system using another system. We have also shown that two systems which are inter-
connected by this method can recognize and recall complex sequences with many
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overlapping sections, even if they have substantial noise, have some blank sections,
or are temporally expanded or contracted.

Interaction through dynamic desensitization differs greatly from interaction
which takes place through ordinary synaptic connections between neurons: the in-
fluence on dynamics of one system depends on the states of both systems. This
method also presents an advantage in that the number of interconnections required
is merely n. By developing this method, more than two neurodynamical systems
can interact to provide more powerful capability, which remains as a subject for
future study.
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Chapter 42
The Synchronization and Associative Memory
of Izhikevich Neural Network

Wei Zhang, Qingli Qiao, Xuyuan Zheng and Xin Tian

Abstract A new neural network with Izhikevich neuron model and Hopfield-like
structure is presented in this paper. The stored memory patterns are coded with
the connection weight. The output of network is represented by the synchronous
periodic firings in the network. When the network is presented with two corrupted
input patterns, the stored memory pattern can be retrieved through the associative
memory. It is shown that synchronization plays an important role in the associative
memory of the brain.

Keywords Synchronization · associative memory · Izhikevich neuron model

Introduction

There are as many as 1011 neurons in the human brain, and each can have more
than 10,000 synaptic connections with other neurons. Individual neurons may show
irregular behavior, while ensembles of neurons can synchronize in order to process
biological information or to produce regular, rhythmical activity [1].

Synchrony is observed in many situations both in the laboratory and in nature.
The pendula of identical pendulum clocks placed near to each other are known to
synchronize due to extremely weak coupling from air movements and vibrations.
Synchrony also occurs between organisms. In the brain, synchrony of spikes plays a
critical role in the processing of information, and it is the foundation of associative
memory [2, 3]. The synchronization occurred when there is noise in the system.

Feeble input information (such as a weak signal) can be amplified and optimized
by the assistance of noise, that is the so called stochastic resonance [4]. Stochastic
resonance is important in neurobiology. It can help us to understand the role of noise
in neural coding.

In this paper, a neural network composed of 200 Izhikevich neuron models is
presented that can implements the retrieval of stored memory patterns and use

Q. Qiao
Department of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, P.R. China
e-mail: qlqiao@gmail.com

R. Wang et al. (eds.), Advances in Cognitive Neurodynamics,
C© Springer Science+Business Media B.V. 2008

237



238 W. Zhang et al.

the spatio-temporal coding mechanism to process information. The stored memory
patterns are represented by the synchronous periodic firings in the network. It will
help us to understand the mechanisms of associative memory of real brains.

The Neural Network Model

Izhikevich neuron model proposed recently by Izhikevich [5] combines the biolog-
ically plausibility of Hodgkin–Huxley-type dynamics and the computational effi-
ciency of integrate-and-fire neurons. Depending on four parameters, the model can
reproduce spiking and bursting behavior of known types of neurons.

The structure of the network is shown in Fig. 42.1:
The structure of the network is similar to the Hopfield neural network [6, 7, 8].

The differential equations of the neuron models in the neural network are [9]:

v′i = 0.04v2
i + 5vi + 140− ui + γ Ii +

N∑

j=1

wi j (v j − veq )+ ξi (t) (42.1)

u′i = a(bvi − ui )

(42.2)

Fig. 42.1 The structure of the neural network
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If vi ≥ 30, then

{
vi ← c

ui ← ui + d
(42.3)

{
ξi (t)ξ j (t

′)
} = Dδi jδ(t − t ′) (42.4)

Where vi and ui are dimensionless variables, and ′ = d/dt, where t is the time;
The variable vi represents the membrane potential of the neuron i; v j represents
the membrane potential of the neuron j; and ui represents a membrane recovery
variable of the neuron i, which provides negative feedback to vi . Synaptic currents
or injected dc-currents are delivered via the variable Ii . a = 0.02; b = 0.2; c =
−65; d = 8; ξi (t) is Gaussian white noise; wi j is the connection weight from
neuron j to neuron i, veq is the equilibrium value.

According to the Hebbian paradigm [10]:

wi j = σ

Na0(1− a0)

P∑

μ=1

(ζ u
i − a0)(ζ u

j − a0) (42.5)

where σ is the connection strength; a0 is the mean value of all the input patterns
of all the neurons; N represents the number of neurons in the neural network; ζ u

i
represents the memoried patterns of the network, P represents the number of the
stored memory patterns.

The external input γ Ii is:

Ii = xiθ (t), xi ∈ {0, 1} (42.6)

θ (t) =
{

1, t ≥ 0

0, others
(42.7)

Where xi is the binary factor which determines whether the input is injected to the
i-th neuron or not, γ is the strength of external input.

The Storage and Retrieval of Memory Patterns

In our network, the stored memory is represented by the synchronous periodic fir-
ings of the neurons which store 1’s. The storage and retrieval of memory patterns is
achieved through the synchronous periodic firings of the neurons in the network.
The stored memory pattern is defined as follows:

ζ =
{

1 100 ≤ i ≤ 150

0 others
(42.8)

Where i represents the index of the neuron. The stored memory patterns are coded
with the connection weight in the network.
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When the input to the network is:

ζin1 =
{

1 110 ≤ i ≤ 150

0 others
(42.9)

The output of the network is presented in Figs. 42.2 and 42.3, from which it can be
shown that the neurons in the range from 100 to 150 fire synchronously, it means
the memory and retrieval of the stored memory pattern ζ is successful.

Fig. 42.2 The firing times of all the neurons when: D = 0.002, γ = 0.32, σ = 0.6

Fig. 42.3 The firing times of all the neurons when: D = 0.005, γ = 0.32, σ = 0.6
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When the input to the network is:

ζin2 =
{

1 90 ≤ i ≤ 150

0 others
(42.10)

The neurons in the range from 100 to 150 fire synchronously too, it means that
the associative memory and retrieval of the stored memory pattern ζ is successful
too when the network is presented with another corrupted input pattern ζin2.

Conclusion

In this paper, a network composed of Izhikevich neuron model is presented with
a structure similar to that of the Hopfield network, in which memory patterns are
coded with the connection weight.

In the experiment, the stored memory patterns composed of 0/1 digits are re-
trieved through the synchronous periodic firings in the network. Adding proper
amount of noise can enhance spatiotemporal patterns. Synchrony of spikes plays
a critical role in the associative memory of human brain.

Due to the extreme computational simplicity of the Izhikevich neuron model, we
can simulate networks consisting of thousands of spiking neurons in real time with
1 ms resolution.
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Chapter 43
Connectivity Dependent Effects in Cognitive
Neurodynamics of Mental Disorders

Hans Liljenström and Yuqiao Gu

Abstract Computational modeling was applied to investigate how cortical neuro-
dynamics may depend on network connectivity. In particular, we study effects of
pruning of cortical networks, which may be related to the onset of different mental
disorders. In addition, we study changes in EEG pattern of depressed patients, fol-
lowing ECT (electroconvulsive therapy). The aim is to gain a better understanding
of the neural mechanisms responsible for these changes, which include phase shifts
in the EEG dynamics. This understanding is intended to provide clinical guidance,
predicting ECT dose and response in depressed patients. Finally, we discuss the
relevance of these results to clinical and experimental neuroscience and speculate
on a link between neural instability and mental disorders.

Keywords Neurodynamics · network connectivity · EEG · ECT · pruning · mental
disorder · computational models

Introduction

It appears that some mental disorders and their treatments are related to the connec-
tivity pattern in various cortical structures. In particular, it has been hypothesized
that the onset of pruning of the cortical neural networks is related to maturation
and possible mental disorders [1, 2]. In the last major step in brain development,
some 40% of the neuronal synapses are eliminated. When the pruning is shut down
too soon (early maturers), according to this hypothesis, the synaptic density will be
high and could be subject to mutual electrochemical influences. These tend to syn-
chronise neighbouring neurons, which might be locked into a pattern of paroxysmal
activity which complicates central nervous system (CNS) function. In contrast, in
late maturers the synaptic density will be below optimal, because of failure to shut
down the pruning process. The reduced synaptic density and the associated tendency
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to desynchronisation could lead to a general break-down of circuitry. Both too early
and too late shut down of the pruning process could lead to mental disorders. In
early maturers, mano-depressive psychosis is more common, while late maturers
more often get schizophrenia [1].

When it comes to clinical treatment, electroconvulsive therapy (ECT) is one of
the most successful treatments of depression and other mental disorders, presumably
by altering the cortical connectivity [3, 4]. ECT stimulus can generate an intracere-
bral current flow to induce a generalized seizure in the CNS [3]. Clinical ECT EEG
data show complex neurodynamical patterns, but the anatomic and physiological
mechanisms behind such dynamical patterns are poorly known [5].

We have used computer models of cortical network structures, in order to in-
vestigate the effect of connectivity changes on system performance [6, 7, 8]. The
objective of our studies is to gain a better understanding of the neural mechanisms
correlated with changes in mental states and processes, which include phase shifts
in the EEG dynamics. This understanding is intended to provide clinical guidance,
for example by predicting ECT dose and response in depressed patients.

Cortical Network Models

We have used computational models of the three-layered distributed structure of
paleocortex [6] and the six-layered, columnar structure of neocortex [7, 8] to inves-
tigate the relation between structure, dynamics and function of these systems, with a
focus on maintenance of the balance between stability and flexibility in such systems
and the response to external and internal disturbances. For our paleocortical model,
we have used Hopfield-type of network nodes, with a continuous input-output re-
lation, mimicking the firing density representing populations of neurons. For our
neocortical model, we have primarily used spiking neuronal model of Fitzhugh-
Nagumo type. The mean activity in both types of networks has been taken as the
cortical neurodynamics, relating to the observed EEG signals. The connectivity pat-
tern of the networks resembles the anatomy of the real structures, with excitatory
and inhibitory neurons with varying properties.

Network connectivity is varied in terms of cell types and number of neurons and
short and long distance connections. In particular, we investigate how a variation
in the balance between excitation and inhibition affects the network dynamics. By
varying the connectivity patterns, we mimic the effects of sprouting, pruning and
synaptic modification that are supposed to be related to the processes involved in
shifts between mental stability and instability. Details are given in references [6, 8].

Simulation Results

Effects of Network Pruning

With reference to the pruning hypothesis, the connectivity effects that we found with
our computer simulations could point at a shift in the balance between stability and
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flexibility of the neural networks of the brain, which possibly could be reflected in
a similar shift at a cognitive/mental level. It is also conceivable that a suboptimal
timing of the extensive pruning process that occurs during development could well
have an effect on the stability-flexibility balance of the mental processes in later
stages of life.

Our simulations showed that the system is extremely stable against network prun-
ing, maintaining much of its learning capacity even when a majority of the initial
connections were pruned away. However, when pruning was applied, synchroniza-
tion of network activity was increased. A pruned network is also more efficient in
terms of energy usage (less synapses involved) and network activity levels, and it
gives a more accurate learning/recall. However, pruning results in a less flexible net-
work, where fewer patterns can be stored, as the number of modifiable connections
is reduced.

The simulations further show that a regulated complex neurodynamics, which
can shift its balance between sensitivity and stability, can result in an efficient in-
formation processing. A high interconnectivity, with extensive long-range excita-
tory connections, and more local inhibitory connections, can be extremely robust
to network pruning and external or internal fluctuations. An oscillatory dynamics,
resulting from a proper balance between excitation and inhibition, is another factor
that provides both flexibility and stability to the system. In addition, such a dynamics
is more energetically advantageous than a non-oscillatory dynamics.

Simulation of ECT Effects

Our simulations with ECT EEG showed a rather good resemblance with clinical
data where the changes in mean activity of our network Neurodynamics resembled
the change in EEG of patients treated with ECT. By changing the connectivity, we
obtain network structures that react on ECT in a way resembling the clinical signals
in a real situation (Fig. 43.1). By mimicking the assumed re-generation of neurons
and forming of new connections, as a result of ECT, we find changes in the neu-
rodynamics corresponding to the changes seen in subsequent EEG traces during a
normal three week ECT treatment.

We found that the collective dynamics of neurons varies with connection topology
and neuron density in different layers, the balance between excitatory and inhibitory

Fig. 43.1 The mean membrane potential of excitatory neurons in layer VI neurons. (a) Shows the
effect of long-distance excitatory lateral connections. (b) Shows the effect of density and long-
distance inhibitory connections. The decreased neuron density in layers V and VI result in higher-
amplitude synchronous oscillations in these two layers
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strength and neuronal intrinsic parameters. The collective dynamical behavior not
only depends on the structure and parameters of the network but also depends
on the neuronal intrinsic oscillatory property and external input. From this multi-
dependence feature we postulate that the collective dynamics of the cortex after
external stimulation is kind of a “resonance” between the network, neuronal oscil-
lators and external input.

Discussion

We have used two types of computational models of cortical networks to investigate
the role of synaptic connectivity for system performance. In particular, we have used
these models to address the stability-flexibility dilemma of neural systems, assum-
ing a close relation between neural processes and mental processes and disorders.

An efficient neural information processing supposedly requires an appropriate
balance between flexibility and stability of the system. Ideally, the balance can
shift depending on internal and external circumstances. Our computer simulations
show that a regulated complex neurodynamics, which can shift its balance between
sensitivity and stability, can result in an efficient information processing. A high
interconnectivity, with extensive long-range excitatory connections, and more local
inhibitory connections, can be extremely robust to network pruning and external
or internal fluctuations. An oscillatory dynamics, resulting from a proper balance
between excitation and inhibition, is another factor that provides both flexibility and
stability to the system. In addition, such a dynamics is more energetically advanta-
geous than a non-oscillatory dynamics.

In addition to more or less permanent changes in connectivity, also effects of
synaptic modification due to neuromodulators, or a change in synaptic efficacy
could result in more temporary and reversible connectivity changes. We have used
our computational models also for investigating such effects, which has been re-
ported elsewhere. Finally, our simulations show that a certain amount of disorder is
beneficial for the system, and optimal levels of randomness have been found. Too
much order can clearly be detrimental to the system (e.g. by getting stuck in a limit
cycle attractor, corresponding to a repetitive cognitive or motor behavior).
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Chapter 44
Corticopetal Acetylcholine: A Role
in Attentional State Transitions and the Genesis
of Quasi-Attractors During Perception

Hiroshi Fujii, Kazuyuki Aihara and Ichiro Tsuda

Abstract The Role(s) of corticopetal acetylcholine (ACh) in perception and
conscious flow is largely unknown. The attention hypothesis may well be estab-
lished experimentally. The aim of this talk is to give a small review, and then try to
extend further the arguments, on the role of corticopetal ACh in perception from a
dynamical systems standpoint, to search for its possible role in perceptual binding,
and in the transient genesis of quasi-attractors through the mechanism of changing
synchrony.

Keywords Corticopetal acetylcholine · nucleus basalis of Meinert · complex
hallucinations · perceptual binding · attentions · binding through synchrony ·
quasi-attractors · muscarinic receptor · cortical state transitions

Corticopetal Acetylcholine: Backgrounds

Corticopetal Cholinergic Afferents Originating in the NBM are
Critical to Attentional Processing

Recent evidence shows that acetylcholine (ACh) is involved, not only in global brain
activation during arousal, but also in mediating attentional mechanisms based on the
nucleus basalis of Meynert (NBM) situated at the basal forebrain (BF).

A blockage of NBM ACh, either by disease-related or drug-induced, causes a
severe loss of attentions: selective attention, sustained attention, and divided at-
tention, together with a shift of attention. Also studies using immunotoxin provide
consistent evidence of the role of ACh in attentions. For example, ACh release at
mPFC is reported to depend strongly on cholinergic neurons of NBM (but, not of
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the diagonal band of Broca), and this circuit is essential in maintaining sustained
attention [1].

Sarter et al. [2] hypothesize that cholinergic inputs from NBM might be the
critical control system which may trigger various kinds of attentions receiving con-
vergent inputs from other sensory and association areas.

Cholinergic Drugs and Hallucinogenesis

Lewy Body Dementia (LBD) is a disease caused by a continual death of cholinergic
cells in NBM. One of the most salient symptoms of LBD patients is complex visual
hallucinations (CVH).1

Perry and Perry [3] reported a parallelism between hallucinations by LBD and
muscarinic blockade. Images are generally vivid and colored, continues for a few
minutes (neither seconds nor hours). It is noted also that many of these hallu-
cinatory experiences are enhanced during eye closed and relieved by visual in-
put, and nicotinic antagonists, such as mecamylamine, are not reported to induce
hallucinations.

Attention Induces State Transitions with Changing Synchrony
in Collaboration with Glutamatergic and Cholinergic Afferents

Attention Causes a ‘Local’ Transition of Cortical States

Fries et al. [4] observed increase of synchrony in high-gamma range in accordance
of selective attention. (See, also Buschman et al. [5], and Niebur et al. [13].) Kay
et al. [6] observed a cascade of brain events at the successive stages of the task as
‘expectation’ and/or ‘attention’ during perceptual processing in a local brain sys-
tem, that is, the olfactory-limbic axis. They observed ‘local’ transitions of cortical
states indicated by modulations of the structure of EEG signals as gamma amplitude,
periodicity, and coherence in the olfactory structures. They also observed the local
dynamics transiently falls into attractor-like states. Such ‘local’ transitions of states
were postulated to be triggered by ‘top down’ and ‘bottom up’ communications by
means of glutamatergic spike packets.

However, as we shall explain later, such brain events including the changing syn-
chrony could be a result of collaboration of glutamatergic spike volleys and ACh
afferents from NBM.

1 Perry and Perry [3] gave a comparative description of mental symptoms of LBD as compared
with those caused by ACh blockade by muscarinic antagonist scopolamine or atropine. The authors
noted those hallucinatory LBD patients who see ‘integrated images of people or animals which
appear real at the time’, ‘insects on walls’, or ‘bicycles outside the fourth storey window’.
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Posterior Cortical-Prefrontal-BF Circuitry

Golmayo et al. [7] made an electrophysiological study suggesting the existence of a
parietal cortex → prefrontal cortex → NBM → sensory cortex triangular amplifi-
cation circuit, which may modulate sensory responses in visual and somatosensory
cortical areas in rat. The triangular circuitry consists of modules that target spe-
cific control areas. Region-specific regulation of cortical functions recruited by the
prefrontal cortex (PFC), enhances detection, processing of stimuli of a particular
modalty.

Attention and Dynamical Binding Through Synchrony

In order that perception of an object makes sense, its features must be bound as
a unity. As has been suggested in Treisman and Gelade [8], binding may require
‘attention’. Before the arrival of attention, features are ‘free floating’. (See also,
[9].) If attention is diverted, arbitrary rearrangements of binding might appear as a
dramatic breakdown of bindings shown by some neurological patients.

Before the arrival of attention, ‘internal states’, or ‘fragmental’ cell assemblies,
activated by external stimuli which may represent features are free floating. Bind-
ing of mosaics of fragmental cell assemblies, and large-scale integration of brain
activity representing stimuli or events are mediated by synchrony over multiple
frequency bands [5, 6, 10]. The emergent integrated state induced by top down
attention through synchrony is a ‘transiently stable’ state. We may regard such pro-
cesses as the basic brain dynamics in perception, and might be conceptualized as a
‘quasi-attractor’ state. The function of the muscarinic receptors, mAChR could be
regarded as a slow variable which may control the transitions of the system state. In
fact, most neurons alter their resting potential when glutamatergic action potentials
concomitantly arrive with ACh afferents. The activation of mAChR is a process
with a slower onset and longer lasting process providing G-protein-coupled second
messenger generation.

Hasselmo and McGaughy [11] emphasize the ACh role in memory as: ‘high
acetylcholine sets circuit dynamics for attention and encoding; low acetylcholine
sets dynamics for consolidation’, which is based on some experimental data on
selective pre-synaptic depression and facilitation.

However, in view of the potential role of attentions in local bindings or global
integrations, we may pose an alternative (but not necessarily exclusive,) scenario
on the ACh function as temporarily modifying the quasi-attractor landscape, in col-
laboration with glutamatergic spike volleys.

Hypothesis and Discussions

We hypothesize that a possible role of corticopetal ACh in perception is to work as
a prompter for state transitions and changing synchrony through top down attention.
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Top down attention may trigger corticopetal ACh projections through the
posterior cortex – PFC – NBM attentional circuitry. Evidence accumulates that
binding and large-scale integration of brain activity representing stimuli or events
are mediated by synchrony over multiple frequency bands [5, 6, 10]. The temporal
organization of a transiently stable state functionally connected by a large-scale
transient synchrony could be conceptualized as an orbit approaching to a state of
quasi-attractor.

How can corticopetal ACh transiently modify synchrony and, the landscape of
quasi-attractors? What are the basic means for organizing such brain events? Pos-
sible means are, first, post-synaptically by changing the level of resting potentials
of neurons, and second, pre-synaptically by selectively modifying synaptic trans-
missions. The former might cause modification of collective behavior of cell assem-
blies, and the latter might modify connectivity within, e.g., layer 2 of the cortex, and
also effective inter-layer connectivity, and probably between thalamic relay cells and
the layer 4 neurons causing facilitation/depression of thalamocortical projections.

Such hypothetical arguments must be verified by both experimental and model-
based theoretical studies with a focus on state transitions and transient synchrony
at the workfront of ACh, i.e., the cortical six layers. However, the situation around
experimental data appears to be so complicated. Gullege et al. [12] challenged the
classical data because of unrealistic assumptions on ‘default’ ACh concentrations
in the in vivo brain. The function of GABAergic projections from NBM, which are
believed to be twice more abundant than cholinergic projections, is another indeter-
minate factor.

Together with those studies, understanding of the complex hallucinations would
give us an insight how ‘normal’ perceptions and conscious flow may take place in
the human brain, and should be an important subject of future studies.
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Chapter 45
Cortical Anatomy and the Spatiotemporal
Learning Rule

J.J. Wright and P.D. Bourke

Abstract A model of the self-organization of synapses in the visual cortex is pre-
sented. Subject to Hebbian learning with decay, evolution of synaptic strengths
proceeds to a stable state in which all synapses have either maximum, or mini-
mum, pre/post-synaptic coincidence. The most stable configuration gives rise to
anatomically realistic “local maps”, each of macro-columnar size, and each or-
ganized as Mobius projections of retinotopic space. A tiling of V1, constructed
of approximately mirror-image reflections of each local map by its neighbors is
formed, accounting for orientation-preference singularities, linear zones, and saddle
points—with each map linked by connections between sites of common orientation
preference. Ocular dominance columns, the occurrence of direction preference frac-
tures always in odd numbers around singularities, and effects of stimulus orientation
relative to velocity of motion, are accounted for. Convergence to this configuration
is facilitated by the spatio-temporal learning rule.

Introduction

We have presented a theoretical account of the self-organization of synapses during
development of the visual cortex (V1) [1]. This theory deduced the most stable con-
figuration of synapses to emerge under a Hebbian learning rule. No consideration
was given to pre-synaptic interaction, nor was a specific physiology of synaptic
modification invoked. The spatiotemporal learning rule [2, 3] – which was devel-
oped in relation to work in the hippocampus – allows for pre-synaptic interactions,
and relates pre- and post-synaptic interactions to long-term-potentiation (LTP) and
depression (LTD). This paper summarizes the earlier theory of V1 self-organization,
and concludes with comments on the relevance of the spatiotemporal rule in this
further anatomical context.
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Theory

Synaptic Densities in V1

In V1 and cortex generally, the density of synaptic couplings generated by each
neuron declines with distance from the soma of the cell of origin, at two princi-
pal scales – that of the local intra-cortical connections (at the V1 macrocolumnar
scale), versus the longer intracortical connections spanning a substantial fraction
of the extent of the V1, which are continuous with interareal connections [4, 5, 6].
Via polysynaptic transmission, information can reach each macrocolumn-sized area,
from the whole, or a substantial part, of V1, thus modulating direct visual pathway
inputs. We will describe the emergent unit organization on the smaller, macrocolum-
nar, scale as the local map, and V1 itself as the global map.

Visual Cross-Correlation and Synchronous Fields

Because of the decline of synaptic density with distance, the spatial covariance of
activity (synchronous oscillation) between any pair of pyramidal neurons in V1 de-
clines with distance [7, 8, 9, 10]. Visual stimuli exhibit a decline in spatial covari-
ance with distance, and impose this property upon activity in V1. Thus, covariance
of activity in V1 declines with distance at both the global, V1, scale, and the local,
macro-columnar, scale, and as will be shown, this provides a metric for organization
of connections.

Learning Rule

A simple Hebbian rule, with decay can be initially applied. At each synapse the
co-incidence of pre and post synaptic activity, rQϕ , over a short epoch, t , is given by

rQϕ(t) ∝
∑

t
Qe(t)× ϕe(t) (45.1)

where Qe(t) ∈ {0, 1} is the post-synaptic firing rate, and ϕe(t) ∈ {0, 1} is the pre-
synaptic firing rate. A Hebbian multiplication factor, Hs , operating on the gain of
synapses at steady states of pre- and post-synaptic firing is given as

Hs = Hmax exp
[− λ/rQϕ

]
(45.2)

where λ is a suitable constant. With changes in rQϕ, Hs can increase or decline
over time.
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Stability at Individual Synapses

It is shown in [1] that under this learning rule synapses can approach a stable state,
only by approaching either one of two extremes – either saturated or sensitive.

In the saturated state, Hs and rQϕ are at maxima, while in the sensitive state, Hs

and rQϕ are at minima. Conversely, d Hs
drQϕ

, the sensitivity to change in synaptic gain,
is at a minimum for saturated synapses and a maximum for sensitive synapses –
hence the choice of the names. No specific physiological state was assumed as the
basis of saturation or sensitivity.

Metabolic Uniformity

Competition occurring for metabolic resources within axons adds a constraint to
Hebbian rules [11]. Metabolic energy supply of all small axonal segments remains
approximately uniform, while the metabolic demand of saturated synapses, which
have high activity, will be much greater than for sensitive synapses. Therefore the
proportion of saturated and sensitive synapses must be approximately uniform along
axons, and consequently the densities of both saturated and sensitive synapses must
decline with distance of pre-synapses from the cell bodies of origin.

The Impact of Distance/Density and Saturation/Sensitivity
on Overall Synaptic Stability

All positions in V1, {Pj,k}, can be given an ordered numbering in the complex
plane, 1 . . . , j, . . . , k, . . . , 2n, and all positions within a macrocolumn located at
P0, {Pj,k}, can be similarly numbered. The total perturbation of synaptic gains for
the synapses from V1 entering the macrocolumn, 
(pP), and the total perturbation
of synaptic gains within the macrocolumn, 
(pp), can thus be written as


(pP) =
j=n∑

j=1

k=n∑

k=1

σS AT (p j Pk)SS AT (p j Pk)+
j=n∑

j=1

k=n∑

k=1

σSE N S(p j Pk)SSE N S(p j Pk)

(45.3)


(pp) =
j=n∑

j=1

k=n∑

k=1

σS AT (p j pk)SS AT (p j pk)+
j=n∑

j=1

k=n∑

k=1

σSE N S(p j pk)SSE N S(p j pk)

(45.4)

where σS AT (p j Pk, p j pk) and σSE N S(p j Pk, p j pk) are densities of saturated and sen-
sitive synapses respectively, and SS AT (p j Pk, p j pk) and SSE N S(p j Pk, p j pk) are the
corresponding variations of synaptic gains over a convenient short epoch.
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Since densities of synapses decline with distances of cell separation, then as a
simple arithmetic property of sums of products, minimization of 
(pp) requires
neurons separated by short distances to most closely approach maximum satura-
tion, or maximum sensitivity. Yet metabolic uniformity requires that both sensitive
and saturated synaptic densities must decline with distance from the cell bodies
of origin, and remain in equal ratio. An apparent paradox arises, since sensitive
synapses must link pre- and post-synaptic neurons with minimal pre- and post-
synaptic pulse co-incidence, yet the reverse is true for saturated synapses. Also ap-
parently paradoxically, minimization of 
(pP) requires that saturated connections
afferent to any p j arise from highly covariant, and therefore closely situated, sites
in V1, while sensitive connections afferent to p j must arise from well-separated
sites. Yet again, metabolic uniformity requires that both sensitive and saturated
pre-synapses arise from cells at any single site. The paradoxes exist only in the
Euclidean plane, and can be resolved as follows.

Mobius Projection, and the Local Map

By re-numbering {Pj,k} as {Pj1, j2,k1,k2}, and {p j,k} as {p j1, j2,k1,k2}, the subscript
numbers 1, . . . , j1, . . . , j2, . . . , n, (n+1), . . . , j2, . . . , k2, . . . , 2n can be ascribed
in the global map so that j1 and j2 are located diametrically opposite and equidis-
tant from P0, while in the local map j1 and j2 have positions analogous to superim-
posed points located on opposite surfaces of a Mobius strip. This generates a Mobius
projection (the input map) from global to local, and a Mobius ordering within the
local map. That is,

P2
jm

|Pjm | → pkm m ∈ {1, 2} (45.5)

p jm → pkm m ∈ {1, 2} (45.6)

In Eq. (45.5) the mapping of widely separated points in the global map converge
to coincident points on opposite surfaces of the local map’s Mobius representation.
In the Eq. (45.6) the density of saturated synaptic connections now decreases as
| j1−k1| and | j2−k2|, while the density of sensitive couplings decreases as | j2−k1|
and | j1− k2|.

The anatomical parallel requires j1 and j2 in the local map to represent two
distinct groups of neurons. To attain maximum synaptic stability within the local
map an intertwined mesh of saturated couplings forms, closed after passing twice
around the local map’s centre, with sensitive synapses locally linking the two turns
of the mesh together. In this fashion both saturated and sensitive synapses decline
in density with distance, as required. The input map is of corresponding form, con-
veying an image of the activity in V1 analogous to projection onto a Mobius strip.

Evolution of these patterns of synaptic connections is shown in Figs. 45.1
and 45.2.
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Fig. 45.1 Initial conditions for local evolution of synaptic strength. Left: The global field (V1) in
polar co-ordinates. Central defect indicates the position of a local area of macro-columnar size.
Polar angle is shown by the color spectrum, twice repeated. Middle: Zones of random termination
(shown by color) of lateral axonal projections from global V1 in the local area. Central defect is an
arbitrary zero reference. Right: Transient patterns of synchronous oscillation generated in the local
area, mediated by local axonal connections

Fig. 45.2 Evolution of synaptic strengths to their maximally stable configuration. Left: The global
field (V1), as represented in Fig. 45.1. Middle: Saturated synaptic connections input from the global
field now form a Mobius projection of the global field, afferent to the local map, forming an in-
put map. Right: Saturated local synapses within the local map form a mesh of connections closed
over 0–4π radians. The central defect now corresponds to the position within the local map, of the
local map within the global map. Sensitive synapses (not shown) link adjacent neurons as bridges
between the 0–2π and 2π–4π limbs of the mesh of saturated connections. Wright et al. 2006

Monosynaptic Interactions Between Adjacent Local Maps

The input and local maps can, in principle, emerge with any orientation, and with
either left or right-handed chirality. However, chirality and orientation of adjacent
local maps is also constrained by requirement for overall stability. Adjacent local
maps should form in approximately mirror image relation, as shown in Fig. 45.3,
because in that configuration homologous points within the local maps have densest
saturated and sensitive synaptic connections, thus meeting minimization require-
ments analogous to those of Eq. 45.3a,b.
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Fig. 45.3 Organization of
saturated coupling within and
between local maps, and the
approximate mirror
symmetry of orientation
preference in adjacent local
maps [1]

Consequences of Projection of Object Configuration
and Motion from the Global to the Local Map

The emergent input and local maps form a 1:1 representation of points in the global
map. As described in [1], this accounts for response preferences of V1 neurons to
visual stimuli – notably orientation preference singularities, linear zones and saddle
points, and connections between cells of similar orientation preference in adjacent
macrocolumns [12]. Ocular dominance columns [13], which arise in parts of V1
with binocular input, can be explained as a special case of the application of similar
mechanisms to those operating in monocular cortex. The occurrence of direction
preference fractures always in odd numbers around singularities [14] is explained
by the Mobius configuration of the local map, and axonal conduction lags from the
global to the local maps accounts for the dynamic variation of orientation preference
which occurs with changes in stimulus velocity when, stimulus orientation is not
orthogonal to the direction of motion [15].

Application of the Spatiotemporal learning Rule
and its Relationship to LTP and LTD

The explanation of self-organization of the synaptic connections in V1 given in[1]
is deficient in two respects.

Firstly, no particular physiological synaptic mechanism is associated with the de-
scriptive terms “saturated” and “sensitive”, and these idealized states may never be
attained physiologically. However, at least on the appropriate time-scale, saturation
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of a synapse may be equated with the LTP state, and sensitivity of a synapse with
the LTD state, as indicated in [2, 3].

Secondly, the approach of all synapses to their maximally stable condition has
been assumed, without any mechanism being proposed to assist convergence to-
wards maximum stability. The spatiotemporal rule has been recently specified in
relation to LTD/LTP of conventional Hebbian type [16]. The operation of this learn-
ing rule, which facilitates the mapping of adjacent afferent connections, has the
properties required to bring about convergence to stability, since the global-to-local
mapping depends on the preservation of the same relation between spatial covari-
ance and distance at both local and global levels.
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Chapter 46
Theta Phase Precession for Spatial
Representation in the Entorhinal-dentate
Gyrus-ca3 Network

Colin Molter and Yoko Yamaguchi

Abstract In rats, the hippocampus plays a crucial role in spatial representation.
This ability is related to cells firing at specific locations in the environment. Re-
cently, it has been reported that entorhinal cells, which convey the major cortical
input to the hippocampus, have a very different spatial pattern of firing activity.
Each cell fires at several locations in an environment, these locations forming a
grid-like pattern. Both the entorhinal ‘grid cells’ and the hippocampal ‘place cells’
fire with theta phase precession; the phase between the spiking activity and the theta
local field potential continuously precesses while traversing a receptive field. Pre-
viously, the authors demonstrated that this mechanism is sufficient to explain the
transformation of entorhinal grid fields to dentate gyrus place fields. This paper
investigates the necessary conditions for the appearance of place fields in the CA3
network.

Introduction

In rats, hippocampal neuron activities are well characterized as ‘place cells’, each
cell firing in a confined location of the environment, the ‘place field’ [1]. Further-
more, during exploratory behavior, firing rate of the place cell is modulated by theta
oscillation of local field potential in term of ‘theta phase precession’[2]: the relative
firing phase unidirectionally shifts in advanced way when the rat crosses the place
field. Located one synapse upstream, recent observations have shown that cells in
the layer II of the medial entorhinal cortex (mEC) have a different spatial pattern of
activity; these so-called ‘grid cells’ fire at several locations in every environment the
animal visits, with the locations forming a regular triangular grid-like pattern [3, 4].
Again, theta phase precession is observed when the rat traverses every activity field
of the grid cell [5].
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Several authors suggested that the conjunctive activity of grid cells could explain
the apparition of hippocampal place cells [6, 7, 8]. However, results appeared not
convincing enough, suggesting that a fundamental mechanism was missing. In a
precedent paper [9], the authors suggested that this mechanism could be the theta
phase precession. Thankful to this mechanism, the activity of multiple grid cells
synchronize only when the rat simultaneously enters their grid fields. Since hip-
pocampal cells work as coincident detectors of their inputs, phase precession is
sufficient to sculpt the representation of hippocampal place cells from randomly
connected grid cells. In agreement with experimental data [10], it was observed
that dentate gyrus (DG) cells (hippocampal cells driven mainly by EC cells) were
characterized by the presence of numerous cells having two or more associated place
fields.

It has been hypothesized that the two distinct input systems (EC and DG) to
the hippocampal CA3 network are necessary for efficient information storage in the
CA3 [11]. Inline, this paper investigates what are the necessary conditions for the
apparition of single place field cells in the CA3 network; i.e. how a refinement from
DG spatial representation to CA3 spatial representation can occur.

Materials and Methods

This study aims to investigate the activity patterns of DG and CA3 cells obtained
after simulating phenomenologically the activity of mECII grid cells when the rat
wanders freely in an open-field area (Fig. 46.1). The grid field properties of each
MEC cell is randomly assigned (random space phase, orientation, and the distance
between grid vertices is chosen from a uniform distribution [30 cm–60 cm]). When
crossing each individual grid field, the firing activity is driven by the theta rhythm
according to theta phase precession; i.e. a complete crossing of the field results in
the phase of the spiking activity going from π/2 to −π/2.

DG cells are massively driven by EC cells through the perforant pathway (PP);
each cell receives connections from all EC cells. CA3 cells are driven both by EC
cells through the PP and by DG cells through Mossy Fibers (MF). Mossy fibers
provide sparse connections; each CA3 cells received connections from 50 DG cells
randomly selected. Inhibitory interneurons are assumed to maintain sparse DG and
CA3 activations:
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⎝
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where αpp and αmf regulate the relative strengths of the perforant path and the mossy
fibers. The function Θ simulates the activity of inhibitory neurons by maintaining a
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Fig. 46.1 Anatomical view of the three networks modeled in this paper; the medial entorhinal
cortex (mEC), the dentate gyrus (DG) and the CA3 network. The correlate of behavioral activity
of typical cells found on these network is schematically plotted. Grid fields, one or multiple place
fields and one place field characterize respectively entorhinal cells, dentate cells and CA3 cells. All
cells’ firing activity precesses continuously relatively to the theta rhythm

constant level of sparseness in the network (see [12]) such that (
∑

i xi )2/
∑

i x2
i is

lower than a given constant, here set to 3.
The presence of NMDA receptors at perforant path synapses, suggests the use

of an associative rule for the plasticity. Differently, mossy fibers supports a form of
plasticity induced predominantly by presynaptic activity [11]:
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where kpp−dg, kpp−ca3 and kmf regulate the respective learning strengths. To maintain
bounded synapses and to avoid the “dark side” of synaptic potentiation [13], the
synapses of each cell are constantly scaled down such that the equality:

∑
j w

2
i j = 1

is preserved.
To identify the presence of place fields in firing maps, the following procedure is

followed. The product of convolution between the firing map and a circular field of
variable diameter φd is computed. For each diameters, peaks of maximum intensity
(IM (φd )) are identified. For a given peak, the optimum diameter φ′d is such that
I ′M (φ′d )/φ′2d is maximum. Finally, a place field of diameter φ′d is identified at a peak
location if the local firing rate inside the place field is three times larger than the
average firing rate.

Results

Each layer contains 1000 units. Initially, synaptic weights are chosen randomly in
a uniform distribution. Computations simulate a rat running at 24 cm/s in a square
meter open-field, following a random trajectory. At each computational time step,
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Fig. 46.2 (a) Firing maps of 4 different EC (top), DG (middle) and CA3 (bottom) cells. (b) For
cells in the last row, while the rat is crossing the field highlighted, theta phase of the firing activity
is plotted of the distance traveled in that field

the rat advances 0.2 cm (∼ 10 ms) and the activity of all units are updated. In the
following, two phases are simulated; first, a short learning phase lasting 2 min (with
kpp.dg = kpp.ca3 = kmf = 10−4 in Eq. 46.3), then activity is observed during 8 min
(with kpp.dg = kpp.ca3 = kmf = 0).

Figure 46.2 shows the results obtained when both the PP and the MF pathways
are accounted for. The PP coefficient αpp in Eq. 46.2 is set to 1. During the learning
phase, mossy fibers are strongly driving CA3 activities, with a decreasing factor αmf

going linearly from 10 to 1. After learning, the MF factor αmf is set to 1. EC cells’
firing activity is phenomenologically simulated; all cells fire at several locations in
the environment, these locations forming grids (first row in Fig. 46.2a), and the firing
activity across a place field is characterized by theta phase precession (first row in
Fig. 46.2b). DG cells are characterized by the presence of several cells having two
place fields. CA3 cells have more selective location of firing activity. Fig. 46.2b
shows the firing phase, relatively to the theta rhythm, in function of the distance
traveled in a place field (selected with a circle in Fig. 46.2a). It appears that theta
phase precession is inherited by the DG and in the CA3 networks.

Figure 46.3 shows statistical analyses of place fields in the EC, the DG and the
CA3 network. In very good agreement with experimental data, the DG is character-
ized by the presence of cells having two or more place fields while CA3 cells are
more likely to have only one place field.

Discussion

In a previous paper [9], the authors demonstrated that entorhinal phase precession
is inevitable in the transformation of EC grid cells representation to DG place cells
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Fig. 46.3 Statistical analyses of place fields in the EC the DG and the CA3 network. Three analyzes
are performed; the distribution of place fields’ diameter, the distribution of the place fields’ firing
rate, and finally, the number of place fields found per cell. Firing rates of place fields in EC cells is
more of less constant and equal to 15 Hz. All EC cells have three or more place fields

representation. Here, we show that in addition to the direct EC inputs, the presence
of DG cells, mediating the EC activity, helps to organize CA3 place cells with single
place fields in agreement with experimental observations.

By relying on a computational model, the EC-hippocampal network is simulated
when a rat is exposed to a new environment. During the first period, CA3 cells’
representations are mostly driven by DG inputs, providing a supervised way to po-
tentiate associatively the EC-CA3 synapses. During observation, EC cells and DG
cells are equally responsible for the CA3 activity. In agreement with experimental
data [10], results show that while a large number of DG cells are characterized by
more than one place field, most of CA3 place cells have only one place field. These
results indicate that besides the role played by the DG in forcing the storage of the
information in the CA3 network, the MF pathway is also important in refining the
hippocampal spatial representation.

The appearance of place fields in the CA3 network requires a balance between
the EC and the DG inputs. Preliminary results (not shown here) indicate that in-
creasing the impact of DG inputs leads to increase the number of CA3 place cells
having multiple place fields. By contrary, decreasing the impact of DG inputs leads
to decrease the number of CA3 place cells, the remaining place cells having weak
spatial selectivity. This suggests that feedback inhibition from the CA3 to the DG
could give a simple mechanism to regulate the relative strength of the DG inputs.
Still further investigations should be performed.

Our findings confirm the hypothesis that hippocampal phase precession is instan-
taneously inherited from entorhinal phase precession [14]. Moreover, it appears that
phase precession defines place field boundaries, in agreement with recent observa-
tions of hippocampal cell assemblies [15].
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Synchronization of spiking activity appears very important for our understanding
of cognitive functions, such as the famous binding problem [16]. By assuming that
cells work as coincident detectors, phase locking to the gamma frequency, charac-
terized by very narrow peaks (∼ 20 ms), can efficiently synchronize the activity of
many cells; theta frequency, with its broad peaks (∼ 125 ms), can hardly synchro-
nize any cells. However, we demonstrate here that the mechanism of theta phase
precession, which sharpens the time windows of activity during theta, provides a
powerful mechanism for synchronizing spiking activity between the EC and the
hippocampal network and within the hippocampal network.
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Chapter 47
Optical Imaging of Visual Feature
Representation in the Awake,
Fixating Monkey

Anna Roe

The cerebral cortex houses the main computational power in the brain. Its size and
complexity serves to differentiate humans from other animals (e.g. [1, 2]). Akin to
the architecture of a computer in which there are repeating components, compu-
tational circuits reside in fundamental submillimeter-sized building blocks called
cortical columns. The activation of specific populations of these cortical columns
underlies how the brain achieves specific behavioral repertoires. A major goal of
modern neuroscience, therefore, is to understand which networks of columnar ac-
tivation underly specific behaviors and how their dysfunction leads to specific dis-
eases of brain and behavior.

One approach to understanding the role of these columns (or modules) in behav-
ior and cognition is to visualize them with with optical imaging methods in the alert
animal. Indeed, understanding how networks of modules within and across cortical
areas achieve vision or memory or emotion is a primary challenge of systems neu-
roscience. Visualization of such modular activations during behavior is tantamount
to watching the brain at work. Over the past decade, we and others have devel-
oped methods to visualize activations through implanted ‘windows on the brain’.
By applying these methods to the awake, behaving animal, it is hoped that this
method can open new vistas in our understanding of the neural basis of cognitive
function. Furthermore, the ability of these studies to forge a critical link between
a large body of work on animal models and functional imaging in humans will be
invaluable.

Towards this goal, we have developed an optical window which permits long-
term viewing of cortical activity [3, 4]. The window employs a clear, artificial dura
which does not interfere with cortical function and prevents infection and dural re-
growth. Repeated imaging experiments can be conducted on the same cortical region
in the same animal. Electrophysiological recordings can also be conducted. Using
these methods, we have examined relationship between different featural maps in
V1, V2, and V4 of the alert fixating monkey. To examine featural representation, we
used luminance gratings, isoluminant color gratings, and depth stimuli induced by
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random dot stimuli. To examine retinotopy, we used 0.1 deg stimulus rings centered
on the fovea, 0.1 deg bars oriented radially, 0.5 or 1 deg spots, and full field stimuli.
To quickly map the field of view within the imaged window, we have developed a
rapid spot imaging method for mapping the imaged field of view [5].

In V2 of the awake monkey, we see several featural maps responsive to color/
brightness, contour, motion and disparity. Similar to findings in the anesthetized
monkey, these maps exhibit a clear correspondence with the thin, pale, and thick
cytochrome oxidase stripes of V2 (cf. [6, 7]). The thin stripes exhibit clear preferen-
tial response to color over luminance [8]. Comparison of color/gray and gray/gray
isoluminant stimuli of the same luminance contrast revealed preferential activation
of thin stripes by color contrast and thick stripes by luminance contrast. Within
the thin stripes, focal activations with preferential response to red, green, or blue
are mapped topographically, consistent with Felleman’s results in the anesthetized
monkey. With respect to contour, we find strong contour invariance in the thick and
pale stripes of V2. We have previously demonstrated in the anesthetized monkey
that orientation maps in V2 exhibit similar response to both real contours (real
lines or gratings) and illusory contours [9]. We now show in alert monkeys that this
invariance of response in V2 includes not only real and illusory contours, but also
motion contrast contours [10]. This provides strong support that orientation domains
in V2 are higher order than those in V1. Although it was previously thought that V2
contained little motion signal, in the alert monkey, we find that there is quite strong
motion selectivity in thick stripes of V2 and that there is a topographic pattern for
directional selectivity in the thick stripes. With respect to disparity, we find activa-
tions in V2, and not V1, exhibit topographically organized maps for Near to Far
depth percepts induced by random dot stereograms [11]. These findings suggest
that organized disparity response, previously shown to exist in later visual areas
such as MT, may first arise in V2. Thus feature-specific signals in V2 are poised
to contribute both to form information processing in the ventral pathways and to
motion and disparity specific processing in the dorsal pathways. Based on these and
other findings, we suggest a new view of V2’s role in form and motion processing.

In V4, electrophysiological studies have identified neuronal selectivity for dif-
ferent types of visual features, such as orientation, color, and binocular disparity.
However, the functional organization of these properties is unknown [12]. Neither
is much known about the topographic map within the foveal region [13]. Here,
we obtained optical maps through a chronic chamber over the portion of V4 (and
the adjoining V2) representing foveal visual space (< 2◦ eccentricity) [14]. Spot
and line stimuli activated foveal V4 topographically, in a manner consistent with
overall topography of V4. The general retinotopic representation for color, orien-
tation, and disparity stimuli was similar. In general, activations were clustered in
appearance, and small stimuli activated domains more strongly than the full-screen
gratings, consistent with presence of strong surround suppression in V4. However,
color, orientation, and disparity features mapped in different locations within foveal
V4. Non-orientation-specific luminance- and color-preferring domains in this re-
gion of V4 mapped most caudally, alternating with a band-like appearance. Within
luminance- and color-preferring domains, different colors activated separate sets
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of sub-domains. In a region just anterior to these domains, orientation selective
domains were observed. Further anterior was a large disparity responsive zone
(induced by red/green anaglyph random dot patterns). It is possible that details
of specific functional organizations may exhibit some variability between animals.
These results extend our understanding of V4 functional topography to regions of
foveal representation and indicate a distinct compartmentalization of different visual
features (orientation, luminance, color, and binocular disparity) in foveal V4.
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Chapter 48
Mechanisms of Spatial Integration in Primary
Visual Cortex of the Primate

Alexander Thiele and Mark Roberts

Abstract Attention can selectively enhance neuronal responses and exclude
external noise. To investigate these effects and their neuronal mechanisms we in-
vestigated spatial integration and the underlying neuronal mechanisms in primary
visual cortex. We found evidence for spatial filtering mechanisms, whereby attention
reduced spatial integration in macaque V1 neurons. To study possible mechanisms
of this effect, we measured length tuning in V1 in the presence and absence of exter-
nally applied acetylcholine. The effects of acetylcholine application and attention in
V1 were largely similar. Acetylcholine reduced spatial integration by reducing the
neuron’s summation area. Thus, attention can alter perceptual and neuronal spatial
integration, and acetylcholine may contribute to these task dependent receptive field
dynamics.

Keywords Attention · V1 · acetylcholine · spatial integration

Introduction

A variety of studies have demonstrated that attention can influence neuronal firing
rates [1], it affects spatial integration of extrastriate cortical neurons [2], as well as
the location of cortical receptive fields [3]. The reduction in spatial integration that
has been demonstrated with spatial attention could underlie increased perceptual ac-
curacy, reduced influence by external noise [4] and increased resolution at attended
locations. While effects of attention on neuronal firing rates and perception are well
established, the underlying mechanisms are poorly understood. Many studies high-
light the importance of changes in neuronal gain with attention [5, 6, 7, 8], others
argue in favor of altered filtering properties [2, 4, 9, 10]. Here we test how atten-
tion affects spatial integration in V1 and determine possible neuropharmacological
mechanisms.
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Methods and Results

If attention alters spatial integration, then neurons at some level have to alter
their filtering properties. Such alterations could be mediated by feedback projec-
tions from ‘higher’ cortical areas [11]. In addition to feedback, the neuromodulator
Acetylcholine (ACh) is often considered to play an important role in the mediation
of attention [12, 13]. Acetylcholine could mediate changes in spatial integration,
i.e. change spatial filtering properties of neurons. Such a proposal is based on in
vitro studies, which demonstrate that ACh selectively reduces the efficacy of lateral
cortical connections via a muscarinic mechanism [14, 15], while boosting the effi-
cacy of thalamocortical/feed-forward connections via a nicotinic mechanism [16].
In vivo ACh should thus reduce centre-surround interactions of neurons in primary
visual cortex, making cells more reliant on feed-forward information. Within the
framework of attention it would mean that local sensory information is boosted
by spatial attention, while distracting surround information is filtered out. To test
whether ACh indeed affects spatial integration in vivo, we recorded neurons from
primary visual cortex in the anaesthetised marmoset monkey (Callthrix Jacchus),
in the presence and absence of applied ACh. We measured spatial integration by
determination of the preferred length of V1 neurons. We found that ACh applica-
tion in the majority of cells (66%) increased the firing rate of V1 neurons. In line
with our prediction it also reduced spatial integration, shifting the preferred bar
length towards shorter bars. We fitted a Difference of Gaussian Model to our data,
thereby determining mechanisms that underlie these changes in spatial integration.
The analysis yielded that ACh significantly reduces the size of the summation area,
while having no systematic effect on either the size of the inhibition area, or the
excitation or inhibition gains [17].

If ACh is involved in the mediation of attention, then selective attention should
have similar effects on spatial integration of V1 neurons. We tested this by determin-
ing the preferred length of V1 neurons while three animals attended to the receptive
field of the neuron under study, and when they attended away. In two of three an-
imals we recorded from a group of cells with parafoveal receptive field locations
(within 2–3◦ from the fovea), and from cells with more peripheral receptive field
locations (> 6◦ from the fovea). In both cell groups we found that attention usually
enhanced the neuronal activity (p < 0.001, t-test). For the parafoveal cell group we
additionally found that attending to the receptive field of the neuron under study sig-
nificantly reduced the preferred length. Fitting a Difference of Gaussian to our data,
revealed that the reduction in preferred length (p < 0.01, signed rank test) was me-
diated by a reduction in the summation area (p < 0.01, signed rank test), while the
other parameters (size of inhibition area, excitation gain, and inhibition gain) were
not consistently affected. Thus, attention at parafoveal locations affects spatial inte-
gration in a manner comparable to ACh. Surprisingly, the effects of attention on cells
with more peripheral receptive fields were opposite to those at parafoveal sites. Al-
though attention still increased firing rates (p < 0.001, t-test), it shifted the preferred
length towards larger bar lengths (p < 0.001, signed rank test). These changes were
mediated by an increase in summation area (p < 0.01, signed rank test), an increase
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in excitation gain (p < 0.01, signed rank test), and an increase in inhibition gain
(p < 0.01, signed rank test). We hypothesize that an increase in spatial integration
at more peripheral locations could aid in the highlighting of these locations in the
saliency map, and label them for impending eye-movements towards these loca-
tions. The differential effects of attention on spatial integration at parafoveal and
peripheral sites could reflect specific task demands. In our task animals had to detect
a very small and subtle change in brightness at the attended location. If neurons at
parafoveal sites have better contrast sensitivity, the necessity to pool across neurons
might be reduced for these locations. Conversely, increased pooling among neurons
with lower contrast sensitivity at peripheral locations might benefit task performance
and thus result in increased spatial integration with attention.

If ACh is part of the mechanism that mediates attention, blocking the cholinergic
receptors should significantly reduce attentional effects, while animals ‘attend’ to
the receptive field of the neurons under study. To investigate this we developed
and employed a novel pipette electrode combination [18], and recorded neuronal
activity from V1 neurons while animals attended to and away from the receptive
field of the neuron under study. This was done while muscarinic (scopolamine) or
nicotinic (mecamylamine) antagonists were locally iontophoretically either applied
or not applied. We performed a 3-Factor ANOVA for each cell to determine whether
attention significantly affected neuronal activity (factor 1), whether drug application
significantly affected neuronal activity (factor 2), whether bar length had an effect
on activity (factor 3), and whether these factors interacted. If cells were significantly
affected by attention and drug application, or if there was a significant interaction
between these two we selected the cells for further analysis. For these cells we
analysed whether blocking muscarinic or nicotinic receptors significantly altered
attentional modulation. Attentional modulation was quantified by calculating the
receiver operating characteristic between the attend RF and attend away condition.
We found that nicotinic blockade hugely reduced sensory transmission (firing rates
were on average reduced by > 50%), but had no significant effect on attentional
modulation (p > 0.05, signed rank test). Blocking muscarinic receptors reduced
firing rates much more modestly. Importantly, it resulted in a significant reduction
of attentional modulation (p < 0.001, signed rank test). The action of ACh on mus-
carinic receptors is thus one of the mechanisms that is important for the mediation
of attention.

Discussion

We investigated whether attention affects spatial integration in V1 and a possible
contribution of ACh to these effects. We found that attention alters spatial integration
in V1 for cells with parafoveal receptive fields, by reducing their spatial summation
area. Thereby these cells are less influenced by stimuli presented in their recep-
tive field surrounds, effectively enhancing local analysis of visual scenes. External
application of ACh in V1 of anaesthetized marmoset monkeys equally resulted in
a reduction of spatial integration by reducing a cell’s summation area. Moreover,
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in the awake macaque attentional modulation was significantly reduced during ap-
plication of muscarinic antagonists, supporting our hypothesis that acetylcholine
enables states of attention. We do not, however, dispute the importance of feed-
back projections in the mediation of attentional selection. We rather hypothesize
that the appropriate amount of ACh acting on muscarinic receptors allows neurons
to change their conductance [19, 20], such that they are more susceptible to small
inputs at peripheral dendritic locations, possibly more susceptible to weak modu-
latory feedback input, and possibly more susceptible to engage in high frequency
synchronization [21, 22], that has been associated with attention.
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Chapter 49
Coding of Peripheral Olfactory Information
in the Olfactory Bulb of Small Animals

Fuqiang Xu, James Shafer, Nian Liu, Douglas L. Rothman,
Fahmeed Hyder and Gordon M. Shepherd

Abstract The activity pattern in the olfactory bulb is generally believed to code
for the peripheral olfactory information. To reveal how chemical structure and ex-
perimental parameters are represented by the patterns, high resolution functional
MRI was used to map the responses of the bulb to various stimuli under differ-
ent conditions. The results revealed that different odorants elicited specific and
reproducible patterns. Pattern similarity (difference) parallels structure similarity
(difference). Experimental parameters, such as odorant concentration and exposure
duration, strongly affect pattern intensity, but have little effects on the pattern to-
pography. The results provided evidence for the hypothesis that the pattern inten-
sity codes for the stimulation strength and pattern topography codes for chemical
structure.

Keywords fMRI · olfactory bulb · information coding · rat and mouse

Introduction

The activity pattern in the glomerular layer of the olfactory bulb (OB) is believed to
code peripheral olfactory information [1]. It contains the information of the absolute
activity of each glomerulus, defining the pattern intensity, as well as the relative
activity and the spatial relations among all glomeruli, defining the pattern topog-
raphy [2]. Ever increasing evidence shows that a given odor can activate many
glomeruli, and a glomerulus can be activated by many odorants [3]. Highly acti-
vated glomeruli frequently cluster together, forming module, or focus, domains [4].
However, further analysis of how chemical structures and physical parameters of
olfactory stimuli are represented by the activity patterns is limited by the methods
currently available. Global methods, such as 2-deoxyglucose and c-fos mapping,
test single odors in terminal experiments, preventing comparison of responses to
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different odors in the same animal. Optical methods, such as florescent and intrinsic
imaging, are limited to a small portion of the OB (the accessible dorsal surface), pre-
venting the comparison of the patterns across the OB. To overcome these limitations,
we have developed functional MRI (fMRI) to map the activity patterns with high
spatial resolution to reveal how the chemical and physical properties of olfactory
stimuli are coded in the OB. Specifically, we will test the hypothesis that the chem-
ical nature is mainly represented by pattern topography, while the physical parame-
ters are mainly represented by pattern intensity.

Experimental

Animal Preparation

Male rats were anesthetized with 1–2% halothane, and the skin overlying the OB
was removed to expose the skull. Before the mouse was placed in the magnet the
anesthesia was switched to urethane (i.p. 1.0 mg/g initial; 0.1 mg/g/h supplemental).
The surgical procedure was approved by the Yale Animal Care and Use Committee
(YACUC no. 10004).

Odor Delivery

The odor-delivery system was made of Teflon and glass with a dead volume of 5 ml.
Mineral oil was used as the solvent to prepare the odor solution. The flow rate of
the extra-pure air passing over the odorant solution was kept at 3 l/min, generating
odorized airflow at selected odor concentrations. The concentrations of the solutions
were adjusted so that the vapor concentrations of different odorants were approxi-
mately the same.

Anatomical MRI and fMRI

Experiments were performed on horizontal-bore Bruker spectrometers. The mag-
netic field homogeneity was optimized by manual shimming. T1-weighted fast low-
angle single-shot (FLASH) anatomical images were obtained (image dimension =
128× 128 pixels; in-plane resolution = 100× 100 �m; slice thickness = 200 �m;
repetition delay = 5.0 s; echo time = 16 ms; flip angle = 90◦) with variable inver-
sion recovery weighting per slice. Each multislice fMRI experiment consisted of a
series of 128 T∗2-weighted FLASH images (image dimension = 64 × 64 pixels;
in-plane resolution = 200× 200 �m; slice thickness = 200 �m; repetition delay =
400 ms; echo time = 16 ms; flip angle = 5–15◦).
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Data Processing

Data processing and analysis were performed as described previously [3]. Statis-
tical methods such as normalized dot-product, spatial correlation coefficient, and
regression coefficient will be used to reveal pattern reproducibility, similarity and
difference.

Results

Reproducibility and Specificity

The hypotheses have the prerequisites of the pattern reproducibility for repeated
stimulations and specificity for different stimuli. The patterns of heptanal, amyl
and ethyl acetate in two exposures (Fig. 49.1) are highly reproducible. The pat-
terns elicited by the two esters are rather similar, but are very different from that of
the aldehyde. The results demonstrate that odorants with similar/different structures
evoke similar/different activity patterns in the OB.

Concentration Effects on Patterns

Concentration is one of the most important attributes for an olfactory stimulus.
Although odor can be detected over a broad range of concentration, most odorants
usually have similar odor-quality but different intensities [5]. The pattern intensity
increases with concentration for all three tested odorants, indicating that the OB
responses are not saturated under the experimental concentrations (Fig. 49.2). How-
ever, when the pattern of low concentration is normalized to the higher concen-
tration, the pattern topography is very similar. Statistical analysis shows that the
topography of patterns from different concentrations is rather similar. The signals
of the same pixels are concentration dependent, but are highly correlated. The corre-
lation coefficients for patterns of the same concentrations (reproducibility) and the

Fig. 49.1 Reproducibility and specificity of fMRI patterns in a coronal slice elicited by odorants
heptanal, (left), amyl acetate (middle), and ethyl acetate (right)
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Fig. 49.2 Variability of pattern intensity and invariability of pattern topography for different odor-
ant concentrations. The patterns of 0.4 �M of all three odorants, amyl acetate (a), carvone (b) and
heptanal (c), are normalized to the same percentage of the 40 �M stimulus (30%) to show similarity
of pattern topography

patterns of different concentrations are high and not significantly different among
them, while the correlation coefficients between the pattern of any concentration
of odorant and air are near zero. These results show that the pattern topography is
concentration independent and the intensity is concentration dependent.

Adaptation Effects on Patterns

Exposure history, another physical feature of a stimulus, describes the concentration,
exposure duration, and time elapsed of the earlier exposures. The daily experi-
ence and animal behavior show that the odor-quality is maintained in multiple, or
prolonged exposures, while the perceived intensity is attenuated, even disappeared
[6]. Indeed, the fMRI pattern intensity decreases accordingly with different expo-
sure histories. With same inter-stimulation interval, more adaptation is observed
for longer exposure duration. The response is less attenuated when longer time
is elapsed but with the same exposure duration. However, when the adapted pat-
terns are normalized to the first exposures, conservation of the pattern topography
is apparent (Fig. 49.3). The quantitative analysis shows that these images are highly
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Fig. 49.3 The variability of pattern intensity and variability of pattern topography of activity pat-
tern during prolonged exposure. a. Time course of fMRI signal, red bar represents the exposure
duration; b. Patterns at frame #3, 6 and 16 to show the change of intensity, c. The same images as
in (b), but normalized to show the similarity of topography
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correlated, among the unadapted, and the adapted. Therefore, the data demonstrated
that for a given odorant, the pattern topography is independent of the exposure his-
tory, while the pattern intensity varies consequently.

Conclusions

The results have shown that all tested physical parameters affect the pattern
intensity, but not the pattern topography of a given odorant. OB neurons respond to
olfactory stimulation can be excitatory, inhibitory, or null. A neuron rarely changes
from one to another type under different conditions of the same odorant [7]. The
concentration dependent of intensity and independent of topography have been re-
vealed from honeybee, turtle, salamander, and rat by methods measuring different
signals, such as electrical recording, optical imaging, fMRI, and 2-deoxyglucose
mapping [4, 8]. These techniques have very different temporal and spatial res-
olutions, and field of view. However, all is consistent with the observations re-
ported here.
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Chapter 50
Neural Ensembles and Local Field Potentials
in the Hippocampal-Prefrontal Cortex
System During Spatial Learning and Strategy
Shifts in Rats

Francesco P. Battaglia, Karim Benchenane, Mehdi Khamassi,
Adrien Peyrache and Sidney I. Wiener

Abstract To better understand the mechanisms of hippocampal-cortical signalling
for mnemonic function and behavior, we recorded ventral hippocampal local field
potentials (LFPs) simultaneously with ensemble neural activity and LFPs in the
prefrontal cortex in rats learning and switching strategies in a Y-maze variant of the
Wisconsin Card Sorting Task. Behaviorally correlated activity of individual neurons
changed after task contingency changes or as the animal adopted different strate-
gies. Curiously, within ensembles of simultaneously recorded neurons, individual
neurons showed different responses to contingency or strategy while others did not
change at all. Furthermore some prefrontal neurons are significantly modulated by
hippocampal theta activity and also by hippocampal sharp waves (with 150 Hz rip-
ples). Finally we present data showing that coherence between the hippocampus and
prefrontal cortex in the theta band is behaviorally modulated. These observations
provide evidence for engagement of hippocampal signals by prefrontal neurons as a
mechanism underlying learning this task.

Keywords Memory · EEG · unit recordings · theta · coherence · prelimbic area

Introduction

The hippocampus and prefrontal cortex are sometimes attributed complementary
functions for memory processing (memory consolidation and working memory
respectively), which must be reconciliated with the fact that there is a direct
hippocampal-prefrontal pathway in the rat. The problem may however be a problem
of interpretation, since experimental interventions inducing local inactivation in one
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structure or the other often lead to the assignment of distinct functions to individual
structures. Thus neuropsychological studies employing inactivation protocols must
be complemented by other approaches such as unit activity recordings. However
interpretation of many recording studies of this system is hampered by experiments
being carried out on overtrained animals. Thus the experiments described here con-
cern cell activity in animals still learning.

While recordings of single neurons, of evoked potentials and of images of brain
activation shed light on fundamental processes, it is our belief that it is also impor-
tant to focus on recordings of ensemble activity and its relations with local field
potentials in order to integrate findings at these three orders of magnitude and
hence elucidate dynamic functional mechanisms for cognitive functions. Of par-
ticular interest is synchronous oscillatory activity which has received much recent
attention as a reference for phase coding of neuronal discharges, and may also un-
derlie mechanisms of synchronization and privileging communication among select
distant brain areas, as in ‘binding’.

Thus we developed a variant of the Wisconsin Card Sorting Task for rats. Per-
formance in this task is known to be impaired in neurological patients suffering
from damage to the prefrontal cortex. Once the rats had been familiarized with the
maze, tetrode recordings were made of local field potentials in ventral hippocam-
pal CA1 and prefrontal (prelimbic area) as well as ensemble activity of prelimbic
neurons.

Methods

Prefrontal neurons as well as prefrontal and hippocampal LFPs were recorded from
multiple tetrodes in rats successively learning four reward contingency strategies
on a Y maze: go right, go to the lit arm, go left, then go to the dark arm (the
lit arm was selected randomly). Rats were required to return to the start arm af-
ter consuming the chocolate milk reward. A delay of 5 s was imposed between
trials.

In analyses, modulation by theta was defined as the amplitude of the sine-wave
fitting the phase histograms of one cell spikes’ phases relative to theta. Modulation
by sharp waves is taken as the logarithm of the ratio between mean firing rate of
a cell in a 100 ms window surrounding (± 25 ms) ripples’ amplitude peak and the
mean firing rate of the cell in a window lasting from 1 s to 50 ms before ripple
peaks.

Results

Hippocampal LFP and medial prefrontal neurons and LFP were recorded in five
freely moving rats during 98 recording sessions in a Y maze and in previous and
subsequent sessions of quiet repose.
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Task-Related Shifts in Behavioral Correlates

In 238 of the 1894 neurons analysed, there were abrupt changes in firing correlates
following changes in the task rule (n = 99) or in the rat’s strategy (n = 139).
These changes included appearance of a new behavioral correlate or reduction in
behaviorally correlated activity. Other neurons discriminated from the same tetrode
showed no such changes reducing the risk that this corresponds recording instabil-
ity. Within groups of simultaneously recorded neurons, the reaction to the task or
strategy shift varied.

Hippocampal Theta Modulation and Sharp Wave (‘Ripple’)
of Prefrontal Neurons

In 35% of the 2230 cells analysed, action potentials were significantly phase mod-
ulated by hippocampal theta during task performance (Rayleigh test, p < 0.05) as
shown previously. Furthermore, in 21%, firing rates increased (11%) or decreased
(10%) during hippocampal ripples occurring during previous or subsequent resting
periods (t-test, p < 0.05). (Modulation by sharp waves is taken as the logarithm
of the ratio between mean firing rate of a cell in a window surrounding (±25 ms)
ripples’ peak and the mean firing rate of the cell in a window lasting from 1 s to
50 ms before ripples’ peak.) In 10% of the cells there was significant modulation
by both theta and ripples, and the amplitude of these respective modulations was
significantly correlated (Pearson’s correlation test, p < 0.05). This correlation may
correspond to the strength of hippocampal afferences to the respective neurons and
their local circuits, suggesting that the hippocampal/prefrontal interaction is medi-
ated by the same population of prefrontal cells both during sleep and active behavior.

LFP Coherence Between Hippocampus and Prefrontal Cortex
in the Theta Band

A robust theta rhythm at 6–8 Hz was observed in the prefrontal LFP. During learn-
ing, high hippocampal-PFC coherence (values > 0.7) in the theta band (5–10 Hz)
was observed. This occurred principally at the decision point in the maze, suggest-
ing heightened communication between hippocampus and PFC at the moment of
behavioural choice.

Discussion

These results demonstrate that the hippocampal-prefrontal system was engaged by
this variation of a set-shifting task that is used to diagnose prefrontal dysfunction
in human patients. The transitions in cell activity corresponded to the rat’s strategy
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shifts may reveal an underlying mechanism of prefrontal action in this task. In pre-
vious recordings of rats switching strategies (albeit with triggering cues) [1] we ob-
served comparable changes in responses in prefrontal afferent zones of the nucleus
accumbens, but not hippocampal place cells which also project to accumbens [2].

This is consistent with the hypothesis that this ‘set-shifting’ activity is mediated
by the prefrontal cortex.

The observation of prefrontal neurons modulated by hippocampal theta oscilla-
tory activity and by hippocampal sharp waves demo nstrates nevertheless that there
is a powerful hippocampal influence on a subset of prefrontal neurons. This is hy-
pothesized to correspond to a pathway transmitting signals for executing strategies
requiring contextual information such as spatial position.

The behaviorally modulated coherence of simultaneously recorded hippocampal
and prefrontal LFPs reinforces the latter evidence for hippocampal influences on
the prefrontal cortex. Conversely, the reduced modulation during behaviors other
than the decision period suggests that perhaps other brain areas are oscillating co-
herently with the prefrontal cortex then. This is reminiscent of the observations of
greater incidence of cross-correlations between neurons of the hippocampus and the
nucleus accumbens during approaches to a goal site, but not during return visits [3].
This suggests that certain circuits can be selectively gated in a behaviorally relevant
manner.
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Chapter 51
Temporal and Spatial Characters of Retinal
Ganglion Cells’ Response to Natural Stimuli

Ying-Ying Zhang, Xin Jin, Hai-Qing Gong and Pei-Ji Liang

Abstract Results from physiological, theoretical, and computational studies suggest
that the visual cortex processes natural sensory information with a strategy of
sparse coding. To investigate whether this is also the case for retinal ganglion
cells (RGCs), neuronal activities were recorded from a group of chicken RGCs
in response to natural, time-varying images (movies) using extracellular multi-
electrode recording system. The response of single RGC in exposure to natural
stimulation showed sparse activity, while the ensemble responses did not. Such
result may suggest that at the RGC level, the single unit activity is kept at a low
level in response to natural stimuli for energy-saving, but the neuronal popula-
tion are often activated in a correlated manner to achieve efficient information
transmission.

Keywords Natural movie · retinal ganglion cell · life-time sparse activity ·
population activity

Introduction

The task of the visual system is primarily to process information in natural en-
vironment, it is therefore important to explore the visual information processing
in response to natural stimuli [1]. It is suggested that the central visual system
can use a strategy of sparse coding to optimize itself to match the natural scenes,
which are inherently sparse in statistical structure [2, 3]. Sparse coding refers to
the phenomenon that only a small portion of neurons are activated at a given
time in response to a given stimulation [4], and at the mean time, the single
neuronal activities are kept at a low level most of the time during stimulation.
Sparse representation makes the structure in nature scenes explicit and simpler
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for the subsequent neurons to read out with high memory capacity and metabolic
efficient [5].

Sparseness can be defined in two terms, lifetime sparseness and population
sparseness. The fourth moment (i.e., the kurtosis) of the response distribution of
a single neuron over time, and that of the firing rates distribution of the population
neurons in response to a certain state of the natural stimuli can be applied to quantify
the lifetime sparseness (KL ) and population sparseness (K P ) respectively.

In the present study, the activities of several dozens of RGCs in response to nat-
ural stimuli (movies) were recorded simultaneously from isolated chicken retina
using a multi-electrode array (MEA). To represent the natural stimuli, each single
neuron showed sparse representation while the ensemble neuronal activities are cor-
related. These results provide further experimental evidence from the earliest stage
of the visual system to support the hypothesis that the nervous system can be well
adapted to efficiently represent the natural input using a strategy of sparse coding
combined with population correlation.

Methods

Electrophysiology Recordings and Visual Stimulation

Detailed extracellular-recording procedure can be found elsewhere [6, 7]. Spikes
from ganglion cells were recorded by MEA electrodes (8 × 8) using a commercial
multiplexed data acquisition system with a sampling rate of 20 kHz.

The stimulation protocols were: (1) Full-field white light flashes (1-s light-ON
duration vs 9-s light-OFF intervals) to test the functional condition of the neu-
rons being investigated; (2) Digitized segments of grayscale video recording (1920
frames, 128 × 128 pixels, refresh rate being 10 Hz) of natural outdoor scenes con-
taining trees, rocks, streets, houses etc (download from the website of Hateren’s lab,
http://hlab.phys.rug.nl/vidlib/index.html; see also [8]). The images were projected
onto the retinal piece via an optical lens system and covered the whole area of the
multi-electrode array.

Data Analysis

Kurtosis is the fourth moment of a distribution for measuring the “peakedness” of
the distribution [9]:

K =
{

1

n

n∑

i=1

[
ri − r

σr

−]4
}
− 3 (51.1)

This value is close to zero for a Gaussian distribution and a high positive value is
related with a heavy-tailed peaky distribution, such as the case for sparse response
of the neuronal activity.
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Results

The firing probability distribution of an example neuron’s response (firing rates
counted in 1-s segments) in exposure to the natural movie is with a sharp peak as
compared to the surrogate Gaussian distribution (Fig. 51.1a), with a KL value being
1.8837 (the KL value of the surrogate Gaussian data is −0.0390 ± 0.2761 (mean
±SD, n = 100)). All the KL values of the 21 ganglion cells recorded from the same
piece of isolated retina are significantly larger than the KL values of the surrogate
Gaussian distribution data (Fig. 51.1b and c). These results demonstrate that the null
hypothesis that the firing probability distribution follows a Gaussian distribution can
be rejected for the single neurons’ responses to natural movie, which gives evidence
that the lifetime sparseness is a character of single neurons’ responses to natural
stimulation.

The response distribution of the neuronal population in exposure to an example
segment of the natural movie (lasted for 1 s) is sharply peaked, but the data are
more widely distributed (Fig. 51.2a), and the relevant K P value is −0.21889 (with

(a) (b) (c)

Fig. 51.1 (a) Response probability distribution (RPD) (filled bars, bin size = 1 s, with mirror
values given in blank bars) for an example cell in exposure to the natural movie is compared to a
Gaussian distribution (dashed line) which shares the same mean value and standard deviation with
the reflected RPD to be analyzed. (b) Scatter plot of the KL values of all the 21 neurons’ surrogate
Gaussian distribution against that of the RPDs. (c) Truncated from the dashed box in (b)

(a) (b) (c)

Fig. 51.2 (a) Response distribution (filled bar, with mirror values given in blank bars) for the
population of 21 cells to 1-s segment of the natural movie is compared with a Gaussian distribution
(dashed line) which shares the same mean value and standard deviation with the reflected response
distributions to be analyzed. (b) Scatter plot of the K P values of the surrogate Gaussian distribution
against that of the response distribution of 40 segments of the movie (each lasted for 1 s). (c)
Truncated from the dashed box in (b)
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the K P value of the surrogate Gaussian data being −0.19866 ± 0.68109 (mean
±SD, n = 100)). Quite a portion of the neurons fired at a relatively low rate within
the time window being investigated, but with a correlated manner. Figure 51.2b
and c show that the K P values of the response distribution in response to 40 seg-
ments of the movie (each lasted for 1 s) are widely distributed, while the K P values
of the surrogate Gaussian distributions are relatively constant. These results indicate
that the population sparseness can not be detected and the activities of population
RGCs in response to the natural stimuli in a correlated manner to provide an efficient
information transmission.

Summary

Our results from temporal and spatial responses of the RGCs in exposure to nat-
ural movie provide further experimental evidence at the RGC level to support the
hypothesis that the nervous system can be well adapted to efficiently represent the
natural input using a strategy of sparse coding and suggest that the correlation
among the population neurons is critical for efficiently encoding and transmitting
the natural stimuli.
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Chapter 52
Synchronization of Chaotic Neuronal Networks
with Small-world Topology

Fang Han, Qi-Shao Lu and Yan-Hong Zheng

Abstract Synchronization of coupled chaotic neuronal network with small-world
topology is explored in this paper. The synchronization condition of chaotic HR
neuronal network is obtained by using the master stability function as a general
criterion for synchronization stability of neuronal networks. Numerical simulation
is performed in a small-world network with hundreds of neurons. It is shown that
master stability function is effective for determining synchronization condition of
neuronal networks and chaotic small-world neuronal networks can synchronize by
setting the coupling strength properly.

Keywords Neuronal network · master stability function · small-world ·
synchronization region · coupling strength

Introduction

Synchronization of coupled neurons could play a key role in intercommunications
among neurons. However, the synchronization of real neuronal network has long
been a difficult problem as the topology of real neuronal network has not been very
clear so far. The small world network models, which were introduced by Watts and
Strogatz in 1998, simultaneously realize dense local connections and short pairwise
distances. Many biological neural networks have been reported to have the small-
world properties. In this paper, complete synchronization of chaotic HR neurons
with small world topology is explored by using the master stability function [1] as
a general criterion for synchronization stability of coupled neuronal networks.

In general, we consider n identical chaotic neurons coupled through their first
state variables as follows:
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Ẋi = F(Xi )+ σ
N∑

j=1

gi j H(X j ), i = 1, 2, · · · , N (52.1)

where Xi ∈ Rm is a m-dimensional vector for the i th neuron, σ is the cou-
pling strength, G = {gi j }N×N is the coupling matrix, a symmetric matrix with
zero row-sum and real spectrum, H is the output function and is taken to be
H = diag{1, 0, 0, · · · 0} for every node.

To assess the linear stability of the synchronous state {Xi = s(t),∀i}, we need to
diagonalize the variational equations ξ̇ = [1N⊗DF(S)+σG⊗DH(s)]ξ , and check
that the perturbations transverse to the synchronization manifold are damped. The
diagonalization of G transforms the variational equation into n blocks of the form

ξ̇ k = [DF(s)+ σγk DH(s)]ξ k, k = 0, 1, · · · , N − 1 (52.2)

which only differs in the eigenvalues of the topology matrix G : {γk, k = 0, 1, · · · ,
N − 1}. The synchronous state linked to γ0 = 0 is stable if the remaining (N −
1) blocks, associated with the graph eigenmodes transverse to the synchronization
manifold, have negative Lyapunov exponents [2].

Generally, we consider the system

η̇ = [DF+ αDH]η (52.3)

The largest Lyapunov exponent �max of network (3), which is a function of α for
given functions F and H, is referred to as the master stability function. The region
S for negative α, where �max is also negative, is called the synchronized region of
network (1). For network (2), we obtain the generic requirement σγk ∈ S for the
synchronous state to be linearly stable. Hence, given coupling matrix G in network
(1), we can tune the coupling strength σ to locate the products σγk within the syn-
chronization region S.

The coupled HR neuronal network is expressed as follows:

ẋi = yi − ax3
i + bx2

i − zi + I + σ
N∑

j=1

gi j x j ,

ẏi = c − dx2
i − yi ,

ẋi = r [s(xi + χ )− zi ]. i = 1, 2, · · · , N (52.4)

where parameters are chosen as a = 1, b = 3, c = 1, d = 5, s = 4, r = 0.006, χ =
1.6, I = 3 to exhibit chaotic dynamics. The master stability function of coupled
chaotic HR neurons is shown in Fig. 52.1. It can be seen that the synchronization
region of coupled chaotic HR neurons is α > α1, where α1 ≈ −0.85. That is, what-
ever the network topology is, when all of the products σγk > α1(k = 1, · · · , N−1),
synchronization will happen.
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Fig. 52.1 The master stability function of coupled chaotic HR neurons

To obtain the small-world network structure, we use the rewiring procedure of
Watts and Strogatz. The networks have the neurons number N = 500 and a mean
connectivity C = 5 per neuron. Since coupling matrix G is a real symmetric and
irreducible matrix, we have the eigenvalues for small world networks 0 = γ0 >

γ1 ≥ · · · ≥ γN−1.
By the principle of σγk ∈ S, the critical coupling strength for synchronization

of the chaotic HR neuronal network with small-world structure can be deduced.As
the synchronization region is half bounded, the synchronization condition will be
satisfied only if σγ1 > α1. Namely, the critical synchronization coupling strength is
σc = α1

γ1
. Numerical values of σc as function of p is shown in Fig. 52.2.
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Fig. 52.2 The critical synchronization coupling strength σc versus p
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Fig. 52.3 The synchronization error 〈e〉 and emax versus coupling strength σ

It can be seen that the synchronization coupling strength is considerably large
for the regular network (p = 0), so it is really difficult to synchronize for regular
network. However, σc drops suddenly as p increases. Namely, the introduction of
short-cuts in regular network will greatly benefit synchronization.

Simulation is performed in a chaotic neuronal network. For any given small-
world structure (such as when p = 0.3), the eigenvalues of the network can be
calculated (here is a case γ1 = −1.8057) and the coupling strength for synchro-
nization can be deduced (σc ≈ 0.47). The dynamical behavior of the network
under different coupling strength is simulated. The average synchronization error
〈e〉 and the maximum synchronization error emax are used as the characteristic
measures with the definitions given as follows [3]: 〈e〉 = 1

N−1 (
∑N

i=2〈ei 〉), where

ei =
√

(xi − x1)2 + (yi − y1)2 + (zi − z1)2, (i = 2, 3, · · · , N ) and 〈·〉 denote
the average with respect to time, emax = max(ei ). Simulation result is shown in
Fig. 52.3. Obviously, 〈e〉 and emax become both zeros when σ > 0.48, which ac-
cords with the anticipation (σc ≈ 0.47). Hence, it can make a chaotic small-world
neuronal network synchronize to set the coupling strength properly.

This paper proposes a general method for determining synchronization condition
of neuronal networks. It also shows that setting the coupling strength properly can
make small-world neuronal networks synchronize.
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Chapter 53
Effects of Time Delay on Synchronization
and Temporal Order in a Square Lattice
Noisy Neuronal Network

Qing-Yun Wang, Zhi-Sheng Duan and Qi-Shao Lu

Abstract Synchronization and temporal order characterized by the rate of firing
are studied in a spatially extended map neuron network with coupling time delay.
It is shown that there exist an intermediate noise level, where synchronization and
temporal order are maximum irrespectively of the coupling time delay. Furthermore,
it is found that temporal order is weakened when the coupling time delay appears.
However, the coupling time delay has two-fold effects on synchronization, one as-
sociated with its increasing, the other with its decreasing. This clearly manifests that
random perturbations and time delay play a complementary role in synchronization
and temporal order.

Introduction

Traditionally, it is considered that random noise is a nuisance because it can destroy
signal detection and transduction. However, the effects of noise on nonlinear dynam-
ical systems are very complicated and often counter-intuitive. The ability of noise
to induce temporal order (that is, temporal periodic behaviour) in nonlinear systems
is a well-known fact. It is well known that, for instance, random fluctuations en-
hance the response to weak periodic driving, as observed in many different physical,
chemical and biological scenarios [1, 2, 3]. This is called stochastic resonance (SR).
For a more intriguing perspective, stochastic resonance without external periodic
forces, where noise extracts a hidden intrinsic time scale of the system dynamics,
has been found and termed as coherence resonance (CR) (or autonomous stochas-
tic resonance (ASR)) [4, 5, 6]. This phenomenon has been predicted theoretically
in a wide variety of models, and observed experimentally in fields as diverse as
physical, neuroscience and chemical systems. There are still many other examples
demonstrating that noise can lead to more order in dynamics [7].
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It is commonly accepted that a single neuron in the vertebrate cortex connects
to more than 10,000 postsynaptic neurons via synapses–forming complex networks.
Meanwhile, since neurons are known to be noisy analogue units, noisy neurons
coupled via synapses can carry out highly complex and advanced operations with
cognition and reliability. As far as these perspectives are concerned, it is evident that
neural tissue combines features of being both a noisy and a spatially extended struc-
ture. Hence, the effect of noise on neural networks should be studied extensively so
as to get better insight into complex collective rhythm and cooperative operation of
neuronal firings.

Time delays are inherent in neuronal transmissions. It is well known that human
brain is the most complex system, which is composed of millions of neurons. The
information flow in coupled systems is not generally instantaneous, because of both
infinite propagation velocities in the conduction of signals along neurites and the de-
lays in the synaptic transmission at chemical synapses. For experimental relevance,
it has testified that the speed of signal conduction through unmyelinated axonal
fibers is on the order of 1 m/s resulting in time delays up to 80 ms for propagation
through cortical network. Therefore, it is important to understand how delays affect
the nonlinear characteristics of the neuron systems.

It is interesting to know whether synchronization and temporal order exist in spa-
tially extended neuronal systems with the coupling time delay, and how they depend
on the noise and coupling time delay. For this goal we use a discrete-time Rulkov
map neuron with time delay to construct a spatially extended network system, which
is arranged in a N×N square grid. Each grid element is defined by the discrete map
neuron and is diffusively coupled to its neighbours. The results in the present study
show that synchronization and temporal order can exist in noisy neuronal network
with the coupling delay. Moreover, there exists an optimal noise level, where syn-
chronization and temporal order are maximum. Hopefully, our work outlines some
possibilities for future experimental work in the field of neural networks in which
time delay and noise exist spatially in general.

Map Neuron Model in a Square Lattice

We consider an ensemble of identical two dimensional Rulkov map neurons [8],
coupled diffusively with its nearest neighbours and arranged in a square lattice of
size N × N . This coupling implies the interaction of electrical synapses among
neurons. The spatial-temporal evolution of this lattice network is governed by

x (i, j)(n + 1) = α f (x (i, j)(n))+ y(i, j)(n)+ σξ (i, j)(n)

− D(4x (i, j)(n)− x (i+1, j)(n − τ )− x (i−1, j)(n − τ )

− x (i, j+1)(n − τ )− x (i, j−1)(n − τ ))+ A sin(2πωn)

y(i, j)(n + 1) = y(i, j)(n)− βx (i, j)(n)− γ, i, j = 1, 2, . . . , N (53.1)
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where x (i, j)(n) is the membrane potential of the neuron labelled (i, j), y(i, j)(n) is
the variation of ion concentration, and they represent the fast and slow dynamics,
respectively. The slow evolution of y(i, j)(n) is due to the small values of the positive
parameters β and γ , say, β = γ = 0.001 in this paper. n is the discrete time
index, while α is a model control parameter. f (x) = 1

1+x2 is a nonlinear function, σ
denotes the level of noise and ξ (i, j) the Gaussian white noise for the (i, j)th space
neuron. D is the diffusive coefficient. A and ω are the amplitude and frequency of
external stimulus, respectively. In what follows, the periodic boundary condition of
the coupling is used.

In order to capture the essence of neuronal resonant dynamics quantitatively, the
rate of firing is defined as follows. For a rough illustration, we call a Rulkov map
neuron firing when the membrane potential x reaches its threshold value xth = −0.2
from below at certain time. Suppose that m neurons fire at given discrete time n, then
we define a function Π (n) = m

N 2 . This statistical function can simply measure the
proportion of firing neurons in the square lattice neuronal network and is called as
the rate of firing of this network.

To quantitatively investigate the synchronization and temporal order, we intro-
duce the following two important quantities. One is the average of the rate of firing
Π , which can show the number of the fired neurons at given time. We call it the
synchronization index and denote as Synindex = 〈Π〉. It is obvious that the larger
is Synindex , the more neurons can synchronize at given time. The other is the char-
acteristic correlation time, which is characterized by an autocorrelation function as
τ = 1/T

∫
T c2(t)dt . The autocorrelation function of the rate of firing is defined as

c(τ ) = 〈Π (t)Π (t + τ )〉, where Π is the rate of firing, τ the time delay, and 〈·〉
denotes the average over time. It is well known that the more ordered this neuronal
network is for time, the longer is its characteristic correlation time. Therefore, it is
called the order index and can be used to measure the degree of temporal order for
this neuronal network.

As illustrated in Fig. 53.1a, when the noise level σ = 0.003, synchroniza-
tion index reaches a maximum irrespectively of whether it is no delay or de-
lay. Hence, there exist an optimal noise level, at which, synchronization of this
square neuronal network is maximal. Furthermore, it is found that synchroniza-
tion is decreased with the noise being beyond the optimal level when the cou-
pling delay appears. On the contrary, if the noise is slightly below the optimal
value, the coupling delay can enhance synchronization of neural networks. Hence,
the coupling delay can exhibit two-fold effects on synchronization. At the same
time, order index is shown in Fig. 53.1b as the noise level increases for dif-
ferent delays. We also find that there is an optimal noise level, where the or-
der index achieves a maximal value irrespectively of whether there is delay or
not, and with the time delay appearing, order can be weakened. More impor-
tantly, it is found that there is an equally optimal noise level, at which the max-
imum of temporal order and synchronization is achieved simultaneously. Hence,
temporal order is in good agreement with synchronization in the present system
studied.
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Fig. 53.1 (a) Synchronization index with respect to the noise for different delays. (b) Order index
with respect to the noise for different delays
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Conclusion

Our results showed that spatial extended discrete neuron models with the coupling
delay could exhibit the like-resonance phenomena of temporal order and synchro-
nization at the optimal noise level. Furthermore, it was shown that there are nontriv-
ial effects of time delay on synchronization and temporal order. Consequently, the
results in this Letter have potential meanings for understanding the synchronization,
and we will adopt more real biological neuron models for further study.
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Chapter 54
The Attractor Type of Complex Networks

Tan Ning, Huang Jing, Zhang Wei and Yang Fenghong

Abstract In this paper, the bistable differential system is introduced to each unit of a
complex network, the affections of network topology fabrics on the attractor type of
the network are studied numerically. It is found that the tendency probability to fixed
point is decreasing according to the average connectivity but the tendency probabil-
ity to periodic attractor is increasing simultaneously. The probability rewiring each
edge at random has little influence on the aforementioned phenomenon.

Keywords Complex network · small world · attractor · dynamics

Introduction

Complex network has been a hotspot in study of abroad fields and achieves many
meaningful results in mathematics, physics, biology, communication, economics
and sociology. In fact any complex system in nature can be modeled as a network,
where vertices are the elements of the system and edges represent the interactions
between them. The study and characterization of the statistical properties of com-
plex networks has received much attention in the last few years. It is shown by
Barabási, Newman, Watts and many other researchers that a great variety of real
networks exhibit a small world property and scale-free character [1, 2]. However,
network dynamics study is equally important. One can define a network by charac-
teristics of topology then introduce dynamical elements into it to probe its global
dynamical behaviors.

Theoretical and experimental studies suggest that the ordered (stable) dynamics
exhibited by complex networks may represent a distinct phenotype and function.
One famous result is Kauffman’s study on random networks under Boolean law
rule [3, 4]. Kauffman has made three simplifying assumptions in his study, but it
is well known that real networks exhibit more abundant property. Analysis on the
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dynamical convergence of complex networks and uncovering which main factors
determining the dynamical convergence is still in continual investigation.

In this paper, the relation between network topology and attractor type is
numerically studied. The bistable differential system is introduced to each unit of a
network. The network topology is considered as small world network, WS model.
It is found that the tendency probability to fixed point is decreasing according to
the average connectivity K but the tendency probability to periodic attractor is in-
creasing simultaneously. The probability rewiring each edge at random, p, has little
influence on the aforementioned phenomenon.

Dynamical Model

In many natural networks, their unit exhibits bistable probability. For example, the
excitation of each neuron in neuron networks can be roughly described as rest state
and spiking state. Therefore, the bistable differential system is introduced to each
unit of networks in this study.

Consider a dynamical network consisting of N identical units. The dynamical
control equation accorded to each unit is ẋ = ax − bx3, where x is the state vari-
able. If a, b > 0, there are two stable equilibrium points, ±√ a

b , and one unstable
equilibrium point, 0.

The connection matrix A = (ai j ) ∈ RN×N is used to describe the topology of
a N -dimensional network, where the element ai j denotes the action of unit j on
unit i . Although the detailed form of actions is not clear, the effect of actions can
be grouped into two aspects, namely, active or inactive. To simplify the analysis,
let ai j = 1 denote the active effect and ai j = −1 denote the inactive effect in the
following.

To a N -dimensional dynamical system, the governing equations are:

ẋi = axi − bx3
i +

N∑

j=1

ai j x j i = 1, 2, · · · , N (54.1)

Thus the vector X (t) = [x1(t), x2(t), . . . , xN (t)]T ∈ RN can describe the state of
the network at time t .

Network Topology

It is reported that the connection topology of biology networks, like the circuitry in
the cortex and genetic regulation networks, is neither completely regular nor com-
pletely random, showing small world property [5, 6, 7]. They are highly clustered
like regular lattices, yet have small characteristic path lengths like random networks.
So we attribute small world property to networks.

The model we use is called as Watts-Strogatz model (WS model) [1]. We
generate a regular network as nearest-neighbor couplings with N vertices and KN
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edges, where K is the average value of connections per node. Then rewiring each
edge randomly with a probability p, the regular lattice can be turned to a random
network in a continuous way as p = 1. When 0 < p < 1, we can get networks with
small world property.

Applied the aforementioned method, an undirected small world network can be
obtained. Then we can attribute the regulation effect and direction randomly to each
edge. Here let 1 denote the active effect and −1 denote the inactive effect.

Results

Enough interconnected networks are sampled. Then we will study the dynamical
steady state of each network leaving from the same initial state point. The network
steady state has three types, an equilibrium point, a periodic orbit, a chaotic attractor
(nonperiodic orbit).

Let M be the total number of gathered network, Me be the number of networks
with an equilibrium steady state, Mp be the number of networks with a periodic
steady state, and Mc be the number of networks with a chaotic steady state. Define
pi = Mi

M i = e, p, c as the steady state tendency probability to each attractor type i .

Fix p But Change K

From Fig. 54.1, it is shown that networks’ steady state is apt to ordered attractor.
The tendency probability to chaotic attractor is too small that we omit it in figures.
But the steady state tendency gradually transfers from equilibrium point to periodic
orbit, along with increasing K .

Fix a and b But Change p

From Fig. 54.2, it is shown that the probability rewiring each edge at random, p, has
little influence on the aforementioned phenomenon.

(a) (b) (c)

Fig. 54.1 The steady state tendency gradually transfers from equilibrium point to periodic orbit,
along with increasing K , where p = 0.3
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(a) (b) (c)

Fig. 54.2 The probability rewiring each edge at random, p, has little influence on the aforemen-
tioned phenomenon shown in Fig. 54.1

Conclusion

In this paper, the relation between network topology and attractor type is numeri-
cally studied. The bistable differential system is introduced to each unit of a small
world network. It is found that the tendency probability to fixed point is decreasing
according to the average connectivity K but the tendency probability to periodic
attractor is increasing simultaneously. However, the probability rewiring each edge
at random, p, has little influence on the aforementioned phenomenon.

The dynamics attractor exhibited by complex networks may represent a distinct
cellular phenotype and function [5, 6, 7]. Distinct phenotypic states of cells in multi-
cellular organisms and the switch transitions between the cell fates are all rest with
the types of attractor and dynamical bifurcations. If the architecture of a functional
network is mutative because of some diseases, the phenotypic states of the network
will change. The normal function can not be carried out. Our work may be helpful
to understand the function and structure of biological system.
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Chapter 55
Asymptotical Stability of Delayed BAM Neural
Networks with Generalized Activation Functions
by Comparison Approaches

Yuguo Chen and Wudai Liao

Abstract Asymptotical stability of delayed bi-directional associative memory
(BAM) neural networks with generalized activation functions is studied. Essentially
speaking, BAM neural networks can be viewed as a linear system perturbed by
the outer input. Under this point of view, by adopting the variation of coefficient
of liner differential equations and comparison approaches, some delay-independent
stability algebraic criteria are obtained. The results obtained in this paper need only
to compute the norm of some matrices constructed by the parameters of the neural
networks which are very convenient to verify in system synthesis.

Introduction

The stability problem of BAM neural networks with Sigmoid output functions has
been widely studied [1, 2, 3, 4, 5], and for the delayed BAM neural networks, there
also have lots of results [6, 7], and the results obtained in these papers were mainly
used the Lyapunov direct method and the Razumikhin-type theorems.

In engineering applications, we sometimes select the generalized activation func-
tion (not always the sigmoid types) to be the output function of BAM neural
networks. And from the point of research approaches, we can treat BAM neu-
ral networks as a linear system perturbed by the outer input [8]. Based on this
point, we introduce the variation of coefficient of differential equations, instead of
Lyapunov direct method, to study the stability problem of the delayed BAM neural
networks.
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Delayed BAM neural network’s equations are as following:

ẋi (t) = −ci xi (t)+
n∑

j=1

ai j g j
(
y j
(
t − τy j

))
, t ≥ 0, i = 1, 2, · · · ,m,

ẏ j (t) = −d j y j (t)+
m∑

i=1

b ji fi (xi (t − τxi )) , t ≥ 0, j = 1, 2, · · · , n,

xi (t) = φxi (t) ∈ C
(
[−τ, 0]; R

)
, y j (t) = φy j (t) ∈ C

(
[−τ, 0]; R

)
. (55.1)

Where, ci > 0, d j > 0 are constants, ai j is the connected weight from neuron y j to
neuron xi , and b ji is the connected weight from neuron xi to neuron y j , τy j , τxi are
time delays of neuron y j and neuron xi separately, τ = max{τxi , τy j }. fi (·), g j (·)
are the activation functions of neuron xi and neuron y j separately and there exist
constants αi > 0, β j > 0 such that the conditions

fi (0) = g j (0) = 0, | fi (u)| ≤ αi |u|, |g j (u)| ≤ β j |u| (55.2)

hold for i = 1, 2, · · · ,m, j = 1, 2, · · · , n.
In the following, we will give some preliminaries [9, 10, 11], including the

stability criteria of linear differential difference equations and some properties of
eigenvalues of a matrix.

Definition 1. A real matrix A = (ai j )n×n is called an M-matrix, if

1) aii > 0, i = 1, 2, · · · , n, ai j ≤ 0, i �= j, i, j = 1, 2, · · · , n;
2) The determinants

∣∣∣∣∣∣

a11 · · · a1i

· · · · · · · · ·
ai1 · · · aii

∣∣∣∣∣∣
> 0, i = 1, 2, · · · , n.

Lemma 1. For a matrix A = (ai j )n×n, assume that aii > 0, i = 1, 2, · · · , n,
ai j ≤ 0, i �= j, i, j = 1, 2, · · · , n. The matrix A is an M-matrix if and only if one
of the following conditions holds.

1) There exist positive constants c j , j = 1, 2, · · · , n, such that

n∑

j=1

ai j c j > 0, i = 1, 2, · · · , n.

2) −A is a stable matrix, that is, all eigenvalues of the matrix −A have negative
real parts.

Now, we consider the following linear differential difference equation

ẋ(t) = Ax(t)+ Bx(t − τ )) (55.3)
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where x ∈ R
n, A, B ∈ R

n×n, x(t − τ ) = (x1(t − τ1), · · · , xn(t − τn))T , 0 ≤ τi ≤ τ,

i = 1, 2, · · · , n are constant delays.
The characteristic polynomial of Eq. (55.3) is defined as following:

h(λ, τ ) = det
(
λE − A − B · diag

(
e−λτ1 , e−λτ2 , · · · , e−λτn

))
(55.4)

where E denotes n × n unit matrix.

Lemma 2. The equilibrium x = 0 of System (3) is delay-independent asymptotic
stability if and only if

1) A + B is a stable matrix, that is, each eigenvalue � of character equation

h(λ, 0) = 0

has negative real part;
2) For any ω ∈ R and any τ ≥ 0, h( jω, τ ) �= 0, j is the imaginary unit.

Main Results

Integrate the first m equations in System (1) by using the method of variation of
coefficient, we have

xi (t) = e−ci t xi (0)+
∫ t

0
e−ci (t−s)

n∑

j=1

ai j g j

(
y j
(
s − τy j

))
ds, t ≥ 0,

and by using the properties of the activation functions (2), we have

|xi (t)| ≤ e−ci t |xi (0)| +
∫ t

0
e−ci (t−s)

n∑

j=1

|ai j | · β j · |y j (s − τy j )|ds := zi (t).

Similarly, we have

|y j (t)| ≤ e−d j t |y j (0)| +
∫ t

0
e−d j (t−s)

m∑

i=1

|b ji | · αi · |xi (s − τxi )|ds := u j (t).

Differentiate both sides of equations above:

żi (t) ≤ −ci zi (t)+
n∑

j=1

|ai j |β j |u j (t − τy j )|, t ≥ 0, i = 1, 2, · · · ,m

u̇ j (t) ≤ −d j u j (t)+
m∑

i=1

|b ji |αi |zi (t − τxi )|, t ≥ 0, j = 1, 2, · · · , n. (55.5)
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We have the result: System (5) asymptotically stable ⇒ System (1) asymptotically
stable. The characteristic polynomial of System (5) is h(�, τ ) = det(G),

G(λ, τ ) = λE −
( −C Adiag(e−λτy1 , · · · , e−λτyn )

Bdiag(e−λτx1 , · · · , e−λτxm ) −D

)
,

where, C = diag(c1, c2, · · · , cm), D = diag(d1, d2, · · · , dn), A = (|ai j |β j )m×n,

B = (|b ji |αi )n×m, E = Em+n is (m + n)-dimension unit matrix.

Theorem 1. If the matrix M is an M-matrix, then the trivial equilibrium xi = y j = 0
of delayed BAM neural network (1) is globally asymptotically stable, where

M =
(

C −A
−B D

)
.

Proof. Because M ia an M-matrix, by Lemma 1,−M is a stable matrix, this implies
that all eigenvalues of h(�, 0) = det(�E + M) are all negative real parts;

Again, use Lemma 1, there exist positive constants k1, · · · , km, km+1, · · · , km+n ,
such that

ki ci >

n∑

j=1

km+ j |ai j |β j , i = 1, 2, · · · ,m,

km+ j d j >

m∑

i=1

ki |b ji |αi , j = 1, 2, · · · , n.

Denote K = diag(K1, K2), K1 = diag(k1, · · · , km), K2 = diag(km+1, · · · ,
km+n), consider

G( jω, τ )K =
(

( jωEm + C)K1 Adiag(e−λτy1 , · · · , e−λτyn )K2

Bdiag(e−λτx1 , · · · , e−λτxm )K1 ( jωEn + D)K2

)

Notice that for any ω ∈ R, τ ≥ 0,

|( jω + ci )ki | ≥ ki ci >

n∑

j=1

km+ j |ai j |β j =
n∑

j=1

km+ j |ai j ||e− jωτy j |β j ,

i = 1, 2, · · · ,m,

|( jω + d j )km+ j | ≥ km+ j d j >

m∑

i=1

ki |b ji |αi =
m∑

i=1

ki |b ji ||e− jωτxi |αi ,

j = 1, 2, · · · , n,

We can know that the matrix G( jω, τ )K is diagonal-dominated, and so, it is non-
singular, that is det(G K ) = det(G) det(K ) �= 0. From this, h( jω, τ ) = det(G) �= 0
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for any ω ∈ R, τ ≥ 0. From Lemma 2, the desired result of this theorem is obtained.
The proof is complete.
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Chapter 56
Chaotic Synchronization of Hindmarsh-Rose
Neurons Coupled by Cubic Nonlinear Feedback

Xiaoling Fang and Hongjie Yu

Abstract The chaotic synchronization of two cubic nonlinear coupling Hindmarsh-
Rose (HR) neurons is discussed. A nonlinear coupling feedback term with higher or-
der form of membrane potential is studied, and adds it to different position of the HR
equation. Numerical simulation shows when the cubic nonlinear coupling feedback
term only added to the first differential equation, in a quite large region of coupling
strength, the two neurons cannot achieve full synchronization. On this condition,
if the square form of membrane potential added to the second differential equation,
the two neurons can achieve full synchronization in special coupling strength region.
The synchronization stability has been proved by the calculation of the maximum
conditional Lyapunov exponent. This investigation proposes the harmony theory of
complex neuron network to some extent and provides a theoretical foundation for
next step of research.

Introduction

In present, chaos has been found from microcosmic neurons, neural network dy-
namics to macroscopical electroencephalography (EEG) and magnetoencephalo-
graph (MEG) both in theory and experiment [1, 2, 3, 4, 5]. It’s generally realized
that synchronization of neuron’s activities featured by chaotic synchronization is
important for memory, calculation, motion control and diseases such as epilepsy.
Moreover, it plays an important role in the realization of associative memory, image
segmentation and binding. For the universality of neurons’ synchronization, it’s nec-
essary to study the mechanism of chaotic synchronization for the coupling neurons
using some typical neuron equations such as Fitzhugh-Nagumo neuron equation and
Hindmarsh-Rose neuron equation.

Hindmarsh-Rose (HR) model was constructed from voltage clamp data to provide
a simple description of the patterned activity seen in molluscan neurons. It is a
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system with time-multiple scale, an important characterization of which is the irreg-
ular bursting chaos. The research shows that the communication in brain mainly by
burst but not by single impulse or fire. Therefore, the HR model can be used in the
simulation of the brain activity and investigate the chaotic synchronization.

In 1998, Pecora and Carroll [6] put forward the main stability equation of
synchronization coupling system and solved the synchronization stability problem
of many oscillators by random linear coupling, and then, a series of results about
the chaotic synchronization of Hindmarsh-Rose neuron was obtained. Shuai and
Durand [7] studied the phase synchronization of two coupling HR neurons. He and
his co-workers [8] studied the dynamic behavior of coupling HR neuron in the event
of weak coupling and found that the weak coupling between fast changing variables
can drive the high-dimensional hyperchaos of coupled time-multiple scale system
into periodic state with functional phase relation. In 2003, A method (SC method)
based upon the stability criterion of linear systems for synchronizing chaotic sys-
tems was proposed by Yu and Liu [9], and was expanded in 2004 [10]. This method
has been used to examine the stability of synchronous state of all-to-all coupling [11]
and star coupling [12] in HR neural networks. However, in almost all the research,
the linear coupling between neurons is considered only by far. For the nonlinear
coupling, that is, coupling with membrane voltage square and higher order, only
few papers [11, 12, 13] deal with it. Nonlinear coupling, include high order non-
linear coupling, is an important coupling form in real systems. In the mean time,
coupling feedback is only applied to the right side of the first differential equation
in the current study. The effect on system synchronization by applying coupling
feedback to the second differential equation isn’t considered and even it is thought
as noneffective to system motion [14]. Therefore, it is creative to study the effect on
the system’s chaotic synchronization by applying higher order coupling feedback to
the second differential equation.

In this paper, we construct a cubic nonlinear coupling Hindmarsh-Rose (HR)
neural network, and add the square form of membrane potential to the second differ-
ential equation, by changing the coupling strength, the chaotic synchronization was
achieved. The stability of chaos has been proved by the calculation of the maximum
conditional Lyapunov exponent.

Chaotic Synchronization of Two Cubic Nonlinear Coupling
Feedback Hindmarsh-Rose Neurons

In paper [11] and [12], Yu described Hindmarsh-Rose neuron model in detailed.
Now we considering a network of two HR neurons connected by nonlinear cou-
pling feedback term (xi

3 − x j
3), and add it to the right hand of the first differential

equation:

⎧
⎪⎨

⎪⎩

ẋ1 = y1 − ax1
3 + bx1

2 + Iext − z1 + α(x1
3 − x2

3)

ẏ1 = c − dx2
1 − y1

ż1 = r (S(x1 − x̄)− z1)

(56.1)
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⎧
⎪⎪⎨

⎪⎪⎩

ẋ2 = y2 − ax2
3 + bx2

2 + Iext − z2 + α(x2
3 − x1

3)

ẏ2 = c − dx2
2 − y2

ż2 = r (S(x2 − x̄)− z2)

(56.2)

Assume that the initial condition is x1(0) = 0.3, y1(0) = 0.3, z1(0) = 3.0, x2(0) =
0.2, y2(0) = 0.35, z2(0) = 3.2, and other parameters are the same as before.
Numerical simulation shows when in a quite large region of coupling strength, α ∈
[0.0001, 0.5], the system has not achieve any synchronization.

In HR neuron equation, recovery variable y is influenced by the outward flow
of potassium ions immediately after the discharge of the action potential [15], The
potassium ion currents slower the returning of membrane potential to the threshold
value and the frequency of repeating discharge, and allow a delay between excitable
simulate and action potential [16]. From the point view of neurophysiology, intro-
ducing the square form of membrane voltage between two neurons (xi

2 − x j
2) as

coupling feedback into the flow of potassium ions, that is, exerting coupling feed-
back on the right side of the second differential equation, which means the change
of potassium ion, and modulate the burst interval of HR neuron, so the chaotic syn-
chronization of two neurons may be affected. The resulting differential equations of
system motion are as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = y1 − ax1
3 + bx1

2 + Iext − z1 + α(x1
3 − x2

3)

ẏ1 = c − dx2
1 − y1 + β(x1

2 − x2
2)

ż1 = r (S(x1 − x̄)− z1)

(56.3)

⎧
⎪⎪⎨

⎪⎪⎩

ẋ2 = y2 − ax2
3 + bx2

2 + Iext − z2 + α(x1
3 − x2

3)

ẏ2 = c − dx2
2 − y2 + β(x2

2 − x1
2)

ż2 = r (S(x2 − x̄)− z2)

(56.4)

Initial values and the other parameters are as mentioned above. Numerical simula-
tions show that system can achieve complete synchronization as long as β reaches
a certain region regardless of α. Figure 56.1 show that when α = 0.1, β = 1.1,
the burst time series, synchronization error and time interval of two HR neurons,
apparently they are full synchronized.

Different α and β values to achieve complete chaotic synchronization are given
in Table 56.1.

The evolutional equation of the difference e(t) is as follows:

ė =

⎡

⎢⎣
ẋ1 − ẋ2

ẏ1 − ẏ2

ż1 − ż2

⎤

⎥⎦ =

⎡

⎢⎣
ė1

ė2

ė3

⎤

⎥⎦ =

⎡

⎢⎣
e2 − e3 − 3(a − 2α)x2

2e1 + 2bx2e1

−e2 + 2(2β − d)x2e1

rse1 − re3

⎤

⎥⎦ (56.5)
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Fig. 56.1 The burst time series (a), synchronization error (b) and time interval (c), when α =
0.1, β = 1.1

Table 56.1 The system achieved full synchronization with different α and β

α 0.1 0.01
β [1.0, 1.9] [0.8, 3.0]

So calculate the maximum conditional Lyapunov exponent, we find that the max-
imum conditional Lyapunov exponents are all negative when coupling strength
are shown as Table 56.1, see Fig. 56.2., which means that the synchronization is
stable.

It can be seen from calculation above that chaotic synchronization of two cubic
nonlinear coupling HR neurons can be realized effectively by exerting the square
form of the output membrane voltage on the right side of the second differential
equation. Assuming that the nonlinear coupling strength on the first differential
equation is α and the nonlinear coupling strength on the second differential equation
is β, Bigger is α, the range of β is smaller.

(a) α = 0.1 (b) α = 0.01

Fig. 56.2 The maximum Lyapunov exponent, lyamax vs. β
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Conclusion

In this paper, the chaotic synchronization of two cubic nonlinear coupling HR neu-
rons is discussed. A nonlinear coupling feedback term with higher order form of
membrane potential is studied, and adds it to different position of the HR equation.
Through numerical simulations, we can get the following conclusion:

(1) No chaotic synchronization occurs in a considerable range of coupling strength
when cubic nonlinear coupling feedback is exerted on the first differential equa-
tion only.

(2) On this condition, if the square form of membrane potential added to the sec-
ond differential equation, the two neurons can achieve full synchronization in
special coupling strength region. Assuming that the nonlinear coupling strength
on the first differential equation is α and the nonlinear coupling strength on
the second differential equation is β, the system can achieve complete synchro-
nization with different α and β in a certain range. Bigger is α, the range of
β is smaller. The maximum conditional Lyapunov exponent can identified the
synchronization stability.

This study proposes a possible explanation on the generation mechanism of syn-
chronization between neurons in brain. On the other hand, the basis is also provided
for the chaotic synchronization of higher-order nonlinear coupling neurons. The
mechanism of coordination in the complex neural system is revealed in a certain
extent, which has laid a foundation for the future study.
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Chapter 57
When Is It Worth Working: Calculating
the Motivational Value of Working

Barry J. Richmond, Giancarlo LaCamera, Alex Lerchner
and Takafumi Minamimoto

Abstract To determine what factors influence motivated behavior, we have worked
to identify behavioral and neurophysiological correlates related to motivation. In
these studies we have used behavioral paradigms in which monkeys must carry out
one or more simple operant behavioral trials, detecting when a visual target changes
from red-green, which when done correctly, allows that monkey to either move to
another identical trial or obtain a reward. Visual cues appearing at the beginning
of the trials indicate whether a trial will be rewarded, or not. Monkeys react to
these cues, with the number of errors related to how long in the future the reward
will be, but also contingent on how much work has been already completed. The
performance, both overall, and dynamical can be nicely modeled with simple mod-
ifications of temporal difference learning models.

Most, if not all, exploration of the world relies on seeking goals or rewards. Learning
which circumstances lead to rewards it is necessary to learn the association between
environmental stimuli and/or actions and the rewards (or which stimuli or actions
to take to avoid adverse outcomes). Both experimental psychology and economic
theory have worked on the circumstance leading to this stimulus-outcome learning
from different points of view. The field of learning theory grew up to describe the
dynamics and outcomes of experiments delving into this learning. In economics
the same behaviors are of great interest because the actions of individuals affects
individual behavior, and these behaviors affect financial markets.

We have been studying the how motivation arises, and particularly, what factors
govern when and how hard an animal will work to obtain a goal. In our experiments
monkeys are taught to touch a bar to start single trials and to release the bar when a
red target spot turns to green, i.e., a simple sequential red-green color discrimination.
Monkeys generally learn to do this well in about 4–6 weeks (with red waiting times
of 2–4 s). After learning this ‘operant’ task, the monkeys are required to perform 1,
2, 3 or 4 of these red-green discrimination trials to obtain a reward. A visual cue
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appears at the beginning of each trial. In the valid condition, there is a particular
cue associated with each state. In the random condition, the cue is chosen at random
from the set of cues. Thus, in the valid condition the monkeys can know which state
is current, and they can learn how many trials must be performed to obtain a reward.
In a variant of the task, the monkey needs to perform only one trial, but, in the valid
condition the cue will signal how long the monkey will have to wait to obtain the
reward, that is, how postponed the reward will be.

In both tasks, the monkeys make few errors when the cues are chosen randomly.
In the valid cue condition, the monkeys make errors in trials that are not immedi-
ately rewarded. The number of errors becomes larger as the number of remaining
trials, or postponement period increases [1, 2, 3, 4, 5, 6, 7]. Thus, the value of trials
decreases as the time before reward increases. This is a well-known result and the
temporal difference model describes this well. However, the temporal difference
model predicts that when the agent (here the animal) has control over the situation,
the performance should improve to maximize reward. However, the monkeys do
not show that effect. There behavior remains stable for years with the errors being
proportional to the delay before reward.

To model this behavior we have modified the temporal difference model of Sutton
and Barto [8]. They derived the temporal difference model for a machine-learning.
They sought an algorithm that could drive learning of a wide variety of tasks. This
model is formulated with a reward being given for every successful performance
of the desired function, and the algorithm was predicated on maximizing the long
term reward. This is achieved by increasing the values of actions or states that were
followed by a reward. The approach is wonderfully successful and can be used to
teach machines to perform a wide variety of tasks very well.

To model the behavior we used to the temporal difference model for learning the
state values, but removed the adaptation that maximizes the reward. In this form
the model matches the performance of the monkeys very closely by learning the
values of all states, even those that are not rewarded. This latter requirement must
be achieved or there would be no motivation to continue performing in unrewarded
circumstances. In addition to predicting the behavior in the valid cue condition, the
model predicts that the monkeys will perform well in all trials of the random con-
dition. This occurs because value is mapped to errors through a sigmoidal function,
and the overall average of value maps into a low error rate, that is, the average value
maps to a low error rate.

In economic theory it is shown that states equally far from reward should be
equally valuable. In our experiments, we observed that the values of states equally
far from a reward, say a penultimate trial, depended upon number of trials already
performed in the current state. In penultimate trials, the monkeys made fewer errors
when more trials had already been performed. This behavior cannot be explained
with conventional temporal difference models because they look ahead only, dis-
counting future reward. By including a term that is algebraically similar to tem-
poral discounting, the value can be increased according to the number of trials
already performed, with the algebra depending only on the preceding state. It is
not necessary to count the number of preceding trials. This latter effect is similar
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to framing as described by Kahnemann and Tversky [9, 10]. In framing the local
context affects the value of state, which is just what is happening to the monkeys.
Thus, with the simple algebra of temporal difference modeling we can capture many
of the important features of reward schedule behavior.

Because our monkeys learn to associate the stimuli with the state values, we
have used this as a tool to probe the abilities of monkeys to form generalizable
categories. If different sets of cues, for example, dogs, cats or rats, are presented
with different states in variants of reward schedule tasks the monkeys quickly show
that they have generalized these categories through their error rates and reaction
times. This provides a rapid and powerful means to explore perceptual categoriza-
tion in monkeys. We can further to study the relation between different brain regions
and the formation of categories. We have found that monkeys with complete lateral
prefrontal lesions form generalizable categories and are as capable of making extra-
dimensional shifts (e.g., they can shift from categorizing by color to categorizing by
shape) as normal monkeys. Thus, perceptual rule shifting does not seem to require
lateral prefrontal cortex.
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Chapter 58
The Physiological and Biochemical Bases
of Functional Brain Imaging

Louis Sokoloff

Functional brain imaging techniques are now widely used to identify regions of the
brain involved in cognitive and various other neurological functions. These methods
are all based on the display of the local activities of physiological and/or biochemi-
cal processes related to functional activity within images of the brain.

Tissues that do physical work, as, for example, mechanical work by heart and
skeletal muscles and chemi-osmotic work by kidney, derive the energy needed to
support that work from the metabolism of substrates supplied to them by the blood.
The greater the work load, the greater is the demand for energy and the higher the
tissue’s rate of energy metabolism. Although the physical nature of the work done
by brain is less obvious, the pathways of its energy metabolism are similar to those
of other tissues. In man the normal adult male’s brain comprises only about 2%
of total body mass, yet it consumes approximately 20% of the body’s total basal
oxygen consumption. This probably indicates that even at rest the brain is function-
ally very active. The brain’s oxygen consumption (CMRO2) is almost entirely for
the oxidative metabolism of glucose which in normal physiological conditions is
the almost exclusive substrate for the brain’s energy metabolism [1]. As far back
as 1892 Roy and Sherrington [2] had hypothesized that mechanisms exist in brain
that adjusts its rate of blood flow (CBF) to the nutritional demands of its energy
metabolism. If so, then CBF should vary with the rate of energy metabolism and
reflect the level functional activity in the brain. In comparison with other organs
the brain is extraordinarily heterogeneous with regard to both structure and func-
tion with different neurological functions localized to specific regions of the brain.
Probably for that reason methods that measured average CMRO2 and CBF in the
brain as a whole failed to show a clear relationship between normal physiological
functional activities and rates of blood flow and metabolism. What was needed were
methods for measuring rates of blood flow and/or energy metabolism in the brain
locally within the various structures of the brain.
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The first step in the evolution of functional brain imaging was the development of
the [131I]trifluoroiodomethane (CF3

131I) method for measuring local rates of blood
flow within the various structures of the brain (lCBF) [3]. This method utilized a
unique quantitative autoradiographic technique in which the optical densities in au-
toradiographs of sections of the brain were quantitatively related to the local tissue
concentrations of the radioactive tracer, and these concentrations were in turn deter-
mined by the rate of blood flow to the tissue. Essentially, the method provided pic-
torial maps of the local rates of blood flow throughout the brain exactly within each
of its anatomic structures. This method was used to show that retinal stimulation
with photoflashes markedly increased local CBF in all the structures of the visual
pathways of the conscious cat, and these local increases were clearly visible in the
autoradiographs [4]. This study confirmed the validity of the Roy and Sherrington
hypothesis and was the first true example of functional brain imaging.

The mechanisms by which CBF adjusts to changes in functional activity are still
largely undefined, probably because there are so many of them. It was long believed
that CBF is adjusted to the level of energy metabolism because increased CO2, and
reduced oxygen tensions, decreased pH, and increased adenosine concentration in
the tissue, all consequences of increased energy metabolism, dilate cerebral blood
vessels, and when these are changed in the opposite direction during reduced energy
metabolism, the vessels constrict. Neurogenic control of the cerebral circulation is
always a possibility but never proven. Vascular effects of neurotransmitters, such as
glutamate, dopamine, GABA, etc., and nitric oxide, a very potent vasodilator, have
all been implicated. It may well be that all contribute to some extent and to varying
degrees in different parts of the brain so that none can be ruled out. Regardless of
the mechanism, however, measurement of local CBF can be used to localize local
functional activity.

Compared with blood flow, it should be expected that local energy metabolism
would be more closely, more directly, and more specifically related to local func-
tional activity because both processes are localized to the same individual cells.
No individual cells, however, have their own private blood flows, and, therefore,
blood flow should increase more diffusely in areas surrounding the activated cells.
Furthermore, energy metabolism is influenced only by events within the cells, but
blood flow is also influenced by chemical factors in the blood perfusing the tissue.
All in all, it is to be expected that measurement of local energy metabolism should
provide a more specific marker and better spatial localization of functional activity
in the brain.

The development of the [14C]deoxyglucose) ([14C]DG) method made it possible
to measure local rates of glucose utilization (lCMRglc) throughout the brain [5].
This method employed a quantitative autoradiographic technique like that of the
(CF3

131I) method but, subsequently, added computerized processing techniques that
scanned the autoradiographs and redisplayed them in color with the actual rates
of lCMRglc encoded in a calibrated color scale. It measured lCMRglc quantita-
tively accurately with a spatial resolution (Full-Width-Half-Max, FWHM) of about
200 �m [6], but it could qualitatively visualize and display altered lCMRglc in areas
as small as 25 �m. Numerous applications of this method in both conscious and
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anesthetized animals clearly established that increased functional activity stimulates
and decreased functional activity diminishes lCMRglc in anatomical components of
the activated pathways [7]. A surprising finding was that the increases in glucose
consumption evoked by functional activation are confined to synapse-rich regions,
i.e., neuropil which contains axonal terminals, dendritic processes, and also the
astrocytic processes that envelop the synapses [8, 9]. It was also shown that the
magnitudes of these increases are directly and linearly related to the frequency of
action potentials in the afferent pathways and not to the activity of the target neurons
in their projection zones [8–10]. lCMRglc is, therefore, increased in the projection
zone of an activated pathway regardless of whether the pathway is excitatory or
inhibitory. To determine which requires examining lCMRglc in the next synaptic
station of the pathway. Regions rich in neuronal cell bodies do consume glucose,
but their rates are essentially unaffected by neuronal functional activation [8, 9].
Presumably, the glucose metabolized in neuronal cell bodies is mainly to support
cellular vegetative and house-keeping processes, e.g., axonal transport, biosynthesis
of nucleic acids, proteins, phospholipids and other lipids, as well as other energy-
consuming processes not related directly to action potentials.

Studies with the [14C]DG method in neural tissue slices showed that the activa-
tion of energy metabolism by functional activation is due mainly, if not entirely, to
stimulation of Na+,K+-ATPase activity [11]. Action potentials reflect the uptake of
Na+ into and extrusion of K+ from the cells, thus depolarizing the cell membranes.
These ion shifts stimulate the activity of Na+,K+-ATPase, the enzyme that pumps
the Na+ back out and the K+ back into the cells, a process dependent on the en-
ergy derived from the breakdown of ATP. The breakdown of ATP in turn stimulates
glucose metabolism to restore the ATP that had been consumed. In short, it appears
then that the energy-requiring work of the brain supported by the increased lCMRglc,
during neuronal functional activation is due mainly to activation of Na+,K+-ATPase
activity to restore the ionic gradients across the cell membrane and the membrane
potentials that were degraded by the spike activity.

The [14C]DG method lacks the cellular and subcellular resolution needed to iden-
tify the elements in neuropil, e.g., axonal, dendritic, and astrocytic processes, that
contribute to the functional activation of lCMRglc. This issue has been approached
indirectly by studies in vitro with cultured neurons and astroglia in which the in-
cubation medium is manipulated to simulate changes expected to occur in vivo
during neuronal functional activation, e.g., increased extracellular K+ concentration
([K+]o), opening Na+ channels and raising intracellular Na+ concentration ([Na+]i),
and raising extracellular neurotransmitter concentrations [12, 13]. Membrane depo-
larization by raising [K+]o stimulated glucose utilization in cultured neurons but not
in astroglia [13], and opening Na+ channels by addition of veratridine or monensin
markedly stimulated glucose utilization in both types of cells. These stimulations
were all blocked by addition of ouabain, an inhibitor of Na+,K+-ATPase, confirm-
ing a role for this enzyme in the mechanism of the increased glucose utilization.
Of particular interest was the finding that addition of L-glutamate to the medium
markedly stimulated glucose utilization in the cultured astroglial cells [12, 13]. This
stimulation was unaffected by inhibitors of NMDA or non-NMDA receptors but



330 L. Sokoloff

blocked by ouabain and absent in Na+-free medium, excluding glutamate recep-
tors but implicating Na+,K+-ATPase in the mechanism of this stimulation as well
[12, 13].

L-glutamate is the most prevalent excitatory neurotransmitter in brain and is re-
leased by the axonal terminals in the synapses in the projection zones of glutamater-
gic pathways. Extracellular glutamate is extraordinarily toxic to neurons, but they
are normally protected from toxic extracellular glutamate concentrations by the avid
uptake of glutamate by the astrocytes. This uptake is mediated by a Na+/glutamate
co-transporter that transports the glutamate together with Na+ into the astrocytes
[14] where the glutamate is converted to glutamine by glutamine synthetase, an-
other ATP-consuming enzymatic process. On the basis of these observations made
in cultured neurons and astroglia and anatomical evidence that capillaries in brain
are largely surrounded by astrocytic end-feet, Magistretti and Pellerin [15] have
hypothesized that oxidative metabolism of glucose in brain is compartmentalized
between astrocytes and neurons, first uptake of glucose by astrocytes where it is
converted by glycolysis to lactate and then the export of this lactate to the neurons
where it is oxidized to CO2 and water by the tricarboxylic cycle. This hypothe-
sis, combined with what is already known about cerebral biochemistry, leads to
the following scenario. Functional activation of a pathway is associated with in-
creased spike activity and the release of neurotransmitters in its terminal projection
zone. This neurotransmitter is mainly glutamate in most excitatory pathways. The
released glutamate is cleared from the extracellular space by the co-transport of the
glutamate and two to three Na+ ions into the astrocytes. The glutamate taken up
by the astroglia is converted by glutamine synthetase to glutamine which can then
be released and recycled for use by neurons. The rise in intracellular Na+ content
in the astroglia stimulates Na+,K+-ATPase activity to pump out the Na+ ions, and
one molecule of ATP is consumed in the pumping out of three Na+ ions. The con-
version of one molecule of glutamate to glutamine also consumes one molecule of
ATP. Therefore, each glutamate molecule that is released by neuronal functional
activation, then taken up along with Na+ into the astroglia, and converted there
into glutamine results in the consumption of two molecules of ATP, the net amount
of ATP produced by the glycolytic conversion of one molecule of glucose to two
molecules of lactate. The lactate molecules thus produced in the astrocytes are
exported to the neurons where they are oxidized by the tricarboxylic acid cycle
to produce an additional 36 molecules of ATP. These ATP molecules are used by
Na+,K+-ATPase to restore the ionic gradients in the axonal terminals and dendritic
processes that were partially degraded by the spike activity. The energy metabolism
supporting functional activity in brain is then shared by neurons and astroglia in
a symbiotic relationship. Glucose is the essential substrate for the brain’s energy
metabolism, but different segments of the overall pathway in its metabolism are to
some extent segregated in the two cell types, glycolysis in astrocytes and oxidation
in neurons.

This lactate-shuttle hypothesis has raised some controversy [16]. Its relevance
has been questioned because it is based mainly on studies of cells in culture, and also
as originally presented, appeared to propose exclusive assignments of glycolysis to
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astrocytes and oxidative metabolism of the glycolytic products, lactate and pyruvate,
to neurons. It is true that in astroglia in culture the rate of glycolytic metabolism of
glucose far exceeds that of oxidation so that excessive lactate is formed and released
into the medium. Neurons in culture, however, are also able to metabolize glucose
in the medium to pyruvate and lactate and then to oxidize these glycolytic products
to CO2 and water, and astroglia are able to some extent to oxidize glucose and
lactate to CO2 and water [17]. The neurons, however, do show a kinetic preference
to oxidize lactate than glucose to CO2. For example, progressive increases in lac-
tate concentration in the medium produce correspondingly progressive inhibition of
glucose oxidation by neurons whereas glucose in the medium does not inhibit the
oxidation of lactate [17]. This would indicate that the direct utilization by glucose
by neurons depends on the lactate concentration in the medium. The lactate-shuttle
hypothesis is probably valid mainly in regions of the brain with major glutamater-
gic inputs where spike activity in the afferent pathway releases glutamate in the
synapses. The glutamate is then taken up along with Na+ by the astrocytes which
stimulates glucose utilization to pyruvate and lactate. The ATP formed by glycolysis
is consumed in the astrocytes to pump the Na+ out of the cells and convert the
glutamate to glutamine, and the lactate is released into the extracellular space. The
rise in extracellular lactate concentration leads to preferential uptake and oxidation
of lactate and inhibition of glucose utilization by the neurons. The ATP generated by
the oxidation of the lactate provides the energy needed to restore the ionic gradients
and membrane potentials degraded by the spike activity in the neuronal synaptic
membranes. This compartmentalization is probably of lesser magnitude and impor-
tance in regions with input pathways that use transmitters other than glutamate, and
in no case is the compartmentalization of glycolytic and oxidative metabolism of
glucose between astrocytes and neurons complete and fully obligatory.

Because of their use of autoradiography, the CF3
131I and [14C]DG methods for

measuring local CBF and glucose utilization were limited to studies in animals.
Both methods were, however, subsequently adapted for use in humans by substi-
tuting positron-emitting tracers and positron emission tomography (PET) in place
of autoradiography, i.e., H2

15O instead of CF3
131I to measure blood flow [18] and

[18F]fluorodeoxyglucose (18FDG )in place of [14C]DG to measure glucose utiliza-
tion [19, 20]. These PET methods, however, have far lesser spatial resolution than
the autoradiographic methods, e.g., FWHM in the mm instead of �m range. Al-
though these PET methods contributed very little to define the mechanisms that
relate blood flow and energy metabolism to functional activity in the brain, their ap-
plications did initiate and establish the field of functional brain imaging in humans.

The advent of nuclear magnetic resonance imaging (MRI) introduced a new and
now the most convenient and commonly used method for functional brain imaging
(fMRI) in both animals and humans. It is based on the physical property of atomic
nuclei that, when first oriented in a magnetic field and then temporarily reoriented
by radiofrequency pulses, emit during their return to their previous orientation in the
magnetic field radio signals at resonance frequencies and intensities characteristic
of their chemical species, concentrations, and environment. The strongest signals
are those obtained from hydrogen nuclei because they are in water and thus most
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prevalent. This physical phenomenon has been exploited for fMRI by taking advan-
tage of the so-called Blood-Oxygen-Level-Dependent (BOLD) effect [21, 22]. The
physical basis of this effect is as follows. Reduced hemoglobin, mainly in venous
blood, is paramagnetic which causes it to alter and attenuate the MRI signal. Oxyhe-
moglobin, most prevalent in the arterial blood is diamagnetic and has no such effect.
Blood flow is increased by dilatation of the blood vessels which augments the inflow
of arterial blood and its oxyhemoglobin content into the tissue. If this increased
blood flow and oxygen input is not matched by a proportionate increase in oxygen
consumption and extraction of oxygen from the blood by the tissue, the venous
blood draining the tissue within the field of view contains more of oxyhemoglobin
and less deoxyhemoglobin. This leads to a small increase in the MRI signal, i.e.,
the BOLD effect. Functional activation, at least initially, increases inflow of arterial
blood more than the oxygen extraction which results in reduced hemoglobin con-
tent within the field of view and produces the signal exploited by fMRI to localize
functional activity in the brain [22, 23].

The physiological basis of the discrepancy between the magnitudes of the
changes in blood flow and oxygen extraction that lead to the BOLD effect evoked by
functional activation is still unclear. It has been attributed to increases in blood flow
without, despite comparable increases in glucose utilization, proportionate rises in
oxygen consumption that would extract the oxygen from the blood [24, 25]. This
is highly unlikely because the same intracellular changes produced by increased
functional activity that stimulate glucose utilization also stimulate oxidative phos-
phorylation and the oxidation of the pyruvate and lactate produced by glycolysis.
A more likely explanation is that there is a temporal dissociation between the in-
creased rates of glycolysis and the oxidation of its products. The time course of
increased oxygen consumption is likely to be delayed, acutely less intense, and
more spread out over a longer time period than the increase in blood flow. The
lactate and pyruvate produced by the initial stimulation of glycolysis may be ox-
idized more slowly but over a longer time span that extends beyond the end of
the functional activation [26]. Another likely contributor to the BOLD effect is the
different spatial distributions of the changes in blood flow and oxygen consumption
within the field of view. Functional activation stimulates energy metabolism only in
functionally activated cells. No cells, however, have their own private blood flows.
When cells are activated, blood flow is increased not only to those cells but also to
surrounding unaffected cells. The venous blood draining the mixture of activated
and unaffected cells in the field of view then contains higher oxyhemoglobin and
lower reduced hemoglobin contents giving the impression that functional activation
increases blood flow more than oxygen consumption. The blood flow is dispropor-
tionately higher because it includes the increased blood flow in the surrounding
tissues within the field of view that were not functionally activated. In addition, one
must consider the potential role of the Munro-Kellie doctrine [27] which addresses
the fact that because the brain is enclosed in a rigid box, the cranium, any increase in
any one fluid compartment must be at the expense of one or more of the other fluid
compartments in the brain. Because the brain is incompressible, this leaves only
arterial and venous blood and cerebrospinal fluid susceptible. During functional
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activation the arterial blood vessels are dilated bringing in more oxygenated blood
which must displace venous blood and/or CSF. The exit channels for CSF have
much higher resistance than those for the venous blood, and so the input of arte-
rial blood mechanically displaces mainly venous blood which would give rise to a
BOLD effect.

Even though the physiological basis of the BOLD effect during functional ac-
tivation in brain is still undefined, it is clear that fMRI provides a potent method
for localizing functional activities in the brain. It is non-invasive, uses no ionizing
radiations, is very rapid so that numerous repeated scans can be done within one
session and control and stimulated conditions compared, and provides better spa-
tial resolution than PET. Its main disadvantage is that baseline conditions without
functional activation between subjects cannot be compared.
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Chapter 59
Through Attention to Consciousness

J.G. Taylor

Abstract There is presently a vigorous ongoing debate about the relation between
attention and consciousness. This is being fuelled by results from experimental
paradigms which probe various features of the interaction of attention and con-
sciousness, such as the attentional blink, object substitution masking and change
blindness. We present here simulations of these three paradigms which can all
be produced by use of a single model of attention. This model helps suggest an
explanation of consciousness as created through attention, and helps explore the
complex nature of attention. It indicates how it is possible to accommodate the
relevant experimental results without needing to regard consciousness and atten-
tion as independent processes. We continue by analysis of the early stages of
attention (the first 200 ms post-stimulus) and show how these can support the
original CODAM model introduced by us earlier. The paper concludes with a
discussion.

Introduction

The debate is intensifying between those who believe attention is necessary (but
not sufficient) for consciousness [1, 2, 3] and those who regard these two brain
processes as independent [4, 5]. The debate presently is based on arguments of the
latter protagonists, who assume that attention and consciousness are each simple
processes. However neither of these processes is likely to be simple. The complex-
ity of attention is indicated by the subtle nature of priming and masking effects,
and by a variety of deficits in attention such as neglect and extinction, as well
as phenomena like the attentional blink. The complexity of consciousness arises
from the wealth of different states of consciousness: in the normal waking state,
under various drugs, in meditation (such as in so-called pure consciousness), in
dreaming, hypnosis, dissociation of identity disorder, and so on. In order to advance
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the debate, we explore more fully some of these complex features of attention by
use of a recent model providing a deconstruction of attention, and thence of con-
sciousness [6, 7, 8, 9, 10, 11]. The model extends to attention the recently success-
ful applications of engineering control concepts to motor control [12, 13, 14, 15].
Thus modules acting as inverse model controllers and forward models are extended
from the motor control domain to attention control. Considerable support has been
given for this engineering control approach to attention from recent brain imaging
results [16].

The resulting model uses the efference copy or corollorary discharge of the at-
tention movement control signal to give a precursor signal to the posterior cortical
sensory working memory buffer site for the creation of content consciousness. This
precursor signal has been proposed [6, 7, 9, 10] as that generating the experience of
‘ownership’ or of ‘being there’ [17], and leading to the important mental property
of ‘immunity to error through misidentification of the first person pronoun’ [18].
That is why the resulting model is termed the COrollary Discharge of Attention
Movement (CODAM). It has been used to give an initial explanation of the main
ERP sequence as observed in the brain during the creation of consciousness [11].
The suggestion of the importance of the corollary discharge of attention movement
in understanding consciousness also allows for the beginnings of a rapprochement
between science and religion through the explanation, by CODAM, of the medita-
tive state of pure consciousness seen to be at the basis of the religious experience of
God across all the world’s major religions [8, 19]. The CODAM model is applied
in this paper to give detailed explanations of the various paradigms now available
and used in the arguments by one side or the other of this division on attention
and consciousness. It is later considered in terms of how attention is developed in a
bottom-up manner, relating particularly to the N2 signal (and more particularly the
N2pc) as an indication of the detailed dynamics of the development of attention in
the brain.

We proceed in the next section to give a brief review of the basic CODAM
model which we use to bolster our argument that attention is the main stepping
stone for consciousness. In the following section we give a short review of how the
attentional blink is explained by CODAM, extending the results of [20] to include
explicit control of distracter inhibition on the buffer working memory site by the
attention movement corollary discharge. The section on ‘Modeling Object Substitu-
tion’ treats the phenomenon of object substitution, again with a simulation showing
how an attention control approach allows some of the details of the phenomenon
to be explained quantitatively, with results indicating that again the manipulation of
awareness of stimuli in the paradigm is to be explained by attention processes inside
the CODAM model. In the section on ‘Modeling Change Blindness’ we consider
the phenomenon of change blindness, with similar results. The section on ‘Further
Paradigms Against an Attention-Basis for Consciousness’ has a brief discussion of
the results of further paradigms supposedly proving that attention and consciousness
are disparate entities, and show how this is not the case. A final discussion concludes
the paper.
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The CODAM Model

The basic architecture of the model is shown in Fig. 59.1. The modules present arise
as those observed by brain imaging of attention paradigms [16], plus an extension by
use of engineering control models to include an efference copy buffer. The proposed
sites of the various modules of CODAM are given in Table 59.1.

The modules in Fig. 59.1 consist of those for input processing (oriented bar ana-
lyzers, etc), for object representations (the object map), a goals module, an inverse
model controller (IMC: creating a feedback attention signal to the object map and
input modules, so as to move the focus of attention, as biased by the goals module),
a working memory buffer site (to hold attention-amplified activity for report and
awareness), a corollary discharge buffer (as a copy of the attention movement signal,
to give an early prediction of the expected report signal from lower cortices on the
buffer working memory), and finally a monitor module (to create an error signal so
as to correct for possible attention errors).

There are numerous macroscopic electrical signals in the brain which signal im-
portant information processing events. These are the event-related potentials (ERPs)
that arise from interactive processing of inputs up and down the hierarchy of mod-
ules (in vision this hierarchy involves V1, V2, V3, V4, TEO and TE for the ventral
route and V1, V5/MT, LIP for the dorsal one) with a stimulus attempting to reach its
sensory buffer being given a boost by the corollary discharge signal. As seen from
the application of CODAM to the attentional blink [20] (as discussed further below)
these signals give a description both of activity in the various sites as processing
time proceeds, as well as how the various sites interact through either excitatory or
inhibitory feed-forward or feedback effects. These interactions are enhanced when
a number of stimuli are present in a short period. In this condition the excitatory
effects from the corollary discharge signal are seen to enhance the growth of the
sensory buffer signal, together with the possibility that the inhibition from the corol-
lary discharge signal and the sensory buffer combined inhibit further processing in

Fig. 59.1 The CODAM model. The various modules are those of engineering control, and dis-
cussed in the text and in Table 59.1
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Table 59.1 Comparison of variables in engineering control theory and attention

Variable In Engineering control In attention Suggested brain sites for
modules

X (, t) State of plant State of lower level
cortical activity

Sensory cortices
(occipital, temporal)

X (IMC) Control signal to control
plant in some manner

Control signal to move
attention to a spatial
position or to object
features

Superior parietal lobes;
tempero-parietal
junction (TPJ)

X (goal) Desired state of plant Desired goal causing
attention to move

Prefrontal Cortices
(DLPFC & cingulate)

X (CD) Corollary discharge
signal to be used for
control speed-up

Corollary discharge to
speed-up attention
movement

Presently unknown, but
expected in
parietal/prefrontal

X (WM) Estimated state of plant
(as at present time or
as predictor for future
use) often termed an
observer

Estimated state of
attended lower level
activity (at present
time or as predictor
for future use)

WM Buffers in posterior
parietal and
hippocampal areas

the attention movement signal generation module. These interactions are now being
observed in the attentional blink paradigm [23].

Modeling the Attentional Blink

The attentional blink requires a subject to be able to recognize a given letter, say,
as the first target (T1) in a rapid visual stream of stimuli being presented at about
10 Hz, and then requires the subject to recognize a further second letter target (T2)
presented several lags later. The success level in recognizing T2 as the lag is in-
creased from 1 to 10 has a well-established U-shape, with the dip of the U being for
a lag of about 3 or for a time gap between T1 and T2 being about 300 ms. A detailed
simulation of the attentional blink has been presently recently [20]. This uses the
interaction between the P3 of T1 (assumed to be created on the sensory buffer) and
the N2 of T2 (assumed created from an efference copy of the attention movement
control signal.). The N2 is itself observed to be complex [21, 22].

The results of an extension of the original model of [20] by addition of inhibi-
tion from the corollary discharge buffer (WMcd) to the other nodes on the sensory
buffer site (WMsens) are shown in Fig. 59.2, for levels of the inhibitory connection
strengths of 0, 0.5 and 1.0, As seen from the figures there is progressive change of
the activity at various lags as the inhibition is increased. This is particularly clear
for the P3 of T1.

We note that the results of Fig. 59.2 can be compared with the recent results
of [23], which showed that there is an inhibitory effect, in the case of awareness of
T1, from the N2 of T2 to the P3 of T1. This effect is observed most clearly in the
above Fig. 59.2c, with inhibitory connection of 1.00. The fall-off of the WMsens
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Fig. 59.2 Simulation results from CODAM, showing the P3 of T1 (in yellow, only detection of
T1) and of T2 (in magenta: detection of both T1 and T2) for different lags for the presentation of
T2, Note the increased reduction of the P3 of T2 as the feedback inhibition from the sensory buffer
to the corollary discharge buffer increases, from Fig. 59.2a to b to c. (a) INHIBITION= 0 (Yellow
= T1/Magenta = T2), (b) INHIBITION = 0.5 (Yellow = T1/Magenta = T2), (c) INHIBITION =
1 (Yellow = T1/Magenta = T2)

activity of T1 is largest, becoming negative, with largest inhibitory effect of T2s
WMcd signal onto it.

Thus we interpret the results of [23] as evidence for the crucial mechanism
posited for the Attentional Blink in [20], that of the prior boosting of the sensory
buffer activity by that of the efference copy for the same code, with corresponding
inhibition from the P3 to all positions on the attention movement signal generator
(inverse model controller).

The success of this model supports the view that attention is well described as
a control system, in engineering control terms (the basis of the original CODAM
model [6, 7, 8, 10, 11, 19]). Moreover the manipulation of consciousness would
necessarily need to arise from the internal dynamics of neural processes inside CO-
DAM, and not some further external activation, as evidenced by the correlation of
the level of awareness of T2 as the lag between T1 and T2 is varied and the level of
activity in the WM buffer module.

Modeling Object Substitution

A related question is that of understanding the results presented on object sub-
stitution masking in [24]. When a subject is presented with a masked object, the



340 J.G. Taylor

experimenters observed an N2 to the object even though it did not reach awareness.
This would correspond in CODAM to the presence of the WMcd signal, but with no
WMsens signal above report threshold. We simulated this by sending two objects
at the same time to the object map, with one of them persisting longer than the
other (so as to represent the four dots) The first object was on for 83 ms, the second
starting at the same time as the first but either co-terminating or continuing on for
another 600 ms (in the object substitution case). In the second case we expected a
lower level of WMsens for the first object, although there should be a WMcd signal
in both cases. Noise could then be added to obtain more detailed fits. However we
tested, with no noise, if the WMsens level is lower for the first (83 ms exposure)
stimulus when the second continues on for 500 ms.

The results are shown in Fig. 59.3.
As seen in Fig. 59.3c, in the co-termination phase, the target activity is twice as

large as the mask, so leading us to expect awareness of the target in this case. In
the delayed offset phase the mask is considerably more active than the target, so
awareness will switch to the mask. However in both phases the WMcd activity of
the target is very closely the same between the phases. Thus if the N2 for the target
can be detected in the co-termination phase, so can it in the delayed phase. That
agrees with the results in reference [24]; see also reference [25].

Fig. 59.3 Object map activations in the CODAM-based object substitution paradigm. (a) OBJECT
MAP ACTIVATIONS are plotted in the figure (where Yellow = TARGET/Magenta = DOTS). (b)
COROLLARY DISCHARGE ACTIV/S (Yellow = TARGET/Magenta = DOTS). (c) WORKING
MEMORY ACTIVATIONS (Yellow = TARGET/Magenta = DOTS)
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Modeling Change Blindness

Change blindness has been studied by many different paradigms [2]. A number of
these involve realistic outdoor scenes but do not give quantitative data relevant to
the problem of differentiating between attention and consciousness. However this is
different for the CB paradigm of Fernandez-Duque and Thornton [26], see also [27]
in which:

I. 8 objects are presented simultaneously, placed equally round a circle (so the
spatial map is that of a circle);

II. After 500 ms a uniform grey mask is presented for 200–1500 ms (so that only
the dorsal route is uniformly activated, with zero activation in the ventral route);

III. There is re-presentation of objects, with one of them possibly changed (but
with no change of positions overall of the objects, nor more specifically of the
unchanged objects), until the subject responds as to there being a change of
orientation to an object at a cued position..

There are 3 cue conditions:

C1: A cue to where to look for a change of object is presented during the first
presentation of the objects (by increasing the activation of the position of the
relevant object);

CM: A cue to where to look for a change of object is presented during the presen-
tation of the mask (by again increasing the activation of the position of the
relevant object);

C2: A cue to where to look for a change of object is presented during the second
presentation of the objects (again by increasing the activation of the position
of the relevant object).

The task is to determine, under any of the three cue conditions, if the relevant
object at the cued position has been changed during the presentation of the mask.
The results for subjects [26] were that accuracy levels respectively for C1, CM and
C2 were 100%, 90% and 60%. This corresponds, as expected, to perfect memory
for the cued object and its comparison, a slight loss of memory when cued during
the mask and a greater loss of remembered objects at the relevant positions when
cued after the mask.

A general description of what is happening during the processing for the various
cue states could go as follows (in a CODAM-based approach):

C1: Attention is directed to the object at the cued position, and it is held in working
(or more permanent) memory until the report stage is reached; this is expected
to lead to 100% accuracy, as observed, and already noted in [27].

C2: The subject does not know which object needs to be remembered until report,
so can either (a) attempt to store all of the objects as a general picture (they
are all expected to be inside the focus of covert attention in the paradigm)
or (b) select as many as possible to remember and serially rehearse. In case
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(a) there will be degradation of the ‘picture’ during the mask so that only
imperfect recall will occur. In case (b) only of order of 4 objects can be stored,
so explaining the 60% level of accuracy observed.

CM: This will correspond to an intermediate position between the cue conditions
C1 and C2, and so lead to an intermediate accuracy level between these two,
as observed.

We now consider how these cases can be simulated using CODAM. There is
progression of increased accuracy as learning occurs in the subjects; that can be
considered as arising by the subjects changing from the naı̈ve strategies of (a) and
(b) above applied to the direct visual images to coding the images as H or V in a
sequence, and learning the sequence of 8 H’s and V’s. This is a chunking process
which should end up with about 100% accuracy through the masking period, as
observed in subjects at session 3 in [27]. We will only consider the naı̈ve subject
results here.

We have two choices: try to keep to only one CODAM model, representing some
fusion of the dorsal spatial processing route or double up the CODAM models, so
that one represents the dorsal route, the other the ventral. Connections between these
two routes must be established accordingly.

Let us first consider the single CODAM model, especially since this would
present a certain economy of architecture. To proceed we consider the single CO-
DAM model as the dorsal route, with the orientations coded in SEF/FEF as possible
goals and also in the other modules (IMC, plant map, monitor, buffer WMs). The
nodes in each of these maps are doubled up at each spatial point, so that each pair of
nodes represents a vertical and a horizontal bar; only one was allowed to be active
at any time. The requisite cueing is assumed to create a relevant goal in the spatial
prefrontal map, so as to bias the spatial attention signal and thence to amplify by
attention the relevant object activity at that position.

The most important assumption to be made in the simulation is the manner in
which the cue is used by each subject. For C1, it is assumed that the cue acts in
the goal map to hold the orientation of the object at the cued position in the buffer
working memory, for use in report after the second stimulus offset. For C2, it is
assumed that each subject holds activity representing the whole set of objects in
buffer working memory. However the capacity of that buffer is only 4, so not all 8
objects can be held efficiently at once. We suppose that the subject tries to preserve
an activation of shapes as observed in the first stimulus presentation period. This
could be done by a sequential focusing on each shape, as in case (b) mentioned
above, with only 4 stimulus representations being able to be held efficiently. Over
numerous tests, on average only 4 would be able to be stored in this manner. How-
ever the results of the CM cueing case indicate that more shapes are initially held in
the buffer, possibly solely as a general spatial map which has then to be questioned
by the cue. This questioning would correspond to modifying the attention signal
so as to focus more tightly on only the one cued position. During the mask period
there is decay, but if the cue appears early in the mask period there will still be a
sharper effect of the shape map (less degradation by noise) and so there will be a
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higher level of accuracy. As the mask period continues before the cue is presented
in the CM cueing condition, there will be successive reduction of ability to detect a
shape above the background noise. Finally in the final period the C2 cue will only
have 4 stimuli to be able to pick out, as corresponds to the known capacity of the
buffer. The alternative strategy (of case a) mentioned earlier for C2) uses the strategy
of the subject to rehearsing the orientations of as many as possible of the bars, so
as to have those still available for inspection when the cue finally comes on in the
stimulus period 2.

What arises from this discussion is that there could be a continued representation
on the WM sensory buffer from all the stimuli having been attended to in the stim-
ulus 1 period, although the amplification by attention would be lower on the object
map, hence a lower WM buffer activity, due to the increased competition between
the objects on the IMC. There would also be increased competition on the WM
buffer due to WMcd competing inhibition onto the WM buffer amongst the various
object nodes (either of these competitions being a source of the capacity limit of 4).
The WM buffer representation will continue through the rest of the mask period,
and so be able to be used in the stimulus period, or questioned during the mask
period. The resulting decay with time of the cue is richly explored experimentally
in [27], and a similar rich analysis of the simulation results is possible to compare
with this data.

The alternative architectural approach is to take two CODAM models, one for
the dorsal and one for the ventral routes, as duplicates of the circuits of Fig. 59.1.
The dorsal route would simply code for the 8 positions of the bars round a circle;
eh ventral route would code for the orientations of each of those objects Thus the
ventral object map would consist of two dedicated nodes, one for a vertical bar,
the other for a ventral one. There would be hard-wired connections between the
ventral route object map and the dorsal spatial map, so that if a change of orientation
occurred during the mask period, this would be implemented by a corresponding
change of connections of the object and spatial map. Similar connections could be
taken between the buffer WMs for the object and spatial maps, as we report below.

In either architecture, we are most interested in the level of activity in the buffer
WM persisting in stimulus period 2 that can be used for report of the orientation of
the bar at the relevant cued position. In the single route architecture this will be the
activity at the cued position in the single buffer WM at the end of stimulus period 2.
For the dual route architecture the relevant activity is that in the cued position in the
ventral WM buffer map.

The nature of the task for the subject is to determine if there has been a change in
orientation of the bar at the cued position. We assume that the level of the buffer WM
for the orientation, in either architecture, gives the memory of the orientation in the
first stimulus period. This can then be compared against the actual bar orientation
in the second stimulus period, which can be taken from the actual stimulus input.
Hence it is the level of buffer WM activity of the orientation for the relevant bar
in the second stimulus period which would be expected to determine the level of
accuracy of the change detection. However, on being cued, either during the mask
period or in the stimulus two period, a subject will be expected to immediately query
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what the orientation is of the object at the cued position (where in the stimulus two
period, the new stimulus can be ‘left out’ in the outside world until it is needed
in the comparison stage They will then store the result of the query about the old
stimulus in some form of rehearsal memory, so as to be available when they prepare
to look at the new set of stimuli and compare the new orientation at the cued position
with what the orientation they have stored. So the crucial quantity, for each time
of cueing, is the maximum level of the old target stimulus, during the mask. The
activations during the stimulus presentation (with no stimulus two interference, as
corresponds to the above strategy) are shown for various cue times in Fig. 59.4.

Let us repeat the interpretation made of the sequence of curves in Fig. 59.4. It is
assumed that a subject, once cued to a position expected to be asked about after the

Fig. 59.4 WMsens activations during the paradigm, for different cue times. (a) CUEING AT: 0.
(b) CUEING AT: 300. (c) CUEING AT: 600. (d) CUEING AT: 900. (e) CUEING AT: 1200
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masking, will query in their sensory buffer which stimulus orientation occurs at the
cued position. This will then be remembered, say using an ‘H’ or ‘V’ mnemonic.
The querying is assumed to be correct with a probability proportional to the maxi-
mum height of the cued stimulus activity on their sensory buffer. These values, read
off from the figures, are:

0 ms: 2.1; 300 ms: 2.0; 600 ms: 1.5; 900 ms: 1.2; 1200 ms: 0.
Thus there is a decrease of probability (as measured by the membrane potential)

of recall of the cued orientation as the cue is presented increasingly later in the
mask period. This fits qualitatively with the results of [27], although there is not as
great persistence of activity in the WM sensory in the simulation as in the reported
experiment (which was shown to last at least for 1800 ms). A more detailed analysis
of report probability as determined by membrane potential on the sensory buffer, is
needed to attempt a quantitative fit, and will be given elsewhere.

Further Paradigms Against an Attention-Basis for Consciousness

There is also controversy over the question as to attention being THE gateway to
consciousness in the light of recent claims [4, 5, 28] that consciousness and attention
have a certain degree of independence. The main thrust of our argument here is that
attention itself is far more complex than considered in [4, 5, 28]. More specifically
attention is known to be present in two forms – sensory and motor [29], it possesses
the possibility of multiple foci (at least for vision) [30], and it controls the transfer
of laborious sequences of motor actions, for example, to chunked versions, with
each chunk being able to be run off automatically, without attention, in different
brain sites [31]. It also not only arises from top-down control circuitry but has many
components of the top-down circuitry involved in bottom-up ‘break-through’ [32].
These properties allow us to re-analyse the data presented in [4, 5, 28] so as to
show how attention is still to be regarded as a filtering operation before conscious-
ness can arise, such that consciousness occurs only when attention is directed to a
stimulus.

For Koch & Tsuchiya, the relevant experimental data is that subjects do pos-
sess the ability to report, without increased response time, on the presence or ab-
sence of animal figures in stimuli presented simultaneously in the periphery with
a central letter task. This clearly depends on the amount prior training undergone
by subjects and also the presence of possible multiple attentional foci. Due to
lack of suitable data the strong conclusion drawn by [5] need not be accepted,
and only the simpler hypotheses that either suitable automatic response patterns
had been learnt over the training time [31] or that two attention foci had been
used [30]. Either explanation does not require consciousness and attention to be
independent.

For Lamme [4] (in which working memory properties of the visual system were
claimed to be impossible to explain by use of attention) we refer to the explanation
of the relevant data in reference [11], which uses a standard engineering control
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approach (that of CODAM as described above in the section on ‘The CODAM
Model’).

The results of the authors in [28] (that increased inhibitory priming of a mo-
tor action arose from subliminal commands whilst decreased inhibition occurred
in response to reportable commands) can be explained as involving two forms
of attention: motor and sensory. The former produces these counterintuitive ef-
fects: direct stimulus input to motor command centers in the subliminal case in-
crease motor IOR, whereas the aware stimulus would have been processed in a
visual working memory and are expected to activate a different circuit than the
direct lower level visual input in the subliminal case, and cause inhibition of IOR
effects.

In all cases there is no need to attempt to separate attention from consciousness,
and attention is still seen as a necessary condition for consciousness.

Bridging the Bottom-Up Gap

One outstanding question is that of the observational foundation of the attention
movement corollary discharge signal. We have already presented evidence from the
attentional blink for the presence of this attention copy signal in the case of endoge-
nous or top-down attention movement control (as expected to occur in the attentional
blink and as used in the CODAM model). There is not the same level of experimental
support for the existence of the attention copy signal in bottom-up attention control.
In this there is ‘attention capture’, say by salient distracters. Thus in the paradigm
of [33] a salient distracter (color) causes an initial bottom-up capture of attention
(as evidenced by an initial N2pc contra-lateral to the distracter side) before there is
a switch of the hemispheric side of this attention capture to be contra-lateral to the
target side (some 50 ms later).

In this section we will consider how this and similar data on behavioral ef-
fects of varying target-distracter distance [34] can be incorporated in the more
complete CODAM model, initially constructed to describe top-down attention
movement.

The interaction between bottom-up and top-down attention movement has al-
ready been considered in [35]. The paradigm considered was associated with the
distracter-devaluation (DD) effect, in which inhibited distracters have been discov-
ered to acquire a lower emotional evaluation than targets (36). In the paradigm
modeled in [35] pairs of faces were presented, one in each hemisphere, and the
color of the face of a specific gender (M or F) was reported by the subject. A little
later a trustworthiness evaluation of either face was then asked for from the subject.
The DD effect was observed in that distracter (non-target) faces were evaluated with
lower trustworthiness than the target faces.

The simulated model explain this DD effect using a top-down template or bias
on the module for face coding, so amplifying the output from the nodes coding for
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the target face, and inhibiting those for the distracter. These nodes then feed back
activity to a model of V4 with separate nodes coding for either gender together
with hermaphroditic nodes coding equally for both. Thus there is also amplification
of the relevant target-coding nodes in V4. The subject has no prior information on
the hemispheric side of these input stimuli (the M and F faces); there must be a
search for the relevant target face (given gender). In the model this is guided by
a competition on the spatial posterior parietal cortex map, which excited nodes on
the component of V4 in the same hemisphere and inhibits those in the opposite
hemisphere. This competition then ultimately singles out the target nodes for the
correct gender in V4 and beyond.

The paradigm of [33] has a salient ‘pop-out’ for a colour distracter, as observed
by the earlier distracter-driven N2pc, to be followed by the target N2pc on the op-
posite side. The switch of attention focus back to the target contra-lateral side of
the brain requires some error-correcting mechanism. In our model [37] we insert
a monitor that assesses if the target has been amplified most on V4; if not then
inhibition of other sites is implemented to prevent distracter processing and resultant
errors.

The resulting model is thus close to CODAM, possessing all of the CODAM
modules except for an explicit attention copy module and its use in speeding up
attention processing, as discussed there. There is also no buffer working memory
module (WM), but that is needed for report in any case, so is assumed present in all
the models.

In the model there are two main attention signals: top-down and bottom-up. The
former is one set up beforehand as a bias on the nodes at intermediate cortical level
(say in temporal lobe, such as the face fusiform gyrus or hippocampal place area).
Thus the only dynamic signal relevant to the entering into awareness of the target
stimulus (say the appropriate gender face in the DD paradigm described earlier) is
that arising from the parietal cortical (PPC) spatial attention signal, as a feedback
signal to V4 to amplify that input activity on the correct side for the target stimulus.

Our question is thus: is there a copy of the PPC attention control signal sent to
any other high cortical sites in order to help speed up access to the buffer working
memory module. To answer this question, we need to consider where such WM sites
are sited in the brain. In the case of object representations (faces, houses, etc) the
appropriate WM module is very likely placed in parahippocampal regions. Thus we
need evidence of an earl activation in such sites (say at the time of the N2, and more
specifically around the N2pc).

There is in fact good evidence for sources of the N2 being in the hippocampal
region. This was discussed in some detail in [11], where the emphasis was on the
encoding in the hippocampus as part of the pre-reflective self. However the refer-
ences cited in [11] also support the existence of sources of the N2 ERP in regions
of the parahippocampal gyrus, so allowing for some early neural activations being
sited in buffer working memory sites. It is this activity which may also be crucial
in providing an ownership experience in the case of bottom-up (and also top-down)
attention movement.
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Discussion

Summary of Results

Each of the main paradigms of interest has been simulated satisfactorily by our
CODAM model; further paradigms have been explored and also found not to pose
any serious difficulty to attention being THE basis for consciousness.. Thus we can
use the interpretations of the various CODAM modules to begin to tackle the thorny
problem of the relation between attention and consciousness. To begin with we con-
sider in more detail the implications of the model in understanding attention.

Implications for Attention

The simulations give more support to the general type of model of which CODAM is
a particular case: the ECA (efference copy of attention) type of model. This general
class of models is of an engineering control form, with many varieties, as can be
seen from the range of motor control models proposed as existing in the brain. But
in particular there is support given for the interpretation of the corollary discharge
of the attention movement control signal as that observed in part of the N2 signal.

Implications for Consciousness

The ECA-type of models have been interpreted as possessing support for both phe-
nomenal experience of content as well as of phenomenal experience itself (as the
sense of the ‘inner self’). This latter experience is proposed in CODAM to have
arisen from the signal on the corollary discharge buffer, itself being used to stim-
ulate the relevant code on the sensory buffer, and hence leading uniquely to the
relevant experience of content. It is this which has been noted as corresponding to
the ‘immunity to error through misidentification of the first person pronoun [18].

We note the presence of cases of subjects being unaware to change blindness yet
sensing it occurred [26]. We note their result that accuracy was highest for cases
without awareness when the change occurred close to fixation, as also occurs in
trials with awareness. We can attempt to explain these effects by the dragging of at-
tention to the new object by the use of the efference copy of the attention movement
signal, without or with access to the sensory working memory buffer being achieved
as a result in the two cases (unaware and aware). How would this mechanism lead to
the ‘sense’ of an orientation change, even though it was outside awareness? We can
assume that the response to a stimulus is governed by the strength of that stimulus
on the object map; if that is amplified by attention movement signal, even though
it was not enough to reach the sensory buffer, it would still lead to a more rapid
response, and hence to a sense of having observed change blindness.
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Implications for the Relation Between Attention and Consciousness

The ECA type models in general have a boosting effect from the efference copy
to speed up the access of stimulus activations from lower semantic maps onto their
associated buffer for report and use at a cognitive level. They also provide various
levels of inhibition of distracters to prevent their access to buffer sites. Overall the
process of consciousness creation involves activation of two sites in these ECA type
models: ownership on the efference copy buffer, and content on the sensory buffer.
The second of these activations is expected to have correlated lower-level activations
(possibly through synchronisation or amplitude correlation). The ownership activity
is not so created, but may still involve a network of similar sites to provide a sense
of unity of self.

In all this dynamical process there is a clear message: attention is necessary for
consciousness, where by attention is meant a signal generated by the attention move-
ment controller. Without that there will be no efferent copy, nor any amplification
of semantic level activity to achieve access to its sensory buffer.. But with these
attention signals there will still not necessarily be consciousness unless both the
efference copy and the amplified semantic activity access their appropriate buffers.
If various modules involved in this are damaged then the sense of self will be com-
promised. This can occur in schizophrenia or in AD, as well as in other diseases
of a cognitive nature. At the same time the varieties of consciousness (in dreams,
under drugs, etc) begin to be explicable in terms of the deconstruction process that
CODAM, and more generally ECA type models, allow one to perform on attention
and consciousness.
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Chapter 60
What Do Infants Infer? – Modelling
Simple Cognition

J.G. Taylor and M. Hartley

Abstract We develop a minimal neural architecture for explaining the major fea-
tures of the developments of an infant of one year old in its powers of inferring
about unexpected or expected stimulus movements. We start from a minimal rea-
soning architecture of internal models and working memory buffer modules, and
extend them by addition of suitable long-term memories and a novelty detection
system. We argue that these are capable of explaining the observations of Gergely
and Csibra on such infants, so helping defuse somewhat higher level cognitive pro-
cessing structures and enable them to function at a much lower and more realistic
level. It makes a cognitive machine defined by these components more powerful
than expected.

Introduction

We are interested in building a cognitive machine following processes occurring
during the maturation of a child. We have already indicated how we might build a
machine which has the reasoning powers of a chimpanzee or corvid [1]. We explore
in this paper how this might be extended to include some of the cognitive powers of
a one-year old child. It turns out that we can define simple but specific components
to be added to the chimpanzee brain which allow this extension, granting it what
would seem to be considerable further discriminatory powers.

There is obviously a considerable amount of information processing occurring in
the brains of most advanced animals at a non-linguistic level, as indicated by their
success in inhabiting and controlling their particular niche domains. It is natural
to ask the question as to how much of this non-linguistic processing extends into
humans, especially in their early non-linguistic stages up to one year of age. The
issue is controversial, with some researchers proposing that there is already at this
age a level of mentalistic competence with respect to the theory of mind of others
[2, 3]. An interesting counter-answer to such ‘theory of mind’ powers in one-year
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old children has been proposed by Gergely and Csibra [4, 5, 6]. These authors sug-
gest that such children possess a ‘teleological stance’, in that they can infer one
of the three components from the other two in the triplet: goal, means action (to
achieve the goal), constraints, when observing an actor performing an action on
an object in a given constraining environment. Moreover the children possess an
understanding of the level of rationality of the agent they are observing embodied
in the so-called ‘principle of rationality’: the watching children expect the agent to
perform the means action in the most efficient manner (either as needing least effort
or least time to complete; shortest distance may not be most important).

We start the paper by presenting a minimal architecture that the children must
possess. This arises from our earlier analysis of animal reasoning powers, which
we assume also to be possessed by such children (an assumption we discuss in the
section ‘The Minimal Brain Architecture’). A detailed discussion of the way that
this minimal architecture can explain some of the results of Gergely and Csibra is
then presented. Extensions to the minimal architecture are considered and a discus-
sion is then given to complete the paper, with a new slant being given on the results
of Gergely and Csibra, that reduces one-year old children’s powers to below the
level conjectured by the above authors. We conclude that children most especially
possess a novelty-detecting predictive system composed of a suitable set of internal
models plus a novelty/familiarity detecting system [7, 8] for that set of internal mod-
els. There is also an inferential component that has been developed for seemingly
autonomous agents as to their possession of goals in their own right. We term this
system the ‘Interpretive System for Rational Analysis’.

The Minimal Brain Architecture

Certain higher animals have recently been discovered to possess some form of rea-
soning powers [9, 10]. In particular chimpanzees and New Caledonian crows have
been found to be able to perform non-trivial sequences of deduction to work out
how to solve simple tasks. Let us consider briefly one of these simple paradigms.

The ‘two stick’ paradigm involves a chimpanzee which is presented with a short
and a longer stick and a food reward set beyond the reach of the animal (or when
it possesses the shorter stick). If the animal can gain the longer stick then it could
reach the food reward. However, it can only reach the longer stick by using the
shorter stick (within its reach) to pull the longer stick towards itself.

Our previous work on the higher cognitive powers of animals [1] able to solve
these paradigms suggested that there were periods when the animal was stationary
and was ‘reasoning’. During these reasoning periods the animal used a set of inter-
nal forward and inverse models to ‘reason’ how best to achieve the required food
reward. In the process we proposed that the animal employed a system of reward
manipulation, allowing it to set up new sub-goals considered worth working towards
before the final food reward goal could be obtained.

We thus assume that children of one year of age also have such reasoning powers
as being able to solve the two stick paradigm (although we do not know of any tests
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made to determine that). Beyond this we assume that such children possess at least
a similar architecture to that of chimpanzees and crows which we conjectured [1]
were used in the reasoning tasks we just discussed. Thus in details we assume these
children posses a set of inverse control models for arm motor control as discussed
in [1], representations of goals and rewards.

These models need to be expanded to include an associated working memory
buffer site to allow temporary storage of the results of reasoning before they are
actually put into practice. Such working memory buffers need to be trained on the
material they are required to store over short periods of seconds or so. The material
has also to be specified. It will certainly include goals, represented by object stimu-
lus representations, as considered by [11] and many others since then. There is ex-
perimental support for the short-term holding of high level motor plans in pre-motor
cortex(PMC) [12], thus we might assume that there is a buffer working memory for
motor plans in PMC at least.

Explaining the Teleological Stance of Children:
Beyond Lower Animals?

Let us now consider how we might use the above architecture to explain the results
of Gergely and Csibra cited earlier. We begin with a brief summary of these results.

Firstly (and mainly) there is a class of results based on extended looking of chil-
dren of one year of age at the motion of a small circular stimulus across a screen in
the presence or absence of an obstacle, as shown in Fig. 60.1.

There are two classes of children being considered in the paradigm of Fig. 60.1:
the experimental and the control group. The former are exposed to the ‘rational’
stimulus movement, where the small circle moves in such a way as to most effec-
tively jump the vertical barrier between it and the large circle (to be regarded as
the goal of the small circle’s motion). The control group is exposed to a similar
trajectory of the small circle, including the vertical jump in the middle of its tra-
jectory, but now in the absence of the vertical barrier requiring this jump. On being
exposed to either this old but irrational action or the movement of the small circle
in a straight line to the large one, in the absence of the vertical barrier (these two
trajectories being termed the ‘test’ trajectories), the experimental group spent more
looking time at the old irrational trajectory compared to the rational straight line
movement, whilst the control group looked equally long at both test trajectories.

How can a minimal architecture based on internal models as described in the sec-
tion, ‘The Minimal Brain Architecture’ begin to explain these results? We propose
that the exposure of either the experimental or control group causes them involun-
tarily to train the relevant internal models to capture the information presented in the
initial stimulus exposures. Thus for the experimental group there is an internal IMC
(inverse model controller) which allows the child to produce, from the pair of initial
and final state the required trajectory of the moving small circle. We can simplify
the more complex curved trajectory necessary to pass the obstacle by reducing it to



354 J.G. Taylor, M. Hartley

Fig. 60.1 Explanation of the results contained in the text

two linear movements, one from the start position to the top of the obstance, and a
second from there to the goal position.

Given the experimental group of children had experienced the trajectory encoded
by their created internal IMC model what should their responses be to the test stim-
uli? The ‘irrational’ test case (involving a jump in the trajectory of the small circle
at the place previously occupied by the vertical obstacle but now empty) caused
the children longer looking compared to the original experimental exposure. The
rational (straight line) trajectory did not cause such longer looking (although this is
not explicitly stated: did they look longer at the rational test case than the original
experimental case?). Under the assumption of longer looking at the irrational test
case than either the rational one (which they may already have been exposed to
in the real world) or the experimental stimulus, it would appear that the difference
between the various stimuli is that of the novelty of the irrational test case (or lack
of exposure to this).

Returning to the original paradigm of Gergely and Csibra cited above we now
consider how we might explain the response of the control group to the two sets of
stimuli (irrational and rational). According to the results presented in [13] there was
no differential looking pattern in the children’s responses. This can be explained,
using the assumed architecture of the section ‘The Minimal Brain Architecture’ by
the fact that the control group had been exposed to the irrational trajectory, as well
as (we assume) the linear (rational) test trajectory at earlier times. Thus these would
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possess no novelty and hence not cause any differential looking times between the
two sorts of trajectory; these control children possessed both an IMC trained for
both situations.

The overall conclusion we draw from the above considerations is that the various
looking times for the paradigm of Fig. 60.2 of [13] can be explained by a set of
internal models, some already present, others created by leaning through exposure
to the stimuli of the paradigm. All that is needed to explain these results in detail
is a further extension to add in some novelty detection system, as we will consider
later.

Modelling the Simple Paradigm

We can construct a simple model using our suggested minimal architecture, incor-
porating the inputs to the system in the forms of an inferred goal, constraints, and
the observed action, and the internal processing system based around the IMC.

Fig. 60.2 Simple architecture for solving the trajectories problem

The left panel shows the overall modular architecture of the system. We assume
a visual system that extracts information from the scene, and processing sufficient
to be able to identify the goal (both from initial and target positions), and the
constraints. This information is then fed to the inverse model, which produces an
expected action, in the form of a trajectory – either the straight or indirect path.
This is compared to the observed trajectory, and if a mismatch occurs, surprise is
generated.

The right panel shows details of the IMC – an inputs layer with four nodes rep-
resenting the possible start and end positions, and the presence of the obstacle. The
outputs layer consists of two nodes – one of two direction vectors for either the
direct or indirect path. There is a middle ‘hidden’ layer with three nodes (to allow
more general training to be done). The network can be trained via the backpropaga-
tion algorithm, using inputs that represent either the control or experimental groups
of the experimental paradigm. We can then measure the ‘surprise’ generated by
comparing the strength of the model’s predicted output trajectory node activation
with the demonstrated trajectory.
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Early results from the simulation show that the simulated “experimental group”
that habituate to the situation involving an obstacle, show larger surprise values for
the old action event, whereby the indirect trajectory is used despite lack of a barrier
than the ‘control group’. These results are to be examined in more detail.

Further Paradigms of Gergeley and Csibra

The next of these paradigms was presented in figure 3 of [13]. Beside the one al-
ready considered above there is one involving covering the area under the jump of
the small circle so that the presence of the obstacle causing that jump cannot be
determined by the child. Here children, after removal of the cover, looked longer at
the case where there was no obstacle causing the jumping than if there were. Such a
result cannot be explained solely by the creation of internal models. The child had to
create an internal model with structure that was consistent with the curved structure
of the trajectory, and appeared to explain it. In that way the absence of a vertical
barrier would be unexpected, after removal of the cover.

Let us consider ways that a child could try to puzzle out what was being covered
up:

(1) It assumes, from prior knowledge, that there is an obstacle present, which is
causing the trajectories curvature; this prior knowledge would lead to a corre-
sponding IMC, but one in which there is a slot which is only filled by the obser-
vation of a suitable obstacle on removal of the cover. Otherwise the complete
trajectory would be novel as far as its predictability by an IMC is concerned.

(2) It makes a guess as to the presence or absence of such an obstacle. However this
guess would have to be consistently that there is an obstacle present across all
children in the group, so is rather unlikely.

Thus it would seem that there needs to be extra knowledge (from long-term-
memory) as to the nature of trajectories of small objects in movement in the presence
of obstacles. Such knowledge is compatible with what would be expected for such
children, and will be assumed here. Thus the results of figure 3C can be explained by
the extension of the reasoning system to both a novelty detector and a set of long-
term memories of previously observed trajectories in natural situations (footballs,
tennis balls, etc in movement).

There is also a further paradigm tested as part of the experiments associated with
figure 3 of Gergely and Csibra: that of figure 3B, where a larger moving ball either
does or does not fuse with a smaller one it seems to be pursuing on the other side
of a partial barrier, which the larger ball has to detour round to meet up with the
smaller one. Here the child is longer looking at the case when the larger ball does
not fuse with the smaller one. We can explain this in terms of a suitable predictor
created in the child’s brain as a forward model which takes account of the apparent
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pursuit process of the smaller ball by the larger one. This leads to the child being
surprised when the larger ball ignores the smaller one, when it could fuse with the
smaller one on the other side of the barrier. Again the child is to be assumed to
possess long-term memories appropriate for it to expect the larger circle to be in
pursuit of the smaller one in order to fuse with it.

In all then, the further extension seems to be, beyond the ability to create internal
models and the novelty detector addition, the ability to use past memories to im-
part agency properties to small moving objects. Thus the larger circle pursuing the
smaller one is able to be endowed with a goal: ‘Catch the smaller circle and fuse
with it’. In the case of the cover over the obstacle, the child is assumed to be able to
extract from its memories cases of obstacle avoidance causing swerving motion of
an agent.

For the case of the paradigm of figures 4 and 5 of [13], we can assume that the
experimental group, who were exposed to both effortful and effortless trajectories
with no alternatives, created what we will call the IMC (effortful/no alternative).
The control group, on the other hand, being exposed to both effortful and effortless
trajectories with a lesser effort but a curved path alternative, created the IMC (ef-
fortful/longer effortless path not used). The test stimulus trajectories of shortest path
or least effort would be expected to be looked at longer:

(a) The shortest path cases for the experimental group, since they have not seen the
control alternatives, and so will be expected (using past memories of trajectories
created with least effort) to look longer at the shorted path case as a novelty
compared to any past IMCs or memories of only shortest paths;

(b) The least effort cases for the control group, since the least effort cases have not
been created from the habituation events, so do not have associated IMCs and
hence will cause longer looking due to their novelty.

Therefore this set of results can be explained using the above architecture and its
extension as later to a novelty detector system.

Finally the results of the discussion in section 7 of [13] on the emulation versus
imitation of observed actions can be analysed as follows. The paradigm considered
is of an agent who is observed to strike a box in front of them with their forehead
so as to cause a light to go on. The extension of this paradigm by [5] was to use two
separate cases: a hands-free paradigm and a hands-full case. The former required the
agent to have performed an action (drape a blanket round their shoulders) and then
released their hands; the latter uses a similar paradigm with the blanket, but requires
the agent to continue clutching the blanket whilst striking the box with their head.

This can be understood in terms of the associated IMC created in either case:
IMC (free) or IMC (full). In the case of IMC (free), then the reason why the agent
did not use their hands is unknown but assumed exists, by the child. Hence it also
will tend to create a similar IMC (free), using the head as the main instrument to
strike the box. In the hands-full case the IMC created in the child is expected no
to include the observed constraint, since it is not one the child has constraining it.
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Thus the child will use any means, mainly with their free arms, to strike the box.
This fits as observed. It uses that IMCs are created using the constraints observed by
the child, and also inferred by the child by using its memory as to why such things
could occur and be relevant.

Thus, beyond novelty detection amongst its internal models, the child is expected
to be able to ascribe goals to moving objects as they might to moving pets they
observe. Whether or not they ascribe autonomy to the moving objects is unclear,
but may not be needed. . It also needs to be able to incorporate constraints into the
IMC constructed (as in the case of the box-striking paradigm). This is all eminently
reasonable, given the environments in which a child of one lives.

Extensions Needed

We have thus seen that the following three components of the brain architectures for
one-year olds are needed beyond those of ‘The Minimal Brain Architecture’ section
above:

(1) A novelty/familiarity detector system for internal models;
(2) An agency ascription system for apparently autonomously moving objects, al-

lowing at least goal ascription to the moving object.
(3) Presence of long-term memories that allow the inferring of various types of

obstacles to cause trajectories to be non-straight, or cause non-immediate usage
of the simplest means at the child’s disposal.

In [8] we developed a model of a set of novelty and familiarity detectors in the
hippocampus which possess unique properties. This is based on recent experimental
data obtained from deep intercranial electrodes placed in the hippocampal region of
patients about to undergo surgery for intractable epilepsy [7]. The experimenters
found two typed of neuronal response: novelty detectors (ND) which responded
well to novel stimuli on their first showing but only to the new novel stimuli on
a later showing, and familiarity detectors (FD) which had no response to initial
novel stimuli, but were activated by any now-familiar stimuli. In [8] the model uses
both inhibition and disinhibition, together with a suitable function on the output of
the prefrontal object representations, to create the separate novelty and familiarity
detectors with the observed properties.

Such a novelty system could serve to provide the relevant signal to cause longer
looking in a child until it has learnt the stimuli previously novel to it. Thus the ND
units may act so as to alert the attention system of the child to attend to the stimulus
and hence turn off the ND units and activate the FD units. The simplest way that the
ND units could be sensitive to the appearance of an unexpected stimulus or stimulus
movement would be if there was no appropriate model allowing for prediction of the
motion. For then no forward prediction could be made, so that the stimulus at some
point would appear novel. As such it will activate the ND system, and so bring about
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longer looking time. This would last until a suitable forward model or predictor had
been learnt, by when the stimulus would only activate the FD neurons, not any ND
neurons.

A Final Discussion

Do the extra components require the functionality posited by Gergely and Csibra?
This is very likely not necessary. What we have required above

are the two components at the end of the previous section. What Gergely and
Csibra proposed were:

(a) Rationality (picking out the most efficient trajectory of moving object), involv-
ing assessment of effort, etc.;

(b) Teleological representation of goal-directed actions, allowing inference by the
child of any one of the triplet of goals, means-directed actions to the goals,
constraints producing the specific actions.

The rationality was deduced from the longer looking times at ‘irrational’ object
trajectories. Our analysis has shown that these longer times can be explained by the
difference between looking times for novel and familiar situations.

The teleological representations were deduced from the inferential powers of
children in the presence of trajectories of a variety of sorts arising from the cases
of absence of visual stimuli representing one or other of goal, means action and
constraints. In particular:

(1) Deduction of the goal of an action (as in figure 3B) by the use of a suitable
forward model;

(2) Deduction of the action to achieve a known goal (as in figure 3A) by the use of
an existent IMC;

(3) Deduction of the constraints imposed on an action (as in figure 3C) is explained
by the use of a combination of internal models and suitable memory. The lat-
ter provide a memory of how the trajectory was arrived – what constraint was
present when observed in the past.

Finally we come back to the question as to the relevance of our analysis to the
problem of creating a cognitive machine. Cognition has many components, but one
of them is certainly reasoning. However we know that a child develops beyond
understanding only about the mechanics of the world and being able to reason
mechanically. A 1-year old child apparently possesses greater powers, especially
possessing powers associated with the interesting ‘teleological principle’ and the
‘rational principle’ of Gergely and Csibra. However these principles, besides leading
to remarkably advanced behaviour, are somewhat mystical in character. To under-
stand them more fully we have resorted to attempting to construct a machine which
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would have these powers. To achieve that we had to add to the components for
reasoning (internal models and short-term-memory) a novelty component (causing
further looking at unexpected events) as well as further memory components. With
these extras we could begin to explain these two principles, as shown in the paper.
There may be other solutions, but we suggest our proposal has an attractive incre-
mental property about it. But only experiment can finally decide.
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Chapter 61
The Time Dimension for Scene Analysis

DeLiang Wang

Abstract Although humans perform scene analysis with little effort, automatic
scene analysis remains a tremendously challenging problem. One reason is the bind-
ing problem, which refers to how the coherence of a pattern as a large collection of
features is represented in a neural network. I argue that introducing the dimension
of time is essential for solving the binding problem. I will discuss oscillatory corre-
lation as an adequate representation theory to address the binding problem. To turn
this representation theory into an effective computational mechanism requires so-
lutions to several problems in oscillatory dynamics. LEGION networks, which can
rapidly synchronize an assembly of locally coupled oscillators and desynchronize
multiple oscillator assemblies, have successfully solved these problems. LEGION
has been applied to a variety of tasks in visual and auditory scene analysis, and this
presentation will show several such examples that demonstrate the computational
utility of oscillatory correlation theory.

Introduction

A remarkable accomplishment of the perceptual system is its scene analysis ability,
which involves two basic perceptual processes: The segmentation of a scene into a
set of coherent patterns (objects) and the recognition of familiar patterns. Closely
related to scene segmentation are figure-ground separation, which emphasizes seg-
mentation of one object from the rest of the scene (background), and perceptual
organization. Although humans perform scene analysis with little effort, automatic
scene analysis is a tremendously challenging problem despite many years of intense
research in neural networks, and related fields such as computer vision and compu-
tational audition.
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This presentation focuses on scene analysis in the field of neural computation,
with emphasis on scene segmentation as pattern recognition has been a central
theme of neural network research since the very beginning [1]. Compared to recog-
nition, less research has been devoted to scene segmentation. The importance of
scene segmentation is, however, increasingly recognized as pattern recognition is
being applied in real-world situations.

In his classic book more than forty years ago, “Principles of neurodynamics,”
Frank Rosenblatt [2] summarized a list of problems facing the study of perceptron
theory at the time. Two problems among the list “represent the most baffling im-
pediments to the advance of perceptron theory” (p. 580). These are the problems
of figure-ground separation and the recognition of topological relations. The devel-
opment of neural networks in the ensuing years has largely validated the foresight
of Rosenblatt. In particular, major progress has been made in the understanding
of error-correction procedures for training multi-layer and recurrent perceptrons.
On the other hand, progress has been limited in addressing Rosenblatt’s two chief
problems. One reason that scene analysis is particularly difficult for neural net-
works is the binding problem, which refers to how the coherence of a pattern as
a large collection of features is represented in a neural network. I will discuss two
theoretical proposals to the binding problem. One proposal is the grandmother-cell
representation, which claims that individual neurons can become so selective as to
represent individual objects. Multiple objects in a scene would be represented by the
coactivation of multiple cells [3]. Another proposal, known as temporal correlation
[4], encodes the binding by the correlation of temporal activities of feature-detecting
cells. A special form of temporal correlation is oscillatory correlation, where basic
units are neural oscillators.

This presentation argues that introducing the dimension of time is essential for
a systematic attack on Rosenblatt’s challenge, which is intrinsically related to the
binding problem. Oscillatory correlation offers an adequate representation theory
to address the binding problem. To turn this representation theory into an effec-
tive computational mechanism, however, requires satisfactory solutions to several
problems in oscillatory dynamics. The development of Locally Excitatory Globally
Inhibitory Oscillator Networks (LEGION), which build on relaxation or other non-
linear oscillators, has successfully solved these problems [5, 6]. LEGION networks
can rapidly synchronize an assembly of locally coupled oscillators and desynchro-
nize multiple oscillator assemblies. LEGION dynamics provides a solution to the
well-known Minsky-Papert connectedness problem [7, 8], which represents an im-
portant example of the binding problem. LEGION has been applied to a variety of
tasks in both visual and auditory scene analysis, and this presentation will show
several such examples that demonstrate the computational utility of the oscillatory
correlation theory.

I will also discuss the neurobiological relevance of the oscillatory correlation
theory. Finally, the time dimension is argued to be necessary for versatile computa-
tion.

The details for much of this presentation can be found in Wang [9].
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Chapter 62
Implications for Psychiatry of a Thermodynamic
Model of Brain Operating Far from Equilibrium

Walter J. Freeman

Abstract Phenomenologists hold that perception works by the creation of meaning
through chaotic dynamics that forms hypotheses about the environment, and that
adapts through learning. Experimental evidence for creative thermodynamics in
brains is briefly sketched. The explanation is offered that brains, being finite sys-
tems, work this way in order to cope with the infinite complexity of the world. All
that brains can know is the hypotheses they construct and the results of testing them
by acting into the environment, and learning by assimilation from the sensory con-
sequences of their actions. The process is intentionality, using the action-perception
cycle. The cost is the progressive isolation of individuals. Socialization and the ac-
quisition of shared knowledge require emergence of new personality structure by
self-organization through chaotic dissolution of existing structure. Dissolution is
most clearly seen in crisis situations as regression to earlier stages of development.
A thermodynamic model of this unlearning is proposed.

Keywords Action-perception cycle · dissipative structures · ECoG electrocorti-
cogram · non-equilibrium thermodynamics · phase transition · reinforcement learn-
ing · self-organized criticality · unlearning

Introduction

The identification by the Young Turks in the middle of the 19th century of the action
potential as an electrochemical wave revolutionized neurobiology. The conception
of the transmission of animal spirit or of élan vitale was replaced with a conception
of energy or Newtonian force in the brain of the kind that was shared by all other
forms of matter, not just living things. The subsequent discovery by Helmholtz of the
First Law of Thermodynamics, the conservation of energy, profoundly impacted the
formulations of brain dynamics by neurobiologists, neurologists, and psychiatrists.
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The reconceptualization of brain dynamics in terms of the flows of nerve force
culminated in 1895 with Freud’s publication of “The Project of a Scientific Psy-
chology”:

“This approach is derived from clinical observations concerned with ‘excessively intense
ideas’ in hysteria and obsessional neurosis. . .. What I have in mind is the principle of neu-
ronic inertia, which asserts that neurones tend to divest themselves of quantity (Q). . .. We
arrive at the idea of a ‘cathected’ neurone (N) filled with a certain quantity. . .. The principle
of inertia finds expression in the hypothesis of a current, passing from the dendrites to the
axone. . .. The secondary function [memory] is made possible by supposing that there are
resistances in contacts between the neurones which function as barriers. The hypothesis of
‘contact-barriers’ is fruitful in many directions” (pp. 356–359).

Freud saw very clearly the psychiatrists’ need for a firm foundation in normal
physiology and dynamics of brain function to explain nervous and mental disorders.
Yet he experienced doubts following his euphoria. In a letter to Fliess on May 25,
1895 Freud wrote [1]:

“I am tormented by two aims: to examine what shape the theory of mental functioning
takes if one introduces quantitative considerations, a sort of economics of nerve forces;
and, second to peel off from psychopathology a gain for normal psychology. Actually, a
satisfactory general conception of neuropsychotic disturbances is impossible if one cannot
link it with clear assumptions about normal mental processes.”

By 1898 Freud’s optimism had completely evaporated. On September 22, 1898
he wrote to Fliess:

“I am not at all in disagreement with you, not at all inclined to leave psychology hanging
in the air without an organic basis. But apart from this conviction, I do not know how to
go on, neither theoretically nor therapeutically, and therefore must behave as if only the
psychological were under consideration. Why I cannot fit it together [the organic and the
psychological] I have not even begun to fathom.”

Clearly Freud lacked the requisite tools for his Project, yet he had unprecedented
powers of imagination in conceiving brain mechanisms and describing them by
inventing a form of symbolic logic that has been codified by Freudians into the
quasi-religious dogma of psychoanalysis. The most specific cause of his failure
was the fact that nerve energy and nerve force are not conserved. A classic ex-
ample comes from the work of the founder of British and American neurology,
J. Hughlings Jackson [2]:

“. . .we speak of the dynamics of the nervous system. . .. A normal discharge starting in some
elements of the highest centres overcomes the resistance of some of the middle, next the
resistance of some of the lowest centers, and the muscles are moved.”. . . “A fit of epilepsy is
an excessive caricature of normal physiological processes during what is called a voluntary
action. . .. We have, in the case of ‘discharging lesions,‘ to consider not only the quantity of
energy liberated, but the rate of its liberation.”

“Resistances will be considered later.” (pp. 42–44)

Years later a note initialed by JHH in his hand on the margin of his author’s copy
by the editor of his selected works:

“No more of this was published.”
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The concept of neural resistance or of psychological resistance can readily be
related to Freuds’s “contact barriers”, 2 years later named “synapses” by Foster
and Sherrington [3], but use of the concept of “electrical resistance” was only a
metaphor. The misidentification of resistance in a physical system with attenuation
or inhibition at synapses constituted what Gilbert Ryle [4] termed a “category mis-
take”; it led to the collapse of the entire enterprise. Psychiatry splintered into com-
peting schools and even into the black-box mentality of behaviorism, a catastrophe
from which it has yet to recover.

We now have the necessary tools – nonlinear dynamics, nonequilibrium ther-
modynamics, random graph theory, and quantum field theory – and can resume
where Freud abandoned his project. My approach is to treat the brain as a thermo-
dynamic system that is self-stabilized at criticality, as this is defined in a physical
medium such as water. The dynamical phase space of the brain as a medium can
be conceived as having multiple compartments, the most salient and experimentally
accessible being three phases: receiving, transmitting, and seizure. These phases are
separated by phase boundaries. In the phase diagram of water the phase boundary
between liquid and gas terminates at the critical point. This is the point at which all
frequencies and wavelengths coexist, where the system has maximal flexibility and
information content. That point in brain thermodynamics is hypothesized to be the
critical point at which brains self-stabilize.

Owing to the fact that brains are open systems with throughput of energy and
matter, the static 19th century phase diagram is inappropriate. Two new state vari-
ables are introduced in order to describe nonequilibrium brain dynamics. Tempera-
ture, which in any case in homeotherms is kept constant, as a measure of energy is
replaced by power as a time-varying measure of the rate of dissipation of free energy
as heat. Entropy that is estimated by pressure or volume, likewise held constant in
brains, is replaced by a measure of the rate of increase in order (negentropy). In ther-
modynamic systems operating far from equilibrium the property of self-organization
emerges in the form of dissipative structures [5] that feed on energy. Brains maintain
their background activity by mutual excitation, which is self-stabilized by refractory
periods at all levels of arousal, as demonstrated by calculating the feedback gain and
showing that it is maintained at unity, giving steady state excitatory output.

In a demonstration of the promise offered by these new tools, the concept of
intention will be described as the outward thrust of the body controlled by motor
systems that are embedded in massive positive feedback among cortical excitatory
cells. Evidence will be cited that the maintenance of this background is in significant
part by gaba-ergic neurons that are loaded with chloride ions under the modulation
by histamine, which makes the action of GABA excitatory by opening the GABA-A
receptors to the outflow of chloride, resulting in the depolarizing action of GABA
[6]. It is noteworthy that the benzodiazepines are antihistamines, so it is postulated
that their anxiolytic action is due to the reduction in the level of output from mutual
excitation, which can be modeled in terms of thermodynamics as a reduction in the
rate of dissipation of free energy and a consequent reduction in the degree of order
or negentropy.

Numerous other examples in addition to arousal (motivation, desire, drive, etc.)
might be presented, depending on the time available, by which intention, attention,
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perception, decision-making, the action-perception cycle, abstraction, generalization,
memory retrieval, and consciousness can be re-defined and explained in terms of
nonlinear brain dynamics [7], using the concepts of phase transition, spontaneous
symmetry breaking, and the conceptualizations offered by scale-free dynamics op-
erating simultaneously across the micro-meso-macroscopic levels that characterize
contemporary neuroscience.
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Chapter 63
Optical Imaging of Plastic Changes Induced
by Fear Conditioning in The Auditory Cortex
of Guinea Pig

Yoshinori Ide, Jan Lauwereyns, Guy Sandner and Minoru Tsukada

Abstract In this study, the plastic change in the auditory cortex induced by a
fear conditioning with pairing of sound (Conditioned Stimulus, CS) and electric
foot-shock (Unconditioned Stimulus, US) was investigated by using of an optical
recording. To investigate the effect of association learning, optical signals in the
auditory cortex to CS (12 kHz pure tone) and non-CS (8 and 16 kHz pure tone) were
recorded before and after the conditioning. As a result, the response area only to
CS increased after the conditioning. On the other hand, to investigate whether audi-
tory information could be retrieved by electric foot-shock after association learning
or not, auditory response to foot-shock was also investigated before and after the
conditioning. As a result, the optical response in the auditory cortex to only electric
foot-shock without any sound stimuli could not be observed before the conditioning
but clearly appeared after the conditioning.

Keywords Auditory cortex · optical imaging · fear conditioning · plasticity

Introduction

Fear conditioning using sound and electric stimuli is commonly used in the re-
searches of emotional memory, many researches of plasticity in the auditory cortex
using this paradigm have been carried out. Weinberger et al. reported that receptive
field in the auditory cortex are plastically changed by fear conditioning and the
best frequency strongly tunes to the frequency used for the conditioning [1]. The
information in the auditory cortex is spatially represented as the tonotopic map.
Merzenich et al. reported that the response region to the training frequency in the
primary auditory cortex of a monkey enhanced after the frequency discrimination
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task [2]. In this work, to verify the results for those researches, response in the
auditory cortex to CS sound and non-CS sound was investigated before and after
the conditioning. Furthermore, to investigate whether auditory information could be
retrieved by electric foot-shock after association learning or not, auditory response
to foot-shock was also investigated before and after the conditioning.

Methods

Guinea pigs of 250–450 g, 3–6 weeks old female were used as an experimental
subject. After the animal was anesthetized, the trachea was incised and cannulated
for the artificial respiration. The scalp was detached and a hole (approximately
10 by 10 mm2) was drilled in the left temporal bone and the dura and arachnoid
membrane were removed. The auditory cortex was stained for 40–60 min with a
voltage-sensitive dye, RH795 (0.125 mg/ml, dissolved in saline; molecular Probes).
Then, the animal was artificially respirated, and optical recording was carried out
before and after the conditioning. While a pure-tone (duration: 5 s, frequency: 4,
8, 12, 16 kHz, acoustic pressure: 65 dB SPL) was presented to the right ear or an
electric shock (duration: 0.5 s, current intensity: 0.5–1.5 mA) was applied to hind
legs, response from the left auditory cortex was recorded. 100× 100 ch MOS imag-
ing device (MiCAM ULTIMA, Brain Vision) was used for recording the fluorescent
signals from the cortex. Fear conditioning was carried out by using sound stimu-
lus (CS) and electric foot shock (US). A pure-tone (duration: 5 s, frequency: 4 or
12 kHz) was presented to the right ear as CS, and an electric shock (duration: 0.5 s,
current intensity: 0.5–1.5 mA) was applied to hind legs as US. Electric shock was
applied just after the sound presentation, this paring was defined to be one trial, and
70 trials were carried out in total. The interval between each trial was randomly
60–120 s.

Results

Auditory responses to pure tone with a frequency of 8, 12 and 16 kHz was recorded
before and after the conditioning. As shown in Fig. 63.1, the auditory response area
markedly increased only for CS sound (12 kHz) after the conditioning, while such
an increase of auditory response area could not be observed for the other non-CS
sounds.

Auditory responses for electric foot-shock alone was investigated without pre-
senting any sound stimuli before and after the conditioning. Figure 63.2 shows the
time course of those auditory responses. As shown in Fig. 63.2, it was found that
auditory response that could not be observed before the conditioning clearly ap-
peared after the conditioning. Besides, in a normal time course for a pure tone (gray
solid line), the peak onset latency was approximately 40 ms and the offset latency
was approximately 100 ms, however, in the time course for electric foot-shock alone
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Fig. 63.1 Auditory responses to CS (12 kHz) and non-CS (8, 16 kHz) recorded before and after
conditioning
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Fig. 63.2 Time course of auditory response to electric foot-shock alone before and after
conditioning

(red solid line), the onset latency was similar to that for a pure tone, while the rising
until the peak was very gentle and the duration was over 450 ms, suggesting that the
time course for electric foot-shock was very different from that for pure tone.

Next, the comparison between auditory response area for CS sound and elec-
tric foot-shock was investigated. Figure 63.3 shows the auditory responses for
CS sound and electric foot-shock when the CS sound was 12 kHz pure tone.
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Fig. 63.3 Auditory responses to CS sound and electric foot-shock when CS sound was 12 kHz
pure tone
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As shown in Fig. 63.3, when the conditioning with a CS sound of 12 kHz was
carried out, the auditory response area to the electric foot-shock considerably cor-
responded to that for CS sound. Similar results were obtained when CS sound
was 4 kHz.

Discussions

It has been reported that an optical imaging may record responses mainly from
the layer II and III in the cerebral cortex. Furthermore, it has also been reported
from the pharmacological experimental data in vivo that responses for acoustic
stimuli recorded by using optical imaging consists of the three main components
as follows: (i) non-NMDA (N-methyl-D-aspartate) glutamate receptor dependent
excitatory postsynaptic potential (EPSP), which is a fast response component,
(ii) NMDA glutamate receptor dependent EPSP, which is a slow response com-
ponent and (iii) GABA (�-amino butyric acid) receptor dependent inhibitory post-
synaptic potential (IPSP) [3]. On the other hand, acetylcholine (ACh) released
from basal forebrain to cortex affects NMDA glutamate receptor in layer II/III
of cortex and promotes plastic changes in auditory cortex [4]. Excitatory neu-
ron activities based on NMDA glutamate receptor laterally exists beyond the iso-
frequency band in tonotopic map of auditory cortex [3], suggesting that the increase
of auditory response area for CS sound (12 kHz) after the conditioning based
on NMDA glutamate receptor dependent LTP in the layer II/III. Furthermore, it
has been reported that layer II/III is important for plastic changes in somatosen-
sory cortex, and LTP was induced in horizontal connection of layer II/III in mo-
tor cortex. From these viewpoints, rising velocity of auditory response shown in
Fig. 63.2 was slow and a large response was obtained in a late time region of
after 50 ms, suggesting that NMDA glutamate receptor dependent late-EPSP is a
dominant component of the auditory response to foot-shock. Therefore, it might
be thought that LTP was induced in the NMDA glutamate receptors by the fear
conditioning and EPSP was induced by electric foot-shock in the same NMDA
glutamate receptors where LTP was induced by conditioning. Thus there was a
correlation between auditory response area for CS sound and electric foot-shock,
implying that the acoustic information about CS sound was retrieved by electric
foot-shock.
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Chapter 64
Learning in Sparse Attractor Networks
with Inhibition

Si Wu and Thomas Trappenberg

Abstract Attractor networks are important models for brain functions on a
behavioral and physiological level, but learning on sparse patterns has not been
fully explained. Here we show that the inclusion of the activity dependent effect
of an inhibitory pool in Hebbian learning can accomplish learning of stable sparse
attractors in both, continuous attractor and point attractor neural networks.

Introduction

Recurrent attractor neural networks (ANNs) are a fundamental ingredient in many
models of brain functions [1, 2]. Probably best known are point attractor neural
networks (PANNs) which are trained on random patterns with a Hebbian covariance
rule, such as the one popularized by [3]. Another popular type is that of continuous
attractor neural networks (CANNs) where the weight matrix is commonly chosen
to be of the on-center-off-surround type [2, 4]. Such models have been proposed
from basic physiological principles [5] as well as from their ability to describe the
dynamics of cognitive functions [6]. While basic Hebbian training has long been
described in PANNs [7, 8, 9], training on sparse patterns through activity depen-
dent inhibition in PANNs and training in CANNs have not been fully addressed.
By sparsity we mean that only a small portion of nodes are active in the network
when a single memory pattern is retrieved. In this paper we show that training with
inhibition can stabilize sparse network activity in both PANNs and CANNs.

Learning in CANNs

We consider a simple CANN model, as used in [2]. The nodes are uniformly
distributed in a feature space of range (−π, π ] with periodic conditions. The neu-
ronal states take on binary values of 0 and 1, and the memory patterns, μ, are sparse
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attractors of localized activity packets (bumps) in the sense that in each pattern
d � 2π consecutive nodes are activated. We further consider that the network holds
a continuous family of memory patterns uniformly distributed in the feature space.
Conventional studies (e.g.[2]) often assume this form of the recurrent interactions.
Here, we derive the recurrent interaction structure based on a properly modified
Hebbian learning rule.

We propose a general Hebbian covariance learning rule which is augmented with
an additional inhibition constant, C , describing the effect of inhibitory internodes,

wi, j = 2π

M

M∑

m=1

(μm
i − < μi >)(μm

j − < μ j >)− C, (64.1)

where M denotes the number of training patterns, and the average activity of the i th
node over all patterns is < μi >=

∑
m μ

m
i /M = d/(2π ).

Since the neural field is translation invariant, the interaction between two nodes is
determined by their distance in feature space. Without loss of generality, we can thus
calculate the interaction between nodes at locations 0 and x . Under the continuous
field approximation, M → ∞ with pattern density is ρ = M/(2π ), the weight is
given by

w(x) =
∫ π

−π
μ

y
0μ

y
x dy − C − d2/2π, (64.2)

with μy
x = 1 when y ≤ x ≤ y + d and μy

x = 0 otherwise. We get:

− when 0 < |x | < d : w(x) = d − |x | − C − d2/(2π )

− when d < |x | < π : w(x) = −C − d2/(2π )

Thus, the weight profile describes short-range excitatory and long-range inhibitory
interactions as demanded by the center-surround neural field theory [2, 4].

Stability Under the Network Dynamics

We denote the network states at time t with S(t) = {Si (t)}. Under the continuous
field approximation, the network dynamics can be written as:

S(x) = Θ[
∫ π

−π
w(x − z)S(z)dz], (64.3)

where Θ(x) is a threshold function. We can check the stability of a memory pattern,
μ, of a bump at location [0, d], under the network dynamics. This requires:
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μ(x) = Θ[
∫ π

−π
w(x − z)μ(z)dz. (64.4)

Since the inputs received by nodes in the middle of the bump are always larger than
that at the boundaries (due to short-range excitation and long-range inhibition), it
is adequate to only check the stability of the boundary points. The recurrent input
received by the boundary point, 0, is given by

h(0) =
∫ d

0
w(z)dz =

∫ d

0
(d−z−C−d2/(2π ))dz = d2/2−Cd−d3/(2π ). (64.5)

The activity packet (bump) is stable when h(0) = 0. From the above equation we
see that in case of a pure covariance rule (C = 0) the size of the bump can only be
d = π . That is, the memory patterns are not sparse. In order to hold sparse patterns,
a inhibition of C �= 0 is required.

In the following, we absorb the constant term from the covariance learning rule
(the third term on the right-hand side of Eq. 63.5) in a revised inhibition constant C .
Then, the condition for stabilizing sparse patterns of size d in CANNs is C = d/2.
It is straightforward to check that this is also the sufficient condition: consider the
network state starts from a bump larger than d, then it will shrink due to the recurrent
interactions, and if the initial state is smaller than d, it will enlarge.

For training patterns with width d we can modulate the retrieval width d̃ < d
with different inhibition values:

−d̃ < d : h(0) =
∫ d̃

0
(d − z − C)dz = d̃(d − d̃/2− C).

Thus, the bump width, obtained by h(0) = 0, is d̃ = 2(d−C). From the requirement
0 < d̃ < d, this implies d/2 < C < d.

−d̃ > d : h(0) =
∫ d

0
(d − z − C)dz −

∫ d̃−d

d
Cdz = d2/2− Cd̃.

The bump width is therefore d̃ = d2/(2C). From the condition d̃ > d, we have
C > d/2.

These analytic solutions are compared to simulations in Fig. 64.1a.

Learning in PANNs

Learning sparse representations in the point attractor networks (PANNs) can also
be solved with global inhibition. Again, we consider the Hebbian learning rule with
global inhibition,
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Fig. 64.1 The effect of inhibition on learning in attractor networks. (a) The solid line represents the
simulations of a CANN model and shows the ratio of active nodes after 10 iterations from an initial
memory pattern. The results compare well with the analytic results (dashed line) for appropriate
values of C . Too small or too large inhibition leads to a loss of the memory states. (b) Average
retrieval sparseness, aret, and Hamming distance between network state and memory pattern for a
point attractor network for different inhibition constants, C . Due to the attractor dynamics, a range
of inhibition values around the analytic solution can support sparse memory states

wi, j = 1√
M

∑

m

(μm
i − a)(μm

j − a)− C, (64.6)

where a denotes the sparseness of patterns which is the probability for a node to be
active in each pattern (the ratio between the number of active nodes and the total
number of nodes). The commonly used network update rule [7] is given by:

Si = Θ[hi ] = Θ[

√
M

N

N∑

j=1

wi j S j ], (64.7)

so that the activity of the i th node is determined by the sign of the input, hi . In the
limit of many patterns, and under the condition that the network is homogenous, hi

becomes Gaussian distributed with mean and variance given by:

< hi >= −Ca, σ 2 =< h2
i >= a3(1− a)2. (64.8)

Thus, the probability of the i th node to be active is P(hi > 0) and to be inactive is
P(hi < 0). On the other hand, the probability for the i th node to be active is also
equal to a. Thus, under the self-consistent requirement, it must hold that

P(hi > 0)

P(hi < 0)
= a

1− a
, (64.9)

from which the relationship between the inhibition, C , and the sparseness, a, can be
derived:
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a = 1

2
− er f (

Ca√
2σ

). (64.10)

From this condition, we see that when C = 0, a = 0.5, that is, the retrieved patterns
are not sparse. However, patterns with the correct retrieval sparseness aret = a can
be maintained for a range of inhibition values as shown in Fig. 64.1b.

Conclusion

We showed here that sparse attractor networks can be trained with Hebbian learning
if inhibition is taken into account, and we calculated how the spareness of retrieved
states is related to the inhibition constant.
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Chapter 65
Dynamic Analysis of Motor Imagery
EEG Using Kurtosis Based Independent
Component Analysis

Xiaojing Guo, Lu Wang, Xiaopei Wu and Daoxin Zhang

Abstract This paper investigates the possibility of using independent component
analysis (ICA) to analyze EEG dynamics of motor imagery. Considering the non-
stationary characteristics of the motor imagery EEG, the online Independent Com-
ponent Analysis by kurtosis maximization is proposed to detect the mu rhythm
changes during left and right hand movement imagination. The experiment results
show that the kurtosis based online ICA can concentrate the mu rhythm in raw EEG
channels to one output channel, but the batch ICA fails to do that. The study in
this paper also show that the elements of dynamic mixing matrix are more sensitive
to mu rhythm dynamic changes, which means the parameters of dynamic mixing
model online ICA can be used to monitor the dynamic changes of mu rhythm during
motor imaginations. The results in this paper demonstrate that the online ICA may
be a promising tool for the analysis of EEG dynamics.

Keywords Motor imaginary · EEG · online independent component analysis ·
kurtosis

Introduction

ICA is a novel approach for blind source separation and feature extraction, which
has caught broad attention of many researchers in recent years. According to pub-
lished papers and research reports, most of ICA algorithms used for EEG source
separation belong to the class of static ICA algorithm with batch data processing.
It is well known that EEG is a non-stationary bioelectricity signals. For example,
conscious (or unconscious) mental activities will activate the different cortex region,
which means EEG source may have dynamic changes during the EEG acquisition
process. In this case, static ICA algorithm often fails to get the valuable results from
raw EEG data [1, 2].
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Researches have shown that when the subject performs or even imagines limb
movement, the � rhythm in EEG is (de)synchronized over the contralateral (ipsilat-
eral) sensorimotor area. This phenomenon is known as Event-Related (De) synchro-
nization (ERD/ERS) [3, 4]. Based on this phenomenon, people attempt to develop
a new brain-computer interface (BCI) system based on motor imagination, which
concerns with the reliable EEG pattern extraction and the online signal processing
algorithm [3, 4]. This paper attempts to analyze the EEG signals of motor imagery
using online independent component analysis based on kurtosis maximization, and
some valuable results are achieved.

Kurtosis-Based Independent Component Analysis

The definition of ICA can be described simply as follow: given a set of observations
of random variables x = [x1, x2, . . . , xN ]T , assume that they are generated as a
linear mixture of independent components: x = As, where A is some unknown
matrix. The aim of ICA is to find a separation matrix W, so that the random variables
ui (u = Wx) are as independent as possible. Kurtosis is often used as a quantitative
measure of independence of a random variable or signal. The ICA algorithm based
on kurtosis maximization is described bellow.

Let x be the input random variables, wt be one row of the matrix, u = wT
t x

the corresponding independent component. The learning rules for separation matrix
based on kurtosis maximization are as follows:

wt+1 = wt+μ�J (w)

�w

∣∣∣∣w = wt
= wt+μ·sign[kurt(u)]·E {(wT

t x)3 · z} (65.1)

where μ is the learning rate of the gradient descent, sign () is the symbol function, t
is learning times, J (w) is the cost function:

J (w) = |kurt(u)| = ∣∣kurt(wT x)
∣∣ (65.2)

After removing the expectation operation in Eq. (65.1), we get the online estimation
algorithm based on new updating sample xt+1.

wt+1 = wt+μ�J (w)

�w

∣∣∣∣w = wt
= wt+μ·sign[kurt(u)]·(wT

t xt+1
)3·xt+1 (65.3)

where, Eq. (65.4) is employed to estimate the kurt(u).

kurt = E[u4]
(
E
[
u2
])2 − 3 (65.4)
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Application to Motor Imagery EEG

EEG Data

The raw EEG data is from the motor imagery EEG database of Austrian Graz
scientific and technical university. Figure 65.1a is the mu rhythms of one trial EEG
data (C3, C4) while the subject imagines left hand movement (the raw EEG data
is filtered by 8–12 Hz band-pass filter). From Fig. 65.1a, We can easily observe
the ERD (ERS) phenomenon: after 3 s, the mu rhythm on the ipsilateral electrode
(C3) is strengthened while on contralateral electrode (C4) is suppressed. Based on
the mu rhythm pattern, the type of motor imagination can be correctly classified
by commonly used classification method, such as the method of energy comparison
between C3 and C4 channels, etc. But not all EEG trials have the obvious ERD/ERS
as in Fig. 65.1a. In some cases, the ERD (ERS) is very weak (as shown in Fig. 65.1b,
according to the true label provided by the database, which belongs to the class of
right hand movement imagination). For this kind of EEG trial, the commonly used
methods for motor task classification fail to get correct answer.

Experiments and Analysis

For the purpose of mu rhythm enhancement, ICA method is employed to deal with
the EEG trial in Fig. 65.1b. First, the classic FastICA algorithm is used, The out-
puts of FastICA are shown in Fig. 65.2a. Comparing it with the row EEG data in
Fig. 65.1b, we can find that FastICA algorithm cannot enhance the mu rhythm.
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Fig. 65.1 The � rhythm of motor imagery EEG on electrode C3 and C4: (a) left hand; (b)
right hand
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Fig. 65.3 (a) The curve of dinamic mixing matrix estimated by DICA based on kurtosis maxi-
mization. (b) The dynamic distribution of μ rhythm on the electrodes C3 and C4 in the process of
right hand motor imagination (4–6 s)

Then, The online ICA algorithm defined in Eq. (65.3) is used to deal with the
same EEG data in Fig. 65.1b. Figure 65.2b is the output of kurtosis-based on-
line ICA, It is easy to see that the mu rhythm is separated to the first indepen-
dent component (IC1). According to the linear mixing model, the first column of
At : a1 = [a11(t), a21(t)]T can be used to describe the distribution of mu rhythm on
electrode position C3 and C4 during the motor imagination. Figure 65.3a gives the
time courses of |a11(t)|, |a21(t)|. Based on them, the dynamic 3D brain topographic
map between 4–6 s is given in Fig. 65.3b. From the results, we can see that the
kurtosis-based online ICA can separate the mu rhythm from raw EEG to one output
channel even in the case of weak ERD. Furthermore, we notice that the elements
of the mixing matrix changes apparently at 5 s as shown in Fig. 65.3a, which cor-
respond to the dynamic changes of mu rhythm distribution on electrode C3 and
C4 in Fig. 65.3b. That means, before and after 5 s, the energy of the � rhythm on
electrode C3 changes from more to less, while on electrode C4 it changes from less
to more. That is to say, the subject was really undergoing the right hand movement
imagination.

Conclusion

In this paper, we have studied kurtosis-based online independent component analy-
sis and its application to EEG of motor imagery. The results demonstrate that online
ICA based on kurtosis maximization can detect the mu rhythm from motor imagery
EEG. The column of estimated mixing matrix can accurately reflect the ERD phe-
nomenon. So it may be a valuable method for study of EEG dynamics and BCI
implementation. It is worth mentioned that kurtosis-based ICA algorithm is seldom
directly used in traditional ICA applications because the kurtosis is very sensitive to
outlier appeared in data. But our research show that online ICA based on kurtosis
maximization principle performs better in extracting the basic rhythm of the EEG
than other ICA algorithm does. We think this is a quite interesting phenomenon and
worth further studying.
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Chapter 66
Quantifying the Sequential Structure
of Psychotic Behavior

P.E. Rapp

Abstract In its simplest form, a random reinforcement, choice task experiment is
one in which the subject makes choices in an attempt to guess the outcome of a
random number generator. The subject does not know that the pattern is random and
will try to construct different strategies to increase the frequency of correct guesses.
Differences in the pattern of choices are observed when clinical populations are
compared against healthy controls. Additionally, the choice sequences of animals
obtained before and after the administration of drugs can show marked differences.
This contribution identifies mathematical methods from symbolic dynamics that can
be used to provide a quantitative characterization of the sequential structure of be-
havior.

Introduction

In 1983 Frith and Done [1] published a seminal study of behavioral stereotypy in
schizophrenia. This investigation has been the model for several subsequent stud-
ies. In a sequence of trials, subjects had to guess if a cross would appear on the
left or right side of the screen. The position was assigned randomly. The subject
did not know that the pattern is random and tried to construct different strategies
to increase the frequency of correct guesses. In the Frith and Done study, normal
controls, manic depressive subjects, patients presenting senile dementia and acute
schizophrenics with positive symptoms (hallucinations, delusions, bizarre behavior)
generated sequences of guesses that were “relatively random.” Acute schizophren-
ics with negative symptoms (affective flattening, alogia, apathy, anhedonia) and
chronic schizophrenics generated a high incidence of stereotyped alternating LRLR
sequences. Chronic schizophrenics presenting both negative symptoms and intellec-
tual deterioration produced repetitive sequences (LLLL. . ... or RRRR. . ...). These
results were largely confirmed by Lyon et al. [2]. A large literature examining choice
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behavior in clinical populations has subsequently appeared [3, 4, 5, 6, 7, 8, 9]. In
most investigations, the analysis is largely limited to determining (1) the frequency
of each choice, (2) switching percentages, (3) the number of appearances of each
of the 16 possible tetragrams (RRRR, LLLL, RLRL,. . ..), (4) the appearances of
each trigram and (5) appearance of each two element pair. (As will be discussed,
Paulus [5] and Magnusson [10] are a notable exceptions in this regard.) The purpose
of this contribution is to identify measures from symbolic dynamics that can provide
a more systematic characterization of the sequential structure of choice behavior.

Mathematical Methods

The simplest measure of a symbol sequence is its Shannon information [11]. Sup-
pose a message (symbol sequence) is constructed from an alphabet of k symbols,
and suppose that pi is the probability of the appearance of the i-th symbol in the
message. The Shannon information is

I = −
k∑

i=1

pi log2 pi

It can be shown that the maximum value of I is I = 1, and that this is obtained when
pi = 1/k for all i. Frith and Done [1] found differences in information between
different populations, but Lyon et al. [2] did not. Upon reflection it is seen that
Shannon information will provide a very incomplete characterization of a message
because it is not sequence sensitive. Consider the messages:

M1 = AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

M2 = BCBADCDAEBCDAAAEAAEEBCCDDEDACCBEDBDBAEEBEDCCABECDB

Though they are qualitatively very different, their corresponding value of informa-
tion, I = 1, is the same since p1 = p2 = · · · · · · = p5 = .2 in both cases. Alternative
measures are sensitive to sequential structure.

Previous analyses of choice behaviors have looked for different substrings (words)
in the behavior sequence. This can be made more rigorous by calculating the topo-
logical entropy of a message [12]. Again suppose a message is constructed from
an alphabet of k symbols. With an alphabet of k symbols, the maximum number of
possible words of length n is kn. By definition, all possible words appear in a random
message. In a non-random message the number of observed words of length n grows
with n, but not as rapidly as it does for a random message. Let N (n) be the number
of words of length n actually observed in the message. N (n) grows exponentially at
the rate HTn where HT, the topological entropy is between zero and one.

N(n) � kHT
n ≤ kn

If logk N(n) is plotted as a function of n, it will have slope HT. Strictly, HT is defined
in the limit of infinitely long messages:
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HT = lim
n→∞

logk N(n)

n

If the message is random, then N(n) = kn and HT = 1. Suppose the message is
constructed by repeating a single symbol (M = LLLLL . . . ..). In that case, N (n) =
1 and HT = 0. Intermediate values of HT can be generated by chaotic sequences.

The topological entropy is sensitive to the appearance of each substring of length
n, but it is insensitive to the frequency of each appearance. In contrast, the metric
entropy incorporates a dependence on the relative frequency of each substring [13].
Let Sn denote a substring of length n. Let F(Sn) denote the number of times that it
appears. The probability of Sn is P(Sn).

P(Sn) = F(Sn)

/∑

allSn

F(Sn)

In is the information obtained from observing substrings of length n.

In = −
∑

all Sn

P(Sn) log P(Sn)

The information content of a substring increases with its length.

In � HMn

If In is plotted as a function of n, it should have a slope HM, which is the metric
entropy. As in the case of topological entropy, metric entropy is defined mathemati-
cally as a limiting case.

HM = lim
n→∞ In/n = lim

n→∞

⎧
⎪⎨

⎪⎩

− ∑
all Sn

P(Sn) log2 P(Sn)

n

⎫
⎪⎬

⎪⎭

If the message is composed from an alphabet of k symbols, there are kn possible
substrings of length n. In the case of a random sequence, each substring appears
with equal probability, P(Sn) = 1/kn. For the case of a random sequence, the sum
contains kn identical terms.

HM = lim
n→∞

⎧
⎪⎨

⎪⎩

− ∑
all Sn

1
kn log2

1
kn

n

⎫
⎪⎬

⎪⎭
= log2 k

If the message is constructed by repeating a single symbol, there is only one sub-
string of length n in the message, and the probability of its appearance is one. No
information is obtained by observing a process that has a certain outcome. In = 0
and hence HM = 0.
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Several other methods for characterizing order in symbol sequences should be
noted briefly. Frith and Done [1] reported that for healthy controls and several pa-
tient groups the choice pattern was “relatively random.” The Lempel-Ziv complex-
ity [14] is an important method for characterizing the degree of randomness in a
symbol sequence. A normalization of Lempel-Ziv complexity that reduces its sensi-
tivity to the length of the message has been constructed [15, 16]. We have published
elsewhere a detailed didactic presentation of this measure along with pseudocode for
its calculation [17]. The topological entropy, metric entropy and Lempel-Ziv com-
plexity give low values for regular sequences and high values for random sequences.
A number of investigators have published definitions of complexity that give low
values for both regular and random processes and higher values for irregular deter-
ministic chaotic processes [18, 19, 20, 21]. In a series of publications, Paulus and
his colleagues have used sequence sensitive methods to characterize choice behavior
in schizophrenia patients [4, 5, 6, 22]. The fluctuation spectrum of local substring
entropies was calculated. They observed that “schizophrenic patients exhibited sig-
nificantly less consistency in their response selection and ordering, characterized by
a greater contribution of both highly perseverative and highly unpredictable subse-
quences or responses within a test session [4].”

What Symbolic Dynamics Doesn’t Measure

An analysis of choice behavior with methods from symbolic dynamics proceeds
without reference to whether or not a guess was correct. Measures that, for ex-
ample, determine the frequency of implementation of a win-stay strategy are not
generated by an examination of the response sequence alone. The frequency of
a win-stay strategy can be informative. Its frequency is reduced in schizophrenic
subjects [2]. The latencies (time required to respond) are not incorporated into an
analysis based on symbolic dynamics. Magnusson [10] has constructed a measure
that is sensitive to both choice sequence and latency. It has been applied to data ob-
tained from schizophrenics by Lyon and Kemp [23]. Using this measure they found
that schizophrenic and manic patients showed more complex patterns than controls.
The complexity of the response structure was reduced by clozapine. It should be
noted that it is not necessary to chose between measures. Several measures can be
incorporated into a multivariate discrimination. The coefficient of determination can
be used to determine which measures are most effective in discriminating between
different groups of subjects.

Discussion

The analysis of choice task behavior is not limited to studies of schizophrenia.
Studies of perseverative behavior have been conducted with autistic patients and
with traumatic brain injury patients [24]. The experimental paradigm of choice and
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random reinforcement has a long history in animal studies [25]. Animal experiments
are important in providing a bridge between human clinical studies and investiga-
tions of animal models of schizophrenia [26]. For example, Evenden and Robbins
[27, 28] observed psychotic choice behaviors in rats treated with amphetamine.
Similarly, stereotyped behavior has been seen in human control subjects follow-
ing administration of amphetamine [29]. It is suggested that analysis of behavioral
sequences with methods from symbolic dynamics will provide a more finely grained
quantitative characterization of behavior. Further studies may show that it is possible
to use dynamical measures of human choice performance longitudinally to assess
the response to treatment.
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Chapter 67
Machine Learning Framework
for Inferring Cognitive State from
Magnetoencephalographic (MEG) Signals

Andrey Zhdanov, Talma Hendler, Leslie Ungerleider and Nathan Intrator

Abstract We develop a robust linear classification framework for inferring mental
states from electrophysiological (MEG and EEG) signals. The framework is cen-
tered around the concept of temporal evolution of regularized Fisher Linear Dis-
criminant classifier constructed from the instantaneous signal value. The value of
the regularization parameter is selected to minimize the classifier error estimated by
cross-validation. In addition, we build upon the proposed framework to develop a
feature selection technique. We demonstrate the framework and the feature selection
technique on MEG data recorded from 10 subjects in a simple visual classification
experiment. We show that using a very simple adaptive feature selection strategy
yields considerable improvement of classifier accuracy over the strategy that uses
fixed number of features.

Introduction

The problem of “brain reading” or inferring a person’s mental state from accompa-
nying brain signals has been a subject of extensive research in the field of Brain –
Computer Interfaces (BCI) [1, 2] and, more recently, functional neuroimaging [3].
Most attempts of “brain reading” adopt a machine learning framework to model the
correspondence between brain signals and mental states [4].

An important part of the machine learning approach to mental state inference is
the problem of feature selection. While many researchers adopt the ad hoc approach
to feature selection, there are several attempts to treat the problem in a systematic
fashion [5, 6].

In this work, we construct a framework for inference of mental states that takes
into account temporal evolution of brain signals based on electrical recordings
by MEG. We utilize this framework to develop a feature selection technique and

A. Zhdanov
Functional Brain Imaging Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
e-mail: zhdanova@post.tau.ac.il

R. Wang et al. (eds.), Advances in Cognitive Neurodynamics,
C© Springer Science+Business Media B.V. 2008

393



394 A. Zhdanov et al.

demonstrate that adopting a very simple adaptive feature selection strategy yields a
considerable improvement in classifier performance.

Experimental Setup

During the MEG recording 10 healthy subjects were presented with images from
two categories – faces and houses. The images continuously switched between face
and house at irregular intervals – approximately every several seconds.

MEG signals were acquired using 275-sensor whole-head CTF-275 system by
VSM MedTech Ltd, Coquitlam, Canada. Because of a failure of one of the sensors
only 274 channels were recorded. The data was sampled at 60 Hz. The signals were
segmented into intervals from 0.33 sec (20 samples) before the stimulus switch to
1 s (60 samples) after. In this manner for each subject we obtained several dozens of
signals; each signal contains 274 (number of channels) ∗81 (number of timeslices)
values and is represented as a 274-by-81 signal matrix. Each of the signals was
associated with class label “face” or “house”.

Classifier Construction

Our main goal is to develop a method for inferring correct label from the signal
matrix. We assume a time-point-wise correspondence among the signals. This as-
sumption implies entry-wise correspondence of the signal matrices, allowing us to
treat each signal as a point in a 274×81 = 22194 – dimensional feature space. Thus
we can formulate our inference problem as a high-dimensional pattern classification
problem. To make the classification problem feasible we need to select a small
subset out of 22,194 features. First, let us consider a very straightforward feature
selection strategy: selecting the set of 274 MEG sensor readings from a single most
predictive timepoint, i.e. selecting the most predictive column from the 274 by 81
feature matrix (we call this default feature selection strategy; we investigate a more
sophisticated feature selection technique later). We evaluate the predictiveness of
each timepoint by evaluating the performance of the resulting classifier using 100-
fold cross-validation on all the data available.

To solve the resulting 274-dimensional classification problem we use Linear
Fisher Discriminant classifier regularized by adding regularization parameter � to
the diagonal elements of the data covariance matrix. We select the value of � that
jointly with timepoint minimizes the prediction error estimated using the cross-
validation procedure.

Adaptive Feature Selection Strategy

Once we select optimal timepoint and � using the default feature selection strategy,
the resulting Fisher Linear Discriminant classifier assigns weights to each of the
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274 features (instantaneous values from the 274 channels at the best timeslice).
The absolute value of each channel’s weight may be interpreted as the measure
of relevance of the channel to the classification. We use this information to guide
channel selection in the proposed adaptive feature selection strategy.

The adaptive feature selection strategy selects a subset of n out of 274 best sepa-
rating features from the best timeslice. The n features selected are the features with
the highest absolute values of the weights assigned to them by the classifier.

Results

Figure 67.1 shows the relation between the regularization parameter, classifier error
and maps of the weights assigned by the classifier to different MEG sensors when
using the default feature selection strategy. One can clearly see the global minimum
of the prediction error obtained in the middle of the λ range. The smoothing impact
of λ on the weight maps is also clearly visible.

R L

Fig. 67.1 Error rate as a function of regularization parameter for subject ZK. Solid blue line
denotes the average error rate over 100-fold cross-validation, dotted lines mark 1-std – wide mar-
gin. The vertical line marks the minimum of the smoothed error rate (red line). Three plots below
show the distribution of sensor weights corresponding to different values of the regularization
parameter
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Fig. 67.2 Estimated classification error as a function of number of channels at the optimal sepa-
rating timeslice for the subject CT. The horizontal (red) line marks the error obtained by using all
the 274 channels. Dotted lines mark 1-std – wide margin

Comparison of Feature Selection Strategies

In Fig. 67.2 we compare the performance of the default feature selection strategy to
the performance of the adaptive strategy for different sizes n of the feature set (for
the subject CT).

As one can see from the plot, the error decreases as the number of features in-
creases until it reaches a clear minimum at approximately 50 sensors. From that
point on adding more sensors only increases the classification error – this is a clear
example of the over-fitting phenomenon. Similar results were obtained for all 10
subjects – they are summarized in Table 67.1.

Discussion

We have presented a computational framework which allows inference of the sub-
ject’s cognitive state from brain signals independently of overt response. The impor-
tance of each of the sensory inputs is measured by its ability to enable distinction
between two mental states (i.e. switch from house to face or switch from face to

Table 67.1 Comparison of the prediction errors for the default and the adaptive feature selection
strategies for all subjects

Subject CT ER FB JMB JMM MC MKN SH TE ZK

Default error 0.25 0.23 0.27 0.13 0.19 0.19 0.25 0.17 0.30 0.06
Adaptive error 0.15 0.14 0.09 0.01 0.12 0.06 0.12 0.13 0.04 0.02
No. of features 50 60 110 70 50 50 70 55 110 50
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house). This is radically different than methods which seek the sensory represen-
tation that is most associated (correlated) with a certain sensory input (i.e. face or
house). We have demonstrated that using classification prediction, it is possible to
find optimal interplay between model complexity as affected by the regularization
parameter and model fitness as represented by the regression weights. The depicted
distributed weights (i.e. maps), thus, represent a model which is more robust and
less overfitting to its training data.

Using this computational framework we have been able to infer the number of
sensory inputs which should be considered beyond local representations. The map
findings clearly indicate that a distributed sensory representation is more informa-
tive than local representation, and thus suggesting the importance of a long range
network activity in inferring these mental states.
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Chapter 68
Relevant Stimuli Encoding Surface
Structural Textures by Touching
Plain Woven Fabric

Jiyong Hu, Xin Ding, Rubin Wang and Wei Lin

Abstract In this paper, we investigate the relevant stimuli to SAI afferents encod-
ing surface structural textures of plain woven fabric, via a FE model of fingertip
and fabric in contact. By analogizing the neural responses of fingerpad indented by
rigid bar to the case of woven fabric in a quasi-static manner, attempts are made
to find the relevant mechanical stimuli to SAI units during touching fabric surface.
The results show that the surface structural texture is relevant for tactile sensing,
and is the invariant attribute of tactual cognition. The maximum tensile strain and
strain energy density are probably potential variables of SAI units spatially encoding
structural textures of fabric responsible for roughness sensation. These results can
also facilitate the understanding of peripheral neural presentation of objects.

Keywords Relevant stimuli · texture · SAI · fingerpad · taction

Introduction

Taction of fabric is a complex process from mechanical and neurophysiologic per-
spectives. There has been some work to understand the relationship between me-
chanical stimuli to the finger, neural signals, and perception. However, these studies
are lack in elucidating mechanisms of fabric touch. Many studies have looked at
rigid surfaces in contact with the fingerpad to elucidate the neural mechanism of
form and shape encoding of mechanoreceptors within fingertip [1, 2]. For textiles,
the finger contacts apparently with surfaces with similar or greater compliance, and
this difference changes the deformation mode of the complex system as both the
finger and fabric deform coherently, and leads to different deformation kinetics [3].

Here, A Finite Element (FE) model incorporating the physiological characteris-
tics of fingertip and fabric properties will be developed to investigate the ability of
strains in the vicinity of SAI (Slowly Adapting I) units in representing structural
undulation of woven fabric surface.
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Modeling and Method

The detailed FE model of human fingertip and fabric in contact can referred to [3]
and Fig. 68.1. The model is composed of four-node, quadratic, generalized plain
strain elements (Element type: CPEG4).

Relevant stimulus is a property of the mechanoreceptor and does not depend on
the mechanical stimuli on the surface [2]. Of deformation parameters, the strain
energy density (SED), the maximum strains (MS) [1, 2], whether compressive or
tensile, have tentatively been consider as the relevant stimuli to SAI units, associ-
ated with the Merkel cells (MC). These quantities are closely related to the stretch
experienced by the receptor membrane, which has been shown in biophysical stud-
ies to underlie mechanoreceptive ion channel activation [1, 2, 4]. Thus, the spatial
sub-surface strains for each indentation at the node depth of 1.0 mm, the maximum
sensitive spot (MMS) underneath the symmetric center of fingerpad, where MC
locates [1, 2], are calculated. In fact, the size of MCs (80–120 nm in diameter) [4]
is several orders of magnitudes smaller than the size of the fingertip and its con-
stituents. It is, therefore, valid to approximate the receptor as a point.

Results and Discussions

Fingertip and Bar

Neural data obtained from a SA-I afferent for the 3.0mm bar by Phillips and Johnson
[1] is combined and compared with the subsurface strain measures in the present
simulation. Figure 68.2 illustrates that the calculated strain components predict the
similar trend for spatial-response profiles of SAI mechanoreceptors at the maximum
sensitive spot (MMS), and the clear edge enhancement is observed. Moreover, the
strain at depth of 1.0 mm agrees more with the recorded neural data. Therefore, we
think that the developed FE model of fingertip can be used to investigate the case of
finger indented by objects.

Fig. 68.1 2-D cross-section
FE model of fingertip and
fabric in contact (Unit: mm)
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Fig. 68.2 Typical SA spatial response profiles predicted by the 2D model for sequential indenta-
tions by 3 mm wide bar are shown. Data from Phillips and Johnson [1] is shown in by the thin line.
(a) SED and (b) MSs at depth of 0.75 and 1.0 mm, respectively

Fingertip and Fabric

When fingerpad contacts fabric, the simulated results of relevant quantities are il-
lustrated in Figs. 68.3 and 68.4. Skin surface bends to conform to the sinusoidal
wavy-form surface of fabric, and lead to uneven pressure distribution over contact
region, as shown in Fig. 68.3. A zero-pressure zone exists during sequential inden-
tions in Fig. 68.3, resulting in small strain values in Fig. 68.4. The reason is that
concave of high density texture segment in contact with fingerpad leads to a gap
between the skin surface and the fabric surface. Broadly speaking, the distribution
of strains inside the medium are the blurred version of pressure distribution on the
surface [1, 2]. From the leftmost first peak in these figures, the higher responses
to the edge of undulation than that to the flat and textured parts are attributed to
the higher change in skin surface curvature under the edge as the skin conforms to
it. Combined with the above section on “Fingertip and Bar”, these results show a
direct spatial relationship between the responses of the SAI and the change in the
curvature of the skin surface above MSS, namely the role of packing space of fabric
surface in roughness sensation.

Fig. 68.3 Contact pressure
distribution over the spatial
location for sequential
indentations
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Fig. 68.4 SED and strains at
a depth of 1.0 mm for the
sequential indentions of
fabric
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On the other hand, the response of the first convexity indenting into fingerpad
different from the next, as shown in Fig. 68.4 is 51.89% and 68.42% at point of A
and B, E and F of edge convexity, and 40.49% and 56.37% of multi-convexities at C
and D, G and H, respectively. These results indicate that SED and the maximum ten-
sile strains (MTS) give stronger stimuli to SA units, and means more discriminable
textures than that of the maximum compressive strains (MCS).

Due to predict a quadratic relationship between neural response and stimulus
amplitude, furthermore, SED is eliminated from the relevant stimulus to SAI units
by Sripati [2], and the general conclusion is linear over a wide range of indentations
by the probe tip [1, 2]. Note, small contact area size of probe in effect is nearly
stationary during indentation. Whereas, the contact area increases rapidly at the be-
ginning of fingerpad contacting objects [2, 3]. In fact, Verg-Bermudez [5] observed
that the number of probe contacting with fingerpad, equivalently larger contact area,
affects nonlinearly the neural response of SAI afferents. The apparently increas-
ing contact area enhances the probability of gross mechanical coupling between
stimulus sites, namely recruiting more SAI afferents in effect. For the textiles, the
equivalent contact-area radius spreads apparently on fingerpad contacting fabric.
Therefore, SED is considered as a candidate proximal stimulus to SAI afferents
for its good prediction. If the Merkel cell receptors generate a neural impulse rate
proportional to the strain energy density in their neighborhood, then the receptors
can have a fixed location and orientation relative to the skin surface and yet code
with high fidelity the different mechanical stimuli imposed on the skin surface.

Conclusion

Skin’s material properties determine that it effectively acts as a low-pass filter
in transmitting the mechanical signals, and the mechanoreceptors respond to the
blurred version of the surface pressure distribution, thus spatially encode the shape
of the objects in terms of its surface curvatures.

As the compliance of the skin and its substrata, the rapidly spreading contact
region on contacting leads to recruiting more and more SAI afferents in “influ-
ence region” when fingerpad is in contact with fabric, so that the general linear
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relationship between indentation amplitude and neural response is dubitable. It
means that SED is probably the relevant stimuli to SAI units.

From rigid bar to soft fabric, the tentative conclusion is draw, namely MS and
SED is the potential variables encoding the surface texture by touching plain woven
fabric. These results are instructive to design virtual tactile rendering device of
fabric.
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Chapter 69
Robust Auditory-Based Speech Feature
Extraction Using Independent
Subspace Method

Qiang Wu, Liqing Zhang and Bin Xia

Abstract In recent years many approaches have been developed to address the
problem of robust speaker recognition in adverse acoustical environments. In this
paper we propose a robust auditory-based feature extraction method for speaker
recognition according to the characteristics of the auditory periphery and cochlear
nucleus. First, speech signals are represented based on frequency selectivity at
basilar membrane and inner hair cells. Then, features are mapped into different
linear subspaces using independent subspace analysis (ISA) method, which can
represent some high order, invariant statistical features by maximizing the inde-
pendence between norms of projections. Experiment results demonstrate that our
method can considerably increase the speaker recognition accuracy specifically in
noisy environments.

Introduction

In speaker recognition system, feature extraction is one of important tasks, which
aims at finding succinct, robust, and discriminative features from acoustic data.
Acoustic features such as linear predictive cepstral coefficients (LPCC) [1], mel-
frequency cepstral coefficients (MFCC) [1], perceptual linear predictive coefficients
(PLP) [1] are commonly used, and the most popular data modeling techniques in
current speaker recognition are based on the gaussian mixture model (GMM) [2].
Recently the computational auditory nerve models attract much attention from both
neuroscience and speech signal processing communities. Lewicki et al. [3] demon-
strated that efficient coding of natural sounds could explain auditory nerve filter-
ing properties and their organization as a population. Smith et al. [4] proposed an
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algorithm for learning efficient auditory codes using a theoretical model for coding
sound in terms of spikes.

However, the conventional feature extraction methods for speaker recognition
are often affected by the environmental noise or channel distortions. In this paper,
we investigate statistical approaches of constructing a basis function for encoding
patterns including spectral and temporal information. This method attempts to ex-
tract the robust speech features by mapping the frequency selectivity characteristics
at cochlea into independent subspace. The extraction features may model the dif-
ferences of speakers and reduce the disturbances of noise. Furthermore, we employ
the support vector machine as a classifier to test the effectiveness and recognition
performance.

Method

As we know, the human auditory system can accomplish the speaker recognition
easily and be insensitive to the background noise. In our approach, the first step is to
obtain the frequency selectivity information by imitating the process performed in
the auditory periphery and pathway. And then we represent the robust speech fea-
ture as the projections of the extracted auditory information mapped into a feature
subspace via independent subspace analysis. A diagram of the feature extraction
method and speaker recognition is shown in Fig. 69.1. For the auditory-based pro-
cessing of speech signals, we implement three modules of auditory system as what
is described in Fig. 69.1 to obtain the representation in the auditory periphery and
pathway.

In order to raise the energy for frequency components located in the high fre-
quency domain, we implement traditional pre-emphasis to model the combined
outer and middle ear as a band-pass function i.e. H (z) = 1− 0.97z−1.

The frequency selectivity of peripheral auditory system is simulated by a bank of
cochlear filters which represent frequency selectivity at various locations along the
basilar membrane in a cochlea. The cochlear filterbanks have an impulse response
as g(t) = atn−1e2πbE RB( fc)t cos(2π fct + φ), where n is the order of the filter, fc

is the center frequency, φ is the phase, a, b ∈ R are constants where b determines
the rate of decay of the impulse response, which is related to bandwidth, E RB( fc)
is the equivalent rectanglar bandwidth (ERB) of the auditory filter with a quadratic
formula i.e. E RB = 24.7(4.37 fc/1000+ 1).

Speech Outer/MiddleEar
Pre-Emphasize

Auditory-based
Filtering

Dimension
Reduction

Nonlinearity

Independent Subspace
Projection

FeatureSupport Vector
Machine

Result

Fig. 69.1 Extraction of auditory feature by independent subspace method and recognition
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In order to model nonlinearity of the inner hair-cells, the power of each band in
every frame with a logarithmic nonlinearity was calculated by following equation
i.e. x(k) = log(1 + γ

∑
t∈ f rame k{xg(t)}2), where x(k) is the output power, γ is

a scaling constant, xg(t) is the output of cochlear filterbanks. This result can be
considered as average firing rates in the inner hair-cells, which simulate the higher
auditory pathway.

In this paper we apply independent subspace analysis to learn an optimal basis
function which can give a robust representation of speech signals. The motivation
of independent subspace analysis [5] (ISA) is to achieve such an extension which
generalizes the assumption of component independence to independence between
groups of components. Compared to the ordinary ICA model, the components si in
ISA model are not assumed to be all mutually independent. Instead, si can be divided
into n-tuples and the si inside a given n-tuple may be dependent on each other, but
dependencies among different n-tuples are not allowed. A stochastic gradient ascent
algorithm can be described as:

Δwi ∝ x
(
wT

i x
)

g

⎛

⎝
∑

i∈Sj

(
wT

i x
)2
⎞

⎠ . (69.1)

where wi is the vector of demixing matrix, x is the observed signal, g = p′/p is a
nonlinear function that incorporates the information on the sparseness of the norms
of the projections. In order to speed up the convergence, we prewhite the signals
and constrain the vectors wi to be orthogonal and unit norm. More information
about ISA can be found in [5].

Experiments and Results

In order to evaluate the efficiency of our method, a text-independent speaker iden-
tification experiment was conducted. We used Grid speech corpus to test the per-
formance of our feature extraction method in section (Methods). The Grid speech
Corpus contains 17000 sentences spoken by 34 speakers (18 males and 16 females).

In our experiments the sampling rate of speech signals was 8 kHz. For the given
speech signals, we employed every window of length 8000 samples(1s) and time
duration 20 samples (2.5 ms) and 36 gammatone filters were selected. In order to
reduce the computational complexity, principle component analysis was performed
for the dimension reduction. As described in section (Methods), we calculated the
basis function using independent subspace analysis after the calculation of the average
firing rates in the inner hair-cells. 170 sentences (five sentences each person) were
selected randomly as the training data for learning basis function and 40 independent
feature subspaces were obtained which subspace dimension was chosen to be 4.

In order to test the efficiency and robustness of our feature extraction method, we
employed support vector machine as the classifier. 1700 sentences (50 sentences
each person) were used as training data and 2040 sentences (60 sentences each
person) mixed with different kinds of noise were used as test data. The test data
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was mixed with babble, factory, f16 and white noises in SNR intensities of 15dB,
10dB, 5dB and 0dB.

For comparison, we implemented a baseline GMM system that used conventional
MFCC. In the system, each frame was modeled by 13-component vector, derived
from a 40-channel Mel-scale filter bank, and the popular data modeling method
GMM was used to build the recognizer with 32 gaussian mixtures. From Fig. 69.2a

Fig. 69.2 Feature space for classification and identification accuracy. (a) depicts projections onto
two-dimensional feature space using PCA. The data was mixed with white noise in SNR 5dB. (b)
shows the identification accuracy in different noise conditions
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we can observe the classification boundaries among different speakers clearly which
is beneficial to the identification. Figure 69.2b presents the identification accuracy
obtained by the robust auditory-based feature (RAF) and baseline system in all
tested conditions.

The result demonstrates that the performance degradation of RAF is little with
noise intensity increase. It performs significantly better than MFCC in the high noise
conditions. Such as 0dB condition of white noise, RAF maintains results close to the
low noise condition, while MFCC has dropped sharply. The result can suggest that
this auditory-based method is robust against the noise and improves the recognition
performance.

Conclusions

An auditory-based feature extraction method applied to a text-independent speaker
recognition task was presented in this paper, and according to the experiments re-
sults, the robustness and effectiveness were confirmed. This method is designed
to extract the robust speech features by mapping the frequency selectivity char-
acteristics at cochlea into independent subspace by learning a basis function. The
goal of finding a optimal basis function using independent subspace analysis was to
increase the robustness of feature by removing the noisy components and improve
the recognition scores.
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Chapter 70
Intra- and Interpersonal Coordination
of Goal-Oriented Movements
in a Working Scenario

Cordula Vesper, Sonja Stork, Mathey Wiesbeck and Anna Schubö

Abstract We present a scenario for examining mechanisms of goal-oriented move-
ment coordination in humans. Our aim is to determine behavioral rules and con-
straints that shape movement execution. Therefore, trajectories of hand and finger
movements are recorded while participants perform a simple construction task. We
measure different parameters of reaching and grasping and compare performance
in a single-person versus a two-person condition. First results of a pilot study are
shown. Finally, we discuss our scenario with respect to possible applications in
human-robot interaction in a factory environment.

Introduction

Movement coordination with other people is an important aspect of our everyday
social life. For example, we are able to catch a ball thrown by a member of our
basketball team or we avoid collisions when walking through a crowded shopping
mall. In all these apparently easy situations, the human motor system faces a variety
of challenges related to motor planning and movement coordination, e.g. how to
select the right motor program regarding the fact that motor tasks can be performed
in an infinite number of ways [1], the so-called “degrees-of-freedom” problem. A
different, but related problem is the necessity to adapt movements online to a chang-
ing environment. For example, static or moving obstacles (such as objects or another
person’s limbs) have to be avoided. Furthermore, a question that is still under debate
is how motor actions can be learned [2].

Research in cognitive psychology and neuroscience has attempted to detect the
underlying mechanisms of these complex human abilities. Most current theories
on the motor system assume three different types of mechanisms that allow an
individual to execute, plan and monitor motor actions [2]. First, motor commands
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are sent out via reafferences from the motor system to the periphery where they are
executed and transformed into consequent sensory feedback. Second, the same mo-
tor commands are fed into an internal forward model that uses these efference copies
of the motor commands to predict the sensory consequences of possible movements
before they actually happen. Third, an inverse internal model works in the opposite
direction by computing motor commands with respect to the goal movement, i.e. the
motor system determines what muscles need to be used in order to reach a certain
sensory effect.

Although the internal model approach works well on an individual actor’s level,
motor control is even more complicated in interaction situations as the other per-
son’s next movements and action goals have to be inferred [4]. However, Wolpert
et al. assume that the same general mechanisms can also apply to group situations
[4]: the motor commands from person A will provide communicative signals that
the interaction partner B can perceive to understand A’s movement and use this
information to coordinate his or her own motor actions with the partner. Thus,
the theory of internal models can account both for intra- and interpersonal motor
control.

In addition, several constraining mechanisms of the motor system have been
specified. First, constraints arise from the movement kinematics themselves, e.g. tra-
jectories are normally smooth and have a bell-shaped velocity profile. Different
parameters determine the exact form of a movement, including shape and material
of a to-be-grasped object [3], movement direction, the relation of object size and
movement speed or the timing of the maximal grip aperture [1]. Another constrain-
ing mechanism is to plan movements according to their end-goal [5]: particular
movements are chosen with respect to the comfort of the goal posture (“endstate-
comfort effect”) or dependent on the subsequent movement [6]. Finally, a hierarchy
of constraints [5] is set up for each motor task determining the priorities of single
task steps. For example, when carrying a tray of filled water glasses, keeping the
balance is more important than moving quickly.

In the remaining part of this paper, we introduce a scenario that aims at examining
general mechanisms of human movement coordination in an assembly task in order
to transfer results to situations in which humans and robots work together.

The Ball Track Scenario

The ball track scenario consists of the relatively simple task of building a ball track
(i.e. a children’s toy to let marbles run down) from wooden blocks. Its advantage
lies in its flexible design and the large amount of possible parameters that can be
examined with it.

In our scenario, participants build a ball track from wooden blocks (height 4 cm,
width 4 cm, length between 4 and 16 cm) while their arm and hand movement pa-
rameters are assessed. They sit alone or next to a second person at a table with
the ball track blocks and a screen in front of them. In each trial, the participants’
task is to grab the blocks from a predetermined initial position and to stack them
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Fig. 70.1 (a) Example of goal ball track (top) and an initial block position (bottom); (b) Marker
of Polhemus Fastrak; (c) Temporal coordination in joint performance: vertical movements of one
pair of participants (smooth lines: person A, dotted lines: person B) in 3 trials (same condition)

according to a visual instruction showing the goal ball track (Fig. 70.1a). Our main
focus with this task lies on the temporal aspects of movement coordination. We
analyze movement onset time, latency and length of individual performance steps
(e.g. grasp and transport components), velocity, and acceleration patterns and over-
all variances of movements. A Polhemus Fastrak, a magnetic motion tracker with
a six degree-of-freedom range (X, Y and Z coordinates and azimuth, elevation and
roll), is used for this movement recording (sampling rate: 120 Hz). The receiver
markers are mounted on the back of the hand or on the index finger and thumb of
the participants (Fig. 70.1b). In a later project phase, we plan to additionally use the
electroencephalogram (EEG) to measure electrical brain potentials while the block
stacking task is performed.

This scenario allows the examination of a variety of different aspects of human
movement coordination. As our main interest concerns the interaction of two per-
sons, a main comparison is between individual and joint performance. We hypoth-
esize that, when people work in a group, the kinematics and temporal aspects of
the interaction partner’s movements will be taken into account and used to adapt the
own motor actions. Consequently, similarities between single and joint performance
should be observable. A second parameter we will examine is uni- versus bimanual
working, i.e. we compare the condition in which one hand is used to the condition
in which participants work with both hands. Moreover, we intend to analyze “two
persons, one hand” and “one person, two hands” conditions. Similar movement
patterns in these conditions would support the idea that the own motor system is
used to understand and predict other peoples’ actions [7]. A further experimental
variation concerns the relation of initial and goal block orientation. Based on the
above described findings on the dependence of end-goal on movement planning, as,
e.g., the endstate-comfort effect [5], we want to examine hand orientation at pick up
and put down sites. We expect individuals to use different initial hand orientations
that depend both on the initial and on the goal position of the blocks. Similarly, by
varying the goal positions of the blocks, we can look at mechanisms of obstacle
avoidance. In our scenario, this becomes necessary when the workspaces of the
interaction partners overlap. Consequently, we expect to find timing delays in the
movement patterns if the other person’s actions have to be carried out before the
subsequent movement can be started. Finally, we will also vary timing constraints
imposed to our participants as well as task complexity.
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In a pilot study with three pairs of participants, we found first evidence for some
of the hypothesized effects. As can be seen in Fig. 70.1c, people systematically
coordinate the timing of their responses. In specific, the onset of a movement (both
at pick up and put down positions) is strongly coupled with the partner’s movement
pattern. This is especially striking in the case of overlapping workspaces, where a
larger movement onset delay can be seen. Finally, we could also observe that hand
orientation during grasping depends on the relation of block orientation at the initial
and goal position.

Conclusion

The aim of this paper was to introduce our ball track scenario that examines a variety
of questions related to movement coordination in humans and robots. We presented
the methodology, an overview of relevant variables and first results. A special focus
of the scenario is the possibility to apply results to human-human and human-robot
interaction in assembly and construction tasks. Progress in the development of robot
technology is fast and as a consequence humans and machines will interact to an
even greater extent in the future [8]. Thus, the value of understanding the parameters
which determine the outcome of internal forward and inverse models in humans is
threefold: First, knowledge about principles of human motor control in interaction
situations can be used to ergonomically design workspaces and, thus, improve in-
terpersonal coordination in both everyday and professional applications. Second,
mechanisms observed in human intrapersonal movement coordination can be used
in order to solve the degree of freedom problem in movement trajectory planning of
robots. Finally, transferring results from interpersonal movement coordination will
enhance adaptive behaviors in machines and allow the safe and efficient collabora-
tion of human workers and robots.
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Chapter 71
Network Synchronization/Desynchronization
Defects in the Pathogenesis of Neuropsychiatric
Disorders

R.S. Hernandez and P.E. Rapp

Abstract Classical theory maintained that all significant information transmission
in the central nervous system was implemented by the movement of neurotransmit-
ters at axon-to-dendrite synapses. It is now understood that this is an incomplete
description. An alternative understanding incorporates other forms of information
transmission and emphasizes the role of synchronization in organizing CNS ac-
tivity. This expanded view has immediate implications for the clinical response to
neuropsychiatric disorders. Treatment of neuropsychiatric disorders should not fo-
cus exclusively on neurotransmitters acting at chemical synapses. Rather, the focus
should expand to include a generic examination of network dysfunction. CNS net-
work defects will, it is hypothesized, result in abnormalities of synchronization that
may be diagnostically disclosing.

Introduction: The Failure of the Neuron Doctrine

Once it was simple. The Neuron Doctrine, it was supposed, provided an essentially
complete specification of the mechanism of central nervous system (CNS) function.
The Doctrine could be presented in five statements.

1. All information processing in the CNS is performed by neurons.
2. Neurons are anatomically discrete units; they do not form a reticulum.
3. All information transmission is unidirectional from axons of the pre-synaptic

neuron to dendrites of the post-synaptic neuron.
4. All information transmission is mediated by all-or-nothing, regeneratively prop-

agated action potentials.
5. All information is transmitted from neuron-to-neuron across the synaptic cleft

by neurotransmitters.

R.S. Hernandez
Uniformed Services University, Bethesda, MD, USA
e-mail: rhernandez@usuhs.mil

R. Wang et al. (eds.), Advances in Cognitive Neurodynamics,
C© Springer Science+Business Media B.V. 2008

417



 

 

 

 

 



418 R.S. Hernandez, P.E. Rapp

In practice neuroscientists did not hold the Doctrine as stated above inflexibly.
All recognized that there were exceptions to each of the five statements. Indeed
even Ramón y Cajal who introduced the concept of anatomically discrete neurons
(as contrasted with Golgi’s hypothesis of neurons forming a continuous syncytium)
recognized that there would be exceptions to the principle of neural discontinuity
(as cited by Bullock et al. [1]). Assessment of the frequency and magnitude of these
exceptions and their operational significance to CNS function is, however, a chal-
lenging question that must be addressed. The exceptions are frequent, and they are
highly significant because they lead to an expanded view of CNS operation which
has immediate implications for the clinical response to neuropsychiatric disorders.
As summarized by Bullock et al. [1] and Douglas Fields [2], emerging evidence
indicates that the classical Neuron Doctrine is at best an incomplete description of
CNS operation. Each of the five assertions made above have been challenged.

The list of exceptions to the Neuron Doctrine indicate that the search for organiz-
ing principles that provide a conceptual framework for interpreting CNS operation
must expand beyond axon-to-dendrite neurotransmitter mediated communication
between neurons. If not the Neuron Doctrine, what? Bullock’s view, as presented by
Douglas Fields [2] was that “the unparalleled abilities of the human mind arise not
as a unique property of our neurons or brain circuitry but as an emergent property
of the way its billions of neurons operate cooperatively.” This is stated with such
breadth that it is almost certainly correct, but it is not mechanistically specific. Most
importantly it does not immediately suggest a potentially falsifiable hypothesis. The
requirement for a hypothesis driven investigation is addressed by introducing the
network synchronization hypothesis.

The Network Synchronization Hypothesis

A long intellectual development has lead to the concept of organization by syn-
chronization. An important contribution to the development of the synchronization
hypothesis was made by von der Malsburg in a theory of correlative brain func-
tion published as an internal report of the Max-Planck-Institut für Biophysikalische
Chemie [3]. A parallel developmental history took the EEG as its starting point.
Freeman’s book “Mass Action in the Nervous System” [4] begins with the question
“What are the neural mechanisms and what is the behavioral significance of the
electroencephalogram (EEG)?” Freeman’s analysis included an early, perhaps the
first, mathematical account of the importance of neural synchronization in ongoing
in CNS activity.

In the 1980’s investigations of oscillating CNS activity took on an added interest
because of the hypothesized role of synchronization in feature binding. The bind-
ing problem has been stated with exemplary concision by Revonsuo and Newman
[5]. The binding problem is “the problem of how the unity of conscious perception
is brought about by the distributed activities of the central nervous system.” The
problem is often examined in the context of visual processing. How do the distinct
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elements of an object, its color, shape, distance, texture and direction and velocity
of motion bind together to form a unitary percept? Building on earlier work, notably
Bressler and Freemen [6], Singer [7] and Eckhorn [8] proposed that feature binding
was accomplished by synchronized oscillations in the visual cortex.

The concept of integration by synchronization has subsequently been general-
ized beyond the specific context of sensory feature binding to provide a generic
dynamical metaphor for CNS organization including cognition [9] Synchronization
of EEGs and ERPs (event related potentials) are associated with attention, learning,
memory and perception. (A large primary literature is identified in [10]) We must
guard against an unduly simplistic conceptualization of the role of synchronized
activity. The importance of a cautionary view becomes especially apparent when
considering patterns of event related synchronization and desynchronization. Com-
plicated patterns of synchronization and desynchronization can be seen simultane-
ously at different scalp sites in response to the same stimulus [11, 12, 13] With these
complexities of mechanism and interpretation explicitly recognized, we can ask an
empirical question: are abnormalities of synchronization and desynchronization as-
sociated with neuropsychiatric disorders? The answer is “Yes.” A large literature is
listed in [10] Table 3. General reviews are given in [14, 15, 16, 17].

Clinical Implications

At present, the principal treatment for psychiatric disorders is pharmacological.
These treatments are directed to manipulating synaptic transmission by either facili-
tating transmission, for example by providing transmitter precursors, or by blocking
transmitter receptor sites. The growing list of exceptions to the Neuron Doctrine
indicates that synaptic transmission is only a part, possibly a small part, of CNS
function. We should look beyond the chemical synapse and try to identify forms of
treatment that will have a positive impact on network integrity. It is possible that
some forms of treatment already in use act by enhancing network function. Fluoxe-
tine (Prozac) is a widely prescribed serotonin reuptake inhibitor with antidepressant
action. Paradoxically, tianeptine (Stablon) which is a serotonin reuptake enhancer
also has antidepressant action. Though these drugs have opposite effects on sero-
tonin transport, they have a common action in promoting increased innervation in
the forebrain [18]. This result is pertinent to the thesis of the present contribution
because the resulting increase in serotonin fiber density in the forebrain would have
an effect on network function.

The increased fiber density reported in [18] could be the result of increased
arborization of exiting neurons. This is the possibility that they emphasize in the
discussion of their results. Other investigations, however, suggest that neurogenesis
may be a critical element in antidepressant action. For example, Madsen et al. [19]
have shown increased hippocampal neurogenesis in an animal model of electrocon-
vulsive therapy. Malberg et al. [20] showed that chronic antidepressant treatment
using several different classes of antidepressant medication increased neurogenesis
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in the adult rat hippocampus. Santarelli et al. [21] carried the analysis further with
animal studies showing that interventions blocking the neurogenesis effect of antide-
pressants also blocked the behavioral antidepressant action of these drugs. Similarly,
aerobic exercise can have significant antidepressant action [22] and exercise can
increase hippocampal neurogenesis to high levels [23]. Ernst et al. [24] have argued
that the antidepressant effects of aerobic exercise may be related to its impact on
neurogenesis. Treatments that increase fiber density or create new neurons have an
impact on the hardware available for network activity.

Conclusions

Neuropsychiatric disorders are disorders of networks. Treatment of neuropsychi-
atric disorders should not focus exclusively on neurotransmitters acting at chemi-
cal synapses. Rather, the focus should expand to include a generic examination of
network dysfunction. Among other consequences, CNS network defects will, it is
hypothesized, result in abnormalities of synchronization and desynchronization that
may be diagnostically disclosing. Additionally, longitudinal time-frequency analy-
sis of event related signals may provide an important technology for assessing the
response to treatment.
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Chapter 72
Exploring Causal Relationships
in the Phase Functions of Coupled
Van der Pol Oscillators

C.J. Cellucci and P.E. Rapp

Abstract We investigate whether causal relationships in coupled Van der Pol
oscillators can be determined. Using the instantaneous phase of computer generated
time series, which are unidirectionally and time dependently coupled, the technique
of lagged mutual information is tested to determine its usefulness in detecting infor-
mation transmission. If successful, it could assist in improving our understanding of
the role of information transmission in organizing CNS activity.

Introduction

The study of Van der Pol oscillators has been of interest since Balthasar van der
Pol’s work on oscillations in a triode circuit led to the development of the Van Der
Pol equation [1, 2]. The equation of motion for the Van der Pol oscillator can be
written as,

ẍ + μ (x2 − 1
)

ẋ + ω0x = 0 (72.1)

The linear term represents a constant force which determines the natural frequency.
The self-sustained oscillations are modified by the nonlinear damping term. There
is positive damping or energy is dissipated from the system when |x | > 1, and there
is negative damping or energy is added to the system when |x | < 1.

Rewriting (1) as first order equations, the coupled system being studied is,

System 1
dx1

dt
= y1 System 2

dx2

dt
= y2 (72.2)

dy1

dt
= −�1

(
x̂2

1 − 1
)

y1 − ω01x1
dy2

dt
= −�2

(
x̂2

2 − 1
)

y2 − �02x2

where x̂ is the coupling term, and  is the coupling parameter;
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x̂1 = ε2,1x2 + (1− ε2,1)x1 x̂2 = ε1,2x1 + (1− ε1,2)x2 (72.3)

Physically, this means that the two oscillators are coupled only through the damping
term. For 1,2 = 2,1 = 0, we have two uncoupled oscillators whose limit cycles are
determined by the damping constants �1 and �2, and the natural frequency terms
�01 and �02.

Although there are different methods for calculating the phase of a signal, we
chose an approach based on the Hilbert Transform. This technique was originally
applied by Gabor [3]. For an arbitrary signal s(t), an analytic signal of the form,

Ψ (t) = s(t)+ sSH (t) = A(t) eiφ(t) (72.4)

is defined, where sSH(t) is the Hilbert Transform of s(t), A(t) is the instantaneous
amplitude, and �(t) is the instantaneous phase [4].

A fourth order Runge-Kutta algorithm was used for the numerical integration of
the system Eqs. 2. The parameters chosen were MAX (t) = 0.3, �1 = 0.5, �2 =
2, �01 = 7, �02 = 11, the time step = 0.1, and the equations were integrated
for 5000 steps. Since we are interested in detecting causal relationships, the cou-
pling terms (t), was unidirectional and time dependent. For the time steps, 1–1000,
2001–3000, and 4001–5000, there was no coupling, i.e., 1,2 = 2,1 = 0. For the
interval 1001–2000, 1,2 = 0.3, 2,1 = 0; that is, the position of system 1 was
coupled to the damping term of system 2. Finally, for interval 3001–4000, we set
1,2 = 0, and 2,1 = 0.3.

Causal Relationships

While synchronization measures can be used to prove a correlative relationship be-
tween two signals, they cannot establish causal relationships or provide any infor-
mation concerning the direction or flow of information. In most cases, a quantitative
assessment of causal relationships between two systems is built on the following
idea. If the measurement of variable X improves the prediction of variable Y, then
Y is, in at least this limited operational sense, causally dependent on X. It should
be stressed that this relationship is not necessarily unidirectional. It can also be the
case that, with the same data, measuring variable Y also improves the prediction of
variable X. (This conceptualization of causality appears in Wiener [5]).

An early implementation of this concept was published by Granger [6] in the
econometrics literature and popularized by Sims [7]. Granger causality is con-
structed using linear regression models of stochastic processes. In the sense opera-
tionalized by Granger, if past values of X are useful in predicting the current value of
Y in a linear regression, then X has a causal relationship with time series Y. There are
several variants of this concept. A complementary procedure for the investigation of
causal relationships can be constructed by examining delayed mutual information
functions.
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Lagged Mutual Information

The mutual information of time series X and Y, I (X,Y ) is defined as the average
number of bits of one variable that can be predicted by measuring the other. Mutual
information is symmetrical, that is, I (X,Y ) = I (Y, X ). Therefore, while mutual
information can establish the presence of a nonrandom relationship between time
series, it cannot identify causal relations. However, a time lagged mutual informa-
tion in which one of the two variables is time shifted can be used to determine if,
for example, measuring variable X in the past allows prediction of future values of
variable Y. We can shift time series X by some time lag � and calculate I (X (�),Y )
as a function of �. Similarly, we can calculate I (X,Y (�)).

If measuring X (�) allows better prediction of Y , than the other way around, then
it can be argued that information is transferred from X to Y . The magnitude of the
mutual information and the time lag which produces the greatest value of I (X,Y )
can be used to quantify both the magnitude of the information transfer and the
time delay associated with that transfer. A number of investigators have proposed
using lagged mutual information to investigate information transfer in distributed
systems [8, 9]. In previous work, Albano [10] found that information transfer, as de-
termined by lagged mutual information calculated between a scalp electrode located
near an epileptogenic focus and other electrodes of the montage, increased prior to
seizure onset.

Conversely, significant limitations of causality measures based on lagged mu-
tual information have been identified in Schreiber [11]. He argues that “time de-
layed mutual information fails to distinguish between information that is exchanged
from shared information due to common history and inputs.” Since that time there
have been some significant improvements in the calculation of mutual information,
specifically we refer to the development of the CAR algorithm [12]. Because some
of the deficiencies of prior methods have been overcome, we believe that a second
look at lagged mutual information as a casualty measure is warranted.

After solving the system Eqs. (2) using the parameter values given above, the
instantaneous phase for each time series was generated using the Hilbert Transform.
Five hundred point epochs were used in calculating the mutual information, and
the center of each time interval was used for the temporal location of each epoch.
One epoch remains constant while the other epoch is moved forward in time. Past
values of the mutual information of one system could then be compared with future
values of the mutual information of the other system. Our results are summarized in
Fig. 72.1.

Conclusions

These preliminary results suggest that there may still be some potential in the
use of lagged mutual information as a casualty measure. Our results showed that
an increase in mutual information corresponded in time with unidirectional cou-
pling, and that the increase decayed when the coupling ended. Future questions
to be addressed should include determining the noise robustness of this algorithm.
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Fig. 72.1 (Upper plot) is the mutual information between a 500 point epoch of System 1 centered
at time step 1000 and moving forward in time to a position centered at time step 2000, and a
stationary 500 point epoch of System 2 centered at time step 1000. Since there is no coupling
from System 2 to System 1 we see no change in mutual information. (Lower plot) is the mutual
information between a 500 point epoch of System 2 centered at time step 1000 and moving forward
in time to a position centered at time step 2000, and a stationary 500 point epoch of System 1
centered at time step 1000. There is a significant change in mutual information over the coupling
interval. Comparable results were obtained for the time step interval 3001–4000, where System 2
was coupled to System 1

Biological signals, particularly EEG’s are generally noisy, so methods whose per-
formance deteriorates significantly with noise are of limited use.
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Chapter 73
EEG Theta Regulates Eye Saccade
Generation During Human Object-place
Memory Encoding

Naoyuki Sato and Yoko Yamaguchi

Abstract In this paper, we proposed a computational theory of human memory
formation in the hippocampus and determined if electroencephalography (EEG)
theta power is associated with eye saccades during object-place memory encoding.
EEG theta power and saccade rate is significantly correlated with subsequent re-
call performance. This result suggests that information acquisition for object-place
memory is processed by the theta rhythm network for memory system, attentional
regulation and saccades.

Introduction

“A neural dynamics theta phase precession” observed in the rat hippocampus [1]
[2] is considered to play an important role in online memory formation of the en-
vironment. In this phenomenon, the temporal sequence of place field activation is
temporally compressed within the phase of every theta cycle and repeated in several
theta cycles [2]. Since the time scale of this phase pattern matches the time-window
of the spike-timing dependent plasticity (STDP) [3], theta phase precession results
in synaptic plasticity. According to this evidence, Yamaguchi [4] proposed a com-
putational theory: a behavioral input sequence is translated to theta phase precession
in the entorhinal cortex, and stored into CA3 unidirectional connections according
to STDP. Computer experiments demonstrated that theta phase precession is advan-
tageous in memory formation with respect with various task demands [5].

The theory was further applied to human object-place memory, a model of human
episodic memory [6, 7]. In the proposed computational network model [8], a visual
input sequence consisting of object and scene information were assumed: the object
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Fig. 73.1 (a) A computational theory of object-place memory formation based on human theta
phase precession [8]. (b) Supporting evidences of the computational theory

input in the central visual field changes rapidly in relation to saccades, while the
scene input in peripheral visual filed changes continuously through several saccades
(Fig. 73.1a).

By using computer experiments, it was found that theta phase precession of
the visual input sequence results in a formation of a hierarchical cognitive map
including scene unit layers and an object unit layer characterized by asymmetric
connections. Thus, theta phase precession observed in the rat hippocampus could
contribute to form human episodic memory.

The theoretical predictions of human memory formation have been evaluated in
human experiments, as summarized in Fig. 73.1b. First, the scalp EEG theta power
during object-place memory encoding was found to significantly correlate with sub-
sequent memory recall [9]. Second, theoretically simulated memory with human
eye movement was also found to significantly correlate with human memory recall
[10]. These results support the computational theory of human memory formation.
In addition to this evidence, this theory would predict a positive correlation between
EEG theta and eye saccades during successful memory encoding, although such a
relation has not been evaluated.

In this paper, we elucidated the theoretical prediction of the relationship be-
tween EEG theta and eye saccades. If EEG theta is essential to encode object-
place memory with visual input sequences, the EEG theta power-saccade rate
coherence is expected to increase in relation to subsequently successful memory
recall.
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Methods

Scalp EEG and eye movement data reported in [9] were used. Eleven volunteers per-
formed 350 trials of an object-place memory task that consists of an 8-s encoding of
a set of four object-place associations in 3-by-3 grids (subtended 15 by 15 degrees
each), a 10-s secondary task of random fixation, and a recall task of the objects
configuration on the display using a mouse. During the task, 58-ch scalp EEG sig-
nals and 6-ch electro-oculography (EOG) signals were recorded with a Neuroscan
amplifier (NeuroScan, US) and eye movement was recorded with a video-based
eye-tracker (Eyelink I, SR Research, Canada). In the analysis, ocular artifacts in
the EEG were corrected with the RAAA (revised aligned-artifact average) method
using horizontal EOG, vertical EOG and radial EOG [11]. The coherence between
wavelet EEG power of electrode i and saccade rate was further evaluated with a
coherence value Ci defined by

Ci ( f ) =
(

N∑

t=1

ei ( f, t)s(t)

)/(
N∑

t=1

ei ( f, t)
N∑

t=1

s(t)

)
, (73.1)

where f is the frequency, N is the number of time points in a trial, and ei ( f, t)
is wavelet power at each time-point t , and si (t) is the inter-grid saccade rate cal-
culated by a 2-s sliding window. A Wilcoxon rank-sum test was used to compare
the coherence values during encoding in each trial that were later either completely
(“successful”) or imcompletely recalled (“failed”). As described in the previous re-
port [9], saccade rate itself is not significantly correlated with subsequent memory
recall (t(10) = 1.59, p = 0.145 > 0.05).

Results

Figure 73.2 represents an example of data processing: raw and corrected EEGs, raw
and corrected wavelet EEG powers, eye movement, and saccade rate. EEG theta
power intermittently increased with increased saccade rate. Note that the ocular
artifacts in the lower frequency-range were well corrected as shown in the wavelet
EEG power.

Figure 73.3 displays the topographical pattern of the increase in coherence values
for each frequency power, in relation to subsequent memory recall. A significant
increase of the EEG power-saccade rate coherence was found at the theta range
(4.5–6.5 Hz) in the fronto-central region and in occipital region. These results are
in a good agreement with the theoretical prediction. Note that the coherence indices
of horizontal and vertical EOGs were not significantly correlated with subsequent
memory recall, indicating that the coherence increase in theta range is not caused
by residuals of EOG artifacts.
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Fig. 73.2 Results of EEG signals and eye movement recordings (subject 4860, Fz electrode,
trial 19)
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Fig. 73.3 Topographical maps showing Wilcoxon rank-sum values difference of the EEG power-
saccade rate coherence values between successful and failed trials. Filled red and blue circles
represent electrodes showing a significant increase and decrease in coherence value (p < 0.05),
respectively

In order to remove residual ocular artifacts in EEG signals, we analyzed the
coherence values only during eye fixation periods. The result is shown in Fig. 73.4.
A significant coherence increase was again found at theta range (4.0–6.5 Hz) in
the fronto-central region, confirming that the EEG theta power-saccade coherence
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Fig. 73.4 Topographical maps showing Wilcoxon rank-sum values difference of the EEG power-
saccade rate coherence values between successful and failed trials, where saccade periods (from
one oscillation cycle before saccade onset to one oscillation cycle after saccade offset) are excluded
from the analysis

increase is not caused by ocular artifacts. Moreover absence of significant effect in
the occipital regions indicates that the subsequent memory effect in the occipital
region is more related to periods of saccade occurrence. The subsequent memory
effect in the fronto-central region is considered to be more independent of saccade
timing.

Discussion

The EEG theta power-saccade rate coherence increase was found to significantly
correlate with subsequent memory recall (Figs. 73.2 and 73.3). The effect was found
at a lower theta range (4.5–6.5 Hz) in fronto-central region. This difffers from the
subsequent memory related EEG power increase at higher theta range (6.5–7.5 Hz)
in the posterior region (at 6.5 Hz), the central region (at 7.0 Hz), and the fronto-
central region(at 7.5 Hz) (Fig. 73.3 in [9]). According to these results, there are two
functional theta synchronization networks: a memory encoding system in higher
theta (6.5–7.5 Hz) and a saccade regulation system in lower theta (4.5–6.5 Hz).
Acquisition of object-place memory is processed by theta rhythm networks for
memory, attentional regulation and saccades. These results support the compu-
tational theory of human object-place memory formation based on theta phase
precession.

The current result suggests a functional role of the intermittent increase of EEG
theta power in the primate hippocampus [12] that is different from a continuous
EEG theta observed in the rodent hippocampus [1, 2]. The intermittent EEG theta
is expected to generate a set of visual input sequences that helps form an accurate
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Fig. 73.5 (a) A continuous
visual input sequence. (b) A
set of visual input sequences
segmented by EEG theta
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memory within a limited encoding period (Fig. 73.5). The hippocampal local field
potential (LFP) theta should increase in primates in relation to saccades, as recently
pointed out by Ulanovsky and Moss [13].
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Chapter 74
Hippocampal and Parahippocampal Neuronal
Responses to Spatial and Non-Spatial Factors
in Rats and Monkeys

Hisao Nishijo, Etsuro Hori, Tsuneyuki Kobayashi and Taketoshi Ono

Abstract Rat hippocampal (HF) neurons were recorded while the rat ran on a tread-
mill affixed to a motion stage that was translocated along a figure 8-shaped track.
Comparison of HF spatial firing patterns across different experimental conditions
indicated that place neuron activity encodes intra-maze multiple information in-
cluding location of animals, locomotion, the reinforcement episodes, and vestibular
sensation or optic flow. Place neurons were also recorded from the monkey HF
during virtual navigation. Most place-differential responses disappeared or changed
their spatial tuning (i.e., remapping) when the arrangements of the distal cues
were altered/moved in the virtual spaces. The results suggest that the HF encodes
multifold information within the maze, which are gated by the extra-maze distal
cues.

Keywords Hippocampus · CA1 · place cell · context · episodic memory

Introduction

The relationship between spatial functions and episodic memory in the HF is one
of the main issues. Changes in place-related activity (remapping) is suggested to
be a neural basis of episodic memory [1, 2]. Basic spatial tuning of place cells is
essentially formed by local geometrical intra-maze and idiothetic cues [1, 3, 4].
Other factors modulate this spatial tuning. One of these factors is extra-maze distal
cues, which might set orientation of the place fields of place cells or work as con-
texts to gate local geometrical and idiothetic cues [1, 3]. Another factor is cognitive
requirement or task paradigms, which are reported to influence activity of place
cells even in the same spatial environment [5]. Thus, these studies suggest that
remapping of place fields might be induced by both changes in extra-maze distal
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cues and cognitive factors such as task requirements. In this chapter, we review our
studies in which place cell activity was recorded in rats and monkeys while space,
locomotion, and episodes with positive/negative reinforcements were separately
manipulated.

Rat HF Neurons

The rat’s head was painlessly fixed to a stereotaxic frame on the motion stage, which
was translocated along a figure 8-shaped track [6]. The floor of the stereotaxic frame
was removed so that the rats could run on the treadmill along with translocation of
the motion stage. The track could be navigated by two different routes (Routes 1
and 2 in Fig. 74.1) that shared a common central stem. The stage was paused at the
start and end of the routes [Places 1 (P1) and 2 (P2)], where conditioned response
tasks with different reinforcements were imposed.

Figure 74.1 shows an example of a place neuron having route-dependent activity.
In the first control session, the activity of the neuron increased in Route 1 (Aa), but
this neuron exhibited little activity in Route 2 (Ba). Thus, the activity of the neuron
in the central stem was route-dependent. The activity of the neuron did not increase
on the central stem when the treadmill was turned off (Lo−) during translocation
(Ab: session Lo− Ts+). However, the same neuron displayed a clear place field on
the central stem of Route 1 without the task (Ts−) (Ac: session Lo + Ts−). In the
session Lo − Ts−, the spatial firing patterns in the central stem again disappeared
(Ad). In the last control session, Lo+Ts+, the spatial firing pattern observed in the
first control session resumed (Ae). These results indicated that the route-dependent
activity of the neuron was locomotion-dependent.

The 44 place neurons were analyzed similarly, and 7 (15.9%) showed task-
dependent, 20 (45.5%), locomotion-dependent, and 4 (9.1%), task- and locomotion-
dependent responses. Furthermore, 13 (56.5%) of 23 route-dependent place neurons
were also locomotion-dependent or locomotion-and-task-dependent. It is noted that

Fig. 74.1 A HF place neuron with locomotion- and route dependent spatial firing patterns on
the common central stem of Route 1. Lo−, Lo+: Turning on (−) and off (+) of the treadmill;
Ts−, Ts+: without (−) and with (+) imposition of the tasks
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some place responses were task- and locomotion-independent. These might code
visual (optic flow) and/or vestibular information.

Monkey HF Neurons

The purpose in this section was to investigate effects of extra-maze distal cues on
HF place-differential activity of monkeys using a virtual navigation task (VNT) [7].
Monkeys were trained to sit on a chair in front of a screen in a dark room, and viewed
3D visual images of virtual spaces projected on the screen. In the VNT, a large-scale
virtual space (diam., 100 m) was created. A circular open field (diam., 20 m; mov-
able arena) surrounded by a wall was located in the center of the virtual space. The
movable arena contained five reward areas that were symmetrically placed [North
(N), East (E), South (S), West (W), and Center (C)] (Fig. 74.2Aa), and extra-maze
distal cues were placed outside the movable arena. In this VNT task, the monkey
was required to navigate by manipulating a joystick among the three reward areas
aligned in a line (i.e., N–C–S or E–C–W) to acquire a juice reward at each of these
three reward areas. There were three different arrangements of the virtual spaces,
based on the placement of the extra-maze distal cues (VNT1-3).

Of these 228 neurons recorded from the HF, 72 displayed significant spatial cor-
relate (place-differential neurons). The effect(s) of the extra-maze distal cues on the
place-related responses of the monkey HF neuron in the three VNT tasks is shown
in Fig. 74.2. Activity of the neuron increased only in the VNT1, but neither in the
VNT2 (B) nor VNT3 (C) (i.e., remapping). Of the 127 neurons tested with more
than two VNT tasks, 40 displayed place-differential activity in at least one VNT
task. Of these 40 place neurons, 27 showed remapping, respectively.

Fig. 74.2 An example of a place neuron that displayed remapping of place-related activity among
the three VNT tasks. (A–C): Trails (a) and average firing rate maps (b) of the place-differential
neuron in the VNT-1 (A), VNT-2 (B) and VNT-3 (C). Large and small circles in A-a indicate the
movable arena and reward areas, respectively
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Discussion

Comparison of HF spatial firing patterns across different conditions in rats indicated
that these route-dependent spatial firing patterns were sensitive to locomotion, the
tasks, and vestibular sensation or visual cues such as optic flow. The results suggest
that multifold intra-maze information including location of the animals, trajectory
of the routes, idiothetic cues, and reinforcement episode (task) are all encoded in
the HF.

The results of monkey HF neurons indicated that the response of most HF place-
differential neurons depended on the arrangement of the extra-maze distal cues.
These results are consistent with the previous studies in rodents in which place cells
were highly sensitive to distal cues [1, 3], and suggest that primate HF neurons share
similar characteristics to those of rodents. These results also suggest that distal cues
work as a context to gate intra-maze local and idiothetic cues that are essential for
spatial tuning within a maze [8]. Furthermore, even in the same experimental room
where monkeys navigated by driving a cab, most HF neurons had non-overlapped
place fields across the different task [5]. In conclusion, these results indicated that
activity of place neurons encoded multifold information including space, propri-
oception (locomotion), vestibular sensation (or optic flow), nonspatial stimuli in-
cluding the reinforcements in the task, and contexts (distal cues and task demands).
These results further suggest that the HF is crucial for processing of allocentric
information (distal cues) to encode as reference frames (contexts), which may be
the neural basis of episodic memory [9].
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Chapter 75
Oscillatory Event Synchrony During Steady
State Visual Evoked Potentials

François B. Vialatte, Justin Dauwels, Tomasz M. Rutkowski
and Andrzej Cichocki

Abstract In this paper we study the dynamics of distributed neuronal assemblies,
through the event synchrony of EEG oscillatory bursts. We recorded EEG signals
before, during and after steady-state visual evoked potentials (SSVEP) in medium
(16 Hz) and high frequency (32 Hz) ranges. The time-frequency oscillatory events
are extracted using bump modeling. Thereafter, the recently introduced stochastic
event synchrony (SES) method is applied to compare these patterns between brain
areas. Significant effects are shown, demonstrating that not only the background
activity is affected by flickering stimulation, but also oscillatory patterns.

Introduction

Local synchrony of neural assemblies induces bursts of oscillatory activities. In EEG
signals, these activities usually appear as successions of oscillatory patterns that
can be observed using time–frequency representations. Synchrony among oscillat-
ing neural populations is a plausible candidate to mediate functional connectivity,
and therefore to allow the formation of spatiotemporal structures [1]. Such neural
assemblies can be considered as distributed local networks of neurons, transiently
linked by reciprocal dynamic connections [2].

Steady-state visual evoked potentials (SSVEP) are characterized by constituent
discrete frequency components remaining closely constant1 in amplitude and phase
over a long stimulation time [3]. There is generally little knowledge, for SSVEP,
concerning the trial-by-trial detail of oscillatory patterns dynamics. Studies in
neuroscience use classical methods to study the SSVEP responses: superposi-
tion, averaging, frequency analysis (narrow band Fourier power), or correlation
analysis. Whereas efficient tools for time–frequency analysis were used proficiently
for evoked potential or event-related responses investigation [4, 5], time-frequency
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analysis of SSVEP were unfortunately seldom investigated [6, 7]. We will here make
the first attempt to investigate oscillatory pattern synchrony during SSVEP induced
by a flickering light stimulus.

In this paper, a sparse “bump” model of the most prominent time–frequency
oscillatory events is used [8]. For each trial, we quantify the pairwise synchrony
between bump model approximations of the EEG signals using the Stochastic Event
Synchronization (SES) method [9].

Methods

Human scalp EEG was recorded in a dark room, while a subject was exposed to
flickering light. Stimulus consisted of a single flashing white square with constant
time interval EEG data was recorded from 64 sites on the scalp, based on the
extended 10–20 standard system. A Biosemi system with average reference was
used. Sampling rate was set to 2048 Hz (yielding good frequency resolutions), with
offline high pass filter above 3 Hz. Trials were recorded with SSVEP induced at
16 and 32 Hz during a four second stimulation (51 trial per frequency range, thus
total = 102 trials). As a first step, wavelet time–frequency maps are computed
using complex Morlet wavelets. The complex Morlet wavelet results in the opti-
mal resolution in time and frequency; it has also proven to be well-suited for EEG
signals [4, 5, 10]. Here, time–frequency representations were restricted to the fre-
quency ranges of SSVEP, i.e. 15–17 Hz or 31–33 Hz, with adequate time and fre-
quency borders for bump modeling [8]. Epochs were analyzed before, during and
after stimulation. A frequency dependent z-score normalization [11] was applied
comparatively to the pre-stimulus period of each trial:

z( f, t) = c( f, t)− μ f

σ f
, (75.1)

where μ f and σ f are the mean and standard deviation of the wavelet map at fre-
quency f , during the pre-stimulus period.

The resulting z-score maps are approximated as a sum zbump of basis (half ellip-
soid) functions b, referred to as “bumps” ([8], Fig. 75.1):

z( f, t) � zbump(θ ) =
Nb∑

k=1

b(θk). (75.2)

After bump modeling, the 64 electrodes were clustered into nine areas (occipital,
parietal left and right, temporal left and right, central, frontal left and right, and
prefrontal). Stochastic event synchrony (SES, [9]) quantifies the alignment of two
bump models (Fig. 75.1). A fraction ρspur of bumps appear in one area but not in
the other (“spurious” bumps); other bumps are present in both areas at slightly dif-
ferent positions (“non-spurious bumps”). We denote by Δ the average timing offset
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Fig. 75.1 Application of SES to SSVEP signals. Bumps are modeled with central frequencies
close to the SSVEP rate ±1 Hz. (a) z-scored wavelet transform (26–38 Hz) and bump modeling
of a typical signal with SSVEP at 32 Hz. (b) SES parameters for all signals at 32 Hz. (c) z-scored
wavelet transform (13–19 Hz) and bump modeling of a typical signal with SSVEP at 16 Hz. (d) SES
parameters for all signals at 16 Hz

between pairs of non-spurious bumps, σ stands for the standard deviation of this
offset.

Results and Discussion

A first observation on wavelet maps (Fig. 75.1) is that EEG trials remain organized
in oscillatory bursts during SSVEP stimulation: we can observe on z-score maps,
during and after as well as before SSVEP, intermittent patterns of activity. The
average of a sufficient number of trials would show instead a more constant ac-
tivity in the frequency range of interest. Earlier investigations [6] also revealed such
rhythmic patterns.

We present the first application of oscillatory event synchrony to SSVEP re-
sponses in EEG. We first compared EEG periods using magnitude square coherence.
“Before vs. During” condition and “During vs. After” condition yields significant
p-values (p < 0.01, Mann–Whitney test). SES also shows (Fig. 75.2) a general in-
crease of synchrony (ρspur and |Δ| decreased significantly) between oscillatory pat-
terns, but with an induced perturbation of organization (σ increases significantly).
Note that σ captures fluctuations “within” a trial, whereas the distribution of |Δ|
reveals fluctuations “from trial to trial”. Note that with a high ρspur in the “Before”
period, the estimate of σ may be less reliable. Likewise, σ may be small in the “Be-
fore” period since there are only few bumps (= fluctuation within a trial); however,
the fluctuations in |Δ| are large (from trial to trial) during this period. We need to
investigate this more carefully with surrogate data.

Therefore, during SSVEP, not only background activity increase its coherence,
but also oscillatory events. Considering the assumption that oscillations and long
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0.05) and strongly signicant (p < 0.01) differences (Mann–Whitney test). Red crosses represents
outliers. (a) stimulation at 32 Hz. (b) stimulation at 16 Hz

distance synchrony both play key roles for cognition [2, 1], we can moreover expect
from these results that SSVEP stimuli could induce some cognitive side-effects.
This conjecture will be verified in our future investigations.
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Chapter 76
Information Entropy-Based Penalty
for PARAFAC Analysis of Resting EEG

Eduardo Martı́nez-Montes, Rafael Sarmiento-Pérez,
José M. Sánchez-Bornot and Pedro A. Valdés-Sosa

Abstract PARAFAC analysis of time-varying EEG spectra data provides a parsi-
monious representation in terms of topographic, temporal and spectral signatures,
which allows for the identification of functional neural networks. This networks
work in a critical state where short and long range connections coexist. Although
PARAFAC is unique through usual least squares estimation, the use of penalized
least squares allows to incorporate this kind of knowledge into the decomposition.
Here we propose the use of Information Entropy-based penalties for obtaining atoms
with minimum spectral entropy. They offer sparse spectral signatures corresponding
to networks oscillating in a well-defined (sharp) frequency band.

Keywords PARAFAC · penalized least squares · information entropy · EEG

Parallel Factor Analysis

The multidimensional nature of neuroscience data has made the use of multi-way
statistical analysis suitable in this field. Many bidimensional approaches such as
Independent and Principal Components Analysis (PCA) are very popular but offer
non-interpretable results when higher dimensional structure is hidden in the data.
Parallel Factor (PARAFAC) analysis is a generalization of PCA to deal with multi-
dimensional data. For example, the EEG time-varying spectra is a three dimensional
array (Y(I×J×K )), indexed by channels, time points and frequencies [1]. PARAFAC
model is then stated as:

yi jk =
∑

ai f b j f ck f + εi jk (76.1)

where ai f , b j f , and ck f are the elements of loading matrices A(I×F), B(J×F), C(K×F)

respectively and εi jk represents the noise. The sum is over f = 1 . . . F , which rep-
resents components or atoms. PARAFAC is usually fitted through Alternating Least
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Squares (ALS) algorithm [2], in which, iteratively, each loading is (least squares-)
estimated conditionally on the others. This has the advantage that the decomposition
is unique under very mild conditions without requiring orthogonality or indepen-
dence among components. However, physiologically acceptable constraints are of
help in the interpretation of results.

Multiple Penalized Least Squares and Information Entropy

Substituting each least squares step in ALS by a penalized least squares (PLS) re-
gression we can introduce constraints in the PARAFAC decomposition. Many types
of constraints are now possible, varying from the use of usual Ridge (quadratic)
penalty functions to non-convex penalty functions (non-quadratic, continuous and
with a singularity at the origin), which has been proposed in PLS to obtain sparse
and stable solutions. Some examples are the Lasso, the SCAD, which also produces
unbiased estimators and Elastic Net, which is a combination of Ridge and Lasso
[3]. These non-linear models are estimated by Local Quadratic Approximation [3],
which has been generalized to deal with multiple penalty terms simultaneously,
i.e. to tackle Multiple Penalized Least Squares (MPLS) models. Consider the multi-
variate linear regression model: y = Xβ + e, where β is the vector of parameters to
estimate; y the data vector; X the given design matrix and e represents unmodeled
noise. Then, the MPLS model for β is stated as:

β̂ = arg min
{

(y− Xβ)T (y− Xβ)+
∑

λk pk(β)
}

(76.2)

where k = 1 . . . Nk indexes different kind of constraints imposed through pk(β),
with corresponding weighting parameters λk .

When β can be considered as a probability density function (pdf), the Informa-
tion Entropy is defined as H (β) = −K

∑
β j lnβ j , with j = 1 . . . n and K a positive

constant. This measure will be maximum for all β j = 1
/

n and minimum (zero)
when one β j is 1 and the rest are 0. Therefore it is a measure of the “peakness” of the
pdf. If we use this measure as a penalty in MPLS1, we are constraining the solution
to have minimum Entropy, i.e. to be the sharpest one. Applied to the spectral signa-
ture of a PARAFAC decomposition, the use of this penalty would imply to constraint
the loadings to have minimum spectral Entropy, which can be interpreted as to find
those functional networks with well-defined frequency of oscillation. According
to [3] this penalty produces sparse solutions if K < 2 but without satisfying the
unbiasedness and continuity conditions. However, it is easy to derive a sparse and
unbiased estimator by combining the Entropy with a Ridge penalty of the form:

p(β) = −
∑

β j lnβ j +
∑

β2
j

/
2 (76.3)

1 Note that this penalty differs from the so-called entropy-penalty or L0-penalty [3].
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Fig. 76.1 Penalty functions:
Ridge (solid), Lasso (dash),
ENet (dot), Entropy-Ridge
(dot-dash)

This will be called the Entropy-Ridge penalty and its shape with some other penalty
functions is shown in Fig. 76.1.

Penalized PARAFAC of Resting EEG

The time-varying spectra of resting-state EEG, (indexed by channels, time points
and frequencies) were decomposed by unconstrained and constrained PARAFAC
into three components with corresponding topographic, temporal and spectral signa-
tures. The latter allowed the identification of spontaneous brain rhythms.
Figure 76.2a shows unconstrained spectral loadings which, although presenting
clear main peaks, have negative values and some oscillating behavior that might
be due to noise fitting. Figure 76.2b presents the smoother loadings given by con-
strained PARAFAC using Ridge penalty.

Figure 76.3a shows the piece-wise smooth spectral loading as estimated by using
Elastic Net penalty and 3b the sparser loadings obtained with the Entropy-Ridge
penalty. The three constrained versions are more reasonable and physiologically

Fig. 76.2 (a) Unconstrained PARAFAC, (b) PARAFAC with MPLS using Ridge penalty. Compo-
nents are identified as alpha (solid), theta (dash) and gamma (dot-dash)
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Fig. 76.3 (a) PARAFAC with MPLS using Elastic Net penalty; (b) PARAFAC with MPLS using
Entropy-Ridge penalty. Components are identified as alpha (solid), theta (dash) and gamma (dot-
dash)

sound options for the interpretability of the results. However, Ridge and ENet solu-
tions do not avoid the negative values and the oscillating behavior for frequencies
far from the main peak.

Conclusions

The application of alternating penalized least squares for PARAFAC allows the use
of known and yet unexplored types of constraints, resulting in a strong tool for
statistical analysis in neuroscience. Through these constraints one can make use of
prior knowledge about the underlying functional networks. In this sense, a newly
proposed penalty based in the Information Entropy allowed the identification of
networks with minimum spectral entropy, which resulted in nonnegative and sparse
spectral loadings with PARAFAC. Weighting parameters can be tuned to obtain
different degrees of constraints, however, future work is needed on the selection of
their optimal values using cross validation or other information criteria.
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Chapter 77
PARAFAC Analysis of Neural
Correlates of Face Detection

Jhoanna Pérez-Hidalgo-Gato, Valia Rodrı́guez-Rodrı́guez
and Eduardo Martı́nez-Montes

Abstract Neural correlates of face processing have been largely studied, but more
emphasis has been done in the identification of a particular face. Here we study
the neural correlates of the N170 peak corresponding to the correct and incorrect
detection of faces through the use of the Bayesian Model Averaging procedure.
Moreover, different components of electrical sources are extracted with a PARAFAC
analysis of the data. PARAFAC is a generalization of principal component analysis
to deal with multidimensional data, offering as a great advantage unique decom-
positions. PARAFAC analysis of the three-dimensional data formed by the array of
BMA inverse solutions for each subject and each experimental condition, provide of
characteristic BMA sources with corresponding profiles for subjects and conditions.
This allowed the identification of different and common sources for correct and
incorrect detection of faces.

Keywords Face processing · N170 · neural correlates · BMA · PARAFAC

Introduction

The face fusiform area (FFA) in human extraestriate cortex is active about twice
as strongly when people view faces as when they view other kinds of objects [1].
Bentin et al. (1996) [2] described a negative potential with a mean peak latency of
172 ms (N170), which was elicited by human faces but not by animal faces, cars,
or butterflies. This component was larger over the right than the left hemisphere
and largest in the posterior temporal areas. They suggested that, although essential
for efficient face recognition, the mechanism associated with the N170 component
acts on basic physiognomic features and precedes within-category identification. So,
the N170 represents probably a mechanism specialized in detecting physiognomic
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features and extracting the visual characteristics needed to form an internal repre-
sentation of a human face.

In this work, we use an experimental paradigm for obtaining the N170 peaks
corresponding to correct and incorrect recognition of faces. The neural correlates of
this process are sought with the use of source localization techniques in both cases
and a multidimensional analysis will be carried out for identifying different sources
associated with correct and incorrect detection.

Methods

Experimental Design

The experimental paradigm consisted of presenting a face followed by a mask
stimulus. The subject was asked to detect the presence of (1) any face (hereinafter
condition D), (2) a specific (predetermined) face and (3) a scrambled face. The pre-
sentation time was 30 ms for both face and mask. We recorded the electrical activity
and obtained the corresponding N170 event related potential (ERP) [2] for each
condition by averaging across trials. 10 subjects volunteered for the experiment.

Source Analysis

Source analysis of ERPs corresponding to right (RA) and wrong answers (WA)
in condition D were carried out by Bayesian Model Averaging (BMA) [3]. This
method uses a functional segmentation in 67 structures of the MNI brain atlas for
defining different models (all combinations of anatomical compartments). Current
densities are estimated by constrained LORETA for the relevant models (using a
Markov Chain Monte Carlo procedure), and then they are bayesian averaged for
obtaining a model-free inverse solution. With this technique deep sources can be
found even when other cortical activations are present.

Parallel Factor (PARAFAC) Analysis

PARAFAC analysis is a generalization of Principal Component Analysis (PCA) to
deal with multidimensional data that has been increasingly used in neuroscience
studies [4]. With PARAFAC the data is decomposed into a sum of atoms, each being
the outer product of characteristic signatures for each dimension, thus assuming that
the data depends linearly on each of the intrinsic dimensions. Its main advantage
is that, unlike PCA, it provides a unique decomposition. However, the number of
components is arbitrary although an optimal estimate can be found with the use of
the Core Consistency Diagnostic (Corcondia) test [5].

In this study we arranged the BMA inverse solutions obtained for all subjects and
conditions RA and WA into a three dimensional array, as represented in Fig. 77.1.
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Fig. 77.1 Schematic representation of the PARAFAC analysis of the three-dimensional data
formed by the BMA inverse solutions (giving the current density for each voxel) for each condition
and subject

PARAFAC model was used for decomposing this array into components with a
characteristic source distribution and corresponding profiles for both conditions and
subjects.

Results

Amplitude of the Grand Average N170 peak for right answers of D condition was
significantly higher (p = 0.0158) than for wrong answers (not shown). PARAFAC
analysis of the 3D array of current density yielded two components, as assessed by
the Corcondia test. Figure 77.2 shows the condition profiles for the two components.
Clearly, the first component reflects the data representative of the WA condition and
the second the data of the RA condition.

This means that characteristic BMA source distributions for the second compo-
nent will show the sources activated when the subjects correctly detect the presented
face and the first component will show sources when the subject was not able to
detect the presence of the face. Figure 77.3 shows the signatures of BMA solutions
for the two components. The first component (panel (a)) shows the activation of
right temporal and frontal regions (Broadman Areas 6, 21, 22, 24 and 32), while the

Fig. 77.2 Condition profile
for the two components
extracted with PARAFAC.
The first component has
greater contribution from the
wrong answers and the
second has greater
contribution from the right
answers (correct detection
of faces)
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Fig. 77.3 Orthogonal projections of the BMA solution signatures for the two components extracted
with PARAFAC. (a) First component; (b) Second component

second (panel (b)) shows higher activation in bilateral temporal and lateral-occipital
regions (Broadman Areas 9, 20, 37, and 10).

Conclusions

The use of a PARAFAC model provides a parsimonious and easy-to-interpret repre-
sentation of the huge amount of data given by the estimated current density for sev-
eral subjects and experimental conditions. Two components extracted by PARAFAC
can be identified as reflecting the sources of the correct and incorrect detection of
faces, according to the conditions profile. The corresponding spatial signatures, i.e.
the characteristic current densities show these sources for the different components.
In this case we found that the FFA and the temporal right area is common to both
conditions, while for incorrect detection higher activations are present in the frontal
region. Also, it was shown that in addition to the FFA, the face selective region in
lateral-occipital cortex is also involved in the correct recognition of faces.

References

1. Grill-Spector, K., Knouf, N., Kanwisher, N.: The fusiform face area subserves face perception,
not generic within-category identification. Nat. Neurosci. 7 (2004) 837–843.

2. Bentin, S., Allison, T., Puce, A., Perez, A, McCarthy, G.: Electrophysiological studies of face
perception in humans. J. Cognitive Neurosci. 8 (1996) 551–556.

3. Trujillo-Barreto N.J., Aubert-Vázquez, E., Valdés-Sosa, P.A.: Bayesian model averaging in
EEG/MEG imaging. Neuroimage 21, 4 (2004) 1300–1319.

4. Miwakeichi, F., Martı́nez-Montes, E., Valdés-Sosa, P.A., Nishiyama, N., Mizuhara, H.,
Yamaguchi, Y.: Decomposing EEG data into space-time-frequency components using parallel
factor analysis. Neuroimage 22, 3 (2004) 1035–1045.

5. Bro, R.: Multi-way Analysis in the Food Industry: Models, Algorithms and Applications. Ph.D.
Thesis. University of Amsterdam and Royal Veterinary and Agricultural University, Denmark,
(1998).



Chapter 78
Human Vision Can Predict Semi-Random
but the First-Order Linear Process

Manabu Shikauchi and Tomohiro Shibata

Abstract This study aims at investigating prediction in human vision, particularly
prediction of semi-random target sequences that cannot be predicted simply based
on the memory of a part of target sequence whose length is typically determined
by an estimated period of the sequence. In this article, we propose a novel experi-
mental paradigm in which the Auto-Regressive (AR) process was used to generate
the semi-random sequence, and to generate the random sequence which is designed
to have the same variance with the semi-random sequence. Optimal prediction can
be achieved by learning and using the AR model parameter that is used to generate
the semi-random sequence. In our experiment, a visual target was presented on a
monitor one by one from a sequence, and subjects were asked to predict the next
target position using saccades. Results suggest that human vision can well predict
semi-random first-order linear processes presumably based on learning their gener-
ative processes.

Keywords Prediction · AR process · vision · saccades

Introduction

Prediction of changes in the environment is crucial for humans as well as animals.
When the change of a target sequence is periodic or the length of a sequence is
sufficiently short, learning and prediction of the sequence are not difficult; there
have been many studies reporting such learning and prediction in humans as well
as monkeys [1, 2, 3, 4, 5]. Although many previous studies assumed memory-based
learning in which a short sequence was memorized as it was, or one period of a
sequence was memorized for a periodic sequence, such a memory-based method is
computationally inefficient when it is not necessary to memorize a whole sequence
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as a simple rule is used to generate a sequence. Furthermore, such a memory-based
method cannot handle semi-random or aperiodic target sequences.

This study examined whether human vision can predict semi-random target
sequences that cannot be predicted by a memory-based approach but can be well
predicted if the brain extracts a simple rule which was used to generate the sequence.
In this article, we propose a novel experimental paradigm in which Auto-Regressive
(AR) process is employed as a sequence generator. There are three other advantages
of employing the AR process. First, it enables systematic design of unpredictability
of the target sequences. Second, an optimal predictor exists for each target sequence.
Third, a completely unpredictable (random) sequence can be easily generated from
an AR sequence, a sequence generated by an AR process.

Methods

Our experiment was composed of six tasks each of which used a different target
sequence: AR1, AR21, AR22, and three random sequences generated for control
tasks from the AR sequences. One task consisted of 500 trials. Fig. 78.1b illustrates
the procedure for one trial. In a target gaze period at the T-th trial, a target S(T )
appeared on the monitor, and each subject was instructed to gaze at the target until
the target disappeared 1500 ms later with a notification sound. Then, the subject
was required to predict the next target position by saccades and to keep gazing at
the position until the subject heard another notification sound. After a 1000-ms rest,
the next trial was started. The visual target was drawn as a small circle of 0.16◦ and
was presented on the graduated ruler. The ruler had 9.2◦ view angle.

The novel feature of our experimental paradigm is that the AR process was em-
ployed to generate the target sequence. An AR sequence {S(T ); (T = 1, · · · , N )}
was generated by S(T ) = ∑M

i=1 ai S(T − i) + ξ (T ), where T is discrete time, ai

is an AR model parameter, M is the model order, and ξ (T ) is the system noise
input. The system noise ξ (T ) followed a normal distribution N (μs, σ

2
s ), where the

mean μs and the standard deviation σs were set to 0.0◦ and 0.72◦ of view angle,
respectively. In this study, three AR sequences, each of which was composed of
500 positions for 500 trials, were used. One sequence, called AR1 sequence, was
generated by a first-order AR process S(T ) = 0.9S(T − 1) + ξ (T ), and the other
two, called AR21 and AR22 sequences were generated by second-order AR pro-
cesses: S(T ) = a1S(T − 1)+ a2S(T − 2)+ ξ (T ), where (a1, a2) = (0.6, 0.3) and
(1.3, −0.7), respectively.

For the control task of this experiment, we generated random sequences each
of which had the same variance with a mother AR sequence; they could not be
predicted at all, i.e., the all random sequence did not have any dynamics. Just shuf-
fling the order of an AR sequence provides a random sequence. Examaple AR and
random sequence employed in this study are presented in Fig. 78.1a.

If the optimal prediction is achieved by a subject, the distribution of the pre-
diction error should be close to the system noise distribution of the corresponding
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Fig. 78.1 Sample target sequences and task procedure. (a) Target sequence generated by an AR
process (left), and a random sequence (right), (b) Task procedure for one trial (see text in detail)

AR process. The prediction error E(T ) was calculated by P(T ) − P̂(T ), note that
P̂(T ) is the optimal prediction

∑M
i=1 ai S(T − i), where S(T − i) are past target

positions presented on the monitor. Root mean square error (RMSE) of prediction

was calculated by
√

1
N

∑N
T=1 E(T )2, where N denotes the number of trials.
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As the first analysis, comparison of the prediction error between the AR sequence
and the pairing random sequence was made. The RMSE of prediction was calculated
for each task where N = 500 as the number of trial in each task. RM SEar and
RM SErnd denote the RMSE of prediction in an AR task and in a random task,
respectively. The second analysis was made to investigate whether learning AR
model parameters occurred during a task. The initial phase and the ending phase
of RM SEar , called RM SEinit and RM SEend , respectively, were calculated and
compared. The initial phase and the ending phase specify the first 150 trials and the
last 150 trials of one task, respectively.

In addition, AR model orders presumably used for prediction were estimated
from the subjects’ behavioral data. The aim of this was to investigate how much
complicated model each subject actually utilized. We used Bayesian Information
Criterion [6] p̂ = argmin

p
B I C(p), to determine the model order p̂. B I C(p) =

N log σ 2
p + p log N , where σ 2

p is the estimated variance of the residual error when
p-th order AR model is assumed. In this study, 0 ≤ p ≤ 10 was searched for.

Following local ethical committee approval, five healthy male volunteers (KT,
MO, NN, TY, and KY) gave their informed consent to participate. All subjects had
normal or corrected-to-normal vision, and were naive of this oculomotor experi-
ments. Because each task required strong powers of concentration, two subjects,
MO, NN were participated in all tasks, whereas others a part of the tasks; detailed
assignment are shown in Fig 78.2. Eyelink II (SR Research) was used for eye-
movement measurements with a sampling frequency of 500 Hz. A bite bar and a
chin rest were used to fix the subject head.

Fig. 78.2 Comparison of prediction errors. The upper panel compares RM SEar and RM SErnd .
The left, the middle, and the right columns correspond to the AR1, AR21 and AR22 task. respec-
tively. The lower panel compares the RMSE of prediction of the initial and the ending phase. The
column order is the same with the upper panel (∗, p < 0.05; ∗∗, p < 0.01; Error-bars, 95%
confidence intervals)
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Results

In all experiments for all subjects, RM SEar was significantly smaller than RM SErnd

(chi-square test, p < 0.01, Fig. 78.2, upper). In the AR1 task, there were signifi-
cant differences between RM SEinit and RM SEend for two subjects (NN and TY)
(chi-square tests, p < 0.01 for NN, p < 0.05 for TY, Fig. 78.2, lower). In the AR21

task, there were significant differences between RM SEinit and RM SEend for other
two subjects (KY and NN) (chi-square tests, p < 0.05 for both, Fig. 78.2, lower).
In the AR1 and AR21 task, the decrease of RM SEar was observed for each of two
subjects (NN and TY). The estimated model orders were the first-order for all tasks
where AR sequences were used, whereas it was the second order for one subject
(KY) in the AR21 task. In contrast, it was always zero-th for all tasks where random
sequences were presented.

Discussion

The first analysis (upper panel, Fig. 78.2) show that all subjects made better perfor-
mance for AR sequences than random sequences. The second analysis (lower panel,
Fig. 78.2) suggests that the better prediction performances for the AR sequences
could be caused by learning of the AR process. The additional analysis in which the
model order was estimated for each subject’s prediction partly supports the above
suggestion because it clearly shows that all subjects were able to detect whether the
current sequence had a dynamics or not. The first analysis (upper panel, Fig. 78.2)
also indicates that the predictive performances for the AR sequences were not op-
timal, and that the performances for AR22 were much worse than the one for other
AR sequences.

In summary, this study illuminates a novel possibility for human vision to predict
semi-random sequences that cannot be predicted by a memory-based approach. The
possibility, however, might be allowed only for the sequence generated by a first-
order linear process.
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Chapter 79
Memory Formation of Object Representation:
Natural Scenes

Eiichi Hoshino, Fumihiko Taya and Ken Mogi

Abstract It has been suggested that the parahippocampal region collects spatial
information in relation to navigational objects, in a joint encoding of space (Na-
ture Neuroscience 7: 673–677, 2004). The navigational object may play a role of
“landmark” when the episodically dispersed snapshots are combined into compre-
hensive spatial information of an individual space. Here we study the nature of ob-
ject recognition in the long-term memory in human cognition that is learnt during
scene-integration as regards the viewing angle under attention control. Based on the
result, it is suggested that objects in a scene without attention may be processed into
a 2-D representation bound to the background scene as a texture.

Introduction

The interpretation of spatial relationships is an important factor in contextual be-
haviours and the formation of episodic memory. The classic key idea of spatial
information processing has been analysed by O’Keefe and Nadel [1]. Together with
discovery of “place cells” and concept of “cognitive map” [2], they proposed the
cognitive map theory in which place cells, dead reckoning system and landmark
navigation are combined into allocentric map-based navigation in hippocampus for-
mation. On the other hand, Yamaguchi has proposed a mechanism of hippocampal
memory encoding of episodic events from novel temporal inputs caused by theta
phase precession [3]. More recently, Janzen and van Turennout demonstrated that
the parahippocampal region collects spatial information in relation to various ob-
jects, in a joint encoding of space and objects [4]. To produce allocentric long-term
memory (LTM), it is necessary that the egocentric representations primarily ob-
tained from perceptual information are combined together. In a case of absence of
self motion, the production of allocentric LTM crucially relies on the integration
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of different scenes. If scenes are episodically dispersed, it is required that there be
navigational landmarks in the scenes to combine these scenes into coherent allocen-
tric representations.

Current study focuses on the observation of object recognition underlying human
cognition after episodically dispersed views are combined into comprehensive spa-
tial information of an individual space. Additionally, attention enhances the visual
LTM (VLTM) of previously attended objects embedded in a natural scene [5], which
is supported by a dynamic evolution model on attention and memory [6], suggest-
ing that object representations in LTM may also be affected by attention. Thus, we
also study the effect of attention on the object representations revealed in a later
recognition task.

Experiments

To investigate the nature of object representations within human cognition in LTM
that is learnt during scene-integration, experiment 1 was designed especially as re-
gards the viewing angle with attention control, in the context of integration of the
spatial information. In the leaning phase, participants were, in turn, viewed two
dispersed views in which the several objects were located. They were instructed
to remember objects on green bases and their position while those on blue bases
were distractors at the moment. After the learning phase, they were required to
conduct a two-alternative forced-choice recognition test. The objects presented in
the test phase were divided into three types; i.e. objects viewed from same angle
as the learning phase, those from different angles and novel objects. The objects
were chosen from everyday use objects in same basic-level category (i.e. chairs,
in this study) to make the different visual angle recognition easy because the aim
of the experiment is to study the nature of object representations in LTM, but not in
short-term memory (STM) in which the multi-angle object representations would be
more easily established than those in LTM. Consequently, experiment 2 was carried
out as the same as experiment 1 but the background in learning phase were changed
to monochromatic.

Results

The rate of correct judgement (RCJ) (familiar or new) was significantly higher for
the attended objects (green bases) compared to the unattended objects (blue bases).
A 2 by 2 repeated-measures analysis of variance (ANOVA) (attention by visual
angle) on the RCJ showed a significant effect of attention (F(1, 8) = 7.977, p =
0.022 < 0.05), whereas no significant effect of visual angles and no interaction be-
tween same and different visual angles (F(1, 8) = 0.397, p = 0.546) (Fig. 79.1a).
The RCJ on unattended objects viewed from the same visual angle was higher
than that for rotated objects, although the difference was not statistically significant
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Fig. 79.1 Rate of correct judgement (RCJ) for the objects in experiments 1 and 2. (a) RCJ for
attended and unattended objects viewed from same and different visual angles in experiment 1.
(b) That in experiment 2. Error bars are standard errors across participants

(Fig. 79.1a). The RCJ on unattended objects viewed from different visual angle
was significantly lower than that on attended objects, (p < 0.05), while that on
attended objects had no significance. The RCJ on objects located at a certain spatial
configuration, such as right- or left turn corner and crossroads, was not consistent
in conditions with any particular visual angles. A few participants reported that re-
membering the objects and their location was too difficult and could not confiden-
tially discriminate familiar or new for the most of the objects. However the tendency
in less RCJ on the unattended objects presented from different visual angle was ob-
served among participants. A motivated participant showed that good performances
in both types of RCJ for attended objects, but again his RCJ for unattended objects
viewed from different angles was significantly poor.

In experiment 2, no statistically significant difference was observed among the
four conditions, although both types of RCJ of objects from different visual angles
appeared to be higher than that of objects from same visual angles (Fig. 79.1b).

Discussion

The result that overall VLTM of attended objects was relatively well established
compared with that of unattended objects is consistent with previous work by
Hollingworth [5], supporting that attention to objects in a scene enhanced the
consolidation of memory for navigational landmark representations. Moreover, the
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accuracy on attended object recognitions from different visual angles indicates the
role of attention is producing the angle invariant object representations.

The inconsistency between the succeeded recognition for object from particular
visual angles and the spatial configurations suggests that the memory of object rep-
resentations do not include the spatial configurations around the object. [But see
Hollingworth (2006) [8]]. This supports Mallot and Gillner’s finding that the local
views and objects are recognised individually and not recognised as configurations
among objects when navigating in a large-scale environment [9]. The selective
activation for navigational objects previously showed in a scene but not for non-
navigational objects, found by Janzen and van Turennout, in the parahippocampal
gyrus [4] may not support encoding of spatial configurations around the objects. The
result that the RCJ vary according to attention could predict that the nature of object
representations would reflect only object intrinsic representations, again consistent
with Mallot and Gillner’s finding. The VLTM of object representations is strongly
bound to a presented scene [8]. If attention plays a role in extracting focal infor-
mation, a cognitive stage of object representations may be produced by attention.
Therefore, attention may support to obtain the view-invariant or 3-D representations
of objects from a scene, but in absence of attention, such representations are never
obtained. Rather the object-to-scene binding gives rise to a perception of objects as
a texture in the scene. In this view, the failure of recognition in unattended and depth
rotation may arise from the object-to-scene binding.

Whereas unattended objects in a scene might be primarily treated as a texture
bound to the scene in the VLTM without any 3-D structural information. The failure
to recognise rotated objects whose orientation is novel for subjects may reflect the
strong object-to-scene binding where an object is regarded as a part of plain surface
of a scene, resulting in inhibition priming.
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Chapter 80
Dynamical Model of Action Reinforcement
by Gated Working Memory

Adam Ponzi

Abstract Phasic dopamine response is thought to provide a reward prediction error
as a teaching signal for adjustment of an action selection policy. Here we propose a
simple neural network dynamical system model based on the dopamine modulated
cortical basal ganglia thalamic loops. The system produces a realistic dopamine
response and combines it with a gated working memory model, to reinforce the
policy when the dopamine signal is above baseline and reverse the policy when
below baseline. We illustrate the model with application to the learning of a simple
cue action delay reward task.

Introduction

Cortico-basal ganglia loops are critical for the learning of rewarded cued procedures
and in cued working memory (WM) tasks. Dopamine is thought to play the role of
reward prediction error [1], where the burst firing of dopamine cells is increased
by unexpected rewards and reduced if an expected reward is omitted. The striatum
and cortex recieves a rich innervation from the midbrain dopaminergic system [2].
The basal-ganglia, the prefrontal cortex and the midbrain dopamine nuclei are also
strongly implicated in WM. Persistent neural activity in recurrent circuits play a
central role in the maintenance of information in WM [3]. Some theories also ascribe
a direct gating role to dopamine, such that dopamine release is required for read-in
to WM. The integration of gating and neuromodulation within and between basal
ganglia and cortex provides a set of important, and as yet underexplored, issues
[3]. Dopamine also can seemingly paradoxically suppress or enhance striatal and
cortical activity, and can extend the duration of enhanced activity. This is due to the
complex action of the D1 and D2 dopamine receptors [2]. Our model brings a few of
these observations together in uniting action selection, dopamine reward prediction
and WM gating in a cortical basal ganglia based model.
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Model

The network model is depicted in Fig. 80.1a. The input layer consists of a set of
units which respond to the external environment. These inputs Ii (t), i = 0, .., N ,
are modeled very simply as Ii (t) = 0, 1, where the unit is firing at a constant rate
if it is activated and completely silent otherwise. (More complex receptive fields
are perfectly possible however.) The input units project in a one-to-one way to a
recurrent layer described by activities pi (t). It is simply given by,

dpi

dt
= −k1 pi + k2g

⎛

⎝
∑

j �=i

wi j p j

⎞

⎠ f (T (t)− TX )+ k3 Ii (t) f (TX − T (t)), (80.1)

dwi j

dt
= k4 pi − k5 pi p j − k6wi j . (80.2)

Here the activities pi (t) may represent membrane potentials or firing rates and we do
not model spiking explicitly. Thewi j (t) are modifiable synaptic efficacies associated
with the recurrent collaterals between the N cells, simply modeled by competitive
Hebbian learning, where k4, k5, k6 > 0 are parameters and the k6 term produces
between trial exponential decay. In Eq. (80.1) g(x) is a sigmoidal function which
limits the activity from the recurrent collaterals and produces the non-linearity. The
terms f (T (t)−TX ) and f (TX−T (t)) where f (x) = x, x > 0, f (x) = 0 otherwise,
models the action of the thalamus which here switches on an off the WM and gates
the input. When TX > T (t) input from the primary layer is allowed through but
the recurrent collaterals are suppressed. During this time the weights Eq. (80.2)
of the activated cells i with Ii (t) = 1, are increased by the term k4 pi . However
when TX < T (t) the recurrent collaterals are switched on and the system becomes
a winner-take-all system with the winner the most recently and strongest p cell
activated. The input is down-gated during this time so that p cells with active input
during this time do not interfere with the winner selection.

The action layer cells mi (t) represent actions and the layer is modeled exactly
the same way as Eqs. (80.1, 80.2) except that the input term is not topographic and

(b)(a)

Fig. 80.1 (a) Anatomy of the model system described. The black lines are excitatory projections,
the red lines inhibitory. The blue dashed line depicts the dopamine LTP/LTD modulation and the
green dashed line depicts the thalamus gating and WM activation signal. (b) Task described. One
of two cues, red or black is presented at random each trial. During this time the animal makes an
action. After a delay a green signal is shown and a reward is given if correct action selected
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is replaced by an all-to-all projection from the association layer so that the term
Ii (t) in Eq. (80.1) is replaced by Ji (t) =

∑
j xi j p j (t). Otherwise the equations are

the same, including the thalamus gating. Here the xi j (t) are modifyable synaptic
weights between the p and m layers given by,

dxi j

dt
= −xi j (t)+ f ((α(t)− αc)mi p j + ecεi j (t)+ xi j (t)). (80.3)

In this Eq. (80.3) α(t) is the dopamine concentration in the vicinity of the synapse
and (α(t)−αc) represents the D1/D2 dopamine receptors controlling LTP or LTD at
these synapses [2, 4]. The term εi j (t) is an i.i.d noise term and ec is a parameter. For
the results shown in this paper ec = 0 so the system is deterministic but we leave
the noise term for generality [5]. The striatum MSN neurons S(t) are modeled as,

d Si

dt
= −Si + f

⎛

⎝
∑

j

Yi j (t)I j − k7

∑

i

Si + k8Si

⎞

⎠ , (80.4)

where again the Y (t) are modifyable synaptic weights modulated by dopamine,

dYi j

dt
= −Yi j (t)+ f ((α(t)− αc)Si I j + Yi j (t)). (80.5)

This system Eq. 80.4 is also a winner-take-all system. Here the input layer Ii (t)
projects all-to-all to the MSN cells. In this model the striatum controls the thalamus
T (t) reactivation and gating activity and the dopamine concentration α(t). The tha-
lamus activity is given by, τT

dT
dt = −T (t)+ TX +

∑
i Si (t) so that it is activated by

the striatum cells Si (t) and τT is a time scale and TX is its base level. The dopamine
signal is given by, τα dα

dt = −α(t)+αc−
∑

i Si (t)−
∑

i mi (t)+R(t). Dopamine is ac-
tivated by R(t) which is the primary reward signal from the hypothalamus activated
when food is found and inihibited by the actions mi (t). The inhibition from mi (t) is
necessary to stabilize the learning at the association layer to action layer synapses
in Eq. 80.3. Dopamine is also inhibited by the striatum cells Si (t), which are also
the ones which activate the thalamus T (t). The idea here is that Ii (t) states which
coincide with reward R(t) learn through the striatum system Eqs. (80.4), (80.5) to
balance the reward signal R(t). At the same time this allows rewarded states to
activate T (t) which controls the gating and WM as described. Therefore states Ii (t)
which are rewarded part of the time, as given by the current action selection policy
will activate T (t) sometimes in the presence of positive dopamine and sometimes
with negative dopamine.

Here we only have two actions and one is selected according to the sign of F(t)
at the end of the action selection period where d F

dt = m1(t)−m2(t) is summed over
the action selection period during the cue presentation period and F(t) is reset to
zero between trials. All equations were integrated using fourth order Runge-Kutta.
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Results and Discussion

The model is best understood through studying examples of its time series, see
Fig. 80.2. In this task one of two cues, red I1, or black I2 is presented each
trial at random. The animal makes an action and a third signal I3 green is shown
with or without reward. Figure 80.2a shows the association layer pi (t) time series.
Figure 80.2b shows early in learning. The dopamine signal resembles the reward
prediction error of Rescorla-Wagner. The animal initial action selection policy is
such that red is correctly associated to action 1, while black is incorrectly associated
to action 1. The positive dopamine signal generated by primary reward associates
the coincindent green signal I3 to the thalamus T (t) reactivation via an MSN cell
Si (t) gradually over several trials. For the first time at t ≈ 6700 (Fig. 80.2b) this
is strong enough to enable the gating of the cue signal (together with the selected
action mi (t)) into WM. Positive dopamine now strongly reinforces the cue-action
association during WM maintenance. In Fig. 80.2c the black signal is encountered
with the incorrect action and the black cue and the incorrect action it selected are
gated into WM. The negative dopamine signal reduces the incorrect xi j weight via
Eq. (80.3) while the green signal I3 maintains the cue and incorrect action in WM.
Maintainence is necessary to allow LTD to occur without reducing the postsynaptic
selected action mi activity. If postsynaptic activity is reduced in a noiseless winner-
take-all system, the action cannot be reversed since the weights xi j , Eq. (80.3), can-
not cross, (they just oscillate a fixed point). This allows the reversal of the black cue

(a) (b)

(d)(c)

Fig. 80.2 (a) Association layer pi (t) time series over many repeated trials. p1(t) black, p2(t) red,
p3(t) green. Dopamine α(t) blue. Action selector F(t) pink. (b), (c) and (d) segments from time
series in (a)
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action assignment which is then positively reinforced next trial. In Fig. 80.2d we
see that at full learning the dopamine signal has relaxed to a no surprise level where
the system is fully predicted. A previous version of this model is to appear in [5]
and Roelfsema et al. [6] describe a related model of attention gated reinforcement
learning.
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Chapter 81
Quantum Representation Theory
for Nonlinear Dynamical Automata

Peter beim Graben

Abstract Nonlinear dynamical automata (NDAs) are implementations of Turing
machines by nonlinear dynamical systems. In order to use them as parsers, the whole
string to be processed has to be encoded in the initial conditions of the dynamics.
This is, however, rather unnatural for modeling human language processing. I shall
outline an extension of NDAs that is able to cope with that problem. The idea is
to encode only a “working memory” by a set of initial conditions in the system’s
phase space, while incoming new material then acts like “quantum operators” upon
the phase space thus mapping a set of initial conditions onto another set. Because
strings can be concatenated non-commutatively, they form the word semigroup,
whose algebraic properties must be preserved by this mapping. This leads to an
algebraic representation theory of the word semigroup by quantum operators acting
upon the phase space of the NDA.

Introduction

One of the most crucial problems in cognitive neurodynamics is the realization of
symbolic processing capabilities in the human brain. While the traditional cogni-
tivistic account assumes that cognition is essentially rule-driven manipulation of
symbols [1, 2], the dynamical systems approach to cognition models cognitive
processes by the (transient) dynamics of nonlinear systems, such as neural net-
works [2, 3] or nonlinear dynamical automata (NDA) [2, 4, 5]. The latter are piece-
wise affine linear maps on the unit square whose symbolic dynamics exhibits the
computational power of Turing machines.

Therefore, NDAs have been suggested for modeling syntactic language process-
ing [2, 5] and language-related brain potentials (ERPs) [6]. It is the aim of this paper
to discuss one particular problem of this approach, the issue of nondeterminacy of
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parsing [7], and to present a solution in terms of interactive computation [8] such
that environmental perturbations act upon the system’s phase state similar to quan-
tum operators.

Nonlinear Dynamical Automata

In this section, we construct an NDA that is able to process the material from the
study of Osterhout et al. [6] investigating sentences such as “the judge believed the
defendant was lying”. In a first step, the sentence is described by a phrase structure
tree as in Fig. 81.1.

In order to derive a context-free grammar (CFG) from this tree, we first discard
the lexical material, regarding the nodes d, n1, v1, n2, a, and v2 as terminal sym-
bols. The CFG is then given by the rules: (1) S1 → NP1 VP1, (2) NP1 → d n1,
(3) VP1 → v1 S2, (4) S2 → NP2 VP2, (5) NP2 → d n2, and (6) VP2 → a v2.
Following [5], the variables of that CFG are next Gödel encoded by integers from a
g-adic number system. Let G(d) = 0, G(n1) = 1, G(v1) = 2, G(n2) = 3, G(a) =
4, G(v2) = 5, G(NP1) = 6, G(NP2) = 7, G(VP1) = 8, G(VP2) = 9, G(S1) =
A, and G(S2) = B, where A ≡ 10, B ≡ 11. Then, the sentence “the judge believed
the defendant was lying” is mapped onto the string 0120345, being interpreted as
a fraction 0.01203456 where gT = 6 is the number of terminal symbols. The total
number of variables is gV = 12.

Syntactic language processing (parsing) generally describes the mapping of a
sentence to its phrase structure tree, such as in Fig. 81.1. Yet, the most simple parsers
for CFGs are push-down automata which merely decide whether an input string can
be generated by a grammar. In the following, we shall discuss a simple top-down
parser. Its state descriptions comprise the input string w and a stack memory γ .
Table 81.1 gives the sequence of state descriptions of a parser processing the string
0120345 according to the Gödel encoding of the CFG.

In order to map the state descriptions in Table 81.1 onto the dynamics on the
NDA, we have to compute the Gödel numbers

Fig. 81.1 Phrase structure
tree of the example sentence
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Table 81.1 Sequence of state descriptions of a top-down parser processing the string 0120345.
The operations are indicated as follows: predict(X) means prediction according to rule (X)
in the CFG; attach means cancelation of successfully predicted terminals both from stack and
input; and accept means acceptance of the string as being well-formed

Time Stack γ Input w Operation

0 A 0120345 predict (1)
1 68 0120345 predict (2)
2 018 0120345 attach
3 18 120345 attach
4 8 20345 predict (3)
5 2B 20345 attach
6 B 0345 predict (4)
7 79 0345 predict (5)
8 039 0345 attach
9 39 345 attach
10 9 45 predict (6)
11 45 45 attach
12 5 5 attach
13 ε ε accept

GV |T (x) =
|x |∑

i=1

G(xi )g
−i
V |T +

∞∑

i=|x |+1

ηi g
−i
V |T (81.1)

in the bases gV , gT , respectively. Here, |x | denotes the lengths of the strings x = γ

or w and ηi are random digits in the respective base. By virtue of (1), the parser’s
state descriptions are represented by clouds of points (GV (γ ), GT (w)) randomly
scattered across rectangles in the unit square X = [0, 1]2. Correspondingly, Ta-
ble 81.1 is represented by a sequence of those rectangular macrostates evolving due
to a nonlinear map Φ: X → X [2, 4, 5]. Figure 81.2a displays the parsing trajectory
processing the string 0120345 according to Table 81.1.

Quantum Representation Theory

The initial conditions of the NDA model are given by the whole stringw = 0120345
in the input. However, this is cognitively implausible for two reasons: (1) Hearing
or reading supplies lexical material successively to the human mind and not at once
as modeled above. The same holds for psycholinguistic experiments with a word-
by-word presentation paradigm [6]. (2) The NDA’s dynamics is deterministic for
a given initial condition. Hence, the preparation of initial conditions by the whole
string w, yields a completely predictable trajectory in phase space. By contrast, the
human parser is often trapped by garden path interpretations resulting from unpre-
dicted continuations [6, 7].

In order to remedy this shortcoming, I suggest the following solution: (1) Restrict
the parser’s input to a working memory of finite length, say,w = w1w2, |w| = 2 [7].
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Fig. 81.2 Parsing trajectories for the string w = 0120345. (a) Fully encoded in the initial condi-
tions. The indices correspond to the time steps in Table 81.1. (b) Only working memory encoded
in the initial conditions and representing the scan operation

(2) After each attachment (i.e. when w = w2) the next symbol A is scanned from an
information source [9]. (3) Define a map scan(A) : w �→ w′, such that w′ = w2 A.
A parser described in this way, is not longer a closed system. Now, it is interacting
with its environment which perturbs its state descriptions [8]. What does this mean
for the corresponding NDA?

Since the NDA is characterized by a nonlinear dynamicsΦ: X → X , the scanned
input A must be represented by another map ρ(A): X → X . Such representations
are well-known in algebraic quantum theory [10], where observables A, B ∈ A
are described by their abstract commutation relations. A representation is then a
C∗-algebra homomorphism ρ: A → B(H) from a C∗-algebra A into the set of
bounded operators B(H) acting upon a Hilbert space H.

In terms of quantum representation theory, the construction of the representation
ρ(A) in the NDA’s phase space is straightforward. After attaching w1, the working
memory only contains the most significant digit w = w2, thus, by (1), possessing
the Gödel code GT (w) = G(w2)g−1

T +∑∞
i=2 ηi g

−i
T . Inserting A into the second

most significant position by the scan operation, yields w′ = w2 A. Therefore, the
representation ρ(A) is given by

ρ(A)
[
(GV (γ ),GT (w))

] = (GV (γ ),GT (w′))

GT (w′) = G(w2)g−1
T + G(A)g−2

T +
∞∑

i=3

ηi g
−i
T . (81.2)

Supplementing the top-down parser from Section ‘Nonlinear Dynamical Au-
tomata’ with the scan operation and representing it by (2) in the NDA’s phase
space, the parsing trajectory in Fig. 81.2b is obtained. After each attachment, the
macrostate coincides with one of those rectangles partitioning the unit square.



81 Quantum Representation Theory for NDAs 473

Immediately afterwards, scan fetches the next symbol from the information source
that acts like a quantum operator upon the unit square thereby squeezing the rectan-
gular macrostate vertically.
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Chapter 82
Superior Colliculus and Basal Ganglia
Control the Saccadic Response in Motion
Discrimination Tasks

Jiaxiang Zhang and Rafal Bogacz

Abstract Recent physiological studies suggest that in motion discrimination tasks,
neurons in the lateral intraparietal (LIP) area integrate sensory evidence during
decision making process by carrying persistent response selective to the saccadic
response. LIP neurons also discharge at high frequency shortly before the saccade
onset. We propose that the later response is due to the activity form the bursting
neurons in the Superior Colliculus (SC). To test the hypothesis we developed a
decision making model with populations of neurons in LIP, Basal Ganglia (BG)
and SC where BG and SC process the threshold detection and action generation.
The model successfully describes the LIP activity from the experiment, and is also
consistent with the behavioral measurements.

Keywords LIP · basal ganglia · superior colliculus · decision making

Introduction

During perceptual decision making tasks a motor response is generated on the basis
of sensory stimuli. Neurophysiological studies suggest that certain cortical areas
integrate noisy sensory information over time to provide a more accurate decision,
and once the accumulated evidence satisfies certain decision threshold, the integra-
tion process terminates and the decision is made by behavioral response [1]. Neural
correlates of decision making are typically investigated in a two-alternative motion
discrimination task [2, 3]. Subjects are shown a display of randomly moving-dots
in which a fraction of dots move coherently to one direction (left or right). The task
is to identify the direction of the majority of dots and make a saccadic eye move-
ment towards this direction. The required time of response can be controlled by the
experimenter or the subject itself, yielding two versions of the task: fixed-duration
(FD) and free-response (FR), respectively, as illustrated in Fig. 82.1.
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A B

Fig. 82.1 Versions of the motion discrimination task: (a) fixed-duration (FD) and (b) free-response
(FR). At the beginning of a trial a monkey is presented with a fixation point (cross) and two targets
(circles). In FD the monkey has to fixate during stimulus presentation until the cross disappears, in
FR it is free to make a saccade at any time

In single neuron recording data from both FD and FR tasks [2], most neurons in
the lateral intraparietal (LIP) area exhibit persistent activity during motion viewing
period, whose magnitude correlates with the motion strength. Indeed, LIP neurons
accumulate information from sensory area (i.e., extrastriate visual cortex) to form
the decision [3]. LIP neuron response also presents a stereotyped increase that is
independent of motion strength in the final epoch (∼ 100 ms) before the saccade.
In RT task, it is thought to be a reflection of decision threshold crossing by many
decision making model proposed so far. However, in FD task, since subjects have to
render their decision during pre-fixed delay and keep it in the working memory, the
final phase of LIP activity cannot be explained by threshold crossing.

In this work we describe the hypothesis that the increasing activity of LIP in FD
task before saccade onset is a reflection of downstream activity from subcortical
areas, i.e., basal ganglia (BG) and superior colliculus (SC). We design a population
model involving cortical areas, BG and SC based on the existing knowledge of their
connectivity. The model is consistent with both behavior and physiological data.

Proposed Decision Making Model

Our model describes three proceeding stages: accumulation of decision evidence
from sensory input, threshold detection, and motor response generation. Each
stage is mainly controlled by one cortical/subcortical area (Fig. 82.2a). In the first
stage, two populations of LIP neurons implement a leaky-competing-accumulator
network [4]. I.e., each population integrates input supporting one of the two al-
ternatives, and competes with each other by lateral inhibition. Since the sensory
information is biased to the correct alternative, the decision is determined by the
winning LIP population which has higher mean firing rate.

The second stage is a mechanism that can detect whether the amount of evi-
dence in LIP in favor of one alternative reaches a threshold and is ready to render
a decision. The model applies a common concept that BG is involved in threshold
detection [5]. Substantia nigra pars reticulate (SNr), the output nucleus of BG, sends
high tonic inhibition to downstream areas to suppress any action response. When the
striatum (STR) receives sufficient large excitatory input (e.g., from LIP), it inhibits
SNr, and hence SNr decreases its inhibitory output to release downstream activity.
In the model, a working memory (MEM) is proposed to effectively receive input
from both LIP and SNr (possibly via the thalamus). When LIP activity reaches the
threshold, the inhibitory input from SNr is removed and MEM caches the temporal
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Fig. 82.2 Proposed model and its responses. (a) Schematic architecture. LIP populations send ex-
citatory projections to BG, MEM, and SCB. The bypass circuit in BG between subthalamic (STN)
and globus pallidus (GP) nucleuses are required to implement asymptotically optimal threshold
detection mechanism [8]. When decision threshold is reached in BG, SNr opens the gates of MEM
by disinhibition to cache the preferred choice from LIP. LIP and SCB units are modeled as leaky
integrators with bounds at baseline zero to avoid negative firing rate. The superscripts on the units
indicate the population’s selectivity to left (L) or right (R) stimulus. Solid and dash lines represent
excitatory and inhibitory connections, respectively. Strong outputs are shown in thicker lines (i.e.,
outputs from SNr and SCF). (b) Responses of populations on a sample simulated FD trial, aligned
to initiation of the saccade (denoted by the vertical dashed line). Motion viewing time is 1000 ms.
Solid and dashed curves respectively denote the activity of population selective to R and L stimulus
when the correct choice is R

LIP activity (i.e., the decision result) to guide later response. As we proposed be-
fore such working memory is critical in FD task. However the neural mechanism
of working memory for saccade movement is still an open question. Some studies
suggest it would be implemented in the BG [5] or prefrontal cortex [6].

In the final stage, the decision results stored in the working memory are passed
down to motor center (SC) to generate saccade command. SC includes two types of
neurons: the fixation (SCF) and burst neurons (SCB). SCF generates tonic inhibition
during visual fixation and suppress most saccades, as a “No-Go” signal [7]. SCB is
normally silent but have high firing rates (∼ 200 Hz) just before saccade onset, as
a “Go” signal [7]. In FD task the subject was trained to gaze on the fixation point
while it is present during stimulus viewing (Fig. 82.1a) hence we assume SCF is
active and inhibits saccades during this period. When the fixation point disappears,
the inhibition of SCF is removed allowing the saccade. In FR task, during stimulus
viewing, there is no fixation point (Fig. 82.1b) and hence no inhibition from SCF,
allowing a saccade as soon as the threshold in BG is exceeded.
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Simulation Results and Conclusion

Stimulations are performed to illustrate the dynamics of the model’s response in FD
task. On a sample trial (Fig. 82.2b), threshold crossing happens ∼ 380 ms before
saccade onset in BG. Then the MEM starts to maintain the preferred choice from
LIP by increasing MEMR. Due to the high inhibition from SCF, SCB are inactive un-
til 100 ms before saccade, when the disappearance of fixation point induces a sharp
drop in SCF activity. The burst response in SCB before saccade also increases LIP
activity via excitatory connections. This effect is more obvious in average LIP activ-
ity across trials (Fig. 82.3a). During motion viewing period LIP activity depends on
the motion strength, followed by a stereotyped increase in the final 100 ms before
saccade onset. The model predictions are consistent with experiment data [2, 3].
Moreover, the model is naturally consistent with behavioral measurements [2, 3]
(Fig. 82.3b) as it extends the model [4] previously shown to capture these data. The
model can be also simulated in FR task [9] by neglecting the effect of fixation point.

Fig. 82.3 (a) Time course of LIP activity under different motion strengths. On the left panel LIP
responses are aligned to the motion onset. On the right panel responses are aligned to the saccade
time. Each line is averaged over 200 trials. (b) The accuracy from 500 trials against different
motion strengths with error bars showing standard error. The logarithmic increasing of accuracy is
consistent with the experiment observations [2, 3]
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Chapter 83
A Synergetic Model for Operant Behaviors
Under the Control of Fixed Interval
Reinforcement Schedules

Shih-Che Lin and Jay-Shake Li

Abstract This study presents a nonlinear dynamical model for operant responses
under the FI reinforcement schedule based on the synergetic concept. The model
simulates different types of behavioral dynamics seen in the extended return map
(ERM) patterns, as well as the “scalloped-curve” using data averaged over a whole
session. We compared our results with the performance of a very popular model for
operant behaviors, Machado’s LeT model. It was found that although both models
can successfully reproduce the scalloped-curve built from the averaged data, only
the synergetic model is capable of simulating the real time dynamics of FI-responses
revealed in the ERM-patterns.

Keywords Operant · FI schedule · synergetic · extended return map · LeT

Introduction

In an operant conditioning paradigm an organism’s behavior is reinforced, if it is
contiguously followed by an appetitive stimulus, the so-called reinforcer, which
increases the organism’s motivation to get more by repeating that behavior. The
behavior which is reinforced is called operant behavior. After successful training
the organism’s behavior becomes an intended action elicited by a specific context,
and the appearance of a reinforcer is usually a consequence of the action.

One of the most important variables that influence operant behaviors is the sched-
ule by which the reinforcers are made available. In natural environments, it is un-
common that same actions lead exactly to the same outcomes. Thus, applying an
intermittent reinforcement schedule is more realistic than using a continuous rein-
forcement (CRF) in the experimental design. For example, in a fixed-interval (FI)
reinforcement schedule only the first response occurring after a pre-defined, fixed
time interval will be rewarded. After intensive training, organisms exhibit a temporal
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control of responding. The response rate increases as a function of time elapsed
since the delivery of the previous reinforcer. This type of responding dynamics
can be seen in a cumulative record as a concave-upward curve, which is called the
“scalloped-curve”. There were several attempts to model this responding curve, for
example, the SET model by Gibbon [1], the BeT model by Killen and Fetterman [2],
and the LeT model by Machado [3]. They all successfully reproduced the scalloped
curve described above. However, the responding curve these models described was
constructed by data averaged across multiple trials in one session. None of them
touched the issue of real time dynamics of the FI-responding.

Ever since the pioneering works of Skinner, variations of operant responding
have been found not only between individual organisms, but within subject between
sessions and trials as well [4, 5]. It has been suggested that a nonlinear, more compli-
cated dynamical system might be responsible for the behavioral patterns under the
FI-schedule. A graphical method “extended return map (ERM)” has been developed
to analyze the real time dynamics of operant behaviors [6]. Furthermore, it was
found that it is possible to construct a model that can successfully simulate the scal-
loped curve, yet shows a completely different dynamics of behaviors as revealed by
the ERM-patterns. Previous works also suggested that the behavioral dynamics of FI
responses can be regarded as switching between operant and alternative behavioral
states [7].

Synergetic Model for the FI-Response

In the present study, we built a model for operant responses under the FI reinforce-
ment schedule based on the synergetic concept. The formulation of the model is
similar to the synergetic model for the verbal transformation effect developed previ-
ously [8, 9]. While in the verbal transform model the order parameters ξk incorpo-
rated the strength of perceptual states, they described in our FI-response model the
strength of behavioral states. The operant behavior is denoted as ξo, and the alter-
native behavior as ξa . The total energy V of the system consists of two parts: the Vi

coming from the original synergetic model of perception, and a new potential term
Vr implementing the effect of reinforcers. Here we assumed that the delivery of a
reinforcer weakened the operant behavior while enhancing the alternative behaviors.
Its impact declined exponentially with time. Formally, the original potential Vi , and
the new term Vr are defined by:

Vi = −1

2

M∑

k ′=1

λk ′ξ
2
k ′ +

B

4

M∑

k �=k ′
ξ 2

k ξ
2
k ′

[
1− 4αkk ′

ξ 2
k − ξ 2

k ′

ξ 2
k + ξ 2

k ′

]
+ C

4

(
M∑

k ′=1

ξ 2
k ′

)2

(83.1)
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The impact of reinforcement declines exponentially with a speed determined by
a time constant τ . T denotes the time elapsed since the delivery of the previous
reinforcer. For the time evolution of the strength of behavioral states, the equations
of motion were defined by:

ξ̇k = −�V

�k
, k = 1 · · ·M (83.3)

That leads to the dynamics of ξo and ξa determined by:
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The goal of the modeling study is to correctly simulate the “scalloped-curve” using
data averaged over a whole session, and to reproduce different types of behavioral
dynamics seen in the ERM-patterns. Furthermore, we implemented the LeT model
developed by Machado [3], and compared the simulation results with the syner-
getic model. It was found that although both models can successfully reproduce the
scalloped curve built from averaged data (Fig. 83.1), only the synergetic model is
capable of simulating the real time dynamics of FI-responses revealed in the ERM-
patterns (Fig. 83.2).

 

Fig. 83.1 Average response rate in a fixed-interval (FI) 20 s schedule. Left: average lever-press rate
of a real rat. Central: prediction of the LeT model. Right: prediction of the synergetic model
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Fig. 83.2 The ERM-patterns. Left: a real rat data. Central: prediction of the LeT model. Right:
prediction of the synergetic model model
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Chapter 84
Adaptable Intermittency and Autonomous
Transitions in Epilepsy and Cognition

Elan Liss Ohayon, Hon C. Kwan, W. McIntyre Burnham, Piotr Suffczynski,
Fernando H. Lopes da Silva and Stiliyan Kalitzin

Abstract In this paper we investigate the mechanisms underlying transitions in
epilepsy and cognition by exploring intermittency in simple recurrent neural net-
work models. We demonstrate that neural activity can change dynamical phases
without requiring plasticity or reliance on external cues. However, we also demon-
strate that the characteristic of the resultant phases can undergo modification with
localized parametric alteration. By modifying a single connection in the network
we can change the trajectory of the dynamics and thus illustrate that intermittency
mechanisms are compatible with more traditional models of ictal transitions that
depend on alteration in structural parameters. Finally, we argue that intermittency-
based neural transitions coupled with weight adaptation mechanisms can apply
beyond epilepsy and might form a foundation for autonomous neurodynamics in
biological systems. As such, the implications of these intermittent models may be
extended to sleep, emotion, attention and other transitions in cognition seen in au-
tonomous embodied agents.

Keywords Attention · autonomous neurodynamics · computer model · epilepsy ·
intermittency · neural network · plasticity · seizure

Introduction

How does the brain transition between epilepsy and non-epileptic dynamics? Are
these transitions dependent on the external environment? Do these transitions de-
pend on changes to network structure or to constituent unit properties? What about
transitions in attention and other cognitive states? Rapid transitions in activity are
a fundamental feature of neurodynamics. Epilepsy is a striking example for which
the mechanisms of transitions remain largely unknown. Theories regarding transi-
tions in and out of seizures have most often focused on two possible mechanisms:
(1) parametric alteration and (2) multi-stable systems. In the first case, the brain
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properties are assumed to change such that a new seizure state – or attractor – is
either formed or made more prominent. The parametric change can (a) lead to a
bifurcation that directly brings about a seizure or (b) modify the system such that a
stimulus that in the past may not have had any discernable effect will now fall within
the enlarged basin of attraction and trigger a seizure. Kindling might be an example
of such a process. According to the second, related, hypothesis (2) a transition is
envisioned as a jump between two or more pre-existing attractors. In this multi-
stability scenario, the attractor for a seizure already exists and the ictal phenomenon
is brought about when the brain is pushed into the seizure state as the result of either
an external or internal perturbation. The perturbation may be a sensory stimulus as
in the case of certain reflex epilepsies or it may be random noise in which case the
onset of the seizure becomes unpredictable. These scenarios are related in that they
posit attractors that correspond to the seizure state. For a review of these attractor-
based theories see: [1, 2, 3]. More recently, our group has suggested an alternate
possibility in which intermittent transitions are an inherent feature of a network’s
dynamics [4, 5]. In such networks the activity autonomously switches between two
(or more) phases without perturbation from either the environment or another brain
structure. We have demonstrated that such dynamics can be sustained in a network
even if the structure is static. The implications of such models are that transitions
to seizure – and indeed, transitions between any cognitive conditions – may take
place even in the absence of environmental input, stochastic fluctuations (noise) or
plasticity. Here we expand on this model by showing that although autonomous tran-
sitions do not require external input or network alterations, intermittent systems are
also compatible with structural change mechanisms. Specifically, we demonstrate
that intermittent activity can be modified in a continuous fashion by local synaptic
change and illustrate how these structural changes may alter the distribution and
trajectory of the intermittent neural activity.

Methods

To explore these intermittent dynamics we used computational models of recurrent
networks with random connections and initial conditions. The networks were fully
connected including both inhibitory and excitatory weights as well as self-feedback
(w0..w j ). The total input (Ei ) for a unit (i) was the weighted sum of the activations
of the input units (Sj ) such that:

Ei =
∑

j

wi j S j (84.1)

Units had radial basis activation functions (RBF):

S(Ei ) = e(−Ei )2
(84.2)



84 Adaptable Intermittency and Autonomous Transitions in Epilepsy and Cognition 487

Simulations included networks of up to 100 units with 10,000 connections and var-
ious plasticity algorithms. However, to illustrate that mechanisms require neither
complex structural nor plasticity assumptions, we present results for static networks
with only 5 units and 25 connections. Network dynamics were categorized using
variants of close return and Lyapunov exponent algorithms. For details regarding
the analytic approach see [4].

Results

Intermittency in Recurrent Networks

We began by generating random networks and then excluded networks that exhib-
ited simple fix-point and limit-cycle oscillations. Some networks exhibited multi-
stability activity patterns depending on the initial conditions. For a discussion of the
distribution of dynamical categories in random networks see [6]. For the purposes of
this study we selected networks that exhibited intermittent activity. Figure 84.1a–c
illustrates intermittent behaviour in which the activity autonomously switched from
laminar to turbulent epochs. Although weight changes were not required for obtain-
ing ictal transitions in any of these simulations, we found that changes in connectiv-
ity could influence the properties of the intermittent activity in a generally contin-
uous manner. Graphs 1(a), (b) and (c) show a progressive decrease in the duration
of laminar periods corresponding to increasing the strength of a single recurrent
connection.

The properties of the activity were also modifiable by external input but the in-
termittency could persist under a wide range of perturbations including ongoing
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Fig. 84.1 Activity Traces and Statistics of Intermittent Networks: (a), (b), (c) are the activity traces
for three networks exhibiting intermittent activity. Each graph shows the superimposed activity
traces of 5 units over 2000 iterations. These graphs illustrate the large change in laminar duration
as a result of the modification of a single weight. Histogram (d) is the distribution of the turbulent
epochs for the middle network (b). Histogram (e) is the distribution of the laminar durations for
the same network
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(a) (b)

Fig. 84.2 Intermittent neural network activities and alteration of the laminar trajectory with weight
change: (a) Illustrates the states of three units over 10,000 iterations in 3-dimensional activity space
(or phase space) [4]. (b) Changes in the trajectory of the intermittent activity as a single connection
in the network is incremented in steps of 0.1. The output associated with each weight change is
represented by a unique color. The arrow highlights the manner in which the laminar trajectory
rotates in space as the weight is changed

noise injection and varied initial conditions (not shown). Figure 84.1d illustrates
the distribution of the turbulent epochs and 1(e) is the distribution of the laminar
durations for the middle trace (b). These event duration histograms show a statis-
tical profile characteristic of Type I intermittency. The turbulent epoch distribution
(d) had a sparsely populated long tail. The laminar events distribution (e) had two
peaks, a minor one at the short durations and a peak at long intervals marking the
maximal length of a laminar phase.

Activity Space and Trajectory Modification with Weight Changes

In order to better illustrate the nature of the changes to the dynamics we plotted the
activity in phase space (Fig. 84.2). The cloud of points in Fig. 84.2a corresponds to
the turbulent activity and the arrow indicates the trajectory of the laminar activity.
Figure 84.2b illustrates changes to the laminar activity trajectory in phase space as
a result of changes to connectivity.

Discussion

The network model illustrates that dynamical transitions do not require: (i) a trigger-
ing input (including noisy processes) (ii) changes in the intrinsic cell properties nor
(iii) ongoing changes to the network structure (plasticity). The model thus raises
the possibility that intermittent dynamics need not be a consequence of changes
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to synaptic connectivity nor external perturbation but rather could be a recurring
event entirely due to intrinsic network properties. The fact that the properties of
these transitions are modifiable through synaptic changes demonstrates that these
intermittency mechanisms are compatible with a parametric change scenario.

Implications to Epilepsy

The model forwards a novel way to understand autonomous seizure transitions.
Once network connectivity is set to exhibit intermittency, ictal events can occur in-
termittently without further changes or extrinsic triggering. There is no requirement
for synaptic or gap junction modification nor changes in individual neuronal prop-
erties. However, these intermittency-based autonomous transitions do not preclude
the involvement of other mechanisms such as parameter-based bifurcations [1, 2]
or multi-stability [3]. Indeed, here we show that parametric weight modulation can
directly alter the duration and distribution of turbulent and laminar phases. That is,
even small changes in the weights of a network might directly affect the response
characteristics of the system. These findings suggest that the appearance of a seizure
can be independent of network changes but subtle changes in connectivity could
alter seizure duration, interictal duration, and other seizure-related signal features.
The model may thus help us understand the factors governing the genesis and abo-
lition of seizure susceptibly. The statistical signatures may suggest new ways of
identifying such mechanisms in clinical studies, diagnosis and therapy of epilepsy.
For example, we note that if epileptic seizures are induced by random parame-
ter fluctuations or noise-driven transitions between states in multi-stable systems,
the transitions may be unpredictable. However, if the transitions are intermittency-
based, our model offers the possibility of early warning for the turbulent phase.
Using a variant of Lyapunov exponent analysis, we have shown that the spectrum
changes when entering the “point of no return” to a turbulent phase [4]. As such,
the method indicates that the onset or duration of certain intermittent seizures may
be predictable depending on whether the turbulent phase corresponds to the ictal or
interictal period.

Implications to Cognition

Although it might be simplest to conceive of the laminar epoch as a quiescent inter-
ictal state and the turbulent epoch as representing a seizure, it is the turbulent activity
that may correspond best to healthy forms of complex neurodynamics. The distinc-
tion between the epochs and the relation of dynamic categories to cognitive states
ultimately requires consideration of functional embodied behaviour [6]. Nonethe-
less, the fact that a simple random network without more complex connectivity
assumptions such as small world connectivity can exhibit intermittency illustrates
that this is a viable mechanism to implement rapid transition in neurodynamics. The
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simulations highlight the possibility that certain transitions in cognition may be best
characterized as a continuous trajectory in a system with heterogeneous dynamics
rather than alternations between distinct attractors (or states). Although these net-
works can respond to external stimuli, the ability to implement transition indepen-
dently of the environment suggests that intermittency could play an important role in
autonomous cognitive transitions including changes to attention, alertness and emo-
tions. The model helps show that such transitions do not require plasticity. However,
the present study also demonstrates that structural changes, including single synapse
and unit modification, can affect intermittency dynamics. The fact that the change is
local opens the possibility for biologically plausible learning algorithms. Moreover,
the autonomous nature of the transitions coupled with the potential for adaptivity
make this a candidate mechanism in embodied biological systems that depend on
quick transitions, autonomy and the ability to learn.

References

1. Lopes da Silva F.H., Blanes W., Kalitzin S.N., Parra J., Suffczynski P., Velis D.N.: Dynamical
Diseases of Brain Systems: Different Routes to Epileptic Seizures. IEEE Transactions on
Biomedical Engineering 50 (2003) 540–548.

2. Lopes da Silva F.H., Blanes W., Kalitzin S.N., Parra J., Suffczynski P., Velis D.N.: Epilepsies
as Dynamical Diseases of Brain Systems: Basic Models of the Transition Between Normal and
Epileptic Activity. Epilepsia 44:s12 (2003) 72–83.

3. Suffczynski P., Kalitzin S., Lopes da Silva F.H.: Dynamics of Non-Convulsive Epileptic Phe-
nomena Modeled by a Bistable Neuronal Network. Neuroscience 126 (2004) 467–484.

4. Ohayon, E.L., Kwan, H.C., Burnham, W.M., Suffczynski, P., Kalitzin, S.: Emergent Complex
Patterns in Autonomous Distributed Systems: Mechanisms for Attention Recovery and Relation
to Models of Clinical Epilepsy. Proceedings of IEEE SMC (2004), 2066–2072.

5. Ohayon E.L., Kwan H.C., Burnham W.M., Suffczynski P., Kalitzin S.: Introduction and Abo-
lition of Autonomous Seizure Transitions in Random Networks Through Weight Changes.
Epilepsia 46 (2005) 206.

6. Ohayon E.L., Kalitzin S., Suffczynski P., Jin F.Y., Tsang P.W., Borrett D.S., Burnham W.M.,
Kwan H.C.: Charting Epilepsy by Searching for Intelligence in Network Space with the Help
of Evolving Autonomous Agents. Journal of Physiology-Paris 98 (2004) 507–529.



Chapter 85
A Computational Approach to the Control
of Voluntary Saccadic Eye Movements

Jeremy Fix

Abstract We present a computational model of how several brain areas involved
in the control of voluntary saccadic eye movements might cooperate. This model
is based on anatomical and physiological considerations and lays the emphasis on
the temporal evolution of the activities in each of these areas, and their potential
functional role in the control of saccades.

Introduction

Primates use two kinds of voluntary eye movements to bring objects of interest onto
the fovea : saccades and pursuits. In this article, we focus exclusively on saccadic
eye movements that involve several areas widespread in the cortex; a subcortical
pathway also exists and is involved in reflexive saccades. A visual stimulation ex-
citing the retina produces a signal that travels (not necessarily sequentially) to the
visual cortex, the lateral intraparietal sulcus (LIP), the frontal eye fields (FEF), the
supplementary eye fields (SEF), the dorsolateral prefrontal cortex (dlPFC) to finally
excite the superior colliculus (SC) that will provide downstream subcortical areas
with the parameters of a saccadic eye movement to trigger [1, 2]. We first review
biological studies on the functional role of these areas and introduce a computational
model based on these data to illustrate how these areas might cooperate.

In the last few years, several studies have led to a better understanding of the
representation of visual information in LIP. Both experimental measurements and
computational models have shed the light on an eye-centered representation [3].
The neurons in LIP are also strongly modulated by the position of the eye, head and
body parts. Andersen and Cohen [3] have shown, for example, that the activity of the
neurons in this area depends on the eccentricity of the eye, while always exhibiting
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a maximal response at a given retinal position. Computational modelings [4] have
provided strong results that indicate that the representation of the information in a
common eye-centered representation, modulated by the position of the eye, head
and body parts, can be decoded in several frames of reference, namely eye-, head-
and body-centered.

The neurons in FEF receive strong topographically organized projections from
the posterior parietal cortex. Bruce and Goldberg [5] distinguish three types of neu-
rons in FEF. Visual neurons (FEFv) respond to visual stimuli but not to the initia-
tion of a saccade. On the opposite, movement related neurons (FEFm) fire before
and during saccades, whether or not the saccade is triggered by a visual stimulus.
Visuomovement neurons (FEFvm) have both visual and movement-related activity.
Among these three types of cells, only the ones related to movement project to the
superior colliculus and to the caudate nucleus [1]. The first projection carries the
target of the saccade while the second determines when the movement is executed.

An enhanced activity in the supplementary eye field (SEF) is recorded when the
selection of a target (among several possible stimuli) for a saccadic eye movement
is based on internal factors such as motivation or reward expectation [6, 7]. The
SEF has been thought to represent the targets of saccadic eye movements in a cran-
iocentric frame of reference [8]. More recently, [9] have shown that the encoding
in SEF is much more complex than a simple craniocentric representation and that
there coexists a continuum of eye-, head- and space/body-centered representations
for gaze coding. Finally, [10] have provided evidences for the role of the dorsolateral
prefrontal cortex in spatial working memory.

While more and more is known about the different structures involved in the con-
trol of saccadic eye movements, the way these areas cooperate to select the relevant
stimuli, to decide which of them is the next target to focus on, to memorize these
targets when the task at hand requires it is still unclear. We propose in the next sec-
tion a neural network architecture relying on the previously introduced anatomical
considerations and illustrate its functioning with a classical double-step task.

Architecture of the Model

The model we propose, depicted in Fig. 85.1, is based on the Continuum Neural
Field Theory [11, 12], a framework of dynamical lateral interactions within a neural
map. It consists in several two dimensional sets of units, each of them characterised
by an activity which depends on the activity of lateral units in the same map or
afferent units in other maps. We generally use a mexican-hat weight function and
compute the integration of the inputs for a given unit with a classical weighted sum.
In some specific cases, we also use a weighted sum of the product of inputs’ activity,
as we have shown in [13] that these sigma-pi integrations provide an efficient way
to remap a visual information across saccadic eye movements and is used in the
presented model to compute transformations of frame of reference.

The labels of the maps indicate what could be the binding between the biolog-
ical areas and the computational maps, under the strong restriction that not all the
properties of the biological areas are covered by the model.
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Fig. 85.1 A possible architecture of how the major brain areas involved in the control of voluntary
saccadic eye movements might cooperate. (Refer to the text for details)

A visual stimulation excites LIP. As described in section ‘Introduction’, the neu-
rons in LIP have retinotopic receptive fields and are modulated by the position of the
eyes. From this representation, it is possible to extract eye- and head-centered rep-
resentations of the visual information. LIP projects onto FEFV with topographically
organised connections; the neurons in FEFV are then sensitive to visual stimulations.
LIP also projects to SEF. As shown in the introduction, SEF is a continuum of several
frames of references. We consider here that SEF represents the visual stimuli in a
head-centered frame of reference, this represention depending on internal factors
such as reward expectation. If we consider a double-step task, all the presented
stimuli must be memorised since the task requires to perform an eye movement
toward each of them. If we consider an antisaccade task, SEF migth represent
the location of the antisaccade target. In the case a stimulus must be memorised,
DLPFC is shown to be active during the delay, and we consider it here as a compo-
nent of a short term memory built with the SEF-DLPFC recurrent circuit. SEF and
FEFV project onto FEFVM. While the FEFV and FEFVM maps both represent the
stimuli in an eye-centered frame of reference, the projection from SEF to FEFVM,
from a head-centered to an eye-centered representation, are modulated by the cur-
rent position of the eye, using the same sigma-pi mechanism that we used in [13].
The FEFVM map represents all the potential targets for an impeding eye movement.
These targets can be a direct consequence of a visual stimulation (FEFV) or a target
computed from internal factors (SEF). The map FEFVM then projects onto FEFM in
which only one saccadic target emerges. The competition is performed with lat-
eral connections with a mexican-hat shape, which leads to similar results than a
winner-take-all but in a dynamic and distributed way. The feedback projection from
FEFM onto LIP is supposed to represent visual attention. It is shown in several stud-
ies that the target of an impeding eye movement is enhanced in areas such as LIP.
Studies have shown that fixation units in FEF and SEF fire vigorously when the eyes
must keep still. Moreover, the inhibitory pathway from FEF to SC going through
the caudate nucleus and the substantia nigra reticulata is supposed to signal when a
saccade must be executed. We model this pathway with inhibitory projections from
the FIXATION map to SC. The units in the FIXATION map are active when the eyes
must keep still and silent when the movement must be triggered. The decision to
trigger the saccade can originate from exogenous (a fixation cue is switched off) or
endogenous factors (the location of the target of the saccade is computed internally).
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Discussion

The presented architecture was successfully applied to a classical double-step task.1

The aim of the model was not to reproduce all the physiological properties reported
on the areas involved in the control of voluntary saccadic eye movements. Rather,
we wanted to test a possible way in which these areas might cooperate emphasizing
the functional role and the dynamic behavior of each of them. One of the limitations
of this model is that the selection of the target of the saccade emerges from lateral
competition in the FEFM map, giving the opportunity to all the potential stimuli
to be selected while one may desire to avoid selecting a previously focused one. A
bias toward non previously focused stimuli may be achieved by adjoining a working
memory to the FEF maps as illustrated in [13].
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Chapter 86
Spatial Considerations of Feedback Control
for the Suppression of Epileptic Seizures

Beth A. Lopour and Andrew J. Szeri

Abstract Control of epileptic seizures through brain electrical stimulation is cur-
rently the focus of experimental and theoretical research. Here we use a mean-field
model of the human cortex to study spatial issues related to two types of feedback
control. We start with a 14th order set of stochastic partial differential equations
from Kramer et al. (Journal of Computational Neuroscience 22:63–80, 2007), add
either proportional or differential control, and then simulate the effect on seizure-
like behavior. We analyze the results based on changes in electrode size, electrode
spacing, and the number of electrodes in the grid.

Background and Model

There are millions of people in the US that are affected by epileptic seizures, and
roughly one in five do not respond to medication [1]. For those that do not respond
to anti-epileptic drugs, the available treatments are invasive and dangerous. It may
even be necessary to surgically resect the seizing portion of the cortex. During pre-
surgical evaluations, doctors found that applying pulses of electrical stimulation to
the cortex can suppress epileptiform afterdischarges, which are often precursors to
full-blown seizures [2]. In addition, it has been found that sinusoidal voltages can
be applied to various brain structures and nerves to reduce the severity of epileptic
seizures [3, 4]. Going one step further, some researchers have experimented with
the application of electric fields via feedback control [5]. Currently, the mechanism
by which brain electrical stimulation works is unknown, and no optimal techniques
have been developed. However, research in this area may eventually lead to im-
planted devices that can automatically stop seizures when they occur, or perhaps
even prevent them.

Because experiments in electrical stimulation can be dangerous for humans,
mathematical models are useful for exploring these ideas. Here, we utilize a
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mesoscale stochastic PDE model of the cortex that was first developed in the 1970’s
[6] and has since undergone revisions and improvements [7]. It has not only been
used to study epilepsy [8, 9], but also anesthesia [10] and sleep [11]. The 14th
order model consists of dimensionless partial differential equations in space (x)
and time (t). The equations contain four stochastic terms, which represent sub-
cortical inputs and are approximated by Gaussian-distributed white noise (scaled
in space and time), in addition to several nonlinear terms. We will incorporate
two different feedback controllers and analyze their utility for stopping epileptic
seizures.

While the model contains a large number of states and parameters, there are only
three that are central to the results described here: (1) he – a variable that represents
the mean soma voltage of the neurons in the model and is assumed to be proportional
to the voltage that can be measured via EEG. Because it is related to an observable
quantity, he is the variable that will be used for feedback control. (2) Γe – a param-
eter that represents the influence of excitatory input on the averaged soma voltage.
(3) Pee – a parameter that represents the subcortical input to the excitatory neurons
in the cortex. For a full statement of the model, the reader is directed to [9].

Simulations and Results

At typical values of the parameters described above, Γe = 1.42 × 10−3 and Pee =
11.0, the simulated cortical voltage resembles the fluctuations of a typical EEG
signal. The variation in voltage is roughly 8 mV centered around−52 mV. However,
if we change the values of Γe and Pee we observe remarkably different behavior. In a
“hyper-excited” state, with Γe = 0.8×10−3 and Pee = 550.0, we see repeated large-
amplitude oscillations in the model that are reminiscent of a seizure. The variation in
voltage increases to roughly 50 mV centered around −60 mV. Because we believe
he to be related to the electric fields measured and induced by electrodes on the
cortex, this variable is a prime candidate for feedback control. The goal is to use
feedback to stop seizures that are in progress and move the cortex back to its normal
operating range.

In order to implement this type of control, we need to measure the electric field
on the cortex through a set of electrodes, use those values to calculate the con-
trol, and then apply the control voltages to the brain via a different set of elec-
trodes. There are several assumptions we make in order to simulate this process.
First, we assume that he is directly proportional to the EEG measurement, so we
may use he to calculate the control [12]. Next, we ignore the spread of the elec-
tric field beyond the electrode edges. Lastly, we assume that the output of the
electrode adds directly to the electric field of the neuron itself; in the model, this
means that we can simply add the control law to �he/�t . With these in mind, we
model proportional control by adding an a(x, t)h̄e term to the first equation of the
model:

�h̃e

�t̃
= 1− h̃e + · · · + a(x, t)h̄e. (86.1)
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Here, a(x, t) represents the gain, which can vary across the cortex, and h̄e is a local
spatial average of h̃e. The number of points in the average is equal to the size of
the simulated electrode. Also, by setting the gain to zero in strategic locations, we
can delineate individual electrodes. These parameters allow analysis of the effects
of changing the electrode size, electrode spacing, and number of electrodes.

Alternatively, we could add the term a(x, t)(h̄e[t]−h̄e[t−τ ]) to model differential
control. As before, a(x, t) represents the discrete controller gain, but we have now
incorporated a delay time τ . This method of control has been shown to stop seizure-
like behavior in the model [8], with the added benefit of using voltages that are less
likely to damage brain tissue.

Because the simulation parameters present a seemingly infinite number of possi-
ble combinations, we have focused on three key issues:

1. Number of electrodes: This defines the number of electrodes placed side-by-
side on the cortex, similar to electrode grids used in experiments; the gain a(x, t)
is set to zero for all spatial steps outside the grid.

2. Electrode size: To represent electrodes covering multiple spatial points, we de-
termine the average of he over the points and use it to calculate one control
voltage. We then apply that voltage to all of the points covered by the electrode.

3. Spacing between electrodes: To simulate locations unaffected by the applied
electric field, the gain a(x, t) is set to zero for all points determined to be between
electrodes.

In this analysis, we do not address the issue of sensing and controlling at different
cortical locations, and we have assumed that the electric fields applied by each elec-
trode are constant in space. For simplicity, we neglect extracellular electrochemical
changes in the immediate vicinity of the electrodes.

We simulated feedback control of the stochastic PDE’s using a predictor-corrector
algorithm written in Matlab. The stochastic terms were incorporated using the
Euler–Maruyama method, which ensures that the quality of the noise remains the
same regardless of the integration step sizes. While more sophisticated solvers
would provide better convergence and stability properties, this method was chosen
due to the complexity of the system.

The following parameters were used in all simulations: the gain a(x, t) = 0 for
0 ≤ t ≤ 0.5; for t > 0.5 within the electrode grid, a(x, t) = −2 for proportional
control, and a(x, t) = −10 with a delay of τ = 20 ms for differential control;
the integration was performed over 10,000 time steps with a step size of 0.1 ms; 50
spatial steps were used with a step size of 7 mm; Γe = 0.8×10−3; Pee was normally
distributed in space with a maximum of 550; the magnitude of the stochastic terms
was α = 16. These parameter choices were based on those in [8].

Proportional Control Results

A typical simulation of proportional control is shown in Figure 86.1a shows the
resulting cortical voltage he when control is applied to four 35 mm electrodes with
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(a) (b)

Fig. 86.1 Simulation of proportional control. (a) he output for four 35 mm electrodes with 0 mm
spacing. The strong wavelike solutions emanating from the center of hyper-excitation for t < 0.5
are those associated with a seizure. (b) Control effort for the same parameters as in (a)

0 mm spacing. Figure 86.1b depicts the voltage applied to the cortex by the con-
troller. In the locations where electrodes have been applied, the proportional control
succeeds in stopping the seizure-like oscillations; note that when the controller is
turned on at t = 0.5, he quickly moves to a steady voltage of roughly −50 mV.
This result can be obtained with electrodes of any size. However, there are several
aspects of this control that are not optimal. While the controller works well wher-
ever electrodes are applied, new large-amplitude waves appear to emanate from the
controlled area. This seems to occur regardless of the number of electrodes in the
grid. Also, the required control effort consists of a large positive voltage, which
could potentially damage cortical tissue.

Simulations with non-zero spacing mimic the results presented here. Proportional
control is effective at stopping seizure-like oscillations at the electrodes, but does not
necessarily prevent waves from occurring in the gaps. Hence, the electrode size is
not as critical as the length of spacing between them.

Differential Control Results

Figure 86.2 shows a simulation of differential control. As with proportional control,
Fig. 86.2a shows the resulting he voltage while Fig. 86.2b displays the calculated
control effort. The simulation was done with six 14 mm electrodes at a spacing of
0 mm. In the ideal case, with an electrode size of 7 mm (one nondimensional step)
and 0 mm spacing, the controller completely halts the large-amplitude oscillations
and brings the cortical voltage to roughly−70 mV. However, with larger electrodes,
we see that small sections of high voltage persist even after the controller is turned
on. This effect is enhanced as electrode size and spacing are increased – more and
more segments of the wavefront remain until the controller is not capable of stop-
ping the seizure-like oscillations. Also, note that the equilibrium value of −70 mV
does not match the typical mean soma potential associated with Γe = 1.42 × 10−3

and Pee = 11.0. On the other hand, differential control does offer several advantages
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(a) (b)

Fig. 86.2 Simulation of differential control. (a) he output for six 14 mm electrodes with 0 mm
spacing. (b) Control effort for the same parameters

over proportional control. First, despite the fact that the grid is smaller than the ex-
tent of the traveling waves, the controller is able to stop the seizure-like oscillations.
No new waves develop at the edge of the electrode grid. Second, the control effort
used in this case is lower amplitude and oscillates between positive and negative
values. This type of signal is much safer for cortical tissue, as discussed in [8] and
the references therein.

Discussion

Overall, both proportional and differential control have advantages and disadvan-
tages. Proportional control is effective regardless of electrode size, and it also returns
he to its typical value of roughly −50 mV. However, the large positive voltages
it uses could potentially be damaging to cortical tissue, and it sometimes causes
new oscillations to arise. Alternatively, differential control uses safer voltages and
requires smaller grid sizes, but its effectiveness quickly deteriorates with increas-
ing electrode size and spacing. It also has an equilibrium value of approximately
−70 mV, which does not match the typical cortical state.

Some of these results may be connected to neuro-physiological properties. For
example, the degree of correlation between spatial points on the cortex is related to
Pee; this relationship may give insight into the size of electrode needed to stop a
seizure. Future work will investigate such ideas.

Acknowledgments This material is based upon work supported under a National Science Foun-
dation Graduate Research Fellowship. We also personally thank Alexandre Bayen for helpful dis-
cussions.

References

1. The Epilepsy Foundation: Epilepsy: An Introduction. World Wide Web, http://www.
epilepsyfoundation.org (2005).



500 B.A. Lopour, A.J. Szeri

2. Motamedi, G.K., Lesser, R.P., Miglioretti, D.L., Mizuno-Matsumoto, Y., Gordon, B.,
Webber, W.R.S., Jackson, D.C., Sepkuty, J.P., Crone, N.E.: Optimizing parameters for ter-
minating cortical afterdischarges with pulse stimulation. Epilepsia 43 (2002) 836–846.

3. Durand, D.M., Bikson, M.: Suppression and control of epileptiform activity by electrical stim-
ulation: a review. Proceedings of the IEEE 89 (2001) 1065–1082.

4. Bikson, M., Inoue, M., Akiyama, H., Deans, J.K., Fox, J.E., Miyakawa, H., Jeffreys, J.G.R.:
Effects of uniform extracellular dc electric fields on excitability in rat hippocampal slices in
vitro. Journal of Physiology 577 (2004) 175–190.

5. Gluckman, B.J., Nguyen, H., Weinstein, S.L., Schiff, S.J.: Adaptive electric field control of
epileptic seizures. Journal of Neuroscience 21 (2001) 590–600.

6. Wilson, H., Cowan, J.: Excitatory and inhibitory interactions in localized populations of model
neurons. Biophysical Journal 12 (1972) 1–24.

7. Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., Whiting, D.R.: Theoretical predictions for
spatial covariance of the electroencephalographic signal during the anesthetic-induced phase
transition: increased correlation length and emergence of spatial self-organization. Physical
Review E 68 (2003) 021902.

8. Kramer, M.A., Lopour, B.A., Kirsch, H.E., Szeri, A.J.: Bifurcation control of a seizing human
cortex. Physical Review E 73 (2006) 041928.

9. Kramer, M.A., Szeri, A.J., Sleigh, J.W., Kirsch, H.E.: Mechanisms of seizure propagation in a
cortical model. Journal of Computational Neuroscience 22 (2007) 63–80.

10. Wilson, M.T., Sleigh, J.W., Steyn-Ross, A., Steyn-Ross, M.L.: General anesthetic-induced
seizures can be explained by a mean-field model of cortical dynamics. Anesthesia 104 (2006)
588–593.

11. Wilson, M., Steyn-Ross, D., Sleigh, J., Steyn-Ross, M., Wilcocks, L., Gillies, I.: The
k-complex and slow oscillation in terms of a mean-field cortical model. Journal of Compu-
tational Neuroscience 21 (2006) 243–257.

12. Liley, D.T.J., Cadusch, P.J., Dafilis, M.P.: A spatially continuous mean field theory of electro-
cortical activity. Network: Computation in Neural Systems 13 (2002) 67–113.



Chapter 87
EEG Scaling Difference Between Eyes-Closed
and Eyes-Open Conditions by Detrended
Fluctuation Analysis

Tingting Gao, Dan Wu and Dezhong Yao

Abstract The electroencephalogram (EEG) data from two rest conditions of eyes-
closed and eyes-open were analyzed using a nonlinear method named detrended
fluctuation analysis (DFA). The results showed that the EEG fluctuations exhibited
scaling behavior in two regions with two scaling exponents (�1 and �2). These
two scaling exponents were significantly different between the two conditions, and
according to anyone of the two scaling exponents we could distinguish the two rest
conditions easily. The results also provide evidence that the differences between
eyes-closed and eyes-open rest conditions are not only in the alpha frequency bands,
but also in the lower and higher frequencies bands.

Keywords Detrended fluctuation analysis (DFA) · electroencephalogram (EEG) ·
nonlinear, scaling behavior

Introduction

The electroencephalogram (EEG) provides plentiful information about human brain
dynamics and is a popular method to investigate human brains. The most common
methods of EEG analyses such as event-related potential and Fourier decomposition
are based implicitly on assumptions of linearity. But the scalp EEG arises from a
large number of neurons whose interactions are generally nonlinear [1], so it could
not be best described by linear analyses, and nonlinear analyses are needed. How-
ever, the classical nonlinear method such as correlation dimension and Kolmogorov
entropy are very sensitive to noise and require the stationary condition, but EEG
signals often show highly non-stationary [2]. It was also indicated that the scalp
EEG can not be represented by entirely low-dimensional chaos [3]. Recently, a
nonlinear method named detrended fluctuation analysis (DFA) was introduced to
analyzing the scaling behavior of EEG [2, 4]. DFA is known for its robustness
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against non-stationarity [2] and by using this method the assumptions of linearity
and low-dimensional chaos can be avoided.

In this paper, we used a direct DFA method [4] to discuss the EEG scaling differ-
ence between eyes-closed and eyes-open rest conditions. It is well known that the
alpha (�) wave is strong in eyes-closed condition, and it may disappear in eyes-open
condition. In this work, we found significant differences in the frequency bands
besides the � band in these two rest conditions by using the nonlinear DFA method.

Paper Preparation

Materials

The EEG data from 14 healthy, right-handed student subjects (8 males, 6 females,
mean ± S.D. age, 21.83± 2.04) in eyes-closed and eyes-open rest conditions were
recorded for about 2 min respectively, using the 128-channel EGI System 200 with a
sampling frequency of 500 Hz (0.1∼48 Hz band-pass filter). The reference electrode
was located at the top of the head (Cz) and lengths of 10 s continuous artifact-free
EEG from four scalp locations of F3, F4, PO3 and PO4 were extracted from the raw
data of each subject in each condition for the DFA process.

Detrended Fluctuation Analysis (DFA)

We used the direct DFA method which was introduced in Hwa’s work [4]. To be
brief, let an EEG time series be denoted by y(t) with a length of N. First, the entire
time series are divided into equal time windows of size k, discarding any remainder;
Then, the least-square fitted line denoted by yk(t) is computed for each window and
the EEG time series y(t) is detrended by subtracting the local trend yk(t) from the
original data in each window; Finally, the average root-mean-square fluctuation of
this detrended time series F(k) is computed as:

F(k) =
√√√√ 1

N

N∑

t=1

[
y(t)− yk(t)

]2
(87.1)

The study of the dependence of F(k) on the window size k, which ranges from 10 to
1000 in this work, is the essence of DFA. If it is a power-law behavior of F(k) ∝ kβ ,
then the scaling exponent � is an indicator of the nonlinear complexity of the EEG
dynamics [1, 2, 4]. According to Hwa’s work, there may have two scaling regions
and two exponents (denoted by �1 and �2 in this study) for the human EEG. These
two scaling exponents were analyzed next.
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Statistical Analysis

Multivariate ANOVA with �1 and �2 as dependent variables, conditions and po-
sitions as factors were performed on the obtained scaling exponents, followed by
Post-Hoc tests. All statistical analyses were performed using the statistical software
package SPSS PC (version 13.0) at a significant level of p < 0.05.

Results

A typical log-log plot of F(k) as a function of k in this study was showed in
Fig. 87.1a. Consistent with Hwa’s work, there were obviously two scaling regions
in the ln F− ln k plot. To quantify the two scaling exponents, we performed a linear
fit in region I for 2.9 < ln k < 3.7 with a slope denoted by �1, and in region II
for 4.5 < ln k < 6.0 with a slope denoted by �2. The average position of the bend
between these two regions was located approximately at ln k ≈ 4.0. Since the time
scale k is associated with the period of a sine wave with frequency f by f = r/k
[4], where the data sampling rate is r = 500 points/s in this work, it means that the
bend in F(k) at ln k ≈ 4.0 is associated with the traditional dominant frequency of
� band (8–13 Hz). Thus, we can conclude that region I corresponds to fluctuations
over short time scales (> 13 Hz) and region II corresponds to fluctuations over long
time scales (< 8 Hz).

Tests of between-subjects effects showed that there were significant main effects
of conditions and positions for both �1 and �2 (all at p < 0.001), while the interac-
tion effects were not significant. Post-Hoc tests of conditions showed significant dif-
ferences between the eyes-closed condition and the eyes-open condition for both �1
and �2 (all at p < 0.001). Post-Hoc tests of positions showed significant differences
between F3 and PO3, F3 and PO4, F4 and PO3, F4 and PO4 (all at p < 0.005),
while the differences between F3 and F4 or PO3 and PO4 were not significant. The

a b

Fig. 87.1 Log-log plot of F(k) versus k for a subject during eyes-closed rest condition (a) and mean
�1 and �2 for the eyes-closed and eyes-open rest conditions (n = 14) with error bars represented
the standard error of the mean (b)
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results of mean �1 and �2 for the two conditions and the four positions were showed
in Fig. 87.1b. The statistical results clearly showed that according to anyone of the
two scaling exponents we could distinguish states of eyes-closed rest and eyes-open
rest easily.

Discussion

As the statistical results shows, there exists a common scaling behavior in EEG
with two different scaling exponents of two scaling regions respectively. According
to anyone of the two scaling exponents we could distinguish states of eyes-closed
rest and eyes-open rest easily. Especially, when discussing the difference between
eyes-closed and eyes-open conditions, most previous researches focused on the EEG
� band [5]. But what about the other EEG frequency bands besides � wave? In this
work, significant differences are also found in the high frequency bands above �
and the low frequency bands below � though the nonlinear DFA processing. This
may suggest a new promising way to investigate the internal mechanism of the rest-
ing EEG.

Conclusion

In this work, the human EEG during two rest conditions of eyes closed and eyes
open were investigated by using the nonlinear method of direct DFA. The results
show that according to anyone of the two scaling exponents (�1 and �2) we can
distinguish states of eyes-closed rest and eyes-open rest easily. Our results also in-
dicate that there exist significant differences between the eyes-closed and eyes-open
rest conditions in the frequency bands besides generally discussing � band.
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Chapter 88
Closure Positive Shifts Evoked by Different
Prosodic Boundaries in Chinese Sentences

Weijun Li, Lin Wang, Xiaoqing Li and Yufang Yang

Abstract Spoken language is structured into phrases. Electroencephalography
(EEG) was used in this study investigating the perception of prosodic hierarchical
boundaries. It was found that the closure positive shift (CPS) can be evoked by
phonological phrase boundaries and intonational phrase boundaries respectively;
the CPSs are different in onset and peak latency. The deflection elicited by prosodic
word boundaries is more positive compared with the one elicited by syllable bound-
aries.

Introduction

Prosodic phrasing is central to spoken language comprehension. In recent years, a
growing number of researches have been conducted to address the prosodic phrasing
[1], and a novel electrophysiological correlate to major intonational phrase (IPh)
boundaries has been found and termed the Closure Positive Shift (CPS). Unlike
LAN, N400 and P600, the CPS mainly reflects prosodic phrasing, rather than se-
mantic or syntactic processing. It is a bilateral, centroparietal positive shift [2].

The pioneering neurophysiological study investigating the role of prosody in spo-
ken language comprehension was conducted by Steinhauer et al. (1999) using ERP
measures [3]. They used two types of sentences with different prosodic structures.
The data of ERPs showed that IPh boundaries in both types of sentences elicited
the CPS. Further study suggested that even the pause after IPh boundaries were
removed, the CPS was still induced. To explore whether the CPS exclusively relying
on the prosodic information, Pannekamp et al. (2005) used four types of stimuli in
which the linguistic content was systematically reduced [4]. The results showed that
IPh boundaries in these sentences all evoked the CPS. In addition, Steinhauer and
Friderici (2001) found that commas in the silent reading also elicited the CPS with
smaller amplitude and shorter duration compared with the speech-induced CPS [5].
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The CPS also has been found in music [6], which has a similar topography and
amplitude, but different latency and duration. It seems that whenever the listeners or
readers segment the current stimulus into phrases, the CPS will be evoked.

Up to now, the CPS has only been investigated at IPh boundaries. However, as
we all know, there are other prosodic units in a sentence except for IPh, such as
prosodic words (PW) and phonological phrases (PPh). Some researchers found that
the acoustic-phonetic cues to the prosodic boundaries are systematically changed,
and listeners can differentiate these different boundaries [7]. It is suspected that the
CPS may also be found at other prosodic boundaries. The aims of present study are
to investigate: (I) whether the CPS can be elicited by different prosodic boundaries
in a sentence; (II) if yes, what are the differences between these CPSs.

Experimental Procedures

Subjects

Twenty students of the Capital Normal University (10 men; mean age 22.0 years)
participated in the experiment and were paid for their participation. All of them were
native speakers of Chinese with normal hearing and normal or corrected-to-normal
vision.

Stimuli and Experimental Protocol

Fifty groups of sentences were produced by a male native speaker of standard Chi-
nese and recorded in a soundproof chamber. In each group there are four sentences
with the same target disyllable and the same length. The boundaries between the
two target syllables in the four sentences are boundaries of syllables within a word,
PW, PPh and IPh boundaries respectively. The position of the target disyllables in
sentences is the same in each group but different among groups. The duration of
pre-boundary syllable, the duration of pre-boundary and silence, and the lowest
pitch value for all target syllables were measured and statistically analyzed. A group
of listeners were asked to evaluate the size of boundaries. The results indicated that
the materials are proper for the experiment.

The 200 experimental sentences were intermixed with 100 filler sentences and
presented auditorily in a pseudo-randomized order in four blocks of 75 trials.
Block order was counterbalanced across subjects. The structure of each trial was
as follows: a fixation star appeared at the center of a computer monitor 300 ms
before the voice of “ding” started, and remained visible until the end of the
sentence; after the “ding”, an auditory sentence presented. During the experi-
ment the listeners were asked to answer yes or no to comprehension questions in
20% of the trials. The experimental session lasted about 1 h, including electrode
application.
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EEG Recording and Analysis

The subjects’ brain potentials (EEG) were recorded continuously from 64 cap-
mounted Ag/AgCl electrodes with a sampling rate of 250 Hz. The electrooculogram
(EOG) was recorded from electrodes placed at the left and right outer canthus of
each eye, and above and below the left eye. On line, the system was referenced to the
left mastoid, and the system was re-referenced offline to linked mastoid. Impedances
were kept below 5 k�.

The EEG data were processed with the software NeuroScan 4.3. EEG epochs
containing eye blinks were firstly processed with “ocular artifact reduction”. Epochs
comprised the 200 ms preceding and 1500 ms following the pre-boundary syllable
onset. As can be seen in Fig. 88.1, relative to syllable boundaries, PPh and IPh
boundaries elicit positive deflections separately, which both start about 260 ms after
onset of the critical syllable. We classified the positive deflections as the CPS, since
its latency and topography (not reported because of space limits) fit the standard
characteristics of the CPS. Based on the literature and the visual inspection of the
grand averages, 300–800 ms were selected for analysis of the shifts elicited by PW,
PPh and IPh boundaries, the data were analyzed with a three-way repeated-measures
ANOVA with mean amplitude as dependent factor, with condition (4 levels: syllable,
PW, PPh, IPh), region (frontal vs. central vs. parietal), and hemisphere (left vs. mid-
line vs. right) as independent factors. To establish the onsets of the boundary effects,
we conducted a series of onset analyses in consecutive mean amplitude latency bins
of 10 ms wide (e.g. 100–110 ms, 110–120 ms, etc.) for PW, PPh, IPh compared with
syllable boundaries. To further compare peak latency and amplitude of the CPSs

FZ CZ

PZ

Fig. 88.1 Closure positive shift. Grand-average ERPs at the FZ, CZ, PZ. The waveforms in the
conditions of syllable (green), PW (pink), PPh (blue) and IPh (red) are superimposed. The onsets
of pre-boundary syllables are aligned to the time axis
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elicited by PPh and IPh boundaries, we select the time window from 300 to 1200 ms
to get peak (baseline to maximum peak) and latency (onset to maximum peak) value
for each condition per subject. The data were analyzed with three-way repeated-
measures ANOVA with condition, region, and hemisphere as independent factors.

Results and Discussion

EEG traces are shown in Fig. 88.1. In the time window 300–800 ms, the statistical
analysis revealed a main effect of conditions, F(3, 57) = 14.915, p < 0.01. Further
post hoc tests indicated that pair-wise comparisons were significant between syllable
(M = −1.251, SD = 0.229) and PW boundaries (M = −0.277, SD = 0.267),
p < 0.01; syllable and PPh boundaries (M = 0.647, SD = 0.277), p < 0.01;
syllable and IPh boundaries (M = 0.074, SD = 0.251), p < 0.01. The analy-
sis of onsets of the boundary effects revealed that it started in 320–330 ms latency
bin for PPh boundaries, 370–380 ms for IPh boundaries, but 400–410 ms for PW
boundaries for the midline electrodes

For the amplitude, it showed amplitude of the CPS elicited by IPh boundaries
(M = 3.106, SD = 0.227) is larger than the one elicited by PPh boundaries (M =
2.932uv, SD = 0.310), but not reach significant, F(1, 19) = 0.357, p > 0.05.
However, the analysis of peak latency revealed that the CPS elicited by IPh bound-
aries (M = 862.959, SD = 29.013) is significantly different from the one elicited
by PPh boundaries (M = 539.556, SD = 15.611), F(1, 19) = 98.277, p < 0.01.

Present experiment shows that the CPS is evoked not only by IPh boundaries but
also by PPh boundaries, whereas PW boundaries cannot elicit it. It mainly reflects
the processing of prosodic phrases. The amplitudes of the CPSs at different bound-
aries are similar, but not for onset and peak latency. It seems that the bigger the
prosodic boundary is, the later of the CPS onset and the longer of peak latency. ERP
data of this experiment indicate that the prosodic boundaries at different levels can
induce systematic changes of brain response.

Studies about the CPS in music suggested that it is influenced by the variations
of acoustic cues in the vicinity of the phrase boundary such as pause length, length
of the last tone preceding the pause [6]. The boundaries markers of PPh and IPh are
different in acoustic cues, we suspect this is why the CPS they evoked are different.
Future studies are needed to explore this problem.

Acknowledgments Thanks to the Laboratory of Learning and Memory, Capital Normal Univer-
sity for their offering experiment facilities.
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Chapter 89
Structure–Function Relationship
in Complex Brain Networks
by Multilevel Modeling

Changsong Zhou, Lucia Zemanová, Claus C. Hilgetag and J. Kurths

Abstract We try to illuminate the relationship between structural and functional
connectivity by studying synchronization dynamics based on realistic anatomical
network of cat cortical connectivity. A multilevel model is considered, where each
cortical area is modeled by a subnetwork of interacting excitable neurons. We show
that the model displays biologically plausible dynamics, and the synchronization
patterns reveal a hierarchical cluster organization in the network structure. A group
of brain areas involved into multimodal association can be identified by comparing
the dynamical clusters to the topological communities of the network.

Introduction

Investigation of brain in the last years has put significant emphasis on large-scale
network connectivity between brain areas, both structurally and functionally. The
analysis of the anatomical connectivity of the mammalian cortex [1] and the func-
tional connectivity of the human brain [2] has shown that large-scale cortical net-
works display typical features of small-world networks. An important problem in
cognitive neuroscience is the understanding of the relationship between anatom-
ical and functional connectivity. We investigate dynamical behavior of a realistic
network of corticocortical connections and study the relationship between the dy-
namical organization and the network connectivity at the level of cortical areas. The
dynamics of the cortical network is simulated by a multilevel model, where each
cortical area is modeled by a subnetwork of interacting excitable neurons. Correla-
tion between the mean activity of the areas is compared to the anatomical network
to understand the relationship between them.
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Multilevel Model of Cat Cortex

We use the cat corticocortical network as an example for large-scale anatomical
connectivity. The cortex of a cat can be parcellated into 53 areas, linked by about
830 fibers of different densities [3] into a weighted complex network as shown in
Fig. 89.1a. This cortical network exhibits a hierarchical community organization [4].
There exist a few topological communities that broadly agree with four functional
cortical sub-divisions: visual cortex (V, 16 areas), auditory (A, 7 areas), somato-
motor (SM, 16 areas) and fronto-limbic (FL, 14 areas).

We consider an ensemble of local neurons to be coupled with a small-world
topology to reproduce basic biological features: neurons are mainly connected to
their spatial neighbors, but a few long-range projections are also present [5]. Our
model also includes other realistic, experimentally observed features: 25% of the
neurons are inhibitory and only a small number of neurons (about 5%) in one area
receive excitatory synapses from other areas [6]. Individual neurons are described
by the FitzHugh–Nagumo excitable model. A weak noise is added to each neuron
so that isolated units exhibit sparse, Poisson-like irregular spiking patterns, as in
realistic neurons. The model thus represents a rest state of the brain. More details of
the model are presented in [7].

Main Results

We present biologically plausible behavior of the model, typical for weak coupling,
where the neurons have a low frequency of irregular spiking and irregular mean
activities (Fig. 89.1c), similar to those observed experimentally (e.g., EEG data).
The correlation matrix RI J in Fig. 89.1b shows that the dynamics of the multilevel
model has a nontrivial organization and an intriguing relationship to the underlying
network topology.
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Fig. 89.1 (a) Connection matrix M A of the cortical network of the cat brain. The different sym-
bols represent different connection weights: 1 (◦ sparse), 2 (• intermediate) and 3 (∗ dense). The
organization of the system into four topological communities (functional sub-systems, V, A, SM,
FL) is indicated by the solid lines. (b) Correlation matrix. (c) Typical mean activity VI of one area
(subnetwork)
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Fig. 89.2 The functional networks M F (◦) at various thresholds Rth . A pair of areas is considered
to be functionally connected if Ri j ≥ Rth . (a) Rth = 0.070, (b) Rth = 0.065, (c) Rth = 0.055. The
small dots indicate the anatomical connections

To study the structure-function relationship, we extract functional networks M F

from the model by applying a threshold Rth to the matrix RI J . Typical patterns
of functional connectivity are shown in Fig. 89.2, showing that the dynamics dis-
play hierarchical cluster organization. When Rth is close to the maximal value of
R, only some areas with reciprocal projections are functionally connected; e.g., at
Rth = 0.07, about 2/3 of areas but only 10% of the reciprocal links are present in
M F (Fig. 89.2a). Interestingly, within each anatomical community V, A, SM, and
FL, a core subnetwork is functionally manifested in the form of connected com-
ponents without intercommunity connections. At lower Rth , more areas from the
respective communities are included into these components, and a few intercom-
munity connections appear to join them (Fig. 89.2b). This observation suggests the
existence of a core subnetwork within each community that performs specialized
functions. At a smaller Rth , only about 1/3 of the anatomical reciprocal links and
very few unidirectional links can already connect all of the cortical areas into a sin-
gle functional network (Fig. 89.2c). With such low connection density M F already
resembles the main properties of M A: high clustering and community structure. The
additional anatomical connectivity provides high robustness and many parallel paths
of information processing.

We analyzed the most prominent clusters of the dynamics (Fig. 89.3). They
follow closely the four anatomical communities – C1 (V), C2 (A), C3 (SM), C4 (FL).
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Fig. 89.3 Major dynamical clusters (◦), compared to the anatomical connections (·)
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Table 89.1 Cortical areas involved in multimodal association, identified in simulations

Index Area Location Functions (response)

14 7 parietal cortex visual, auditory and somatosensory
stimuli, visuo-motor coordination

15 AES ectosylvian sulcus multimodal: auditory, visual,
somatosensory

22 EPp ectosylvian gyrus visual and auditory association area
43, 44 Ia, Ig insular cortex multimodal stimuli, homeostatic function
46 CGp cingulate cortex processing top-down and bottom-up

stimuli, multisensory stimuli
48 36 perirhinal cortex multimodal sensory stimuli; memory

However, there are a few nodes which belong to one anatomical community but
join another dynamical cluster. For example, the area I = 14 (anatomically named
‘area 7’) of the visual system appears in the dynamical cluster C3 mainly composed
of areas from the somato-motor system (Fig. 89.3 (C3)). Interestingly, this area is
associated to both visual and somatosensory. A closer inspection shows that these
nodes bridging different anatomical communities and dynamical clusters are exactly
the areas sitting in one anatomical community but in close connectional association
with the areas in other communities [3], i.e., they are involved into multimodal asso-
ciations. We can obtain different groups of these areas in different realization of the
simulations. A list of some of the areas and the corresponding multimodal functions
of them [3] are listed in Table 89.1.

To conclude, with a simplified model of cortical networks, we demonstrated that
the cortical dynamics displays nontrivial clustered organization, constrained by the
anatomical connectivity. Cortical areas involved in multimodal association can be
identified as bridging nodes in the dynamical clusters. Many more details can be
found in [7, 8, 9].
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Chapter 90
Model of Attention Allocation for Car Driver
by Driving Plan and Prediction of Environment
Change

Takashi Omori, Yuki Togashi and Koichiro Yamauchi

Abstract In this study, we try to construct a computational model of car driver
attention allocation that can explain real world driver behavior. In our previous work,
we proposed a model of a driver’s eye glances that consists of bottom-up and top-
down attention submodels. In this model, top-down eye motion is determined based
on the driver’s driving plan, which designates desired attention allocation, whereas
the bottom-up eye motion is determined based on predicted locations of moving
objects.

Keywords Eye motion model · driving plan · map maintenance

Introduction

Car safety systems are improving as intelligent transport systems (ITS) evolve. One
way of making driving safer is supporting drivers by reminding them of objects that
may be hazards. To achieve this effectively, the system has to recognize the cognitive
status and attention allocation of the driver. However, it is not easy to achieve such
recognition only by observing the driver’s behaviors. To overcome this problem, the
system needs to predict the cognitive status and attention allocation using a model of
human driver behavior. Several researchers have already proposed models of human
driving behavior [1, 2, 6]. These models, however, describe only driver behaviors
but not the driver’s internal cognitive processes. In this study, we focused on eye
motion during driving and constructed a model of the cognitive process behind the
eye motion that represents attention allocation.
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Model for Driving with Plan

Driving Plan for Steering and Saliency

We have already constructed an eye motion model that consists of two submodels:
the eye motion process for active collection of information for steering operation,
and passive eye motion in response to normal visual stimuli (Fig. 90.1) [3].

This model yields a probability distribution function of eye motion at any given
time based on its driving environment. This model enabled us not only to estimate
what kind of information processing is going on, but also to detect a driver’s internal
attention and processing by calculating the likelihood of actual eye motion data at a
given time.

However, when we observe the eye motion of a driver in an actual driving scene,
we noticed a lack of driving plan factor. To improve this, we introduced an effect of
intention (driving plan) into the model, and calculated a probability distribution of
eye motion based on a driving plan that actually describes attention allocation of the
moment.

Fig. 90.1 Model of eye motion and steering operation
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Driving Plan and Plan Relevance Map

While driving, the system repeats recognition of environmental objects. Plans are
associated with the layout of objects and attention allocation to conduct the plan,
and a plan can be selected in a competitive base when the layout matches the actual
object position. The selection of a driving plan from several plan candidates and eye
motion depending on the selected plan are executed repeatedly. The selection of the
plan automatically allocates attention of the moment for driving.

The eye motion process was simulated using the model that incorporates the
saliency map [5]. During driving, plans compete for their execution by calculating
their score values based on an object’s attributes and the distance between the car and
objects. This information is stored in the recognition results buffer, and, the most
appropriate driving plan with the highest score is selected. Each plan consists of
conditions for selection, action, and observation to monitor the evolving situation.
Driving actions are determined by the selected driving plan, which is described by
steering angle, accelerator operation, and observation for a moment of plan selection.

The driving plan can be divided into master plans and subplans. A master plan is a
global plan such as “go straight, turn left, turn right” and so on. The subplans denote
condition for executing the corresponding master plan. The master plan is selected if
all conditions are satisfied. If one of the master plans is selected, the corresponding
subplans are activated. Then, the activated sub plans are evaluated by calculating
estimation value E , and a subplan with the maximum value is selected for execution.

To achive actions in the selected subplan, a plan relevance map (PRM) is in-
troduced. The PRM denotes the position and width of target objects using normal
distributions.

Computer Simulation and Human Behavior

In our experiment, we examined a driver’s eye motion, and evaluated the validity of
the model by comparing the driver behavior to that of the driving simulator [4]. A set
of scenes is presented to human subjects and their eye motion is measured. The same
scene is also given to the driving simulator and its eye motion is recorded. Fig. 90.2
shows comparison of the eye motion by human subjects and that by model simulation.

As a result, the distributions of eye motion were comparatively close to real driv-
ing one of immediately before beginning to pass a stopped car. However, human
bottom-up eye movements to observe the surroundings were less frequent than those
predicted by the model. Moreover, the lack of eye motion suggests that people often
observe the environment using peripheral vision.

Inclusion of Object Motion Prediction Model

To improve precision of the model, we are planning to introduce a space map main-
tenance system in the model. The structure of the new model is shown in Fig. 90.3.
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(a) Directions of model’s glances (b) Directions of subject’s glances

Fig. 90.2 Glance distribution during drive straight plan

The bottom-up eye motion part of the previous model is included in the saliency eye
movement calculated in the image processing system (Fig. 90.3a). The top-down eye
motion is included in the plan-dependent eye movement calculated in the driving
plan system (Fig. 90.3d). A new model corresponds to the eye motion calculated
in the object image processing system (Fig. 90.3b) and the space map maintenance
system (Fig. 90.3c). The evaluation result with the model will be shown during
the talk.
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Conclusion

In this paper, we discussed the necessity to construct a model of human eye move-
ment and attention allocation behind driving actions. In the model, a driver predicts
the movement of objects in the environment and directs glances at objects that move
differently than expected. The model is expected to predict observational eye move-
ment that is similar to human behavior.
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Chapter 91
Top-Down Object Biased Attention
Using Growing Fuzzy Topology ART

Young-Min Jang, Byungku Hwang, Sang-Woo Ban and Minho Lee

Abstract In this paper, we propose a top-down object biased attention model which
is based on human visual attention mechanism integrating feature based bottom-up
attention and goal based top-down attention. The proposed model can guide atten-
tion to focus on a given target object over other objects or feature based salient areas
by considering both the object preferable bottom-up attention mechanism and the
object biased attention mechanism. We proposed a growing fuzzy topology ART
that plays important roles for object biased attention, one of which is to incremen-
tally learn and memorize features of arbitrary objects and the other one is to generate
top-down bias signal by competing memorized features of a given target object with
features of an arbitrary object. Experimental results show that the proposed model
performs well in successfully focusing on given target objects, as well as incremen-
tally perceiving arbitrary objects in natural scenes.

Keywords Top-down object biased attention · bottom-up attention · growing fuzzy
topology ART

Introduction

Human vision system can effortlessly detect an arbitrary object in natural or clut-
tered scenes, and incrementally perceive an interesting object in dynamic visual
scene. Such a visual search performance will require both bottom-up and top-down
control sources to be considered and balanced against one another [1]. In Desimone
and Duncan’s biased competition model, the biased competition view of visual
search proposed two general sources for the control of attention: bottom-up sources
that arise from sensory stimuli present in a scene and top-down sources that arise
from the current behavioral goals [1, 2].
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Based on the biased competition mechanism, we proposed a biologically moti-
vated top-down object biased attention model.

The proposed attention model consists of two parts. One is the bottom-up at-
tention part that can pop-out salient areas by calculating the relativity of primitive
visual features such as intensity, edge, and color [3]. Moreover it provides object
preferable attention by considering symmetrical feature since every object with form
has symmetry information [3]. The other is the top-down object biased attention
part. In order to generate object biased signal, we need object perception and mem-
orization mechanism such as working memory in a human brain. In this model, we
propose a new growing fuzzy topology adaptive resonance theory (TART) model
for object perception and memorization that makes object feature clusters in an in-
cremental mode. The proposed growing fuzzy TART not only increases stability in
conventional fuzzy ART while maintaining plasticity, but it also preserves topology
structures in input feature spaces that are divided by color and form domains in
an object. Finally, the growing fuzzy TART makes clusters in order to construct
an ontology map in the color and form domains. The growing fuzzy TART can
activate the target object related features among memorized features and compare
the activated features with features of an arbitrary object in order to generate a
proper top-down bias signal that can make a target object area in an input scene
become the most salient area. Moreover, the clustered information in the growing
fuzzy TART is relevant for describing specific objects, and thus it can automatically
generate an inference for unknown objects by using learned information. Experi-
mental results show that the proposed model properly guides top-down object biased
attention.

The Proposed Model

When humans pay attention to a target object, the prefrontal cortex gives a competi-
tive bias signal, related with the target object, to the infero-temporal (IT) and the V4
area. Then, the IT and the V4 area generates target object dependant information,
and this is transmitted to the low-level processing part in order to make a competi-
tion between the target object dependant information and features in every area in
order to filter the areas that satisfy the target object dependant features.

Figure 91.1 shows the overview of the proposed model during training mode.
As shown in the lower part of Fig. 91.1, the bottom-up attention part generates a
bottom-up SM based on primitive input features such as intensity, edge and color op-
ponency. Moreover, the bottom-up attention part can generate object preferable SM
by considering symmetry feature. Fukushima’s biologically based model is adapted
to obtaining local symmetry feature from edge information [4]. In training mode of
the proposed model, each salient object decided by bottom-up attention is learned by
the growing fuzzy TART. For each object area, the log-polar transformed features
of HIS and the log-polar transformed Gabor filtered features of edge information
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Fig. 91.1 Overview of the proposed model during training mode (r: red, g: green, b: blue, I: inten-
sity feature, E: edge feature, RG: red-green opponent coding feature, BY: blue-yellow opponent
coding feature, LGN: lateral geniculate nucleus, CSD&N: center-surround difference and normal-
ization, Ī : intensity feature map, Ē : edge feature map, C̄ : color feature map, CSM: candidate
saliency map, CSP: candidate salient point, H: hue, S: saturation, I: intensity)

are used as color features and form features for representing an object, respectively.
Those are used as input of the growing fuzzy TART.

In the top-down object biased attention mode, which is shown in Fig. 91.2, the
growing fuzzy TART activates the memorized form and color features of the target
object when a task of target object searching is being given. The activated form
and color features related with the target object are involved in competition with
the form and color features extracted from each bottom-up salient object area in an
input scene. By such a competition mechanism, as shown in Fig. 91.2, the proposed
model can generate a top-down signal that can bias the target object area in the input
scene. Finally the top-down object biased attention model can generate a top-down
object biased saliency map, in which the target object area is popped out. Therefore,
the growing fuzzy TART works the most important role for the top-down object bi-
ased attention. In this model, the proposed growing fuzzy TART is implemented by
integrating the conventional fuzzy ART, with the topology-preserving mechanism of
the growing cell structure (GCS) unit [5]. In the growing fuzzy TART, each node in
the F2 layer of the conventional fuzzy ART network was replaced with GCS units.
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Fig. 91.2 Top-down biased attention results of the proposed model

Experimental Results and Conclusion

Figure 91.2 shows the simulation results of the proposed top-down object biased
attention model. As shown in a bottom-up SM result image in Fig. 91.2, the target
object, green frog, is not mostly salient area but the 4th salient area when based
on only bottom-up features without considering top-down bias. However, the target
object became the most salient area after considering top-down bias in conjunction
with bottom-up attention as shown in the top-down object biased final saliency ar-
eas result image in Fig. 91.2. Moreover, the proposed model can infer an unknown
object from known object features memorized in the growing fuzzy TART.

In conclusion, we proposed a biologically motivated selective attention model
that can provide a proper visual object search performance based on top-down bi-
ased competition mechanism considering both spatial attention and goal oriented
object based attention.
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Chapter 92
Saliency Map Models for Stimulus-Driven
Mechanisms in Visual Search: Neural
and Functional Accounts

Jun Saiki, Takahiko Koike and Matthew deBrecht

Abstract Saliency map models have been influential in neurocognitive modeling of
visual attention. Despite recent applications to complex visual scenes, some basic
characteristics of the model remain elusive. Here, we address two issues; neural
plausibility of saliency computation, and functional account of search asymmetry
phenomenon by a saliency map model. With some modifications, we showed that
saliency can be computed by a neurally plausible way, and that search asymmetry
can be accounted for only by stimulus-driven mechanisms.

Introduction

The visual system cannot process a massive amount of information from the en-
vironment in parallel. Visual attention selects a subset of this information, certain
locations, objects, or features, for thorough processing. However, when there are
many objects in the visual scene, how does the visual system choose which object
to focus on? This has been a topic of research for many years, and the visual search
task is one of the methods that have been used to help clarify how the visual system
chooses which objects to attend to.

Saliency map models [1, 2] has been influential both in computational model-
ing, and in neurophysiological studies on attention and visual search. The original
idea was quite simple: selection of target of attentional deployment is determined
by winner-take-all mechanism on a saliency map, where saliency is defined by a
mixture of feature values. Recently, the saliency map models expand to incorpo-
rate various top-down mechanisms, and are applied to more complex real-life set-
tings. However, there are still some unresolved problems in basic architecture of
saliency map models. This work picked up two such problems; (1) neural network
implementation of saliency map, and (2) saliency-map-based account of search
asymmetry.

J. Saiki
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Neural Network Model of Saliency Map

It has been some concerns whether saliency map can be implemented as a neurally
plausible model. There are at least three potential problems: (1) over-competition
problem, (2) normalization problem, and (3) temporal dynamics problem.

Over-competition problem arises when competition within a map continues for
a long period. Because of the property of winner-take-all mechanism, even a tiny
difference in activation ends up with elimination of a competitor. Furthermore, over-
competition can be even more of a problem in heterogeneous visual scenes, where
slightly less salient stimuli tend to be completely eliminated and as a result do not
get represented in the saliency map. The non-salient target may not be represented
at all, and so the saliency map could not guide attention to its location.

Normalization during saliency processing is necessary in order for the saliency
map to be applicable under a wide variety of stimulus and environmental conditions.
In addition, the activity of each feature map must be kept within a reasonable range
to assure that a single feature dimension does not dominate visual search. Although
the saliency map models include normalization, it is not implemented in a biologi-
cally plausible manner.

Finally, the model proposed by Itti and Koch does not give a description of the
time course of saliency computation, but it is desirable to have quantitative esti-
mates of the time required to calculate saliency so that we know the time restraints
for using saliency information. In addition, it is of interest to be able to model the
processing of salience for dynamic scenes.

deBrecht and Saiki [3] addressed these issues, and proposed a neural network
model to solve these problems. Their model uses synaptic depression [4] to keep
neural activity and competition within a reasonable range, ensuring that stimuli
activity is not eliminated in the saliency map due to continuous competition. The
model shows how a stimulus with unique features will be more salient than other
stimuli with common features, describes the time course of saliency computation
and and also explains the high saliency of sudden onset stimuli [5], which has not
been considered with standard models.

Stochastic Saliency Map and Search Asymmetry

Although visual search behavior involves highly complex interaction of top-down
and bottom-up mechanisms of visual attention, it is useful to explore how far
bottom-up mechanisms alone can account for visual search. We have been inves-
tigating search asymmetry phenomenon to understand functional roles of saliency-
based bottom-up mechanisms.

The phenomenon of search asymmetry, for example, searching for a Q among
Os is easier than vice versa [6], is robust and observed with various types of visual
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stimuli. Yet, the underlying mechanism of search asymmetry is still unknown. Some
accounts postulate top-down mechanisms regarding target identity. For example,
saliency-based search model with a task-related saliency map [8] can explain human
performance in some visual search tasks showing search asymmetry. However, we
recently found that search asymmetry is observed even when target-identity is un-
certain (i.e., singleton search) [9], and the model cannot explain search asymmetry
in such a case.

To explain why search asymmetry occurs even in singleton search tasks, Koike
and Saiki [7] employed a different approach. Instead of adding top-down control
mechanisms, they modified the existing bottom-up saliency-based models to ac-
count for the search asymmetry in the singleton search.

The modified model incorporated the following mechanisms to account for
search asymmetry in the singleton search: stochastic winner-take-all (WTA) and
inter-feature competition. These modifications made the model sensitive to rela-
tive magnitude of saliency as well as rank order, which could successfully sim-
ulate various psychological data showing search asymmetry without top-down
control.

Fig. 92.1 Schematic illustration of the two modifications in the model in [7]. (a) intra- and inter-
feature competition, (b) competitions lead to saliency maps with different relative magnitudes
depending on the target, and (c) stochastic winner-take-all is sensitive to relative magnitude, not
simply rank-order, of saliency
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Extension of Models

Two models discussed here focus on different levels; one neural and one functional.
However, it appears that the idea of stochastic saliency map can be implemented by
the proposed temporal dynamics of neural network, because the reduction of over-
competition by synaptic depression enables quick decision-making, which leads to
more stochastic behavior of the model. Another future direction is to apply these
models to visual cognition phenomena other than visual search. For example, the
neural network model with precise temporal dynamics [3] can be applied to at-
tentional capture, in paricular, capture by sudden onset [5]. Also, the functional
saliency map model can be extended to visual short-term momory, and we are cur-
rently developing a model to account for basic findings of visual short-term memory
research [10]. It is no doubt that more technically-sophisticated saliency map mod-
els can achieve human-like visual cognition and behevior in the near future, but
simpler versions of saliency map models are still useful as tools for investigating
basic characteristics of biological mechanisms of visual attention.

Acknowledgments This work was supported by PRESTO “Intelligent cooperation and control”
from Japanese Science and Technology Agency (JST), Grants-in-Aid for Scientific Research from
JMEXT (#19500226) and the 21st Century COE Program from JMEXT (D-2 to Kyoto University).

References

1. Itti, L., & Koch, C. (2000). A saliency-based machanism for overt and covert shifts of visual
attention. Vision Research, 40, 1489–1506.

2. Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: towards the underlying
neural circuitry. Human Neurobiology, 4, 219–227.

3. deBrecht, M., & Saiki, J. (2006). Neural network implementation of saliency map. Neural
Networks, 19, 1467–1474.

4. Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic depression and cortical
gain control. Science, 275, 220–224.

5. Yantis, S. (1993). Stimulus-driven attentional capture. Current Directions in Psychological
Science, 2, 156–161.

6. Treisman, A., & Souther, S. (1985). Search asymmetry: a diagnostic for preattentive process-
ing of separable features. Journal of Experimental Psychology: General, 114, 285–310.

7. Koike, T., & Saiki, J. (2006). Stochastic saliency-based search model for search asymmetry
with uncertain targets., Neurocomputing, 69, 2112–2126.

8. Navalpakkam, V., & Itti, L. (2005). Modeling the influence of task on attention. Vision Re-
search, 45, 205–231.

9. Saiki, J., Koike, T., Takahashi, K., & Inoue, T. (2005). Visual search asymmetry with uncer-
tain targets. Journal of Experimental Psychology: Human Perception and Performance, 31,
1274–1287.

10. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and
conjunctions. Nature, 390, 279–281.



Chapter 93
Extraction of Single-Trail N400 Event-Related
Potentials Based on Dynamic Independent
Component Analysis

Wen-Juan Li and Xiao-Pei Wu

Abstract The Independent Component Analysis (ICA) method has a good applica-
tion in EEG. But ICA algorithm is mostly a combination of static model and batch
optimization algorithm. Considering the non-stationary characteristics of event-
related potentials, the Dynamic Independent Component Analysis (DICA) based
on kurtosis maximization was proposed to single-trail extract the event-related po-
tential N400 which is induced by the Chinese idioms whose last word is incorrect.
The DICA method achieved satisfactory results.

Keywords Event-related potential (ERP) · EEG · signal-trail extraction · dynamic
independent component analysis (DICA).

Introduction

Event-related Potential (ERP) reflects neural activity of the brain in cognitive pro-
cess, It has a widely application in clinical medicine and cognitive science [1]. But
ERP is often heavily contaminated by many noises. It is necessary to extract ERP
signal from the strong background noises.

Traditional method for extracting ERP is the simple method of averaging. But
the method has some limitations. Commonly, the experiment duration is long and
the signal is non-stationary. Also repeating stimulate can make the nervous system
tired and make the stimulate familiar to the brain. All those factors will influence
the ERP’s time non-stationary. In later 1990s, Independent Component Analysis
was emerged as a blind source separation technology. The ICA method has a good
application in EEG.
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But ICA algorithm is mostly a combination of static model and batch optimiza-
tion algorithm. As we know, EEG is a biological signal of highly non-stationary
nature. So the static ICA algorithm is often hard to obtain valuable results.

Single-trail extraction of the N400 event-related potentials based on the kurtosis
maximization ICA algorithm performed an important physiological significance and
more accurate result in this paper.

N400 Event-Related Potentials

N400 event-related potential is a commonly used ERP component in language pro-
cessing. In 1980s American scholars Kutas and Sillyard first reported that in a state-
ment read tasks, the semantic mismatch of the last word in a sentence can induce a
language-related negative element. Because the negative element is about 400 ms, it
was know as N400. N400 can be induced by various language operational tasks [2].
It mainly reflects the cognitive function of neural activity.

Most research on the N400 is based on the English text material. Chinese is
different from Western alphabet. Therefore, using Chinese characters as stimulating
material has an important significance.

In this paper, the experiment data is acquired by the stimulation of Chinese id-
ioms. When the last word is incorrect, it can induce N400 event-related potentials.
We used the Scan 4.3 acquisition system to record the experiment data. Electrodes
placed under international 10–20 system.

Dynamic ICA Algorithm

Independent component analysis [3] can be simply described as follows: given a
set of observations of random variables X = [x1(t), x2(t), . . . xN (t)]T , where t is
the time or sample index, assume that they are generated as a linear mixture of
independent component X = AS. Independent component analysis now consist of
estimating both the matrix A and the S, when we only observe the X. Alternatively,
we could define ICA as follows: find a linear transformation given by a matrix W
as in formulation Y = WX, so that the random variables yi , i = 1, 2, . . . N which
are in the matrix Y are as independent as possible.

Kurtosis (4-order cumulant) is a commonly used method for measuring the inde-
pendence of the random variables. The idea generated from the statistical theory of
the central limit theorem. The central limit theorem states: under certain conditions,
the joint of the independent non-Gaussian random variables effected approximation
Gaussian distribution. So in the independent component extraction, using kurtosis
to measure the independence between the separating components is a good method.
With a zero mean random variable X, a normalized kurtosis defined as follows:

kurt(x) = E{x4}
(E{x2})2

− 3 (93.1)
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Denote the importation of random vectors by x, wt is a line vector of separation
matrix, y = wt

Tx is a output independent component. The ICA separation matrix
algorithm [4] based on kurtosis maximization is as follows:

wt+1 = wt + μ · sign[kurt(u)] · E{(wT
t x)3 · z} (93.2)

μ is the learning step of the gradient method, sign () is the symbol function, t is the
number of learning. (2) is the batch method of ICA algorithm. DICA algorithm use
a single input sample one time for estimating and updating the separation matrix.
It is not difficult to see that only the removal of the mean can become the DICA
algorithm [5]. Formulation as (3).

wt+1 = wt + μ · sign[kurt(y)] · (wT
t xt )

3 · xt (93.3)

Dynamic Independent Component Analysis for Single-Trail
N400 Extraction

The original EEG signals were got by a university man whom is induced by the
Chinese idioms. Twenty-nine observation signals are drew in Fig. 93.1.

Figure 93.2 is the separated results using the dynamic ICA algorithm. From
Fig. 93.2, it is clear to know that S1 is the eye signal, S2 is the extracted ERP.

In order to get clearer ERP signal, first used the wavelet transform for pretreat-
ment, then use DICA for separation. Figure 93.3 is the final result. Based on the
above analysis, the S2 signal in Fig. 93.3 is the final extracted ERP signal. We drew
it as Fig. 93.4.

Conclusion

This paper applied the dynamic independent component analysis based on kur-
tosis maximization to extraction of single-trail N400 event-related potentials and
achieved satisfactory result. For the Dynamic ICA algorithm has the capability of
online operation, this method has important practical value. Because extraction of
the event-related potentials is an important issue, we must work hard for extracting
the signal more accurate and rapid.

Acknowledgments This research is supported by Nature Science Foundation of Anhui province
(070412038)
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Chapter 94
Characterizing Individual Interest
by a Computational Model of Reading

J. Ignacio Serrano, M. Dolores del Castillo and Ángel Iglesias

Abstract Individual topic interest seems to be strongly related to reading attention
and depth of processing. Although there exists a lot of research about the study of
the relationship between the latter aspects, there is little work in the quantification
of this interaction during reading. This paper presents a way for the detection and
quantification of the influence of individual interest in the reading process by using
several parameters that characterize a computational model of reading called CRIM.
Experiment results have pointed out a certain dependency between the implicated
issues, motivating further and deeper research.

Introduction

Individual interest, also known as personal interest, is related to specific topics and it
is persistent over time [1]. It derives from the subjective long-term goals and desires.
It has to be distinguish from situational interest, which refers to short-term process-
ing changes influenced by the immediate context [2]. Although there exists much
more research about the latter type of interest, empirical studies concerning individ-
ual interest have been carrying out for twenty years. Among the published results,
it can be found out that personal or individual interest is related to prior knowledge
[3] and also that there exists a relationship between personal interest, attention and
processing depth [4]. Some models of this interaction has been proposed, such as
the long-term model by Alexader [5], and the “real time” model by Schiefele [6].
However, these models lack a fine characterization and quantification of the cited
relationships. In this paper, the parameters of an existent computational model of
reading are presented as indicators and quantifiers of the mentioned dependencies.
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Computational Model of Reading

The base framework used to model individual interest was CRIM (Cognitive
Reading Indexing Model) [7]. CRIM is a connectionist model of reading which
sequentially processes words in order to generate a semantic representation from
the corresponding input text. The representation formalism is a net of semantically
associated concepts, and each of them includes a significance degree with respect
to the main semantic of the text that has been read. The system operates in two
stages. In the first one, a background semantic knowledge is constructed from a
collection of free language texts. In the second stage, the model of reading applies
its mechanisms on the background knowledge to obtain a semantic representation
from any input text.

Construction of the Background Knowledge

CRIM represents the background semantic knowledge as a net of concepts, asso-
ciated one to another by weighted connections that indicate semantic relationship
degrees. It is considered that a concept is semantically related to another if they
co-occur within the same context. In this case, the context is not the typical word
window but a context of variable size, the sentences themselves. This context makes
the model dependent on the texts, thus supporting the psychological plausibility. The
connections between concepts are not symmetrical, as well as they are not for human
beings. The asymmetry is represented by the direction of the connections as well as
by the relative weights. The weights are the relative frequency of co-occurrence
between the source concept and the destination concept.

Construction of Semantic Representation of Texts

Once the background knowledge is constructed, the model can apply the cognitive
procedures on the text to be read using the former knowledge. This semantic extrac-
tion mechanism is a process over time in which cognitive factors like perception,
memory, inference and forgetting take part.

The model dynamics is as follows. The words in the texts are processed fol-
lowing the order in which they appear. Every time a word is read or perceived,
the model searches for the corresponding concept in the background knowledge.
If the concept is present, i.e. the word is already known, it is added to the current
semantic representation in the working memory with a base activation level. Then,
the inferences come into play by propagating the activation of the perceived concept
through the background knowledge. The activation is multiplied by the connection
weights and spread from one concept to another associated concepts until one of the
following two conditions is fulfilled: the activation to be propagated is lower than a
certain threshold, called propagation threshold, or the activation has passed through
a certain number of concepts from the perceived one (maximum propagation level).
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All the concepts reached in the propagation process are then retrieved and added to
the current semantic representation with the activation level they received, together
with the weighted semantic connections between them. If a perceived or inferred
concept was already in the working memory then its current activation is increased
by the activation level obtained either after perceiving or inferring. Every certain
time interval, called the forgetting interval, all concepts currently in the working
memory lose a portion of activation, called forgetting factor. Since words are se-
quentially processed, the time interval can be expressed as a number of consecutive
words. To be psychologically plausible, the forgetting interval was decided to be
determined by the sentences themselves. Thus, every sentence that is read involves
that the activation level of the concepts in the current semantic representation is
decreased, so that if a concept is not reinforced either directly by perception or
indirectly by inference along the reading process, the concept is forgotten. When
the activation of a concept is below the so-called forgetting threshold the concept
is removed from the working memory and so forgotten. Thus, the most activated
concepts in final representation conform the text topics and their activation level
depicts the semantic significance with respect to those topics. Since attention might
be related to deeper inferences and better understanding [2], the propagation thresh-
old and forgetting factor parameters were evaluated as indicators of the individual
interest and its interaction with attention.

Characterization of Individual Interest

In order for testing the validity of the propagation threshold and forgetting factor
as individual interest indicators, an experiment was carried out: 20 subjects, with
university and science academic degree, were asked to rank five topic categories
depending on their personal individual interest. Then, the subjects were asked to
summarize five news belonging to the former five categories just after reading each
of them, placing first the more important issues of each text in their opinion. The
reading time was also measured for each subject and each text. Next, the CRIM sys-
tem was used to construct a background knowledge from a collection of university
academic level texts and news. The model generated several semantic representa-
tions for each of the five news varying the values of the propagation threshold and
forgetting factor parameters.

The subject’s summaries were transformed into lists of concepts in order of
appearance. The CRIM representations were transformed into lists of concepts de-
creasingly sorted by their activation level. Then, the human’s lists and CRIM lists
from the same news were then compared, obtaining a measure of similarity between
CRIM representations and human summaries. The similarity was computed by the
average difference of the normalized positions of concepts belonging to the intersec-
tion of both lists. Thus, for each subject and each text, the parameter values which
allow the model to generate the most similar representation to the subject summary
were obtained. These values are grouped by the interest ranking position that the
subject assigned to the corresponding text. For example, the values are assigned
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Fig. 94.1 Average values of propagation threshold, forgetting factor, similarity with humans and
time rate spent for different levels of interest

to group 2 if those values produce the most similar representation to the summary
corresponding to the second most interesting text category for the subject. The aver-
age values of each group are presented in Fig. 94.1. The x-axis contains the interest
ranking groups(1st the most interesting, 5th the least one) and the y-axis the average
values for the parameters, the similarity and the spent time rate (time/number of
words in the text).

The results showed that the time rate slightly increases when the interest
decreases, as expected. Similarity values between model and humans seem not to
be influenced by the individual interest variation. On the opposite, there is a depen-
dency between individual interest and propagation threshold and forgetting factor.
As expected, when the interest is high the propagation threshold is low, i.e. more
concepts are inferred which implies more attention, and the forgetting factor is high
too, i.e. concepts are retained more time in memory. The latter values decrease as
the interest does excepting for the lowest interest, where both parameters take high
values again, although not so significant as for high interest. Since prior knowledge
seems to be related to individual interest [3], it is likely that subjects need to pay
more attention and intention to memorize text surface elements when the topic is
not familiar to them (and not interesting). This is the case pointed out by the results,
which is indeed psychologically plausible.

Conclusions and Future Work

A connectionist computational model of reading, called CRIM, has been used to
characterize and quantify the individual interest in such task. Concretely, two pa-
rameters of such model, related to attention and memory capacity, have been proven
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to be good indicators of the subject individual interest, by the study of the similarity
between CRIM output text representations and human summaries for different levels
of subjective topic interest. Since individual interest and prior knowledge might be
related [3], it is planned to characterize the former aspect in the same terms as in
this work and to extract the dependency type and quantification of that relation-
ship. It is also intended to study the detection of reading disorders by means of the
characterized issues.
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Chapter 95
Overview of Diffusion Tensor Imaging
in Multiple Sclerosis and Neuromyelitis Optica

Chunshui Yu

Abstract Diffusion tensor imaging (DTI) is a powerful quantitative technique with
the potential to detect in vivo microscopic abnormalities of brain tissue. It has been
successfully applied to study the occult damage in multiple sclerosis (MS) and
neuromyelitis optica (NMO), providing information otherwise inaccessible on the
pathological substrates. DTI has also been used to differentiate these two diseases.
Several image-analysis approaches have been employed, including region of inter-
est, histogram, and tractography. This review focuses on the use of DTI to investi-
gate MS and NMO.

Keywords Diffusion tensor imaging · multiple sclerosis · neuromyelitis optical

Introduction

Diffusion is the microscopic random translational motion of molecules, and water
diffusion can be measured using diffusion weighted imaging, in terms of an apparent
diffusion coefficient [1]. Since diffusion is affected by the properties of the medium
where molecular motion occurs, the measurement of diffusion inside biological tis-
sues provides information about tissue structure at a microscopic level [2]. Patho-
logical processes, which change the microstructural environment, such as neuronal
size, extracellular space and tissue integrity, result in altered diffusion [3, 4]. In
some tissues with an oriented microstructure, such as brain white matter, the molec-
ular mobility is not the same in all directions. This property is called anisotropy,
and results in a variation in the measured diffusivity [5]. Within a highly ordered
white matter tract, water molecules diffuse faster in the direction parallel to the
tract than perpendicular directions, because axonal membranes and myelin sheaths
restrict transverse diffusion [6, 7]. Under these conditions, diffusion characteristics
can be described by a tensor [8]. From the tensor, it is possible to derive some scalar
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indices that reflect the diffusion characteristics of the tissue. Mean diffusivity (MD)
reflects the average magnitude of molecular motion and fractional anisotropy (FA)
reflects its directionality [8]. They are calculated from three orthogonal diffusion
tensor eigenvalues (�1, �2 and �3), which represent the diffusion coefficients along
the major, median and minor axes of the diffusion ellipsoid.

Diffusion tensor tractography can visualize white matter tracts in vivo and its reli-
ability has been validated by comparison with known anatomy [9, 10]. Subsequently
tract-based quantitative analyses of diffusion indices were developed, and analysis
has been performed by either considering a tract as an entire ROI or defining ROIs
along the tract [11, 12, 13]. These methods may partly overcome the limitations
of conventional ROI-based analyses, improve the reliability of defining a ROI of a
tract, and detect both the local and global changes of the tract.

DTI technique seems like a promising tool for the quantification of tissue damage
and for improving our understanding of conditions that affect the integrity of brain
tissues. The pathological changes of multiple sclerosis (MS) and neuromyelitis op-
tica (NMO) have the potential to alter the permeability or geometry of structural
barriers to water molecular diffusion in the brain. The present review outlines the
major contributions given by DTI for the quantification of MS and NMO-related
damage, for the understanding of their pathophysiology, and for the differentiation
of these two diseases.

Multiple Sclerosis

Multiple sclerosis (MS) is an inflammatory demyelinating disease, typically occurs
in the 30–40 years of age, and the disease course varies greatly from patient to
patient. According to the disease course, MS can be divided into three subtypes:
relapsing-remitting (RR), secondary progressive (SP) and primary progressive (PP).

Lesions Visible on Conventional MR Images

All DTI studies have shown higher MD and lower FA in T2 visible lesions [14,
15, 16, 17]. However, water diffusion abnormalities are different in different types
of MS lesions. All researchers have shown higher MD values in non-enhancing
T1-hypointense than in non-enhancing T1-isointense lesions [14, 16, 17]. Although
conflicting results have been achieved when comparing MD in enhancing vs. non-
enhancing lesions, FA has always been found lower in enhancing than in non-
enhancing lesions [16, 17]. Some studies have shown that water diffusivity is
markedly increased in ring-enhancing lesions when compared to homogeneously
enhancing lesions [14, 18], or in the non-enhancing portions of enhancing lesions
when compared with enhancing portions [18]. Markedly reduced FA values have
also been found in ring-enhancing lesions [14]. The above findings confirm the
pathological heterogeneity of MS lesions and indicate that measures derived from
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DTI have the potential to improve our ability to define and monitor the mechanisms
underlying MS tissue damage, since the various pathological substrates of MS have
a different impact on the integrity of brain tissue.

Normal-Appearing White Matter

DTI studies in MS have shown that MD values of normal-appearing white mat-
ter (NAWM) are higher than those of corresponding white matter from controls
and lower than those measured in T2-visible lesions, while FA values of NAWM
are lower than those of corresponding white matter from controls and higher than
those of T2-visible lesions [14, 15, 16, 17, 19]. These results are consistent with
pathologic findings from patients with MS, including diffuse astrocytic hyperplasia,
patchy edema, perivascular infiltration, gliosis, abnormally thin myelin and axonal
loss [20]. While all these processes might reduce FA, myelin and axonal loss should
lead to increased water diffusivity. The possible reasons for these subtle NAWM
changes may result from Wallerian degeneration of axons transversing large le-
sions or the presence of small focal abnormalities beyond the resolution of con-
ventional MRI.

Gray Matter

Traditionally, MS was regarded as a demyelinating disease that mainly involved in
the white matter. More and more evidence supported the involvement of brain gray
matter in this disease. Based on the histogram analysis, some studies [15, 21, 22,
23] showed that MD histogram of brain GM from MS patients was different from
that of brain GM from sex- and age-matched healthy volunteers. This indicates that
brain GM is not spared by the MS pathological process and is consistent with a
previous post-mortem study [24] which showed that lesions are relatively frequent
in the cerebral GM of patients with MS. As a consequence, one explanation of
this finding might be the presence of a certain amount of discrete MS lesions in
the GM of MS patients, which go undetected on conventional MRI. An alternative
explanation of the MD changes in GM might be Wallerian degeneration of GM
neurons secondary to the damage of fibers transversing MS white matter lesions,
which is supported by the correlations found between T2 lesion volume and GM MD
[25]. The presence of GM damage in MS fits well with the frequent demonstration
of cognitive impairment in patients with MS [26].

Cognitive Impairment

Cognitive impairment can be seen in approximate 50% of MS patients [27], includ-
ing deficits in processing speed [28], memory [29] and higher executive function
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[30]. Rovaris et al. [31] examined the relationship between DTI and cognition in
RRMS patients with mild neurological disability. They found a moderate correla-
tion between MD of the GM and impairments of memory, speed of information
processing and verbal fluency. Lin et al. [32] found that the MD of the corpus callo-
sum correlated with cognitive impairment. Moreover, Benedict et al. [33] indicates
diffusion weighted imaging can predict cognitive impairment in MS.

Neuromyelitis Optica

Neuromyelitis optica (NMO) is a severe demyelinating disease characterized by
selective involvement of the spinal cord and optic nerves and is considered to fre-
quently spare the brain. Recently using quantitative MRI techniques, some authors
have investigated whether NMO has occult damage in the brain. Filippi et al. [34]
did not find any significant changes in 8 NMO patients using magnetization transfer
imaging (MTI). Rocca et al. [35] found occult damage in the NAGM of 10 patients
with NMO with the use of MTI and DTI. Using DTI histogram analysis, Yu et al.
[36] found significant abnormalities in the NAWM and NAGM in NMO patients.
Then using ROI analysis, they found that NMO patients had a higher average MD
and a lower average FA in ROIs being the continuation of the spinal white matter
tracts or optic nerve and a normal average MD and FA in corpus callosum without
direct connection with them. To further explain the diffusion abnormalities of brain
NAWM in NMO, Yu et al. [37] studied diffusion indices of the corticospinal tract
(CST), corpus callosum (CC), optic radiation (OR) and cingulum in NMO patients
without visible lesions in the brain. Compared with controls, both global and re-
gional analyses showed significant increases in MD and �23 of the CST and OR in
NMO, but not in any of the diffusion indices of the CC and cingulum. In NMO,
MD and �1 of the CST were correlated with motor function scores and MD and �1

of the OR were correlated with visual function scores. They concluded that axonal
degeneration secondary to lesions in the spinal cord and optic nerves is a cause for
NAWM damage in NMO.

Differentiating RRMS and RNMO

Both relapsing NMO (RNMO) and RRMS are recurrent demyelinating diseases. Al-
though they are different in onset age, sex preponderance, lesion distribution, attack
severity, CSF profile, pathological findings, and immunopathologic characteristics
[38, 39, 40, 41], they also have overlapping clinical manifestations, MRI and CSF
findings, which bring difficulties in differentiation. Since the optimal treatments for
the two disorders are different [42, 43], correct diagnosis critically affects the thera-
peutic outcome. To differentiate these two diseases, two methods have proposed:
two-dimensional histogram of MD and FA [44] and diffusion indices of corpus
callosum [45]. The former using two-dimensional histogram of MD and FA as
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classification feature, obtained a correct recognition rate of 85.7%, which was much
higher than that using feature of ADC or FA separately (59.5% for ADC, 76.2% for
FA). The latter used the MD or FA of the corpus callosum as classification feature
to differentiate these two diseases, The sensitivity and specificity for differentiation
were 92.31% and 93.48% for the FA and 88.46% and 89.13% for the MD.

Conclusion

DTI allows to quantify the amount of tissue damage of MS lesions and to detect
occult changes occurring in NAWM and GM of MS and NMO. With the technique
of DTI, we can speculate on the possible pathological substrates of such changes.
Post-mortem studies correlating DTI findings with histopathology are needed, as
well as longitudinal studies of patients with various MS phenotypes to elucidate
the correlation between evolving diffusion abnormalities and the development of
irreversible disability.
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Chapter 96
1H MRS Characterization of Cerebral
Metabolic Changes in Transgenic Mouse
Models of Alzheimer’s Disease

Xiaoxia Du and Hao Lei

Abstract Recently developed transgenic mouse models of Alzheimer’s disease
(AD) exhibit many features of human AD pathology. Proton magnetic resonance
spectroscopy (1H MRS) is a useful tool for characterizing and monitoring the
metabolic changes and the progression of the disease in both human AD patients and
transgenic mouse models of AD. In this paper, we review recent 1H MRS findings
in the transgenic mouse models of AD and compare the results obtained from the
animal models to those observed in human patients. The main 1H MRS findings in
the transgenic mouse models are significantly reduced cerebral N-acetyl aspartate
(NAA) and glutamate levels and significantly increased cerebral myo-inositol level.
These results agree well with the findings in human AD brains. It can be expected
that the combined use of 1H MRS and transgenic mouse models of AD will help us
accelerate drug discovery for AD.

Keywords Alzheimer’s disease ·magnetic resonance spectroscopy · animal model ·
transgenic mouse · brain · metabolism

Introduction

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly. The
two main hallmarks of the disease are deposition of �–amyloid (A�) plaques and
neurofibrillar tangles [1]. Currently a definitive diagnosis of AD is only possible
by postmortem evaluation. There is a great clinical need of biomarkers that can
be used for the diagnosis of AD with high specificity and sensitivity and for the
preclinical drug test. Transgenic (Tg) mouse models of AD have been developed for
mechanistic studies of the disease as well as for testing therapeutics. The Tg mice
express familial AD-related mutated amyloid precursor protein (APP) or presenilin
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(PS1 or PS2) genes [2], and show many features of AD pathology including the
development of extra-cellular A� deposits.

1H magnetic resonance spectroscopy (MRS) offers a non-invasive way to assay
cerebral metabolism in vivo, and has been widely applied in the studies of neurode-
generative disorders. It has been shown that AD patients often exhibit abnormalities
in cerebral metabolism, and AD-related metabolic alterations are thought to be re-
lated to the pathological processes at the molecular or cellular level [3]. In this paper,
we review the recent reports on 1H MRS-observable changes of cerebral metabolism
in the Tg mouse models of AD, and compare the findings in the animal models to
those observed in the AD patients.

Changes of NAA in AD

N-acetyl aspartate (NAA) is an amino acid found only in neurons of the adult brain,
and has been proposed as a putative marker of neuronal density. NAA level is also
reported to be related to the metabolic state of neurons [4]. A reduction of NAA is
commonly interpreted as a result of neuronal dysfunction or neuronal loss. The brain
of AD patients shows diffuse NAA reductions, involving a network of brain regions
including hippocampus, medial temporal lobes, parietal lobes, occipital lobes and
frontal lobes [5, 6].

Compared to the wild-type (WT) mice, the APP and SP2APP Tg mice show
significantly reduced NAA/total creatine (tCr) ratio in the frontal cortex [7, 8],
and the APP-PS1 Tg mice have reduced NAA/Cr ratio in both the cortex and the
hippocampus [3, 9, 10]. These observations are in accordance with the 1H MRS
findings in human AD patients.

Different strains of Tg mouse were found to have plaque load at different ages,
and 1H MRS-observed NAA reduction in the Tg mice correlates well with the
courses of plaque load and disease progression [8]. Significant NAA reduction
was found to occur the earliest in the APP-PS1 Tg mice at 6.5 to 9 months after
birth [10] and the latest in the PS2APP Tg mice at 20 to 24 months of age [8].
Clinically reduction of NAA has been used as an indicator of disease progression in
the AD patients, and to differentiate stable mild cognitive impairment (MCI) from
progressive MCI [11].

Changes of Glu and Gln in AD

Glutamate is an important and abundant excitatory neurotransmitter in the central
nervous system (CNS). At clinical field strengths (i.e., 1.5-3T), the resonance of
Glu overlaps severely with that of glutamine (Gln) so that the two metabolites are
often measured together as glutamate + glutamine (Glx) [12]. Measurements of
cerebral Glx level in AD patients have yielded somewhat inconsistent results. There
are reports showing that the Glx level is reduced in the occipital gray matter [13]
and cingulate region of AD patients [14], and the amplitude of Glx reduction is
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correlated with Mini-Mental State Examination scores [14]. However, there are also
results showing elevated Glx/tCr ratio in the temporal lobe of AD patients [15].

Compared to the WT mice, all three strains of Tg mouse showed significantly
reduced Glu/tCr ratio in the brain [3, 7, 8, 9, 10]. In addition, von Kienlin et al.
found a negative (though non-significant) correlation between cerebral Glu level
and plaque load [8]. Oberg et al. found a significant negative correlation between
the cerebral Glu level and the age of the Tg and WT animals [10]. More importantly,
with the Tg mouse models it would be possible to measure Glu and Gln individually
at high field strength so that the roles of the two metabolites in the pathology of AD
can be evaluated separately.

Changes of mIns and Tau in AD

Myo-inositol is a sugar alcohol that is thought to be a marker for osmotic stress and
astrogliosis. Many previous 1H MRS studies have found significant increased levels
of mIns in the temporal, parietal and occipital lobes of AD patients [12, 13, 15, 16].
However, there are also studies reported unchanged mIns levels in the paratrigonal
white matter and temporal lobe [11, 17]. Using NAA/mIns ratio as a marker for AD
has showed enhanced diagnostic sensitivity and specificity [18].

Cerebral mIns level has been found to change significantly with age in the APP-
PS1 Tg mice. Compared to the WT mice, The Tg mice have similar cerebral mIns
levels before 400 days of age [3, 10], but drastically increased cerebral mIns lev-
els after the age of 600 days [3, 9]. The increase in the cerebral mIns level has
been attributed to microglial activation, which may accelerate around 20 postnatal
months [3, 9]. The cerebral mIns level in the frontal cortex APP mice was found to
be similar to that in the WT mice. However, this strain of Tg mouse showed signifi-
cantly elevated level of taurine (Tau), a metabolite predominantly present in the glia,
in the frontal cortex [7]. No increase of cerebral mIns level or any other indicator of
gliosis was observed in the PS2APP Tg mice before 24 months of age [8].

Conclusion

1H MRS provides a useful tool in AD research. Noninvasive measurements of NAA,
mIns and Glu by 1H MRS in the Tg mouse models of AD correlate well with the
plaque load and histological results, thus can be used as surrogates for monitoring
the progression of the disease. More importantly, these Tg mice exhibit 1H MRS
profiles analogous to that present in human AD patients. Therefore it would be
attractive to use 1H MRS, because of its noninvasive and repeatable nature, for
treatment monitoring and response prediction when the Tg mouse models of AD
are used for drug test [19].
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Chapter 97
WLC Analysis of Lamprey Neural System

Liu Shenquan, Chen Shuchun and Wang Rubin

Abstract The paper simulates membrane potential of Lamprey neural circuit based
on WLC model. The influences parameter of RS and SR neuron stimulation are nu-
merically analyzed. The results show that left or right motoneuron will appear alter-
nately spike in circumstance of external stimulation. In alternate-current stimulation
the ISI sequences of motoneuron will have periodical increase. Also it shows trans-
forming of motoneuron frequent from left to right motoneuron. These results explain
the experiment phenomena when lamprey was influenced by electrical stimulation.

Keywords Lamprey · ISI · motoneuron · stretch receptor neuron

Introduction

The Vertebrate neural system of mammals is very complex. Its structure contains nu-
merous neurons form different central pattern generators. There are many specialists
doing research in lamprey experiment, especially on the rhythm caused by central
pattern generator [1]. The experiments study the influence of synaptic strength and
lamprey pattern activity by modulating dopamine concentrations and reveal essen-
tial properties.

In order to analyze the rhythm of neuron in the lamprey system, we not only use
the motoneuron rhythm to analyze the locomotor behavior, but also study the lam-
prey locomotor influenced by external stretching. For example, we can compute the
ISI (interspike interval) sequence of neuron spike, and then analyze the relationship
between external stimulation and locomotor frequency. As the lamprey system is
inhibited neural network the WLC model is used to describe the inhibition of the
system, which is composed of brain part and 1-segment neurons. We analyze the
influence of motoneuron inputted by external stimulation and discuss the changes
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of the neuron ISI sequence. The simulation results here explain the experiment phe-
nomena when we vary the external stimulation.

The Lamprey Network

Based on Sten Grillner’s experiment results [2], the lamprey network contains four
parts: brainstem neuron, stretch receptor neuron, CPG and motoneuron. There are
two kinds of stretch receptor neurons: SR-E neuron is excitatory stretch receptor
neuron, while SR-I neuron is inhibitory stretch receptor neuron. CPG is composed
of E, I, L neuron. These three neurons can generate motor rhythm. In CPG, E is
an excitatory interneuron, while L and I are two kinds of inhibitory interneurons. L
neuron can inhibit I neuron in the ipsilateral side. I neuron can inhibit spinal cord
cell in the contra lateral side. M is included in every segment.

The lamprey network’s synaptic connection is mainly inhibitory synaptic. So we
can use WLC model to simulate the head of lamprey neural system [3]. While the
excitatory synaptic in the lamprey network can be considered as the perturbation to
neuron. The WLC model including excitatory synaptic is described as followed:

dxi (t)

dt
= 1

τ1

{
xi (t)− 1

3
x3

i (t)− yi (t)− zi (t)[xi (t)− v]+ 0.35+ Si

}

+
∑

j �=i

E ji x j (t) (97.1)

dyi (t)

dt
=xi (t)− byi (t)+ a i = 1, 2, · · · , 14 (97.2)

dzi (t)

dt
= 1

τ2

⎧
⎨

⎩
∑

j

g ji G[x j (t)]− zi (t)

⎫
⎬

⎭ (97.3)

Where E ji is the strength of excitatory synaptic, which describes as j th neuron
excite i th. The parameters of WLC model can be seen references [3].

The Lamprey Model Analysis

Motoneurons Influenced by the Constant Stimulation
to SR or RS Neurons

1. The ISI sequence of motoneuron is analyzed when we give a constant external
stimulation Si = Ii to SR neuron or RS neuron. If we choose a set of parameters
of the model the alternating spike from neuron RS, L, E, I rhythms appear in
Fig. 97.2. These results conform to the experiment phenomena of lamprey [2].
We add constant stimulation to neuron SR-E or SR-I on the left or right side of
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Fig. 97.1 The head network of lamprey

Fig. 97.2 ISI sequence of M neuron by constant stimulation of left SR-I

lamprey network and compute the ISI sequence. Figure 97.2 show, when left
SR-I is given an increasing constant stimulation, the rhythm frequency of left
M will become slow first and then become fast. While we increase constant
stimulation to right SR-I, the rhythm frequency of left M will become fast first
and then become slow. These results conform to the experiment phenomenon
mentioned in reference [4].

2. When RS neuron is given constant stimulation, lamprey also shows alternate
property on two sides of neurons. In Fig. 97.3, it is apparent to see that RS
neurons have more information in increasing period phenomena. These re-
sults show the head of lamprey controls the body movement. The general
rule of controlling movements can be studied by more segments in lamprey
network.

The reference [5] shows, when the two sides of spinal cord are given a 100–200 �A
pulse or 20 Hz alternate stimulation, the symmetric rhythm phenomena would
appear in the neurons in lamprey’s dorsal. These results can be explained by model
results here.
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Fig. 97.3 ISI sequence of M neuron by constant stimulation of left RS

Motoneurons Influenced by the Alternate Stimulation
of SR or RS Neurons

1. We will study the influences of motoneurons when stretch receptor neuron or
RS neuron is given by alternate stimulation, Si = Ii · cos(wt). The ISI results
can be seen in the following, Fig. 97.4.

2. From Fig. 97.4, we can apparently see that ISI sequence of single motoneuron
occur symmetric phenomena. These phenomena can be described as alternate

Fig. 97.4 ISI sequence of M neuron by alternate stimulation of SR-E

Fig. 97.5 ISI sequence of M neuron by alternate stimulation of SR-I
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activity of lamprey. From Figs. 97.4-E1 and 97.4-F2, one can see the alternate
stimulation frequency of left or right SR-E increases, the general motor fre-
quency has no difference. In the same way, we can analyze the ISI sequence of
single motoneuron when left or right SR-I is given alternate stimulation. These
results can be seen in Fig. 97.5.

Discussion

In lamprey spinal cord, our numerical analysis shows the rhythm activity of the two
sides motoneuron. The result here shows, WLC model can describe the alternate
rhythm of neuron in two sides of lamprey system very well. We also use constant
or alternate stimulation of two sides SR neurons to analyze the influence of lamprey
rhythm. When single SR neurons are inputted by constant stimulation, the motor
frequency of two sides motoneuron will occur alternate phenomena. So that two
sides of muscles will transform from the contracting status to the relaxing status or
the inverse. This transformation can explain the forward swim or turning of lamprey.
When a single SR neuron is inputted by alternate stimulation, the general motor
frequency of one side motoneuron will be fast, while the general motor frequency
of the other side motoneuron will be slow. So the lamprey will bend from one side
to the other side. The ISI results here can explain lamprey’s spinal cord has stable
ability of controlling movements. This result shows that lamprey’s system has high
efficiency of information transmission. Using lamprey’s system to control robot’s
movement is also the hot spot of many specialist researches.
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Chapter 98
Hydrocephalus: A Realistic Porous-Media
Model with Geometry Based on Neuroimaging

Guillermo Narsilio, Xiaobin Shen, Hongxin Wang,
David Smith and Gary Egan

Abstract Hydrocephalus is a condition characterized by abnormal cerebrospinal
fluid flow and is usually diagnosed through shape measurements of the ventricular
system. In this work, actual brain and skull geometries obtained from MRI scans
are incorporated into numerical simulations of the cerebrospinal fluid flow through-
out the brain parenchyma Intracranial pressure and fluid velocity fields in the brain
tissue in hydrocephalus are calculated using finite element methods. A case-study is
used to summarize the procedure.

Keywords Hydrocephalus · intracranial pressure · CSF · numerical modeling ·
MRI · finite element method

Introduction

Hydrocephalus is a condition where abnormal flow of cerebrospinal fluid (CSF)
leads to pressure accumulation inside the skull leading to brain damage and other
complications [1] as a result of brain deformation. CSF is mainly produced in
the choroid plexus through rather complex process of fluid leaving capillaries and
subsequently being modified by ependymal cells. Its production rate ranges from
about 100 to 500–600 ml/day depending on age and weight [2]. CSF overproduc-
tion, under-reabsortion in arachnoid granulations or obstructions of normal CSF
pathways due to birth defects, accidents or infections, may prompt pressure redis-
tributions in the brain, and a change in the CSF volume.

Computational simulations of the CSF space and flow are still in their early stages
[3], thus a better hydrodynamic understanding of this condition may lead to new and
innovative treatments. Although some brain models for hydrocephalus have been
published during the last few years [4, 5] these models extensively simplify the
geometry and boundary conditions.
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In this paper, a novel use of a porous media fluid flow model with realistic do-
main geometry of the brain and skull based on MRI (Magnetic Resonance Imaging)
scans is proposed and implemented. The central aim is to demonstrate body forces
arising from fluid gradients on the neural tissue lead to the abnormal growth during
development of the brain. A case-study is used to exemplify these ideas.

Brain Model Geometry

Realistic geometries of brains and skulls from MRI scans are incorporated into
the multiphysics COMSOL finite element package. This requires three steps: (1)
MRI data acquisition, (2) Tissue classification segmentation, (3) Importation and
meshing.

Data from a 1.5 Tesla MR scanner are used (T1W, 1.5 mm coronal slices, TR
35 ms, TE 9 ms, 18 cm field of view; and T2W, 3 mm coronal slices, TR 4000 ms, TE
60/160 ms). Tissue classification segmentation is done using the Warfield’s adaptive,
template-moderated, spatially-varying statistical classification [6]. Similarly, axial
slides are segmented based on pixel (rather than voxel) values. To facilitate our
purpose, we focus on two (coronal and axial) slices (Fig. 98.1).

Hydraulic Model

It is assumed brain tissue can be treated as a porous material, with fluid flow through
the extracellular compartments of the brain [4, 5]. A Darcy’s model is employed to
simulate the basic physics of porous media fluid flow in a hydrocephalus patient.

The movement of CSF through the porous brain parenchyma is given by:

U = (k/ρC SF · g
)∇ p (98.1)

where U is the (Darcian) filtration velocity [m/s], k is the hydraulic conductiv-
ity [m/s], ρCSF is the fluid density [1000 kg/m3], g is the acceleration of gravity

Fig. 98.1 Coronal (a) and axial (b) MRI and tissue classification segmentation: White matter (red),
gray matter (gray), CSF (blue), myelinated white matter (yellow), basal-ganglia (green)
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[9.81 m/s2] and ∇ p is the pressure gradient [Pa/m]. Conservation of fluid mass
(assuming no CSF absorption in the brain tissues – this assumption may be easily
relaxed, but evidence for this is yet to be established), yields the governing equation
under quasi-steady state conditions:

∇ · [k/(ρC SF · g)∇ p
] = 0 (98.2)

Equation (98.2) must be supplemented with appropriate boundary conditions: CSF
production rate in the ventricles (i.e. a flux boundary conditions), no flux through
the skull, and pressure boundary condition in the subdural space, together with
continuity of fluid pressure and flow at the interface between white and grey
matter.

We distinguish two regions with different hydraulic conductivity k based on tis-
sue type (Fig. 98.1): kw = 1.542 × 10−7 m/s for the white matter [7], and a range
varying between kg = 1.542 × 10−8 m/s and kg = 1.542 × 10−9 m/s for the gray
matter [5, 7].

The CSF production rate is estimated in 100 ml/day for the infant analyzed here
[2], and the pressure in the inner surface of the skull is prescribed at pb = 650 Pa
(typical value for venous blood pressure) [4, 8].

Results and Discussion

We solve Eq. 98.2 numerically using the finite element method, on realistic 2D ge-
ometries (Section ‘Brain Model Geometry’). In this preliminary study, we explore
the effect of the likely k-values for the gray matter. Figure 98.2 summarizes the
results, showing CSF pressure and velocity fields. Figure 98.2a shows pressure dis-
tributions in the coronal and axial slices, for the case where kw = 1.542× 10−7 m/s
and kg = 1.542 × 10−9 m/s (high contrast hydraulic conductivity); and when
kg = 1.542 × 10−8 m/s (low contrast hydraulic conductivity). Figure 98.2b shows
the corresponding velocity fields. In other words, we compare cases where the hy-
draulic conductivity differs in the gray matter by one order of magnitude. CSF flow
paths are perpendicular to pressure equipotential lines.

Velocity and pressure fields are computed using these realistic domain geome-
tries for the first time, overcoming the usual simplified geometries currently found
in the literature. We have effectively developed procedures to include these realistic
geometries and parameters from MR images into numerical simulations.

In case of obstructive hydrocephalus, a large proportion of the CSF produced
in the ventricles flows throughout the brain parenchyma encountering much greater
resistance than following the normal ventricular and canal pathways. We note that
in poroelasticity theory, pressure gradients through the brain act as body forces in
the equilibrium equations describing balance of momentum. We postulate that these
body forces lead to mechanical deformation of the brain, abnormal growth during
development, and the characteristic shape of the head in hydrocephalus.
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Fig. 98.2 Pressure [Pa] (a) and velocity [m/s] (b) fields for a coronal and an axial slice. Com-
parison between high hydraulic conductivity impedance with kw = 1.542 × 10−7 m/s and
kg = 1.542 × 10−9 m/s (high contrast); and lower contrast when kg = 1.542 × 10−8 m/s (low
contrast)

In Fig. 98.2 (high contrast), the larger hydraulic conductivity impedance of the
gray matter concentrate the largest pressure gradients in the gray matter. This mod-
eling suggests that traction is applied to the outer cortex of the brain, pulling the
developing brain outward, followed by the deformation of the tissue upstream, and
dragging the ventricles walls outward.

Finally, further investigation will be done considering 3D geometry, anisotropy in
the hydraulic conductivity, losses of fluid into the venous and lymphatic, deforma-
tions predicted by poroelasticity, and evaluations of the re-distribution of hydraulic
pressure with the introduction of a shunt.
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Chapter 99
Pattern Classification of Visual Evoked
Potentials Based on Parallel Factor Analysis

Jie Li, Liqing Zhang and Qibin Zhao

Abstract Visual Evoked Potentials (VEPs) reflect the brain’s mental process to
specific stimuli, including perception and recognition. Feature analysis of VEPs
evoked by geometric figures is of significance in understanding visual neural mech-
anism and has potential applications in the field of brain computer interface and
biomedical engineering. We use Parallel Factor (PARAFAC) model to extract fea-
tures of the VEPs triggered by three classes of geometric figures, and construct the
computational model for class discrimination. PARAFAC is used to decompose the
wavelet transformed VEPs. Then by the proposed computational model, we can
project single trial data into the subspace spanned by channel × frequency × time
of the factors to obtain the feature vectors. We further use SVM to classify the
feature vectors of the selected two classes, achieving the highest classification
accuracy 80%.

Introduction

Visual Evoked Potentials (VEPs) represent the EEG response to visual stimuli
triggered by a series of flashes presented to the subject’s eyes, and are contam-
inated by other ongoing background EEG activity. Analysis of the EEG activity
in channel × t ime × f requency has been proven to be an effective method to
extract the features of evoked potentials [1, 2, 3, 4]. The traditional feature extrac-
tion methods such as PCA and ICA, can only analyze such data by unfolding the
multi-way arrays into matrices, and it excludes the specific information endorsed
by the modalities. The multi-way model PARAFAC has been an exploratory tool in
analysis of these data [5, 6].
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In this paper, we use PARAFAC model to analyze spatial-temporal-frequency
features of VEPs evoked by geometric figures, and construct a computational model
for class discrimination of single trial data.

Experiment Setup and Data Acquisition

Three healthy male subjects, aged from 21 to 30, participated in the experiment. In
each trial, one of geometric figures, the circle, square and triangle, was presented
to the subjects according to the sequence illustrated in Fig. 99.1. The frequency of
stimulus is about 15 Hz.

EEG signals were recorded, sampled at 1000 Hz and bandpass filtered between
0.1 Hz and 200 Hz by the NeuroScan System. Sixty-four channels of signals includ-
ing 62 channels of EEG and two channels of EOG were recorded. Each trial lasted
3500 ms. The data were cut into epochs(−200 ms to +1000 ms).

The PARAFAC Analysis

In this section, we will briefly introduce the PARAFAC model and propose a com-
putational model for class discrimination of VEPs.

The PARAFAC Model

A Parallel Factors Model (PARAFAC) of an N-way array T is a decomposition of
T in a minimal sum of rank-1 factors [7]. The classical approach of estimating the
PARAFAC model is using Alternating Least Squares (ALS), minimizing

f (A, B,C) =‖ T −
n∑

r=1

(Ar ◦ Br ◦ Cr ) ‖2 . (99.1)

Fig. 99.1 A stimulus sequence in one trial. The X and Y axis show the duration of the presence of
the figure stimulus and the relative size of the figure respectively
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where, the Ar ◦ Br ◦ Cr is the outer product of the r-th factor’s mode matrices
(To simplifying the illustration, we take the PARAFAC model of a 3-way array for
example).

In this paper, neither multi-way array, nor the mode matrices, can take negative
values, therefore the Non-negative Multi-Way Factorization (NMWF) algorithm [8]
was employed.

The Computational Model for Class Discrimination

A 4-way (channel× f requency× time× class) array of the Event-Related Spec-
tral Perturbation (ERSP) in assemble average data, ERSP (Nd×N f×Nt×Nc), where
Nd, N f , Nt , Nc is the number of channels, steps of frequency, time points, and
classes respectively, can be decomposed by the PARAFAC model and expressed by
the 4-mode matricization:

E RS P (Nc×Nd N f Nt) = D(C  B  A)T , (99.2)

where, the A, B, C and D is the channel, frequency, time and class mode matrix,
and the C  B  A is the Khatri Rao product of C , B and A. Given the ERSP of a
single trial data, denoted by X , the class mode matrix D′ of X can be obtained by
projecting X into the subspace spanned by the C  B  A using least squares.

D′ = (PT P)−1 PT X Nd N f Nt×1, (99.3)

where P = (C  B  A), and the X Nd N f Nt×1 is the 4-mode matricization of the
multi-way array X Nd×N f×Nt .

Simulations and Results

In this section, PARAFAC is applied to wavelet transformed VEPs, and the applica-
tion and performance of the proposed computational model will be given.

The VEPs exhibit a great diversity between subjects. For a certain subject, the
wavelet transformed EEG data given by ERSP is calculated in assemble average
data. The 4-way of ERSP (c, f,t,c) is the ERSP at channel c at frequency f at time
t in class c, which is calculated in the channel-time-frequency range (62 channel;
−200–1000 ms; 5–100 Hz) for each class. A twenty-factor PARAFAC model is cal-
culated to detect similarity and difference of the VEPs evoked by different figures.
Among those decomposition factors, two factors present significantly differences
between class 1, 2 and class 3 in the dorsal stream as shown in Fig. 99.2. It is
clear that those factors could reveal the differences among three classes especially
between class 1, 2 and class 3.

By the proposed computational model, we obtain the class features of single
trial VEPs, then use the SVM as the classifier, in which the Gaussian Radial Basis
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Fig. 99.2 Two factors present significantly differences between class 1, 2 and class 3

Table 99.1 The classification results

Subject Circle square % Circle triangle % Square triangle %

sub1 67.0 81.0 76.0
sub2 68.0 70.0 75.0
sub3 65.0 76.0 75.0

function (RBF) is used as the kernel function. The classification results are listed in
Table 99.1.

Discussions and Conclusions

The 4-way (channel× f requency×time×class) analysis of wavelet data (ERSP)
by PARAFAC model signify the VEPs evoked by figures could be detected in the
dorsal stream. Then the computational model for class discrimination is applied
to single trial VEPs, and the classification results demonstrate the proposed model
is efficient for classifying VEPs. However, the classification accuracy is still not
satisfactory, it is assumed that the EEG data is rather nosiy, resulting in some single
trial VEPs deviated too much from the mean activity.
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Chapter 100
How Can We Justify the Use of Lower Animal
Models to Understand the Pathophysiology
of Schizophrenia?

Anne-Laure Boutillier, Carlos Eduardo Macedo,
Marie-Josée Angst and Guy Sandner

Abstract Schizophrenia may result from an alteration of the communication be-
tween neurons which results in the perturbation of cognitive functions difficult to
analyse since symptoms do not exist in lower animals and most cognitive functions
are differently expressed than in humans. In the standard developmental model of
“Lipska–Weinberger”, a number of passively acquired memories were weaker than
in normal animals, whereas more stringent forms of learning were less impaired,
what reminds the difficulties of patients. They were interpreted as mismanagements
of the capacity to attend automatically to relevant factors of the environment. But,
our attempts to model the precise mismanagement of attention still remained unsuc-
cessful. We suggest that more refined behavioural investigations are needed, espe-
cially for understanding the management of mental representations. Considering the
cellular mechanisms of the disease is an other insight necessary for the development
of new therapeutic strategies.

Keywords Models of schizophrenia · brain development · attention · learning ·
memory · classical conditioning · instrumental learning · histone methylation

Introduction

New prospects for understanding psychopathological processes arose recently. They
were based on lower animal research, especially about schizophrenia. Any patho-
physiological study has to consider two facets: simulating the cause of a disease
and evaluating the consequences of the simulation. Simulating the cause needs to
speculate and focus on a specific cause of the disease (based on epidemiological,
clinical or biological findings in patients). We have to produce it experimentally.
This can be done only in lower animals for obvious ethical reasons. New prospects
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were provided by the dysconnection hypothesis of schizophrenia. It corresponds
to an alteration of the efficiency of information exchanges between separate neu-
ronal networks in the brain. This dysconnection would be the consequence of an
abnormal development of the brain combined with some epigenetic factors occur-
ring during puberty [1]. We simulate them by perturbing the brain development
with a neonatal lesion of the ventral hippocampus [2], knowing that it elicits abnor-
mal neuronal networks especially at the level of the nucleus accumbens. In other
words, the early suppression of the contribution of the hippocampal inputs to this
brain area is partially compensated which creates an altered meso-cortico-limbic
network [3]. It constitutes a prototypal neuronal dysconnection (modified brain
connectivity).

A crucial cognitive disability in patients is their difficulty to manage complex
mental representations of the world [4]. The linkage between the fragments of
memories is believed to result from neuronal synchrony between distant brain ar-
eas [5]. Synchrony is detectable in EEG records and gamma wave activity was
related to the synchronization process [6]. The hierarchy of memories could result
from their indexation by hippocampal oscillatory neuronal activities [7]. A coherent
memory representation is crucial since it guides the acquisition of new memories
through proper management of attention, which has been reported to be altered in
schizophrenia as soon as in its initial description [8]. It is postulated that the alter-
ation of specific aspects of attention would model what happens in schizophrenia.
We postulate three attention management mechanisms to be essential: (1) an in-
wired form of attention, tested by owershadowing of stimuli during learning where
the addition of a stimulus to a target to be remembered decreases its memories, (2)
a retrospective form of attention, tested by latent inhibition where the initial famil-
iarisation with a stimulus delays the capacity of an animal to predict a significant
outcome, and (3) a prospective form of attention where a targeted action enhances
the memory of the target.

We shall illustrate this approach with a number of data, some of which being
recently published [9], others being original.

General Methods

We used the classical Lipska–Weinberger model based on neonatal hippocampus
lesions in rats. Rats were anesthetized by isoflurane inhalation. Ibotenic acid (lesion)
or artificial cerebrospinal fluid (control) was bilaterally infused into the brain. The
tip of the injection needle was aimed at the ventral hippocampus. Once adults, the
lesioned rats were anesthetized for 15 min and MRI was performed on a scanner
operating at 4.7 T (SMIS). The brain was scanned from the frontal cortex to the
cerebellum by using consecutive 1-mm-thick coronal slices with a T2-weighted,
spin-echo fast imaging method sequence to detect the lesions. Rats selected for
their lesion and sham operated rats were used. Only rats with a substantial bilateral
lesion were included. They were submitted to different learning protocols to be de-
scribed below.
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Associative (Pavlovian) and Instrumental Learning
with a Reward as Outcome

Method

Two experiments were simultaneously conducted in two sets of rats. In one exper-
iment, a light or a tone preceded the delivery of two sweet food pellets on five
occasions every day. Rats explore progressively more and more the food recess to-
wards the end of the light or tone when it signals the occurrence of food (CS+) but
not when no food is provided (CS−). This corresponds to pure associative learning
(tone or light => food). In the other experiment, the rat had to learn to press 20
times (RR20) a bar to get a sweet beverage. The increasing bar-pressing rates – and
to some extend the nose poke activity searching for the reward – is indicative of
learning the action-rewarding outcome relationship. This corresponds to a typical
instrumental learning (action => beverage).

Result for Associative (Pavlovian) Conditioning

The graph represents the increasing nose poke durations during the last five seconds
of the stimulus that announced the pellets. It increased less for the lesioned rats and
not at all for the CS-control condition. This means that the lesion impaired but did
not totally suppress this form of learning.

Result for Instrumental Conditioning

The bargraph at the right of the figure represents the number of sessions required to
get stable bar-pressing rates. Both control (C) and lesioned (L) rats showed the same
capacity to learn the task. When tested after this learning stage, in conditions were
the outcome had been suppressed (extinction conditions) no difference was found
according to the reward used (polycose or sucrose), nor to the lesion status, nor to
the progressive extinction process.

Intermediate Conclusion

The most elementary learning method proved to be the more sensitive to the neona-
tal lesion. It did not consist of a suppression of learning but a decrease of its ef-
fect. This is reminiscent of some difficulty that did not exist when instrumental
conditioning was used. The major difference between both situations is that rats
had to trigger an activity in instrumental learning that necessitated more arousal
and some self-awareness. This is supposed to change the level of attention to the
situation experienced by the rat. For this reason, we had to explore the contribution
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of this factor. The diversity of protocols that may be used to explore attention let
us postulate that at least three different forms of management of attention must
be considered in lower animals. The first one (called “inwired form”) expresses
no more than the competition of simultaneously occurring stimuli. It generates the
“overshadowing” phenomenon. The second one expresses a competition between
the earlier memories of a situation and ongoing experience. It can be tested through
the “latent inhibition” phenomenon. The third one considers that animals predict
the outcome of their actions and pay attention to such outcomes much more that
for events that occur by chance. We developed original experimental strategies for
testing the latter.

Overshadowing and Latent Inhibition

Method for Testing Overshadowing

We tested several conditioning methods in which a stimulus was added to the to-be-
conditioned stimulus to decrease its salience. All of them provided the same result
with lesioned rats. We illustrate these results with the most standard method, using
conditioned emotional response. Briefly, a thirsty rat drinks water from a tube. While
it drinks, a flashing light is switched on. Basically, the rat remains at drinking. But
when the light had been used to announce an electrical shock administered to the
rat’s paws, it stops drinking for a more or less long period of time beginning with the
onset of the light. This arrest of activity, called freezing, was shorter when a tone
had been switched on simultaneously to the light during conditioning (not during
the test). It “overshadowed” the light.

Result of the Overshadowing Experiment

The bargraph represents the freezing durations in a logarithmic scale. Comparing
the durations between lesioned rats (left two bars) with the controls (right two bars)
shows a decrease elicited by the lesion. This means that for such a Pavlovian proto-
col also, there was a reduced expression of conditioning in lesioned rats. Notewor-
thy, it was not a reward that was used as outcome like in the preceding experiments,
but a punishment. There was a similar difference between the grey and hatched bars
in control and lesioned rats. The deleterious effect of the presence of a distracting
stimulus (the tone) during conditioning was the same in the control and lesioned
rats. Its effect in controls was of the same magnitude as the effect of the lesion.

Method for Testing Latent Inhibition

We illustrate also these results with the most standard method, i.e. using conditioned
emotional response. Based on its definition (see the slide), latent inhibition appears
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as a decrease in the effect of conditioning when a familiar stimulus is used at con-
ditioning rather than a new one. We used a tone. Testing latent inhibition requires
a three stage experiment: (1) pre-exposure to the to-be-conditioned stimulus – none
or another one being used in the control condition – (2) conditioning and testing.

Result of the Latent Inhibition Experiment

The bargraph represents the freezing durations in a logarithmic scale. Comparing
the durations between lesioned rats (left two bars) with the controls (right two bars)
shows the usual low conditioning elicited by the lesion. It illustrates that the re-
duced expression of conditioning in lesioned rats was reproducible. The difference
between the grey and hatched bars was the same in control and lesioned rats. This
difference expressed the deleterious effect of the pre-exposures on memories. Its
effect was of the same magnitude as the effect of overshadowing.

Second Intermediate Conclusions

The decreased sensitivity to the deleterious effect of lesion obtained in instrumental
conditioning cannot be explained by a basic difficulty to manage vigilance, aware-
ness or attention.

Prospects

Biological Modifications Within the Nucleus Accumbens

The neonatal lesion was done just when the axonal endings become stabilized by
their activity. The subsequent deprivation of some inputs to nucleus accumbens tar-
get cells (and also target cells in other brain areas) may produce some modifications
in the expression of the DNA in such cells. This reminds that such modifications
have been reported as possible causes of the disease. We started to investigate such
effects and found an hypo-expression of dimethylated histones together with an
over-expression of BDNF. It would be interesting to elicit directly such changes,
i.e. without destroying the ventral hippocampus. It could be achieved by injecting
into the brain methylating agents or other drugs known to interfere with the ex-
pression of the DNA. But the critical question is to select where the modification
has to be produced (nucleus accumbens or prefrontal cortex?) and when (early
postnatal period?). Such a decision is bound to pathophysiological hypotheses of
schizophrenia.

The Necessity to Focus on Specific Target Cognitive Processes

Many psychopathological models rest on basic behavioural observations. This
seems inappropriate for understanding their mechanism. Two directions of research
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may become helpful: (1) those evidencing archetypes of self-awareness in lower
animals and (2) those studying the biological mechanisms [10] and cognitive phe-
nomena [11, 12] by which the brain constructs a representation of the world. Re-
search on cognitive deficits of schizophrenic patients indicated that it is at this level
that may reside the key of the pathophysiology of schizophrenia.
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Chapter 101
Monkey Prefrontal Neuronal Activity
Modifications after Training
in a Cognitive Task

Xue-Lian Qi, Travis Meyer and Christos Constantinidis

Abstract In order to study how training to perform a cognitive task modifies ac-
tivity of neurons in the primate prefrontal cortex, we recorded neuronal discharges
and local field potentials from monkeys before and after training. Prior to training,
neurons responded to visual stimuli, demonstrated spatial and feature selectivity,
and maintained persistent discharges after the stimulus was offset. Neurons main-
tained these properties after training. Additionally, after training, activity during the
stimulus presentation was decreased in error trials compared to correct trials. Local
field potential power below 20 Hz was also diminished during stimulus presenta-
tions, after training. These results demonstrate the effects of training on prefrontal
neuronal activity as monkeys learn to perform a cognitive task.

Keywords Monkey · neurophysiology · prefrontal cortex · learning · memory ·
cognition

Introduction

The prefrontal cortex is known to play an important role in higher cognitive func-
tions. Prefrontal lesions cause deficits in the ability to represent information in
memory and to plan future actions, and prefrontal dysfunction has been implicated
in mental illnesses such as schizophrenia [1]. Several previous experiments have
sought to uncover how the discharges of prefrontal cortical neurons relate to sensory
and remembered information and to the execution of higher cognitive functions.
Early experiments revealed that prefrontal cortical neurons continue to discharge
after the offset of sensory stimuli that animals are required to remember [2, 3]. This
persistent activity is generally thought to constitute the neural correlate of working
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memory. In recent years, research has sought to identify neural correlates of more
complex operations [4, 5, 6].

These experiments have verified that the prefrontal cortex is activated during the
execution of complex cognitive tasks, however previous neurophysiological stud-
ies have been performed in animals highly conditioned to perform a stereotypical
behavior for hundreds of trials every day. Our understanding of prefrontal cortical
physiology relies heavily on the assumption that the patterns of activation observed
in monkeys trained to perform a task that engages working memory or higher cog-
nitive functions are the same under more natural conditions. We therefore wished
to examine how prefrontal cortical neurons encode the properties of visual of stim-
uli before the animals have been trained to associate stimuli and responses, and
what the effects of training to perform a cognitive task are on prefrontal neuronal
responses.

Methods

Two male, rhesus monkeys (Macaca mulatta) with no prior training were used in
the experiments. Neural recordings were performed in areas 46, 8, 45, and 12 of
the prefrontal cortex. Monkeys were first trained to fixate and were rewarded for
simply maintaining fixation while visual stimuli were presented in the screen. In
each trial two stimuli were presented with a 1.5 s delay period between them. The
second stimulus was also followed by a second delay period of 1.5 s, after which the
fixation point was extinguished and monkey was rewarded.

The monkeys were subsequently trained to perform an active task, requiring them
to remember the two stimuli presented in sequence and determine if they matched
each other or not. The active task involved the same stimuli used prior to training.
Additionally, after the second delay period, a green and blue square were presented
on the screen. The monkey was required to saccade to the green target if the two
original stimuli were the same, and to the blue target otherwise. The locations of
blue and green targets changed randomly from trial to trial.

Single neuron recordings were performed with arrays of 4–8 microelectrodes.
The electrical signal from each electrode was amplified, band-pass filtered between
500 and 8 kHz, and recorded. Local Field Potential (LFP) signals were sampled at
500 Hz and recorded at the same time from each electrode.

We determined whether a neuron responded to visual stimuli by compared neu-
ronal firing during stimulus presentation with the activity during fixation (paired
t-test; p < 0.05). We also compared neuronal activity between correct trials and
error trials in the active task. Neuronal firing rate was normalized for each neuron
by the best response in the correct trials. The difference between error trials and
correct trials was accessed by comparing averaged firing rate of the best response
stimuli (paired t-test, p < 0.05).

We performed a power spectrum analysis of LFP recording and calculated power
in different frequency ranges. Paired t-tests were performed for each frequency
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range between baseline and stimulus presentation. The population response was also
collected from all the locations and response from each location were averaged and
normalized by the peak power within the block.

Results

We recorded from 855 prefrontal neurons prior to training, during the passive fix-
ation task. We also recorded from 302 neurons after training, while the monkeys
performed the active task. We base our analysis on this dataset.

Pre-training

Prior to training, 254 (30%) neurons responded to visual stimuli with a significant
elevation of their firing rate above the baseline fixation (paired t-test; p < 0.05).
We refer to these as “visually responsive” neurons. Of those neurons 171 (67%)
neurons had significant selectivity for the spatial location of the stimuli (ANOVA test,
p < 0.05). Also, 87 (34%) neurons had significant selectivity for the features of
the visual stimuli we used. Of the visually responsive neurons, 52 (20%) continued
to discharge in the delay period following the first visual stimulus, with a signifi-
cant elevation in discharge rate over the baseline fixation (paired t-test; p < 0.05,
corrected for multiple comparisons).

We recorded local field potentials from 105 sites. LFP signals were averaged
across trials and power spectrum analysis was performed. LFP power spectra had
generally decreasing power for higher frequencies. We also observed two peaks at
the 10–20 and 40–60 Hz range.

Post Training

After we trained monkeys to perform a match/non-match task, 93 (31%) neurons
responded to visual stimuli with a significant elevation of their firing rate above the
baseline fixation. Of those neurons, 41 (44%) neurons had significant selectivity for
the spatial location of the stimuli (ANOVA test, p < 0.05) and 18 (19%) neurons
had significant selectivity for the feature of the visual stimuli. We also observed
25 (27%) neurons with persistent discharges in the delay period following the first
stimulus.

These results were based on analysis of correct trials, when the monkey correctly
identified whether the two stimuli presented on the screen matched each other, or
not. We additionally analyzed error trials in which the monkey incorrectly identified
a stimulus as a match instead of a non-match, and vice versa. We observed that in
error trials neuronal activity during the cue presentation was significantly decreased
than neuronal activity in correct trials (paired t-test, p < 0.05).
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We also recorded LFP results from 138 sites. LFP power showed that, compared
with pre-training, post-training power during stimulus presentation decreased in the
frequencies below 20 Hz.

Discussion

Our experiments addressed how responses of neurons in the prefrontal cortex are
modified by training to perform a cognitive task, requiring recognition of visual
stimuli. Our results suggested that prefrontal cortical neurons responded to visual
stimuli in a selective manner for their spatial location and features, even prior to any
training. A population of prefrontal neurons discharged in a persistent manner after
the offset of the stimuli, even though the monkeys were not trained or required to
remember them.

After training, we observed almost identical percentage of neurons that re-
sponded to visual stimuli, and no further increase in the percentage of spatially
and feature selective neurons. There was only a slight increase in the percentage of
neurons that exhibited significant persistent, delay activity.

After training, the activity observed during the stimulus presentation could pre-
dict whether a trial was likely to result in an erroneous discrimination. Error trials
were characterized by reduced mean firing rate during the stimulus presentation.

Local field potentials prior to and after training had similar spectral properties,
and we only observed a slight decrease in spectral power in frequencies below 20 Hz
after training, specifically during the second stimulus presentation.

Our results suggest that training to perform a cognitive task does not alter radi-
cally the properties of prefrontal cortical neurons, and that the prefrontal cortex of
experimentally naı̈ve animals already displays most of the properties that have been
described in animals trained to perform cognitive tasks.
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Chapter 102
Neural Substrates During Finding Target
Objects and Observing Natural
Phenomena: An fMRI Study

Jun-Ki Lee, Jin-Su Jeong, Il-Ho Yang and Yong-Ju Kwon

Abstract This study investigated neural substrates underlying subjects’ intentional
visual search while finding target objects and observing natural phenomena using
fMRI. Eight healthy, male, right-handed subjects participated in this study. Sets of
finding target objects and observing natural phenomena tasks were presented to and
performed by the subjects. The bilateral SPL and the occipital gyrus were activated
by both task sets, bilateral fusiform gyrus was activated only during finding tar-
get objects tasks. The left precentral gyrus, the left inferior frontal gyrus and the
culmen were activated only during observing natural phenomena tasks. The right
inferior frontal gyrus was found to be active in the main effect of observing natural
phenomena and the left postcentral gyrus was activated in the main effect of finding
target objects. Thus, expectation-controlled search may be associated with compar-
ison processes and goal-controlled search is related to both spatial and attentional
processes.

Keywords Visual search · top-down attention · bottom-up attention · superior
parietal lobule · fusiform gyrus · left inferior frontal gyrus

Introduction

Visual search is a complex mental process. Everyday visual search is guided not
only by sensory input, but is also largely determined by mental processing activi-
ties, such as perception, object recognition, and attention. Perception is a process
by which sensations are selected, organized and interpreted [1, 2] and is strongly
influenced by an individual’s experience, education and cultural values to interpret
input received by the body’s sensory receptors [1]. Object recognition is needed
to represent a combination of perceptual and semantic processes [2]. Visual search
is also engaged in multiple forms of attentional processing, including bottom-up
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(exogenous, stimulus driven) and top-down (endogenous, cognitively driven)
mechanisms [3]. According to studies on functional neuroimaging, current models
of visual search suggest that visual search is mediated by a widely distributed neural
network, with critical components located in frontal and parietal regions [3, 4, 5, 6].
These previous studies, however, have not examined real world intentional visual
search. Although many neurophysiological studies have tried to investigate visual
search, few have done so under natural conditions with highly complicated visual
environments and intentional free viewing. In the real world, objects rarely appear
instantaneously or in isolation. Instead, they are usually encountered in the situation
of exploring visually complex environments for intended objects.

Intentional visual search is controlled by a top-down mechanism which is based
on the observer’s current goals or expectation [7]. According to this notion, there are
two types of intentional visual searches: goal-controlled and expectation-controlled.
Good examples of these two types of searches are finding target objects and observ-
ing natural phenomena. What happens in a subject’s brain when she/he observes
natural phenomena and finds target objects? This study investigated the neural sub-
strates underlying a subject’s intentional visual search while finding target objects
and observing natural phenomena.

Materials and Methods

Eight healthy adults (all male, right-handed, aged 30–39) took part in the study
with informed consent and with the approval of the Ethics Committee of Korea
National University of Education. Two kinds of visual task sets were presented to
the subjects: a ‘finding target objects’ task set that required them to find specified
natural objects within an extremely puzzling picture related to the nature and an
‘observing natural phenomena’ task set that compelled them to observe a scene
associated with natural phenomena such as animals or plants. Figure 102.1 below
provides an illustration of the experimental design. After scanning, the subjects were
provided with two kinds of questionnaires; one on the finding target objects task set
and the other on the observing natural phenomena task set. Subjects were asked
to write down objects found and phenomena observed during the tasks. They also
partook in semi-structured interviews regarding cognitive strategies used during the
tasks.

Blood oxygen level-dependent (BOLD) images were obtained with a T2∗-weigh-
ted echo planar imaging (EPI) gradient echo sequence from a 3.0T MR scanner
(ISOL, KOREA) with standard head coil. The image parameters were as follows:
TR 3000 ms; TE 35 ms; a matrix size of 64 × 64 FOV 220 × 220 mm; and 5 mm
slice thickness with no gaps. Thirty axial EPI BOLD images were acquired.

The fMRI data were analyzed using SPM2. Statistical analysis was carried out
using one sample t-test to determine significant activation at group level. Voxels
were considered to be significantly activated when they passed a statistical threshold
of p < 0.0005, uncorrected.
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Fig. 102.1 The Experimental task set. Participants were instructed to find specified objects within
an extremely puzzling picture for the finding target objects task set, while the other task set required
them to observe and figure out biological phenomena in a natural picture

Results

Behavioral scores and the results of semi-structured interviews indicated that
subjects performed the tasks in the expected manner. The mean numbers of found
objects and observed phenomena in each picture for the two tasks are shown in
Fig. 102.2. On average, participants found 5.19 (±2.55) objects in each picture
for the finding target objects task, and 5.02 (±1.74) objects in each picture for
the observing natural phenomena task. There was no significant difference be-
tween the mean numbers (t = 0.44, p = 0.658). Retrospective reports, obtained
by the semi-structured interviews after fMRI scanning, highlighted phenomenal

Fig. 102.2 The behavioral results of biologists’ finding target objects and observing natural phe-
nomena. The shaded bar indicates the averaged number of objects found in each picture during
the finding target objects (FTO) tasks. Similarly, the white bar indicates the averaged number of
objects found in each picture during the observing natural phenomena (ONP) tasks. Error bars
represent standard errors
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Fig. 102.3 Surface-rendered
brain areas activated by
(a) finding target objects and
(b) observing natural
phenomena are shown here
after having been compared
to the baseline condition
(p < 0.0005, uncorrected for
multiple comparisons)

differences between the two conditions. Briefly, participants concentrated on finding
the specified goal objects during the finding target objects tasks whereas during
the observing natural phenomena tasks, they focused their attention on finding any
natural phenomena since there were no given goal objects.

fMRI results of simple effects are summarized in Table 102.1 and Fig. 102.3.
The simple effect of finding target objects (finding target objects – baseline) showed
enhanced activation in the bilateral superior parietal lobule, the bilateral occipital
gyrus, the cuneus and the bilateral fusiform gyrus. The simple effect of observing
natural phenomena (observing natural phenomena – baseline) revealed activation in
the left precentral gyrus, the left inferior frontal gyrus, the bilateral superior parietal
lobule, the bilateral occipital gyrus, the cuneus and the right culmen.

Discussion

Furthermore, activation of the left inferior frontal gyrus was found in the simple
effect of observing natural phenomena, whereas the right inferior frontal gyrus (BA
47) was found to be active in the main effect of observing natural phenomena only.
Right prefrontal engagement in the main effect may be due to the fact that this pro-
cess may exceed semantic processing [6]. In addition, the right inferior frontal gyrus
mediate explicit retrieval processes, involving comparison processes with newly
observed phenomena [6]. Thus, observing natural phenomena may be associated
with comparison processes, acceptance or rejection of observed phenomena during
expectation-controlled search. On the other hand, the result of the main effect of
finding target objects revealed activation in the left postcentral gyrus (BA 40). Mul-
tiple PET and fMRI studies reported brain activity related to spatial memory tasks
in BA 7 or 40 [6]. Moreover, it was emphasized the role of this region in atten-
tional top-down processed during mental imagery [8]. It is thus possible that the left
postcentral gyrus activation in the main effect of finding target objects reflects both
spatial and attentional processes.

In conclusion, the bilateral superior parietal lobule (BA 7) and the bilateral
occipital gyrius (BA 17, 18, 19) were activated by both the finding target objects
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Fig. 102.4 (a) The main effect of finding target objects [(finding target objects – baseline) –
(observing natural phenomena – baseline)] revealed activation in the left postcentral gyrus (BA
40) (−50, −29, 51; Z = 3.81). (b) %BOLD Signal change at (−50, −29, 51) show that the left
postcentral gyrus is more activated during finding target objects than observing natural phenomena.
(c) The main effect of observing natural phenomena [(observing natural phenomena – baseline) –
(finding target objects – baseline)] showed significant activation in the right inferior frontal gyrus
(BA 47) (28, 29, −1; Z = 3.66). (d) %BOLD Signal change at (28, 29, −1) show that the right
inferior frontal gyrus is more activated during observing natural phenomena than finding target
objects

and the observing natural phenomena tasks which suggests that the superior parietal
lobule is associated with target identification, visuospatial selection, spatial working
memory, attention shift, and top-down attention, while the occipital gyrus is related
to the extraction of visual features as well as to shape analysis and recognition. The
bilateral fusiform gyrus (BA 37) was activated only in the finding target objects tasks
proposing that this region is important for the perception of object form and features.
The left precentral gyrus (BA 6), the left inferior frontal gyrus (BA 13, 45), and the
culmen were activated only during the observing natural phenomena tasks showing
that the activation of these regions may reflect semantic encoding and retrieval and
the increase of verbal working memory for verbal strategy usage. Furthermore, the
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right inferior frontal gyrus (BA 47) was found to be active in the main effect of
observing natural phenomena and the left postcentral gyrus (BA 40) was activated
in the main effect of finding target objects. Thus, expectation-controlled search may
be associated with comparison processes, acceptance or rejection of observed phe-
nomena during observing natural phenomena. It is thus possible that goal-controlled
search is related to both spatial and attentional processes.
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Chapter 103
Changes in Brain Activation Induced by
Training of Hypothesis Generation Skills: An
fMRI Study

Yong-Ju Kwon, Jun-Ki Lee, Jin-Su Jeong, Dongkook Park and Il-Ho Yang

Abstract The aim of the present study was to investigate the learning-related
changes in brain activation that were induced by the training of hypothesis gener-
ation skills about biological phenomena. Eighteen undergraduate participants were
scanned twice with fMRI before and after training during a two-month interval.
The experimental group was trained through eight biological hypothesis generation
programs, but the control group was not given any hypothesis generation program
during the two-month period. The results have shown that the brain activation of the
trained group was increased in the left inferior and the superior frontal gyri which
were related to working memory load and higher-order inferential processes. How-
ever, the activation after training was decreased in the occipito-parietal route which
was associated with the perception and analysis processes of visual information.
Furthermore, the results have suggested that the DLPFC region is the critical area
for training of hypothesis generation skills.

Keywords Brain activation change · training-induced activation · hypothesis
generation skills · inferior frontal gyrus · superior frontal gyrus · fMRI

Introduction

A hypothesis is a proposition proposed as a tentative causal explanation for an
observed situation [1]. Generating and testing scientific hypotheses are key com-
ponents of the modern scientific method [2]. Specifically, hypothesis generation
has been regarded as one of the core reasoning processes in creative thinking for
scientific discovery [1]. From a cognitive psychological perspective, hypothesis
generation has been regarded as a causal inference [1, 3]. Making causalities in-
clude the perception and analysis of sensory information, the retrieval and activation
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of information within long-term memory, the short-term retention of information
within working memory, and the encoding of information into long-term mem-
ory [4].

On the neurological level, the left inferior prefrontal region mediates the retrieval
and stage of information within working memory [4]. The left superior prefrontal
cortex has been implicated in establishing higher-order inferential processes [5].
Thus, it is possible to suggest that the left inferior and superior frontal gyri play a
crucial role in generation of scientific hypothesis. In addition, the occipito-parietal
route is primarily responsible for perception and analysis of visual information,
while integration components are localized in the prefrontal cortex [5].

A number of studies have linked neuroanatomical changes to cognitive devel-
opment and the training of cognitive skills [6, 7]. Furthermore, Booth et al. (2003)
showed that greater frontal activation was associated with better performance on
cognitive tasks and better selective attention performance was associated with less
activation in parietal areas on visual perception tasks. Also, they suggested that
maturation is not only associated with increased activation in critical areas for task
performance, but also with decreased activation in non-critical areas.

According to prior studies, understanding the correlation of cognitive develop-
ment with neurological changes is valuable for improving thinking and reason-
ing skills [1, 8], and learning language, science and math [6]. However, no brain
imaging studies have explored developmental changes of brain activation before
and after receiving biological hypothesis generation training. Therefore, the present
study investigated brain activation patterns during biological hypothesis genera-
tion and brain activation changes related to the training of persons in hypothesis
generation.

Methods

Eighteen undergraduate participants (all female and right-handed, 20–25 years of
age) were scanned twice with fMRI, during two-month interval. All participants
had no history of neurological, psychiatric or major medical illness. The participants
gave informed consent for their participation in the study, which was approved by
the Ethics Committee of Korea National University of Education. Participants were
divided into two groups; each group consisted of nine persons. The trained group
was educated through eight programs of biological hypothesis generation for 60 min
each week throughout a two-month period that took effect between two fMRI scan-
ning sessions. The other nine participants comprised the control group and were not
given skill training throughout the two months. By utilizing the abduction model
for hypothesis generation [3], eight biological hypothesis generation programs were
developed and administered to the trained group. Each weekly training program
consisted of six steps: observing a situation, generating a causal question, analyzing
the question, representing experienced phenomena, cause representation, and con-
structing hypothesis. For example, in the root pressure activity, participants observed
a figure of sap oozed from a tomato stump and made a causal question, such as
“Why does the sap oozed from the stump?” After the analysis of the question, they
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represented similar phenomena and causes of the similar phenomena. Finally, they
constructed a biological hypothesis by using the causes, such as osmosis and root
pressure.

All participants were scanned twice with fMRI: before and after the two-month
period. During the fMRI session, three visual tasks were presented to trained and
control groups. In each task participants were shown a biological picture with a
causal question (e.g., Why is the monkey covered with white fur?). They were
asked to generate a biological hypothesis, i.e. a tentative causal explanation for the
question. Each task was performed for 30 s followed by a baseline stimulus of a
white crisscross on a black background for 12 s. Immediately after scanning, partic-
ipants were asked to write down hypotheses generated during the three visual tasks.
Once this requirement was fulfilled, participants then partook in semi-structured
interviews regarding cognitive strategies used during the tasks.

The participants’ biological hypotheses generated during fMRI scanning were
assessed. An explanation score was given to each hypothesis and represented an
averaged score for the three biological hypotheses. Each hypothesis was scored
by counting the number of explanations included in its hypothesis. For example,
if a participant wrote, “sugar particles moved from a more concentrated area to a
less concentrated area,” the hypothesis scored 4; for “sugar melted,” the hypothe-
sis scored 2. A comparison of explanation scores was made between pre-and post-
scanning tests to assess changes associated with hypothesis generation training. The
statistical significance of hypothesis generation skill training was tested through an
analysis of covariance (ANCOVA).

Blood oxygen level-dependent (BOLD) images were obtained with a T2∗-weigh-
ted echo planar imaging (EPI) gradient echo sequence from a 3.0T MR scanner
(ISOL, KOREA) with standard head coil. The image parameters were as follows:
TR 3000 ms; TE 35 ms; a matrix size of 64 × 64 FOV 220 × 220 mm; and 5 mm
slice thickness with no gaps. 30 axial EPI BOLD images were acquired.

Structural and functional images were analyzed using SPM2. Voxels were
considered to be significantly activated when they passed a statistical threshold of
p < 0.0005, uncorrected. This paper assessed the main effects of biological hy-
pothesis generation (hypothesis generation–baseline), the increase training effects
(post-training–pre-training) in each group and the decrease training effects (pre-
training - post-training) in each group. In addition, to precisely determine the effect
of training, BOLD signal changes were compared and the analyses of time courses
of hemodynamic responses were performed on four regions of interest (ROIs) which
were selected based on the effects of training and previous studies [4, 5]. The ROIs
were: the left superior frontal gyrus (BA 6), the left inferior frontal gyrus (BA 9),
the right insula (BA 13), and the left inferior parietal lobule (BA 40).

Results

The results of semi-structured interviews indicated that participants performed the
fMRI tasks in the expected manner. All of the participants successfully generated bi-
ological hypotheses. In retrospective reports, all participants answered that they had
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Fig. 103.1 Variation of the
means of explanation scores
for biological hypothesis
generation. Black boxes
indicate the average scores of
trained group and white
boxes indicate the average
score of control group. Pre =
pre-training, Post =
post-training. Error bars
represent the standard mean
error

focused their attention on generating biological hypotheses. Participants comprising
the trained group showed significantly higher explanation scores than those of the
control group due to training in the generation of biological hypothesis. The mean
score of the trained group was 2.33 (SD = 0.71) on the pre-test and 4.59 (SD =
1.10) on the post-test whereas the mean score of the control group was 2.00 (SD =
0.75) on the pre-test and 2.26 (SD = 0.72) on the post-test. Figure 103.1 shows the
variation of the means of explanation scores for the two groups.

Figure 103.1 highlights significant discrepancy between the scores of the con-
trol and trained groups on the pre-training test. Therefore, ANCOVA was con-
ducted to determine statistical difference between the post-training scores of the
two groups were. The means of post-training scores were compared using the pre-
training scores as a co-variate. The results of ANCOVA showed that the explanation
score of the trained group was significantly higher than that of the control group
[F(1, 17) = 25.00, p < 0.01].

The fMRI results are summarized in Table 102.1, Figs. 103.2 and 103.3. The
main effect (hypothesis generation – baseline) of hypothesis generation as shown in
Table 103.1 and Fig. 103.2a was activation in the left superior frontal gyrus (BA 6),
the left middle frontal gyrus (BA 6), the left inferior frontal gyrus (BA 9), the right
cingulate gyrus, and the bilateral cuneus (BA 17).

Fig. 103.2 Surface-rendered
brain areas activated by the
main effect (a) in all
participants, and the
increased areas of activation
due to training (red blobs of
b) and the decreased areas of
activation due to training
(green blobs of b) in the
trained group participants.
(See Table 102.1 for details)
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Table 103.1 Talairach coordinates of cortical activations during the task of biological hypothesis
generation by whole-brain analysis

Cortical region BA and
side

Talairach coordinates

X Y Z Z-value

Main effect (Hypothesis – baseline)
Frontal

Superior frontal gyrus 6 L –8 15 62 4.43
6 L –4 22 52 4.4

Middle frontal gyrus 6 L –24 13 58 4.63
–38 10 49 4.18

Inferior fontal gyrus 9 L –51 19 23 3.66
Limbic

Cingulate gyrus 32 R 2 21 41 4.4
Occipital

Cuneus 17 L –4 –79 11 4.98
–12 –79 8 4.45

17 R 6 –77 9 4.26
Training effect in control group

Increase [(Post – baseline)] – [(Pre – baseline)]
No survival voxels

Decrease [(Pre – baseline)] – [(Post – baseline)]
No survival voxels

Training effect in Training group
Increase [(Post – baseline)] – [(Pre – baseline)]

Frontal
Superior frontal gyrus 6 R 2 8 67 3.8

6 L –12 14 67 3.8
Inferior fontal gyrus 9 L –41 12 21 3.52

Decrease [(Pre – baseline)] – [(Post – baseline)]
Frontal

Precentral gyrus 4/6 R 26 –28 53 4.37
4/6 R 18 –28 62 4.34

Paracentral lobule 6 L –12 –25 47 4.25
Parietal

Inferior parietal lobule 40 L –30 –25 38 3.68
Others (Sub lobar)

Thalamus –10 –34 16 3.68
–10 –24 16 3.7

8 –32 15 3.8
Caudate –18 –36 22 3.5

–20 –36 20 3.78
Insula 13 R 38 –15 15 4.02

42 –12 23 3.36

Coordinates indicate location in Talairach space of the maximally significant voxel within each
significant cluster of activation (P < 0.0005, uncorrected). L = left hemisphere, R = right hemi-
sphere, Pre = pre-training, Post = post-training. Z-value refers to the Z -transformed t-statistic for
the maximally significant voxel within a cluster.



600 Y.-J. Kwon et al.

Fig. 103.3 %BOLD signal changes according to the effect of training and the time courses of
hemodynamic responses on four regions of interest (ROIs): the left superior frontal gyrus (BA 6
L), the left inferior frontal gyrus (BA 9 L), the right insula (BA 13 R), and the left inferior parietal
lobule (BA 40 L). On the %BOLD signal changes charts, black boxes indicate the average scores
of the trained group and white boxes indicate the average score of the control group. On the time
course charts, two types of %BOLD signal changes are plotted: green curves represent pre-training
and red curves represent post-training. Error bars represent standard mean error

In control group, there were no significant modifications of brain activations from
pre-training to post-training or vice-versa. On the other hand, both increased and de-
creased areas of brain activation training due to were observed in the trained group.
The increased areas of activation illustrated in Fig. 103.2b via red blobs showed
activation in the bilateral superior frontal gyrus (BA 6) and the left inferior frontal
gyrus (BA 9). The green blobs in Fig. 103.2b, on the other hand, highlighted the de-
creased areas of activation i.e. less activation in the right precentral gyrus (BA 4/6),
the left paracentral lobule (BA 6), the inferior parietal lobue (BA 40), the thalamus,
the caudate, and the right insula (BA 13).

The results of %BOLD signal change computations and time course of the hemo-
dynamic response in the left superior frontal gyrus (BA 6) and the left inferior
frontal gyrus (BA 9) revealed an increase in %BOLD signals in the trained group
on the post-training test as shown in Fig. 103.3. The %BOLD signal changes of the
trained group on the post-training test were significantly higher than those of the
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control group in the left superior frontal gyrus (BA 6) [F(1, 17) = 10.53, p < 0.01,
ANCOVA] and the left inferior frontal gyrus (BA 9) [F(1, 17) = 46.97, p < 0.01,
ANCOVA]. For the other two ROIs: the right insula (BA 13) and the left inferior
parietal lobule (BA 40), the results of ROI analyses showed a decrease in %BOLD
signals in the trained group due to the experimental training. The %BOLD signal
changes of the trained group on the post-training test were significantly lower than
those of control group in the insula (BA 13) [F(1, 17) = 0.16, p < 0.01, ANCOVA]
and the left inferior parietal lobule (BA 40) [F(1, 17) = 9.08, p < 0.01, ANCOVA].

Discussion

The hypothesis generation training produced increased activations of the bilateral
superior frontal gyrus (BA 6) and the left inferior frontal gyrus (BA 9) in trained
group (Fig. 103.2b, red blobs). On the other hand, decreased activations where seen
in the right precentral gyrus (BA 4/6), the left paracentral lobule (BA 6), the in-
ferior parietal lobue (BA 40), the thalamus, the caudate, and the right insula (BA
13) in trained group (Fig. 103.2b, green blobs). These findings are consistent with
the suggestion that cognitive development is supported by changes in patterns of
brain activation, including an increase of activation in critical areas and a decrease
in others [9]. Furthermore, the present results might be explained by “the neural
efficiency hypothesis” [10]. According to the hypothesis, participants that generate
hypotheses well used a limited number of brain circuits, thus requiring minimal glu-
cose usage while participant poor at generation used more circuits, some of which
were inessential to the generation of hypotheses which reflected higher overall brain
glucose metabolism.

Figure 103.3 shows that the results of %BOLD signal change computations and
time courses of the hemodynamic response on the left superior frontal gyrus (BA 6)
and left inferior frontal gyrus (BA 9) reveal increased activations because of training.
The increasing patterns of %BOLD signal changes in these regions are consistent
with the increasing pattern of explanation scores of behavioral results. These brain
areas have been claimed to be involved in higher-order inferential processes (the
left superior frontal gyrus) and working memory (the left inferior frontal gyrus)
[4]. Therefore, it is suggested that the trained group’s increased ability to generate
hypotheses might be correlated with the acceleration of working memory retrieval
and higher-order inferential processes.

The results of %BOLD signal change computation and time courses of the hemo-
dynamic response on the insula (BA 13) and the left inferior parietal lobule (BA
40) highlighted decreased activations because of training. Several studies have sug-
gested that the insula (BA 13) is associated with uncertainty in linking cognitive and
affective components [11]. Thus, it is possible that the decreased activation of the
insula reflected the trained group’s increased confidence in hypothesis generation
after experiencing the experimental training. Moreover, the signal decrease in the
left inferior parietal lobule (BA 40) hints at a practice-associated disengagement of
visual analysis processing. The inferior parietal lobule has been shown to play a



602 Y.-J. Kwon et al.

relevant role during the processing of visually complex stimuli [12]. Therefore, it is
suggested that the participants in trained group more efficiently analyzed the visual
situation for biological hypothesis generation after receiving training than before
experiencing the training.

In conclusion, results of the main effect showed that recruitment of the left in-
ferior frontal gyrus was driven by increased working memory load and superior
prefrontal cortex recruitment reflected higher-order inferential processes during hy-
pothesis generation. In addition, activation of the occipito-parietal route was due
to perception and processes involved in visual information analysis. Furthermore,
trained participants showed more frontal areas and less occipito-parietal route ac-
tivations which are associated with better performance. It may be concluded that
developmental changes are associated with an increase of activation in critical areas
as well as a decrease of activation in non-critical areas in biological hypothesis
generation.
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Chapter 104
Early Access and Integration of Meaning
Indicated by Pitch Accent: A Mismatch
Negativity Study

Xiaoqing Li and Yufang Yang

Abstract Mismatch negativity (MMN) was used to examine the on-line processing
of pitch accent relative to different information state. An oddball design, using
Chinese spoken sentences and picture context, was applied. It was found that mis-
match response were significantly larger for experiment condition than for control
condition. The results indicated that listeners could access and integrate the meaning
of pitch accent into discourse context in the early stage of processing.

Keywords MMN · pitch accent · information state · semantic integration

Introduction

Pitch accent reflects the relative prominence of a particular word, or phrase in a
certain prosodic structure. Speakers tend to place pitch accent on new information,
while leaving given information deaccented. Compared with inconsistent accentu-
ation, consistent accentuation facilitates speech processing [1]. Recently, ERP has
also been used to study pitch accent processing. Some studies found that both miss-
ing pitch accent on new information and superfluous pitch accent on given informa-
tion, evoked negative-going effect resembling N400 component [2]. However, other
studies found that only missing pitch accent on new information evoked a negative
deflection [3].

For the role of pitch accent in speech processing, many questions remain open.
First, behavioral studies indicated that crucial information about incoming words
and their context can be processed within 200 ms after the onset of the critical word
[4]. It was unknown whether, in the early time window, the meaning conveyed by
pitch accent can be accessed and integrated into discourse context. Previous stud-
ies couldn’t answer this question because of the latency of N400. Second, whether
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both missing pitch accent on new information and superfluous pitch accent on given
information evoke ERP responses.

The aim of this study was to investigate the on-line processing of pitch accent
relative to different information state during the early stage of access. Mismatch
negativity (MMN) was used which is elicited by infrequent acoustic events (deviant
stimuli) occasionally occurring among frequently repeated sounds (standard stim-
uli). The MMN usually peaks around 100–250 ms after a stimulus change [5], so
it was suitable for studying the physiological basis of the early speech comprehen-
sion processes. The oddball design was used in two conditions. First, two pictures
were presented visually to serve as discourse context for a spoken sentence. Second,
spoken sentence was presented without context.

Experimental Procedures

Subjects and Stimuli

Sixteen right-handed subjects participated in the experiment; all of them were native
speakers of Mandarin Chinese. None of them had any neurological impairment.

Two pictures were presented visually in succession. During the appearance of the
second picture, a spoken sentence was presented , then a
red rectangle appears) with an embedded critical word “red”. The critical word was
either accented or deaccented. The sentences were edited to keep the word preceding
“red” (namely, “then”) was exactly the same in all conditions.

In the experiment situation, first, “accented-new” (standard): a blue rectangle
followed by a red rectangle made the word “red” as new which was consistently
accented. Second, “accented-given” (deviant): a red triangle followed by a red rect-
angle made “red” as given which was inconsistently accented. Third, “deaccented-
new” (deviant): a blue rectangle followed by a red rectangle made “red” as new
which was inconsistently deaccented. In addition, for the word preceding “red”
(namely, “then”) in “accented-given” and “accented-new” condition, there is no cor-
respondence between pitch accent and information structure, just the mere effect of
“picture” (red-triangle vs. blue-rectangle). In the control situation, just the sentences
were presented. Sentences with “red” accented served as standard stimuli, the deac-
cented version as deviant stimuli, hence just mere effect of “pitch” (deaccentuation
vs. accentuation).

Evoked Potential Recording and Analysis

EEG was recorded (0.01–40 Hz, sampling rate 500 Hz) from 64 Ag/AgCl electrodes.
EEG and EOG data were amplified with DC amplifiers (Neuroscan). All electrodes
were referenced to the left mastoid online, and were re-referenced offline to linked
mastoids. Impedances were kept below 5 k�.
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Fig. 104.1 Left: Grand-averaged ERPs for the deaccented-new (red) and accented-given (green)
as compared to frequent accented-new (blue); difference waveforms dNew (dashed red), Pitch
(dashed blue), aGiven (solid red), and Picture (solid blue). Left: scalp potential distributions for
difference waveforms: “deaccented-new”–“accented-new”, “accented-given”–“accented-new”

Subjects were asked to watch the pictures appearing on the screen, and neglect
the sentence. The effective measuring time of 90 min was divided into two ses-
sions with five blocks for experiment session (standard: 75%, 800 trials; deviant:
25%, 100 trials) and two blocks for control session (standard: 75%, 300 trials; de-
viant: 25%, 100 trials). The order of the two sessions was counterbalanced between
subjects.

The raw EEG data were 1–30 Hz bandpass filtered and were screened for eye
movements, muscle artifact, electrode drifting, and amplifier blocking in a critical
window ranging from 100 ms before to 800 ms after critical word onset. Trials con-
taining such artifacts were rejected (5.5% overall).

The mismatch response was obtained by subtracting the averaged response to
the standard stimuli from the averaged response to each deviant stimuli (dNew:
“deaccented-new”–“accented-new”; aGiven: “accented-given”–“accented-new”;
Pitch: “deaccentuation”–“accentuation”; Picture: “red-triangle”–“blue-rectangle”)
per subject.

Mean amplitude computed in the time window of 160–220 ms (MMN) was
used. The ANOVAs were conducted on electrodes (F3/Fz/F4; C3/Fz/C4; P3/Pz/P4).
First, two ANOVAs were performed based on original waves: “DN ANOVA” with
Deaccented-new (deaccented-new vs. accented-new), Laterality (left, midline, right)
and Anteriority (frontal; central; parietal) as independent factors; “AG ANOVA” with
Accented-given (accented-given vs. accented-new), Laterality and Anteriority as in-
dependent factors. Second, another two ANOVAs were performed based on differ-
ence waves. One was “Missing-pitch ANOVA”, Missing-pitch (dNew vs. Pitch) ×
Laterality × Anteriority; the other was “Superfluous-pitch ANOVA”, Superfluous-
pitch (aGiven vs. Picture) × Laterality × Anteriority.

Results and Discussion

“DN ANOVA” revealed a significant interaction between Deaccented-new and
Anteriority [F(2, 15) = 4.35, p < 0.05] and a main effect of Deaccented-new
[F(1, 15) = 24.34, p < 0.0001], indicating that “deaccented-new” evoked a
larger negative deflection than “accented-new”. Subsequent simple-analysis showed
that the Deaccented-new effect reached significance in all of the three levels of
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Anteriority (frontal, central and parietal) [F(1, 15) = 20.13, p < 0.0001;
F(1, 15) = 28.13, p < 0.0001; F(1, 15) = 10.05, p < 0.01], but showed maxi-
mum effect in the central areas. “AG ANOVA” resulted in a significant main effect
of Accented-given [F(1, 15) = 5.28, p < 0.05), indicating that “accented-given”
evoked a larger negative deflection than “accented-new”.

“Missing-pitch ANOVA” and “Superfluous-pitch ANOVA” resulted in main effect
of Missing-pitch [F(1, 15) = 5.34, p < 0.05], main effect of Superfluous-pitch
[F(1, 15) = 6.57, p < 0.05] respectively, indicating that difference wave “dNew”
being more negative than difference wave “Pitch”, and difference wave “aGiven”
being more negative than the difference wave “Picture”.

The major results of this study were that “deaccented-new” and “accented-given”
elicited larger negative deflections (MMN) than consistent pitch accent respectively.
Further analysis revealed that the MMN effects were indeed evoked by the corre-
spondence between pitch accent and information state, not just by the differences
in the physical feature of the stimuli, since the MMN effects in the experimental
condition were significantly larger than those in the control conditions.

Previous ERP studies have already proved that pitch accent influenced on-line
discourse processing [2, 3]. The novel finding of this study was that the effect of
pitch accent on discourse comprehension occurred in the early time window. Around
within the first 200 ms after critical word onset, the listener had accessed the mean-
ing indicated by pitch accent and integrated it into discourse context. This study also
proved that both the missing pitch accent on new information and superfluous pitch
accent on given information are identified in the early stage of processing.

The results of this study also had important indications for MMN itself. At be-
ginning, the MMN was found to be an indicator of acoustic change detection. Sub-
sequently MMN response characteristics were also found to change with the lexical
status of a stimulus, with grammaticality of a word string, and with the meaning
of words [6]. This study deepened previous studies by showing that MMN was
sensitive to the semantic match between the meaning indicated by pitch accent and
discourse context indicated by pictures, and that the MMN could appeared even
when the spoken stimuli were exact the same and only the visually context being
different. Those added evidences to the insight that MMN can indicate processes at
“higher” levels of language processing, such as semantic context integration.
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Chapter 105
Electric Stimulation of Optic Nerve Fiber:
A Simulation Study

Qingli Qiao, Wei Zhang, C.L. Vencent and Qiushi Ren

Abstract A mathematical model optic nerve fiber was presented. In the model, the
main active nodal channels include fast Na+, persistent Na+, slow K+ and a fast
repolarizing K+ (A-current), and activation and inactivation parameters expressions
are given at 22◦C. By computer simulation, the main features underlying action
potentials (AP) in optic nerve fibers can be able to generate. The simulation results
is consistent with the experimental data and that of other models.

Keywords Optic nerve · mathematical model · ionic channels

Introduction

The optic nerve is a key object regarding research on visual prosthesis [1]. More
precisely an insight on stimulation threshold is a key point for optic nerve selective
stimulation hoping for artificial vision. Previously, the FCM model had been devel-
oped especially for the retinal ganglion cell based on voltage clamp studies in tiger
salamander and rat retina [2]. These studies have identified at least five intrinsic ion
currents, which appear to play a role in generating nerve impulses. A Model for the
Electrically Stimulated Retina has been constructed by Rattay using FCM model [3].
However, due to the thin diameter of optic nerve fibers, extensive channels dynamics
studies cannot be conducted directly, but previous pharmacological and electrical
studies has pinned down the main features of the mechanisms underlying the nerve
impulse in the rat optic nerve (RON). Based on existing membrane models and
pharmacological experimental data, a model of optic nerve was presented by Oozeer
et al. [4]. which is called here OVLD model though through adjusting the maximum
conductances and the gating kinetics of three ionic currents: Fast potassium current
Persistent sodium current Slow potassium current [4].

In this paper, a new version of complete OVLD model was presented by adding
leakage conductance and leakage Nernst potential value EL. The leakage Nernst
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potential value EL was selected for the system to remain in equilibrium at the resting
potential. As ion channel gating is usually specified for a given temperature, the
activation and inactivation parameters expressions in the model are given at 22◦C.
Because of its interest in vision prosthesis, the main phenomenon underlying action
potentials (AP) in those myelinated fibers is reproduced.

Model of Optic Nerve

The RON experiments [5, 6] had shown the rough mechanism of AP generation in
RON is widely believed to be as follows: in presence of 4-aminopyridine (4-AP),
increase of spike duration, depolarizing afterpotential (DAP) followed by a spike
frequency dependent and tetraethylammonium (TEA) sensitive hyperpolarizing af-
terpotential (AHP).

Based on various experimental facts, The depolarization of AP of RON is due
to fast Na+ channels, the repolarization to a 4-AP-sensitive K+ current is similar
to the A-current found in other experiments [7]. The DAP present in mammalian
motor axons was suggested to be due to a persistent, noninactivating Na+ current,
the AHP being attributed to a slow K+ current [8].

In a space–clamp condition, a single node model with ionic currents (including
leakage) and capacitive current being summed according to Kirchoff’s law:

c
dv

dt
+
∑

ionic

iionic = istim (105.1)

where t is the time (ms), v is the transmembrane potential (mV), c is the mem-
brane capacitance (�F cm−2) and istim is the applied stimulation current density
(�A cm−2).
Following the Hodgkin-Huxley theory [9], the general form of the ionic current
density is

iion = gionx p yq (v − Eion) (105.2)

where gion is the maximum conductance density for a given ionic current (mS cm−2),
x and y are, respectively, the activation and inactivation gating variables, ranging
from 0 to 1, with associated exponents p and q, Eion is the Nernst potential for the
ion underlying the current. For a non-inactivating current, y = 1, while x = y = 1
for a passive leakage current.
The time and voltage dependence for the gating variable x (or y) are given by:

dx

dt
= αx (v)(1− x)− βx (v) · x (105.3)

The activation and inactivation parameters expressions at 22◦C are given below.
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Fast sodium current:

INa = gNam3h(v − ENa) (105.4)

αm(v) = 5.65(v + 20.4)

1− e(−20.4−v)/10.3
; βm(v) = −0.2612(v + 25.7)

1− e(v+25.7)/9.16
;

αh(v) = −0.0876(v + 102)

1− e(v+20.4)/11
; βh(v) = 3.2478

1+ e−(v+19.8)/13.4

(105.5)

Fast potassium current:

IA = gAa3b(v − EK ) (105.6)

αa(v) = 0.1134(v + 40)

1− e−(v+40)/5
; βa(v) = 0.0088 · e−(v+36.5)/18.4;

αb(v) = 0.152e−(v+60)/20; βb(v) = 2.28

1+ e−(v+30)/10

(105.7)

Persistent sodium current:

Ip = gp p3(v − ENa) (105.8)

αp(v) = 0.0342(v + 27)

1− e−(v+27)/10
; βp(v) = −0.000571(v + 34)

1− e(v+34)/10
(105.9)

Slow potassium current:

Is = gss(v − EK ) (105.10)

αs(v) = 0.064

1+ e−(v+77.5)/0.5
; βs(v) = 0.0154

1+ e−(V+102.5)
(105.11)

Leakage current:

dx

dt
= αx (v)(1− x)− βx (v) · x (105.12)

Simulation Procedure

A space–clamp system was simulated. Ionic current models from different existing
membrane models were considered:

c
dv

dt
= −gNam3h(v − ENa)− gAa3b(v − EK )

− gp p3(v − ENa)− gss(v − EK )− gL (v − EL )+ istim

(105.13)
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Table 105.1 The parameters in the space–clamp model

Parameters Values

Nodal capacitance (c) 2 �F cm−2

Maximum fast Na+ conductance (gNa) 750 mS cm−2

Na + Nernst potential (ENa) 48 mV
Maximum persistent A-current conductance (gA) 446 mS cm−2

K+ Nernst potential (EK) −98.6 mV
Maximum persistent Na+ conductance (gp) 1.41 mS cm−2

Maximum slow K+ conductance (gs) 40 mS cm−2

Nodal leakage conductance (gL) 2 mS cm−2

Leakage reversal potential (EL) −90 mV
Resting potential (vr) −80 mV

The stimulus was delivered as a current injection in the node. Equations system was
solved using backward Euler implicit integration scheme [10] in Matlab, with an
integration time step of 0.005–0.05 ms. The parameters in the simulation is shown
in Table 105.1.

The resulting models of ionic currents were able to reproduce the action potential
kinetics consistent with these of the original OVLD model [4].

Results

The resulting model has threshold values (Fig. 105.1) consistent with anterior study
[4]. The rheobase value is 0.43 mA cm−2. For a 0.2 ms current pulse, the stimulating
threshold is about 620 �A cm−2.

The response of the space–clamp system to a 0.2-ms suprathreshold mono-
current pulse is illustrated in Fig. 105.2. Action potential duration was doubled and
reached 3 ms when the A-current was suppressed.

Fig. 105.1 Strength-duration
curve computed for the
complete model
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Fig. 105.2 Response to a
mono-stimulation. Response
of the complete model with
(continuous line) and without
(dashed line) the persistent
A-current

When repetitive stimulation (I = 600 �A, PW = 0.2 ms) was applied at 100 Hz,
each pulse elicited an action potential. As shown in Fig. 105.3, at the end of the
train, a small afterpotential occurred. When IA was set to zero, an AHP also fol-
lowed the spike train, but this time it was larger. In normal conditions there is no
AHP. In presence of 4-AP there is an activity dependent AHP. Action potentials are
truncated. Simulation matched well with experimental recordings [5, 6].

In Fig. 105.4, the post-action potential threshold variations with time are illus-
trated. A 1-ms 150% suprathreshold conditioning stimulus was followed by an iden-
tical successive test stimulus and amplitude of the second spike was determined. The
ratio of the amplitude of the second spike to the first spike is introduced and plotted
against the inter-stimulus interval. The excitability of second spike expressed by
its amplitude is increased with the inter-stimulus interval. Simulation matched well
with experimental recordings [5].

Fig. 105.3 Membrane
potential response to a
100 Hz, 100 ms duration
suprathreshold stimulation,
with (bold line) and without
(thin line) the persistent
A-current
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Fig. 105.4 Amplitude
refractoriness. Two identical
successive stimuli were
delivered to the model and
generated two AP. The ratio
of the amplitude of the
second spike to the first spike
is plotted against the
inter-stimulus interval

Conclusions

The work in this paper proposes a mathematical model in which the main active
nodal channels including fast Na+, persistent Na+, slow K+ and a fast repolarizing
K+ (A-current) were added. The model was able to generate the following features:
in presence of 4-AP, increase of spike duration, depolarizing afterpotential (DAP)
followed by a spike frequency dependent and tetraethylammonium (TEA) sensitive
hyperpolarizing afterpotential (AHP).
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Chapter 106
EEG Dynamics During Nitrous Oxide
Inhalation in Healthy Male Participants

Brett L. Foster, Mathew P. Dafilis, Nicholas C. Sinclair and David T.J. Liley

Abstract Despite nitrous oxides (N2O) wide and historic clinical use, its quan-
titative effects on electrical brain function are still poorly characterised. Here we
report on improved attempts to characterise the quantitative EEG dynamics of N2O
inhalation in healthy males. Results show varying concentrations do not suppresses
resting spectra, but rather enhance alpha/beta power.

Introduction

Research into the utility of the processed electroencephalogram (EEG) as an index
of patient state during anaesthesia has sharply risen over the past decade. Although
many of these monitoring devices show promise, there are consistent insensitivities
across monitors for specific types of anaesthetic agents [1], in particular the disso-
ciative agents such as nitrous oxide (N2O). N2O is widely employed as an analgesic
and sedative agent, often used as an adjuvant gas with other general anaesthetics
(GA) for surgical anaesthesia. However, recent investigations have shown that a
number of monitors inadequately index the effects of N2O inhalation on the EEG
[2, 3, 4], and thus patient state (i.e. anaesthetic depth).

Common GA agents (e.g. sevoflurane) produce an approximately dose-dependent
suppression of EEG resting frequencies (alpha: 8-15 Hz & beta: 15+Hz), resulting
in a sleep-like slow wave dominance. N2O, together with other dissociative agents
ketamine and xenon (Xe) are of special interest owing to their somewhat paradox-
ical, though understudied, enhancement of resting EEG [2, 5, 6], promoting alpha
and beta power.

Most GA achieve their clinical effects by the suppression of large scale neu-
ral populations [7] via the potentiation of gamma-amino-butyric-acid (GABA)

B.L. Foster
Brain Dynamics Research Unit, Brain Sciences Institute, Swinburne University of Technology,
Melbourne, Australia
e-mail: bfoster@bsi.swin.edu.au

R. Wang et al. (eds.), Advances in Cognitive Neurodynamics,
C© Springer Science+Business Media B.V. 2008

617



 

 

 

 

 



618 B.L. Foster et al.

inhibitory neurotransmission at GABAA receptors [8]. In contrast, dissociative
agents are believed to act by antagonising the excitatory glutamatergic N-methyl-
d-aspartate (NMDA) receptor [9].

Although there have been serious attempts to quantitatively characterise the
spatio-temporal EEG during general anaesthesia [10], dissociative anaesthetics have
only received relatively minimal quantitative investigation (e.g. [11]). Therefore, the
following study aimed to quantify EEG dynamics induced by N2O inhalation in
healthy male participants.

Method

With approval of the authors’ institutional human ethics committee, participants
were recruited for a single recording session, each being randomly allocated to one
of three possible conditions. The three conditions constituted three levels of N2O (1:
20%, 2: 40% & 3: 60%), each accompanied with oxygen (O2, 1: 80%, 2: 60% & 3:
40%, respectively). All participants had to pass a general medical examination and
be in good health before involvement in the study, along with providing informed
written consent.

Recording sessions involved three five minute baseline EEG recordings of eyes-
open, eyes-closed and eyes-closed auditory continuous performance task (aCPT).
After these baselines a 20-min N2O condition EEG recording was performed. For
the N2O condition the first 5 min involved equilibration of the required gas concen-
tration. Once equilibrated, the concentration was maintained for 10 min, followed
by a 5-minute washout period of pure O2. During the entire condition participants
performed the same aCPT.

EEGs were recorded using two coupled EEG systems resulting in a 64 channel
montage. Sixty-two channels where dedicated to the acquisition of scalp EEG, whilst
the remaining two electrodes where used for auxiliary electrooculogram (EOG) and
electromyogram (EMG). The 62 channel EEG montage was positioned and digitized
according to the international 10:20 standard system, with a linked ear lobe reference.
Electrode impedance was maintained below 10 k� for all recordings. All electrophys-
iological data was acquired continuously (non-epoched) with 500-Hz sampling and
bandpass filter (0.1–70 Hz) in a noise minimized recording laboratory.

Mixed gases were delivered via a closed Bain co-axial breathing circuit, with
expired gases being collected in a large capacity Douglas bag. Estimation of gas ab-
sorption was performed via an infrared gas analyzer, which provided values of N2O
content, carbon dioxide (CO2) content and respiratory frequency via a low volume
sampling line. Heart rate and O2 saturation were obtained using pulse oximetry.

Results

Time series acquired from 14 participants were analysed, where for condition 1
(20%) n = 5, condition 2 (40%) n = 5 and condition 3 (60%) n = 4. However, two
participants from condition 3 did not complete the full testing protocol. Preliminary
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Fig. 106.1 60%, participant 3. (a) spectrogram for channel Oz, with (b) showing the SEF 95% for
this channel. (c) Power spectrum for all channels, over the period of 600–700 s, with (d) showing
the topographic distribution of 10 Hz as marked (black line) in (c)

inspection of frequency power suggested that none of the conditions produced any
major suppression of the resting EEG spectrum. In most cases an alpha (≈10 Hz)
power oscillation was dominant. Curiously in the 60% condition alpha power is
suppressed not long after gas equilibration, and reemerges several minutes later,
before being once more suppressed (at Oz). However, with the loss of alpha power
there is an increase in the 95% spectral edge frequency (SEF 95%), suggesting a
spectral shift to the right. This unforseen effect was shown also in the other eligible
60% participant. Inspection of anterior electrode sites showed a similar though less
defined time course for the alpha band. Figure 106.1 presents the findings for a
single participant under condition 3.

Discussion

Sedative concentrations of N2O/O2 mixture did not greatly modify the standard
resting eyes closed EEG spectra. Like other dissociative anaesthetics N2O ei-
ther maintained or promoted resting alpha/beta frequencies depending on concen-
tration. This finding supports the growing literature which suggests that NMDA
based anaesthetics produce electrocortical arousal, differing from the suppression
of GABAA based GA [12]. Interestingly, at the highest concentration of 60%, two
participants showed a systematic return of alpha power during the maintained con-
centration. Such findings are likely to underlie the insensitivities of most anaes-
thesia monitors to N2O/O2 adjuvant anaesthesia and dissociative anesthesia more
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generally. As linear measures provide a limited explanation for the paradoxical re-
lationship between drug effect and EEG response, nonlinear time series analysis
methods are currently being implemented by the authors. Indeed, future parameters
for DOA monitoring will have to incorporate such effects in the development of
more stable diagnostic devices.
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Chapter 107
Penalized Regression Methods in the Source
Analysis of Face Recognition

Mayrim Vega-Hernández, Eduardo Martı́nez-Montes,
Jhoanna Pérez-Hidalgo-Gato, José M. Sánchez-Bornot
and Pedro Valdés-Sosa

Abstract Recent developments in the field of variable selection through penal-
ized least squares regression provide means for the analysis of neuroscience data.
Particularly, combinations of non-convex penalties allow for sparse solutions and
other unexplored properties that are especially attractive in their application to e.g.
EEG/MEG inverse problem. Here, we explore the use of these techniques for the
source analysis of a cognitive process, namely, the recognition of faces. Found
sources are in agreement with previous studies and new methods, based on com-
bination of penalties, provided for more physiologically plausible solutions.

Keywords Multiple penalized least squares · EEG · inverse problem

Introduction

Currently, the need for developing advanced statistical tools that deal with a huge
amount of data has become apparent, especially in Neuroscience, where the main
challenge is the analysis of neuroimaging data in which the number of hidden pa-
rameters to estimate is much greater than the number of observations. This is the
case of the well-known inverse problem (IP) of the Electroencephalogram (EEG),
which consists in the identification of the neural current sources inside the brain
generating the voltage field measured over an array of sensors distributed on the
scalp surface. The mathematical relation between these voltages (v) and the Primary
Current Density (PCD, j) can be written as a system of linear equations:

v = Kj+ � (107.1)

where K comprises the geometrical and electrical properties of the model as-
sumed for the head and is known as the electric lead field. This system is highly
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underdetermined since the number of unknown generators inside the brain is much
higher than the number of sensors. Therefore, there is no unique solution and the IP
is ill-posed.

The additional or prior information or constraints used for obtaining a unique
solution characterizes each of the known inverse solutions [1]. Also, different ap-
proaches have been used (Bayesian, Dipole fitting) but the most popular is the
regularization, which is equivalent to a penalized least squares (PLS) regression.
Here we will formulate the IP as a general multiple penalized least squares (MPLS)
model that encompasses most of known inverse solutions as particular cases. The
use of non-convex penalty functions allows to obtain new types of inverse solutions,
whose performance is explored here in the source analysis of face recognition.

Multiple Penalized Least Squares Model
for EEG Inverse Problem

PLS models have been recently addressed as multivariate linear regressions with
regularization with efficient and flexible techniques to solve variable selection prob-
lems. Interestingly, the use of non-convex penalty functions (non-quadratic, contin-
uous and with a singularity at the origin) has been proposed to obtain sparse and
stable solutions, such as the LASSO [2]. Moreover, this approach can be extended
to use any combination of penalties, leading to solutions sharing properties such as
smoothness and sparseness, e.g. Elastic Net (ENet) combines an l1-norm (LASSO)
term and an l2-norm (Ridge). These non-linear models are estimated by modified
Newton-Raphson algorithms such as the Local Quadratic Approximation [2] and the
Minorization-Maximization [3], which have been generalized to deal with multiple
penalty terms simultaneously, i.e. to tackle MPLS models [4]. The EEG inverse
problem can be expressed as a MPLS model in the form:

ĵ = arg min
{
‖v−Kj‖2

2 +
∑

λm Pm( j)
}

(107.2)

where
∑
λm Pm(j), with m = 1. . .M , includes all prior information given by the

penalty functions Pm(j), weighted by corresponding regularization parameter λm .
Several inverse solutions can be obtained as particular cases of Eq. 107.2 [5]. Here
we will compute those shown in Table 107.1. As a first approximation, optimal
values for λm will be found by generalized cross-validation [6].

The data set analyzed corresponds to an experiment in which subjects are pre-
sented faces or non-faces images followed by a mask image after 30 ms. They are
required to respond if a face was presented or not. Sources of the evoked N170 peak
were sought separately for correct and incorrect responses, averaged across 80 trials.
Since the PCD is a vector field, the Hotelling’s T 2 statistic was computed across 10
subjects for each condition and for the difference between them.
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Table 107.1 Some inverse solutions derived from MPLS model. M (m j as j-th row) and R are
linear operators. I is the identity matrix and L a discrete version of laplacian operator

Name
∑
λm Pm (j) Inverse solution

Ridge λjT MT Mj If M = I → Minimum Norm;
If M = L → Loreta

Lasso λ
∑∣∣m j j

∣∣ If M = I → Lasso;
If M = L → Lasso Fusion

ENet λ1jT RT Rj+ λ2
∑∣∣m j j

∣∣ If M = R = I → ENet;
If M = R = L → ENet L

Source Localization of Face Recognition

Figure 107.1 shows the maximum projection in the coronal view of the estimated
Hotelling’s T 2 images by the three methods for each condition: correct response (top
row), incorrect response (middle row) and difference between correct and incorrect
responses (bottom row).

Fig. 107.1 Hotelling’s T 2 images of sources of evoked N170 peak corresponding to correct face
detection (upper panel), incorrect face detection and (middle panel) and the difference between
correct and incorrect detection (bottom panel)
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Significant activations for the correct and incorrect detection of faces were found
in the inferior and superior temporal gyrus right, in the middle frontal gyrus (right
and left) and in the middle occipital gyrus right, although with different degree of
activation. These areas are in agreement with previous fMRI studies on the con-
scious perception of faces [7]. Significant differential sources were located mainly
in the inferior temporal gyrus right and middle occipital gyrus right.

On the other hand, it can be seen that the use of l1-norm (Lasso Fusion) allows
for much more concentrated (sparser) solutions, dividing the usual low resolution
image given by LORETA in several sources. ENet L, in turn, offers solutions with
intermediate degrees of sparseness and smoothness (that can be tune through the
regularization parameters) and are more physiologically plausible.

Conclusions

In this work we have studied the applicability of a general statistical tool, namely,
MPLS, to the source analysis of face recognition. Three inverse solutions (one
known, LORETA and two newly proposed, Lasso Fusion and ENet) found sources
in agreement with previous studies with fMRI. Also, it was shown that by com-
bining l1 and l2-norm terms, ENet L offers solutions with intermediate levels of
blurring between LORETA (too smooth) and Lasso Fusion (too sparse). However,
this method strongly depend on the selection of optimal regularization parameters,
therefore, further research on the use of appropriate (non-linear) methods is needed.

In general, the formulation of the EEG inverse problem in terms of an MPLS
model, offers the possibility of exploring a wide range of new kind of inverse solu-
tions.
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Chapter 108
Brain Activation During Scientific Hypothesis
Generation in Biologists and Non-biologists

Il-Sun Lee, Jun-Ki Lee, Jin-Su Jeong and Yong-Ju Kwon

Abstract Functional magnetic resonance imaging was used to investigate neural
substrates during scientific hypothesis generation, in particular, the differences be-
tween biologists and non-biologists. Eight biologists and eight non-biologists were
scanned while they performed eight scientific hypothesis generation tasks. The re-
sults of this study revealed that activation of the left inferior and middle frontal gyri
were driven by increased working memory load. The superior medial prefrontal
cortex reflected higher-order inferential processes. The activation of the right hip-
pocampus reflected the retrieval and encoding of information in long-term mem-
ory. The increased activity in the occipito-parietal route was due to perception and
visuo-spatial working memory. Furthermore, the biologists’ exceptional abilities for
hypothesis generation were correlated with the acceleration of memory retrieval and
higher-order inferential processes.

Keywords Scientific hypothesis · biologist · non-biologist · causal inference ·
prefrontal cortex · hippocampus · occipito-parietal route

Introduction

A hypothesis is a proposition proposed as a tentative causal explanation for an
observed situation [1]. Generating a scientific hypothesis is a key component of
modern scientific method [2]. How do scientists generate hypotheses in actual sci-
entific situations? From a cognitive psychological perspective, hypothesis genera-
tion has been regarded as a causal inference [1]. It has been suggested that making
causality is clearly rooted in perceptual experience. However, it goes beyond percep-
tion in inferring relationships. It includes the retrieval and activation of information
within long-term memory (LTM), the appropriate selection of relevant semantic
information, the short-term retention of information within working memory, and
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the encoding of information into LTM [3]. The left inferior prefrontal cortex me-
diates the controlled retrieval and selection of information for integration and en-
codes new information in LTM, which is associated with the hippocampus [4]. Both
the posterior inferior prefrontal cortices and the dorsolateral prefrontal regions are
implicated in short-term retention of verbal semantic information within working
memory. However, previous studies have not examined real causal inference for
scientific hypothesis generation, and the studies were only performed on popula-
tions with a relatively normal range of intelligence. Therefore, the present study
investigated neural substrates during scientific hypothesis generation, in particular,
the differences between biologists and non-biologists.

Methods

Eight healthy biologists (all male, right-handed, aged 30–39) and eight healthy non-
biologists (all male humanists, right-handed, aged 26–39) took part in the study
with informed consent and with the approval of the Ethics Committee of Korea Na-
tional University of Education. All of the biologists had doctorate degrees in biology
while three of the non-biologists had doctorate degrees in the humanities or social
sciences and the remaining five non-biologists were students currently undertaking
postgraduate study in the department of elementary education. Eight visual tasks
were presented to the biologists and non-biologists. In each task, participants were
shown a biological picture with a causal question (e.g., Why is the monkey covered
with white fur?). They were asked to generate a scientific hypothesis, a tentative
causal explanation for the question. Each task was performed for 30 s followed by a
baseline stimulus of a white crisscross on a black background for 12 s. Blood oxygen
level-dependent (BOLD) images were obtained with a T2∗-weighted echo planar
imaging (EPI) gradient echo sequence from a 3.0T MR scanner (ISOL, KOREA)
with standard head coil. The image parameters were as follows: TR 3000 ms; TE
35 ms; a matrix size of 64× 64 FOV 220× 220 mm; and 5 mm slice thickness with
no gaps. 30 axial EPI BOLD images were acquired.

After scanning, participants were asked to write down all hypotheses gener-
ated during the eight visual tasks. They were also asked to express the degree
of confidence in their hypotheses by checking a point on the Likert seven-point
scale – 0, least confident; 6, most confident. Once these requirements were fulfilled,
participants then partook in semi-structured interviews regarding cognitive strate-
gies used during the tasks. Structural and functional images were analyzed using
SPM2. Statistical analysis was carried out using one sample t-test to determine
significant activation at group level. Voxels were considered to be significantly acti-
vated when they passed a statistical threshold of p < 0.0005, uncorrected.

Results

The results of semi-structured interviews indicated that the participants performed
the tasks in the expected manner. All of the participants, except one non-biologist
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on only one task, successfully generated scientific hypotheses. On average, the bi-
ologists’ the degree of the confidence was 3.18 (±0.48) and the non-biologists’
was 2.10 (±0.64). There was significant difference between the mean confidences
(t = 3.784, p < 0.005). In retrospective reports, all participants answered that they
had focused their attention on generating scientific hypotheses.

The fMRI results are summarized in Fig. 108.1. The ‘main effect’ (hypothesis
generation – baseline) of hypothesis generation as shown in Fig. 108.1a revealed
activation in the left superior frontal gyrus, the left middle frontal gyrus, the bi-
lateral precentral gyri, the left medial frontal gyrus, the left inferior frontal gyrus,
the right superior parietal lobule, the left precuneus, the right hippocampus, the
left superior occipital gyrus, the bilateral lingual gyri, the bilateral middle occipital
gyri, the bilateral culmens, the right declive, and the right insula. The ‘expert effect’
[(biologist – baseline) – (non-biologist – baseline)] illustrated in Fig. 108.1b via red

Fig. 108.1 Surface-rendered brain areas activated by the main effect (a), expert effect (red blobs
of b), and non-expert effect (green blobs of b). The signal changes (%BOLD signal changes) by
the expert effect are greater in biologists than non-biologists in four regions (c): MFG.(L) = the
left medial frontal gyrus, Hippo.(R) = the right hippocampus, PC.(L) = the left posterior
cingulate, and Cu.(L) = the left culmen. The %BOLD signal changes by the non-expert effect
are greater in non-biologists than biologists in four regions (d): IFG.(R) = the right inferior frontal
gyrus, STG.(R) = the right superior temporal gyrus, CC.(R) = the right corpus callosum, and
Ins.(L) = the left insula
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blobs showed activation in the left medial frontal gyrus, the right hippocampus, the
left posterior cingulate, and the left culmen. The green blobs in Fig. 108.1b, on the
other hand, highlighted the ‘non-expert effect’ [(non-biologist – baseline) – (biol-
ogist – baseline)] i.e. activation in the right inferior frontal gyrus, the left superior
temporal gyrus, the right corpus callosum, and the right insula.

Discussion

According to the main effect (Fig. 108.1a), the left inferior prefrontal gyrus (BA
44, 45) as well as the left dorsolateral prefrontal (BA 6, 9) regions appear to hold
information within working memory [3]. Several working memory studies have also
revealed activation of the left frontal cortex and the right cerebellum to be associ-
ated with increased working memory demands [5]. Therefore, it is possible that the
recruitment of the left inferior and middle frontal gyri and the culmen were driven
by the increased working memory load associated with establishing inference to
generate scientific hypothesis. In addition, the left superior medial prefrontal cortex
(BA 6) has been implicated in establishing integration of information [6]. Thus,
it is also possible that activation of the left superior medial prefrontal cortex dur-
ing hypothesis generation reflects higher-order inferential processes. Additionally,
the main effect was found to be consistent with the suggestion that the right hemi-
sphere possesses an advantage for causality perception and the left hemisphere has
a greater ability to infer causality [7]. In the frontal lobe, the left hemispheric dis-
tribution observed in present study may have been predominantly achieved through
left hemisphere processing for inferring causality during scientific hypothesis gen-
eration.

The expert effect produced activations of the left medial frontal gyrus (BA 6), the
right hippocampus, the left posterior cingulate (BA 31) and the right culmen during
hypothesis generation (Fig. 108.1b). The computations of %BOLD signal change in
these four regions also showed that activities in all regions were greater in biologists
than non-biologists (Fig. 108.1c). These areas have been claimed to be involved in
higher-order inferential processes (the left medial frontal gyrus), episodic memory
retrieval (the posterior cingulate) and long-term memory (the hippocampus) [4, 6].
Therefore, it is suggested that the biologists’ exceptional abilities for hypothesis
generation may be correlated with the acceleration of memory retrieval and higher-
order inferential processes.

On the other hand, the non-biologist revealed activations of the right inferior
frontal gyrus (BA 47), the left superior temporal gyrus (BA 41), the right corpus
callosum, the right insula (BA 13) during hypothesis generation (Fig. 108.1b). The
%BOLD signal change in these four regions also showed that activities in all re-
gions were greater in non-biologists than biologists (Fig. 108.1d). Several studies
have suggested that the insula is associated with uncertainty in linking cognitive and
affective components [8] and the right inferior frontal gyrus is involved in hard task
conditions [9]. Thus, it is possible that the activations of the insula and the inferior
frontal gyrus during hypothesis generation reflected non-biologists’ low hypothesis
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confidence. Actually, behavioral results showed that non-biologist confidence in
generated hypotheses was lower than biologist confidence.

In conclusion, this study showed that the recruitment of the left inferior and mid-
dle frontal gyri and the culmen were driven by the increased working memory load,
and the superior medial prefrontal cortex reflected higher-order inferential processes
during hypothesis generation. In addition, the activation of the right hippocampus
reflected retrieval and encoding of information in LTM, and the increased activity in
the occipito-parietal route was due to perception and visuo-spatial working memory
of visual information. Furthermore, the biologists’ exceptional abilities for hypothe-
sis generation were correlated with the acceleration of memory retrieval and higher-
order inferential processes, and the non-biologists’ low hypothesis confidence was
linked to the activations of the insula and the inferior frontal gyrus.
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Chapter 109
Wavelet Analysis of ERP Recordings
for Dual Tasks in Man

Jie Wu, Zhuo Yang and Tao Zhang

Abstract The study was to examine the application of wavelet packet method to
electrophysiological responses recorded during single and dual task performance.
Relative energies of both EEG alpha and beta frequency bands were significantly
higher in the single task conditions compared with that of the dual task condi-
tion (P< 0.05). The data demonstrated that relative energy measurements based on
wavelet transform could be a useful alternative approach to analyzing short duration
EEG signals on a time scale of seconds.

Introduction

EEG and ERP data sets are non-stationary in both time and space. Furthermore, the
specific components and events tend to be transient, prominent over certain scalp
regions, and restricted to certain ranges of temporal and spatial frequencies [1].
Nonlinear dynamics have been shown to characterize a large number of complex
physiological systems, however, the techniques and algorithms for nonlinear anal-
ysis used so far have been derived from low-dimensional dynamic systems [2]. It
is hard to apply the techniques and algorithms in calculating EEG signals, which
have a high-dimensional structure. Another approach to measurement of nonlinear
trends in EEG data is quantification of complexity from the point of view of in-
formation theory. To this end, EEG data can be analyzed with the help of entropy
measurements such as approximate entropy (ApEn) and sample entropy (SampEn)
[3]. The wavelet packet transform (WPT) represents a generalization of the wavelet
methods and it has recently been applied to various science and engineering fields
with great success. Based on wavelets and their related function called wavelet
packets wavelet method could efficiently measure and manipulate non-stationary
signals, such EEG and ERP. Wavelet analysis could provide flexible control over
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the resolution with which neuro-electric components and events can be localized in
time, space, and scale. There are some relations between nature brain rhythms and
functions. For example, alpha frequency responses have been reported in association
with, e.g., attention, alertness and semantic memory and beta frequency responses
have been associated with the activity of the motor cortices and recently also with
cognitive processing [4, 5]. In this investigation, wavelet packet method was used
to analysis short time series EEG data collected from participants in both single
and dual task conditions. It has been proposed that cognitive control mechanisms
are required to orchestrate performance of more than one task at a time [3]. If
this is the case then it is expected that the energy distribution of the EEG signals
should be different in the multiple task condition compared with the single task
condition.

Method

None of the participants were taking medication, have a history of head injury, sub-
stance abuse, or any significant medical or psychiatric problems that may impact
on electrophysiological responses. There were two conditions: single task and dual
task. The experimental stimuli and participants behavioural responses were con-
trolled and collected using the Superlab (SL, Cedrus Corporation, Phoenix, USA)
software program. The details of experimental tasks and data Acquisition can be
seen in reference [3].

Wavelet Packet Transforms

A wavelet family ψa,b is the set of elemental functions generated by scaling and
translation of a unique admissible mother wavelet ψ(t):

ψa,b(t) = |a|−1/2 ψ

(
t − b

a

)
(109.1)

where a, b ∈ R, a �= 0, are the scale and translation parameters, respectively, and
t is the time. The continuous wavelet transform (CWT) of a signal S(t) ∈ L2(R) is
defined as the correlation between the function (signal) S(t) with the family wavelet
ψa,b(t) for each a and b

(WψS)(a, b) = |a|−1/2
∫

S(t)ψ∗
(

t − b

a

)
dt = (S, ψa,b) (109.2)

where the symbol of ∗ is complex conjugation and (S, ψa,b) are the wavelet coeffi-
cients. Es =

∑
k
|s(k)|2. And the relative energy is defined as Esr = Es

Et
Where Et is

the total energy, which is calculated by adding Es here [6].
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Statistics

All the data are expressed as the mean ± SEM. Analysis of variance (ANOVA) was
used for statistical analysis of the data, allowing within and between task compar-
isons to be made and significant differences were presented when P< 0.05.

Results

The comparison of relative energy measurements between AST and ADT data in
channel fp1 and fp2 on rhythm alpha and beta is shown in Fig. 109.1. For the single
auditory task, it can be seen that the group values (n = 13) of relative energy mea-
surements for the rhythm alpha (0.011±0.001 for fp1 and 0.016±0.002 for fp2) is
significantly higher (P< 0.01) than that of ADT group (0.027 ± 0.004 for fp1 and
0.031± 0.003 for fp2). Meanwhile, it can be found that for AST the relative energy
measures of rhythm beta (0.049 ± 0.005 for fp1 and 0.068 ± 0.008 for fp2) is also
statistically higher (P< 0.05) than that of ADT groups (0.117 ± 0.014 for fp1 and
0.130± 0.013 for fp2).

Figure 109.2 gives the relative energy measurements for rare tone stimuli in the
single auditory task and the auditory-motor dual task (n = 13) on rhythm alpha and
beta, respectively. The relative energy values of the alpha rhythm in the auditory
single task condition were high compared to that of the auditory dual task condition,
but there were only 11 channels (Fig. 109.2a) where significant differences of rela-
tive energy between them were obtained (P< 0.05). Meanwhile, the relative energy
values of the beta rhythm for the most of the electrodes (expect for six channels of
total 26, Fig. 109.2a) in the AST condition were significantly higher than that of the
ADT condition (P< 0.05− 0.001).

Fig. 109.1 Statistical
comparisons were taken
between the relative energy
AST data (open bars) and
ADT (solid bars) in channel
fp1 and fp2 on rhythm alpha
and beta, respectively. The
group data are expressed as
the Mean ± SEM, ∗P< 0.05
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Fig. 109.2 (a) Comparison
values of relative energy
between AST and ADT. Dark
colour was taken for
indicating significant
differences between AST &
ADT and light colour for
statistically insignificant
differences. (b) International
10/20 electrode placement
system

Discussions

Various investigations have shown that applying nonlinear dynamical methods to
time series of brain electrical activity provides new information about the complex
dynamics of the underlying neuronal networks [1, 7]. However, it is hard to provide
clearly biological meanings based on the results obtained from analysis of nonlinear
dynamical measurements.

It is known that certain events can block or desynchronize the ongoing alpha and
beta activity. This may be considered to be due to a decrease in synchrony of the
underlying neuronal populations, which is called event-related desynchronization
(ERD) [7]. In the previous study it was found that the entropy values, obtained from
the algorithm of SampEn, in ADT were significantly lower than that in AST [3].
At the present study, it can be seen that the relative energy values of either alpha or
beta rhythms in the auditory single task condition were significantly lower than that
of the auditory dual task condition. The results suggest that the neural information
transmission or communication in the participants when performing auditory/motor
dual task could be isolated and was impaired compared to when participants only
performed the single auditory task.

In conclusion, the findings of this study have demonstrated that wavelet packet
method could be alternative approaches for analyzing ERP signals using short-term
time series. The method further show promise as a quantitative measure of nonlinear
dynamic systems behaviour and psychological changes, such as single compared
with dual tasks challenges, where the nonlinear dynamical approaches, have been
challenged since they are limited in their ability to present only global information
of the system.
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Chapter 110
Neocortical and Neocerebellar Synchronization
of Fast Oscillations: Role in the Dynamic
Organization of Rapid Temporal Processing

John P. Welsh, Xiao-Hui Zeng, Paulo Rodrigues and Eric Washburn

Abstract We investigated the role of neuronal synchrony and oscillation for rapid
temporal processing in both the sensory and motor domains. A novel technique
for genetically blocking neuronal gap junctions in the fully-developed brain using
lentiviral knockdown of connexin36 was applied to the inferior olive of the medulla
and inhibitory interneurons in primary auditory neocortex in behaving rats. Func-
tional studies of normal and uncoupled neural networks at the behavioral level using
multiple electrode recordings in vivo and intracellular recording in vitro demon-
strated the important of connexin36-mediated gap junctions for sensory and motor
precision in the range of 20–50 ms. Such precision allows synchronous muscle ac-
tivity during movement and for the perception of rapidly presented auditory stimuli
during a two-tone auditory task. At both the in vivo and in vitro levels, our studies
suggest a general importance of the synchronous oscillations of neuronal ensembles
for rapid temporal processing.

Keywords Gap junction · electrical synapse · connexin36 · behavior · oscillation ·
synchrony · auditory

Introduction

The olivocerebellar system is perhaps the best example of a system in the mam-
malian brain in which we are beginning to ascribe a behavioral function to electrical
synapses. The inferior olive (IO), the origin of the olivocerebellar system, was the
first structure in the mammalian brain in which both electrical synapses [1] and gap
junctions [2] were identified. Now, over 30 years later, it is accepted that the IO
has the highest density of neuronal gap junctions in the adult brain [3, 4, 5] and,
more generally, that electrical synapses are important for brain function [6, 7]. The
physiological effect of gap junctions within the IO is manifested in electrotonically
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coupled potentials in vivo [1] and in vitro [8] and is the basis for the synchrony
of the 10 Hz oscillations in membrane potential that are subthreshold for spiking.
Electrotonic coupling among IO neurons triggers synchronous complex spikes in
groups of Purkinje cells in the cerebellar cortex [9, 10], as detected with multielec-
trode arrays. The synchronous triggering of cerebellar complex spikes is very tight,
and occurs with sub-millisecond precision. Patterns of complex spike synchrony
are significantly correlated with the performance of a skilled operant movement
[10, 11] and reorganize “on-line” in the tens-of-milliseconds time domain as skilled
movement is being performed. Studies have shown that removing the IO disrupts the
timing of skilled movement [12]. Thus, there is good evidence to suggest that the
ability of ensembles of IO neurons to synchronize their activity may be fundamental
for cerebellar motor control. Indeed, the dynamic reconfiguration of electronic cou-
pling within the IO may be the substrate that facilitates the recombination of muscle
synergies during movement [13].

Among the various bandwidths of neocortical activity, the so-called gamma
(“40-Hz”) rhythm has received an extraordinary amount of attention. This is be-
cause: (1) the relation of the gamma rhythm to higher sensory and cognitive func-
tion is becoming understood, and (2) many biophysical features of thalamocortical
circuits that give rise to the gamma rhythm have been identified [7]. The gamma
rhythm represents synchronous electrical events, recurring at 30–90 Hz, that are
sufficiently coherent within large volumes of cortex to generate strong electrical
fields. The gamma oscillation forms a large component of the low-voltage, high
frequency EEG of wakefulness. The period of the gamma oscillation (∼20 ms) in
auditory cortex evoked by a click predicts the shortest interval that humans could
distinguish two successive clicks as separate events [14] and implies that the upper
limit of brain speed (∼50 Hz) is reflected in the gamma rhythm.

Both olivocerebellar 10-Hz oscillation and the neocortical gamma oscillation
have been shown to require neuronal gap junctions mediated by connexin36. We
developed a lentiviral (LV) method for disrupting connexin36 in adult rats that can
be used to electrically uncouple local brain circuits. Our LV method employs a
dominant-negative mutation of connexin36 that prevents wild-type connexin36 from
being trafficked to the neuronal membrane [15]. Application of our LV method in
adult rat brain circumvented the developmental compensation that can occur after
embryonic gene deletion. We applied this method to the functional study of elec-
trical synapses in awake and behaving rats performing simple motor tasks requir-
ing 10-Hz olivocerebellar function and complex cognitive tasks that engage 40-Hz
gamma rhythm in neocortex for the purpose of elucidating the functional meaning
of neural synchronization for motor and cognitive function.

Experimental Findings

Our experiments unilaterally blocked gap junctions in the IO using lentivector based
gene-transfer of the dominant-negative connexin36 under stereotaxic control. We
found that unilateral blockade of gap junctions in the IO desynchronized harmaline
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tremor on the contralateral side of the body without blocking the tremor or affecting
the ipsilateral side [16]. This was quantified using six-site EMG recording where
we found that there was a 15–40-ms dispersion in the EMG burst onset times from
muscles at cervical to lumbar levels on the body side controlled by the uncoupled
IO. This contrasted with the unaffected side of the body which had EMG burst onset
times that were close to synchronous with little temporal variation. We found that
genetically uncoupled IO neurons were unable to express robust, large amplitude
and continuous oscillations in their membrane potential, but instead expressed low-
voltage oscillations that were ∼10% of normal amplitude and which could not be
sustained longer than 2 s [17]. The experiments demonstrated that gap junctional
coupling between neurons, specifically mediated by connexin36, allows a contin-
uous network oscillation to emerge from a population of weak and episodic cell
oscillators.

We used a multielectrode approach to record gamma oscillations in the primary
auditory cortex of awake rats performing an auditory task of rapid temporal process-
ing [18]. Rats were trained in an operant paradigm using tongue protrusion as the
conditioned response (CR) to differentially respond to auditory stimuli comprised of
8 ms, 80 dB, 10 kHz tones. An excitatory conditioned stimulus (CS+) consisted of
two tones and was reinforced with a drop of water onto the tongue upon a CR after
the second tone; a conditioned inhibitor (CS−) consisted of a single tone and was
not reinforced. For conditioning, the intertone interval for the CS+ was 200 ms and
differentiation of responding occurred over 80 daily sessions (120 trials/session)
such that the CS+ elicited 69 ± 6% CRs while the CS− elicited 35 ± 6% CRs.
After differentiation, the intertone interval during the CS+ was varied randomly
(10–400 ms) in a psychophysical test to determine the minimal interval at which the
second tone could be heard. This test revealed that 10–15 ms is the threshold interval
at which rapid temporal processing in the auditory domain occurs. We recorded local
field potentials (LFPs) from 15 sites from primary auditory cortex during differential
conditioning and the psychophysical test. During rapid temporal processing, there
were two bursts of gamma oscillation to the first tone and an evoked burst to the
second tone; however, there was only a single evoked burst to the first tone in rats
not trained for rapid temporal processing. LFPs recorded during the cognitive test
also indicated a decrease in gamma strength after local LV blockade of connexin36.

Conclusions

Our data with vector-based gene transfer to knock down connexin36 function in the
normally developed brain demonstrated a functional role for neuronal synchrony in
the inferior olive for “motor binding,” by which is meant the ability to rapidly con-
trol the contraction of independent muscles in the temporal domain for coordinated
movement, a behavioral property that emerges from the ability of electrical coupling
to permit ensemble rhythms. In the auditory cortex, the findings indicated that bursts
of gamma oscillation may be learned and therefore predictive, perhaps to prime a
perceptual response for rapidly presented sounds that are temporally predictable.
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Chapter 111
A Road-Map Towards Cognitive Machines

J.G. Taylor

Abstract We present a first draft for a Road Map towards the creation of Cognitive
Machines. We start by raising a set of basic questions relevant to the creation of such
machines. In the following sections we propose a set of answers to the most crucial
of them. The paper finishes with conclusions as to the most viable and interesting
directions to be pursued to create cognitive machines.

Introduction

Industry, commerce, robotics and many other areas are increasingly calling for the
creation of cognitive machines. These are machines which have ‘cognitive’ powers
similar to those of humans. Guidance from our understanding of human cognitive
powers will therefore be one important route to guide in the construction of such
machines. Other routes must be tried as well (machine learning, fuzzy logic, evo-
lutionary algorithms, etc) and these can also contribute strongly. However we have
to accept that as we develop ever more powerful machines the human guidance,
especially as to how we create decent/non-threatening human beings by education in
the family and school, must be ever more strongly appealed to and used – implying
the need for some emotional abilities of such advanced machines.

At the same time, whilst the cognitive powers of humans are the most developed
of all other animals it is also valuable to consider, in order to gain a further handle
on human cognition, how animals can also possess cognitive powers, although at a
lower level than humans.

We therefore see that the topic of cognitive machines is a very broad one, cov-
ering as it does animal intelligence, human intelligence and machine intelligence.
These disciplines are to be used as guidance to create a machine that can think,
reason, set up goals and work out how to attain them, be aware of its surroundings
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and what it is doing, and even be aware in the sense of being conscious. This leads
to a range of problems that should be addressed as part of the program of creating
cognitive machines:

1. What is human cognition in general?
2. What are the crucial processing components of human cognition?
3. What are the bases of these processing components in the human brain?
4. How can human cognition be modelled in neural terms?
5. What are the powers of animal cognition as presently understood?
6. How can various powers of animal cognition, such as animal reasoning, be

understood in information processing terms?
7. How can animal cognitive powers be modelled in neural terms?
8. How important is language in achieving a cognitive machine?
9. What are the benchmark problems that should be able to be solved by a cogni-

tive machine so as to be allowed to be able to be described as ‘cognitive’?
10. Does a cognitive machine have to be built in hardware or can it work solely in

software?
11. How can hybridisation (in terms of fusing computational neuroscience and ma-

chine intelligence methods) help in developing truly cognitive machines?
12. Is consciousness crucial for cognition, and if not what is?

Human Cognition (Question 1–4)

Cognition means many things to many people, but here I take it necessarily to in-
clude the higher-level information processing stages in the human brain: thinking,
reasoning and eventually consciousness. Each if these can occur without necessarily
any language, but they each require processing of a different order than that involved
in perceiving external stimuli with suitable sensors (cameras, microphones or what-
ever) or performing motor actions with suitable effectors (wheels or grippers). In
order to lift the neural processing up to the high level expected to be involved in cog-
nition, it is necessary to filter out distracters (especially in a complex environment),
using attention. This is a brain processing mechanism which is now well-studied.

Attention is now understood as involving biasing of the position of the focus of
attention, either top-down from some endogenous goal state set up in prefrontal cor-
tex or bottom-up by a competitive ‘breakthrough’ of salient information to change
the attention focus to the most salient input stimulus. Such modification of the focus
of attention can be encapsulated in an engineering control framework [1] so bringing
in various functional modules such as the plant (posterior cortex), an inverse model
controller generating a signal to move the focus of attention (in parietal lobes), a goal
site (in prefrontal cortex, for both exogenous and endogenous attention movement),
an error monitor (for rapid error correction, say in cingulate cortex), an attention
copy signal or corollary discharge (in parietal lobe), and so on. The difference be-
tween engineering control and attention control is that in the former an estimate of
the state of the planet is made to speed up and improve the accuracy of the control;
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in the latter it is only the attended state of the world that is of relevance (and is used
in any predictive model to speed up the movement of the focus of attention).

It is possible to develop models of various cognitive processes in terms of this
control model of attention. Special additional sites are needed to act as buffer work-
ing memory sites to hold for a few seconds the neural activity amplified by attention.
This activity will thereby stand out from the surrounding distracters. In these terms
one of the fundamental process of cognition – that of rehearsing attended neural
activity on the relevant buffer – can be attained by setting up as a goal the condition
to preserve the buffer activity above a certain threshold level; if it drops below it then
attention will be redeployed to the stimulus on the buffer (or at a lower level). This
was achieved in [2] by use of the monitor (mentioned above as arising as part of the
engineering control approach to attention); the decaying stimulus is then refreshed
by refocusing of attention onto it.

A further level of cognition is that of manipulating an ‘image’ on a buffer site
so as to become another desired image, such as being upside down or fusing into
an eagle. This can be achieved by setting up the top-down template so as to achieve
the final stimulus configuration. Then attention will be directed to alter the input
stimulus representation to the final desired goal stimulus on the buffer (and its re-
lated lower cortices). Such manipulation allows comparisons to be made between
different images, which may be different or only rotated versions of each other.

Reasoning can be seen to require additions to the sensory attention system con-
sidered above. Besides sensory attention there is also a parallel system of motor
attention [3] which is based in the left hemisphere, in comparison to the sensory
attention system in the right hemisphere. These two systems are apparently fused
in sets of pairs of internal control models associated with motor control: an inverse
model (IMC: generating an action to attain a desired goal state from a present state),
and a forward model (FM: predicting the new state caused by a given action on a
present state); the states here are all taken as sensory. The reasoning process can
then use these sets of FM/IMC pairs determine which virtual sequences of actions
would attain a given goal. This is a planning problem, taking place in the space of
concepts.

Animal Cognition (Questions 5–7)

There are numerous observations of animals using reasoning to solve tasks. A well-
known example is that of Betty the Crow [4], who worked out how to use a bent
piece of wire to extract a small basket with food in it from the bottom of a transparent
tube. Betty was even able to make a suitably bent wire from a straight one in several
cases when no bent wire was present. On the other hand chimpanzees are able to
solve a paradigm such as the ‘2 sticks’ paradigm. In this a chimpanzee is put in the
situation of having a small stick within reaching distance which, however, is too
short to retrieve a reward such as a grape outside its cage. There is also a longer
stick further away outside the cage, which can only be reached by use of the shorter
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stick. The chimp is able to work out, apparently by reasoning that it has first to use
the shorter stick to pick up the longer one, and then use the longer one to obtain the
food reward.

In addition to this apparatus of internal models (including the functional models
of attention mentioned above) there is need for manipulation of rewards for the
various stimuli. We have suggested elsewhere [5] that altering rewards expected
from stimuli allows an animal to arrange the external stimuli in order of their being
attained, as a set of sub-goals, so that the modified rewards carry a memory of the
reverse order in which the sub-goals must sequentially be obtained. In this way
autonomous flexible planning occurs in the animal: the rewards act as a set of drives
causing response to attain the sequence of goals determine by the order of goal
values.

There are extended features of cognition displayed in infants [6], in which in-
fants are observed to detect novelty in various stimulus motions, observed by longer
looking time at a novel stimulus display than at one already observed. It is possible
to include this level of cognition in a neural model by the introduction of a novelty
detector which directs attention to the novel stimulus until it becomes familiar [7].

The set of modules I have so far introduced (coupled IMC/FM pairs and reward
lists that can be manipulated, plus a novelty detector system) needs to have further
modules to enable effective planning. In particular both motor and sensory attention
are needed in order to keep down errors and reduce the computational complexity
of the overall reasoning process. Together with the buffer site, the overall system
allows for efficient and flexible reasoning to be attained.

Language Powers (Question 8)

Language grants amazing powers to human beings. Without it and the cumulative
written records encoding the accumulated wisdom of the cultures, it is expected
that much less civilizing and technological advances would have occurred. The task
of introducing language in a machine system is not insuperable, provided we accept
that the system is able to learn continuously in the manner we do in growing from the
first few months into adulthood. If such learning is allowed then an initial vocabulary
of say 500 words (the size of a basic vocabulary for some parts of the world) can
soon expand to tens of thousands words. The nature of syntax, in terms of phrase
structure analysis, can be seen as part of learning time series of concepts, and that
by means of recurrent networks (of which there are plenty in the prefrontal cortex
and sub-cortical sites, especially the basal ganglia).

In this paper we take the position that language can be learnt through attaching
sensory feature codes to the associated words that the system hears, so giving proper
grounding in the world (represented by sensory codes in the brain). This grounding
can be extended to grounding action words (verbs) in the action codes in the brain.
Such a possibility requires considerable work to achieve in software, although the
principles would appear accessible, and the computational complexity is currently
approaching the possible, using grid or Beowulf computing.
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Given a linguistic system like that above we can then ask how it might be used
to achieve reasoning powers. Chunks of syllogistic reasoning processes would be
expected to be learnt more by rote initially, so they could then be used recurrently
to allow for more powerful syllogistic reasoning. Mathematical reasoning would
also depend on the building of suitable simple rules, in terms of the axioms of the
mathematical system being used (such as the Peano postulates). Again it would
then be possible to use mathematical arguments of great sophistication on the basis
of these rules and postulates (such as in the case of solving Fermat’s last theorem).

Benchmarking Problems (Question 9)

It is necessary to have some problems that can act as a standard and that thereby
allow testing the abilities of various reasoning systems, In the case of computational
neuroscience these problems will be those able to be carried out by animals and
children of various ages, so that the level of progress of a cognitive machine can be
tested against its competitors.

We have already considered several of these, in particular the 2-stick paradigm
and the basket retrieval paradigm. There are numbers of others, for example in [8],
to which we refer the reader.

Hardware Versus Software (Question 10)

There has always been the debate between these two modes of implementation.
Software is usually easier to implement quickly, although it is more difficult to in-
corporate embodiment into a software environment without careful interfacing (see
the results of the EC GNOSYS program, in which a cognitive robot was designed
and created: http://www.cs.forth.gr/gnosys). The need for embodiment to be at the
basis of any cognitive system has been argued strongly for some time [9]. However
there are examples of people who have lost all peripheral feedback (from a viral
infection) who can still continue with unabated cognitive powers; these people need
to attend solely to walking around for example, otherwise they will fall down. Thus
embodiment may not play such as truly fundamental role, but it clearly plays an
important role in survival and response development.

At the same time there is the question as to whether or not a machine with some
level of consciousness could ever exist only in a software state. For the analogy
of a model of the weather is relevant here. A software model of weather patterns
cannot be wet or dry itself, nor hot or cold. All that the model can do is make
predictions about the numbers (wind speeds, rainfall levels, etc) associated with
these features in a particular region. But it cannot be raining in the model nor can
any other of the modes of action of the modelled weather act like those modes
in real life. For consciousness it would seem that the same situation would occur:
the cognitive machine would need to be implemented in hardware in order for the
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‘conscious experience’ ever to arise in the machine (in the real world, based on
activity levels of nerve cells).

Consciousness (Question 11)

The nature of consciousness is still very controversial, although it has now become
a legitimate subject of scientific study. Various models have been suggested [10]
although none has yet gained universal acceptance. Any model worth its salt should
be able to give a sense of ‘inner self’ as well as provide that self with ‘immunity to
error through misidentification of the first person pronoun’ [11, 12]. Such a model
can be constructed using attention as the gateway to consciousness, and in particular
relates the inner self or ‘owner’ of the content of consciousness to the signal arising
as a copy of the attention movement signal. It is this attention copy model (more
technically termed the CODAM model, from Corollary Discharge of Attention
Model) which can be related to various paradigms sensitive to loss of awareness,
such as the attentional blink [13], but at the same time can lead to there being no
misidentification of the inner self as belonging to someone else. Such immunity to
error arises because the attention copy signal is used to speed up access to awareness
(on a buffer memory site) as well as inhibit possible distracters. Thus the ownership
signal is also a guarantee that ‘what you are about to receive (into consciousness) is
exactly what you wanted to receive’ (including awareness of highly salient sudden
stimuli which are also set up in frontal lobes as a goal, so are processed in a similar
manner to the top-down attended stimuli).

Future Avenues

In all then, possible neural implementation of the architectures to solve the various
questions 1–11 above have been suggested in this brief paper. There will certainly
be many improvements and alternative approaches to these architecturs, although it
is to be expected that the main outlines will remain. Given such a situation, what is
to be seen as the important avenues for future development, both from a theoretical
or architectural point of view as well as from an applied position? There are several
steps:

1. Extend (and if necessary modify as needed) the CODAM model and other neural
models of consciousness, so as to test them against all available psychological
and related brain imaging data. In the process further tests of the models by such
approaches will become clear, refining the testing even further. Hopefully the
main framework of a suitable model will become clear by such a down-to-earth
scientific approach.

2. Create software able to function as the higher regions of the brain of a human
(including if necessary various sub-cortical sites suggested as also important for
helping create consciousness [14, 15];
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3. Develop hardware platforms for providing embodiment for the software brain;
4. Develop hardware chips of semi-realistic neurons able to provide a physical re-

alization of the neuron processing in the brain (so as to go beyond pure software
simulation to hardware emulation);

5. Allow the embodied/cognitive chips system to train on suitably simple (but in-
creasingly complex) environments so as to build autonomous internal representa-
tions of stimuli through vision (and other possible modalities) as well as develop
internal models of actions and of the affordances associated to stimuli whose
representations at different feature levels are being learnt.

6. Expose the embodiment/hardware brain to develop suitable internal models to
solve simple reasoning tasks (the benchmark animal level ones).

Ultimately a language understanding component must be included in order to allow
the overall system to begin to attain adult human cognitive capabilities. However
that is some if not many decades away.
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Chapter 112
Comprehensive EEG Signal Analysis
for Brain–Computer Interface

Shangkai Gao, Xiaorong Gao and Bo Hong

Abstract A brain–computer interface (BCI) is a direct communication channel
between brain and external devices without any use of peripheral nerves and mus-
cles. The key issues in BCIs are brain signal recordings and interpretations. Scalp
EEG-based BCI is a non-invasive technology, and probably the most acceptable
systems for the subjects to use. The comprehensive EEG signal analysis in EEG-
base BCI are described in this paper, and the designs of the on-line EEG-based BCI
systems are also presented.

Keywords Brain–computer interface · electroencephalography (EEG) · signal
analysis

Brain–Computer Interface (BCI) is a direct communication channel between brain
and computer or external devices, in which the commands from subjects are sent
to the external world without passing through brain’s normal output pathways of
peripheral nerves and muscles. BCI research has become a rapid growth area in
neural engineering [1].

The essential parts of a BCI system are brain signal recording and interpreta-
tion so that the system can recognize the specific patterns of brain activities and
translate it into commands for controls. General speaking, the brain signal could
be recorded through electroencephalography (EEG), electrocorticography (ECoG),
local field potentials (LFPs) and single-neuron action potential recordings (single
units). Among them, scalp EEG-based BCI is the only fully non-invasive technol-
ogy, and probably the most acceptable systems for the subjects to use.

However, the EEG signals recorded from the scalp are very week with low signal-
to-noise ratio and low spatial resolution due to the low conductivity of the skull and
the ambient noises. It seriously restricts the development of practical BCI systems.
To overcome these obstacles, advanced signal processing technology is absolutely
important.
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The framework of information processing in BCI is composed of the commonly
known steps: pre-processing, feature extraction, feature selection/dimensionality
reduction, feature classification and post-processing [2]. Here, we will emphasize
several key issues of signal processing in the design of practical EEG based BCI sys-
tems. They are real-time on-line processing, parameter optimization and co-adaptive
learning [3, 4, 5].

A practical BCI system has to be applied in real time. Causality is thus a must for
the algorithm. Another problem that needs considering is the operating speed of the
system. An algorithm with heavy computation load can hardly be applied to on-line
system; even its performance is rather good in off-line analysis.

Performance of the processing system in BCI is closely related with various pa-
rameters of the system, such as electrode location, time window, frequency band
and the dimension of features. It is necessary to select optimal parameters for each
subject. Moreover, the parameters have to be changed with time to adapt the non-
stationarity of EEG.

During the operation of a BCI system, the analyzed brain activities are trans-
formed into corresponding control commands and the outside world will be influ-
enced when the commands are executed. To adapt itself with the changed outside
world, the brain has to adjust its activation according to biofeedback and the pattern
of EEG will then be changed. The algorithm for analyzing brain information must
be adjusted in time so as to interpret the brain commands correctly.

Among the currently existing BCI systems, those based on steady-state visual
evoked potential (SSVEP) and imagery movement are most prospective. Our recent
work in the designs and implementations of the BCI systems based on SSVEP and
imagery movement will be introduced. The results show that by adequately synthe-
size the problems encountered in signal processing, system design and parameter
optimization, it is really possible to gain the most useful information about brain
activities using least electrodes. At the same time, system cost could be greatly
decreased and usability could be readily improved. All of these are the significant
progresses toward applicable BCI systems.
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China (60318001 and 30630022).

References

1. Mason, S. G., Bashashati, A., Fatourechi, M., Navarro, K. F., Birch. G. E. A comprehen-
sive survey of brain interface technology designs. Annals of Biomedical Engineering, 2007,
35(2):137–169.

2. Bashashati, A., Fatourechi, M., Ward, R. K., Birch, G. E. TOPICAL REVIEW: A survey of
signal processing algorithms in brain – computer interfaces based on electrical brain signals.
Journal of Neural Engineering, 2007, 4: R32–R57.

3. Wang, Y. J., Wang, R. P., Hong, B., et al. A practical VEP-based brain–computer interface.
IEEE Transactions on Neural System and Rehabilitation Engineering, 2006, 14(2):234–239.



112 Comprehensive EEG Signal Analysis for Brain–Computer Interface 653

4. Wang, Y. J., Hong, B., Gao, X. R., Gao, S. K. Phase synchrony measurement in motor cortex
for classifying single-trial EEG during motor imagery. In Proceedings of the 28th International
IEEE EMBS Conference, p75–78. 2006.

5. Wang, Y. J., Hong, B., Gao, X. R., Gao, S. K. Design of a novel electrode layout for the motor
imagery based brain – computer interface. Electronics Letters, 2007, 43(10):557–558.



Chapter 113
Unsupervised Extraction
and Supervised Selection of Features Based
on Information Gain

Soo-Young Lee, Chandra Shahard Dhir, Paresh Chandra Barman
and Sangkyun Lee

Abstract For robust recognition we first extract features from sensory data without
considering the class labels, and then select important features for the classification.
The unsupervised feature extraction may incorporate Principle Component Analy-
sis, Independent Component Analysis, and Non-negative Matrix factorization. For
the supervised selection of features we adopt Fisher Score and Information Gain
(IG). To avoid the calculation of multivariate joint probability density functions,
instead of the IG, we use Mutual Information (MI) between a feature and the class
variable. However, in this case the MI among selected features reduces the effective-
ness of the feature selection, and the statistically-independent ICA-based features
result in the best performance.

Keywords Feature extraction · feature selection · Fisher score · information gain ·
mutual information · independent component analysis

Introduction

Features are the basic components for recognition. At the earlier stage of learning
one first extract features from sensory data without knowing the meaning, and lat-
ter relates these features to the meanings provided by others. At this second stage
some of the extracted features may turn out to be more useful than the others, and
only these important features may be selected for further processing. This feature
selection is important for robust and efficient recognition.

At the first stage the features are extracted by unsupervised learning from sensory
data. The Principal Component Analysis (PCA) results in non-local features [1],

S.-Y. Lee
Brain Science Research Center, Korea Advanced Institute of Science and Technology, Daejeon
305-701, Korea
e-mail: sylee@kaist.ac.kr

R. Wang et al. (eds.), Advances in Cognitive Neurodynamics,
C© Springer Science+Business Media B.V. 2008

655



 

 

 

 

 



656 S.-Y. Lee et al.

while Independent Component Analysis (ICA) results in localized basis features [2].
The Non-negative Matrix Factorization (NMF) comes with non-negative constraints
which is useful to images and spectrogram, and usually results in regional features,
i.e., between the global and local features [3].

We adopt Fisher Score [4] and Information Gain (IG) as the selection criteria,
and the latter is approximated by Mutual Information (MI) [5] for computational
simplicity. Its is investigated for the three different feature extraction algorithms.

Unsupervised Feature Extraction

The two important issues of feature extraction and selection are redundancy and
multivariate prediction. The redundancy problem occurs when some features share
common information, while the multivariate prediction problem occurs when some
feature are important only with other features. The unsupervised feature extraction
resolves the redundancy problem by making the extracted features as independent
as possible. Also, it is expected to resolve the multivariate prediction problem by
forming complex features from multiple features.

Let fi = [ f1i . . . fNi ]T with 1 ≤ i ≤ M be the unknown features, and x =
[x1 . . . xN ]T be the observed data vector which is considered as a linear mixture of
feature vectors. Here, N and M are the number of pixels and the number of features,
respectively. The mixing model can be written in a matrix form as

x = Fs (113.1)

where F = [f1 . . . fM ] is a matrix consisting of all the feature vectors as the columns,
and s = [s1 . . . sM ]T is a vector consisting the mixing coefficients. The feature ex-
traction algorithms find the unknown features F from many observed data x’s only.
This is an underdetermined problem, and additional constraints are usually required.
The popular choices are orthogonal basis images for PCA, linear independence for
ICA, and non-negativity of NMF.

PCA is probably the most commonly used technique for image processing tasks.
PCA computes a set of orthogonal subspace basis vectors for an image database, and
project the images into the compressed subspace. PCA generates compressed data
with minimum mean-squared reproduction error, and is an unsupervised learning
that produces global feature vectors [1].

ICA decomposes data image into linear combination of statistically independent
mixtures. While PCA is based on the second-order statistics of the images, ICA
decorrelates the high-order moments of the input in addition to the second-order
moments. The ICA-based features are locally supported and usually very sparse [2].

NMF imposes non-negative constraints on both the features and coefficients,
which results in parts-based features. Both quadratic error function and entropy-like
cost function are utilized for the adaptive learning.

In Fig. 113.1 the extracted features from the three algorithms are shown for
lip-reading. It clearly shows the global characteristics of PCA-based features and
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(a) (b) (c)

Fig. 113.1 Features of lip motion by (a) PCA, (b) NMF, and (c) ICA. The PCA-based features are
global, while ICA-based features are the sparsest

sparseness of ICA-based features. The NMF-based features show parts of the im-
ages with the middle sparseness [6].

In Fig. 113.2a ICA-based spatial features are shown for EEG signals from left-
vs-right hand motor imagery tasks. In Fig. 113.2b the temporal features are also
extracted from the 15th spatial feature.

Supervised Feature Selection

We adopted Fisher Score and Information Gain for the criteria of feature selection.
The Fisher Score is defined as the ratio between inter-class difference and within-
class difference, and may be effective for Gaussian-like well-distributed clusters.
The Information Gain may of a feature on the classification system is defined as the
difference between the system information with and without the feature. However,
the calculation requires estimation of high-dimensional joint probability functions,
which may be very difficult for large number of features with small database. In-
stead we would like to use Mutual Information (MI) between a feature and the class

(a) (b)

Fig. 113.2 ICA-based features of EEG from the binary class (left vs. right hand) motor imagery
tasks. (a) 20 spatial maps, and (b) top eight temporal bases components in frequency domain from
the 15th spatial
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(a) (b)

Fig. 113.3 Performance of emotion recognition from facial images by (a) PCA-based features and
(b) ICA-based features. The recognition rates are plotted as functions of the number of features
used for the classifier, and the features are sorted by FS or MI

variable without considering the other features, and KL divergence is used for the
MI as

I (C ; F) =
∑

c

∑

f

p(c, f ) log

[
p(c, f )

p(c)p( f )

]
≥ 0 (113.2)

Provided all the features are statistically independent, it will be the same as Infor-
mation Gain.

Although the three feature extraction algorithms come up with somewhat in-
dependent features, the ICA algorithm specifically impose independence among
features as much as possible. Therefore, the ICA-based features are expected to
provide the best classification performance with the MI selection criteria.

In Fig. 113.3 we show the classification performance of emotion recognition
from facial images with features extracted by PCA or ICA and then selected by
FS or MI.

Conclusion

In this paper we demonstrate that the ICA-based features result in better classifica-
tion performance than PCA-based features with the same number of features. Also,
the difference between FS and MI selection criteria becomes smaller for ICA-based
features.
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Chapter 114
Stability and Instability in Autonomous Systems

Hans Liljenström

Abstract Behaving systems, biological as well as artificial, need to respond quickly
and accurately to changes in the environment. The response is dependent on stored
memories, and novel situations should be learnt for the guidance of future behavior.
A highly nonlinear system dynamics is required in order to cope with a complex and
changing environment, and this dynamics should be regulated to match the demands
of the current situation, and to predict future behavior. If any of these regulatory
systems fail, the balance beween order and disorder can be shifted, resulting in an
inappropriate and unpredictable behaviour. I discuss how such “mental disorders”
might be related to the structure and dynamics of any autonomous cognitive system.

Keywords Efficiency · stability-flexibility dilemma · information processing ·
complex neurodynamics · cognitive disorders · robots

Order and Disorder in Cognitive Systems

While we are still far away from being able to construct artificial cognitive systems
or robots that are human-like in any sense, other than superficially, we will no doubt
get closer and closer. If our artificial systems eventually become enough human-
like to have many of the cognitive and mental functions that humans have, one
can wonder whether they would also be capable of having “mental disorders” like
humans. What, in that case, would it mean for an artificial system (robot) to suffer
from cognitive or mental disorders? In this paper I wish to explore this possibility
and what it could imply. First, I will outline some basic relations between structure,
dynamics, and function, that I believe could be common to cognitive functions of
both humans and humanoid robots, and then discuss where things can go wrong.

As my outset, I will consider a well-functioning autonomous system, human
or other, one (1) which has an efficient information processing with regard to the
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environment, (2) which has a way to regulate its balance between stability and flexi-
bility, and (3) which has a predictable behaviour and appropriate interaction with its
“society”.. Many other aspects of a healthy system could be listed, but I have chosen
these for reasons that will become clear shortly.

Mental disorders could be of different kinds, characterized e.g. as depression,
schizophrenia, autism, or Alzheimer’s syndrome. Symptoms include memory defi-
cits, unpredictable and erratic behaviour, impairment of social interaction, lack of
initiative, apathy, thought disorders, inappropriate emotional responses, reduced at-
tention span, and an inability to plan ahead. For example, schizophrenia could arise
as a failure of linking representational knowledge and behaviour [1], and could be
a result of a late shutdown in the pruning of cortical networks [2]. Normally, our
brains are continuously updating our inner models of reality, and thereby guide our
behaviour. If we fail in this task, perception becomes fragmented and our behaviour
becomes dominated by the impulses of the moment, rather than by the evened-out
influence of past and current information [3].

Living organisms have to survive in a complex and changing environment. This
implies, among other things, to be able to respond and adapt to environmental events
and changes at several time scales. For an organism with a nervous system, there are
(at least) three different time scales, relating to the life span of the individual: (1)
a large one based on genetic changes (evolution), (2) an intermediate one based on
synaptic changes (learning), and (3) a small one based on neuronal activity changes
(neurodynamics), directly related to cognitive functions. The interaction with the
environment, behaviour in animals, depends upon the present (dynamical) state of
the organism, as well as on previous experiences stored in its molecular and cellular
structures.

It has become clear that also artificial cognitive or intelligent systems have to
have the capacity to adapt to environmental changes at different time scales. The
lesson from the original AI approach is that cognition and intelligence cannot really
be built into an artificial system, it has to develop through an exploratory interaction
with the environment [3].

For artificial systems, we, the constructors, have taken care of the longer, “evolu-
tionary” time scale, by building on (biological) experience that can be transferred to
the artificial system in the construction of its structure and dynamics, and where a
clear purpose is implemented. We want the system (robot) to perform certain tasks,
we endow it with purpose and goals. However, the adaptation at an intermediate
scale, i.e. at the scale of experience through interaction with the environment, can
be taken care of by the artificial system, for example through the use of artificial
neural networks. Finally, the rapid adaptation that has to do with rapid changes in
the momentary environment, also has to be reflected through the internal dynamics
of the artificial system (robot).

Even if we could construct complex artificial systems that learn through ex-
perience, and more or less follow the rules and goals we have given them, the
more complex they become, the more likely they could go wrong. Also wrong in
a sense we could refer to as “mentally disturbed”. Such behaviour could include
repetitive and “compulsory” behaviour, erratic or chaotic behaviour, where small,
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apparently insignificant events could result in a completely unpredictable and “crazy”
behaviour. It’s also imaginable that such cognitive robots could get “depressed” or
“schizophrenic”, in the sense that they would become slow and inefficient, with
impaired and inappropriate interaction with the environment, inable to perform the
tasks given to them.

Efficiency of Cognitive Processes

For any autonomous system that interacts with an environment it is important that
this interaction is efficient in terms of energy, time and accuracy. Normally, there is
an interdependence, or trade-off, between these quantities, and different processes
seem to be optimized with respect to either one of these. This optimization also
determines the efficiency of the system [4]. Whether the system is biological or
artificial, this implies that the response to an external input should give a suffi-
ciently “accurate” and robust output at an acceptable (low) cost in terms of time
and energy. It should be able to solve the problem of being stable to noise and
external perturbance and, at the same time, be flexible and adapt to significant envi-
ronmental changes. In general, to achieve a high accuracy requires a long processing
time, whereas if the system can suffice with a lower accuracy, processing time can
be reduced. In many cases it is most important to minimize processing time. For
example, the response or reaction time of an animal in a natural environment or a
robot in an industrial real-time operation.

An advanced system would be able to shift the strategy for different situations,
and oscillations could be an appropriate way to deal with this. First, oscillatory or
complex dynamics provides a means for fast response to an external input. If sen-
sitivity to small changes in the input is desired, a chaotic–like dynamics should be
optimal, but a too high sensitivity should be avoided. Oscillations can also be used
for enhancing weak signals and by “resonance” large populations of neurons can
be activated for any input. Secondly, such “recruitment” of neurons in oscillatory
activity can eliminate the negative effects of noise in the input, by cancelling out the
fluctuations of individual neurons. Noise can, however, also have a positive effect.
Finally, from an energy point of view, oscillations in the neuronal activity should be
much more efficient than if a static neuronal output (from large populations of neu-
rons) was required. In engineering, great efforts are made to eliminate oscillations
in the system, but if the system can perform as well (or better) with oscillations,
energy can be saved [4, 5].

The Stability-Flexibility Dilemma

An autonomous cognitive system has to be flexible and adaptive, while maintain-
ing a sufficient stability. There is a trade-off between the two: a greater stabil-
ity is achieved at the expense of a lesser flexibility (adaptability), and vice-versa.
Yet, it is essential that the system is stable to short-term fluctuations, or common
insignificant events, while it should also be able to react to weak signals and rare
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important events, as well as adapting to long-term changes. This so-called stability-
flexibility dilemma has to be dealt with by any autonomous system, and should
be reflected in both structure and dynamics. The structure should partly be “hard-
wired” and partly be adapted trough experience. The problem of keeping a (dynam-
ical) balance between stability and flexibility, or more generally, between order and
disorder, is likely to apply also to mental processes and disorders [6].

Our computer simulations of cortical network structures show that a self-reg-
ulated complex neurodynamics, which can shift the balance between stability and
flexibility, and with optimal noise levels, can result in an efficient information pro-
cessing [5, 6].

Appropriate Interaction with the Environment

All cognitive autonomous systems have to develop and act in constant interaction
with the environment. The late Rodney Cotterill emphasized the crucial link be-
tween movement and cognition, both for biological and artificial systems: “The rel-
evant stimulus is the animal’s own muscular movement, the relevant response being
the sensory feedback from the surroundings” [7]. Mental disorders often involve
deficits in such interaction, which sometimes can be related to impairments of the
neural circuitry in the brain. In particular, autism can be characterized by social
isolation, resistance to novelty, and stereotyped behaviour, communication or lan-
guage deficits, but there are altogether some twenty different autistic characteristics
[3, 7]. In some mental disorders develops after triggering events in the environment,
but almost always there are internal factors, that can be either genetically based
or due to neuronal processes affecting cortical structures, or a disturbance in the
neurochemical balance.

Conclusion

I have here tried to outline some of the properties I believe can be associated with
a well-functioning autonomous system. I have also pointed at some disorders that
could result in a less well-functioning system. Even though my examples are primar-
ily based on biological systems, and in particular associated with human cognition
and mental disorders, it is conceivable that similar characteristics would apply also
to artificial cognitive systems or robots. This would be an issue for future robot
psychiatry.
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Chapter 115
The Neuroinformatics Portal
of the International Neuroinformatics
Coordinating Facility

Jan G. Bjaalie

There is a clear need in the neuroscience community for databases extending
from genes to cognition and disease mechanisms, for data sharing, and for mod-
eling and use of computational tools at different levels [1, 2]. For this reason,
the Global Science Forum (GSF) of the OECD (Organization of Economic Coopera-
tion and Development) has initiated an International Neuroinformatics Coordinating
Facility (INCF), to facilitate the development of Neuroinformatics. Each member
nation contributes in relation to Research and Development expenditure in the par-
ticular nation [3], (see also INCF platform documents at http://www.incf.org/med/
INCF Understanding.pdf and http://www.incf.org/med/INCF BusinessPlan.pdf).
The current member nations are Belgium, the Czech Republic, Finland, France,
Germany, Italy, Japan, the Netherlands, Norway, Poland, Sweden, Switzerland, the
United Kingdom, and the United States. INCF also receives support from the Eu-
ropean Commission. The central Secretariat of the INCF is located in Stockholm.
Each member has established, or is about to establish, a National node. The nodes
will contribute with infrastructure developments and neuroinformatics research in
the context of the global network of member nations.

The mission of the INCF Secretariat and the global network of National nodes
is to:

� coordinate and foster international activities in neuroinformatics in general
� contribute to the development of scalable, portable, and extensible applications

that can be used to further knowledge of the human brain and its development,
function and disease

� contribute to the development and maintenance of specific database and other
computational infrastructures and support mechanisms

� focus on developing mechanisms for the seamless flow of data, information, and
knowledge among government agencies, academics and libraries, the publication
industry and private enterprises.
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The INCF will establish a strong external operative representation. Directed to the
world-wide, open and diverse neuroscientific community, such a basic representa-
tion will be based on a unifying web portal, the INCF Neuroinformatics Portal.
This new portal will serve as a platform for providing research oriented services to
the neuroscience community world-wide, in agreement with the INCF work plan
(http://www.incf.org/med/INCF BusinessPlan.pdf). The present report provides a
brief outline of the current plans for the INCF portal.

State-of-the-Art and International Coordination

A large number of neuroinformatics resources are currently available, including data
repositories, advanced database applications, software tools for data visualization,
analysis, and modeling of brain function at multiple levels. Also biophysically spec-
ified computational models are to some extent shared. Several neuroscience portal
services, general or focused, have been initiated around the world over the last few
years, such as:

� BIRN portal / Biomedical Informatics Research Network portal (https://portal.
nbirn.net/)

� Neurocommons (http://sciencecommons.org/projects/data)
� NDG / Neuroscience Database Gateway (http://www.sfn.org/ndg)
� NIF / Neuroscience Information Framework (http://neurogateway.org)
� Japan Node/The Portal system for Neuroinformatics in Japan (http://www.

neuroinf.jp)

Creating synergies and collaborations among the existing portals will be a key
strategy in INCF operations.

INCF Portal: Goals and Basic Approach

A major component of the new INCF portal will be services for navigation and
integration of distributed resources, across continents, within specific domains of
neurosciences. The portal effort will act on two levels: (1) It will help shepherd
diverse protocols of interoperability across the world. This will facilitate the de-
velopment of consensus positions on standards and “best practice”. Specifically, it
will provide a final international vetting body for neuroscience-specific ontologies
and related ontologies in other fields. (2) It will then implement these consensus
international interoperability standards and provide example and exemplar resources
and data sets and test suites.

To facilitate the process of establishing such services, the status of different
portal initiatives as well as the collaborative dividing of maintenance and develop-
ment tasks will be dealt with in the INCF workshop series, with major stakeholders
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present. A sound basis for a collaborative effort exists, since the INCF portal initia-
tive and several of the existing portal developments have emerged from a relatively
similar background.

INCF Portal: Domain Oriented Services

The rationale for providing domain oriented services, allowing navigation and
integration of distributed resources, is that the gathering of comprehensive sets of
available resources on the internet and through other available channels requires a
substantial effort in the form of manual searching and coordination. A large number
of different and isolated systems are used for access, referencing, technical stan-
dards, user interface principles, and quality standards. This poses problems at sev-
eral levels when using distributed resources in cutting-edge research. INCF will use
its technical and coordinating capabilities as well as its domain authority established
via the INCF Workshops series and INCF Expert panels, to address these issues. At
a general level, examples of approaches to be taken by the domain oriented services
include database mediation, data fusion and mining, data driven navigation, special-
ized multi-level categorization, and search engines. Among the values to be reached
by establishing domain oriented services are

� a general information efficiency boost due to less administrative and coordinative
overhead on the part of the end user

� scientific information gain by facilitating data fusion and new levels of integrated
information refinement

� strategic resource persistence and standardization advantages with regards to
quality, referencing and availability

� the establishment of an international community derived authority in the given
domains, in connection with INCF Workshops and Expert panels funded by other
INCF resources

� general organizational development with regards to cooperation and communi-
cation between neuroscientific and technological institutes around the world

� increased opportunities for improved IT-infrastructures in the neuroinformatics
community of developers, as a result of a new focus on their deliverables and
increased use of these

� the establishment of standards and common principles
� technological spin-offs within fields such as data fusion, database mediation,

sensemaking, distributed information services, usability and platform indepen-
dence

The domain areas to be included in the portal will be decided on by the Governing
board of the INCF. Each domain area is critically analyzed by a workshop, with rep-
resentatives of the main stakeholders in a given area. The INCF workshops deliver
penetrating reports that includes recommendations for actions. One report exam-
ple is provided by the 1st INCF workshop on Large-scale modeling of the nervous
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system, available via the INCF web site and via Nature Proceedings [4]. Follow-up
of the workshop recommendations are in turn overseen by expert panels, derived
with each panel linked to a program officer at the INCF Secretariat. Examples of
domain areas that are currently considered for inclusion are:

� Large-scale modeling of the nervous system
� Digital brain atlasing systems
� Integration of fMRI and other neuroimaging data resources
� Neuroanatomical nomenclature and taxonomy

Future domain areas to be considered include also biologically problem-oriented
domains, such as Action, Learning and Memory, Vision, and Cellular neurobiology.
Building on the workshop and expert panel mechanism, the INCF has at hand the
necessary international authority, connected to the community of lead scientists.

INCF Portal: Basic Services

The basic services that will be included in the portal are software provision and
general community building support. A broad use of these services is expected. A
primary concern is to support the domain oriented services of the portal.

Software Provision

The development, distribution and use of specialized software tools will be
facilitated and supported by the portal. This is quite challenging since many of
the developers represent small research groups, many specialized approaches are
used, few standards are applied, and tracking of the use of tools as well as feedback
and reward to the developers are limited. From the perspective of the end users,
the concerns that will be targeted include the overhead work involved in finding
and getting access to software tools, the problems of quality assurance relative to
purpose of use, platform dependency problems, and updating and support. From
the perspective of the tools developers, the concerns that will be targeted include
tools Lifecycle Management, coordination of user feedback and usage statistics,
release management and redistribution, and the interface and buffer between the
tools developer community and the user community (by which individuals are often
members of both).

In the context of the portal developments, the INCF will aim to identify high
quality tools from all relevant resources (helped by its workshops and expert panels)
and facilitate access to such tools via the portal services. Further, structural support
systems in the form of code repositories, version control and issue tracking mech-
anism will be provided. Such systems, essential in the context of development of
high quality software and associated with a resource overhead often beyond the ca-
pacity of individual scientists or small research groups, will be provided. Therefore,
state-of-the-art software development support services, tailored for the needs of the
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neuroinformatics community, will be developed. Substantial weight will be placed
on platform-independency and continuing availability of key software applications
through new versions of operating systems and hardware, i.e. forward-porting. A
possible solution for some types of software may also be the use of managed servers
holding relevant and frequently used software and removing the need to download
software.

Community Building Support

General community building support services relates directly to the coordination
objectives of the INCF. These services will include functions such as online meeting
forums, blogs with emphasis on news and commentaries for the different divisions
of the portal, and calendars of neuroscience and neuroinformatics events. Given
the focus on domain oriented services, the above functionalities will address the
different domains specifically, but also offer integration of communication across
domains.

Concluding Remark

A key element in the INCF operation is to work closely with the scientific com-
munity in adjusting and translating the INCF work plan to practical action. To the
extent possible, actions of the INCF will always seek to build on a careful map-
ping of existing resources and, when possible, to prepare for the full use of these
in combination with new developments. The INCF portal will be one of several
instruments that will play a role in establishing a future neuroinformatics capability,
the aim of which will be to have the same role in basic and clinical neuroscience as
bioinformatics has for genomics and proteomics.
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Chapter 116
Neuroinformatics in the Netherlands

Jaap van Pelt and Arjen van Ooyen

Abstract In the past decade the Netherlands has actively participated in the OECD
initiatives for an international program in neuroinformatics. Simultaneously, many
activities have been unfolded towards a national program in neuroinformatics in
the Netherlands. This paper briefly summarizes these activities within the national
context and opportunities.

Introduction

From the beginning on, the OECD Global Science Forum initiative to promote Neu-
roinformatics was supported by the Netherlands. Several factors contributed to this
interest. Neuroscience takes a prominent place among the life sciences. Theoretical
biology programs at several universities have created a community of researchers
trained in modeling in the life sciences, including the neurosciences (computational
neuroscience). The Netherlands has an excellent high-speed IT infrastructure for
higher education and research (SURFNET), and advanced super-computing facili-
ties, supported by the Netherlands national computing facilities foundation (NWO-
NCF). A steering group was established to promote a national neuroinformatics
program, by (i) building a neuroinformatics community, (ii) organizing workshops
(twice a year), working on awareness of neuroinformatics among governmental and
industrial organizations, and (iii) launching a website [1]. It resulted in a Master-
plan Neuroinformatics with recommendations to the Netherlands Organization for
Scientific Research (NWO). At the 21th of March 2007 NWO signed the agreement
with INCF through the joint support of the NWO departments for Health R&D
(ZonMw), Earth and Life Sciences (ALW), Social Sciences (MaGW) and Physical
Sciences (EW), making the Netherlands the 12th member of INCF.
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Masterplan Neuroinformatics

Mission

The mission of a Dutch Neuroinformatics Program is to provide a general frame-
work of computational tools and modeling approaches in order to advance our un-
derstanding of the working of the brain. The program aims at taking away barri-
ers in neuroscience research of data integration and conceptual insight by enabling
research at higher levels of complexity, dynamics and integration. The focus is on
three topics: data-basing/data-sharing (developing and applying tools to improve ac-
cessibility, sharing, and integration of neuroscientific data); data analysis and visu-
alization (developing and applying mathematical and statistical methods to analyze
and visualize the huge quantity and great complexity of neuroscientific data, such
as originating from micro-, multielectrode- and photodiode arrays, and brain imag-
ing); and computational and mathematical modeling across all levels, from gene to
synapse to cognition).

National Node

The national node is aimed at coordinating neuroinformatics activities at the national
level. These include actions towards an education and training program, acquiring
enabling resources, and plans for sustainability.

Organization

The size of the Netherlands and the state of modern technology may permit a first
stage of organization into research clusters that operate as virtual (distributed) ex-
pertise centers composed much more on a content-based definition than on a geo-
graphical or institutional organization. The field could get organized around a few
common themes to create focus and critical mass such as (Fig. 116.1): (i) Web-based
Data-sharing Infrastructure, (ii) Computational Platforms for Data Analysis, and
(iii) Computational Modeling as typical neuroinformatics themes, and (iv) Brain
Imaging and (v) Brain-Machine Interfacing as typical integrative themes. These
centers should also implement a neuroinformatics educational program. Two tracts
are foreseen, one aimed at (PhD/Master) students from informatics(-like) science
that need education in neuroscience and another one for students in neuroscience
that need education in informatics and computational and mathematical modeling.

Funding

Funding for a national neuroinformatics program need to be obtained by the neu-
roinformatics community itself through regular mechanisms. These include larger
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Fig. 116.1 Illustration of how expert centers and thematic centers may form an integrated field of
research providing a neuroinformatics platform to help furthering our understanding of the brain

public programs, support from universities and research institutes, as well as the
European Commission. Industrial interest for neuroinformatics will create a source
for private funding. It is anticipated that these institutions are in particular inter-
ested in supporting (joint) expert centers for neuroinformatics research and educa-
tion/training.

Neuroinformatics Community

Many research groups have expressed their interest in a national neuroinformatics
program. They represent a large community of scientists from a full range of special-
izations encompassing basic, clinical and computational neuroscience, biophysics,
mathematics, informatics and computer sciences, cognitive and psychological sci-
ences, and biomedical engineering. Almost all general universities and all technical
universities are represented, as well as several research institutes. The scientific
programs of these research groups include common themes as (i) physiological
processes and information processing in the brain, (ii) structural organization of
the brain, (iii) computational platforms for the analysis of images and physiological
data, (iv) computational platforms for modeling brain structure and function, (v)
non-invasive brain imaging, (vi) data basing and data mining, grid technology, (vii)
bio-informatics, and (viii) neural control and man-machine interfacing.

Within these themes research groups have build up specific expertise in ex-
perimental and computational studies at a variety of topics such as morphologi-
cal and functional development of neuronal networks, firing dynamics in neuronal
networks, membrane excitability, information processing in biological and artifi-
cial neural networks, electrophysiology of cortical micro-circuits, structural and
functional brain imaging in development and cognition research, and in neuro-
logical (epilepsy) and psychiatric (schizophrenia) disorders, scientific visualization
and computer graphics, computational geometry and geometric modeling, pattern
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recognition and segmentation in computer vision, analysis and modeling of EEG,
MEG, fMRI and VEP time series, neural control of human motor system, data min-
ing and algorithmic analysis of complex data, and autonomic and self-organizing
databases.

The inventory also made clear that the participating research groups provide pos-
sibilities for a full range of education and training programs on neuroinformatics
topics. The neuroinformatics community has the expertise, the quality, the research
and educational facilities and, above all, the enthusiasm, for making the Nether-
lands well prepared to execute a national neuroinformatics program at the highest
international competitive standards.

Related National Initiatives

BIG GRID

A proposal for the organization of a national infrastructure for e-science on the
basis of grid technology (BIG GRID) has recently been awarded by NWO [2]. The
e-Science infrastructure to be built is intended to provide Grid based facilities for
data-basing/archiving, data communication and computing power for data analysis.
Because these facilities implement basic resources for a neuroinformatics program,
the NI steering group has strongly supported this Big Grid proposal. Big Grid facil-
ities are especially beneficial when resource demands are high, such as in the case
of image data bases requiring large amounts of storage capacity, and in the case
of large scale brain modeling, requiring substantial compute power. Facilities for
secure communication with on the fly encryption via dedicated optical links may be
highly relevant for ethical and IPR-sensitive applications. The optimal architecture
concerning centralized/distributed facilities needs further to be investigated.

Neurofederation

In December 2005 the Dutch Neurofederation formulated her vision on next decade
brain research in the Strategy Plan Brain Research 2005-2015 [3]. There is a great
societal need for brain research because of brain diseases, aging, educational chal-
lenges, understanding human behavior, and for the development of man-machine
interfaces. New challenges are identified at gene-environment interaction, brain &
cognition, plasticity and (de)regeneration. Integrative neurosciences and neuroinfor-
matics are seen as key approaches for the realization of these challenges.

Systems Biology

In line with international developments Systems Biology is also an emerging field
in the Netherlands, not in the least by the activating work of the Dutch Platform for
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System Biology [4]. With the promotion of computational modeling approaches to
integrate data and knowledge over different levels of biological organization, there
is great resonance with neuroinformatics, focussing on the nervous system.

National Initiative Brain & Cognition

A National Initiative Brain & Cognition is presently in preparation [5]. This initia-
tive aims at bundling and integrating national research of the brain and cognition
into a coherent program for fundamental and applied research. Such an integrated
program is timely because of the advancements in science and technology now en-
abling the bridging of cognitive and brain science. With this initiative a platform
is formed for applied research towards learning and memory, communication, brain
disorders, and integrative cognition and neuroscience. The initiative will put a strong
requirement on the integration of data and knowledge and the availability of tools
for data analysis and exploration and for computational modeling. Neuroinformatics
will therefore play a crucial role in the realization of this initiative.
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Chapter 117
Neuroinformatics Japan Node and Platforms

Shiro Usui

Abstract Since the establishment of NIJC in 2005 at the RIKEN Brain Science
Institute, which represents the Japan Node of INCF, Japanese neuroinformatics
activities has been enhanced to integrate outstanding research of neuroscience in
Japan. We introduce the scheme and resources developed by NIJC. There are nine
neuroinformatics platforms so far, including both already developed and under de-
velopment. The J-Node portal has been accessed about 47,000 times per month on
average inside and outside the country. We intend to increase the overseas users of
the platforms on the J-Node site.

Keywords Neuroinformatics · INCF · J-Node · platforms · XooNIps

Introduction

Neuroinformatics (NI) is concerned with integrating the diverse and complex neu-
roscience data through information science in the inter/intranationally organized
framework. The international framework is the International Neuroinformatics Co-
ordinating Facility (INCF)1 established through the Global Science Forum of OECD
on November 2005, while the intranational counterpart is the National Node of the
INCF member country. The role of the National Nodes includes to coordinate neu-
roinformatics activities within the country and to promote neuroinformatics devel-
opment that supports the objectives of INCF.

The Neuroinformatics Japan Center (NIJC) represents the INCF national Node of
Japan (J-Node)2 . Together with the Japan Node Committee and the Platform Com-
mittees, NIJC facilitates neuroinformatics research in Japan. Figure 117.1 shows
J-Node in the center connected with nine platforms. Platform Committee members
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collaborate to develop their platforms. Each platform has been developed with a
base platform system, XooNIps3 , which was developed by NI-Team at RIKEN BSI
and is operated by NIJC. The registered users of a platform can freely download
its contents and upload their own contents on it by a simple procedure with the
approval of the platform Committee. These platforms are or will be accessible at the
J-Node site.

J-Node Platforms

We here introduce each platform (PF) developed or under development at the J-Node
portal site [1].

Cerebellar Development Transcriptome Database

To elucidate the genetic basis for mouse cerebellar development, as a model sys-
tem, the members analyze all of the transcriptional events (i.e., the transcriptome)
responsible for developmental stages. CDT-DB has been developed to combine the
large datasets of the expression profile information and the relevant bioinformatics,
which not only allows us to delineate the complex genetic mechanisms underpinning
cerebellar development but also provides a tool for sharing and mining of our large
datasets. [PF head: Furuichi, Teiichi (RIKEN Brain Science Institute)]

3 http://xoonips.sourceforge.jp/
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Neuron-Glia PF

Focuses on how neuronal and glial cells and the networks of these cells work
in a highly complex and dynamical system of brain and proposes to give math-
ematical model descriptions to new findings and ideas on neural information pro-
cessing. Neuron-Glia PF also provides the function to help collaboration of
researchers. [PF head: Miyakawa, Hiroyoshi (Tokyo University of Pharmacy and
Life Sciences)]

Invertebrate Brain PF

IVB PF allows us to share such resources as the physiological and behavioral
data from insects and other invertebrate animals. For example, Invertebrate Brain
Gallery - a collection of images of nervous systems in various invertebrates - is
constructed and managed by the original XooNIps module. Original image data
of invertebrate neurons, such as interneuron of antennal lobe of moth brain, are
collected on the site. [PF head: Kanzaki, Ryohei (University of Tokyo)]

Cerebellum PF

Is a database of the all kinds of information on a cerebellum with an unique structure
and role in motor learning. The platform will provide a history of the cerebellar
research and the basic concepts of the cerebellar structure and function, references
and images, experimental data for the modeling, source codes of neural network
models, and other tools for the study of the cerebellum. The members will focus on
the two important cerebellum-dependent experimental paradigms, i.e., adaptation
of the eye movements and eyeblink conditioning. [PF head: Nagao, Soichi (RIKEN
Brain Science Institute)]

Brain-Machine Interface PF

BMI is the interface in which mechanical devices provide sensory input to the brain,
or are controlled by the motor output signals recorded in the brain. BMI PF is a
database of BMI researches covering the research fields of neuroscience, compu-
tational theory, robotics etc. It provides organically linked information about BMI
to researchers of the field inside and outside the country and support researches
to develop their study or understanding of BMI. By using a clickable map of re-
search sites about BMI, users can figure out trends of BMI studies around the world.
[PF head: Iijima, Toshio (Tohoku University)]



682 S. Usui

Visiome PF

is a vision science neuroinformatics platform, which was developed by NRV project
[2]. Since reproducibility is a key principle of the scientific method, published re-
sults must be testable by other researchers using the same methods. The platform
collects various kinds of reference files and makes them organized and packaged
as a single item in Visiome Binder, which is useful for providing a reading list for
students, a collection of models and data with a particular interest, a collection of ed-
ucative movies in vision science. [PF head: Kamiyama, Yoshimi (Aichi Prefectural
University)]

Integrative Brain Research PF

The IBR project is comprised of about 300 principal investigators (PIs) from dif-
ferent neuroscience areas. The database committee is planning both top-down and
bottom-up types of databases. For the former, the database committee will collect
the outcomes of the research of individual PIs and will publish these research out-
comes on IBR PF. Although the activity of the project will finish in 5 years, the
content will be maintained and updated by the IBR-PF committee under the J-Node
afterwards. [PF head: Isa, Tadashi (National Institute for Physiological Sciences)]

Neuroimaging PF

NIMG-PF committee members are registering bibliographies, tutorial materials,
software contents, experimental data and other information and links related to var-
ious neuroimaging technologies such as MRI, MEG, EEG, PET, and NIRS, and
their integrations. They are also developing convenient visualization functions for
neuroimaging databases, which are capable of an easy-to-use display of 3D brain
images and a function of search by pointing locations on the images. In addition,
there is a plan of registering MEG multi-dipole analysis software and raw data of
MRI and MEG. [PF head: Suzuki, Ryoji (Kanazawa Institute of Technology)]

Neuroinformatics Common Tools PF

NICT PF aims to share mathematical theory, algorithm, analytical tool and NI-
supporting environment. At present, software tools and NI-supporting environment
developed by NI-Team for neuroscientists are being registered, such as (1) Cus-
tomizable base platform; XooNIps, (2) Personal database software; Concierge,
(3) System analysis total environment; SATELLITE, and (4) Visualization tools;
Samurai-Graph. [PF head: Usui, Shiro (RIKEN Brain Science Institute)]
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Concluding Remarks

We have kept track of the access log to the J-Node site regularly since it was revised
in July 2006. Figure 117.2 shows the records on monthly basis as of May 31 2007.
The average number of site access is approximately 47,000 per month. This number
has much increased because the portal was revised to be easier to find the informa-
tion of users’ interests and to provide information in English as well. Figure 117.2
also reveals that the site is accessed not only from jp domain but also from other
country domains (us, au, eu, de, and so on). It is necessary to collect significant
resources to attract users and promote the J-Node site over the countries.
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Fig. 117.2 The number of access to the J-Node portal site (June ’06 - May ’07)
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Chapter 118
Chinese Neuroinformatics Research: Recent
Progress and Future Activities

Guang Li, Ling Yin, Yiyuan Tang and Xiaowei Tang

Keywords Neuroinformatics · China · database · progress · activity

Introduction

In September, 2001, the 168th Xiangshan Science Conference, which focusing on
the scientific frontier of basic research and important engineering technology of
China, entitled “Human Brain Project and Neuroinformatics” was held in Beijing.
As a result, the Neuroinformatics Working Group of China was found. Since then,
supported by the Ministry of Science and Technology (MOST) of China, neuroin-
formatics researches have developed fast in China [1, 2].

Recent Progress of Neuroinformatics in China

In recent years, the research in neuroinformatics in China focused on the standard
and criterion for neuroinformatics data-sharing, an internationally-distributed neu-
roinformatics database in china and the promotion on neuroinformatics research [2].

Funded by the National Basic Research Program of China (973 Program), the
National Node of Neuroinformatics of China, entitled Brain Bank, was initialized in
January 2005. The aim of this project is to collect and normalize existing neuroin-
formatics resources all over the country, develop informatics processing platform
for neuroscience, setup the national web node of China as a part of international
neuroinformatics network and provide neuroinformatics resources with local char-
acteristics.

While doing effort on neuroinformatics data-sharing, the Neuroinformatics
Working Group of China has promoted on neuroinformatics research. Several
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training courses in neuroinformatics have been held, and several national and in-
ternational conferences were organized.

Scientific Data Sharing in China

When the world is entering a new era of enormous potential for everyone, that of
the Information Society and expanded human communication, Chinese government
has realized that data have become both more accessible and more necessary to
maintain; more abundant and more complex to manipulate; more global and more
expected to share. So the Chinese government started to pay more and more atten-
tion on scientific data sharing. In October, 2006, the 20th International CODATA
Conference (CODATA 2006), titled “Scientific Data and Knowledge within the In-
formation Society,” was held in Beijing. CODATA 2006 intended to promote the use
of scientific data and knowledge and harness the benefits of the Information Society
to reach scientific and developmental targets.

As a cutting-edge research field in science and technology development today,
the studies of biomedicine have already accumulated an enormous volume of data
by scientists across the world. Chinese government also realized that although the
construction of some databases, for instance the Genbank by the U.S. National Cen-
ter for Biotechnology Information, has been taken shape and won world recogni-
tion, most data resources are still in the private possession of individual scientists
or institutes. The shortage of authoritative managing institutions and standardized
norms for such data leads to a lot of low-efficient and repeated research. The es-
tablishment of global platforms for data management and sharing for biomedical
studies becomes one important target for the government. By far, a website called
“the Scientific Data Sharing System for Chinese Medicine and Health” [3] has been
established to collect every piece of valuable information in fields like pre-clinical
medicine, clinical medicine, public health and traditional Chinese medicine. A re-
port on its construction and development during the Conference for Committee
on Data for Science and Technology (CODATA) in Beijing last year gained high
applause, and the system was regarded as the most comprehensive and promising
bio-medical databank in today’s world. The data-sharing in neuroinformatics was
brought into this system.

As a part of the 20th International CODATA Conference held in Beijing last
year, a special session entitled Brain Bank was organized by the Neuroinformatics
Work Group of China. And the work of Neuroinformatics Work Group of China
were introduced. During the 298th Xiangshan Science Conference held on March
29–31, 2007, entitled “International Symposium on Global Data-sharing Strategy in
Biomedicine”, neuroinformatics data shring was considered as a good example of
data-sharing in biomedicine as well as the Genbank.

Brain Bank – Chinese National Node of Neuroinformatics

The Brain Bank [4] is a professional website developed by the Neuroinformatics
Working Group of China and Computer Network Information Center of Chinese
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Academy of Sciences (CNIC, CAS), according to general disposition of the Organi-
zation of international Economic Cooperation and Development (OECD) – Global
Science Forum(GSF) – Neuroinformatics (NI), under the support of the 973 great
international cooperation project – Chinese node of the international neuroinformat-
ics network.

The webpages include seven columns: home, international cooperation, research
program, research results, services, forum, and free mailbox. Mainly, the databases
include the basic neuroscience database, clinical neuroinformatics database,
perception, awareness consciousness database, artificial intelligence database and
informatics tool database. Additionally, three databases with significant Chinese
characteristics are constructed. They are Chinese-western medicine encephalopathy
database, acupuncture brain function imaging database and the Chinese cognition
and consciousness feeling database.

The main missions of the Brain Bank are to integrate neuroinformatics data
resources with Chinese characteristics, to build up a research network environment
for global cooperation, to utilize the technique of computer network to link the in-
ternational databases relevant with brain and neuroinformatics research, to manage
data from preservation to sharing and value extraction and addition, to enhance in-
ternational cooperation on brain research together with international organizations,
and to provide scientific data sharing service.

Promotion on Neuroinformatics Research

The Chinese Neuroinformatics Working Group has done effort on neuroinformatics
database and internet based collaboration environment as a part of scientific data-
sharing, particular the data-sharing in biomedicine.

In October, 2005, the 266th Xiangshan Science Conference, entitled “Neuroin-
formatics and Scientific Data Sharing” was held in Beijing. The national strategy of
the development of neuroinformatics in China was discussed.

(a) (b) 

Fig. 118.1 Brain Bank – the Chinese node of the International Neuroinformatics Network,
(a) Chinese version (b) English version
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A special session of the 20th International CODATA Conference entitled Brain
Bank was organized. The work of Neuroinformatics Work Group of China were
reported.

In March 29–31, 2007, the 298th Xiangshan Science Conference, entitled
“International Symposium on Global Data-sharing Strategy in Biomedicine” was
held in Beijing. It was decided to start cooperation with the National Institute of
Biomedical Imaging and Bioengineering of USA in neuroimaging data sharing as
one of starting point of Sino-American scientific data-sharing cooperation.

Meanwhile, China is doing effort on promoting research on neuroinformatics. In
order to enhance the communication in neuroinformatics, the China–Japan–Korea
Joint Workshop on Neurobiology and Neuroinformatics is regularly organized. The
7th China–Korea–Japan Joint Workshops on Neurobiology and Neurinformatics
was held in Xiamen in November 2005. The first International Workshop on Nonlin-
ear Brain was held in Hangzhou, June 9–10, 2007. Over 80 scholars from different
countries across the world join the workshop.

Future Works

Taking it as one of the pioneers of the scientific data-sharing projects, the Chinese
Neuroinformatics Working Group will implement a better web-based coordinating
research environment for neuroscience and informatics by improving the overall
planning, standardization and operational mechanism of the neuroinformatics data-
sharing system,

Furthermore, we will continue to coordinate the neuroinformatics research with
Chinese characteristics in China, to integrate the neuroinformatics resources and do
effort on the neuroinformatics training programs.
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Chapter 119
Neuroinformatics in India – Current Status
and Future Directions

Nandini Chatterjee Singh

Abstract Neuro-Informatics and computational neuroscience research in India has
followed two directions – on the one hand research has focused on the use of com-
putational approaches to understand neural processing. On the other hand research
has been directed towards developing new tools that would benefit clinical research.
In this paper we describe research initiatives undertaken in both areas and also dis-
cuss some new programs that been initiated at the recently commissioned National
Facility for Functional Brain Imaging at the National Brain Research Centre.

Keywords Computational neuroscience · India · brain · models · fMRI

Introduction

The field of Neuroinformatics and computational neuroscience research in India has
followed two paths (1) Computational analysis and modeling to understand brain
function and (2) Development of tools and techniques to aid the aid the clinical com-
munity for the analysis and diagnosis of brain disorders. A major role in organizing
such research has been played by the National Brain Research Center (NBRC),
the first Institute in India, established in 1999, for the development and promotion
of fundamental research on Neuroscience. The mandate of NBRC is to carry out
research on brain function in health and disease in order to see basic research and
technological advances translated into better diagnostic tools and rational therapies
for health problems.

In this paper we will outline some of the research undertaken at various centres
in India and hope that newer research collaborations with other countries might
result from the exchange and sharing of such information. The next few paragraphs
describe research in computational neuroscience in different parts of India.
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Language Phonological Maps and Their Applications
in Studying Language Disorders

The speech and language laboratory at the National Brain Research Centre (NBRC)
headed by Dr. Nandini C Singh have initiated a new approach to study spoken
language. Using state of the art signal processing techniques they describe spoken
language in terms of information at different time scales. Towards building such a
picture, language is ‘visualized’ as sound in terms of modulations of the amplitude
envelope and can thereby be characterized by broadband spectra with energy at
many different time scales. In the process this laboratory has developed for the first
time a single unified tool called the ‘language phonological map’ that can capture
all aspects of spoken language like rhythm, place of articulation and pitch voicing
which is currently being used to study the temporal structure of different languages.

The Development of Speech Motor Skills in Children
in Populations of Monolingual and Bilingual Children

To study the development of speech motor skills in typically developing children,
the speech and language laboratory at NBRC is setting language phonological maps
for children between 4–10 years of age and comparing them with adults. Since this
data is being investigated in a population such studies not only provide informa-
tion on when children achieve adult-like maturation but could potentially also be
useful for speech language pathologists in the screening and diagnosis of language
disorders associated with speech motor skills [1].

A third area of interest in this laboratory is the to investigate patterns of speech
produced by children with autism and how it differs from the patterns exhibited by
typically developing children.

Application of Stochastic Resonance and Stability Analysis
for Brain Imaging and Therapy: Using Noise
to Defeat Noise

A major project in Dr. Prashun Roy’s laboratory is to apply the Stochastic Resonance
Enhancement paradigm for increasing the efficiency of diagnostic and therapeutic
radiology, especially in neuroimaging (MRI, MRS), tomography and tomotherapy
[2]. Though CT and MRI have revolutionized the study of brain in health and dis-
ease, a major problem is increasing the signal:noise ratio (SNR). This group headed
by Dr. Prasun K. Roy has designed the pathways through which perturbation can be
administered during the process of MRI, tomography and tomotherapy. SRE is being
harnessed to distinguishing between brain tumour recurrence and post-radiotherapy
necrosis, whose problematic differential diagnosis is an ordeal for conventional
imaging procedure. The stochastic augmentation is also being explored for enhanc-
ing the diagnosis of Alzheimer’s disease.
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Non-equilibrium Information Theory

Dr. Prashun Roy’s group at the National Brain Research Centre is elucidating a new
generalized theory of information transmission and processing beyond the Shannon
paradigm and use the theory to understand and modulate information processing in
high throughput conditions of neuronal systems, as in intensive adaptation, plastic-
ity, and epileptic seizures. A new nonlinear non-equilibrium dynamic analysis of
information processing and control in the neuronal system is being developed to
address these issues.

Modelling the Basal Ganglia

In order to explain how various subcortical nuclei of the basal ganglia are involved
in diverse functions like reward-based learning, sequence generation, timing, ex-
ploratory behavior, motor preparation, working memory, attention, etc Dr. srinivas
Chakravarthy’s laboratory at the Indian Institute of Technology at IIT, Madras is
currently involved in developing an integrated neural network model of BG. The
highlights of their model include a hypothesized role of Subthalamic Nucleus-
Globus Pallidus externa subsystem in exploratory behavior. This idea suggests a
radically new interpretation of the Direct and Indirect Pathways of BG wherein
Direct Pathway is the Timing Pathway and the Indirect Pathway is the Exploration
Pathway. This model also captures several aspects of Parkinson disease handwriting
like micrographia, jagged contour and abnormal velocity fluctuations [3].

Olfaction and Memory

Dr. Upinder Bhalla’s laboratory at the National Centre for Biological Sciences
in Bangalore is looking at two specific brain functions: the sense of smell, and
memory.

To investigate olfactory neural processing they use imaging, electrical record-
ings, and odor-guided behavior information from which is being used to build a
comprehensive computational model of the olfactory system based on basic bio-
physical principles that will allow them to predict olfactory behaviour [4].

Research in this laboratory is also are directed towards building a biologically
detailed computational model of memory, from molecules to network using data
from various chemical circuits.

Learning Mechanisms

Human skill learning using behavioural experiments, functional neuroimaging and
neural modelling is being investigated by Dr. Bapi Raju at the University of Hy-
derabad. They undertakeexperiments to investigate the mechanisms underlying the
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acquisition of sequential motor skills (such as typing) triggered by visual cues. A
second area of interest in the laboratory is the modeling of biochemical signaling
pathways involved in reinforcement learning [5].

Computational Exploration of Neurotransmission
in Smooth Muscle

Computational analysis and in silico experimentation of neurochemical processes
are fast developing into a new research focus in the neuroscience arena.
Dr. R. Manchanda at the Bio-engineering department at the Indian Institute of Tech-
nology in Mumbai, is pioneering a research unit that has implemented a discrete
electrical model of a 3-D syncytium representing smooth muscle. Theoretical anal-
yses can now be carried out of the effects on smooth muscle electrical activity,
measured as syncytial synaptic potentials, of imposed conditions. The conditions
that are imposed are chosen such as to mimic experimental conditions or protocols.
Experimental application of presumptive uncoupling agents can be modelled as al-
teration in relevant electrical parameters of the system. Alteration of function at the
bundle, rather than cellular, level, can be explored.

Modelling of Receptive Field Formation
and Cortex–Retina Interaction

The Department of Electrical Engineering at Indian Institute of Technology – Delhi,
has an intensive research team led by Dr B Bhaumik, working in the problem of
simulating and analyzing the orientation and direction selectivity of simple cells as
well as studying a developmental model for receptive field formation in these cells.
To obtain the response of cortical cells to sinusoidal grating input, the retinal layer
has been modeled as a 2-D sheet of retinal ganglion cells (RGC) lying one over
the other, the first sheet corresponding to ‘on’ center RGCs and the other to ‘off’
center RGSs. The stimuli used in the visual space consists of a moving sinusoidal
grating of a given spatial and temporal frequency with varying orientation, this stim-
ulus traverses in the up-and-down direction for each orientation of the grating. The
response of cortical cell at a given time is calculated using spike-response model
(SRM). This computational experiment show that about 18% cells of the simulated
cortex are direction selective, and this model has been a pioneering one for the
receptive field formation in directionally selective cells [6].

Analysis of fMRI Data

The major focus of research of the team initiated by S. Purkayastha at Indian
Statistical Institute (Kolkata) has been neuroimaging. Current studies of estimation
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of hemodynamic sponse function, with special focus on Bayesian methods, is being
pursued. They also propose to actively use the software fMRIstat (developed by
Keith J. Worsley of McGill University, Montreal, Canada)

National Neuroimaging Facility

A 3T scanner has been installed at the National Brain Research Centre as part of
the National Functional Imaging facility and is completely functional. It is open
for research to neuroscientists across universities and institutes. Efforts are being
directed to develop a National Initiative in Neuroinformatics by involving various
Institutes to develop newer models for language and speech processing, analysis
of images various other areas of research. Students at post-graduate and the Ph.D.
level would undertake projects and rotate through various Institutes depending on
the available expertise and thus also facilitate more interaction and develop better
networks.
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Chapter 120
Emotional States Estimation from Multichannel
EEG Maps

Tomasz M. Rutkowski, Andrzej Cichocki,
Anca L. Ralescu and Danilo P. Mandic

Abstract The notion of emotional empathy, that is the estimation of responses from
electrophysiological signals has recently gained attention among the designers of
brain computer/machine interfaces (BCI/BMI). This is largely due to the relative
simplicity and convenience of electroencephalograph (EEG) recordings. Whereas
this problem is not entirely new, engineering approaches connecting the emotional
states of humans and the observed EEG recordings are still in their infancy. In this
paper we present an initial set of results on the estimation of basic emotional re-
sponses generated while watching short videos with dynamic emotional contents.
A novel multichannel EEG analysis approach is proposed in order to discover repre-
sentative components of the emotional responses. This is achieved based on distinct
spatial patterns exhibited within the EEG data recorded over frontal lobes, and av-
eraged over a number of trials and subjects. Simulation results support the proposed
approach, and confirm the initial hypothesis.

Introduction

Manifestations of emotional states are normally straightforward to detect and under-
stand by humans, as these are reflected in both the voice and body language [1, 2].
Some of the emotional states generate strong audio-visual responses (such as laugh-
ter or anger), whereas other are more difficult to recognize. Indeed, it requires rather
special knowledge to discover intent or deception from the behavior of a human,
although it is intuitively clear that these ought to be manifested in brain responses.
The approach presented here is somewhat related to some previously discussed
methods [3, 4, 5], where emotional stages were estimated based on the asymme-
try within the frontal brain activity in recorded EEG. In our approach the subjects
were presented with videos showing faces exhibiting different flavors of standard-
ized emotional expressions (comprehensive databases showing various emotional
stages [6]). Experiments reported in [2, 7] showed that the unconscious mind exerts
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direct control of facial muscles. However, contemporary approaches to emotional
state estimation usually deal with a static analysis of facial expressions and seldom
consider a dynamic or multimodal analysis. The classic experiments of [7] were
conducted using electromyography, in order to capture actual muscle activity of
communicators. Results of those experiments revealed that the communicators often
do not have total control over their expressed facial emotions. These findings clearly
suggest that important aspects of emotional face–to–face communication could oc-
cur at the unconscious level; this justifies our aim to predict emotional empathy from
EEG recorded over the frontal cortex. This activity is naturally expected to precede
the muscle activity (muscle reaction planing). The aim of this paper is therefore
twofold as follows: (i) to introduce a novel computational framework based on Em-
pirical Mode Decomposition (EMD) convenient for simultaneous data conditioning
and feature extraction from EEG data, and (ii) to provide an insight into the in-
formation theoretic processing mechanism of the brain based on this technique, in
particular, to illustrate the effectiveness of this approach for tracking of emotional
empathy from EEG data recorded over frontal lobes.

Experiments with EEG Recording during Emotions Presentation

Experiments were conducted in Advanced Brain Signal Processing Laboratory of
Brain Science Institute RIKEN, Japan. Every subject was asked to wear an EEG cap
with electrodes connected to the following front head channels Fp1, Fp2, AF3, AF4,
AF7, AF8, F3, F4, as in extended 10/20 EEG recording systems [8]. Throughout the
recording sessions, three different sets of movies from [6] with facial expressions
illustrating the emotions of angry, thinking and happy were presented. EEG signals
recorded on the scalp levels are usually highly contaminated by noise due to a very
low level of electrophysiological signals and due to the presence of different devices
in the environment creating electromagnetic interference. To tackle these problems,
the current study proposes to use empirical mode decomposition (EMD) [9], a new
technique to decompose EEG signals. EMD utilizes empirical knowledge of oscil-
lations intrinsic to a time series in order to represent them as a superposition of
components, called intrinsic mode functions (IMF), with well defined instantaneous
frequencies. In the current approach each recorded channel is first decomposed into
IMFs separately. Subsequently those signals which match instead only the frequency
bands of δ, θ , α, and β [8] are reconstructed. To obtain a single channel IMF it is
necessary to remove local riding waves and asymmetries, which are estimated from
local envelope of minima and maxima of the waveform. The technique of finding
IMFs corresponds thus to finding band limited semi-orthogonal components of the
signal. It also corresponds to eliminating riding-waves from the signal, which en-
sures that the instantaneous frequency will have no fluctuations caused by an asym-
metric wave form. In each cycle, the IMF is defined by zero crossings and involves
only one mode of oscillation, thus not allowing complex riding waves. Notice that an
IMF is not limited to be a narrow band signal, as it would be in traditional Fourier
or wavelets decomposition. In fact, an IMF can be both amplitude and frequency
modulated at once, and also non-stationary or non-linear.
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The procedure to obtain IMF components from a signal, called sifting [9], con-
sists of the following steps: (i) Identify the extrema of the signal waveform x(t); (ii)
Generate “signal envelopes” by connecting local maxima by a cubic spline. Con-
nect signal minima by another cubic spline; (iii) Determine the local mean, m1, by
averaging the two spline envelopes; (iv) Subtract the mean from the data to obtain:
hi = x(t) − mi ; (v) Repeat as necessary until there are no more possible IMF to
extract; (vi) Proper IMF is a first component containing the finest temporal scale in
the signal; (vii) The residue ri should be generated by subtracting out proper IMF
found from the data; (viii) The residue contains information about longer periods
which will be further resifted to find additional IMFs. Using the above procedure,
EEG signals from chosen electrodes were decomposed separately forming subsets
of IMF functions, from which low frequency drifts and high frequency spikes were
further removed. From the obtained IMFs, corresponding frequency bands of δ,
θ , α, and β [8] were extracted and their combined powers were plotted in form
of “head–plots” with specific patterns for different emotional stages generated in
response to watched videos were obtained as in Fig. 120.1. Notice differences in
power distributions over the frontal head and the asymmetry in thinking and happy
states. The state of angry response is characterized by frontally symmetric response
in bottom panels in Fig. 120.1.

Fig. 120.1 The averaged (over subjects and sessions) EEG power patterns (over the frontal head)
during different emotional stimuli
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Conclusions

A framework to estimate emotional emphatic response from EEG has been pre-
sented as a part of augmented BMI research. This has been achieved by proposing
a new EEG decomposition technique, which allows a flexible sub-band signal de-
composition while preserving the nonlinear and non-stationary nature of the signals.
A set of carefully selected video clips, containing faces showing dynamic emo-
tions, has been shown to allow for the estimation mental feedback. Reactions of the
subjects were estimated from EEG recorded synchronously while the users where
watching labeled videos, and the EEG patterns elicited during these experiments
have been analyzed. This approach is very far from an idea of “thought reading” but
indicates the possibility of designing a video stimulus that might generate an ex-
pected reaction clearly noticeable from EEG. This is a step forward toward creating
user friendly brain–machine–interfaces that would not utilize mentally demanding
stimuli.
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Chapter 121
ICA and Complexity Measures of EEG Analysis
in Brain Death Determination

Jianting Cao and Zhe Chen

Abstract The concept of brain death has been accepted in worldwide. In many
countries, electroencephalography (EEG) is used as a criterion to evaluate the ab-
sence of cerebral cortex function in the brain death diagnosis (BDD). Since EEG
recordings might be corrupted by some artifacts or various sources of noise inter-
ference, studying EEG in noise reduction and the significant differences of EEG
measurements is crucial in the process of BDD. This paper presents an EEG data
analysis method using independent component analysis (ICA) and complexity mea-
sures [IEEE Transactions on Neural Networks 14: 631–645, 2003, Proceedings of
International Conference of the IEEE Engineering in Medicine and Biology Soci-
ety]. A total of 36 patients’ EEG data have been analyzed. The reported experimen-
tal results illustrate the effectiveness of the proposed method.

Introduction

Brain death is defined as the cessation and irreversibility of all brain and brain-stem
functions. Based on this definition, the basic clinical criterion (including the EEG
criterion) is typically established in most countries. For example, a relatively strict
criterion in Japan is given as (1) Coma test; (2) Pupils test; (3) Brainstem reflexes
test; (4) Apnea test; and (5) EEG confirmatory test. Since the standard process of
BDD usually involves certain risks and takes a long time (e.g. the need of removing
the respiratory machine in the apnea test), it is desirable to develop a practical yet
safe and reliable tool for the diagnosis of brain death.

We have introduced an EEG preliminary examination method in the standard
BDD process [1, 2]. After (1)-(3) tests, an EEG examination along with real-time
data analysis is used to detect the brain activity at the bedside of patient. Provided the
examined result is positive, we suggest to accelerate (or bypass) the BDD process,
and focus the attention on the medical care.
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In order to support the EEG preliminary examination in BDD, we develop a sys-
tem that includes a portable EEG recording parts and several EEG signal processing
tools [1, 2, 3]. It is our belief that if the EEG preliminary examination is reliable and
its results are significant, it can provide a simple and risk-free diagnosis tool in the
Intensity Care Unit (ICU) of the hospital without jeopardizing the life of the patient.

EEG Data Analysis

ICA with a Robust Pre-whitening for Noise Reduction

Given the measured EEG signal, the signal model can be formulated by

x(t) = As(t)+ ξ (t), (121.1)

where x(t) = [x1(t), · · · , xm(t)]T represent the transpose of m electrodes at time
t . Each electrode signal xi (t) contains n common components represented by the
vector s(t) = [s1(t), · · · , sn(t)]T and a unique component which is an element in the
vector ξ (t) = [ξ1(t), · · · , ξm(t)]T . The element of matrix A∈R

m×n = (ai j ) reflects
the mixing (or propagation) factor between the i-th sensor and the j-th source.

There are two kinds of noise that needs to be reduced or discarded in the EEG
data analysis. The first kind is the additive noise that is generated from the individ-
ual sensor. The standard ICA approaches usually fail to reduce this kind of noise.
Therefore, we will first apply a robust pre-whitening technique [4] in the prepro-
cessing stage to reduce the power of the additive noise. The second kind of noise is
a common component such as an interference source. we will apply a robust ICA
algorithm based on the parameterized t-distribution density model [4] to separate
the mixtures of sub-Gaussian and super-Gaussian signals, and discard the common
noise components after the source decomposition.

Quantitative Complexity Measures

The quantitative EEG analysis for the coma and quasi-brain-death patients has been
reported in [1, 2]. Specifically, four types of complexity measures are used for evalu-
ating the differences between two groups of patients. These four types of complexity
measures are : (1) the approximate entropy (ApEn); (2) the time delay-embedded
normalized singular spectrum entropy (NSSE); (3) the C0 complexity; and (4) the
α-exponent based on detrended fluctuation analysis (DFA). Upon obtaining the
quantitative results from these four complexity measures, statistical tests were fur-
ther applied to evaluate their statistical significance. Specifically, one-way ANOVA
(analysis of variance) was applied to these quantitative measures within two groups
(coma vs. quasi-brain-death) for each electrode channel.
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Experimental Data and Results

The EEG measurements were recorded in the Shanghai Huashan Hospital in affilia-
tion with Shanghai Fudan University, China. The EEG was directly recorded at the
bedside of patient where the level of environmental noise was relatively high. Six
electrodes and one ground electrode were placed on the forehead of the patient. A
total of 36 patients have been examined by EEG from June 2004 to March 2006,
with the age range from 17 to 85 years old.

By applying ICA to the 36 patients’ EEG, we were able to extract brain activi-
ties from 19 patients (see Table 121.1). The β-wave component occurred in some
patients due to the effect of medical drug. On the other hand, only noise or inter-
ference components (e.g., heartbeat component in some cases) were extracted from
the remaining 17 patients. The results from our data analysis were almost identical
to the clinical diagnosis.

Based on the clinical diagnosis and the ICA results, the patients were classi-
fied into a deep-coma group or a quasi-brain-death group. We applied four types of
complexity measures to evaluate the quantitative differences between two groups.
The result is summarized in Table 121.2. As seen from the table, statistical tests
show significant differences in all complexity measures and all channels for the
raw EEG data. For the filtered EEG data (0.5–100 Hz), significant differences be-
tween two groups are still found in all or majority of the channels for all complexity
measures.

Table 121.1 The results of extracted brain activities from 19 patients (δ band: 1–4 Hz, θ band:
4–8 Hz, α band: 8–12 Hz, β band: 13–30 Hz)

Number Gender Age Analysis results

1 Male 18 θ-wave, α-wave, δ-wave
2 Male 40 θ-wave
3 Male 85 θ-wave, α-wave
4 Male 65 θ-wave
5 Female 64 θ-wave
6 Female 23 δ-wave
7 Male 48 θ-wave
8 Female 17 α-wave
9 Male 18 θ-wave, δ-wave
10 Male 66 θ-wave
11 Female 84 θ-wave, δ-wave, α-wave, β-wave
12 Male 79 θ-wave
13 Male 48 α-wave, θ-wave
14 Female 73 θ-wave
15 Male 64 θ-wave, α-wave
16 Male 83 θ-wave, δ-wave
17 Female 67 α-wave, θ-wave
18 Female 82 δ-wave
19 Male 37 β-wave
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Table 121.2 Summary of quantitative statistics applied to the raw and filtered EEG data for two
groups: coma (C) vs. brain death (D). For the p-value column, ∗ means p < 0.05 and ∗∗ means
p < 0.01, and they both show statistical significance

Conclusion

We have applied ICA and complexity measures to the EEG data recorded from
36 coma and quasi-brain-death patients. Our experimental results illustrate that the
alive deep-coma patient or the quasi-brain-death patient can be distinguished. It is
our hope that this method can be useful in assisting physicians and doctors for BDD
in clinical practice.
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Chapter 122
Feature Reduction in Biosignal Processing

Martin Golz and David Sommer

Abstract Feature reduction is common in biosignal analysis, especially in case of
quantitative EEG analysis. Mostly, summation in the spectral domain is applied to
reduce the number of estimated power spectral density values, which gains between
four and twelve band power values. Depending on the problem, on signals under
analysis and on methods used for further processing it is an open question if such
a strong decrease in the number of features is optimal. Modern Soft Computing
methods offer the feasibility of processing a large amount of different features with-
out considerable performance deteriorations. In this paper we apply such methods
and compare empirically the case of no feature reduction to four variants of feature
reduction. Our data set consist of more than 3,700 examples of microsleep events
experienced by young adults in an overnight driving simulation study. More than
4,600 features were extracted from seven EEG and two EOG channels utilizing
the modified periodogram method. Results showed that summation in many fixed
bands, or in fewer, but freely optimized bands is more optimal than no reduction, or
strong reduction to four bands commonly selected in EEG analysis.

Introduction

A very important human factor causing accidents is operator fatigue and loss of
attentiveness. It is estimated that fatigue plays a major role in 15 to 20% of all
accidents and is exceeding in this respect the importance of alcohol and drugs [1].
Extreme fatigue originates dangerous microsleep events (MSE) which are defined
as short intrusions of sleep under the demand of sustained attentiveness. Their de-
tection in spontaneous biosignals still poses a challenge.

It has been shown that the empirical error of MSE recognition sensitively de-
pends on several parameters of the preprocessing, the feature extraction and the
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classification stages [2]. Considerable improvements can be gained if different sig-
nal sources are fused on the feature level [3]. Furthermore, it turned out that feature
extraction in the spectral domain is more successful compared to methods in the
state space or time domain [3]. Therefore we here report only of feature extraction
in the spectral domain and their subsequent reduction.

The common way of EEG feature reduction is summation in spectral bands.
The Power Spectral Densities (PSD) are commonly reduced to four or sometimes
slightly more bands. Their definition is not fixed and varies to some extend be-
tween different authors. Typical values are 0.5–4.0 Hz (delta), 4.0–8.0 Hz (theta),
8.0–12.0 Hz (alpha) and 12.0–30 Hz (beta) [4]. The question arises if this or other
choices of feature reduction are optimal for quantitative EEG analysis in order to
get accurate MSE detection [5]. Five different cases are presented:

(1) No reduction; all available frequency bins are included,
(2) Feature reduction utilizing Principal Component Analysis (PCA),
(3) Feature reduction by summation over fixed band [4],
(4) Feature reduction by summation over equidistant bands,
(5) Reduction by summation in arbitrary bands utilizing genetic algorithms.

For this, we apply modern Soft Computing methods, like the Support Vector Ma-
chine (SVM), which do not suffer from the so-called curse of dimensionality [6].
The detection accuracy, estimated by the mean classification error of the test set,
is a valid measure to compare all five cases empirically. For this purpose, multiple
hold-out validation is used.

Material and Methods

Experiments were conducted in our real car driving simulation lab. 22 young adults
(18–32 years) took part and each of them finished 7 driving sessions (35 min length)
which are repeated every hour between 1 a.m. and 8 a.m. During driving the elec-
trical brain activity reflected by the EEG was recorded of seven different locations
on the scalp (C3, Cz, C4, O1, O2, A1, A2, common reference). The eye and eyelid
movements reflected by the Electrooculogram (EOG) were recorded at two loca-
tions (vertical, horizontal). Both were sampled at a rate of 128 s.

MSE are typically characterized by driving errors, prolonged eye lid closures
or nodding-off which was scored by two experts independently. In all 3,573 MSE
and 6,409 non-MSE were scored. Non-MSEs are periods between MSE where the
subject is drowsy but shows no clear or unclear MSE.

Segments of all nine signals were extracted with respect to the observed temporal
starting points of MSE or Non-MSE using two free parameters, the segment length
and the offset between first sample of segment and starting point of an event. After
linear trend removal the PSD values were estimated by the modified Periodogram
method utilizing Hann windows. Subsequently, PSD values were scaled logarithmi-
cally which has been shown to be important for error diminishing [3].
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Table 122.1 Comparison of two classification methods (OLVQ1, SVM) for five different cases of
feature reduction. Mean and standard deviation of training and test errors for OLVQ1 and SVM
were estimated by Multiple Hold-Out and by Leave-One-Out cross validation, respectively

Case Number of
Features

OLVQ1 SVM

ETRAIN [%] ETEST [%] ETRAIN [%] ETEST [%]

(1) No feature reduction 4617 (513× 9) 22.6± 0.5 27.7± 0.6 0.0± 0 13.1± 0
(2) PCA 60 128 10.4± 0.2 17.4± 0.4 1.4± 0 10.9± 0
(3) fixed band 36 (4× 9) 11.6± 0.2 17.5± 0.4 4.9± 0 13.2± 0
(4) equidistant bands 216 (24× 9) 9.3± 0.1 15.7± 0.4 0.1± 0 9.9± 0
(5) GA-OLVQ1 optimized 90 (10× 9) 8.2± 0.1 14.1± 0.4 0.1± 0 9.8± 0

Fig. 122.1 GA-OLVQ1 framework for empirical optimization of band averaging

The above mentioned five cases were utilized in order to evaluate the efficacy
of feature reduction. For case (1) each feature vector had a number of components
nF = 4,617 (Table 122.1) because of sampling in nine channels at 128 Hz and a
segment length of 8 s. In order to reduce this large number of features, PCA was
utilized (case 2). Alternatively, the common summation of PSD values in the four
fixed spectral bands of EEG analysis as mentioned above was examined (case 3).
This is a very simple concept and should be optimal if the EEG is dominated by
broad-band activity. If not, then case (4) should be more optimal. Here, a flexible
number of equidistant bands are generated. Three parameters are to be optimized
[3]: lower and upper cut-off frequency and the width of each band. In the most
flexible approach (case 5) PSD values were summed in spectral bands of arbitrary
location and width. Both parameters were found utilizing a framework (Fig. 122.1)
[5] involving Optimized Learning Vector Quantization (OLVQ1) and Genetic Algo-
rithms (GA). We have stopped computations with this GA-OLVQ1 framework after
300 generations. The genetic representation we have fixed in advance to 10 flexible
spectral bands for each EEG and EOG channel.

Results

Table 122.1 show that SVM clearly outperforms OLVQ1. Processing a very large
number of features (case 1) is acceptable only for SVM and is as good as pro-
cessing of a relatively low number of features (case 3). But, this is achievable only
when a computationally extensive hyperparameter optimization of the SVM has
been performed. This way, we achieved mean test errors of 13.1% for the case of no
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Fig. 122.2 Results of case (5). Eight randomly selected genetic representations (out of 100) which
were found for EEG-O1 (left) and vertical EOG (right). Each bar represents both parameters (lo-
cation and width) of the spectral bands. The plots are limited to 30 Hz whereas optimizations were
performed up to 64 Hz

reduction. In case (2) the number of principal components was found to be optimal
down to 2% of the original feature space dimensionality (SVM: first 128 principal
components, OLVQ1: first 60 principal components). This was a result of empirical
investigations not presented here due to space limitations. We achieved worst results
when applying common EEG bands (case 3). Much lower errors resulted in case (4).
A reduction to 24 small spectral bands for each of the 9 EEG and EOG channels led
to errors down to 15.7% (OLVQ1) and 9.9% (SVM). The most flexible approach
(case 5) utilized spectral bands arbitrarily in width and location, whereby overlap-
ping spectral bands and differences between channels were allowed. An impression
on the variability is shown for two channels (Fig. 122.2). It presents eight examples
of the final population.

A summation over all 100 individuals of the final population and subsequent
normalization (Fig. 122.3) reveals that broad-band activity in the delta-theta-alpha
range is important for MSE detection and that beta as well as gamma activity is
much less important. This result of one single channel (EEG-O1) is roughly similar
the other EEG channels. For the vertical EOG a narrow-band (6 Hz) and a broad-
band (20–45 Hz) is relevant for MSE detection.

In conclusion, moderate feature reductions (cases 4, 5) and modern kernel meth-
ods (SVM) should be preferred for quantitative EEG analysis tasks, like event de-
tection.

Fig. 122.3 Relevance versus frequency for EEG-O1 (left) and for vertical EOG (right). Results are
the outcome of 100 GA-OLVQ1 runs
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Chapter 123
An Efficient Encoding Scheme for Dynamic
Visual Input Based on the Statistics
of Natural Optic Flow

Dirk Calow and Markus Lappe

Abstract Statistically efficient processing schemes focus the resources of a signal
processing system on the range of statistically probable signals. Relying on the sta-
tistical properties of retinal motion signals during ego-motion we propose a nonlin-
ear processing scheme for retinal flow. It maximizes the mutual information between
the visual input and its neural representation and distributes the processing load
uniformly over the neural resources. We derive predictions for the receptive fields
of motion sensitive neurons in the velocity space. The properties of the receptive
fields are tightly connected to their position in the visual field and to their preferred
retinal velocity. The velocity tuning properties show characteristics of properties of
neurons in the middle temporal area of the primate brain.

Introduction

Although the processing power of the brain is huge compared with contemporary
artificial signal processing systems, the range of signals a single neuron can process
is limited. The visual pathways of the brain show adaptations to the statistics of the
natural environment for an efficient processing of the set of signals that the envi-
ronment provides. Such adaptations are seen in gestalt laws [1, 2] and in efficient
encoding schemes [3, 4], in which the processing pathway is more sensitive for
signals that occur very frequently than to signals that are very unlikely to occur.
However, in many natural situations the visual input is dynamic because animals
move. We aim here to apply the concept of efficient encoding to the realm of motion
processing to find properties of motion sensitive neurons, that efficiently encode the
set of motion signals generated on the retina by natural behavior in natural environ-
ments. Most of the retinal motion in natural situations is generated by ego-motion of
the observer. Therefore, we concentrate our investigation on retinal motion signals
during ego-motion.
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Statistical Properties of Natural Retinal Flow

Our analysis starts from an analysis of the statistics of motion signals generated
by ego-motion. We use a method introduced in [5] to generate a large number of
naturalistic retinal motion fields from range images of natural scenes and assumed
ego-motions. This approach provides the distributions of true motion signals at each
position of the visual field, which then a population of neurons is meant to encode.
We use the Brown Range Image Database, a database of 197 range images of out-
door and indoor scenes recorded with a laser range-finder with high spatial resolu-
tion [6]. These range images provide the depth map of each scene. The knowledge
of the 3D coordinates of each scene point allows the calculation of the projected
retinal motion of that point for any given combination of translation and rotation
of the observer. We consider as the retina a spherical projection surface with radius
1. The field of view is set to 90◦ horizontally and 58◦ vertically. The retinal flow
fields are calculated on the inside of this section of the sphere on a 250×160 grid of
motion sensors with a resolution of 0.36◦×0.36◦. The flow vectors obtained for this
grid provide our measurement of the true retinal flow field for a certain ego-motion
and scene. To calculate the flow field from the scene structure we need the motion
parameters of the projection surface. Possible ego-motions for a given scene are
derived from properties of the scene and natural parameters of ego-motion. First,
we determine areas in each scene which are free from obstacles. We then assumed
ego-motion through those areas. Since natural ego-motion involves gaze-stabilizing
eye movements [7] we measure eye movements of observers who view images of the
scene to collect naturalistic gaze points. We also measure gait dynamics of walking
human subjects, particularly their bounce and sway, to allow a naturalistic modeling
of the ego-motion trajecory. From these factors (obstacle-free walking direction,
gaze point, gait dynamics) we construct a set of naturalistic ego-motions for each
range mage scene. From the scenes and the ego-motions we constructed 7136 differ-
ent naturalistic flow fields and obtain for each position on the retina a distribution of
true motion signals (see Fig. 123.1a, left panel). These flow fields serve to estimate
the statistical properties of retinal flow.

Efficient Encoding of Natural Retinal Flow

To turn to our aim of finding an efficient encoding scheme we assume a population
of neurons that cover a four-dimensional parameter space consisting of retinal po-
sition (azimuth and elevation) and velocity (retinal direction (φi ) and speed (vi )).
This population of neurons efficiently encodes the natural distribution of motion
signals when the response probability is the same for all neurons of the popula-
tion. In this case, the information about the original distribution is uniformly dis-
tributed over the neuron population. This maximizes the mutual information be-
tween the distribution of motion; signals and the distribution of their representation
in the neural population, and performs a nonlinear independent component analysis
on the original distributions of motion signals. To construct such a population of
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Fig. 123.1 Uniforming procedure, (b) approximation of the transformation function f2(φ),
C,D and E: approximation of the transformation functions f1(v,−180◦), f1(v,−30◦) and
f1(v, 0◦)

neurons we search for the transformation functions that maps the distributions of
retinal velocities onto a uniform distribution and then cover this uniform distribu-
tion uniformly with circular receptive fields (see Fig. 123.1). The actual sensitivity
of each neurons for retinal motion signals can then be estimated by the back trans-
formation of the uniform distribution to the original distribution of motion signals.
A crucial issue in this procedure is the noise in the signal since the noise level
determines the number of neurons necessary to cover the distribution of motion
signals and to discriminate between neighboring signals. To each measured distri-
bution therefore we add a set of unspecific motion signals, which is uniform in
the distributions of directions and obey a logarithmic normal distribution for retinal
speed (see Fig. 123.1a, second panel). To find a mapping from the distributions of
retinal velocities to a uniform distribution we use a uniforming procedure referred
to as rank ordering. The procedure starts with the rank ordering of the distribution
of directions, which results in the approximated transformation function for retinal
direction f2(φ) (see Fig. 123.1b). The rank ordered data set is then divided into
72 stripes of equal width such that each stripe contains the same number of data
points. Regarding each stripe as a one-dimensional data set, the stripes are rank
ordered again to yield a set of approximated transformation functions f1(v, φ) for
retinal speed (see Fig. 123.1c–e). This procedure is an approximation of finding the
transformation function F(v, φ) = ( f1(v, φ), f2(φ)) that fulfills � f2

�φ
� f1

�v
= P(v, φ),

where P(v, φ) is the probability density function of the random variables speed and
direction.
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Tuning Curves of Efficient Retinal Flow Encoders

The approximation of the transformation functions F(v, φ) by the uniforming pro-
cedure allows to plot the receptive fields in velocity space of neurons which are
supposed to encode the distribution of motion signals at a certain position in the
field of view. To find the tuning curve of a neuron we have to back-transform from
the uniformed space to retinal motion space. Let (v, φ) be a retinal motion signal.
The mean response ri (v, φ) of the i-th neuron to a retinal motion signal is given
by ri (v, φ) = rmax exp(−(mi − F(v, φ))2/2σ 2

i ), where mi ∈ [0, 1] × [0, 1] is the
center of the receptive field, σ is the width of the receptive field, and F : R

2 −→
[0, 1] × [0, 1], F(v, φ) = ( f1(v, φ), f2(φ)) is the transformation function, which
governs the tuning curve of the neuron and which is approximated by the results
of the uniforming procedure. The results for a number of example neurons with
different receptive field centers mi are shown in Figs. 123.2 and 123.3. The resulting
properties of efficiently encoding neurons show a wide range of selectivity for the
parameters retinal speed and direction. We find neurons, whose selectivity is largely
restricted to a small domain in the velocity space (Fig. 123.2c). There are also
neurons whose selectivity show a crescent-shaped structure (Fig. 123.2b,d). Such
structures resemble receptive field properties of motion processing neurons in the
middle temporal (MT) area of the primate [8]. Other similarities to properties of MT
neurons can be seen in the speed selectivity. Individual neurons can be characterized
as low pass (Fig. 123.2a), tuned (Fig. 123.2c), broad band (Fig. 123.2b,d), or high
pass (Fig. 123.2e) consistent with neurophysiological recordings [9]. With respect
to direction tuning, neurons can be sharply tuned, broadly tuned, or not tuned also
similar to neurons in area MT. However, the particular properties of the velocity
receptive fields of efficiently encoding neurons depend strongly on the position

Fig. 123.2 Resulting responsiveness ri (v, φ) of a selection of neurons for certain receptive field
centers mi and width σ = 0.1 at a retinal position of 28 degrees eccentricity
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Fig. 123.3 Resulting responsiveness ri (v, φ) of a selection of neurons for certain receptive field
centers mi and width σ = 0.1 for two different positions in visual field, (a) eccentricity 3 degrees,
(b) eccentricity 15 degrees

of their receptive field in the visual field (Fig. 123.3). Since the properties of the
distributions of retinal motion signals vary from position to position [5], also the
population of neurons encoding motion at these positions show differences in their
properties. At higher eccentricities, the selectivity for retinal speed shifts to higher
speeds and the distribution of preferred directions becomes narrower. This is also
similar to findings in area MT [10, 9].

We conclude that the application of the principle of efficient encoding to the pro-
cessing of retinal motion signals is a valid tool to predict receptive field structures
and tuning curves of neurons in the motion processing pathway of the brain. Sev-
eral interesting issues remain for future work. First, the incfluence of internal noise
may be investigated using a Poisson model to describe the response behavior of the
neurons. Second, a Bayesian decoding scheme may be applied to develop computa-
tional models that detect retinal motion in the statistically likely range. Third, it may
be tested experimentally whether humans show a similar characteristics in motion
detection.
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Chapter 124
Grid Task Scheduling Algorithm R3Q
for Evolving Artificial Neural Networks

Yoshiyuki Matsumura, Masashi Oiso, Kazuhiro Ohkura, Noriyuki Fujimoto,
Kenichi Hagihara, Jeremy Wyatt and Xin Yao

Abstract Task scheduling algorithms for evolving artificial neural networks
(EANNs) in grid computing environments is discussed. In this paper, list scheduling
with round-robin order replication (RR) is adopted to reduce waiting times due to
synchronization. However, RR is suitable for coarse-grained tasks. For EANNs as
medium-grained tasks, we propose a new technique to reduce the communication
overhead, called the remote work queue (RWQ) method. We then define round-robin
replication remote work queue (R3Q) as RWQ with RR. Our results show that R3Q
can reduce both the synchronous waiting time and communication time compared
to other methods.

Introduction

Evolving artificial neural networks (EANNs) [1] are the combination of evolution-
ary algorithms (EAs) and artificial neural networks (ANNs). EANNs are of great in-
terest in some fields, such as evolutionary robotics (ER) [2], traffic flow prediction in
telecommunications, breast cancer diagnosis, etc. In particular, ER researchers have
proposed EANNs as a methodology for the control of autonomous mobile robots,
where artificial evolution is used for designing ANNs. In [3], we investigated the
use of evolution strategies (ES) [4] for the automatic design of robotic controllers.
In this approach, we bred populations of controllers under artificial selective pres-
sure over many generations. This approach led to a number of advances, including
the invention of more efficient evolutionary methods and the use of more powerful
ANNs. Despite these advances, it still took considerable amount of time for robot
controllers to evolve. This is because, to evolve a controller, every candidate must be
evaluated during each successive generation to ascertain its effectiveness. Typically,
the candidate controllers are evaluated in simulations of the actual robots in which
they are used. This is a very time consuming process. Therefore, to improve this
situation, we propose a new approach where the tasks are distributed among many
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computers in a desktop grid computing environment. In general, EAs methods im-
plemented in a grid environment require synchronizing during each generation. In
addition, EAs problems involve a significant communication overhead, because of
the fact that they are based on “medium-grained” tasks. We overcome these prob-
lems by using a dynamic grid scheduling method without prediction.

In this paper, list scheduling with round-robin order replication (RR) [5] is
adopted to reduce the waiting times caused by synchronization. However, RR is
mainly suited to coarse-grained tasks. For EANNs as medium-grained tasks, we
propose a new technique for reducing the communication overhead, called the re-
mote work queue (RWQ) method. This has the ability to both reduce communication
time and obtain efficient forced termination of tasks. We then define round-robin
replication remote work queue (R3Q) as RWQ with RR. In recent research [6],
the performance of Grid scheduling algorithm R3Q has been evaluated by using
tasks that have uniform computational granularity. This paper investigates the effect
of Grid scheduling algorithms on non-uniform computational granularity. In order
to evaluate task scheduling algorithms, computer experiments on EANNs are con-
ducted using a test procedure that requires a constant number of evaluations, but
where varying both calculation time and computer resources in the grid nodes result
in different execution times.

Grid Task Scheduling Algorithms

The available computational power on the grid changes all the time because the
surplus power supplied by the underlying computers is dynamic and varies as the
peak performance of these computers varies. Thus for distributed execution of EAs
on a Grid, this paper adopts scheduling algorithms that are dynamic and use no pre-
diction. Examples of dynamic and non-prediction scheduling algorithms are Work
Queue (WQ) [7], RR [5] and R3Q [6].

WQ [7] is a classic algorithm and assigns a task to the processor in an idle state,
receives the result when the processor of the task is completed, and then assigns the
next new task. In a heterogeneous environment such as the Grid, WQ causes some
problems that waiting time for synchronization at end of each generation on EAs.

RR [5] improves on WQ by performing task reproduction to reduce the waiting
time for synchronization. In addition, RR provides performance guarantee. How-
ever, when a medium-grained task like fitness calculation of individuals on EAs
is implemented in the Grid, the communication delay due to WQ and RR are
significant.

R3Q [6] can reduce the communication time by using the slide transfer method.
The master computer submits two tasks to each slave computer. Then, the second
task is queued on the slave computer. In which case, the slave computer can carry
out this task without having to enter an idle state. As a result, communication time is
removed. Furthermore, the waiting time for synchronization is reduced by using RR
method simultaneously. The effectiveness of R3Q is demonstrated using uniform
medium-grained task.
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Computer Experiments

This paper uses cooperative box-pushing problem as an application of EANNs with
non-uniform computational granularity. Based on the Sussex approach [2], we con-
struct the minimal simulator for ten Khepera robots in Fig. 124.1. The Khepera
robots are able to move around and push objects into the goal. In this test simulation,
the field size is 3000× 2500 cm. There are three objects in the field. Two robots can
bring the small-sized object. Three robots can bring the medium-sized object. Five
robots can bring the large-sized object. The Khepera robot itself is 5.5 cm in diam-
eter and the sensor range is approximately 5.2 cm. The Khepera robot is equipped
with eight active infrared(IR) sensors, omni-vision and two motor-driven wheels;
and it is controlled by recurrent neural networks (RNN) shown in Fig. 124.2. The
RNN has 16 sensory inputs, four middle-node and two motor output. In total, the
RNN has 132 connections. The connection weights are optimized by ES. Note that
each robot has the same recurrent neural networks. The distribution of calculation
time of each task in this problem is shown in Fig. 124.3, and an example result of
cooperative box-pushing behavior is shown in Fig. 124.4.

We construct the Grid environment using Web service in two environments, LAN
and WAN; LAN environment uses 10 slave computers in Hiroshima Uni., and WAN
environment uses five computers in Hiroshima Uni. and five computers in Shinshu
Uni.. To illustrate the effectiveness of the R3Q algorithm, one scheduler performs
20,000 more communications during a particular experiment, while R3Q reduces
both the synchronous waiting time and communication delay time in comparison
with WQ and RR. To obtain a more accurate measure, each experiment is performed
10 times and the average is taken. This is accomplished by carrying out 100 gener-

Fig. 124.1 Cooperative
box-pushing problem

Fig. 124.2 Recurrent neural
networks
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Fig. 124.3 Distribution of
calculation time

Fig. 124.4 Cooperative box-pushing behavior

ations with (30,200)-ES, measuring the total execution time, synchronous waiting
time, and communication time before the 100th generation took place.

The total execution time of each scheduling algorithm in the LAN environment
is shown in Fig. 124.5 and that of the WAN environment is shown in Fig. 124.6.
The result shows that both RR and R3Q decrease the total execution time in com-
parison with WQ. It is clear that these algorithms are not influenced by the change
of computational granularity because RR and R3Q are dynamic and non-prediction
scheduling algorithms and change of execution time on the slave computers does not
affect them. As a result, we conclude that RR and R3Q are effective for problems
that have non-uniform computational granularity. In addition, R3Q almost elimi-
nates the effect of communication delays in the WAN environment, but the effect of
communication delays is significant under RR and WQ in Fig. 124.7.

Fig. 124.5 Total time in LAN
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Fig. 124.6 Total time in
WAN

Fig. 124.7 Communication
time and synchronous waiting
time in WAN

Conclusions

We constructed the Grid environment using Web service and tested three scheduling
algorithms using cooperative box-pushing problem that has non-uniform computa-
tional granularity as the application of EANNs. The experiment showed that R3Q
are more effective than WQ and RR. We will expand the scale of a Grid environment
by increasing the number of computers and the number of robots and objects in the
application of EANNs. The authors acknowledge financial support in part through
Grant-in-Aid for Scientific Research (18700058), (19500192) and also Grant-in-Aid
for Global COE Program from the Ministry of Education, Culture, Sports, Science
and Technology of Japan.
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Chapter 125
Pattern Discrimination of Mechanomyogram
Using a Delta-Sigma Modulated Probabilistic
Neural Network

Keisuke Shima and Toshio Tsuji

Abstract This paper proposes a discrimination method for mechanomyogram us-
ing probabilistic neural network based on delta-sigma modulation. The proposed
method includes a statistical model so that the posterior probability for the given
input patterns can be estimated. Also, the 1-bit pulse signals with delta-sigma mod-
ulators used in this paper improves the calculation speed of the probabilistic neu-
ral network implemented in the hardware. Finally, discrimination experiments were
conducted using the mechanomyogram measured from an amputee.

Keywords Mechanomyogram · neural network · delta-sigma modulation

Introduction

Bioelectric signals such as electromyograms and electroencephalograms reflect the
internal conditions of the human body including the intention regarding body mo-
tions. If the motion intention can be estimated from biological signals, it could be
used as a control signal for artificial limbs and human-machine interfaces.

The present paper explores the utilization of the mechanomyogram (MMG) [1]
for the human-machine interfaces [2, 3]. Unlike electromyograms and electroen-
cephalograms, it is not affected by the change of skin impedance caused by sweat-
ing. For the human-machine interfaces, the discrimination of multiple motions is
necessary, as well as the estimation of muscular force from the measured MMG
signals.

The probabilistic neural networks (PNNs) [4] have been applied to the pattern
discrimination problems for bioelectric signals such as electromyograms. Our re-
search group proposed a PNN for the pattern discrimination of bioelectric signals,
which is called a log-linearized Gaussian mixture network (LLGMN) [5]. Then,
the LLGMN has been used to develop various human-machine interfaces such as
myoelectric prosthetic hands [6]. In such systems, the software implementation of
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the LLGMN on a general-purpose computer was adopted; however, it has not been
applied to human-machine interfaces because of the difficulty to reduce the size of
the interface device to be portable.

In this paper, for the aim of estimation of forearm motions from MMGs in a digi-
tal hardware, we propose a feature extraction and discrimination method using PNN
based on delta-sigma modulation. As delta-sigma modulation and statistical model
are included in PNN, the proposed method can realize high accuracy discrimination
for the MMGs.

MMG Discrimination Using the Delta-Sigma Modulated PNN

The MMG signals can be measured using acceleration sensors which are attached
to the forearm. Then, full-wave rectification and smoothing process by a second
low-pass filter, whose cut-off frequency is fd [Hz], are carried out for the measured
MMG. The normalized signals, the sum of which for all channels makes 1, are
converted into the input vector x(t) = [x1(t), x2(t), . . . , xL (t)]T for time t and are
used for pattern discrimination. Also, the user’s force information for x(t) is defined
as follows:

RMSi (t) =
√√√√1

n

n−1∑

τ=0

MMGi (t − τ )2, (125.1)

FMMG(t) = 1

L

L∑

i=1

RMSi (t)− RMSst
i

RMSmax
i − RMSst

i

, (125.2)

where M MGi (t) is the preprocessed MMG signal from the i th acceleration sensor;
and RM Smax

i and RM Sst
i are the average of RM Si (t) at the maximum voluntary

contraction of the muscle and at rest, respectively. When FM MG(t) exceeds threshold
Md of the motion occurrence, the movement is estimated from the input vector x(t)
using the PNN.

The LLGMN using delta-sigma modulation [7] is used as the discrimination
method for MMG, which is based on the Gausian mixture model and the log-linear
model of the probability density function (pdf). First, the input vector x ∈ !d is
converted into the modified vector X ∈ !H as follows:

X = [1, xT, x1
2, x1x2, · · · , x1xL , x2

2 , x2x3, · · · , x2xL , · · · , xL
2
]T
, (125.3)

where xi , i = 1, 2, . . . , d, are the elements of x and H = 1+ L(L + 3)/2. The first
layer consists of H units corresponding to the dimension of X and the identity func-
tion is used for activation of each unit. In the second layer, each unit receives the out-
put of the first layer weighted by the weight w(k,m)

h (h = 1, 2, . . . , H ; k = 1, . . . , K ;
m = 1, . . . , Mk) and outputs the posterior probability of each Gaussian compo-
nent. Here, K denotes the number of classes, and Mk is the number of Gaussian
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components in class k. The relationships between the input of unit {k,m} in the
second layer (2) Ik,m and the output (2) Ok,m are defined as

(2) Ik,m =
H∑

h=1

(1) Ohw
(k,m)
h , (2) Ok,m =

exp
[(2)

Ik,m
]

K∑

k ′=1

Mk′∑

m ′=1

exp
[

(2) Ik ′,m ′
]
, (125.4)

where w(K ,Mk )
h = 0. The third layer consists of K units, and the function between

the input and the output is described as

(3) Ok = (3) Ik =
Mk∑

m=1

(2) Ok,m . (125.5)

Delta-sigma modulation is a technique in which the input signal such as multi-bit
signals and analog signals is converted into a 1-bit pulse signal, and it has been
attracting interests in various fields such as acoustics and communications [8]. The
structure of a bipolar-type delta-sigma modulator (DSM) is shown in Fig. 125.1,
where the output takes the values “−1” and “+1. ” In this figure, the bold line
represents multi-bit signals and the thin line 1-bit signals. The output y of the circuit
can be expressed in the form of

v = z−1

1− z−1
{x − τ y} , y =

{
1 (v ≥ 0)
−1 (v < 0)

(125.6)

where x is the input, v is the integrated value of the quantization error, and τ > 0
is the feedback gain. Here, “−1” and “+1” are represented by the low level and the
high level in the hardware, respectively.

The structure of the LLGMN based on delta-sigma modulation is shown in
Fig. 125.2. The network consists of 1-bit adders, 1-bit multipliers, weight multipliers
using DSM, and so on. Here, the input data are normalized to its minimum value of
−1 and maximum value of+1 as a prerequisite for pattern discrimination, due to the
restriction of the calculable ranges of the 1-bit pulsed NNs. First, the input vector
x(t) is interpolated using the linear interpolation method at a sampling frequency fh

[Hz], and nonlinearly transformed using the (H − L−1) 1-bit multipliers. Next, for

Fig. 125.1 Delta-Sigma
modulator [8]
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Fig. 125.2 Structure of an LLGMN using delta-sigma modulation

the calculation of the weight coefficients, the input function of the second layer is
converted as follows:

(2) Ik,m =
H∑

h=1

N∑

n=1

(1) Oh
w

(k,m)
h

N
, (125.7)

where N is an arbitrary positive integer. Further, the exponential function included
in (125.4) is approximated as follows by using the Taylor series:

exp[(2) Ik,m] =
H∏

h=1

N∏

n=1

exp

[
(1) Oh

w
(k,m)
h

N

]

∼=
H∏

h=1

N∏

n=1

[
C∑

c=0

1

c!

(
(1) Oh

w
(k,m)
h

N

)c]
, (125.8)

where C is the order of the Taylor series ignoring the high-order terms greater than
C+1. Because the range of the values for the input functions of the second layer (see
(125.7)) are restricted between −1 and +1 using the appropriate value of N , each
term of the right-hand side of (125.8) can be calculated in a range of values between
−1 and+1. The output function (125.4) in the second layer is then realized by using
multipliers and dividers, after it is demodulated to multi-bit signals using low-path
filters. Finally, the outputs of the network are calculated by (125.5) by using the
1-bit adder from the outputs in the second layer. Thus, the posterior probabilities of
input patterns can be calculated using DSMs.
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Experiments

In order to verify the validity of the proposed method, we implemented the delta-
sigma modulated PNN on a field programmable gate array (FPGA), and MMG
discrimination experiments were conducted. MMG patterns were measured from
four healthy subjects (A−D: male) and a right forearm amputee (E: male). First,
we measured the acceleration signals at four locations of a forearm using accel-
eration sensors (L = 4, NIHON KOHDEN Corporation) with each subject. The
measured signals were recorded at a sampling frequency of 1 [kHz], and filtered by
the second band-path filter (bandwidths: 30 – 150 [Hz]) to extract the MMG. The
subject was asked to perform the following four motions (K = 4) continuously: M1:
hand opening, M2: hand grasping, M3: wrist extension, and M4: wrist flexion (see
Fig. 125.3). Parameters of proposed method were set as fcut = 0.5 [Hz], fh = 25
[MHz], Mk = 2, N = 30, and C = 4.

An example of the measured MMG of subject E is shown in Fig. 125.4. In this
figure, four channels of the input MMG are shown. The discrimination rates of the
MMG measured from five subjects are shown in Fig. 125.5, which are represented
by the software implementation of the LLGMN using C language and the hardware
implementation of the LLGMN using DSMs. From this figure, we confirmed that the
proposed method has a high accuracy of pattern discrimination in digital hardware.
The discrimination rates of all the trials were 94.3±1.65 [%] and 92.48±2.38 [%],

M1: Open M2: Grasp M3: Extension M4: Flexion

Fig. 125.3 Forearm motions used in the experiments

Fig. 125.4 Measured MMG
signals of each motion (a
forearm amputee)
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Fig. 125.5 Discrimination
results of forearm motions
with all subjects
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respectively. It should be noted that the feature extraction of the MMG was imple-
mented in the software, and only discrimination of the MMG patterns is performed
by an FPGA.

Conclusions and Future Work

In this paper, we proposed the MMG discrimination method using a delta-sigma
modulated PNN in digital hardware. Since the discrimination rates of the proposed
PNN was 92.48 ± 2.38 [%], it can be concluded that the proposed method has
a high performance in the case of the MMG discrimination. In the future, we
plan to study the human-machine interface in digital hardware using the proposed
method.
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Chapter 126
HMM-Based Top-Down Attention
for Noise-Robust Speech Recognition

Chang-Hoon Lee and Soo-Young Lee

Abstract The top-down attention is extended into hidden Markov model (HMM)
classifier with Mel-Frequency Cepstral Coefficient (MFCC) features for noise-
robust speech recognition. The attention filter was introduced at the outputs of
Mel-scale filterbank and adjusted to maximize the log-likelihood of the attended
features with the attended class. Low-complexity constraint was proposed to prevent
overfitting, and a confidence measure was introduced on the attention. The proposed
algorithm demonstrated in much better recognition rates in noisy environments.

Keywords Attention · top-down · HMM · noise-robustness · speech recognition

Introduction

Although noise-robust feature extractions based on auditory models demonstrated
improvements in recognition performance [1], current speech recognition systems
still require big performance improvements in noise-robustness. Human beings
utilize top-down selective attention from pre-acquired knowledge for confusing
patterns. Inspired by Broadbent’s ‘early filtering’ theory [2] and Treisman’s mod-
ification with attenuation filter [3], we came up with a top-down attention model
for the recognition of noisy and/or confusing patterns [4]. Although it shares the
same top-down pass with Fukushima’s Neocognitron model [5], simple multi-layer
Perceptron (MLP) classifier was used.

In this Letter, we extend the top-down selective attention model to HMM classi-
fiers. To avoid over-fitting, the low-complexity restriction is imposed on the atten-
tion filter, and a new confidence measure is introduced for the classification.
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Computational Model of Top-Down Attention

Figure 126.1 shows the signal flows with (solid line) and without (dashed line) the
top-down attention with the popular MFCC (Mel-Frequency Cepstral Coefficient)
features and HMM classifiers. Without the top-down attention the Mel-filterbank
outputs go through logarithmic nonlinearity and discrete cosine transform (DCT) to
form the MFCC. With the top-down attention a multiplicative attention filter may
be placed at the Mel-filterbank output, which is equivalent to an additive adjustment
at the log spectrum domain. Then, the log spectrum is transformed into cepstral
coefficient by DCT. The cepstral coefficients up to 12th order and energy, and their
delta and acceleration coefficients were applied to HMM for speech recognition.
The attention filter is updated to estimate best input features for the attended output
class.

The proposed speech recognition algorithm using top-down selective attention is
summarized as follows:

Step 1: Train HMMs with training set.
Step 2: For a testing pattern, calculate likelihood for all classes and choose Nc

best candidates.
Step 3: For each candidate class,

1. Set attention filter to 0.
2. Update attention filter for the expected input.
3. Calculate new likelihood of changed input.
4. Repeat 2 and 3 until likelihood converges
5. Calculate a confidence measure of the class.

Step 4: Choose the class with the maximum confidence measure.

Since the characteristics of a class are modeled as an HMM, the top-down selective
attention algorithm at Step 3 estimates the expected input from the test speech for
the pre-trained attended class model as

x̃i = arg max
x

P(x|λi ) (126.1)

within reasonable proximity from the original input x. The gradient ascent algorithm
for the log-likelihood results in
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Fig. 126.1 Speech recognition model with top-down selective attention filter
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at f [n + 1] = at f [n]+ η �L

�at f [n]
,

�L

�at f
=
∑

τ

∑

t ′

�L

�xt ′τ

�xt ′τ

�ctτ

�ctτ

�b̂t f

�b̂t f

�at f
(126.2)

where at f is the attention filter at time t for the f -th Mel-filter and ctτ is the τ -
th cepstral coefficient at time t . The summation over τ is needed for DCT, and
the summation over t’ is needed for the delta and acceleration coefficients. The
derivative of the log-likelihood on speech features was derived in [6] for continuous
density HMM.

As the selective attention process goes on, the attended input pattern may move
toward the most likely pattern of the attended class, which is independent upon the
actual input pattern. To prevent this over-fitting, the attention filter need be regular-
ized by imposing low-complexity constraint.

We propose to represent the attention filter as a bilinear kernel or a linear mixture
of Gaussians, i. e.,

at f =
∑

t ′ f ′
gt ′ f ′Φ

(
t ′ − t

Nt
, f ′ − f

N f

)
or at f =

k∑

k=1

wk Gk(t, f ) (126.3)

where each Gaussian may represent one ‘spot-light’. The confidence measure is
defined as

Mi = (1− γ ) log P(x|λi )+ γ log P(x̃i |λi ) (126.4)

where the tilde denotes the top-down attended input pattern and γ controls the
relative importance.

Experimental Results

Speaker independent isolated word recognition experiments are performed using
isolated digit section of AURORA database [7]. The database, which has 11 word
vocabulary (the digits 1–9, ‘oh’, and ‘zero’), contains 2412 utterances for training
and 1144 utterances for testing.

After pre-emphasis, the input speech signal was framed by 25 ms Hamming win-
dow with 10 ms shifting and 23 Mel-scale filterbanks were formed at each time
frame. Left-right continuous density HMMs are used. Each HMM has nine states
with four Gaussian mixtures with diagonal covariance, and is trained by Baum-
Welch algorithm with clean training data. In our experiments we found γ = 0.7
gives best performance, and Nc > 7 does not improve the performance.

In Fig. 126.2 the misclassification rates of top-down attention are compared to
those of the baseline HMM classifier. When the proposed low-complexity constraint
is added, the recognition performance under noisy condition is greatly improved.
Also the performance is not sensitive to the grid size nor the number of Gaussian
mixtures. The false recognition rates decrease dramatically up to 10 dB SNR, while
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Fig. 126.2 False recognition
rates with several noise levels
for white Gaussian noise
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the reduction becomes smaller for noisier speeches. It is similar to the findings in
cognitive science, i.e., the effects of the top-down attention are significant only with
familiar input patterns.

Conclusion

A top-down selective attention model with HMM classifier is proposed. The top-
down attention iteratively finds the most-likely input pattern from noisy or corrupted
input within the proximity of the input pattern. By introducing regularization on the
attention filter and also a confidence measure, the top-down attention can greatly
improve recognition rates in moderate noisy environments.
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Chapter 127
Roving Robot Autonomously Controled
by Chaotic Memory Dynamics
in Quasi-Layered Recurrent Neural
Networks for Sensing and Driving

Tai Tanaka, Yasumasa Miyamoto, Yongtao Li, Daigo Munetaka, So Shimizu,
Shuhei Kurata, Shogo Morita and Shigetoshi Nara

Abstract Chaotic dynamics is applied to 2-dimensional motion control. We propose
a quasi-layered recurrent neural network consisting of sensing neurons and driving
neuros, where in sensing neurons, sensitive response to external input is utilized,
whereas in driving neurons, complex dynamics is utilized to generate complex mo-
tions. A hardware implementation into a roving robot is shown.

Introduction

The great progress of modern Very Large Scale Integrated Circuit (VLSI) technolo-
gies has produced revolutionary devices and/or machines. However, algorithms on
conventional computers run into problems with combinatorial explosion and pro-
gram complexity in realizing flexible functions when there are too many degrees
of freedom to control. On the other hand, the rapid progress in studying biological
information and control processing, particularly brain functions suggests that they
might be based on novel dynamical mechanisms that result in excellent function-
ing and/or controlling. The key idea is to somehow harness the onset of complex
nonlinear dynamics in information processing or control systems. This idea arised
from the observations of chaos in biological systems, and it is our primary moti-
vation for studying chaotic dynamics in neural networks from the functional point
of view.

As an example of studying such functionality, Nara and Davis proposed that
chaotic dynamics can occur in a recurrent binary neuron network by changing a
system parameter (connectivity between neurons), and they have studied that it can
be applied to solving ill-posed problems, for example memory search or synthesis
as reported in the previous works [1]. Furthermore, the idea was extended to appli-
cation of chaotic dynamics to a novel function, the control task that an object should

T. Tanaka
Division of Electronic and Information System engineering, Graduate School of Natural Science
and Technology, Okayama University, Japan
e-mail: tanakat@cc.tuat.ac.jp

R. Wang et al. (eds.), Advances in Cognitive Neurodynamics,
C© Springer Science+Business Media B.V. 2008

735



736 T. Tanaka et al.

catch a set target in 2-D maze, or capture a moving target, which were successfully
executed in their computer experiments and reported in [2] and [3]. Their consid-
eration not only indicates that the role of chaos is critically important to realize a
complex control via simple rule but also enables us to generalize the usefulness of
chaos.

In this paper, we attempt to develop their ideas with adding a new neuron module,
“sensing neuron module”. So, we propose a quasi-layered recurrent neural network
consisting of sensing neurons (upper layer) and driving neurons(lower layer). In
both layers, chaotic dynamics are used where, in sensing neurons, sensitive re-
sponse to external input is utilized, while in driving neurons, complex dynamics
is utilized to generate complex motions. These two properties are applied to solv-
ing two-dimensional mazes by computer experments and an example of hardware
implementation into a roving robot is shown.

Attractor & Chaotic Dynamics in Quasi-layered RNNM,
and Coding Them into 2-Dimensional Motion

Our study works with an asymmetrical recurrent neural network model(RNNM)
consisting of N/2 sensing neurons of a upper layer and N/2 driving neurons of
a lower layer for driving the robot’s motors. At time t , the state of the network
is represented by a N dimensional state vector S(t) = [x(t), y(t)], where x(t) =
{xi (t) = ±1|i = 1, 2, · · · , N/2} and y(t) = {yi (t) = ±1|i = 1, 2, · · · , N/2},
called as state pattern. The updating rules of the upper layer(sensing) and the lower
layer(driving) are defined by

Upper: xi (t + 1) = sgn

⎛

⎝
∑

j∈Gu (ru )

W u−u
i j x j (t)

⎞

⎠ ,

Lower: yi (t + 1) = sgn

⎛

⎝
∑

j∈Gl (rl )

[
W l−l

i j y j (t)+W u−l
i j x j (t)

]
⎞

⎠

– u: upper layer l : lower layer
– W u−u

i j : connection weight from neuron x j of upper layer to neuron xi of upper

layer; W u−l
i j and W l−l

i j are defined similarly.
– N : the number of neurons
– r : fan-in number for neuron xi (yi ), named connectivity
– Gu,l(ru,l): spatial configuration set of connectivity r

The updating rule shows that time development of the network depends on connec-
tion weight Wi j and connectivity r . By appropriately determined connection weight
Wi j , a group of arbitrarily designed state patterns can be embedded as cyclic mem-
ory attractors. In this paper, the firing states of N = 40 × 20 = 800 neurons are
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Fig. 127.1 Chaotic motion generated by chaos in driving neurons

employed and we take 24 state pattens consisting of 4 (cycles) × 6 (patterns per
cycle), as embedded memory attractors. As the network evolves with the updating
rules, randomly initial state pattern will converge into one of embedded cyclic at-
tractors. When the connectivity r is reduced by blocking signal propagation from
other neurons, attractors gradually becomes unstable, finally chaotic dynamics oc-
curs in updating dynamics of the network. Time-dependent firing patterns consisting
of 400-neurons (lower layer: driving neurons) can be transfromed into motions in
2-D space by a certain coding format proposed by us [2, 3]. Figure 127.1 show
examples.

Control Algorithm and Computer Experiments to Find Detours

By adaptive switching of connectivity r between prototypical motion and chaotic
motion, a simple control algorithm is proposed to solve mazes, shown in Fig. 127.2.
Depending on the sound signal intensity from target picked by sensing neurons,
the firing states of the upper layer changes in real time. Correspondingly, the lower
layer sensitively responds to the upper layer and the robot adaptively turn toward the
strongest intensity direction quickly due to sensitivity of chaotic dynamics. When
there are no obstacles in the range of sensing neurons, the robot moves with suffi-
ciently large connectivity. When there is an obstacle, it moves chaotically with small
connectivity and trys to find detour to avoid obstacles.
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Fig. 127.2 Algorithm of
controlling a roving robot

Fig. 127.3 Without obstacle
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The computer-experimental examples of the robot approaching a target in two
dimensional space are shown in Fig. 127.3 (without obstacle) and Fig. 127.4 (with
obstacles). We have made elementary hardware implementation of the robot with
sensing system and driving system. We are developing the experiment to the case
that the robot approaches a target in an unknown environment with obstacles.
Detailed report will be done in our forthcoming paper.

Hardware Implementation into a Roving Robot

We employed a roving robot with two driving wheels called Bobot supplied by
Parallax Co. in U.S.A. Four directional microphones to receive sound from a set
target and two whisker to detect obstcles are equipped. Also, bluetooth system is
attached to enable the robot to communicate with a computer in which a neuro-chaos
simulator is installed, because a micro-computer of the robot is too poor to install
the neuro-chaos simulator.



127 Roving Robot Autonomously Controled by Chaotic Memory Dynamics 739

Fig. 127.5 Blocd diagram of our harware implementation

The sound from the set target (3.6 kHz) is received by the four microphones and
amplified with elecronic circuits. It should be noted that the hardware implementation
is not yet completed but on intermediate stage to finally fabricated form, so a com-
parator of sound intensity from the four microphones is equipped instead of sensor
neurons and a whisker to detect obstacles instead of ultrasonic sensor is attached.

Overall experimental configuration is shown in Figs. 127.5 and 127.6.
We successfully have done many trials to solve maze using this system. The

detailed reports and discussions will be given in near future.

Fig. 127.6 Experimental
configuration
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Chapter 128
A New Approach to Detect Stable Phase
Structure in High-Density EEG Signals

Yusely Ruiz, Guang Li, Eduardo González and Walter Freeman

Abstract The application of Hilbert transform to intracranial EEG recordings have
revealed the markers for repetitive phase transitions in neocortex at frame rates in
the theta and alpha bands. After those phase transition amplitude a phase modulation
patterns could be formed. In this paper a new methodology to detect phase transition
and phase modulation patterns is presented. The results are compared with phase
patterns obtained from cone fitting in awake, task, sleep and seizure states. High
levels of frame coincidence in time are obtained and the different characteristics
between states are maintained.

Keywords PM spatial pattern · stable phase structure · frames

Introduction

Amplitude modulation (AM) and phase modulation (PM) spatial patterns can be
found in EEGs recorded with high density array electrodes [1, 2, 3, 4]. These pat-
terns often have beta or gamma carrier waves and recurs at rate in the theta range
[2, 3]. Studies conducted in animal and human EEGs with electrodes implanted
in cortex have shown that AM-PM patterns emerge after sudden jumps in cortical
activity called state transition [4]. An abrupt phase resetting to a new value on ev-
ery channel is the first step for transitions, follow by re-synchronization and spatial
pattern stabilization.

Freeman and colleague’s latest works had demonstrated that PM patterns have
radial symmetry similar to a cone. PM patterns have been studied using cone fitting
to the phase structure obtained by Hilbert transform (HT) or Fourier transform (FFT)
[2, 3, 5]. Also, those patterns has different characteristic in task, awake, sleep and
seizure state [3, 5]. Cone fitting is a high time consuming tool and it is difficult to
apply in real time. In this paper a new method to detect stable phase structure is
explained. The new cone parameter estimation is presented in task, awake, sleep
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and seizure state. Phase structure consider as stable phase cone from HT method
where compared with the detected new method stable phase structure. The time
coincidence for stable phase structure detected was higher than 70%.

Materials and Methods

The data set used for the present work was selected 1 min recording segments with
a subject in four states: awake, sleep, task, and during a typical seizure, more detail
about signal recording can by found in [3, 5]. The 64 EEG signals in each seg-
ment were preprocessed first by de-meaning to remove channel bias and normal-
izing to unit standard deviation. A spatial low pass filter was applied to remove
channel noise and a temporal band pass filter was applied to get the beta activity
[1, 3, 5].

Stable Phase Structure Detection

The 64 channel signals in all state were study using 5 s segments. The analytic am-
plitude (AA) and analytic phase (AP) were obtained from HT [1, 2]. The AA and AP
covariance in each time interval were calculated over the 64 channels. Thresholds
for covariance (te1 & te2) were set and a stable phase structure was selected if AP
covariance was lower than te1 and AA covariance was higher than te2.

The 64 stable analytic phase value form an 8 × 8 matrix represent phase struc-
tures similar to a cone. The cone gradient was estimated as the slope of the line
fitted to the different between every phase value and the other 63 phase value for
each interelectrode distance. The others cone parameters frequency, temporal wave-
length, spatial wave length, velocity, diameter and duration were calculated using
Eqs. (3–7) from [5] during the time intervals that stable phase structure was de-
tected, the gradient sign did not change and the frequency was within the temporal
band used.

After that, physiological criterion [3, 5] were applied to detect the final stable
phase structure (stable cone or frame) The objective was compare the frame parame-
ter in different states because according to [3, 5] the cone gradient was increased and
frame velocity and diameter was reduced previous and during the seizure episode.
That fact could be use as a seizure predictor.

Results

According to te1 and te2 value chosen, stable cone using the new method and the
classical cone fitting as a coincidence vary from 85% to 40%; but the frame number
in the new method is higher. The relation between the new method frame and new
method frame that have coincidence with the frame obtained from the classical cone
fitting fluctuate from 0.5 to 0.6 (see Fig. 128.1).



128 A New Approach to Detect Stable Phase Structure in High-Density EEG Signals 743

Fig. 128.1 Different te1 and te2 values for seizure state, awake, sleep an task have similar results,
(a) coincidence of cone detected using new method and the cone fitting method, (b) relation new
method coincidence cone/ new method cone (QQ)

Te1 value was fix to 0.08 and te2 to 0.0007. Then, each state cone parameters
were calculated in 12 segments of 5 s. Task and awake state parameters have sim-
ilar mean and standard deviation value, sleep state has lightly low frequency and
gradient that affect the other parameter estimation. In time domain no significant
differences can be found in the EEG segments before seizure and task, awake or
sleep state (see Fig. 128.2).

Seizure and task states has similar parameters value in some segment but high
gradient values in other, mainly during 15 and 5 s before seizure episode (Pre-1
and Pre-2 Table 128.1) and after it (Seizure-2 Table 128.1). High values in gradi-
ent are reflected as a decreased in velocity and cone diameter. Also, seizure state
cone quantity is lower than other states, especially during 15 and 5 s before seizure
episode and 15 s after it (see Fig. 128.3 and 128.4).

Fig. 128.2 Five seconds mean raw EEG signal. Left to right: task, sleep and 15 s before seizure

Fig. 128.3 Cone velocity
mean value in 5 s segments,
(•) sleep, (�) awake, (�)
task, line 15 s before seizure
dash line 5 s before seizure
and dot line 15 s after seizure 0 20 40 60
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Table 128.1 Stable cone parameter (mean ± SD)

Signal Time � (rad/mm) B (m/s) Dx (mm)

Task 0.0458 ± 0.0234 2.2253 ± 1.2567 35.3042 ± 18.1658
awake 0.0472 ± 0.0232 2.1760 ± 1.2436 36.0946 ± 20.7945
sleep 0.0396 ± 0.0230 2.4416 ± 1.4054 42.9158 ± 25.1332
Pre-1 −15 0.0626 ± 0.0166 1.5998 ± 0.5832 26.4534 ± 8.6501
Pre-2 −5 0.0562 ± 0.0299 1.5440 ± 0.4554 24.8704 ± 5.2128
Seizure-2 +15 0.0632 ± 0.0211 1.4547 ± 0.4246 24.1608 ± 7.1592

In task, awake and sleep stated value are the mean of 1-min signal.

Fig. 128.4 Cone number is 5 s segments

Conclusions

High levels of time coincidence between cone fitting and the new method were
obtained. The new methodology reduces the processing time to detect stable cone
even when it is used with the cone fitting.

The striking difference between stable cone parameters derived from cone fitting
and the new method is the lower gradient values, however the differences between
brain states are maintained.

The new methodology is useful to detect stable phase cone in real time so that it
is promising to predict epilepsy seizure.
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Chapter 129
A Tea Classification Method Based
on an Olfactory System Model

Eduardo Gonzalez, Guang Li, Yusely Ruiz and Jin Zhang

Abstract In this paper the dynamics and architecture of a neural network derived
from olfactory bulb and olfactory cortex are explained. The results of its application
in tea classification are shown. The model presents multi-layer structure which is
connected by feed forward and feedback lines with distributed delays. Using the
same database, the tea classification results of the model are compared with those
of the BP network. The new model performed better than the BP network.

Keywords Tea classification · olfactory system · neural network

Introduction

Tea is one of the most popular and oldest beverages around the world. Its components
have significant antioxidant properties and its showed important role in the preven-
tion of cancer, cardiovascular diseases, and other chronic diseases ascribed to oxy-
gen toxicity [1]. The aroma and flavour are the two quality features of tea beverage
which are produced by hundreds of volatile compounds. Tea flavour is traditionally
measured using a combination of conventional analytical instrumentation and hu-
man or ganoleptic profiling panels. These methods are expensive in terms of time
and labour and also inaccurate due to the lack of either sensitivity or quantitative
information [2].

Thanks to the olfactory system have been well studied on last time, many math-
ematical model have been created to mimic its information processing. Researchers
like Freeman [3], Hopfield [4], Li [5], Liljenström [6] and others have developed
their own models to represent olfactory systems.

In this paper a chaotic neural network derived from the olfactory system was used
to classify different kind of tea. The features of the tea samples were extracted using
an gas sensor array. The model performance was compared with the BP network.
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Mathematical Model

The model is composed of two principal parts: the olfactory bulb and the olfactory
cortex. The bulb structure is based on Li’s model [7] while its dynamics is described
by second order differential equations. The architecture and dynamics of cortex are
essentially the same as in the olfactory cortex simulations by Liljenström [8].

The output of the olfactory bulb model is transmitted to the olfactory cortex
model through the lateral olfactory tract (LOT) and the feedback transmission from
the cortex to glomerulus’s ensembles in the bulb is via the medial olfactory track
(MOT).

Olfactory Bulb

The olfactory bulb in most mammalian consists of excitatory mitral and inhibitory
granule cells, as reported in the literature. Each neural ensemble dynamics is de-
scribed using a second order differential equation obtained from olfactory system
physiological experiments.

1

ab

[
ẍ(t)+ (a + b)ẋi (t)+ abxi (t)

] =
N∑

j �=i

wi j Q
[
x j (t), q j

]+ ri (t) (129.1)

where a and b represent rate constants. xi(t) and xj(t) symbolize the dynamic state
of the ith and jth neural ensemble respectively in a mammalian olfactory system.
The positive, negative or zero value in wij represents an excitatory, inhibitory or
no connection from neural population j to i; therefore, wij values define the system
topology. Q(xi, qi) is the asymmetric sigmoidal input/output transformation function
used for mitral and granule cells, which is derived from the Hodgkin-Huxley model
and q represents the maximum asymptote of the sigmoid function. Bulb olfactory
model is mathematically represented by a second order non-autonomous nonlinear
ordinary differential equation set.

Olfactory Cortex

The olfactory cortex is developed following Liljenström’s cortex model. This model
is based on the notion that simple network units with continuous output functions are
enough to describe many global dynamical properties of biological neural networks.

In order to calculate how the internal states of the units change with time, non-
linear first-order differential equations are used. With external input, I(t), each unit
i is represented by:

dui

dt
=

N∑

j=1

wi j g j
[
u j
(
t − ti j

)]− ui

τi
+ Ii (t) (129.2)
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g j = 1

2

{
1+ tanh

[
u j
(
t − t j

)− θ j

γ j

]}
(129.3)

In these equations tij correspond to the time delay and wij to the connection weights.
The curve shape, gj, is given by its threshold value, �j, and the gain parameter, �j.

The model has a laminar structure that can be subdivided into three layers:
one feedforward inhibitory layer, one excitatory layer and one feedback inhibitory
layer. On the excitatory layer the connections are widely distributed but excitatory-
inhibitory and inhibitory-excitatory connections are more local. All connections
strengths are dependent of the distance.

Learning Rule

The model was trained in order to form a prototype connections pattern between the
nerve cells assembly. The system learns how differentiate classes from training set
inputs with Hebbian modification of the excitatory synapses connection strength in
the olfactory bulb mitral sets.

After the training session, the connection weights are fixed to perform a pat-
tern classification test. The minimum Euclidian distances from the training patterns
cluster centers to output system determine the classifications.

Tea Classification

A sensor array, which consisting of seven metal oxide sensors. (TGS2610, TGS2611,
TGS800, TGS813, TGS822, TGS826 and TGS880 from Figaro Co.), was used to
acquire the tea aroma. A tea sample was heated before data acquirement. The mean
value of the voltage signal during the steady state was acquired as the raw data
of this sample. Sometimes there has some peak signal brought by noises. For this
reason, a median filter was applied [9].

Firstly a classification between green tea and black tea was made. To build up
a testing set, thirty samples were acquired for each kind of tea while training set
contains three samples of green tea and three samples of black tea and were trained
twice each set. The results are shown in Table 129.1.

In order to show the capacity of the model to the pattern recognition the number
of patterns was increases to four, using data set composed of four kind of tea

Table 129.1 Result of
classification of two kinds of
tea

Tea Amount Olfactory model’s
correction rate (%)

Green tea 30 100.0
Black tea 30 96.7
Total 60 98.4
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Table 129.2 Result of classification of four kinds of tea

Tea Amount BP’s correction Olfactory model’s
rate (%) correction rate (%)

Chinese green tea 15 100.0 93.4
Japanese green tea 15 80.0 80.0
Indian black tea 15 66.7 86.7
Chinese black tea 15 93.4 100.0
Total 60 85.0 90.0

(Table 129.2). Fifteen samples of four kind of tea were used to build a testing set and
three samples for each kind were utilized twice in the training process. To compare
the model performance, a Back-Propagation network (BP) was implemented. Novel
model correction rate is higher than BP network.

Conclusions

Traditionally, tea classification has been made by human senses. The fast devel-
opment of neural network has allowed the introduction of its mathematical model
on many areas on last decades. In this paper a novel olfactory system model was
applied to tea recognition. The olfactory model has the capacity to learn complex
patterns due to Hebbian modification of the M-sets excitatory synapses connection
strengths in the bulb. The model showed an efficient performance on tea classifica-
tion. Performance comparison between BP and novel model show higher correction
rate values for the novel model.
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Chapter 130
Evolution Architecture Models for Integrated
Grid Information Services

Do-Hyeun Kim, Kyung-Woo Kang and Gyung-Leen Park

Abstract Grid information services are an indispensable component of Grid com-
puting and vital part of any Grid software infrastructure, providing fundamental
mechanisms for discovery and monitoring, and thus for planning and adapting appli-
cation behavior. However, existing Grid information services are unable to provide
the all information for monitoring Grid resources. Accordingly, this paper presents
three steps architecture models for an integrated Grid information service to en-
able the efficient discovery and monitoring of all Grid resources. These architecture
models use the manager-of-managers method, the existing lower layer information
systems and API for the discovery and monitoring of all Grid resources. Thereafter,
an integrated Grid information system is designed and implemented based on the
second architecture model using existing information systems. As such, the inte-
grated Grid information system allows for the discovery and monitoring of all Grid
resources, the usability of the system can be proliferated.

Keywords Grid computing · integrated information monitoring

Introduction

The interest in coupling geographically distributed resources is also growing for
solving large-scale problems, leading to what is popularly known as Grid comput-
ing. In this environment, a wide variety of computational resources, such as su-
percomputers and clusters, including low-end systems, such as PCs/workstations,
visualization devices, storage systems and databases, special class of scientific in-
struments, computational kernels, and so on, are logically coupled together and pre-
sented as a single integrated resource to the user [1]. GRID projects include Globus,
Legion, Condor, NWS (Network Weather Services), LSF (Load Sharing Facility),
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NetSolve, Ninf, AppLes, Nimrod/G, and JaWS, all of which have been previously
discussed [2].

Accordingly, this paper proposes three steps architecture models for an integrated
Grid information service in a Grid environment. The proposed architecture models
use the manager-of-managers method, the lower layer information systems and API
(Application Program Interface). In addition, an integrated Grid information sys-
tem is designed and implemented based on the proposed second architecture model
using existing lower layer information systems.

Architecture Models

This paper proposes three architecture models for an integrated information ser-
vice in a Grid environment. First step architecture model is the Grid information
system and the lower information systems are layered vertically. The Grid informa-
tion system collects and processes totally the resource information of each of the
lower information systems. The Grid and the lower information systems transfer
the resource information using a standard protocol. Figure 130.1 represents the first
architecture integrating a number of information systems. The resource information
is collected and processed by the lower information system and it is concentrated in
the upper information system.

The second model supports a uniform Grid information application. This archi-
tecture model uses the existing lower layer information systems and a standard
interface. Figure 130.2 illustrates the architecture of a Grid information service
that effectively integrates each information system using an application program
interface or its proprietary tools. Using the lower layer information systems, these
systems collect a part of the information from the Grid resources using the pro-
prietary tools for each Grid information service. The application program interface

Grid Resources

Lower layer
Information

system

Lower layer
Information

system

Lower layer
Information

system

Grid Information
system

Fig. 130.1 The first architecture model for integrated Grid information service
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Grid Information 
Application

Grid Resources

Application Program Interface

Lower Layer
Information

System Lower Layer
Information

System

Lower Layer
Information

System

Fig. 130.2 The second architecture model for integrated Grid information service using lower
layer information systems

then integrates the Grid resource information that is transferred from the existing
lower layer information systems.

If all the Grid resources support a standard protocol, the third architecture is pro-
posed that can be progressively modified into a prior integrated architecture and add
a standard protocol to the Grid resources. With a third architecture, the Grid infor-
mation applications do not each have lower layer information systems. Instead, all
the Grid resources are communicated using an API (Application Program Interface).
As such, a third architecture is a method of monitoring all the Grid resources using
an application program interface. All the Grid resources use a standard protocol, a
scheme of Grid resources, and an interface.

Grid
Information
Application 

Grid
Information
Application 

Grid
Information
Application 

Application Program Interface

Grid Resources

Fig. 130.3 The third architecture model for integrated Grid information service using an API
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Therefore, the second architectures can resolve the problem of the first architec-
ture that abandon the existing information systems using the proprietary protocol,
and that of the first architecture that needs additional hardware and the installation
of a standard protocol in the previous information system. Furthermore, an infor-
mation system using second architecture can be developed a short period, and its
development cost can be lowered by reusing the existing information systems as
much as possible and by implementing it on a hardware platform. This architecture
has the difficulty the integrated monitoring of all kinds of information systems and
resources using various new protocols.

Implementation of Integrated Information System
Using Lower Layer Information Systems

Thereafter, an integrated Grid information system is designed and implemented
based on the second architecture model using existing information systems, and
is able to monitor basic information on each node, the network state, computing
state of a cluster, number of nodes and queue state. This system uses the LDAP
(Lightweight Directory Access Protocol) as the application program interface, and
Condor, MDS (Metacomputing Directory System), NWS, and LDF as the lower
layer information systems. Figure 130.4 shows the configuration of the integrated
Grid information system for the integrated monitoring and discovery of Grid re-
sources using the second architecture model.

Network Resources

LDAP

Condor

Globus NWS
LSF

Nodes and Queues ResourcesCluster Resources Computer Resources

Grid Resources Information Services

Graphic User Interface

Fig. 130.4 Configuration of integrated information system using the second architecture model

Acknowledgements This research was supported by the MIC (Ministry of Information and Com-
munication), Korea, under the ITRC (Information Technology Research Center) support program
supervised by the IITA (Institute of Information Technology Advancement) (IITA-2006-C1090-
0603-0040).



130 Evolution Architecture Models for Integrated Grid Information Services 757

References

1. R. Buyya, S. Chapin, D. DiNucci, Architectural Models for Resource Management in the Grid,
The First IEEE/ACM International Workshop on Grid Computing (GRID 2000), Springer Ver-
lag LNCS Series, Germany(2000).

2. K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, Grid Information Services for Distributed
Resource Sharing. Proceedings of the Tenth IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10), IEEE Press (2001).



Chapter 131
Maximizing Parallelism for Single Loops

Sam Jin Jeong

Abstract We review some loop partitioning techniques such as loop splitting
method by thresholds and Polychronopoulos’ loop splitting method which already
developed. We propose improved loop splitting method for maximizing parallelism
of single loops with non-constant dependence distances. By using the iteration and
distance for the source of the first dependence, we present generalized and optimal
algorithms for single loops with non-uniform dependences. The algorithms gener-
alize how to transform general single loops into parallel loops.

Keywords Parallelizing compiler · loop parallelization · loop transformation

Introduction

An efficient approach for exploiting potential parallelism is to concentrate on the
parallelism available in loops in ordinary programs and has a considerable effect on
the speedup [1, 2].

Through some loop transformations using a dependence distance in single loops
[3, 4], a loop can be splitted into partial loops to be executed in parallel without
violating data dependence relations, that is, the size of distance can be used as a re-
duction factor [3], which is the number of iterations that can be executed in parallel.
In the case of non-constant distance such that it varies between different instances
of the dependence, it is much more difficult to maximize the degree of parallelism
from a loop.

When we consider the approach for single loops, we can review two partitioning
techniques proposed in [3] which are fixed partitioning with minimum distance and
variable partitioning with ceil(d(i)). However, these leave some parallelism unex-
ploited, and the second case has some constraints.
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Program Model and Data Dependence Computation

For data-dependence computation in actual programs, the most common situation
occurs when we are comparing two variables in a single loop and those variables
are elements of a one-dimensional array, with subscripts linear in the loop index
variable. Then this kind of loop has a general form as shown in Fig. 131.1a. Here, l,
u, a1, a2, b1 and b2, are integer constants known at compile time.

For dependence between statements S1 and S2, to exist, we must have an integer
solution (i, j) to Eq. (131.1) that is a linear diophantine equation in two variables.
The method for solving such equations is well known and is based on the extended
Euclid’s algorithm [5].

a1i + a2 = b1 j + b2 where l ≤ i, j ≤ u (131.1)

Related Works

Now, we review some partitioning techniques of single loops. We can exploit any
parallelism available in such a single loop in Fig. 131.1a, by classifying the four
possible cases for a1 and b1, coefficients of the index variable I , as given by (131.2).

(a) a1 = b1 = 0, (b) a1 = 0, b1 �= 0 or a1 �= 0, b1 = 0,

(c) a1 = b1 �= 0 (d) a1 �= 0, b1 �= 0, a1 �= b1 (131.2)

In case 4(a), because there is no cross-iteration dependence, the resulting loop can
be directly parallelized. In the following subsections, we briefly review several loop
splitting methods for the case of 4(d).

Loop Splitting by Thresholds

A threshold indicates the number of times the loop may be executed without creating
the dependence. In case 4(d), an existing dependence is non-uniform since there is
a non-constant distance, that is, such that it varies between different instances of the
dependence. And we can consider exploiting any parallelism for two cases when
a∗1 b1 < 0 and a∗1 b1 > 0. Suppose now that a∗1 b1 < 0. If (i , i) is a solution to
(131.1), then there may be all dependence sources in (l, i) and all dependence sinks
in [i , u]. Therefore, by splitting the loop at the iteration I = i (called crossing
threshold), the two partial loops can be directly parallelized [4].

DO I = l, u DO I = 1, N DO I = l, 12
S1: A(a∗1 I + a2)= . . . S1: A(3I + 1)= . . . A(3∗ I − 2)
S2: . . . =A(b∗1 I + b2) S2: . . . =A(2I − 4) . . . =A(2∗ I + 5)
ENDDO ENDDO ENDDO

Fig. 131.1 (a) A single loop model. (b) Example 1. (c) Example 2
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Polychronopoulos’ Loop Splitting

We can also consider exploiting any parallelism for the case 4(d) when a1
∗b1 ≥

0. We will consider three cases whether it exists only flow dependence, anti-
dependence, or both in the range of I . First, let (i, j) be an integer solution to
(131.1). If the distance, d(i) depending on i , as given by (131.3), has a positive
value, then there exists a flow dependence, and if da( j) depending on j , as given by
(131.4), has a positive value, then there exists an anti-dependence. Next, if (x, x) is
a solution to (1) (x may not be an integer.), then d(x) = da(x) = 0 and there may
exist a flow (or anti-) and an anti-dependence (or flow) before and after I = ceil(x),
and if x is an integer, then there exists a loop-independent dependence at I = x.
Here, suppose that for each value of I , the element A(a1

∗ I + a2) defined by that
iteration cannot be consumed before ceil(d(i)) iterations later, and this indicates that
ceil(d(i)) iterations can execute in parallel.

d(i) = j − i = D(i)/b1, where D(i) = (a2 − b1)∗i + (a2 − b1) (131.3)

da( j) = i − j = Da( j)/a1, where Da( j) = (b1 − a1)∗ j + (b2 − a2) (131.4)

Consider the loop, as given in Fig. 131.1b, in which there exist flow dependences.
d(i) = D(i)/b1 = (i + 5)/2 > 0 for each value of I and d(i) have integer values, 3,
4, 5, . . . as the value of I is incremented.

Maximizing Parallelism for Single Loops

From a single loop with non-constant distance such that it satisfies the case (d) in (2)
and a1

∗b1 > 0, we can get the following Lemmas. For convenience’ sake, suppose
that there is a flow dependence in the loop.

Lemma 1. The number of iterations between a dependence source and the next
source, sd is given by |b1|/g iterations where g = gcd(a1, b1).

Lemma 2. The dependence distance, that is, the number of iterations between the
source and the sink of a dependence, is D(i)/b1 where D(i) = (a1 − b1)∗i + (a2 −
b2), and the increasing rate of a distance per one iteration, d’ is given by (a1 −
b1)/b1. And the difference between the distance of a dependence and that of the next
dependence, dinc is |a1 − b1|/g.

By using the iteration and distance for the source of the first dependence, and
concepts defined by Lemma 1 and 2, we obtain the generalized and optimal algo-
rithm to maximize parallelism from single loops with non-uniform dependences.

Procedure MaxSplit shows the transformation of single loops satisfying the case
(d) in (2) and a1

∗b1 > 0 into partial parallel loops.
Applying Procedure MaxSplit to the loop in Fig. 131.1b, the unrolled version

of this result is shown in Fig. 131.2c. As shown in Fig. 131.2, we can know that
Procedure MaxSplit is an algorithm to maximize parallelism from single loops with
non-constant distances.
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I A(3*I+1)               A(2*I-4) I A(3*I+1)               A(2*I-4) I A(3*I+1)               A(2*I-4)
1    A(04) A(-2) 1    A(04) A(-2) 1    A(04)          A(-2) 
2    A(07) A(00) 2   A(07) A(00) 2    A(07) A(00)
3      A(10)                    A(02) 3      A(10)                    A(02) 3      A(10)                    A(02)
4      A(13)                    A(04) 4      A(13)                    A(04) 4      A(13)                    A(04)
5      A(16)                    A(06) 5      A(16)                    A(06) 5      A(16)                    A(06)
6      A(19)                    A(08) 6      A(19)                    A(08) 6      A(19)                    A(08)
7      A(22)                    A(10) 7      A(22)                    A(10) 7      A(22)                    A(10)
8      A(25)                    A(12) 8      A(25)                    A(12) 8      A(25)                    A(12)
9      A(28)                    A(14) 9      A(28)                    A(14) 9      A(28)                    A(14)
10    A(31)                    A(16) 10    A(31)                    A(16) 10    A(31)                    A(16)
11 A(34)                    A(18) 11 A(34)                    A(18) 11 A(34)                    A(18)
12    A(37)                    A(20) 12    A(37)                    A(20) 12    A(37)                    A(20)
13    A(40)                    A(22) 13    A(40)                    A(22) 13    A(40)                    A(22)
14    A(43)                    A(24) 14    A(43)                    A(24) 14    A(43)                    A(24)
15    A(46)                    A(26) 15    A(46)                    A(26) 15    A(46)                    A(26)
16    A(49)                    A(28) 16    A(49)                    A(28) 16    A(49)                    A(28)

… … … 
(a) Using minimum distance. (b) Using ceil(d(i)). (c) Our proposed method. 

Fig. 131.2 The unrolled versions of transformed loops

Conclusions

In this paper, we have studied the parallelization of single loop with non-uniform
dependences for maximizing parallelism. For single loops, we can review two parti-
tioning techniques which are fixed partitioning with minimum distance and variable
partitioning with ceil(d(i)). However, these leave some parallelism unexploited, and
the second case has some constraints. Therefore, we propose a generalized and op-
timal method to make the iteration space of a loop into partitions with variable
sizes. In the proposed method, two algorithms are considered as one for loops with
one dependence and the other for loops with multiple dependences. Our algorithm
generalizes how to transform general single loops with one dependence into parallel
loops.

In comparison with some previous splitting methods, our proposed methods give
much better speedup and extract more parallelism than other methods.

Our future research work is to consider the extension of our method to
n-dimensional space.
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Chapter 132
The Realtime Workflow for RFID
Based Medical Test

Sang Hwan Kung, YunHee Kang and Kyung Woo Kang

Abstract The workflow, one of core features for modern business operation, mod-
els common elements and their relationships in business processes. The ultimate
goal of the workflow is to automate the business processes found in business or other
diverse applications. Once business process is defined with the automated tool, the
workflow service is activated by the definition, separating workflow service from
the workflow applications. In the paper, we model the workflow system under the
ubiquitous environment which is composed of the moving patients with the cus-
tomer devices such as PDA. The paper defines the role of ubiquitous devices in the
system as well as the interaction with the workflow server. The paper also deals with
the application analysis in terms of real-time workflow concept. On the other hand,
it includes software architecture which shows block diagram of the system.

Keywords Medical test · RFID · workflow · BPR

Introduction

In this paper, we apply the workflow to the health examination process which is
comprised of multiple medical tests. Usually, the number of patients needs to be
tested at the same time is not usually small, so many of them need to be waited at
the test spots. On the other hand, there needs to be many of helpers in order to help
them find the next test spot.

We try to resolve this problem, by having a couple of ideas. One of them is to set
up the real-time, ubiquitous environment by providing patients with PDA and RFID
card, which enables patients move around by themselves without any of helpers. The
other is to extend the workflow to have real-time feature, which means the workflow
works for the dynamic situation when making a decision on how a patient moves
to next spots. We especially consider how many people are waiting on the spot and
how long each test spot takes to be finished. The paper covers from the analysis of

S.H. Kung
Division of Information and Communication Engineering, Baekseok University, Korea
e-mail: kung@bu.ac.kr

R. Wang et al. (eds.), Advances in Cognitive Neurodynamics,
C© Springer Science+Business Media B.V. 2008

765



 

 

 

 

 



766 S.H. Kung et al.

requirements for the RFID based real-time workflow system to the functional block
structures, including a core algorithm.

Researches and standards for enabling Technologies like Workflow and RFID are
described in the attached references [1, 2, 3, 4, 5, 6, 7, 8].

Application Service Environment

These days the healthcare examination is popularly done to know if people have any
kind of bad symptoms in their health. This type of medical examination is usually
performed at the specialized test center which is well facilitated with modernized
medical diagnostic equipments.

In many cases, the medical test center is full of patients to be checked, so it is
usual cases for the patients to be waited in a long line to take a certain test. So, some
helpers guide them to the test spots which might be expected to be minimal waiting.

We decided to use the workflow concept for the medical test, because a total
examination process is composed of many individual tests just like a business or
manufacturing process.

At every test spot, the tester uses the personal computer to see the patients waiting
for the test and to write in the test results. And, in order to provide patients with
non-stop services possibly, each patient is given with PDA with RFID function. The
RFID chip is attached on the backside of the PDA.

The patient’s information stored in this RFID is read by the RFID reader located
at each test spot and the indication of patient’s arrival is notified to the tester’s PC
and also moved to database of the server. When the test is finished, its result is given
to the database in the server by the tester. Even though some tests make take some
days to have the results of the test, this does not become serious matter because the
system mainly concerns about only the activities which are performed on the floor.

Once the test result is given, the system tries to decide the next test for the patient
by taking care of the defined route, the number of people waiting and average test
time. When the conclusion is made, the direction to the test spots is displayed on
the PDA. So, the patient do not have any trouble in moving around the entire test
spots. The PDA also gives the patient the whole list of tests and the tests he/she has
finished.

Analysis of Workflow Feature

A workflow is executed through several processes performed in parallel. The process
also includes multiple activities which are performed in parallel or in serial. In our
system, the basic element of task will be a specific test, which will be actually a
activity. The patient goes through the entire activities belong to a process. Since



132 The Realtime Workflow for RFID Based Medical Test 767

if(routing type == Random)
search the all the tests which are not visited yet
find the least waiting spot by the number of waiting patients and average waiting time of the

spot.
if(next spots with the same waiting time are multiple)
choose it from the pre-defined path

else // routing type == Random
find next spot from the pre-defined path

Fig. 132.1 Routing algorithm

there could be multiple patients being tested, multiple processes could be handled
in parallel in the system also.

The performer who does each activity will be the tester who has its own role. So,
he/she chooses a task from to-do list and finishes out one by one. In patient’s point
of view, to-do list is comprised of multiple different activities. On the other hand, in
tester’s point of view, to-do list is comprised of same activities.

The process for medical test is activated by the fixed scenario which defines entire
sequence of tests. If there is only one patient to be tested, the he or she is supposed to
visit the predefined steps. Nevertheless, this can be varied by the healthcare test cen-
ter, we need to define the all the activities in XML form according to environment
and condition of the centers.

The one of important function is to make a real-time decision to move on a cer-
tain test spot. The system provides with this function with the routing type, which
is either ‘F’ (Fixed Routing) or ‘R’ (Random Routing). Fixed routing means that
routing is automatically done depending on the XML script, on the other hand Ran-
dom routing means that routing from one spot to another is randomly selected. For
random routing, we can apply to a algorithm which decides the next spot based on
the total waiting time of the spot.

On a certain test spot, the algorithm to make a decision of the next test spot is as
in Fig. 132.1.

Architecture of the System

The Fig. 132.2 shows the Block Diagram of the system which consists of core
blocks which may explain the brief architecture and behavior of the system. The
major blocks of the system are divided into four parts which are the client part, the
workflow server main, the workflow application, and the workflow service part. The
client part is composed of the device handler and the workflow application. When it
wants to be served, it connects to the workflow server main. The workflow service
provided at the server side is handled by the workflow application block and the
workflow service block. The workflow service block carries out workflow functions
independently from the applications. On the other hand, the application-specific
processing is performed by the workflow application block.



768 S.H. Kung et al.

Registration Desk

Workflow
Server Main

Registration

(1)
Connect 

to
Server

Workflow
AP

(2) invoke

Process
def. XML

(3)
Patient 

Information

D B

Process
Handler

Process
Manager

Invoke for
Each test

Activity
Handler

Invoke for
Each Patient

Notification
of Arrival

Command for
Move

Test DeskRFID Reader Patient PDA

(6)
Process Search

(0) Initiating invocation

(5)
Patient
Arrival

(7) Test 
Result

(8)
End of Test

(9)
Move

Direction

Workflow
Service

Test Result

Fig. 132.2 Block diagram of the system

Conclusion

The paper focuses on the design of application and middleware for Medical Test
Center. The procedure on the floor for the test needs to be automated in terms
of workflow scheme which have been widely popular. On the other hand, the in-
convenience discovered on the floor when the patients moves around needs to be
facilitated with ubiquitous devices such as PDA and RFID feature.

We concentrated on the design of software architecture for the system realizing
the requirements. So, in this paper, we covered from the business scenario and re-
quirement analysis to design of software blocks and important classes. The brief
algorithm to make a decision for next move on a spot was also introduced.

Anyhow, we need to improve the design in that more complicated model for
the process definition is realistic and the routing algorithm needs to cover this new
requirement.
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Chapter 133
Visuo-Spatial Attention Frame Recognition
for Brain-Computer Interfaces

Ferran Galán, Julie Palix, Ricardo Chavarriaga, Pierre W. Ferrez,
Eileen Lew, Claude-Alain Hauert and José del R. Millán

Abstract Objective: To assess the feasibility of recognizing visual spatial attention
frames for brain-computer interfaces (BCI) applications. Methods: EEG data was
recorded with 64 electrodes from two subjects executing a visuo-spatial attention
task indicating two target locations. Continuous Morlet wavelet coefficients were
estimated on 18 frequency components and 16 preselected electrodes in trials of
600 ms. The spatial patterns of the 16 frequency components frames were simultane-
ously detected and classified (between the two targets). The classification accuracy
was assessed using 20-fold cross-validation. Results: The maximum frames average
classification accuracies are 80.64% and 87.31% for subject 1 and 2 respectively,
both utilizing frequency components located in gamma band.

Introduction

Asynchronous EEG-based brain-computer interfaces (BCI) [1] allow subjects to
control devices spontaneously and at their own pace, contrarily to synchronous BCI
systems [2], and without requiring external cues such as in the case of relying on
evoked potentials [3]. To this end, people learn how to voluntary modulate different
oscillatory EEG rhythms by the execution of different mental tasks. A limitation
of using mental tasks as control commands (e.g., imagining movements or doing
arithmetics) is that subjects need to keep performing those mental tasks during the
whole interaction, what can be exhausting, especially for novel users. An alterna-
tive is to exploit conscious behaviors that do not require sustained attention. Recent
studies have demonstrated the possibility to modulate EEG alpha band by orienting
visuo-spatial attention [4]. In an ideal case, BCI users could make a wheelchair turn
left just by orienting their attention (without any eye movement) to some location
in the left visual field, what is more natural than, for instance, imagining a left
hand movement. Moreover, once the wheelchair just turn left, users will simply stop
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attending to any particular spot of their visual field and the wheelchair, endowed
with an intelligent controller [1], will move forward.

In this paper we assess the feasibility of recognizing user’s voluntary modulation
of EEG rhythms associated to visuo-spatial attention in an experimental setup close
to the ecological conditions of asynchronous EEG-based BCIs. To this end, we com-
pare both, a traditional BCI approach and a frames approach. These frames, as de-
scribed by Freeman [5], correspond to active intermittent induced spatial patterns of
amplitude modulation of beta-gama oscillations in response to conditioned stimuli.
Based on those findings we address the following questions: (i) Does this discontin-
uous mode of function (i.e., frames) also appear in response to voluntary modulation
of EEG rhythms? (ii) In this case, is it possible to classify these frames with respect
to the attended location? (iii) Which frequency ranges yields better classification
accuracy? (iv) Can this approach improve BCI performance? We hypothesize that
traditional approaches (assuming sustained modulation of EEG rhythms over time)
would face methodological problems: they will label (for training purposes) and
classify samples extracted from periods of time where the underlying brain phenom-
ena is either not present or is not salient enough. Then, a frames approach (which
only classifies those samples where the induced episodic frames are detected) would
be more appropriate. This paper addresses these questions and presents some hints
for future work.

Methods

Data were recorded from two subjects with a portable Biosemi acquisition system
using 64 channels sampled at 512 Hz and high-pass filtered at 1 Hz. The sampling
rate was fixed at 512 Hz to ensure a good estimation of the highest frequency com-
ponent under analysis. The subjects were sitting in a chair looking at a fixation cross
placed at the center of a monitor. The subjects were instructed to covertly attend to
one of two possible target locations (lower-left and lower-right monitor’s corners).
The target location was specified by the operator in a pseudo-random balanced order.
The subjects specified when they started to shift their attention. Each subject partic-
ipated in 10 sessions composed by four trials each, two trials for each target. The
duration of each trial was 7 s but only the first 600 ms were utilized in this study.

The signal was spatially filtered using common average reference (CAR) previous
to estimate the continuous Morlet wavelet coefficients on 18 frequency components
(7, 8, 9, 10, 11, 12, 28, 32, 36, 40, 44, 48, 56, 64, 72, 80, 88, and 96 Hz) and
16 electrodes (F5, FC5, C5, CP5, P5, AFz, Fz, FCz, Cz, PCz, Pz, F6, FC6, C6,
CP6, P6). The selection of electrodes was based on preliminary analysis of contin-
uous Morlet wavelet coefficients scalp topography. Thus, each trial is composed by
512 × 0.6 samples and 18 × 16 features. The analysis carried on aims to compare
the recognition rates over the different frequency components using two different
approaches, namely the traditional BCI approach and the frames approach. The
process was structured in two steps:
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1. One canonical space was built per each frequency component (18 canonical
spaces) [6] using 16-dimensional vectors (estimated wavelet coefficients at 16
electrodes). Since it is a two-class problem, canonical spaces are defined by one
canonical function.

2. A linear discriminant classifier (LDA) was built following two different ap-
proaches:

(a) Traditional BCI approach: using all the training projected samples on the
canonical space and classifying all the test projected samples.

(b) Frames approach: only a subset of the projected samples (i.e. frames) are
used for training and classification. A sample was considered as a frame if
its projection on the training canonical space was located on the opposite
tails of each class distribution. Eight percentiles were utilized as thresholds:
P40, P35, P30, P25, P20, P15, P10 and P5. Thus, a sample was identified as a
frame either its projection was below a given percentile (i.e: P5) of class 1 or
above the opposite percentile (i.e: P95) of class 2. From now, the reference
to one percentile also includes its opposite.

Both approaches were assessed using k-fold crossvalidation, k = 20. Each fold
was integrated per one trial of each condition respecting the timing when they were
recorded.

Results and Conclusions

The average LDA classification accuracy is higher utilizing the frames approach.
For both subjects, the maximum classification accuracy is reached utilizing P5. We
report on detail the results obtained on this percentile. The maximum average clas-
sification accuracy classifying all the samples (i.e. traditional approach) is 58.41%
at 10 Hz and 63.08% at 12 Hz for subject 1 and 2 respectively (see Fig. 133.1 left),
both in the alpha range. Utilizing frames approach, the maximum average classi-
fication accuracies are 80.64% at 72 Hz, and 87.31% at 32 Hz for subject 1 and 2
respectively (Fig. 133.1 center), both in the gamma range. It represents an absolute
increase of 22.23% and 27.13% for subject 1 and 2 respectively. Notice that these
classification accuracies are computed only on those samples identified as frames.
The average percentage of samples identified as frames out of the total of samples of
a trial is 5.85% for subject 1 and 5.92% for subject 2 (see Fig. 133.1 right) at 72 Hz
and 32 Hz respectively. In case of subject 1, only in one-fold out of 20 it was not
possible to identify any frame. In case of subject 2, it was not possible in 4 out of 20
folds. To understand the implication of these results in a real BCI application, each
trial has been labelled according to the class maximum recognized by the classifier,
using all the samples in case of traditional approach, and using only frames in case
of frames approach. In the first case, the trial classification accuracies are 60.00%
and 57.50% for subjects 1 and 2 respectively, what implies that channels capacities
are 0.05 b/s and 0.03 /s (using estimator proposed in [1]). Using frames approach,
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the trial classification accuracies are 60.00% and 47.50%, but with only 12.50%
of error recognition in both cases, what implies that channels capacities are 0.55 b/s
and 0.46 b/s. Using frames approach the BCI theoretical channel capacity is boosted
by 10.

This preliminary study on visuo-spatial attention frame recognition for BCI pro-
vides relevant hints for further research. First, it is possible to voluntary modulate
EEG rhythms by orienting visuo-spatial attention in order to use asynchronous non-
invasive EEG-based BCI’s. Second, the intensity of this modulation is not sustained
over time. This fact can be related to the active intermittent induced spatial patterns
of amplitude modulation (frames) in response to conditioned stimuli described by
Freeman [5]. In this case these patterns are voluntary driven by the subject. Third,
it is possible to classify the frames generated by orienting the attention to differ-
ent visual locations with high classification accuracies (above 80%). Fourth, these
classification accuracies are maximum in gamma band (>30 Hz), corresponding to
endogenous shifts of attention effects [7]. Fifth, classification accuracies utilizing
a traditional approach, i.e. assuming modulations sustained over time, are around
the chance level. It suggests that this approach is not optimal to recognize induced
EEG phenomena, what is confirmed comparing the BCI theoretical channel capacity
achieved using both approaches. Using frames approach the BCI theoretical channel
capacity is drastically increased.
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Chapter 134
To Err is Human: Learning from Error
Potentials in Brain-Computer Interfaces

Ricardo Chavarriaga∗, Pierre W. Ferrez and José del R. Millán

Abstract Several studies describe evoked EEG potentials elicited when a subject is
aware of an erroneous decision either taken by him or by an external interface. This
paper studies Error-related potentials (ErrP) elicited when a human user monitors
an external system upon which he has no control whatsoever. In addition, the possi-
bility of using the ErrPs as a learning signals to infer the user’s intended strategy is
also addressed. Experimental results show that single-trial recognition of correct and
error trials can be achieved, allowing the fast learning of the user’s strategy. These
results may constitute the basis of a new kind of human-computer interaction where
the former provides monitoring signals that can be used to modify the performance
of the latter.

Introduction

The error monitoring process is crucial to improve performance for both humans
and artificial cognitive systems. Upon identification of erroneous decisions, the like-
lihood of repeating such actions in the same context should be decreased in order to
improve the performance. This mechanism is the base of the reinforcement learning
theory [1]. Several studies on human EEG have identified event-related potentials
elicited by erroneous decisions or error feedback; i.e. error-related negativity (ERN)
and feedback-related negativity (FRN), respectively [2]. These potentials are char-
acterized by a midline frontal negative deflection of the EEG around 80 ms and
250 ms, respectively. Moreover, evoked potentials have also been described when
errors are generated by a human-computer interface and not by the user himself –
e.g. keyboard or brain-computer interfaces (BCI) [3].
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Although these signals convey valuable information about the user’s evaluation
of performance, they have seldom been used in the field of non-invasive BCIs. Parra
and colleagues have proposed the use of ERNs to correct user’s erroneous decisions
on speed response tasks [4], while Ferrez et al. use error-related potentials (ErrP)
to improve the information transfer rate of a BCI system [3]. However, these stud-
ies use ErrPs only to correct the response that generated the error, but they do not
include a learning mechanism to prevent that error to be repeated in the future.

This paper addresses this issue by testing the use of error-related potentials as a
teaching signal to learn the user’s strategy when solving a simple task. In particular,
(i) we test whether these potentials can be detected on single trial when a human
subject monitors the performance of an external system upon which he has no con-
trol whatsoever; and (ii) we assess the feasibility of using such signals to learn the
user’s intention, i.e. the strategy the user expects the system to perform.

Experimental Protocol

Subjects seat in front of a computer screen where a moving cursor (a green square)
is displayed. A red square at either the left or right of the cursor signals the target
location, as shown in Fig. 134.1a. At each time step the cursor moves horizontally
depending on the location of the target. The user has no control over the cursor’s
movement and is asked only to monitor the performance of the system, knowing that
the goal is to reach the red target. Cursor movement law is defined in a suboptimal
way in order to study signals elicited by the system’s errors. Specifically, at each
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Fig. 134.1 (a) Experimental protocol. Green square, moving cursor. Red square, target location.
Dotted square, cursor location at the previous time step. Correct and erroneous movements are
shown at times t+1 and t+2 respectively. (b) Grand average error related potential—Error minus
Correct condition—on the FCz electrode (feedback is given at time t = 0)
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time step there is a probability of 80% for the cursor to move towards the target.
One experimental session consists of 10 blocks of 3 min each (approx. 75 trials per
block).

Three healthy male subjects performed two sessions of the experiment. Data
from the first session was used to characterize the evoked potentials for both error
and correct trials and to train the classifier parameters (see Section 3 below). The
second session, recorded seven weeks after the first one, was used to test ErrP
single-trial classification. EEG was recorded for all subjects with a sampling rate
of 512 Hz using 64 electrodes according to the standard 10/20 International system.
Data was re-referenced to the common average reference (CAR) and a 1–10 Hz
band-pass filter was applied. The average feedback-locked potential at channel
FCz—difference between error and correct grand averages—for the three subjects
is shown in Fig. 134.1b.

To emulate experimental conditions of a BCI application, no artifact rejection
was applied and all trials were used in the analysis. Moreover classification accuracy
was assessed on a single-trial basis, as opposite to batch performance evaluation
techniques such as cross-validation.

Single-Trial Classification

Following previous studies, we classify the signals using a Gaussian classifier [3].
The activity on the FCz and Cz electrodes on the [200 ms, 450 ms] time window
after the feedback presentation was used as input to the classifier. The statistical clas-
sifier estimates the posterior probability of a single trial corresponding to each of the
two classes error, and correct. Classifier parameters were tuned using a stochastic
gradient descent on the mean square error.

Table 134.1 shows the recognition rates on single-trial for the three subjects. The
same classifier parameters were used in all cases. Learning rates were 10−2 and 10−4

for the center and covariances of the Gaussian prototypes. A total of 6 prototypes
were used for each class. These results show classification above chance for both
correct and error trials, with higher recognition rates for the correct trials.

Table 134.1 Single trial recognition rates (%) for the three subjects on the test set (i.e. session 2)

Subject I Subject II Subject III

Correct Error Correct Error Correct Error

Correct 92.01 7.99 83.82 16.18 86.86 13.14
Error 26.50 73.50 41.08 58.91 33.71 66.29

Learning from Error-Related Potentials

We test then whether the detection of ErrPs can be used as to infer what the optimal
behavior should be. The rationale of this approach is that, given the system decisions
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and the user’s evaluation of such decisions – indicated by the presence or not of
ErrPs –, it is possible to infer what strategy is considered as correct by the human
user.

Considering the experiment described above, the optimal strategy is to move
the cursor towards the target. Let define Tt , At ∈ [L , R] the target location and
the cursor’s direction of movement at time t, where [L , R], stand for left and right
respectively. Let PA,T be the probability of taking action A given the target loca-
tion T , and a strategy Π , i.e. PAt ,Tt = P(Action = At |T arget = Tt ,Π ). The
optimal strategy Π∗ can be expressed in terms of probabilities P∗L ,L = P∗R,R = 1;
respectively, P∗L ,R = P∗R,L = 0.

Alike to reward signals in reinforcement learning, ErrP detection can be used to
decrease the likelihood of performing actions considered as erroneous and, in the op-
posite case, to encourage correct actions. Let define Π t = {Pt

L ,L , Pt
L ,R, Pt

R,L , Pt
R,R}

the strategy at time t, if an ErrP is detected, the probability of repeating the action
At given the target location Tt must be decreased, i.e. Pt+1

At ,Tt
= Pt

At ,Tt
− ΔPt

At ,Tt
.

Conversely, if the trial is considered as correct, Pt
At ,Tt

is increased for the next time
step. The probabilities of other actions given Tt are updated so that

∑
i PAi ,Tt = 1.

Note that we keep separate models for each possible target location.
We choose a variable step size ΔPt

At ,Tt
such that probabilities close to chance

level are penalized (i.e. Pt
At ,Tt

= 0.5, for two-action problems). In the current im-
plementation ΔPt

At ,Tt
= ηH (Pt

At ,Tt
), where η = 0.3 is a constant scaling factor, and

H (x) = −∑n
i P(xi )log2 P(xi ) is the binary entropy function.

Figure 134.2 shows how the optimal strategy is learned using error related
potentials. For the three subjects, based on the recognition of error and correct
trials the probability of performing the correct action increases for both possi-
ble target locations. On average, the optimal strategy Π∗ is acquired in about 40
trials.

Conclusions

This study shows a novel use of error-related potentials in the frame of brain-
computer interfaces. In the proposed approach, the human user acts as a critic who
observes the behavior of an acting agent and emits monitoring signals about its
performance. Successful learning of the optimal strategy is achieved by (i) single
trial recognition of ErrPs as monitoring signals (c.f. Table 134.1), as well as (ii) an
efficient strategy update mechanism based on these signals (c.f. Fig. 134.2).

Recent studies have linked ErrPs to the theory of reinforcement learning in
humans [5]. Similarly, this study exploits ErrPs as a reinforcement signal for an
external system to learn the user’s intended strategy. Notice that we have reported re-
sults on the off-line learning of the optimal strategy. New experiments are currently
undergoing to test this approach when the ErrP signals modify the performance of
the actual system being monitored.
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Chapter 135
Multi-Command Real-Time Brain Machine
Interface Using SSVEP: Feasibility Study
for Occipital and Forehead Sensor Locations

Pablo Martinez, Hovagim Bakardjian and Andrzej Cichocki

Abstract We propose a new multi-stage procedure for a real time brain ma-
chine/computer interface (BMI) based on the Steady State Visual Evoked Potentials
(SSVEP) paradigm. The developed system allows a BMI user to navigate a small
car (or any other object) on the computer screen in near real time, in any of the four
directions. Extensive experiments with 4 young healthy subjects for two different
electrode configurations (Occipital/Forehead), confirmed the high performance of
the proposed on-line BMI system.

Introduction

A brain-machine interface (BMI) is a system that acquires and analyzes brain signals
to create a new communication channel in real-time between the human brain and a
computer or a machine [1]. We present a flexible and extendable BMI platform with
an application based on the SSVEP paradigm. Although some aspects of the SSVEP
BMI paradigm have been already exploited in a number of studies [2, 3, 4], our
design is innovative, suitable for real-time applications and more robust to artifacts
allowing us to place the electrodes on other areas than the occipital area, as an
example forehead locations, for easier sensor application.

Methods

Our BMI system consists on a visual stimulation unit designed as a multiple choice
table in the form of an array of four small checkerboard images flickering with
different frequencies and moving continuously along with the controlled object,
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Fig. 135.1 (a) Stimulation unit layout. Four small checkerboards flickering at different but fixed
frequencies move relatively slowly along with a navigated car. The subject is able to control the
direction of movement of the car by focusing her/his attention on a specific checkerboard. (b) The
conceptual block diagram of the developed BMI-platform

Fig. 135.1.a. The BMI analysis unit consist of the following functional blocks: (1)
A data acquisition an module, recoding six EEG channels sampled at 256 Hz pre-
filtered by means of a high pass filter with a cutoff frequency of 2 Hz. (2) A second
Order Blind Source Separation algorithm AMUSE [5] applied for artifact rejection.
As AMUSE ranks automatically the EEG components, the undesired components
corresponding to artifacts were removed for each time sub-window, by canceling
the first and last components and back-projecting the other components to the scalp
level [5]. (3) A bank of IIR (Infinite Impulse Response) narrow elliptic band-pass
filters of third-order with bandwidth 0.5 Hz and centered at each corresponding
flickering frequencies of the four checkerboards, see bellow; (4) The Variance of
the filtered signals per each band over time were subsequently smoothed by means
of (5) A Savitzky-Golay (S-G) smoothing filter [6]. (6) The mean values for all
the channels and a normalization per each band generated a time series of 4 values
describing the percentage of energy per each band on the EEG. See Fig. 135.2.b, for
an example of the normalized power values per band for one of the subjects in the
forehead configuration. (7) The standard Adaptive Network Based Fuzzy Inference
System (ANFIS) was used as a classifier [7]. See [8], for a detailed description of
the algorithm, Fig. 135.1.b.

We tested our SSVEP-based BMI system for four healthy subjects and for two
different ranges/sets of flicker frequencies: Low-Frequency (LF) range -{5,6,7,8 Hz}
and Medium-Frequency (MF) range -{12, 13.3, 15, 17 Hz}. For each of these stim-
ulation frequency ranges, we performed experiments for two sets of electrode con-
figurations: (1) Occipital configuration: {CPz, Pz, POz, P1, P2, Fz}. (2) Forehead
configuration: six electrodes distributed on the forehead, see Fig. 135.2.a.

Results

Subjects sat on a chair at a distance of 80–100 cm from the center of a 21-inch
CRT monitor screen using a refresh rate of 120 Hz. After a short training period, we
asked all subjects first to move the car freely to confirm that they had full control of
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Fig. 135.2 (a) Electrode layouts (b) Normalized multi-band variance evolution during evaluation
-a performance example case for one subject with forehead electrode configuration and for MF
band pattern flicker

Table 135.1 Experimental results for the Occipital and Forehead configuration for four subjects.
Mean values

LF (5–8 Hz) MF (12–17 Hz)

Occipital Forehead Occipital Forehead

Success rate (%) 93 72 96.5 78
Execution Time [s] 3.5± 1.0 4.8± 2.0 3.5± 1.0 4.5± 1.2
Bit rate (bit/min) 26 8.7 30 11.9

the object. To evaluate the performance the computer generated randomly requests
for movement in each direction using voice messages. The subject was requested to
move the car in one of the four directions at intervals of 9 s in 36 trials (eight trials
per direction).

As expected, a better performance has been achieved using the Occipital electrode
configuration, with higher transfer rates with lower time delays. For the forehead
configuration the subjects’ performance was more volatile and time-dependent,
although we found that it is possible to achieve promising.However, in the such
case it is necessary to apply more advanced signal processing and machine learning
tools in order to enhance SSVEP and to reduce influence of artifacts.

Table 135.1 illustrates that for both electrode configurations of electrodes, the
best performance was achieved using frequencies in the MF range, i.e. 12–17 Hz.

Conclusions

The occipital configuration allowed the subject to move the any target on the screen
with a high degree of control (93%/96.5%), in terms of reliability and speed, while
forehead sensor layouts were shown to be also feasible and realistic (72%/78%)
although in needs more sophisticated and advanced adaptive signal processing tools
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in order to achieve similar performance. Although the SSVEP paradigm has been
well known in the BMI community since the studies performed by several research
groups [2, 3, 4],we believe that our online BMI system offers several novel points
for improved usability and efficiency, such as the integrated moving checkerboards
patterns to maximize selective attention and to minimize eye movements respect to
the target, as well as an online BSS module to reduce automatically artifacts and
noise, improved feature selection algorithm with efficient smoothing and filtering
and an adaptive fuzzy neural network classifier ANFIS. In summary, we have shown
in this study that it is possible to extract SSVEP responses for BMI by locating
the electrodes only in the forehead and possibly another areas which are relatively
far from the visual cortex. Such electrode placement design is unusual but much
more convenient, although the overall performance may depend increasingly on the
subject’s state of concentration and attention, thus may lead to a slightly less robust
performance than placing the electrodes over the occipital brain area. We believe
that the approach described in this study holds a promise for the future application
of a substantially increased number of BMI commands with acceptably high relia-
bility and speed, and including also EEG sensors easily placeable on hairless head
locations such as the forehead.
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Chapter 136
Towards Learning Retina Implants: How
to Induce Visual Percepts with Electrical
Stimulation Patterns

Rolf Eckmiller, Oliver Baruth and Stefan Borbe

Abstract We studied the conditions for joint information processing of a learning
retina implant and central visual system in humans with normal vision in preparation
of future retina implant applications in the blind. The visual system was modeled
by a retina module (RM) as a learning Retina Encoder (RE) with spatio-temporal
(ST) filters and a central visual system module (VM). RE performs a mapping of an
optical pattern P1 from the physical- onto a neural domain, whereas VM performs
a mapping from the neural- onto the perceptual domain and yields a visual percept
P2. Our simulation results suggest that the elicitation of ‘Gestalt’ percepts may be
improved by dialog-based RE tuning with evolutionary algorithms and by simulated
miniature eye movements. However, considerable efforts in neuroinformatics are
still needed to elucidate not only the algorithmic representation of data in the neural
domain but also its enigmatic mapping onto the perceptual domain.

Keywords Visual prosthesis · perception · retina · neural processing

Neural Computations of the Visual System in Humans

We recently proposed [1] a model of the human visual system as a sequence of a
retina module (RM) and a central visual system module (VM) This model is now
being extended by means of oculomotor feedback to provide both miniature eye
movements upon request by the central visual system (Fig. 136.1). RM consists of
an ensemble of ST filters [2], which mimic the receptive field properties of retinal
ganglion cells. RM performs a mapping of an optical pattern P1 in the physical
domain onto a neural domain as parallel data stream of neural activity at the reti-
nal output, whereas VM performs another mapping from the neural domain onto
a visual percept P2 in the perceptual domain. The two rhombic dotted frames in
Fig. 136.1 depict time frames of the parallel data stream of neural impulse activity
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Fig. 136.1 Left: Schema of the primate visual system as sequence of two mapping operations and
oculomotor feedback. Retina Module (RM) represents the retina with an array of spatio-temporal
ST filters for mapping 1. Central Visual System Module (VM) represents visual and oculomotor
brain structures for mapping 2. Right: abstract schema of the central nervous system (CNS) with
the physical domain outside, the neural domain, and the perceptual domain as well as motor domain
(inside the inner ring). A motor system M1 for extraocular eye movements represents connections
from the neural domain back to the physical domain

of all retinal ganglion cells. VM was simulated in our studies by an inverter module,
which provided the exact inverse mapping of a selected reference RM [1]. The right
side of Fig. 136.1 depicts an abstract schema of the human central nervous system
(CNS as ring structure) with the physical domain on the outside, the neural domain
between outer and inner ring, and both perceptual domain and motor domain in-
side the inner ring. A motor system M1 for extraocular eye movements represents
connections from the neural domain back to the physical domain.

Psychophysical Requirements for Implant-Induced Vision

Human visual perception transcends neuroscience and biophysics [3, 4]. Humans
base their interaction with the physical domain on the assumption that the corre-
sponding visual percepts (in the perceptual domain) are reliable and ‘real’ optical
images. However, another hypothesis says that the function of the central visual sys-
tem forms an unknown kind of ‘gateway’ into the perceptual domain. This ‘gateway’
may be closed unless the neural data stream at its input contains sufficient informa-
tion and can be disambiguated. Neurophysiological and behavioral data support our
hypothesis (Fig. 136.1), that the visual processes use eye movements [5, 6, 7] based
on the respec-tive requirements of VM. This hypothesis suggests that visual per-
ception typically re-quires and is achieved by means of perception-specific sensory
motor feedback loop sequences.

The principle task of VM (Fig. 136.1) is to elicit a visual percept P2 “corre-
sponding” to P1 in the entirely subjective perceptual domain of a given human. It
is postulated here that VM, which receives a pulse-coded signal data stream of the
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ensemble of retinal ganglion cells, generates visual percepts only if the correspond-
ing data stream is properly encoded and can be disambiguated.

Implementation of Learning Retina Encoder Features

So far, chronically implanted retina implant models for blind humans with retinal
degenerative dysfunctions lack a retina encoder and yield only very basic stim-
ulationinduced visual phosphene sensations rather than ‘Gestalt’ perception. For
our study in humans with normal vision, we assumed the availability of a multi-
electrode neural interface at the retinal output and explored the conditions for
successful joint information processing of both retinal prosthesis and the central
visual system. RE performed a first mapping of an optical pattern P1 in the phys-
ical domain onto a parallel neural data stream in a neural domain at the retinal
output, whereas the simulated VM [1] performed a second mapping of the op-
tic nerve activity from neural domain onto a visual percept P2 in the perceptual
domain.

The learning RE dialog module in Fig. 136.2 was implemented with learning
algorithms. The subject suggested changes of the RE function in order to optimize
the perceptual result, P2. For this purpose, the dialog module generated a set of six

Fig. 136.2 Dialog-based Retina Encoder (RE) learning schema for normally sighted or blind (cen-
tral visual system (VM)) subjects. Retina encoder output signals reach the simulated VM (for-
subjects with normal vision) or, in the future, in blind subjects the electrode array of an implanted
microcontact foil (gray rhombic structure with open ellipses as microcontacts). Subject compares
visual percept P2 with input pattern P1. Bottom right: normally sighted subject with a portable
display with connected acceleration sensors
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Fig. 136.3 Example for dialog-based tuning of RE* with a selected ST filter configuration (inset
in lower left) with three partly overlapping filter types: F1, F2, and F3 on a hexagonal pixel grid.
P1: house image. Learning used a position-sensitive tuning (PST) algorithm [9]

RE parameter vectors, which led to six different percepts P2. The subject selected
the three “best matching” out of six percepts and signaled the choices to the dialog
module, which then generated another six percepts by means of an evolutionary
algorithm. As depicted in Fig. 136.2, we are currently working with a portable retina
encoder, which provides perceptual feedback signals to the dialog module by means
of a set of small head movement signals via a set of head-mounted acceleration
sensors [8].

Figure 136.3 gives an example for the dialog-based tuning of RE* [1], which
considers both ambiguity removal and simulated miniature eye movements. P1
and P2 on a hexagonal grid consisted of 16 × 16 pixels. RE* contained 10 × 10
individually tunable ST filters. The simulation results in Fig. 136.3 indicate that
the error between P1 and P2 could be reduced to zero within about 100 position-
sensitive tuning (PST) iterations [9]. Finally, the simulation of P2 became identical
to P1.

Conclusions

The combination of tunable spatio-temporal filters for a functional simulation of
parts of the human retina and of dialog-based learning algorithms provides a pow-
erful technology for visual prostheses. Major research efforts in neuroinformatics,
computer science, psychophysics, and ophthalmology are still required to decide,
if and to what extent ‘Gestalt’ perception can be re-gained in the blind by retina
implants.
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Chapter 137
The Effects of Speed Steps on Brain
Cognitive Processing: An ERP Study

Lin-Jie Wang, Jin-He Wei, Dan Zhang, Wei-Jun Dong,
Jian-Ping Guo and Mao-Qi Hu

Abstract Speed steps were used to elicit cognitive processing variations in order
to explore the role of vestibular speed information in cortical level. Constant 30◦/s,
60◦/s, 90◦/s and 120◦/s rotation were given as speed steps. During rotation the sub-
jects were asked to perform auditory selective attention task, that is prerecorded
Chinese numbers 2–9 with a random interval around 1 s. Subjects were asked to
respond to the odd number (target signal, T) by pressing a button and withhold to the
even number (non-target signal, NT). It was found that during 30◦/s rotation the P3
latencies induced by non-target signal were the shortest and during 120◦/s rotation
it was the slowest. Non-target P3 latency and speed steps showed significant linear
correlation. It was suggested that although in vestibular physiology concept the an-
gular velocity responses have nothing special compared to control, the automatic
non-target processes were influenced by the increasing of speed step.

Keywords Speed steps · event-related potentials · P3

Introduction

Ethological studies performed on vestibular disorder patients and healthy adults
accumulated to suggest that cognitive function was involved in the vestibular and
ocular motor processing [1]. But the concept of the constant velocity’s physiologi-
cal response still remains in its original level. As far as we known, during rotation
at a constant velocity, after about 20 s viscous drag of the endolymph causes the
endolymph to rotate at the same rate as the semicircular canal, and the cupula re-
stored to its rest position [2]. It seems that the angular velocity value during the
constant velocity rotation has nothing to do with its responses, but the results from
psychophysical and neurophysiological experiments gave another answer. Loose R
and Probst T had verified that it was the achieved angular velocity not acceleration
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that predominated on the perception of visual motion direction during vestibular
stimuli [3]. Psychophysical studies showed that our speed sensitivity was better
than our acceleration sensitivity [4]. Price NSC et al studied the physiology and
modeling of acceleration and speed tuning in Macaque MT (cortical middle tem-
poral area) [5]. And they found that the detection of velocity modulations was
not directly based on an acceleration signal, but was generated from the velocity
signal. The next step they predicted was to measure responses to speed steps and
ramps in brain stem regions and higher level cortical areas. Our previous works
have explored the psycho-physiological responses of vestibular stimuli that were
angular accelerations and constant 10◦/s rotation. And it was found that constant
10◦/s rotation had an activating effect on the late attention selection process and
constant angular acceleration had an inhibition effect on the cognitive processes [6].
In this paper the psychophysical response of constant velocity ramps on cognitive
processing were studied and it was demonstrated that increasing speed step affected
the brain autonomic non-target processing.

Materials and Methods

Participants

Thirty students (male 16 and female 14, aged 19–25, with a mean age of 20.4)
participated in this experiment.

Task

The go/no-go auditory stimulus was one-digit Arabian number 2–9 in Chinese
pronunciation with about 1000 ms interval that pre-recorded on a Sony MD-N1.
The subjects were asked to press the button as soon as possible after hearing the
odd numbers (Target signal, T) and withhold to the even numbers (Non-target sig-
nal, NT).

Vestibular Stimuli

The constant angular velocity rotation was performed by the Nystagliner PRO rotary
chair (Toennies, JAEGER, Germany). The chair was accelerated at 10◦/s2 to the
constant angular velocity, that is 30◦/s, 60◦/s, 90◦/s and 120◦/s respectively, and
rotated at the speed for 5 min then decelerated at 10◦/s2 to stop.

Each subject had four constant velocity rotation trials with different angular ve-
locity. During each vestibular stimulus trial, subject performed two sets of 150 s
auditory tasks with 10 s interval. The rotating direction (i.e. counter clockwise
or clockwise) and angular velocity value of each vestibular stimulus trial were
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randomly counter balanced. Subjects were permitted to rest for 2 min after each
rotation.

Electroencephalogram Recording

EEG Holter system (Medilog95, Oxford, Great Britain) was used to record all EEG
activities, eye movement, the auditory task signals and the button press signals. The
scalp potentials were recorded using a 12 channel electrode cap and recording loca-
tions were in compliance with the recognized Standard International 10–20 system
sites – F3, F4, Fz, C3, C4, Cz, P3, P4, Pz, T3, T4 and Oz. All scalp channels were
referred to the linked mastoids. The central prefrontal electrode was used as ground.
The two vertical EOG electrodes were placed above and below the left eye. The two
horizontal EOG electrodes were placed at the external canthus of each eye.

All electrode impedances were maintained below 5 k�. EEG signals were ampli-
fied and filtered with a frequency range of 0.05–70 Hz. The amplified signals were
sampled at a rate of 256 Hz. Sampled data were stored on PC card with a storage
capacity of 260 MB.

Analysis

The EEG data sections with obvious artefacts were excluded, and eye movement
was corrected by least square linear regression in terms of EOG signals The ERPs
were computed separately using the EEG epochs that began 200 ms before and
ended 720 ms after the onset of each category auditory stimulus. The first 200 ms
were used to compute the baseline.

The P3 peak mean amplitudes and latencies, within 290–700 ms respectively,
were measured from the ERPs elicited by target and non-target auditory signal and
submitted to three-way ANOVAs, with the stimulus type (target or non-target), elec-
trode location (F3, F4, Fz, C3, C4, Cz, P3, P4, Pz, T3, T4 and Oz) and constant angular
velocity (30◦/s, 60◦/s, 90◦/s and 120◦/s). Least Significant Difference test was used
for multiple comparisons.

Results

Reaction Times and Accuracy

The accuracy and reaction times (RT) exhibited similar values irrespective of
the different constant velocity rotation. The control condition exhibited a relative
shorter reaction time (control: 458± 59 ms, 90± 6%; 30◦/s: 466± 59 ms, 91± 6%;
60◦/s: 466± 70 ms, 90± 6%; 90◦/s: 470± 61 ms, 90± 6%; 120◦/s: 472± 60 ms,
91± 7%). No significant difference was found among different vestibular stimuli in
terms of the averages of the RT and accuracies.
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Amplitudes of P3 Components

P3 amplitudes showed a significant main effect of electrode sites [F(11,119) =
23.615; p < 0.001] with largest amplitudes at Pz electrode. There was also a sig-
nificant angular velocity effect for P3 amplitudes [F(4,119) = 16.602; p < 0.001].
The P3 amplitudes in control and constant 120◦/s rotation were significantly larger
than that in constant 30◦/s, 60◦/s and 90◦/s rotation (p < 0.05). The P3 am-
plitudes in constant 30◦/s rotation were significantly lower than that in control,
constant 60◦/s, and 120◦/s rotation (p < 0.05). A significant effect of signal type
[F(1,119) = 209.013; p < 0.001] indicated P3 amplitudes of target signal ERPs were
larger than that of non-target signal ERPs. The signal type × electrode interaction
[F(4,119) = 6.573; p < 0.001] was also of significant changes.

Latency of P3 Components

P3 latencies showed a significant electrode sites effect [F(11,119) = 23.948; p <

0.0001] with shortest latencies at P3. A significant signal type × angular velocity
interaction [F(4,119) = 2.800; p < 0.025] with significant difference in non-target
ERPs [F(4,4) = 2.599; p < 0.035]. And non-target ERPs P3 latency in constant
30◦/s rotation was significantly shorter than that in constant 90◦/s and 120◦/s rota-
tion (p < 0.03). The non-target P3 latency emerged a slowly increasing trend with
the increasing of angular velocity. Figure 137.2 showed the regression result be-
tween angular velocity and non-target ERPs P3 latency and gave the linear function.

Y = 523.7+ 0.2786678∗X (137.1)

In function 136.1, Y represented P3 latencies of non-target ERPs and X was
angular velocity.

Fig. 137.1 Grand average
ERPs of target and non-target
signal (n = 30) (Filled circles
represent the P3 component
of Non-target ERPs)
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Fig. 137.2 The least square
regression between angular
velocity and the P3 latency of
Non-target ERPs

Discussion

In present study the explicit role of speed steps on cognitive processing were
depicted.

On the one hand, the reaction times and accuracies of different constant velocity
rotation had no significant change compared with control. Another time these results
gave the evidences that the behavioral responses to constant velocity rotation were
nearly the same. At least work efficiency did not vary with different constant rotation
speed.

On the other hand, P3 amplitude was lowest in 30◦/s2 and largest in control
and 120◦/s2 and the regression between non-target P3 latency and velocity present
significant linear correlation. As P3 amplitude reflects demands on “perceptual-
central” resources [7], it may demonstrated the little cognitive resources needed
in the low velocity and higher brain resources expended in high speed. Kayatama
J et al suggested that the P3 from non-target stimuli may be a useful parameter to
distinguish automatic processes among various clinical populations [8]. Salisbury
DF et al had found that the increased frontal P3 in no-go tasks not only attributed to
a positive-going inhibitory process and memory-related process, it may also reflect
negative voltage response execution processes on go trials [9]. Ford argued that P3
latency reflected the depth of processing [10], and thus the linear non-target P3 la-
tency variations with the angular velocity value may reflect the automatic non-target
processes were influenced during different constant velocity rotation. And with the
increasing speed step the less extensive processing of non-target stimuli, the increase
difficulty of inhibition response and the prolongation of memory-related process
were successively occurred.
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Chapter 138
Design and Implementation of the Adaptive
Teachable Agent

SungHyun Yun, DongSeong Choi and SungIl Kim

Abstract Traditionally intelligent tutoring system (ITS) uses expert model to de-
liver knowledge and train skills to users. According to the theories of leaning,
learning by teaching method is more efficient for enhancing motivation to learn and
cognitive ability than learning by listening or learning by reading. For the purpose
of developing an intelligent agent to enhance the motivation to learn, the new type
of teachable agent were designed and implemented, in which the user plays a role of
a tutor by teaching the agent. In addition, we provide adaptive user interface where
each user plays his/her own scenario according to level of interests and motivation.
We design the program to teach the agent about ‘rock cycle’. The program consists
of four modules: teach module, Q&A module, test module, and network module.
In teach module, the user teaches the agent and the agent’s knowledge is structured
and organized. In Q&A module, the user answer the question through an interactive
window. In network module, the database server gathers log data of users to measure
users’ interest and motivation about TA. It is expected that providing the user with
the active role of teaching the agent enhance the motivation to learn and the positive
attitude toward the subject matter as well as cognition.

Keywords TA (teachable agent) · intelligent tutoring system · learning by teaching ·
concept map · motivation to learn · inference engine · knowledge representation

Introduction

The traditional intelligent tutoring system (ITS) provides the learning materials and
practice drills repetitiously to train the students and the level of student’s learning
is evaluated by the computer. The ITS has received the criticism that the iterative
nature of learning and the passive role of the learner does not enhance the learner’s
motivation and cognition [1, 2, 3]. To overcome this limitation of ITS, the system
should provide the learners with a chance for deep learning and allow them to play
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an active role in the process of learning. One way of providing an active role for
the learners is to give them an opportunity to teach. The researchers in the field
of cognitive science and learning science suggest that the teaching activity induce
the elaborative and meaningful learning. A lot of research findings have shown the
beneficial effect of learning by teaching [1, 4, 5].

This study introduces the design of the new type of intelligent teachable agent
system, called KORI (KORea university Intelligent agent), for maximizing the mo-
tivation to learn and enhancing cognitive ability based on concept of ‘learning by
teaching’. For the KORI as a student, it is necessary to use AI (Artificial Intelli-
gence) algorithm to construct the knowledge-based of the KORI. The concept map
is used to teach the learning material and the inference engine is used to create the
new knowledge.

The KORI consists of four independent modules: teach module, Q&A module,
test module, and resource module. In teach module, the users teach KORI by draw-
ing a concept map. In Q&A module, both the users and KORI ask questions and
answer each other through an interactive window. To assess KORI’s knowledge and
provide feedback to the users, the test module consists of a set of predetermined
questions that KORI should pass. In the resource module, the users can refer to the
basic concepts to teach or explore the additional expanded information whenever
they want in order to teach, ask questions, and provide feedbacks.

The KORI’s brain can represent the knowledge based on the concept map and
make new knowledge through the inference engine and it becomes more intelligent
by the student tutor.

In the section ‘Teachable Agent’, the Teachable Agent (TA) and our motivation
to implement KORI are introduced. In the section ‘The Architecture of the KORI’s
brain and Implementation Details’, the structure of the KORI’s brain and the imple-
mentation details are discussed. In the section ‘Conclusion’, the conclusion and the
implications for the future work are described.

Teachable Agent

The fact that the active and meaningful learning occurs through the teaching process
is reported consistently in the research area of learning science [1]. [1] showed that
students who studied for the purpose of teaching other students understood the arti-
cle better than those who studied for the qualifying examination. In addition, there
are many variations of the instructional methods based on the concept of ‘learning
by teaching’, such as reciprocal teaching, peer tutoring, or self-explanation [2, 3].
TA is a computer program where students teach the computer agent to maximize
their motivation to learn and to enhance the cognitive ability [5, 6]. TA provides
the student tutors with an active role so that they can have a positive attitude
toward the subject matter. Teaching activity consisted of sub-activities such as mem-
orization and comprehension, knowledge reorganization, explanation, demonstra-
tion, questioning, answering, and evaluation, and so on. These sub-activities lead
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to elaboration, organization, inference, and metacognition. In terms of motivational
aspects, allowing the learner to play a tutor role can enhance the learners’ motiva-
tion, which instills a sense of responsibility and increases a feeling of engagement,
self-relevance, and situational interests to persist in learning [5].

The Architecture of the KORI’s Brain and Implementation
Details

Students teach the KORI by drawing a concept map and then the KORI creates its
own knowledge through the inference engine, and updates it through the feedback
mechanism. Figure 138.1 shows the schematic representation of the interface be-
tween KORI and the user to construct the KORI knowledge.

The following modules are used to design and implement the KORI’s brain.

Concept map - to construct the KORI’s knowledge
Knowledge inference engine - to make inferences and decisions
Search engine - to make, modify and search link paths between objects in the

concept map

Knowledge Representation Based on the Concept Map

Concept map is used to structure and organize knowledge into objects and relations
[7, 8]. In KORI system, the objects are represented by the boxes and the relations
between objects are represented by the arrows with the specific description of the
relation. KORI also can represent the inheritance between objects as in semantic
network.

The user can put the concepts whatever he/she want and draw arrows between
concepts to indicate their relations. In the main window of the screen, the user types

Fig. 138.1 Knowledge construction interface between the user and KORI
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Fig. 138.2 Representation of objects and their relations

the name of rock in the box and represents the transformation between rocks with
the arrow.

Figure 138.2 shows an example of the concept map construction. In this study,
the learning material is about the ‘rock cycle’. The object ‘sedimentary rock’ has
a relation with the object ‘deposit’. To represent the relation between these two
objects, an arrow is used with the specific description of ‘be weathered’. In this
example, each object has a transitive relation. The users can deliver their knowledge
on the rock cycle through the concept map.

Knowledge Inference Engine

Using the forward and backward reasoning on objects, the KORI’s knowledge in-
ference engine makes new relations between objects that are not represented in the
concept map. In KORI, the reasoning process occurs when the user asks the specific
type of questions to the KORI. With the structured input interface where all objects
and relations are displayed in pull-down menu, and the user can generate questions
by selecting them.

Figure 138.3 shows an example of reasoning process through the knowledge in-
ference engine. The user defines the ‘sedimentary rock’ object and the ‘deposit’
object. He/she specifies the relationship between these two objects by drawing an
arrow with the description of ‘be weathered’. Then, the user also defines the ‘soil’
object and draws an arrow with the ‘be weathered’ label from the ‘deposit’ object
to the ‘soil’ object. After the user has finished drawing the concept map, the KORI
activates inference engine with the predetermined rules that find a new relations
between the ‘sedimentary rock’ and the ‘soil’. The dotted arrow with ‘be weathered’
label shows the result of this reasoning processing. Using these two diagrams, the
KORI represents its own knowledge and generate answers to students’ questions.

Fig. 138.3 New knowledge construction through the inference engine
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Conclusion

In this study, the design and implementation of the teachable agent KORI was in-
troduced, which is a modified version of traditional intelligent tutoring system that
assigns the user for the tutor role to teach the agent to enhance motivation to learn
and cognition ability. The KORI’s knowledge is constructed and organized through
the concept map and KORI makes new knowledge from it through the inference
engine. The user interface of KORI consists of the teach module, the Q&A module,
the test module, and the resource module. It is expected that teaching KORI would
not only maximize the users’ motivation and cognition, but also increase their self-
efficacy and responsibility through various interactions and an immediate feedback.

Future research in the field of the intelligent tutoring agent should focus on the
learners’ motivation. The new generation of teachable agent should be able to reflect
the individual differences in cognitive abilities, interest and motivation, and ongoing
changes of the interest level. In addition, the dialog based query input interface to
increase the interactivity and the learner control would make the teachable agent
more interesting and efficient. To enhance the intelligence of teachable agent, var-
ious ways of knowledge construction should be developed and the collaborative
learning system, in which multi-user can teach the agent by sharing knowledge,
should be implemented.
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Chapter 139
The Convertible Undeniable Multi-Signature
Scheme

SungHyun Yun, Hyung-Woo Lee and MyungHo Lee

Abstract In the convertible undeniable multi-signature scheme, signers can con-
vert undeniable multi-signature to the ordinary one. The authenticity of confidential
document signed by undeniable multi-signature scheme can only be verified with
co-operation of all signers. If the document is no longer confidential, it can be
opened to public use by converting the undeniable multi-signature to the ordinary
one. In this study, the efficient multipurpose convertible undeniable multi-signature
scheme is proposed. The proposed scheme satisfies undeniable property and can be
used to protect ownership of multimedia contents made by many authors.

Introduction

By using an undeniable multi-signature scheme, signers can make a multi-signature
on the document. However, the multi-signature on the document has no self veri-
fication property which is available in ordinary multi-signature scheme. To verify
the authenticity of the undeniable multi-signature, all signers must participate in the
signature verification stage. A signed confidential document of a company can be
copied and delivered to a rival company. If a conventional multi-signature scheme
is used to sign the document, it can be confirmed as authentic by verifying the
signature without signers’ cooperation. However, if the company doesn’t want the
document to be verified as authentic by the rival company, it is recommended to use
the undeniable multi-signature scheme [1].

Convertible undeniable multi-signature scheme has additional property that un-
deniable multi-signature can be converted to the ordinary multi-signature by releas-
ing partial secret information. The document signed by undeniable multi-signature
scheme that is no longer confidential can be opened to public use by converting the
undeniable multi-signature to the ordinary multi-signature.It has many applications
where an ordinary digital multi-signature scheme can not be applied to.
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In general, a digital audio/viedo multimedia contents is made through cooper-
ation of many authors. In this case, authors of the digital contents want to know
whether a distributor sells the contents to customers fairly. Authors can satisfy on-
line sales model if the model provides the mechanism that the customer can not buy
the digital contents without help of the authors. The digital copyright generated by
undeniable multi-signature scheme differs from the ordinary copyright in that the
customer can not distinguish between valid and invalid copyright without help of
copyright owners. Only the original owners can confirm this copyright as authentic
to the customer [1].

However, in customers’ position, they want to verify the signature on the digital
contents by themselves after purchasing the contents. In this case, customers can
satisfy if the copyright owners make the undeniable multi-signature on the contents
to the ordinary one. Convertible undeniable multi-signature scheme can be used to
solve these problems.

In the section, ‘The Proposed Scheme’, the proposed convertible undeniable
multi-signature scheme is presented. Conclusion and application of our scheme are
discussed in the section ‘Conclusion and Application of the Proposed Scheme’.

The Proposed Scheme

To make the proposed scheme, we modify the El-Gamal signature equation [2],
let k(mh + s) ≡ xr (mod p − 1), and extends it to accept undeniable proper-
ties of D.Chaum’s scheme [3] and multi-signature properties [4, 5]. The proposed
scheme consists of multi-signature generation, multi-signature confirmation, dis-
avowal and conversion protocols. The following parameters are used in the proposed
scheme.

Authors: u1, u2, . . . , un , Message: m ∈ Z p−1 Author i’s Private Key: xi ∈ Z p−1,
Author i’s Public Key: yi ≡ gxi (mod p)

Multi-Signature Generation Protocol

The message drafter computes the undeniable multi-signature as follows.

Step 1: The message drafter generates hash value mh = h(m, hpr ) and sends
(m, hpr ) to the first signer u1.

Step 2: The first signer u1 let Y1 = y1. The u1 chooses a random number k1

which is relatively prime to p − 1. The u1 computes r1 ≡ mh
k1 (mod p) and

sends it to the second signer u2.
Step 3: The intermediate signer ui (2 ≤ i ≤ n) receives (ri−1,Yi−1) from the

ui−1. The ui chooses a random number ki which is relatively prime to p − 1

and computes ri ≡ rki
i−1 ≡ m

∏i
j=1 k j

h (mod p), Yi ≡ Y xi
i−1 ≡ g

∏i
j=1 x j (mod p).

The ui sends (ri ,Yi ) to the next signer ui+1. If ui is the last signer, the ui

computes R ≡ rkn
n−1 ≡ mh

∏n
j=1 k j (mod p), Y ≡ Y xn

n−1 ≡ g
∏n

j=1 x j (mod p)
and sends it to all signers as well as the message drafter.
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Step 4: Each signer ui (1 ≤ i ≤ n) computes the undeniable signature
si and sends it to the message drafter. Since ki and p − 1 are relatively
prime integers, there exists si satisfying the following equation, ki · si ≡
xi · R − ki · mh (mod p − 1).

Step 5: The message drafter computes the undeniable multi-signature S ≡∏n
j=1(mh + s j ) (mod p).

Multi-Signature Confirmation Protocol

Step 1: The verifier chooses two random numbers (a, b) and computes the chal-
lenge ch ≡ RS·a · Y Rn ·b (mod p). The challenge ch is delivered to the first
signer u1.

Step 2: The u1 computes the response rsp1 ≡ chx−1
1 (mod p) and sends it to the

second signer u2.
Step 3: The intermediate signer ui (2 ≤ i ≤ n) receives the response rspi−1

from the ui−1. Then the ui computes the response rspi ≡ rsp
x−1

i
i−1 (mod p)

and sends it to the next signer ui+1. If the ui is the last signer, the response
rspn is delivered to the verifier.

Step 4: If the equation rspn ≡ m Rn ·a
h · gRn ·b (mod p) holds, the verifier ensures

that multi-signature is valid. Otherwise, the disavowal protocol is launched
to identify whether multi-signature is invalid or some signers have cheated.

Disavowal Protocol

The verifier chooses two random numbers (c, d) and computes the second challenge
ch′ ≡ RS·c · Y Rn ·d (mod p), a · d �= b · c (mod p− 1). If the second response rsp′n
is not equal to m Rn ·c

h · gRn ·d (mod p), additional step 5 is required.

Step 5: The verifier makes the discrimination equations. If R1 ≡ (rspn ·
g−Rn ·b)c (mod p) equals to R2 ≡ (rsp′n · g−Rn ·d )a (mod p), the verifier con-
firms that multi-signature is invalid. Otherwise, some signers have cheated
on valid multi-signature.

Conversion Protocol

To convert the undeniable multi-signature to the ordinary one, the first signer gen-
erates gk1 (mod p) and sends it to the second signer. The intermediate signer
ui (2 ≤ i ≤ n) receives gKi−1 (mod p), Ki−1 =

∏i−1
j=1 k j . Then the signer ui

computes gKi ≡ (gKi−1 )ki (mod p) by using ki . The last signer sends gKn (mod p) to
the message drafter. By releasing the gKn (mod p), the undeniable multi-signature
can be converted to the ordinary one as follows. The following equation shows that
the multi-signature can be verified without help of all signers.
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xi · R ≡ ki (si + mh) (mod p − 1), 1 ≤ i ≤ n

Y ≡ g
∏n

j=1 x j (mod p), S ≡
n∏

j=1

(mh + s j ) (mod p)

• multi-signature verification: (gKn )S ≡ Y Rn
(mod p)

Conclusion and Application of the Proposed Scheme

In this paper, we propose the convertible undeniable multi-signature scheme. It satis-
fies undeniable property and can convert undeniable multi-signature to the ordinary
one. We discuss how the proposed scheme is used to protect DRM application in on-
line and off-line environment. In general, many authors participate jointly in author-
ing of digital multimedia contents. In this case, the copyright of the digital contents
must be shared by all authors. The joint-copyright on the multimedia contents is
created through the multi-signature generation protocol. Each author computes the
undeniable signature on the contents and sends it to the copyright maker. Then the
copyright maker computes the undeniable multi-signature and watermarks it on the
digital contents. A distributor sells the digital contents to a customer by on-line. The
customer can buy it by launching multi-signature confirmation protocol. Especially,
in case of dispute between authors, the disavowal protocol can discriminate whether
authors have cheated or the multi-signature is invalid. The customer can not activate
digital contents without help of all authors. After purchasing the digital contents,
the customer may want to activate the digital contents in off-line environment as
well. If the customer request capability of activation on digital contents by himself,
the undeniable multi-signature can be converted to the ordinary one by using the
proposed conversion protocol with co-operation of all authors.
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Chapter 140
A Cognitive-Neuro Computational
Lexical Acquisition Model

Heui Seok Lim, Kichun Nam, SeongBom Pyun,
ChangWhan Lee and Kunhee Han

Abstract This paper proposes an automatic lexical acquisition model which reflects
the characteristics of human language acquisition. The proposed system automati-
cally builds two kinds of lexicon, full-form lexicon and morpheme lexicon by using
large corpus as its input. The model is independent of language from which it ac-
quires the lexical knowledge. As experimental results using Korean Sejeong corpus
of which size is 10 million Eojeols, the proposed system acquired 2,097 full-form
Eojeols and 3488 morphemes. The accumulated frequency of the acquired full-form
Eojeols covers the 38.63% of the input corpus and accuracy of morpheme acquisi-
tion is 99.87%.

Introduction

The advantages of cognitive neuro model of lexical acquisition are as follows. Frist,
the model provides us with a simulator of language acquisition process in brain.
Understanding mechanism involved with lexical acquisition contributes to under-
standing of human lexical processing. Second, understanding of lexical acquisition
in human brain plays an important role in understand of representation of mental
lexicon. Third, computational model may suggest fruitful areas for experimentalists
to investigate. Finally, the intensional lesion study using the computational model is
possible which is never possible with human subjects.

Representation of mental lexicon is related with the way of organizing and stor-
ing of lexical entries in human brain. Because the organization and representation
of mental lexicon result from natural language experiences of people, the character-
istics involved in lexical acquisition have influence on the representation of mental
lexicon. For this reason, the automatic lexical acquisition system should be designed
to reflect the characteristics of mental lexicon.
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The recent models of the lexical representation of the morphologically complex
words can be divided into three types: the full-list representation model, the decom-
position representation model, and the hybrid representation model. The supporters
of the full-list model propose that full forms are stored separately in mental lexicon
and these full forms are linked together with the related forms [1, 2]. On the other
hand, in the decomposition model, the stored representations are composed of roots
or stems and affixes, and these morpheme representations are combined to make
an inflected word and a derivation word [3, 4]. In the decomposition model, there
should be decomposition of the morphologically complex words into the component
morphemes before the lexical access and there should be morpheme-based lexical
access. The hybrid model proposes that some word representations are stored in
the full form and others in the decomposition form [5, 6, 7]. For example, the high
frequency words are stored in the full form, while the low frequency words stored in
the decomposition form. And the inflected words are accessed in the decomposition
form, but the derivation words are accessed in the full form [8].

This paper proposes a cognitive neuro computational model of automatic lexical
acquisition and describes results of its application to Korean lexical acquisition.

The Automatic Lexical Acquisition Model

The proposed model is based on the hybrid model of mental lexicon , which builds
full-form (Eojeol) dictionary and morpheme dictionary using corpus as its input.
Size of the input corpus decides the language experience of the automatic lexical
acquisition model. There are three basic assumptions on which the proposed model
is based to acquire Eojeols and morphemes.

(1) A high frequent Eojeol is stored as a full-form in mental lexicon so that the
Eojeol can be recognized and produced rapidly and efficiently.

(2) An Eojeol which are highly repeated in a fixed context is stored as a full-form
in mental lexicon.

(3) A high frequent string in Eojeols which has high productivity of Eojeols by
combining with other strings is stored as a morpheme.

Figure 140.1 shows an overall architecture of the proposed model. It consists of
three main modules: frequency module, recency module, and morpheme extractor
modules. In the frequency module and the recency module, Eojeols are acquired and
stored in full-form dictionary based on our basic assumptions (1) and (2). Two kinds
of morphemes, head morpheme and tail morpheme are acquired in the morpheme
extractor modules. The head morphemes is defined as concatenated form of more
than one lexical morpheme and optional grammatical morphemes. The tail mor-
pheme is defined as concatenated form of more than one grammatical morpheme
and optional lexical morphemes.

A substring in an Eojeol is decided as morpheme by using entropy value of the
every successive syllables which occurred right after the substring in Eojeols. If the
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Fig. 140.1 The overall architecture of the model

entropy is high, the substring is likely to be a morpheme. It is because many kinds
morphemes which start with different syllables can be combined with the a lexical
morpheme or a grammatical morpheme. The entropy of a substring is calculated as
Eq. 140.1. Freq(s, ci ) indicate frequency of concatenated string of s and syllable ci .

Entropy(s) = −
∑

pi log pi , where pi = Freq(s, ci )

Freq(s)
(140.1)

There are many different morphemes which have same substring but which is not
a morpheme. In this case, the entropy of a substring, may be high, and the sub-
string can be misclassified as a morpheme. To reduce the problem of misclasifying
the substring, we double-check whether the substring can a morpheme by using
bidirectional entropy verification. If a substring, str is a head morpheme, the rest
subtring of the input Eojeol must be a tail morpheme. So, if backward entropy of
the rest substring does not exceed the threshold, the str can not be classified as a
head morpheme.

Experimental Results

We implemented the model and experimented the system by using Korean Sejong
corpus of which size is 10 million Eojeol. The model needs two threshold parame-
ters: ft and rt. The ft is threshold to verify whether an Eojeol is highly frequent or not.
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The rt is threshold to verify the recency frequency of an Eojeol. We used 500 and
200 as the ft and the rt threshold. As experimental results, the system acquires 2097
Eojeols in full-form dictionary. The ratio of occurrences of the the acquired Eojeols
is 38.63% of the whole corpus. The system acquired 3488 morphemes with accuracy
of 99.87%. We decide that the system acquire a correct morpheme if the morpheme
is valid in terms of definitions of the head morpheme and the tail morpheme. The
accuracy of morpheme acquisition is calculated as in Eq. 140.2.

The number of morphemes correctly acquired

The number of morphemes acquired
(140.2)

Conclusion

This paper proposes an congnitive neuro computational lexical acquisition model
and describes the performance results of the model by using 10 million Korean
Eojeol size corpus. The implemented system acquired 2097 highly frequent Eojeols
with accuracy of 100% and 3488 morphemes with accuracy of 99.87. To build a
computational lexicon, lexical knowledge such as POS information and semantic
information is needed. Currently, we are now studying how to acquire such lexical
knowledge as well as lexical entries. Also, we are experimenting the model with
other foreign corpus as the proposed model is language independent and universal
lexical acquisition model. Furthermore, we plan to make integrated lexical process-
ing model which consists of the automatic lexical acquisition model and a lexical
analysis model.
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Chapter 141
Brain Activation Connected with Visual Word
Processing in Korean Language

Hyojeong Sohn, Sung Bum Pyun, Jaebum Jung, Hui-jin Song,
Yongmin Chang, Hui Seok Lim and Kichun Nam

Abstract This present study was carried out to investigate the functional role of
midfusiform gyrus known as “VWFA (visual word form area)” in visual word pro-
cessing. In experiment 1, we conducted an fMRI for two dyslexic patients. The
results showed that letter-by-letter reading (in fact, syllable-by-syllable reading in
Korean) patient has more activation of right fusiform gyrus than global alexic pa-
tient in word reading. In experiment 2, volunteers performed word and nonword
reading during fMRI scanning. The results showed that the activation area of the
left fusiform gyrus was modulated by lexicality and word frequency, whereas the
activation of the right fusiform gyrus varied by the word difficulty and nonword
reading.

Keywords Dyslexia · visual word · fusiform gyrus

Introduction

It is well known that fusiform gyrus in the left and right hemispheres are responsi-
ble for visual word identification and visual object recognition. Recently, the locus
of visual word form area and the different role of the left and the right fusiform
gyrus in recognizing visual words have been the issue of the lexical identification.
Cohen and his colleagues proposed that there is an area specialized for visual word
identification in the left hemisphere [1, 2, 3, 4, 5]. They reported several research re-
sults to support their assertion. First, the correlation in patients showing pure alexia
was presented. Second, they reported neuroimaging results to pin point the visual
word form area (TC−43,−54,−12). However, Price and his co-researchers argued
against the above observations [6, 7, 8]. Firstly, Price and Devlin pointed out that
the visual word form area is not activated only by the visual word reading but also
by naming colors, naming pictures, reading Braille, repeating auditory words, and
motoric responses. That is, the visual word from area proposed by Cohen and his
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colleagues is not specific to visual words. In the second argument, they were no
cases of pure alexia who had been injured only in the visual word from area. In
considering two camps on this issue, each position has its own reason and reasonable
argument. Thus, by adopting new method and different orthographies, it is neces-
sary to do new research to see which position is correct. The purpose of the current
research is to resolve the controversy between Cohen’s and Prices arguments by
using the Korean scripts and to decide the role of the right fusiform region in visual
word reading.

Method

Subjects

In experiment 1, two patients with alexia after left OT cortex lesion participated.
MJ was a 59-year-old right-handed woman and she had developed global alexia
after left posterior cerebral artery infarction. She participated in this study 1 month
after the onset and was followed up 5 months later. HO was a 56-year-old right
handed woman and she had developed intracerebral hemorrhage involving left tem-
poroparietal area. She had revealed characteristic letter-by-letter (LBL) reading and
she participated in this study 1 month after the onset and was followed up 7 months
later.

In experiment 2, nine right-handed Korean-speaking males (mean age = 24,
SD = 5) participated in current study. They had no history of neurological or psy-
chiatric disorders.

Experimental Design

We acquired fMRI scans at 1 month after the onset of stroke in two patients and
followed up 5 months (MJ) and 7 months (HO) later. fMRI was performed during
three tasks as picture naming, word reading and pronouncable nonword reading.

Volunteers performed the task including each six blocks of high frequency words,
low frequency words, pronounceable nonword, consonants string, checker board
and fixation. Two patients and volunteers were trained prior to being in the fMRI
scanner with trials similar to those used in the experimental conditions and were
instructed to read covertly.

Results

Experiment 1: Patients

Results of word reading task showed remarkable changes in two patients. At follow-
up results of MJ, fusiform gyrus or language area were not activated. Whereas right
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Fig. 141.1 fMRI results of two dyslexic patients. Left two columns: initial and follow-up results
of MJ, global alexia. Right two columns: initial and follow-up results of HO, letter-by-letter
reader. Top: picture naming task, middle: word reading, bottom: nonword reading. Uncorrected
p < 0.0001 at a single voxel

fusiform gyrus activated at follow-up results of HO. In other words, letter-by-letter
reading patient has more activation of right fusiform gyrus than global alexic patient
in word reading (Fig. 141.1).

Fig. 141.2 fMRI results of volunteers. The activation in each condition, (a)∼(e), is the relative
value of each task minus baseline(fixation). Uncorrected p < 0.01 at a single voxel
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Experiment 2: Volunteers

In low frequency word reading and nonword reading, left visual word form area
(TC −43, −54, −12) significantly activated. Interestingly, the opposite side of left
VWFA at right fusiform gyrus activated in nonword reading task.

The results of Experiment showed that the activation area of the left fusiform
gyrus was modulated by lexicality and word frequency, whereas the activation of
the right fusiform gyrus varied by the word difficulty and nonword reading.

In conclusion, the specialized area of the left fusiform gyrus manages the normal
word reading, and in contrast, the corresponding right area is responsible for the
compensatory syllable-by-syllable reading (Fig. 141.2).
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Chapter 142
A GJK Based Real-Time Collision Detection
Algorithm for Moving Objects

Sangyoung Oh and Seonmin Hwang

Abstract This paper studies a collision detection technique to dealing with moving
polyhedra. Even though the problem is well-studied in computer graphics, the ex-
isting methods are inapplicable to highly dynamic environments. We use the GJK
algorithm to determine collisions between convex objects. Also, our method is ap-
plied for moving objects.

Keywords Collision detection · real-time animation · GJK algorithm · robotics ·
virtual reality · rigid body

Introduction

Collision detection has received attention in computer graphics, virtual reality, phys-
ical simulation, and haptic. The existing work on collision detection can be clas-
sified based on the types of models handled: polyhedral models, polygon soups,
curved surfaces, etc. [1]. In this paper, we focus on collision detection for polyhedral
models.

Hybrid collision detection [2] refers to the algorithm as the broad phase and
the narrow phase. The former is approximate intersection tests, the latter is exact
collision detection.

The separation distance between two polyhedra P and Q is equal to the distance
from the origin to the Minkowski sum of P and−Q [3]. This property was exploited
by Gilbert et al. [4] in order to design a convex optimization algorithm (known as
GJK). GJK algorithm is one of the most effective methods for determining collision
detection between two polyhedra. As originally described, GJK is an efficient and
reliable algorithm for computing the Euclidean distance between a pair of convex
sets in Rn . The GJK algorithm can also be applied to arbitrary convex points sets,
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not just polyhedra [5, 6]. The algorithms depend on the object being rigid, and are
hence unsuitable for collision detection between deformable objects.

The algorithms for collision detection between convex polyhedra are not appli-
cable to models described as polygon soups. Bounding volume hierarchies (BVH)
have proved successful collision detection for rigid bodies. One determining factor
in the design of a BVH is the selection of the type of BV. Some of the common BVs
are: spheres [7], axis-aligned bounding boxes (AABB) [8], oriented bounding boxes
(OBB) [9], and k-discrete-orientation polytopes (k-DOP) [10]. With deformable
objects, the hierarchical approximation must be updated at each frame and hence,
computational process is very expensive.

Minkowski Sums and Differences

GJK algorithm does not operate on the two objects, but on the Minkowski difference
between the objects. We use x · y for the inner product of x , y ∈ Rm and |x |2 = x ·x .
For X1, X2 ⊂ Rm , X1 ± X2 = {x1 ± x2: x1 ∈ X1, x2 ∈ X2} denotes the Minkowski
set sum or diffenence.

The Minkowski sum can be seen as the region swept by X translated to every
point in Y . The Minkowski difference is presented by adding X to the reflection of
Y about the origin, that is X −Y = X + (−Y ) (Fig. 142.1). If Minkowski difference
Z , Z = X − Y , contains the origin (Fig. 142.1). Clearly,

d(X,Y ) = min{|x − y| : x ∈ X, y ∈ Y }
= min{|z| : z ∈ X − Y }

Sweeping Intersection

One approach to dealing with moving polyhedra is presented in Xavier [11]. Con-
sider two polyhedra P and Q, with movements given by the vectors t1 and t2, re-
spectively. To simplify the collision test, the problem is recast so Q is stationary. The

Fig. 142.1 The origin must
be contained in their
Minkowski difference

X+(–Y)

Y

X
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Fig. 142.2 For a convex
polyhedron under a
translational movement t

Vi Vi + t

t

vector of P is given by t = t1 − t2. Let Vi be the vertices of P in its initial position.
V i + t describes the location of the vertices of P at the end of its translational
motion. If P moves from start to end over its range of motion, the volume swept out
by P corresponds to the convex hull of its vertices at their initial and final positions
(Fig. 142.2).

Multi-Level Collision Detection

Multi-level collision detection is able to divide into two phases. In the first phase,
we use a fast and rough algorithm likely AABB. In the second phase, we apply the
method based on the distance to decide if the moving polyhedra will collide or not.

Our approach decreases the operation by reducing the sweeping test. Sweeping
intersection tests detect the intersection between the sweeping volumes of objects
over time, or an approximation thereof [12]. However, these tests conservatively
report false alarms that never actually occur, because they do not account for the
displacement of objects as they move.

Our algorithm proceeds in two phases, as shown in Fig. 142.3. We first use an
AABB based culling approach. Next, we perform GJK algorithm based on the dis-
tance.

Fig. 142.3 Our multi-level
collision detection algorithm
proceeds in two phases

AABB Culling GJK Algorithm

closest
objects

Penetration 
depth

Phase I Phase II

Conclusions and Future Work

We have presented in this paper a hybrid method that allows real-time collision
detection in complex environments composed of moving objects. We use AABB
and GJK algorithm to perform collision detection. Our approach is very fast and
can be adopted in a variety of environments. We would like to use our method for
other environments such as deformable objects.
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Chapter 143
Neural Information Encoding Based
on a Bifurcation Machinery

Wei Ren, Huaguang Gu, Minghao Yang, Zhiqiang Liu, Li Li, Yulin Xu
and Hongjv Liu

Abstract Neural information encoding mechanism based on a bifurcation machin-
ery was proposed based on the results on two experimental models and theoretical
models. The framework structures of bifurcation scenarios of neuronal firing pat-
tern were acquired in the experimental neural pacemaker. The dynamics of dynamic
neural firing pattern and the neural information encoding of firing patterns were
elucidated in the experiment on rabbit depressor nerve, based on the bifurcation
structure of firing patterns, and the mean level and temporal procedure of blood
pressure.

Keywords Neural information encoding · bifurcation · neural firing · Chaos

Introduction

The rhythm of neuronal firing is central to the information processing in the ner-
vous system. In the working brain, each neuron receives diverse inputs, and outputs
the integrated information in the form of firing trains. Since the waveform of each
firing spike is identical, the output information from each single neuron is believed
encoded in the temporal pattern of its firing trains. Although the physiological sig-
nificance of neuronal firing rhythm was recognized very long ago, identification
of various rhythm patterns and investigation of their mechanisms had been almost
impossible for a quite long period of time. There was a lack of high speed data
acquisition techniques, and more importantly the fundamental scientific concept de-
scribing the complex and usually irregular physiological rhythms was unavailable.
In the physiological study of last century, the problem of neuronal encoding by firing
trains became an empirical association of the stimulus intensity with the firing rate
of the considered neuron.

A large advances in the field of nonlinear science has provided necessary the-
oretical concepts and a series of powerful tools for a deeper understanding of this

W. Ren
College of Life Science, Shaanxi Normal University, Xian, Shaanxi 710062, China
e-mail: renwei1964@vip.sina.com

R. Wang et al. (eds.), Advances in Cognitive Neurodynamics,
C© Springer Science+Business Media B.V. 2008

821



822 W. Ren et al.

physiological problem [1]. In early 1980s, the pioneering research gave a great ex-
ample for the study of complex (chaotic) firing patterns [2, 3]. Since 1990s, various
neuronal firing patterns have been rigorously defined according to the quality of the
motions of theoretical neuronal models. In these works, the transitions among dif-
ferent firing patterns have been elucidated by means of bifurcation theories [4, 5]. A
further understanding of the rhythmogenesis and its neurophysiological significance
requires an approach that integrates nonlinear dynamics and neurophysiology.

Following this approach, our laboratory aims at the basic principles of neu-
ronal firing rhythm transitions and information encoding based on such princi-
ples [6, 7, 8, 9, 10, 11, 12]. Neuron is regarded as a neuronal dynamic system
capable of qualitatively different firing rhythms. The information input to the neuron
affects its corresponding physiological parameters and therefore changes its output
firing rhythms. The input effect is then represented in the output changing rhythms
via mediate coding dynamic machinery. Since the firing rhythm changes under the
driven of physiological parameters through a series of bifurcation processes, the
relevant bifurcation scenarios is of key importance in this encoding machinery. A
systematic knowledge of firing rhythm bifurcation scenarios will provide a theoret-
ical framework for a further understanding of neuronal information encoding. Over
the years, this theme has provided a central rationale for our research.

Experimental Model

Experimental pacemakers are formed at the injured site of rat sciatic nerve subjected
to chronic ligature. Surgical operation is performed to produce the pacemaker using
adult male SD rats. After a survival time of 8–12 days, the previously injured site
is exposed and is perfused continuously with 34 Kreb’s solution. The spontaneous
spike trains of individual fibers ending at the injured site are recorded with a Maclab
system (Australia) with sampling frequency being 10.0 kHz. Meanwhile the spike
trains are monitored with the Maclab system during the whole experiment to make
sure that the recording is of a single unit. The time intervals between the maximal
values of the successive spikes are recorded seriatim as ISI series [6, 7, 8, 9, 10, 11,
12].

Adult male New Zealand rabbit, was anesthetized with urethane intravenously.
The trachea was cannulated. Arterial blood pressure was recorded with a cannula
pressure transducer connected to an ML221 amplifier from arteria carotis. The de-
pressor nerve was isolated and marinated in an oil pool. A thin bundle of depressor
fibers was separated, and its afferent firing trains were induced by means of a fine
platinum electrode with a nearby reference and connected to a bioelectrical ampli-
fier. Blood pressure and spike trains of individual fibers were recorded simultane-
ously with a Powerlab system (Australia) with a sampling frequency of 10.0 kHz
and monitored to make sure that the recording was of a single unit during the
experiment. The time intervals between the maximal values of the successive spikes
were recorded seriatim as interspike interval series. The overall blood pressure level
was elevated by intravenous administration of norepinephrine (NE).



143 Neural Information Encoding Based on a Bifurcation Machinery 823

Results

We studied the diversity of firing rhythms and the underlying dynamic mechanisms
[6, 7, 8, 9, 10, 11, 12]. A variety of spontaneous firing patterns were stably recorded,
as environmental parameters were maintained at as constant a level as possible and
no perturbing influences could be identified. The rhythms of the observed firing
patterns were defined according to the dynamic quality of the firing trains. The
observed various periodic rhythms and different chaotic rhythms were identified
using nonlinear time series analysis methods and simulated using deterministic
and stochastic mathematical neuronal models. Mathematical models based on ionic
channels are capable of giving qualitative and sometime quantitative agreements
with observed oscillatory behavior. The periodic rhythms were related to the dy-
namics of limit cycle, and the chaotic rhythms to the strange attractors [6, 7, 8].
Theoretical bifurcation analysis revealed that there were remarkable dynamic dif-
ferences between the observed spiking and bursting rhythms. It also revealed the
‘fast-slow’ dynamics of the complex rhythmogenesis. In addition, we observed a
number of different ‘integer multiple rhythms’ and elucidated their stochastic al-
ternating mechanism by adding white noise into the model [9, 10, 11]. The integer
multiple rhythms are resulted from the interplay between the inherent fluctuations
in real neuron and the fundamental neuronal excitation dynamics. They arose from
a stochastic alternation or ‘jump’ between two neighboring trajectories.

In experiment, a series of bifurcation scenarios among the neuronal rhythms were
discovered by adjusting gkc, a physiological ‘driving’ parameter [7]. Maintaining
a ‘conditional’ physiological parameter, gkv, at different levels, and adjusting the
‘driving’ parameter under each of the ‘conditional’ parameter level, the relations
among the various bifurcation scenarios in parameter space were analyzed both in
experiment and simulation. We found that the global changing patterns of the firing
rhythms driven by adjusting specific parameters fallen into a series related cate-
gories of bifurcation scenarios. In each of those scenarios, the behavior of the nerve
changed from a polarized resting state into firing state, experienced complex firing
pattern transitions, and then move into a depolarized resting state. In the observed
most complex scenario, the behavior of the nerve was driven from a polarized resting
state to period one bursting rhythm via a Hopf bifurcation, then into complex burst-
ing pattern transitions via period doubling bifurcation or period-adding bifurcations
with or without chaos, and then from ‘crisis’ and spiking chaos to a fast period one
spiking rhythm via a revise period doubling bifurcation, and finally into a polarized
resting state via another Hopf bifurcation. The complete bifurcation structure of the
firing state in ISI was located in a limited subspace of the two dimensional param-
eter space and was surrounded by resting states. The dynamic effects of noise and
perturbations near a number of bifurcation points were studied and their stochastic
resonance mechanisms were analyzed.

Then, employing an experiment model of blood pressure sensory nerve, the
dynamically changing firing patterns under the continuous driven of blood pres-
sure input were recorded from rabbit depression nerve. In this part of experiment
and relevant simulation, we studied the information encoding process of a sensory
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terminal. The result confirmed the theme that neuronal encoding was based on the
bifurcation scenarios of its firing rhythm. The importance of the result is that it
appears to typify the general neural dynamic mechanism of information encoding at
the sensory terminals. The rich and changing rhythm, which is representing neural
information, results from the dynamic perturbation, in ‘noisy’ physiological context,
of the parameters by physiological signals and modulations. The rhythmogenesis is
the complex ‘evolving’ behavior of the neuronal system on the global bifurcation
structure driven by the input signals [12].

Discussion and Conclusion

With rigorous identifications of the firing patterns and firing pattern transitions,
aided by dynamic system theory, neuronal coding machinery now can be studied
as an object of ‘exact’ science. A systematic investigation of the ‘global’ bifurca-
tion structures controlled by the biologically significant parameters could provide
a basic guiding framework of knowledge to the understanding of neuronal encod-
ing. The encoding process of a neuron is actually its rhythms changing response to
the dynamic modulations on its parameters, in the thermal fluctuating and synaptic
noisy environment, on the basis of such bifurcation structures. The dynamic tem-
poral relations between the input modulations and the output changing rhythms in
the working brain are to be eventually illuminated by the underlying dynamic and
stochastic bifurcation machinery.

This work was supported by the NNSF of China under Grant Nos. 30270432,
30300107 and 10432010.
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Chapter 144
Identify Stochastic Bursting from Chaotic
Bursting Generated in an Experimental
Neural Pacemaker

Huaguang Gu and Qishao Lu

Abstract The stochastic and chaotic bursting lying between period k and period
k + 1 bursting (k = 2, 3) exhibit similar characteristics such as positive Lyapunov
exponent, non-periodic spike trains and deterministic structures such as periodic
orbit. The distinctions are identified as different evolutions of the periodic orbit and
multi-peaked histogram exhibited in stochastic bursting. The results give practical
indicators to distinguish the chaotic bursting and stochastic bursting.

Keywords Chaotic bursting · stochastic bursting · period adding bifurcation ·
periodic orbit · lyaponov exponent

Introduction

The dynamics of neural firing patterns and firing pattern transition were fundamen-
tal to the elucidation of neural encoding mechanism [1]. In the last two decades,
various firing patterns and firing pattern transition regularities were simulated in the
theoretical neuronal models [2, 3] and discovered in the experiments [4, 5, 6, 7, 8].
Chaotic bursting lying in a period adding bifurcation scenario were discovered in
experimental neural pacemaker and were analyzed by nonlinear time series analysis
method [4, 5]. In our recent studies, stochastic burstings lying in a period adding
bifurcation scenario were also discovered in the experimental neural pacemaker and
was verified to be caused by autonomous stochastic resonance (ASR) [6, 7, 8].

The aforementioned chaotic [4, 5] and stochastic bursting [6, 7, 8] lying in period
adding bifurcation scenario discovered in the experiment were studied indepen-
dently. The similarity and distinction between the stochastic and chaotic bursting
were seldom studied and remained unclear, and will be studied in this Letter.
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Experimental Model and Nonlinear Time Series Analysis Method

Experimental model Experimental pacemakers are formed at the injured site of rat
sciatic nerve subjected to chronic ligature. Surgical operation is performed to pro-
duce the pacemaker using adult male SD rats. After a survival time of 8–12 days,
the previously injured site is exposed. The spontaneous spike trains of individual
fibers ending at the injured site are recorded with a Maclab system (Australia) with
sampling frequency being 10.0 kHz. Meanwhile the spike trains are monitored with
the Maclab system during the whole experiment to make sure that the recording is
of a single unit. The time intervals between the maximal values of the successive
spikes are recorded seriatim as ISI series [4, 5, 6, 7, 8]. The extra-cellular calcium
concentration ([Ca++]o) is taken as the bifurcation parameter.

Method to detect periodic orbit Detection of periodic orbit (PO) is a common
method to characterize many dynamics such as deterministic mechanisms of chaotic
bursting [4]. In this Letter, method proposed by So et al. [9] is employed to detect
period orbits embedded in ISI series of the firing from experiment.

Calculation of Lyapunov exponent A positive maximal Lyapunov exponent is a
strong signature of chaos to characterize the sensitivity to initial value. In this Letter,
the method proposed by Kantz [10] is employed.

Results

Chaotic and stochastic bursting When [Ca++]o is decreased, the period 2 bursting
was changed to chaotic bursting, to period 3 bursting, to chaotic bursting, to period
4 bursting in some pacemaker, while period 2 bursting could also be changed to
stochastic bursting, to period 3 bursting, to stochastic bursting, to period 4 bursting
in other pacemakers. The spike trains of the stochastic bursting pattern lying be-
tween period k bursting and period k + 1 (k = 2, 3) bursting is stochastic transition
between period k burst and period k + 1 burst, as shown in Fig. 144.1a. The spike

Fig. 144.1 Spike trains of firing lying between period 3 and period 4 bursting. (a) stochastic burst-
ing, (b) Chaotic bursting
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trains of the chaotic bursting contains not only period k and k + 1 burst, but also
other kinds of burst, as shown in Fig. 144.1b.

Lyapunov exponent The Lyapunov exponent of the ISI series are about 1.263 ±
0.098 and 1.073 ± 0.027, respectively for the chaotic and stochastic bursting lying
between period 3 bursting and period 4 bursting, are about 1.273±0.103 and 1.035±
0.094 for the chaotic and stochastic bursting lying between period 2 bursting and
period 3 bursting are about, respectively. Little difference is exhibited between the
values of Lyapunov exponent.

PO in the ISI of bursting lying between period 3 and 4 bursting For the chaotic
bursting, only a single deterministic period 3 orbit can be detected in ISI series of
near period 3 bursting and only a single deterministic period 4 orbit can be detected
in ISI series near the period 4 bursting. The periodic 3 orbit and period 4 orbit are
identified to be (0.0033, 0.0054, 0.0507) s and (0.0040, 0.0090, 0.0480, 0.0500) s
respectively, as shown in Fig. 144.2a and Fig. 144.2b, similar to those of period
3 bursting and period 4 bursting respectively. For the stochastic bursting, both a
single period 3 orbit and a single period 4 orbit can be detected in the stochastic
bursting, whether near period 3 bursting or near period 4 bursting, are identified to
be (0.0064, 0.0088, 0.1260) s and (0.0059, 0.0076, 0.0104, 0.1271) s respectively,
similar to those of period 3 bursting and period 4 bursting respectively.

PO in ISIs of firing lying between period 2 and period 3 bursting For the stochas-
tic bursting, both a single deterministic period 2 orbit and a single deterministic
period 3 orbit can be detected in ISI series of the stochastic bursting, whether near
period 2 bursting or near period 3 bursting. The locations of period 2 orbit in firing
near period 2 bursting are (0.0088, 0.1264) s, similar to those of period 2 bursting.
The locations of period 3 orbit in firing near period 2 bursting are (0.0080, 0.0148,
0.1112) s, similar to those of period 3 bursting. For the chaotic ISI series, only
a single deterministic period 2 orbit can be detected in the chaotic ISI series near
period 2 bursting, while both a single deterministic period 2 orbit and a single period
3 orbit can be detected in near period 3 bursting, as shown in our previous study [5].

Histogram with multi-peaks in the stochastic bursting For the stochastic bursting
lying between period k and period k + 1 (k = 2, 3) bursting, Inter-event interval

Fig. 144.2 First return map of period orbit detected in the ISI series of chaotic bursting lying
between period 3 and period 4 bursting. (a) Period 3 orbit, (b) Period 4 orbit
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(IEI) histogram exhibits multi-peaks, being the signature of the ASR in neural firing
[6, 7, 8] when period k burst is defined as an event. The chaotic bursting does not
exhibit multi-peaks characteristics.

Discussion and Conclusion

The common and important indicators to characterize chaos, such as the Lyapunov
exponent and deterministic structures, can be exhibited in both chaotic and stochas-
tic bursting lying in period adding bifurcation scenario. Two practical indictors to
distinguish two kinds of bursting are also identified. The first is IEI histogram with
multi-peaks in stochastic bursting. The second is that the evolutions of period orbit
with respect to the bifurcation parameter are different. In addition, the dynamics of
two kinds of period adding bifurcation scenario are further analyzed.
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Chapter 145
Ocular Artifacts Removal
from EEG Using EMD

David Looney, Ling Li, Tomasz M. Rutkowski,
Danilo P. Mandic and Andrzej Cichocki

Abstract Electroencephalogram (EEG) provides a non-invasive way to analyze
brain activity. Blinking and movement of the eyes causes a strong electrical activity
that can contaminate EEG recordings, particularly around the forehead but also as
far as in occipital areas. Removal of such ocular artifacts is a considerable signal
processing problem, since those artifacts overlap in frequency domain with EEG.
In this paper we propose a signal reconstruction method based on a time frequency
analysis tool known as the Hilbert-Huang spectrum. We demonstrate how our re-
construction scheme can be successfully applied to contaminated EEG data for the
purposes of removing unwanted ocular artifacts.

Introduction

EEG is becoming a very popular brain activity analysis tool due to the low cost
and easy application. Longer EEG recording experiments usually suffer from strong
artifacts coming from muscle activity of which ocular artifacts, often recorded as
reference in the form of electro-oculorgrams (EOG), are the most common. The
problem of ocular interference cannot be simply removed with conventional filtering
methods due to frequency overlapping between ocular activity and EEG, and also
due to the nonlinear nature of the interference. We propose an adaptive approach
based on the empirical mode decomposition (EMD), first introduced in [1], which
is a fully data driven method for decomposing multi-component signals into a set of
amplitude & frequency modulated (AM/FM) components known as intrinsic mode
functions (IMFs). The IMFs act as locally orthogonal “basis functions” for the data,
unlike other signal decomposition techniques that map the signal space onto a space
spanned by a predefined basis. EMD has demonstrated considerable success in
removing complex nonlinear disturbances from non-stationary biomedical signals
[2]. By definition, an IMF is a function for which the number of extrema and the
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number of zero crossings differ by at most one, and the mean of the two envelopes
associated with the local maxima and local minima is approximately zero. The de-
composition of a signal x(k)is given by

x(k) =
N∑

i=1

ci (k)+ r (k) (145.1)

where ci (k)N
i=1 is the set of IMFs and r (k) is the residual. The first IMF is obtained as

follows [1]: (i) Let x̃(k) = x(k); (ii) Identify all local maxima and minima of x̃(k);
(iii) Find an “envelope,” emin(k) that interpolates all local minima(emax(k) maxima
respectively); (iv) Extract the “detail,” c(k) = x(k) − (1/2)(emin(k) + emax(k)); (v)
Let x̃(k) = c(k) and go to step (2); repeat until c(k) becomes an IMF. Once the first
IMF is obtained, the procedure is applied to the residual r (k) = x(k)−c(k) to obtain
the second IMF. In this way, the procedure is applied recursively to obtain all the
IMFs. By definition, the IMFs are mono component signals and their instantaneous
frequency can therefore be determined as defined by the Hilbert spectrum. Combin-
ing the instantaneous frequencies and corresponding instantaneous amplitudes of
the IMFs, a time-frequency distribution known as the Hilbert-Huang spectrum can
be constructed.

Hilbert-Huang Reconstruction

We now consider a unique reconstruction method based on the Hilbert-Huang spec-
trum which we refer to as Hilbert-Huang (HH) reconstruction. Given a signal d(k),
we propose to remove any unwanted frequency information and construct a signal,
d̂(k),that retains only desired frequency characteristics from d(k).This is achieved by
first decomposing d(k) into a set of N IMFs, ci(k), and determining the instantaneous
frequencies. fi(k) denotes the instantaneous frequency of the i th IMF at time instant
k. Given the scenario where it is required to retain frequencies greater that flow and
lower than fhigh, we have

c̃i (k),=
{

ci (k), if flow < fi (k) < fhigh

0 otherwise
(145.2)

Essentially all values of ci(k)that do not fall within the desired frequency range are
set to zero. We can construct d̂(k) by summation of the IMF values that fall within
the desired frequency range, to obtain

d̃(k) =
N∑

i=1

c̃i (k) (145.3)
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However, d̂(k) is not a suitable solution on its own. Often it is the case that the
instantaneous frequency of a particular IMF may intermittently become located
within the desired frequency range. This has the effect of introducing unwanted dis-
continuities in d̂(k) as certain IMFs are sparsely included in the summation process
described above (145.3). These discontinuities have the potential to undo the goal
of this report as their existence can reintroduce spurious frequency components in
the data. To cater for this problem, we propose to determine the best approximation
to d̂(k) using the block based solution presented in [3]. The approximation, d̂(k),
is achieved by linear summation of the original set of IMFs and residue using an
optimally defined (N + 1)× 1 weight vector, w, given by

d̂ = wT I (145.4)

where { · }T denotes the vector transpose and matrix I contains the original IMFs and
the residue (5).

I =

⎛

⎜⎜⎜⎜⎜⎝

c1(1) c1(2) . . . c1(M)
c2(1) c2(2) . . . c2(M)

...
...

...
cN (1) cN (2) . . . cN (M)
r (1) r (2) . . . r (M)

⎞

⎟⎟⎟⎟⎟⎠
(145.5)

Letting D = I IT, we can determine the optimal weight vector by the following

w = D−1Id̃
T

(145.6)

Results and Conclusions

We applied the HH reconstruction algorithm described above to several sets of
EEG data contaminated by ocular artifacts. Since ocular artifacts occupy the crit-
ical low frequency band of EEG in a range 0–13 Hz [4] we proposed the carefully
designed algorithm to retain the EEG important information within the above men-
tioned range while removing the ocular artifacts. The EEG data used was sampled
at a rate of 512 Hz and recorded from electrodes Fp1, Fp2, C6, C5, O1, O2 with
ground placed over Cz and additional bipolar channels vEOG, hEOG as in standard
extended 10/20 EEG system. The results are displayed in Figs. 145.1 and 145.2,
respectively.

To demonstrate how the algorithm retains EEG information within the frequency
range originally contaminated by ocular interference we present time-frequency rep-
resentations in the form of a Morlet spectrogram in Fig. 145.2.
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Fig. 145.1 The results of the proposed approach to remove ocular artifacts. The top panel presents
the recorded EEG at Fp1 electrode with very strong ocular artifacts which is also presented as
vEOG channel in second from the top panel. The third from the top panel present sestimated
ocular interference. The resulting and cleaned EEG is depicted in bottom panel, where no remains
of ocular artifacts can be spotted

Morlet scalogram of recorded Fp1 EEG with strong ocular component
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Fig. 145.2 Morlet spectrogram of the contaminated EEG from the electrode Fp1 is shown in top
panel. The very strong low frequency artifact from ocular activity is visible only around 0 Hz and
the rest of the spectrum is useless for analysis. The bottom panel presents the cleaned EEG showing
a very rich activity across the whole frequency range
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Chapter 146
Quasi-Brain-Death EEG Data Analysis
by Empirical Mode Decomposition

Yuki Saito, Toshihisa Tanaka, Jianting Cao and Danilo P. Mandic

Abstract A practical and understandable method analyzing the Electroencephalo-
gram (EEG) data of quasi-brain-death patients by using the empirical mode de-
composition (EMD) is proposed. A brain-death diagnosis is made by well-defined
process and some precise criteria. The process takes a long time and involves risky
tests. As a preliminary EEG test, the proposed method can be easily applied in the
bedside of a patient using small number of electrodes. In this method, the amplitude
variation of the Hilbert–Huang spectrum (HHS) with respect to a frequency range
of interest is extracted, then the amplitude variations in neighboring channels are
compared. Experimental results show that the EMD-based method works well in
extracting a signal which represents brain activity.

Introduction

A brain-death diagnosis is quite crucial in particular, in the case of organ trans-
plants. The brain-death is defined as the cession and irreversibility of all brain and
brain-stem function. The brain-death diagnosis must be made by the following time-
consuming and risky tests: EEG confirmatory test, which takes 30 min twice (6-h
interval), and apnea test, in which the breath machine is shortly removed.

To avoid the risks, it has been proposed [1] to conduct a simple preliminary
EEG test detecting the brain activities in the forehead. In this preliminary test, in-
dependent component analysis (ICA) is applied for EEG data of small number of
channels recorded in the bedside of a patient. However, standard ICA presumes the
same number of sources as the number of channels. Therefore, it is unclear if the
extracted signals by ICA represents brain activity itself.
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In this paper, we propose an analysis method as preliminary EEG test of brain-
death diagnosis using Hilbert–Huang spectrum (HHS) obtained by empirical mode
decomposition (EMD) [2, 3]. In this method, we apply the EMD to the EEG raw
data to obtain its HHS, and extract the amplitude variation of the signal of interest
on time. As proposed in [1], only the electrodes of the forehead is chosen for its fa-
cility to apply this method to quasi-brain-death patient. By comparing it in different
channels, we examine the existence of a signal which represents brain activity. The
experimental results illustrate the proposed method is effective to extract a signal
generated by brain activity from quasi-brain-death EEG data.

Method of EEG Data Analysis

It is well-known that the brain activity generates some characteristic signals such
as alpha wave, beta wave, theta wave and so forth. If the amplitude variations of
such characteristic signals are very similar between the neighboring electrodes, a
common signal exists in the EEG data; therefore there is the brain activity. Then
we detect a brain activity by extracting a common characteristic signal. We pro-
pose to extract the amplitude variation of such signals by using EMD. The EMD
is a time–frequency analysis tool for non-stationary and non-linear signals. The
EMD decomposes a signal into a collection of oscillatory modes, called intrin-
sic mode functions (IMF). The local energy and the instantaneous frequency is
derived from IMFs, and we can obtain the result as a time-frequency spectrum
called HHS.

More specifically, we first apply the EMD to the EEG signal x(t) to repre-
sent the signal as a summation of m IMFs, ck(t), k = 1, . . . ,m, and residue
rm(t): x(t) = ∑m

k=1 ck(t) + rm(t). Repeat this operations in all n channels. Then
the collection of IMFs is mapped to HHS, where IMFs are converted to analytic
signals for taking account of the phase difference between IMFs, and instanta-
neous frequency and amplitude at time instance t are obtained [2]. We denote
HHS of channel i by Hi (ω, t), where ω and t are angular frequency and time
respectively.

The variation of the amplitude in frequency band of interest is obtained from
Hi (ω, t) in the following manner. Let b be the central frequency and let α be the
half bandwidth of the subband of our interest, i.e. the subband is of the range
ω ∈ [b − α, b + α]. Then we obtain the variation in the i-th channel, vi (t):
vi (t) =

∫ b+α
b−α Hi (ω, t)dω, and normalized variation vi

∗(t) is defined as follows:
vi
∗(t) = vi (t)/

∫
Hi (ω, t)dω. By definition, HHS is very sparse and in the dis-

crete signal case includes many discontinuous points. As a result, v∗i (t) can contain
“noise,” which is removed in the following way. We consider a part of v∗i (t) be-
ing noise set it to zero unless it continuously has non-zero values for period T . T

should be the shortest period corresponding to the frequency band, T = 2π

b + α .

Furthermore, we smooth v∗i (t) by an averaging filter.
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Experimental Condition and Results

In this experiment, we focused on two typical cases of quasi-brain-death patients and
tried to extract the amplitude variation of alpha wave, periodic signal with frequency
component of 8–13 Hz as a simple example. Note that since in this method, arbitrary
frequency ranges can be chosen. The both of patients were in a deep-coma state at
first. One patient (Patient 1) was going to awake after the treatment, and the other
(Patient 2) was going to brain-death. See [1] for details on the patients. Note that
the EEG data used in this experiment was directly recorded in the bedside of patient
where environmental noise incorporates into the data easily. The number of channel
was six illustrated in Fig. 146.1, and the sampling rate of EEG data was 1 kHz.

Patient 1

The resulting variation of the i-th channel denoted by vi
∗(t), which is derived from

EMD and HHS, is illustrated in Fig. 146.2a. For comparison, the result by Fourier
method, extracting the amplitude variation using the spectrogram S(ω, t) by short-
time Fourier Transform instead of HHS, is shown in Fig. 146.2b. In Fig. 146.2a, very
similar amplitude variations between neighboring channels are obtained, whereas it
is difficult in the result by the Fourier method to see the similarity between the
variations. A result similar to this example was obtained in other time windows.
This result indicates that the patient had physiological brain activity which we could
not estimate from the symptom.

Patient 2

In a fashion similar to Patient 1, the variation by the EMD, and the one by the Fourier
method are respectively shown in Figs. 146.3a,b. In Fig. 146.3a, we find that there
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1050
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Fig. 146.1 Left: the electrode layout. Right: the recorded EEG (Patient 1)
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(a) Amplitude variations by the EMD method

(b) Amplitude variations by the Fourier method
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Fig. 146.2 Recorded EEG data from Patient 1 and the analyzed results
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Fig. 146.3 Recorded EEG data from Patient 2 and the analyzed result

is no relationship between the variations. This means that the extracted amplitude
variations may not be alpha wave but only noise component, and we cannot detect
the brain activity. By comparison between Figs. 146.2b and 146.3b, we also find
that there is no obvious difference in the results by the Fourier method.

Conclusion

We have proposed a practical method using the EMD and HHS for a preliminary
EEG test. The analysis illustrates that there exists the brain activity. Since we can
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apply this method to real-time measured data, the burden of a patient and a doctor
will be reduced and the diagnosis will be able to be more precise with this method.
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Chapter 147
Synchronization Between Two Coupled
Networks of Discrete-Time Systems

Congxiang Xu, Weigang Sun and Changpin Li

Abstract Synchronization between two discrete-time dynamical networks is stud-
ied in this paper, this is a substantial generalization of a lot of recent works on
synchronization inside a network. We mainly study the case that both networks are
of the same topological connectivity, a criterion is derived which guarantees the
synchronization. Linearization approach was applied in the analysis process. Simple
numerical example is presented to illustrate the conclusion in the end.

Introduction

Networks have been studied extensively since the creative works which revealed
the small-world [1] effect and scale-free [2] property. Recent years have witnessed
a great progress in the network research, with the focus shifting away from the
analysis of single small graphs and the properties to the consideration of large-scale
statistical properties of graphs.

Synchronization is a ubiquitous phenomenon in the physical world, and it has
become a hot topic studied in complex networks. Chaos is well-known for its sen-
sitivity to initial values, it is an intrinsic characteristic in nonlinear dynamical sys-
tems. Likewise, chaos exists universally. Synchronization of chaotic systems has
been studied widely since the drive-response approach put forward by Pecora and
Carroll.

Studies on individual node behavior, dynamical analysis and statistical properties
were mainly focused within a network, which have attracted much attention. There
are a lot of papers, such as [3] concerning the synchronization inside a network,
which reveals the relations between network topology and network dynamics. How-
ever synchronization between two coupled networks is more common in nature, yet
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more difficult because these two networks are highly dimensional and of several
parameters.

In the present paper, we consider this interesting topic. The rest of this paper is
organized as follows. In Section ‘Model Presentation and Synchronization Analy-
sis’, the model presentation and synchronization analysis is given, numerical exam-
ple is shown in Section ‘Numerical Examples’, finally the conclusion is presented.

Model Presentation and Synchronization Analysis

Let us consider the following drive-response system, taking the driving network in
the following form

xi (t + 1) = f (xi (t))+ c
N∑

j=1

ai jΓ x j (t), i = 1, 2, · · · , N , (147.1)

and the response network as

yi (t + 1) = f
(
yi (t)

)+
(

H − � f (xi )

�xi

) (
yi (t)− xi (t)

)+ c
N∑

j=1

bi jΓ y j (t),

i = 1, 2, · · · , N , (147.2)

where f mentioned here is a continuously differentiable map from R
n to itself, xi =

(xi1, xi2, · · · , xin)T ∈ R
n are the state variables of node i , N is the total number of

nodes, c > 0 is a coupling strength, and Γ ∈ R
n×n is a constant 0 − 1 matrix

linking coupled variables. A = (ai j )N×N , B = (bi j )N×N represent the coupling
configuration of the two networks, whose entries ai j , bi j are defined as follows:
if there is a connection between node i and node j ( j �= i), then set ai j , bi j = 1,
otherwise ai j , bi j = 0 ( j �= i); the diagonal elements of A, B are defined as a(b)i i =
−∑N

j=1, j �=i a(b)i j , for i = 1, 2, · · · , N . H ∈ R
n×n is a matrix to be set.

Hereafter, synchronization between these two networks is achieved if

lim
t→+∞‖yi (t)− xi (t)‖ = 0, i = 1, 2, · · · , N . (147.3)

We study the synchronization between system (1) and system (2), where both of
them have same topological structure, i.e. A = B. Letting ei = yi − xi , and by
linearizing the error system around xi , we get

e(t + 1) = He(t)+ cΓ e(t)AT , (147.4)

where e = [e1, e2, · · · , eN ] ∈ !n×N and AT denote the transpose of matrix A. As
we know that the coupling matrix can be decomposed into AT = S J S−1, where J
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is a Jordan form with complex eigenvalues λ ∈ C and S contains the corresponding
eigenvectors s. Denoting η = eS, we get

η(t + 1) = Hη(t)+ cΓ η(t)J, (147.5)

where J is a block diagonal matrix,

⎡

⎢⎣
J1

. . .
Jh

⎤

⎥⎦ and Jk is a block corresponding

to the mk multiple eigenvalue λk of A.
Let η = [η1, η2, · · · , ηh] and ηk = [ηk,1, ηk,2, · · · , ηk,mk ]. Due to the fact that

the sum of every line of the matrix A is zero, we can assume λ1 = 0, and J1 is a
1 × 1 matrix. If λ1 = 0, we get η1(t + 1) = Hη1(t). If the zero solution η1 = 0
is asymptotically stable, then the condition ‖H‖2 < 1 must be satisfied. Next, we
discuss the cases k = 2, 3, · · · , h. We can rewrite Eq. (147.5) in component form.

{
ηk,1(t + 1) = (H + cλkΓ )ηk,1(t),

ηk,p+1(t + 1) = (H + cλkΓ )ηk,p+1(t)+ cΓ ηk,p(t), 1 ≤ p ≤ mk − 1 .
(147.6)

where k = 2, 3, · · · , h.

Theorem 1. Assume A = B and ‖H‖2 < 1. Consider the network model (1) and
(2). Let λk = αk + jβk be the eigenvalues of the coupling matrix, where j is an
imaginary unit. If there exist constants 0 < γ0 < γ < 1 and t0 > 0 such that

‖H‖2 + c|λk | · ‖Γ ‖2 ≤ γ0, (147.7)

then synchronization between the drive system (1) and the response one (2) can be
achieved.

Proof. To begin, we consider the first equation of Eq. (147.6). Let ηk,1 = ξ + jζ ,
where ξ and ζ are both real vectors, ‖ηk,1‖2 = ξ T ξ + ζ T ζ , then

‖ηk,1(t + 1)‖2 ≤ ‖H + cλkΓ ‖2‖ηk,1(t)‖2 ≤ γ0‖ηk,1(t)‖2, (147.8)

for all t ≥ t0. Therefore there exists a constant M > 0 such that

‖ηk,1(t)‖2 ≤ Mγ t
0 , for t ≥ t0, and k = 2, 3, · · · , h. (147.9)

Next we consider the second equation of Eq. (147.6). Without loss of generality,
let p = 1 and v(t) = ‖ηk,2(t)‖2γ

−t , then
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v(t + 1) = ‖ηk,2(t + 1)‖2γ
−t−1

≤ ‖H + cλkΓ ‖2‖ηk,2(t)‖2γ
−t−1 + c‖Γ ‖2‖ηk,1(t)‖2γ

−t−1

≤ γ0

γ
v(t)+ c‖Γ ‖2

M

γ

(
γ0

γ

)t

≤
(
γ0

γ

)t+1−T

v(T )+ c‖Γ ‖2(t + 1− T )
M

γ

(
γ0

γ

)t

< +∞ for all t ≥ t0

(147.10)

thus v(t) is bounded which implies that ηk,2(t) = O(γ t ) for all k = 2, 3, · · · , h,
then synchronization between the drive system (1) and the response one (2) can be
achieved.

Numerical Examples

In the networks considered below, the dynamics at every node follows the Logistic
map f (x) = μx(1− x) where μ is an adjustable parameter.

The topological structures in two networks we considered in this section are of
the same. Firstly we consider the subcase that the coupling matrix is symmetric,
suppose A = B = A1, where A1 is a 100-dimensional matrix with small-world
network connection which can be constructed by an algorithm [1]; next we consider
the second subcase that the coupling matrix is asymmetric, suppose A = B = A2,
where A2 is a 100-dimensional matrix with random network connection, and Γ is
an unit matrix.

From the theoretical analysis, if H is chosen from (−1, 1), μ is in (0, 4), we
can adjust the coupling strength to synchronize the two networks, the maximum
threshold value of c is 0.008 for small-world connection, for random connection the
threshold value is 0.001. Let e(t) = max

1≤i≤100
|yi (t) − xi (t)|. Figure 147.1 plots the

synchronization errors for two values of H .
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Fig. 147.1 Synchronization errors between network (1) and network (2) for two values of H with
μ = 3.9, A = B = A1, c = 0.003 and A = B = A2, c = 0.001
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Conclusion

In this paper, synchronization between two coupled complex networks but not that
inside one network is studied. We theoretically and numerically show that when
driving-response networks have identical connection topologies, then synchroniza-
tion between them can be achieved. The scales of networks and the connection
topology might influence the synchronization between them.
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Chapter 148
Walk-Aided System with Wearable Lower
Extremity Exoskeleton for Brain-Machine
Engineering

Heng Cao, Yuhai Yin, Zhengyang Ling, Wenjin Gu, Zhiyong and Yang Di Cao

Abstract Walk-aided system is to assist the motion of the disabled, injured, el-
derly people and soldiers. The ultimate goal of this project is to apply the system to
brain-machine engineering as terminal actuator. Mechanical design, actuator mod-
eling, and force feedback control algorithm based on neuron are discussed. A co-
simulation with Matlab and Adams is used to analyze the performance of system.
This human-machine interaction control scheme can be applied to test platform of
brain-machine in the future.

Keywords Walk-aided system · neuron · co-simulation · BMI · exoskeleton

Introduction

In recent years, the research of walk-aided robot (also called exoskeleton) has be-
come more and more popular [1]. According to different applications, it is mainly
used in two areas. One is to help old or disabled person to walk, the other is to
help those who have to carry heavy objects long distances. Compared with other
intelligent robots, walk aided robot does not need vision signal or gait configuration.
The principal control feature is its human-machine interaction.

Nowadays, the most successful example of exoskeleton used as a walking aided
device for gait disorder persons is the Hybrid Assistive Leg (HAL) developed by
Yoshiyuki Sankai [2]. EMG (ElectroMyoGram) sensors and floor reaction force
sensors are adopted in order to obtain the conditions of the HAL and the operator
[3]. Bleex (Berkeley lower Extremity Exoskeleton) is a latest research result in this
field, which has been designed by Human Engineering Laboratory of UC Berkeley
since the year 2000 [4]. A novel control scheme was applied that does not require
sensor interfaces between the human and machine.
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At present, the development of brain-machine interface (BMI) technology con-
tinues to attract researchers with a wide range of backgrounds and expertise. The
medical machine based on BMI technology should provide the disabled with a new
method. It could also be applied in walk-aided system as a control method.

In this paper, mechanical structure, hydraulic driver, intelligence control algo-
rithm based on single neuron, and co-simulation will be discussed. We also planed
to apply the BMI technology to this system in the near future.

Mechanical Structure

The intelligent walk aid robot could provide extra muscle ability for people carrying
heavy loads through its mechanical power installment. And it moves in concert with
the body’s lower extremity without influencing the flexibility of human body action.
The design of walk aided system has to follow the following principles [3, 5]:

1. The structure which is required to guarantee the maximum flexibility of the
wearer’s movement should be designed to imitate human being.

2. The system can provide the continuous power for at least 35kg load and it can
last 12 h. Its gross weight is 25 kg.

3. The structure strength must sufficiently deal with the impact load brought by
any body movement.

4. The control system should be able to recognize the movement tendency and
study on its own.

Above all, the walk aided robot (shown as Fig. 148.1) includes several parts inde-
pendently and connectedly as following:

1. The back-frame system and lower extremity connection part

The back-frame system includes the setting positions of the energy storage, the
power supply, the control system and so on. It transfers the load weight to the ground
(not to the wearer’s ankle) through exoskeleton. At the same time, the exoskeleton
should fit the user and guarantee the reliability of action. The objective is to make
user realize the existence of exoskeleton other than the load.

Fig. 148.1 The 3D model of exoskeleton and the model of the throttle valve speed control loop
circuit



148 Walk-Aided System with Wearable Lower Extremity Exoskeleton 851

2. The dynamic output installment

The dynamic installment on the exoskeleton can output power linearly and non-
linearly according to the control system demand. It replaces the human body lower
extremity muscle to supply the movement power for load. It is an essential part of
independent combat system. The single-action spring reposition cylinder is chosed
in this paper. The model of the throttle valve speed control loop circuit made in
Matlab is shown in Fig. 148.1

3. Sensor and control system

The proper installment of sensors is the precondition which is to guarantee exoskele-
ton to react quickly to the body movement. It can not only control the process of
exoskeleton according to the programmed setting parameters, but also modify the
control system to well suit the environment changes as well as the changes of the
user’s physical condition.

The Research of Intelligent Control Algorithm

In the case of an aided system, the force between the operator and the machine
should be controlled through force-feedback control, which made the operator can-
not feel the machine and load [6, 7], and single neuron self-adaptive PID control
algorithm is applied.

The Actuator Control Scheme Based on Force Feedback

When the operator who wears the exoskeleton starts to move, his joints circumrotate
and send signals to exoskeleton. Sensors such as angle sensors and force sensors are
adopted in order to monitor the dimensional position of the operator. Then each joint
of the exoskeleton should rotate to a certain angle to avoid interference between hu-
man and machine. At the same time, a magnitude of force is created by the feedback
block, which will be used to compensate for the consumed energy of the operator.
This process also needs a controller that can calculate inverse mathematic model
and transfer a magnitude of force to the displacement of the hydraulic cylinder.
Through this control process, it provides extra muscle ability for people carrying a
heavy load. And it is consistent with the body’s lower extremity movement with-
out influencing the flexibility of human body action. Figure 148.2 illustrates the

Fig. 148.2 Block of force
feedback control scheme

Controller Exoskeleton

Human

Feedback
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force-feedback control scheme for the case in which all forces between the human
and the machine occur through a sensing interface.

Application of Single Neuron Self-adaptive PID Control Algorithm

The aid system is a complex and nonlinear system, which cannot be built as a math
model accurately. The normal PID controller can’t feed the demand of real time
control. Neuron has a great ability of information integration, memorization, self-
learning and self-adaption, which can deal with those complex processes. In this
paper, neuron and PID are combined to control the hydraulic actuator. The PID
parameters can be adjusted online to make the system be robustness [8, 9].

The configuration of single neuron self-adaptive PID control system is shown
as Fig. 148.3. The input of trans-block is the control setting, r (k) is input, y(k)
is output, x1(k), x2(k), x3(k); x1(k) = e(k), x2(k) = e(k) − e(k − 1), x3(k) =
e(k)− 2e(k − 1)+ e(k − 2) can be obtained which are necessary for single neuron
learning; wi (k) is the weight coefficient of xi (k); K is the neuron scale coefficient,
K > 0. η is learning speed, η > 0; the learning algorithm based on single neuron
self-adaptive PID can be standardized as:

u(k) = u(k − 1)+ K
3∑

i=1

ω′i (k)xi (k) (148.1)

ω′i (k) = ωi (k)
3∑

i=1
|ωi (k)|

(148.2)

ω1(k + 1) = ω1 + ηi z(k)u(k)[e(k)+ 	e(k)] (148.3)

ω2(k + 1) = ω2 + ηpz(k)u(k)[e(k)+ 	e(k)] (148.4)

ω3(k + 1) = ω3 + ηDz(k)u(k)[e(k)+ 	e(k)] (148.5)

x1(k) = e(k) (148.6)

Trans
block ∑ K

Z–1

object
r(k) u(k) y(k)e(k)

Fig. 148.3 Block diagram of single neuron self-adaptive PID control system
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x2(k) = e(k)− e(k − 1) (148.7)

x3(k) = e(k)− 2e(k − 1)+ e(k − 2) (148.8)

z(k) = e(k) (148.9)

Co-simulation with Matlab and Adams

An analysis method of co-simulation in Matlab and Adams has been used in this
paper. For 1 DOF of a single leg, simulation of hydraulic drive instrument has been
made based on force feedback control. Matlab is used to build the whole system
control modules, which include hydraulic servo drive module, force feedback mod-
ule, and single neuron PID control module. The input of system is an angle of joint,
and the output is the displacement of piston. Meanwhile, rigid model of a single leg
is set up with Adams as shown in Fig. 148.4.

At present, it is difficult to build a perfect human model by computer. In this
paper, five joint degrees are recognized as simulation input. Through the sensor
module S, electrical current i is used to control the hydraulic servo valve module,
and the open or close of valve controlls the cylinder’s flow, and finally controls the
displacement of the piston. The displacement is sent to Adams module as the input
in order to realize the change of joint angle. In simulation, inverse block module is
used to compute the angle value by the piston displacement; the controller module
is a single neuron self-adaptive PID controller which is used to improve the system
control performance and robustness. The diagram of Matlab control system is shown
in Fig. 148.4.

Under the same condition, simulations based on traditional PID control and sin-
gle neuron self-adaptive PID control are made separately. Comparing the results
(shown as Fig. 147.5), it has been found that single neuron self-adaptive PID control
has better performance, such as rise time, excessive adjustment value, response time
and steady error. The 0.2 s response time fits the demand of system fast response.

Fig. 148.4 The rigid model of single leg made by Adams and block of Matlab control system
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Fig. 148.5 Step responses of neuron self-adaptive PID controller (right) and the characteristic of
PID controller (left)

Conclusion

In the preliminary research of Human-Machine Intelligent Walking Aid, structure
of the walk aid system is designed which include a mathematic model of hydraulic
actuator, and the method of force feedback which adopts the algorithm of nerve con-
trol is discussed. At last, the method based on the co-simulation of multi-software
is applied to the model.

In the future work, the main research task is to make a further optimization of
the mechanism. More practical experimental data by building the entity simulation
will be obtained; the feasibility of control method need to be proved; the design
of practical control system according to the mechanical dimension of the computer
simulation model will also be started.

We believe that the Walk-Aid System has a prosperous future for both the civilian
and military use. This equipment has a very bright application prospect and will also
encounter many challenges at the same time.
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Chapter 149
A Study on the Filter Effect for Calculating
the Mass Center of the Traveling Alpha Waves

Hongchuan Xiong, Gang Yin,Yin Tian, Yongxiu Lai and Dezhong Yao

Abstract Calculating the mass center of alpha rhythm is an important way to ex-
plore the brain function. In this work, instead of using the raw data or common alpha
band (8–13 Hz) for the calculation of the mass center of the traveling alpha waves,
the individual alpha center frequency was identified firstly, then a 5 Hz band was
utilized to calculate the mass center (MC), the statistic difference of some properties
such as the trajectory, the velocity, and the fractal dimension are evaluated after they
are calculated from the raw data and the data preprocessed with the personally iden-
tified filter, the results show that the result with filter is more regular and explainable.

Keywords Electroencephalogram · traveling alpha wave · mass center · filter ·
velocity · fractal dimension

Introduction

The electroencephalogram (EEG) represents the spatial-temporal characters of col-
lective electrical response of neuronal population [1, 2]. The neural activities in
various brain areas are influenced by many inside and outside factors, such as the
application of periodic sensory stimuli, or the different stages of sleep and wakeful-
ness [3, 4, 5]. For example, in a wakeful rest state, the EEG alpha waves are most
prominent over parietal and occipital regions, which are usually called � rhythm and
� rhythm [3, 6]. To understand the dynamic mechanism, it is important to investigate
the signal propagation routine of the alpha wave on the scalp surface.

As for the propagation and distribution of alpha wave, various methods have been
adopted to study, such as scalp potential topography, signal phase mapping, etc.
Recently, Manjarrez et al. calculated the mass center (MC) of the traveling alpha
waves [4]. However, their calculation was based on the raw EEG which included
the whole frequency band of the electric activations of the human brain, and this
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would bring on obvious bias, especially the low frequency band may have a strong
effect on the result.

Usually, alpha rhythm is treated as an oscillation with 3–5 Hz bandwidth, e.g.
8–13 Hz or 9–12 Hz. Therefore, researchers usually assumed the alpha rhythm is of
a fixed center frequency: 10.5 Hz. In fact, the center frequency of alpha rhythm is an
individually variable value. If we need to get the exact information of an individual
alpha rhythm, the different filter range should be adopted. In this paper, we adopted
a different procedure from that adopted by Manjarez et al. [4] to investigate the
propagation and distribution of alpha wave. The procedure includes: identifying the
individual alpha spectra peak, adopting a band pass filter around the alpha peak,
calculating MC. Finally, the differences of the two strategies were compared.

Materials and Methods

Subjects

The EEG data were recorded from 12 subjects during eyes-closed wakeful rest state,
they are healthy right-handed volunteers of both sexes with written informed con-
sent, age 20–24 years, the instrument is an EGI System 200 EEG amplifier (EGI,
Inc.) the sampling rate is 500 Hz (0.1 ∼ 49 Hz band-pass filter). The normalized
electrodes coordinates are illustrated Fig. 149.1. And the data were re-referenced
to the infinity (zero reference) by the reference electrode standardization technique
(REST) [7].

Data Preprocessing

Data were preprocessed before calculating MC. First, calculate the power spectral
density of each subject respectively, an example is shown in Fig. 149.2. Second,
identify the peak of the alpha band, and it is 9.766 Hz in Fig. 149.2. Third, filter the
data with a band-pass filter centered at the central frequency with a 5 Hz bandwidth.

Fig. 149.1 The distribution
of selected electrodes

(x(t) y(t))

(ai,bi)

X

Y
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Fig. 149.2 The raw EEG
data’s power spectral density.
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After data preprocessing, we calculated the coordinates of the mass center of the
electrical activity recorded on the scalp with the following Eq. (148.4), the length of
data is 2000 time points (4 s):

X (t) = å a im i(t)

å m i(t)
(149.1)

Y (t) = å b i m i(t)

å m i(t)

where X (t), Y (t) are the coordinates of the mass center, ai, bi are the coordinates
of electrodes, and m i(t) is the value at the ith electrode at time point t , the sum is
operated on the channels with m i(t) > 0. At each time point, a two dimensional
position (X , Y ) is obtained, and this position is just the mass center of the individu-
ally identified traveling alpha waves, along with the time evolution, the mass center
shows a trajectory.

For each data, we calculated the trajectory two times: using the raw data and the
data after filtering, respectively. Figure 149.3 shows an alpha burst, top: the raw data
of one channel (O1), bottom: the same data after filtering. The data length is 1 s (500
time points). Figure 149.4 shows the trajectories of the MC calculated from the data
in Fig. 149.3.

Fig. 149.3 EEG data of one
channel (O1). Top: the raw
data, bottom: the same
channel’s data after filter in
same time epoch
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Fig. 149.4 Trajectory of 0.1 s
data (50 time points) alpha
burst. left: the raw data
directly, right: the same time
epoch data after filtering

Result and Discussion

Figures 149.4 and 149.5 show that there exist obvious differences between the two
conditions. According to Fig. 149.5, the filtered trajectory [Fig. 149.5 (right)] is
more regular than the raw data one [Fig. 149.5 (right)]. Currently, more and more
evidences show that the alpha rhythm state is not a simple rest state. It belongs to
some specific functional brain states. For example, the traveling alpha wave was as-
sumed being a phenomenon of an un-detailed underlying scanning mechanism [8],
so the trajectory distribution of the traveling wave shouldn’t be a purely stochastic.

Based on Fig. 149.5, the average velocity [4] and fractal dimensions [9] of the
velocity and trajectory were calculated over the 12 subjects, the results are shown
in Table 149.1. The fractal dimension of the velocity and trajectory are significantly
smaller after filtering than the raw data. For the mean velocity, there is no significant
difference but the standard deviation is smaller after filtering. All these results indi-
cate that the filtered one is more regular that is more possible to take responsibility
for a meaningful brain function.

As shown by Fig. 149.2, though the power of the alpha rhythm is big for an
alpha burst, the power of the low frequency band is large too. In fact, the low
frequency band is the more basic background of the raw EEG. According to this
phenomenon, when we explore the behaviors of a specific high frequency band, a
band filter should be adopted to reduce the influence came from the low frequency.

Fig. 149.5 Trajectories of 4 s
data (2000 time points). Left:
the raw data directly, right:
the same time epoch data
after filtering

Table 149.1 Velocity and fractal dimension of the trajectory

Mean velocity (m/s) Fractal dimension
of velocity

Fractal dimension
of trajectory

Unfiltered 3.562± 0.96 1.574± 0.022 1.706± 0.044
Filtered 3.436± 0.33 1.507± 0.017 1.557± 0.140
Statistics test F = 0.03, P = 0.8735 F = 67.57, P < 0.001 F = 12.34, P < 0.002
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Commonly, when calculating the alpha rhythm, the band pass filter 8–13 Hz was
adopted. However, for each individual, the actual alpha rhythm band was different.
If we treat the alpha band of every body as the same, the genuine alpha information
might be missed. In this work, to avoid the bias coming from calculating, individual
alpha band filter was adopted in studying the mass center of alpha waves. The above
primary results indicate that the band filter may help us to get a more regular and
meaningful result.
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Chapter 150
Differentiate Negative and Positive
Schizophrenia Using Support
Vector Machine

Ming Ke, Hui Shen, Baojuan Li, Zongtan Zhou and Dewen Hu

Abstract In the present study, we identified the correlative pattern of gray matter
distribution that best discriminates between positive and negative schizophrenia pa-
tients, which might provide additional information to psychiatric diagnostic system
for mental disorders. First, we applied the voxel-based morphometry (VBM) to
compare the gray matter distribution between negative and positive schizophrenia
patients. Second, we trained the support vector machine (SVM) to obtain a clas-
sification model that classified 20 positive and 11 negative schizophrenic patients.
The results showed that 84% subjects were correctly classified. We demonstrated
that the united method of VBM and SVM would provide a useful tool for clinical
diagnostic systems.

Keywords Positive schizophrenia · negative schizophrenia · support vector
machine · classifiers · voxel-based morphometry

Introduction

Although almost one century’s efforts to understand the neuropsychology and
etiology of schizophrenia have produced exciting results, current operational di-
agnostic systems for the disease are based solely on clinical manifestations. In
recent years, many neuroimaging studies have suggested that significant structure
changes in some brain regions in schizophrenia may provide additional information
for clinic diagnostic systems as an assistant and comparatively stable diagnostic
tool. Moreover, the discriminating experiments based on the spatial pattern of gay
matter distribution enable higher correct classification rate than that only based on
morphological parameters [1].

In the present work, we hypothesized that the characteristic distribution of re-
gional brain tissue change in schizophrenia patients would contribute to discriminate
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them. Application of VBM would capture the spatial pattern of tissue distribution in
feature selection step. Then we used SVM to categorize the two distinct symptoms
in classification procedure.

Method and Materials

Subjects

Twenty-eight right-handedness positive schizophrenic patients and nineteen right-
handedness negative schizophrenic patients participated in this study. All the sub-
jects were randomly assigned to two independent groups. The first group included
eight positive patients and eight negative patients, which would use for training set.
The second group included 20 positive patients and 11 negative patients, which
would use for testing set.

MRI Acquisition and Preprocessing

All the MRI measurements were performed with a 1.5T GE Signa System (GE
Signa, Milwaukee, Wisconsin, USA). The images were acquired with the param-
eters: TR= 12 s, TE= 4.2 ms, FOV= 24 cm, FA= 15◦, matrix = 256× 256× 172,
slice thickness= 1.8 mm, no gap.

The obtained images were preprocessed with the standard VBM [2] in the sta-
tistical parametric mapping software package (SPM2, http://www.fil.ion.
ucl.ac.uk/spm). The whole brain images of every subject were normalized to
the standard T1 template in MNI space and segmented into gray matter, white matter
and cerebrospinal fluid. The gray matter images then were spatially smoothed with
an 6mm FWHM Gaussian kernel.

Statistical Analysis

The gray matter images in the first groups were submitted to a second-level random-
effect two-sample t-test framework. The statistical significance was evaluated be-
tween positive schizophrenics and negative schizophrenics in the first groups.

Classification Analysis for Two Subtypes by Using SVM

Here, we addressed classification of subjects between positive and negative patients
by a general methodology which took two steps, as follows:

In the feature selection step, we firstly created a mask from t-statistical con-
trast map in the previous statistical analysis. In this contrast map, a single voxel,
which was exceed the threshold based upon a P = 0.001 (uncorrected) level of
significance, would be set 1 instead of the original t value. The remains would set 0.
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Then, every subject GM image in the first group was processed by the mask obtained
just now and the eigenimage of each subject in the first group was get.

Next, the support vector machines (SVM) using libsvm software (http://
www.csie.ntu.edu.tw/∼cjlin/libsvm) [3] was applied to the first group
(the training set) and the second group (the testing set). The detailed description of
SVM can be found in [4].

The choice of kernel and the parameter C is most important in SVM. We found
the optional parameters by using grid search (GS) and selected Gaussian radial ba-
sis (RBF) kernels for statistical analysis. A measure to validate the generalization
capability of the discrimination method would be achieved by using five-fold cross-
validation approach.

Results

The results of group comparison between the positive and negative schizophren-
ics revealed that lower gray matter concentrations included the bilateral frontal re-
gions, left temporal region, left occipital region, and bilateral cerebellum. While
there were no significant increase gray matter concentrations in negative patients.
Fig. 150.1 show the statistical parametric map in maximal projections and the coor-
dinate locations.

As show in Fig. 150.2, 84% subjects were correctly classified, of which 17 of the
20 positive schizophrenia patients and 9 of the 11 negative schizophrenia patients,
respectively.

Fig. 150.1 SPM{t}
statistically significant voxels
with decrease gray matter
concentrations in positive
schizophrenics compared
with negative schizophrenics

Fig. 150.2 The results of
classification for contrasts
between positive and negative
schizophrenics. The blue dots
present the correct samples of
positive schizophrenics. The
red triangles present the
correct samples of negative
schizophrenics. The green
short lines present the false
samples of positive
schizophrenics. The magenta
rectangles present the false
samples of negative
schizophrenics
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Discussion

Our data-driven analysis using the VBM and SVM method effectively specified the
discrimination between positive and negative schizophrenic patients. This is the first
application on classifying the two subtypes of schizophrenia patients. In our study,
eigenimage from the results of VBM reflected significant morphological differences
between two subtype patients. The group from our results comparisons between two
subtypes schizophrenia are in accordance with these earlier reports [5].

The favorable classification of the positive and negative patients by using SVM
appeared useful for overcoming the limitations of the previous studies. Moreover,
The approach of K-fold cross-validation [6] has an advantage of using as much data
as possible and covering effectively the entire data set. Five-fold cross-validation
was applied in this study and the accuracy of generalization achieved 80% by using
all the data.

In summary, we provided a united method of VBM and SVM for classifying fa-
vorably the positive schizophrenic patients from the negative schizophrenic patients.
Further study would be focused on application of the present method as an assistant
and comparatively stable diagnostic tool.
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Chapter 151
Detecting Nonlinearity in Wrist Pulse
Using Delay Vector Variance Method

Jianjun Yan, Yiqin Wang, Chunming Xia, Fufeng Li and Rui Guo

Abstract The cardiovascular system is known theoretically to contain many nonlin-
earities. Delay Vector Variance method is a novel method for detecting nonlinearity
of time series, which can detect the nonlinearity of the original time series com-
paring test data to surrogate data. This method provides a new approach for wrist
pulse analysis based on the local predictability in phase space. In this paper the wrist
pulse signals of healthy group and coronary heart disease group are analyzed and
studied with the Delay Vector Variance method, the results indicated that there is
distinct difference between two groups of wrist pulse signals from DVV plots and
test statistics, most of the wrist pulse signals of the coronary heart disease group are
nonlinear, while the wrist pulse signals of the healthy group are commonly linear.

Keywords Wrist pulse · delay vector variance · surrogate data · nonlinear · coronary
heart disease

Introduction

The blood forced in the aorta during systole not only moves the blood in the vessels
forward but also sets up a pressure wave that travels along the arteries. The pressure
wave expands the arterial walls as it travels, and the expansion is palpable as the
pulse. Pulse amplitude and waveform morphology contain important physiological
information reflecting the status of the heart and the vascular system.

The mechanisms regulating the cardiovascular system are known theoretically
to contain many nonlinearities [1]. Yet the dominant techniques for analyzing time
series – for example, spectral analysis – are based on the assumptions of linear dy-
namics. The ultimate resolution to this dilemma may come in the form of improved
time series analysis techniques that can cope optimally with nonlinearities. Linear
analysis techniques are not capturing all of the information in the time series.
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The Delay Vector Variance method is a novel method for detecting the nonlin-
earity of the time series. In this paper the wrist pulse signals of two group people
are analyzed and studied with the Delay Vector Variance method, and the results are
discussed.

Delay Vector Variance

The Delay Vector Variance method is a novel analysis of a time series which exam-
ines the predictability of a time series by virtue of the observation of the variability
of the targets. The approach is somewhat related to the false nearest neighbors [2]
and the � − ε methods. For a given embedding dimension m, the mean target vari-
ance, �∗2, is computed over all setsΩk . A setΩk is generated by grouping those DVs
that are within a certain distance to x(k), which is varied in a manner standardized
with respect to the distribution of pairwise distances between DVs. In this way, the
threshold scales automatically with the embedding dimension m, as well as with the
dynamical range of the time series at hand, and thus, the complete range of pairwise
distances is examined. For a given embedding dimension m, the DVV algorithm can
be summarized as follows:

1. Map the original time series from time domain to a set of delay vectors (DVs) in
phase space, x(k) = [xk−�m, . . ., xk−�]T,k = 1, . . ., N −m + 1, where N denotes
the length of the time series and � denotes the time lag which for convenience is
set to unity in all the simulations and the corresponding target xk ;

2. The mean �d and standard deviation �d are computed over all pairwise Euclidean
distances between DVs, ||x(i)− x( j)||(i �= j);

3. The sets �k(rd ) are generated such that �k(rd ) = {x(i)|||x(k)− x(i)|| ≤ rd}, i.e.,
consisting of all DVs that lie closer to x(k) than a certain distance

rd (n) = μd − ndσd + (n − 1)
2ndσd

Ntv − 1
; n = 1 : · · · : Ntv. (151.1)

where Ntv denotes how fine the standardized distance is uniformly spaced, and
nd is a parameter controlling the span over which to perform the DVV analysis;

4. For every set �k(rd ), the variance of the corresponding targets, σ 2
k (rd ), is com-

puted. The average over all sets �k(rd ), normalized by the variance of the time
series, σ 2

x , yields the ‘target variance’, �∗2(rd ):

σ ∗2(rd ) =
1
N

∑N
k−1 σ

2
k (rd )

σ 2
x

(151.2)

Only consider a variance measurement valid, if the set �k(rd ) contains at least N0 =
30 DVs, since too few points for computing a sample variance yields unreliable
estimates of the true variance.
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The idea behind the DVV method is that if two DVs of a predictable signal lie
close to one another in terms of their Euclidean distance, they should also have
similar targets. The smaller the Euclidean distance between them, the more simi-
lar targets they have. Therefore, the presence of a strong deterministic component
within a signal will lead to small target variances for small spans rd. The minimal
target variance, σ ∗2

min = minrd [σ ∗2(rd )], is a measure for the amount of noise present
within the time series. Besides, the target variance σ ∗2

min has an upper bound which
is unity. This is because, when rd becomes large enough, all DVs belong to the
same set �k(rd ). Thus, the variance of the corresponding target of those DVs will
be almost identical to that of the original time series.

As a result of the standardisation of the distance axis, the resulting ‘DVV plots’
are easy to interpret. The presence of a strong deterministic component will lead to
small target variances for small spans. At the extreme right, the DVV plots smoothly
converge to unity, since for maximum spans, all DVs belong to the same set, and the
variance of the targets is equal to the variance of the time series. If this is not the
case, the span parameter, nd , should be increased [3].

In the following step, the linear or nonlinear nature of the time series is examined
by performing DVV analyses on both the original and a number of surrogate time
series, using the optimal embedding dimension of the original time series. Due to
the standardisation of the distance axis, these plots can be conveniently combined
in a scatter diagram, where the horizontal axis corresponds to the DVV plot of the
original time series, and the vertical to that of the surrogate time series. If the sur-
rogate time series yield DVV plots similar to that of the original time series, the
‘DVV scatter diagram’ coincides with the bisector line, and the original time series
is likely to be linear. The deviation from the bisector line is, thus, an indication of
nonlinearity, and can be quantified by the root mean squared error (RMSE) between
the �∗2s of the original time series and the �∗2s averaged over the DVV plots of the
surrogate time series. In this way, a single test statistic tDVV is obtained [3]:

t DV V =

√√√√√√√√√

〈
⎛

⎜⎜⎜⎝σ
∗2(rd )−

Ns∑
i=1

σ ∗2
s,i (rd )

Ns

⎞

⎟⎟⎟⎠

2

〉

validrd

(151.3)

where σ ∗2
s,i (rd ) is the target variance at span rd for the ith surrogate, and the average

is taken over all spans rd that are valid in all surrogate and original DVV plots.

Detection of Nonlinearity of Wrist Pulse with Delay
Vector Variance

In order to examine the nonlinearity of wrist pulse signals of healthy group, 29 sets
of wrist pulse in the healthy group and 59 sets of wrist pulse in the coronary heart
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Fig. 151.1 Wrist pulse wave of: (a) a healthy person; (b) a patient with coronary heart disease

disease group are analyzed with Delay Vector Variance, and the statistical results
of the samples are obtained. Typical wrist pulses in the two groups are shown as
Fig. 151.1.

Figure 151.2 illustrates the signal nature of these wrist pulse signals. The diagram
is DVV plots, which are obtained by plotting the target variance as a function of
standardised distance. The diagram in Fig. 151.3 represents DVV scatter diagram,
obtained by plotting the target variance of the original data against the mean of the
target variances of the surrogate data where error bars denote the standard devia-
tion of the target variance of surrogate data. From the Fig. 151.3a, the DVV scatter
diagram for a wrist pulse signal in the healthy group lies on the bisector line, indi-
cating its linear nature; while for a pulse wave signal of the coronary heart disease
it deviates from the bisector line in Fig. 151.3b, indicating its nonlinear nature.

In healthy group, there are 76% of sets with tDVV less than 0.04; it indicates
that a majority of the wrist pulse signals of healthy group are linear. In the coronary
heart disease group, there are 80% of sets with tDVV greater than 0.04, it indicates
that most of the wrist pulse signals of coronary heart disease group are nonlinear.
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Fig. 151.2 DVV plot of the wrist pulse of: (a) a healthy person; (b) a patient with coronary heart
disease
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Fig. 151.3 DVV scatter diagram of the wrist pulse of: (a) a healthy person; (b) a patient with
coronary heart disease

Summary

The cardiovascular system is known theoretically to contain many nonlinearities.
Delay Vector Variance method is a novel method for detecting nonlinearity of time
series, it can be estimated whether the original time series is nonlinear with com-
paring test data to surrogate data. This method provides a new approach for pulse
wave analysis based on the local predictability in phase space. In this paper the pulse
wave signals of two group people are analyzed and studied with the Delay Vector
Variance method, the results indicated that there is distinct difference between two
group of wrist pulse signals from DVV plot and test statistics, most of the wrist
pulse signals of the coronary heart disease group are nonlinear, while the wrist
pulse signals of the healthy group are commonly linear. Kaplan mentioned in [1]
that the interaction of many cardiovascular feedback loops, together with random
environmental influences, may eliminate detectable traces of nonlinearity from the
time series, even though the time series is caused by nonlinear mechanisms. But the
mechanism of difference of wrist pulse’s nonlinearity between healthy persons and
coronary heart disease patients need further study.
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Chapter 152
Orthogonal Filter-Based Networks for Learning

Wieslaw Sienko and Wieslaw Citko

Abstract Design of mappings considered in this paper rely on multivariate func-
tion approximations with skew-symmetric kernels and, due to regularization, can
be implemented for any number of training patterns. Such kernels are implemented
by using HNN-based orthogonal filters, specifically by using 8-dim building blocks
(design with best adapted basis).

Keywords Supervised learning · mapping approximations · hamiltonian neural
networks · orthogonal filters

Introduction

The problem of learning represents a gateway to understanding intelligence in both
brains and machines. Many believe that supervised learning will become a key
technology for extracting and classifying information from the data around us. Su-
pervised learning techniques, i.e. the learning from examples, can be implemented
as mappings y = F(x) relying on the fitting of experimental data pairs {xk , yk}. A
number of models in the form of networks for learning, implementing the supervised
learning techniques, have been proposed in literature. Recently, some general learn-
ing techniques relying on multivariate function approximation have been proposed
[1]. Regularization theory has been introduced as a natural framework for solving
ill-posed problems of approximation. Relying on the Regularized Least Squares
Classification (RLSC) concept, some novel structures of networks for learning have
been considered [2, 3]. These structures are specific to using the Hamiltonian Neural
Networks (HNN) based spectrum analysis, recognition and memorization, giving
rise to mapping implementations with skew-symmetric kernels. The purpose of this
paper is to present, how very large scale networks for learning can be designed
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by using HNN-based orthogonal filters, and, specifically, by using 8-dimensional
building blocks.

RLSC Basics

Learning issues can be seen as a special problem in multivariate approximations.
Specifically, starting with training data (xi, yi)m

i = 1, where input vectors xi ∈
X ⊂ Rn and yi ∈ Y ⊂ R, one synthesizes a function which best represents rela-
tion between the input xi and yi. According to [1] the most general approximation
algorithm (RLSC) in learning theory can be formulated by the following equation:

Define f: X→ Y by

f(x) =
m∑

i=1

ci Kxi (x) (152.1)

where: c = [c1, c2, . . ., cm]T, ci ∈ R and kernels KX i(x) are definite functions con-
tinuous on X× X.

Our purpose here is to show, how a mapping (or classifier) can be implemented in
the form of a composition of HNN based spectrum analysis. Spectrum analysis can
be treated as a transform from input signal space into a feature space. We propose
to define the following kernel Kxi (x)[2]:

Kxi (x) = �(xT
i Hnx) (152.2)

where: xT
i = [x1, . . ., xn], xi ∈ !n is i-th training vector, Hn is orthogonal and

skew-symmetric (Hurwitz-Radon matrices) i.e.:

xT
i Hnxi = 0, xT

i Hnx j = −xT
j Hnxi (152.3)

�(·) is an odd function. Thus, the matrix K = {Ki, j } = {Kxi (x j )} is skew-
symmetric.

One of the possible architectures, implementing Eq. (152.1) with kernels
Eq. (152.2), forms a set of perceptrons, memorizing training vectors xi , as shown in
Fig. 152.1, where output u denotes Haar spectrum of input vector x and block Hn

denotes the HNN based spectrum analyzer. Moreover, x and u are orthogonal, i.e.
(x,u) = 0.

Fig. 152.1 Structure of
function approximator
(network for learning)
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Fig. 152.2 Activation
functions of perceptron

Thus, in the case of a kernel given by Eq. (152.2), Eq. (152.1) approximates the
unknown function by a superposition of perceptrons, each designed at the location
xi of one of the m training points, for any m. The key problem in design of the
approximator is the solvability of equation:

K c = y (152.4)

where: y is the vector with yi coordinates.
It is well known that, since K is skew-symmetric, the design Eq. (152.4) can be

ill-posed.
Hence, we propose the following regularization of matrix K:

KR = (γ 1+K) (152.5)

where: � �= 0 for odd m, � ∈ ! for even m.
Then, assuming � �= 0, the following equation is well-posed for any m and

strictly well-posed for even m:

KRc = y; c = K−1
R y (152.6)

It is easy to see that, for error free approximation, the activation functions �(·)
of perceptrons should be endowed with a “superconducting impulse” � as shown in
Fig. 152.2b.

Due to the properties of the matrix KR , a solution of key Eq. (152.6) exists for
any m (number of training points or patterns).

Design with Best Adapted Basis

The function approximator (network for learning) from Fig. 152.1, based on spec-
trum analysis and pattern memorization, is generally valid for even dimension n and
any number of patterns m. Due to losslessness of block Hn (HNN) in Fig. 152.1 this
structure should be rather treated as pictorial representation of an algebraic algo-
rithm. Hence, it gives rise to questions about how such a structure could be seen as
biologically inspired and implementable by stable, dynamical systems in the form
of neural networks. We propose the following solution: For physical realizability
of HNN one should rely on HNN-based orthogonal filters, as shown in Fig. 152.3,



876 W. Sienko, W. Citko

x u
2

HNN 
Hn

HNN 
Hn

+ +

–1–1

Hn

Fig. 152.3 Haar spectrum analyzer by using two orthogonal filters

where implementation of block Hn through cascade connection of two orthogonal
filters, is presented, as well.

Moreover, we propose here to implement HNN-based orthogonal filters by com-
patible connection of 8-dimensional building blocks. The state space equation of
such a building block (i.e. 8-dim HNN-based orthogonal filter) is given by:

•
z= W�(z)+ x (152.7)

where: weight matrix W fulfils:

W = H8 − h01; H8
2 = −1, h0 > 0 (152.8)

It easy to see that such an orthogonal filter sets up the following orthogonal trans-
formation:

y = �(z) = 1

1+ h2
0

(H8 + h01)x (152.9)

and due to the structure of H8:

H8 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 h1 h2 h3 h4 h5 h6 h7

−h1 0 h3 −h2 h5 −h4 −h7 h6

−h2 −h3 0 h1 h6 h7 −h4 −h5

−h3 h2 −h1 0 h7 −h6 h5 −h4

−h4 −h5 −h6 −h7 0 h1 h2 h3

−h5 h4 −h7 h6 −h1 0 −h3 h2

−h6 h7 h4 −h5 −h2 h3 0 −h1

−h7 −h6 h5 h4 −h3 −h2 h1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(152.10)

the columns (and rows) constitute the orthogonal basis, i.e. the output vector y =
�(z) gives the Haar spectrum of x. Moreover, for given x0 = [x1, . . ., x8]T and
y0 = [y1, . . ., y8]T one sets up so called best adapted basis:
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Fig. 152.4 Implementation
of perceptron by orthogonal
filters

.

.

.

Orthogonal 
filter 

(m y1)

+

y = (m, x)

x+

y = (m, x)m1

.

.

.

m8

1
.
.
.

1
y1 = [1, … ,1]

x

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0

h1

h2

h3

h4

h5

h6

h7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1
8∑

i=1
x2

i

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 y2 y3 y4 y5 y6 y7 y8

−y2 y1 −y4 y3 −y6 y5 y8 −y7

−y3 y4 y1 −y2 −y7 −y8 y5 y6

−y4 −y3 y2 y1 −y8 y7 −y6 y5

−y5 y6 y7 y8 y1 −y2 −y3 −y4

−y6 −y5 y8 −y7 y2 y1 y4 −y3

−y7 −y8 −y5 y6 y3 −y4 y1 y2

−y8 y7 −y6 −y5 y4 y3 −y2 y1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

x7

x8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(152.11)

It means that given x0 is transformed into given y0(x0 → y0) by the orthogonal
filter with weight matrix given by Eq. (152.11). Thus, a classical perceptron per-
forming a scalar product can be implemented by orthogonal filter with best adapted
basis (x0 → y0), as shown in Fig. 152.4:

It is worth noting, that the implementation in Fig. 152.4 relies on a linear sum-
ming of the output spectrum of the orthogonal filter. Thus, structure of network
from Fig. 152.1 can be implemented by compatible connection of 8-dim orthogonal
filters.

Conclusion

The main issue considered in this paper is the design of mappings. Mappings de-
signed here rely on multivariate function approximations with skew-symmetric ker-
nels, giving rise to very large scale networks for learning. Kernels utilized in func-
tion and mapping approximation are implemented by using HNN-based orthogonal
filters and, specifically. by using 8-dim building blocks (design with best adapted
basis). Thus, a network for learning, here designed, can exist as numerically stable
algorithms or physical devices, performing their functions in real-time. Moreover,
integrator implementations, as proposed here, can be transformed one-to-one, to
phase-locked loops (PLL) structures [3]. To our knowledge, orthogonal filter-based
information processing can be considered as inspired by biological systems [4].
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Chapter 153
Modeling and Simulation of Foreign Body
Reactions to Neural Implants

Jianzhong Su, Humberto Perez Gonzales and Liping Tang

Abstract The fibrotic capsulations to neural implant within brains are found to sub-
stantially reduce the effectiveness of the devices. While in vitro and in vivo exper-
iments can single out each of the steps in foreign body reaction process leading to
the formation of fibrotic tissue surrounding implants, we need the predictive power
to analyze the outcome of multiple interactive complex kinetics of various factors
and processes and to understand its dynamical behavior during the entire period (up
to several months). A mathematical model is constructed to facilitate such a need
and to complement experimental work. We report that preliminary simulation re-
sults have been consistent with experimental data and the model can provide useful
information for future design of implant device.

Keywords Mathematical model · fibrosis · medical implants · foreign body
reactions

Introduction

Mathematical modeling and simulation have been increasingly recognized as a pow-
erful tool for studying signal transduction mechanism and related system biology,
by utilizing the large volume of experimental data. In devising novel application
of human implants, solely identifying one or one group molecular targets among
the complex signaling machinery is not enough. Further, the timing and strength of
the signals that carry their information contents need to be assessed quantitatively
[1]. The models that we are presenting, can reveal information content that resides
within the signals’ dynamics, i.e. the transient interactions rather than simple steady
states relations. As an application, the predictive power can determine quantitatively
how to influence adherent monocytes, macrophages, and foreign body giant cells to
minimize the recruitment of fibroblasts and/or produce matrix metalloproteinases to
degrade the fibrotic capsules on the implants.

J. Su
Department of Mathematics, University of Texas at Arlington, Arlington, Texas 76019, USA
e-mail: Su@uta.edu

R. Wang et al. (eds.), Advances in Cognitive Neurodynamics,
C© Springer Science+Business Media B.V. 2008

879



880 J. Su et al.

Despite of the numerous studies in the subject area, there are few realistic
and kinetics-based mathematical models. Previous studies had developed models
to investigate cell-cell adhesion, the spatial interactions between tumor-associated
macrophages, tumor cells, and normal tissue cells, and the role of macrophages in
angiogenesis ([2] and references therein). To fully account for the network effects
of the coagulation and collagen formation, a detailed system consisting of kinetics
of all major growth factors, platelet and others were modeled by Kuharsky and Fo-
gelson [3], and others. The basic reactions of collagen formations were considered
in previous modeling study [4, 5] and their corresponding kinetics were based on a
logistics equation for fibroblast proliferation. Their reaction equations were simpli-
fied in a certain way that activations rate were linear function. To modify the specific
behavior of the phosphoinositide (PI) 3-kinase pathway, Haugh et al. [6] and others
had modeled a more realistic activation and proliferation of fibroblast.

Our model will follow the work of Kuharsky and Fogelson [3] and that of Dale
et al. [4] not only to be inclusive of various growth factors and adherent cells, but
also to be realistic in terms of activations and proliferation and migration of cells,
similar to Haugh [6].

Physical Background of Model

We have selected our mathematical model based on the previous modeling work of
Dale et al. [4], Kuharsky et al. [3] and Haugh [6]. The basic principles of the system
are the chemical kinetic equations of the protein-cell and cell-cell reactions. The
implant site contains enzymes which activate latent growth factors and also initiate
the stabilization of collagen precursors [7]. Similar to other collagen formation such
as dermal wound healing, collagenase is synthesized and secreted by fibroblasts
as a ‘zymogen’ [8], but collagen degradation cannot occur until the zymogen is
activated. These basic reactions were considered in previous study [4, 5] and their
corresponding kinetics is incorporated in our modeling.

We show below several representative equations of a large system of 69 equa-
tions. The active forms of TGFβ isoform 1 and isoform 3 β1(t), β3(t) undergo
rapid decay and they are also transformed from inactive forms of TGFβ, namely
l1(t), l3(t) under the activation of specific enzyme e1(t). Use the law of mass action,
their relations are:

�β1

�t
= k12e1l1 − k13β1 (153.1)

�β3

�t
= k14e1l3 − k15β3. (153.2)

Now these enzymes e1(t), e2(t), e3(t) are activated by latent forms of TGFβ : l1(t)
and l3(t), latent forms of collagens (i.e. procollagens) p1(t) and p3(t) and collage-
nases z1(t) and z3(t) respectively and satisfy their corresponding kinetics equations.
Eventually collagens 1 and collagen 3 fibers are transformed from procollagen 1
and procollagen 3 fibers (p1(t) and p3(t) respectively), under the actions of enzymes
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e2(t). Collagenases (s1(t) and s3(t) respectively) gradually degrade collagen 1 and
collagen 3. We use law of mass-action to describe the kinetics

�c1

�t
= k28 p1e2 − k29s1c1 (153.3)

�c3

�t
= k30 p3e2 − k31s3c3; (153.4)

Some specific modifications have been made for foreign body reaction process. For
example, the activation rate of fibroblast r = (k1+ k2β1+ k3β3) was a simple linear
function of β1(t), β3(t) in previous studies [4]. We have modified fibroblast kinetics
according to the limiting activation [6] so that

�u

�t
= c1(k1 + k2β1 + k3β3)2

1+ k1 + k2β1 + k3β3 + (k1 + k2β1 + k3β3)2
u

(
1− u

k0

)
− A4u. (153.5)

Shown below are the major components of the kinetics model.

Simulated Collagen Formation Kinetics

The majority of reaction parameters is obtained from literatures (for example, the
earlier models by Dale et al. [4], Kuharsky and Fogelson [3] and Haugh [6], respec-
tively) and some parameter are determined by simulating the systems and comparing
with the experiments results.

The numerical code, based on Matlab, can simulate the entire system reactions up
to several months. The calculation time is about 2 min. We demonstrate the simulated



882 J. Su et al.

Fig. 153.1 The comparison
of collagen of experimental
data (the average value of two
samples during a 28-day
period, unit: up/cm2) with a
simulated data from the
mathematical model

kinetics dynamics of collagen formation process in Figures inserted. We compare
the collagen measurements with simulated data from our model for first 30 days in
Fig. 153.1. In Fig. 153.2, we depict the kinetics dynamics of various variables in
collagens, procollagens, collageneses, active and latent isoforms of TGFβ etc.

Fig. 153.2 The simulated kinetics dynamics of various variables in collagens, procollagens, colla-
geneses, active and latent isoforms of TGFβ etc., during first 30 days
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The code is also capable to systematically test all combinations of parameter
values and to find the correct parameters to fit the experimental data. This code can
help to find multiple pathways for activate fibroblast proliferation and the collagen
formation. Our preliminary date presented here showed the feasibility of our model
as a predictive tool for the purpose of studying collagen formation/or fibrotic reac-
tions to implants.
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Chapter 154
Transiently Chaotic Neural Network
with Variable Thresholds for the Frequency
Assignment Problem in Satellite
Communications

Wen Liu, Haixiang Shi and Lipo Wang

Abstract We proposed a transiently chaotic neural network with variable thresholds
(TCNN-VT) by mapping the optimization problem onto the thresholds in the self-
feedback terms of the neural network. This TCNN-VT model consists of N × M
noisy chaotic neurons for an N -carrier-M-segment frequency assignment problem
(FAP). The application of this new model on the FAP in satellite communications
shows better performance compared with existing techniques, especially in large-
scale problem.

Introduction

For the frequency assignment problem (FAP) in satellite communications, Mizuike
and Ito [1] divided the carrier to consecutive unit segments and proposed seg-
mentation of frequency band. Funabiki and Nishikawa [2] solved the FAP with a
gradual neural network (GNN), where cost optimization is achieved by a gradual
expansion scheme and a binary neural network is in charge of the satisfaction of
constraints. Salcedo-Sanz et al. combined the Hopfield network with simulated an-
nealing (HopSA) [3] and the genetic algorithm (NG) [4] for the FAP. However, as
a kind of hybrid algorithms, the computational cost of the HopSA and the NG are
increased compared with the GNN [2, 3].

Chen and Aihara [5] proposed a transiently chaotic neural network (TCNN) by
introducing transiently chaotic dynamics into the Hopfield neural network (HNN)
[6]. With decaying of the self-feedback connection, TCNNs are more effective in
solving combinatorial optimization problems compared to the HNN [7]. We further
develop the TCNN by proposing a transiently chaotic neural network with variable
thresholds (TCNN-VT). The thresholds are designed to minimize the largest inter-
ference after frequency rearrangements.

This paper is organized as follows. We propose the TCNN-VT and described
the formulation of the TCNN-VT on the FAP in Section “Transiently Chaotic
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Neural Networks with Variable Thresholds.”. Simulation results are presented in
Section “Simulation Results and Discussion”. Finally, we conclude this paper in
Section “Conclusion”.

Transiently Chaotic Neural Networks with Variable Thresholds

In the self-feedback term of the TCNN [5], the threshold I0 is constant positive.
We propose the TCNN-VT by varying the threshold with the interference of the
assignment which firing of the neuron represents and denote it as I (0)

i j :

I (0)
i j = 1− di j

di,max
(154.1)

where di j is the element on row i column j of the cost matrix D, and di,max is the
maximum value in row i . Cost matrix D = (di j , i = 1, . . . , N ; j = 1, . . . , M) is
obtained from the interference matrix E (I ) [2].
Hence, the new TCNN-VT model is described as:

xi j (t) = 1

1+ e−yi j (t)/ε
(154.2)

yi j (t + 1) = kyi j (t)+ α
⎛

⎝
N∑

p=1, p �=i

M∑

q=1, q �= j

wi j pq x pq (t)+ I

⎞

⎠− z(t)
[
xi j (t)− I (0)

i j

]

(154.3)

where xi j and yi j is the output and the internal state of neuron i j , respectively. ε is
the steepness parameter of the neuron activity function (ε > 0). k is the damping
factor of the nerve membrane (0 ≤ k ≤ 1). wi j pq is the connection weight from
neuron i j to neuron pq and is determined [8] by the energy function (154.4). Fur-
thermore, α is the positive scaling parameter for inputs. z(t) is the self-feedback
neuronal connection weight (z(t) ≥ 0), z(t + 1) = (1 − β)z(t). β is the damping
factor (0 ≤ β ≤ 1). I is a positive input bias.

The objective of the FAP includes two part, i.e., minimization of the largest inter-
ference after reassignment and minimization of the total accumulated interference
between systems [1, 2, 3]. According to [1, 2, 9], the energy function for the TCNN-
VT of the FAP is defined as:

E = W1

2

N∑

i=1

⎛

⎝
M∑

j=1

xi j − 1

⎞

⎠
2

+ W2

2

N∑

i=1

M∑

j=1

N∑

p=1
p �=i

min( j+ci−1,M)∑

q=max( j−cp+1,1)

xi j x pq

+ W3

2

N∑

i=1

M∑

j=1

xi j (1− xi j )+ W4

2

N∑

i=1

M∑

j=1

di j xi j (154.4)
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where Wi , i = 1, . . . , 4 are weighting coefficients. The W1 term forces that every
segment in system 2 is assigned to one and at most one segment in system 1. The
W2 term guarantees that all the segments of one carrier in system 2 are assigned
to consecutive segments in system 1 in the same order [2]. The W3 term is used to
force neuron outputs to approach 0 or 1 [9]. The W4 term is needed to optimize the
total interference. We convert the continuous output xi j to discrete neuron output xb

i j

according to the average value of neuron outputs. If the neuron output xb
i j is 1 at the

end of the neuron update, then carrier i is assigned to segment j , and no assignments
are made if xb

i j = 0.

Simulation Results and Discussions

An iteration is terminated once a feasible assignment is obtained or the number of
iteration steps exceeds 15,000. The specifications of the five instances from [2] are
listed in Table 154.1.

The choices of these parameters are similar to those used in other optimization
problems [5, 7] as follows: ε = 0.004, k = 0.99, α = 0.0015, β = 0.001, and
z(0) = 0.1. Initial inputs yi j (0) are randomly generated from [−1, 1]. Values for
the weighting coefficients are chosen as follows: W1 = 1.0, W2 = 1.0, W3 = 0.7,
W4 = 0.00015. The tuning of these weight coefficients is necessary to obtain better
performance.

We run the TCNN-VT on each instance 1, 000 times with different randomly
generated initial neuron states. Table 154.2 shows results for every instance, in-
cluding the largest interference, the total interference, and the convergence rate.
The convergence rate is the ratio at which the neural network finds a feasible so-
lution in 1,000 runs. The average iteration steps T and standard deviations are
also shown in this Table. The results show that the TCNN-VT is effective in re-
ducing the largest interference and total interference by rearranging the frequency
assignment.

Table 154.3 shows and the comparison of the TCNN-VT with the GNN [2] and
the HopSA [3]. We show that the TCNN-VT is comparable with the GNN in terms
of the largest interference and outperforms the GNN in terms of the total interfer-
ence. Compared with the HopSA, the TCNN-VT is more efficient.

Table 154.1 Specifications of the FAP instances used in the simulation

Instance Number of Number of Range of Range of
carriers N segments M carrier length interference

1 4 6 1–2 5–55
2 4 6 1–2 1–9
3 10 32 1–8 1–10
4 10 32 1–8 1–100
5 10 32 1–8 1–1000
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Table 154.2 The performance of the TCNN-VT on five instances. The interference is shown as the
best and average values (Best/ Ave). T is the average number of iteration steps. The convergence
rate is the ratio at which the neural network finds a feasible solution in 1,000 runs. “SD” stands for
“standard deviation”

Instance Largest Interference Total Interference T Convergence Rate
(Best/ Ave) (Best/ Ave) mean±SD (%)

1 30/ 35.4 100/ 112.6 1191 ± 273 100
2 4/ 4.8 13/ 15.4 1799 ± 317 100
3 7/ 8.4 96/ 130.6 2904 ± 96.5 92.4
4 70/ 94.1 828/ 1145 2716 ± 172.8 89.1
5 661/ 849 6910/ 9527 3075 ± 268 86.6

Table 154.3 Comparison of simulation results (largest interference and total interference) obtained
by the TCNN-VT, GNN and HopSA for instances 1 to 5

Instance GNN [2] HopSA [3] TCNN-VT

Largest Total Largest Total Largest Total

1 30 100 30 100 30 100
2 4 13 4 13 4 13
3 7 85 7 85 7 96
4 64 880 84 886 70 828
5 640 8693 817 6851 661 6910

Conclusions

We proposed a novel approach, i.e., the transiently chaotic neural network with vari-
able thresholds, to solve the FAP in satellite communications. The novel aspect of
the TCNN-VT is that the threshold in the self-feedback term of every neuron is
dependent on the interference of the frequency assignment which the neuron repre-
sents. Compared with other techniques, i.e. the GNN [2] and the HopSA [3], the
TCNN-VT is more efficient for the FAP in satellite communications, especially in
large-scale problem.
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Chapter 155
Sparse Coding of Visual Context

Jun Miao, Laiyun Qing, Lijuan Duan, Xilin Chen and Wen Gao

Abstract In the field of visual object search, most of past work is focused on
object-centered detection. A probable reason for seldom trying to use context is that
learning spatial relationship usually needs such a large memory that a practical sys-
tem generally cannot afford. This paper gives a discussion on sparse winner-take-all
coding of visual context between feature positions by a neural architecture for object
position perception. Some sparse features, such as extended Haar-like and extended
LBP (Local Binary Pattern) features, are explored for the visual context coding for
accuracy and speed. A group of experiments on the efficiency of the coding are
analyzed and discussed.

Keywords Sparse coding · visual context · object search · perception · cognition

Introduction

A lot of psychological experiments [1] support the theory that context is the way
that humans cognize the world. Furthermore, when humans perceive an image, e.g.
a human face image, only a few neurons in his visual cortex respond [2]. This is the
strategy of sparse coding for human’s visual neural system. Quit a few approaches
have been proposed for finding such sparse bases [3]. Some research work [4, 5]
have utilized context for object search. However, seldom has research work been
found to implement sparse winner-take-all coding of visual context in the form of
neuronal architecture. This paper tries to make some discussions on several ques-
tions: (1) properties of some typical sparse coding features (2) structure of sparse
coding for visual context; (3) performance of coding on spatial relationship between
initial positions and object position. The experiments on a real image database are
described and the global discussions are given in the last section.
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Sparse Coding Features

Bell and Sejnowski proved that independent components of natural scenes are edge
filters [6], which can be viewed as a kind of sparse bases for images. A set of features
called local binary patterns (LBP) [7] is also a type of sparse coding. We designed
two groups of features that are extended from the widely used features: Haar-like
features and LBP features (Fig. 155.1a,b).

Figure 155.1a shows a set of extended Haar-like features for receptive field =
2× 2 pixels. Two types of features are given: brightness (f0) and contrast (f1 ∼ f14).
Among them, the 14 contrast features are actually representing three kinds of geo-
metrical features, which are points, line segments and arcs with different positions
or orientations. A gray small box in the feature patterns in Fig. 155.1 represents
excitatory input with a positive weight and a black box represents inhibitive input
with a negative weight.

A set of extended LBP features are illustrated in Fig. 155.1b. Basic LBP is a
kind of binary code for representing one of 256 patterns for image blocks of 3 × 3
pixels. Original LBP only output a discrete number from 0 ∼ 255 to encoding an
image block pattern instead of producing a continuous comparable value for local
image pattern. We extend LBP features by assigning them continuous output with
the following definition:

fk(
→
x i) ≈

8∑

j=1

∣∣xij − xi9

∣∣

where vector
→
x i = (xi1, xi2, . . . , xi9) represent the i-th image block of 3× 3 pixels,

k is a discrete number among 0 ∼ 255, which responds to a 8-bit binary code

LBPk(
→
x i) = (bi1bi2 . . . bij . . . bi8), where

bij =
{

1 if (xij − xi9) > 0

0 otherwise

a. Extended Haar-like features                          b. Extended LBP features 
(receptive field=2×2 pixels) ( receptive field=3×3 pixels)

Fig. 155.1 Two sets of features that are extended from the widely used ones
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Sparse Coding Architecture for Visual Context

Visual context consists of two aspects: image objects and their spatial relationship.
So visual context coding means coding of image content and spatial relationship.
To reach this goal, a neural architecture for coding the visual context is constructed,
which is illustrated in Fig. 155.2a. The suggested coding framework consists of two
parts. One is image content coding, which inputs a local image from a group of
visual fields at different resolutions and coding the current local image with sparse
features. The second part is spatial relation coding, in which winner-take-all neurons
in the third layers memorize spatial relations between objects and their environments
in terms of horizontal and vertical shift distances (	x, 	y) from the center position
(x, y) in a current visual field. All the coding information is stored in the connecting
weights between neurons in different layers, which are learned with the Hebbian
rule. The two parts naturally incorporate into an entire one and cooperate to code
image content and spatial relationship in a repeated mode. Fig. 155.2b describes the
object search procedure using the visual context coding memory. The two parts of
the system cooperate to perceive and move gaze in a repeated mode until the system
acquires the full perception of the object with 0 shift distances (	x = 0, 	y = 0).

Local image
centerd with
position (x, y)

image
Sparse fearues 

responsing
Perception of
image content 

Perception of 
spatial relation
(delta x, delta y)

Move local image
center to new 
position by

(delta x, delta y)

(delta x,
delta y)
=(0,0)?No

Yes

End

a. Visual context sparse coding architecture b. Object position perception procedure

Fig. 155.2 Sparse coding of visual context and object position perception

Experiments

To study the efficiency and performance of visual context coding and object position
perception, two experiments on two systems (using extended Haar-like and LBP
features respectively) for searching and locating left eye centers are carried on the
still face image database of the University of Bern, which has totally 300 images
(320× 214 pixels) with 30 people (10 images each person) in ten different poses.

As illustrated in Figs. 155.3 and 155.4, coding was with a group of initial points
in even distribution while testing was with a group of initial points in random dis-
tribution. Given an initial position, the system was trained or tested to codes or
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Fig. 155.3 Training for
coding visual context
between eye center and a
group of initial positions in
even distribution

Fig. 155.4 Testing for
inferring eye center positions
from a group of initial
positions in random
distribution

Table 155.1 Performances of two systems (M: million)

Systems (sparse
feature used)

Number
of feature
neurons

Number of
coding
neurons

Number of connections
between feature neurons
and coding neurons (M)

Average
locating error
(pixels)

#1 #2 #1 #2 #1 #2

Extended Haar-like 2250 6026 18,988 13.5585 42.723 5.47 8.25
Extended LBP 980 3397 10,511 3.32906 10.30078 8.23 10.46

search the eye centers. In the first experiment (#1) for each system, 30 images of 30
people (one frontal image each person) were recorded with 368 initial gaze positions
on each image, and the rest of 270 images were tested at 48 random initial gaze
positions on each image. In the second experiment (#2) for each system, 90 images
of nine people (10 images each one) were recorded with 368 initial gaze positions
on each image, and the rest of 210 images were tested at 48 random initial gaze
positions on each image. The number of feature neurons in the second layer, the
number of coding neurons in the third layer, the number of connections between
feature neurons and coding neurons and the average locating error are listed in the
Table 155.1.

Discussion

In the 1st experiment in section ‘Experiments’, the two systems learned 6026 and
3397 local image object categories with about 13 and 3 million connections, which
seems quit large for the images with some human heads in the blank backgrounds.
Similar results can be found in the 2nd experiment. Visual context coding seems
a challenge in simulating the human vision system. To compare the winner-take-all
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coding mechanism introduced in this paper, population coding of visual context will
be studied and implemented in the future research.
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Chapter 156
Mark Design and Recognition
in Blind-Guiding System

Jihong Liu, Guannan Shao, Xinhe Xu and Soo-Young Lee

Abstract For convenience of the blind or asthenopia people visiting all kinds of
works in the museums or exhibitions, we design a blind-guiding system, and pro-
pose a novel artificial guiding mark. The method of new guiding mark’s design
and recognition is discussed. In order to use artificial vision to compensate blind
people’s vision, we make use of the cross-ratio invariance and the character of the
seven-segment number, to design an artificial guiding mark. It consists of six rect-
angles, a letter and a couple of seven-segment number, the six rectangles is used
to construct cross ratio detecting guiding mark, the letter and the seven-segment
number stand for the work’s code in the museum. In the process of camera imaging,
the cross ratio invariance ensures the reliability of the mark’s detection. The exper-
iment shows that the proposed method can be applied in the blind guiding system
efficiently.

Keywords Invariance · cross ratio · artificial guiding mark

Introduction

There are millions of blind or asthenopia people all over the world. In order to
improve blind people’s life quality and enhance the ability of getting information
from the environment, all counties in the world have been studying the blind-
guiding system. The purpose of studying and exploring blind’s system is to apply
the convenient, real time, high intelligent devices. The research in this field has great
significance, no matter in our society or future technology. With the improvement
of high-performance computer and high-precision optical appliance, vision guiding
becomes an advanced location and guiding technic in recent years. By contrast, the
artificial landmark-based guiding system with low-expense, easy-recognize, flexi-
bility, is focused by scholars all over the world [1].
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Various natures of invariants play an important role in pattern recognition of com-
puter vision. Cross ratio invariant is the most applicable invariants in all proposed
geometric invariants. Cross-ratio invariant has been applied to pattern recognition
on computer vision for a long time as the most fundamental projective invariant
[2, 3], but few apply this invariant to design landmark pattern.

For the purpose of helping blind or asthenopia people conveniently visiting in all
kinds of exhibition, we design this blind guiding system. In this system, the CCD
camera captures the front image of the blind people, the image-processing model
recognize the guiding mark designed by the certain rules, then identify the character
in the landmark, finally, the system broadcast the corresponding speech to explain
the work for the blind in their earphone. The paper will mainly introduce the guiding
mark’s design and recognition. The artificial guiding mark proposed in this paper
makes use of cross ratio invariants’ characteristic, and the recognition processing is
simulated in matlab 7.4.0 platform.

Cross Ratio Invariants Theory

The cross-ratio of four collinear points is invariable during the process of projective
mapping [4, 5]. And cross ratio value is preserved after the projection mapping,
linear scaling, rotation and transformation [6]. Figure 156.1a shows that A, B, C,
D is four collinear points in projection plane �0, A and B are general points, C
and D are general points or infinite far points. The definition of the four collinear

points A, B, C, D cross ratio is
AC
C B
AD
DB

, that is l = (A, B; C, D) =
AC
C B
AD
DB

. When the line

L is central-projected after O-centre projection, it is transformed into another line
L ′ in the projection plane �1; At the same time, the four points in line L is trans-
formed into A′, B ′,C ′, D′ in line L ′. The cross-ratio invariance of four collinear

points mean
AC
C B
AD
DB

=
A′C ′
C ′B ′
A′D′
D′B ′

, or (A, B; C, D) = (A′, B ′; C ′, D′).

(a) (b)

Fig. 156.1 (a) The cross-ratio of four collinear points. (b) Cross-ratio value is unchanged in dif-
ferent perspectives
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The distance between A′, B ′,C ′, D′ is quite different from the distance between
A, B,C, D but the line is invariable, O-centre, A, B,C, D determine four lines are
the same with O-centre, A′, B ′,C ′, D′ determine four lines. While the four lines can
be determined by their cross angles, so the cross ratio of four co-point lines can be
defined as Eq. (156.1).

(O A, O B; OC, O D) = sin ∠AOC/ sin ∠B OC

sin ∠AO D/ sin ∠B O D
(156.1)

It is showed above that the cross-ratio of four collinear points and the cross-ratio of
four co-point lines are preserved after central projection [5].

Design and Recognition of Guiding Mark

In general, a landmark should be designed with three key functions [7] which are de-
tection, localization and recognition. In order to detect and recognize the landmark
in the cluttered scene robustly, the landmark pattern should show invariant charac-
teristics under various viewing angles (e.g. front-glance, side-glance, near-glance,
far-glance), as Fig. 156.1b shows. Four collinear points in the pixel plane, preserve
the collinear and position relations, and another important aspect is the cross-ratio
value is unchanged, namely, the cross ratio in pixel plane is equal to in the space,
that is the main basic theory in constructing landmark [8]. Moreover, the quantity
of landmark model should be enough and different landmark should be encoded
unique information. The guiding mark model designed in this paper is showed in
Fig. 156.2a.

It consists of three parts: two vertical and the same wideness black bars; four
horizontal and the same wideness black bars; a letter, a couple of seven-segment
numbers. In order to distinguish two numbers, the letter in this paper chooses six
differentiable letters: E,F,H,C,P,U. To different landmarks, the six black bars is
unchangeable no matter the size or the position, they are used for detecting land-
marks; and the difference of the letter and the seven-segment number are used for

(a) (b) (c)

Fig. 156.2 (a) The artificial landmark model. (b) Declining black bars makes the cross ratio
unchangeable. (c) The letter and number region under side glance
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distinguish different landmarks. Another merit to use black bars constructing cross
ratio, shows in Fig. 156.2b, is proved that in the declining state, the cross-ratio value
is unchanged, that is as Eq. (156.2).

l =
AC

C B
AD

DB

=
M P

P N
M Q

QN

(156.2)

It ensures that once the landmark is put declining, as long as � does not change, it
can also detect and recognize landmark successfully, greatly increase the stability
of landmark detection. The two vertical rectangles construct horizontal cross ratio
and left or right two row rectangles construct vertical cross ratio, During the pro-
cess of designing landmark, two directions of cross-ratio values are pre-counted,
when detecting, once determine a landmark in the image using the two-directional
cross-ratio values, a small rectangle including a letter and a couple of seven-segment
numbers are get by six rectangles’ edge information, then recognize the letter and
seven-segment number in this small rectangle, that is recognition of different land-
marks.

Experiment Results

The algorithm is programmed in matlab, detecting and recognizing. The results are
shown in the Table 156.1. The side glance running result in matlab is shown in
Fig. 156.2c, the letter and number parts are 0, and others are 1 from Fig. 156.2c.

Table 156.1 Data comparison in several situation of image processing

Comparison Horizontal
cross-ratio value

Vertical
cross-ratio value

Size of segment
region

Front glance 0.0129 0.1660 39 × 85
Side glance 0.0121 0.1543 36 × 63
Declining glance 0.0019 0.1674 29 × 68

Conclusion

In order to compensate blind people’s vision using artificial vision, an artificial
guiding mark is designed in this paper, which is based on the cross ratio invari-
ance and seven-segment number’s characteristic. We conduct the experiment from
front glance, side glance, declining perspectives detecting and segmenting the same
landmark. The result shows that the guiding mark is robust, and this method can be
reliably applied in the blind-guiding system.
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Chapter 157
An Animal Model of Alzheimer’s Disease
Highlighting Targets for Computational
Modeling

Diana S. Woodruff-Pak, Alexis Agelan, Luis Del Valle and Mohan Achary

Abstract Having demonstrated that eyeblink classical conditioning is severely im-
paired in Alzheimer’s disease (AD), we are modeling AD in rabbits and evaluating
outcomes in the context of empirical data and computational models. Results indi-
cate that: (a) computational models of the essential role of cerebellar cortical LTD
in delay conditioning could amplify upon new empirical data; (b) computational
models of the length of the trace interval that makes the paradigm hippocampus-
dependent could elucidate species differences in the critical trace interval; and (c)
computational models of cortical-hippocampal-cerebellar inter-actions in trace con-
ditioning could magnify knowledge about the neurodynamics of associative learning
and memory.

Introduction

Computational modeling of eyeblink classical conditioning has taken advantage of
the extensive knowledge base on the behavioral parameters and neural substrates
of this form of associative learning. Rescorla and Wagner [1] used behavioral eye-
blink conditioning data to formulate a mathematical model that predicted changes
in the strength of association between the conditioned stimulus (CS) and the uncon-
ditioned stimulus (US). More recently, the Rescorla-Wagner model was mapped to
the cerebellum, the essential substrate of eyeblink classical conditioning [2]. This
model predicted activity of cerebellar cortical Purkinje neurons during phases of
acquisition.

Another brain structure that is normally engaged in eyeblink classical condi-
tioning is the hippocampus. Models of hippocampal function in delay eyeblink
conditioning in which the CS and US overlap and coterminate [3] and of trace
eyeblink conditioning in which the CS onsets and then turns off before US onset
made successful predictions at the cellular level [4]. Computational models of the
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empirical observation that disruption of the septo-hippocampal cholinergic system
impairs acquisition in delay eyeblink conditioning have also been successful [5].
Disruption of the septo-hippocampal cholinergic system and impaired acquisition
in animals led us to predict that delay eyeblink conditioning would be impaired in
patients with Alzheimer’s disease (AD) [6]. Now we are modeling AD in rabbits
and evaluating neurobiological, cognitive, and therapeutic outcomes in the context
of empirical and computational models.

An Animal Model of Alzheimer’s Disease

Normal brain function involves the use of cholesterol and metals such as copper, but
recent evidence indicates that both may be involved in the etiology of AD. Research
in domains as divergent as epidemiology, cell biology, and genetics has converged to
indicate that cholesterol plays a central role in the biology of amyloid precursor pro-
tein (APP) and its proteolytic product, �-amyloid. Mounting evidence demonstrates
roles for APP and �-amyloid in metal homeostasis. Cholesterol-fed rabbits develop
a number of pathological indices of AD that are accelerated when a trace amount of
copper is added to the drinking water [7]. In our laboratory, when young male rabbits
were treated with 2% cholesterol added to their normal diet and 0.12 mg/l copper
added to their distilled drinking water, they developed AD neuropathology within
eight weeks [8]. At molecular and neuropathological levels, the brains of AD model
rabbits have at least a dozen features similar to the pathology observed in the AD
brain. AD model rabbits also have impairment in learning and memory in eyeblink
classical conditioning that parallels impairment observed in human AD [8, 9].

Cognition: Impaired Eyeblink Conditioning in Alzheimer’s Disease

Severe memory loss is the most prominent clinical symptom of AD, and this mem-
ory impairment has long been associated with impairment in acetylcholine neu-
rotransmission. Eyeblink conditioning impairment in AD may reflect cholinergic
dysfunction in the brain that occurs early in disease progression. In addition to being
impaired in AD, eyeblink conditioning was severely impaired in adults over the age
of 35 with Down’s syndrome and associated AD neuropathology. Eyeblink condi-
tioning in patients with other neurodegenerative diseases such as Huntington’s dis-
ease and Parkinson’s disease was relatively normal and clearly differentiated from
eyeblink conditioning in AD [10].

Neuropathology and Cognition in the AD Rabbit Model

Adding 2% cholesterol to the diet and a trace amount of copper to the drinking water
for 8–10 weeks creates neuropathology in young adult male rabbits that resembles
AD neuropathology. Rabbits treated in this manner were impaired in trace eyeblink
classical conditioning but not short-delay eyeblink conditioning [9]. We replicated
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these results with trace conditioning and extended them by demonstrating that long-
delay eyeblink conditioning was also impaired. A novel feature of our study was the
treatment with 3.0 mg/kg galantamine (RazadyneTM), a drug approved by the FDA
to treat mild to moderate AD. Galantamine is a mild acetylcholinesterase (AChE)
inhibitor and an allosteric modulator of nicotinic acetylcholine receptors (nAChRs).
Treatment with galantamine ameliorated impaired eyeblink classical conditioning
in this rabbit model of AD in both the trace and long-delay paradigms [8].

Abnormal neurons, tau, and �-amyloid immunoreactivity were found in the hip-
pocampus of AD model rabbits, and in the cerebellum there was also tau and
�-amyloid immunoreactivity as well as substantial Purkinje neuron loss in cere-
bellar cortex [8]. A biological model of AD induced by dietary means in rabbits
impairs both delay and trace eyeblink classical conditioning. Behavioral results,
neuropathology, and therapeutic outcome are consistent with empirical data and
computational models of eyeblink classical conditioning.

Cerebellum and Deep Cerebellar Nuclei

The deep cerebellar nuclei of AD model rabbits were intact as confirmed with histol-
ogy. Also, rabbits showed significant acquisition of CRs in delay and trace eyeblink
conditioning [8]. Lesions to deep cerebellar nuclei abolish CRs.

Cerebellum, Purkinje Neuron Loss, and Acquisition

The rabbit model of AD has substantial loss of cerebellar cortical Purkinje neurons
and impaired delay eyeblink conditioning [8]. Cerebellar cortical Purkinje neurons
affect function in neurons in the interpositus nucleus, as Purkinje neurons are the
only efferents to cerebellar deep nuclei. Purkinje neuron number is associated with
the rate of acquisition of CRs in the delay paradigm in rabbits, rats, and mice [11].
Purkinje cell deterioration (pcd) mutant mice that lose all Purkinje neurons by four
weeks of age were dramatically impaired in delay eyeblink conditioning [12]. Trans-
genic mice with intact Purkinje neurons that had a functional lesion, knock-out of
the Purkinje neuron Scn8a sodium channel, were impaired in delay eyeblink condi-
tioning [13].

Purkinje neurons are central components of a mechanism for information storage
in the cerebellum called long-term depression (LTD). In this model, coactivation
of climbing fiber and parallel fiber inputs to a Purkinje cell induces a persistent,
input-specific depression of the parallel fiber-Purkinje cell synapse. When LTD is
impaired in cerebellar cortex, delay (but not trace) eyeblink classical conditioning
is impaired.

Hippocampus and Trace Conditioning

The hippocampus of AD model rabbits had positive immunostaining for tau and
�-amyloid. In CA1 and CA3, where pyramidal neurons are normally engaged in
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eyeblink conditioning, there was neuron loss and apparent synaptic disruption [8].
These impairments likely contributed to impaired trace conditioning. The hip-
pocampus is normally engaged in delay eyeblink conditioning, and in trace eyeblink
conditioning an intact hippocampus and medial prefrontal cortex are essential. The
trace interval requiring essential involvement of cortical structures varies among
different mammalian species. That critical trace interval is 250 ms in mice and rats,
over 300 ms in rabbits, and 1000 ms in humans [11].

Galantamine and Cholinergic Facilitation of Learning

Acetylcholine neurotransmission plays a crucial role in learning and memory. Dis-
ruption of acetylcholine neurotransmission in the septohippocampal system impairs
learning of the conditioned eyeblink response in rabbits. Pharmacologic therapies to
preserve the action of a dwindling acetylcholine pool in the AD brain have focused
on prolonging its presence at the synapse. Galantamine is a relatively mild AChE
inhibitor. For an equivalent magnitude of AChE inhibition to donepezil, 3 to 15
times as much galantamine must be administered. At equal levels of AChE inhibi-
tion, only galantamine improves eyeblink classical conditioning, suggesting that al-
losteric modulation of nAChRs is an additional effective mechanism of action [14].

Future Directions for Computational and Empirical Work

Computational models have predicted rate and qualitative features of Purkinje neu-
ron activity during acquisition of delay eyeblink conditioning [2]. More recently,
empirical data have demonstrated that disruption of LTD in cerebellar cortex dis-
rupts delay but not trace eyeblink conditioning [11]. Computational models of the
essential role of cerebellar cortical LTD in delay conditioning would amplify upon
the empirical demonstrations.

Progress in computational modeling of the hippocampus in trace conditioning
was made with a model focusing on neurons in the CA1 and CA3 regions [4]. Com-
putational modeling might elucidate substrates of the species difference in the length
of the trace interval that makes the paradigm hippocampus dependent. Prefrontal
cortex is also essential in trace eyeblink conditioning, and the role of cerebral cortex
in eyeblink conditioning requires additional modeling.

Finally, why and how does cerebellar cortex get bypassed in trace eyeblink con-
ditioning? The essential involvement of hippocampus, medial prefrontal cortex and
other forebrain regions in trace eyeblink conditioning may eliminate or supersede
the role that cerebellar cortex plays in delay eyeblink conditioning. Forebrain re-
gions may act to bridge the trace interval between the CS and US in trace condition-
ing [11]. Computational modeling of cortical-hippocampal-cerebellar interactions
in trace conditioning would amplify knowledge about cognitive neurodynamics.
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Chapter 158
An Improved Transiently Chaotic Neural
Network Approach for Identical Parallel
Machine Scheduling

Aiqing Yu and Xingsheng Gu

Abstract Identical parallel machine scheduling problems (IPMSP) have been inten-
sively studied for its universality in real life. A transiently chaotic neural network
is improved by introducing a time-dependent parameter and it is applied to solve
IPMSP. To overcome the tradeoff problem existing among the penalty terms, time-
varying penalty parameters are used in the energy function. The simulation results
tested on three different problems with 100 random initial conditions show that this
approach solves problems in reasonable time.

Keywords Scheduling · identical parallel machines · transiently chaotic neural
network · time-varying penalty coefficients

Introduction

There have been many studies on conventional and intelligent techniques for parallel
machine scheduling problems [1]. However, not much progress has been made for
the exploration of the use of Neural Networks in solving this problem. Akyol and
Bayhan proposed a Hopfield type dynamical neural network for solving IPMSP [2].
Unlike conventional neural networks only with point attractors, transiently chaotic
neural network (TCNN) proposed by Chen and Aihara [3] has richer and more
flexible dynamics, so that it can be expected to have higher ability of searching
for global optimal or near-optimal solutions. In this paper we propose an improved
TCNN model and present the architecture including neural network energy func-
tion as an innovative, alternative approach for solving IPMSP to minimize the
makespan.
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An Improved TCNN Model for IPMSP

An Improved Transiently Chaotic Neural Network Model

In [3], Chen et al. showed that both the parameter α could affect the neurodynamics
and parameter β governed the bifurcation speed of the transient chaos. In order to
improve the convergence speed and search ability of TCNN, we replace α with a
time variable α(t), defined as follows.

α(t + 1) =
{

(1+ �)α(t) if 	E > ηE0

α(t) otherwise
(158.1)

where λ, η are small positive constants (selected empirically) and E0 is the energy
of the previous generation, and 	E is the energy gap. Initially, α0 is set to a small
values and the influence of the energy function is still weak enough to allow transient
chaos to be generated. Gradually, α(t) will be increased to strengthen the influence
of the energy function when the energy gap is greater than E0.

The Energy Function of TCNN for IPMSP

Assume V xi j to be the neuron output representing whether job j ( j = 1, 2, · · · , n)
is assigned to machine i (i = 1, 2, · · · ,m) or not.

The global energy function for this network consisting of the objective C max
and these constraints of IPMSP can be defined as:

E =AV C max+B
m∑

i=1

v

⎛

⎝
n∑

j=1

p j V xi j − V C max

⎞

⎠

+ C
n∑

j=1

m∑

i=1

m∑

k=1,k �=i

V xi j V xk j + D

⎛

⎝
m∑

i=1

n∑

j=1

V xi j − n

⎞

⎠
2

(158.2)

where A, B, C and D are positive penalty parameters for the objective, makespan
constraints, column constraints and global constraints respectively, besides v repre-
sents the penalty function [4] and p j is processing time of job j .

v(ε) =
{
ε2 ε > 0

0 ε ≤ 0
(158.3)

The difference equations describing the network dynamics of TCNN for Identical
parallel machine scheduling problem (IPMSP) are obtained as follows:
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UC max(t + 1) = kUC max(t)+ α(t)

(
− �E

�V C max

)
− z(t)(V C max(t)− I0)

(158.4)

U xi j (t + 1) = kU xi j (t)+ α(t)

(
− �E

�V xi j

)
− z(t)

(
V xi j (t)− I0

)
(158.5)

�E

�V C max
= A+ B · (−1) ·

m∑

i=1

v′

⎛

⎝
n∑

j=1

p j V xi j − V C max

⎞

⎠ (158.6)

�E

�V xi j
= B · p j · v′

(
n∑

l=1

pl V xil − V C max

)
+ C · 2 ·

m∑

k=1,k �=i

V xk j

+ D · 2 ·
(

m∑

k=1

n∑

l=1

V xkl − n

)
(158.7)

V C max =
{

UC max UC max ≥ 0

0 otherwise
, V xi j (t) = 1

1+ e−U xi j (t)/ε

(158.8)

Time-Varying Penalty Parameters

Because there is no theoretically established method for choosing the values of the
penalty coefficients for an arbitrary optimization problem, the appropriate values
for these coefficients can be determined by empirically running simulations [5].
Recently, time based penalty parameters are proposed to overcome the tradeoff [4].
In this paper, we make penalty parameters time variables, starting with small val-
ues and continuously increasing them when their corresponding constraints are not
satisfied.

Simulation Analysis

To evaluate performance of the proposed TCNN algorithm, computational experi-
ments were performed on randomly generated test problem of three different sizes.
The processing time was generated from the uniform distribution over the interval
[1, 50]. Considering the solution quality depending highly on initial conditions, all
the solutions were obtained by simulations with 100 random initial conditions.

TCNN parameters for test problems were determined by trial and error as shown
in Table 158.1. In Table 158.2, the results are compared with those of Hopfield-like
dynamic neural network (HDNN) proposed in [2] and the original TCNN proposed
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Table 158.1 TCNN parameters for test problems

Problem
size (m∗n)

κ α0 λ η β I0 ε z(0)

3∗10 0.997 0.008 0.005 0.05 0.001 0.65 0.008 0.08
3∗20 0.997 0.010 0.005 0.05 0.001 0.65 0.008 0.08
3∗50 0.998 0.015 0.005 0.15 0.0005 0.5 0.008 0.1

Table 158.2 Results of 100 different initial conditions over three problems

Proposed TCNN HDNN

Problem
size(m∗n)

Best
Cmax

Avg.
Cmax

PFS Best
Cmax

Avg.
Cmax

PFS Best
Cmax

Avg.
Cmax

PFS

3∗10 76.56 90.21 100% 79.65 99.55 100% 95.31 115.42 90%
3∗20 163.99 194.43 100% 171.44 197.25 98% 180.24 215.89 85%
3∗50 352.31 388.38 100% 368.78 399.37 86% 389.03 440.13 68%
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Fig. 158.1 Time varying penalty parameters of the best solutions over three problems

in [3] in terms of Best Cmax, Average Cmax and Percent Feasibility of the Solutions
(PFS). The results show that along with the increase of the test problem size, the
percent feasibility of solutions decreased and the network were trapped into local
minima more easily. Compared to HDNN and original TCNN, this improved TCNN
model can find better solution of Cmax.

Figure 158.1 shows the time varying penalty parameters of the best solutions
over three different problems. The coefficient B of the inequality constraint and
coefficient D of the global constraint were higher than parameter C of the column
constraint during the evolution process. Along with the increase of the test problem
size, evolution iterations aggrandized correspondingly.

Conclusion

In this paper, we just construct the network model for the basic identical parallel
machines scheduling problem. Other models which setup times, job splitting are
considered can be further research directions. Besides, architecture of the neural
network, selection of penalty parameters and construction of energy function also
may be research topics.



158 An Improved TCNN Approach for Identical Parallel Machine Scheduling 913

Acknowledgements This work is supported by National Natural Science Foundation of China
under Grant No. 60674075

References

1. Mokotoff, E.: Paralel machine scheduling problems: A survey. Asia-Pacific Journal of Opera-
tional Research. 18 (2001) 193–242.

2. Akyol, D. E., Bayhan, G.: Minimizing makespan on identical parallel machines using neural
networks. Proceedings of ICONIP 2006, Part III, 553–562.

3. Chen, L., Aihara, K.: Chaotic simulated annealing by a neural network model with transient
chaos. Neural Networks, 8 (1995) 915–930.

4. Wang, J.: A Time-varying recurrent neural system for convex programming. Proceedings of
IJCNN-91-Seattle International Joint Conference on Neural Networks. 1 (1991) 147–152.

5. Watta, P.B., Hassoun, M.H.: A coupled gradient network approach for static and temporal
mixed-integer optimization. IEEE Transactions on Neural Networks. 7 (1996) 78–593.



Chapter 159
Support Vector Machine on Functional MRI

Ling Zeng, Qingwei Liu, Huiling Xiao and Huafu Chen

Abstract In the present study, the Support Vector Machine (SVM) algorithm are
introduce to detect activity region of brain function from whole function volume.
Firstly, temporal compression (averaging across multiple scans) is implemented by
using single value decomposition (SVD) to functional magnetic resonance imaging
(fMRI) data. Then SVM algorithm is used to separate different brain functional
activation pattern in different task state. Subjects are request to finish fMRI experi-
mental in three conditions: rest state, right hand movement and left hand movement.
fMRI imaging result demonstrate that the SVM method can exactly detect the ac-
tivity region of brain function in the spatial maps of discriminating volume which
contains the most discriminating regions in the voxels space.

Introduction

Function Magnetic Resonance Imaging (fMRI) provided in the early 1990s is a
revolution tool for Neuroinformatics. A number of fMRI experiments have been
used to investigate activated regions of brain corresponding certain cognitive and
psychological states [1]. Univariate statistical analysis methods such as general lin-
ear model (GLM) are commonly applied to the time series at each voxel [2].

Recently, support vector machine (SVM) method first proposed by Vapnik [3]
has been used in the pattern classification and the non-linear return.

In this paper, SVM method is introduced to detect brain functional activation
pattern in different task state. The fMRI data dimension is reduced by principal
component analysis(PCA)/single value decomposition(SVD), then SVM approach
is applied to detect brain functional activation.

SVM method’ aim is to find a decision function or the optimal separation hyper-
plane which can solates two states [4] with the maximization edge. The essence is
to solve a quadratic programming problem.
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we use the kernel function φ(x) which can project voxel space into high dimen-
sionality. The optimal separation hyperplane is:

H : wTφ(x)+ b = 0 (159.1)

The w is a linear weight vector, b an offset and φ(x) convex function of w. we need
solve its restraint dual question:

min{w(α) = 1
2α

TQα − eTα}
subject to yTα = 0, 0 ≤ αi ≤ C, i = 1, . . . , l. (159.2)

The solution w is given by

w =
l∑

i=1

αiyiφ(xi) (159.3)

Methods

Data Acquisition

The data were acquired with a 1.5 T siements Vision scanner. The imaging se-
quence was an echo planar sequence (slice thickness = 6 mm, gap between
slices = 1 mm; repetition time (TR) = 2 s; echo time (TE) = 60 ms; matrix,
64× 64; voxel dimensions, 4× 4× 6 mm). In each run, 164 function volumes were
acquired.

Stimuli and Tasks

The stimuli were presented in a block fashion. There were three different exper-
imental conditions: rest contrast; right-hand movement task; left-hand movement
task. In each run, there were 16 blocks(eight rest blocks, four right-hand movement
blocks, four left-hand movement blocks), they were presented in the order control
block; right-hand movement block; control block; left-hand movement block. each
block consisted 10 imaging volumes [5].

Pre-processing

We deleted the first four volumes. The remaining data were preprocessed using
SPM2, the data were realigned to remove residual motion effects and then were
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corrected for the timing differences between each slice using Fourier interpolation
[6], at last were spatially smoothed using an 8-mm Gaussion filter (FWHM).

Temporal Compression

The temporal compression [6] can increase the accuracy of classification trained on
single subject data. we subtracted the mean volume of the previous and posterior
control blocks from the mean volume of the blocks.

Dimensionality Reduction

we can use PCA/SVD formulation methods [7] to reduce the data dimensionality in
neuroimaging field.

The voxels space data is Dm×n with one volume per column and one voxel per
row. The SVD of D is :

D = USVT (159.4)

Where the U is the matrix of eigenvectors of D, so the principal components was
carried out as:

Dp = UTD (159.5)

Result

Brain Activation Map

The result show the SVM presents a good classifiers’ performance. Figure 159.1
show that left and right brain control the right and left hand movement respectively,
In the discriminating volume(w), the value of each voxel indicates the importance
of such voxel in differentiating between two brain states, the value at each voxel is
a function of the difference in activation in the voxel between the tasks.

Conclusion

In this paper, we proposed SVM approach to detect brain functional activation
(Fig. 159.1). fMRI results show that SVM is useful method to detect the different
brain functional pattern in left and right hand movement.
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Fig. 159.1 The first five maps are right-left hand movement’s activation map; the second five
maps are left-hand movement’s activation maps; and the last five maps are right-hand movement’s
activation maps
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Chapter 160
Face Detection Using Multi-Feature

Huaiyi Zhu, Liqing Zhang, He Sun and Rong Xiao

Abstract In this paper, we propose a novel method called Multi-Feature Soft Cas-
cade Learning for improving the performance of face detection. The main contri-
bution of this paper consists of the following two aspects. The first is the use of
Multi-Feature in AdaBoost, resulting in a more stable boost classifier with fewer
features compared with using only single features as well as the improvement of the
detection performance. The second is the new soft cascade algorithm for the Multi-
Feature training, which works together with the Multi-Feature selection criterion.
Experiment results show the improvement by using Multi-Feature compared with
single feature. We also find that the candidate feature set is another important factor
to improve the face detection performance.

Introduction

Face detection is a challenging problem in computer vision. The trade-off between
accuracy and speed is the main problem of face detection in images. Schneiderman
[1] developed a highly accurate detector based on a restricted Bayesian Network
but with huge computational cost while detecting. Viola and Jones [2] proposed a
framework of cascade boosting using haar-like features, resulting in the first highly
accurate real time face detector. However, the detection problem under different
light, illumination conditions and large pose, expression variations remains a big
challenge. Since haar-like feature in [2] is less discriminative for describing high fre-
quency texture information, different types of features are used for feature selection.
For example, Huang et al. [3] used Gabor filter features in face detection. Jin et al.
[4] proposed improved Local Binary Pattern(LBP). Levi and Weiss [5] proposed a
set of features based on local edge orientation histograms(EOH). According to their
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experiment, these feature sets can significantly improve the detection performance.
Xiao et al. [6] proposed a three-stage framework with different features in different
stages to do face detection. Their studies shows that a type of features may perform
excellent in earlier stages but poor in later stages, then other types of features are
needed to obtain a better performance. Since different features might complement in
their characteristics, the combination use of these features seems to be perform bet-
ter in face detection than with single feature. Hence, an algorithm that can achieve
better performance with multiple complement features under viola’s framework is
needed.

Variations of cascade frames have been studied to achieve better performance.
Xiao et al. [7] proposed a framework called “Boosting Chain”, which combines the
earlier stage classification confidence into the later cascade stage and achieved a bet-
ter performance. Then a new method called SoftCascade [8] provided by Bourdev
and Brandt considers each weak learner as a cascade layer and results in a detection
rate and speed comparable to that of the best published detectors. Besides, it results
in easier training and a detector with fewer features.

In this paper, a new method, called Multi-Feature Soft Cascade Learning, is
proposed to learn robust face detector using multiple features. Different types of
features, such as haar-like [2], EOH [5], Gabor [3], will be used together for detector
training under a certain criterion. Meanwhile, to use Multi-Feature in face detection
training, a method based on soft cascade [8] will be used as part of the criterion of
selecting weak learner while boosting.

Multi-Feature for Face Detection

When Multi-Feature is used in AdaBoost, two key issues are needed to be resolved:
when to use Multi-Feature and how to use Multi-Feature. For the sake of detection
speed, we use haar-like feature at the beginning stages, which can decrease the false
alarm rate severely in very few detection time. When the false alarm rate reaches
a certain value (such as 10−5), multi-feature can be used to achieve a better perfor-
mance.

To use Multi-Feature in AdaBoost learning, a new method based on Soft Cas-
cade [8] is provided. We need to take each weak learner as a cascade layer and
aggressively find the weak learner that can best separate the negative from positive
samples for a boosting iteration. The procedure of the new Soft Cascade learning is
illustrated in Fig. 160.1.

Multi-Feature selection criterion can be used under the framework of new Soft
Cascade algorithm. We treat different types of features separately. For each kind of
features, we use AdaBoost to train a weak classifier. Then we compare the perfor-
mance of the selected K classifiers by the false alarm rate they evaluated in training
set. The one with the minimal false alarm rate is selected as the final weak classifier
in current stage, which means it separate the negative and positive samples the best.
The algorithm for Multi-Feature selection is shown in Fig. 160.2.
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1. For stage iteration t = 1, 2, . . . ,T:

– learn a weak classifier ht , and the threshold bt that can best separate positive and nega-
tive samples for current strong classifier Ht (x) =∑t

i=1 hi (x)− bt .
– Update training data, remove positive samples that is misclassified by the classifier Ht

and negative samples that is correctly classified by the classifier Ht .
– Do bootstrap for training data if needed.

2. Output final classifier

H (x) =
{

1 ∀t̂ , Ht̂ (x) ≥ 0

0 otherwise.
(160.1)

Fig. 160.1 New Soft Cascade learning

1. Initialize weights for all N samples as in [2]

2. Repeat for stage iteration t = 1, 2, . . . ,T:

(a) For each type of features, k = 1, . . . , K .

– For Fk = {Featurek j } , select a weak classifier htk with minimal cost as in [2]
– For current classifier of this feature type, find threshold btk = arg minbkj {F Atk j } for

Htk (x) = sign
[∑t−1

i=1 αi hi (x)+ αtk htk (x)− btk

]
, in constrain of

∑n
i=1 Htk (xi ) ≥ Ret ∗

N . Get F Atk for threshold btk , where F At is the false alarm rate of the current classifier,
Ret is the recall for the stage t.

(b) Select k∗ = arg mink{F Atk}, set F At = F Atk∗ , ht = htk∗ , bt = btk∗ , and the classifier for
stage t , Ht (x) = sign

[∑t
i=1 αi hi (x)− bt

]
.

(c) Update weights as in [2]

3. Output classifier in Eq. 160.1

Fig. 160.2 Multi-Feature Soft Cascade learning

Experiments and Results

More than 6,000 non-face Images are collected from the Internet. Among them,
more than 40 million 24 × 24 window samples are cropped as the first trained
non-face samples. Other negative samples will be generated while doing bootstrap.
20,000 faces are cropped as positive samples. Three features, Haar-like [2], EOH
[5], Gabor [3], are used for training. Among them, Haar-like feature is used not
only in Multi-feature training procedure, but also in the early stage training. Other
features are used only in Multi-feature Soft Cascade training procedure. In our ex-
periments, 209 haar-like features are used in early stage, while the false alarm rate
reaches 1.8× 10−6. All trained detectors will be tested under CMU+MIT face lib.

The ROC curves for different types of feature used in face detection on CMU+
MIT face lib is in Fig. 160.3. EOH, Gabor, Haar-like features are trained for
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Fig. 160.3 ROC curves for different feature used in face detector on CMU+MIT face lib

face detector, respectively. And their combination for face detector training on
Multi-Feature Soft Cascade algorithm are also provided. We can see that the per-
formance of the face detector trained with multi-feature is better than that with
single feature. For example, when false positives is 36, the detection rate is 87% for
the EOH+Gabor features, 85.5% for Gabor features and 83.5% for EOH features.
Besides, the face detector trained with Multi-feature selection criterion (Fig. 160.2)
is better than that is selected by the original AdaBoost algorithms [2].

Conclusions and Discussions

In this paper, we propose a novel method called Multi-feature Soft Cascade Learning
which use multiple feature combination for face detection. The experiment results
show the improvement of using Multi-feature selection criterion with new Soft Cas-
cade Learning compared with single feature learning. Also, it is proved that Multi-
Feature selection criterion is better than that treats multiple features as a uniform
type.

The criterion of multi-feature selection is the key point for Multi-Feature usage
in face detection. Further work is to find a more effective way that not only decrease
the training set false alarm rate, but also make higher detection rate.
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Chapter 161
A Text Classification Method Based on Cascade

Hui Li, Qi Zhang, Huchuan Lu and Deli Yang

Abstract Text categorization is an important research area in many Information
Retrieval applications. Based on the research of text classification technology, a new
bi-class text categorization method, which uses a cascade of AdaBoost classifiers,
is proposed. Experiment on Fudan University data set shows that this method has a
good classify performance at 92.167%. Compared with other classification methods,
it has a lower storage space, smaller computation time and is suitable for different
situations.

Keywords Text classification · AdaBoost · cascade

Introduction

Most of the explicit knowledge assets of today’s organizations consist of unstruc-
tured textual information in electronic form. Users are facing the challenge of orga-
nizing, analyzing and searching the ever-growing amounts of documents. Systems
that automatically classify text documents into predefined thematic classes and
thereby contextualize information offer a promising approach to tackle this com-
plexity.

During the last decades, a large number of machine learning methods have been
proposed for text classification tasks, such as K-Nearest Neighbor (KNN), Centroid
Classifier, Rocchio, Naı̈ve Bayes, Winnow, Support Vector Machines (SVM) and
Boosting Algorithms. The overview of Sebastiani [1] discusses the main approaches
to text classification.

Paul Viola and Michael J. Jones had proposed an object detection framework
which consist of a cascade of AdaBoost classifiers. This method has been proved
to be efficient by the frontal face detection. In this paper, we apply this classifier
framework to text classification by representing the documents to VSM (Vector
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Space Model). The main idea behind our strategy is to take advantage of the high
precision of the classifier to successively refine the information that the users need.

The remainder of this paper is organized as follows: In section ‘The Cascade
of AdaBoost Classifiers’, we describe the classifier framework, “cascade”. In sec-
tion ‘Experiment’, we present an extensive experimental evaluation of our classifier.
Finally, section ‘Conclusion’ we present our summary, concluding remarks and di-
rections of our future work.

The Cascade of AdaBoost Classifiers

The classification framework is to view it as a classic pattern recognition process
including text representation, classifier training and using, and performance eva-
luation. All the texts should be represented as VSM after preprocessing, feature
reduction and Weight Computation.

After the steps in section ‘The Cascade of AdaBoost Classifiers’, the documents
are changed to the vectors that can be used by classifiers. In the bi-class text classifi-
cation, only two categories need to be classified—positive and negative, represented
the texts that user needs and the texts that user doesn’t need. In our system, a variant
of AdaBoost is used to select the training feature and to train the classifier [2, 3]. In
its original form, the AdaBoost learning algorithm is used to boost the classification
performance of a simple learning algorithm. It does this by combining a collection of
weak classification functions to form a stronger classifier. The final strong classifier
takes the form of a perceptron, a weighted combination of weak classifiers followed
by a threshold.

One AdaBoost classifier can get good performance, but the most straightforward
technique for improving the classification performance, adding features to the clas-
sifier, directly increases the computation time. P. Viola [4] has presented an algo-
rithm for constructing a cascaded of classifiers which achieves increased accuracy
performance while radically reducing computation time. The key insight is that
smaller, and therefore more efficient, boosted classifiers can be constructed which
rejects many of the negative samples while detecting almost all positive instances.
Simpler classifiers are used to reject the majority of samples before more complex
classifiers are called upon to achieve low false positive rates.

An effective text classifier can be obtained by adjusting the strong classifier
threshold to minimize false negatives rates. The initial AdaBoost threshold is de-
signed to yield a low error rate on the training data. A lower threshold yields higher
accuracy and higher false positive rates.

The accuracy performance of the initial AdaBoost classifier is far from ac-
ceptable as a text classification system. Nevertheless the classifier can signifi-
cantly reduce the number of dimensions that need further processing with very few
operations.

The overall form of the detection process is that of a degenerate decision tree,
what is called as a “cascade”. A positive result from the first classifier triggers the
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evaluation of a second classifier which has also been adjusted to achieve very high
detection rates. A positive result from the second classifier triggers a third classifier,
and so on. A negative outcome at any point leads to the immediate rejection of the
text vector.

In the classification system, positive samples must be correctly recognized and
negative samples should be recognized as many as possible. As such, the cascade
attempts to reject as many negatives as possible at the earliest stage. While a posi-
tive instance will trigger the evaluation of every classifier in the cascade, this is an
exceedingly rare event.

Much like a decision tree, subsequent classifiers are trained using those examples
which pass through all the previous stages. As a result, the second classifier faces a
more difficult task than the first. The examples that make it through the first stage
are “harder” than typical examples. The more difficult examples faced by deeper
classifiers push the entire receiver operating characteristic (ROC) curve downward.
At a given accuracy, deeper classifiers have correspondingly higher false positive
rates.

Experiment

The corpus used for training and testing is from Fudan University. It consists of
20 categories, 8503 for training documents and 8982 for testing documents. We
construct the bi-class training data set by combining other 19 categories except the
“Economy” category.

Evaluation on Feature Selection

Result

Table 161.1 summarizes the results of the experiments for different feature selection.
The relative gains on the F1 value, which is in influenced both by precision and
recall, show that all the three feature selection methods have no less than 87.43%.
The X2 has the highest F1 at 92.27% by using 2000 features.

The result of the significance tests allow us to conclude that this “cascade” frame-
work of classifiers is suitable for different feature selection methods and different

Table 161.1 Result on different feature selection methods and different dimensions

1000 dimensions 2000 dimensions 3000 dimensions

Precision
(%)

Recall
(%)

F1 (%) Precision
(%)

Recall
(%)

F1 (%) Precision
(%)

Recall
(%)

F1 (%)

DF 92.44 90.41 91.41 92.76 90.48 91.61 90.44 84.62 87.43
IG 91.54 88.01 89.74 92.72 90.40 91.55 90.51 86.79 88.61
X2 92.78 91.18 91.97 93.03 91.52 92.27 90.13 85.86 87.94
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Table 161.2 Result on different classifiers

Precision (%) Recall (%) F1 (%) Time

NB 85.40 82.25 83.80 73 s
Cascade 93.03 91.52 92.27 69 s
KNN(k = 19) 93.88 91.86 92.86 48 m 27 s
AdaBoost 92.23 87.99 90.06 65 s

numbers of features. In general, the classifier that we presented in this paper is
robust to different feature selection methods. Because of the highest F1 in X2, X2
is chosen to be the feature selection method in the second section of experiment and
the feature number is 2000.

Evaluation on Classifiers

A second series of experiment was conducted on different Classifiers. All the train-
ing documents were processed by the stages described in section ‘The Cascade of
AdaBoost Classifiers’. Information gain (IG) was chosen to feature selection.

Result

The “cascade” framework also has a good performance. In the KNN classification
section, K was set from 1 to 100. When K = 19, KNN has the best F1 score at
92.86% which is better than the cascade by 0.6%. But the classification time shows
that KNN has the longest runtime nearly 50 min. Because KNN classifier need to
compute every Euclidean distances between the training samples and test samples.
When the data set is very large just like this experiment the computation time is
extremely huge. Compare with the KNN, the “cascade” only uses 69 s.

The AdaBoost classifier that chooses 300 features to classify is just like one layer
of the cascade classifier. The cascade classifier only chooses eight features in the first
layer and a total of 65 features. Though the AdaBoost has the lowest computation
time, the F1 score is lower than the cascade. This result concludes that one strong
classifier is not better that the combination of weak classifiers.

Conclusion

In this paper, we present a new bi-class text classification system based on a cascade
of AdaBoost classifiers. Different feature selection methods were proposed to per-
form the classification. At the same time, different kinds of classifiers were chosen
to compare with the cascade of AdaBoost classifiers.

The experiment result on different feature selection methods shows that the cas-
cade framework is robust to different kinds of feature selection methods. It can
be applied to different field. The second experiment shows that this classification
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method has a better performance than other classifiers not only on the F1 score but
on the classification time. So it can be easily used as a real-time system, such as
mobile phone and PDA.

There is another advantage of this cascade framework. The training parameter
can be updated easily by adding another layer of the classifier. The pervious layer
parameters do not need to change.
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Chapter 162
A PCNN Based Approach to Image
Segmentation Using Size-Adaptive
Texture Features

Lijuan Duan, Jun Miao, Can Liu, Yunfeng Lu, Yuanhua Qiao
and Baixian Zou

Abstract Pulse Coupled Neural Network (PCNN) and its modified forms are
widely applied to image segmentation. However, most PCNN based methods are
difficult in segmentation of the regions that contain rich texture information in a
complex image. This paper proposes an improved approach to image segmentation
based on simplified region growing PCNN with adaptive texture features input. It
shows promising results to process regions with complex texture.

Keywords Image segmentation · texture features · pulse coupled neural network
(PCNN) · simplified region growing PCNN (SRG-PCNN)

Introduction

In 1990, Eckhorn presented the linking field network [1]. It is based on the phe-
nomena of synchronous pulse firing in the cat’s visual cortex. Some researchers
modified the linking field network, and then it became the pulse coupled neural
network (PCNN) [2, 3]. Figures 162.1 and 162.2 show a basic PCNN neuron model
and a PCNN structure respectively.

The PCNN model can be described by a group of equations [2].

Fi =
∑

j

M ji Y j (t)⊗ φ j i (t)+ Ii (162.1)

Li =
∑

k

Wki Yk(t)⊗ φki (t)+ Ji (162.2)

Ui = Fi (1+ βi Li ) (162.3)
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Fig. 162.1 A PCNN neuron
model

Fig. 162.2 A PCNN structure

Yi (t) = Step(Ui −�i ) (162.4)

�i = −αT �i + VT Yi (t) (162.5)

The pulse output will be delivered to the adjacent neurons. If the adjacent neu-
rons have the similar intensity with the neuron i, they will fire too because of pulse
coupled action [3]. In this case, the neuron i and the similar adjacent neurons will
emit synchronous pulses. This is the theoretical foundation of PCNN for image
segmentation.

As a result of the biological background, PCNN has a great difference with the
traditional neural networks and has proven to be highly effective in some applica-
tions, such as image de-noise, enhancement and segmentation. Usually, when us-
ing PCNN to segment images, a single layer two-dimensional network is designed
(Fig. 162.2). In the network, generally the neurons and the pixels (or response input)
are in one to one correspondence.

In 2002, Stewart combined PCNN with region growing algorithm (RG-PCNN) to
segment images [4]. RG-PCNN is efficient in multi-value image segmentation, but it
cannot process edge pixels very well. Ma et al. [5] proposed to compensate the edge
pixels. Reference [2] pointed out that “a significantly more uniform segmentation is
obtained when the linking modulation is more uniform in its value,” which is proved
by Gu et al. [6]. According to these results, Lu et al. [7] brought forward a simplified
region growing PCNN (SRG-PCNN) to overcome the disadvantage of RG-PCNN
by modifying the linking function to a uniform one.

However, either RG-PCNN or SRG-PCNN is difficult in segmentation of regions
that contains rich texture information in a complex image. This paper proposed an
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improved approach to image segmentation based on SRG-PCNN, which use a kind
of size-adaptive texture features as input to the PCNN neurons instead of original
gray responses. It has shown promising results to process regions with complex
texture.

Size-Adaptive Texture Features

In order to resolve the problem that RG-PCNN and SRG-PCNN can not segment
region with rich texture from other regions, instead of directly inputting the original
gray responses to PCNN, our method extracts a kind of size-adaptive texture features
and input these features to SRG-PCNN [7] for image segmentation. The goal of this
manipulation is to make the region with rich texture become uniform and simulta-
neously keeps borders between regions as clear as possible. Figure 162.3 show the
designed texture features and corresponding image transforming, in which the size
of windows for extracting texture features is adaptive. The adaptive mechanism is: if
the average texture feature response of an initial window is smaller than a threshold,
then decrease the size of the window to a certain degree and uses the new average
texture feature response to replace the original response of the center pixel of the
image window.

Fig. 162.3 Size-adaptive texture feature extracting

Fig. 162.4 Experiment 1 a. Original image b. Our method
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Experiments

Three experiments are carried out on several images that have different texture infor-
mation. The first is on a cell image in which regions contains little texture. The result
is shown in Fig. 162.4, from which we can see the clear segmentation. The second
is on a constructed picture which consists of three interlaced regions containing rich
or no texture information. From the result shown in Fig. 162.5, we can also see a
clear segmentation except for few isolated points.

In order to sufficiently demonstrate the advantage of the proposed approach, we
make a comparison with RG-PCNN and SRG-PCNN. Figure 162.6a is the 256-level
original gray image which contains complex regions containing various textures.
Figure 162.6b–d are the segmentation results using RG-PCNN [4], SRG-PCNN [7]
and our method respectively. Form Fig. 162.6, we can see that SRG-PCNN can
resolve the problem of non-smooth borders between two segmented regions from
RG-PCNN, and our method can overcome the disadvantage of SRG-PCNN, which
can not segment regions containing rich texture from other regions. For example, the
pelage region of the hat and the hair region in Fig. 162.6a are always difficult to be
segmented into several or one uniform region(s) by RG-PCNN and SRG-PCNN, but
the segmentation result in Fig. 162.6d shows our approach can process the region
containing rich texture information efficiently. At the same time, a small part of the
hat brim in Fig. 162.6a is mistakenly segmented into a pelage region, which is shown
in Fig. 162.6d. Besides, there are some sparse points to the left of the hat is more
obvious than those in Fig. 162.6b,c, which is leaded by texture features extracting
from non-suitable size windows.

Fig. 162.5 Experiment 2 a. Original image b. Our method

a. Original image b. RG-PCNN c. SRG-PCNN d. Our method

Fig. 162.6 Experiment 3
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Conclusion

Most PCNN based method, including RG-PCNN and SRG-PCNN, keep original
gray response as direct input into the PCNN. They are usually difficult in segment-
ing regions that contain rich texture from other regions that contain little texture.
This paper proposed an improved approach to solve this problem. Instead of di-
rectly inputting original gray responses to PCNN, our method extracted a kind of
size-adaptive texture features and input these features to SRG-PCNN for image seg-
mentation. This manipulation makes the regions with rich texture become uniform
to a certain extent and simultaneously keeps the borders between regions as clear
as possible. Up to now, our method does not well in segmentation between two
adjacent regions that have the same complexity of texture information, which is the
next topic in the future research.
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Chapter 163
Entropy-Partition of Complex Systems
and Emergence of Human Brain’s
Consciousness

Guangcheng Xi

Abstract Consciousness is discussed from viewpoint of theory of Entropy-partition
of complex system. Human brain’s system self-organizably and adaptively imple-
ments partition, aggregation and integration, and consciousness emerges. We use
mutual information to define correlative measure between (among) variables or sub-
systems of complex system. In order to make good use of the correlative measure in
infinite-dimensional space, proof of countable superadditivity and uniqueness of the
correlative measure is given. Emergence of consciousness is mathematically (some
approaches in probability theory and information theory) formulated in this paper.

Keywords Human brain’s system · entropy-partition (aggregation) · integration ·
consciousness

Introduction

In article of Giulio Tononi and G.M. Edelman [1], studying of consciousness is
concentrated on description of kinds of neural processes which can account for
key properties of conscious experience. They have emphasized two key proper-
ties of consciousness: conscious experience is integrated (each conscious scene is
unified) and at the same time it is highly differentiated (within a short time, one
can experience any of a huge number of different conscious states), and have pro-
posed notions so-called functional clustering, neural complexity and dynamical core
hypothesis. Those researching methods and train of thought to problem of con-
sciousness agree to a certain extent, with theory and method of Entropy-partition
of Complex System I proposed 23 years ago [2]. At that time related specialists
(appraising group of achievements in scientific research) ever have pointed out: the-
ory of Entropy-partition (Aggregation) of complex system not only has been applied
to Ecologico-Economical regionalization [3] of Ecologico-Economico-social com-
plex system but also will certainly be applied to researching of human Brain’s neural

G. Xi
Institute of Automation, Chinese Academy of Science, Beijing 100080, P.R. China
e-mail: guangcheng.xi@ia.ac.cn

R. Wang et al. (eds.), Advances in Cognitive Neurodynamics,
C© Springer Science+Business Media B.V. 2008

939



 

 

 

 

 



940 G. Xi

system. Therefore having read the article of G. Tononi and G.M. Edelman, I have
much sensation seem to have met before, and excited feeling arises spontaneously.
Though such, we strongly have felt it still necessary to discuss problem of con-
sciousness from viewpoint of theory of entropy-partition (aggregation) of complex
system.

Entropy-Partition (Aggregation) of Neural System X

Suppose neural system X = (X1, X2, · · · , Xa, · · · , X p)T is consisted of p neu-
ron, p ∈ N (N set of natural number), where Xa = (Xai ), a = 1, 2, · · · , p ;
i = 1, 2, · · · , q. Let Ca(a = 1, · · · , p) be set of classification of Xa , Cai = i
be i-th element of Ca , then we have Ca = {1, 2, · · · , i · · · , k}, k ≤ q, and let ni be
quantity for Xa belong to i-th class, then entropy of Xa is defined as

H (Xa) = −
k∑

i=1

ni/q log ni/q (163.1)

joint entropy of Xa, Xb is similarly defined as

H (Xa ∪ Xb) = −
∑

i

∑

j

ni j/q log ni j/q (163.2)

where ni j is quantity for Xa belong to i-th class of Ca simultaneously Xb belong to
j-th class of Cb. For the convenience of application, expressions (163.1) and (163.2)
can respectively be represented as

H (Xa) = log q − 1

q

k∑

i=1

ni log ni (163.1′)

H (Xa ∪ Xb) = log q − 1

q

∑

i

∑

j

ni j log ni j (163.2′)

Having had above-mentioned definition of entropy, in what follows, correlative
measure by which statistical dependence between the Xa and the Xb is denoted
is defined by their mutual information.

Definition 1. Suppose Xa ∩ Xb = φ, then entropy

H (Xa, Xb) = H (Xa)+ H (Xb)− H (Xa ∪ Xb) (163.3)

is called correlative measure μ(Xa, Xb) between the Xa and the Xb.
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Definition 2. Suppose Xa ∩ Xb = φ for arbitrary a, b(a �= b), then

μ(X1, X2, · · · , X p)
	=

p∑

a=1

H (Xa)− H

(
p∑

a=1

Xa

)
(163.4)

is called correlative measure among X1, X2, . . ., and X p.

Definition 2′. Suppose system X be partitioned into m subsystems s1, s2, · · · , sm,

for arbitrary i, j (i �= j), si ∩ s j = φ, X =
m∑

i=1
si , then

μ(s1, s2, · · · , sm)
	=

m∑

i=1

H (si )− H

(
m∑

i=1

si

)
(163.5)

is called correlative measure among s1, s2, · · · , sm .
Let us consider nonempty finite set X and set-family E(X) consisted of its subset,

Pe a set-function defined on E(X) with properties

(i) Pe(A) ≥ 0,∀A ∈ E(X),
(ii) Pe(φ) = 0

Definition 3. If for arbitrary nonempty finite set Si ∈ E(X), S j ∈ E(X), i �= j ,
Si ∩ Sj = φ, have

Pe(Si ∪ Sj ) ≥ Pe(Si )+ Pe(Sj ) (163.6)

then, set-function Pe satisfied conditions (i), (ii) is called superadditive.
Although finite superadditivities of mutual information or the so-called measure

of cohesion of the components of the set of entities is well known result, it is not still
unnecessary to write down our proof about finite superadditivity of the correlative
measure among some subsystems of the system X which is given.

Theorem [2]. Correlative measureμ(s1, s2, · · · , sm) is finitely superadditive, count-
ably superadditive and unique.

Proof. Finite superadditivity.
Suppose system X is partitioned into m subsystems s1, s2, . . ., sm , and that si ∈

R, si �= ∅; s j ∈ R, s j �= ∅; si ∩ s j = ∅, X =
m∑

j=1
s j ∈ R, for any i, j(i �= j), where

R is a algebra on set X which is given. By definition of the correlative measure, we
have
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μ(S) = μ

⎛

⎝
m∑

j=1

s j

⎞

⎠ = μ (s1, s2, ....., sm) = μ
(
X1, X2,......X p

)

=
p∑

i=1

H (Xi )− H

(
p∑

i=1

Xi

)
(163.7)

∑

s j∈S

μ(s j ) =
∑

s j∈S

⎛

⎝
∑

X j∈s j

H (X j )− H

⎛

⎝
∑

X j∈s j

X j

⎞

⎠

⎞

⎠

=
p∑

i=1

H (Xi )−
∑

s j∈S

H (s j )

=
p∑

i=1

H (Xi )−
m∑

j=1

H (s j ) (163.8)

Subtracting (163.8) from (163.7) leads to

μ

⎛

⎝
m∑

j=1

s j

⎞

⎠−
m∑

j=1

μ(s j ) =
m∑

j=1

H (s j )− H

(
p∑

i=1

Xi

)

=
m∑

j=1

H (s j )− H

⎛

⎝
m∑

j=1

s j

⎞

⎠ ≥ 0 (163.9)

Countable superadditivity and uniqueness:
Suppose system X is partitioned into a sequence of subsystems s1, s2, · · · , sn · · · ,

sn ∈ R -algebra on X , sn ∈ R, sn �= ∅; sm ∈ R, sm �= ∅; sn∩sm = ∅, X =
∞∑

n=1
sn ∈ R,

for any n,m(n �= m).

Let Ek =
k∑

n=1
sn , obviously, we have

E1 ⊂ E2 ⊂ · · · ⊂ Ek · · · , Ek ∈ R, lim
k→∞

Ek =
∞∑

n=1

sn ∈ R (163.10)

From non-negativity and monotonicity of μ, we have

μ(E1) ≤ μ(E2) ≤ · · · ≤ μ(Ek) ≤ · · · ≤ μ

( ∞∑

n=1

sn

)
(163.11)
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If lim
k→∞

μ(Ek) →∞, from monotonicity of μ, then inevitably we have

μ

( ∞∑

n=1

sn

)
= ∞

Hence by using finite superadditivity, we have

μ

( ∞∑

n=1

sn

)
= ∞ = lim

k→∞
μ(Ek) = lim

k→∞
μ

(
k∑

n=1

sn

)
≥ lim

k→∞

k∑

n=1

μ(sn) =
∞∑

n=1

μ(sn)

If lim
k→∞

μ(Ek) = c < ∞, above-mentioned process of proof is understood easily.

And either of the lim
k→∞

μ(Ek) = c <∞ and lim
k→∞

μ(Ek) = ∞ makes uniqueness of

the limit to hold still, i.e. lim
k→∞

μ(Ek) = lim
k→∞

μ

(
k∑

n=1
sn

)
is unique. Up to this point,

proof of the theorem is completed.
From above-mentioned property of correlative measure, criterion by which lowest
requirement of ideal partition is presented should be

(i) μ(si ) > μ(si , s j ), μ(s j ) > μ(si , s j )
(ii) μ(si ) > μ(si1 )+ μ(si2 ), μ(s j ) > μ(s j1 )+ μ(s j2 ).

for any i, j(i �= j), si ∩ s j = φ

Here sil , s jl (l = 1, 2) denotes partition of si and s j , respectively. (i) denotes that
correlative measure of any subsystem itself which is obtained by partition is larger
than correlative measure between it and any subsystem. (ii) denotes that correlative
measure of any subsystem which is obtained by partition possesses strictly superad-
ditivity.

When number of characteristic variable of system X is very large, comprehen-
sive observation for data is impossible. Even though the observation is possible,
as obtaining complete data spends very long time and for other reason such that
obtained data loses its available value. At this time, statistical method and theory
can be applied to obtaining data and to analyzing problem.

Suppose xa = (xa1 , xa2 , · · · , xaN ) be index of quantity of characteristic vari-
able Xa of the complex system X , data obtained by mean of random sampling is
x̄a = (xa1 , xa2 , · · · , xaq ), x̄a be a random sample from population Xa . Obviously
any xai necessarily is equal to some xaθi

, here θi (i = 1, 2, · · · , q) is number of
i-th individual of xa . For any θi , we have probability

p
{

xa1 = xaθ1
, xa2 = xaθ2

, · · · , xaq = xaθq

}
= (N − q)!/N ! (163.12)
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Corresponding to expressions (163.1′) and (163.2′), we have

H (x̄a) = (n − q)!

n!

[
log(n!q)− log(n − q)!− 1

q

∑

i

ni log ni

]
(163.13)

H (x̄a ∪ x̄b) = (N − q)!

N !

⎡

⎣log(N !q)− log(N − q)!− 1

q

∑

i

∑

j

ni j log ni j

⎤

⎦

(163.14)

At this time, correlative measure of the system X is defined by way similar to
the above-mentioned method. Actually, in order to obtain the partition of the
complex system X , we often introduce coefficient of correlative measure μab =
μ(Xa, Xb)/H (Xb)(μi j = μ(si , s j )/H (s j ), obviously, μ(a, b)(μi j ) is between 0 and
1. Having computed μab for all a, b, those Xa , Xb whose correlative measure is
larger than other μ(a, l), l �= b or μ(r, b), r �= a, are combined so as to accord
with the preceding criterion (1̇), (2̇). Hence some corresponding subsystems si ,
i = 1, · · · ,m, i.e. some neural functional units are obtained.

From neurophysiological studies, elementary unit representing information in
human brain is mutually coordinated clique of neuron; by combining mutual func-
tion, neurons with different properties carry out correlative activity, form various
dynamic neural networks which correspond to various function of information.

Above-mentioned partition or aggregation of neurons is carried out in self-
organizable and adaptive form; the partition or aggregation of neurons makes human
brain emerge intelligence.

Emergence of Consciousness

Suppose system X self-organizably and adaptively is partitioned into m subsystem.
Correspondingly, there are m subspace (Ωi ,$i , Pi ), i = 1, · · · ,m, of probability-
space (Ω,$, P), where Ω is space of configuration of system X . Let (Ω,$, P) be
Radon measurable space, then for any $i there exists regular conditional probability

P(·|$i ), obviously, P(·|$i ) = P(·|$(si )) = P(·|si )
Δ=μ(·|si ). Hence, for any A ∈ $

μ(A) =
∫

X |s
μ(·|si )dμ(si ) (163.15)

and for any random variable η

Eη =
∫

X |s
E(η|si )dμ(si ) (163.16)

where X |s is quotient space.
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Let us define following two functions,

f (1)
ε (t) =

⎧
⎨

⎩

μ(A)

ε
, 0 ≤ t ≤ ε

0, ε < t
(163.17)

f (2)
ε (t) =

⎧
⎨

⎩

Eη

ε
, 0 ≤ t ≤ ε

0, ε < t
(163.18)

where ε is arbitrary positive number, t is time.
To be this, we eventually have conscious experience, that is μ(A) or E(η) under

some situations or lim
ε↓0

f (i)
ε (t), i = 1, 2, under other situations.

When A or η comes from outside of X , or when A or η is caused by “gene” or
“experience” which is in inside of X , all will emerge consciousness, and is emerged
by system X self-organizably and adaptively to be partitioned (aggregated), then to
be integrated in hundreds of milliseconds. μ(A) or Eη is the integrated process.

If there exists sequences of mutual information between any appointed two neu-
rons and between any appointed two subsystems, and the sequences of the mutual
information have nice asymptotical properties, that is, if there exists ergodic super-
additive process for the sequence of mutual information in neural system X, then
the system can implement self-organization and self-adaptation.

Remarks

(1) That the neural system X is self-organizably and adaptively partitioned into
some subsystems is implemented by means of the correlative measure, i.e. mu-
tual information, which does not touch upon change of location of space of
neurons or subsystems. This is a “Internet” in the neural System X . The some
subsystems form large-scale hierarchical intelligent system. On the hierarchi-
cal intelligent system, basic principle of hierarchical intelligent system IPDI
(Increasing precision with decreasing intelligence) holds [4, 5]. The layer with
high intelligence is dynamic core of the neural system X .

(2) Consciousness is some memory.
(3) Unconsciousness is also consciousness.
(4) Consciousness is conscious of consciousness.
(5) Nearly 3000 years ago, Chinese ancient learned men said consciousness is that

Saint hears at silence, looks at immateriality, and firmly believed memory all is
in brain.

(6) Oneself-consciousness can only be experienced; it forever cannot be captured
by oneself.
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Chapter 164
Multi-Qubit State Teleportation via
Multiparty-Controlled Entanglement

Ying Guo and Guihua Zeng

Abstract Conditioned teleportation plays important roles in the quantum commu-
nication and quantum information processing. In this paper the conditioned telepor-
tation schemes of N -qubit state with M-agent have been investigated, where N , M
are integers and N , M ≥ 1. Since absence of any agents will lead impossibility of
restoring the teleported N -qubit state, the proposed schemes may be employed in
the quantum secret sharing and the distributed quantum computation.

Introduction

Physically, quantum teleportation, a disembodied transport of quantum informa-
tion between subsystems through a classical communication channel requiring the
shared resource of entanglement, is one of most striking features emerging from
quantum mechanics. Entangled systems divided into two subsystems enable the
transfer of quantum state to the remote place while the original state is destroyed
without any useful information on the original state revealed. Since the pioneer
work presented in [1] for teleportation of arbitrary single-qubit quantum state, the
quantum teleportation has been developed rapidly in theoretics [2, 3, 4, 5, 6, 7, 8, 9,
10, 11] and experiments [12, 13, 14, 15].

To teleport an arbitrary single-qubit state to one of two receivers conditioned on
the measurement outcome of the other, Karlsson and Bourennane [16] generalized
the idea of quantum teleportation [1] making use of the three-qubit entangled
Greenberger-Horne-Zeilinger (GHZ) state instead of the two-qubit Einstein-
Podolsky-Rosen state (EPR). After that, the controlled teleportation for multi-qubit
state has been proposed [3, 17]. In those protocols, the initial state can be restored
by one of the receivers with assistance of the others. This characteristic leads that
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the conditioned teleportation scheme may be employed for spitting a quantum secret
in the quantum secret scheme [18, 19, 20, 21, 22, 23, 24], and splitting a message
into several parts so that no subset of parts is sufficient to read the message but the
entire is.

In this paper, we propose several new schemes which teleports multi-qubit state
from a sender (Alice) to a distant receiver (Charlie) via controls of many agents
(Bob1,Bob2, · · · ,Bobn). Charlie may reconstruct the initial state conditioned on
the measurement outcome of all of other participants (the n agents plus Alice)
through local operations and classical communications. However, even if one par-
ticipant does not cooperate, Charlie can not restore the initial state. It has advantage
of transferring the secret state via cooperations of all participants. Subsequently,
the proposed controlled teleportation schemes may be useful in networked quantum
information processing.

Teleportation of Single-Qubit State via Controlled Participants

In the original teleportation scheme [1] for teleporting single qubit state |φm〉 =
a|0m〉+b|1m〉 carried by particle pm , Alice and Bob initially share a maximally two-
qubit entangled state |Ψ −〉AB = 1√

2
(|0A1B〉 − |1A0B〉) with two particles denoted

by pA and pB . The joint system of the teleported state and EPR state before Alice’s
measurement can be written as

|Θ〉AB = |φm〉 ⊗ |Ψ −〉AB

= a√
2

(|0m0A1B〉 − 0m1A0B)+ b√
2

(|1m0A1B〉 − 1m1A0B)

= 1

2
[|Ψ −〉(−a|0B〉 − b|1B〉)+ |Ψ +〉(−a|0B〉 + b|1B〉)
+ |Φ−〉(a|1B〉 + b|0B〉)+ |Φ+〉(a|1B〉 − b|0B〉)], (164.1)

where |Ψ ±〉 = 1√
2
(|0m1A〉±|1m0A〉) and |Φ±〉 = 1√

2
(|0m1A〉±|1m0A〉). Alice makes

a Bell measurement on the particles in her hand and classically communicates the
result to Bob, who can get the state |φB〉 = a|0B〉+b|1B〉 by applying an appropriate
unitary operation.

Now we consider a new scheme which employs multipartite entanglement with
three participants. Without loss of generality, assume that Alice teleports the state
|φm〉 to Charlie with Bob’s assistance. Before communication of three participants,
the shared two EPR states are denoted by |Ψ −〉AB with the particles denoted by
pA and pB (held by Alice and Bob) and |Ψ −〉BC with the particles denoted by
pB and pC (held by Bob and Charlie), respectively. The joint system of the tele-
ported state and two EPR states before Alice’s and Bob’s measurement may be
written as
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|Θ〉ABC = |φm〉 ⊗ |Ψ −〉AB ⊗ |Ψ −〉BC

= 1

4
{|Ψ −〉[|Ψ −〉(a|0〉 + b|1〉)+ |Ψ +〉(a|0〉 − b|1〉)+ |Φ−〉(−a|1〉 − b|0〉)
+ |Φ+〉(−a|1〉 + b|0〉)]+ |Ψ +〉[|Ψ −〉(a|0〉 − b|1〉)
+ |Ψ +〉(a|0〉 + b|1〉)+ |Φ−〉(−a|1〉 + b|0〉)+ |Φ+〉(−a|1〉 − b|0〉)]
+ |Φ−〉[|Ψ −〉(−a|0〉 − b|1〉)+ |Ψ +〉(−a|0〉 + b|1〉)
+ |Φ−〉(a|1〉 + b|0〉)+|Φ+〉(a|1〉 − b|1〉)]+ |Φ+〉[|Ψ −〉(−a|0〉 + b|1〉)
+ |Ψ +〉(−a|0〉 − b|1〉)+ |Φ−〉(a|1〉 − b|0〉)+ |Φ+〉(a|1〉 + b|0〉)]},

(164.2)

where the subscripts m, A, B and C are omitted for simplicity. After Alice makes
a Bell measurement on the first two particles and Bob makes a Bell measurement
on the next two particles in their hands, they classically communicate results to
Charlie. Finally, Charlie obtains the teleported state by applying an appropriate uni-
tary operation. The details are presented in Table 164.1.

We note that after Alice’s Bell-state measurement, Bob and Charlie are left
sharing a three-qubit state of the form {(−1)i [|Ψ −〉(a|0〉 ± b|1〉) + |Ψ +〉(a|0〉) ∓
b|1〉) + |Φ−〉(−a|1〉) ∓ b|0〉) + |Φ+〉(−a|1〉 ± b|0〉)] : i = 1, 2}. If Bob does
not cooperate with Charlie, the resulting density operator of Charlie would become
ρc = |a|2|0〉〈0| + |b|2|1〉〈1| or |a|2|1〉〈1| + |b|2|0〉〈0|. It implies that Charlie has
amplitude information on Alice’s message but knows nothing on its phase. Subse-
quently, Charlie can not recover Alice’s initial state without Bob’s participation.

The proposed protocol may be generalized to teleport a single-qubit state with as-
sistances of multi-agents, i.e., Bob1,Bob2, · · · ,BobN . This is useful for multiparty
quantum secret sharing. In this case, the participants should preshare N + 1 EPR
states denoted by |Ψ −〉AB1 , |Ψ −〉B1 B2 , · · · , |Ψ −〉BN+1 C . Then the joint system of the
teleported state |φm〉 and N +1 EPR states before Alice’s, Bobi ’s (i = 1, 2, · · · , N )
measurement may be written as |Θ〉AB1 B2···C = |φm〉 ⊗ |Ψ −〉AB1 ⊗ |Ψ −〉AB2 ⊗
· · · ⊗ |Ψ −〉BN+1C . After Alice makes a Bell measurement on the first-two particles
and Bobi makes a Bell measurement on the (i + 1)th-two particles in their hands,
they classically communicate results to Charlie which bases have been used for the
measurements. Finally, Charlie obtains the teleported state by applying appropriate
unitary operations.

Table 164.1 The unitary transformations Charlie must perform on his qubit, conditioned to Alice’s
measurement result, to complete the teleportation protocol. I is the identity operator, σx and σz are
the usual Pauli operators

Alice’s result Bob’s result Charlie’s operation Charlie’s qubit

|Ψ −〉 |Ψ −〉(|Ψ +〉, |Φ−〉, |Φ+〉) I (σz, σx , σzσx ) |φ〉(|φ〉,−|φ〉,−|φ〉)
|Ψ +〉 |Ψ −〉(|Ψ +〉, |Φ−〉, |Φ+〉) σz(I, σzσx , σx ) |φ〉(|φ〉,−|φ〉,−|φ〉)
|Φ−〉 |Ψ −〉(|Ψ +〉, |Φ−〉, |Φ+〉) I (σz, σx , σzσx ) −|φC〉(−|φ〉, |φ〉, |φ〉)
|Φ+〉 |Ψ −〉(|Ψ +〉, |Φ−〉, |Φ+〉) σz(I, σzσx , σx ) −|φ〉(−|φ〉, |φ〉, |φ〉)
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Teleportation of Multi-Qubit State via Controlled Participants

To teleport a multi-qubit state, e.g., a two-qubit state |φ〉m1m2 with two particles
pm1 and pm2 , to Charlie with Bob’s assistances, two four-qubit states |G00

A1 A2 B1 B2
〉

of the particles {p A1, p A2, pB1, pB2} and |G00
B3 B4C1C2

〉 of the particles {pB3, pB4,

pC1, pC2} should be initially shared among three participants, i.e.,

|G00〉A1 A2 B1 B2 =
1

2

4∑

j=1

(|Ψ j 〉A1 A2 ⊗ |Ψ ′j 〉B1 B2 ),

|G00〉B3 B4C1C2 =
1

2

4∑

j=1

(|Ψ j 〉B3 B4 ⊗ |Ψ ′j 〉C1C2 ), (164.3)

where |Ψ1〉 = cosα|00〉 + sinα|11〉, |Ψ2〉 = cosβ|01〉 + sinβ|10〉, |Ψ3〉 =
− sinβ|01〉 + cosβ|10〉, |Ψ4〉 = − sinα|00〉 + cosα|11〉, |Ψ ′1〉 = cos θ |00〉 +
sin θ |11〉, |Ψ ′2〉 = sinϕ|01〉 + cosϕ|10〉, |Ψ ′3〉 = cosϕ|01〉 + sinϕ|10〉, |Ψ ′4〉 =
− sin θ |00〉 + cos θ |11〉 with 0 < α, β, θ, ϕ < π/2 for α �= θ and β �= ϕ. It
can be proved that {|Ψi 〉 : i = 1, 2, 3, 4} or {|Ψ ′i 〉 : i = 1, 2, 3, 4} constitutes
an orthogonal basis of the two-qubit state space. Thus, the teleported state can be
denoted by |φ〉m1m2 =

∑4
i=1 ai |Ψ ′i 〉m1m2 with

∑4
i=1 |ai |2 = 1. After applying the

operation μ⊗ν onto the first two qubits of |G00〉, we may obtain sixteen orthogonal
states denoted by {|Gμν〉 : μ ⊗ ν ⊗ I ⊗ I |G00〉}, where μ, ν ∈ {I, σx , σz, σxσz}.
Thus, the partial trace over Alice’s and Bob’s (or Bob’s and Charlie’s) subsystem
can be calculated as

T rB(A)(|G00〉A1 A2 B1 B2〈G00|) = 1

4
IA(B) (164.4)

or

T rB(C)(|G00〉B1 B2C1C2〈G00|) = 1

4
IC(B), (164.5)

where I is an identity operator. It implies that all of the states |Gμν〉 are maximally
entangled states similar to EPR states |Ψ ±〉 and |Φ±〉. Thus, the joint system of the
teleported state |φ〉m1m2 , |G00〉A1 A2 B1 B2 and |G00〉B3 B4C1C2 before Alice and Bob’s
measurement can be written as

|Ω〉ABC = |φ〉m1m2 ⊗ |G00〉A1 A2 B1 B2 ⊗ |G00〉B3 B4C1C2 . (164.6)

If Alice and Bob apply jointly the complete projective measurements on {pm1 , pm2 ,

pA1 , pA2} and {pB1 , pB2 , pB3 , pB4} in the basis {|Gμν〉} with the respective measure-
ment outcomes μν and μ′ν ′, Charlie’s state of particles pC1 and pC2 becomes
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|M〉C1C2 =
1√
p
〈Gμ′ν ′

B1 B2 B3 B4
| ⊗ 〈Gμν

m1m2 A1 A2
|φ〉m1m2 ⊗ |G00〉A1 A2 B1 B2

⊗ |G00〉B3 B4C1C2 ,

= 1√
p
〈Gμ′ν ′

B1 B2 B3 B4
| ⊗ 〈G00

m1m2 A1 A2
|[(μm1 ⊗ νm2 )|φ〉m1m2

⊗ |G00〉A1 A2 B1 B2 ]⊗ |G00〉B3 B4C1C2

= 1

4
√

p
〈G00

B1 B2 B3 B4
|[(μ′B1

μB1 ⊗ ν ′B2
νB2 )|φ〉B1 B2 ]⊗ |G00〉B3 B4C1C2

= 1

16
√

p
(μ′C1

μC1 ⊗ ν ′C2
νC2 )|φ〉C1C2 (164.7)

The success of the present protocol is guaranteed by the equation m1m2 A1 A2

〈G00|⊗B1 B2 B3 B4 〈G00|G00〉A1 A2 B1 B2 ⊗|G00〉B3 B4C1C2 = 1
16

∑4
i=1 |Ψ ′i 〉C1C2 ×m1m2 〈Ψ ′i |.

Thus, one may obtain p = 1
256 which implies that Charlie can always succeed in

restoring the original state |φ〉m1m2 as long as Charlie receives Alice’s and Bob’s
classical information on the measurement results.

Generally, the present protocol can be used for the teleportation of the three-qubit
state with the agent Bob. Assume that the initial three-qubit message state is denoted
by |φ〉m1m2m3 and two shared six-qubit states between three participants are denoted
respectively by

|G000〉A1 A2 A3 B1 B2 B3 =
1

2

8∑

j=1

(|Ψ j 〉A1 A2 A3 ⊗ |Ψ ′j 〉B1 B2 B3 ),

|G000〉B4 B5 B6C1C2C3 =
1

2

8∑

j=1

(|Ψ j 〉B4 B5 B6 ⊗ |Ψ ′j 〉C1C2C3 ), (164.8)

Where |Ψ1〉 = cosα1|000〉 + sinα1|111〉, |Ψ2〉 = cosβ1|001〉 + sinβ1|110〉, |Ψ3〉 =
cos γ1|010〉+ sin γ1|101〉, |Ψ4〉 = cos δ1|011〉+ sin δ1|100〉, |Ψ5〉 = − sinα1|000〉+
cosα1|111〉, |Ψ6〉 = − sinβ1|001〉 + cosβ1|110〉, |Ψ7〉 = − sin γ1|010〉 + cos
γ1|101〉, |Ψ8〉 = − sin δ1|011〉 + cos δ1|100〉, and |Ψ ′1〉 = cosα2|000〉 + sinα2|111〉,
|Ψ ′2〉 = cosβ2|001〉 + sinβ2|110〉, |Ψ ′3〉 = sin γ2|010〉 + cos γ2|101〉, |Ψ ′4〉 =
sin δ2|011〉+cos δ2|100〉, |Ψ ′5〉 = − sinα2|000〉+cosα2|111〉,|Ψ ′6〉 = − sinβ2|001〉+
cosβ2|110〉, |Ψ ′7〉 = cos γ2|010〉 − sin γ2|101〉, |Ψ ′8〉 = cos δ2|011〉 − sin δ2|100〉,
with 0 < αi , βi , γi , δi < π/2(i = 1, 2) for α1 �= α2, β1 �= β2, γ1 �= γ2

and δ1 �= δ2. It can be proved that both {|Ψi 〉 : 1 = 1, 2, . . . , 8} and {|Ψ ′i 〉 :
1 = 1, 2, . . . , 8} can constitute respectively an orthogonal basis of three qubit state
space. So the initial state |φ〉m1m2m3 can be repressed as |φ〉m1m2m3 =

∑8
i=1 ai |Ψ ′i 〉

with
∑8

i=1 |ai |2 = 1. After applying the operation μ ⊗ ν ⊗ ω onto the first
three qubits of |G000〉, we may obtain forty-eight orthogonal states denoted by
{|Gμνω〉 : μ ⊗ ν ⊗ ω ⊗ I ⊗ I ⊗ I |G000〉}, where μ, ν, ω ∈ {I, σx , σz, σxσz}.
Thus, the joint system of the teleported state |φ〉m1m2m3 , |G000〉A1 A2 A3 B1 B2 B3 and
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|G000〉B4 B5 B6C1C2C3 before Alice and Bob’s measurement can be written as |Υ 〉ABC =
|φ〉m1m2m3 ⊗ |G000〉A1 A2 A3 B1 B2 B3 ⊗ |G000〉B4 B5 B6C1C2C3 . If Alice and Bob apply the
complete projective measurements jointly on {pm1 , pm2 , pm3 , pA1 , pA2 , pA3} and
{pB1 , pB2 , pB3 , pB4 , pB5 , pB6} in the basis {|Gμνω〉} with the respective measure-
ment out-comes μνω and μ′ν ′ω′, Charlie can obtain the three-qubit state

|M〉C1C2C3 =
1

256
μ′C1

μC1 ⊗ ν ′C2
νC2 ⊗ ω′C3

ωC3 |φ〉C1C2C3 . (164.9)

Thus, Charlie can gain the initial three-qubit state conditioned on Alice’s and Bob’s
measurement outcomes μνω and μ′ν ′ω′.

Discussion and Conclusions

The proposed schemes are probably secure according to the following reasons.
Firstly, the eavesdropping by entangling ancillary qubit with the participants’ qubits
can be revealed by comparing a subset of the states Charlie received to those Al-
ice sent via a quantum one way map. Secondly, the qubits Alice sends to Charlie
are basically useless without the classical information possessed by all participants
including Alice, Bob1, . . .,Bobn . Hence, even if the eavesdropper were to intercept
the qubits intended for Charlie and replace them with fakes and the classical commu-
nication channel for the participant’s measurement outcomes, she could not restore
the initial state without Alice’s measurement outcomes conditioned on that Alice
sends her classical information via the standard method implemented in references
[18, 19, 20]. Actually, the security of the present schemes can be proved in essence
in the same way as those in references [1, 2, 3].

In summary, we present a method for the multiparty-controlled teleportation
of an arbitrary m-qubit entangled state with n 2m-qubit states shared by all of
the participants. Any one (say Bobi ) of the agents can reconstruct the initial
state conditioned on the measurement outcomes of Alice and the previous agents
Bob1, . . .,Bobi−1. This method may be useful in the networked quantum informa-
tion processing. Also, it can be used to share the classical message or the multi-qubit
state with just a few modifications.
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Chapter 165
New Multiobjective PSO Algorithm
for Nonlinear Constrained Programming
Problems

Chun-An Liu

Abstract A new approach is presented to solve nonlinear constrained programming
problems (NLCPs) by using particle swarm algorithm (PSO). It neither uses any
penalty functions, nor distinguish the feasible solutions and the infeasible solutions
including swarm. The new technique treats the NLCPs as a bi-objective optimization
problem, one objective is the original objective of NLCPs, and the other is the degree
violation of constraints. As we prefer to keep the ratio of infeasible solutions so
as to increase the diversity of swarm and avoid the defect of conventional over-
penalization, a new fitness function is designed based on the second objective. In
order to make the PSO escape from the local optimum easily, we also design a
adaptively dynamically changing inertia weight. The numerical experiment shows
that the algorithm is effective.

Introduction

Nonlinear constrained programming problems (NLCPs) are encountered in nu-
merous applications. Structural optimization, engineering design, economic, allo-
cation and location problems are just a few of the scientific fields in which NL-
CPs are frequently met. The key point in the NLCPs process is how to deal with
the constraints. The traditional methods usually convert the problem into non-
constrained problem to solve, such as [1, 2, 3]. However, these methods demand
the high quality of the function, and they can only solve those better quality
functions.

Particle swarm algorithms (PSO) [4] originally developed by Kennedy and
Eberhart is a swarm based algorithm. PSO is initialized with a swarm of candi-
date solutions, each candidate solution is called particle and move according the
velocity-location equation. PSO have been found to be fast in solving nonlinear,
non-differentiable and multi-modal optimization problems. In the last years, several
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important effort has been reported in the literatures. Coath and Halgamuge [5] pro-
posed the feasible solutions method(FSM) and the penalty function method(PFM)
to handle constraints in PSO. however, both of the two method have disadvantages.
FSM demands all particles must be include in the feasible region, and the PFM
required careful fine tuning of the penalty function parameters.

Recently, some genetic algorithm based on the multiobjective optimization con-
cepts have been proposed to handle constraints [6, 7]. Its main ideal is consider
each constraints as an objective function, and transform the NLCPs into multiob-
jective optimization problem with m + 1 objectives, where m is the number of the
constraints of NLCPs. Then using the Pareto dominance concepts of multiobjective
optimization or Pareto ranking to select the candidates individuals and consist the
next swarm. However, this method has a serious drawback according to the follow-
ing two case if all objectives are considered as the same importance. one case is
that an feasible solution which is seen to the true optimal solution of the NLCPs,
but it has a small fitness and be seen as a bad solution to delate according to the the
Pareto dominance or Pareto rank. However, this solution should survive in the next
generation. The other case is that one infeasible solution which is far away from the
true optimal solution of the NLCPs or the boundary of constraints, maybe its has a
very big fitness value to survive according to the Pareto dominance or Pareto rank.
However, this solution should keep away from the next generation.

In this paper, the constraints of NLCPs are firstly transformed into a degree vi-
olation and thus the NLCPs is transformed into a bi-objective problem. In order
to increase the diversity of population and avoid the defect of conventional over-
penalization, a new fitness function is designed based on the degree violation. and
in order to make the PSO escape from the local optimum easily, we also design a
adaptively dynamically changing inertia weight. The numerical experiment shows
that the algorithm is effective.

Transformation of NLCPs

Consider the following nonlinear constrained programming problems (165.1):

{
min

x∈D⊂[L ,U ]
f (x)

s.t. gi (x) ≤ 0 i = 1 ∼ m
(165.1)

Where [L ,U ] = {x = (x1, x2, · · · , xn)|li ≤ xi ≤ ui , i = 1 ∼ n} ⊂ Rn . D =
{x |x ∈ [L ,U ], gi (x) ≤ 0, i = 1 ∼ m} is called feasible region and each point is
called a feasible point.

For the problem (165.1), it can be transformed into the following bi-objective
optimization problem (165.2):

min F(x) = ( f1(x), f2(x)) (165.2)



165 New Multiobjective PSO Algorithm for NLCPs 957

Where f1(x) is objective function of the original optimization problem (165.1),
f2(x) = 1

m

∑m
i=1

ci (x)
c(x)+ε , ci (x) = max{0, gi (x)}, i = 1 ∼ m, c(x) = max

1≤i≤m
{ci (x)}, ε >

0. It is obvious that to minimize the first objective function of optimization prob-
lem (165.2) means to find a point x∗ so as to obtain the optimal value of the prob-
lem (165.1). Since the second objective function of problem (165.2) is defined as
the function of degree violation of constraints. Thus, to minimize f2(x) means to
search the point x∗ in order to meet all the constraints. Therefore, to minimize the
two objectives of problem (165.2) simultaneously means to search for the point so
as to meet all the constraints and make the first objective f1(x) minimize.

New Multiobjective PSO Algorithm

PSO Algorithm

PSO was initially proposed by Kennedy and Eberhart [4]. It is a population evolution
based optimization method inspired by the behavior of bird flocks, which employs
a swarm of particles to probe the search space. In PSO, each individual (called par-
ticle) is described by three main concepts: its current location in the search space, a
memory of its best previous location and information regarding the best location and
information regarding the best location ever attained by a topological neighborhood
of it. Suppose that Xid (t) is the present position of i-th particle (termed as same as
its present location Xid (t)) in generation t , Pid (t) be its own best previous position,
and Pgd (t) be the best position ever attained by the swarm. Then, the particle Xid (t)
is manipulated according to the following velocity-location equations:

Vid (t + 1) =ω · Vid (t)+ c1 · r1(Pid (t)− Xid (t))+ c2 · r2(Pgd (t)− Xid (t))
(165.3)

Xid (t + 1) = Xid (t)+ Vid (t + 1), i = 1 ∼ N (165.4)

Where Vid (t) is the previous velocity, Vid (t + 1) is the present velocity, Xid (t + 1)
is the new position, c1, c2 are realizations of uniformly distributed random variables
in [0,1]. The parameters c1 and c2 are called cognitive and social parameters. The
parameter ω is called inertia weight and it is used to control the trade-off between
the global exploration and the local exploitation ability of the swarm.

Selection Operator

For particle x , we defined the new fitness function as following:

F(x) =
{

f1(x) x ∈ D
max( p

N · f min
1 + N−p

N · f max
1 , f1(x))+ f2(x) x /∈ D

(165.5)
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Where N is the particle swarm size, p is the number of feasible particles of current
generation. f min

1 and f max
1 is the smallest value and the biggest value of feasible

particles of current generation, respectively. for any two particles, we can see from
the fitness function (165.5):

1. If the two particles are both feasible, then the particle with a minimum value of
the first objective function of problem (165.2) wins.

2. If both of the particles are infeasible, the particle with a minimum value of the
second objective function of problem (165.2) wins.

3. If one is infeasible, the other is feasible. then compare the deviation degree of
The two particle far away from the f min

1 , when the bigger of the proportion of
feasible particle, the bigger of the probability to choice the infeasible in current
particle swarm. On the contrary, the bigger of the proportion of infeasible particle
in current particle swarm, the bigger of the probability to choice the feasible.

Self-adaptive Variation of ω

From (165.3), It’s obvious that a large inertia weight can make the PSO to explore
the search space of problem, while a small one tends to facilitates exploitation.
Hence, the inertia weight is a very important parameter to balance the global and
local search. To evaluate the diversity of the swarm, we defined a diversity measure
as follows:

λ(t) =
∑N

i=1

(
f t
i − (

∑N
i=1 f t

i )
N

)2

N · max
k∈{1,2,··· ,t}

{∑N
i=1

(
f k
i − (

∑N
i=1 f k

i )
N

)2
} (165.6)

where f t
i present the fitness value of the i-th paticle in t-th generation. The bigger

the value of λ(t), the better the diversity of the swarm is. the smaller the value of
λ(t), the more crowded the swarm is. When the swarm become very crowded, it
is difficult for the algorithm to jump out from the local optimal solution. Thus, we
can define the self-adaptive variation inertia weight based on the dynamic parameter

λ(t) as ω(t) = g−t
si ze

(λ(t)+∈)·(gsize+0.4) , where gsize be the maximum generation of swarm, t
be the current generation. ∈ is a very small positive number, It can be seen from the
ω(t) that when paticle are crowded, that’s to say λ(t) is small, ω(t) will become big
in order to enhance the ability of global search of the algorithm.

The Multiobjective PSO Algorithm

Step 1. (Initialization) Given the particle swarm size N , randomly generate
initial swarm p(0) in [L ,U ], and let t = 0.



165 New Multiobjective PSO Algorithm for NLCPs 959

Step 2. (Update velocity and position)For each of the particle in p(t), it was
manipulated to find its good position and velocity based on the new selection
operator in current generation. Then update each particle’s velocity and po-
sition according to the velocity-position equation and constitute a temporary
particle swarm c(t).

Step 3. Utilize the crossover operator proposed in [6] to generate the offspring
of the particles in c(t).

Step 4. (Crossover)Select N individuals by the selection operator from p(t) ∪
c(t) and constitute the next particle swarm p(t+1), and use the best solution
x ′t = arg min

x∈D∩p(t)
f1(x) to replace the particle which its fitness value is biggest

in the p(t + 1), let t = t + 1.
Step 5. (Stop criterion)If t = T , the best particle in p(t) is as the optimal and

the algorithm is stopped; otherwise, go to Step 2.

Simulation Results

Test Functions

Test Problem F1([8])

min f (x) = (x1 − 10)2 + (x2 − 20)2,

subject to: g1(x) = (x1 − 5)2 + (x2 − 5)2 − 100 ≥ 0, g2(x) = (x1 − 6)2 + (x2 −
5)2 − 82.81 ≤ 0, 13 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100. The best known solution is
f ∗ = −6961.814.

Test Problem F2([8])

min f (x) = (x1−10)2+5(x2−12)2+x4
3+3(x4−11)2+7x2

6+x4
7−4x6x7−10x6−8x7,

subject to: g1(x) = 127− 2x2
1 − 3x4

2 − x3 − 4x2
4 − 5x3 ≥ 0, g2(x) = 196− 23x1 −

3x2
2 − 6x2

6 − 8x7 ≥ 0, g3(x) = 282 − 7x1 − 3x2 − 10x2
3 − x4 + x5 ≥ 0, g4(x) =

−4x2
1 − x2

2 + 3x1x2 − 5x6 + 11x7 ≥ 0,−10 ≤ xi ≤ 10, i = 1, 2, · · · , 7. The best
known solution is f ∗ = 680.630.

The Problem F3([9])

max f (x) =

∣∣∣∣∣∣∣∣∣∣

n∑
i=1

cos4(xi )− 2
n∏

i=1
cos2(xi )

√
n∑

i=1
i x2

i

∣∣∣∣∣∣∣∣∣∣

,
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subject to: g1(x) = 0.75 −
n∏

i=1
≤ 0, g2(x) =

n∑
i=1

xi − 0.75n ≤ 0, n = 20, 0 ≤ xi ≤
10(i = 1, 2, · · · , n). The global maximum is unknown; the best reported solution
[10] is f ∗ = −0.803619. Constraint g1 is close to being active (g1 = −10−8).

Test Problem F4([9])

max f (x) = sin3(2πx1)sin(2πx2)

x3
1 (x1 + x2)

,

subject to: g1(x) = x2
1−x2+1 ≤ 0, g2(x) = 1−x1+(x2−4)2 ≤ 0, 0 ≤ x1, x2 ≤ 10.

the best reported solution is f ∗ = −0.095825.

Test Problem F5([8])

min f (x) = ex1x2x3x4 ,

subject to: 6x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0, x2x3 − 5x4x5 = 0, x3

1 + x23 + 1 =
0,−2.3 ≤ xi ≤ 2.3, i = 1, 2,−3.2 ≤ xi ≥ 3.2(i = 3, 4, 5). the best reported
solution is f ∗ = 0.0539498.

Result and Comparison

In the simulation, we termed our approach as MOPSO, The particle swarm size
N = 200, c1 = c2 = 0.5, r1, r2 ∈ rand[0, 1]. For each problems, the best result,
the mean and the worst result obtained by MOPSO in all 20 runs were recorded.
All the result obtainted by MOPSO was compared with the existing ones obtainted
from the reference [7, 8, 9, 10] in Table 165.1.

Table 165.1 Comparison of the best, mean and worst results among MOPSO and
other algorithms in reference [7, 8, 9, 10] for each test problems,N.A. represents the
coresponding result is not available.

It can be seen from Table 165.1, for F1, F3 and F5, the best solutions found
are better than the optimal one. For F2, the solution found by MOPSO is equal to
the optimal and these solutions found by other algorithms in reference [7, 8, 9], but
the mean and worst solution found by MOPSO is better than these algorithms in
difference references [7, 8, 9]. For F4, the results obtained by MOPSO are same
as these results obtained by each algorithm in reference [8, 9, 10]. Thus, these
results indicates MOPSO is effective to solve nonlinear constrained programming
problems.
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Table 165.1 Result comparison

Problem Optimal Method Best result Mean Worst result

MOPSO −6961.820 −6961.818 −6961.813
Reference[7] −6961.817 −6960.942 −6960.456

F1 −6961.814 Reference[8] −6961.814 −6875.940 −6850.262
Reference[9] −6961.814 −6961.813 −6961.810
Reference[10] N.A. N.A. N.A.
MOPSO 680.630 680.631 680.632
Reference[7] 680.630 680.683 680.876

F2 680.630 Reference[8] 680.630 680.656 680.763
Reference[9] 680.630 680.633 680.634
Reference[10] N.A. N.A. N.A.
MOPSO −0.803614 −0.804115 −0.805298
Reference[7] N.A. N.A. N.A.

F3 −0.803619 Reference[8] −0.803616 −0.804975 −0.806288
Reference[9] −0.803619 −0.805281 −0.809291
Reference[10] −0.803933 −0.806301 −0.809747
MOPSO −0.095825 −0.095825 −0.095825
Reference[7] N.A. N.A. N.A.

F4 −0.095825 Reference[8] −0.095825 −0.095825 −0.095825
Reference[9] −0.095825 −0.095825 −0.095825
Reference[10] −0.095825 −0.095825 −0.095825
MOPSO 0.0539492 0.0541245 0.0559764
Reference[7] N.A. N.A. N.A.

F5 0.0539498 Reference[8] 0.0539498 0.0541795 0.0562234
Reference[9] N.A. N.A. N.A.
Reference[10] N.A. N.A. N.A.

Conclusions

In this paper, we first transform the nonlinear constrained programming problem
into a bi-objective optimization problem, and then a new multiobjective PSO al-
gorithm which dose not requires the use of a penalty function is proposed. The
numerical simulations on five test problems also indicate the effectiveness of the
proposed algorithm.
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Chapter 166
Binary Kernel in Morphological Associative
Memory

Wei-Chen Cheng and Cheng-Yuan Liou

Abstract This work presents a binary implementation of the internal representa-
tion kernel in morphological associative memory (MAM) [IEEE International Con-
ference on System, Man, and Cybermetics 4: 3570–3575, 1997]. This kernel was
proposed by Ritter et al. [IEEE International Conference on System, Man, and Cy-
bermetics 4: 3570–3575, 1997] and further solved by Hattori et al. [Proceedings of
the 9th International Conference on Neural Information Processing 2:1058–1063,
2002]. Ritter used a trial and error method to search for a suitable kernel Z for
MAM and attempted to work out a theoretical way to estimate the kernel. Hattori
proposed a fast solution for finding this kernel. This work shows that in binary
cases, when solving the kernel, only those bits satisfying certain specific condi-
tions need to be checked. This can speed the checking procedure in large scale data
processing.

Keywords Pattern recognition · pattern classification · image algebra · image
recognition · morphological associative memory · morphological kernel

Introduction

Ritter applys the lattice-based matrix operation to image processing and transforms
the mathematical structures of image algebra to the structures of neural networks
[1, 2]. A single layer morphological perceptron [3, 4] has been designed to perform
pattern classification tasks. A morphological associative memory (MAM) [5, 6] has
been constructed with a similar structure as that of Hopfield model. The MAM
employs two weight matrices, W and M , to tolerate two kinds of noisy patterns
[5, 6] separately where W can tolerate erosive damaged patterns and M can tolerate
dilative damaged patterns. These two matrices are useless in the presence of noisy
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patterns consisting of mixed erosive and dilative damages. To recover such damages,
Ritter et al. proposed to develop an internal representation kernel to recall patterns
with mixed damages [5]. A kernel pattern is a severe eroded pattern of a stored
pattern. In other words, the kernel pattern is a sparse version of the stored pattern.
This means that there are a small number of key feature bits saved in the kernel
pattern. Since the kernel pattern contains much fewer bits than those stored pattern
contains, the kernel pattern suffer little under noise damaging. Ritter defines that
a kernel pattern should not mix with any other stored pattern. He further suggests
that kernel patterns can not have a common bit. He determines the kernel pattern by
randomly flipping bits in a trial-and-error way. Hattori discards the condition that
kernel patterns can not have a common bit and constructs an efficient algorithm to
resolve the kernel [7, 8].

This paper presents several useful observations. These observations can save the
computations to one third of that of Hattori’s algorithm. This work reveals insights
on the lattice-based memory.

Review MAM

The MAM is based on the algebraic structure (R,∨,∧,+), where ∨ is the binary
maximum operation,∧ is the binary minimum operation, R denotes real number and
+ is the addition. p denotes the total number of stored patterns and n denotes the
dimension of stored patterns. Matrices are column-based. Each column represents
a vector of the stored pattern, xγ . We arrange X to an n × p matrix. xγi denotes
the i th bit of the γ th pattern. xγi is the same as xiγ . For A ∈ R

n×p, B ∈ R
p×n

and C ∈ R
n×n , the matrix operation of max product, ∨ , and min product, ∧ , is

defined by

C = A ∨ B ⇔ ci j =
p∨

k=1

(
aik + bk j

)
and

C = A ∧ B ⇔ ci j =
p∧

k=1

(
aik + bk j

)
(166.1)

The two weight matrices of MAM, W and M , are defined as

WXY =
p∧

ξ=1

(
yξ∨ (−xξ

)T)
and MXY =

p∨

ξ=1

(
yξ∨ (−xξ

)T)
. (166.2)

where xT means the transpose of x and the suffix XY of W means X is the input
matrix and Y is the output matrix.
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Mathematical Explanation and Improvement

We now discuss the binary kernel implementation [7, 8]. The kernel method is a
two-step process, the first step is to compute the generated internal representation,
MZ Z∧ X = Z , and the second is to compute the output of the ∨-product from the
internal representation, WZ X ∨ Z . A competent kernel Z should satisfy that each bit
in Z must be less or equal to the corresponding bit in X and

X = WZ X∨ (MZ Z∧X ) = (X∧− Z T
)∨ ((Z∨− Z T

)∧X
)
. (166.3)

Equation (166.3) can be expanded as

n∨

s=1

⎛

⎝
p∧

q=1

(
xiq − zsq

)+
n∧

u=1

p∨

k=1

zsk − zuk + xuγ

⎞

⎠ = xiγ . (166.4)

Equation (166.4) has two meanings. One is the recall of the internal representa-
tion Z , Z = MZ Z∧X , and the other is the output of the ∨-product WZ X with the
representation Z . With the assumption that {xiγ = 0 and zγi = 1} won’t happen,
when {xiγ = 1 and zγi = 1}, then

n∧

u=1

p∨

k=1

zik − zuk + xuγ =
∧

u �=i

p∨

k=1

zik − zuk + xuγ

=
∧

u �=i

⎛

⎝(ziγ − zuγ + xuγ
) ∨
∨

k �=γ

(
zik − zuk + xuγ

)
⎞

⎠

=
∧

u �=i

⎛

⎝(1− zuγ + xuγ
) ∨
∨

k �=γ

(
zik − zuk + xuγ

)
⎞

⎠ ≥ 1. (166.5)

Therefore the result of the i th bit of pattern γ is always 1. For another case
xiγ = 0, zγi = 0, the calculation result is always 0 by the same derivation. We have
derived equations for correct recall of Z , and the next step is to derive equations of
correctly recalling X from Z . Start from WZ X∨Z = X . If xiγ = 0 and ziγ = 0 ,
then we have

n∨

s=1

p∧

q=1

xiq − zsq + zsγ

=
⎛

⎝0 ∧
∧

q �=γ

(
xiq − ziq + 0

)
⎞

⎠ ∨
∨

s �=i

⎛

⎝0 ∧
∧

q �=γ

(
xiq − zsq + zsγ

)
⎞

⎠ = 0. (166.6)
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Therefore the calculation result is always correct. From the same derivation, the
calculation result of xiγ = 1, ziγ = 1 is also guaranteed to be correct. Based on
this, some computations can be saved. In calculating the first step process of MAM,
MZ Z∧X = Z ′, z′iγ needs to be calculated only when xiγ = 1 and ziγ = 0. Z ′ means
the result of first step process of MAM. For other cases, z′iγ = ziγ is automatically
satisfied. Note that when the elements in Z ′ are not totally equal to those in Z , we
show how to check WZ X∨Z ′ = X to save computations.

xiγ =
n∨

s=1

⎛

⎝
p∧

q=1

xiq−zsq+z′sγ

⎞

⎠=
n∨

s=1

⎛

⎝(xiγ−zsγ+z′sγ
) ∧
∧

q �=γ

(
xiq−zsq+z′sγ

)
⎞

⎠

=
⎛

⎝(xiγ − ziγ + z′iγ
) ∧
∧

q �=γ

(
xiq − ziq + z′iγ

)
⎞

⎠

∨
∨

s �=i

⎛

⎝(xiγ − zsγ + z′sγ
) ∧
∧

q �=γ

(
xiq − zsq + z′sγ

)
⎞

⎠ . (166.7)

For xiγ = 1 and z′iγ = 1, the term
(

xiγ − ziγ + z′iγ
)
∧∧q �=γ

(
xiq − ziq + z′iγ

)

equals
(
1− ziγ + 1

) ∧ ∧q �=γ
(
xiq − ziq + 1

)
. It is rare that this term will have

a value equal to 2. Also, it is rare that the term in (166.7),
(
xiγ − zsγ + z′sγ

) ∧∧
q �=γ
(
xiq − zsq + z′sγ

)
, will have a value equal to 2. We need to check whether

WZ X∨Z ′ equals X only when z′iγ = 0. We compute and compare the ratio of
omitted calculations in the two cases {MZ Z∧X = Z ′, WZ X∨Z ′ = X} and
{MZ Z∧X = Z ′, WZ X∨Z ′ = X}. In Fig. 166.1, the solid line net shows the ratio of
omitted calculations in case {MZ Z∧X = Z ′, WZ X∨Z ′ = X}. The dotted line net
shows the ratio of omitted calculations in case {MZ Z∧X = Z ′, WZ X∨Z ′ = X}.

Fig. 166.1 The 25 saving
ratios. P

(
xi j = 1

)
denotes

the probability of a bit in X to
be one. P

(
zi j = 1|xi j = 1

)

means the conditional
probability that given xi j = 1
the probability of zi j = 1.
The parameters n = 300,
p = 500
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Table 166.1 Learning time(secs) comparison between [8] and current method

n = 50 n = 75 n = 100 n = 125 n = 150

Hattori [8] 23.67 71.09 178.71 301.28 186.76
Proposed method 7.83 22.28 52.68 40.88 58.18

p = 75, #times = 10, P
(
xi j = 1

) = 0.6.

We applied this computation improvement to Hattori’s algorithm [7]. In
Table 166.1, #t imes denotes the total number of times the experiment has been run.
The results are averaged by the number of experiments, #t imes. From Table. 166.1,
it shows that the speed of the proposed method is triple of that of the method in [8].

Summary

We find that when calculating MZ Z∧X , only those bits that xγi = 1 and zγi = 0
need to be checked. The rest are set to zγi . The mathematical expression is

(MZ Z∧ xγ )i =
{∧

u �=i

∨p
k=1 zik − zuk + xuγ if xγi = 1 and zγi = 0

zγi otherwise
.

We also show that when calculating WZ X∨ Z ′ (where Z ′ = MZ Z∧X ), we only
calculate those bits which satisfy zγi = 0. The mathematical expression is

(
WZ X∨ z′γ

)
i =
{∨n

s=1

∧p
q=1 xiq − zsq + z′sγ if z′γi = 0

xγi otherwise
.

We exploited the detailed relations between stored patterns and kernel patterns, and
did experiments to show that these details can save the computations to one third
of Hattori’s algorithm. This can benefit the application of MAM in large scale data
processing.
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Chapter 167
Intrusion Detection Classifier Based on Dynamic
SOM and Swarm Intelligence Clustering

Yong Feng, Jiang Zhong, Zhong-yang Xiong, Chun-xiao Ye and Kai-gui Wu

Abstract A clustering analysis model based on dynamic self-organizing maps
(DSOM) and swarm intelligence (SI) is systematically proposed for intrusion de-
tection system. The basic idea of the model is to produce the cluster by DSOM and
SI. With the classified data instances, the detection classifier can be established. And
then the detection classifier can be used in real intrusion detection. Experimental re-
sults show that our detection classifier maintained a higher performance than SVM,
LGP, DT and K-NN.

Keywords Intrusion detection · classifier · dsom · swarm intelligence · clustering

Introduction

Precisely on the context of adopting complex adaptive systems into ID systems
[1, 2, 3]. The present work introduces a clustering model based on DSOM and
swarm intelligence to detect intrusions and compares its performance with Linear
Genetic Programming (LGP), Support Vector Machines (SVM), K-NN and Deci-
sion Trees (DT).

The rest of the paper is organized as follows. Section ‘Clustering Model Based
on DSOM and SI’ presents our clustering model based on DSOM and swarm intel-
ligence. Establishment of the detection classifier is reported in section ‘Establishing
Detection Classifier’. Experiment results are presented in Section ‘Experiment’ and
some conclusions are also provided towards the end.

Clustering Model Based on DSOM and SI

The DSOM is initialized with four nodes [4]. The weight values of the nodes are
self-organized according to a similar method as the SOM.
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Definition 1. E is the error distance between b and v, E is defined as: E =∑d
j=1 (v j − wb, j )2, where d is dimension of the vector v.

Definition 2. GT is the growth threshold of DSOM. For the node i to grow a new
node, it is required that E ≥ GT . It can be deduced from E, 0 ≤ v j , wb, j ≤ 1 and
0 ≤ E ≤ d that 0 ≤ GT < d. The spread factor SF can be used to control and
calculate the GT for DSOM. The GT can be defined as: GT = d × f (SF), where
SF ∈ R, 0 ≤ SF ≤ 1, and f (SF) is a function of SF.

Definition 3. f (SF) is defined as: f (SF) = Sigmoidn(t)(1 − SF) = 1−e−n(t)∗(1−SF)

1+e−n(t)∗(1−SF) ,
where n(t) is the total number of nodes at t th iteration. f (SF) gradually saturated
with the increase of network training that GT is stable, and DSOM algorithm is
reaching convergence.

SI clustering has two main phases. First, each ant chooses the object at random, and
picks up or moves or drops down the object according to picking-up or dropping
probability in the output layer of DSOM. Second, clusters are collected from the
output layer of DSOM. The details of SI clustering algorithm could be found in our
previous work [5].

Establishing Detection Classifier

The maximum quantitative difference Di and the labeling clusters threshold N
are defined to label the clusters. The Di and N can be defined as: Di = (Qi −
Qmin)2/(Qmax − Qmin)2, N = SF/(1+ 1/S), where 0 ≤ Di ≤ 1, 0 < N < 1. Qi

is the number of instances in Ci , 1 ≤ i ≤ S. Qmax is the maximum of {Qi }. Qmin is
the minimum of {Qi }. S is the number of the clusters. If Di > N , then Ci is labeled
as the ‘normal’ cluster, or Ci is labeled as the ‘anomalous’ cluster.

Accuracy of DSOM and SI clustering is depend on SF and α to some extent. In
order to obtain precision intrusion detection, we need to determine stable SF and α.
DSOM and SI-based detection classifier can help us to balance the contradiction be-
tween the clustering results and the apriori knowledge, and stable value of SF and α
can also be determined by it. Figure 167.1 shows the DSOM and SI-based detection
classifier, where d(Oi , x)is Euclidean distance between x and {O1, O2, . . ., OS}.

Experiment

The data for our experiments was prepared by the 1998 DARPA intrusion detec-
tion evaluation program by MIT Lincoln Labs [6]. The dataset has 41 attributes or
features for each connection record plus one class label. Our experiments had two
conventional phases namely training phase and testing phase.
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Fig. 167.1 DSOM and
SI-based detection classifier
principles

Training Phase

According to the first assumption of the unsupervised intrusion detection algorithms
(UADA), we need to generate the training data set D from DARPA reduced data
sets by filtering it for attacks. D consisted of 1–1.5% intrusion instances and 98.5–
99% normal instances. To evaluate the algorithm we are interested in three major
indicators of performance: DR (Detection Rate), FPR (False Positive Rate) and FNR
(False Negative Rate). In the training phase, we adopt four training data sets from
D: DS1, DS2, DS3 and DS4. Each data set contains 1000 instances, we adjust SF
from 0.3 to 0.8 (interval is 0.1) and α from 0.85 to 0.2 (interval is 0.05). The other
parameters are set as follows: ant−number = 10, r = 12, k = 10, n = 60×1000.
The training experiment results are reported in Figs. 167.2–167.5.

Fig. 167.2 Training results on DS1
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Fig. 167.3 Training results on DS2

Fig. 167.4 Training results on DS3

Fig. 167.5 Training results on DS4
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Fig. 167.6 Average
performance comparing

We can decide the best value of SF is 0.7 and α is 0.25 by the training experiment
results.

Testing Phase

The classifier is produced by the training experiment. In testing experiment, we use
always the full training data sets (5000 training samples) plus only a part of new
data sets (1000 samples each time). That is, we made five testing data sets with
5000 training samples and 1000 new samples for our testing experiment, we set
SF = 0.7 and α = 0.25, the other parameters are same as the training experiment.
The average performance comparing between our classifier and the other detection
classifiers over the five same testing data sets is presented in Fig. 167.6.

Conclusions

Our detection classifier overcomes the contradiction between the clustering results
and the apriori knowledge to some extent, and the accuracy and the efficiency are
improved. Experimental results show that our approach maintained a higher perfor-
mance than SVM, LGP, DT and K-NN.

Acknowledgements This work is supported by the Graduate Student Innovation Foundation of
Chongqing University of China (Grant No. 200506Y1A0230130).
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Chapter 168
New Evolutionary Algorithm to Solve
Dynamic Constrained Optimization

Chun-An Liu and Yuping Wang

Abstract In this paper, a new multiobjective evolutionary algorithm for dynamic
nonlinear constrained optimization problems (DNCOPs) is proposed. First, the time
period is divided into several equal subperiods. In each subperiod, the DNCOPs is
approximated by a static nonlinear constrained optimization problem (SNCOPs).
Second, for the SNCOPs, inspired from the ideal of multiobjective optimization, it
is transformed into a static bi-objective optimization problem. Third, a new multi-
objective evolutionary algorithm (DMEA) for DNCOPs is proposed and the simu-
lation results indicate the proposed algorithm is effectiveness for dynamic nonlinear
constrained optimization problems.

Introduction

Many real-world problems naturally fall within the purview of optimization prob-
lems, in which the objective functions are not only decided by the decision variables
but also varies with the time (or termed as environment). Thus, the optimal solutions
also varies with the environment changing. This kind of optimization problem is
called dynamic optimization problems (DOPs) [1]. DOPs include dynamic simple-
objective optimization problems (DSOPs) and dynamic multi-objective optimization
problems (DMOPs) [2, 3, 4, 5]. When DSOPs is considered, several studies for dy-
namic nonlinear unconstrained optimization problems (DNUCOPs) are available in
the literature [1, 2, 3]. However, when dynamic nonlinear constrained optimization
problems (DNCOPs) is concerned, very few studies are available in the literature.
In this paper, we divide the time period of DNCOPs into several smallest equal sub-
periods. In each subperiod, the DNCOPs is approximated by a static bi-objective
optimization problem, one objective is the original objective of DNCOPs, and the
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other is the degree violation of constraints on the fixed time (environment). Thus, the
DNCOPs is approximately transformed into several static bi-objective optimization
problems defined in different subperiods and a new multiobjective evolutionary for
DNCOPs is also proposed. The numerical experiments verified the feasibility and
effectiveness of the algorithm.

Transformation of DNCOPs

Considering the DNCOPs as follows:

{
min

x∈Ω(t)⊂[L ,U ]t

f (x, t)

s.t. gi (x, t) ≤ 0i = 1 ∼ m
(168.1)

Where t ∈ [a, b] ⊂ R, x = (x1, x2, · · · , xn) is n dimension decision vec-
tor, gi (x, t)(i = 1, 2, · · · ,m) are constraint conditions depending on time vari-
able t Ω(t) = {x |gi (x, t) ≤ 0, i = 1, 2, · · · ,m} is called feasible region and
[L ,U ]t = {x = (x1, x2, · · · , xn)|li (t) ≤ xi ≤ ui (t), i = 1, 2, · · · , n} is called
search space.

Continuous Time Variable Discretization

For the DNCOPs (1), we chose several points a = t0 < t1 < t2 < · · · < tn−1 <

tn = b and insert those points into the time period [a, b]. Thus, the time period
[a, b] is divided into n equal disintersection subperiods [ti−1, ti ], i = 1, 2, · · · , n.

Might as well denote [a, b] =
n⊎

i=1
[ti−1, ti ] and ∀i , [ti−1, ti ]

⋂
[ti , ti+1] = ∅. For

Δti = ti − ti−1(i = 1, 2, · · · , n), when Δti → 0, we approximately regard
the dynamic nonlinear constrained optimization problem defined on each subpe-
riod as a static nonlinear constrained optimization problem defined on fixed in-
stant(environment) ξi . When the number of points inserted into the time period [a, b]
increased infinitely, the optimal solutions of the problem (168.1) can be approxi-
mately regard those optimal solutions superimposition of several static nonlinear
constrained optimization problems defined on those different fixed environments ξi .

New Model of DNCOPs

Giving a division of time period [a, b] according to 2.1, for fixed environment t ,
defined functions

f1(x, t) = f (x, t) (168.2)
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and

f2(x, t) = max{0, gi (x, t)}, i = 1, 2, · · · ,m (168.3)

Obviously, for ∀x ∈ [L ,U ]t , we have f2(x, t) > 0 and f2(x, t) = 0 if and only if
∀x ∈ Ω(t). Thus f2(x, t) attains the minimum value at x if and only if x ∈ Ω(t).
Therefore, in the fixed environment t , problem (168.1) can be transformed into the
following several two objective optimization problem (168.4):

f (x, t) = min( f1(x, t), f2(x, t)) (168.4)

It is obvious that, in the fixed environment t , to minimize f1(x, t) means searching
optimal solution for problem (168.1), and optimize f2(x, t) means searching for the
feasible solution for problem (168.1). Thus simultaneously optimizing both f1(x, t)
and f2(x, t) means looking for not only a feasible solution for problem (168.1), but
also a solution minimize the objective function of problem (168.1), i.e., an optimal
solution of problem (168.1) in the fixed environment t . Therefore, when the problem
(168.1) changed from one environment to another new environment, the optimal
solution obtained in different fixed environment can be approximately regard as the
optimal solutions of problem (168.1).

New Multiobjective Evolutionary Algorithm

1. Divide the time period [a, b] of problem (168.1) into several smallest equal sub-
periods according to 2.1. Suppose that different environment t0, t1, · · · , ts are
obtained, let i = 0.

2. For environment ti , generate initial population p0(ti )in [L ,U ]t and let the num-
ber of generation k = 0.

3. Select a pair of parents xk
i (ti ), xk

j (ti ) from pk(ti ), adopt the arithmetic crossover
operator to generate two offsprings. All the offsprings are kept in the set ck(ti ).

4. Select a parent from ck(ti ) and utilize the mutation operator [3] to generate an
offspring. The set of all these offsprings is denoted as p̄k(ti ).

5. Select the next population pk+1(ti ) among pk(ti )
⋃

ck(ti )
⋃

pk(ti ) by selection
operator [6].

6. If k = K , go to step 7; otherwise, go to step 3.
7. If i = s, stop, otherwise, let i = i + 1, go to step 2.

Simulation Results

Test Problems

To evaluate the efficiency of DMEA, we choose two dynamic nonlinear constrained
optimization functions. G1 is borrowed from [5]. G2 is structured by ourselves
utilizing the nonlinear constrained test problem appeared in [7].
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Fig. 168.1 The optimal
solutions obtained by DMEA
in different environment
for G1
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G1 : min f (x, t) = (1− 0.01t)
n∑

i=1

x2
i

+ 0.01t
n∑

i=1

(xi − 2)2, s.t : −2 ≤ x1, x2 ≤ 2; 0 ≤ t≤ 100; n=2.

G2 :

⎧
⎪⎪⎨

⎪⎪⎩

min f (x, t) = t(x1 − 10)2 + (1− t)(x2 − 20)2, s.t :
g1(x, t) = (1− 0.2t)(x1 − 5)2 + 0.2t(x2 − 5)2 − 100 ≥ 0
g2(x, t) = 0.2t(x1 − 6)2 + (1− 0.2t)(x2 − 5)2 − 82.81 ≤ 0
13 ≤ x1 ≤ 100; 0 ≤ x2 ≤ 100; t ∈ [0, 1].

In the simulations, the population size N = 200, crossover probability pc = 0.9,
mutation probability pm = 0.05, K = 1000. For G1 ∼ G2, we divide the time
period into several equal subperiods(seeing in Fig. 171.1 and Fig. 171.2).

Fig. 168.2 The optimal
solutions obtained by DMEA
in different environment
for G2
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In Figs. 171.1 and 171.2, the optimal solutions achieved by DMEA for G1 and
G2 under different fixed environment are visualized. From these two figures, it ob-
viously that the DMEA can find the optimal solutions of DNCOPs in the changing
environment.
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Chapter 169
Effects of 3D Co-Occurrence Features
on Terrain Classification

Dong-Min Woo, Dong-Chul Park, Quoc-Dat Nguyen,
Young-Soo Song and Quang-Dung Nguyen Tran

Abstract This paper suggests 3D co-occurrence texture features by extending the
concept of co-occurrence feature to the 3D world. The suggested 3D features are
described as a 3D co-occurrence matrix by using a co-occurrence histogram of dig-
ital elevations at two contiguous positions. With the addition of 3D co-occurrence
features, we encounter the high dimensionality problem in the classification process.
In this context, FCM (Fuzzy C-mean) clustering algorithm is employed to imple-
ment the terrain classifier, since this ANN (Artificial Neural Networks) clustering
algorithms is known as robust in this particular situation. Experimental results show
that the classification accuracy with the addition of 3D co-occurrence features is
significantly improved over the conventional classification method only with 2D
features.

Keywords Texture · terrain · co-occurrence · clustering · 3D feature

Introduction

The selection of features is very important in terrain classification. 2D texture fea-
tures [1, 2, 3] are conventionally utilized in this application. Among the various 2D
texture features, co-occurrence feature has been reported to be the most effective for
terrain classification [4].

3D texture introduced by Dana et al. [5] and Wang et al. [6] considers the physical
characteristics of an object surface in the real world. The addition of 3D texture
features can thus improve the accuracy of terrain classification. However, these early
3D features do not directly reflect 3D texture from the physical appearance of the
surface. In this paper, we propose a new 3D co-occurrence feature, which directly
and systematically defines 3D texture from a DEM (Digital Elevation Map).

A quantization scheme such as histogram equalization with several levels can
preserve texture information in 2D image. In a DEM, however, the dynamic range of

D.-M. Woo
Department of Information Engineering, Myong Ji University, Gyeonggido, Korea 449-728
e-mail: dmwoo@mju.ac.kr

R. Wang et al. (eds.), Advances in Cognitive Neurodynamics,
C© Springer Science+Business Media B.V. 2008

981



 

 

 

 

 



982 D.-M. Woo et al.

elevation change is so wide that it is not possible to obtain texture information from
the elevation quantized in a general way. In the present paper, in order to preserve the
texture information of quantized elevation, we employ a local quantization scheme.
Since quantization is carried out locally, we can obtain the texture information with
only a few quantization levels. To resolve high dimensionality problem, FCM is
employed for the implementation of the terrain classifier.

ANN Clustering Algorithms

FCM Algorithm

The objective of clustering algorithms is to group of similar objects and separate
dissimilar ones. For FCM, the objective function is defined as:

Jm(U, v) =
n∑

k=1

c∑

i=1

(μki )
m(di (xk))2 (169.1)

where di (xk) denotes the distance from the input data xk to vi , the center of the
cluster i, μki is the membership value of the data to the cluster i, and m is the
weighting exponent, m ∈ 1, · · · ,∞ while n and c are the number of input data and
clusters, respectively.

Bezdek defined a condition for minimizing the objective function with the fol-
lowing two equations [7]:

μki = 1

∑c
j=1

(
di (xk)

d j (xk)

) 2
m−1

(169.2)

vi =
∑n

k=1(μki )m xk∑n
k=1(μki )m

(169.3)

Experimental Results

The experimental environment was set up so as to classify aerial image data into 4
classes: foliage, grass-covered ground, bare ground, and shadow. Four feature sets
are used for the experiments. Feature set A includes only 2D co-occurrence features,
and feature set B includes image intensity and 2D co-occurrence features. Feature
sets C and D are produced by the addition of 3D co-occurrence features to feature
sets A and B, respectively.

The ground truth is shown in Fig. 169.1a, where the white area represents bare
ground such as roads, the light gray area is for foliage, the dark gray area is
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(a) Ground truth (b) Training data

Fig. 169.1 Ground truth of experimental terrain and its training data

for grass-covered ground, and the black area represents shadows. We randomly
selected the training area, which is 1% of each class, shown in small windows as
in Fig. 169.1b.

To calculate 3D co-occurrence features, first the 3D co-occurrence matrix is es-
tablished by carrying out local quantization with eight quantization levels, which
yields an 8× 8 3D co-occurrence matrix. Since we use three types of co-occurrence
features – ASM, CON, ENT – for four angular directions, 12 3D co-occurrence
features are calculated.

For 2D co-occurrence features, an ortho-image with eight gray levels is needed
to construct an 8× 8 2D co-occurrence matrix. Histogram equalization was carried
out to obtain this image. Figure 169.2 show ASM, CON and ENT features with
θ = 0o in gray scale for 2D co-occurrence and 3D co-occurrence. To carry out the
classification experiments based on feature sets A, B, C and D, we implemented four
ANN-based classifiers. Table 169.1 presents the classification results using FCM
where the bold number indicates the number of correctly classified pixels for each
class.

In comparison with feature set A, feature set D with the addition of 3D co-
occurrence features improves the classification accuracy. In particular, the classi-
fication of road and foliage is significantly improved. This is due to the use of the
physical surface characteristics of the real world, thus indicating that the suggested
3D co-occurrence features can be utilized very efficiently in terrain classification
applications.

Figure 169.3a shows the classification result 2D co-occurrence features (feature
set A), and Fig. 169.3b shows the classification result using pixel intensity, 2D co-
occurrence features and 3D co-occurrence features (feature set D). In comparison
with the ground truth as in Fig. 169.1, we find that the addition of 3D co-occurrence
features improves overall classification accuracy.
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(a) 2D ASM (b) 2D CON

(c) 2D ENT (d) 3D ASM

(e) 3D CON (e) 3D ENT

Fig. 169.2 2D and 3D co-occurrence features
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(a) Feature set A (b) Feature set D

Fig. 169.3 Classification results using FCM

Conclusions

In this paper we have proposed the use of 3D co-occurrence features, which can ef-
fectively reflect physical surface characteristics in the real world in a direct fashion,
for the purpose of terrain classification. Experimental results show that the addition
of 3D co-occurrence features significantly improves classification accuracy. How-
ever, since classified ground truth is relatively scarce, experiments were carried on a
single aerial image set. In this context, extensive experiments involving various sites
with classified ground truths, in conjunction with intensive analyses of the effects
of 3D co-occurrence features should be carried out in future work.
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Chapter 170
New Heuristic of Self Organizing Map
Using Updating Distribution

Sung-Hae Jun

Abstract Self organizing map (SOM) is a special type of artificial neural networks
for unsupervised learning. SOM has been used as a good tool of clustering. Gener-
ally the weights of SOM are updated by a learning process which is depended on
not distributions but values. After complete updating process, the final weights are
determined by fixed values. So, the clustering result from a complete updating is
only outcome. But, for example, the cognitive behaviors of human being are shown
different results from the given experience. In this paper, we propose a new heuristic
of SOM (NHSOM) using updating distributions. NHSOM is able to provide diverse
results from the weight distributions. In our experimental results, we verify efficient
and improved performances of NHSOM to compare other competitive algorithms
using the data sets from UCI machine learning repository and synthesis.

Introduction

SOM has been used as a valuable tool in diverse mining fields such as clustering,
text mining, customer relationship management, and so forth. The synaptic weight
vector of feature map is updated by a learning process which is depended on train-
ing data set. Also, the final weights are determined by fixed values after complete
updating. So, the clustering result from the last updating is only result. But, the
cognitive behaviors of human being may be shown different results from the given
experience. In this paper, we propose a new heuristics of SOM (NHSOM) by up-
dating distributions. Our NHSOM is able to provide diverse outcomes after final
updating weights by repeated random samplings. In our experimental results, we
verify improved performances of our model to compare other learning algorithms
using data sets from UCI machine learning repository and synthesis.
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New Heuristic of SOM

In this paper, we use Bayesian learning for updating the weight distributions of
NHSOM as the following expression [1].

P(X ) =
∫

P(X, θ )dθ =
∫

P(θ )P(X |θ )dθ (170.1)

where, θ is parameterized model and X is data. Generally each node of the fea-
ture map achieves clustering by competitive learning from training data. Each point
crisply belongs to only one exclusive cluster after the last training. The clustering
result is one type because the weights are fixed values in nodes after complete train-
ing. This result may not be optimal [2, 3, 4, 5]. In this paper, we are able to get
a probability distribution for a heuristic to determine optimal number of clusters.
NHSOM updates parameters of probability distribution without having the fixed
values of weights on each node of feature map. This strategy makes it possible to
converge to optimal number of clusters by performing repeated experiments with
same data to get different results. NHSOM is summarized in the following.

Step 1: Initialize (n: data size, p: the dimension of input vectors)

1.1 Normalization of input vector, xi = (xi1, · · · , xip) represents the i th input
pattern

xnormal
i =

(
xi1 − μ1

σ1
, · · · , xip − μ1p

σp

)
= (xnormal

i1 , . . . , xnormal
ip

)

xnormal
i ∼ N (0, 1), (i = 1, . . . n); Likelihood

1.2 Initialize the weights vectors: Prior of weights, determine the distribution type
of f (·)

f (·) is any probability density function (pdf)
w ∼ f (θ ), optionally, θ ∼ g(ϕ): ϕ is the hyper-parameter of θ , g(·) is also pdf

Step 2: Determine winner node (m: feature map dimension)

2.1 Weights sampling from current prior
2.2 Compute the dist(xnormal

i , w j ) (Euclidean distance of xnormal
i and w j )

dist(xnormal
i , w j ) =

√
(
xnormal

i1 − w j1
)2 + · · · +

(
xnormal

ip − w j p

)2
,

(i = 1, . . . , n, j = 1, . . . ,m2)

2.3 Determine winner node, wk is winner node if dist(x, wk) < dist(x, w j ), j =
1, . . . ,m2
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Fig. 170.1 Feature maps of
SOM (a) and NHSOM (b) x
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i.e., wk = arg min
j
{dist(x, w j )}

Step 3: Update distribution of weights
Compute posterior of winner node and replace current posterior by new prior

Repeat step 2 and step 3 until given conditions are satisfied
After complete learning of NHSOM, we get multivariate normal(MN) distribu-

tion based feature map in (b) of the Fig. 170.1.
Figure 170.1a is a feature map of traditional SOM which has fixed value as up-

dated weights. But, the weights of NHSOM have their updated distribution.

NHSOM Design and Experimental Results

In this paper, we design the distribution of weights of NHSOM feature maps. Using
Gaussian distribution with mean and variance, the weight value of each feature node
is generated from this distribution. Using Gaussian prior and Gaussian likelihood,
we compute a posterior probability distribution. Current posterior distribution is
used for the next prior distribution. In NHSOM training we find the weight value
of output node is generated from this prior probability distribution. This updating
continues until satisfying stopping conditions. When noticeable change of feature
map is not occurred, our NHSOM training is stopped. Also, it stops according to
predefined iteration size. In this paper, to evaluate clustering results, we show a
measure based on variance criteria in the following.

feval
(
x ; vi , V M , M

) = 1

M

M∑

i=1

vi + 1

V M
M (170.2)

Where, x is input vector. Also, M is the number of clusters and vi is the average
of variances of points in the i th cluster. V M is the variance of M clusters. The
smaller feval (M) is, the better the result of clustering is. feval (M) is the concept of
the within variance of cluster. That is, the similarities among objects in each cluster
are high when feval (M) is small. To verify improved performance of our NHSOM,
we make experiments using data sets from UCI machine learning repository [6] and
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Fig. 170.2 NHSOM results of Iris plant, wine recognition, and synthetic data sets (x axis: # of
samples, y axis: # of clusters)

synthesis. The number of classes of target variables in Iris plant, Wine recognition
and synthetic data sets are 3, 3, and 5, respectively. For usage of synthetic data
sets, we generate multivariate random data from finite mixture density [7]. We gen-
erate data set which has 1000 data points randomly from the multivariate normal
distribution with each covariance matrix. First of all, we make an experiment on
optimal determination of the number of clusters with our NHSOM. Using the weight
distributions of feature nodes, we are able to generate random vector of the nodes
of the feature map. So, we perform NHSOM by repeated random sampling from the
weight distributions. We show the results of NHSOM which determines the number
of clusters in the following figures. NHSOM results of Iris plant, Wine recognition,
and synthetic data are shown in Fig. 170.2. In the experiments, we use 50 repeated
random samplings.

In Fig. 170.2, the line of # of the clusters represents each result of a random
sample from the weight distributions. Heuristic result of NHSOM is shown by the
bold line of average # of clusters. In this line, the value of each step from 1 to 50
is computed by averaging previous values. From above results, we find the numbers
of clusters of Iris plant, Wine recognition, and synthetic data sets are 3, 3, and 5,
respectively. These are equal to the numbers of classes of the target variables in Iris
plant, Wine recognition, and synthetic data sets. Therefore, we are able to verify the
improved performance of NHSOM. Next, to verify the improved performance of
our NHSOM, we compare NHSOM with competitive algorithms which are SOM,
support vector clustering(SVC), K-means clustering, and hierarchical clustering al-
gorithms [8, 9].

The result shows the misclassification rates of NHSOM are better than others.
The misclassification rate of SVC in synthetic data is smaller than the value of
NHSOM. But, the difference between SVC and NHSOM is very small. So, we are
able to confirm improved performance of NHSOM.

Table 170.1 Competitive algorithms evaluation

SOM SVC K -means Hierarchical NHSOM

Iris 0.02 0.02 0.08 0.13 0.01
Wine 0.12 0.17 0.21 0.25 0.09
Synthesis 0.20 0.18 0.31 0.38 0.19
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Conclusions

In this paper, we proposed NHSOM for a heuristic for optimal clustering. NHSOM
is a new heuristic of SOM. We were able to determine optimal number of clusters
using NHSOM. Also, we verified improved performances of NHSOM compared
with other learning algorithms using data sets from UCI machine learning repository
and synthesis.
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Chapter 171
Regression ICA Algorithm for Image Denoising

Shangming Yang, Zhang Yi and Guisong Liu

Abstract In this paper, regression ICA is employed to construct a new algorithm
for image denoising. In this algorithm, we first predict the missing observations and
then estimate all the independent components based on the previous observations
and the predictions. Experiments show that the proposed algorithms are efficient for
extracting useful data from multiple high level noise mixed sources.

Introduction

The problem of independent component analysis (ICA) for blind source separa-
tion (BSS) has been studied by many authors in recent years. The goal of ICA is
to recover independent sources with sensor observations that are unknown linear
mixtures of the original independent source signals [1, 2, 3]. For the overcomplete
ICA, it requires the number of the observations to be less than that of the original
signals. Up to now, many important algorithms for different types of ICA model
have been achieved. Lewicki and Sejnowski in [4] derived a gradient-based method
called learning overcomplete representations of the data that allowed for more basis
vectors than dimensions in the inputs, and this algorithm had a requirement for the
assumption of a low level of noise. Li et al. [5] presented a sparse decomposition
approach of observed data matrix which was used in BSS with less sensors than
sources. For the noise ICA model, by employing bias removal algorithm, Cichocki
et al. [6] proposed a modified ICA adaptive algorithm, which can reduce the noise
to very low level. Cao et al. [7] proposed an approach to high level noisy ICA which
can separate the mixtures of sub-Gaussian and super-Gaussian source components.
In this paper, we will propose a very efficient overcomplete ICA algorithm for image
denoising.
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ICA Regression for the Prediction of Noisy Observations

Regression ICA is one of the most important algorithms in supervised learning. In
this model, the number of observations m is less than that of the original signals
n. For simplicity, we assume the first m variables form the vector of the observed
variables xo = (x1, x2, ..., xm)T , and the other n-m variables form the vector of the
missing variables xm = (xm+1, xm+2, ..., xn)T . The model can be written as:

[
x0

xm

]
=
[

A0

Am

]
s. (171.1)

For the given observation xo, the problem is how to predict xm . To do this, the
estimation of xm is defined as its conditional expectation [8]:

xm = E{xm |xo} ≈ Am g̃(AT
o xo). (171.2)

where the vector AT
o xo can be considered as an initial linear estimate of s, the pro-

bability density of each si is pi , and g̃i (u) = p′i (u)/pi (u)+ cu for all i . Here p′i/pi

is called a negative score function of the probability density of variable si and cu is
called a linear term. To make this approximation simpler, one way is to consider the
mildly super-Gaussian densities with g̃i (u) = −tanh(u) + u for all i , but in most
situations, we can use the generalized Gaussian distribution and its negative score
function for the estimation.

For the overcomplete ICA, it has the following model:

xo = Aos = (ai j )m×n(s1, s2, ...sn)T , (171.3)

where the number of independent components is larger than the number of observed
variables(n>m). For this model, we denote the m observation components vector
to be xo. If we can find a way to estimate the another n-m component vector xm

first, then the problem will be expanded to standard ICA so that we can estimate
all the original sources and we will call this algorithm the regression ICA based
overcomplete ICA algorithm. The Eq. (171.3) now becomes the same expression to
Eq. (171.1).

Using the regression ICA method in Eq. (171.2), we can predict the last n − m
components in vector x = (x1, x2, ..., xn) which are xm = (xm+1, xm+2, ..., xn) as
follows:

xm = Am ŝ = Am g̃(AT
o xo). (171.4)

To find a right expression for g̃i (u)(the i th component of g̃(u)), we introduce the
generalized Gaussian distribution:
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p(y) = αλα

2Γ ( 1
α

)
exp(−|λαy|α), (171.5)

where Gamma function is defined by Γ (x) = ∫∞0 t x−1exp(−t)dt and λα is a scaling
factor which depends on the expectation and variance of the variables. α is also
called a shape parameter. When α = 2, Eq. (171.5) is the pdf of Gaussian distri-
bution, α < 2 the super-Gaussian and α > 2 the sub-Gaussian. The corresponding
negative score function plus linear term will be

g̃(y) = p′(y)/p(y)+ cy = −|y|α−1sign(y)+ cy. (171.6)

If we consider noisy variables to be part of the independent components, from [6],
the correlation matrix of vector is

Rvv = Rn = E{nnT } = E{Am×(n−m)sn−msT
n−mAT

m×(n−m)}. (171.7)

Since the n-m components are mutually independent, if the i th component has vari-
ances σ 2

i , then Eq. (171.7) becomes

Rvv = Am×(n−m)(I(n−m))AT
m×(n−m). (171.8)

where In−m = diag(σ 2
1 , σ

2
2 , ...σ

2
n−m). The bias removal algorithm [6] for the noisy

ICA is usable only when the noisy variables have identical distribution. If there are
two more types of noise, the regression ICA based algorithm can be used, in which
the noisy observations can be considered as missing variables. Therefore, this is also
an overcomplete ICA problem.

Simulations and Discussions

To test the ability of image denoising of the proposed algorithm, different types
of noise can be added to a picture which means we only have one observation
(Fig. 171.1 right) for these original sources. In this experiment, Gaussian and uni-
form noise are added to an 128 × 128 color picture and then be removed, in which

Fig. 171.1 The original image and its histogram (left two pictures) and the observed mixture and
its histogram (right two pictures)
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Fig. 171.2 The predicted observation of Gaussian noise image and its histogram (left two pictures)
and the predicted observation of uniform noise image and its histogram (right two pictures)

Fig. 171.3 The proposed algorithm estimated images and their histograms (a), (b), (c) and the bias
removal algorithm estimated image and its histogram (d)

the signal to noise ratio of these two noisy sources is high up to SNR = 5 dB, the
standard deviation σ of Gaussian noise is 18.74 and the uniform noise is 49.42.
The picture is selected from: The NMFLAB Package: for Image Processing [9].
The traditional noisy ICA algorithm is not working well for this type of image de-
noising. Fig. 171.3d shows the result of the bias removal algorithm denoised image
which is still with high level noise. We use the regression ICA to predict the noisy
observations. Fig. 171.2 shows the predicted observations and their histograms.
Figure 171.3a–c shows the proposed algorithm restored image and the two noisy sig-
nals and their corresponding histograms respectively. Comparing with the original
image in Fig. 171.1 (left), the estimations (Fig. 171.3a) still have some errors, but
it is obviously better than that in Fig. 171.3d. The errors indicate that the prediction
algorithm still can not achieve the best estimations of the original image, but the
major advantage of this algorithm is its ability of removing multiple high level noisy
sources in a picture.
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Chapter 172
Thumbnail Generation Based
on Global Saliency

Xiaodi Hou and Liqing Zhang

Abstract In this paper, we present a novel approach to generate thumbnail images.
Our method crops an image into a smaller but more informative region in the thumb-
nail representation. From the perspective of information theory, we propose a novel
approach to generate bottom-up saliency in a global manner. In our method, we
evaluate the statistical distribution of feature maps, and use its coding length as a
measurement for image cropping. The experimental results offer viewers a more
effective representation of images.

Introduction

Thumbnail image is an effective way visual information representation. The thumb-
nail image is widely used in representing collections of images, or displaying images
on hand-held devices with limited screen size or limited bandwidth.

Corresponding to the growing varieties of applications of thumbnail images, se-
veral methods of generating effective thumbnails are proposed in literature [1, 2].
Many of these methods first evaluate the image based on the importance of its con-
tent, and then crop and resize to display only part (such as the face in a portrait) of
the image in the thumbnail.

In order to define “important regions” in a general sense, attention models [3] of
computer vision are adopted. However, most of attention models are based on local
saliency: they are apt in finding key-points such as corners, edges or other local
patterns [4], but given the task to crop important regions in an image instead, these
local features often fail to capture the global structure of the image.

This paper presents a global method to detect salient regions. In our frame-
work, the optimal thumbnail image should represent regions that contains richest
information. Based on information theory, we consider the global distribution of
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features in an image, and quantify the “richness of information” by evaluating the
optimal coding length of the region. Computer simulations indicate that the novel
thumbnail representation captures the important regions of the image.

Assessing the Information of an Image

It has been widely acknowledged that the detection of saliency in human visual
system is achieved by the cooperation of low-level visual features such as colors and
textures. In our models, different local features are extracted by descriptors. Details
of descriptor selection of our model will be discussed in section “Implementation”.
By gathering the responses of descriptor of a certain feature, the feature map of the
image is generated.

Former methods rely on the assumption that the salient regions are usually related
with high values in the feature map. Most algorithms link responses of local salient
features such as edge, border, or blob descriptors directly with the visual salient
regions [3, 5].

In this paper, we propose that the saliency is dependent on the global distribution
of the feature map. According to Kadir and Brady [5], saliency implies rarity. To
quantify the rarity of a feature, we introduce the optimal coding length of a pattern.
Suppose we have a feature map X whose possible value is in the alphabet X . The
probability density function p(x) can be estimated by taking the histogram of the
feature map. According to Shannon’s information theory, the optimal coding length
L(x) of a feature x ∈ X is:

L(x) = − log2(p(x)). (172.1)

According to Eq. 172.1, a coding length map L can be constructed by assigning
Li j = L(Xi j ). The coding length map measures the rarity of values presented in the
feature map. It worths noting that the spatial information of the image is preserved
in X and L, so that the regional summation of the coding length map reflects the
global rarity of that region.

Particularly, the sum of the coding length map equals the entropy of the feature
map H (X):

H (X) = −
∑

x∈X
p(x) log2(p(x))

=
∑

x∈X
p(x)L(x) =

∑

i, j

Li j . (172.2)

The optimal coding length bridges the spatial location and statistical distribution
of a descriptor’s response. A region will be considered rare only when the statistical
minority clusters at certain regions become regional majority.
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Implementation

In this paper, a feature descriptor computes certain statistics of a 10px × 10px
non-overlapping patch. We consider two kinds of statistics: color and texture. More
features are not adopted because the computational resource required in generating
a thumbnail must be parsimoniously controlled. However, the architecture of our
method is readily to incorporate new features.

For efficiency, the image is down-sampled before processing. We shrink each
input image to size min(height, width) = 256. Also, the final output of the thumb-
nail should be square image to guarantee maximal screen space usage when multiple
thumbnails are displayed simultaneously.

Color Feature Map

We convert the input RGB image into HSV color space, and use the hue value as
our primary indicator of color property. That is:

Ci = 1

100

∑

x,y

hi . (172.3)

Since low saturation or lightness will affect the perception of chromaticity, a
weighting method is applied in estimating color feature distribution:

p(k) =
∑

hi=k si · vi∑
si · vi

, (172.4)

where hi , si and vi are the mean hue, saturation and gray-scale value of the i th patch,
separately.

Texture Feature Map

Here we refer the term “texture” in a general sense. Shape, border, contrast, inten-
sity, and other characteristics reflected in a gray-scale image may have influences on
the texture feature value. This descriptor supplements many structural information
that is neglected by color channel.

We use standard deviation of the gray image to capitulate texture property of a
patch. Different from previous literature [4], we do not put much efforts in the se-
lection of appropriate descriptors, since the degree of saliency is not directly linked
with texture value Ti of the i th patch in our framework. Specifically, we have:

Ti = 1

100

∑

x,y

{
vxy − 1

100

∑

x,y

(vxy)

}2

. (172.5)
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Cropping

Since the measurement for coding length maps is bits, maps corresponding to differ-
ent features can be added up. Given the combined coding length map L of an image,
the optimal cropping selects a square area that is most informative. It is easy to see
that L is non-negative. Therefore, the cropping is a trade-off between the inclusion
of more information and the average intensity of included information. Our method
solves this problem by introducing a variable λ. For an a × a square area A, the
degree of informative IA is:

IA = 1

aλ
·
∑

i∈A

Li (0 ≤ λ ≤ 2), (172.6)

empirically, we choose λ = 1.5.
Figure 172.1 compares traditional thumbnails and thumbnails generated by our

method. These results indicate that our algorithm has accomplished a reasonable
estimation to human visual attention. The cropped thumbnails focus primarily on
the most informative regions of the original images.

Fig. 172.1 Examples results. Left: the input image. Upper-right: traditional thumbnail. Lower-
right: thumbnail generated by our method

Conclusion

In this paper, we have proposed a novel approach of saliency detection, and use it
to generate thumbnails. Within the framework of information theory, we interpreted
the relation between saliency and the amount of information. We also provide an
application of the proposed method. Experiment results indicate that our thumbnails
capture the central objects in the pictures.
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Chapter 173
Exponential Stability of Delayed Hopfield
Neural Networks by Using Comparison Method

Wudai Liao and Yuguo Chen

Abstract The exponential stability of delayed Hopfield neural networks is stud-
ied by comparison principle. Hopfield neural networks can be regarded as a linear
system perturbed by the exterior input. Based on this view of point, the method of
variation of coefficient is used to solve the system’s solutions, which are estimated
by its comparison system. By this comparison system, which is a linear differential
difference equation, and by using theory of linear functional differential equation,
some stability criteria are obtained, which is very simple to verified. An examples
are given to show the efficiency of the results in this paper.

Introduction

The stability problem on Hopfield neural networks is widely studied from origin to
now, including the original work [1, 2], delayed cases [3, 4, 5, 6] and other studies.
The methods used in these papers are mainly Lyapunov direct approaches, that is,
all results obtained in these papers depend on the selection of appropriate Lyapunov
functions.

In this paper, we are going to consider the following delayed Hopfield neural
networks

dui (t)

dt
= −bi ui (t)+

n∑

j=1

Ti jv j (t) , i = 1, 2, · · · , n ,

v j (t) = f j (u j (t − τ j )) , j = 1, 2, · · · , n . (173.1)

Where, ui (t) is the state of neuron i at time t , bi > 0 is the time constant, Ti j is the
connection weight from neuron j to neuron i , v j (t) is the output of neuron j at time
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t , f j (·) is the amplifier or output function, which satisfies | f j (u)| ≤ βi |u|, βi > 0 is
a constant, τ j ≥ 0 is the time delay of the amplifier j , τ = max0≤ j≤n{τ j }.

In fact, we can treat (173.1) as a linear power system perturbed by the exterior
input [7]. So, we can use the method of variation of coefficient to compute the
solution of the system’s equation, which don’t depend on the selection of Lyapunov
functions. Based on this system’s expression, we use some skills of matrix norm
and theory of functional differential equations to study the exponential stability
problem. Some stability criteria are obtained which are very simple to verify and
are convenience to test for system’s design.

In the following of this section, we will give some notations and some lemma,
which will be used later in this paper.

For any t ≥ 0, the continuous vector function xt ∈ C
(
[−τ, 0]; IRn

)
means

xt (θ ) = x(t + θ ), θ ∈ [−τ, 0] .

Consider the linear differential difference equations

ẋ(t) = Ax(t)+ Bx(t − τ ) , (173.2)

where x ∈ IRn, A, B ∈ IRn×n, x(t − τ ) = (x1(t − τ1), · · · , xn(t − τn))T .
The characteristic polynomial of Eq. (173.2) is defined as

f (λ, τ ) = det
(
λE − A − B · diag(e−λτ1 , e−λτ2 , · · · , e−λτn )

)
, (173.3)

where E denotes n × n unit matrix.

Lemma 1. The equilibrium x = 0 of Eq. (173.2) is delay-independent asymptotic
stability if and only if

1) Each eigenvalue of character equation f (λ, 0) = 0 has negative real part;
2) For any ω ∈ IR and any τ ≥ 0, f (Jω, τ ) �= 0, where J is the imaginary unit.

Main Results

Theorem 1. For System (173.1), if bi >
∑n

j=1 |Ti j |β j , i = 1, 2, · · · , n , then the
trivial equilibrium u = 0 is globally exponential stability.

Proof. According to the variation of coefficient of liner differential equations, for
any initial function u0i ∈ C

(
[−τ, 0]; IR

)
, the solution of System (173.1) is

ui (t) = e−bi t u0i (0)+
∫ t

0
e−bi (t−s)

n∑

j=1

Ti jv j (s)ds, i = 1, 2, · · · , n .
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By using the property of output functions: | f j (u)| ≤ βi |u|, we have

|ui (t)| ≤ e−bi t |u0i (0)| +
∫ t

0
e−bi (t−s)

n∑

j=1

|Ti j ||v j (s)|ds

≤ e−bi t |u0i (0)| +
∫ t

0
e−bi (t−s)

n∑

j=1

|Ti j |β j |u j (s − τ j )|ds := yi (t) .

This implies |ui (t)| ≤ yi (t) for any t ≥ 0 and choose the initial conditions y0i =
|u0i | ∈ C

(
[−τ, 0]; IR

)
, we have

dyi (t)

dt
≤ −bi yi (t)+

n∑

j=1

|Ti j |β j |y j (t − τ j )| .

Its comparison equation is (initial conditions z0i = |u0i |)

dzi (t)

dt
= −bi zi (t)+

n∑

j=1

|Ti j |β j |z j (t − τ j )| .

By using the condition of this theorem, bi >
∑n

j=1 |Ti j |β j , we can choose a
constant αi > 0 such that bi − αi >

∑n
j=1 |Ti j |β j , and take the transform:

zti = e−αi tηti ∈ C
(
[−τ, 0]; IR

)
,∀t ≥ 0 .

That is, zi (t) = e−αi tηi (t) , zi (t − τi ) = e−αi tηi (t − τi ) , i = 1, 2, · · · , n. So, the
comparison system (173.4) has the following form (initial conditions η0i = |u0i |):

dηi (t)

dt
= −(bi − αi )ηi (t)+

n∑

j=1

|Ti j |β j |η j (t − τ j )| . (173.4)

Its eigenvalue polynomial is

f (λ, τ ) = det
(
[λ+ (bi − αi )]δi j − |Ti j |β j e

−λτ j
)

n×n ,

where

δi j =
{

1, if i = j
0, if i �= j

.

All eigenvalues of f (λ, 0) = 0 satisfy one of the following conditions:
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|λ− (−bi + αi + |Tii |βi )| ≤
n∑

j=1 j �=i

|Ti j |β j ,

and by the selection of αi , we have

bi − αi − |Tii |βi >

n∑

j=1, j �=i

|Ti j |β j ,

this shows that all eigenvalues of f (λ, 0) = 0 are of negative real parts, which
satisfy condition 1) in Lemma 1.

For the same reason, for the imaginary unit J , the matrix

(
[Jω + (bi − αi )]δi j − |Ti j |β j e

−Jωτ j
)

n×n

is diagonal dominated, and therefore, its determinant f (Jω, τ ) �= 0 ,which satisfies
condition 2) in Lemma 1.

By Lemma 1, the trivial equilibrium η = 0 of Eq. (173.4) is asymptotical
stability.

By comparison principle, we have

|ui (t)| ≤ yi (t) ≤ zi (t) = e−αi tηi (t) ,

so, the trivial equilibrium u = 0 of System (173.1) is globally exponential stability.
The proof is complete.

Corollary 1. If all the output functions in System (173.1) are the same and b >

β‖T ‖∞, then, the trivial equilibrium u = 0 of System (173.1) is globally exponential
stability, where b = min{bi }, β = βi , i = 1, 2, · · · , n.

Proof. For any i = 1, 2, · · · , n, we have bi ≥ b > β‖T ‖∞ ≥ β
∑n

j=1 |Ti j |, by
using Theorem 1, the corollary is true. The proof is complete.

Examples

Example 1. Consider the 2-dimensional delayed Hopfield neural networks:

du1(t)

dt
= −u1(t)− 0.5s(u1(t − τ1))+ 2s(u2(t − τ2))

du2(t)

dt
= −u2(t)+ s(u1(t − τ1))+ 1.5s(u2(t − τ2)) .

Where, the output function is s(u) = 1/(1+ e−u).
Here, b = 1, β = 0.25, ‖T ‖∞ = 2.5, and b > β‖T ‖∞, so, the trivial equilibrium

u1 = u2 = 0 is globally exponential stability (by using Corollary 1).
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Chapter 174
Adaptive Fuzzy Clustering Neural Network

Fang Bao, Yonghui Pan and Wenbo Xu

Abstract Due to the localization of the objective function of traditional fuzzy clus-
tering algorithm, a novel adaptive objective function of fuzzy clustering is proposed,
the new objective function integrates the clustering characteristic of input space and
the real time approximate characteristic of output space. The extraordinary neural
network to handle the fuzzy clustering algorithm is also proposed. The experimental
results show that the new algorithm has better performance in stable convergent
rate, convergent speed, and the initial condition sensitivity compared with tradi-
tional fuzzy clustering algorithm. The result illuminates the rationality of importing
felicitous adaptive feedback factors into the objective function.

Keywords Fuzzy clustering · neural network · objective function · adaptive

Introduction

Fuzzy clustering finds out the uncertainty of class attribute each individual belongs
to, delivers the probability deflection of it. Now, in different apply domains, based
on different techniques, many fuzzy clustering algorithm have been proposed.

Objective function-based Fuzzy clustering algorithm constructs an objective
function via the distance between the initial cluster set and the prototypes of each
cluster, achieves the optimized fuzzy c-means results by optimizing such nonlinear
programming question.

But, the commonly used objective functions are often the minimization of inter-
nal squared error in the initial input space, namely the Euclidean distance between
the initial cluster set and the prototypes of each cluster. Unsupervised learning based
on such distance function has good learning speed, but have many limitations, for
example, convergent to wrong cluster center because of the high initial condition
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sensitivity, depend on the characteristic of clustering set because the inflexible at-
tracting domain [1].

The challenges are, what is the guideline of proper distance? Could a fuzzy clus-
tering algorithm not depend on the predefined distance been constructed? Can we
supervise the clustering process [2]?

The paper proposed an adaptive objective function via integrates the clustering
characteristic of input space and the real time approximate characteristic of output
space. The objective function represents the internal squared error in the initial in-
put space as well as the real time approximate squared error in the output space,
equivalent to that we supervise the clustering process using the real time output of
the system, and the adaptive feedback control to the clustering process is achieved.
The extraordinary neural network to handle the fuzzy clustering algorithm is also
proposed, we call it adaptive fuzzy clustering neural network (AFCNN). The ex-
perimental results shows that the new algorithm has better performance in stable
convergent rate, convergent speed, and the initial condition sensitivity.

The remaining of the paper is organized as follows: section ‘Construct the Adap-
tive Objective Function’ illustrates construction of the adaptive objective function,
section ‘Construct the Adaptive Fuzzy Clustering Neural Network’ focus on the
design of the adaptive fuzzy neural network that handling the algorithm and the
corresponding fuzzy clustering algorithm, section ‘Experimental Results’ presents
the experiment evaluation of the proposed algorithm, finally, we provide concluding
comments.

Construct the Adaptive Objective Function

Construction of Adaptive Objective Function

For the sake of constructing a proper objective function that not depend on the pre-
defined distance, according to the supervised learning principle of the ellipse fuzzy
system [3], we make the new objective function represents the internal squared er-
ror in the initial input space as well as the real time approximate squared error in
the output space. Further more, using neural network as the instrument to handle
the clustering algorithm, we can optimize the input-output joint space more conve-
niently.

According to the fuzzy add-up principle, a big enough add-up fuzzy system
could approximate any limited measurable function. So we construct a local lin-
ear regression function in the input-output joint space to simulate one clustering
pattern, thus, the sum of all the local linear regression functions becomes the global
regression model of the whole system. We define the distance between current real
system output and the current global approximate of the system be the current ap-
proximate characteristic of the output space. Namely, we supervise the clustering
process using current output approximate situation, the proposed clustering process
is self-adaptive.
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So, besides the intrinsic internal squared error in the initial input space, we add
the distance between current real system output and the current global approximate
of the system to the new objective function. Thus, the objective function represents
the internal squared error in the initial input space as well as the real time approxi-
mate squared error in the output space.

Let’s start constructing the adaptive objective function.
Given the initial input pattern X = {x1, x2, . . ., xN}, suppose to organize the data

in C clusters.
Let vi and zi are the cluster center of the input and output space respectively,

�i is the local linear smoothness parameter of the ith local model, which will be
optimized step by step during the training process. Define the local linear regression
model for each cluster as:

ŷi − zi = αi (xk − vi ), k = 1, 2, . . . , N , i = 1, 2, . . .C (174.1)

Based on it, the global regression model is:

ŷk =
c∑

i=1

αi (xk − vi )+ zi , k = 1, 2, . . . , N (174.2)

Suppose Wi is the backward parameter matrix of the ith fuzzy rule, then the current
real fuzzy output of the system is:

yk = wi xk (174.3)

In order to represent the internal squared error and the real time approximate squared
error simultaneously, the adaptive objective function is defined as:

J =
c∑

i=1

N∑

k=1

uik
m(‖xk − vi‖2 + ‖yk − ŷk‖2) (174.4)

Having the definition of the objective function, follow FCM algorithm, by applying
the Lagrange multipliers technique to J in (8), we derive the necessary conditions
for the partition matrix:

uik = 1

c∑
j=1

(
‖xk − vi‖2 + ‖yk − ŷk‖2

∥∥xk − v j

∥∥2 + ‖yk − ŷk‖2

)1/(m−1) , 1 ≤ k ≤ N , 1 ≤ i ≤ c (174.5)
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Construct the Adaptive Fuzzy Clustering Neural Network

As described before, according to the proposed objective function, we design a BP
neural network to handle the new algorithm. The whole neural network system con-
sist of three major parts, the first part is a neural network fuzzy cluster, the second
one is a fuzzy output controller, last one is the system synthesizer.

Neural Network Fuzzy Cluster

The neural network fuzzy cluster is a 4-layers BP neural networks. The input layer
have P neurons, represent the p dimensions of the input vector. Two hidden layers
and the output layer all have C neurons.

The transfer function between the input and the first hidden layer is Dik =
‖xk − vi‖2, which represents the distance between the input vector and the ith clus-
ter center, the connect weight form the input layer to the first hidden layer is the ith
cluster center vi,.

The neurons in the second hidden layer is calculated by the function in (2), repre-
sent the currently global regression model of the system. The connect weight from
the first hidden layer to the second hidden layer defined as the local linear smooth-
ness parameterαi. The output of the second hidden layer connect to the output layer
without connect weight, along with the output of the fuzzy output controller, make
up the input of the output layer.

The output layer get the partition matrix which represent the class attributes of
the input vector to the certain cluster model, the transfer function is in (4).

Fuzzy Output Controller

The fuzzy output controller consists of C sub neural networks, each neural network
is a 2-layers network, calculates the current real fuzzy output of the system. Wi is
the backward parameter matrix of the ith fuzzy rule, the output of each network is
yk = wi xk .

System Synthesizer

Having gain the partition matrix via neural network fuzzy cluster and fuzzy output
of the system via fuzzy output controller, the final output of the whole system is
synthesized as:

ok =
c∑

i=1

uik yki (174.6)
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The Training Algorithm of the Adaptive Fuzzy Clustering
Neural Network

According to the principle of uniting the supervised learning and unsupervised
learning together for discovering the ellipse fuzzy rule [3], we gain the primary
rough result set by the unsupervised learning, and optimize the rough set to more
precise one by supervised learning.

We can conclude from the proposed objective function and the neural network
structure that the parameter needs to be optimized include the cluster center vi, the
local linear smoothness parameterαi, and the backward parameter matrix of the ith
fuzzy rule wi.

So we define the training algorithm of the adaptive fuzzy clustering neural net-
work as follows.

let T = {t1, t2, . . ., tN} be the desired output values of the whole system, and
O = {o1, o2, . . ., oN} be the actual output of the whole system, calculated in (6).

The error function of the neural network is:

Ek = 1

2

N∑

k=1

‖tk − ok‖2 (174.7)

Step. 1 Expand the input space to input-output joint space, perform FCM on the
joint space, vi0,zi are the result prototypes in the input and output space
respectively, note vi0 is the primary rough cluster center of the input space,
it will be optimized during the training process, while zi is the cluster center
of the output space,and is calculated only in this step.

Step. 2 Initialize the local linear smoothness parameter�i, and the backward pa-
rameter matrix of the ith fuzzy rule wi.

Step.3 According to the error function in (7), using grads descend training method
with impulse item, repeatedly updates the cluster center vi, the local lin-
ear smoothness parameter�i, and the backward parameter matrix of the ith
fuzzy rule wi.

Step. 4 With vi, wi, �i, calculate the uik using functions in (5).
Step. 5 Repeat step 3, 4 until the error function of the neural network is smaller

than the predefined threshold value.

Experimental Results

The experiment dataset is a standard dataset of address selection information, the
dataset have 20 groups of different address selection scheme, each scheme have
eight key factors that deciding the address selection and expert’s grade for this
scheme. All the scheme is divided into three categories depend on the expert’s
experience.
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Table 174.1 Rational convergent rate

Rational convergent rate (%)

AFCNN 98.2
FCNN (FCM) 88.5

Table 174.2 Summarize the performance parameter when AFCNN and fcnn(FCM) could achieve
rational convergence

Overlap steps Initial error range

AFCNN 100 0.7–2.5
FCNN (FCM) 1000 0.2–0.8

Made the dataset be the training dataset of both the adaptive objective function
based fuzzy clustering neural network(AFCNN) and traditional fuzzy c-means ob-
jective function based fuzzy clustering neural network(FCNN(FCM)), both use the
same neural network training mentioned above. Here, input space are the eight key
factors, output space is the expert’s grade.

Table 174.1 represents the rational convergent rate under all initial condition of
two algorithms contrastively.

We can see that the AFCNN algorithm could achieve fine convergence and ap-
proximation after 100 times of overlaps, and the convergence could be achieved
under wider initial error range, namely, the algorithm is less sensitive to the initial
condition. While the FCM objective based fuzzy clustering algorithm, FCNN(FCM),
shall achieve convergence after about 1000 times of overlap, and the rational con-
vergence could be achieved under much narrow initial error range, meanly, the al-
gorithm is quite sensitive to the initial condition.

So, we can conclude that the propose AFCNN algorithm has made improvement
on stable convergent rate, convergent speed, and the initial condition sensitivity
compared with traditional objective function based fuzzy clustering algorithm.

Conclusions

By adding the distance between current real system output and the current global
approximate of the system to the new objective function, we proposed a new ob-
jective function that integrates the clustering characteristic of input space and the
real time approximate characteristic of output space, and we construct an effective
neural network to handle the fuzzy clustering algorithm. The experimental results
show that the new algorithm has better performance in stable convergent rate, con-
vergent speed, and the initial condition sensitivity compared with traditional fuzzy
clustering algorithm. The result illuminates the rationality of importing felicitous
adaptive feedback factors into the objective function. The algorithm is effective to
all machine-learning situation that have teacher data, and is provided with stable
practical action.
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Chapter 175
Compound Attack on Synchronization Based
Neural Cryptography

Ping Li and Zhang Yi

Abstract In this paper we present a new and effective attack strategy on neural
cryptography. The neural cryptosystem has been recently shown to be secure under
some different attack strategies. But all these attack strategies aim at the mecha-
nism of the secret key generated by the global dynamics of two interacting neural
networks. The strategy we propose focuses on the authentication which the neu-
ral cryptosystem takes little account of. The proposed authenticated key exchange
mechanisms are analyzed and convinced to be hardly applicable.

Introduction

Recent studies show that interacting neural networks can exhibit many interesting
phenomena as described in [1]. The pioneer work was done by the physicists Kanter,
Kinzel and Kanter [2] in 2002. They presented a new symmetric key exchange pro-
tocol which is based on the fast synchronization of two identically structured Tree
Parity Machines (TPMs) [3]. The exchange protocol which is called as KKK schema
is realized by a mutual adaptation process between two partners A and B, not involv-
ing large numbers and methods from number theory. The protocol is very simple to
use [4] but effective in comparison with other commonly used cryptosystem, e.g.
DES and RSA.

Unfortunately, there is no entity authentication in the neural cryptosystem. In
the area of cryptography, authentication is an important step still before key ex-
change or even the encryption/decryption of information with an exchanged secret
key [6]. In the original key exchange protocol, the structure of the network, the
involved computations producing the output O A(t)/O B(t), the adaptation-rule and
especially the common inputs xk j (t) are public. The only secrets involved are the
different initial weights wA

k j (t0)/wB
k j (t0) of the two parties. If they were not secret,
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the resulting keys could simply be calculated by an adversary, because all further
computations are completely deterministic [7]. Markus etc. proposed two solutions
[7] to the above problems: Authentication through secret common inputs and Em-
bedding a Zero-Knowledge protocol. The basic idea of the two solutions is that they
keep the common inputs xA(t)/xB(t) secret between the two parties in addition to
their individual secret (random) initial weights wA(t0)/wB(t0). But it would conflict
with the purpose of neural synchronization which is to generate symmetric secret
key in public channel.

In this paper we propose a new attack strategy named as “Compound Attack” on
TPMs which focuses on attack on entity authentication. The strategy incorporated
with Denial of Service(DoS), Spoofing, Man-in-the-Middle(MitM) and Replay at-
tack. In the following, we introduce the neural network structure and a learning
algorithm in the section ‘Neural Cryptography’, then we propose the new attack
strategy-Compound Attack in the section ‘Compound Attack’. We give thorough
explanation about Compound Attack. The letter concludes with a short summary in
the section ‘Conclusion’.

Neural Cryptography

We first briefly summarize the parallel-weights version of interacting neural net-
works. The anti-parallel-weights version, using anti-hebbian learning and leading to
inverted weights at the other party, can be considered for our purpose as well but is
omitted for brevity. The notation A/B denotes equivalent operations for the partners
A and B. A single A or B denotes an operation which is specific to one of the parts.
The TPM consists of K hidden units in a single hidden layer with non-overlapping
inputs and a single unit in the output-layer. The particular tree structure has binary
inputs, discrete weights and a single binary output. A TPM which consists of K
hidden units σk with weight vectors wk and input vectors xk works like perceptron.
The components of the input vectors are binary and the weights are discrete num-
bers with depths L , xk j ∈ {−1,+1}, wk j ∈ {−L ,−L + 1, · · · , L − 1, L}, where
the index j = 1, · · · , N denotes the elements of each vector and k = 1, · · · , K
the hidden units. The outputs of these neurons are defined by the scalar product of
inputs and weights: σk = sign(wk · xk). The final output bit of each TPM is defined
by the product of the hidden units: O = ∏K

k=1 σk . Both partners A and B initialize
their weight vectors by means of random numbers before the training period starts.
At each time step t a public input vector is generated and the bits OA and OB

are exchanged over the public channel. In the case of identical output bits, that is,
OA = OB . each TPM adjusts those of its weights for which the hidden unit is iden-
tical to the output,σ A/B

k = τ A/B . These weights are adjusted according to a given
learning rule. Here we consider the Hebbian rule: wA/B

k (t+1) = wA/B
k (t)+O A/Bxk .

After some time tsync, the two partners are synchronized, i.e. wA
k (t) = wB

k (t), and
the communication is stopped. Then the common weight vector is used as a key to
encrypt secret messages.
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Note that any possible attacker E knows as much about the process as A knows
about B and vice versa. But E has some disadvantage with respect to A and B:
it can only listen to the communication and cannot influence the dynamics of the
weights in A’s and B’s neural networks. It turns out that this difference determines
the security of the cryptosystem.

Compound Attack

In this part, we mainly analyze the new attack strategy named as “Compound At-
tack” which is different from the existing methods. It is well known that computer
networks are vulnerable to DoS attacks [8] launched through compromised nodes or
intruders. For the sake of destroying the neural cryptography, we also can consider
attacking the communication between the partners A and B in public channel, be-
sides those attacks which mimics the synchronization process of the coupled neural
networks. We can easily make node A breakdown by means of DoS. Then we let
node E just pretends as A, because there is no entity authentication in original neural
cryptography, and we prove that there is no realizable authentication mechanism as
mentioned above. So E could easily spoof node B into regarding E as A. Then E
and B form a new neural cryptosystem and generate a shared secret key KE B with
neural synchronization method introduced above. For B, it still thinks that it has
got a secret key with A (in fact it is E) and will use it consequently. We could get
another secret key KE A between E and A in the same way. Attacker E has the ability
to position himself in the communication path of A and B. E spoofs the other part
to each of the parts involved. Actually E can use MitM attack to capture all the
communications between A and B. E captures and decrypts the message encrypted
by A with KE A and then encrypts the message just KE B decrypted with and send
the encrypted message to B. So there is no any confidentiality between A and B.
Hence E could use other attacks such as replay attack to compromise A/B, i.e. E
could store the messages from A to B, after a random time E could send them to
B again. The replayed message will have unexpected effect on B. The compound
attack proceeds as follows as a whole:

1. E makes node A breakdown by means of DoS;
2. E pretends as A and get shared secret key between E and B;
3. E makes node B breakdown by means of DoS;
4. E pretends as B and get shared secret key between E and A;
5. the MitM unwraps the messages received from A and forwards them to B after

encryting them).

Let E NA(M) be that message M is encrypted by the key A using the encryption
function E N (·) which is of one specific cryptosystem and DE A(M) be that message
M is decrypted by the key A using the decryption function DE(·). We could present
another attack scenario:
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1. E makes node A breakdown by means of DoS;
2. E pretends as A and get shared secret key between E and B;
3. E could now fool B into doing something E’d like to do;

The key point that compound attack would succeed is that there is no entity au-
thentication between A and B. So it is very easy to prevent such kind of attack
conceptually. But just as we have mentioned before, entity authentication need an-
other new secret key. This authentication which introduces a new second shared
key will conflict with the purpose of neural cryptography. The purpose of neural
synchronization is just to generate a shared secret key between A and B. It has to
rely on the traditional cryptosystem to get the key required in the process of entity
authentication.

We could see from above analysis:

– Neural cryptography without authentication is prone to be attacked;
– Entity authentication in neural cryptosystem is poorly implemented without the

help of traditional cryptosystem;

In a word, it is very hard to get a shared secret key between two nodes securely
according to our analysis and experiments. So the security of neural cryptography
are in discuss and are expected to be improved. Due to this, its application is limited,
although its advantages are remarkable.

Conclusion

In this paper, we present a new attack approach, which shows the TPM cryptosystem
is not secure. This attack is focused on the entity authentication. The solution to this
attack where another secret key is required is not applicable now. The question is
whether we could create a more sophisticated system that will be secure under the
attack we present. The secure system will provide a simple authentication scheme
which is effective but no additional shared secret key required integrated into neural
synchronization. Constructing such a system is still under our consideration. It is
very challenging and valuable.
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Chapter 176
Two-Dimension Mass-Moment Control
Based on the Fuzzy Neural Networks
Variable Structure Control

Zhiqin Qian, Heng Cao, Ding Du, Zhengyang Ling, Di Cao and Yongbo Long

Abstract A new model with variable structure method is proposed to diminish
chattering and to achieve accurate tracking for a class of nonlinear systems in the
presence of disturbances and parameter variations. Compares to the common vari-
able structure control, the new method can eliminate the chattering phenomenon
efficiently and has more robustness while the bounds of the uncertainties and dis-
turbances are not know in the controller design. Simulation results demonstrate the
effectiveness of the method.

Keywords Multi-DOF · mass-moment · variable structure control · fuzzy · neural
networks

Introduction

The variable structure control has the characteristics of fast response speed, low over
shoot, high control accuracy and simple fabric. Compares to other control method,
it has the extrude advance, especially the existence of sliding mode which provides
more robustness while bounds of the uncertainties and disturbances are not know.
Thus, the variable structure control system has broad applications in uncertain and
time-variable nonlinear system.

A desirable variable structure control shall contain desirable switching mode.
However, due to the impacts of inertia, time lag, delay in practical system, it is
impossible to get the infinite switch frequency to perform ideal variable structure
control in any practical systems. Besides, it will cause chattering dither.

Chattering dither is a big deficiency in the application of variable structure
control, it degrades the quality performance. Moreover, it is easy to initiate the
higher-order oscillation of model, at the same time it increases the consumption of
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energy, even generates the devastating effects for systems, especially for mechanical
systems.

At present, a two-dimension mass-moment experimental facility is used, when
anti-ship missile space attitude control mode is investigated in the lab where the
authors work. A kind of Fuzzy neural networks variable structure controllers are
used to control the space attitude of two-dimension mass-moment.

Experiment System and Mathematical Model

The Hardware of Two-dimension Mass-Moment
Experiment System

The system consists of a couple of I metal beams, the conjoint point of the two
beams locates on their center, and the two beams perpendicular to each other. To lo-
cate the centre of gravity of the beams on the bracket to achieve the goal to balance,
through assign the mass of beams properly.

Using three gyros to measure the angle of pitching, yaw angle and angle of bank
of two-dimension mass-moment control experiment system.

The Mathematical Model of the Two-Dimension Mass-Moment

To establish the mathematical model of the system, the friction between beams and
bracket and the air resistance of beams’ movement need to be considered [1, 2, 3].

Fig. 176.1 Diagram of
two-dimension mass moment
control experiment system

`

3 gyros
mass 

Controller
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Fig. 176.2 Photo of
two-dimension mass moment

The Dynamics Equation of Beams Rotation

As shown in Fig. 176.1, It is supposed that the ox1 y1z1 is the set of coordinates
of beams, where the two beams are matched with x1 axis and x2 axis respectively.
Zero is on the pivot point. The oxyz is the ground set of coordinates. These two
coordinates match together before motion.

Because of the beams’ symmetrical characteristic, the moment of inertia is Jx1 =
Jz1, and the product of the moment of inertia is: Jx1y1 = Jy1z1 = Jx1z1.

⎧
⎪⎨

⎪⎩

ω̇x1 =
[
Mx1 − (Jz1 − Jy1)ωz1ωy1

]/
Jx1

ω̇y1 = My1
/

Jy1

ω̇z1 =
[
Mz1 − (Jy1 − Jx1)ωy1ωx1

]/
Jx1

(176.1)

Where ωx1ωy1ωz1 are the components of rotational speed on each axis of beam
coordinates; Jx1, Jy1, Jz1 are the moment of inertia on each axis of beam coordinate;
Mx1, My1, Mz1 are the components of resultant moment which are the beams act on
each axis of coordinates.

The Kinematics Equation of Beams Rotation

There will be three attitude angles, while the beams rotate around the barycenter.
There are pitch angle �, yaw angle ψ and angle of bank �, motion equations of
correspondence is:

⎧
⎪⎨

⎪⎩

θ̇ = ωy1 sin γ + ωx1 cos γ

ψ̇ = (ωy1 cos γ − ωx1 sin γ )/ cos θ

γ̇ = ωx1 − tgθ (ωy1 cos γ − ωx1 sin γ )

(176.2)
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c. Aerodynamic force Fx1, Fy1, Fz1, and moment of composite Mx1My1Mz1:

⎧
⎪⎨

⎪⎩

Fx1 = Kx1(γ ∗ − γ )

Fy1 = Ky1(ψ∗ − ψ)

Fz1 = Kz1(θ∗ − θ )

(176.3)

⎧
⎪⎨

⎪⎩

Mx1 = Kx1l − fx1γ̇

My1 = Ky1l − fy1ψ̇

Mz1 = Kz1l − fx1θ̇

(176.4)

Where Fx1, Fy1, Fz1 are the beams’ aerodynamic force rolling motion, yawing, and
pitching; γ ∗, ψ∗, θ∗ are the ideal pitch angle, yaw angle and angle of bank; fx1,
fy1, fz1 are the damp coefficient; l is the length of beam; Kx1, Ky1, Kz1 are three
pathways of gyro’s gain.

Fuzzy Neural Network’s Variable Structure Controller

Variable Structure Design

The system as described in preamble:

⎧
⎪⎨

⎪⎩

xi (t) = xi+1(t)

ẋn(t) = f [X (t)]+ g[X (t)]u(t)

i = 1, . . . , n

(176.5)

Where X (t) = [x1, . . . , xn] is the determinable state variable, f [X (t)], g[X (t)] is
the glossy indeterminacy function, which have unique solution. Choose a kind of
variable structure model (manifold):

S[X (t)] = xn(t)+
n−1∑

i=1

ci xi (t) = 0 (176.6)

Where ci is positive constant (i = 1, . . ., n), we can get the proper polynomial
P(z) = zn + cnzn−1 + . . .+ c1, its root has minus real part.

Where the single-order and second-order derivative of S[X (t)] are:
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Ṡ[X (t)] = ẋn(t)+
n−1∑

i=1

ci ẋi (t) = f [X (t)]+ g[X (t)]u(t)+
n−1∑

i=1

ci xi+1(t) (176.7)

S̈[X (t)] = d

dt
f [X (t)]+ d

dt
g[X (t)]u(t)+

n−2∑

i=1

ci xi+2(t)

+ cn+1[ f [X (t)]+ g[X (t)]u(t)]+ g[X (t)]u̇(t)

= f [X (t), u(t)]+ g[X (t)]u̇(t) (176.8)

Suppose the input of the system is r , the system error is er and then the system
equations is:

er = r − x1; ėr = ṙ − ẋ1 (176.9)

Where r, ṙ ( Suppose ṙ = 0 ) is expectation value.

Design of Fuzzy Neural Networks Variable Structure Controller

T-S fuzzy neural networks (FNN) (as shown in Fig. 176.3) instead of the uncertain
dynamic characteristics f(∗) and g(∗). And then build- up the control rules according
to generality variable structure control [4, 5].

Apply (s, ṡ) to the upper bound of standard FNN real time system input.
Establish two FNN, one FNN (e, ė) as controller, another as an identifier of ob-

ject model. Its parameter is regulated by the error of object real output. During the
procedure of controlling, check up if the condition of variable structure control has

Fig. 176.3 T-S fuzzy neural
networks
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Fig. 176.4 A VSC (variable
structure control) scheme
based on fuzzy neural
networks

FNN1 Plant

,S S&

d
dt

FNN2

Delay
( , )m s s&

e u
+

−

e

+ −
dx

e&

uΔ

been satisfied after gain the change of variable structure control function. Hereby,
gain the symbol correction function m(s). And then the object identifier and m(s)
result the control gain Δu. We use Δu to regulate the parameter of FNN(e, ė). The
whole control flow chart is as shown in Fig. 176.4.

Simulation

Take the pitch pathway for example to process simulation research.
Let the simulation parameter: ca = 70, cb = 6.66, k = 70, � = 0.09, Kf = 1.96,

KG = 0.5, a2 = 3.5037, b = 2.3518, θ∗ = 2◦, τ = 0.0015 s, l = 1 m, fx1 =
1.46N∗ m∗ s, Jx1 = 0.4167 kg∗ m2.

The result of simulation is shown below:
Figure 176.5 shows that tracking error of FNN with VSC (variable structure con-

trol) is closer to zero than Fig. 176.6. And the characteristic of FNN with variable
structure control in Fig. 176.7 is much less disturbances than Fig. 176.8. Therefore
the fuzzy neural networks variable structure control can eliminate the chattering
phenomenon efficiently and has more robustness.

Fig. 176.5 Tracking error of
FNN with VSC
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Fig. 176.6 Tracking error of
VSC

Fig. 176.7 Characteristic of
FNN with VSC

Fig. 176.8 Characteristic of
VSC

Conclusion

The structure and operation of FNN variable structure control is simple, combine
the characteristics of FNN independence to the model and robustness of variable
structure control. To switch the control goal according to the principle of variable
structure control. This method has desirable control effect, strong robustness and is
easy to implement.
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Chapter 177
Constructive Approximation Method
of Polynomial by Neural Networks

Jianjun Wang, Zongben Xu and Jia Jing

Abstract This paper investigates that for a given polynomial with r order, a three-
layer feedforward neural networks with determinate weights and the number of
hidden-layer nodes can be established by a constructive method to approximate the
polynomial to any degree of accuracy. And we give algorithmic examples, where the
networks constructed can very efficiently approximate polynomial. Specifically, the
network constructed and the realization of algorithm obtained are simpler and more
efficient than those of the reference [Chinese Journal of computers 26: 906–912,
2003].

Keywords Approximation · feedforward neural networks · polynomial

Introduction

In the recent years, many researchers have done many researches on the problems
in the artificial neural networks and gain a series of results. Nowadays, the artificial
neural networks have widely been involved in studying problems in a variety of
field, such as biology, mechanical engineering, electrical and computer engineering,
computer science, and physics, etc. Why is so is mainly because the feedforward
neural networks (FNNs) have the universal approximation capability [1, 2, 3]. A
typical example of such universal approximation assertions states that for any given
continuous function defined on a compact set K of Rd , there exists a three-layer of
FNNs so that it can approximate the function arbitrarily well. A three-layer of FNNs
with one hidden layer, d inputs and one output can be mathematically expressed as

N (x) =
m∑

i=1

ciφ

⎛

⎝
d∑

j=1

wi j x j + θi

⎞

⎠ , x ∈ Rd , d ≥ 1. (177.1)
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Here 1 ≤ i ≤ m, θi ∈ R are the thresholds, wi = (wi1, wi2, . . . , wid )T ∈ Rd are
connection weights of neuron i in the hidden layer with the input neurons, ci ∈R are
the connection strength of neuron i with the output neuron, and φ is the activation
function used in the network. As we known, how to design the structure of FNNs
make that it has capability of learning a given function, which is a important and
fundamental question. The polynomial is the most simple and elementary function.
In the past a few years, the question of approximating algebraic polynomial by
FNNs had some works (see [4, 5]), here we will adopt a new,simple and construc-
tive method different the past method to prove approximation of univariate poly-
nomials by FNNs, and the networks constructed can very efficiently approximate
polynomial.

Main Result

Let r be a fixed integer and

Pr (x) = a0 + a1x + · · · + ar xr , x ∈ R (177.2)

be a univariate polynomial of degree r defined on [a,b]. We will consider neural
networks approximation problem in this paper confined to a special type of neural
activation functionsΥM of which each function φ : R → [0, 1] has up to M+1 order
continuous derivatives φk, k = 1, 2, . . . , M + 1, the derivative functions φk all have
bounded range, and there is a common point, say θ0 ∈ R, such that φk(θ0) �= 0 for
all 1 ≤ k ≤ M + 1. Such neural activation functions are abundant, as substantiated
by the normal sigmoidal functions φ(x) = (1 + eαx )−1 with any α > 0 (see [6]).
For p ≥ 1, we denote by L p

2π ([a, b]) the space of pth-order Lebesgue integrable

functions on [a, b] to R with ‖ f ‖p = {
∫ b

a | f (x)|pdx}1/p and by C[a,b] the space of
continuous functions on [a, b] to R with ‖ f ‖∞ = sup

x∈[a,b]
| f (x)|. For convenience,

we denote by L∞([a, b]) the space C[a,b]. The main result is the following Theorem.

Theorem. Let φ ∈ ΥM a neural activation function and Pr (x) a univariate poly-
nomial of the form (2). Then for any 1 ≤ p ≤ ∞ and ε > 0, there is a neural
network of the form (177.1) the number of whose hidden units is not less than∑
0≤ j≤r

( j + 1) = (r + 1)(r + 2)/2(independent of ε), such that

‖Nn − Pr‖p < ε, (177.3)

where

Nn(x) =
∑

0≤ j≤r

∑

0≤i≤ j

ci, jφ(wx + θ ), (177.4)

w = h(2i − j), ci, j = a j
1

φ(| j |)(θ )
(2h)− j (−1)i

( j
i

)
.
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Proof. First we prove the Eq. (177.3) for p = ∞ in [a,b]. Let M1 = max{|a|, |b|},
Since φ( j)(wx + θ )=̇ �| j |

�ω| j | [φ(wx + θ )] = x jφ(| j |)(wx + θ ), so we have φ j,x (θ )
.=

φ( j)(ωx + θ )|ω=0 = x jφ(| j |)(θ ), hence x j = φ j,x (θ)
φ(| j |)(θ) . Then we have pr (x) =

∑
0≤ j≤r

a j
φ j,x (θ)
φ(| j |)(θ) . For any fixed θ ∈ R, we consider the following finite j-th order

difference, � j
h,xφ(θ ) = ∑

0≤i≤ j
(−1)i

( j
i

)
φ(h(2i − j)x + θ ). By using of the triangle

inequalities and the representation of difference, we have

∣∣∣∣pr (x)− ∑
0≤ j≤r

a j
1

φ(| j |)(θ )
(2h)− j� j

h,xφ(θ )

∣∣∣∣

≤ ∑
0≤ j≤r

|a j | 1

|φ(| j |)(θ )|
∣∣∣φ j,x (θ )− (2h)−| j |� j

h,xφ(θ )
∣∣∣

= ∑
0≤ j≤r

|a j | 1

|φ(| j |)(θ )| x
j

∣∣∣∣(2h)− j

∫ h

−h

∫ h

−h
· · ·
∫ h

−h
φ(| j |)(θ )dτ1dτ2 · · · dτ j

− (2h)− j

∫ h

−h

∫ h

−h
· · ·
∫ h

−h
φ(| j |)(θ + (τ1 + τ2 + · · · + τ j )x)dτ1dτ2 · · · dτ j

∣∣∣∣

≤ ∑
0≤ j≤r

|a j | 1

|φ(| j |)(θ )| x
j L(φ(| j |, 2M1 jh) ≤ 2M1h

∑
0≤ j≤r

|a j | j M j
1

‖φ(| j |+1)‖∞
|φ(| j |)(θ )| .

(177.5)
Here L(φ, δ) = sup

|t−x |<δ

∣∣φ(x) − φ(t)
∣∣(see [7]) is continuous modulus of function φ,

and when the function φ has continuous derivative, we have L(φ, δ) ≤ δ|φ ′ |∞.
Let M0 = max

{|φ(i)(θ )|, i = 0, 1, · · · , r + 1
}
, we have

∣∣∣∣pr (x)−
∑

0≤ j≤r

a j
1

φ(| j |)(θ )
(2h)− j� j

h,xφ(θ )

∣∣∣∣ ≤ Mh (177.6)

where M = 2M1 M0
∑

0≤ j≤r

|a j | j
|φ(| j |)(θ)|M

j
1 . By using of the Eqs. (177.5) and (177.6), we

can construct neural networks (4). From the Eq. (177.6), we get
∣∣pr(x)− Nn(x)

∣∣ ≤
Mh, and set h < ε

M , then
∣∣pr(x)− Nn(x)

∣∣ < ε. That is (3) is valid for p = ∞.
For 1 ≤ p < ∞, from the conclusion of p = ∞, we can easily prove it. As for

the number of hidden units of the networks constructed, we can easily obtain that is∑
0≤ j≤r

( j + 1) = (r+1)(r+2)
2 from (4).

Example

In this section show two examples of the networks approximation method pro-
posed in the paper. we take two polynomial functions f = 1 − 3x and g =
1/2 + 3/4x3 + 1/2x4 to testify our results. A plot of the error function |N − f |
is shown in Fig. 177.1a, in addition, we give the error function of the reference [5]
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Fig. 177.1 (a) Error function between the function 1 − 3x and the networks N3(x) we
constructed(h = 10−7); (b) Error function between the function 1 − 3x and the networks N (x)
in [5] (h = 10−7)
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Fig. 177.2 Error between the function 1/2 + 3/4x3 + 1/2x4 and the networks N10(x) we con-
structed in[−1,2] when h = 10−2.5 and h = 10−3, respectively

in Fig. 177.1b. Obvious, our results is better than that of [5]. Figure 177.2 show that
the error between the polynomial 1/2+ 3/4x3 + 1/2x4 defined on [−1, 2] and the
networks we proposed in the condition of h = 10−2.5 and h = 10−3 .
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Chapter 178
Fault Pattern Recognition Based on Improved
Wavelet Neural Network

Deng-Chao Feng, Zhao-Xuan Yang and Zeng-Min Wang

Abstract The basic principle of wavelet neural network is analyzed and the learning
algorithm is improved as well. Correspondingly, fault pattern recognition model
is constructed based on improved wavelet neural network. Simulation experiment
shows that improved wavelet neural network has good fault-tolerant capacity and
global convergence. However, how to establish an objective criterion of parameter
settings and enhance the real time capability of fault pattern recognition still need
further research.

Introduction

With the development of the industrial processes, the problems on security and re-
liability are getting more and more serious. Accordingly, the research and appli-
cation of intelligent fault diagnosis algorithm has positive significance. Due to the
capability of simulating arbitrary nonlinear continuous function and self-learning
capability, artificial neural network [1] has been widely used in fault diagnosis field.
However, the initialization of network parameters and the construction of neural
network lack of effective theory guidance in actual operation. WNN (Wavelet neural
network) introduced by Zhang Qinghua [2] is a new feedforeward neural network
with strong non-linear approach capability and fault-tolerant capability [3].

On the basis of traditional WNN, improved wavelet neural network based on
ant colony algorithm [4] is constructed in the paper and applied in fault pattern
recognition. The simulation experiment shows the validity of the algorithm.
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Improved Wavelet Neural Network

As a new feedforward neural network, wavelet neural network (WNN) can be clas-
sified into relax-type and close-type [5]. The close-type WNN is constructed in the
paper and the corresponding formula is as follows:

yi (t) = f

⎛

⎝
n∑

j=0

wi jψa,b

(
m∑

k=0

wik x(t)

)⎞

⎠ (i = 1, 2, . . . , N ) (178.1)

where, f (.) is the linear function of output layer, xk is the kth input sample, yi is the
i th output value of output layer, wi j is the weight between output layer unit i and
hidden layer unit j , w jk is the weight between hidden layer unit j and input layer
unit k, N (i = 1, 2, . . ., N ) is the output layer number, ψa,b is the wavelet function,
a j and b j are the scale coefficient and translation coefficient in the j th hidden layer
unit respectively. The minimum value of the error energy function can be obtained
through adjustment of network parameters.

The gradient descent method is often adopted to optimize network parameters.
However, a local minimization problem is easily to occur as well [5]. The combina-
tion of ant colony algorithm and WNN has a good learning character by virtue of
the good property of time-frequency localization of wavelet transform, self-learning
function of neural network and the heuristic study of ant colony algorithm. There-
fore, improved ant colony algorithm is proposed to train WNN in the paper.

The optimization learning process is as follows. Firstly, the parameters of WNN,
namely w jk, wi j , a j , b j , will be transformed to the city matrix in TSP problem [6].
According to the selection rules of the shortest path, the parameters of WNN can be
transformed to column vector. Then, a random column vector will be produced by
virtue of Matlab function. The coordinate matrix C in TSP problem is produced by
the above two column vector. Finally, the optimization of network parameters can
be realized by virtue of the similar algorithm of solving TSP problem. In pheromone
update stage, accumulated error σn is used to update the pheromone and the corre-
sponding formula of it is as follows:

σn =
√√√√

m∑

i=1

(ei − e)2/m (178.2)

where m is the number of sample data, ei is the absolute error and e is the mean ab-
solute error. Correspondingly, the pheromone increment at route (i, j) is as follows:

	τi j (Ci ) (n) =
m∑

k=1

	τ k
i j (Ci ) (n) =

{
Q/σn if Ci is selected
0 otherwise

(178.3)
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However, when the scale of problem is large enough, the optimization learning
algorithm based on ant colony algorithm will inevitably effect the global search
capability by pheromone volatilization factor ρ [7]. Therefore, the adaptive selection
algorithm for ρ is adopted as follows:

ρ(t) =
{

0.95ρ(t − 1) 0.95ρ(t − 1) ≥ ρmin

ρmin otherwise
(178.4)

When all ants finish the optimization of the shortest path, the parameters of wavelet
neural network w jk, wi j , a j , b j can be selected from the first column vector accord-
ing to the principle of dimension matching.

Construction of Fault Pattern Recognition

The essence of fault pattern recognition is to find the hidden order in fault space
and to execute the discrimination and prediction for mechanical running condi-
tion, namely to realize the data mapping from fault eigenvector to fault state. The
improved WNN with adaptive learning mechanism has better robustness for un-
certainty factor, noise and imperfection of input. Therefore, it can be used in the
construction of fault pattern recognition.

As shown in Fig. 178.1, the fault pattern recognition model can be constructed
by the improved WNN. The input layer code corresponds to fault symptom, the
hidden layer takes wavelet function as activation function, and the output layer node

Fig. 178.1 Construction of fault pattern recognition based on improved WNN
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corresponds to fault reason. Firstly, a group of fault data is trained in improved WNN
by the learning algorithm based on ant colony algorithm to obtain the expected neu-
ral network. The wavelet network parameters can be obtained after training. Then, a
group of new fault symptom data is given to realize the nonlinear mapping from fault
symptom sets to fault classification sets. The training results by network testing will
be saved in the knowledge base of fault classification. In order to offer proper input
and training sample of fault classification, the original data and training sample data
will be processed properly before learning and classification. The process includes
data preprocessing and feature extraction. Finally, the testing sets will be adopted
to monitor the training effect and generalization capability of fault classification
model.

Results and Analysis of Simulation Experiment

In simulation experiment, fault data is adopted by reference [8]. In order to verify
the robustness of the algorithm, BP network, traditional WNN and improved WNN
proposed in the paper are adopted respectively in fault pattern recognition under the
circumstance of MATLAB7.0. Statistical results for original eigenvector are shown
in Table 178.1

In order to improve the recognition precision, Z-score [9] is adopted to trans-
form the original eigenvector to the normalization and standardization of scores.
The Z-score for original fault eigenvector are shown in Fig. 178.2.

In fault pattern recognition model, fault space includes five kinds of fault state,
namely normal state, fault state 1, fault state 2, fault state 3 and fault state 4. Cor-
respondingly, the fault code is {0, 0, 0, 0}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0} and
{0, 0, 0, 1}, respectively. In BP neural network, the structure of network is 5-11-4,
and the leaning algorithm is gradient descent method based on momentum. S-type
tangent function and logarithm function are selected as activation functions of the
hidden layer and output layer respectively. The maximum training time is 1000,
the learning rate is 0.01 and the error precision is 0.01. In traditional WNN, morlet
wavelet function is adopted in hidden layer, and other parameters are the same with
those of BP network. In improved WNN, the structure is the same as WNN, while
the learning algorithm adopted is ant colony algorithm. The number of ant is 120,
a = 1, β = 5, ρ0 = 0.1, Q = 100, the maximum cycle iteration is 1000. The
original values of weight, translation factor and scale factor are adopted by random
function.

Table 178.1 Descriptive statistics for fault sample data

Eigenvector N Minimum Maximum Mean SD

Peak index 20 4.19 12.45 8.2325 2.84235
Waveform index 20 1.23 2.16 1.5765 0.31749
Pulsed index 20 5.63 25.60 13.0485 7.13944
Margin index 20 6.58 36.75 17.7690 10.71371
Kurtosis index 20 3.01 9.71 5.8350 2.68306
Valid N (listwise) 20



178 Fault Pattern Recognition Based on Improved Wavelet Neural Network 1043

0291817161514131211101987654321

V
al

ue
3

2

1

0

–1

–2

Zscore

Waveform Index

Pulsed Index

Margin Index

Kurtosis Index

Peak Index

Fig. 178.2 Z-Score of original fault eigenvector

In simulation experiment, the above three kinds of neural network are applied in
fault pattern recognition, where original fault eigenvector and Z-score eigenvector
are adopted as input vector respectively. Due to the random selection of network
parameters, the output vector and iteration number in network performance are dif-
ferent each time. Although all the above neural network can realize fault pattern
recognition, the output errors are different as well. After running for many times,
the performance evaluation of fault pattern recognition were done in these different
network. According to Euclid norm theory [9], output errors can be obtained and
the corresponding statistic analysis for them is shown in Fig. 178.3.

The statistical analysis of output error shows the small range and standard devi-
ation can be obtained with Z-score method, which means the less data fluctuation.
Comparison of the above three algorithm, the minimum value of range and standard
deviation was obtained by improved WNN respectively, which means the smallest
data fluctuation and the maximum approaching probability.

The above simulation experiment results show that, the fault diagnosis model
constructed by BP network could easily cause slow convergence speed and local
minimum problem. Training results also show that, it is sensitive to initial value
and could easily cause the oscillation phenomenon. Compared with BP network,
the convergence speed of traditional WNN is faster, but it still has some similar
problems with those in BP network. The algorithm proposed in the paper effectively
overcomes the local minimum problem and improves the fault classification preci-
sion. However, the parameter selection of improved WNN is still based primarily on
knowledge gained from experiences. Therefore, how to establish an objective crite-
rion of parameter settings is still an urgent problem waiting to be solved effectively.
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Conclusion

The application of fault pattern recognition technique can avoid equipment failure
and reduce the maintenance cost in automatic production line. Improved wavelet
neural network proposed in the paper has dual characteristics of ant colony algo-
rithm and wavelet neural network, so, it has a great application prospect in fault
pattern recognition. However, how to establish an objective criterion of parameter
settings and choose the best combination point between the fault classification pre-
cision and running time in order to enhance the real time capability of the network
still need further research.
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Chapter 179
Estimation of the Flooded Volume in Ad Hoc
Networks Using Evolving Networking Theory

Demin Li, Jie Zhou and Jiacun Wang

Abstract Since mobile nodes in mobile ad hoc network may spread in an arbitrary
manner, one of the fundamental issues is how to enhance flooded volume in a mo-
bile ad hoc network. In this paper, we model the flooded volume in mobile ad hoc
network using Watts–Strogatz (W–S) evolving networking theory, and get the result
that if some conditions for observer gain constant are satisfied, the total volume of
the flooded nodes can be estimated.

Keywords Watts-Strogatz evolving model · flooded volume · flooded node ·
mobile ad hoc network

Introduction

Mobile ad hoc networks (MANET) are decentralizing, self-organizing, and highly
dynamic networks formed by a set of mobile hosts connected through wireless links,
without requiring any fixed infrastructure. If the destination node is not within the
transmission range of the source node, the source node takes help of the interme-
diate nodes or routers to communicate with the destination node. Civilian applica-
tions include peer-to-peer computing and file sharing, collaborated computing, and
searching rescue operations. Military applications include battle-fields among a fleet
of ships, a group of armored vehicles or a large of military aircraft. With the rapid
progress of wireless ad hoc networks and embedded micro-sensing technologies,
those applications make possible and wide.

Since mobile nodes may spread in an arbitrary manner, one of the fundamental
issues is how to enhance flooded volume in a mobile ad hoc network. Watts and
Strogatz [1] described a basic evolving mechanism for collective dynamics of small
world network. The discoveries of small-world phenomena in many complex net-
works have led to a fascinating set of common problems [2, 3]. After proposing a
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novel Watts–Strogatz spreading model, which captures the general spreading mech-
anism in small-world networks [4], investigated the stability and Hopf bifurcations
of delay-controlled spreading models with linear and nonlinear feedback controllers,
where parameters of small-world rewiring probability, feedback control gain, and
time delay are analyzed for the oscillating behaviors. But to best our knowledge, we
can not find any results to estimate the flooded volume in ad hoc networks using
evolving networking theory.

The remainder of the present paper is arranged as follows. The basic model is
formulated in section ‘Problem Formulation and Basic Model’ for ad hoc network
flooded volume. In section ‘Main Results’, main results for constant delay time-
varying delay are given. Finally, some concluding remarks are drawn in section
‘Conclusions’.

Problem Formulation and Basic Model

The random rewiring in the W–S model for the propagation process means that,
each time the infective node spreading through the forthcoming edge in the nearest-
neighbor ring may be linked with another node through the rewired long-range
connection with probability 0 ≤ p ≤ 1. Therefore, the total volume of infected
individuals V (t) in a d-dimensional W–S evolving network grows as a sphere of
radius time t and surface (1 − p)�d td−1. At the same time, the primary sphere
(sphere from the infective individual) hits the end of a rewired long-range edge with
probability p�d td−1 per unit time, which is assumed to start with a time delay δ > 0
due to the long-range spatial distance [4, 5]. Finally, the total infected volume V (t)is
the sum of the primary volume (1− p)�d td−1 plus a contribution V (τ − δ), for each
new sphere at time τ , satisfying

V (t) = �d

∫ t

0
τ d−1[1− p + pV (τ − δ)]dτ

Consider one–dimension W–S evolving network, d = 1,

x(t) = �1

∫ t

0
[1− p + px(τ − δ)]dτ (179.1)

And differentiating (179.1), we have the spreading model

ẋ(t) = �1[1− p + px(t − δ)] = �1 px(t − δ)+ �1(1− p) (179.2)

Let a = �1 p > 0, b = �1(1− p) > 0, we have

ẋ(t) = ax(t − δ)+ b (179.3)
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The equation is a one-dimension, time-invariable parameter equation with time de-
lay. We may only care about the volume of the flooded nodes in some directions,
and then volume output equation followed

y(t) = cx(t) (179.4)

Where c > 0 is constant or direction throughput factor.

Main Results

The observer for (179.3) is constructed as follows:

˙̂x(t) = ax̂(t − δ)+ b + k[y(t)− cx̂(t)] (179.5)

where k is a observer gain constant and x̂(t) is a estimator for x(t)

Theorem 1. Let δ > 0 be a constant and the condition k > a/c holds, then x̂(t) in
(179.5) can globally approach to the x(t) in (179.3)

Proof. let e(t) = x(t)− x̂(t)

ė(t) = ẋ(t)− ˙̂x(t) = ae(t − δ)− kce(t) (179.6)

Consider the following Lyapunov function candidate:

V (e(t), δ) = e2(t)+ a
∫ t

t−δ
e2(τ )dτ ≥ 0 (179.7)

differentiating V (e(t), δ)and substitute (179.6) we get

V̇ (e(t), δ) = 2e(t)ė(t)+ ae2(t)− pae2(t − δ)
= 2e(t)[ae(t − δ)− kce(t)]+ ae2(t)− ae2(t − δ)
= [a − 2kc]e2(t)+ 2ae(t)e(t − δ)− ae2(t − δ) (179.8)

consider

2e(t)e(t − δ) ≤ e2(t)+ e2(t − δ)

from (179.8), we get

V̇ (e(t), δ) = [a − 2kc]e2(t)+ 2ae(t)e(t − δ)− ae2(t − δ)
≤ [2a − 2kc]e2(t)

If k > a/c, V̇ (e(t), δ) < 0
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From the Lyapunov stability theory, the theorem 1 is proofed.

Remark 1. For constant time delay, the total volume of the flooded nodes approach
to an estimator when Kalman gain constant satisfies k > a/c. In other words, if the
Kalman gain satisfies the condition, the total volume of the flooded nodes can be
estimated.

Theorem 2. If δ(t) is time varying bounded state delay satisfying 0 < δ(t) < +∞,
δ̇(t) < 0 and the condition k > a/c holds, then x̂(t) in (179.5) can globally ap-
proach to the x(t) in (179.3)

Proof. Consider the following Lyapunov function candidate similar to (179.7):

V (e(t), δ) = e2(t)+ a
∫ t

t−δ(t)
e2(τ )dτ ≥ 0 (179.9)

differentiating V (e(t), δ(t)) in (179.9), we get

V̇ (e(t), δ(t)) = 2e(t)ė(t)+ ae2(t)− a[1− δ̇(t)]e2(t − δ(t))
= 2e(t)[ae(t − δ(t))− kce(t)]+ ae2(t)− a[1− δ̇(t)]e2(t − δ(t))
= [a − 2kc]e2(t)+ 2ae(t)e(t − δ(t))− a[1− δ̇(t)]e2(t − δ(t))

(179.10)

consider

2e(t)e(t − δ) ≤ e2(t)+ e2(t − δ)

from (179.10), we get

V̇ (e(t), δ(t)) = [a − 2kc]e2(t)+ a[e2(t)+ e2(t − δ)]− a[1− δ̇(t)]e2(t − δ(t))
≤ [2a − 2kc]e2(t)+ aδ̇(t)e2(t − δ(t)) (179.11)

Consider δ̇(t) < 0, a = �1 p > 0 and k > a/c, from (179.11) we getV̇ (e(t),
δ(t)) < 0

From the Lyapunov stability theory, the theorem 2 is proofed.

Remark 2. For time-varying bounded state delay, the total volume of the flooded
nodes approach to an estimator when Kalman gain constant satisfies k > a/c. In
other words, if the Kalman gain satisfies the condition, and time-varying delay is
decreasing with time, the total volume of the flooded or infected nodes can be esti-
mated.
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Conclusions

In this paper, we model the flooded volume in mobile ad hoc network using Watts–
Strogatz (W–S) evolving networking theory, and get the result that if some condi-
tions for observer gain constant are satisfied, the total volume of the flooded can be
estimated. In other words, no matter time delay is constant or not, if the Kalman
gain satisfies the condition k > a/c, the total volume of the flooded nodes can
be estimated. It is a challenge to model the flooded volume in ad hoc network,
especially in multi-dimensional situations. We are managing to do this work in ad
hoc networks.
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Chapter 180
A Plausible Modeling for Cellular Responding
DNA Damage Under Radiotherapy

Jinpeng Qi, Shihuang Shao, Xiaojing Gu and Guangzhu Yu

Abstract P53, a vital anticancer gene, acts important role in controlling cell cycle
arrest and cell apoptosis by regulating the downstream genes and their complicated
signal pathways. Under radiotherapy, cell can trigger internal self-defense mecha-
nisms in fighting against genome stresses induced by acute ion radiation (IR). To
simulate the cellular responding DNA damage at single cell level, a model for P53
gene networks is proposed under radiotherapy. The model can be used to present
the dynamic processes of the double-strand breaks (DSBs) generation and repair,
ataxia telangiectasia mutated (ATM) and ARF activation, as well as the oscillations
of P53-MDM2 feedback loop in response to acute IR. Especially, the model can pre-
dict the plausible outcomes of cellular responding DNA damage versus continuous
radiation time.

Keywords P53 · DNA damage · IR · oscillations · modeling · radiotherapy

Introduction

Radiotherapy, one of the main tumor therapies, acts through the induction of DSBs
to DNA, triggering the cellular self-defense mechanisms to induce apoptosis of
cancerous cells via programmed apoptosis [1]. As an important transcription factor
within nuclear, P53 can be activated by DNA damage transferring through ATM
activation [2, 3]. By regulating downstream genes and their signal pathways, the
activated P53 control the process of cell cycle arrest to repair DNA damage and
cell apoptosis to eliminate the abnormal cells with genome damage or deregulated
proliferation further [4, 5]. Recently, some models have been proposed to simulate
the kinetics of tumor therapy and explain the damped oscillations of P53 in cell
populations at cellular level [6, 7, 8, 8, 10]. To simulate the investigations of the
cellular responding genome stresses and the complicated regulations among vital
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genes further, a model of P53 gene networks is proposed under radiotherapy. The
dynamic interactions among vital components are presented in response to contin-
uous effect of different IR dose. Meanwhile, the time threshold of ATM activation,
and dynamic oscillations between P53 and MDM2, as well as the vital role of P53
in toxins eliminating are analyzed.

Methods

The scheme of the integrated model is given in Fig. 180.1. Compared with the
former models [7, 8, 9, 10], more vital components are involved, such as onco-
genes, ARF etc. As acute IR is applied, the resulting DSBs form the DSB–protein
complexes (DSBCs) at damage sites after interacting with the DNA repair proteins
[5, 11]. The cooperation of active ATM (ATM∗) and active ARF (ARF∗) switches on
or off the P53-Mdm2 feedback loop to control the cell cycle arrest and the cell apop-
tosis further [1, 11]. The implementation of the model is described in the following
paragraphs, and the detailed formulations can be found in [7, 8, 9, 10].

DSBs Generation and Repair

As shown in Fig. 180.2, this module contains both a fast and a slow kinetics, each of
which is composed of a reversible binding of repair proteins and DSB lesions into
DSBCs, and an irreversible process from the DSBCs to the fixed DSBs [10, 11].
In our model, DSBCs and repair proteins (RP) are treated as the dynamic variables
[7, 8, 9], and the correct repair part of DSBs (Fr) and Fw are distinguished due to
the profound consequences of the misrepair part of DSBs (Fw) on the subsequent
cellular viability [9, 10, 11].

ATM and ARF Activation

The module scheme is shown in Fig. 180.3, ARF, oncogenes are involved in this
module [5, 11]. Shown in Fig. 180.3a is the scheme of ATM activation, we deal
that DSBCs is the main signal transduction from DSBs to P53-MDM2 feedback

DSBs generation
and repair

ATM activation

IR dose

P53-MDM2
feedback loop

Signal transferring to regulate
the process of DNA damage repair

and cell apoptosis 

Oncogenes ARF activation

Fig. 180.1 The scheme of P53 gene networks under radiotherapy. It includes the modules of DSBs
generation and their repair, ATM and ARF activation, as well as P53-MDM2 feedback loop
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Fig. 180.2 The scheme of
DSBs repair process. It
includes both a fast repair
pathway and a slow one. DSB
can be in one of four states:
intact DSB (DSB), DBSC, Fr

and Fw

D1 C1 Fr

FwC2
D2

kdc1 kcf1

kcf2
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kfw2kdc2

kcd1

kcd2

DSB Fixed DSBDSBCs

Fig. 180.3 The module
scheme of ATM and ARF
activation in response to
acute IR
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kar
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loop through ATM activation, and the rate of ATM activation is a function of the
amount of DSBCs and the self-feedback of ATM∗ [7, 8, 9]. Meanwhile, shown in
Fig. 180.3b is the scheme of ARF activation, ARF is activated by over-expression
of oncogenes induced by acute IR, and subsequently increases the regulating effect
of P53 by inhibiting Mdm2 expression and preventing P53 degradation [5, 11].

Regulations of P53-MDM2 Feedback Loop

P53-MDM2 feedback loop is the core part in the integrated networks [7, 8, 9, 10].
As shown in Fig. 180.4, P53 and its principal antagonist, Mdm2 acts essential roles
in response to genome stresses [4, 5]. With the cooperation of both ATM and ARF,
this negative feedback loop can produce oscillations in response to the sufficiently
strong IR dose [5, 11].

Onco

P53D P53R P53P

P53*

*

MDM2R MDM2R MDM2P

Toxins
ATM*

ARF*

Basal

Basal

Degradation

Fig. 180.4 The scheme of P53-MDM2 feedback loop. ATM∗ and ARF∗ stimulate the degradation
of Mdm2, and further increase the regulatory activation of P53∗
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Results

In our simulations, the continuous 1, 3, 6Gy IR are applied into a cell, respec-
tively. As shown in Fig. 180.5a, followed IR dose increasing, the rate of DSBCs
synthesizing speed up due to the RP available around increasing damage sites. The
kinetics shown in Fig. 180.5b indicate that ATM∗ switch to “on” state and trend to
saturation versus continuous radiation time. Meanwhile, without the degradation
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Fig. 180.5 The kinetics of integrated model in response to continuous 1,3,6Gy IR, respectively
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functions of P53∗, the oncogenes keep increasing versus radiation time. Subse-
quently, as shown in Fig. 180.5c, ARF is activated with respective rate in response
to the over-expression of oncogenes under different IR dose domains.

Shown in Fig. 180.5d are the oscillations of P53∗ and MDM2 in response to
continuous 1, 3, 6Gy IR. Followed IR dose increasing, the strength of these oscil-
lations keep increasing, and trendind to a new equilibrium versus radiation time
[7, 8, 9, 10]. Based on the assumption that Fw and oncogenes can be degraded
directly by the eliminating effect of P53∗, as shown in Fig. 180.5e, Fw decrease
dramatically from initial value and trend to zero due to the eliminating functions
of P53∗. In addition, as shown in Fig. 180.5f, with the degradation effect of P53∗,
the expression of oncogenes keeps relatively lower with some oscillations. These
simulations above suggest that P53∗ indeed act an important role in cellular response
to genome stresses.

Conclusion

We proposed a plausible model of P53 gene network under radiotherapy by using
a set of differential equations. In our simulations, ATM and ARF exhibit a strong
sensitivity behavior in response to continuous IR, and further trigger the oscillations
of P53-MDM2 feedback loop. The degradations of toxins and oncogenes prompted
by the regulating functions of P53∗ can quantitatively present the outcomes of cel-
lular responding DNA damage. Our mode provides a framework for the theoretical
analysis of the self-defense mechanisms of cellular responding DNA damage under
radiotherapy.
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Chapter 181
An Improvement of Sequential Minimum
Optimization Algorithm

Jian Zhang, Jun-zhong Zou, Xing-yu Wang and Lan-lan Chen

Abstract Sequential Minimum Optimization (SMO) algorithm is a good method to
solve Support Vector Machine (SVM) problem. One-dimensional cache strategy is
proposed to speed up SMO algorithm. Experiments have been conducted to show
that the proposed method is effective. Comparing with two-dimensional array, this
cache strategy has some advantages: (1) To utilize the memory by the greatest de-
gree; (2) The size of cache is not restrained. The training process will be speed up
with the growth of cache; (3) The cost of maintain work is almost zero in contrast.

Keywords Machine learning · support vector machine · sequential minimum
optimization · kernel caching

Introduction

Support vector machine was proposed by Vapnik in the middle of 1990s [1]. It can
be taken as a general learning machine based on limited samples theory. SVM is an
effective method to avoid the local minimum and over-fitting problems that occur
in conventional classification methods. Besides, it resolved the dimension disaster
effectively by introducing kernel function, which made it feasible to analyze the
nonlinear relationship in a higher dimensional space.

Let training sample set T = {(x1, y1

)
, · · · , (xm, ym

)} ∈ (X× Y)m, where xi ∈
Rn, yi ∈ {1,−1} , i = 1, · · · ,m.

By introducing maximal interval method, an optimization problem is formed as
follows:

min
α

1

2

m∑

i=1

m∑

j=1

yi y jαiα jκ
(
xi , x j

)−
m∑

j=1

α j = min
α

1

2
αT Qα − eT α (181.1)
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s.t.
m∑

i=1

yiαi = 0, (181.2)

0 ≤ αi ≤ C, i = 1, · · · ,m. (181.3)

where Qij = yiyjκ
(
xi, xj

)
is the kernel matrix; e = (1, 1, · · · , 1)T; C is a regular-

ization parameter. There are two common kernel functions: polynomial kernel func-
tion on κi j =

[(
xT

i xj
)+ 1

]d
and gaussian kernel function κi j = exp

( − ∥∥xi − xj

∥∥/

2σ 2
)
. After resolving this optimization problem, we get the optimization resolution

α∗ = (α∗1 , · · ·α∗m
)T

. One component from α∗ is chosen and denoted as 0 < α∗j < C.
Then a threshold value is calculated as f(x) = sgn

(∑m
i=1 α

∗
i yiκ (x, xi)+ b∗

)
. Fi-

nally, we get the decision function: f(x) = sgn
(∑m

i=1 α
∗
i yiκ (x, xi)+ b∗

)
.

Conventional convex quadratic programming problems need storage kernel ma-
trix Q. This matrix is a two-dimensional m × m array. The scale of matrix Q will
grow quickly with the increase of the sample size m. The matrix should occupy
very large memory space in computer when the sample size is large. Besides, a
large amount of matrix operation will take a lot of training time. Ossuna took the
lead in proposing the decomposition strategy and proved its convergence. Platt in-
troduced SMO Algorithm which was a particular case of decomposition strategy
when the size of work sets is two [2]. Based on SMO algorithm, Keerthi modified
the Karush-Kuhn-Tucker (KKT) conditions and proposed two modified algorithms
(referred to as KSMO1 and KSMO2) [3]. The convergence for both algorithms has
been proved [4]. Chang et al. pointed out that KSMO2 was a particular case of
feasible direction strategy when the size of working sets is two [5].

In KSMO2 algorithm, it is optimized by ilow and iup directly in inbound iteration
[3]. This paper is based on KSMO2 algorithm.

This paper is organized as follows: Firstly, one dimensional kernel caching stra-
tegy was proposed in detail. Secondly, some experiments were conducted to indicate
the new strategy can improve the training speed significantly with the growth of
C/σ 2 ratio. Finally, the advantages were summarized.

Improvements on Inbound Iteration

When parameter C is very large relative to σ 2, the computation quantity will in-
crease obviously in inbound iteration. Comparatively, the computation quantity of
full iteration is very small. Take the data set pima-indians-diabetes for example.
This data set contains 768 samples and 8 characters altogether. 575 samples were
chosen randomly to form a training set which contained 200 positive samples and
375 negative samples; the other 193 samples were left to form a test set. Firstly, the
data set was standardized by xi j = (xi j − x j )/s j , where xi j is the jth character of
the ith sample, x j is the mean of the jth character, s j is the standard deviation of the
jth character. Gaussian kernel function was adopted. The optimum parameters were
set as: C = 500, σ 2 = 40. The training correct rate is 85.22%, the testing correct
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rate is 83.94%. During the training process, the number of kernel evaluations was
statistically analyzed. In inbound iteration process, the number is 51,912,480; in
full iteration process, the number is 10,00,061. It was found that the inbound itera-
tion took up 98% of the computing work. Therefore, the improvements on inbound
iteration process could improve the computing speed effectively.

One-Dimensional Kernel Caching Strategy

During the process of inbound iteration, it was observed that: if the update frequency
of some Lagrange multiplier αi is higher, then the update frequency will be still
higher in successive inbound iterations. The corresponding kernel should be cached
with higher priority. According to this regularity, a flowchart has been designed
in Fig. 181.1. The variable Count specifies the total optimize number. The cache
structure is described in Fig. 181.2.

In inbound iteration, for example, only four Non-Bound Support Vectors (NBSV)
left. If enough space can be allocated, Cache (1) means to put the value of κ11, κ12,

κ13, κ14 into one-dimensional array together because they will be used to update
Fi (i = 1, 2, 3, 4) [3]. Remove (1) means that these four variables should be covered
with the other variables. κi j is saved in the fixed linear address computed by the
following formula:

Ai j = (i − 1)× (T − 1)− (i − 1)∗(i − 2)/2+ ( j − 1). (i < j) (181.4)

where T is the total number of NBSV. It equals to four in this example. Besides, a
reverse index table S is maintained to track the index in the training date set such as
S = (128, 2, 59, 575).

Experiment and Result Analysis

Both KSMO2 algorithm and our improved algorithm were realized under P4
2.4GHz, Windows2000, VC++ 6.0 environment. In order to distinguish these two
algorithms, no other optimization methods have been applied. The data set pima-
indians-diabetes was chosen for analysis. During the analysis, the parameter σ 2 is
set to different values when C was fixed. In the improved algorithm, the size of
cache was set to 50,000 ∗ size (float) = 200, 000 Bytes. The comparison between
the improved algorithm and KSMO2 algorithm was as follows.

From the comparison in Table 181.1, we found that computing time in improved
algorithm was changing smoothly with the increase of C/σ 2 ratio. The computing

κ11 κ12 κ13 κ14 κ22 κ23 κ24 κ33 κ34 κ44 · · ·
Fig. 181.1 Flowchart corresponding to the inbound iteration of SMO algorithm
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Y

Y

Count=Count+1;
Freq[i1] = 1/ (Count-Cnt[i1]);
Freq[i2] = 1/ (Count-Cnt[i2]);
Cnt[i1] = Count; 
Cnt[i2] = Count;

0 < alph[i1] < C

Exist enough memory
to cache i 
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Remove(i), cache(i1)

Y
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N
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N

N

Check 
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Update Fi
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Check i2

Remove(i1) N

In Takestep(i1,i2), sub-problem can
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Fig. 181.2 One-dimensional cache structure

Table 181.1 Training time comparison (C = 500)

σ 2 10 20 30 40 50 60 70 80 90 100

Improved method/s 4.6 5.9 6.4 5.6 5.6 4.7 4.2 4.4 4.6 3.4
KSMO2/s 32.2 35.6 34.2 27.8 25.6 20.4 18.0 17.2 17.6 11.7

speed was 3–7 times higher than KSMO2. One-dimensional cache structure has
some advantages below:

1. To utilize the memory by the greatest degree;
2. The size of cache is not restrained. The training process will be speed up with

the growth of cache;
3. The cost of maintain work is almost zero in contrast.
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Conclusion

One-dimensional cache strategy is proposed to speed up Keerthi et al.’s improved
algorithm. Experiments have been conducted to show that the proposed method is
effective when C is larger than. Comparing with two-dimensional array, this cache
strategy has many advantages. Our future work is to extend this strategy to full
iteration and replace array with chained list.
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Schubö, A., 411
Serrano, J. I., 539
Shafer, J., 279
Shao, G., 897
Shao, S., 1053
Shechter, B., 13
Shen, E., 109
Shen, H., 863
Shen, X., 565
Shenquan, L., 103, 559
Shepherd, G. M., 279
Shi, H., 885
Shi, W., 67
Shibata, T., 451
Shikauchi, M., 451
Shima, K., 723
Shimizu, S., 735
Shimono, M., 71
Shirazi, N., 31
Shou, T., 181
Shuchun, C., 559
Sienko, W., 873
Sinclair, N. C., 617

Singh, N. C., 689, 690
Sleigh, J. W., 225
Smith, D., 565
Sohn, H., 813
Sokoloff, L., 327
Sommer, D., 705
Song, H. -J., 813
Song, Y. -S., 981
Steuber, V., 19, 20, 21
Steyn-Ross, D. A., 225
Steyn-Ross, M. L., 225
Stork, S., 411
Su, J., 77, 879
Suffczynski, P., 485
Sun, H., 921
Sun, W., 843
Sun, X. -J., 91

T
Tanaka, Tai, 735
Tanaka, Toshihisa, 837
Tang, L., 879
Tang, X., 685
Tang, Y., 685
Tanifuji, M., 71
Taya, F., 457
Taylor, J. G., 335, 351, 643
Thiele, A., 273
Tian, X., 237
Tian, Y., 857
Togashi, Y., 515
Tran, Q. -D. N., 981
Trappenberg, T., 187, 375
Treves, A., 125, 126
Tsuda, I., 43, 249
Tsuji, T., 723
Tsukada, M., 43, 369

U
Uchida, G., 71
Ungerleider, L., 393
Urban, I., 37
Usui, S., 679, 682

V
Vajda, I., 53
Valdés-Sosa, P. A., 443, 621
Valle, L. D., 903
Van der Pol, B., 423
van Pelt, J., 53, 673
Vega-Hernández, M., 621
Vencent, C. L., 609
Ventriglia, F., 193
Vesper, C., 411



Index 1069

Vialatte, F. B., 439
von der Malsburg, C., 175, 418

W
Wang, B. -H., 91
Wang, D., 361
Wang, H., 565
Wang, J., 1047
Wang, Jianjun, 1033
Wang, Jue, 83
Wang, L. -J., 793
Wang, Lin, 505
Wang, Lipo, 885
Wang, Q. -Y., 97, 299
Wang, R., 109, 213, 399
Wang, S. -M., 137
Wang, W., 23
Wang, X. -Y., 1059
Wang, X., 83
Wang, Y., 867
Wang, Y., 975
Wang, Z. -M., 1039
Wang, Z., 219
Washburn, E., 637
Wei, J. -H., 793
Wei, Z., 305
Welsh, J. P., 637
Weng, J., 67
Wermter, S., 59
Wiener, S. I., 285
Wiesbeck, M., 411
Wilson, M. T., 225
Wolters, P. S., 53
Woo, D. -M., 981
Woodruff-Pak, D. S., 903
Wright, J. J., 255, 259
Wu S., 197, 375
Wu, D., 501
Wu, J., 631
Wu, K. -G., 969
Wu, Q., 405
Wu, X. -P., 531
Wu, X., 381
Wyatt, J., 717

X
Xi, G., 939
Xia, B., 405
Xia, C., 867
Xia, M., 219
Xiao, H., 915
Xiao, R., 921, 922
Xiong, H., 857
Xiong, Z. -Y., 969

Xu, C., 843
Xu, F., 279
Xu, J., 83, 84, 88, 119
Xu, W., 1011
Xu, X., 897
Xu, Y., 821
Xu, Z. B., 1033
Xue, X., 67

Y
Yamaguchi, Y., 263, 429, 457
Yamaguti, Y., 43
Yamane, K., 231
Yamauchi, K., 515
Yan, J., 867
Yang, D., 927
Yang, I. -H., 587, 595
Yang, M., 821
Yang, S., 993
Yang, Y., 505, 603
Yang, Z. -X., 1039
Yang, Z., 631
Yao, D., 501, 857
Yao, H., 83
Yao, X., 717
Ye, C. -X., 969
Yi, Z., 993, 1019
Yin, G., 857
Yin, L., 685
Yin, Y., 849
Yoneyama, M., 43
Yu, A., 909
Yu, C., 545, 548
Yu, G., 1053
Yu, H., 315, 316
Yue, Z., 83
Yun, S. H., 799, 805

Z
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