Jonathan S. Golan

The Linear Algebra a Beginning Graduate Student Ought to Know

Third Edition

The Linear Algebra a Beginning Graduate Student Ought to Know

Jonathan S. Golan

The Linear Algebra a Beginning Graduate Student Ought to Know

Third Edition

Springer

Prof. Jonathan S. Golan
Dept. of Mathematics
University of Haifa
Haifa
Israel

ISBN 978-94-007-2635-2 e-ISBN 978-94-007-2636-9
DOI 10.1007/978-94-007-2636-9
Springer Dordrecht Heidelberg London New York
Library of Congress Control Number: 2012933373
Mathematics Subject Classification (2010): 15-XX, 16-XX, 17-XX, 65F30
© Springer Science+Business Media B.V. 2004, 2007, 2012
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Whilst we have made considerable efforts to contact all holders of copyright material contained in this book. We have failed to locate some of them. Should holders wish to contact the Publisher, we will make every effort to come to some arrangement with them.

Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)

To the memory of Hemda, my wife of over 40 years:

```
בטח בה לב בעלה ושלל לא יחסר (מ
(משלי, פרק ל"א)
```

And to my grandchildren: Shachar, Eitan, Sarel, Nachshon, Yarden, Itamar, Roni, and Naomi

תן לחכם ויחכם עוד

(משלי, פרק טי)

For Whom Is This Book Written?

Crow's Law: Do not think what you want to think until you know what you ought to know. ${ }^{1}$

Linear algebra is a living, active branch of mathematical research which is central to almost all other areas of mathematics and which has important applications in all branches of the physical and social sciences and in engineering. However, in recent years the content of linear algebra courses required to complete an undergraduate degree in mathematics-and even more so in other areas-at all but the most dedicated universities, has been depleted to the extent that it falls far short of what is in fact needed for graduate study and research or for real-world application. This is true not only in the areas of theoretical work but also in the areas of computational matrix theory, which are becoming more and more important to the working researcher as personal computers become a common and powerful tool. Students are not only less able to formulate or even follow mathematical proofs, they are also less able to understand the underlying mathematics of the numerical algorithms they must use. The resulting knowledge gap has led to frustration and recrimination on the part of both students and faculty alike, with each silently-and sometimes not so silently-blaming the other for the resulting state of affairs. This book is written with the intention of bridging that gap. It was designed be used in one or more of several possible ways:
(1) As a self-study guide;
(2) As a textbook for a course in advanced linear algebra, either at the upper-class undergraduate level or at the first-year graduate level; or
(3) As a reference book.

It is also designed to be used to prepare for the linear algebra portion of prelim exams or Ph.D. qualifying exams.

This volume is self-contained to the extent that it does not assume any previous knowledge of formal linear algebra, though the reader is assumed to have been exposed, at least informally, to some basic ideas or techniques, such as matrix manipulation and the solution of a small system of linear equations. It does, however,

[^0]assume a seriousness of purpose, considerable motivation, and modicum of mathematical sophistication on the part of the reader.

The theoretical constructions presented here are illustrated with a large number of examples taken from various areas of pure and applied mathematics. As in any area of mathematics, theory and concrete examples must go hand in hand and need to be studied together. As the German philosopher Immanuel Kant famously remarked, concepts without precepts are empty, whereas precepts without concepts are blind.

The book also contains a large number of exercises, many of which are quite challenging, which I have come across or thought up in over thirty years of teaching. Many of these exercises have appeared in print before, in such journals as American Mathematical Monthly, College Mathematics Journal, Mathematical Gazette, or Mathematics Magazine, in various mathematics competitions or circulated problem collections, or even on the internet. Some were donated to me by colleagues and even students, and some originated in files of old exams at various universities which I have visited in the course of my career. Since, over the years, I did not keep track of their sources, all I can do is offer a collective acknowledgement to all those to whom it is due. Good problem formulators, like the God of the abbot of Citeaux, know their own. Deliberately, difficult exercises are not marked with an asterisk or other symbol. Solving exercises is an integral part of learning mathematics and the reader is definitely expected to do so, especially when the book is used for selfstudy. Try them all and remember the "grook" penned by the Danish genius Piet Hein: Problems worthy of attack / Prove their worth by hitting back.

Solving a problem using theoretical mathematics is often very different from solving it computationally, and so strong emphasis is placed on the interplay of theoretical and computational results. Real-life implementation of theoretical results is perpetually plagued by errors: errors in modeling, errors in data acquisition and recording, and errors in the computational process itself due to roundoff and truncation. There are further constraints imposed by limitations in time and memory available for computation. Thus the most elegant theoretical solution to a problem may not lead to the most efficient or useful method of solution in practice. While no reference is made to particular computer software, the concurrent use of a personal computer equipped symbolic-manipulation software such as Maple, Mathematica, Matlab, or MuPad is definitely advised.

In order to show the "human face" of mathematics, the book also includes a large number of thumbnail photographs of researchers who have contributed to the development of the material presented in this volume.

Acknowledgements Most of the first edition this book was written while I was a visitor at the University of Iowa in Iowa City and at the University of California in Berkeley. I would like to thank both institutions for providing the facilities and, more importantly, the mathematical atmosphere which allowed me to concentrate on writing. Subsequent, extensively revised editions, were prepared after I retired from teaching at the University of Haifa in April, 2004.

I have talked to many students and faculty members about my plans for this book and have obtained valuable insights from them. In particular, I would like to acknowledge the aid of the following colleagues and students who were kind enough
to read the preliminary versions of this book and offer their comments and corrections: Prof. Daniel Anderson (University of Iowa), Prof. Adi Ben-Israel (Rutgers University), Prof. Robert Cacioppo (Truman State University), Prof. Joseph Felsenstein (University of Washington), Prof. Ryan Skip Garibaldi (Emory University), Mr. George Kirkup (University of California, Berkeley), Dr. Denis Sevee (John Albert College), Prof. Earl Taft (Rutgers University), Mr. Gil Vernik (University of Haifa).

Haifa, Israel
Jonathan S. Golan

Contents

1 Notation and Terminology 1
2 Fields 5
3 Vector Spaces Over a Field 21
4 Algebras Over a Field 39
5 Linear Independence and Dimension 57
6 Linear Transformations 89
7 The Endomorphism Algebra of a Vector Space 113
8 Representation of Linear Transformations by Matrices 133
9 The Algebra of Square Matrices 147
10 Systems of Linear Equations 189
11 Determinants 221
12 Eigenvalues and Eigenvectors 255
13 Krylov Subspaces 297
14 The Dual Space 317
15 Inner Product Spaces 333
16 Orthogonality 369
17 Selfadjoint Endomorphisms 395
18 Unitary and Normal Endomorphisms 419
19 Moore-Penrose Pseudoinverses 441
20 Bilinear Transformations and Forms 453
Appendix A Summary of Notation 479
Appendix B Index to Thumbnail Photos 481
Index 489

Notation and Terminology

Sets will be denoted by braces, $\{$ \}, between which we will either list the elements of the set or give a rule for determining whether something is an element of the set or not, ${ }^{1}$ as in $\{x \mid p(x)\}$, which is read "the set of all x such that $p(x)$ ". If a is an element of a set A, we write $a \in A$; if it is not an element of A, we write $a \notin A$. When one enumerates the elements of a set, the order is not important. Thus $\{1,2,3,4\}$ and $\{4,1,3,2\}$ both denote the same set. However, we often do wish to impose an order on sets the elements of which we enumerate. Rather than introduce new and cumbersome notation to handle this, we will make the convention that when we enumerate the elements of a finite or countably-infinite set, we will assume an implied order, reading from left to right. Thus, the implied order on the set $\{1,2,3, \ldots\}$ is indeed the usual one, whereas $\{4,1,3,2\}$ gives the first four positive integers, ordered alphabetically. The empty set, namely the set having no elements, is denoted by \varnothing. Sometimes we will use the word "collection" as a synonym for "set", generally to avoid talking about "sets of sets".

A finite or countably-infinite selection of elements of a set A is a list. Members of a list are assumed to be in a definite order, given by their indices or by the implied order of reading from left to right. Lists are usually written without brackets: a_{1}, \ldots, a_{n}, though, in certain contexts, it will be more convenient to write them as ordered n-tuples $\left(a_{1}, \ldots, a_{n}\right)$. Note that the elements of a list need not be distinct: $3,1,4,1,5,9$ is a list of six positive integers, the second and fourth elements of which are equal to 1 . A countably-infinite list of elements of a set A is also often called a sequence of elements of A. The set of all distinct members of a list is called the underlying subset of the list.

If A and B are sets, then their union $A \cup B$ is the set of all elements that belong to either A or B, and their intersection $A \cap B$ is the set of all elements belonging both to A and to B. More generally, if $\left\{A_{i} \mid i \in \Omega\right\}$ is a (possibly-infinite) collection of

[^1]sets, then $\bigcup_{i \in \Omega} A_{i}$ is the set of all elements that belong to at least one of the A_{i} and $\bigcap_{i \in \Omega} A_{i}$ is the set of all elements that belong to all of the A_{i}. If A and B are sets, then the difference set $A \backslash B$ is the set of all elements of A which do not belong to B.

A function f from a nonempty set A to a nonempty set B is a rule which assigns to each element a of A a unique element $f(a)$ of B. The set A is called the domain of the function and the set B is called the range of the function. To denote that f is a function from A to B, we write $f: A \rightarrow B$. To denote that an element b of B is assigned to an element a of A by f, we write $f: a \mapsto b$. (Note the different form of the arrow!) This notation is particularly helpful in the case that the function f is defined by a formula. Thus, for example, if f is a function from the set of integers to the set of integers defined by $f: a \mapsto a^{3}$, then we know that f assigns to each integer its cube. The set of all functions from a nonempty set A to a nonempty set B is denoted by B^{A}. If $f \in B^{A}$ and if A^{\prime} is a nonempty subset of A, then a function $f^{\prime} \in B^{A^{\prime}}$ is the restriction of f to A^{\prime}, and f is the extension of f^{\prime} to A, if and only if $f^{\prime}: a^{\prime} \mapsto f\left(a^{\prime}\right)$ for all $a^{\prime} \in A^{\prime}$.

Functions f and g in B^{A} are equal if and only if $f(a)=g(a)$ for all $a \in A$. In this case, we write $f=g$. A function $f \in B^{A}$ is monic if and only if it assigns different elements of B to different elements of A, i.e., if and only if $f\left(a_{1}\right) \neq f\left(a_{2}\right)$ whenever $a_{1} \neq a_{2}$ in A. A function $f \in B^{A}$ is epic if and only if every element of B is assigned by f to some element of A. A function which is both monic and epic is bijective. A bijective function from a set A to a set B determines a bijective correspondence between the elements of A and the elements of B. If $f: A \rightarrow B$ is a bijective function, then we can define the inverse function $f^{-1}: B \rightarrow A$ defined by the condition that $f^{-1}(b)=a$ if and only if $f(a)=b$. This inverse function is also bijective. A bijective function from a set A to itself is a permutation of A. Note that there is always at least one permutation of any nonempty set A, namely the identity function $a \mapsto a$.

The Cartesian product $A_{1} \times A_{2}$ of nonempty sets A_{1} and A_{2} is the set of all ordered pairs $\left(a_{1}, a_{2}\right)$, where $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$. More generally, if A_{1}, \ldots, A_{n} is a list of nonempty sets, then $A_{1} \times \cdots \times A_{n}$ is the set of all ordered n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ satisfying the condition that $a_{i} \in A_{i}$ for each $1 \leq i \leq n$. Note that each ordered n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ uniquely defines a function $f:\{1, \ldots, n\} \rightarrow \bigcup_{i=1}^{n} A_{i}$ given by $f: i \mapsto a_{i}$ for each $1 \leq i \leq n$. Conversely, each function $f:\{1, \ldots, n\} \rightarrow$ $\bigcup_{i=1}^{n} A_{i}$ satisfying the condition that $f(i) \in A_{i}$ for $1 \leq i \leq n$ defines such an ordered n-tuple, namely $(f(1), \ldots, f(n))$. This suggests a method for defining the Cartesian product of an arbitrary collection of nonempty sets. If $\left\{A_{i} \mid i \in \Omega\right\}$ is an arbitrary collection of nonempty sets, then the set $\prod_{i \in \Omega} A_{i}$ is defined to be the set of all those functions f from Ω to $\bigcup_{i \in \Omega} A_{i}$ satisfying the condition that $f(i) \in A_{i}$ for each $i \in \Omega$. The existence of such functions is guaranteed by a fundamental axiom of set theory, known as the Axiom of Choice. A certain amount of controversy surrounds this axiom, since it leads to some very counter-intuitive results. Thus, for example, in 1924 Polish mathematicians Stefan Banach and Alfred Tarski showed that if the Axiom of Choice is assumed then any solid sphere can be split into finitely-many pieces which can be reassembled to form two solid spheres of the
same size as the original sphere. Therefore, there are mathematicians who prefer to make as little use of the Axiom of Choice as possible. In 1963, American mathematician P. J. Cohen showed that the Axiom of Choice is independent of the other axioms of Zermelo-Fraenkel set theory, and so one is-in principle-free to either assume it or its negation. Since we will need this axiom constantly throughout this book, we will always assume that it holds.

In the foregoing construction, we did not assume that the sets A_{i} were necessarily distinct. Indeed, it may very well happen that there exists a set A such that $A_{i}=A$ for all $i \in \Omega$. In that case, we see that $\prod_{i \in \Omega} A_{i}$ is just A^{Ω}. If the set Ω is finite, say $\Omega=\{1, \ldots, n\}$, then we write A^{n} instead of A^{Ω}. Thus, A^{n} is just the set of all ordered n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ of elements of A.

Example The function $f_{2}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ given by

$$
f_{2}:(i, j) \mapsto \frac{1}{2}\left(i^{2}+j^{2}+i+2 i j+3 j\right)
$$

is bijective. For $k>2$ we can define a bijective function $f_{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ inductively by

$$
f_{k}:\left(i_{1}, \ldots, i_{k}\right) \mapsto f_{2}\left(i_{1}, f_{k-1}\left(i_{2}, \ldots, i_{k}\right)\right)
$$

We use the following standard notation for some common sets of numbers:
\mathbb{N} the set of all nonnegative integers,
\mathbb{Z} the set of all integers,
\mathbb{Q} the set of all rational numbers,
\mathbb{R} the set of all real numbers,
\mathbb{C} the set of all complex numbers.
Other notion is introduced throughout the text, as is appropriate. See the Summary of Notation in Appendix A of the book.

Fields

2

The way of mathematical thought is twofold: the mathematician first proceeds inductively from the particular to the general and then deductively from the general to the particular. Moreover, throughout its development, mathematics has shown two aspects-the conceptual and the computational-the symphonic interleaving of which forms one of the major aspects of the subject's aesthetic.

Let us therefore begin with the first mathematical structure-numbers. By the Hellenistic times, mathematicians distinguished between two types of numbers: the rational numbers, namely those which could be written in the form $\frac{m}{n}$ for some integer m and some positive integer n, and those numbers representing the geometric magnitude of segments of the line, which today we call real numbers and which, in decimal notation, are written in the form $m \cdot k_{1} k_{2} k_{3} \ldots$ where m is an integer and the k_{i} are digits. The fact that the set \mathbb{Q} of rational numbers is not equal to the set \mathbb{R} of real numbers was already noticed by the followers of the early Greek mathematician/mystic Pythagoras. On both sets of numbers we define operations of addition and multiplication which satisfy certain rules of manipulation. Isolating these rules as part of a formal system was a task first taken on in earnest by nineteenth-century British and German mathematicians. From their studies evolved the notion of a field, which will be basic to our considerations. However, since fields are not our primary object of study, we will delve only minimally into this fascinating notion. A serious consideration of field theory must be deferred to an advanced course in abstract algebra.

A nonempty set F together with two functions $F \times F \rightarrow F$, respectively called addition (as usual, denoted by +) and multiplication (as usual, denoted by \cdot or by concatenation), is a field if the following conditions are satisfied:
(1) (associativity of addition and multiplication): $a+(b+c)=(a+b)+c$ and $a(b c)=(a b) c$ for all $a, b, c \in F$.
(2) (commutativity of addition and multiplication): $a+b=b+a$ and $a b=b a$ for all $a, b \in F$.
(3) (distributivity of multiplication over addition): $a(b+c)=a b+a c$ for all $a, b, c \in F$.
(4) (existence of identity elements for addition and multiplication): There exist distinct elements of F, which we will denote by 0 and 1 respectively, satisfying $a+0=a$ and $a 1=a$ for all $a \in F$.
(5) (existence of additive inverses): For each $a \in F$ there exists an element of F, which we will denote by $-a$, satisfying $a+(-a)=0$.
(6) (existence of multiplicative inverses): For each $0 \neq a \in F$ there exists an element of F, which we will denote by a^{-1}, satisfying $a^{-1} a=1$.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Weber, Dedekind, Kronecker and Steinitz).
The development of the abstract theory of fields is generally credited to the nineteenthcentury German mathematician Heinrich Weber, based on earlier work by the German mathematicians Richard Dedekind and Leopold Kronecker. Another nineteenth-century mathematician, the British Augustus De Morgan, was among the first-along with French mathematician François Joseph Servois-to isolate the importance of such properties as associativity, distributivity, and so forth. The final axioms of a field are due to the twentiethcentury German mathematician Ernst Steinitz.

Note that we did not assume that the elements $-a$ and a^{-1} are unique, though we will soon prove that in fact they are. If a and b are elements of a field F, we will follow the usual conventions by writing $a-b$ instead of $a+(-b)$ and $\frac{a}{b}$ instead of $a b^{-1}$. Moreover, if $0 \neq a \in F$ and if n is a positive integer, then $n a$ denotes the sum $a+\cdots+a$ (n summands) and a^{n} denotes the product $a \cdots a$ (n factors). If n is a negative integer, then $n a$ denotes $(-n)(-a)$ and a^{n} denotes $\left(a^{-1}\right)^{-n}$. Finally, if $n=0$ then $n a$ denotes the field element 0 and a^{n} denotes the field element 1 . For $0=a \in F$, we define $n a=0$ for all integers n and $a^{n}=0$ for all positive integers n. The symbol 0^{k} is not defined for $k \leq 0$.

As an immediate consequence of the associativity and commutativity of addition, we see that the sum of any list a_{1}, \ldots, a_{n} of elements of a field F is the same, no matter in which order we add them. We can therefore unambiguously write $a_{1}+\cdots+a_{n}$. This sum is also often denoted by $\sum_{i=1}^{n} a_{i}$. Similarly, the product of these elements is the same, no matter in which order we multiply them. We can therefore unambiguously write $a_{1} \cdots a_{n}$. This product is also often denoted by $\prod_{i=1}^{n} a_{i}$. Also, a simple inductive argument shows that multiplication distributes over arbitrary sums: if $a \in F$ and b_{1}, \ldots, b_{n} is a list of elements of F then $a\left(\sum_{i=1}^{n} b_{i}\right)=\sum_{i=1}^{n} a b_{i}$.

We easily see that \mathbb{Q} and \mathbb{R}, with the usual addition and multiplication, are fields.
A subset G of a field F is a subfield if and only if it contains 0 and 1 , is closed under addition and multiplication, and contains the additive and multiplicative inverses of all of its nonzero elements. Thus, for example, \mathbb{Q} is a subfield of \mathbb{R}. It is
easy to verify ${ }^{1}$ that the intersection of a collection of subfields of a field F is again a subfield of F.

We now want to look at several additional important examples of fields.
Example Let $\mathbb{C}=\mathbb{R}^{2}$ and define operations of addition and multiplication on \mathbb{C} by setting $(a, b)+(c, d)=(a+c, b+d)$ and $(a, b) \cdot(c, d)=(a c-b d, a d+b c)$. These operations define the structure of a field on \mathbb{C}, in which the identity element for addition is $(0,0)$, the identity element for multiplication is $(1,0)$, the additive inverse of (a, b) is $(-a,-b)$, and

$$
(a, b)^{-1}=\left(\frac{a}{a^{2}+b^{2}}, \frac{-b}{a^{2}+b^{2}}\right)
$$

for all $(0,0) \neq(a, b)$. This field is called the field of complex numbers. The set of all elements of \mathbb{C} of the form $(a, 0)$ forms a subfield of \mathbb{C}, which we normally identify with \mathbb{R} and therefore it is standard to consider \mathbb{R} as a subfield of \mathbb{C}. In particular, we write a instead of $(a, 0)$ for any real number a. The element $(0,1)$ of \mathbb{C} is denoted by i. This element satisfies the condition that $i^{2}=(-1,0)$ and so it is often written as $\sqrt{-1}$. We also note that any element (a, b) of \mathbb{C} can be written as $(a, 0)+b(0,1)=a+b i$, and, indeed, that is the way complex numbers are usually written and how we will denote them from now on. If $z=a+b i$, then a is the real part of z, which is often denoted by $\operatorname{Re}(z)$, while bi is the imaginary part of z, which is often denoted by $\operatorname{Im}(z)$. The field of complex numbers is extremely important in mathematics. From a geometric point of view, if we identify \mathbb{R} with the set of points on the Euclidean line, as one does in analytic geometry, then it is natural to identify \mathbb{C} with the set of points in the Euclidean plane.

With kind permission of the Harvard Arts Museum (Descartes); With kind permission of ETH-Bibliothek Zurich, Image Archive (Euler); With kind permission of Bibliothèque nationale de France (Argand).
The term "imaginary" was coined by the seventeenth-century French philosopher and mathematician René Descartes. The use of i to denote $\sqrt{-1}$ was introduced by the eighteenthcentury Swiss mathematician Leonhard Euler. The geometric representation of the complex numbers was first proposed at the end of the eighteenth century by the Norwegian surveyor Caspar Wessel, and later by the French accountant Jean-Robert Argand. It was studied in detail by the nineteenth-century Italian mathematician Giusto Bellavitis.

[^2]If $z=a+b i \in \mathbb{C}$ then we denote the complex number $a-b i$, called the complex conjugate of z, by \bar{z}. It is easy to see that for all $z, z^{\prime} \in \mathbb{C}$ we have $\overline{z+z^{\prime}}=\bar{z}+\overline{z^{\prime}}$ e, $\overline{-z}=-\bar{z}, \overline{z z^{\prime}}=\bar{z} \cdot \overline{z^{\prime}}, \overline{z^{-1}}=(\bar{z})^{-1}$, and $\overline{\bar{z}}=z$. The number $z \bar{z}$ equals $a^{2}+b^{2}$, which is a nonnegative real number and so has a square root in \mathbb{R}, which we will denote by $|z|$. Note that $|z|$ is nonzero whenever $z \neq 0$. From a geometric point of view, this number is just the distance from the number z, considered as a point in the Euclidean plane, to the origin, just as the usual absolute value $|a|$ of a real number a is the distance between a and 0 on the real line. It is easy to see that if y and z are complex numbers then $|y z|=|y| \cdot|z|$ and $|y+z| \leq|y|+|z|$. Moreover, if $z=a+b i$ then

$$
z+\bar{z}=2 a \leq 2|a|=2 \sqrt{a^{2}} \leq 2 \sqrt{a^{2}+b^{2}}=2|z| .
$$

We also note, as a direct consequence of the definition, that $|z|=|\bar{z}|$ for every complex number z and so $z^{-1}=|z|^{-2} \bar{z}$ for all $0 \neq z \in \mathbb{C}$. In particular, if $|z|=1$ then $z^{-1}=\bar{z}$.

Example The set \mathbb{Q}^{2} is a subfield of the field \mathbb{C} defined above. However, it is also possible to define field structures on \mathbb{Q}^{2} in other ways. Indeed, let $F=\mathbb{Q}^{2}$ and let p be a fixed prime integer. Define addition and multiplication on F by setting $(a, b)+(c, d)=(a+c, b+d)$ and $(a, b) \cdot(c, d)=(a c+b d p, a d+b c)$.

Again, one can check that F is indeed a field and that, again, the set of all elements of F of the form $(a, 0)$ is a subfield, which we will identify with \mathbb{Q}. Moreover, the additive inverse of $(a, b) \in F$ is $(-a,-b)$ and the multiplicative inverse of $(0,0) \neq(a, b) \in F$ is

$$
\left(\frac{a}{a^{2}-p b^{2}}, \frac{-b}{a^{2}-p b^{2}}\right) .
$$

(We note that $a^{2}-p b^{2}$ is the product of the nonzero real numbers $a+b \sqrt{p}$ and $a-$ $b \sqrt{p}$ and so is nonzero.) The element $(0,1)$ of F satisfies $(0,1)^{2}=(p, 0)$ and so one usually denotes it by \sqrt{p} and, as before, any element of F can be written in the form $a+b \sqrt{p}$, where $a, b \in \mathbb{Q}$. The field F is usually denoted by $\mathbb{Q}(\sqrt{p})$. Since there are infinitely-many distinct prime integers, we see that there are infinitely-many ways of defining different field structures on $\mathbb{Q} \times \mathbb{Q}$, all having the same addition.

Example Fields do not have to be infinite. Let p be a positive integer and let $\mathbb{Z} /(p)=\{0,1, \ldots, p-1\}$. For each nonnegative integer n, let us, for the purposes of this example, denote the remainder after dividing n by p as $[n]_{p}$. Thus we note that $[n]_{p} \in \mathbb{Z} /(p)$ for each nonnegative integer n and that $[i]_{p}=i$ for all $i \in \mathbb{Z} /(p)$. We now define operations on $\mathbb{Z} /(p)$ by setting $[n]_{p}+[k]_{p}=[n+k]_{p}$ and $[n]_{p} \cdot[k]_{p}=[n k]_{p}$. It is easy to check that if the integer p is prime then $\mathbb{Z} /(p)$, together with these two operations, is again a field, known as the Galois field of order p. This field is usually denoted by $\operatorname{GF}(p)$. While Galois fields were first considered mathematical curiosities, they have since found important applications in coding theory, cryptography, and modeling of computer processes.

These are not the only possible finite fields. Indeed, it is possible to show that for each prime integer p and each positive integer n there exists an (essentially unique) field with p^{n} elements, usually denoted by $\operatorname{GF}\left(p^{n}\right)$.

Example Some important structures are "very nearly" fields. For example, let $\mathbb{R}_{\infty}=\mathbb{R} \cup\{\infty\}$, and define operations \boxplus and \square on \mathbb{R}_{∞} by setting

$$
a \boxplus b= \begin{cases}\min \{a, b\} & \text { if } a, b \in \mathbb{R}, \\ b & \text { if } a=\infty, \\ a & \text { if } b=\infty,\end{cases}
$$

and

$$
a \boxtimes b= \begin{cases}a+b & \text { if } a, b \in \mathbb{R}, \\ \infty & \text { otherwise }\end{cases}
$$

This structure, called the optimization algebra, satisfies all of the conditions of a field except for the existence of additive inverses (such structures are known as semifields). As the name suggests, it has important applications in optimization theory and the analysis of discrete-event dynamical systems. There are several other semifields which have significant applications and which have been extensively studied.

Another possibility of generalizing the notion of a field is to consider an algebraic structure which satisfies all of the conditions of a field except for the existence of multiplicative inverses, and to replace that condition by the condition that if $a, b \neq 0$ then $a b \neq 0$. Such structures are known as integral domains. The set \mathbb{Z} of all integers is the simplest example of an integral domain which is not a field. Algebras of polynomials over a field, which we will consider later, are also integral domains. In a course in abstract algebra, one proves that any integral domain can be embedded in a field.

In the field $\mathrm{GF}(p)$ which we defined above, one can easily see that the sum $1+\cdots+1$ (p summands) equals 0 . On the other hand, in the field \mathbb{Q}, the sum of any number of copies of 1 is always nonzero. This is an important distinction which we will need to take into account in dealing with structures over fields. We therefore define the characteristic of a field F to be equal to the smallest positive integer p such that $1+\cdots+1$ (p summands) equals 0 -if such an integer p exists-and to be
equal to 0 otherwise. We will not delve deeply into this concept, which is dealt with in courses on field theory, except to note that the characteristic of a field, if nonzero, always turns out to be a prime number, as we shall prove below.

In the definition of a field, we posited the existence of distinct identity elements for addition and multiplication, but did not claim that these elements were unique. It is, however, very easy to prove that fact.

Proposition 2.1 Let F be a field.
(1) If e is an element of F satisfying $e+a=a$ for all $a \in F$ then $e=0$;
(2) If u is an element of F satisfying $u a=a$ for all $a \in F$ then $u=1$.

Proof By definition, $e=e+0=0$ and $u=u 1=1$.

Similarly, we prove that additive and multiplicative inverses, when they exist, are unique. Indeed, we can prove a stronger result.

Proposition 2.2 If a and b are elements of a field F then:
(1) There exists a unique element c of F satisfying $a+c=b$.
(2) If $a \neq 0$ then there exists a unique element d of F satisfying $a d=b$.

Proof (1) Choose $c=b-a$. Then

$$
\begin{aligned}
a+c & =a+(b-a)=a+[b+(-a)] \\
& =a+[(-a)+b]=[a+(-a)]+b=0+b=b .
\end{aligned}
$$

Moreover, if $a+x=b$ then

$$
\begin{aligned}
x & =0+x=[(-a)+a]+x \\
& =(-a)+(a+x)=(-a)+b=b-a,
\end{aligned}
$$

proving uniqueness.
(2) Choose $d=a^{-1} b$. Then $a d=a\left(a^{-1} b\right)=\left(a a^{-1}\right) b=1 b=b$. Moreover, if $a y=b$ then $y=1 y=\left(a^{-1} a\right) y=a^{-1}(a y)=a^{-1} b$, proving uniqueness.

We now summarize some of the elementary properties of fields, which are all we will need for our discussion.

Proposition 2.3 If a, b, and c are elements of a field F then:
(1) $0 a=0$;
(2) $(-1) a=-a$;
(3) $a(-b)=-(a b)=(-a) b$;
(4) $-(-a)=a$;
(5) $(-a)(-b)=a b$;
(6) $-(a+b)=(-a)+(-b)$;
(7) $a(b-c)=a b-a c$;
(8) If $a \neq 0$ then $\left(a^{-1}\right)^{-1}=a$;
(9) If $a, b \neq 0$ then $(a b)^{-1}=b^{-1} a^{-1}$;
(10) If $a+c=b+c$ then $a=b$;
(11) If $c \neq 0$ and $a c=b c$ then $a=b$;
(12) If $a b=0$ then $a=b$ or $b=0$.

Proof (1) Since $0 a+0 a=(0+0) a=0 a$, we can add $-(0 a)$ to both sides of the equation to obtain $0 a=0$.
(2) Since $(-1) a+a=(-1) a+1 a=[(-1)+1] a=0 a=0$ and also ($-a$) + $a=0$, we see from Proposition 2.2 that $(-1) a=-a$.
(3) By (2) we have $a(-b)=a[(-1) b]=(-1) a b=-(a b)$ and similarly $(-a) b=-(a b)$.
(4) Since $a+(-a)=0=-(-a)+(-a)$, this follows from Proposition 2.2.
(5) From (3) and (4) it follows that $(-a)(-b)=a[-(-b)]=a b$.
(6) Since $(a+b)+[(-a)+(-b)]=a+b+(-a)+(-b)=0$ and $(a+b)+$ $[-(a+b)]=0$, the result follows from Proposition 2.2.
(7) By (3) we have $a(b-c)=a b+a(-c)=a b+[-(a c)]=a b-a c$.
(8) Since $\left(a^{-1}\right)^{-1} a^{-1}=1=a a^{-1}$, this follows from Proposition 2.2.
(9) Since $\left(a^{-1} b^{-1}\right)(b a)=a^{-1} a b^{-1} b=1=(a b)^{-1}(b a)$, the result follows from Proposition 2.2.
(10) This is an immediate consequence of adding $-c$ to both sides of the equation.
(11) This is an immediate consequence of multiplying both sides of the equation by c^{-1}.
(12) If $b=0$ we are done. If $b \neq 0$ then by (1) it follows that multiplying both sides of the equation by b^{-1} will yield $a=0$.

The following two propositions are immediate consequences of Proposition 2.3.

Proposition 2.4 Let a be a nonzero element of a finite field F having q elements. Then $a^{-1}=a^{q-2}$.

Proof If $q=2$ then $F=\mathrm{GF}(2)$ and $a=1$, so the result is immediate. Hence we can assume $q>2$. Let $B=\left\{a_{1}, \ldots, a_{q-1}\right\}$ be the nonzero elements of F, written in some arbitrary order. Then $a a_{i} \neq a a_{h}$ for $i \neq h$ since, were they equal,
we would have $a_{i}=a^{-1}\left(a a_{i}\right)=a^{-1}\left(a a_{h}\right)=a_{h}$. Therefore $B=\left\{a a_{1}, \ldots, a a_{q-1}\right\}$ and so $\prod_{i=1}^{q-1} a_{i}=\prod_{i=1}^{q-1}\left(a a_{i}\right)=a^{q-1}\left[\prod_{i=1}^{q-1} a_{i}\right]$. Moreover, this is a product of nonzero elements of F and so, by Proposition 2.3(12), is also nonzero. Therefore, by Proposition $2.3(11), 1=a^{q-1}$, and so $a a^{-1}=1=a^{q-1}=a\left(a^{q-2}\right)$, implying that $a^{-1}=a^{q-2}$.

Proposition 2.5 If F is a field having characteristic $p>0$, then p is prime.

Proof Assume that p is not prime. Then $p=h k$, where $0<h, k<p$. Therefore, $a=h 1_{F}$ and $b=k 1_{F}$ are nonzero elements of F. But $a b=(h k) 1_{F}=p 1_{F}=0$, contradicting Proposition 2.3(12).

Of course, one can use Proposition 2.3 to prove many other identities among elements of a field. A typical example is the following

Proposition 2.6 (Hua's identity) If a and b are nonzero elements of a field F satisfying $a \neq b^{-1}$ then

$$
a-a b a=\left(a^{-1}+\left[b^{-1}-a\right]^{-1}\right)^{-1} .
$$

Proof We note that

$$
\begin{aligned}
a^{-1}+\left(b^{-1}-a\right)^{-1} & =a^{-1}\left[\left(b^{-1}-a\right)+a\right]\left(b^{-1}-a\right)^{-1} \\
& =a^{-1} b^{-1}\left(b^{-1}-a\right)^{-1},
\end{aligned}
$$

so $\left(a^{-1}+\left[b^{-1}-a\right]^{-1}\right)^{-1}=\left(b^{-1}-a\right) b a=a-a b a$.

Exercises

Exercise 1
Let F be a field and let $G=F \times F$. Define operations of addition and multiplication on G by setting $(a, b)+(c, d)=(a+c, b+d)$ and $(a, b) \cdot(c, d)=(a c, b d)$. Do these operations define the structure of a field on G ?

Exercise 2

Let K be the set of the following four-tuples of elements of $\mathrm{GF}(3)$:

$$
\begin{aligned}
& (0,0,0,0),(1,2,1,1),(2,1,2,2),(1,0,0,1),(2,2,1,2), \\
& (2,0,0,2),(0,1,2,0),(0,2,1,0),(1,1,2,1)
\end{aligned}
$$

Define operations of addition and multiplication on K so that it becomes a field.

Exercise 3

Let $r \in \mathbb{R}$ and let $0 \neq s \in \mathbb{R}$. Define operations \boxplus and \square on $\mathbb{R} \times \mathbb{R}$ by $(a, b) \boxplus$ $(c, d)=(a+c, b+d)$ and $(a, b) \bullet(c, d)=\left(a c-b d\left(r^{2}+s^{2}\right), a d+b c+2 r b d\right)$. Do these operations, considered as addition and multiplication, respectively, define the structure of a field on $\mathbb{R} \times \mathbb{R}$?

Exercise 4

Define a new operation \dagger on \mathbb{R} by setting $a \dagger b=a^{3} b$. Show that \mathbb{R}, on which we have the usual addition and this new operation as multiplication, satisfies all of the axioms of a field with the exception of one.

Exercise 5

Let $1<t \in \mathbb{R}$ and let $F=\{a \in \mathbb{R} \mid a<1\}$. Define operations \oplus and \odot on F as follows:
(1) $a \oplus b=a+b-a b$ for all $a, b \in F$;
(2) $a \odot b=1-t^{\log _{t}(1-a) \log _{t}(1-b)}$ for all $a, b \in F$.

For which values of t does F, together with these operations, form a field?

Exercise 6

Show that the set of all real numbers of the form $a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}$, where $a, b, c, d \in \mathbb{Q}$, forms a subfield of \mathbb{R}.

Exercise 7

Is $\{a+b \sqrt{15} \mid a, b \in \mathbb{Q}\}$ a subfield of \mathbb{R} ?

Exercise 8

Show that the field \mathbb{R} has infinitely-many distinct subfields.

Exercise 9

Let F be a field and define a new operation $*$ on F by setting $a * b=a+b+a b$. When is $(F,+, *)$ a field?

Exercise 10

Let F be a field and let G_{n} be the subset of F consisting of all elements which can be written as a sum of n squares of elements of F.
(1) Is the product of two elements of G_{2} again an element of G_{2} ?
(2) Is the product of two elements of G_{4} again an element of G_{4} ?

Exercise 11

Let $t=\sqrt[3]{2} \in \mathbb{R}$ and let S be the set of all real numbers of the form $a+b t+c t^{2}$, where $a, b, c \in \mathbb{Q}$. Is S a subfield of \mathbb{R} ?

Exercise 12

Let F be a field. Show that the function $a \mapsto a^{-1}$ is a permutation of $F \backslash\left\{0_{F}\right\}$.

Exercise 13

Show that every $z \in \mathbb{C}$ satisfies

$$
z^{4}+4=(z-1-i)(z-i+i)(z+1+i)(z+1-i) .
$$

Exercise 14

In each of the following, find the set of all complex numbers $z=a+b i$ satisfying the given relation. Note that this set may be empty or may be all of \mathbb{C}. Justify your result in each case.
(a) $z^{2}=\frac{1}{2}(1+i \sqrt{3})$;
(b) $(\sqrt{2})|z| \geq|a|+|b|$;
(c) $|z|+z=2+i$;
(d) $z^{4}=2-(\sqrt{12}) i$;
(e) $z^{4}=-4$.

Exercise 15

Let y be a complex number satisfying $|y|<1$. Find the set of all complex numbers z satisfying $|z-y| \leq|1-\bar{y} z|$.

Exercise 16

Let z_{1}, z_{2}, and z_{3} be complex numbers satisfying the condition that $\left|z_{i}\right|=1$ for $i=1,2,3$. Show that $\left|z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}\right|=\left|z_{1}+z_{2}+z_{3}\right|$.

Exercise 17

For any $z_{1}, z_{2} \in \mathbb{C}$, show that $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-z_{1} \overline{z_{2}}-\overline{z_{1}} z_{2}=\left|z_{1}-z_{2}\right|^{2}$.

Exercise 18

Show that $|z+1| \leq|z+1|^{2}+|z|$ for all $z \in \mathbb{C}$.

Exercise 19

If $z \in \mathbb{C}$, find $w \in \mathbb{C}$ satisfying $w^{2}=z$.

Exercise 20

Define new operations \circ and \diamond on \mathbb{C} by setting $y \circ z=|y| z$ and

$$
y \diamond z= \begin{cases}0 & \text { if } y=0 \\ \frac{1}{|y|} y z & \text { otherwise }\end{cases}
$$

for all $y, z \in \mathbb{C}$. Is it true that $w \diamond(y \circ z)=(w \diamond y) \circ(w \diamond z)$ and $w \circ(y \diamond z)=$ $(w \circ y) \diamond(w \circ z)$ for all $w, y, z \in \mathbb{C}$?

Exercise 21

Let $0 \neq z \in \mathbb{C}$. Show that there are infinitely-many complex numbers y satisfying the condition $y \bar{y}=z \bar{z}$.

Exercise 22

(Abel's inequality) Let z_{1}, \ldots, z_{n} be a list of complex numbers and, for each $1 \leq k \leq n$, let $s_{k}=\sum_{i=1}^{k} z_{i}$. For real numbers a_{1}, \ldots, a_{n} satisfying $a_{1} \geq a_{2} \geq$ $\cdots \geq a_{n} \geq 0$, show that $\left|\sum_{i=1}^{n} a_{i} z_{i}\right| \leq a_{1}\left(\max _{1 \leq k \leq n}\left|s_{k}\right|\right)$.

Exercise 23

Let $0 \neq z_{0} \in \mathbb{C}$ satisfy the condition $\left|z_{0}\right|<2$. Show that there are precisely two complex numbers, z_{1} and z_{2}, satisfying $\left|z_{1}\right|+\left|z_{2}\right|=1$ and $z_{1}+z_{2}=z_{0}$.

Exercise 24

If p is a prime positive integer, find all subfields of $\mathrm{GF}(p)$.

Exercise 25
Find 10^{-1} in GF(33).

Exercise 26

Find elements $c, d \neq \pm 1$ in the field $\mathbb{Q}(\sqrt{5})$ satisfying $c d=19$.

Exercise 27

Let F be the set of all real numbers of the form

$$
a+b(\sqrt[3]{5})+c(\sqrt[3]{5})^{2}
$$

where $a, b, c \in \mathbb{Q}$. Is F a subfield of \mathbb{R} ?

Exercise 28

Let p be a prime positive integer and let $a \in \operatorname{GF}(p)$. Does there necessarily exist an element b of $\operatorname{GF}(p)$ satisfying $b^{2}=a$?

Exercise 29

Let $F=\mathrm{GF}(11)$ and let $G=F \times F$. Define operations of addition and multiplication on G by setting $(a, b)+(c, d)=(a+c, b+d)$ and $(a, b) \cdot(c, d)=$ $(a c+7 b d, a d+b c)$. Do these operations define the structure of a field on G ?

Exercise 30

Let F be a field and let G be a finite subset of $F \backslash\{0\}$ containing 1 and satisfying the condition that if $a, b \in F$ then $a b^{-1} \in G$. Show that there exists an element $c \in G$ such that $G=\left\{c^{i} \mid i \geq 0\right\}$.

Exercise 31

Let F be a field satisfying the condition that the function $a \mapsto a^{2}$ is a permutation of F. What is the characteristic of F ?

Exercise 32

Is $\mathbb{Z} /(6)$ an integral domain?

Exercise 33

Let $F=\{a+b \sqrt{5} \in \mathbb{Q}(\sqrt{5}) \mid a, b \in \mathbb{Z}\}$. Is F an integral domain?

Exercise 34

Let F be an integral domain and let $a \in F$ satisfy $a^{2}=a$. Show that $a=0$ or $a=1$.

Exercise 35

Let a be a nonzero element in an integral domain F. If $b \neq c$ are distinct elements of F, show that $a b \neq a c$.

Exercise 36

Let F be an integral domain and let G be a nonempty subset of F containing 0 and 1 and closed under the operations of addition and multiplication in F. Is G necessarily an integral domain?

Exercise 37

Let U be the set of all positive integers and let F be the set of all functions from U to \mathbb{C}. Define operations of addition and multiplication on F by setting
$f+g: k \mapsto f(k)+g(k)$ and $f g: k \mapsto \sum_{i j=k} f(i) g(j)$ for all $k \in U$. Is F, together with these operations, an integral domain? Is it a field?

Exercise 38

Let F be the set of all functions f from \mathbb{R} to itself of the form $f: t \mapsto$ $\sum_{k=1}^{n}\left[a_{k} \cos (k t)+b_{k} \sin (k t)\right]$, where the a_{k} and b_{k} are real numbers and n is some positive integer. Define addition and multiplication on F by setting $f+g: t \mapsto f(t)+g(t)$ and $f g: t \mapsto f(t) g(t)$ for all $t \in \mathbb{R}$. Is F, together with these operations, an integral domain? Is it a field?

Exercise 39

Show that every integral domain having only finitely-many elements is a field.

Exercise 40

Let F be a field of characteristic other than 2 in which there exist elements a_{1}, \ldots, a_{n} satisfying $\sum_{i=1}^{n} a_{i}^{2}=-1$. (This happens, for example, in the case $F=\mathbb{C}$.) Show that for any $c \in F$ there exist elements b_{1}, \ldots, b_{k} of F satisfying $c=\sum_{i=1}^{k} b_{i}^{2}$.

Exercise 41

Let p be a prime integer. Show that for each $a \in \operatorname{GF}(p)$ there exist elements b and c of $\operatorname{GF}(p)$, not necessarily distinct, satisfying $a=b^{2}+c^{2}$.

Exercise 42

Let F be a field in which we have elements a, b, and c (not necessarily distinct) satisfying $a^{2}+b^{2}+c^{2}=-1$. Show that there exist (not necessarily distinct) elements d and e of F, satisfying $d^{2}+e^{2}=-1$.

Exercise 43

Is every nonzero element of the field $\mathrm{GF}(5)$ in the form 2^{i} for some positive integer i ? What happens in the case of the field $\mathrm{GF}(7)$?

Exercise 44

Find the set of all fields F in which there exists an element a satisfying the condition that $a+b=a$ for all $b \in F \backslash\{a\}$.

Exercise 45

(Binomial formula) If a and b are elements of a field F, and if n is a positive integer, show that $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$.

Exercise 46

Let F be a field of characteristic $p>0$. Show that the function $\gamma: F \rightarrow F$ defined by $\gamma: a \mapsto a^{p}$ is monic.

Exercise 47

Let a and b be nonzero elements of a finite field F, and let m and n be positive integers satisfying $a^{m}=b^{n}=1$. Show that there exists a nonzero element c of F satisfying $c^{k}=1$, where k is the least common multiple of m and n.

Exercise 48

If a is a nonzero element of a field F, show that $(-a)^{-1}=-\left(a^{-1}\right)$.

Exercise 49

Let $F=\mathrm{GF}(7)$ and let $K=F \times F$. Define addition and multiplication on K by setting $(a, b)+(c, d)=(a+b, c+d)$ and $(a, b) \cdot(c, d)=(a c-b d, a d+b c)$. Do these operations turn K into a field? What happens if $F=\mathrm{GF}(5)$?

Exercise 50

A field F is orderable if and only if there exists a subset P closed under addition and multiplication such that for each $a \in F$ precisely one of the following conditions holds: (i) $a=0$; (ii) $a \in P$; (iii) $-a \in P$. Show that GF(5) is not orderable.

Exercise 51

Let F be a field and let K be the set of all functions $f \in F^{\mathbb{Z}}$ satisfying the condition that there exists an integer (perhaps negative) n_{f} such that $f(i)=0$ for all $i<n_{f}$. Define operations of addition and multiplication on K by setting $f+g: i \mapsto f(i)+g(i)$ and $f g: i \mapsto \sum_{j+h=i} f(j) g(h)$. Show that K is a field, called the field of formal Laurent series over F. ${ }^{2}$

Exercise 52

Let F be a field. Find $A=\left\{(x, y) \in F^{2} \mid x^{2}+y^{2}=1\right\}$.

Exercise 53

Let F be a field having characteristic $p>0$ and let $c \in F$. Show that there is at most one element b of F satisfying $b^{p}=c$.

Exercise 54

A ternary ring is a set R containing distinguished elements 0 and 1 , together with a function $\theta: R^{3} \rightarrow R$ satisfying the following conditions:
(1) $\theta(1, a, 0)=\theta(a, 1,0)=a$ for all $a \in R$;
(2) $\theta(a, 0, c)=\theta(0, a, c)=c$ for all $c \in R$;
(3) If $a, b, c \in R$ then there is a unique element y of R satisfying $\theta(a, b, y)=c$;
(4) If $a, a^{\prime}, b, b^{\prime} \in R$ with $a \neq a^{\prime}$ then there is a unique element x of R satisfying $\theta(x, a, b)=\theta\left(x, a^{\prime}, b^{\prime}\right)$;
(5) If $a, a^{\prime}, b, b^{\prime} \in R$ with $a \neq a^{\prime}$ then there are unique elements x and y of R satisfying $\theta(a, x, y)=b$ and $\theta\left(a^{\prime}, x, y\right)=b^{\prime}$.

[^3]Such structures have applications in projective geometry. If F is a field, show that we can define a function $\theta: F^{3} \rightarrow F$ in such a way that F becomes a tertiary ring (with 0 and 1 being the neutral elements of the field).

Exercise 55
For $h=1,2,3$, let $z_{h}=a_{h}+b_{h} i$ be a complex number satisfying $\left|z_{h}\right|=1$. Assume, moreover, that $\sum_{i=1}^{3} z_{i}=0$. Show that the points (a_{h}, b_{h}) are the vertices of an equilateral triangle in the Euclidean plane.

Vector Spaces Over a Field

If $n>1$ is an integer and if F is a field, it is natural to define addition on the set F^{n} componentwise:

$$
\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right)
$$

More generally, if Ω is any nonempty set and if F^{Ω} is the set of all functions from Ω to the field F, we can define addition on F^{Ω} by setting $f+g: i \mapsto f(i)+g(i)$ for each $i \in \Omega$. Given these definitions, is it possible to define multiplication in such a manner that F^{n} or F^{Ω} will become a field naturally containing F as a subfield? We have seen that if $n=2$ and if $F=\mathbb{R}$ or $F=\mathbb{Q}$, this is possible-and, indeed, in the latter case there are several different methods of doing it. If $F=\operatorname{GF}(p)$ then it is possible to define such a field structure on F^{n} for every integer $n>1$. However, in general the answer is negative-as we will show in a later chapter for the specific case of \mathbb{R}^{k}, where $k>2$ is an odd integer. Nonetheless, it is possible to construct another important and useful structure on these sets, and this structure will be the focus of our attention for the rest of this book. We will first give the formal definition, and then look at a large number of examples.

Let F be a field. A nonempty set V, together with a function $V \times V \rightarrow V$ called vector addition (denoted, as usual, by +) and a function $F \times V \rightarrow V$ called scalar multiplication (denoted, as a rule, by concatenation) is a vector space over F if the following conditions are satisfied:
(1) (associativity of vector addition): $v+(w+y)=(v+w)+y$ for all $v, w, y \in V$.
(2) (commutativity of vector addition): $v+w=w+v$ for all $v, w \in V$.
(3) (existence of a identity element for vector addition): There exists an element 0_{V} of V satisfying the condition that $v+0_{V}=v$ for all $v \in V$.
(4) (existence of additive inverses): For each $v \in V$ there exists an element of V, which we will denote by $-v$, which satisfies $v+(-v)=0_{V}$.
(5) (distributivity of scalar multiplication over vector addition and of scalar multiplication over field addition): $a(v+w)=a v+a w$ and $(a+b) v=a v+b v$ for all $a, b \in F$ and $v, w \in V$.
(6) (associativity of scalar multiplication): $(a b) v=a(b v)$ for all $a, b \in F$ and $v \in V$.
(7) (existence of identity element for scalar multiplication): $1 v=v$ for all $v \in V$.

The elements of V are called vectors and the elements of F are called scalars.
 Reproduced with kind permission of Alan Heather (Heaviside); With kind permission of Special collections, Fine Arts Library, Harvard University (Maxwell).
The theory of vector spaces was developed in the 1880s by the American engineer and physicist, Josiah Willard Gibbs and the British engineer Oliver Heaviside, based on the work of the Scottish physicist James Clerk Maxwell, the German high-school teacher Herman Grassmann, and the French engineer Jean Claude Saint-Venant.

Example Note that condition (7), apparently trivial, does not follow from the other conditions. Indeed, if we take $V=F$ but define scalar multiplication by $a v=0_{V}$ for all $a \in F$ and $v \in V$, we would get a structure which satisfies conditions (1)-(6) but not condition (7).

If $v, w \in V$ we again write $v-w$ instead of $v+(-w)$. As we noted when we talked about fields, if v_{1}, \ldots, v_{n} is a list of vectors in a vector space V over a field F, the associativity of vector addition allows us to unambiguously write $v_{1}+\cdots+v_{n}$, and this sum is often denoted by $\sum_{i=1}^{n} v_{i}$. Moreover, if $a \in F$ is a scalar then we surely have $a\left(\sum_{i=1}^{n} v_{i}\right)=\left(\sum_{i=1}^{n} a v_{i}\right)$. Similarly, if a_{1}, \ldots, a_{n} is a list of scalars and if $v \in V$, then we have $\left(\sum_{i=1}^{n} a_{i}\right) v=\sum_{i=1}^{n} a_{i} v$. We will also adopt the convention that the sum of an empty set of vectors is equal to 0_{V}.

Clearly, any field F is a vector space over itself, where we take the vector addition to be the addition in F and scalar multiplication to be the multiplication in F.

We also note an extremely important construction. Let F be a field and let Ω be a nonempty set. Assume that, for each $i \in \Omega$, we are given a vector space V_{i} over F, the addition in which we will denote by $+_{i}$ (the vector spaces V_{i} need not, however, be distinct from one another). Recall that $\prod_{i \in \Omega} V_{i}$ is the set of all those functions f from Ω to $\bigcup_{i \in \Omega} V_{i}$ which satisfy the condition that $f(i) \in V_{i}$ for each $i \in \Omega$. We now define the structure of a vector space on $\prod_{i \in \Omega} V_{i}$ as follows: if $f, g \in \prod_{i \in \Omega} V_{i}$ then $f+g$ is the function in $\prod_{i \in \Omega} V_{i}$ given by $f+g: i \mapsto f(i)+{ }_{i} g(i)$ for each $i \in \Omega$. Moreover, if $a \in F$ and $f \in \prod_{i \in \Omega} V_{i}$, then $a f$ is the function in $\prod_{i \in \Omega} V_{i}$ given by af: $i \mapsto a[f(i)]$ for each $i \in \Omega$. It is routine to verify that all of the axioms of a vector space are satisfied in this case. For example, the identity element for vector addition is just the function in $\prod_{i \in \Omega} V_{i}$ given by $i \mapsto 0_{V_{i}}$ for each $i \in \Omega$.

This vector space is called the direct product of the vector spaces V_{i} over F. If the set Ω is finite, say $\Omega=\{1, \ldots, n\}$, then we often write $V_{1} \times \cdots \times V_{n}$ instead of $\prod_{i \in \Omega} V_{i}$. If all of the vector spaces V_{i} are equal to the same vector space V, then we write V^{Ω} instead of $\prod_{i \in \Omega} V_{i}$ and if $\Omega=\{1, \ldots, n\}$ we write V^{n} instead of V^{Ω}. Note that a function f from a finite set $\Omega=\{1, \ldots, n\}$ to a vector space V is totally defined by the list $f(1), f(2), \ldots, f(n)$ of its values. Conversely, any list v_{1}, \ldots, v_{n} of elements of V uniquely defines such a function f given by $f: i \mapsto v_{i}$. Therefore, this notation agrees with our previous use of the symbol V^{n} to denote sets of n-tuples of elements of V. However, to emphasize the vector space structure here, we will write the elements of V^{n} as columns of the form $\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$, where the v_{i} are (not necessarily distinct) elements of V. Usually, we will consider the case $V=F$. Vector addition and scalar multiplication in V^{n} are then defined by the rules $\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]+\left[\begin{array}{c}w_{1} \\ \vdots \\ w_{n}\end{array}\right]=\left[\begin{array}{c}v_{1}+w_{1} \\ \vdots \\ v_{n}+w_{n}\end{array}\right]$ and $c\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]=\left[\begin{array}{c}c v_{1} \\ \vdots \\ c v_{n}\end{array}\right]$.

The "classical" study of vector spaces centers around the spaces \mathbb{R}^{n}, the vectors in which are identified with the points in n-dimensional Euclidean space. However, other vector spaces also have important applications. Vector spaces of the form \mathbb{C}^{n} are needed for the study of functions of several complex variables. In algebraic coding theory, one is interested in spaces of the form F^{n}, where F is a finite field. The vectors in this space are words of length n and the field F is the alphabet in which these words are written. Thus, one choice for F is the Galois field $\operatorname{GF}\left(2^{8}\right)$, the 256 elements of which are identified with the 256 ASCII symbols.

© National Maritime Museum, Greenwich, London (Galilei); With kind permission of Frommann-Holzboog Publishers (Bolzano).
The first explicit statement of the geometric "parallelogram law" for adding geometric vectors was given by the sixteenth-century Pisan scientist Galileo Galilei. This idea was extended at the beginning of the nineteenth century by Bohemian priest Bernard Bolzano.

Let V be a vector space, let k and n be positive integers, and let $\Omega=\{(i, j) \mid 1 \leq$ $i \leq k, 1 \leq j \leq n\}$. There exists a bijective correspondence between V^{Ω} and the set of all rectangular arrays of the form $\left[\begin{array}{ccc}v_{11} & \ldots & v_{1 n} \\ \vdots & \ddots & \vdots \\ v_{k 1} & \ldots & v_{k n}\end{array}\right]$ in which the entries $v_{i j}$ are elements of V. Such an array is called a $k \times n$ matrix over V. We will denote the set
of all such matrices by $\mathcal{M}_{k \times n}(V)$. Addition in $\mathcal{M}_{k \times n}(V)$ is given by

$$
\left[\begin{array}{ccc}
v_{11} & \ldots & v_{1 n} \\
\vdots & \ddots & \vdots \\
v_{k 1} & \ldots & v_{k n}
\end{array}\right]+\left[\begin{array}{ccc}
w_{11} & \ldots & w_{1 n} \\
\vdots & \ddots & \vdots \\
w_{k 1} & \ldots & w_{k n}
\end{array}\right]=\left[\begin{array}{ccc}
v_{11}+w_{11} & \ldots & v_{1 n}+w_{1 n} \\
\vdots & \ddots & \vdots \\
v_{k 1}+w_{k 1} & \ldots & v_{k n}+w_{k n}
\end{array}\right]
$$

and scalar multiplication in $\mathcal{M}_{k \times n}(V)$ is given by

$$
c\left[\begin{array}{ccc}
v_{11} & \ldots & v_{1 n} \\
\vdots & \ddots & \vdots \\
v_{k 1} & \ldots & v_{k n}
\end{array}\right]=\left[\begin{array}{ccc}
c v_{11} & \ldots & c v_{1 n} \\
\vdots & \ddots & \vdots \\
c v_{k 1} & \ldots & c v_{k n}
\end{array}\right]
$$

The identity element for vector addition in $\mathcal{M}_{k \times n}(V)$ is the 0 -matrix O, all entries of which are equal to 0_{V}. Note that $V^{n}=\mathcal{M}_{n \times 1}(V)$.

The term "matrix" was first coined by the nineteenth-century British mathematician James Joseph Sylvester, one of the major researchers in the theory of matrices and determinants.

If V is a vector space and if $\Omega=\mathbb{N}$, then the elements of V^{Ω} are infinite sequences $\left[v_{0}, v_{1}, \ldots\right]$ of elements of V. We will denote this vector space, which we will need later, by V^{∞}. Again, the space of particular interest will be F^{∞}.

Example If F is a subfield of a field K, then K is a vector space over F, with addition and scalar multiplication just being the corresponding operations in K. Thus, in particular, we can think of \mathbb{C} as a vector space over \mathbb{R} and of \mathbb{R} as a vector space over \mathbb{Q}.

Example Let A be a nonempty set and let V be the collection of all subsets of A. Let us define addition of elements of V as follows: if B and C are elements of V then $B+C=(B \cup C) \backslash(B \cap C)$. This operation is usually called the symmetric difference of B and C. This definition turns V into a vector space over GF(2), where scalar multiplication is defined by $0 B=\varnothing$ and $1 B=B$ for all $B \in V$. This is actually just a special case of what we have seen before. Indeed, we note that there is a bijective function from V to $\operatorname{GF}(2)^{A}$ which assigns to each subset B of A its characteristic function, namely the function χ_{B} defined by

$$
\chi_{B}: a \mapsto \begin{cases}1 & \text { if } a \in B, \\ 0 & \text { otherwise },\end{cases}
$$

and it is easy to see that $\chi_{A}+\chi_{B}=\chi_{A+B}$, while $\chi_{A} \chi_{B}=\chi_{A \cap B}$.

Proposition 3.1 Let V be a vector space over a field F.
(1) If $z \in V$ satisfies $z+v=v$ for all $v \in V$ then $z=0_{V}$.
(2) If $v, w \in V$ then there exists a unique element $y \in V$ satisfying $v+y=w$.

Proof The proof is similar to the proofs of Proposition 2.1(1) and Proposition 2.2(1).

Proposition 3.2 Let V be a vector space over a field F. If $v, w \in V$ and if $a \in F$, then:
(1) $a 0_{V}=0_{V}$;
(2) $0 v=0_{V}$;
(3) $(-1) v=-v$;
(4) $(-a) v=-(a v)=a(-v)$;
(5) $-(-v)=v$;
(6) $a v=(-a)(-v)$;
(7) $-(v+w)=-v-w$;
(8) $a(v-w)=a v-a w$;
(9) If $a v=0_{V}$ then either $v=0_{V}$ or $a=0$.

Proof The proof is similar to the proof of Proposition 2.3.

Let V be a vector space over a field F. A nonempty subset W of V is a subspace of V if and only if it is a vector space in its own right with respect to the addition and scalar multiplication defined on V. Thus, any vector space V is a subspace of itself, called the improper subspace; any other subspace is proper. Also, $\left\{0_{V}\right\}$ is surely a subspace of V, called the trivial subspace; any other subspace is nontrivial.

Note that the two conditions for a nonempty subset of a vector space to be a subspace are independent: the set of all vectors in \mathbb{R}^{3} all entries of which are integers is closed under vector addition but not under scalar multiplication; the set of all vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \in \mathbb{R}^{3}$ satisfying $a b c=0$ is closed under scalar multiplication but not under vector addition.

Example Let V be a vector space over a field F and let Ω be a nonempty set. We have already seen that the set V^{Ω} of all functions from Ω to V is a vector space over F. If Λ is a subset of Ω then the set $\left\{f \in V^{\Omega} \mid f(i)=0_{V}\right.$ for all $\left.i \in \Lambda\right\}$ is a subspace of V^{Ω}. In particular, if $k<n$ are positive integers, then we can think of V^{k} as being a subspace of V^{n}, by identifying it with
$\left\{\left.\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right] \in V^{n} \right\rvert\, v_{k+1}=\cdots=v_{n}=0_{V}\right\}$. Note that if $y \in V$, then $\left\{f \in V^{\Omega}\right.$ |
$f(i)=y$ for all $i \in \Lambda\}$ is not a subspace of V^{Ω} unless $y=0_{V}$.
Example Let $\left\{V_{i} \mid i \in \Omega\right\}$ be a collection of vector spaces over a field F. The set of all functions $f \in \prod_{i \in \Omega} V_{i}$ satisfying the condition that $f(i) \neq 0_{V_{i}}$ for at most finitely-many elements i of Ω is a subspace of $\prod_{i \in \Omega} V_{i}$, called the direct coproduct of the spaces V_{i} and denoted by $\coprod_{i \in \Omega} V_{i}$. The direct coproduct is a proper subset of $\prod_{i \in \Omega} V_{i}$ when and only when the set Ω is infinite. If each of the spaces V_{i} is equal to a given vector space V, we write $V^{(\Omega)}$ instead of $\coprod_{i \in \Omega} V_{i}$.

Example If V is a vector space over a field F and if $v \in V$, then the set $F v=\{a v \mid$ $a \in F\}$ is a subspace of V which is contained in any subspace of V containing v.

Example Let \mathbb{R} be the field of real numbers and let Ω be either equal to \mathbb{R}, to some closed interval $[a, b]$ on the real line, or to a ray $[a, \infty)$ on the real line. We have already seen that the set \mathbb{R}^{Ω} of all functions from Ω to \mathbb{R} is a vector space over \mathbb{R}. The set of all continuous functions from Ω to \mathbb{R} is a subspace of this vector space, as are the set of all differentiable functions from Ω to \mathbb{R}, the set of all infinitelydifferentiable functions from Ω to \mathbb{R}, and the set of all analytic functions from Ω to \mathbb{R}. If $a<b$ are real numbers, we will denote the space of all continuous functions from the closed interval $[a, b]$ to \mathbb{R} by $C(a, b)$. If $a \in R$ we will denote the space of all continuous functions from $[a, \infty)$ to \mathbb{R} by $C(a, \infty)$. These spaces will be very important to us later.

Proposition 3.3 If V is a vector space over a field F, then a nonempty subset W of V is a subspace of V if and only if it is closed under addition and scalar multiplication.

Proof If W is a subspace of V then it is surely closed under addition and scalar multiplication. Conversely, suppose that it is so closed. Then for any $w \in W$ we have $0_{V}=0 w \in W$ and $-w=(-1) w \in W$. The other conditions are satisfied in W since they are satisfied in V.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach.

The first fundamental research in spaces of functions was done by the German mathematician Erhard Schmidt, a student of David Hilbert, whose work forms one of the bases of functional analysis.

Proposition 3.4 If V is a vector space over a field F, and if $\left\{W_{i} \mid i \in \Omega\right\}$ is a collection of subspaces of V, then $\bigcap_{i \in \Omega} W_{i}$ is a subspace of V.

Proof Set $W=\bigcap_{i \in \Omega} W_{i}$. If $w, y \in W$ then, for each $i \in \Omega$, we have $w, y \in W_{i}$ and so $w+y \in W_{i}$. Thus $w+y \in W$. Similarly, if $a \in F$ and $w \in W$ then $a w \in W_{i}$ for each $i \in \Omega$, and so $a w \in W$.

We will also set the convention that the intersection of an empty collection of subspaces of V is V itself. Subspaces W and W^{\prime} are disjoint if and only if $W \cap W^{\prime}=\left\{0_{V}\right\}$. More generally, a collection $\left\{W_{i} \mid i \in \Omega\right\}$ of subspaces of V is pairwise disjoint if and only if $W_{i} \cap W_{j}=\left\{0_{V}\right\}$ for $i \neq j$ in Ω. (Note that disjointness of subspaces of a given space is not the same as disjointness of subsets!)

Now let us look at a very important method of constructing subspaces of vector spaces. Let D be a nonempty set of elements of a vector space V over a field F. A vector $v \in V$ is a linear combination of elements of D over F if and only if there exist elements v_{1}, \ldots, v_{n} of D and scalars a_{1}, \ldots, a_{n} in F such that $v=\sum_{i=1}^{n} a_{i} v_{i}$. We will denote the set of all linear combinations of elements of D over F by $F D$. Note that if $v \in V$ then $F\{v\}$ is the set $F v$ which we defined earlier.

It is clear that if D is a nonempty set of elements of a vector space V over a field F then $D \subseteq F D$. Also, $0_{V} \in F D$ for any nonempty subset D of V, and it is the only vector belonging to each of the sets $F D$. To simplify notation, we will therefore define $F \varnothing$ to be $\left\{0_{V}\right\}$. If $D^{\prime} \subseteq D$ then surely $F D^{\prime} \subseteq F D$. We also note that $F D=F\left(D \cup\left\{0_{V}\right\}\right)$ for any subset D of V.

Example If $D=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$ and $D^{\prime}=\left\{\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 0\end{array}\right]\right\}$ are subsets of \mathbb{R}^{3}, then $F D=F D^{\prime}=\left\{\left.\left[\begin{array}{l}a \\ b \\ 0\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}$. Indeed, $\left[\begin{array}{l}a \\ b \\ 0\end{array}\right]=a\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+b\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left(\frac{b-a}{2}\right)\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]+\frac{a}{3}\left[\begin{array}{l}3 \\ 3 \\ 0\end{array}\right] \quad$ for all $a, b \in \mathbb{R}$.

Example If $D=\left\{\left[\begin{array}{l}0 \\ 0 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\} \subseteq \mathbb{R}^{3}$ then

$$
\begin{aligned}
{\left[\begin{array}{l}
4 \\
2 \\
4
\end{array}\right] } & =1\left[\begin{array}{l}
0 \\
0 \\
4
\end{array}\right]+1\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]+1\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] \\
& =1\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]+(-1)\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]+4\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
\end{aligned}
$$

Thus we see that there may be several ways of representing a vector as a linear combination of elements of a given subset of a vector space.

Proposition 3.5 Let D be a subset of a vector space V over a field F. Then:
(1) $F D$ is a subspace of V;
(2) Every subspace of V containing D also contains FD;
(3) $F D$ is the intersection of all subspaces of V containing D.

Proof If $D=\varnothing$ then $F D=\left\{0_{V}\right\}$ and we are done. Thus we can assume that D is nonempty. It is an immediate consequence of the definitions that the sum of two linear combinations of elements of D over F is again a linear combination of elements of D over F, and that the product of a scalar and a linear combination of elements of D over F is again a linear combination of elements of D over F. This proves (1). Moreover, (2) is an immediate consequence of (1) and Proposition 3.3, while (3) follows directly from (2).

If D is a subset of a vector space V over a field F then the subspace $F D$ of V is called the subspace generated or spanned by D, and the set D is called a generating set or spanning set for this subspace. In particular, we note that \varnothing is a generating set for $\left\{0_{V}\right\}$.

Example Let F be a field. Then $A=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ is a generating set for F^{3} over F. The set $B=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ is also a generating set for F^{3} if the characteristic of F is other than 2, but not for $F=\mathrm{GF}(2)$, since $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \notin \mathrm{GF}(2) B$. The set $D=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$ is not a generating set for F^{3} for any field F since $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \notin F D$.

Often, in applications, we need to restrict ourselves to linear combinations of special type. For example, let V be a vector space over a field F and let D be a nonempty subset of V. An affine combination of elements of D is an element of V of the form $\sum_{i=1}^{n} a_{i} v_{i}$, where the v_{i} are elements of D and the a_{i} are scalars satisfying $\sum_{i=1}^{n} a_{i}=1$. This is usually interpreted as a weighted average of the vectors v_{i}. The set of all affine combinations of elements of D is called the affine hull of D and is denoted by affh (D). In general, this is not a subspace of V. One can, however, easily verify that $\operatorname{affh}(\operatorname{affh}(D))=\operatorname{affh}(D)$ for any set D.

Proposition 3.6 Let V be a vector space over a field F and let D_{1} and D_{2} be subsets of V satisfying $D_{1} \subseteq D_{2} \subseteq F D_{1}$. Then $F D_{1}=F D_{2}$.

Proof Since $F D_{1}$ is a subspace of V containing D_{2}, we know by Proposition 3.5 that $F D_{2} \subseteq F D_{1}$. Conversely, any linear combination of elements of D_{1} over F is also a linear combination of elements of D_{2} over F and so $F D_{1} \subseteq F D_{2}$, thus establishing equality.

In particular, we note that $F D=F(F D)$ for any subset D of V.

Proposition 3.7 (Exchange Property) Let V be a vector space over a field F and let $v, w \in V$. Let D be a subset of V satisfying $v \in F(D \cup\{w\}) \backslash F D$. Then $w \in F(D \cup\{v\})$.

Proof Since $v \in F(D \cup\{w\})$ we know that there exist elements v_{1}, \ldots, v_{n} of D and scalars a_{1}, \ldots, a_{n}, b in F satisfying the condition that $v=\sum_{i=1}^{n} a_{i} v_{i}+b w$. Moreover, since $v \notin F D$, we know that $b \neq 0$ and so $w=b^{-1} v-\sum_{i=1}^{n} b^{-1} a_{i} v_{i} \in$ $F(D \cup\{v\})$.

A vector space V over a field F is finitely generated over F if it has a finite generating set. Finitely-generated vector spaces are often much easier to deal with by purely algebraic methods and therefore, in several situations, we will have to restrict our discussion to these spaces.

Example If F is a field and n is a positive integer, then one sees that
$\left\{\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right], \ldots,\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 1\end{array}\right]\right\}$
is a finite generating set for F^{n} over F, and so F^{n}
is finitely generated over F. More generally, if V is a vector space finitely generated over a field F, say $V=F\left\{v_{1}, \ldots, v_{k}\right\}$, and if n is a positive integer, then

$$
\begin{aligned}
& \left\{\left[\begin{array}{c}
v_{1} \\
0 \\
\vdots \\
0
\end{array}\right],\left[\begin{array}{c}
v_{2} \\
0 \\
\vdots \\
0
\end{array}\right], \ldots,\left[\begin{array}{c}
v_{k} \\
0 \\
\vdots \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
v_{1} \\
\vdots \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
v_{2} \\
\vdots \\
0
\end{array}\right], \ldots,\left[\begin{array}{c}
0 \\
v_{k} \\
\vdots \\
0
\end{array}\right], \ldots,\right. \\
& \left.\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
v_{1}
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
v_{2}
\end{array}\right], \ldots,\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
v_{k}
\end{array}\right]\right\}
\end{aligned}
$$

is a generating set for V^{n} over F having $k n$ elements.
Example If F is a field and if k and n are positive integers, then the vector space $\mathcal{M}_{k \times n}(F)$ of all $k \times n$ matrices over F is finitely generated over F. Similarly, if V is a finitely-generated vector space over F, then the vector space $\mathcal{M}_{k \times n}(V)$ is also finitely generated over F.

Example For any field F, the vector space F^{∞} is not finitely generated over F.
Example The field \mathbb{R} is finitely generated as a vector space over itself, but is not finitely generated as a vector space over \mathbb{Q}.

Let V be a vector space over a field F. In Proposition 3.4, we saw that if $\left\{W_{i} \mid i \in \Omega\right\}$ is a collection of subspaces of V then $\bigcap_{i \in \Omega} W_{i}$ is a subspace of V. In the same way, we can define the subspace $\sum_{i \in \Omega} W_{i}$ of V to be the set of all vectors in V of the form $\sum_{j \in \Lambda} w_{j}$, where Λ is a finite nonempty subset of Ω and $w_{j} \in W_{j}$ for each $j \in \Lambda$. In other words, $\sum_{i \in \Omega} W_{i}=F\left(\bigcup_{i \in \Omega} W_{i}\right)$. Indeed, from the definition of this sum, we see something stronger: if D_{i} is a generating set for W_{i} for each $i \in \Omega$ then $\sum_{i \in \Omega} W_{i}=F\left(\bigcup_{i \in \Omega} D_{i}\right)$.

As a special case of the above, we see that if W_{1} and W_{2} are subspaces of V, then $W_{1}+W_{2}$ equals the set of all vectors of the form $w_{1}+w_{2}$, where $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$. If both W_{1} and W_{2} are finitely generated then $W_{1}+W_{2}$ is also finitely generated. By induction, we can then show that if W_{1}, \ldots, W_{n} are finitely-generated subspaces of V, then $\sum_{i=1}^{n} W_{i}$ is also finitely generated.

Proposition 3.8 If V is a vector space over a field F and if $\left\{W_{i} \mid i \in \Omega\right\}$ is a collection of subspaces of V, then:
(1) W_{h} is a subspace of $\sum_{i \in \Omega} W_{i}$ for all $h \in \Omega$;
(2) If Y is a subspace of V satisfying the condition that W_{h} is a subspace of Y for all $h \in \Omega$, then $\sum_{i \in \Omega} W_{i}$ is a subspace of Y.

Proof (1) is clear from the definition. As for (2), if we have a subspace Y satisfying the given condition, if Λ is a finite subset of Ω, and if $w_{j} \in W_{j}$ for each $j \in \Lambda$, then $w_{j} \in Y$ for each j and so $\sum_{j \in \Lambda} w_{j} \in Y$. Thus $\sum_{i \in \Omega} W_{i} \subseteq Y$.

Proposition 3.9 If V is a vector space over a field F and if W_{1}, W_{2}, and W_{3} are subspaces of V, then:
(1) $\left(W_{1}+W_{2}\right)+W_{3}=W_{1}+\left(W_{2}+W_{3}\right)$;
(2) $W_{1}+W_{2}=W_{2}+W_{1}$;
(3) $W_{3} \cap\left[W_{2}+\left(W_{1} \cap W_{3}\right)\right]=\left(W_{1} \cap W_{3}\right)+\left(W_{2} \cap W_{3}\right)$;
(4) (Modular law for subspaces): If $W_{1} \subseteq W_{3}$ then

$$
W_{3} \cap\left(W_{2}+W_{1}\right)=W_{1}+\left(W_{2} \cap W_{3}\right) .
$$

Proof Parts (1) and (2) follow immediately from the definition, while part (4) is a special case of (3). We are therefore left to prove (3). Indeed, if v belongs to $W_{3} \cap\left[W_{2}+\left(W_{1} \cap W_{3}\right)\right]$, then we can write $v=w_{2}+y$, where $w_{2} \in W_{2}$ and $y \in W_{1} \cap W_{3}$. Since $v, y \in W_{3}$, it follows that $w_{2}=v-y \in W_{3}$, and so $v=$ $y+w_{2} \in\left(W_{1} \cap W_{3}\right)+\left(W_{2} \cap W_{3}\right)$. Thus we see that $W_{3} \cap\left[W_{2}+\left(W_{1} \cap W_{3}\right)\right] \subseteq$ $\left(W_{1} \cap W_{3}\right)+\left(W_{2} \cap W_{3}\right)$. Conversely, assume that $v \in\left(W_{1} \cap W_{3}\right)+\left(W_{2} \cap W_{3}\right)$. Then, in particular, $v \in W_{3}$ and we can write $v=w_{1}+w_{2}$, where $w_{1} \in W_{1} \cap W_{3}$ and $w_{2} \in$ $W_{2} \cap W_{3}$. Thus $v=w_{1}+w_{2} \in W_{3} \cap W_{2}+\left(W_{1} \cap W_{3}\right)$. This shows that $\left(W_{1} \cap W_{3}\right)+$ $\left(W_{2} \cap W_{3}\right) \subseteq W_{3} \cap\left[W_{2}+\left(W_{1} \cap W_{3}\right)\right]$, and so we have the desired equality.

Exercises

Exercise 56

Is it possible to define on $V=\mathbb{Z} /(4)$ the structure of a vector space over $\mathrm{GF}(2)$ in such a way that the vector addition is the usual addition in $\mathbb{Z} /(4)$?

Exercise 57

Consider the set \mathbb{Z} of integers, together with the usual addition. If $a \in \mathbb{Q}$ and $k \in \mathbb{Z}$, define $a \cdot k$ to be $\lfloor a\rfloor k$, where $\lfloor a\rfloor$ denotes the largest integer less than or equal to a. Using this as our definition of "scalar multiplication", have we turned \mathbb{Z} into a vector space over \mathbb{Q} ?

Exercise 58

Let $V=\{0,1\}$ and let $F=\mathrm{GF}(2)$. Define vector addition and scalar multiplication by setting $v+v^{\prime}=\max \left\{v, v^{\prime}\right\}, 0 v=0$, and $1 v=v$ for all $v, v^{\prime} \in V$. Does this define on V the structure of a vector space over F ?

Exercise 59
Let $p>2$ and let V be a vector space over $\operatorname{GF}(p)$. Show that $v \neq-v$ for all $0_{V} \neq v \in V$.

Exercise 60

Let $V=C(0,1)$. Define an operation \boxplus on V by setting $f \boxplus g: x \mapsto$ $\max \{f(x), g(x)\}$. Does this operation of vector addition, together with the usual
operation of scalar multiplication, define on V the structure of a vector space over \mathbb{R} ?

Exercise 61

Let V be a nontrivial vector space over \mathbb{R}. For each $v \in V$ and each complex number $a+b i$, let us define $(a+b i) v=a v$. Does V, together with this new scalar multiplication, form a vector space over \mathbb{C} ?

Exercise 62

Let I be the unit interval $[0,1]$ on the real line and let $V=\mathbb{R} \times I$. Define operations of addition and scalar multiplication on V as follows: $(a, s)+(b, t)=$ $(a+b, \min \{s, t\})$ and $c \cdot(a, s)=(c a, s)$. Is V a vector space over \mathbb{R} ?

Exercise 63

Let $V=\left\{i \in \mathbb{Z} \mid 0 \leq i<2^{n}\right\}$ for some given positive integer n. Define operations of vector addition and scalar multiplication on V in such a way as to turn it into a vector space over the field GF(2).

Exercise 64

Let V be a vector space over a field F. Define a function from $\mathrm{GF}(3) \times V$ to V by setting $(0, v) \mapsto 0_{V},(1, v) \mapsto v$, and $(2, v) \mapsto-v$ for all $v \in V$. Does this function, together with the vector addition in V, define on V the structure of a vector space over GF(3)?

Exercise 65

Give an example of a vector space having exactly 125 elements.

Exercise 66

Let $V=\mathbb{Q}^{2}$, with the usual vector addition. If $a+b \sqrt{2} \in \mathbb{Q}(\sqrt{2})$ and if $\left[\begin{array}{l}c \\ d\end{array}\right] \in \mathbb{Q}^{2}$, set $(a+b \sqrt{2})\left[\begin{array}{l}c \\ d\end{array}\right]=\left[\begin{array}{c}a c+2 b d \\ b c+a d\end{array}\right]$. Do these operations turn \mathbb{Q}^{2} into a vector space over $\mathbb{Q}(\sqrt{2})$?

Exercise 67

Let $V=\mathbb{R} \cup\{\infty\}$ and extend the usual addition of real numbers by defining $v+\infty=\infty+v=\infty$ for all $v \in V$. Is it possible to define an operation of scalar multiplication on V in such a manner as to turn it into a vector space over \mathbb{R} ?

Exercise 68

Let $V=\mathbb{R}^{2}$. If $\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}a^{\prime} \\ b^{\prime}\end{array}\right] \in V$ and $r \in \mathbb{R}$, set $\left[\begin{array}{l}a \\ b\end{array}\right]+\left[\begin{array}{l}a^{\prime} \\ b^{\prime}\end{array}\right]=\left[\begin{array}{c}a+a^{\prime}+1 \\ b+b^{\prime}\end{array}\right]$ and $r\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}r a+r-1 \\ r b\end{array}\right]$. Do these operations define on V the structure of a vector space over \mathbb{R} ? If so, what is the identity element for vector addition in this space?

Exercise 69

Let $V=\mathbb{R}$ and let \circ be an operation on \mathbb{R} defined by $a \circ b=a^{3} b$. Is V, together with the usual addition and "scalar multiplication" given by \circ, a vector space over \mathbb{R} ?

Exercise 70

Show that \mathbb{Z} is not a vector space over any field.

Exercise 71

Let V be a vector space over the field $\mathrm{GF}(2)$. Show that $v=-v$ for all $v \in V$.

Exercise 72

In the definition of a vector space, show that the commutativity of vector addition is a consequence of the other conditions.

Exercise 73
Let W be the subset of \mathbb{R}^{5} consisting of all vectors an odd number of the entries in which are equal to 0 . Is W a subspace of \mathbb{R}^{5} ?

Exercise 74

Let F be a field and fix $0<k \in \mathbb{Z}$. Let W be the subset of $F^{\mathbb{Z}}$ consisting of all those functions f satisfying

$$
f(i+k)=\sum_{j=0}^{k-1} f(i+j)
$$

for each $i \in \mathbb{Z}$. Is W a subspace of $F^{\mathbb{Z}}$?

Exercise 75

Let W be the subset of \mathbb{R}^{3} consisting of all vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ satisfying $|a|+|b|=|c|$. Is W a subspace of \mathbb{R}^{3} ?

Exercise 76

Let $V=\mathbb{R}^{\mathbb{R}}$ and let W be the subset of V containing the constant function $x \mapsto 0$ and all of those functions $f \in V$ satisfying the condition that $f(a)=0$ for at most finitely-many real numbers a. Is W a subspace of V ?

Exercise 77

Let $V=\left\{\left.\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{5}\end{array}\right] \right\rvert\, 0<a_{i} \in \mathbb{R}\right\}$. If $v=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{5}\end{array}\right]$ and $w=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{5}\end{array}\right]$ belong to V, and
if $c \in \mathbb{R}$, set $v+w=\left[\begin{array}{c}a_{1} b_{1} \\ \vdots \\ a_{5} b_{5}\end{array}\right]$ and $c v=\left[\begin{array}{c}a_{1}^{c} \\ \vdots \\ a_{5}^{c}\end{array}\right]$. Do these operations turn V into a vector space over \mathbb{R} ?

Exercise 78

How many elements are there in the subspace of $\mathrm{GF}(3)^{3}$ generated by $\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]\right\} ?$

Exercise 79

A function $f \in \mathbb{R}^{\mathbb{R}}$ is piecewise constant if and only if it is a constant function $x \mapsto c$ or there exist $a_{1}<a_{2}<\cdots<a_{n}$ and c_{0}, \ldots, c_{n} in \mathbb{R} such that

$$
f: x \mapsto\left\{\begin{array}{ll}
c_{0} & \text { if } x<a_{1} \\
c_{i} & \text { if } a_{i} \leq x<a_{i+1} \\
c_{n} & \text { if } a_{n} \leq x .
\end{array} \text { for } 1 \leq i<n,\right.
$$

Does the set of all piecewise constant functions form a subspace of the vector space $\mathbb{R}^{\mathbb{R}}$ over \mathbb{R} ?

Exercise 80

Let V be the vector space of all continuous functions from \mathbb{R} to itself and let W be the subset of all those functions $f \in V$ satisfying the condition that $|f(x)| \leq 1$ for all $-1 \leq x \leq 1$. Is W a subspace of V ?

Exercise 81

Let W be the subspace of $V=\mathrm{GF}(2)^{5}$ consisting of all vectors $\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{5}\end{array}\right]$ satisfying $\sum_{i=1}^{5} a_{i}=0$. Is W a subspace of V ?

Exercise 82

Let $V=\mathbb{R}^{\mathbb{R}}$ and let W be the subset of V consisting of all monotonicallyincreasing or monotonically-decreasing functions. Is W a subspace of V ?

Exercise 83

Let $V=\mathbb{R}^{\mathbb{R}}$ and let W be the subset of V consisting of the constant function $a \mapsto 0$, and all epic functions. Is W a subspace of V ?

Exercise 84

Let $V=\mathbb{R}^{\mathbb{R}}$ and let W be the subset of V containing the constant function $a \mapsto 0$ and all of those functions $f \in V$ satisfying the condition that $f(\pi)>f(-\pi)$. Is W a subspace of V ?

Exercise 85

Let $V=\mathbb{R}^{\mathbb{R}}$ and let W be the subset of V consisting of all functions f satisfying the condition that there exists a real number c (which depends on f) such that $|f(a)| \leq c|a|$ for all $a \in \mathbb{R}$. Is W a subspace of V ?

Exercise 86

Let $V=\mathbb{R}^{\mathbb{R}}$ and let W be the subset of V consisting of all functions f satisfying the condition that there exist real numbers a and b such that $|f(x)| \leq a|\sin (x)|+$ $b|\cos (x)|$ for all $x \geq 0$. Is W a subspace of V ?

Exercise 87

Let F be a field and let $V=F^{F}$, which is a vector space over F. Let W be the set of all functions $f \in V$ satisfying $f(1)=f(-1)$. Is W a subspace of V ?

Exercise 88

For any real number $0<t \leq 1$, let V_{t} be the set of all functions $f \in \mathbb{R}^{\mathbb{R}}$ satisfying the condition that if $a<b$ in \mathbb{R} then there exists a real number $u(a, b)$ satisfying $|f(x)-f(y)| \leq u(a, b)|x-y|^{t}$ for all $a \leq x, y \leq b$. For which values of t is V_{t} a subspace of $\mathbb{R}^{\mathbb{R}}$?

Exercise 89

Let U be a nonempty subset of a vector space V. Show that U is a subspace of V if and only if $a u+u^{\prime} \in U$ for all $u, u^{\prime} \in U$ and $a \in F$.

Exercise 90
Let V be a vector space over a field F and let v and w be distinct vectors in V. Set $U=\{(1-t) v+t w \mid t \in F\}$. Show that there exists a vector $y \in V$ such that $\{u+y \mid u \in U\}$ is a subspace of V.

Exercise 91

Let V be a vector space over a field F and let W and Y be subspaces of V^{2}. Let U be the set of all vectors $\left[\begin{array}{c}v \\ v^{\prime}\end{array}\right] \in V^{2}$ satisfying the condition that there exists a vector $v^{\prime \prime} \in V$ such that $\left[\begin{array}{c}v \\ v^{\prime \prime}\end{array}\right] \in W$ and $\left[\begin{array}{c}v^{\prime \prime} \\ v^{\prime}\end{array}\right] \in Y$. Is U a subspace of V^{2} ?

Exercise 92

Consider \mathbb{R} as a vector space over \mathbb{Q}. Given a nonempty subset W of \mathbb{R}, let \bar{W} be the set of all real numbers b for which there exists a sequence a_{1}, a_{2}, \ldots of elements of W satisfying $\lim _{i \rightarrow \infty} a_{i}=b$. Show that \bar{W} is a subspace of \mathbb{R} whenever W is.

Exercise 93

Let V be a vector space over a field F and let P be the collection of all subsets of V, which we know is a vector space over $\mathrm{GF}(2)$. Is the collection of all subspaces of V a subspace of P ?

Exercise 94

Let W be the set of all functions $f \in \mathbb{R}^{\mathbb{N}}$ satisfying the condition that if $f(i) \neq 0$ then $f(j i) \neq 0$ for all positive integers j. Is W a subspace of $\mathbb{R}^{\mathbb{N}}$?

Exercise 95

Let W be the set of all functions $f \in \mathbb{R}^{\mathbb{N}}$ satisfying the condition that if $f(i)=0$ then $f(j i)=0$ for all positive integers j. Is W a subspace of $\mathbb{R}^{\mathbb{N}}$?

Exercise 96

Let V be a vector space over a field F and let Y be the set of all matrices of the form $\left[\begin{array}{ccc}v_{1} & v_{2} & 0_{V} \\ 0_{V} & v_{1}+v_{2} & 0_{V} \\ 0_{V} & v_{1} & v_{2}\end{array}\right]$ in $\mathcal{M}_{3 \times 3}(V)$. Is Y a subspace of $\mathcal{M}_{3 \times 3}(V)$?

Exercise 97

Let W be the set of all functions $f \in \mathbb{R}^{\mathbb{R}}$ satisfying the following conditions: there exist positive real numbers a and b such that for all $x \in \mathbb{R}$ satisfying $|x| \geq a$ we have $|f(x)| \leq b|x|$. Show that W is a subspace of $\mathbb{R}^{\mathbb{R}}$.

Exercise 98

Let W be a subspace of a vector space V over a field F. Is the set $(V \backslash W) \cup\left\{0_{V}\right\}$ necessarily a subspace of V ?

Exercise 99

Let V be a vector space over a field F and let f be a function from V to the unit interval $[0,1]$ on the real line satisfying the condition that $f(a u+b v) \geq$ $\min \{f(u), f(v)\}$ for all $a, b \in F$ and all $u, v \in V$. Show that $f\left(0_{V}\right) \geq f(v)$ for all $v \in V$ and that if $0 \leq h \leq f\left(0_{V}\right)$ then $V_{h}=\{v \in V \mid f(v) \geq h\}$ is a subspace of V.

Exercise 100

Consider the elements f, g, h of $\mathbb{Q}^{\mathbb{Q}}$ defined by $f: t \mapsto t-1, g: t \mapsto t+1$, and $h: t \mapsto t^{2}+1$. Does the function $t \mapsto t^{2}$ belong to $\mathbb{Q}\{f, g, h\}$?

Exercise 101

Let $F=\operatorname{GF}(3)$ and let $D=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]\right\}$. For which scalars c is $\left[\begin{array}{l}0 \\ 1 \\ c\end{array}\right]$ a linear combination of elements of D ?

Exercise 102
Find a real number c such that $\left[\begin{array}{l}4 \\ 3 \\ 1\end{array}\right] \in \mathbb{R}^{3}$ is a linear combination of $\left\{\left[\begin{array}{l}3 \\ 1 \\ c\end{array}\right],\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right]\right\}$.

Exercise 103

Find subsets D and D^{\prime} of \mathbb{R}^{3} such that $\mathbb{R}\left(D \cap D^{\prime}\right) \neq \mathbb{R} D \cap \mathbb{R} D^{\prime}$.

Exercise 104

Find subspaces W and Y of \mathbb{R}^{3} having the property that $W \cup Y$ is not a subspace of \mathbb{R}^{3}.

Exercise 105

Let V be a vector space over a field F and let $0_{V} \neq w \in V$. Given a vector $v \in V \backslash F w$, find the set G of all scalars $a \in F$ satisfying $F\{v, w\}=F\{v, a w\}$.

Exercise 106

Let p be a prime integer and let V be a vector space over $F=\operatorname{GF}(p)$. Show that V is not the union of k subspaces, for any $k \leq p$.

Exercise 107

Let V be a vector space over a field F and let c and d be fixed elements of F. Define a new operation \boxplus on V by setting $v \boxplus v^{\prime}=c v+d v^{\prime}$. Is V, with this new vector addition and the old scalar multiplication, still a vector space over F ?

Exercise 108

Let I be the closed unit interval $[0,1]$ on the real line. A function $(a, b) \mapsto a \circ b$ from $I \times I$ to I is a triangular norm ${ }^{1}$ if and only if the following conditions hold for all $a, b, c \in I$:
(1) $a \circ 1=a$;
(2) $a \leq c$ implies that $a \circ b \leq c \circ b$;
(3) $a \circ b=b \circ a$;
(4) $a \circ(b \circ c)=(a \circ b) \circ c$.

Given a vector space V over a field F, and given a triangular norm \circ on I, a function $f: V \rightarrow I$ is a o-fuzzy subspace of V if and only if, for each $v, w \in V$ and each $d \in F$, we have $f(v+w) \geq f(v) \circ f(w)$ and $f(d v) \geq f(v)$. Find a condition that a o-fuzzy subspace f of V must satisfy for the set $\{v \in V \mid$ $f(v) \geq a\}$ to be a subspace of V for any $a \in I$.

[^4]
Exercise 109

Let V be a vector space over a field F and let D be a nonempty subset of V. A zero-sum combination of elements of D is an element of the form $\sum_{i=1}^{n} a_{i} v_{i}$, where the v_{i} are elements of D and the a_{i} are scalars satisfying $\sum_{i=1}^{n} a_{i}=0$. The set $z(D)$ of all zero-sum combinations of elements of D is called the zero-sum hull of D. Is it true that $z(z(D))=z(D)$? Is $z(D)$ necessarily a subspace of V ?

Exercise 110

Let V be a vector space over a field F and let D be a nonempty subset of V. A uniform combination of elements of D is an element of the form $\sum_{i=1}^{n} a_{i} v_{i}$, where the v_{i} are elements of D and $a_{1}=\cdots=a_{n}$. The set $u(D)$ of all uniform combinations of elements of D is called the uniform hull of D. Is it true that $u(u(D))=u(D)$? Is $u(D)$ necessarily a subspace of V ?

Exercise 111

If we identify \mathbb{R}^{2} with the Euclidean plane in the usual way, and if $v \neq w$ are two vectors in \mathbb{R}^{2}, show that $\operatorname{affh}(\{v, w\})$ is the line passing through these two points.

Exercise 112

If we identify \mathbb{R}^{3} with the three-dimensional Euclidean space in the usual way and if v, w, y are distinct vectors in \mathbb{R}^{3} which are not collinear, show that $\operatorname{affh}(\{v, w, y\})$ is the plane determined by the three points.

Exercise 113

Let V be a vector space over a field F and let D be a subset of V containing 0_{V}. Show that $\operatorname{affh}(D)$ is a subspace of V.

Algebras Over a Field

In general, a vector space does not carry with it the notion of multiplying two vectors in the space to produce a third vector. However, sometimes such multiplication may be possible. A vector space K over a field F is an F-algebra if and only if there exists a function $(v, w) \mapsto v \bullet w$ from $K \times K$ to K such that
(1) $u \bullet(v+w)=u \bullet v+u \bullet w$;
(2) $(u+v) \bullet w=u \bullet w+v \bullet w$;
(3) $a(v \bullet w)=(a v) \bullet w=v \bullet(a w)$
for all $u, v, w \in K$ and $a \in F$. As in the proof of Proposition 2.3(1), these conditions suffice to show that $0_{K} \bullet v=v \bullet 0_{K}=0_{K}$ for all $v \in K$.

Note that the operation \bullet need not be associative, nor need there exist an identity element for this operation. When the operation is associative, i.e. when it satisfies
(4) $v \bullet(w \bullet y)=(v \bullet w) \bullet y$
for all $v, w, y \in K$, then the algebra is called an associative F-algebra. If an identity element for \bullet exists, that is to say, if there exists an element $0_{K} \neq e \in K$ satisfying $v \bullet e=v=e \bullet v$ for all $v \in K$, we say the F-algebra K is unital. In a unital F-algebra, as with the case of fields, the identity element must be unique. In this case, we can then identify F with the subset $\{a e \mid a \in F\}$ of K and we note that $a \bullet v=v \bullet a$ for all $v \in K$ and $a \in F$.

If v is an element of an associative F-algebra (K, \bullet) and if n is a positive integer, we write v^{n} instead of $v \bullet \cdots \bullet v$ (n factors). If K is also unital and has a multiplicative identity e, we set $v^{0}=e$ for all $0_{K} \neq v \in K$. The element $\left(0_{K}\right)^{0}$ is not defined.

If $v \bullet w=w \bullet v$ for all v and w in some F-algebra K, then the algebra is commutative. An F-algebra (K, \bullet) satisfying the condition that $v \bullet w=-w \bullet v$ for all $v, w \in K$ is anticommutative. If the characteristic of F is other than 2 , it is easy to see that this condition is equivalent to the condition that $v \bullet v=0_{K}$ for all $v \in K$. Of course, in that case K cannot possibly be unital.

If (K, \bullet) is an associative unital F-algebra having a multiplicative identity e, and if $v \in K$ satisfies the condition that there exists an element $w \in K$ such that $v \bullet w=w \bullet v=e$, then we say that v is a unit of K. As with the case of fields, such an element w, if it exists, is unique and is usually denoted by v^{-1}. If v is a unit, then so is $-v$, for one immediately notes that $(-v)^{-1}=-\left(v^{-1}\right)$. Also, it is easy to see that if v and w are units of K, then so is $v \bullet w$. Indeed,

$$
\begin{aligned}
(v \bullet w) \bullet\left(w^{-1} \bullet v^{-1}\right) & =\left(v \bullet\left(w \bullet w^{-1}\right)\right) \bullet v^{-1} \\
& =(v \bullet e) \bullet v^{-1}=v \bullet v^{-1}=e
\end{aligned}
$$

and similarly $\left(w^{-1} \bullet v^{-1}\right) \bullet(v \bullet w)=e$, so $(v \bullet w)^{-1}=w^{-1} \bullet v^{-1}$. If $v \in K$ is a unit and if $n>1$ is an integer, we write v^{-n} instead of $\left(v^{-1}\right)^{n}$. Note that the Hua's identity (Proposition 2.6) in fact holds in any associative unital F-algebra in which the needed inverses exist, since the proof relies only on associativity of addition and multiplication and distributivity of multiplication over addition.

If (K, \bullet) is an F-algebra, and $v, w \in K$, then ($v, w)$ forms a commuting pair if and only if $v \bullet w=w \bullet v$. Of course, if the algebra K is commutative, all pairs of elements commute, but in general that will not be the case. Note that if (v, w) is a commuting pair in a unital associative F-algebra (K, \bullet) and v^{-1} exists, then $\left(v^{-1}, w\right)$ is also a commuting pair. Indeed, $\left(v^{-1} \bullet w\right) \bullet v=v^{-1} \bullet(w \bullet v)=v^{-1} \bullet$ $(v \bullet w)=w$ so $w \bullet v^{-1}=\left[\left(v^{-1} \bullet w\right) \bullet v\right] \bullet v^{-1}=v^{-1} \bullet w$.

Example Any vector space V over a field F can be turned into an associative and commutative F-algebra which is not unital by setting $v \bullet w=0_{V}$ for all $v, w \in V$.

Example If F is a subfield of a field K, then K has the structure of an associative F-algebra, with multiplication being the multiplication in K. Thus, \mathbb{C} is an
\mathbb{R}-algebra and $\mathbb{Q}(\sqrt{p})$ is a \mathbb{Q}-algebra for every prime integer p. These algebras are, of course, unital.

Example Let F be a field, let (K, \bullet) be an F-algebra, and let Ω be a nonempty set. Then the vector space K^{Ω} of all functions from Ω to K has the structure of an F-algebra with respect to the operation \bullet defined by $f \bullet g: i \mapsto f(i) \bullet g(i)$ for all $i \in \Omega$. This F-algebra is associative if K is. If K is unital with multiplicative identity element e, then K^{Ω} is also unital, with identity element given by the constant function $i \mapsto e$. In particular, if F is a field and if Ω is a nonempty set then F^{Ω} is an associative unital F-algebra with respect to the operation \bullet defined by $f \bullet g: i \mapsto f(i) g(i)$ for all $i \in \Omega$.

Example We have seen that the collection of all subsets of a given nonempty set A is a vector space over $\mathrm{GF}(2)$. It is in fact an associative and commutative unital $\mathrm{GF}(2)$-algebra with respect to the operation \cap. The identity element with respect to this operation is A itself.

Example Define an operation $*$ on $C(0, \infty)$ by setting

$$
f * g: t \mapsto \int_{0}^{t} f(t-u) g(u) d u
$$

This turns $C(0, \infty)$ into an associative and commutative \mathbb{R}-algebra, known as the convolution algebra on \mathbb{R}.

Example Let K be the vector space over \mathbb{R} consisting of all functions in $\mathbb{R}^{\mathbb{R}}$ which are infinitely differentiable, and define an operation \bullet on K by setting $f \bullet g=(f g)^{\prime}$ (where ' denotes differentiation). Then (K, \bullet) is an algebra which is commutative but not associative.

The collection of all operations \bullet on a vector space V over a field F which turn V into an F-algebra will be studied in more detail in Chap. 20.

Let F be a field. If (K, \bullet) is an F-algebra, then a subspace L of K satisfying the condition that $w \bullet w^{\prime} \in L$ for all $w, w^{\prime} \in L$ is an F-subalgebra of K. If (K, \bullet) is a unital F-algebra, then L is a unital subalgebra if it contains the multiplicative identity element of K.

Let F be a field. An anticommutative F-algebra (K, \bullet) is a Lie algebra over F if and only if it satisfies the additional condition

$$
(\text { Jacobi identity }) \quad u \bullet(v \bullet w)+v \bullet(w \bullet u)+w \bullet(u \bullet v)=0_{K} ;
$$

for all $u, v, w \in K$. This algebra is not associative unless $u \bullet v=0_{K}$ for all $u, v \in K$.

Example Let F be a field and let $(K, *)$ be an associative F-algebra. Define a new operation \bullet on K by setting $v \bullet w=v * w-w * v$. Then (K, \bullet) is a Lie algebra over F, which is usually denoted by K^{-}. The operation in K^{-}is known as the Lie product defined on the given F-algebra K. This example is very important because one can show that any Lie algebra over a field F can be considered as a subalgebra of a Lie algebra of the form K^{-}for some associative F-algebra K. (A proof of this result, known as the Poincaré-Birkhoff-Witt Theorem, is far beyond the scope of this book.) If $v, w \in K$, then $v \bullet w=0_{K}$ precisely when $v * w=w * v$, in other words, precisely when (v, w) forms a commuting pair in $(K, *)$.

Lie algebras are of fundamental importance in the modeling problems in physics, and have many other applications; they are in the forefront of current mathematical research. One particular Lie algebra defined on \mathbb{R}^{3} goes back to the work of Grassmann. Define the structure of an \mathbb{R}-algebra on \mathbb{R}^{3} with multiplication \times given by

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \times\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right] .
$$

This operation, called the cross product, has very important applications in physics and engineering. It is easy to check that the algebra $\left(\mathbb{R}^{3}, \times\right)$ is a Lie algebra over \mathbb{R}.

Note that if $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $v_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$, then, surely, $v_{1} \times v_{2}=$ $v_{3}, v_{1} \times v_{2}=v_{3}$, and $v_{3} \times v_{1}=v_{2}$. Moreover, the cross product is the only possible anticommutative product which can be defined on \mathbb{R}^{3} and which satisfies this condition. Indeed, if \bullet is any such product defined on \mathbb{R}^{3} then

$$
\begin{aligned}
{\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \bullet\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] } & =\left(\sum_{i=1}^{3} a_{i} v_{i}\right) \bullet\left(\sum_{j=1}^{3} b_{j} v_{j}\right)=\sum_{i=1}^{3} \sum_{j=1}^{3} a_{i} b_{j}\left(v_{i} \bullet v_{j}\right) \\
& =\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \times\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
\end{aligned}
$$

Proposition 4.1 If v and w are nonzero elements of \mathbb{R}^{3}, then $v \times w=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ if and only if $\mathbb{R} v=\mathbb{R} w$.

Proof Suppose $v=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$ and $w=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$. These vectors are nonzero and so one of the entries in w is nonzero; without loss of generality, we can assume that $b_{1} \neq 0$. Then $a_{2} b_{3}-a_{3} b_{2}=a_{3} b_{1}-a_{1} b_{3}=a_{1} b_{2}-a_{2} b_{1}=0$ and so, if we define $c=a_{1} b_{1}^{-1}$, we have $v=c w$. Hence $v \in \mathbb{R} w$. Moreover, $c \neq 0$ so $w=c^{-1} v \in R v$, proving the desired equality. Conversely, if $\mathbb{R} v=\mathbb{R} w$ then there exists an $0 \neq d \in \mathbb{R}$ such that $w=d v$. Then $v \times w=d(v \times v)=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.

The cross product is very particular to the vector space \mathbb{R}^{3}, and does not generalize easily to spaces of the form \mathbb{R}^{n} for $n>3$, with the exception of $n=7$, which we will see in a later chapter.

An important non-associative algebra is the following: let F be a field of characteristic other than 2 , and let $(K, *)$ be an associative algebra. We can define a new operation \bullet on K, called the Jordan product, by setting $v \bullet w=\frac{1}{2}(v * w+w * v)$. Then (K, \bullet) is a commutative F-algebra, usually denoted by K^{+}, called the Jordan algebra defined by K. It is not associative in general, but does satisfy

$$
(\text { Jordan identity) } \quad(v \bullet w) \bullet(v \bullet v)=v \bullet(w \bullet(v \bullet v))
$$

for all $v, w \in K$. Jordan algebras have important applications in physics. Note that if $v * w=w * v$, then $v \bullet w=v * w$. This observation will have important consequences later. In particular, if $(K, *)$ is unital with multiplicative identity e, then $e \bullet v=$ $v \bullet e=v$ for all $v \in K$, so K^{+}is also unital.

© the estate of Friedrich Hund. Reproduced with kind permission of Gerhard Hund (Jordan); With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Jacobson); With kind permission of the American Mathematical Society (Albert).
Jordan algebras were developed by the twentieth-century German physicist Pascual Jordan, one of the fathers of quantum mechanics and quantum electrodynamics. The algebraic structure of Lie algebras and Jordan algebras was studied in detail by the twentieth-century American mathematicians Nathan Jacobson and A. Adrian Albert.

We now come to an extremely important algebra. Let F be a field and let X be an element not in F, which we will call an indeterminate. A polynomial in X with coefficients in F is a formal sum $f(X)=\sum_{i=0}^{\infty} a_{i} X^{i}$, in which the elements a_{i} belong to F, and no more than a finite number of these elements differ from 0 . The elements a_{i} are called the coefficients of the polynomial. If all of the a_{i} equal 0 , then the polynomial is called the 0 -polynomial. Otherwise, there exists a nonnegative integer n satisfying the condition that $a_{n} \neq 0$ and $a_{i}=0$ for all $i>n$. The coefficient a_{n} is called the leading coefficient of the polynomial; the integer n is called the degree of the polynomial, and is denoted by $\operatorname{deg}(f)$. If the leading coefficient of a polynomial is 1 , the polynomial is monic. The degree of the 0 -polynomial is defined to be $-\infty$, where we assume that $-\infty<i$ for each integer i and $(-\infty)+i=-\infty$ for all integers i. If $f(X)$ is a polynomial of degree $n \neq-\infty$, we often write it as $\sum_{i=0}^{n} a_{i} X^{i}$. The set of all polynomials in X with coefficients in F is denoted by $F[X]$. We identify the elements of F with the polynomials of degree at most 0 , and so can consider F as a subdomain of $F[X]$. We can associate the 0 -polynomial with the identity element 0 of F for addition and the polynomials of degree 0 with the nonzero elements of F and so, without any problems, consider F as a subset of $F[X]$.

Example The polynomials $5 X^{3}+2 X^{2}+1$ and $5 X^{3}-X^{2}+X+4$ in $\mathbb{Q}[X]$ both have degree 3 and leading coefficient 5 . Therefore, they are not monic. The polynomials $X^{3}+2 X^{2}+1$ and $X^{3}-X^{2}+X+4$ in $\mathbb{Q}[X]$ are both monic and have the same degree 3 .

We define addition and multiplication of polynomials over a field as follows: if $f(X)=\sum_{i=0}^{\infty} a_{i} X^{i}$ and $g(X)=\sum_{i=0}^{\infty} b_{i} X^{i}$ are polynomials in $F[X]$, then $f(X)+g(X)$ is the polynomial $\sum_{i=0}^{\infty} c_{i} X^{i}$, where $c_{i}=a_{i}+b_{i}$ for all $i \geq 0$ and $f(X) g(X)$ is the polynomial $\sum_{i=0}^{\infty} d_{i} X^{i}$, where $d_{i}=\sum_{j=0}^{i} a_{j} b_{i-j}$ for all $i \geq 0$. It is easy to verify that these definitions turn $F[X]$ into an associative and commutative unital F-algebra with the 0 -polynomial acting as the identity element for addition and the degree- 0 polynomial 1 acting as the identity element for multiplication. This algebra is an integral domain, that is, the product of two nonzero elements of $F[X]$ is again nonzero. In general, an algebra having this property is said to be entire.

Thus, commutative, associative, entire, unital F-algebras are integral domains. The converse of this is not true: \mathbb{Z} is an integral domain which is not an F-algebra for any field F. Not every commutative and associative unital \mathbb{R}-algebra is entire. Indeed, the functions $f: a \mapsto \max \{a, 0\}$ and $g: a \mapsto \max \{-a, 0\}$ are both nonzero elements of the \mathbb{R}-algebra $\mathbb{R}^{[-1,1]}$, but their product is the 0 -function.

If $f(X)=\sum_{i=0}^{\infty} a_{i} X^{i}$ and $g(X)=\sum_{i=0}^{\infty} b_{i} X^{i}$ are polynomials in $F[X]$ then we define the polynomial $f(g(X))$ to be $\sum_{i=0}^{\infty} a_{i} g(X)^{i}$. Then, for any fixed $g(X)$, the set $F[g(X)]=\{f(g(X)) \mid f(X) \in F[X]\}$ is a unital subalgebra of $F[X]$.

Note that every polynomial in $F[X]$ is a linear combination of elements of the set $B=\left\{1, X, X^{2}, \ldots\right\}$ over F, so B is a set of generators of $F[X]$ over F. On the other hand, it is clear that no finite set of polynomials can be a generating set for $F[X]$ over F, and so $F[X]$ is not finitely generated as a vector space over F.

We should remark that the formal definition of multiplication of polynomials does not translate into the fastest method of carrying out such multiplication in practice on a computer, especially for polynomials of large degree. The problem of fast polynomial multiplication has been the subject of extensive research over the years, and many interesting algorithms to perform such multiplication have been devised. A typical such algorithm is Karatsuba's algorithm, which is easy to implement on a computer: let $f(X)$ and $g(X)$ be polynomials in $F[X]$, where F is a field. We can write these polynomials as $f(X)=\sum_{i=0}^{n} a_{i} X^{i}$ and $g(X)=\sum_{i=0}^{n} b_{i} X^{i}$, where n is a nonnegative power of 2 satisfying $n \geq \max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$. (Of course, in this case a_{n} and b_{n} may equal 0 .) We now calculate $f(X) g(X)$ as follows:
(1) If $n=1$ then $f(X) g(X)=a_{1} b_{1} X^{2}+\left(a_{0} b_{1}+a_{1} b_{0}\right) X+a_{0} b_{0}$.
(2) Otherwise, write $f(X)=f_{1}(X) X^{n / 2}+f_{0}(X)$ and

$$
g(X)=g_{1}(X) X^{n / 2}+g_{0}(X)
$$

where the polynomials $f_{0}(X), f_{1}(X), g_{0}(X)$, and $g_{1}(X)$ are all of degree at most $n / 2$.
(3) Recursively, calculate $f_{0}(X) g_{0}(X), f_{1}(X) g_{1}(X)$, and

$$
\left(f_{0}+f_{1}\right)(X)\left(g_{0}+g_{1}\right)(X)
$$

(4) Then

$$
\begin{aligned}
f(X) g(X)= & X^{n}\left(f_{1} g_{1}\right)(X)+X^{n / 2}\left[\left(f_{0}+f_{1}\right)\left(g_{0}+g_{1}\right)-f_{0} g_{0}-f_{1} g_{1}\right](X) \\
& +\left(f_{0} g_{0}\right)(X)
\end{aligned}
$$

Indeed, if the multiplication of two polynomials of degree at most n using the definition of polynomial multiplication takes an order of $2 n^{2}$ arithmetic operations (i.e., additions and multiplications), it is possible to prove that there exists a fixed positive integer c such that the multiplication of two polynomials of degree at most n using Karatsuba's algorithm takes at most $c n^{1.59}$ arithmetic operations. If n is sufficiently large, the difference between these two bounds can be significant.

The main idea of Karatsuba's algorithm lies in the recursive reduction of the degrees of the polynomials involved. The method of recursive reduction has since been extended to fast algorithms in many other areas of mathematics. We will encounter it again when we consider the Strassen-Winograd algorithms for matrix multiplication.

With kind permission of Ekatherina Karatsuba.
Anatoli Alexeevich Karatsuba is a contemporary Russian mathematician whose research is primarily in number theory.

There are other highly-sophisticated algorithms for multiplying two polynomials of degree at most n in an order of $n \log (n)$ arithmetic operations.

Proposition 4.2 (Division Algorithm) If F is a field and if $f(X)$ and $g(X) \neq$ 0 are elements of $F[X]$, then there exist unique polynomials $u(X)$ and $v(X)$ in $F[X]$ satisfying $f(X)=g(X) u(X)+v(X)$ and $\operatorname{deg}(v)<\operatorname{deg}(g)$.

Proof Assume that $f(X)=\sum_{i=0}^{\infty} a_{i} X^{i}$ and $g(X)=\sum_{i=0}^{\infty} b_{i} X^{i}$ are the given polynomials. If $f(X)=0$ or if $\operatorname{deg}(f)<\operatorname{deg}(g)$, choose $u(X)=0$ and $v(X)=f(X)$, and we are done. Thus we can assume that $n=\operatorname{deg}(f) \geq \operatorname{deg}(g)=k$, and will prove our result by induction on n. If $n=0$ then $k=0$, and therefore we can choose $u(X)$ to be $a_{0} b_{0}^{-1}$, which is a polynomial of degree 0 , and choose $v(X)$ to be the 0-polynomial. Now assume, inductively, that $n>0$ and that the proposition has been established for all functions $f(X)$ of degree less than n. Set $h(X)=$ $f(X)-a_{n} b_{k}^{-1} X^{n-k} g(X)$. If this is the 0-polynomial, choose $u(X)=a_{n} b_{k}^{-1} X^{n-k}$ and let $v(X)$ be the 0 -polynomial. Otherwise, since $\operatorname{deg}(f)>\operatorname{deg}(h)$, we see by the induction hypothesis that there exist polynomials $v(X)$ and $w(X)$ in $F[X]$ satisfying $h(X)=g(X) w(X)+v(X)$, where $\operatorname{deg}(g)>\operatorname{deg}(v)$. Thus $f(X)=\left[a_{n} b_{k}^{-1} X^{n-k}+\right.$ $w(X)] g(X)+v(X)$, as required.

We are left to show uniqueness. Indeed, assume that $f(X)$ equals $g(X) u_{1}(X)+$ $v_{1}(X)$ and $g(X) u_{2}(X)+v_{2}(X)$, where $\operatorname{deg}\left(v_{1}\right)<\operatorname{deg}(g)$ and $\operatorname{deg}\left(v_{2}\right)<\operatorname{deg}(g)$. Then $g(X)\left[u_{1}(X)-u_{2}(X)\right]+\left[v_{1}(X)-v_{2}(X)\right] g(X)\left[u_{1}(X)-u_{2}(X)\right]+\left[v_{1}(X)-\right.$ $v_{2}(X)$] equals the 0 -polynomial. If we have $u_{1}(X)=u_{2}(X)$ then $v_{1}(X)=v_{2}(X)$, and we are done. Therefore, assume that $u_{1}(X) \neq u_{2}(X)$. But then, since $\operatorname{deg}\left(g\left[u_{1}-\right.\right.$ $\left.\left.u_{1}\right]\right)>\operatorname{deg}\left(v_{1}-v_{2}\right)$ and since $F[X]$ is entire, this is a contradiction. Thus we have established uniqueness.

Let us emphasize that the set $F[X]$ is composed of formal expressions and not functions. Every polynomial $f(X)=\sum_{i=0}^{\infty} a_{i} X^{i} \in F[X]$ defines a corresponding
polynomial function in F^{F} given by $c \mapsto f(c)=\sum_{i=0}^{\infty} a_{i} c^{i}$, but the correspondence between polynomials and polynomial functions is not bijective. Indeed, it is possible for two distinct polynomials to define the same polynomial function. Thus, for example, if $F=\mathrm{GF}(2)$ then the distinct polynomials X, X^{2}, X^{3}, \ldots all define the same function from F to itself, namely the function given by $0 \mapsto 0$ and $1 \mapsto 1$. The degree of a polynomial function is the least of the degrees of the (perhaps many) polynomials which define that function.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach.
The first person to systematically consider the best methods of calculating $f(c)$ for a polynomial $f(X) \in F[X]$ and for $c \in F$, was the twentieth-century Russian mathematician Alexander Markovich Ostrowski.

Let $p_{1}(X)$ and $p_{2}(X)$ be polynomials in $F[X]$ and let $c \in F$. If we set $f(X)=$ $p_{1}(X)+p_{2}(X)$ and $g(X)=p_{1}(X) p_{2}(X)$ then it is clear that $f(c)=p_{1}(c)+p_{2}(c)$ and $g(c)=p_{1}(c) p_{2}(c)$.

Proposition 4.3 Let F be a field and let $p(X)$ be a polynomial in $F[X]$. Then an element c of F satisfies the condition that $p(c)=0$ if and only if there exists a polynomial $u(X) \in F[X]$ satisfying $p(X)=(X-c) u(X)$.

Proof By Proposition 4.2, we know that there exist polynomials $u(X)$ and $v(X)$ in $F[X]$ satisfying $p(X)=(X-c) u(X)+v(X)$, where $\operatorname{deg}(v)<\operatorname{deg}(X-c)=1$. Therefore, $v(X)=b$ for some $b \in F$. If $b=0$ then $p(c)=(c-c) u(c)=0$. Conversely, if $p(c)=0$ then $0=p(c)=(c-c) u(c)+b=b$ and so $p(X)=$ $(x-c) u(X)$.

As an immediate consequence of this result, we see that if F is a field and if $p(X) \in F[X]$, then the set of all elements c of F satisfying $p(c)=0$ is finite and, indeed, cannot exceed the degree of $p(X)$.

Let F be a field. A polynomial $p(X) \in F[X]$ is reducible if and only if there exist polynomials $u(X)$ and $v(X)$ in $F[X]$, each of degree at least 1, satisfying $p(X)=u(X) v(X)$. Otherwise, the polynomial is irreducible. Many tests for the irreducibility of polynomials in $\mathbb{Q}[X]$ have been devised. One of the earliest and well-known is Eisenstein's criterion: if $p(X)=\sum_{i=0}^{n} a_{i} X^{i} \in \mathbb{Q}[X]$, where each a_{i} is an integer, and if there exists a prime integer q such that q does not divide a_{n}, q divides a_{i} for all $0 \leq i \leq n-1$, and q^{2} does not divide a_{0}, then $p(X)$ is irreducible. (A proof of this can be found in books on abstract algebra.) Thus, using this criterion, we see that $3 X^{3}+7 X^{2}+49 X-7$ is an irreducible polynomial in $\mathbb{Q}[X]$.

Gauss' brilliant student, Ferdinand Eisenstein, died of tuberculosis at the age of 29 .

Example If $F=\mathrm{GF}(5)$ then the polynomial $X^{3}+X+1 \in F[X]$ is irreducible, a fact which can be established, if necessary, by testing all possibilities. However, when $F=\mathrm{GF}(3)$ it is easy to verify the factorization $X^{3}+X+1=(X+2)\left(X^{2}+X+2\right)$, and thus see that the polynomial is reducible.

Example If $p(X)=u(X) v(X)$ in $F[X]$, then surely $p(X+c)=u(X+c) v(X+c)$ for any $c \in F$, and so to prove that a polynomial $p(X)$ is irreducible it suffices to prove that $p(X+c)$ is irreducible for some $c \in F$. For example, let q be a prime integer. The q th cyclotomic polynomial in $\mathbb{Q}[X]$ is defined to be $\Phi_{q}(X)=\sum_{i=0}^{q-1} X^{i}$. We claim that this polynomial is irreducible. To see that this is so, we observe that $\Phi_{q}(X+1)=X^{q-1}+\sum_{i=0}^{q-2}\binom{q}{q-1-i} X^{i}$, which is irreducible by Eisenstein's criterion.

It is known that the number of monic irreducible polynomials of positive degree m in $\operatorname{GF}(p)$ equals $N(p)=\frac{1}{m} \sum \mu(d) p^{m / d}$, where the sum ranges over all integers d which divide m and the Möbius function $\mu(d)$ is defined by

$$
\mu(d)= \begin{cases}1 & \text { if } d=1, \\ (-1)^{k} & \text { if } d \text { is the product of } k \text { distinct primes, } \\ 0 & \text { otherwise } .\end{cases}
$$

This means that the probability of a randomly-selected monic polynomial of degree m in $\mathrm{GF}(p)[X]$ being irreducible is $N(p) / p^{m}$, which is roughly $\frac{1}{m}$. In particular, we note that for every positive integer m there exists at least one monic irreducible polynomial of degree m in $\operatorname{GF}(p)$.

Any polynomial in $F[X]$ can be written as a product of irreducible polynomials. How to find such a decomposition, especially in the case of polynomials over a finite field or over \mathbb{Q}, is a very difficult and important problem, which attracted such great mathematicians as Newton and which continues to attract many important mathematicians until this day. Indeed, the problem of factoring polynomials over finite fields into irreducible components has become even more important, since it is the basis for many current cryptographic schemes. There are algorithms, such as Berlekamp's algorithm, which factor a polynomial $f(X) \in F[X]$, where $F=\operatorname{GF}\left(p^{n}\right)$, in a time polynomial in p, n, and $\operatorname{deg}(f)$. Moreover, under various assumptions, such as the Generalized Riemann Hypothesis, polynomials of special forms can be factored much more rapidly.

A polynomial $p(X) \in F[X]$ of positive degree is completely reducible if and only if it can be written as a product of polynomials in $F[X]$ of degree 1 . Not every polynomial over every field is completely reducible. For example, the polynomial $X^{2}+1 \in \mathbb{Q}[X]$ is not completely reducible. The field F is algebraically closed if every polynomial of positive degree in $F[X]$ is completely reducible. The fields \mathbb{Q} and \mathbb{R} are not algebraically closed. The field \mathbb{C} is algebraically closed, by a theorem known as the Fundamental Theorem of Algebra. This theorem is in fact analytic and not algebraic, and relies on various analytic properties of functions of a complex variable. Most of the great mathematicians of the eighteenth century-d'Alembert, Euler, Laplace, Lagrange, Argand, Cauchy, and others-tried in vain to prove this theorem. The first proof was given by Gauss in his doctoral thesis in 1799. His proof was basically topological and relied on the work of Euler. During his lifetime, Gauss published several proofs of this theorem.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach.
A "nearly algebraic" proof was given by German/American mathematician Hans Zassenhaus in 1969. Most proofs of the Fundamental Theorem of Algebra are existence proofs and do not give a constructive method of finding the degree-one factors of a polynomial over an algebraically-closed field. The first constructive proof was given by the German mathematician Helmut Kneser in 1940.

Example The field $F=\mathrm{GF}(2)$ is not algebraically closed since the polynomial $X^{2}+X+1 \in F[X]$ is not completely reducible.

Note that if a field F is algebraically closed then every polynomial function $F \rightarrow F$ defined by a polynomial of positive degree is epic. Indeed, let $p(X) \in F[X]$ be a polynomial of positive degree and let $d \in F$. Then $q(X)=p(X)-d$ is a polynomial of positive degree in $F[X]$ and so there exists an element c of F such that $q(c)=0$. In other words, $p(c)=d$.

It is easy to see that a polynomial $p(X) \in \mathbb{R}[X]$ of degree 1 is irreducible. If $p(X)=a X^{2}+b X+c$ is of degree 2 then, considering it as an element of $\mathbb{C}[X]$, we have

$$
p(X)=a\left(X+\frac{b}{2 a}+\frac{1}{2 a} \sqrt{b^{2}-4 a c}\right)\left(X-\frac{b}{2 a}+\frac{1}{2 a} \sqrt{b^{2}-4 a c}\right) .
$$

Then this factorization holds in $\mathbb{R}[X]$ as well if and only if $b^{2}-4 a c \geq 0$, and so $p(X)$ is irreducible if and only if $b^{2}-4 a c<0$. From the following result we deduce immediately that there are no irreducible polynomials in $\mathbb{R}[X]$ of degree greater than 2.

Proposition 4.4 A monic polynomial $p(X) \in \mathbb{R}[X]$ is irreducible if and only if it is of the form $X-a$ or $(X-a)^{2}+b^{2}$, where $a \in \mathbb{R}$ and $0 \neq b \in \mathbb{R}$.

Proof Clearly, every polynomial of the form $X-a$ is irreducible. Now assume that $f(X)=(X-a)^{2}+b^{2}=X^{2}-2 a X+a^{2}+b^{2}$. Were this polynomial reducible, we could find real numbers c and d satisfying

$$
f(X)=(X-c)(X-d)=X^{2}-(c+d) X+c d
$$

and so $c+d=2 a$ and $c d=a^{2}+b^{2}$. This implies that $c^{2}-2 a c+a^{2}+b^{2}=0$ and hence $c=\frac{1}{2}\left[2 a \pm \sqrt{4 a^{2}-4\left(a^{2}+b^{2}\right)}\right]=a \pm \sqrt{-b^{2}}$, which contradicts the assumption that $c \in \mathbb{R}$ since b is assumed to be nonzero. Thus polynomials of both of the given forms are indeed irreducible.

Conversely, let $p(X)=\sum_{i=0}^{n} c_{i} X^{i}$ be a monic irreducible polynomial in $\mathbb{R}[X]$ that is not of the form $X-a$. By the Fundamental Theorem of Algebra, we know that there exists a complex number $z=a+b i$ satisfying $p(z)=0$. Since the coefficients of $p(X)$ are real, this means that $p(\bar{z})=0$ as well, since $0=\overline{0}=$ $\overline{p(z)}=\sum_{i=0}^{n} c_{i} \bar{z}^{i}=p(\bar{z})$. Thus there exists a polynomial $u(X) \in \mathbb{R}[X]$ satisfying $p(X)=(X-z)(X-\bar{z}) u(X)$, where $(X-z)(X-\bar{z})=X^{2}-(z+\bar{z}) X+z \bar{z}=$ $X^{2}-2 a X+a^{2}+b^{2}$. Since $p(X)$ was assumed irreducible, we conclude that $z \notin \mathbb{R}$ (i.e., $b \neq 0$) and that $p(X)$ equals $X^{2}-2 a X+a^{2}+b^{2}$, as desired.

An obvious generalization of the above construction is the following: Let F be a field and let (K, \bullet) be an associative and commutative unital F-algebra. If X is an element not in K, we can define a polynomial with coefficients in K as a formal sum $f(X)=\sum_{i=0}^{\infty} a_{i} X^{i}$, in which the elements a_{i} belong to K and no more than a finite number of them differ from 0_{K}. The set of all such polynomials will be denoted by $K[X]$. As above, we define addition and multiplication in $K[X]$ as follows: if $f(X)=\sum_{i=0}^{\infty} a_{i} X^{i}$ and $g(X)=\sum_{i=0}^{\infty} b_{i} X^{i}$ belong to $K[X]$, then $f(X)+g(X)$ is the polynomial $\sum_{i=0}^{\infty} c_{i} X^{i}$, in which $c_{i}=a_{i}+b_{i}$ for each $0 \leq i \leq \infty$, and $f(X) g(X)$ is the polynomial $\sum_{i=0}^{\infty} d_{i} X^{i}$, in which $d_{i}=\sum_{j=0}^{i} a_{j} \bullet b_{i-j}$ for each $0 \leq i \leq \infty$. Again, it is easy to check that $K[X]$ is an F-algebra. Moreover, as a direct consequence of the definition of multiplication, we see that if K is entire then so is $K[X]$. This generalization allows us to consider algebras of polynomials in several commuting indeterminates with coefficients in K defined inductively by setting $K\left[X_{1}, \ldots, X_{n}\right]=K\left[X_{1}, \ldots, X_{n-1}\right]\left[X_{n}\right]$ for each $n>1$. Elements of this algebra are of the form

$$
f\left(X_{1}, \ldots, X_{n}\right)=\sum a_{i_{1}, \ldots, i_{n}} X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

where the sum ranges over all n-tuples $\left(i_{1}, \ldots, i_{n}\right)$ of nonnegative integers and at most finitely-many of the coefficients $a_{i_{1}, \ldots, i_{n}} \in K$ are nonzero. The degree of $f\left(X_{1}, \ldots, X_{n}\right)$ is the maximal value of

$$
\left\{i_{1}+\cdots+i_{n} \mid a_{i_{1}, \ldots, i_{n}} \neq 0\right\}
$$

A polynomial $\sum a_{i_{1}, \ldots, i_{n}} X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}$ in $K\left[X_{1}, \ldots, X_{n}\right]$ is flat if and only if $a_{i_{1}, \ldots, i_{n}} \neq 0$ only when each i_{j} is either 0 or 1 .

Proposition 4.5 Let F be a field of characteristic other than 2 and let K be an associative and commutative unital entire F-algebra. Let $f\left(X_{1}, \ldots, X_{n}\right)=$ $\sum a_{i_{1}, \ldots, i_{n}} X_{1}^{i_{1}} \cdots X_{n}^{i_{n}} \in K\left[X_{1}, \ldots, X_{n}\right]$ be a flat polynomial of degree n. Then for each n-tuple $\left(c_{1}, \ldots c_{n}\right)$ of nonzero elements of K there exist e_{1}, \ldots, e_{n} in K, each equal to 1_{K} or -1_{K}, such that $f\left(e_{1} c_{1}, \ldots, e_{n} c_{n}\right) \neq 0$.

Proof We will prove this result by induction on n. If $n=1$, then $f\left(X_{1}\right)=a_{1} X_{1}+$ a_{0}, where $a_{1} \neq 0$. If $0_{K} \neq c \in K$ then either $a_{0}+a_{1} c$ or $a_{0}-a_{1} c$ is nonzero, for otherwise we would have $2 a_{1} c=0_{K}$, which is impossible since K is entire and the characteristic of F is not 2 . Hence the case $n=1$ has been established. Now assume that $n>1$ and that the proposition has been established for flat polynomials in $F\left[X_{1}, \ldots, X_{n-1}\right]$. We can write the polynomial $f\left(X_{1}, \ldots, X_{n}\right)$ in the form $g\left(X_{1}, \ldots, X_{n-1}\right)+h\left(X_{1}, \ldots, X_{n-1}\right) X_{n}$, where $h\left(X_{1}, \ldots, X_{n-1}\right)$ is a flat polynomial in $K\left[X_{1}, \ldots, X_{n-1}\right]$ of degree $n-1$. If $\left(c_{1}, \ldots, c_{n}\right)$ is an n-tuple of nonzero elements of K then, by the induction hypothesis, we can find e_{1}, \ldots, e_{n-1} in K, each equal to 1_{K} or -1_{K}, such that $h\left(e_{1} c_{1}, \ldots, e_{n-1} c_{n-1}\right) \neq 0$. But then we have $g\left(e_{1} c_{1}, \ldots, e_{n-1} c_{n-1}\right)+h\left(e_{1} c_{1}, \ldots, e_{n-1} c_{n-1}\right) X_{n} \in K\left[X_{n}\right]$ and so, by the case $n=1$, we can find e_{n} equal to 1_{K} or -1_{K} such that $f\left(e_{1} c_{1}, \ldots, e_{n} c_{n}\right) \neq 0$.

Exercises

Exercise 114
Let F be a field and let (K, \bullet) and $(L, *)$ be F-algebras. Define an operation \diamond on $K \times L$ by $\left[\begin{array}{l}a \\ b\end{array}\right] \diamond\left[\begin{array}{l}a^{\prime} \\ b^{\prime}\end{array}\right]=\left[\begin{array}{l}a \bullet a^{\prime} \\ b * b^{\prime}\end{array}\right]$. Is $(K \times L, \diamond)$ an F-algebra?

Exercise 115

Let F be a field and let (K, \bullet) be a unitary, associative, commutative, and entire F-algebra which, as a vector space, is finitely generated over F. Is K necessarily a field?

Exercise 116

Let F be a field and let (K, \bullet) be an associative F-algebra which, as a vector space, is finitely generated over F. Given an element $a \in K$, do there necessarily exist elements $a_{1}, a_{2} \in K$ satisfying $a_{1} \bullet a_{2}=a$?

Exercise 117

Define an operation \bullet on \mathbb{R}^{2} by setting $\left[\begin{array}{l}a \\ b\end{array}\right] \bullet\left[\begin{array}{l}c \\ d\end{array}\right]=\left[\begin{array}{c}2 a c-b d \\ a d+b c\end{array}\right]$. Show that this operation turns \mathbb{R}^{2} into an \mathbb{R}-algebra. Is this algebra associative?

Exercise 118

Let F be a field and let (K, \bullet) be a unital F-algebra. Define an operation \diamond on the vector space $L=K \times F$ by setting $\left[\begin{array}{l}v \\ a\end{array}\right] \diamond\left[\begin{array}{l}w \\ b\end{array}\right]=\left[\begin{array}{c}v \bullet w+b v+a w \\ a b\end{array}\right]$ for all $v, w \in K$ and $a, b \in F$. Is L an F-algebra? Is it unital?

Exercise 119

Let F be a field. An F-algebra (K, \bullet) is a division algebra if and only if for every $v \in K$ and for every $0_{K} \neq w \in K$ there exist unique vectors $x, y \in K$, not necessarily equal, satisfying $w \bullet x=v$ and $y \bullet w=v$. Is the algebra defined in the previous exercise a division algebra?

Exercise 120
Let K be the subset of $\mathcal{M}_{4 \times 4}(\mathbb{R})$ consisting of all matrices of the form $\left[\begin{array}{rrrr}a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a\end{array}\right]$ for $a, b, c, d \in \mathbb{R}$ and let L be the subset of $\mathcal{M}_{4 \times 4}(\mathbb{R})$
consisting of all matrices of the form $\left[\begin{array}{rrrr}a & -b & -c & -d \\ b & a & d & -c \\ c & -d & a & b \\ d & c & -b & a\end{array}\right]$. Are K and L unital subalgebras of $\mathcal{M}_{4 \times 4}(\mathbb{R})$? Are they division algebras?

Exercise 121

Let F be a field and let (K, \bullet) be an associative unital F-algebra with multiplicative identity e. For units $v, w \in K$, show that:
(1) $v \bullet\left(v^{-1}+w^{-1}\right)=(v+w) \bullet w^{-1}$;
(2) $(v+w)^{-1} \bullet w=v^{-1} \bullet\left(v^{-1}+w^{-1}\right)^{-1}$ whenever $v+w$ and $v^{-1}+w^{-1}$ are also a units;
(3) $v \bullet w^{-1}+e=v \bullet\left(v^{-1}+w^{-1}\right)$.

Exercise 122
Let F be a field and let (K, \bullet) be an associative F-algebra which, as a vector space, is finitely generated over F. Suppose that there exists an element $y \in K$ satisfying the condition that for each $v \in K$ there exists an element $v^{\prime} \in K$ satisfying $v^{\prime} \bullet y=v$. Show that each such element v^{\prime} must be unique.

Exercise 123

Let F be an infinite field and let $(K, *)$ be an associative unital F-algebra. If $v, w \in K$, show that there are infinitely-many elements w^{\prime} of K satisfying $v \bullet w=v \bullet w^{\prime}$ in K.

Exercise 124

Let F be a field and let (K, \bullet) be an associative unital F-algebra. If A and B are subsets of K, we let $A \bullet B$ be the set of all elements of K of the form $a \bullet b$, with
$a \in A$ and $b \in B$ (in particular, $\varnothing \bullet B=A \bullet \varnothing=\varnothing$). We know that the set V of all subsets of K is a vector space over $\mathrm{GF}(2)$. Is (V, \bullet) a $\mathrm{GF}(2)$-algebra? If so, is it associative? Is it unital?

Exercise 125

Let F be a field and let (K, \bullet) be an associative F-algebra. If V and W are subspaces of K, we let $V \bullet W$ be the set of all finite sums of the form $\sum_{i=1}^{n} v_{i} \bullet w_{i}$, with $v_{i} \in V$ and $w_{i} \in W$. Is $V \bullet W$ necessarily a subspace of K ?

Exercise 126

Let (K, \bullet) be an associative F-algebra and let $v \in K$. If there exists an element y of K satisfying $v \bullet y \bullet v=v$, show that there also exists an element w of K satisfying $v \bullet w \bullet v=v$ and $w \bullet v \bullet w=w$.

Exercise 127

For $v, w \in \mathbb{R}^{3}$, simplify the expression $(v+w) \times(v-w)$.

Exercise 128
For $u, v, w \in \mathbb{R}^{3}$, simplify the expression $(u+v+w) \times(v+w)$.

Exercise 129

Let F be a field and let (K, \bullet) be an F-algebra satisfying the Jacobi identity. Show that K is a Lie algebra if and only if $v \bullet v=0_{K}$ for all $v \in K$.

Exercise 130

Let F be a field and let $(K, *)$ be an associative F-algebra. For each $0_{F} \neq c \in F$ and define an operation \bullet_{c} on K by setting $v \bullet_{c} w=c(v * w+w * v)$. For which values of c is (K, \bullet) a Jordan algebra over F ?

Exercise 131

Let F be a field and let (K, \bullet) be a unitary F-algebra. For each $v \in K$, let $S(v)$ be the set of all $a \in F$ satisfying the condition that $v-a 1_{K}$ does not have an inverse with respect to the operation \bullet. If $v \in K$ has a multiplicative inverse v^{-1} with respect to this operation, show that either $S(v)=\varnothing=S\left(v^{-1}\right)$ or $S(v) \neq \varnothing$ and $S\left(v^{-1}\right)=\left\{a^{-1} \mid a \in S(v)\right\}$.

Exercise 132

Let F be a field and let L be the set of all polynomials $f(X) \in F[X]$ satisfying the condition that $f(-a)=-f(a)$ for all $a \in F$. Is L a subspace of $F[X]$?

Exercise 133

Let F be a field and let L be the set of all polynomials $f(X) \in F[X]$ satisfying the condition that $\operatorname{deg}(f)$ is even. Is L a subspace of $F[X]$?

Exercise 134
Let F be a field and let $f(X), g(X) \in F[X]$. Show that $\operatorname{deg}(f g)=$ $\operatorname{deg}(f)+\operatorname{deg}(g)$.

Exercise 135

Let F be a field and let $f(X), g(X) \in F[X]$. Show that $\operatorname{deg}(f+g) \leq$ $\max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$, and give an example in which we do not have equality.

Exercise 136

Find polynomials $u(X), v(X) \in \mathbb{Q}[X]$ satisfying

$$
X^{4}+3 X^{3}=\left(X^{2}+X+1\right) u(X)+v(X) .
$$

Exercise 137

Let $F=\mathrm{GF}(2)$. Find polynomials $u(X), v(X) \in F[X]$ satisfying

$$
X^{5}+X^{2}=\left(X^{3}+X+1\right) u(X)+v(X)
$$

Exercise 138

Let $F=\mathrm{GF}(7)$. Find a nonzero polynomial $p(X) \in F[X]$ such that the polynomial function defined by p is the 0 -function.

Exercise 139

Is the polynomial $6 X^{4}+3 X^{3}+6 X^{2}+2 X+5 \in \mathrm{GF}(7)[X]$ irreducible?

Exercise 140

Is the polynomial $X^{7}+X^{4}+1 \in \mathbb{Q}[X]$ irreducible?

Exercise 141

Find $t \in \mathbb{R}$ such that there exist $a, b \in \mathbb{R}$ satisfying $a+b=1$ and $2 a^{3}-a^{2}-$ $7 a+t=0=2 b^{3}-b^{2}-7 b+t$.

Exercise 142

For a field F, compare the subsets $F\left[X^{2}\right]$ and $F\left[X^{2}+1\right]$ of $F[X]$.

Exercise 143

Let $F=\mathrm{GF}(p)$, where p is a prime integer, and let g be an arbitrary function from F to itself. Show that there exists a polynomial $p(X) \in F[X]$ of degree less than p satisfying the condition that $g(c)=p(c)$ for all $c \in F$.

Exercise 144

Let c be a nonzero element of a field F and let $n>1$ be an integer. Show that there exists a polynomial $p(X) \in F[X]$ satisfying $c^{n}+c^{-n}=p\left(c+c^{-1}\right)$.

Exercise 145

Let F be a field. Find the set of all polynomials $0 \neq p(X) \in F[X]$ satisfying $p\left(X^{2}\right)=p(X)^{2}$.

Exercise 146

Let $p_{k}(X)=\frac{1}{k!} X(X-1) \cdots(X-k+1) \in \mathbb{Q}[X]$ for some positive integer k. Show that $p_{k}(n) \in \mathbb{Z}$ for every nonnegative integer n.

Exercise 147

Let $p_{n}(X)=n X^{n+1}-(n+1) X^{n}+1 \in \mathbb{Q}[X]$ for any positive integer n. Show that there exists a polynomial $q_{n}(X) \in \mathbb{Q}[X]$ satisfying $p_{n}(X)=(X-1)^{2} q_{n}(X)$.

Exercise 148

Let F be a field and let W be a nontrivial subspace of the vector space $F[X]$ over F. Let $p(X) \in F[X]$ be a given monic polynomial and let $p(X) W=$ $\{p(X) f(X) \mid f(X) \in W\}$. Show that $p(X) W$ is a subspace of $F[X]$ and find a necessary and sufficient condition for it to equal W.

Exercise 149

Let p be a prime integer and let n be a positive integer. Does there necessarily exist an irreducible monic polynomial in $\operatorname{GF}(p)[X]$ of degree n ?

Exercise 150

Let p be a prime integer and let n be a positive integer. Show that the product of all irreducible monic polynomials in $\operatorname{GF}(p)[X]$ of degree dividing n is equal to $X^{p^{n}}-X$.

Exercise 151

Let $n>1$ be an integer. Is the polynomial $p(X)=1+\sum_{h=1}^{n} \frac{1}{h!} X^{h} \in \mathbb{Q}[X]$ necessarily irreducible?

Exercise 152

Show that the polynomial $X^{4}+1$ is irreducible in $\mathbb{Q}[X]$ but reducible in $\operatorname{GF}(p)[X]$ for every prime p.

Exercise 153

Show that $X^{4}+2(1-c) X^{2}+(1+c)^{2} \in \mathbb{Q}[X]$ is irreducible for every $c \in \mathbb{Q}$ satisfying $\sqrt{c} \notin \mathbb{Q}$.

Exercise 154

Let F be a field and let $K=F^{\mathbb{N}}$. Define operations + and \bullet on K by setting $f+g: i \mapsto f(i)+g(i)$ and $f \bullet g: i \mapsto \sum_{j+k=i} f(j) g(k)$. Show that K is an associative and commutative unital F-algebra. Is it entire?

Exercise 155
Let k be a positive integer and let $a<b$ be real numbers. A function $f \in \mathbb{R}^{[a, b]}$ is a spline function of degree k if and only if there exist real numbers $a=a_{0}<\cdots<$ $a_{n}=b$ and polynomials $p_{0}(X), \ldots, p_{n-1}(X)$ of degree k in $\mathbb{R}[X]$ satisfying the condition that $f: x \mapsto p_{i}(x)$ for all $a_{i} \leq x \leq a_{i+1}$ and all $0 \leq i \leq n-1$. Spline functions play an important part in interpolation theory and in numerical procedures for solving differential equations. Is the set of all spline functions of fixed degree k a subspace of the vector space $\mathbb{R}^{[a, b]}$?

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach.
Spline functions were first defined and studied by the twentiethcentury Romanian/American mathematician Isaac Jacob Schoenberg.

Exercise 156

Let F be a finite field, let $k>1$ be an integer, and let V be the vector space over F consisting of all polynomials in $F[X]$ having degree less than k. Let a_{1}, \ldots, a_{n} be distinct elements of F and let W be the subset of F^{n} consisting of all vectors of the form $\left[\begin{array}{c}p\left(a_{1}\right) \\ \vdots \\ p\left(a_{n}\right)\end{array}\right]$ for some $p \in V$. Is W a subspace of F_{n} ?

Exercise 157

A trigonometric polynomial in $\mathbb{R}^{\mathbb{R}}$ is a function of the form $t \mapsto a_{0}+$ $\sum_{h=1}^{k}\left[a_{h} \cos (h t)+b_{h} \sin (h t)\right]$, where $a_{0}, \ldots, a_{k}, b_{1}, \ldots, b_{k} \in \mathbb{R}$. Show that the subset of $\mathbb{R}^{\mathbb{R}}$ consisting of all trigonometric polynomials is an entire \mathbb{R}-algebra.

Linear Independence and Dimension

5

In this chapter, we will see how a restricted collection of vectors in a vector space over a field can dictate the structure of the entire space, and we will deduce farranging conclusions from this. Let V be a vector space over a field F. A nonempty subset D of V is linearly dependent if and only if there exist distinct vectors v_{1}, \ldots, v_{n} in D and scalars a_{1}, \ldots, a_{n} in F, not all of which are equal to 0 , satisfying $\sum_{i=1}^{n} a_{i} v_{i}=0_{V}$. A list of elements of V is linearly dependent if it has two equal members or if its underlying subset is linearly dependent. Clearly, any set of vectors containing 0_{V} is linearly dependent. A nonempty set of vectors which is not linearly dependent is linearly independent. That is to say, D is linearly independent if and only if $D=\varnothing$ or $D \neq \varnothing$ and we have $\sum_{i=1}^{n} a_{i} v_{i}=0_{V}$ with the a_{i} in F and the v_{i} in V, when and only when $a_{i}=0$ for all $1 \leq i \leq n$. As a consequence of this definition, we see that an infinite set of vectors is linearly dependent if and only if it has a finite linearly-dependent subset, and an infinite set of vectors is linearly independent if and only if each of its finite subsets is linearly independent. It is also clear that any set of vectors containing a linearly-dependent subset is linearly dependent and that any subset of a linearly-independent set of vectors is linearly independent.

With kind permission of The Shelby White and Leon Levy Archives Center, USA.
The notion of linear independence of vectors was introduced by Grassmann; it was extensively generalized to other mathematical contexts the by the twentieth-century American mathematician Hassler Whitney.

Example The subset $\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{r}-4 \\ 7 \\ 11\end{array}\right]\right\}$ of \mathbb{Q}^{3} is linearly dependent
since $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=(-1)\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]+3\left[\begin{array}{r}-1 \\ 3 \\ 4\end{array}\right]+(-1)\left[\begin{array}{r}-4 \\ 7 \\ 11\end{array}\right]$. Similarly, the subset $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ of \mathbb{Q}^{3} is linearly independent, since if

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=a\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+b\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],
$$

then $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}a+b+c \\ b+c \\ c\end{array}\right]$ and this implies that $a=b=c=0$.

generates a subspace of V composed of eight vectors:
$\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right], \quad\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right], \quad\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1\end{array}\right], \quad\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right], \quad\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right], \quad\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right], \quad$ and $\quad\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right]$.

Note that in every element of V other than its identity element for addition, a majority of the entries are nonzero. This property makes this subspace of V important in algebraic coding theory.

Example Let $b>1$ be a real number, let $\left\{p_{1}, p_{2}, \ldots\right\}$ be the set of prime integers and, for each i, let $u_{i}=\log _{b}\left(p_{i}\right)$. We claim that $D=\left\{u_{1}, u_{2}, \ldots\right\}$ is a linearlyindependent subset of \mathbb{R} when it is considered as a vector space over \mathbb{Q}. Indeed, assume that this is not the case. Then there are a positive integer n and rational numbers a_{1}, \ldots, a_{n}, not all equal to 0 , satisfying $\sum_{i=1}^{n} a_{i} u_{i}=0$. If we multiply both sides by the product of the denominators of the a_{i}, we can assume that the a_{i}
are integers. Then

$$
1=b^{0}=b^{\sum a_{i} u_{i}}=\prod_{i=1}^{n} b^{a_{i} u_{i}}=\prod_{i=1}^{n}\left(b^{u_{i}}\right)^{a_{i}}=\prod_{i=1}^{n} p_{i}^{a_{i}},
$$

and this is a contradiction. Therefore, D must be linearly independent.
Example Let F be a field and let Ω be a nonempty set. Let V_{i} be a vector space over F for each $i \in \Omega$, and set $V=\prod_{i \in \Omega} V_{i}$. We have already seen that the identity for addition in this vector space is the function $g_{0}: \Omega \rightarrow \bigcup_{i \in \Omega} V_{i}$ given by $g_{0}: i \mapsto 0_{V_{i}}$. For each $i \in \Omega$, let $f_{i}: \Omega \rightarrow \bigcup_{i \in \Omega} V_{i}$ be a function satisfying the condition that $f_{i}(i) \neq g_{0}(i)$ but $f_{i}(h)=g_{0}(h)$ for all $h \in \Omega \backslash\{i\}$. We claim that the subset $\left\{f_{i} \mid i \in \Omega\right\}$ of V is linearly independent. To see this, assume that there exists a finite subset Λ of Ω and a family of scalars $\left\{c_{h} \mid h \in \Lambda\right\}$ such that $\sum_{h \in \Lambda} c_{h} f_{h}=g_{0}$. Then for each $k \in \Lambda$ we have $g_{0}(k)=\left(\sum_{h \in \Lambda} c_{h} f_{h}\right)(k)=\sum_{h \in \Lambda} c_{h} f_{h}(k)=c_{k} f_{k}(k)$ and since, by definition, $f_{k}(k) \neq g_{0}(k)$, we must have $c_{k}=0$.

Example If F is a field, the subset $\left\{1, X, X^{2}, \ldots\right\}$ of $F[X]$ is surely linearly independent, since $\sum_{i=0}^{n} a_{i} X^{i}=0$ if and only if each of the coefficients a_{i} equals 0 .

Example Let $V=\mathbb{R}^{\mathbb{R}}$ be the vector space, over \mathbb{R}, of all functions from \mathbb{R} to itself. Let D be the set of all functions of the form $x \mapsto e^{a x}$ for some real number a. We claim that D is linearly independent. Indeed, assume that there are distinct real numbers a_{1}, \ldots, a_{n} and real numbers c_{1}, \ldots, c_{n} such that the function $x \mapsto \sum_{i=1}^{n} c_{i} e^{a_{i} x}$ equals the 0 -function $f_{0}: x \mapsto 0$, which is the identity element of V for addition. We need to show that each of the c_{i} equals 0 , and this we will do by induction on n.

If $n=1$ then we must have $c_{1}=0$ since the function $x \mapsto e^{a x}$ is different from f_{0} for each $a \in \mathbb{R}$. Assume therefore that $n>1$ and that every subset of D having no more than $n-1$ elements is linearly independent. For each $1 \leq i \leq n$, set $b_{i}=$ $a_{i}-a_{n}$. Then

$$
f_{0}=e^{-a_{n} x} \sum_{i=1}^{n} c_{i} e^{a_{i} x}=\left[\sum_{i=1}^{n-1} c_{i} e^{b_{i} x}\right]+c_{n}
$$

and if we differentiate both sides of the equation, we see that $f_{0}=\sum_{i=1}^{n-1} b_{i} c_{i} e^{b_{i} x}$. By the induction hypothesis and the choice of the scalars a_{i} as being distinct, it follows that $b_{i} c_{i}=0 \neq b_{i}$ for each $1 \leq i \leq n-1$ and so $c_{i}=0$ for all $1 \leq i \leq n-1$. This in turn implies that $c_{n}=0$ as well.

Similarly, let G be the subset of V consisting of all of the functions of the form $g_{i}: x \mapsto x^{i-1} 2^{x-1}$. We claim that this set too is linearly independent. Indeed, assume otherwise. Then there exists a positive integer n and there exist real numbers c_{1}, \ldots, c_{n}, such that $\sum_{i=1}^{n} c_{i} g_{i}=f_{0}$. But this implies that $2^{x-1}\left(\sum_{i=1}^{n} c_{i} x^{i-1}\right)=0$ for each real number x. Since $2^{x-1} \neq 0$ for each $x \in \mathbb{R}$, we conclude that $\sum_{i=1}^{n} c_{i} x^{i-1}=0$ for all x. But the polynomial function $x \mapsto \sum_{i=1}^{n} c_{i} x^{i-1}$ from \mathbb{R} to itself has infinitely-many roots if and only $c_{i}=0$ for all i, proving linear independence.

Note that if $\{v, w\}$ is a linearly-dependent set of vectors in an anticommutative algebra (K, \bullet) over a field of characteristic other than 2 , then there exist scalars a and b, not both equal to 0 , such that $a v+b w=0_{K}$. Relabeling if necessary, we can assume that $b \neq 0$. Then $0_{K}=a(v \bullet v)+b(v \bullet w)=b(v \bullet w)$ and so $v \bullet w=0_{K}$. A simple induction argument shows that if D is a linearly-dependent subset of K then $v_{1} \bullet \cdots \bullet v_{k}=0_{K}$ for any finite subset $\left\{v_{1}, \ldots, v_{k}\right\}$ of D.

Note too that Proposition 3.7 can be easily iterated to get the more general result that if D is a nonempty subset of a vector space V over a field F and if B is a finite linearly-independent subset of $F D$ having k elements, then there exists a subset D^{\prime} of D also having k elements satisfying the condition that $F\left(\left(D \backslash D^{\prime}\right) \cup B\right)=F D$. Moreover, if D is linearly independent, so is $\left(D \backslash D^{\prime}\right) \cup B$. This result is sometimes known as the Steinitz Replacement Property.

Proposition 5.1 Let V be a vector space over a field F. A nonempty subset D of V is linearly dependent if and only if some element of D is a linear combination of the others over F.

Proof Assume D is linearly dependent. Then there exists a finite subset $\left\{v_{1}, \ldots, v_{n}\right\}$ of D and scalars a_{1}, \ldots, a_{n}, not all of which equal 0 , satisfying $\sum_{i=1}^{n} a_{i} v_{i}=0_{V}$. Say $a_{h} \neq 0$. Then $v_{h}=-a_{h}^{-1} \sum_{i \neq h} a_{i} v_{i}$ and so we see that v_{h} is a linear combination of the other elements of D over F. Conversely, assume that there is some element of D is a linear combination of the others over F. That is to say, there is an element v_{1} of D, elements v_{2}, \ldots, v_{n} of $D \backslash\left\{v_{1}\right\}$ and scalars a_{2}, \ldots, a_{n} in F satisfying $v_{1}=\sum_{i=2}^{n} a_{i} v_{i}$. If we set $a_{1}=-1$, we see that $\sum_{i=1}^{n} a_{i} v_{i}=0_{V}$ and so D is linearly dependent.

Example For every real number a, let f_{a} be the function in $\mathbb{R}^{\mathbb{R}}$ defined by $f_{a}: x \mapsto$ $|x-a|$. We claim that the subset $D=\left\{f_{a} \mid a \in \mathbb{R}\right\}$ of $\mathbb{R}^{\mathbb{R}}$ is linearly independent. Indeed, assume that this is not the case. Then there exists a real number b such that f_{b} is a linear combination of other members of D. In other words, there exist a finite subset E of $\mathbb{R} \backslash\{b\}$ and scalars c_{a} for each $a \in E$ such that $f_{b}=\sum_{a \in E} c_{a} f_{a}$. But the function on the right-hand side of this equation is differentiable at b, while the function on the left-hand side is not. From this contradiction, we see that D is linearly independent.

If A is a nonempty set, then a relation \preccurlyeq between elements of A is called a partial order relation if and only if the following conditions are satisfied:
(1) $a \preccurlyeq a$ for all $a \in A$;
(2) If $a \preccurlyeq b$ and $b \preccurlyeq a$ then $a=b$;
(3) If $a \preccurlyeq b$ and $b \preccurlyeq c$ then $a \preccurlyeq c$.

The term "partial" comes from the fact that, given elements a and b of A, it may happen that neither $a \preccurlyeq b$ nor $b \preccurlyeq a$. A set on which a partial order has been defined is a partially-ordered set. A partially-ordered set A satisfying the condition that for
all $a, b \in A$ we have either $a \preccurlyeq b$ or $b \preccurlyeq a$ is called a chain. A nonempty subset B of a partially-ordered set A is itself partially-ordered relative to the partial order relation defined on A; it is a chain subset if it is a chain relative to the partial order defined on A.

If A is a nonempty set on which we have a partial order relation \preccurlyeq defined, then an element a_{0} of A is maximal in A if and only if $a_{0} \preccurlyeq a$ when and only when $a=a_{0}$. An element a_{1} is minimal if and only if $a \preccurlyeq a_{1}$ when and only when $a=a_{1}$. Maximal and minimal elements need not exist or, if they exist, need not be unique. The Well Ordering Principle, one of the fundamental axioms of number theory, says that any nonempty subset of \mathbb{N}, ordered with the usual partial order, has a minimal element. This principle is equivalent to the principle of mathematical induction.

Partial order relations are ubiquitous in mathematics, and often play a very important, though not usually highlighted, part in the analysis of mathematical structures.

Example Let A be a nonempty set and let P be the collection of all subsets of A. Define a relation \preccurlyeq between elements of P by setting $B \preccurlyeq B^{\prime}$ if and only if $B \subseteq B^{\prime}$. It is easy to verify that this is indeed a partial order relation. Moreover, P has a unique maximal element, namely A, and a unique minimal element, namely \varnothing. The set P is not a chain whenever A has more than one element since, if a and b are distinct elements of A, then $\{a\} \nsubseteq\{b\}$ and $\{b\} \nsubseteq\{a\}$.

Example Let $A=\{1,2,3\}$ and let P be the collection of all subsets of A having one or two elements. Thus P has six elements: $\{1\},\{2\},\{3\},\{1,2\},\{1,3\}$, and $\{2,3\}$. Again, the relation \preccurlyeq between elements of P defined by setting $B \preccurlyeq B^{\prime}$ if and only if $B \subseteq B^{\prime}$ is a partial order relation. Moreover, P has three minimal elements: $\{1\}$, $\{2\}$, and $\{3\}$; it also has three maximal elements: $\{1,2\},\{1,3\}$, and $\{2,3\}$.

In general, if we have a collection of subsets of a given set, the collection is partially-ordered by setting $B \preccurlyeq B^{\prime}$ if and only if $B \subseteq B^{\prime}$. Therefore, it makes sense for us to talk about "a minimal generating set" of a vector space V-namely a minimal element in the partially-ordered collection of all generating sets of V and about "a maximal linearly-independent subset" of a vector space V-namely a maximal element of the partially-ordered collection of all linearly-independent subsets of V. However, we have no a priori guarantee that such minimal or maximal elements in fact exist.

Example Consider the set A of all integers greater than 1, and define a relation \preccurlyeq on A by setting $k \preccurlyeq n$ if and only if there is a positive integer t satisfying $n=t k$. This is a partial order relation on A. Moreover, A has infinitely-many minimal elements, since each prime integer is a minimal element of A, while it has no maximal elements, since $n \preccurlyeq 2 n$ for each $n \in A$.

Proposition 5.2 Let V be a vector space over a field F. Then the following conditions on a subset D of V are equivalent:
(1) D is a minimal set of generators of V;
(2) D is a maximal linearly-independent subset of V;
(3) D is a linearly-independent set of generators of V.

Proof (1) $\Rightarrow(2)$: Let D be a minimal set of generators of V, and assume that D is linearly dependent. By Proposition 5.1, there exists an element $v_{0} \in D$ which is a linear combination of elements of the set $E=D \backslash\left\{v_{0}\right\}$ over F. Say $v_{0}=\sum_{i=1}^{n} a_{i} u_{i}$, where the u_{i} belong to E and the a_{i} are scalars in F. If v is arbitrary element of V then, since D is a set of generators of V, there exists elements v_{1}, \ldots, v_{n} of E and scalars $b_{0}, b_{1}, \ldots, b_{n}$ such that $v=\sum_{j=0}^{n} b_{j} v_{j}$. But this then implies that $v=b_{0} v_{0}+\sum_{j=1}^{n} b_{j} v_{j}=\sum_{i=1}^{n} b_{0} a_{i} u_{i}+\sum_{j=1}^{n} b_{j} v_{j}$ and so E is also a set of generators of V, contradicting the minimality of D. This establishes the claim that D is linearly independent. If $v \in V \backslash D$, the set $D \cup\{v\}$ is linearly dependent since v is a linear combination of elements of D. Thus D is a maximal linearly-independent set.
$(2) \Rightarrow(3)$: Assume that D is a maximal linearly-independent subset of V.
Consider a vector v_{0} in $V \backslash D$. By (2), we know that the set $D \cup\left\{v_{0}\right\}$ is linearly dependent, and so $0_{V} \in F\left(D \cup\left\{v_{0}\right\}\right) \backslash F D$ by Proposition 3.7, this implies $v_{0} \in F\left(D \cup\left\{0_{V}\right\}\right)=F D$, which proves that D is a set of generators of V.
(3) $\Rightarrow(1)$: Assume that D is a linearly-independent set of generators of V and that E is a proper subset of D which is also a set of generators for V. Let $v_{0} \in D \backslash E$. Then there exist elements v_{1}, \ldots, v_{n} of E and scalars a_{1}, \ldots, a_{n} such that $v_{0}=\sum_{i=1}^{n} a_{i} v_{i}$. But, by Proposition 5.1, this implies that the set D is linearly dependent, contradicting (3). Therefore, no such E exists and so D is a minimal set of generators of V.

Proposition 5.3 Let V be a vector space over a field F and let D be a linearly-independent subset of V. If $v_{0} \in V \backslash F D$ then the set $D \cup\left\{v_{0}\right\}$ is linearly independent.

Proof Assume that this set is linearly dependent. Then there exist elements v_{1}, \ldots, v_{n} of D and scalars $a_{0}, a_{1}, \ldots, a_{n}$, not all equal to 0 , such that $\sum_{i=0}^{n} a_{i} v_{i}$ $=0_{V}$. The scalar a_{0} must be different from 0 , for otherwise D would be linearly dependent, which is a contradiction. Therefore, $v_{0}=\sum_{i=1}^{n}-a_{0}^{-1} a_{i} v_{i} \in F D$, which contradicts the choice of v_{0}. Thus $D \cup\left\{v_{0}\right\}$ must be linearly independent.

Proposition 5.3 has important implications. For example, let V be a vector space over a field F which is not finitely generated and let $D=\left\{v_{1}, \ldots, v_{n}\right\}$ be a linearlyindependent subset of V. Then $F D \neq V$, since V is not finitely generated, and so
there exists a vector $v_{n+1} \in V \backslash F D$ such that $\left\{v_{1}, \ldots, v_{n+1}\right\}$ is linearly independent. Thus we see that a vector space which is not finitely generated has linearlyindependent finite subsets of arbitrarily-large size.

A generating set for a vector space V over a field F which is also linearly independent, is called a basis of V over F. In Proposition 5.2, we gave some equivalent conditions for determining of a subset of a vector space is a basis. However, we have not yet proven that every (or, indeed, any) vector space must have a basis.

Example Clearly, $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ and $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ are bases of F^{3} for any field F. If the characteristic of F is other than 2 , then $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ is a basis of F^{3}, but if the field F has characteristic 2, then the set is linearly dependent, since $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]+\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.

Example Let F be a field and let both k and n be positive integers. For each $1 \leq s \leq k$ and each $1 \leq t \leq n$, let $H_{s t}$ be the matrix [$a_{i j}$] in $\mathcal{M}_{k \times n}(F)$ defined by

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j)=(s, t) \\ 0 & \text { otherwise }\end{cases}
$$

Then $\left\{H_{s t} \mid 1 \leq s \leq k\right.$ and $\left.1 \leq t \leq n\right\}$ is a basis of $\mathcal{M}_{k \times n}(F)$.
Example If F is a field, then we have already seen that the subset $\left\{1, X, X^{2}, \ldots\right\}$ of $F[X]$ is a linearly-independent generating set for $F[X]$ as a vector space over F, and so is a basis of this space. The same is true for the subset $\left\{1, X+1, X^{2}+X+1, \ldots\right\}$ of $F[X]$. More generally, if $\left\{p_{0}(X), p_{1}(X), \ldots\right\}$ is a subset of $F[X]$ satisfying the condition that $\operatorname{deg}\left(p_{i}(X)\right)=i$ for all $i \geq 0$, then it is a basis of $F[X]$ as a vector space over F.

Since every element of a vector space V over a field F has a unique representation as a linear combination of elements of a basis, if one wants to define a structure of an F-algebra on V it suffices to define the product of any pair of basis elements, and then extend the definition by distributivity and associativity. This is illustrated by the following example, and we will come back to it again in Proposition 5.5.

Example We have already noted that if F is a field then $F[X]$ is an associative F-algebra. Let us generalize this construction. Let H be a nonempty set on which we have defined an associative operation $*$. Thus, for example, H could be the set of nonnegative integers with the operation of addition or multiplication. Let V be the vector space over F with basis $\left\{v_{h} \mid h \in H\right\}$ and define an operation • on V as follows: if $v=\sum_{g \in H} a_{g} v_{g}$ and $w=\sum_{h \in H} b_{h} v_{h}$ are elements
of V (where at most finitely-many of the a_{g} and the b_{h} are nonzero), then set $v \bullet w=\sum_{g \in H} \sum_{h \in H} a_{g} b_{h} v_{g * h}$. This turns V into an associative F-algebra. In the case $H=\left\{X^{i} \mid i \geq 0\right\}$, we get $F[X]$. Such constructions are very important in advanced applications of linear algebra.

Note that a vector space may have (and usually does have) many bases and so the problem arises as to whether there is a preferred basis among all of these. For vector spaces of the form F^{n}, there are reasons to prefer the basis $\left\{\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right], \ldots,\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 1\end{array}\right]\right\} ;$ for vector spaces of the form $\mathcal{M}_{k \times n}(F)$ there are rea-
sons to prefer the basis $\left\{H_{s t} \mid 1 \leq s \leq k\right.$ and $\left.1 \leq t \leq n\right\}$ defined above; and for vector spaces of the form $F[X]$ there are reasons to prefer the basis $\left\{1, X, X^{2}, \ldots\right\}$. These bases are called the canonical bases of their respective spaces. However, in various applications-especially those involving large calculations-it is often convenient and sometimes extremely important to pick other bases which fit the problem under consideration. Indeed, in applications many considerations arise in choosing a basis D for a given vector space V. For example, we would like representation of elements of V as linear combinations of elements of the basis to be stable under perturbations of the coefficients. That is to say, if $v=\sum_{i=1}^{n} a_{i} v_{i}$, where the v_{i} are elements of D, and if a_{i}^{\prime} is a scalar near a_{i} for each $1 \leq i \leq n$, then we would like $\sum_{i=1}^{n} a_{i}^{\prime} v_{i}$ to be, in some sense, near v. (What "near" means here depends on notions of distance arising from the particular situation under consideration.) This is especially important if our data is based on observation or measurement which is not assumed to be entirely accurate. For instance, we might want to choose the basis taking into account the fact that the coefficient of v_{h} is much more dubious than the coefficients of the other basis elements, or choose it so that all of the coefficients a_{i} be of the same numerical order of magnitude for those vectors v in which we are really interested and for which we will have to do extensive calculation.

It is also important to emphasize another point. When we defined the notation for this book, we stressed that when a set is defined by listing its elements, the set comes with an implicit order defined by that listing. When we deal with bases, and especially finite bases, the order in which the elements of the basis are written often plays a critical role, and one should never lose track of this.

Proposition 5.4 Let V be a vector space over a field F and let D be a nonempty subset of V. Then D is a basis of V if and only if every vector in V can be written as a linear combination of elements of D over F in precisely one way.

Proof First, let us assume that D is a basis of V and that there exists an element v of V which can be written as a linear combination of elements of D over F in two different ways. That is to say, that there exists a finite subset $\left\{v_{1}, \ldots, v_{n}\right\}$ of D and there exist scalars $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ in F such that $v=\sum_{i=1}^{n} a_{i} v_{i}=\sum_{i=1}^{n} b_{i} v_{i}$, where $a_{h} \neq b_{h}$ for at least one index h. Then $0_{V}=$ $v-v=\left(\sum_{i=1}^{n} a_{i} v_{i}\right)-\left(\sum_{i=1}^{n} b_{i} v_{i}\right)=\sum_{i=1}^{n}\left[a_{i}-b_{i}\right] v_{i}$, where at least one of the scalars $a_{i}-b_{i}$ is nonzero. This contradicts the assumption that D is a basis and hence linearly independent. Therefore, every vector in V can be written as a linear combination of elements of D over F in precisely one way.

Conversely, assume that every vector in V can be written as a linear combination of elements of D over F in precisely one way. That certainly implies that D is a generating set for V over F. If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a subset of D and if a_{1}, \ldots, a_{n} are scalars satisfying $\sum_{i=1}^{n} a_{i} v_{i}=0_{V}$, then we have $\sum_{i=1}^{n} a_{i} v_{i}=\sum_{i=1}^{n} 0 v_{i}$ and so, by uniqueness of representation, we have $a_{i}=0$ for each $1 \leq i \leq n$. This shows that D is linearly independent and so a basis.

We can look at Proposition 5.4 from another point of view. Let D be a nonempty subset of a vector space V over a field F, and define a function $\theta: F^{(D)} \rightarrow V$ by setting $\theta: f \mapsto \sum_{u \in D} f(u) u$. (This sum is well-defined since only finitely-many of the summands are nonzero.) Then:
(1) The function θ is monic if and only if D is linearly independent;
(2) The function θ is epic if and only if D is a generating set;
(3) The function θ is bijective if and only if D is a basis.

Proposition 5.5 Let D be a basis for a vector space V over a field F. Then any function $f: D \times D \rightarrow V$ can be extended in a unique manner to a function $V \times V \rightarrow V$ which defines on V the structure of an F-algebra. Moreover, all F-algebra structures on V arise in this manner.

Proof Let $D=\left\{y_{i} \mid i \in \Omega\right\}$. Suppose that we are given a function $f: D \times D \rightarrow V$. We define an operation \bullet on V as follows: if $v, w \in V$, then, by Proposition 5.4, we know that we can write $v=\sum_{i \in \Omega} a_{i} y_{i}$ and $w=\sum_{j \in \Omega} b_{j} y_{j}$ in a unique manner, where the a_{i} and b_{j} are scalars, only a finite number of which are nonzero; then set $v \bullet w=\sum_{i \in \Omega} \sum_{j \in \Omega} a_{i} b_{j} f\left(y_{i}, y_{j}\right)$. It is straightforward to show that this defines the structure of an F-algebra on V. Conversely, if (V, \bullet) is an F-algebra, define the function $f: D \times D \rightarrow V$ by $f:\left(y_{i}, y_{j}\right) \mapsto y_{i} \bullet y_{j}$.

The function f in Proposition 5.5 is the multiplication table of the vector multiplication operation \bullet with respect to the basis D.

Example Let F be a field and let $a, b \in F$. Let $B=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be the canonical basis for F^{4} over F. Define an operation \bullet on B according to the multiplication table:

\bullet	v_{1}	v_{2}	v_{3}	v_{4}
v_{1}	v_{1}	v_{1}	v_{3}	v_{4}
v_{2}	v_{2}	$a v_{1}$	v_{4}	$a v_{3}$
v_{3}	v_{3}	$-v_{4}$	$b v_{1}$	$-b v_{2}$
v_{4}	v_{4}	$-a v_{3}$	$b v_{2}$	$-a b v_{1}$

and extend this operation to F^{4} by setting

$$
\left(\sum_{i=1}^{4} a_{i} v_{i}\right) \bullet\left(\sum_{j=1}^{4} b_{j} v_{j}\right)=\sum_{i=1}^{4} \sum_{j=1}^{4} a_{i} b_{j}\left(v_{i} \bullet v_{j}\right)
$$

Then F^{4}, together with this operation, is a unital associative algebra known as a quaternion algebra over F, in which v_{1} is the identity element of for multiplication. In the special case of $F=\mathbb{R}$ and $a=b=-1$, we get the algebra of real quaternions, which is denoted by \mathbb{H}. The algebra of real quaternions was first defined by Hamilton in 1844 as a generalization of the field of complex numbers (and earlier studied by Gauss, who did not publish his results). It is a division algebra over \mathbb{R} since every nonzero quaternion is a unit of \mathbb{H}. These were subsequently generalized by Clifford and used in his study of non-Euclidean spaces. Lately, they have also been used in computer graphics and in signal analysis. If F is a field having characteristic $p>0$, quaternion algebras over F are not even entire. However, they arise naturally in the theory of elliptic curves, and so are of great importance in cryptography. If $p>2$, then no quaternion algebras over F are commutative.

With kind permission of the Special collections, Fine Arts Library, Harvard University (Tait); With kind permission of the London Mathematical Society (Clifford).
Sir William Rowan Hamil-
ton, a nineteenth-century Irish mathematician and physicist, helped create matrix theory in its modern formulation, together with Cayley and Sylvester. Hamilton was the first to use the terms "vector" and "scalar" in an algebraic context. His championship of quaternions as an alternative to vectors in physics was later taken up by Scottish mathematician Peter Guthrie Tait. The nineteenth-century British mathematician William Kingdon Clifford was one of the first to argue that energy and matter were just different types of curvature of space.

We now show that any vector space over a field F has a basis. Indeed, the following two propositions show somewhat stronger than that.

Proposition 5.6 If V is a vector space finitely generated over a field F then every finite generating set of V over F contains a basis of V.

Proof Let V be a vector space finitely generated over a field F and let D be a finite generating set for V over F. If D is minimal among all generating sets for V, then we know by Proposition 5.2 that it is a basis of V. If not, it properly contains other generating sets for V over F, one of which, say E, has the fewest elements. Then E cannot properly contain any other generating set for V over F, and so it must be a basis of V.

Proposition 5.7 If V is a vector space finitely generated over a field F then every linearly-independent subset B of V is contained in a basis of V over F.

Proof By assumption, there exists a finite generating set $\left\{v_{1}, \ldots, v_{n}\right\}$ for V over F. Let B be a linearly-independent subset of V. If $v_{i} \in F B$ for each $1 \leq i \leq n$, then $F B=V$, and B is itself a basis of V. Otherwise, let $h=\min \left\{i \mid v_{i} \notin F B\right\}$. By Proposition 5.3, the set $D=B \cup\left\{v_{h}\right\}$ is linearly independent. If it is a generating set for V, then it is a basis and we are done. If not, let $k=\min \left\{i \mid v_{i} \notin F D\right\}$, and replace D by $B \cup\left\{v_{h}, v_{k}\right\}$. Continuing in this manner, we see that after finitely-many steps we obtain a basis of V.

With kind permission of the Department of Mathematics, University of Torino, Italy.
The Italian mathematician Giuseppe Peano, best known for his axiomatization of the natural numbers, was the first to prove that every finitely-generated vector space has a basis at the end of the nineteenth century. He also gave the final form for the definition of a vector space, which we used above.

We now want to extend this result to vector spaces which are not finitely generated, and to do so we have to make use of an axiom of set theory known variously as the Hausdorff Maximum Principle or Zorn's Lemma. To state this principle, we need another concept about partially-ordered sets. Let A be a set on which we have defined a partial order \preccurlyeq. A subset B of A is bounded if and only if there exists an element $a_{0} \in A$ satisfying $b \preccurlyeq a_{0}$ for all $b \in B$. Note that we do not require that a_{0} belong to B. The Hausdorff maximum principle then says that if A is a partiallyordered set in which every chain subset is bounded, then A has a maximal element. Again, this is not really a "principle" or a "lemma"; it is an axiom of set theory which has been shown to be independent of the other (Zermelo-Fraenkel) axioms one usually assumes. Indeed, it is logically equivalent to the Axiom of Choice, which we mentioned in Chap. 1 as being somewhat controversial among those mathematicians
dealing with the foundations of mathematics. However, in this book, we will assume that it holds. Given that assumption, we can now extend Proposition 5.7.

With kind permission of the Hausdorff Research Institute for Mathematics (Hausdorff); © Jens Zorn (Zorn).

Felix Hausdorff, one of the leading mathematicians of the early twentieth century and one of the founders of topology, died in a German concentration camp in 1942. Max Zorn, a German mathematician who emigrated to the United States, made skillful use of the Hausdorff Maximum Principle in his research, turning it into an important mathematical tool.

Proposition 5.8 If V is a vector space over a field F then every linearlyindependent subset B of V is contained in a basis of V.

Proof Let B be a linearly-independent subset of V and let P be the collection of all linearly-independent subsets of V which contain B, which is partially-ordered by inclusion, as usual. Then P is nonempty since $B \in P$. Let Q be a chain subset of P. We want to prove that Q is bounded in P. That is to say, we want to find a linearly independent subset E of V which contains every element of Q. Indeed, let us take E to be the union of all of the elements of Q. To show that E is linearly independent, it suffices to show that every finite subset of E is linearly independent. Indeed, let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a finite subset of E. Then for each $1 \leq i \leq n$, there exists an element D_{i} of Q containing v_{i}. Since Q is a chain, there exists an index h such that $D_{i} \subseteq D_{h}$ for all $1 \leq i \leq n$ and so $v_{i} \in D_{h}$ for all $1 \leq i \leq n$. Therefore, this set is a subset of a linearly-independent set and so is linearly independent. Thus we have shown that every chain subset of P is bounded and so, by the Hausdorff maximum principle, the set P has a maximal element. In other words, there exists a maximal linearly-independent subset of V containing B, and this, as we know, is a basis of V over F.

Taking the special case of $B=\varnothing$ in Proposition 5.8, we see that every vector space has a basis. In the above proof we used the Axiom of Choice to prove this statement. In fact, one can show something considerably stronger: in the presence of the other generally-accepted axioms of set theory, the Axiom of Choice is equivalent, in the sense of formal logic, to the statement that every vector space over any field has a basis.

© A. Blass.
The above result is due to the contemporary American mathematician, Andreas Blass.

Example Consider the field \mathbb{R} as a vector space over its subfield \mathbb{Q}. A basis for this space is known as a Hamel basis. By Proposition 5.8, we know that Hamel bases exist, but nobody has been able to come up with a method of specifically constructing one. The subset C of \mathbb{R} consisting of all real numbers which can be represented in the form $\sum_{i>0} u_{i} 3^{-i}$, where each u_{i} is either 0 or 2 , is called the Cantor set, and it can be shown to be "sparse" (in a technical sense of the word we won't go into here) in the unit interval $[0,1]$ in \mathbb{R}. It is possible to show that there is a Hamel basis of \mathbb{R} contained in C.

The existence of Hamel bases leads to some very interesting results, as the following shows. Indeed, let H be a Hamel basis of \mathbb{R}. If $r \in \mathbb{R}$ then we can write $r=\sum_{a \in H} q_{a}(r) a$, where $q_{a}(r) \in \mathbb{Q}$ and there are only finitely-many elements $a \in H$ for which $q_{a}(r) \neq 0$. Since such a representation is unique, we see that

$$
q_{a}(b)= \begin{cases}1 & \text { if } a=b \\ 0 & \text { otherwise }\end{cases}
$$

for $a, b \in H$. Moreover, if $r, s \in \mathbb{R}$ and $a \in H$ then $q_{a}(r+s)=q_{a}(r)+q_{a}(s)$ so, if $a \neq b$ are elements of H then for any $r \in \mathbb{R}$ we have $q_{a}(r+b)=q_{a}(r)+q_{a}(b)=$ $q_{a}(r)$. Thus we see that the function $q_{a} \in \mathbb{R}^{\mathbb{R}}$ is periodic, with period b for any $b \in H \backslash\{a\}$, and its image is contained in \mathbb{Q}. Moreover, if we pick two distinct elements c and d of H, we see that for each $r \in \mathbb{R}$, we have $r=f(r)+g(r)$, where $f, g \in \mathbb{R}^{\mathbb{R}}$ are defined by $f: r \mapsto q_{c}(r) c$ and $g: r \mapsto \sum_{a \in H \backslash\{c\}} q_{a}(r) a$. By our previous comments, f is periodic with period d and g is periodic with period c. We conclude that the identity function in $\mathbb{R}^{\mathbb{R}}$ is the sum of two periodic functions. A somewhat more sophisticated argument along the same lines shows that any polynomial function in $\mathbb{R}^{\mathbb{R}}$ of degree n is the sum of $n+1$ periodic functions. Of course, since we cannot specify H, there is no way of finding these periodic functions explicitly.

We have seen that a vector space over a field can have many bases. We want to show next that if the vector space is finitely generated, then all of these bases are finite and have the same number of elements. First, however, we must prove a preliminary result.

Proposition 5.9 Let V be a vector space over a field F which is generated by a finite set $B=\left\{v_{1}, \ldots, v_{n}\right\}$ and let D be a linearly independent set of vectors in V. Then the number of elements in D is at most n.

Proof Suppose that D has a subset $E=\left\{w_{1}, \ldots, w_{n+1}\right\}$ having more than n elements. Since this set must also be linearly independent, we know that none of the w_{i} equals 0_{V}. For each $1 \leq k \leq n$, set $D_{k}=\left\{w_{1}, \ldots, w_{k}, v_{k+1}, \ldots, v_{n}\right\}$.

Since B is a generating set for V, we can find scalars a_{1}, \ldots, a_{n}, not all equal to 0 , such that $w_{1}=\sum_{i=1}^{n} a_{i} v_{i}$. In order to simplify our notation, we will renumber the elements of B if necessary so that $a_{1} \neq 0$. Then $v_{1}=a_{1}^{-1} w_{1}-\sum_{i=2}^{n} a_{1}^{-1} a_{i} v_{i}$ and so $D \subseteq F D_{1}$. But $D_{1} \subseteq V=F D$ and so $V=F D_{1}$, by Proposition 3.6. Now assume that $1 \leq k<n$ and that we have already shown that $V=F D_{k}$. Then there exist scalars b_{1}, \ldots, b_{n}, not all equal to 0 , such that $w_{k+1}=\sum_{i=1}^{k} b_{i} w_{i}+\sum_{i=k+1}^{n} b_{i} v_{i}$. If the scalars $b_{k+1}, \ldots b_{n}$ are all equal to 0 , then we have shown that D is linearly dependent, which is not the case. Therefore, at least one of them is nonzero and, by renumbering if necessary, we can assume that $b_{k+1} \neq 0$. Thus $v_{k+1}=b_{k+1}^{-1} w_{k+1}-$ $\sum_{i=1}^{k} b_{k+1}^{-1} b_{i} w_{i}-\sum_{i=k+2}^{n} b_{k+1}^{-1} b_{i} v_{i}$ and so, using the above reasoning, we get $V=$ $F D_{k+1}$. Continuing in this manner, we see that after n steps we obtain $V=F D_{n}=$ $F\left\{w_{1}, \ldots, w_{n}\right\}$. But then $w_{n+1} \in F\left\{w_{1}, \ldots, w_{n}\right\}$ and so E is linearly dependent, contrary to our assumption. This proves that D can have at most n elements.

Proposition 5.10 Let V be a vector space finitely generated over a field F. Then any two bases of V have the same number of elements.

Proof By hypothesis, there exists a finite generating set for V over F having, say, n elements. If B is a basis of V then, by Proposition 5.9, we know that B has at most n elements and so, in particular, is finite. Suppose B and B^{\prime} are two bases for V having h and k elements, respectively. Since B is linearly independent and B^{\prime} is a generating set, we know that $h \leq k$. But, on the other hand, B^{\prime} is linearly independent and B is a generating set, so $k \leq h$. Thus $h=k$.

We should remark at this point that the assertion for linearly-dependent sets corresponding to Proposition 5.10 is not true. That is to say, a finite linearly-dependent set of vectors may have two minimal linearly-dependent subsets with different numbers of elements. Indeed, there is no efficient algorithm to find such subsets of a given linearly-dependent set. Minimal linearly-dependent sets of vectors are often
called circuits because of applications to graph theory. We should also note that Proposition 5.9 is a special case of a more general theorem: If V is a vector space (not necessarily finitely generated) over a field F then there exists a bijective function between any two bases of V. The proof of this result makes use of techniques from advanced set theory, such as transfinite induction.

If V is a vector space finitely generated over a field F then V is finite dimensional and the number of elements in a basis of V is called the dimension of V over F. If V is not finite dimensional, it is infinite dimensional. (In choosing this latter terminology, we are deliberately skipping over the subject of various transfinite dimensions, since the reader is not assumed to be familiar with the arithmetic of transfinite cardinals. In certain mathematical contexts, distinction between infinite dimensions-for example the distinction between spaces of countably-infinite and uncountably-infinite dimension-can be very significant. We will not, however, need it in this book.) We denote the dimension of V over F by $\operatorname{dim}(V)$, or by $\operatorname{dim}_{F}(V)$ when it is important to emphasize the field of scalars.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach.
The notion of dimension was implicit in the work of Peano, but was redefined and studied in a comprehensive manner by the twentiethcentury German mathematician Hermann Weyl.

Notice that the proof of Proposition 5.9, which is in turn critical in proving Proposition 5.10, uses the fact that every nonzero element of F has a multiplicative inverse, and this cannot be avoided. If we try to weaken the notion of a vector space by allowing scalars to be, say, only integers, it may happen that such a space would have two bases of different sizes and so we could no longer define the notion of dimension in an obvious manner. We did not use, in an unavoidable manner, the commutativity of scalar multiplication and so we could weaken our notion of a vector space to allow scalars which do not commute among themselves, such as scalars coming from \mathbb{H}. However, the generality thus gained does not seem to outweigh the bother it causes, and so we will refrain from doing so. Thus, for us, the fact that scalars always come from a field is critical in the development of our theory.

Example If F is a field then $\operatorname{dim}\left(F^{n}\right)=n$ for every positive integer n, since the canonical basis of F^{n} has n elements. Similarly, if k and n are positive integers then $\operatorname{dim}_{F}\left(\mathcal{M}_{k \times n}(F)\right)=k n$, since the canonical basis of $\mathcal{M}_{k \times n}(F)$ has $k n$ elements. The dimension of the space $F[X]$ is infinite since the canonical basis of $F[X]$ has infinitely-many elements.

Example If F is a field and n is a positive integer, then the set W of all polynomials in $F[X]$ having degree at most n is a subspace of $F[X]$ having dimension $n+1$, since $\left\{1, X, \ldots, X^{n}\right\}$ is a basis of W having $n+1$ elements.

Example Let V be a vector space over \mathbb{R}, Then $Y=V^{2}$ is a vector space over \mathbb{R}, but it also has the structure of a vector space over \mathbb{C} with the same addition and with scalar multiplication given by $(a+b i)\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}a v_{1}-b v_{2} \\ b v_{1}+a v_{2}\end{array}\right]$. This space is called the complexification of V. If B is a basis for V over \mathbb{R} then it is easy to check that $\left\{\left.\left[\begin{array}{c}v \\ 0_{V}\end{array}\right] \right\rvert\, v \in B\right\}$ is a basis for Y over \mathbb{C}. Thus, in particular, if V is finitely generated over \mathbb{R} then Y is finitely generated over \mathbb{C} and $\operatorname{dim}_{\mathbb{R}}(V)=\operatorname{dim}_{\mathbb{C}}(Y)$.

With kind permission of UC Berkeley.
Complexification of real vector spaces was first used extensively by the twentieth-century American mathematician Angus Taylor.

Example The dimension of \mathbb{R} over itself is 1 . Since $\{1, i\}$ is a basis of \mathbb{C} as a vector space over \mathbb{R}, we see that $\operatorname{dim}_{\mathbb{R}}(\mathbb{C})=2$ and so there cannot be a proper subfield F of \mathbb{C} properly containing \mathbb{R}. Indeed, if there were such a field, its dimension over \mathbb{R} would have to be greater than 1 and less than 2 (else it would be equal to \mathbb{C}), which is impossible. Clearly, $\operatorname{dim}_{\mathbb{R}}(\mathbb{H})=4$. It turns out that the only possible dimensions of division \mathbb{R}-algebras are $1,2,4$, and 8 . The dimension 8 case is realized by a (nonassociative) Cayley algebra over \mathbb{R}, as defined in Chap. 15. There are no associative division algebras of dimension 8 over \mathbb{R}.

Example Let F be a field, let (K, \bullet) be an associative unital F-algebra, and let $v \in K$. If $p(X)=\sum_{i=0}^{\infty} a_{i} X^{i} \in F[X]$, then $p(v)=\sum_{i=0}^{\infty} a_{i} v^{i}$ is an element of K and the set of all elements of K of this form is an F-subalgebra of K, which is in fact commutative, even though K itself may not be. We will denote this algebra by $F[v]$. If the dimension of $F[v]$, considered as a vector space over F, is finite, we know that there must exist a polynomial $p(X) \in F[X]$ of positive degree satisfying $p(v)=0_{K}$. In that case, we say that v is algebraic over F. Otherwise, if the dimension of $F[v]$
is infinite, we say v is transcendental over F. Thus, for example, the real numbers π and e (the base of the natural logarithms) are transcendental over \mathbb{Q}. If F is a subfield of a field K then the set L of all elements of K which are algebraic over F is a subfield of K. Moreover, if K is algebraically closed, so is L, and in fact L is the smallest algebraically-closed subfield of K containing F. In particular, we can consider the field of all complex numbers algebraic over \mathbb{Q}. This is a proper subfield of \mathbb{C}, known as the field of algebraic numbers.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach.
The transcendence of π was proven by German mathematician Ferdinand von Lindemann in 1882. The transcendence of e was proven by French mathematician Charles Hermite in 1873. As we shall see later, Hermite made many important contributions to linear algebra.

From the definition of dimension we see that if V is a vector space of finite dimension n over a field F then:
(1) Every subset of V having more than n elements must be linearly dependent;
(2) There exists a linearly-independent subset B of V having precisely n elements;
(3) If B is as in (2) then B is also a generating set of V over F.

Proposition 5.11 Let V be a vector space finitely generated over a field F and let W be a subspace of V. Then:
(1) W is finitely generated over F;
(2) Every basis of W can be extended to a basis of V;
(3) $\operatorname{dim}(W) \leq \operatorname{dim}(V)$, with equality when and only when $W=V$.

Proof Let $n=\operatorname{dim}(V)$.
(1) If W is not finitely generated, then, as we remarked after Proposition 5.3, W has a linearly-independent subset B having $n+1$ elements. But B is also a subset of V, contradicting the assumption that $\operatorname{dim}(V)=n$.
(2) Let B be a basis of W. Then B is as linearly-independent set of elements of V and so, by Proposition 5.7, can be extended to a basis of V.
(3) By (2), we see that the number of elements of a basis of W can be no greater than the number of elements of a basis of V, and so $\operatorname{dim}(W) \leq \operatorname{dim}(V)$. Moreover, if we have equality then any basis B of W is also a basis of V, and so $W=F B=V$.

We now want to extend the notion of linear independence. Let U and W be subspaces of a vector space V over a field F. Any vector $v \in U+W$ can be written in the form $u+w$, where $u \in U$ and $w \in W$, but there is no reason for this representation to be unique. It will be unique, however, if U and W are disjoint. Indeed, if
this condition holds and if $u, u^{\prime} \in U$ and $w, w^{\prime} \in W$ satisfy $u+w=u^{\prime}+w^{\prime}$, then $u-u^{\prime}=w^{\prime}-w \in U \cap W$ and so $u-u^{\prime}=0_{V}=w-w^{\prime}$, which in turn implies that $u=u^{\prime}$ and $w=w^{\prime}$. To emphasize the importance of this situation, we will introduce new notation: if U and W are disjoint subspaces of a vector space V over a field F, we will write $U \oplus W$ instead of $U+W$. The subspace $U \oplus W$ is called the direct sum of U and W. We note that, by this definition, $U \oplus\left\{0_{V}\right\}=U$ for every subspace U of V.

Example It is easy to see that $\mathbb{R}^{2}=\mathbb{R}\left[\begin{array}{l}1 \\ 0\end{array}\right] \oplus \mathbb{R}\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
Of course, we would like to extend the notion of direct sum to cover more than two subspaces. In general, if V is a vector space over a field F, then a collection $\left\{W_{h} \mid h \in \Omega\right\}$ of subspaces of V is independent if and only if it satisfies the following condition: If Λ is a finite subset of Ω and if we choose elements $w_{h} \in W_{h}$ for all $h \in \Lambda$, then $\sum_{h \in \Lambda} w_{h}=0_{V}$ when and only when $w_{h}=0_{V}$ for each $h \in \Lambda$. Thus we see that an infinite collection of subspaces is independent if and only if every finite nonempty subcollection is independent. Clearly, a subset D of a vector space V over a field F is linearly independent if and only if the collection of subspaces $\{F v \mid v \in D\}$ is independent.

Proposition 5.12 Let V be a vector space over a field F and let W_{1}, \ldots, W_{n} be distinct subspaces of V. Then the following conditions are equivalent:
(1) $\left\{W_{1}, \ldots, W_{n}\right\}$ is independent;
(2) Every vector $w \in \sum_{i=1}^{n} W_{i}$ can be written as $w_{1}+\cdots+w_{n}$, with $w_{i} \in W_{i}$ for each $1 \leq i \leq n$, in exactly one way;
(3) W_{h} and $\sum_{i \neq h} W_{i}$ are disjoint, for each $1 \leq h \leq n$.

Proof (1) \Rightarrow (2): Let $w \in \sum_{i=1}^{n} W_{i}$ and assume that we can write $w=w_{1}+\cdots+$ $w_{n}=y_{1}+\cdots+y_{n}$, where $w_{i}, y_{i} \in W_{i}$ for each $1 \leq i \leq n$. Then $\sum_{i=1}^{n}\left(w_{i}-y_{i}\right)=0_{V}$ and so, by (i), it follows that $w_{i}-y_{i}=0_{V}$ for each $1 \leq i \leq n$, proving (2).
(2) \Rightarrow (3): Assume that $0_{V} \neq w_{h} \in W_{h} \cap \sum_{i \neq h} W_{i}$. Then for each $i \neq h$ there exists an element $w_{i} \in W_{i}$ satisfying $w_{h}=\sum_{i \neq h} w_{i}$, contradicting (2).
(3) \Rightarrow (1): Suppose we can write $w_{1}+\cdots+w_{n}=0_{V}$, where $w_{i} \in W_{i}$ for each $1 \leq i \leq n$, and where $w_{h} \neq 0_{V}$ for some h. Then $w_{h}=-\sum_{i \neq h} w_{i} \in W_{h} \cap \sum_{i \neq h} W_{i}$, and this contradicts (3). Thus (1) must hold.

If V is a vector space over a field F and if $\left\{W_{i} \mid i \in \Omega\right\}$ is an independent collection of subspaces of V, we write $\bigoplus_{i \in \Omega} W_{i}$ instead of $\sum_{i \in \Omega} W_{i}$. If $\Omega=\{1, \ldots, n\}$, we will also write this sum as $W_{1} \oplus \cdots \oplus W_{n}$. If $V=\bigoplus_{i \in \Omega} W_{i}$, then we say that V has a direct-sum decomposition relative to the subspaces W_{i}.

Example If B is a basis of a vector space V over a field F then $V=\bigoplus_{v \in B} F v$.

The importance of direct-sum decompositions is illustrated by the following result.

Proposition 5.13 Let V be a vector space over a field F, let $\left\{W_{i} \mid i \in \Omega\right\}$ be a pairwise disjoint collection of subspaces of V and, for each $i \in \Omega$, let B_{i} be a basis of W_{i}. Then $V=\bigoplus_{i \in \Omega W_{i}}$ if and only if $B=\bigcup_{i \in \Omega} B_{i}$ is a basis of V.

Proof Assume $V=\bigoplus_{i \in \Omega} W_{i}$ and let $v \in V$. Then there exists a finite subset Λ of Ω such that $v \in \bigoplus_{i \in \Lambda} W_{i}$, and so for each $i \in \Lambda$ there is an element $w_{i} \in W_{i}$ satisfying $v=\sum_{i \in \Lambda} w_{i}$. Moreover, each w_{i} is a linear combination of elements of B_{i}. Thus v is a linear combination of elements of B, and so B is a generating set for V. We are left to show that B is linearly independent. If this is not the case, then there exist an element h of Ω, vectors y_{1}, \ldots, y_{t} in B_{h}, and scalars a_{1}, \ldots, a_{t} in F, not all of which equal to 0 , such that $\sum_{j=1}^{t} a_{j} v_{j}+u=0_{V}$, where u is a linear combination of elements of $\bigcup_{i \neq h} B_{i}$. But then $\sum_{j=1}^{t} a_{j} v_{j} \in W_{h} \cap \sum_{i \neq h} W_{i}$, contradicting our initial assumption. Thus $B=\bigcup_{i \in \Omega} B_{i}$.

Conversely, if $B=\bigcup_{i \in \Omega} B_{i}$, it then follows that every element of V can be written in a unique way as $\sum_{i \in \Lambda} w_{i}$, where Λ is some finite subset of Ω, which suffices to prove that $V=\bigoplus_{i \in \Omega} W_{i}$.

Let W be a subspace of a vector space V over a field F. A subspace Y of V is a complement of W in V if and only if $V=W \oplus Y$. We immediately note that if Y is a complement of W in V then W is a complement of Y in V. In general, a subspace of a vector space can have many complements.

Example Each of the following subspaces of \mathbb{R}^{2} is a complement of each of the others in \mathbb{R}^{2} :

$$
\begin{aligned}
& W_{1}=\left\{\left.\left[\begin{array}{l}
a \\
0
\end{array}\right] \right\rvert\, a \in \mathbb{R}\right\} ; \quad W_{2}=\left\{\left.\left[\begin{array}{l}
0 \\
b
\end{array}\right] \right\rvert\, b \in \mathbb{R}\right\} ; \\
& W_{3}=\left\{\left.\left[\begin{array}{l}
c \\
c
\end{array}\right] \right\rvert\, c \in \mathbb{R}\right\} ; \quad \text { and } \quad W_{4}=\left\{\left.\left[\begin{array}{c}
d \\
2 d
\end{array}\right] \right\rvert\, d \in \mathbb{R}\right\} .
\end{aligned}
$$

Proposition 5.14 Every subspace W of a vector space V over a field F has at least one complement in V.

Proof If W is improper, then $\left\{0_{V}\right\}$ is a complement of W in V. Similarly, V is a complement of $\left\{0_{V}\right\}$ in V. Otherwise, let B be a basis of W. By Proposition 5.8, we know that there exists a linearly-independent subset D of V such that $B \cup D$ is a basis of V. Then $F D$ is a complement of W in V.

Example Let F be a field of characteristic other than 2, let n be a positive integer, and let V be a vector space over F. Let $W=\mathcal{M}_{n \times n}(V)$, which is also a vector space over F. Let W_{1} be the set of all those matrices $A=\left[v_{i j}\right]$ in W satisfying $v_{i j}=v_{j i}$ for all $1 \leq i, j \leq n$, and let W_{2} be the set of all those matrices $A=\left[v_{i j}\right]$ in W satisfying $v_{i j}=-v_{j i}$ for all $1 \leq i, j \leq n$. These two subspaces are disjoint. If $A=\left[v_{i j}\right]$ is an arbitrary matrix in W, then we can write $A=B+C$, where $B=\left[y_{i j}\right]$ is the matrix defined by $y_{i j}=\frac{1}{2}\left(v_{i j}+v_{j i}\right)$ for all $1 \leq i, j \leq n$, and $C=\left[z_{i j}\right]$ is the matrix defined by $z_{i j}=\frac{1}{2}\left(v_{i j}-v_{j i}\right)$ for all $1 \leq i, j \leq n$. Note that $A \in W_{1}$ and $B \in W_{2}$. Thus $V=W_{1} \oplus W_{2}$.

Example A function $f \in \mathbb{R}^{\mathbb{R}}$ is even if and only if $f(a)=f(-a)$ for all $a \in \mathbb{R}$; it is odd if and only if $f(a)=-f(-a)$ for all $a \in \mathbb{R}$. The set W of all even functions is clearly a subspace of $\mathbb{R}^{\mathbb{R}}$, as is the set Y of all odd functions, and these two subspaces are disjoint. Moreover, if $f \in \mathbb{R}^{\mathbb{R}}$ then $f=f_{1}+f_{2}$, where the function $f_{1}: x \mapsto \frac{1}{2}[f(x)+f(-x)]$ is in W and the function $f_{2}: x \mapsto \frac{1}{2}[f(x)-f(-x)]$ is in Y. Thus Y is a complement of W in $\mathbb{R}^{\mathbb{R}}$.

Proposition 5.15 Let F be a field which is not finite and let V be a vector space over F having dimension at least 2 . Then every proper nontrivial subspace W of V has infinitely-many complements in V.

Proof By Proposition 5.14, we know that W has at least one complement U in V. Choose a basis B for U. If $0_{V} \neq w \in W$, then by Proposition 3.2(9) and the fact that F is infinite, we know that $F w$ is an infinite subset of W. Thus we know that the set W is infinite. For each $w \in W$, let $Y_{w}=F\{u+w \mid u \in B\}$. We claim that each of these spaces is a complement of W in V. Indeed, assume that $v \in W \cap Y_{w}$. Then there exist elements u_{1}, \ldots, u_{n} of B and scalars c_{1}, \ldots, c_{n} in F satisfying $v=\sum_{i=1}^{n} c_{i}\left(u_{i}+w\right)$. But then $\sum_{i=1}^{n} c_{i} u_{i}=v-\left(\sum_{i=1}^{n} c_{i}\right) w \in W \cap U=\left\{0_{V}\right\}$ and since the set $\left\{u_{1}, \ldots, u_{n}\right\}$ is linearly independent, we see that $c_{i}=0$ for all i. This shows that $v=0_{V}$, and we have thus shown that W and Y_{w} are disjoint. If v is an arbitrary element of V, let us write $v=x+\left(\sum_{i=1}^{n} c_{i} u_{i}\right)$, where $x \in W$, the vectors u_{1}, \ldots, u_{n} belong to B, and the scalars c_{1}, \ldots, c_{n} belong to F. Then $v=\left[x-\left(\sum_{i=1}^{n} c_{i}\right) w\right]+\sum_{i=1}^{n} c_{i}\left(u_{i}+w\right) \in W+Y_{w}$ and thus we have shown that $V=W+Y_{w}$ and so Y_{w} is a complement of W in V.

We are left to show that all of these complements are indeed different from each other. Indeed, assume that $w \neq x$ are elements of W satisfying $Y_{w}=Y_{x}$. If $u \in B$ then there exist elements u_{1}, \ldots, u_{n} of B and scalars c_{1}, \ldots, c_{n} such that $u+w=$ $\sum_{i=1}^{n} c_{i}\left(u_{i}+x\right)$. From this it follows that $u-\sum_{i=1}^{n} c_{i} u_{i}=\left(\sum_{i=1}^{n} c_{i}\right) x-w$ and this belongs to $W \cap Y_{w}=\left\{0_{V}\right\}$. But B is a linearly-independent set and so u has to equal to one of the u_{h} for some $1 \leq h \leq n$, and we must have $c_{i}=0$ for $i \neq h$ and
$c_{h}=1$. Hence $x-w=0_{V}$, namely $x=w$. This is a contradiction, and so the Y_{w} must all be distinct.

Proposition 5.16 (Grassmann's Theorem) Let V be a vector space over a field F and let W and Y be subspaces of V satisfying the condition that $W+Y$ has finite dimension. Then $\operatorname{dim}(W+Y)=\operatorname{dim}(W)+\operatorname{dim}(Y)-\operatorname{dim}(W \cap Y)$.

Proof Let $U_{0}=W \cap Y$, which is a subspace both of W and of Y. In particular, U_{0} has a complement U_{1} in W and a complement U_{2} in Y. Then $W+Y=U_{0}+U_{1}+$ U_{2}. We claim that in fact $W+Y=U_{0} \oplus U_{1} \oplus U_{2}$. Indeed, assume that $u_{0}+u_{1}+$ $u_{2}=0_{V}$, where $u_{j} \in U_{j}$ for $j=0,1,2$. Then $u_{1}=-u_{2}-u_{0} \in W \cap Y=U_{0}$. But U_{0} and U_{1} are disjoint and so $u_{1}=0_{V}$. Therefore, $u_{0}=-u_{2} \in U_{0} \cap U_{2}=\left\{0_{V}\right\}$. Therefore, $u_{0}=0_{V}$ and $u_{2}=0_{V}$ as well. Thus we see that the set $\left\{U_{0}, U_{1}, U_{2}\right\}$ is independent. Therefore, from the definition of the complement, we have

$$
\operatorname{dim}(W+Y)=\operatorname{dim}\left(U_{0}\right)+\operatorname{dim}\left(U_{1}\right)+\operatorname{dim}\left(U_{2}\right)=\operatorname{dim}(W)+\operatorname{dim}\left(U_{2}\right)
$$

and this equals $\operatorname{dim}(W)+\operatorname{dim}(Y)-\operatorname{dim}(W \cap Y)$ since $Y=U_{2} \oplus(W \cap Y)$.

Example Consider the subspaces

$$
W_{1}=\mathbb{R}\left\{\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]\right\} \quad \text { and } \quad W_{2}=\mathbb{R}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

of \mathbb{R}^{3}. Each one of these subspaces has dimension 2 , and so we see that $2 \leq$ $\operatorname{dim}\left(W_{1}+W_{2}\right) \leq 3$. By Proposition 5.16, we see that, as a result of this, we have $1 \leq \operatorname{dim}\left(W_{1} \cap W_{2}\right) \leq 2$. In order to ascertain the exact dimension of $W_{1} \cap W_{2}$, we must find a basis for it. If $v \in W_{1} \cap W_{2}$ then there exist scalars a, b, c, d satisfying $a\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]+b\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]=c\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+d\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$, and so $a+b=c, 2 b=c+d$, and $2 a+2 b=d$, from which we conclude that $b=-3 a, c=-2 a$, and $d=-4 a$. Thus v has to be of the form $(-2 a)\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+(-4 a)\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]=a\left[\begin{array}{l}-2 \\ -6 \\ -4\end{array}\right]$, which shows that $W_{1} \cap W_{2}=\mathbb{R}\left[\begin{array}{l}-2 \\ -6 \\ -4\end{array}\right]$, and so it has dimension 1.

Very often, we can reduce our computations by passing to complements. A good example of this is given by the following proposition.

Proposition 5.17 Let V be a vector space over a field F and let W be a subspace of V having a complement Y in V. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a subset of V and, for each $1 \leq i \leq n$, let $v_{i}=w_{i}+y_{i}$, where $w_{i} \in W$ and $y_{i} \in Y$. If the vectors w_{1}, \ldots, w_{n} are distinct and the set $\left\{w_{1}, \ldots, w_{n}\right\}$ is linearly independent, then so is the set $\left\{v_{1}, \ldots, v_{n}\right\}$.

Proof Assume that there exist scalars a_{1}, \ldots, a_{n} satisfying $\sum_{i=1}^{n} a_{i} v_{i}=0_{V}$. Then $\sum_{i=1}^{n} a_{i} w_{i}+\sum_{i=1}^{n} a_{i} y_{i}=0_{V}$, and so $\sum_{i=1}^{n} a_{i} w_{i}=\sum_{i=1}^{n} a_{i} y_{i}=0_{V}$. Since the vectors w_{1}, \ldots, w_{n} are distinct and $\left\{w_{1}, \ldots, w_{n}\right\}$ is linearly independent, we must have $a_{1}=\cdots=a_{n}=0$, and so $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent as well.

Exercises

Exercise 158

Let v_{1}, v_{2}, and v_{3} be distinct elements of a vector space V over a field F and let $c_{1}, c_{2}, c_{3} \in F$. Under what conditions is the subset $\left\{c_{2} v_{3}-c_{3} v_{2}\right.$, $\left.c_{1} v_{2}-c_{2} v_{1}, c_{3} v_{1}-c_{1} v_{3}\right\}$ of V linearly dependent?

Exercise 159
For which values of the real number t is the subset

$$
\left\{\left[\begin{array}{c}
\cos (t)+i \sin (t) \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
\cos (t)-i \sin (t)
\end{array}\right]\right\}
$$

of \mathbb{C}^{2} linearly dependent?

Exercise 160

Let F be a field and let V be the subspace of $F[X]$ consisting of all those polynomials of degree at most 4 . Let $p_{1}(X), \ldots, p_{5}(X)$ be distinct polynomials in V satisfying the condition that $p_{i}(0)=1$ for each $1 \leq i \leq 5$. Is the set $\left\{p_{1}(X), \ldots, p_{5}(X)\right\}$ necessarily linearly dependent?

Exercise 161

Consider the functions $f: x \mapsto 5^{x}$ and $g: x \mapsto 5^{2 x}$. Is $\{f, g\}$ a linearlydependent subset of $\mathbb{R}^{\mathbb{R}}$?

Exercise 162
Find $a, b \in \mathbb{Q}$ such that the subset $\left\{\left[\begin{array}{c}2 \\ a-b \\ 1\end{array}\right],\left[\begin{array}{l}a \\ b \\ 3\end{array}\right]\right\}$ of \mathbb{Q}^{3} is linearly dependent.

Exercise 163
Let $F=\mathbb{Q}$. Is the subset $\left\{\left[\begin{array}{l}4 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]\right\}$ of F^{3} linearly independent? What happens if $F=\mathrm{GF}(5)$?

Exercise 164

Let V be a vector space over a field F and let $n>1$ be an integer. Let Y be the set of all vectors $\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right] \in V^{n}$ satisfying the condition that the set $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly dependent. Is Y necessarily a subspace of V^{n} ?

Exercise 165
Is the subset $\left\{\left[\begin{array}{c}1+i \\ 3+8 i \\ 5+7 i\end{array}\right],\left[\begin{array}{c}1-i \\ 5 \\ 2+i\end{array}\right],\left[\begin{array}{c}1+i \\ 3+2 i \\ 4-i\end{array}\right]\right\}$ of \mathbb{C}^{3} linearly independent when we consider \mathbb{C}^{3} as a vector space over \mathbb{C} ? Is it linearly independent when we consider \mathbb{C}^{3} as a vector space over \mathbb{R} ?

Exercise 166

For each nonnegative integer n, let $f_{n} \in \mathbb{R}^{\mathbb{R}}$ be the function defined by $f_{n}: x \mapsto$ $\sin ^{n}(x)$. Is the subset $\left\{f_{n} \mid n \geq 0\right\}$ of $\mathbb{R}^{\mathbb{R}}$ linearly independent?

Exercise 167

Let $V=C(-1,1)$, which is a vector space over \mathbb{R}. Let $f, g \in V$ be the functions defined by $f: x \mapsto x^{2}$ and $g: x \mapsto|x| x$. Is $\{f, g\}$ linearly independent?

Exercise 168

Let V be a vector space over $\operatorname{GF}(5)$ and let $v_{1}, v_{2}, v_{3} \in V$. Is the subset $\left\{v_{1}+v_{2}, v_{1}-v_{2}+v_{3}, 2 v_{2}+v_{3}, v_{2}+v_{3}\right\}$ of V linearly independent?

Exercise 169

Let F be a field of characteristic different from 2 and let V be a vector space over F containing a linearly-independent subset $\left\{v_{1}, v_{2}, v_{3}\right\}$. Show that the set $\left\{v_{1}+v_{2}, v_{2}+v_{3}, v_{1}+v_{3}\right\}$ is also linearly independent.

Exercise 170

Is the subset $\left\{\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 2 \\ 0\end{array}\right]\right\}$ of $\operatorname{GF}(3)^{4}$ linearly independent?

Exercise 171
Let $t \leq n$ be positive integers and, for all $1 \leq i \leq t$, let $v_{i}=\left[\begin{array}{c}a_{i 1} \\ \vdots \\ a_{i n}\end{array}\right]$ be a vector in \mathbb{R}^{n} chosen so that $2\left|a_{j j}\right|>\sum_{i=1}^{t}\left|a_{i j}\right|$ for all $1 \leq j \leq n$. Show that $\left\{v_{1}, \ldots, v_{t}\right\}$ is linearly independent.

Exercise 172

If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a linearly-independent subset of a vector space V over the field \mathbb{Q}, is the set

$$
\left\{3 v_{1}+2 v_{2}+v_{3}+v_{4}, 2 v_{1}+5 v_{2}, 3 v_{3}+2 v_{4}, 3 v_{1}+4 v_{2}+2 v_{3}+3 v_{4}\right\}
$$

linearly independent as well?

Exercise 173

Let A be a subset of \mathbb{R} having at least three elements and let $f_{1}, f_{2}, f_{3} \in \mathbb{R}^{A}$ be the functions defined by $f_{i}: x \mapsto x^{i-1} 2^{x-1}$. Is the set $\left\{f_{1}, f_{2}, f_{3}\right\}$ linearly independent?

Exercise 174

Let $F=\mathrm{GF}(5)$ and let $V=F^{F}$, which is a vector space over F. Let $f: x \mapsto x^{2}$ and $g: x \mapsto x^{3}$ be elements of V. Find an element h of V such that $\{f, g, h\}$ is linearly independent.

Exercise 175

Consider \mathbb{R} as a vector space over \mathbb{Q}. Is the subset $\left\{(a-\pi)^{-1} \mid a \in \mathbb{Q}\right\}$ of this space linearly independent?

Exercise 176

In the vector space $V=\mathbb{R}^{\mathbb{R}}$ over \mathbb{R}, consider the functions $f_{1}: x \mapsto \ln \left(\left(x^{2}+\right.\right.$ 1) $\left.{ }^{3}\left(x^{4}+7\right)^{-1}\right), f_{2}: x \mapsto \ln \left(\sqrt{x^{2}+1}\right)$, and $f_{3}: x \mapsto \ln \left(x^{4}+7\right)$. Is the subset $\left\{f_{1}, f_{2}, f_{3}\right\}$ of V linearly independent?

Exercise 177
Show that the subset $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]\right\}$ of $\operatorname{GF}(p)^{3}$ is linearly independent if and only if $p \neq 3$.

Exercise 178

Let F be a subfield of a field K and let n be a positive integer. Show that a nonempty linearly-independent subset D of F^{n} remains linearly independent when considered as a subset of K^{n}.

Exercise 179
Let $F=\operatorname{GF}(5)$ and let $V=F^{F}$. For $4 \leq k \leq 7$, let $f_{k} \in V$ be defined by f_{k} : $a \mapsto a^{k}$. Is the subset $\left\{f_{k} \mid 4 \leq k \leq 7\right\}$ of V linearly independent?

Exercise 180

Let V be a vector space over \mathbb{R}. For vectors $v \neq w$ in V, let $K(v, w)$ be the set of all vectors in V of the form $(1-a) v+a w$, where $0 \leq a \leq 1$. Given vectors $v, w, y \in V$ satisfying the condition that the set $\{w-v, y-v\}$ is linearly independent (and so, in particular, its elements are distinct), show that the set

$$
K\left(v, \frac{1}{2}(w+y)\right) \cap K\left(w, \frac{1}{2}(v+y)\right) \cap K\left(y, \frac{1}{2}(v+w)\right)
$$

is nonempty, and determine how many elements it can have.

Exercise 181

Let V be a vector space finitely generated over a field F and let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V. Let $y \in V \backslash B$. Show that the set $\left\{v_{1}, \ldots, v_{n}, y\right\}$ has a unique minimal linearly-dependent subset.

Exercise 182

Find all of the minimal linearly-dependent subsets of the subset

$$
\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
4
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right\}
$$

of \mathbb{Q}^{2}.

Exercise 183

Let V be a vector space over a field F and let D and D^{\prime} be distinct finite minimal linearly-dependent subsets of V which are not disjoint. If $v \in D \cap D^{\prime}$, show that $\left(D \cup D^{\prime}\right) \backslash\{v\}$ is linearly dependent.

Exercise 184

Let F be a field of characteristic other than 2 . Let V be the subspace of $F[X]$ consisting of all polynomials of degree at most 3 . Is $\left\{X+2, X^{2}+1, X^{3}+X^{2}\right.$, $\left.X^{3}-X^{2}\right\}$ a basis of V ?

Exercise 185

Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for a vector space V over a field F. Is the set $\left\{v_{1}+v_{2}, v_{2}+v_{3}, \ldots, v_{n-1}+v_{n}, v_{n}+v_{1}\right\}$ necessarily also a basis for V over F ?

Exercise 186

Is $\{1+2 \sqrt{5,}-3+\sqrt{5}\}$ a basis for $\mathbb{Q}(\sqrt{5})$ as a vector space over \mathbb{Q} ?

Exercise 187
For which values of $a \in \mathbb{R}$ is the set

$$
\left\{\left[\begin{array}{cc}
a & 2 a \\
2 & 3 a
\end{array}\right],\left[\begin{array}{cc}
1 & 2 \\
2 a & 3
\end{array}\right],\left[\begin{array}{cc}
1 & 2 a \\
a+1 & a+2
\end{array}\right],\left[\begin{array}{cc}
1 & a+1 \\
2 & 2 a+1
\end{array}\right]\right\}
$$

a basis for $\mathcal{M}_{2 \times 2}(\mathbb{R})$ as a vector space over \mathbb{R} ?

Exercise 188

Let F be an algebraically-closed field and let (K, \bullet) be an associative F-algebra having a basis $\left\{v_{1}, v_{2}\right\}$ as a vector space over F. Show that $v_{2}^{2}=v_{2}$ or $v_{2}^{2}=0_{K}$.

Exercise 189

Let V be a vector space over a field F. A nonempty subset U of V is nearly linearly independent if and only if U is linearly dependent but $U \backslash\{u\}$ is linearly independent for every $u \in U$. Find an example of a set of three vectors in \mathbb{R}^{3} which is nearly linearly independent. Does there exist a nearly linearly independent subset of \mathbb{R}^{3} having four elements?

Exercise 190

Find a basis for the subspace W of \mathbb{R}^{4} generated by

$$
\left\{\left[\begin{array}{r}
4 \\
2 \\
6 \\
-2
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
5 \\
-3 \\
1
\end{array}\right]\right\} .
$$

Exercise 191

For each real number a, let $f_{a} \in \mathbb{R}^{\mathbb{R}}$ be defined by

$$
f_{a}: r \mapsto \begin{cases}1 & \text { if } r=a \\ 0 & \text { otherwise }\end{cases}
$$

Is $\left\{f_{a} \mid a \in \mathbb{R}\right\}$ a basis for $\mathbb{R}^{\mathbb{R}}$ over \mathbb{R} ?

Exercise 192

Let A be a nonempty finite set and let V be the collection of all subsets of A, which is a vector space over GF(2). For each $a \in A$, let $v_{a}=\{a\}$. Is $\left\{v_{a} \mid a \in A\right\}$ a basis for V ?

Exercise 193
Show that $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right\}$ is a basis for the vector space $\mathcal{M}_{2 \times 2}(\mathbb{C})$ over \mathbb{C}. (The last three of these matrices are known as the Pauli matrices and play a very important part in the formulation of quantum physics.

Exercise 194
Let F be a field and let $a, b, c \in F$. Determine whether

$$
\left\{\left[\begin{array}{l}
1 \\
a \\
b
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
c
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
a+b+c
\end{array}\right]\right\}
$$

is a basis for F^{3}.

Exercise 195

Let V be a vector space finitely generated over a field F having a basis $\left\{v_{1}, \ldots, v_{n}\right\}$. Is $\left\{v_{1}, \sum_{i=1}^{2} v_{i}, \ldots, \sum_{i=1}^{n} v_{i}\right\}$ necessarily a basis for V ?

Exercise 196

Let $F=\mathrm{GF}(p)$ for some prime integer p, let n be a positive integer, and let V be a vector space of dimension n over F. In how many ways can we choose a basis for V ?

Exercise 197

Let V be a three-dimensional vector space over a field F, with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. Is $\left\{v_{1}+v_{2}, v_{2}+v_{3}, v_{1}-v_{3}\right\}$ a basis for V ?

Exercise 198

Let V be a vector space of finite dimension n over \mathbb{C} having basis $\left\{v_{1}, \ldots, v_{n}\right\}$. Show that $\left\{v_{1}, \ldots, v_{n}, i v_{1}, \ldots, i v_{n}\right\}$ is a basis for V, considered as a vector space over \mathbb{R}.

Exercise 199

Let V be a vector space of finite dimension $n>0$ over \mathbb{R} and, for each positive integer i, let U_{i} be a proper subspace of V. Show that $V \neq \bigcup_{i=1}^{\infty} U_{i}$.

Exercise 200

Let V be a vector space over a field F which is not finite dimensional, and let W be a proper subspace of V. Show that there exists an infinite collection $\left\{Y_{1}, Y_{2}, \ldots\right\}$ of subspaces of V satisfying $\bigcap_{i=1}^{\infty} Y_{i} \subseteq W$ but $\bigcap_{i=1}^{n} Y_{i} \nsubseteq W$ for all $n \geq 1$.

Exercise 201

Let V be the subspace of $\mathbb{R}[X]$ consisting of all polynomials of degree at most 5, and let $A=\left\{X^{5}+X^{4}, X^{5}-7 X^{3}, X^{5}-1, X^{5}+3 X\right\}$. Show that this subset of V is linearly independent and extend it to a basis of V.

Exercise 202

Let V be a vector space of finite dimension n over a field F, and let W be a subspace of V of dimension $n-1$. If U is a subspace of V not contained in W, show that $\operatorname{dim}(W \cap U)=\operatorname{dim}(U)-1$.

Exercise 203
Let a, b, c, d be rational numbers such that $\{a+c \sqrt{3}, b+d \sqrt{3}\}$ is a basis for $\mathbb{Q}(\sqrt{3})$ as a vector space over \mathbb{Q}. Is $\{c+a \sqrt{3}, d+b \sqrt{3}\}$ a basis for $\mathbb{Q}(\sqrt{3})$ as a vector space over \mathbb{Q} ? Is $\{a+c \sqrt{5}, b+d \sqrt{5}\}$ a basis for $\mathbb{Q}(\sqrt{5})$ as a vector space over \mathbb{Q} ?

Exercise 204

Find a real number a such that

$$
\operatorname{dim}\left\{\mathbb{R}\left\{\left[\begin{array}{r}
-9 \\
a \\
-1 \\
-5 \\
-14
\end{array}\right],\left[\begin{array}{r}
2 \\
-5 \\
3 \\
0 \\
2
\end{array}\right],\left[\begin{array}{r}
1 \\
4 \\
-1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{r}
3 \\
-1 \\
2 \\
1 \\
4
\end{array}\right],\left[\begin{array}{r}
-1 \\
9 \\
-4 \\
1 \\
0
\end{array}\right]\right\}\right)=2 .
$$

Exercise 205
Let $W=\mathbb{R}\left\{\left[\begin{array}{l}2 \\ 1 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ -3 \\ 0\end{array}\right]\right\} \subseteq \mathbb{R}^{4}$. Determine the dimension of W and find a basis for it.

Exercise 206
Consider the vectors

$$
v_{1}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
7 \\
4 \\
1 \\
8 \\
3
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
0 \\
3 \\
0 \\
4 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{l}
1 \\
9 \\
5 \\
7 \\
1
\end{array}\right], \quad \text { and } \quad v_{5}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
5 \\
0
\end{array}\right]
$$

in the vector space \mathbb{Q}^{5}. Do there exist rational numbers $a_{i j}$, for $1 \leq i, j \leq 5$, such that the subset $\left\{\sum_{j=1}^{5} a_{i j} v_{j} \mid 1 \leq i \leq 5\right\}$ of \mathbb{Q}^{5} is linearly independent?

Exercise 207

Let F be a subfield of a field K satisfying the condition that K is finitely generated as a vector space over F. For each $c \in K$, show that there exists a nonzero polynomial $p(X) \in F[X]$ satisfying $p(c)=0$.

Exercise 208
Let $W=\mathbb{R}\left\{\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\} \subseteq \mathbb{R}^{4}$ and let $V=\mathbb{R}\left\{\left[\begin{array}{r}2 \\ -1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{r}-5 \\ 6 \\ 3 \\ 0\end{array}\right]\right\}$. Com-
pute $\operatorname{dim}(W+V)$ and $\operatorname{dim}(W \cap V)$.

Exercise 209

Let F be a subfield of a field K satisfying the condition that the dimension of K as a vector space over F is finite and equal to r. Let V be a vector space of finite dimension $n>0$ over K. Find the dimension of V as a vector space over F.

Exercise 210

Let V be a vector space over a field F having infinite dimension over F. Show that there exists an infinite sequence W_{1}, W_{2}, \ldots of proper subspaces of V, satisfying $\bigcup_{i=1}^{\infty} W_{i}=V$.

Exercise 211

Let $F=\operatorname{GF}(p)$, where p is a prime integer, and let V be a vector space over F having finite dimension n. How many subspaces of dimension 1 does V have?

Exercise 212

Let W be the subset of $\mathbb{R}^{\mathbb{R}}$ consisting of all functions of the form $x \mapsto$ $a \cdot \cos (x-b)$, for real numbers a and b. Show that W is a subspace of $\mathbb{R}^{\mathbb{R}}$ and find its dimension.

Exercise 213
Let $W=\mathbb{R}\left\{\left[\begin{array}{l}4 \\ 3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}6 \\ 2 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2\end{array}\right]\right\} \subseteq \mathbb{R}^{4}$ and let $Y=\mathbb{R}\left\{\left[\begin{array}{r}4 \\ -2 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 2\end{array}\right]\right\} \subseteq \mathbb{R}^{4}$.
Find $\operatorname{dim}(W+Y)$ and $\operatorname{dim}(W \cap Y)$.

Exercise 214

Let V be a vector space of finite dimension n over a field F and let W and Y be distinct subspaces of V, each of dimension $n-1$. What is $\operatorname{dim}(W \cap Y)$?

Exercise 215

Let V be a finite-dimensional vector space over a field F and let B be a basis of V such that $\left\{\left.\left[\begin{array}{l}w \\ w\end{array}\right] \right\rvert\, w \in B\right\}$ is a basis for V^{2}. What is the dimension of V ?

Exercise 216

Let F be a field and let V be the subspace of $F[X]$ consisting of all polynomials of degree at most 4. Find a complement for V in $F[X]$.

Exercise 217

Let F be a field and let V be the subspace of $F[X]$ consisting of all polynomials of the form $\left(X^{3}+X+1\right) p(X)$ for some $p(X) \in F[X]$. Find a complement for V in $F[X]$.

Exercise 218
Let B be a nonempty proper subset of a set A. Let F be a field and let $V=F^{A}$. Let W be the subspace of V consisting of all those functions $f \in V$ satisfying $f(b)=0$ for all $b \in B$. Find a complement of W in V.

Exercise 219

Let F be a field of characteristic other than 2 , let V be a vector space over F, and let $U=\left\{\left.\left[\begin{array}{c}v \\ v^{\prime} \\ v+v^{\prime}\end{array}\right] \right\rvert\, v, v^{\prime} \in V\right\} \subseteq V^{3}$. Is $Y=\left\{\left.\left[\begin{array}{c}v \\ v \\ v\end{array}\right] \right\rvert\, v \in V\right\}$ a complement of U in V ?

Exercise 220
Let F be a field and let $p(X) \in F[X]$ have positive degree k. Let W be the subspace of $F[X]$ composed of all polynomials of the form $p(X) g(X)$ for some $g(X) \in F[X]$. Show that W has a complement in $F[X]$ of dimension k.

Exercise 221

Let V be a vector space over a field F which is not finite dimensional, and let $V \supset W_{1} \supset W_{2} \supset \cdots$ be a chain of subspaces of V, each properly contained in the one before it. Is the subspace $\bigcap_{i=1}^{\infty} W_{i}$ of V necessarily finite-dimensional?

Exercise 222

Let V be a vector space finitely generated over a field F. Let W and Y be subspaces of V and assume that there is a function $f \in F^{V}$ satisfying the condition that $f(w)<f(y)$ for all $0_{V} \neq w \in W$ and $0_{V} \neq y \in Y$. Show that $\operatorname{dim}(W)+\operatorname{dim}(Y) \leq \operatorname{dim}(V)$.

Exercise 223

Let (K, \bullet) be a division algebra of dimension 2 over \mathbb{R} containing an element v_{1} which satisfies the condition that $v_{1} \bullet v=v=v \bullet v_{1}$ for all $v \in V$. Show that $(K,+, \bullet)$ is a field.

Exercise 224

For each $a \in \mathbb{R}$, the set $\mathbb{Q}[a]=\{p(a) \mid p(X) \in \mathbb{Q}[X]\}$ is a subspace of \mathbb{R}, considered as a vector space over \mathbb{Q}. Find all pairs (a, b) of real numbers $a \neq b$ satisfying the condition that the set $\{\mathbb{Q}[a], \mathbb{Q}[b]\}$ is independent over \mathbb{Q}.

Exercise 225

Let V be a vector space over a field F. Find a necessary and sufficient condition for there to exist subspaces W and W^{\prime} of V such that $\left\{\left\{0_{V}\right\}, W, W^{\prime}\right\}$ is independent.

Exercise 226
Let (K, \bullet) be a unital \mathbb{R}-algebra (not necessarily associative) with multiplicative identity e, and let $\left\{v_{i} \mid i \in \Omega\right\}$ be a basis for K over \mathbb{R} containing e (which is
equal to v_{t} for some $t \in \Omega$). If $v=\sum_{i \in \Omega} c_{i} v_{i} \in K$, set $\bar{v}=c_{t} v_{t}-\sum_{i \neq t} c_{i} v_{i}$. If $v \in K$, is it true that $v \bullet \bar{v}=\bar{v} \bullet v$ and $\overline{\bar{v}}=v$? (Note that this construction generalizes the notion of the conjugate of a complex number.)

Exercise 227

For each nonnegative integer n, define the subsets P_{n}, A_{n}, and F_{n} of \mathbb{R} as follows:
(1) $P_{0}=\varnothing, A_{0}=\{1\}$, and $F_{0}=\mathbb{Q}$;
(2) If $n>0$, then P_{n} is the set of the first n prime integers, A_{n} consists of 1 and the set of square roots of products of distinct elements of P_{n}, and $F_{n}=\mathbb{Q} A_{n}$. Show that each A_{n} is a linearly-independent subset of \mathbb{R}, considered as a vector space over \mathbb{Q}, and that F_{n} is a subfield of \mathbb{R}, having the property that every element of F_{n} the square of which belongs to \mathbb{Q} must belong to $\mathbb{Q} a$, for some $a \in A_{n}$.

Exercise 228

Find all $a \in \mathbb{R}$ (if any exist) satisfying the condition that the dimension of $\mathbb{R}\left\{\left[\begin{array}{r}-1 \\ 2 a \\ -2\end{array}\right],\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$ is at most 2.

Exercise 229

Give an example of a vector space V finitely generated over a field F, together with nonempty subsets B_{1}, B_{2}, and B_{3} of V satisfying the following conditions:
(1) Each B_{i} is linearly independent;
(2) For each $1 \leq i \neq j \leq 3$ there exists a basis of V containing $B_{i} \cup B_{j}$;
(3) There is no basis of V containing $B_{1} \cup B_{2} \cup B_{3}$.

Exercise 230
Let V be a vector space over \mathbb{R}. A fuzzification of V is a function μ from V to the unit interval \mathbb{I} of real numbers, satisfying the condition that $\mu(a v+b w) \geq$ $\min \{\mu(v), \mu(w)\}$ for all $a, b \in \mathbb{R}$ and all $v, w \in V$. A finite nonempty linearlyindependent subset $\left\{v_{1}, \ldots, v_{n}\right\}$ of V is μ-linearly independent if and only if it satisfies the additional condition that $\mu\left(\sum_{i=1}^{n} a_{i} v_{i}\right)=\min \left\{a_{1} v_{1}, \ldots, a_{n} v_{n}\right\}$.
(1) Show that the function $\mu: \mathbb{R}^{2} \rightarrow \mathbb{I}$ defined by

$$
\mu:\left[\begin{array}{l}
a \\
b
\end{array}\right] \mapsto \begin{cases}1 & \text { if } a=b=0 \\
\frac{1}{2} & \text { if } a=0 \text { and } b \neq 0 \\
\frac{1}{4} & \text { otherwise }\end{cases}
$$

is a fuzzification on V.
(2) Is the linearly-independent subset $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 1\end{array}\right]\right\}$ of \mathbb{R} also μ-linearly independent?

Exercise 231

Let V be a vector space over a field F and let B be a fixed basis of V. We then know that each element $v \in V$ can be written in a unique way as $v=\sum_{w \in B} c_{w} w$, where the c_{w} are scalars, only finitely-many of which are nonzero. Let $n(v)$ be the number of nonzero scalars c_{w} in this representation. (Note that $n(v)=0$ if and only if $v=0_{V}$.) Define a relation \preceq on V by setting $v_{1} \preceq v_{2}$ if and only if $n\left(v_{1}\right) \leq n\left(v_{2}\right)$. Is this a partial order relation on V ?

Exercise 232
Let V be a vector space over a field F and let D be a finite minimal linearlydependent subset of V. Find $\operatorname{dim}(F D)$.

Linear Transformations

6

Let V and W be vector spaces over a field F. A function $\alpha: V \rightarrow W$ is a linear transformation or homomorphism if and only if for all $v_{1}, v_{2} \in V$ and $a \in F$ we have $\alpha\left(v_{1}+v_{2}\right)=\alpha\left(v_{1}\right)+\alpha\left(v_{2}\right)$ and $\alpha\left(a v_{1}\right)=a \alpha\left(v_{1}\right)$. We note that, as a consequence of the second condition, we have $\alpha\left(0_{V}\right)=\alpha\left(00_{V}\right)=0 \alpha\left(0_{V}\right)=0_{W}$. If (K, \bullet) and $(L, *)$ are F-algebras, then a linear transformation $\alpha: K \rightarrow L$ is a homomorphism of F-algebras if it is a linear transformation and, in addition, satisfies $\alpha\left(v_{1} \bullet v_{2}\right)=\alpha\left(v_{1}\right) * \alpha\left(v_{2}\right)$ for all $v_{1}, v_{2} \in K$. If both K and L are unital, then it is a homomorphism of unital F-algebras if it also sends the identity element of K for \bullet to the identity element of L for $*$.

Example Let V be a vector space over a field F. Every scalar $c \in F$ defines a linear transformation $\sigma_{c}: V \rightarrow V$ given by $\sigma_{c}: v \mapsto c v$. In particular, σ_{1} is the identity function $v \mapsto v$ and σ_{0} is the 0 -function $v \mapsto 0_{V}$.

Example Let F be a field and let a_{1}, \ldots, a_{6} be scalars in F. The function $\alpha: F^{2} \rightarrow F^{3}$ defined by $\alpha:\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right] \mapsto\left[\begin{array}{l}a_{1} c_{1}+a_{2} c_{2} \\ a_{3} c_{1}+a_{4} c_{2} \\ a_{5} c_{1}+a_{6} c_{2}\end{array}\right]$ is a linear transformation.

The previous example can be generalized in an extremely significant manner. Let k and n be positive integers and let F be a field. Every matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{k \times n}(F)$
defines a linear transformation from F^{n} to F^{k} given by

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] \mapsto\left[\begin{array}{c}
a_{11} c_{1}+\cdots+a_{1 n} c_{n} \\
a_{21} c_{1}+\cdots+a_{2 n} c_{n} \\
\vdots \\
a_{k 1} c_{1}+\cdots+a_{k n} c_{n}
\end{array}\right] .
$$

In what follows, we will show that every linear transformation from F^{n} to F^{k} can be defined in this manner.

Example Let F be a field of characteristic 0 . Then there are linear transformations α and β from $F[X]$ to itself defined by

$$
\alpha: \sum_{i=0}^{\infty} a_{i} X^{i} \mapsto \sum_{i=0}^{\infty} i a_{i} X^{i} \quad \text { and } \quad \beta: \sum_{i=0}^{\infty} a_{i} X^{i} \mapsto \sum_{i=0}^{\infty}(1+i)^{-1} a_{i} X^{i+1} .
$$

(By $1+i$, we mean the sum of $1+i$ copies of the identity element for multiplication of F; since the characteristic of F is 0 , we know that this element is nonzero, and so is a unit in F.)

Example Let V and W be vector spaces over a field F and let k and n be positive integers. For all $1 \leq i \leq k$ and $1 \leq j \leq n$, let $\alpha_{i j}: V \rightarrow W$ be a linear transformation. Then there is a linear transformation from $\mathcal{M}_{k \times n}(V)$ to $\mathcal{M}_{k \times n}(W)$ defined by

$$
\left[\begin{array}{ccc}
v_{11} & \ldots & v_{1 n} \\
\vdots & \ddots & \vdots \\
v_{k 1} & \ldots & v_{k n}
\end{array}\right] \mapsto\left[\begin{array}{ccc}
\alpha_{11}\left(v_{11}\right) & \ldots & \alpha_{1 n}\left(v_{1 n}\right) \\
\vdots & \ddots & \vdots \\
\alpha_{k 1}\left(v_{k 1}\right) & \ldots & \alpha_{k n}\left(v_{k n}\right)
\end{array}\right]
$$

Example Let V be the subspace over $\mathbb{R}^{\mathbb{R}}$ consisting of all differentiable functions. For each $f \in V$, we define a function $D f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, called the differential of f, by setting $D f:(a, b) \mapsto f^{\prime}(a) b$, where f^{\prime} is the derivative of f. Then the function $D: V \rightarrow \mathbb{R}^{\mathbb{R} \times \mathbb{R}}$ given by $f \mapsto D f$ is a linear transformation. Such linear transformations play an important part in differential geometry.

Example Sometimes linear transformations between F-algebras which are not homomorphisms of F-algebras play an important role. Let (K, \bullet) be an associative algebra over a field F and let $c \in F$. Then K is a Baxter algebra over F of weight c if and only if there exists a linear transformation $\alpha: K \rightarrow K$ satisfying the condition that $\alpha(x) \bullet \alpha(y)=\alpha(\alpha(x) \bullet y)+\alpha(x \bullet \alpha(y))+c \alpha(x \bullet y)$ for all $x, y \in K$. Thus, for example, if K is the \mathbb{R}-algebra of all continuous functions from \mathbb{R} to itself, the linear transformation $\alpha: K \rightarrow K$ given by $\alpha(f): t \mapsto \int_{0}^{t} f(s) d s$ defines on K the structure of a Baxter algebra of weight 0 . If F is any field and if $K=F^{\mathbb{P}}$ with componentwise addition and multiplication, then the function $\alpha: K \rightarrow K$ given by $\alpha:\left[a_{1}, a_{2}, \ldots\right] \mapsto\left[a_{1}, a_{1}+a_{2}, a_{1}+a_{2}+a_{3}, \ldots\right]$ defines on K the structure of a Baxter algebra of weight 1 .

Example Linear transformations are considered nice from an algebraic point of view, but may be less so from an analytic point of view. Let B be a Hamel basis of \mathbb{R} over \mathbb{Q}. Then for each real number r there exists a unique finite subset $\left\{u_{1}(r), \ldots, u_{n(r)}(r)\right\}$ of B and scalars $a_{1}(r), \ldots, a_{n(r)}(r)$ in \mathbb{Q} satisfying $r=$ $\sum_{j=1}^{n(r)} a_{j}(r) u_{j}(r)$. The function from \mathbb{R} to \mathbb{R} defined by $r \mapsto \sum_{j=1}^{n(r)} a_{j}(r)$ is a linear transformation, but is not continuous at any $r \in \mathbb{R}$.

Let V and W be vector spaces over a field F. To any function $f: V \rightarrow W$ we can associate the subset $\operatorname{gr}(f)=\left\{\left.\left[\begin{array}{c}v \\ f(v)\end{array}\right] \right\rvert\, v \in V\right\}$ of $V \times W$, called the graph of f. We can use the notion of graph to characterize linear transformations in terms of subspaces.

Proposition 6.1 Let V and W be vector spaces over a field F and let $\alpha: V \rightarrow W$ be a function. Then α is a linear transformation if and only if $\operatorname{gr}(\alpha)$ is a subspace of $V \times W$.

Proof Assume that α is a linear transformation. If $v, v^{\prime} \in V$ and $c \in F$ then in $V \times W$ we have $\left[\begin{array}{c}v \\ \alpha(v)\end{array}\right]+\left[\begin{array}{c}v^{\prime} \\ \alpha\left(v^{\prime}\right)\end{array}\right]=\left[\begin{array}{c}v+v^{\prime} \\ \alpha(v)+\alpha\left(v^{\prime}\right)\end{array}\right]=\left[\begin{array}{c}v+v^{\prime} \\ \alpha\left(v+v^{\prime}\right)\end{array}\right] \in \operatorname{gr}(\alpha)$ and $c\left[\begin{array}{c}v \\ \alpha(v)\end{array}\right]=\left[\begin{array}{c}c v \\ c \alpha(v)\end{array}\right]=\left[\begin{array}{c}c v \\ \alpha(c v)\end{array}\right] \in \operatorname{gr}(\alpha)$, showing that $\operatorname{gr}(\alpha)$ is closed under taking sums and scalar multiples, and so is a subspace of $V \times W$. Conversely, if it is such a subspace then for $v, v^{\prime} \in V$ and $c \in F$ we note that $\left[\begin{array}{c}v \\ \alpha(v)\end{array}\right]+\left[\begin{array}{c}v^{\prime} \\ \alpha\left(v^{\prime}\right)\end{array}\right]=\left[\begin{array}{c}v+v^{\prime} \\ \alpha(v)+\alpha\left(v^{\prime}\right)\end{array}\right] \in \operatorname{gr}(\alpha), \quad$ and \quad so \quad we \quad must have $\alpha(v)+\alpha\left(v^{\prime}\right)=\alpha\left(v+v^{\prime}\right)$. Similarly, $c\left[\begin{array}{c}v \\ \alpha(v)\end{array}\right]=\left[\begin{array}{c}c v \\ c \alpha(v)\end{array}\right] \in \operatorname{gr}(\alpha)$, and so we must have $c \alpha(v)=\alpha(c v)$. Thus α is a linear transformation.

Let V and W be vector spaces over a field F. If α and β are linear transformations from V to W, they are, in particular, functions in W^{V}, and so the function $\alpha+\beta$: $V \rightarrow W$ is defined by $\alpha+\beta: v \mapsto \alpha(v)+\beta(v)$ for all $v \in V$. For all $v, v^{\prime} \in V$ and all $c \in F$, we have

$$
\begin{aligned}
(\alpha+\beta)\left(v+v^{\prime}\right) & =\alpha\left(v+v^{\prime}\right)+\beta\left(v+v^{\prime}\right) \\
& =\alpha(v)+\alpha\left(v^{\prime}\right)+\beta(v)+\beta\left(v^{\prime}\right) \\
& =(\alpha+\beta)(v)+(\alpha+\beta)\left(v^{\prime}\right)
\end{aligned}
$$

and $(\alpha+\beta)(c v)=\alpha(c v)+\beta(c v)=c \alpha(v)+c \beta(v)=c[\alpha(v)+\beta(v)]=c(\alpha+\beta)(v)$.
Thus we see that $\alpha+\beta$ is a linear transformation from V to W. If $c \in F$ is a scalar then the function $c \alpha$ from V to W is defined by $c \alpha: v \mapsto c \alpha(v)$ and this,
again, is a linear transformation from V to W. It is easy to check that the set of all linear transformations from V to W is a subspace of W^{V}, which we will denote by $\operatorname{Hom}(V, W)$, or $\operatorname{Hom}_{F}(V, W)$ in case the field needs to be emphasized.

Example Let V and W be vector spaces over \mathbb{R} and let having complexifications U and Y, respectively. If $\alpha \in \operatorname{Hom}_{\mathbb{R}}(V, W)$ then the function $\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \mapsto\left[\begin{array}{l}\alpha\left(v_{1}\right) \\ \alpha\left(v_{2}\right)\end{array}\right]$ belongs to $\operatorname{Hom}_{\mathbb{C}}(U, Y)$.

Since $\operatorname{Hom}(V, W)$ is a vector space, we can apply concepts we have already considered for vectors to linear transformations. For example, we can talk about a linearly-dependent or linearly-independent set of linear transformations from a vector space V over a field F to a vector space W over F. However, we must be very careful to remember that when we are doing so, we are working in the space $\operatorname{Hom}(V, W)$, and not in either V or W. The following example illustrates the pitfalls one can encounter.

Example Let V and W be vector spaces over the same field F. A nonempty subset $D=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of $\operatorname{Hom}(V, W)$ is locally linearly dependent if and only if the subset $\left\{\alpha_{1}(v), \ldots, \alpha_{n}(v)\right\}$ of W is linearly dependent for every $v \in V$. If D is a linearly-dependent subset of $\operatorname{Hom}(V, W)$, then there exist scalars c_{1}, \ldots, c_{n}, not all of which are equal to 0 , such that $\sum_{i=1}^{n} c_{i} \alpha_{i}$ is the 0 -function. In particular, for each $v \in V$ we see that $\sum_{i=1}^{n} c_{i} \alpha_{i}(v)=0_{W}$ and so D is locally linearly dependent. The converse, however, is false. It may be possible for D to be linearly independent and still locally linearly dependent. To see this, take $V=W=F^{2}$ and let $D=\left\{\alpha_{1}, \alpha_{2}\right\} \subseteq \operatorname{Hom}\left(F^{2}, F^{2}\right)$, where we define $\alpha_{1}:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{l}a \\ 0\end{array}\right]$ and $\alpha_{2}:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{l}b \\ 0\end{array}\right]$. If $v \in F^{2}$, then $\left\{\alpha_{1}(v), \alpha_{2}(v)\right\}$ is a subset of the one-dimensional subspace $F\left[\begin{array}{l}1 \\ 0\end{array}\right]$ of F^{2} and so cannot be linearly independent. On the other hand, D is linearly independent since if there exist scalars c and d satisfying the condition that $c \alpha_{1}+d \alpha_{2}$ is the 0 -function, then

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=c \alpha_{1}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+d \alpha_{2}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
c \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
c \\
0
\end{array}\right],
$$

which implies that $c=0$. Similarly,

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=c \alpha_{1}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)+d \alpha_{2}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
d \\
0
\end{array}\right]=\left[\begin{array}{l}
d \\
0
\end{array}\right],
$$

which implies that $d=0$ as well.
The following proposition shows that the operation of a linear transformation is entirely determined by its action on elements of a basis. This result is extremely important, especially if the vector spaces involved are finitely generated.

Proposition 6.2 Let V and W be vector spaces over a field F, and let B be a basis of V. If $f \in W^{B}$ then there is a unique linear transformation $\alpha \in \operatorname{Hom}(V, W)$ satisfying the condition that $\alpha(u)=f(u)$ for all $u \in B$.

Proof Since B is a basis of V, we know that each vector $v \in V$ can be written as a linear combination $v=\sum_{i=1}^{n} a_{i} u_{i}$ of elements of B in a unique way. We now define the function $\alpha: V \rightarrow W$ by $\alpha: v \mapsto \sum_{i=1}^{n} a_{i} f\left(u_{i}\right)$. This function is well defined as a result of the uniqueness of representation of v, as was shown in Proposition 5.4. Moreover, it is clear that α is a linear transformation. If $\beta: V \rightarrow W$ is a linear transformation satisfying the condition that $\beta(u)=f(u)$ for all $u \in B$ then $\beta(v)=$ $\beta\left(\sum_{i=1}^{n} a_{i} u_{i}\right)=\sum_{i=1}^{n} a_{i} \beta\left(u_{i}\right)=\sum_{i=1}^{n} a_{i} f\left(u_{i}\right)=\alpha(v)$, and so $\beta=\alpha$. Thus α is unique.

Example Let F be a field and let c_{0}, c_{1}, \ldots be a sequence of elements of F. Then we have a linear transformation $\alpha: F[X] \rightarrow F$ defined by $\alpha: \sum_{i=0}^{n} a_{i} X^{i} \mapsto \sum_{i=0}^{n} a_{i} c_{i}$.

Example We can use Proposition 6.2 to show how uncommon linear transformations really are. Let $F=\mathrm{GF}(3)$ and let $V=F^{4}$. Then V has $3^{4}=81$ elements and so the number of functions from V to itself is 81^{81}. On the other hand, a basis B for V over F has 4 elements and so, since every linear transformation from V to itself is totally determined by its action on B and that any function from B to V defines such a linear transformation, we see that the number of linear transformations from V to itself is 81^{4}. Therefore, the probability that a randomly-selected function from V to itself be a linear transformation is $81^{4} / 81^{81}=81^{-77}$, which is roughly 0.11134×10^{-146}.

Proposition 6.3 Let V, W, and Y be vector spaces over a field F and let $\alpha: V \rightarrow W$ and $\beta: W \rightarrow Y$ be linear transformations. Then $\beta \alpha: V \rightarrow Y$ is a linear transformation.

Proof If $v_{1}, v_{2} \in V$ and if $a \in F$ then

$$
\begin{aligned}
(\beta \alpha)\left(v_{1}+v_{2}\right) & =\beta\left(\alpha\left(v_{1}+v_{2}\right)\right)=\beta\left(\alpha\left(v_{1}\right)+\alpha\left(v_{2}\right)\right) \\
& =\beta\left(\alpha\left(v_{1}\right)\right)+\beta\left(\alpha\left(v_{2}\right)\right)=(\beta \alpha)\left(v_{1}\right)+(\beta \alpha)\left(v_{2}\right)
\end{aligned}
$$

and $(\beta \alpha)\left(c v_{1}\right)=\beta\left(\alpha\left(c v_{1}\right)\right)=\beta\left(c \alpha\left(v_{1}\right)\right)=c \beta\left(\alpha\left(v_{1}\right)\right)=c(\beta \alpha)\left(v_{1}\right)$, which proves the proposition.

Example It is often important and insightful to write a linear transformation as a composite of linear transformations of predetermined types. Consider the following situation: Let $a<b$ be real numbers and let V be the vector space over \mathbb{R} consisting of all functions from the closed interval $[a, b]$ to \mathbb{R}. Let W be the subspace of V
consisting of all differentiable functions, and let $\delta: W \rightarrow V$ be the function which assigns to each function $f \in W$ its derivative. For each real number $a<c<b$, let $\varepsilon_{c}: V \rightarrow \mathbb{R}$ be the linear transformation defined by $\varepsilon_{c}: g \mapsto g(c)$. Then the Intermediate Value Theorem from calculus says that the linear transformation $\beta: W \rightarrow \mathbb{R}$ defined by $\beta: f \mapsto[f(b)-f(a)](b-a)^{-1}$ is of the form $\varepsilon_{c} \delta$ for some c.

Let V and W be vector spaces over a field F and let $\alpha: V \rightarrow W$ be a linear transformation. For $w \in W$, we denote $\{v \in V \mid \alpha(v)=w\}$ by $\alpha^{-1}(w)$. Note that this set may be empty. In particular, we will be interested in $\alpha^{-1}\left(0_{W}\right)=\{v \in V \mid$ $\left.\alpha(v)=0_{W}\right\}$. This set is called the kernel of α and is denoted by $\operatorname{ker}(\alpha)$. Then $\operatorname{ker}(\alpha)$ is never empty, since it always contains 0_{V}. If U is a nonempty subset of W, set $\alpha^{-1}(U)=\left\{\alpha^{-1}(u) \mid u \in U\right\}$. It is easy to verify that $\alpha^{-1}(U)$ is a subspace of V whenever U is a subspace of W.

Example Let F be a field and let $\alpha \in \operatorname{Hom}\left(F^{3}, F^{4}\right)$ be the linear transformation defined by $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{c}a-b \\ 0 \\ c \\ c\end{array}\right]$. Then $\operatorname{ker}(\alpha)=\left\{\left.\left[\begin{array}{l}a \\ a \\ 0\end{array}\right] \right\rvert\, a \in F\right\}$.

Proposition 6.4 Let V and W be vector spaces over a field F and let $\alpha \in \operatorname{Hom}(V, W)$. Then $\operatorname{ker}(\alpha)$ is a subspace of V, which is trivial if and only if α is monic.

Proof Let $v_{1}, v_{2} \in \operatorname{ker}(\alpha)$ and let $a \in F$. Then $\alpha\left(v_{1}+v_{2}\right)=\alpha\left(v_{1}\right)+\alpha\left(v_{2}\right)=0_{W}+$ $0_{W}=0_{W}$, and so $v_{1}+v_{2} \in \operatorname{ker}(\alpha)$. Similarly, $\alpha\left(a v_{1}\right)=a \alpha\left(v_{1}\right)=a 0_{W}=0_{W}$ and so $a v_{1} \in \operatorname{ker}(\alpha)$. This proves that $\operatorname{ker}(\alpha)$ is a subspace of V.

If α is monic then $\alpha^{-1}(w)$ can have at most one element for each $w \in W$, and so, in particular, $\operatorname{ker}(\alpha)=\left\{0_{V}\right\}$. Conversely, suppose that $\operatorname{ker}(\alpha)$ is trivial and that there exist elements $v_{1} \neq v_{2}$ of V satisfying $\alpha\left(v_{1}\right)=\alpha\left(v_{2}\right)$. Then $\alpha\left(v_{1}-v_{2}\right)=$ $\alpha\left(v_{1}\right)-\alpha\left(v_{2}\right)=0_{W}$ and so $v_{1}-v_{2} \in \operatorname{ker}(\alpha)$. Thus $v_{1}-v_{2}=0_{V}$ and so $v_{1}=v_{2}$, which is a contradiction. Hence α must be monic.

Let V and W be vector spaces over a field and let $\alpha: V \rightarrow W$ be a linear transformation. The image of α is the subset $\operatorname{im}(\alpha)=\{\alpha(v) \mid v \in V\}$ of W. This set is nonempty since $0_{W}=\alpha\left(0_{V}\right) \in \operatorname{im}(\alpha)$. Note that $w \in \operatorname{im}(\alpha)$ if and only if $\alpha^{-1}(w) \neq \varnothing$. If U is a nonempty subset of V, we denote the subset $\{\alpha(u) \mid u \in U\}$ of W by $\alpha(U)$. Thus $\alpha(V)=\operatorname{im}(\alpha)$.

Proposition 6.5 Let V and W be vector spaces over a field F and let $\alpha \in \operatorname{Hom}(V, W)$. Then $\operatorname{im}(\alpha)$ is a subspace of W, which is improper if and only if α is epic.

Proof If $\alpha\left(v_{1}\right)$ and $\alpha\left(v_{2}\right)$ are in $\operatorname{im}(\alpha)$ and if $a \in F$, then $\alpha\left(v_{1}\right)+\alpha\left(v_{2}\right)=$ $\alpha\left(v_{1}+v_{2}\right) \in \operatorname{im}(\alpha)$ and similarly $a \alpha\left(v_{1}\right)=\alpha\left(a v_{1}\right) \in \operatorname{im}(\alpha)$, proving that $\operatorname{im}(\alpha)$ is a subspace of W. The second part follows immediately from the definition of an epic function.

A monic linear transformation between vector spaces over a field F is called a monomorphism; an epic linear transformation between vector spaces is called an epimorphism. A bijective linear transformation between vector spaces is called an isomorphism. If both spaces are also F-algebras, then a bijective homomorphism of F-algebras is called an isomorphism of F-algebras. Similarly, a bijective homomorphism of unital F-algebras is an isomorphism of unital F-algebras.

Example Let F be a field and let k and n be positive integers. For each ma$\operatorname{trix} A=\left[a_{i j}\right] \in \mathcal{M}_{k \times n}(F)$, we can define the transpose of A to be the matrix $A^{T} \in \mathcal{M}_{n \times k}(F)$ obtained from A by interchanging its rows and columns. In other words, $A^{T}=\left[\begin{array}{ccc}a_{11} & \ldots & a_{k 1} \\ \vdots & \ddots & \vdots \\ a_{1 n} & \ldots & a_{k n}\end{array}\right]$. It is easy to check that the function $A \mapsto A^{T}$ is an isomorphism from $\mathcal{M}_{k \times n}(F)$ to $\mathcal{M}_{n \times k}(F)$.

Example Let K and L be F-algebras. It is possible for a linear transformation $\alpha: K \rightarrow L$ to be an isomorphism of vector spaces without being an isomorphism of F-algebras. This is the case, for example, with the linear transformation $\alpha: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{5})$ given by $\alpha: a+b \sqrt{2} \mapsto a+b \sqrt{5}$.

Example Let V be a vector space over a field F. Any linear transformation $\alpha: V \rightarrow F$ other than the 0 -function is an epimorphism. Indeed, if α is a nonzero linear transformation and if $v_{0} \in V$ satisfies the condition that $\alpha\left(v_{0}\right)=c \neq 0$, then for any $a \in F$ we have $a=\left(a c^{-1}\right) c=\left(a c^{-1}\right) \alpha\left(v_{0}\right)=\alpha\left(\left(a c^{-1}\right) v_{0}\right) \in \operatorname{im}(\alpha)$.

Example Let F be a field and let $\alpha: F^{(\infty)} \rightarrow F[X]$ be the function defined by $\alpha: f \mapsto \sum_{i=0}^{\infty} f(i) X^{i}$, which is well-defined since only finitely-many of the $f(i)$ are nonzero. This is easily checked to be an isomorphism of vector spaces.

We have already seen that if D is a basis of a vector space V over a field F then there exists a bijective function $\theta: F^{(D)} \rightarrow V$, and it is easy to verify that this is in fact an isomorphism of vector spaces. This leads us to the very important observation that for any nontrivial vector space V over a field F there exists a nonempty set Ω and an isomorphism $F^{(\Omega)} \rightarrow V$.

Let V and W be vector spaces over a field F and let B be a basis of V. Then we can define a function $\varphi: \operatorname{Hom}(V, W) \rightarrow W^{B}$ by restriction: $\varphi(\alpha): u \mapsto \alpha(u)$ for all $u \in B$. It is straightforward to check that φ is a linear transformation of vector spaces over F. Moreover, by Proposition 6.2, we see that any function $f \in W^{B}$ is of the form $\varphi(\alpha)$ for a unique element α of $\operatorname{Hom}(V, W)$. Therefore, φ is an isomorphism.

Let V and W be vector spaces over a field F. If $\alpha: V \rightarrow W$ is a linear transformation and $0_{W} \neq w \in W$ then $\alpha^{-1}(w)$ is not a subspace of V. However, the next result shows that, if it is nonempty, it is close to being a subspace.

Proposition 6.6 Let $\alpha: V \rightarrow W$ be a linear transformation of vector spaces over a field F and let $w \in \operatorname{im}(\alpha)$. For any $v_{0} \in \alpha^{-1}(w)$ we have $\alpha^{-1}(w)=$ $\left\{v+v_{0} \mid v \in \operatorname{ker}(\alpha)\right\}$.

Proof If $v \in \operatorname{ker}(\alpha)$ then $\alpha\left(v+v_{0}\right)=\alpha(v)+\alpha\left(v_{0}\right)=0_{W}+w=w$ and so $v+v_{0} \in$ $\alpha^{-1}(w)$. Conversely, if $v_{1} \in \alpha^{-1}(w)$ then $v_{1}=\left(v_{1}-v_{0}\right)+v_{0}$, where $v_{1}-v_{0} \in$ $\operatorname{ker}(\alpha)$ since $\alpha\left(v_{1}-v_{0}\right)=\alpha\left(v_{1}\right)-\alpha\left(v_{0}\right)=w-w=0_{W}$.

Note that if $w \neq 0_{W}$ then $\alpha^{-1}(w)$ is not a subspace of V but rather the result of "shifting" a subspace by adding a fixed nonzero vector to each of its elements. Such a subset of a vector space is called an affine subset, or linear variety of a vector space. Let V and W be vector spaces over a field F. An affine transformation $\zeta: V \rightarrow W$ is a function of the form $v \mapsto \alpha(v)+y$, for some fixed $\alpha \in \operatorname{Hom}(V, W)$ and $y \in W$. It is clear that the sum of two affine transformations is again an affine transformation, as is the product of an affine transformation by a scalar, so that the set $\operatorname{Aff}(V, W)$ of all affine transformations from V to W is also a subspace of W^{V} which in turn contains $\operatorname{Hom}(V, W)$ as a subspace. Indeed, $\operatorname{Aff}(V, W)=$ $F(\operatorname{Hom}(V, W) \cup K)$, where K is the set of all constant functions from V to W.

Moreover, if $\zeta: V \rightarrow W$ is the affine transformation defined by $v \mapsto \alpha(v)+y$ and if $w \in W$, then $\zeta^{-1}(w)=\alpha^{-1}(w-y)$ and so is an affine subset of V.

Analysis of computational procedures in linear algebra often hinges on the fact that when we think we are computing the effect of some linear transformation $\alpha \in \operatorname{Hom}(V, W)$, we are in fact computing that of an affine transformation $v \mapsto \alpha(v)+y$ where y is a vector arising from computational or random errors which, hopefully, is "very small" (in some sense) relative to $\alpha(v)$. Similarly, in linear models in statistics one must allow for such an affine transformation, where y is a random error vector, assumed to have expectation 0 .

Example Let $V=C(0,1)$ and let W be the subspace of V composed of all differentiable functions having a continuous derivative. Let $\delta: W \rightarrow V$ be the linear transformation which assigns to each function $f \in W$ its derivative. Then $\operatorname{ker}(\delta)$ consists of all constant functions. If $g \in \operatorname{im}(\delta)$ then $g=\delta(f)$, where f is the function $f: x \mapsto \int_{0}^{x} g(t) d t$. Thus $\delta^{-1}(g)$ consists of all functions of the form $f: x \mapsto \int_{0}^{x} g(t) d t+c$, where $c \in \mathbb{R}$.

Proposition 6.7 If $\alpha: V \rightarrow W$ is an isomorphism of vector spaces over a field F then there exists an isomorphism $\beta: W \rightarrow V$ satisfying $\beta \alpha(v)=v$ and $\alpha \beta(w)=w$ for all $v \in V$ and all $w \in W$.

Proof Define the function β by $\beta(w)=v$ if and only if $w=\alpha(v)$. This function is well-defined since every element w is of the form $\alpha(v)$ for a unique element $v \in V$. It is easy to check that the function β is an isomorphism which satisfies the stated conditions.

The function β defined in Proposition 6.7 is denoted by α^{-1}.
Let V and W be vector spaces over a field F. If there exists an isomorphism from V to W, we say that V and W are isomorphic and write $V \cong W$. It is easy to see that if V, W, and Y are vector spaces over F then:
(1) $V \cong V$;
(2) If $V \cong W$ then $W \cong V$;
(3) If $V \cong W$ and $W \cong Y$ then $V \cong Y$.

It is also clear that if $\alpha: V \rightarrow W$ is an isomorphism between vector spaces over F and if B is a basis of V then $\{\alpha(u) \mid u \in B\}$ is a basis of W. As an immediate consequence of this, we see that if $V \cong W$ then the dimensions of V and W are the same. The converse is true if V and W are finitely generated, as we shall now see.

Proposition 6.8 Let V and W be vector spaces over a field F having bases B and D, respectively, and assume that there exists a bijective function $f: B \rightarrow D$. Then $V \cong W$.

Proof By Proposition 6.2, we know that there exists a linear transformation $\alpha \in \operatorname{Hom}(V, W)$ satisfying the condition $\alpha(v)=f(v)$ for all $v \in B$. This linear transformation is epic since $\operatorname{im}(\alpha)$ contains a basis of W. If $v^{\prime}=\sum_{v \in B} a_{v} v$ (where only finitely-many of the coefficients a_{v} are nonzero) belongs to $\operatorname{ker}(\alpha)$ then $0_{W}=\alpha\left(v^{\prime}\right)=\alpha\left(\sum_{v \in B} a_{v} v\right)=\sum_{v \in B} a_{v} \alpha(v)=\sum_{v \in B} a_{v} f(v)$ and so $a_{v}=0$ for all $v \in B$, since D is linearly independent. Therefore, $\operatorname{ker}(\alpha)$ is trivial, and this shows that α is monic and hence an isomorphism.

In particular, if V and W are vector spaces of the same finite dimension n over a field F, then $V \cong W$.

Proposition 6.9 If V and W are vector spaces finitely generated over a field F, then
(1) There exists a monomorphism from V to W if and only if $\operatorname{dim}(V) \leq$ $\operatorname{dim}(W)$;
(2) There exists an epimorphism from V to W if and only if $\operatorname{dim}(V) \geq$ $\operatorname{dim}(W)$.

Proof (1) If there exists a monomorphism α from V to W then $V \cong \operatorname{im}(\alpha)$ and so $\operatorname{dim}(W) \geq \operatorname{dim}(\operatorname{im}(\alpha))=\operatorname{dim}(V)$. Conversely, assume that $\operatorname{dim}(V) \leq \operatorname{dim}(W)$. Then there exists a basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ of V and there exists a basis $D=$
$\left\{w_{1}, \ldots, w_{t}\right\}$ of W, where $n \leq t$. The function from B to W given by $v_{i} \mapsto w_{i}$ for all $1 \leq i \leq n$ can be extended to a linear transformation $\alpha: V \rightarrow W$, which is monic and so is a monomorphism.
(2) If there exists an epimorphism α from V to W and if $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V, then $\left\{\alpha\left(v_{i}\right) \mid 1 \leq i \leq n\right\}$ is a generating set of W and so the dimension of W is at most $n=\operatorname{dim}(V)$. Conversely, if $n=\operatorname{dim}(V) \geq \operatorname{dim}(W)=t$, pick a basis $\left\{w_{1}, \ldots, w_{t}\right\}$ of W and a basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ of V. Define a function $f: B \rightarrow W$ by

$$
f: v_{i} \mapsto \begin{cases}w_{i} & \text { for } 1 \leq i \leq t, \\ w_{t} & \text { for } t \leq i \leq n .\end{cases}
$$

From Proposition 6.2, it follows that there exists a linear transformation $\alpha: V \rightarrow W$ satisfying $\alpha\left(v_{i}\right)=f\left(v_{i}\right)$ for all $1 \leq i \leq n$, and this is the desired epimorphism.

Proposition 6.10 Let V and W be vector spaces over a field F, where V is finitely generated. Then $\operatorname{dim}(V)=\operatorname{dim}(\operatorname{im}(\alpha))+\operatorname{dim}(\operatorname{ker}(\alpha))$ for any linear transformation $\alpha \in \operatorname{Hom}(V, W)$.

Proof Let $\alpha \in \operatorname{Hom}(V, W)$. Set $V_{1}=\operatorname{ker}(\alpha)$ and let V_{2} be a complement of V_{1} in V. By Proposition 5.16, we see that $\operatorname{dim}(V)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)$ and so it suffices for us to show that $V_{2} \cong \operatorname{im}(\alpha)$. Let α_{2} be the restriction of α to V_{2}. Then $\alpha_{2} \in \operatorname{Hom}\left(V_{2}, \operatorname{im}(\alpha)\right)$. If $v_{2} \in \operatorname{ker}\left(\alpha_{2}\right)$ then $v_{2} \in V_{2} \cap V_{1}=\left\{0_{V}\right\}$. Thus α_{2} is a monomorphism. If $w \in \operatorname{im}(\alpha)$ then there exists an element v of V satisfying $\alpha(v)=w$. Moreover, $v=v_{1}+v_{2}$ for some $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$ so $w=\alpha(v)=$ $\alpha\left(v_{1}\right)+\alpha\left(v_{2}\right)=0_{W}+\alpha\left(v_{2}\right)=\alpha\left(v_{2}\right)=\alpha_{2}\left(v_{2}\right)$. Therefore, $\operatorname{im}\left(\alpha_{2}\right)=\operatorname{im}(\alpha)$, showing that α_{2} is also an epimorphism and hence the desired isomorphism.

Let V and W be vector spaces over a field F. If $\alpha \in \operatorname{Hom}(V, W)$ then we define the rank $\operatorname{rk}(\alpha)$ of α to be $\operatorname{dim}(\operatorname{im}(\alpha))$ and define is the nullity null (α) of α to be $\operatorname{dim}(\operatorname{ker}(\alpha))$. Thus, Proposition 6.10 says that V has finite dimension n then both the rank and nullity of α are finite and their sum is n. The converse is also clearly true: if the rank and nullity of α are both finite, then the dimension of V is finite. Let us give bounds on the rank and nullity of compositions of linear transformations.

Proposition 6.11 (Sylvester's Theorem) Let V, W, and Y be vector spaces finitely-generated over a field F and let $\alpha: V \rightarrow W$ and $\beta: W \rightarrow Y$ be linear transformations. Then
(1) $\operatorname{null}(\beta \alpha) \leq \operatorname{null}(\alpha)+\operatorname{null}(\beta)$;
(2) $\operatorname{rk}(\alpha)+\operatorname{rk}(\beta)-\operatorname{dim}(W) \leq \operatorname{rk}(\beta \alpha) \leq \min \{\operatorname{rk}(\alpha), \operatorname{rk}(\beta)\}$.

Proof (1) Let β_{1} be the restriction of β to $\operatorname{im}(\alpha)$. Then $\operatorname{ker}\left(\beta_{1}\right)$ is a subspace of $\operatorname{ker}(\beta)$. By Proposition 6.10, we have

$$
\begin{aligned}
\operatorname{null}(\beta \alpha) & =\operatorname{dim}(V)-\operatorname{rk}(\beta \alpha)=[\operatorname{dim}(V)-\operatorname{rk}(\alpha)]+[\operatorname{rk}(\alpha)-\operatorname{rk}(\beta \alpha)] \\
& =\operatorname{null}(\alpha)+\operatorname{null}\left(\beta_{1}\right) \leq \operatorname{null}(\alpha)+\operatorname{null}(\beta)
\end{aligned}
$$

(2) Clearly, $\operatorname{im}(\beta \alpha)$ is a subspace of $\operatorname{im}(\beta)$ and so its dimension is no greater than that of $\operatorname{im}(\beta)$. Moreover, $\operatorname{im}(\beta \alpha)=\operatorname{im}\left(\beta_{1}\right)$ and $\operatorname{so} \operatorname{rk}(\beta \alpha) \leq \operatorname{rk}(\alpha)$. Thus $\operatorname{rk}(\beta \alpha) \leq$ $\min \{\operatorname{rk}(\alpha), \operatorname{rk}(\beta)\}$. Moreover, from (1) we see that

$$
\begin{aligned}
\operatorname{dim}(V)-\operatorname{null}(\beta \alpha) & \geq \operatorname{dim}(V)-\operatorname{null}(\alpha)+\operatorname{dim}(W)-\operatorname{null}(\beta)-\operatorname{dim}(W) \\
& =\operatorname{rk}(\alpha)+\operatorname{rk}(\beta)-\operatorname{dim}(W),
\end{aligned}
$$

and this proves that $\operatorname{rk}(\alpha)+\operatorname{rk}(\beta)-\operatorname{dim}(W) \leq \operatorname{rk}(\beta \alpha)$.

Exercises

Exercise 233
Which of the following statements are true for all vector spaces V and W over a field F and all $\alpha \in \operatorname{Hom}(V, W)$?
(1) $\alpha(A \cup B)=\alpha(A) \cup \alpha(B)$ for all nonempty subsets A and B of V;
(2) $\alpha(A \cap B)=\alpha(A) \cap \alpha(B)$ for all nonempty subsets A and B of V;
(3) $\alpha^{-1}(C \cup D)=\alpha^{-1}(C) \cup \alpha^{-1}(D)$ for all nonempty subsets C and D of W;
(4) $\alpha^{-1}(C \cap D)=\alpha^{-1}(C) \cap \alpha^{-1}(D)$ for all nonempty subsets C and D of W.

Exercise 234
Let $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation satisfying $\alpha\left(\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{r}-1 \\ 3 \\ 4\end{array}\right]$, $\alpha\left(\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $\alpha\left(\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$. What is $\alpha\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)$?

Exercise 235
Let $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation satisfying $\alpha\left(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]$, $\alpha\left(\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$, and $\alpha\left(\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]$. Find a vector $v \in \mathbb{R}^{3}$ for which $\alpha(v)=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.

Exercise 236
Let F be a field and let V be the subspace of $F[X]$ consisting of all polynomials of degree at most 2 . Let $\alpha: V \rightarrow F[X]$ be a linear transformation satisfying $\alpha(1)=X, \alpha(X+1)=X^{5}+X^{3}$, and $\alpha\left(X^{2}+X+1\right)=X^{4}-X^{2}+1$. What is $\alpha\left(X^{2}-X\right)$?

Exercise 237

For each $d \in \mathbb{R}$, let $\alpha_{d}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function defined by

$$
\alpha_{d}:\left[\begin{array}{l}
a \\
b
\end{array}\right] \mapsto\left[\begin{array}{c}
a+b+d^{2}+1 \\
a
\end{array}\right] .
$$

Is there a number d having the property that α_{d} is a linear transformation? What if we consider α_{d} as a function from $\mathrm{GF}(5)^{2}$ to itself?

Exercise 238
For each $d \in \mathbb{R}$, let $\alpha_{d}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function defined by

$$
\alpha_{d}:\left[\begin{array}{l}
a \\
b
\end{array}\right] \mapsto\left[\begin{array}{c}
5 d a-d b \\
8 d^{2}-8 d-6
\end{array}\right]
$$

Is there a number d having the property that α_{d} is a linear transformation?

Exercise 239

Let V and W be vector spaces over \mathbb{Q} and let $\alpha: V \rightarrow W$ be a function satisfying $\alpha\left(v+v^{\prime}\right)=\alpha(v)+\alpha\left(v^{\prime}\right)$ for all $v, v^{\prime} \in V$. Is α necessarily a linear transformation?

Exercise 240
Let $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function which satisfies $\alpha(a+b)=\alpha(a)+\alpha(b)$ for all $a, b \in \mathbb{R}$. Show that α is a linear transformation.

Exercise 241
Let W and W^{\prime} be subspaces of a vector space V over a field F and assume that we have linear transformations $\alpha: W \rightarrow V$ and $\beta: W^{\prime} \rightarrow V$ satisfying the condition that $\alpha(v)=\beta(v)$ for all $v \in W \cap W^{\prime}$. Find a linear transformation $\theta: W+W^{\prime} \rightarrow V$, the restriction of which to W equals α and the restriction of which to W^{\prime} equals β, or show why no such linear transformation exists.

Exercise 242

Let $F=\mathrm{GF}(3)$ and let $\theta \in F^{F}$ be the function defined by $\theta(0)=0, \theta(1)=2$, and $\theta(2)=1$. Let n be a positive integer and let $\alpha: F^{n} \rightarrow F^{n}$ be the function defined by $\alpha:\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right] \mapsto\left[\begin{array}{c}\theta\left(a_{1}\right) \\ \vdots \\ \theta\left(a_{n}\right)\end{array}\right]$. Is α a linear transformation?

Exercise 243
Does there exist a linear transformation $\alpha: \mathbb{Q}^{4} \rightarrow \mathbb{Q}[X]$ satisfying

$$
\alpha\left(\left[\begin{array}{r}
1 \\
2 \\
0 \\
-1
\end{array}\right]\right)=2, \quad \alpha\left(\left[\begin{array}{r}
-1 \\
1 \\
1 \\
1
\end{array}\right]\right)=X, \quad \text { and } \quad \alpha\left(\left[\begin{array}{r}
-1 \\
4 \\
2 \\
1
\end{array}\right]\right)=X+1 ?
$$

Exercise 244

Let B be a Hamel basis for \mathbb{R} as a vector space over \mathbb{Q} and let $1 \neq a \in \mathbb{R}$. Show that there exists an element $y \in B$ satisfying $a y \notin B$.

Exercise 245

For which nonnegative integers h is the function α from $\operatorname{GF}(3)^{3}$ to itself defined by $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{c}a^{h} \\ b \\ c^{h}\end{array}\right]$ a linear transformation?

Exercise 246

For any field F, let $\theta: F \rightarrow F$ be the function defined by

$$
\theta: a \mapsto \begin{cases}0 & \text { if } a=0 \\ a^{-1} & \text { otherwise }\end{cases}
$$

This is clearly a linear transformation when $F=\mathrm{GF}(2)$. Does there exist a field other than $\mathrm{GF}(2)$ for which θ is a linear transformation?

Exercise 247

Let $V=F^{\infty}$ and let $\alpha: V \rightarrow V$ be the function that assigns to each sequence $\left[a_{1}, a_{2}, \ldots\right] \in V$ its sequence of partial sums, namely $\left[a_{1}, a_{2}, \ldots\right] \mapsto$ [$\left.a_{1}, \sum_{i=1}^{2} a_{i}, \sum_{i=1}^{3} a_{i}, \ldots\right]$. Is α a linear transformation?

Exercise 248

Let $Y=\mathbb{R}^{\mathbb{R}} \times \mathbb{R}$. Is the function $\alpha: Y \rightarrow \mathbb{R}$ defined by $\alpha:(f, a) \mapsto f(a)$ a linear transformation?

Exercise 249

Let F be a field and let b and c be nonzero elements of F. Let $\alpha: F^{\infty} \rightarrow F^{\infty}$ be the linear transformation defined by

$$
\alpha:\left[a_{1}, a_{2}, \ldots\right] \mapsto\left[a_{3}+b a_{2}+c a_{1}, a_{4}+b a_{3}+c a_{2}, \ldots\right] .
$$

Let $y \in \operatorname{ker}(\alpha)$ be a vector satisfying the condition that two successive entries in y equal 0 . Show that $y=[0,0, \ldots]$.

Exercise 250
Consider the field $F=\mathbb{Q}(\sqrt{2})$ as a \mathbb{Q}-algebra. Show that the only homomorphisms of \mathbb{Q}-algebras from F to itself are the identity function and the function $a+b \sqrt{2} \mapsto a-b \sqrt{2}$.

Exercise 251

Let V, W, and Y be vector spaces finitely-generated over a field F and let $\alpha: V \rightarrow W$ be a linear transformation. Show that the set of all linear transformations $\beta: W \rightarrow Y$ satisfying the condition that $\beta \alpha$ is the 0 -transformation is a subspace of $\operatorname{Hom}(W, Y)$, and calculate its dimension.

Exercise 252

Let V and W be vector spaces over a field F and let V^{\prime} be a proper subspace of V. Are $\left\{\alpha \in \operatorname{Hom}(V, W) \mid \operatorname{ker}(\alpha) \subseteq V^{\prime}\right\}$ and $\left\{\alpha \in \operatorname{Hom}(V, W) \mid \operatorname{ker}(\alpha) \supseteq V^{\prime}\right\}$ subspaces of $\operatorname{Hom}(V, W)$?

Exercise 253

Let V and W be vector spaces over a field F and assume that there are subspaces V_{1} and V_{2} of V, both of positive dimension, satisfying $V=V_{1} \oplus V_{2}$. For $i=1,2$, let $U_{i}=\left\{\alpha \in \operatorname{Hom}(V, W) \mid \operatorname{ker}(\alpha) \supseteq V_{i}\right\}$. Show that $\left\{U_{1}, U_{2}\right\}$ is an independent set of subspaces of $\operatorname{Hom}(V, W)$. Is it necessarily true that $\operatorname{Hom}(V, W)=$ $U_{1} \oplus U_{2}$?

Exercise 254

Let F be a field, and let $\alpha: \mathcal{M}_{2 \times 2}(F) \rightarrow \mathcal{M}_{n \times n}(F)$ be a homomorphism of F-algebras for some $n>1$. Show that $\alpha\left(\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right) \neq I$.

Exercise 255

Let V and W be vector spaces over a field F and let $\alpha, \beta: V \rightarrow W$ be linear transformations satisfying the condition that for each $v \in V$ there exists a scalar $c_{v} \in F$ (depending on v) satisfying $\beta(v)=c_{v} \alpha(v)$. Show that there exists a scalar c satisfying $\beta=c \alpha$.

Exercise 256

Let V and W be vector spaces over a field F. Define a function $\varphi: \operatorname{Hom}(V, W) \rightarrow$ $\operatorname{Hom}(V \times W, V \times W)$ by setting $\varphi(\alpha):\left[\begin{array}{c}v \\ w\end{array}\right] \mapsto\left[\begin{array}{c}0_{V} \\ \alpha(v)\end{array}\right]$. Is φ a linear transformation of vector spaces over F ? Is it a monomorphism?

Exercise 257
Find the kernel of the linear transformation $\alpha: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ defined by

$$
\alpha:\left[\begin{array}{l}
a \\
b \\
c \\
d \\
e
\end{array}\right] \mapsto\left[\begin{array}{c}
b+c-2 d+e \\
a+2 b+3 c-4 d \\
2 a+2 c-2 e
\end{array}\right]
$$

Exercise 258
Let $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
\alpha:\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \mapsto\left[\begin{array}{c}
2 a+4 b-c \\
0 \\
3 c+2 b-a
\end{array}\right]
$$

Are $\operatorname{im}(\alpha)$ and $\operatorname{ker}(\alpha)$ disjoint?

Exercise 259
Let W be the subspace $\mathbb{Q}\left\{\left[\begin{array}{r}2 \\ -1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right]\right\}$ of \mathbb{Q}^{4} and let $\alpha: W \rightarrow \mathbb{Q}^{2}$ be
the linear transformation defined by setting $\alpha:\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right] \mapsto\left[\begin{array}{c}a+2 b+c \\ -a-2 b-c\end{array}\right]$. Find a basis for $\operatorname{ker}(\alpha)$.

Exercise 260
Let $F=\mathrm{GF}(3)$ and let $\alpha: F^{3} \rightarrow F^{3}$ be the linear transformation defined by $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{c}a+b \\ 2 b+c \\ 0\end{array}\right]$. Find the kernel of α.

Exercise 261

Let $\alpha: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
\alpha:\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] \mapsto\left[\begin{array}{c}
2 a+4 b+c-d \\
3 a+b-2 c \\
a+5 c+4 d
\end{array}\right]
$$

Do there exist $a, b, d \in \mathbb{Z}$ such that $\left[\begin{array}{l}a \\ b \\ 7 \\ d\end{array}\right] \in \operatorname{ker}(\alpha)$?

Exercise 262
Let V and W be vector spaces over a field F. Let $\alpha \in \operatorname{Hom}(V, W)$ and $\beta \in \operatorname{Hom}(W, V)$ satisfy the condition that $\alpha \beta \alpha=\alpha$. If $w \in \operatorname{im}(\alpha)$, show that $\alpha^{-1}(w)=\{\beta(w)+v-\beta \alpha(v) \mid v \in V\}$.

Exercise 263

Let V, W, and Y be vector spaces over a field F and let $\alpha \in \operatorname{Hom}(V, W)$ and $\beta \in \operatorname{Hom}(W, Y)$ satisfy the condition that $\operatorname{im}(\alpha)$ has a finitely-generated complement in W and $\operatorname{im}(\beta)$ has a finitely-generated complement in Y. Does im $(\beta \alpha)$ necessarily have a finitely-generated complement in Y ?

Exercise 264

Let $\alpha: \mathcal{M}_{3 \times 3}(\mathbb{R}) \rightarrow \mathbb{R}$ be defined by $\alpha:\left[a_{i j}\right] \mapsto \sum_{i=1}^{3} \sum_{j=1}^{3} a_{i j}$. Show that α is a linear transformation and find a basis for $\operatorname{ker}(\alpha)$.

Exercise 265

Let $F=\mathrm{GF}(2)$ and let $n>2$ be an integer. Let W be the set of all vectors $\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]$ in F^{n} having an even number of nonzero entries. Show that W is a subspace of F^{n} by showing that it is the kernel of some linear transformation.

Exercise 266

Let A and B be nonempty sets. Let V be the collection of all subsets of A and let W be the collection of all subsets of B, both of which are vector spaces over $\operatorname{GF}(2)$. Any function $f: A \rightarrow B$ defines a function $\alpha_{f}: W \rightarrow V$ by setting $\alpha_{f}: D \mapsto\{a \in A \mid f(a) \in D\}$. Show that each such function α_{f} is a linear transformation, and find its kernel.

Exercise 267

Let V be a vector space over a field F and let $\alpha: V^{3} \rightarrow V$ be the function defined by $\alpha:\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \mapsto v_{1}+v_{2}+v_{3}$. Show that α is a linear transformation and find its kernel.

Exercise 268

Let n be a positive integer and let V be the subspace of $\mathbb{R}[X]$ composed of all polynomials of degree at most n. Let $\alpha: V \rightarrow V$ be the linear transformation given by $\alpha: p(X) \mapsto p(X+1)-p(X)$. Find $\operatorname{ker}(\alpha)$ and $\operatorname{im}(\alpha)$.

Exercise 269
Let $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by

$$
\alpha:\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \mapsto\left[\begin{array}{c}
a+b+c \\
-a-c \\
b
\end{array}\right] .
$$

Find $\operatorname{ker}(\alpha)$ and $\operatorname{im}(\alpha)$.
Exercise 270
Find the kernel of the linear transformation $\alpha: \mathbb{Q}[X] \rightarrow \mathbb{R}$ defined by α : $p(X) \mapsto p(\sqrt{3})$.

Exercise 271
Let $V=C(0,1)$. For each positive integer n, we define the nth Bernstein function $\beta_{n}: V \mapsto \mathbb{R}[X]$ by

$$
\beta_{n}: f \mapsto \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} f\left(\frac{k}{n}\right) X^{k}(1-X)^{n-k} .
$$

Show that each β_{n} is a linear transformation and find $\bigcap_{n=1}^{\infty} \operatorname{ker}\left(\beta_{n}\right)$. (Note: the Bernstein functions are used in building polynomial approximations to continuous functions.)

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach.
Sergei Natanovich Bernstein was a twentieth-century Russian mathematician who worked mostly in probability theory.

Exercise 272
Let V and W be nontrivial vector spaces over a field F. Show that $W=$ $\sum\{\operatorname{im}(\alpha) \mid \alpha \in \operatorname{Hom}(V, W)\}$.

Exercise 273

Let W be the subspace of $\mathbb{R}^{\mathbb{R}}$ consisting of all twice-differentiable functions and let $\alpha: W \rightarrow \mathbb{R}^{\mathbb{R}}$ be the linear transformation $\alpha: f \mapsto f^{\prime \prime}$. Find $\alpha^{-1}\left(f_{0}\right)$, where $f_{0} \in \mathbb{R}^{\mathbb{R}}$ is defined by $f_{0}: x \mapsto x+1$.

Exercise 274

Let W be the subspace of $\mathbb{R}^{\mathbb{R}}$ consisting of all differentiable functions and let $\alpha: W \rightarrow \mathbb{R}^{\mathbb{R}}$ be the function defined by $\alpha(f): x \mapsto f^{\prime}(x)+\cos (x) f(x)$. Show that α is a linear transformation and find its kernel.

Exercise 275
Let n be a positive integer and let V be a vector space over \mathbb{C}. Does there exist a linear transformation $\alpha: V \rightarrow \mathbb{C}^{n}$ other than the 0-function satisfying the condition that $\operatorname{im}(\alpha) \subseteq \mathbb{R}^{n}$?

Exercise 276
Let V and W be vector spaces over a field F and let $\alpha: V \rightarrow W$ be a linear transformation other than the 0 -function. Find a linear transformation $\beta: V \rightarrow W$ satisfying $\operatorname{im}(\alpha)=\operatorname{im}(\beta) \neq \operatorname{im}(\alpha+\beta)$.

Exercise 277

Let V be a finite-dimensional vector space over a field F and let $\alpha, \beta \in$ $\operatorname{Hom}(V, V)$ be linear transformations satisfying $\operatorname{im}(\alpha)+\operatorname{im}(\beta)=V=\operatorname{ker}(\alpha)+$ $\operatorname{ker}(\beta)$. Show that $\operatorname{im}(\alpha) \cap \operatorname{im}(\beta)=\left\{0_{V}\right\}=\operatorname{ker}(\alpha) \cap \operatorname{ker}(\beta)$.

Exercise 278

Let V, W, and Y be vector spaces over a field F and let $\alpha \in \operatorname{Hom}(V, W)$ and $\beta \in \operatorname{Hom}(W, Y)$ satisfy the condition that $\operatorname{ker}(\alpha)$ and $\operatorname{ker}(\beta)$ are both finitely generated. Is $\operatorname{ker}(\beta \alpha)$ necessarily finitely generated?

Exercise 279
Find a linear transformation $\alpha: \mathbb{Q}^{3} \rightarrow \mathbb{Q}^{4}$ satisfying

$$
\operatorname{im}(\alpha)=\mathbb{Q}\left\{\left[\begin{array}{r}
0.5 \\
-1 \\
3 \\
0
\end{array}\right],\left[\begin{array}{r}
2 \\
1 \\
1 \\
-4
\end{array}\right]\right\} .
$$

Exercise 280
Let $F=\operatorname{GF}(2)$ and let $\alpha \in \operatorname{Hom}\left(F^{7}, F^{3}\right)$ be given by

$$
\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{7}
\end{array}\right] \mapsto\left[\begin{array}{c}
a_{4}+a_{5}+a_{6}+a_{7} \\
a_{2}+a_{3}+a_{6}+a_{7} \\
a_{1}+a_{3}+a_{5}+a_{7}
\end{array}\right] .
$$

If v is a nonzero element of $\operatorname{ker}(\alpha)$, show that at least three entries in v are equal to 1 .

Exercise 281

Let V and W be vector spaces finitely-generated over a field F and let $\alpha \in \operatorname{Hom}(V, W)$. If Y is a subspace of W, is it true that $\operatorname{dim}\left(\alpha^{-1}(Y)\right) \geq$ $\operatorname{dim}(V)-\operatorname{dim}(W)+\operatorname{dim}(Y)$?

Exercise 282

Let V be a vector space over a field F and let $Y=V^{\infty}$. Let W be the subspace of Y consisting of all those sequences $\left[v_{1}, v_{2}, \ldots\right]$ in which $v_{i}=0$ for all odd i
and let W^{\prime} be the subspace of Y consisting of all those sequences in which $v_{i}=0$ for all even i. Find a linear transformation from Y to itself, the kernel of which equals W and the image of which equals W^{\prime}.

Exercise 283
Let W be the subspace of \mathbb{R}^{6} composed of all vectors $\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{6}\end{array}\right]$ satisfying
$\sum_{i=1}^{6} a_{i}=0$. Does there exist a monomorphism from W to \mathbb{R}^{4} ?

Exercise 284

Let n be a positive integer and let $\alpha: \mathbb{Q}^{n} \rightarrow \mathbb{Q}^{n}$ be a linear transformation which is not a monomorphism. Does there necessarily exist a nonzero element of $\operatorname{ker}(\alpha)$ all the entries of which are integers?

Exercise 285

Let n be a positive integer and let W be the subspace of $\mathbb{C}[X]$ consisting of all polynomials of degree less than n. Let a_{1}, \ldots, a_{n} be distinct complex numbers and let $\alpha: W \rightarrow \mathbb{C}^{n}$ be the function defined by $\alpha: p(X) \mapsto\left[\begin{array}{c}p\left(a_{1}\right) \\ \vdots \\ p\left(a_{n}\right)\end{array}\right]$. Is α a monomorphism? Is it an isomorphism?

Exercise 286

Let V be a vector space over a field F and let $\alpha: V \rightarrow V$ be a linear transformation satisfying the condition that $\alpha^{2}=a \alpha+b \sigma_{1}$, where a and b are nonzero scalars. Show that α is a monomorphism.

Exercise 287

Let p be a prime integer and let F be a field of characteristic p. Let (K, \bullet) be an associative and commutative unital F-algebra and let $\alpha: K \rightarrow K$ be the function defined by $\alpha: v \mapsto v^{p}$. Show that α is an isomorphism of unital F-algebras.

Exercise 288

Let F be a field and let K and K^{\prime} be fields containing F. Show that every homomorphism of F-algebras $K \rightarrow K^{\prime}$ is a homomorphism of unital F-algebras.

Exercise 289

Let $F=\mathrm{GF}(7)$. How many distinct monomorphisms can one define from F^{2} to F^{4} ?

Exercise 290

Let V and W be vector spaces over a field F and let $\alpha, \beta \in \operatorname{Hom}(V, W)$ be monomorphisms. Is $\alpha+\beta$ necessarily a monomorphism?

Exercise 291
Let F be a field and let F^{\prime} be a field containing F. Let (K, \bullet) be an F-algebra and let $\alpha: F^{\prime} \rightarrow K$ be a nontrivial homomorphism of F-algebras. Show that α is monic.

Exercise 292

Let V and W be vector spaces over a field F and let $\alpha \in \operatorname{Hom}(V, W)$ be an epimorphism. Show that there exists a linear transformation $\beta \in \operatorname{Hom}(W, V)$ satisfying the condition that $\alpha \beta$ is the identity function on W.

Exercise 293

Let V, W, and Y be vector spaces over a field F and let $\alpha \in \operatorname{Hom}(V, W)$ be an epimorphism. Show that for each linear transformation $\beta \in \operatorname{Hom}(Y, W)$ there exists a linear transformation $\theta \in \operatorname{Hom}(Y, V)$ such that $\beta=\alpha \theta$.

Exercise 294

Let V, W, and Y be vector spaces over a field F and let $\alpha \in \operatorname{Hom}(V, W)$ be a monomorphism. Show that for each linear transformation $\beta \in \operatorname{Hom}(V, Y)$ there exists a linear transformation $\theta \in \operatorname{Hom}(W, Y)$ such that $\beta=\theta \alpha$.

Exercise 295

Let V be a vector space finitely-generated over a field F, the dimension of which is even. Show that there exists an isomorphism $\alpha: V \rightarrow V$ satisfying the condition that $\alpha^{2}(v)=-v$ for all $v \in V$.

Exercise 296

Let $\alpha: V \rightarrow W$ be a linear transformation between vector spaces over a field F and let D be a nonempty linearly-independent subset of $\operatorname{im}(\alpha)$. Show that there exists a basis B of V satisfying the condition that $\{\alpha(v) \mid v \in B\}=D$.

Exercise 297

Let V and W be vector spaces over a field F and let $\alpha \in \operatorname{Hom}(V, W)$ satisfy the condition that $\alpha \beta \alpha$ is not the 0 -function for any linear transformation $\beta: W \rightarrow V$ which is not the 0 -function. Show that α is an isomorphism.

Exercise 298

Let F be a field and let $\alpha: F^{3} \rightarrow F[X]$ be the linear transformation defined by $\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto(a+b) X+(a+c) X^{5}$. Find the nullity and rank of α.

Exercise 299

Let F be a field and let $p(X)=X^{2}+b X+c \in F[X]$ be a polynomial having distinct nonzero roots d_{1} and d_{2} in F. Let $\alpha: F^{3} \rightarrow F$ be the linear transformation
defined by $\alpha:\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \mapsto a_{3}+b a_{2}+c a_{1}$ and let $\beta: F^{\infty} \rightarrow F^{\infty}$ be the linear trans-
formation defined by $\beta:\left[a_{1}, a_{2}, a_{3}, \ldots\right] \mapsto\left[\alpha\left(\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]\right), \alpha\left(\left[\begin{array}{l}a_{2} \\ a_{3} \\ a_{4}\end{array}\right]\right), \ldots\right]$. Show that the nullity of β is at least 2 .

Exercise 300

Let Ω be a nonempty set and let V be the collection of all subsets of Ω, considered as a vector space over GF(2). Show that this vector space is isomorphic to $\mathrm{GF}(2)^{\Omega}$.

Exercise 301

Let F be a field and let V be the subspace of F^{∞} consisting of all sequences [$a_{1}, a_{2}, a_{3}, \ldots$] in which $a_{i}=0$ for all even i. Let W be the subspace of F^{∞} consisting of all sequences $\left[a_{1}, a_{2}, a_{3}, \ldots\right]$ in which $a_{i}=0$ for all odd i. Show that $V \cong F^{\infty} \cong W$.

Exercise 302

Let V be a vector space over a field F having subspaces W and W^{\prime}. Let $Y=\left\{\left.\left[\begin{array}{c}w \\ w^{\prime}\end{array}\right] \right\rvert\, w \in W\right.$ and $\left.w^{\prime} \in W^{\prime}\right\}$, which is a subspace of V^{2}. Let $\alpha: Y \rightarrow V$ be the linear transformation defined by $\alpha:\left[\begin{array}{c}w \\ w^{\prime}\end{array}\right] \mapsto w+w^{\prime}$. Find the kernel of α, and show that it is isomorphic to $W \cap W^{\prime}$.

Exercise 303

Let V be a vector space over a field F. Let W be a subspace of V and let W^{\prime} be a complement of W in V. Let $\alpha: W \rightarrow W^{\prime}$ be a linear transformation. Show that W isomorphic to the subspace $Y=\{w+\alpha(w) \mid w \in W\}$ of V.

Exercise 304

Show that there is no vector space over any field F having precisely 15 elements.

Exercise 305

Let F be a field and let $V=F[X]$. Show that $V \cong V^{2}$.

Exercise 306

Let V, W, and Y be vector spaces over a field F. Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a finite subset of $\operatorname{Hom}(V, W)$ and let $\beta \in \operatorname{Hom}(V, Y)$ be a linear transformation satisfying $\bigcap_{i=1}^{n} \operatorname{ker}\left(\alpha_{i}\right) \subseteq \operatorname{ker}(\beta)$. Show that there exist linear transformations $\gamma_{1}, \ldots, \gamma_{n}$ in $\operatorname{Hom}(W, Y)$ satisfying $\beta=\sum_{i=1}^{n} \gamma_{i} \alpha_{i}$.

Exercise 307
Let V be a vector space over a field F and let W be a subspace of V. For each $v \in V$, let $v+W=\{v+w \mid w \in W\}$. Let V / W be the collection of all the sets of the form $v+W$ for $v \in V$ and define operations of addition and scalar multiplication on V / W by setting $(v+W)+\left(v^{\prime}+W\right)=\left(v+v^{\prime}\right)+W$ and $c(v+W)=(c v)+W$ for all $v, v^{\prime} \in V$ and $c \in F$. Show that:
(1) $v+W=v^{\prime}+W$ if and only if $v-v^{\prime} \in W$;
(2) V / W, with the given operations, is a vector space over F;
(3) The function $v \mapsto v+W$ is an epimorphism from V to W, the kernel of which equals W;
(4) Every complement of W in V is isomorphic to V / W;
(5) If $[v+W] \cap\left[v^{\prime}+W\right] \neq \varnothing$ then $v+W=v^{\prime}+W$.

The space V / W is called the factor space of V by W.

Exercise 308

Let F be a field and let $m>n$ be positive integers. Let A and B be fixed matrices in $\mathcal{M}_{n \times m}(F)$ and let $\theta: \mathcal{M}_{m \times n}(F) \rightarrow \mathcal{M}_{n \times m}(F)$ be the linear transformation defined by $\theta: C \mapsto A C B$. Show that θ is not an isomorphism.

Exercise 309

Let F be a field and let K and L be fields containing F as a subfield. Show that the set of homomorphisms of unital F-algebras from L to K is a linearlyindependent subset of the vector space K^{L} over K.

Exercise 310

Let V and W be vector spaces over a field F, with V finitely generated, and let Y be a proper subspace of V. Let $\alpha \in \operatorname{Hom}(V, W)$ and let β be the restriction of α to Y. Show that either $\operatorname{ker}(\beta) \subset \operatorname{ker}(\alpha)$ or $\operatorname{im}(\beta) \subset \operatorname{im}(\alpha)$.

Exercise 311

Let V be a vector space over a field F, and let $U \subseteq W$ be subspaces of V. Assume that there exist $x, y \in V$ satisfying the condition that the affine sets $x+U=$ $\{x+u \mid u \in U\}$ and $y+W=\{y+w \mid w \in W\}$ have a vector in common. Show that $x+U \subseteq y+W$.

Exercise 312

Let V and W be vector spaces over a field F. A function $f: V \rightarrow W$ is linearly independent if and only if $\operatorname{gr}(f)$ is a linearly-independent subset of $V \times W$.
(1) Show that if $f: V \rightarrow W$ is linearly independent and if $\alpha \in \operatorname{Hom}(V, W)$ then $f+\alpha$ is linearly independent.
(2) Show that no linear transformation is linearly independent.

Exercise 313

Let V and W be a vector spaces over a field F. A linear transformation $\alpha: V \rightarrow$ W is said to have algebraic degree n if and only if the set $\left\{v, \alpha(v), \ldots, \alpha^{n}(v)\right\}$ is linearly dependent for any $v \in V$, but there exists an element v_{0} of V such
that the set $\left\{v_{0}, \alpha\left(v_{0}\right), \ldots, \alpha^{n-1}\left(v_{0}\right)\right\}$ is linearly independent. Find the algebraic degree of $\alpha \in \operatorname{Hom}\left(\mathbb{R}^{5}, \mathbb{R}^{5}\right)$ defined by $\alpha:\left[\begin{array}{l}a \\ b \\ c \\ d \\ e\end{array}\right] \mapsto\left[\begin{array}{c}a+2 b \\ b-c \\ a \\ c-a \\ c\end{array}\right]$.

Exercise 314

Let n be a positive integer and let F be a field the characteristic of which does not divide n. Let W be the subspace of $\mathcal{M}_{n \times n}(F)$ generated by $\{A B-B A \mid A, B \in$ $\left.\mathcal{M}_{n \times n}(F)\right\}$. Show that $\operatorname{dim}(W)=n^{2}-1$.

Exercise 315

Let V be a vector space finitely generated over a field F and let $\alpha \in \operatorname{Hom}(V, V)$. Show that there exists a positive integer t satisfying $V=\operatorname{im}\left(\alpha^{t}\right) \oplus \operatorname{ker}\left(\alpha^{t}\right)$.

The Endomorphism Algebra of a Vector Space

Let V be a vector space over a field F. A linear transformation α from V to itself is called an endomorphism of V. We will denote the set of all endomorphisms of V by $\operatorname{End}(V)$. This set is nonempty, since it includes the functions of the form $\sigma_{c}: v \mapsto c v$ for $c \in F$. In particular, it includes the 0-endomorphism $\sigma_{0}: v \mapsto 0_{V}$ and the identity endomorphism $\sigma_{1}: v \mapsto v$. If V is nontrivial, these functions are not the same. We see that we have two operations defined on $\operatorname{End}(V)$: addition and multiplication (given by composition). Indeed, as a direct consequence of the definitions we conclude the following:

Proposition 7.1 If V is a nontrivial vector space over a field F, then $\operatorname{End}(V)$ is an associative unital F-algebra with σ_{0} being the identity element for addition and σ_{1} being the identity element for multiplication.

If V is a nontrivial vector space over a field F then there exists a function $\sigma: F \rightarrow \operatorname{End}(V)$ defined by $\sigma: c \mapsto \sigma_{c}$ for all $c \in F$. This function is monic, for if $\sigma_{c}=\sigma_{d}$ then for any $0_{V} \neq v \in V$ we have $c v=\sigma_{c}(v)=\sigma_{d}(v)=d v$ and hence $(c-d) v=0_{V}$. Since $0_{V} \neq v$, this implies that $c-d=0$ and so $c=d$. Moreover, if $c, d \in F$ then $\sigma_{c}+\sigma_{d}=\sigma_{c+d}$ and $\sigma_{c} \sigma_{d}=\sigma_{c d}$ so σ is a monic homomorphism of unital F-algebras. We can use this function to identify F with its image under σ and consider it a subalgebra of the F-algebra $\operatorname{End}(V)$.

If $\alpha, \beta \in \operatorname{End}(V)$ and if $c \in F$, then we have already seen that the functions $\alpha+\beta$, $\alpha \beta$, and $c \alpha$ all belong to $\operatorname{End}(V)$. Therefore, we see that if $p(X)=\sum_{i=0}^{n} a_{i} X^{i} \in$ $F[X]$ then $p(\alpha)=\sum_{i=0}^{n} a_{i} \alpha^{i}$ is an endomorphism of V, and, indeed, the set $F[\alpha]$ of all endomorphisms of V of this form is an F-subalgebra of $\operatorname{End}(V)$. The function from $F[X]$ to $F[\alpha]$ given by $p(X) \mapsto p(\alpha)$ is immediately seen to be an epic homomorphism of unital F-algebras for any $\alpha \in \operatorname{End}(V)$.

Example Let $F=\mathrm{GF}(2)$ and let $p(X)=X^{2}+X \in F[X]$. Then $p(a)=0$ for every $a \in F$. However, $p(\alpha) \neq \sigma_{0}$, where $\alpha \in \operatorname{End}\left(F^{2}\right)$ is defined by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{l}b \\ a\end{array}\right]$.

Example Structures of the form $F[\alpha]$ are important in many areas of mathematics. For example, let V be the collection of all infinitely-differentiable functions from \mathbb{R} to \mathbb{R} and let δ be the differentiation endomorphism on V. If $p(X)=\sum_{i=0}^{n} a_{i} X^{i} \in$ $\mathbb{R}[X]$, then we have $p(\delta): f \mapsto a_{0} f+\sum_{i=1}^{n} a_{i} f^{[i]}$, where $f^{[i]}$ denotes the i th derivative of f. Such an endomorphism is called a differential operator with constant coefficients on V. If $c \in \mathbb{R}$ and if $f_{c} \in V$ is the function given by $f_{c}: x \mapsto e^{c x}$, then $\delta\left(f_{c}\right)=c f_{c}$ and so $p(\delta): f_{c} \mapsto \sum_{i=0}^{n} a_{i} c^{i} e^{c x}=\left(\sum_{i=0}^{n} a_{i} c^{i}\right) f_{c}=p(c) f_{c}$. Thus, $p(\delta)$ is the 0 -function whenever c is as root of $p(X)$. Hence $f_{c} \in \operatorname{ker}(p(\delta))$ for each root c of $p(X)$.

Example Let V be the convolution algebra on \mathbb{R} and let $h \in V$ be the constant function $t \mapsto 1$. Then h defines an endomorphism of V given by $f \mapsto h * f$, called the integration endomorphism since $h * f: t \mapsto \int_{0}^{t} f(u) d u$.

Example Let F be a field and let (K, \bullet) be a nonassociative F-algebra. An endomorphism $\delta \in \operatorname{End}(K)$ is a derivation if and only if $\delta(v \bullet w)=[\delta(v)] \bullet w+v \bullet$ [$\delta(w)$]. Thus, for example, if K is a Lie algebra then, as a consequence of the Jacobi identity, we see that every $y \in K$ defines a derivation δ_{y} of K given by $\delta_{y}: v \mapsto y \bullet v$. Also, if K is the \mathbb{R}-algebra consisting of all infinitely-differentiable functions in $\mathbb{R}^{\mathbb{R}}$, then the endomorphism of K which assigns to each function in K its derivative is a derivation. The set of all derivations defined on K is a subspace of $\operatorname{End}(K)$. If δ and δ^{\prime} are derivations on K, then $\delta \delta^{\prime}$ is not, in general, a derivation on K, but the Lie product $\delta \delta^{\prime}-\delta^{\prime} \delta$ is always a derivation on K, and so the set of all derivations on K is a Lie algebra over F.

Given a nontrivial vector space V over a field F, we note that the F-algebra $\operatorname{End}(V)$ is neither necessarily commutative nor necessarily entire, as the following examples show:

Example Let F be a field and let $V=F^{3}$. Let $\alpha, \beta \in \operatorname{End}(V)$ be the endomorphisms defined by $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{l}b \\ a \\ c\end{array}\right]$ and $\beta:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{l}a \\ 0 \\ 0\end{array}\right]$. Then $\beta \alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{l}b \\ 0 \\ 0\end{array}\right]$ and $\alpha \beta:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{l}0 \\ a \\ 0\end{array}\right]$, so $\beta \alpha \neq \alpha \beta$.

Example Let F be a field and let $V=F^{3}$. Let $\alpha, \beta \in \operatorname{End}(V)$ be the endomorphisms defined by $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{l}0 \\ 0 \\ c\end{array}\right]$ and $\beta:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{l}a \\ 0 \\ 0\end{array}\right]$. Then $\beta \alpha=\sigma_{0}=\alpha \beta$.

We do, however, have the following:

Proposition 7.2 Let V be a vector space over a field F. Then for all $\alpha \in \operatorname{End}(V)$ and all $c \in F$ we have $\alpha \sigma_{c}=\sigma_{c} \alpha$.

Proof If $v \in V$ then $\alpha \sigma_{c}(v)=\alpha(c v)=c \alpha(v)=\sigma_{c} \alpha(v)$.

An endomorphism of a vector space V over a field F which is also an isomorphism (i.e., which is both monic and epic) is called an automorphism of V. Since $\alpha\left(0_{V}\right)=0_{V}$ for any endomorphism α of V, we see that any automorphism of V induces a permutation of $V \backslash\left\{0_{V}\right\}$. Similarly, a homomorphism of F-algebras which is also an isomorphism is an automorphism of F-algebras.

By what we have already seen, we know that $\alpha \in \operatorname{End}(V)$ is an automorphism if and only if there exists an endomorphism $\alpha^{-1} \in \operatorname{End}(V)$ satisfying $\alpha \alpha^{-1}=$ $\sigma_{1}=\alpha^{-1} \alpha$. We will denote the set of all automorphisms of V by $\operatorname{Aut}(V)$. This set is nonempty, since $\sigma_{1} \in \operatorname{Aut}(V)$, where $\sigma_{1}^{-1}=\sigma_{1}$. Moreover, if $\alpha, \beta \in \operatorname{Aut}(V)$ then $(\alpha \beta)\left(\beta^{-1} \alpha^{-1}\right)=\alpha\left(\beta \beta^{-1}\right) \alpha^{-1}=\alpha \alpha^{-1}=\sigma_{1}$ and similarly $\left(\beta^{-1} \alpha^{-1}\right)(\alpha \beta)=\sigma_{1}$. Thus $\alpha \beta \in \operatorname{Aut}(V)$, with $(\alpha \beta)^{-1}=\beta^{-1} \alpha^{-1}$. It is also clear that if $\alpha \in \operatorname{Aut}(V)$ then $\alpha^{-1} \in \operatorname{Aut}(V)$. If $\alpha \in \operatorname{Aut}(V)$ and $0 \neq c \in F$, then $c \alpha \in \operatorname{Aut}(V)$ and $(c \alpha)^{-1}=c^{-1} \alpha^{-1}$.

Example Let V be a vector space over a field F and let $n>1$ be an integer. Any permutation π of the set $\{1, \ldots, n\}$ defines an automorphism α_{π} of V^{n} given by $\alpha_{\pi}:\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right] \mapsto\left[\begin{array}{c}v_{\pi(1)} \\ v_{\pi(2)} \\ \vdots \\ v_{\pi(n)}\end{array}\right]$ which rearranges the entries of each vector according to
the permutation π. More generally, if V is a vector space over a field F having a basis $B=\left\{v_{i} \mid i \in \Omega\right\}$ and if π is a permutation of Ω, then there is an automorphism of V defined by $\sum_{i \in \Lambda} a_{i} v_{i} \mapsto \sum_{i \in \Lambda} a_{\pi(i)} v_{\pi(i)}$ for each finite subset Λ of Ω.

Example Let F be a field and let n be a positive integer. We have already seen that the function $A \mapsto A^{T}$ is an automorphism of $\mathcal{M}_{n \times n}(F)$, considered as a vector space over F.

Example Let V be a vector space having finite dimension n over a field F and let v and y be nonzero elements of V. Then there exist bases $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ of V satisfying $v_{1}=v$ and $y_{1}=y$. The function $\alpha: V \rightarrow V$ defined by $\alpha: \sum_{i=1}^{n} a_{i} v_{i} \mapsto \sum_{i=1}^{n} a_{i} y_{i}$ is thus an automorphism of V satisfying $\alpha(v)=y$.

Let V be a vector space over a field F and let n be a positive integer. We will list several types automorphisms, called elementary automorphisms, of a vector space of the form V^{n}. These automorphisms will play an important part in our ensuing discussion.
(1) If $1 \leq h \neq k \leq n$, we define $\varepsilon_{h k} \in \operatorname{Aut}\left(V^{n}\right)$ by

$$
\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \mapsto\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right], \quad \text { where } w_{i}= \begin{cases}v_{k} & \text { if } i=h \\
v_{h} & \text { if } i=k \\
v_{i} & \text { otherwise }\end{cases}
$$

This automorphism satisfies $\varepsilon_{h k}^{-1}=\varepsilon_{h k}$.
(2) If $1 \leq h \leq n$, and if $0 \neq c \in F$, we define $\varepsilon_{h ; c} \in \operatorname{Aut}\left(V^{n}\right)$ by

$$
\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \mapsto\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right], \quad \text { where } w_{i}= \begin{cases}c v_{i} & \text { if } i=h, \\
v_{i} & \text { otherwise } .\end{cases}
$$

This automorphism satisfies $\varepsilon_{h ; c}^{-1}=\varepsilon_{h, c^{-1}}$.
(3) If $1 \leq h \neq k \leq n$ and if $c \in F$, we define $\varepsilon_{h k ; c} \in \operatorname{Aut}\left(V^{n}\right)$ by

$$
\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \mapsto\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right], \quad \text { where } w_{i}= \begin{cases}v_{i}+c v_{k} & \text { if } i=h, \\
v_{i} & \text { otherwise } .\end{cases}
$$

This automorphism satisfies $\varepsilon_{h k ; c}^{-1}=\varepsilon_{h k ;-c}$.
Identifying the automorphisms of a finite-dimensional vector space V over a field F is a problem which will be of major importance to us later, and so it is important to characterize these functions.

Proposition 7.3 Let V be a vector space of finite dimension n over a field F.
Then the following conditions on an endomorphism α of V are equivalent:
(1) α is an automorphism of V;
(2) α is monic;
(3) α is epic.

Proof By definition, (1) implies (2). Now assume (2). By Proposition 6.10, we see that the rank of α equals n and so $\operatorname{im}(\alpha)=V$ by Proposition 5.11, proving (3). Now assume (3). By Proposition 6.10, we see that the nullity of α equals $n-n=0$ and so $\operatorname{ker}(\alpha)=\left\{0_{V}\right\}$, proving that α is monic as well, and so is bijective. This proves (1).

Proposition 7.4 Let V be a finite-dimensional vector space over a field F and let $\alpha \in \operatorname{End}(V)$. If there exists a $\beta \in \operatorname{End}(V)$ satisfying $\alpha \beta=\sigma_{1}$ or $\beta \alpha=\sigma_{1}$, then $\alpha \in \operatorname{Aut}(V)$ and $\beta=\alpha^{-1}$.

Proof If $\beta \alpha=\sigma_{1}$ then $\operatorname{ker}(\alpha) \subseteq \operatorname{ker}\left(\sigma_{1}\right)=\left\{0_{V}\right\}$ and so, by Proposition 7.3, $\alpha \in \operatorname{Aut}(V)$. Similarly, if $\alpha \beta=\sigma_{1}$ then $\operatorname{im}(\alpha) \supseteq \operatorname{im}\left(\sigma_{1}\right)=V$ and so, by Proposition 7.3, $\alpha \in \operatorname{Aut}(V)$. Moreover, if $\alpha \beta=\sigma_{1}$ we see that $\alpha^{-1}=\alpha^{-1} \sigma_{1}=\alpha^{-1}(\alpha \beta)=$ β and similarly $\alpha^{-1}=\beta$ when $\beta \alpha=\sigma_{1}$.

Example Proposition 7.3 and Proposition 7.4 are no longer true if we remove the condition of finite dimensionality. For example, let F be a field and let $V=F[X]$. Define the endomorphisms α and β of V by setting $\alpha: \sum_{i=0}^{n} a_{i} X^{i} \mapsto \sum_{i=0}^{n} a_{i} X^{i+1}$ and $\beta: \sum_{i=0}^{n} a_{i} X^{i} \mapsto \sum_{i=1}^{n} a_{i} X^{i-1}$. Then $\alpha, \beta \notin \operatorname{Aut}(V)$, despite the fact that α is monic and β is epic. Moreover, $\beta \alpha=\sigma_{1}$ but $\alpha \beta \neq \sigma_{1}$.

Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$. A subspace W of V is invariant under α if and only if $\alpha(w) \in W$ for all $w \in W$ or, in other words, if and only if $\alpha(W) \subseteq W$. Thus, W is invariant under α if and only if the restriction of α to W is an endomorphism of W. It is clear that V and $\left\{0_{V}\right\}$ are both invariant under every endomorphism of V. If $\alpha \in \operatorname{End}(V)$ then $\operatorname{im}(\alpha)$ and $\operatorname{ker}(\alpha)$ are both invariant under α.

Example Let F be a field and, for each positive integer k, let W_{k} be the subspace of $F[X]$ composed of all polynomials of degree at most k. Let δ be the formal differentiation endomorphism of $F[X]$, namely the endomorphism defined by $\delta: \sum_{i=0}^{n} a_{i} X^{i} \mapsto \sum_{i=0}^{n} i a_{i} X^{i-1}$. Then each of the subspaces W_{k} is invariant under δ. Now assume that F is of characteristic 0 . If $p(X)=\sum_{i=0}^{n} a_{i} X^{i} \in W_{k}$ and if $a \in F$ then it is easy to check that $p(X)=p(a)+\sum_{h=1}^{n} \frac{1}{h!}\left[\delta^{h}(p)(a)\right](X-a)^{h}$. The coefficients $\frac{1}{h!}\left[\delta^{h}(p)(a)\right]$ are known as the Taylor coefficients of $p(X)$ around a.

Example Let $V=\mathbb{R}^{2}$ and let α be the automorphism of V defined by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{r}b \\ -a\end{array}\right]$. Let W be a proper subspace of V which is invariant under α. Then $\operatorname{dim}(W) \leq 1$ and so there exists a vector $w=\left[\begin{array}{l}c \\ d\end{array}\right]$ satisfying $W=\mathbb{R} w$. Since $\alpha(w)=\left[\begin{array}{r}d \\ -c\end{array}\right]$, it follows that there exists a real number e such that $\alpha(w)=e w$. That is to say, $e c=d$ and $e d=-c$. From this we learn that $c e^{2}=-c$, and so $c=d=0$. This proves that $W=\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$, and so we see that V has no proper nontrivial subspaces invariant under α.

Example Let F be a field and let n be a positive integer. Let α be the automorphism of F^{n} defined by $\alpha:\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right] \mapsto\left[\begin{array}{c}a_{n} \\ a_{1} \\ \vdots \\ a_{n-1}\end{array}\right]$. A subspace W invariant under α is cyclic.

Cyclic subspaces of F^{n}, where F is a finite field, are important in defining certain families of error-correcting codes.

Let F be a field. An element a of an F-algebra (K, \bullet) is idempotent if and only if $a^{2}=a$. If V is a vector space over F, then an idempotent element of $\operatorname{End}(V)$ is called a projection. Note that if $\alpha \in \operatorname{End}(V)$ is a projection and if $w=\alpha(v) \in \operatorname{im}(\alpha)$ then $\alpha(w)=\alpha^{2}(v)=\alpha(v)=w$, so that the restriction of α to its image is just σ_{1}. The converse is also true. If $\alpha \in \operatorname{End}(V)$ satisfies the condition that the restriction of α to its image is just σ_{1}, then for each $v \in V$ we have $\alpha^{2}(v)=\alpha(\alpha(v))=\sigma_{1}(\alpha(v))=$ $\alpha(v)$ and so α is a projection.

Example If F is a field then the endomorphism of F^{3} defined by

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \mapsto\left[\begin{array}{c}
3 a-2 c \\
-a+b+c \\
3 a-2 c
\end{array}\right]
$$

is a projection.
Example The sum of two projections need not be a projection. For example, if $V=\mathbb{R}^{3}$ then the endomorphisms α and β of V defined by

$$
\alpha:\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \mapsto\left[\begin{array}{l}
a \\
b \\
0
\end{array}\right] \quad \text { and } \quad \beta:\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \mapsto\left[\begin{array}{l}
0 \\
b \\
c
\end{array}\right]
$$

are projections, but $\alpha+\beta$ is not a projection.
Example If W is a subspace of a vector space V over a field F having a complement Y in V, we know that every element $v \in V$ can be written in a unique way in the form $w+y$, where $w \in W$ and $y \in Y$. The endomorphism of V defined by $v \mapsto w$ is a projection the image of which is W. Statisticians often consider data in $V=\mathbb{R}^{n}$ and use a projection in $\operatorname{End}(V)$ to project it onto a subspace W of V that best preserves the variance in the data. This standard method in data analysis is called principle component analysis and there exist several efficient algorithms for performing it.

In fact, all projections of a vector space are of the form in the previous example, as the following example shows.

Proposition 7.5 Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$ be a projection. Then $V=\operatorname{im}(\alpha) \oplus \operatorname{ker}(\alpha)$.

Proof If $v \in \operatorname{im}(\alpha) \cap \operatorname{ker}(\alpha)$ then there exists an element y of V satisfying $v=\alpha(y)$ and so $v=\alpha(v)=0_{V}$. Thus $\operatorname{im}(\alpha)$ and $\operatorname{ker}(\alpha)$ are disjoint. If v is an arbitrary
vector in V then $v=[v-\alpha(v)]+\alpha(v) \in \operatorname{ker}(\alpha)+\operatorname{im}(\alpha)$. Therefore, $V=\operatorname{im}(\alpha) \oplus$ $\operatorname{ker}(\alpha)$.

Proposition 7.6 Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$. A subspace W of V is invariant under α if and only if $\beta \alpha \beta=\alpha \beta$ for each projection β of V the image of which is W.

Proof Assume that W is invariant under α and let β be a projection of V the image of which is W. By Proposition 7.5, we have $V=W \oplus \operatorname{ker}(\beta)$. If $v \in V$, we can therefore write $v=w+y$, where $w \in W$ and $y \in \operatorname{ker}(\beta)$. Hence $\alpha \beta(v)=$ $\alpha \beta(w)+\alpha \beta(y)=\alpha(w)+0_{V}=\alpha(w)=\beta \alpha(w)=\beta \alpha \beta(v)$, showing that $\beta \alpha \beta=\alpha \beta$. Conversely, if $\beta \alpha \beta=\alpha \beta$ for each projection β of V the image of which is W then, for each such β, we have $w=\beta(w)$ for all $w \in W$ and so $\alpha(w)=\alpha \beta(w)=$ $\beta \alpha \beta(w) \in W$, showing that W is invariant under α.

Proposition 7.7 Let V be a vector space over a field F and let $\left\{W_{1}, \ldots, W_{n}\right\}$ be a set of subspaces of V. Then the following conditions are equivalent:
(1) $V=W_{1} \oplus \cdots \oplus W_{n}$;
(2) There exist projections $\alpha_{1}, \ldots, \alpha_{n}$ in $\operatorname{End}(V)$ with $W_{i}=\operatorname{im}\left(\alpha_{i}\right)$ for all $1 \leq i \leq n$, which satisfy the conditions $\alpha_{i} \alpha_{j}=\sigma_{0}$ for $i \neq j$ and $\alpha_{1}+\cdots+\alpha_{n}=\sigma_{1}$.

Proof (1) \Rightarrow (2): From (1) it follows that every $v \in V$ can be written in a unique manner as $\sum_{i=1}^{n} w_{i}$, where $w_{i} \in W_{i}$ for all $1 \leq i \leq n$. Define α_{i} to be the projection $v \mapsto w_{i}$ for each i. It is easy to verify that these linear transformations do indeed satisfy the required conditions.
(2) \Rightarrow (1): Since $\alpha_{1}+\cdots+\alpha_{n}=\sigma_{1}$, we surely have $V=\sum_{i=1}^{n} \operatorname{im}\left(\alpha_{i}\right)=$ $\sum_{i=1}^{n} W_{i}$. If $0_{V} \neq v \in W_{h} \cap \sum_{j \neq h} W_{j}$ then there exists an $i \neq h$ such that $\alpha_{i}(v) \neq$ 0_{V}. But $\alpha_{h}(v)=v$ so $\alpha_{i} \alpha_{h} \neq \sigma_{0}$, a contradiction. Therefore, $W_{h} \cap \sum_{j \neq h} W_{j}=\left\{0_{V}\right\}$ for each $1 \leq h \leq n$, proving (1).

Proposition 7.8 Any two complements of a subspace W of a vector space V over a field F are isomorphic.

Proof Let U and Y be complements of W in V. By Proposition 7.7, we know that there exists a projection $\beta \in \operatorname{End}(V)$ the image of which is U and the kernel of which is W. Let α be the restriction of β to Y. The linear transformation α is a monomorphism since $\operatorname{ker}(\alpha) \subseteq \operatorname{ker}(\beta) \cap Y=W \cap Y=\left\{0_{V}\right\}$. Any vector $u \in U$ can be written as $w+y$, where $w \in W$ and $y \in Y$, and we have $\alpha(y)=\beta(y)=$
$\beta(w)+\beta(y)=\beta(w+y)=\beta(u)=u$. Thus we see that α is also epic and hence is the desired isomorphism.

We now introduce a notion which is basic in all branches of mathematics. A relation \equiv defined on a given nonempty set U is called an equivalence relation if and only if the following conditions are satisfied:
(1) $u \equiv u$ for all $u \in U$;
(2) $u \equiv u^{\prime}$ if and only if $u^{\prime} \equiv u$;
(3) If $u \equiv u^{\prime}$ and $u^{\prime} \equiv u^{\prime \prime}$ then $u \equiv u^{\prime \prime}$.

Example Let B be a nonempty subset of a set A and define a relation \equiv_{B} on A by setting $a \equiv_{B} a^{\prime}$ if and only if $a=a^{\prime}$ or both a and a^{\prime} belong to B. Then \equiv_{B} is an equivalence relation on A. In particular, if W is a subspace of a vector space V then the relation \equiv_{W} defined on V by setting $v \equiv_{W} v^{\prime}$ if and only if $v-v^{\prime} \in W$ is an equivalence relation on V.

Example Let V and W be a vector spaces over a field F and let $\alpha \in \operatorname{Hom}_{F}(V, W)$. Define a relation \equiv on V by setting $v \equiv v^{\prime}$ if and only if $\alpha(v)=\alpha\left(v^{\prime}\right)$. This is easily seen to be an equivalence relation.

Let V be a vector space over a field F. A subset G of $\operatorname{Aut}(V)$ is a group of automorphisms if it is closed under taking products, contains σ_{1}, and satisfies the condition that $\alpha^{-1} \in G$ whenever $\alpha \in G$. Clearly, $\operatorname{Aut}(V)$ itself is such a group. The notion of a group of automorphisms is very important in linear algebra and its applications, but here we will only touch on it.

Example Let V be a vector space over a field F and let $\alpha \in \operatorname{Aut}(V)$. Then $\left\{\alpha^{i} \mid i \in \mathbb{Z}\right\}$ is surely a group of automorphisms.

Example Let V be a vector space over a field F and let Ω be a nonempty set. Every permutation π of Ω defines an automorphism α_{π} of the vector space V^{Ω} over F defined by $\alpha_{\pi}(f): i \mapsto f(\pi(i))$ for all $i \in \Omega$ and all $f \in V^{\Omega}$. The collection G of all such automorphisms is a group of automorphisms in $\operatorname{Aut}\left(V^{\Omega}\right)$.

Proposition 7.9 If V is a vector space over a field F and if G is a group of automorphisms of V then G defines an equivalence relation \sim_{G} on V by setting $v \sim_{G} v^{\prime}$ if and only if there exists an element α of G satisfying $\alpha(v)=v^{\prime}$.

Proof If $v \in V$ then $\sigma_{1}(v)=v$, and so $v \sim_{G} v$. If $v, v^{\prime} \in V$ satisfy $v \sim_{G} v^{\prime}$ then there exists an element α of G satisfying $\alpha(v)=v^{\prime}$, and so $v^{\prime}=\alpha^{-1}(v)$. Thus $v^{\prime} \sim_{G} v$. Finally, if $v, v^{\prime}, v^{\prime \prime} \in V$ satisfy $v \sim_{G} v^{\prime}$ and $v^{\prime} \sim_{G} v^{\prime \prime}$ then there exist elements α and β of G satisfying $\alpha(v)=v^{\prime}$ and $\beta\left(v^{\prime}\right)=v^{\prime \prime}$, and so $\beta \alpha(v)=v^{\prime \prime}$. Thus $v \sim_{G} v^{\prime \prime}$.

Proposition 7.10 If V is a vector space over a field F and if G is a group of automorphisms of V then all elements of G have the same rank.

Proof If $\alpha \in G$ then, by Proposition 6.11, $\operatorname{rk}\left(\sigma_{1}\right)=\operatorname{rk}\left(\alpha \alpha^{-1}\right) \leq \operatorname{rk}(\alpha)=\operatorname{rk}\left(\alpha \sigma_{1}\right)$ $\leq \operatorname{rk}\left(\sigma_{1}\right)$ and so $\operatorname{rk}(\alpha)=\operatorname{rk}\left(\sigma_{1}\right)$.

Exercises

Exercise 316
Let V be a vector space over GF(3). Find an endomorphism α of V satisfying $\alpha(v)+\alpha(v)=v$ for all $v \in V$.

Exercise 317

Let V be a vector space finitely generated over a field F and let $\alpha, \beta, \gamma \in \operatorname{End}(V)$. Find necessary and sufficient conditions for there to exist an endomorphism θ of V satisfying $\alpha \gamma \beta=\beta \theta \alpha$.

Exercise 318

Let $F=\mathrm{GF}(2)$ and let n be a positive integer. Let $\alpha: F^{n} \rightarrow F^{n}$ be the function defined by $\alpha:\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right] \mapsto\left[\begin{array}{c}a_{1}^{\prime} \\ \vdots \\ a_{n}^{\prime}\end{array}\right]$, where $0^{\prime}=1$ and $1^{\prime}=0$. Is α an endomorphism of F^{n} ?

Exercise 319

Let $\alpha, \beta: \mathbb{Q}[X] \rightarrow \mathbb{Q}[X]$ be defined by $\alpha: p(X) \mapsto X p(X)$ and $\beta: p(X) \mapsto$ $X^{2} p(X)$. Show that α, β, and $\alpha-\beta$ are all monic endomorphisms of $\mathbb{Q}[X]$.

Exercise 320

Let V be a finitely-generated vector space over a field F and let $\alpha \in \operatorname{End}(V)$. Show that α is not monic if and only if there exists an endomorphism $\beta \neq \sigma_{0}$ of V satisfying $\alpha \beta=\sigma_{0}$.

Exercise 321
Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$. Show that $\operatorname{ker}(\alpha)=$ $\operatorname{ker}\left(\alpha^{2}\right)$ if and only if $\operatorname{ker}(\alpha)$ and $\operatorname{im}(\alpha)$ are disjoint.

Exercise 322
Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$. Show that $\operatorname{im}(\alpha)=$ $\operatorname{im}\left(\alpha^{2}\right)$ if and only if $V=\operatorname{ker}(\alpha)+\operatorname{im}(\alpha)$.

Exercise 323
Let V be a vector space over a field F and let $K=F \times V \times \operatorname{End}(V)$, which is again a vector space over F. Define an operation \diamond on K by setting (a, v, α) \diamond $(b, w, \beta)=(a b, a w+\beta(v), \beta \alpha)$. Is (K, \diamond) an F-algebra? Is it associative? Is it unital?

Exercise 324
Let V be a vector space over a field F, and let $\operatorname{Aff}(V, V)$ be the set of all affine transformations from V to itself. Is $\operatorname{Aff}(V, V)$, on which we have defined the operations of addition and composition of functions, an associative unital F-algebra?

Exercise 325
Let $\alpha \in \operatorname{Aut}\left(\mathbb{R}^{2}\right)$ be defined by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{r}-b \\ a\end{array}\right]$. Show that $\mathbb{R}\left\{\alpha, \sigma_{1}\right\}$ is a unital subalgebra of $\operatorname{End}\left(\mathbb{R}^{2}\right)$. Show that it is proper by giving an example of an endomorphism of \mathbb{R}^{2} not in this subalgebra.

Exercise 326

Let V be the space of all real-valued functions on the interval $[-1,1]$ which are infinitely differentiable, and let δ be the endomorphism of V which assigns to each function f its derivative. Find the kernel and image of δ.

Exercise 327

Let $\alpha: \mathbb{C} \rightarrow \mathbb{C}$ be the function defined by $\alpha: a+b i \mapsto-b+a i$. Is α an endomorphism of \mathbb{C} considered as a vector space over \mathbb{R} ? Is it an endomorphism of \mathbb{C} considered as a vector space over itself?

Exercise 328

Let V be a vector space of finite dimension n over a field F and let $\alpha \in \operatorname{End}(V)$. Show that there exists an automorphism β of V satisfying $\alpha \beta \alpha=\alpha$.

Exercise 329

Let $V=\mathcal{M}_{2 \times 2}(\mathbb{R})$, which is a vector space over \mathbb{R}. Let $\alpha \in V^{V}$ be defined by $\alpha:\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \mapsto\left[\begin{array}{ll}\left|a_{11}\right| & \left|a_{12}\right| \\ \left|a_{21}\right| & \left|a_{22}\right|\end{array}\right]$. Is α an endomorphism of V ?

Exercise 330

Consider \mathbb{R} as a vector space over \mathbb{Q} and let α be an endomorphism of this space satisfying the condition that there exists an $a_{0} \in \mathbb{R}$ such that α is continuous at a_{0}. Show that α is continuous at every $a \in \mathbb{R}$.

Exercise 331

Let A be a nonempty set and let V be the collection of all subsets of A, considered as a vector space over $\mathrm{GF}(2)$. For which subsets C of A is the function $B \mapsto B \cup C$ an endomorphism of V ?

Exercise 332
Let V be a vector space of finite dimension n over a field F and let $\left\{\alpha_{i j} \mid\right.$ $1 \leq i, j \leq n\}$ be a collection of endomorphisms of V, not all of which are equal to σ_{0}, satisfying the condition that

$$
\alpha_{i j} \alpha_{k h}= \begin{cases}\alpha_{i h} & \text { if } j=k \\ \sigma_{0} & \text { otherwise }\end{cases}
$$

Show that there exists a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V such that

$$
\alpha_{j k}\left(v_{i}\right)= \begin{cases}v_{j} & \text { if } i=k \\ 0_{V} & \text { otherwise }\end{cases}
$$

Exercise 333

Let V be a vector space of finite dimension n over a field F and choose an element $\alpha \in \operatorname{End}(V)$. Let $\varphi: \operatorname{End}(V) \rightarrow \operatorname{End}(V)$ be the function defined by $\beta \mapsto \beta \alpha$. This is an endomorphism of $\operatorname{End}(V)$, considered as a vector space over F. Show that a positive integer n satisfies $\alpha^{n}=\sigma_{0}$ if and only if φ^{n} is the 0 -function.

Exercise 334

Let α be an endomorphism of \mathbb{R}^{3} satisfying the condition that $\alpha^{2}=\sigma_{0}$. Show that there exists a linear transformation $\beta: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and that there exists a vector $y \in \mathbb{R}^{3}$ satisfying $\alpha(v)=\beta(v) y$ for all $v \in \mathbb{R}^{3}$.

Exercise 335

For each $0 \neq a \in \mathbb{R}$, let $\beta_{a}: \mathbb{C} \rightarrow \mathbb{C}$ be the function defined by $\beta_{a}: z \mapsto z+a \bar{z}$. Show that β_{a} is an endomorphism of \mathbb{C} considered as a vector space over \mathbb{R}, and describe its image and kernel.

Exercise 336

Let V be a vector space finitely generated over \mathbb{Q} and let $\alpha, \beta \in \operatorname{End}(V)$ satisfy $3 \alpha^{3}+7 \alpha^{2}-2 \alpha \beta+4 \alpha-\sigma_{1}=\sigma_{0}$. Show that $\alpha \beta=\beta \alpha$.

Exercise 337

Let F be a field of characteristic other than 2 and let V be a vector space of finite dimension n over F. Let α be an endomorphism of V satisfying the condition that $\alpha^{2}=\sigma_{1}$. Show that $\operatorname{rk}\left(\sigma_{1}-\alpha\right)+\operatorname{rk}\left(\sigma_{1}+\alpha\right)=n$.

Exercise 338

Let V be a vector space over a field F which is not finitely generated, and let $\sigma_{0} \neq \alpha \in \operatorname{End}(V)$. Set $A=\left\{\beta \in \operatorname{End}(V) \mid \alpha \beta=\sigma_{1}\right\}$. Show that if A has more than one element then it is infinite.

Exercise 339

Let V be a vector space over a field F having dimension greater than 1 . Show that there exists a function $\alpha \in V^{V}$ which is not an endomorphism of V but
which nonetheless satisfies the condition that $\alpha(a v)=a \alpha(v)$ for all $a \in F$ and all $v \in V$.

Exercise 340

Let V be a vector space over a field F satisfying the condition that $\alpha \beta=\beta \alpha$ for all $\alpha, \beta \in \operatorname{End}(V)$. Show that $\operatorname{dim}(V)=1$.

Exercise 341
Let $V=\mathcal{M}_{2 \times 2}(\mathbb{R})$, considered as a vector space over \mathbb{R}. Let $\alpha: V \rightarrow V$ be the function defined by $\alpha:\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \mapsto\left[\begin{array}{cc}a+2 b+c+2 d & 2 a+4 b+3 c+5 d \\ 3 a+6 b+2 c+5 d & a+2 b+c+2 d\end{array}\right]$.
Is α an endomorphism of V ? Is it an automorphism of V ?

Exercise 342

Let V be the vector space of all continuous functions from \mathbb{R} to itself and let $\alpha: V \rightarrow V$ be the function defined by $\alpha: f(x) \mapsto\left[x^{2}+\sin (x)+2\right] f(x)$. Show that α is an automorphism of V.

Exercise 343

Let F be a field and let $\alpha: F[X] \rightarrow F[X]$ be the function defined by $\alpha: p(X) \mapsto$ $p(X+1)$. Is α an endomorphism of $F[X]$? Is it an automorphism?

Exercise 344

Let F be a field and, for each $a \in F$, let θ_{a} be the endomorphism of $F[X]$ defined by $\theta_{a}: p(X) \mapsto p(X+a)$. Let $\alpha \in \operatorname{End}(F[X])$ satisfy $\alpha(X) \in F$ and $\alpha \theta_{a}=\theta_{a} \alpha$ for all $a \in F$. Can α be a monomorphism?

Exercise 345
Let $\alpha \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ be given by $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{c}a-2 b \\ c \\ a-b\end{array}\right]$. Is α an automorphism of \mathbb{R}^{3} ?

Exercise 346

Let α be the endomorphism of $\mathbb{R}^{(\infty)}$ defined by

$$
\alpha:\left[a_{1}, a_{2}, a_{3}, \ldots\right] \mapsto\left[b_{1}, b_{2}, b_{3}, \ldots\right],
$$

where $b_{h}=\sum_{j \leq h}(-1)^{j-1}\binom{h-1}{j-1} a_{j}$ for each $h \geq 1$. Show that α is an automorphism satisfying $\alpha=\alpha^{-1}$.

Exercise 347

Let V be a vector space finitely generated over \mathbb{R} and let α be an endomorphism of V satisfying $\alpha^{3}+4 \alpha^{2}+2 \alpha+\sigma_{1}=\sigma_{0}$. Show that $\alpha \in \operatorname{Aut}(V)$.

Exercise 348
Let V be a vector space over a field F and let $\alpha, \beta \in \operatorname{End}(V)$ satisfy $\alpha \beta=\sigma_{1}$. Set $\varphi=\sigma_{1}-\beta \alpha$. Show that for every integer $n \geq 1$ we have $\sigma_{1}=\sum_{k=0}^{n-1} \beta^{k} \varphi \alpha^{k}+$ $\beta^{n} \alpha^{n}$.

Exercise 349

Let V be the space of all polynomial functions from the interval $[0,1]$ on the real line to \mathbb{R}. Let α and β be the endomorphisms of V defined by $\alpha(f): x \mapsto$ $\int_{0}^{x} f(t) d t$ and $\beta(f): x \mapsto \int_{x}^{1} f(t) d t$. Find $\operatorname{im}(\alpha+\beta)$. Is it true that $\alpha \beta=\beta \alpha$?

Exercise 350

Let F be a field and let $V=F^{\infty}$. Let $n>1$ be an integer. Each vector $y=\left[\begin{array}{c}d_{1} \\ \vdots \\ d_{n}\end{array}\right] \in F^{n}$ defines an endomorphism θ_{y} of V by $\theta_{y}:\left[a_{1}, a_{2}, \ldots\right] \mapsto$
[$\left.b_{1}, b_{2}, \ldots\right]$, where $b_{h}=\sum_{i=1}^{n} a_{h-1+i} d_{i}$, for $h=1,2, \ldots$ Show that if θ_{y} is a monomorphism then the polynomial $p(X)=\sum_{i=1}^{n} d_{i} X^{i-1} \in F[X]$ has no roots in F.

Exercise 351
Let $F=\mathrm{GF}(5)$ and let $V=F^{3}$. How many endomorphisms α of V satisfy the conditions $\alpha\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ and $\alpha\left(\left[\begin{array}{l}0 \\ 3 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$?

Exercise 352

Let V be the set of all continuous functions from \mathbb{R} to itself, which is a vector space over \mathbb{R}. Let $\alpha: V \rightarrow V$ be the function defined by $\alpha(f): x \mapsto f\left(\frac{x}{2}\right)$ for all $x \in \mathbb{R}$ and all $f \in V$. Is α an automorphism of V ?

Exercise 353

Let $V=\mathbb{R}^{\infty}$ and let W be the subspace of V consisting of all convergent sequences. Let $\alpha \in \operatorname{End}(V)$ be defined by $\alpha:\left[a_{1}, a_{2}, \ldots\right] \mapsto\left[b_{1}, b_{2}, \ldots\right]$, where $b_{h}=\frac{1}{h}\left(\sum_{i=1}^{h} a_{i}\right)$ for all $h \geq 1$. If $v \in V$ satisfies $\alpha(v) \in W$, is v itself necessarily in W ?

Exercise 354

Let V be a vector space over a field F and let $\alpha \in \operatorname{Aut}(V)$. Let W_{1}, \ldots, W_{k} be subspaces of V satisfying $V=\bigoplus_{i=1}^{k} W_{i}$. For each $1 \leq i \leq k$, let $Y_{i}=\{\alpha(w) \mid$ $\left.w \in W_{i}\right\}$. Is $V=\bigoplus_{i=1}^{k} Y_{i}$?

Exercise 355

Consider \mathbb{R} as a vector space over \mathbb{Q}. An endomorphism α of this space is bounded if and only if there exists a nonnegative real number $m(\alpha)$ satisfying
the condition that $|\alpha(x)| \leq m(\alpha)|x|$ for all $x \in \mathbb{R}$. Does the set of all bounded endomorphisms of \mathbb{R} form an \mathbb{R}-subalgebra of $\operatorname{End}(\mathbb{R})$?

Exercise 356
Let F be a field, let n be a positive integer, and let $V=\mathcal{M}_{n \times n}(F)$. Given a matrix $B \in V$, is the function $\alpha_{B}: V \rightarrow V$ defined by $\alpha_{B}: A \mapsto A B+B A$ an endomorphism of V ?

Exercise 357

Let F be a field and let $V=F[X]$. Let $\delta \in \operatorname{End}(V)$ be the formal differentiation function and let $\alpha \in \operatorname{End}(V)$ be defined by $\alpha: p(X) \mapsto X p(X)$. Show that $\alpha \delta-$ $\delta \alpha=\sigma_{1}$.

Exercise 358

Let V be a nontrivial vector space over a field F. Is the set of all automorphisms of V a subspace of the vector space End (V) over F ?

Exercise 359

Consider GF(3) as a vector space over itself. Does there exist an automorphism of this space other than σ_{1} ?

Exercise 360

Let $V=F^{\infty}$ for some field F. Each $w=\left[c_{1}, c_{2}, \ldots\right] \in V$ defines a function β_{w} : $V \rightarrow V$ by $\beta_{w}:\left[a_{1}, a_{2}, \ldots\right] \mapsto\left[a_{1}, a_{1} c_{1}+a_{2},\left(a_{1} c_{1}+a_{2}\right) c_{2}+a_{3}, \ldots\right]$. Show that β_{w} is an automorphism of V.

Exercise 361

Let V be a vector space over a field F; let $\alpha \in \operatorname{End}(V)$ and let $\beta \in \operatorname{Aut}(V)$. Define the function $\theta: V^{2} \rightarrow V^{2}$ by setting $\theta:\left[\begin{array}{c}v \\ v^{\prime}\end{array}\right] \mapsto\left[\begin{array}{c}\beta(v) \\ \alpha(v)+v^{\prime}\end{array}\right]$. Is θ necessarily an automorphism of V^{2} ?

Exercise 362

Let $F=\operatorname{GF}(5)$ and let $\alpha \in \operatorname{Aut}\left(F^{2}\right)$ be defined by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{c}2 b \\ a+2 b\end{array}\right]$. Show that there exists a positive integer h satisfying $\alpha^{h+1}=\alpha$ and find the smallest such integer h.

Exercise 363

Let F be a field of characteristic other than 2 . Let V be a vector space over F and let $\alpha, \beta, \gamma, \delta$ be endomorphisms of V satisfying the condition that $\alpha-\beta$ and $\alpha+\beta$ are automorphisms of V. Show that there exist endomorphisms φ and ψ of V satisfying $\varphi \alpha+\psi \beta=\gamma$ and $\psi \alpha+\varphi \beta=\delta$.

Exercise 364

Let V be a vector space of finite dimension n over a field F. Let $\alpha \in \operatorname{End}(V)$ and assume that there exists a vector in $y \in V$ satisfying the condition that $D=$ $\left\{\alpha(y), \alpha^{2}(y), \ldots, \alpha^{n}(y)\right\}$ is a basis for V. Show that $D^{\prime}=\left\{y, \alpha(y), \ldots, \alpha^{n-1}(y)\right\}$ is also a basis for V and that $\alpha \in \operatorname{Aut}(V)$.

Exercise 365
Let F be a field and let $V=F^{(\mathbb{Z})}$. Let α be the endomorphism of V defined by $\alpha(f): i \mapsto f(i+1)$ for all $f \in V$. Show that $\alpha-c \sigma_{1} \notin \operatorname{Aut}(V)$ for all $0 \neq c \in F$.

Exercise 366

Let V be a vector space of finite dimension n over a field F, and let $0<k \leq n$ be a positive integer. Let A_{k} be the set of all subspaces of V having dimension k. Let $\alpha \in \operatorname{Aut}(V)$ and, for each $W \in A_{k}$, let $\theta_{\alpha}(W)=\{\alpha(w) \mid w \in W\}$. Show that the function θ_{α} is a permutation of A_{k}.

Exercise 367

Let r, s, and t be distinct real numbers and let α be the endomorphism of \mathbb{R}^{3} defined by $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{l}a+b r+c r^{2} \\ a+b s+c s^{2} \\ a+b t+c t^{2}\end{array}\right]$. Is α an automorphism of \mathbb{R}^{3} ?

Exercise 368

Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$. Show that $W=$ $\bigcup_{i=1}^{\infty} \operatorname{ker}\left(\alpha^{i}\right)$ is a subspace of V which is invariant under α.

Exercise 369

Let α and β be the endomorphisms of \mathbb{Q}^{4} defined by

$$
\alpha:\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] \mapsto\left[\begin{array}{c}
2 a-2 b-2 c-2 d \\
5 b-c-d \\
-b+5 c-d \\
-b-c+5 d
\end{array}\right] \quad \text { and } \quad \beta:\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] \mapsto\left[\begin{array}{c}
0 \\
-b+2 c+3 d \\
2 b-3 c+6 d \\
3 b+6 c+2 d
\end{array}\right] .
$$

Find two nontrivial proper subspaces of \mathbb{Q}^{4} which are invariant both under α and under β.

Exercise 370
Let F be a field and let $V=F^{4}$. Let α be the endomorphism of V defined by $\alpha:\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right] \mapsto\left[\begin{array}{c}a-b \\ a-b \\ a-b \\ c-b-d\end{array}\right]$. Does there exist a two-dimensional subspace of V invariant under α ?

Exercise 371
Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$. If W and Y are subspaces of V which are invariant under α, show that both $W+Y$ and $W \cap Y$ are invariant under α.

Exercise 372

Let W be a subspace of a vector space V over a field F and let S be the set of all $\alpha \in \operatorname{End}(V)$ such that W is invariant under α. Is S necessarily an F-subalgebra of $\operatorname{End}(V)$?

Exercise 373
Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$. If W is a subspace of V, show that the set of all subspaces of W which are invariant under α, partially ordered by inclusion, has a maximal element.

Exercise 374

Let $V=\mathbb{R}^{\infty}$ and let W be the subspace of V consisting of all sequences $\left[a_{1}, a_{2}, \ldots\right]$ for which the series $\sum_{i=1}^{\infty} a_{i}$ converges. Let σ be a permutation of the set of all positive integers and let $\alpha \in \operatorname{End}(V)$ be defined by $\alpha:\left[a_{1}, a_{2}, \ldots\right] \rightarrow$ $\left[a_{\sigma(1)}, a_{\sigma(2)}, \ldots\right]$. Is W invariant under α ?

Exercise 375

Let V be a vector space over a field F. Let $0 \neq c \in F$ and let $\alpha \in \operatorname{End}(V)$. Let $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a set of vectors in V satisfying $\alpha\left(x_{0}\right)=c x_{0}$ and $\alpha\left(x_{i}\right)-c x_{i}=$ x_{i-1} for all $1 \leq i \leq n$. Show that $F\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a subspace of V which is invariant under α.

Exercise 376

Let F be a field which is not finite and let V be a vector space over F having dimension greater than 1 . For each $0 \neq c \in F$, show that there exist infinitelymany distinct subspaces of V which are invariant under the endomorphism σ_{c} of V.

Exercise 377

Let V be a vector space of finite dimension n over a field F. Let $\alpha \in \operatorname{End}(V)$ and let $\beta \in \operatorname{End}(V)$ satisfy $\beta^{2}=\alpha$. Find a positive integer k such that $\operatorname{rk}(\beta) \leq$ $\frac{1}{k}[\operatorname{rk}(\alpha)+n]$.

Exercise 378

Let α and β be endomorphisms of a vector space V over a field F and let $\theta \in \operatorname{Aut}(V)$ satisfy $\theta \alpha=\beta \theta$. Show that a subspace W of V is invariant under α if and only if $W^{\prime}=\{\theta(w) \mid w \in W\}$ is invariant under β.

Exercise 379

Let α and β be endomorphisms of a vector space V over a field F satisfying $\alpha \beta=\beta \alpha$. Is $\operatorname{ker}(\alpha)$ invariant under β ?

Exercise 380
Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$ be a projection. Show that $\sigma_{1}-\alpha$ is also a projection.

Exercise 381
Let V be a vector space finitely generated over a field F and let $\alpha \in \operatorname{End}(V)$ satisfy the condition $\alpha^{2}\left(\sigma_{1}-\alpha\right)=\sigma_{0}$. Is α necessarily a projection?

Exercise 382

Let V be the space of all continuous functions from \mathbb{R} to itself and let $W=$ $\mathbb{R}\{\sin (x), \cos (x)\} \subseteq V$. Let δ be the endomorphism of W which assigns to each function its derivative. Find a polynomial $p(X) \in \mathbb{R}[X]$ of degree 2 satisfying $p(\delta)=\sigma_{0}$.

Exercise 383

Let V be a vector space finitely generated over \mathbb{Q} and assume that there exists an $\alpha \in \operatorname{Aut}(V)$ satisfying $\alpha^{-1}=\alpha^{2}+\alpha$. Show that $\operatorname{dim}(V)$ is divisible by 3 .

Exercise 384

Let n be a positive integer and let $G=\left\{\left.\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right] \in \mathbb{R}^{n} \right\rvert\, a_{i} \geq 0\right.$ for all $\left.1 \leq i \leq n\right\}$.
Let α be an endomorphism of \mathbb{R}^{n} satisfying the condition that $\alpha(v) \in G$ implies that $v \in G$. Show that $\alpha \in \operatorname{Aut}\left(\mathbb{R}^{n}\right)$.

Exercise 385

Let V be a vector space over a field F and let W and Y be subspaces of V satisfying $W+Y=V$. Let Y^{\prime} be a complement of Y in V and let $Y^{\prime \prime}$ be a complement of $W \cap Y$ in W. Show that $Y^{\prime} \cong Y^{\prime \prime}$.

Exercise 386

Let F be a field of characteristic other than 2 and let V be a vector space over F. Let $\alpha, \beta \in \operatorname{End}(V)$ be projections satisfying the condition that $\alpha+\beta$ is also a projection. Show that $\alpha \beta=\beta \alpha=\sigma_{0}$.

Exercise 387

Let V be a vector space over F and let $\alpha, \beta \in \operatorname{End}(V)$. Show that α and β are projections satisfying $\operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$ if and only if $\alpha \beta=\alpha$ and $\beta \alpha=\beta$.

Exercise 388

Let V be a vector space finitely generated over a field F and let $\alpha \neq \sigma_{1}$ be an endomorphism of V which is a product of projections. Show that $\alpha \notin \operatorname{Aut}(V)$.

Exercise 389

Let V be a vector space over \mathbb{Q} and let $\alpha \in \operatorname{End}(V)$. Show that α is a projection if and only if $\left(2 \alpha-\sigma_{1}\right)^{2}=\sigma_{1}$.

Exercise 390
Let α and β be endomorphisms of a vector space V over a field F and let $f(X) \in F[X]$ satisfy $f(\alpha \beta)=\sigma_{0}$. Set $g(X)=X f(X)$. Show that $g(\beta \alpha)=\sigma_{0}$.

Exercise 391

Let $V=\mathbb{R}^{\mathbb{R}}$ and let $g \in V$. Find necessary and sufficient conditions on g for the endomorphism $f \mapsto g f$ of V to be a projection.

Exercise 392

Let W be a subspace of a vector space V over a field F which is invariant under an endomorphism α of V. Let $\beta \in \operatorname{End}(V)$ be a projection satisfying the condition that $\operatorname{im}(\beta)=W$. Show that $\beta \alpha \beta=\alpha \beta$.

Exercise 393

Let V be a vector space of finite dimension n over a field F and let $\alpha \in \operatorname{End}(V)$. Show that there exists an automorphism β of V and a projection θ of V satisfying $\alpha=\beta \theta$.

Exercise 394

Let F be a field of characteristic other than 2 and let V be a vector space over F. Let $\alpha \in \operatorname{End}(V)$ be a projection satisfying the condition that $\alpha-\beta$ is a projection for all $\beta \in \operatorname{End}(V)$. Show that $\alpha=\sigma_{1}$.

Exercise 395

Let V be a vector space over F and let $\alpha, \beta \in \operatorname{End}(V)$ be projections satisfying the condition that $\operatorname{im}(\alpha)$ and $\operatorname{im}(\beta)$ are disjoint. Is it necessarily true that $\alpha \beta=$ $\beta \alpha$?

Exercise 396

Let V be a vector space of finite dimension n over a field F and let $S=\operatorname{End}(V) \backslash$ $\operatorname{Aut}(V)$. For $\alpha, \beta \in S$, show that $\operatorname{im}(\alpha)=\operatorname{im}(\beta)$ if and only if $\{a \theta \mid \theta \in S\}=$ $\{\beta \varphi \mid \varphi \in S\}$.

Exercise 397

Let F be a field. Does there exist an endomorphism α of F^{3} which is not a projection satisfying the condition that α^{2} is a projection equal neither to σ_{0} nor to σ_{1}.

Exercise 398

Let V be a vector space finite dimensional over a field F and let α be an endomorphism of V. Show that there exist a positive integer k such that $\operatorname{im}\left(\alpha^{k}\right)$ and $\operatorname{ker}\left(\alpha^{k}\right)$ are disjoint.

Exercise 399
Let F be a field of characteristic other than 2 , and let V be a vector space over F. Let $\alpha \in \operatorname{End}(V)$ satisfy $\alpha^{3}=\alpha$. Show that $V=W_{1} \oplus W_{2} \oplus W_{3}$, where $W_{1}=$ $\{v \in V \mid \alpha(v)=v\}, W_{2}=\{v \in V \mid \alpha(v)=-v\}$, and $W_{3}=\operatorname{ker}(\alpha)$.

Exercise 400

Let F be a field of characteristic other than 2 and let V be a finitely-generated vector space over F. Show that every endomorphism of V is the sum of two automorphisms of V.

Exercise 401

Let $n>1$ be an integer and let $\theta: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the function defined by $\theta:\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right] \mapsto \sum_{i=1}^{n} a_{i}^{2}$. Assume that we can define an operation \bullet on \mathbb{R}^{n} sat-
isfying the condition that $\left(\mathbb{R}^{n}, \bullet\right)$ is an associative unital \mathbb{R}-algebra with multiplicative identity e, and also satisfying the condition that $\theta(v \bullet w)=\theta(v) \theta(w)$ for all $v, w \in \mathbb{R}^{n}$. Show that $\left(\mathbb{R}^{n},+, \bullet\right)$ is a division algebra over \mathbb{R}.

Exercise 402

Any sequence $v=\left[a_{1}, a_{2}, \ldots\right] \in \mathbb{R}^{\infty}$ defines an endomorphism α_{v} of $\mathbb{R}[X]$ which acts on elements of the canonical basis of $\mathbb{R}[X]$ according to the rule $\alpha_{v}: X^{n} \mapsto \sum_{k=0}^{n}\binom{n}{k}(k!) a_{k+1} X^{n-k}$ for each nonnegative integer n. Given $a \in \mathbb{R}$, find $v, w \in \mathbb{R}^{\infty}$ such that $\alpha_{v}: p(X) \mapsto p(X+a)$ and $\alpha_{w}: p(X) \mapsto p(X+a)-$ $p(a)$.

Exercise 403

Let V be a vector space over a field F and let G be a group of automorphisms of V. For $v \in V$, define the stabilizer of v in G to be $G_{v}=\{\alpha \in G \mid \alpha(v)=v\}$. Is this necessarily a group of automorphisms of V ?

Representation of Linear Transformations by Matrices

In this chapter, we show how we can study linear transformations between finitelygenerated vector spaces by studying matrices. Let V and W be finitely-generated vector spaces over a field F, where $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=k$. Fix bases $B=\left\{v_{1}, \ldots, v_{n}\right\}$ of V and $D=\left\{w_{1}, \ldots, w_{k}\right\}$ of W. From Proposition 5.4, we know that if we are given a linear transformation $\alpha \in \operatorname{Hom}(V, W)$ then for each $1 \leq j \leq n$ there exist scalars $a_{1 j}, \ldots, a_{k j}$ satisfying the condition $\alpha\left(v_{j}\right)=\sum_{i=1}^{k} a_{i j} w_{i}$, and that these scalars are in fact uniquely determined by α. Thus α defines a matrix $\left[a_{i j}\right] \in \mathcal{M}_{k \times n}(F)$. Conversely, assume we have a matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{k \times n}(F)$. Then we know that every vector v in V can be written in a unique way in the form $\sum_{j=1}^{n} b_{j} v_{j}$, and so A defines a linear transformation $\alpha \in \operatorname{Hom}(V, W)$ by setting $\alpha: v \mapsto \sum_{i=1}^{k}\left(\sum_{j=1}^{n} a_{i j} b_{j}\right) w_{i}$. Moreover, it is clear that different linear transformations in $\operatorname{Hom}(V, W)$ define different matrices in $\mathcal{M}_{k \times n}(F)$ and different matrices in $\mathcal{M}_{k \times n}(F)$ define different linear transformations in $\operatorname{Hom}(V, W)$. We summarize the above remarks in the following proposition.

Proposition 8.1 Let V be a vector space of finite dimension n over a field F and let W be a vector space of finite dimension k over F. For every basis B of V and every basis D of W there exists a bijective function $\Phi_{B D}: \operatorname{Hom}(V, W) \rightarrow M_{k \times n}(F)$, which is an isomorphism of vector spaces over F.

Proof We have already seen that if $B=\left\{v_{1}, \ldots, v_{n}\right\}$ and $D=\left\{w_{1}, \ldots, w_{k}\right\}$, then the function $\Phi_{B D}$ is defined by $\Phi_{B D}(\alpha)=\left[a_{i j}\right]$, where $\alpha\left(v_{j}\right)=\sum_{i=1}^{k} a_{i j} w_{i}$ for all $1 \leq j \leq n$, and that this function is bijective. We are therefore left to show that this is a linear transformation. Indeed, if $\Phi_{B D}(\alpha)=\left[a_{i j}\right]$ and $\Phi_{B D}(\beta)=\left[b_{i j}\right]$ then

$$
(\alpha+\beta)\left(v_{j}\right)=\sum_{i=1}^{k}\left(a_{i j}+b_{i j}\right) w_{i}=\sum_{i=1}^{k} a_{i j} w_{i}+\sum_{i=1}^{k} b_{i j} w_{i}=\alpha\left(v_{j}\right)+\beta\left(v_{j}\right)
$$

for all $1 \leq j \leq n$, and so $\Phi_{B D}(\alpha+\beta)=\Phi_{B D}(\alpha)+\Phi_{B D}(\beta)$. Similarly, if $c \in F$ then $(c \alpha)\left(v_{j}\right)=\sum_{i=1}^{k} c a_{i j} w_{i}=c\left(\sum_{i=1}^{k} a_{i j} w_{i}\right)=c\left(\alpha\left(v_{j}\right)\right)$ for all $1 \leq j \leq n$, and so $\Phi_{B D}(c \alpha)=c \Phi_{B D}(\alpha)$. Thus we see that $\Phi_{B D}$ is indeed a linear transformation and thus also an isomorphism.

We have already seen that, in the above situation, $\operatorname{dim}\left(\mathcal{M}_{k \times n}(F)\right)=k n$ and so, by Proposition 6.9, we also see that $\operatorname{dim}(\operatorname{Hom}(V, W))=k n$.

Example Let $V=\mathbb{R}^{3}$ and let B be the canonical basis on V. Each vector $v=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \in V$ defines a linear transformation $\alpha_{v}: V \rightarrow V$ given by $\alpha_{v}: w \mapsto$ $v \times w$. Then $\Phi_{B B}\left(\alpha_{v}\right)=\left[\begin{array}{ccc}0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0\end{array}\right]$.

Example Let $V=\mathbb{R}^{3}$ and $W=\mathbb{R}^{2}$. Choose bases

$$
B=\left\{\left[\begin{array}{c}
0.5 \\
-0.5 \\
0
\end{array}\right],\left[\begin{array}{c}
0.5 \\
0 \\
-0.5
\end{array}\right],\left[\begin{array}{c}
0 \\
0.5 \\
0.5
\end{array}\right]\right\}
$$

of V and of $D=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ of W. If $\left[\begin{array}{l}r \\ s \\ t\end{array}\right] \in \mathbb{R}^{3}$ then there exist $b_{1}, b_{2}, b_{3} \in \mathbb{R}$ satisfying $\left[\begin{array}{l}r \\ s \\ t\end{array}\right]=b_{1}\left[\begin{array}{c}0.5 \\ -0.5 \\ 0\end{array}\right]+b_{2}\left[\begin{array}{c}0.5 \\ 0 \\ -0.5\end{array}\right]+b_{3}\left[\begin{array}{c}0 \\ 0.5 \\ 0.5\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}b_{1}+b_{2} \\ -b_{1}+b_{3} \\ -b_{2}+b_{3}\end{array}\right]$, and so we have $2 r=b_{1}+b_{2}, 2 s=-b_{1}+b_{3}$, and $2 t=-b_{2}+b_{3}$. From this we get $b_{1}=r-s+t, b_{2}=r+s-t$, and $b_{3}=r+s+t$.

The matrix $A=\left[\begin{array}{lll}3 & 5 & 7 \\ 4 & 8 & 2\end{array}\right]$ defines a linear transformation $\alpha \in \operatorname{Hom}(V, W)$ given by

$$
\begin{aligned}
\alpha: & b_{1}\left[\begin{array}{c}
0.5 \\
-0.5 \\
0
\end{array}\right]+b_{2}\left[\begin{array}{c}
0.5 \\
0 \\
-0.5
\end{array}\right]+b_{3}\left[\begin{array}{c}
0 \\
0.5 \\
0.5
\end{array}\right] \\
& \mapsto\left(3 b_{1}+5 b_{2}+7 b_{3}\right)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left(4 b_{1}+8 b_{2}+2 b_{3}\right)\left[\begin{array}{l}
1 \\
0
\end{array}\right],
\end{aligned}
$$

so

$$
\begin{aligned}
\alpha\left(\left[\begin{array}{l}
r \\
s \\
t
\end{array}\right]\right) & =(15 r+9 s+5 t)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+(14 r+6 s-2 t)\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
29 r+15 s+3 t \\
15 r+9 s+5 t
\end{array}\right] .
\end{aligned}
$$

It is very important to emphasize that the matrix representation of a linear transformation depends on the bases which we fixed at the beginning, and on the order in which the elements of the bases are written! If we choose different bases or write the elements of a chosen basis in a different order, we will get a different matrix. Shortly, we will consider the relation between the matrices which represent a given linear transformation with respect to different bases.

Let V be a vector space finitely generated over a field F, let α be an endomorphism of V, and let W be a subspace of V which is invariant under α. As we have already seen, the restriction β of α to W is an endomorphism of W. Now, let $B=\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for W, which we can expand to a basis $D=\left\{v_{1}, \ldots, v_{n}\right\}$ for all of V. If $\Phi_{D D}(\alpha)=\left[a_{i j}\right]$ then for all $1 \leq j \leq k$ we have $\alpha\left(v_{j}\right)=\sum_{i=1}^{k} a_{i j} v_{i}$, and so $a_{i j}=0$ whenever $1 \leq j \leq k$ and $k<i \leq n$. Thus we see that the matrix $\Phi_{D D}(\alpha)$ is of the form $\left[\begin{array}{cc}A_{11} & A_{21} \\ O & A_{22}\end{array}\right]$, where $A_{11}=\Phi_{B B}(\beta)$. The subspace $Y=F\left\{v_{k+1}, \ldots, v_{n}\right\}$ of V is a complement of W in V. If it too is invariant under α then we would also have $A_{21}=O$, and so α is represented by a matrix composed of two square matrices "strung out" along the diagonal. From a computational point of view, such a representation has distinct advantages.

Beside addition and scalar multiplication of matrices, we can also define the product of two matrices, provided that these matrices are of suitable sizes. Let (K, \bullet) be an associative unital algebra over a field F. If $A=\left[v_{i j}\right] \in \mathcal{M}_{k \times n}(K)$ and $B=$ [$w_{j h}$] $\in \mathcal{M}_{n \times t}(K)$ for some positive integers k, n, and t, we define the matrix $A B$ to be the matrix $\left[y_{i h}\right] \in \mathcal{M}_{k \times t}(K)$ where, for each $1 \leq i \leq k$ and all $1 \leq h \leq t$, we set $y_{i h}=\sum_{j=1}^{n} v_{i j} \bullet w_{j h}$. For the most part, we will be interested in this construction for the case $K=F$, but sometimes we will have need of the more general construction. Note that a necessary condition for the product of two matrices to be defined is that the number of columns in the first matrix be equal to the number of rows in the second matrix.

Example If $A=\left[\begin{array}{rrr}2 & 3 & 2 \\ -1 & 2 & 1\end{array}\right] \in \mathcal{M}_{2 \times 3}(\mathbb{Q})$ and $B=\left[\begin{array}{rrrr}-1 & 0 & 2 & -1 \\ 1 & 0 & 1 & -2 \\ 2 & 1 & 0 & -3\end{array}\right] \in$ $\mathcal{M}_{3 \times 4}(\mathbb{Q})$ then $A B=\left[\begin{array}{rrrr}5 & 2 & 7 & -14 \\ 5 & 1 & 0 & -6\end{array}\right] \in \mathcal{M}_{2 \times 4}(\mathbb{Q})$ but $B A$ is not defined.

Example If we consider the matrices

$$
A=\left[\begin{array}{rrr}
2 & 3 & 2 \\
-1 & 2 & 1
\end{array}\right] \in \mathcal{M}_{2 \times 3}(\mathbb{Q}) \quad \text { and } \quad B=\left[\begin{array}{rr}
-1 & 0 \\
1 & 0 \\
2 & 1
\end{array}\right] \in \mathcal{M}_{3 \times 2}(\mathbb{Q})
$$

then $A B=\left[\begin{array}{ll}5 & 2 \\ 5 & 1\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{Q})$ and $B A=\left[\begin{array}{rrr}-2 & -3 & -2 \\ 2 & 3 & 2 \\ 3 & 8 & 5\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{Q})$.
Suppose that $A=\left[a_{i j}\right] \in \mathcal{M}_{k \times n}(F)$ and $v=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right] \in F^{n}$. Then $A v=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{k}\end{array}\right] \in F^{k}$ where, for each $1 \leq i \leq k$, we have $c_{i}=\sum_{j=1}^{n} a_{i j} b_{j}$. Denoting the columns of A by u_{1}, \ldots, u_{n}, we see that $A v=\sum_{j=1}^{n} b_{j} u_{j}$. So we conclude that if there exists a nonzero vector v such that $A v=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$, then the columns of A must be linearly dependent. If every element of F^{k} is of the form $A v$ for some $v \in F^{n}$, then the columns of A must form a generating set for F^{k}.

Let (K, \bullet) be an associative unital algebra over a field F and let n be a positive integer. If $v=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ and $w=\left[\begin{array}{c}w_{1} \\ \vdots \\ w_{n}\end{array}\right]$ are elements of K^{n} then $v^{T} w=$ [$\left.\sum_{i=1}^{n} v_{i} \bullet w_{i}\right] \in \mathcal{M}_{1 \times 1}(K)$. This is called the interior product of v and w. This 1×1 matrix is usually identified with the scalar $\sum_{i=1}^{n} v_{i} \bullet w_{i} \in K$, which we will denote by $v \odot w$, in a departure from usual notation. ${ }^{1}$

Dually, the exterior product of v and w is defined to be the matrix $v w^{T}=\left[y_{i j}\right] \in$ $\mathcal{M}_{n \times n}(K)$, where $y_{i j}=v_{i} \bullet w_{j}$. We will denote the exterior product of v and w by $v \wedge w$. Notice that the exterior product is not commutative, but rather $v \wedge w=$ $(w \wedge v)^{T}$. Exterior products of vectors are encountered far less often than interior products, but have important applications in many areas, among them physics (in the Dirac model of quantum physics, interior products are called bra-ket products, whereas exterior products are called ket-bra products).

[^5]In particular, we note the following: let K be an algebra over a field F, let $A \in \mathcal{M}_{k \times n}(K)$, and let $B \in \mathcal{M}_{n \times t}(K)$. Let $v_{1}^{T}, \ldots, v_{k}^{T}$ be the rows of A and let w_{1}, \ldots, w_{t} be the columns of B. Then $A B=\left[c_{i j}\right]$, where $c_{i j}=v_{i} \odot w_{j}$ for all $1 \leq i \leq k$ and all $1 \leq j \leq t$.

Let F be a field, let n be a positive integer, let $v=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]$ and $w=\left[\begin{array}{c}b a_{1} \\ \vdots \\ b_{n}\end{array}\right]$ belong to F^{n}, and let $C=\left[c_{i j}\right] \in \mathcal{M}_{n \times x}(F)$. Then the computation of $v \odot C w=\sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{n} c_{i j} b_{j}\right)$ requires $n^{2}+n$ multiplications and $n^{2}-1$ additions. However, if we can find vectors $u=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$ and $y=\left[\begin{array}{c}y_{1} \\ \vdots \\ n_{n}\end{array}\right]$ in F^{n} such that $C=u \wedge y$, then, by the distributive law, $v \odot C w=\sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{n} u_{i} y_{j} b_{j}\right)=$ $\left(\sum_{i=1}^{n} a_{i} u_{i}\right)\left(\sum_{j=1}^{n} y_{j} b_{j}\right)$ and this requires only $2 n+1$ multiplications and $2 n-2$ additions. Similarly, if we can find vectors $u, u^{\prime}, y, y^{\prime} \in F^{n}$ such that $C=u \wedge y+$ $u^{\prime} \wedge y^{\prime}$, then the computation of $v \odot C w$ requires $4 n+2$ multiplications and $4 n-4$ additions. For large values of n, this can result in considerable saving, especially if the computation is to be repeated frequently.

Example Combinatorial optimization is the area of mathematics dealing with the computational issues arising from finding optimal solutions to such problems as the traveling salesman problem, testing Hamiltonian graphs, sphere packing, etc. The general form of combinatorial optimization problems is the following: Let F be a subfield of \mathbb{R} and let n be a positive integer. Assume that we have a nonempty finite (and in general very large) subset S of $\mathbb{N}^{n} \subseteq F^{n}$. Usually, the set S arises from the characteristic functions of certain subsets of $\{1, \ldots, n\}$ of interest in the problem. Then, given a vector $v=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right] \in F^{n}$, we want to find $\min \{s \odot v \mid s \in S\}$. Note that if we consider F not as a subset of \mathbb{R} but as a subset of the optimization algebra \mathbb{R}_{∞}, then the problem becomes one of computing $p\left(a_{1}, \ldots, a_{n}\right)$, where

$$
p\left(X_{1}, \ldots, X_{n}\right)=\sum\left\{X_{1}^{i_{1}} \cdots X_{n}^{i_{n}} \left\lvert\,\left[\begin{array}{c}
i_{1} \\
\vdots \\
i_{n}
\end{array}\right] \in S\right.\right\}
$$

is a polynomial in several indeterminates over \mathbb{R}_{∞} (polynomials with coefficients in a semifield are defined in the same way as polynomials with coefficients in a field).

Observe that multiplying a $k \times n$ matrix by an $n \times t$ matrix requires $k t(n-1)$ arithmetic operations. If these numbers are all very large, as is often the case in real-life applications of matrix theory, the computational overhead-and risk of ac-
cumulated errors due to rounding and truncation-is substantial. ${ }^{2}$ We will keep this in mind throughout our discussion, and try to consider strategies of minimizing this risk. In this connection, we should note that the product of two matrices has an important property: let (K, \bullet) be an associative unital algebra over a field F assume that $A=\left[v_{i j}\right] \in \mathcal{M}_{k \times n}(K)$ and $B=\left[w_{i j}\right] \in \mathcal{M}_{n \times t}(K)$, where k, n, and t are positive integers. Furthermore, let us pick positive integers

$$
\begin{aligned}
& 1=k(1)<k(2)<\cdots<k(p+1)=k, \\
& 1=n(1)<n(2)<\cdots<n(q+1)=n, \\
& 1=t(1)<t(2)<\cdots<t(r+1)=t .
\end{aligned}
$$

For all $1 \leq i \leq p$ and all $1 \leq j \leq q$, let $A_{i j}=\left[\begin{array}{ccc}v_{k(i), n(j)} & \ldots & v_{k(i), n(j+1)} \\ \vdots & \ddots & \vdots \\ v_{k(i+1), n(j)} & \ldots & v_{k(i+1), n(j+1)}\end{array}\right]$. This allows us to write A in block form $\left[\begin{array}{ccc}A_{11} & \ldots & A_{1 q} \\ \vdots & \ddots & \vdots \\ A_{p 1} & \ldots & A_{p q}\end{array}\right]$. Note that these blocks are not necessarily square matrices. In the same way, we can write B as a matrix $\left[\begin{array}{ccc}B_{11} & \ldots & B_{1 t} \\ \vdots & \ddots & \vdots \\ B_{q 1} & \ldots & B_{q t}\end{array}\right]$. Then $A B=\left[\begin{array}{ccc}C_{11} & \ldots & C_{1 t} \\ \vdots & \ddots & \vdots \\ C_{p 1} & \ldots & C_{p t}\end{array}\right]$ where, for each $1 \leq i \leq p$ and each $1 \leq h \leq t$, we have $C_{i h}=\sum_{j=1}^{q} A_{i j} B_{j h}$. A sophisticated use of this method can substantially decrease the number of operations needed to multiply two matrices, as we shall see. Moreover, skilled partitioning of matrices can allow us to make use efficiently the aspects of modern computer architecture such as cache memories to further increase the speed of computation.

Needless to say, this seemingly odd definition of the product of two matrices was not chosen at random. Indeed, it satisfies certain important properties. Thus, if (K, \bullet) is an associative unital algebra over a field F, if k, n, t, and p are positive integers, and if we have matrices $A \in \mathcal{M}_{k \times n}(K), B, B_{1}, B_{2} \in \mathcal{M}_{n \times t}(K)$, and $C \in \mathcal{M}_{t \times p}(K)$, then
(1) $A(B C)=(A B) C$;
(2) $A\left(B_{1}+B_{2}\right)=A B_{1}+A B_{2}$;
(3) $\left(B_{1}+B_{2}\right) C=B_{1} C+B_{2} C$.

As a consequence, we see that if $B \in \mathcal{M}_{n \times t}(K)$ is given, then the function from $\mathcal{M}_{k \times n}(K)$ to $\mathcal{M}_{k \times t}(K)$ defined by $A \mapsto A B$ is a linear transformation of vector spaces.

[^6]We also note that if $A=\left[v_{i j}\right] \in \mathcal{M}_{k \times n}(K)$ and $B=\left[w_{j h}\right] \in \mathcal{M}_{n \times t}(K)$, then $A^{T} \in \mathcal{M}_{n \times k}(K)$ and $B^{T} \in \mathcal{M}_{t \times n}(K)$ so $B^{T} A^{T} \in \mathcal{M}_{t \times k}(K)$. Indeed, $B^{T} A^{T}=$ [$y_{h i}$], where $y_{h i}=\sum_{j=1}^{n} w_{j h} \bullet v_{i j}$. Hence, if K is also commutative (and in particular if $K=F$), we have $B^{T} A^{T}=(A B)^{T}$.

Matrix multiplication was first defined by the nineteenth-century French mathematician Jacques Philippe Binet. It took some getting used to; many decades later, the father of astrophysics, Sir Arthur Eddington, still wrote "I cannot believe that anything so ugly as multiplication of matrices is an essential part of the scheme of nature".

The definition of matrix multiplication is in fact a direct consequence of the relation between matrices and linear transformations, which we have already observed. This is best seen in the following result.

Proposition 8.2 Let V be a vector space of finite dimension n over a field F for which we have chosen a basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$, let W be a vector space of finite dimension k over F for which we have chosen a basis $D=\left\{w_{1}, \ldots, w_{k}\right\}$, and let Y be a vector space of finite dimension t over F, for which we have chosen a basis $E=\left\{y_{1}, \ldots, y_{t}\right\}$. If $\alpha \in \operatorname{Hom}(V, W)$ and $\beta \in \operatorname{Hom}(W, Y)$ then $\Phi_{B E}(\beta \alpha)=\Phi_{D E}(\beta) \Phi_{B D}(\alpha)$.

Proof Assume that $\Phi_{B D}(\alpha)=\left[a_{i j}\right]$ and $\Phi_{D E}(\beta)=\left[b_{h i}\right]$. Then

$$
\alpha: v \mapsto \sum_{i=1}^{k} \sum_{j=1}^{n} c_{j} a_{i j} w_{i} \quad \text { and } \quad \beta \alpha: v \mapsto \sum_{h=1}^{t} \sum_{i=1}^{k} \sum_{j=1}^{n} c_{j} b_{h i} a_{i j} y_{h},
$$

showing the desired equality.
We can extend the definition of matrix multiplication as follows: let h, k, and n be positive integers, and let V be a vector space over a field F. If $A=\left[a_{i j}\right] \in$ $\mathcal{M}_{h \times k}(F)$ and if $M=\left[v_{j t}\right] \in \mathcal{M}_{k \times n}(V)$, we can define $A M \in \mathcal{M}_{h \times n}(V)$ to be the matrix [$u_{i t}$], where $u_{i t}=\sum_{j=1}^{k} a_{i j} v_{j t}$ for all $1 \leq i \leq h$ and $1 \leq t \leq n$. Notice that if $A, B \in \mathcal{M}_{k \times k}(F)$ and if $M, N \in \mathcal{M}_{k \times n}(V)$ then
(1) $A(B M)=(A B) M$;
(2) $A(M+N)=A M+A N$;
(3) $(A+B) M=A M+B M$.

In general, and especially when we are talking of actual computations, it is easier to work with matrices than with linear transformations, and indeed most of the modern computer software and hardware are designed to facilitate easy and speedy matrix computation. Therefore, given finitely-generated vector spaces V and W over a
field F, it is usual to fix bases for them and then identify $\operatorname{Hom}(V, W)$ with the space of all matrices over F of the appropriate size. The choice of the correct bases then becomes critical, and we will focus on that throughout the following discussions. Such a choice usually depends on the problem at hand. In particular, the automatic choice of canonical bases, when they exist, may not be the best for a given problem, and can entail a considerable cost both in computational time and numerical accuracy.

Exercises

Exercise 404

Let V be the vector space over \mathbb{R} composed of all polynomials in $\mathbb{R}[X]$ having degree less than 3 and let W be the vector space over \mathbb{R} composed of all polynomials in $\mathbb{R}[X]$ having degree less than 4 . Let $\alpha: V \rightarrow W$ be the linear transformation defined by

$$
\alpha: a+b X+c X^{2} \mapsto(a+b)+(b+c) X+(a+c) X^{2}+(a+b+c) X^{3} .
$$

Select bases $B=\left\{1, X+1, X^{2}+X+1\right\}$ for V and

$$
D=\left\{X^{3}-X^{2}, X^{2}-X, X-1,1\right\}
$$

for W. Find the matrix $\Phi_{B D}(\alpha)$.

Exercise 405

Let $K=\mathcal{M}_{2 \times 2}(\mathbb{R})$ and let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in K$. Let D be the canonical basis of K. If $\alpha, \beta \in \operatorname{End}(K)$ are defined by $\alpha: \vec{X} \mapsto X A$ and $\beta: X \mapsto A X$, find $\Phi_{D D}(\alpha)$ and $\Phi_{D D}(\beta)$.

Exercise 406

Given the matrix $A=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 1 & 3 & 4 & 0 \\ 3 & 2 & 0 & 1\end{array}\right] \in \mathcal{M}_{3 \times 4}(\mathbb{R})$, find the set of all matrices
$B \in \mathcal{M}_{4 \times 3}(\mathbb{R})$ satisfying $A B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

Exercise 407

Given the matrix $A=\left[\begin{array}{ll}1 & 8 \\ 3 & 5 \\ 2 & 2\end{array}\right] \in \mathcal{M}_{3 \times 2}(\mathbb{Q})$, find the set of all matrices $B \in \mathcal{M}_{2 \times 3}(\mathbb{Q})$ satisfying $A B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and find the set of all matrices
$C \in \mathcal{M}_{2 \times 3}(\mathbb{Q})$ satisfying $C A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Exercise 408
Given the matrix $A=\left[\begin{array}{rrr}1 & -1 & 2 \\ 0 & 1 & 2 \\ -1 & 3 & 1 \\ 2 & 1 & -1\end{array}\right] \in \mathcal{M}_{4 \times 3}(\mathbb{R})$, find the set of all matrices
$B \in \mathcal{M}_{3 \times 4}(\mathbb{R})$ satisfying $B A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

Exercise 409

Find the matrix representing the linear transformation $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{c}a+b+c \\ b+c\end{array}\right]$
from \mathbb{R}^{3} to \mathbb{R}^{2} with respect to the bases $\left\{\left[\begin{array}{r}-1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}3 \\ -1 \\ 0\end{array}\right]\right\}$ of \mathbb{R}^{3} and $\left\{\left[\begin{array}{r}-1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ of \mathbb{R}^{2}.

Exercise 410

Find the set of all matrices $A \in \mathcal{M}_{4 \times 3}(\mathbb{R})$ satisfying the condition

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] A=A\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

Exercise 411

Let α be an endomorphism of \mathbb{R}^{3} represented with respect to some basis by the matrix $\left[\begin{array}{rrr}0 & 2 & -1 \\ -2 & 5 & -2 \\ -4 & 8 & -3\end{array}\right]$. Is α a projection?

Exercise 412

Find the real numbers missing from the following equation:

$$
\left[\begin{array}{cc}
1 & -3 \\
1 & * \\
1 & * \\
* & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & * & 7 & * \\
* & 1 & * & 0
\end{array}\right]=\left[\begin{array}{cccc}
-25 & -1 & 1 & 3 \\
-1 & * & * & * \\
* & * & 5 & * \\
* & * & * & 0
\end{array}\right] .
$$

Exercise 413
Let $\alpha:\left[\begin{array}{c}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{c}3 a+2 b \\ -a-c \\ a+3 b\end{array}\right]$ be an endomorphism of \mathbb{R}^{3}. Find the matrix repre-
senting α with respect to the basis $B=\left\{\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$ of \mathbb{R}^{3}.

Exercise 414

Let $D=\left\{v_{1}, v_{2}, v_{3}\right\}$ be a basis for \mathbb{R}^{3} and let α be the endomorphism of \mathbb{R}^{3}
satisfying $\Phi_{D D}(\alpha)=\left[\begin{array}{rrr}-1 & -1 & -3 \\ -5 & -2 & -6 \\ 2 & 1 & 3\end{array}\right]$. Find $\operatorname{ker}(\alpha)$.

Exercise 415

Let V be the subspace of $\mathbb{R}[X]$ consisting of all polynomials of degree less than 3 and choose the basis $B=\left\{1, X, X^{2}\right\}$ for V. Let $\alpha \in \operatorname{End}(V)$ satisfy
$\Phi_{B B}(\alpha)=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right]$. Let D be the basis $\left\{1, X+1,2 X^{2}+4 X+3\right\}$ for V.
What is $\Phi_{D D}(\alpha)$?

Exercise 416

Let $\alpha \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ be represented with respect to the canonical basis by the matrix
$\left[\begin{array}{lll}2 & 2 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & 2\end{array}\right]$. Find a real number a such that α is represented with respect to the basis $\left\{\left[\begin{array}{c}a \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ a \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ a\end{array}\right]\right\}$ by the matrix $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right]$.

Exercise 417

Let V be the subspace of $\mathbb{R}[X]$ consisting of all polynomials of degree less than 3 and let $\alpha \in \operatorname{End}(V)$ be defined by

$$
\alpha: a X^{2}+b X+c \mapsto(a+2 b+c) X^{2}+(3 a-b) X+(b+2 c)
$$

Find $\Phi_{D D}(\alpha)$, where $D=\left\{X^{2}+X+1, X^{2}+X, X^{2}\right\}$.

Exercise 418

Find all rational numbers a for which there exists a nonzero matrix $B \in$ $\mathcal{M}_{4 \times 3}(\mathbb{Q})$ satisfying $B\left[\begin{array}{lll}a & 1 & 1 \\ 1 & 1 & a \\ 1 & a & 1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.

Exercise 419
For which real numbers a does there exist a real number b (depending on a) satisfying $\left[\begin{array}{ccc}a & 1 & 1 \\ 1 & 1 & a\end{array}\right]\left[\begin{array}{cc}b & -1 \\ 1 & -1 \\ 1 & b\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$?

Exercise 420

Let $V=\mathbb{R}^{\mathbb{R}}$ and let W be the subspace of V generated by the linearlyindependent set $B=\left\{1, x, e^{x}, x e^{x}\right\}$. Let δ be the endomorphism of W which assigns to each function its derivative. Find $\Phi_{B B}(\delta)$.

Exercise 421
Let $B=\{1+i, 2+i\}$, which is a basis for \mathbb{C} as a vector space over \mathbb{R}. Let α be the endomorphism of this space defined by $\alpha: z \mapsto \bar{z}$. Find $\Phi_{B B}(\alpha)$.

Exercise 422
Let $F=\mathrm{GF}(3)$ and let $\alpha: F^{3} \rightarrow F^{2}$ be the linear transformation defined by $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{c}a-b \\ 2 a-c\end{array}\right]$. Let $\beta: F^{2} \rightarrow F^{4}$ be the linear transformation defined by $\beta:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{c}b \\ a \\ 2 b \\ 2 a\end{array}\right]$. Find the matrix representing $\beta \alpha$ with respect to the canonical bases.

Exercise 423

Let $\alpha \in \operatorname{End}\left(\mathbb{R}^{4}\right)$ be represented with respect to the canonical basis by the matrix $\left[\begin{array}{rrrr}3 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1\end{array}\right]$. Given a vector $v \in \mathbb{R}^{4}$ satisfying the condition that all entries of $\alpha(v)$ are nonnegative, show that all entries of v are nonnegative.

Exercise 424

Let V and W be vector spaces over a field F and choose bases $\left\{v_{i} \mid i \in \Omega\right\}$ and $\left\{w_{j} \mid j \in \Lambda\right\}$ for V and W, respectively. Let $p: \Omega \times \Lambda \rightarrow F$ be a function satisfying the condition that the set $\{j \in \Lambda \mid p(i, j) \neq 0\}$ is finite for each $i \in \Omega$. Let $\alpha_{p}: V \rightarrow W$ be the function defined as follows: if $v=\sum_{i \in \Gamma} a_{i} v_{i}$, where Γ is a finite subset of Ω and where the a_{i} are scalars in F, then $\alpha_{p}(v)=\sum_{i \in \Gamma} \sum_{j \in \Lambda} a_{i} p(i, j) w_{j}$. Show that α_{p} is a linear transformation and that every linear transformation from V to W is of this form.

Exercise 425

Let k and n be positive integers, let $v \in \mathbb{R}^{n}$, and let $A \in \mathcal{M}_{k \times n}(\mathbb{R})$. Show that $A v=O$ if and only if $A^{T} A v=O$.

Exercise 426
Let $A \in \mathcal{M}_{3 \times 2}(\mathbb{R})$ and $B \in \mathcal{M}_{2 \times 3}(\mathbb{R})$ be matrices satisfying

$$
A B=\left[\begin{array}{rrr}
8 & 2 & -2 \\
2 & 5 & 4 \\
-2 & 4 & 5
\end{array}\right]
$$

Calculate $B A$.

Exercise 427
Find matrices $A \in \mathcal{M}_{3 \times 2}(\mathbb{R})$ and $B \in \mathcal{M}_{2 \times 3}(\mathbb{R})$ satisfying

$$
A B=\left[\begin{array}{rrr}
1 & 1 & 1 \\
-2 & 0 & -6 \\
0 & 1 & -2
\end{array}\right]
$$

Exercise 428

Let F be a field and let $k \neq n$ be positive integers. Let $A, B \in \mathcal{M}_{k \times n}(F)$ and let $\alpha: \mathcal{M}_{n \times k}(F) \rightarrow \mathcal{M}_{k \times n}(F)$ be the linear transformation defined by $\alpha: C \mapsto A C B$. Under which conditions is α an isomorphism?

Exercise 429

Let F be a field and let n be a positive integer. Let W be a nontrivial subspace of the vector space $V=\mathcal{M}_{n \times n}(F)$ satisfying the condition that if $A \in W$ and $B \in V$ then $A B$ and $B A$ both belong to W. Show that $W=V$.

Exercise 430

Let $a, b, c, a^{\prime}, b^{\prime}, c^{\prime} \in \mathbb{C}$ satisfy the condition that $a a^{\prime}+b b^{\prime}+c c^{\prime}=2$, and let $A=I-\left[\begin{array}{l}a \\ b \\ c\end{array}\right]\left[\begin{array}{lll}a^{\prime} & b^{\prime} & c^{\prime}\end{array}\right]$. Calculate A^{2}.

Exercise 431

Find a nonzero matrix A in $\mathcal{M}_{2 \times 2}(\mathbb{R})$ satisfying $v \odot A v=0$ for all $v \in \mathbb{R}^{2}$.

Exercise 432

Let α be the endomorphism of \mathbb{Q}^{4} represented with respect to the canonical basis by the matrix $\left[\begin{array}{rrrr}1 & 0 & 1 & -1 \\ 2 & 1 & 2 & 1 \\ 0 & 1 & 6 & 1 \\ 3 & 1 & 3 & 4\end{array}\right]$. Find a two-dimensional subspace of \mathbb{Q}^{4} which is invariant under α.

Exercise 433

Let n be a positive integer and let F be a field. For each $v, w \in F^{n}$, consider the function $\tau_{v, w}: F^{n} \rightarrow F v$ defined by $\tau_{v, w}: y \mapsto(w \odot y) v$ (this function is called the dyadic product function). Show that $\tau_{v, w}$ a linear transformation. Is the function $F^{n} \rightarrow \operatorname{Hom}\left(F^{n}, F v\right)$ defined $w \mapsto \tau_{v, w}$ a linear transformation?

Exercise 434

Let $k<n$ be positive integers and let F be a field. Given a matrix $A \in \mathcal{M}_{k \times n}(F)$, do there necessarily exist matrices $B, C \in \mathcal{M}_{n \times k}(F)$ satisfying the condition that $A B=O \in \mathcal{M}_{k \times k}(F)$ and $C A=O \in \mathcal{M}_{n \times n}(F)$?

Exercise 435

Let $A \in \mathcal{M}_{n \times n}(\mathbb{Q})$ be a matrix satisfying the condition that if $v \in \mathbb{Q}^{n}$ is a vector all of the components of which are nonnegative, then all of the components of $A v$ are nonnegative. Are all of the entries in A necessarily nonnegative?

Exercise 436
Find the set of all matrices A in $\mathcal{M}_{3 \times 3}(\mathbb{R})$ satisfying $A^{2}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.

Exercise 437

Find the set of all real numbers a such that the endomorphism of \mathbb{R}^{3} represented by the matrix $\left[\begin{array}{rrr}1 & a & a \\ 2 & 2 a & 4 \\ 3 & a & 6\end{array}\right]$ with respect to the canonical basis is an automorphism.

Exercise 438

Find the set of all real numbers a and b such that the endomorphism of \mathbb{R}^{3} represented by the matrix $\left[\begin{array}{ccc}1 & a & b \\ 0 & a & 1 \\ 0 & a & 1\end{array}\right]$ with respect to the canonical basis is a projection.

Exercise 439

Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ satisfy the condition that for each $v \in \mathbb{R}^{n}$ there exists a vector $y \in \mathbb{R}^{n}$ all entries in which are nonnegative satisfying $A v=v+y$. Show that $A=I$.

Exercise 440
Let $F=\mathrm{GF}(2)$ and let K be the subset of $\mathcal{M}_{3 \times 3}(F)$ consisting of O, I, and the following matrices:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right],} \\
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right],}
\end{aligned}
$$

Show that K, together with matrix addition and multiplication, is a field. What is its characteristic? Does there exist an element A of K such that every nonzero element of K is a power of A ?

The Algebra of Square Matrices

We are now going to concentrate on the algebraic structure of sets of the form $\mathcal{M}_{n \times n}(K)$, where n is a positive integer and (K, \bullet) is an associative unital algebra over a field F. From what we have already seen, this is again an associative unital F-algebra, which will not be commutative if $n>1$. The additive identity of this algebra is the matrix all of the entries of which equal 0_{K}. The additive inverse of a matrix $A=\left[d_{i j}\right] \in \mathcal{M}_{n \times n}(K)$ is the matrix $\left[-a_{i j}\right]$. The multiplicative identity of $\mathcal{M}_{n \times n}(K)$ is the matrix $E=\left[d_{i j}\right]$ given by

$$
d_{i j}= \begin{cases}e & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

where e is the multiplicative identity of (K, \bullet).
The most important case is, of course, that of $K=F$. In this case, the additive identity is O and the multiplicative identity is the matrix $I=\left[a_{i j}\right]$ defined by

$$
a_{i j}= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { otherwise } .\end{cases}
$$

If K is a vector space of dimension n over F and if B is a basis of K, then it is straightforward to verify that the function $\Phi_{B B}: \operatorname{End}(K) \rightarrow \mathcal{M}_{n \times n}(F)$ is an isomorphism of unital F-algebras.

If F is a field and if n is a positive integer then, corresponding to the associative F-algebra $\mathcal{M}_{n \times n}(F)$, we have the Lie algebra $\mathcal{M}_{n \times n}(F)^{-}$. This Lie algebra is called the general Lie algebra defined by F^{n}.

Example Let F be a field and let $A=\left[a_{i j}\right] \in \mathcal{M}_{4 \times 4}(F)$. Then A can also be written in block form as $\left[\begin{array}{ll}{\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]} & {\left[\begin{array}{ll}a_{13} & a_{14} \\ a_{23} & a_{24}\end{array}\right]} \\ {\left[\begin{array}{ll}a_{31} & a_{32} \\ a_{41} & a_{42}\end{array}\right]} & {\left[\begin{array}{ll}a_{33} & a_{34} \\ a_{43} & a_{44}\end{array}\right]}\end{array}\right] \in \mathcal{M}_{2 \times 2}(K)$, where
$K=\mathcal{M}_{2 \times 2}(F)$. Addition and multiplication of matrices are so defined (and not accidentally!) that they give the same results whether performed in $\mathcal{M}_{4 \times 4}(F)$ or in $\mathcal{M}_{2 \times 2}(K)$.

Example The set K of all analytic functions from \mathbb{C} to itself is clearly an algebra over \mathbb{C}. At the beginning of the twentieth century, G. D. Birkhoff made use of matrices in $\mathcal{M}_{n \times n}(K)$ to study the properties of analytic functions.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach.

George D. Birkhoff was one of the leading American mathematicians at the beginning of the twentieth century, who worked in many areas of analysis.

We begin by identifying some particularly-important square matrices over a unital associative F-algebra K, and with them some significant subalgebras of $\mathcal{M}_{n \times n}(K)$.

Let (K, \bullet) is an associative unital F-algebra and let n be a positive integer. A ma$\operatorname{trix} A=\left[d_{i j}\right] \in \mathcal{M}_{n \times n}(K)$ is a diagonal matrix if and only if there exist elements c_{1}, \ldots, c_{n} of K such that

$$
d_{i j}= \begin{cases}c_{i} & \text { if } i=j, \\ 0_{K} & \text { otherwise } .\end{cases}
$$

The matrices O and E are diagonal. Moreover, the sum and product of diagonal matrices are diagonal matrices, and so the set of all diagonal matrices is an F-subalgebra of $\mathcal{M}_{n \times n}(K)$. If K is commutative (and, in particular, if $K=F$) then this algebra is also commutative. The units of the subalgebra are all diagonal matrices in which each c_{i} is a unit of K (and hence surely nonzero). In this case,

$$
\left[\begin{array}{ccc}
c_{1} & \ldots & 0_{K} \\
\vdots & \ddots & \vdots \\
0_{K} & \ldots & c_{n}
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
c_{1}^{-1} & \ldots & 0_{K} \\
\vdots & \ddots & \vdots \\
0_{K} & \ldots & c_{n}^{-1}
\end{array}\right] .
$$

Example Let F be a field, let (K, \bullet) is an associative unital F-algebra, and let n be a positive integer. A matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(K)$ is a scalar matrix if and only if there exists a scalar $c \in K$ such that $a_{i j}=c$ when $i=j$ and $a_{i j}=0_{K}$ otherwise. We denote this matrix by $c E$ (and, in particular, $c I$ when $K=F$). Scalar matrices are surely diagonal matrices, and both O and E are scalar matrices. Moreover, the sum and product of scalar matrices are scalar matrices. If $c, d \in K$ then $(c E)(d E)=$ $(d E)(c E)$ and if $0_{K} \neq c \in K$ is a unit, then $(c E)\left(c^{-1} E\right)=E$. Hence the set of
all scalar matrices over F forms an F-subalgebra of $\mathcal{M}_{n \times n}(F)$, which is in fact a field. The function $F \rightarrow \mathcal{M}_{n \times n}(F)$ defined by $c \mapsto c I$ is a monic homomorphism of F-algebras, and so we can identify F with the subfield of all scalar matrices of $\mathcal{M}_{n \times n}(F)$. Moreover, it is also easy to see that $(c I) A=A(c I)=c A$ for any $A \in \mathcal{M}_{n \times n}(F)$.

Let (K, \bullet) is an associative unital F-algebra, let n be a positive integer, and let d be a positive integer less than n. A matrix $A=\left[v_{i j}\right] \in \mathcal{M}_{n \times n}(K)$ is a band matrix of width $2 d-1$ if and only if $v_{i j}=0_{K}$ whenever $|i-j|>d-1$. Thus, the band matrices of width 1 are the diagonal matrices. The matrix

$$
\left[\begin{array}{lllll}
1 & 2 & 0 & 0 & 0 \\
2 & 3 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 4 & 4
\end{array}\right] \in \mathcal{M}_{5 \times 5}(\mathbb{R})
$$

is an example of a band matrix of width 3 . The set of band matrices of fixed width is closed under addition and contains O and I, but is not necessarily closed under multiplication, and so is not a subalgebra of $\mathcal{M}_{n \times n}(K)$. However, it is closed under scalar multiplication and so is a subspace of the vector space $\mathcal{M}_{n \times n}(K)$ over F.

Band matrices over a field are very important for numerical computations, especially when d is small relative to n. Of particular importance are band matrices of width 3, which are also known as tridiagonal matrices, and have important use in the computation of quadratic splines and in the computation of extremal eigenvalues of matrices; they also appear very often in methods of solution of differential equations. Tridiagonal matrices have the added advantage of being easily stored in a computer, since all we need to do is keep the three diagonals in which nonzero entries can occur. For example, a tridiagonal matrix in $\mathcal{M}_{1000 \times 1000}(\mathbb{R})$ has $1,000,000$ entries, of which at most 2998 are nonzero.

A special type of tridiagonal matrix in $\mathcal{M}_{2 n \times 2 n}(F)$, which we will see again later, is one of the form $\left[\begin{array}{cccc}A_{11} & O & \ldots & O \\ O & A_{22} & \ldots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \ldots & A_{n n}\end{array}\right]$, where the $A_{i i}$ are 2×2 blocks. Note that this matrix can also be thought of as a diagonal matrix in $\mathcal{M}_{n \times n}(K)$, where $K=\mathcal{M}_{2 \times 2}(F)$. More generally, if d and n are positive integers, then any diagonal matrix in $\mathcal{M}_{n \times n}(L)$, where $L=\mathcal{M}_{d \times d}(K)$, is a band matrix of width $2 d-1$ in $\mathcal{M}_{d n \times d n}(K)$.

Let (K, \bullet) is an associative unital F-algebra and let n be a positive integer. A ma$\operatorname{trix} A=\left[c_{i j}\right] \in \mathcal{M}_{n \times n}(K)$ is an upper-triangular matrix if and only if $c_{i j}=0_{K}$
whenever $i>j$. Thus, the matrix
$\left[\begin{array}{lllll}1 & 2 & 6 & 3 & 7 \\ 0 & 3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 4\end{array}\right] \in \mathcal{M}_{5 \times 5}(\mathbb{R})$ is upper trian- gular. The set of all upper-triangular matrices includes the set of diagonal matrices, is closed under addition, and contains O and E. Moreover, it is closed under multiplication, and so is an F-subalgebra of $\mathcal{M}_{n \times n}(K)$. In the case that $K=F$, we see that the dimension of $\mathcal{M}_{n \times n}(F)$ as a vector space over F equals $\frac{n}{2}(n+1)$. Upper-triangular matrices arise naturally in many applications, as we will see below. In a similar manner, we say that a matrix $A=\left[c_{i j}\right] \in \mathcal{M}_{n \times n}(K)$ is a lowertriangular matrix if and only if $c_{i j}=0_{K}$ whenever $i<j$. Again, the set of all lower-triangular matrices is a subspace of the vector space $\mathcal{M}_{n \times n}(K)$ over F and, indeed, an F-subalgebra. Note that a matrix A is upper triangular if and only if A^{T} is lower triangular.

A matrix $A=\left[c_{i j}\right] \in \mathcal{M}_{n \times n}(K)$ is symmetric if and only if $A=A^{T}$. That is, A is symmetric if and only if $c_{i j}=c_{j i}$ for all $1 \leq i, j \leq n$. If B is any matrix in $\mathcal{M}_{n \times n}(K)$ then $B+B^{T}$ is symmetric. If K is commutative and if $C \in \mathcal{M}_{k \times n}(K)$ for any positive integers k and n, then $C C^{T} \in \mathcal{M}_{k \times k}(K)$ and $C^{T} C \in \mathcal{M}_{n \times n}(K)$ are symmetric. If n is a positive integer and F is a field, then $v \wedge v$ is a symmetric matrix in $\mathcal{M}_{n \times n}(F)$ for all $v \in F^{n}$. Diagonal matrices are clearly symmetric and the set of symmetric matrices in $\mathcal{M}_{n \times n}(K)$ is closed under taking sums and scalar multiples, and so it is a subspace of the vector space $\mathcal{M}_{n \times n}(K)$ over F. In the case $K=F$, the dimension of $\mathcal{M}_{n \times n}(F)$ equals $\frac{n}{2}(n+1)$. However, the set of symmetric matrices is not closed under products. For example, the matrices $A=\left[\begin{array}{lll}2 & 5 & 1 \\ 5 & 2 & 0 \\ 1 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 0 & 0 \\ 1 & 0 & 3\end{array}\right]$ in $\mathcal{M}_{3 \times 3}(\mathbb{R})$ are symmetric, but $A B=\left[\begin{array}{rrr}13 & 4 & 5 \\ 9 & 10 & 5 \\ 2 & 2 & 4\end{array}\right]$ is not. In fact, in Chap. 13 we will show that if $n>1$ then every matrix in $\mathcal{M}_{n \times n}(\mathbb{C})$ is a product of two symmetric matrices.

We note, however, that if A and B are a commuting pair of symmetric matrices then $(A B)^{T}=(B A)^{T}=A^{T} B^{T}=A B$, so $A B$ is again symmetric.

A matrix $A=\left[c_{i j}\right] \in \mathcal{M}_{n \times n}(K)$ is skew symmetric if and only if $A=-A^{T}$. The set of all skew-symmetric matrices in $\mathcal{M}_{n \times n}(K)$ is again a subspace of $\mathcal{M}_{n \times n}(K)$. Note that if F is a field having characteristic other than 2 , then any matrix $A \in \mathcal{M}_{n \times n}(K)$ can be written as the sum of a symmetric matrix and a skewsymmetric matrix, since $A=\frac{1}{2}\left(A+A^{T}\right)+\frac{1}{2}\left(A-A^{T}\right)$. In one of the examples after Proposition 5.14, we saw that this representation is in fact unique. The Lie product of two skew-symmetric matrices is again skew-symmetric.

Example Let n be a positive integer. A matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ is a Markov matrix if and only if $a_{i j} \geq 0$ for all $1 \leq i, j \leq n$ and $\sum_{j=1}^{n} a_{h j}=1$ for each $1 \leq$ $h \leq n$; it is a stochastic matrix if and only if both A and A^{T} are Markov matrices. It
is easy to show that the product of two Markov matrices is again a Markov matrix and the product of two stochastic matrices in $\mathcal{M}_{n \times n}(\mathbb{R})$ is again a stochastic matrix.

Markov matrices arise naturally in probability theory. In particular, if we have a system which, at each tick of a (discrete) clock, is in one of the distinct states s_{1}, \ldots, s_{n} and if, for each $1 \leq i, j \leq n$, we denote by $p_{i j}$ the probability that if the situation is in state i at a given time t then it will be in state j at time $t+1$, the matrix [$p_{i j}$] is a Markov matrix.

As we have already pointed out, a matrix $O \neq A \in \mathcal{M}_{n \times n}(K)$ is not necessarily a unit. The units of $\mathcal{M}_{n \times n}(K)$ are known as nonsingular matrices; the other matrices are singular matrices. By what we have already noted, the product of nonsingular matrices is again nonsingular and if A is nonsingular then surely so is A^{-1}. A matrix A satisfying $A^{2}=I$ is certainly nonsingular. Such matrices are called involutory matrices.

With kind permission of the Harvard University Archives, HUP.
These terms were first used by American mathematician Maxime
Bôcher in 1907. He was also the first to popularize the terms "linearly dependent" and "linearly independent".

Example If $a, b \in \mathbb{R}$ with $b \neq 0$ then $\left[\begin{array}{cc}a & b \\ b^{-1}(1-a) & -a\end{array}\right]$ is involutory.
Example We have already noted that if n is a positive integer then a diagonal matrix in $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{C})$ is nonsingular when all of the diagonal entries $a_{i i}$ are nonzero. It therefore seems reasonable to conjecture that a matrix will be nonsingular if the diagonal entries are all "much greater" than the other entries. Indeed, this is true in the following sense: A sufficient condition for a ma$\operatorname{trix} A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{C})$ to be nonsingular is that for each $1 \leq i \leq n$ we have $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$. This result is known as the Diagonal Dominance Theorem. A proof of this theorem will be given in Chap. 15.

Let V be a vector space over F of dimension n and let B be a basis of V. Then there exists an endomorphism α of V such that $A=\Phi_{B B}(\alpha)$. If A is nonsingular then there also exists an endomorphism β of V satisfying $A^{-1}=\Phi_{B B}(\beta)$. This means that $I=A A^{-1}=\Phi_{B B}(\alpha) \Phi_{B B}(\beta)=\Phi_{B B}(\alpha \beta)$ and so $\alpha \beta=\sigma_{1}$, and similarly $\beta \alpha=\sigma_{1}$. Therefore, $\alpha \in \operatorname{Aut}(V)$ and $\beta=\alpha^{-1}$.

Example Let F be a field and let n be a positive integer. If $c \in F$ and $v, w \in F^{n}$, then the matrix $A=I+c(v \wedge w)$ is nonsingular if and only if the scalar $1+c(v \odot$ $w)$ is nonzero. Indeed, direct computation shows that if $1+c(v \odot w) \neq 0$, then $A^{-1}=I+d(v \wedge w)$, where $d=-c[1+c(v \odot w)]^{-1}$ and if $1+c(v \odot w)=0$ then $A v=v+c(v \odot w) v$ is the 0 -vector, and so A must be singular.

Example The multiplicative inverse of a "nice" nonsingular matrix may not be "nice". Thus, if $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ is a nonsingular matrix all of the entries of which are nonnegative, it does not follow that all of the entries of A^{-1} are nonnegative. For example, if we choose $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$ then direct computation shows us that $A^{-1}=\left[\begin{array}{rrc}3 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$. If $A=\left[a_{i j}\right]$ is the $n \times n$ tridiagonal matrix with $a_{i i}=2$ for all $1 \leq i \leq n$ and $a_{i j}=-1$ whenever $|i-j|=1$, then not only is A^{-1} not tridiagonal, but in fact no entries in A^{-1} equal 0 , for any $n>1$.

Example If a matrix $A \in \mathcal{M}_{n \times n}(F)$ can be written in block form [$A_{i j}$], where $A_{i i}$ is a nonsingular square matrix and $A_{i j}=O$ for $i \neq j$, then A is nonsingular, and $A^{-1}=\left[B_{i j}\right]$, where $B_{i i}=A_{i i}^{-1}$ for each i and $B_{i j}=O$ for each $i \neq j$. In particular, if each $A_{i i}$ is involutory, then so is A.

Example Let n be a prime positive integer. The complex number $c_{n}=\cos \left(\frac{2 \pi}{n}\right)+$ $i \sin \left(\frac{2 \pi}{n}\right)$ is called a primitive root of unity of degree n, since it easy to check that $c_{n}^{n}=1$ but $c_{n}^{h} \neq 1$ for all $0<h<n$. Therefore, $c_{n}^{-1}=c_{n}^{n-1}$ for all n. For each $z \in \mathbb{C}$, let $F(z) \in \mathcal{M}_{n \times n}(\mathbb{C})$ be the matrix $\left[a_{i j}\right]$ defined by $a_{i j}=z^{(i-1)(j-1)}$ for all $1 \leq i, j \leq n$. It is straightforward to show that the matrix $F\left(c_{n}\right)$ is nonsingular and, indeed, $F\left(c_{n}\right)^{-1}=\frac{1}{n} F\left(c_{n}^{-1}\right)$. The endomorphism φ_{n} of \mathbb{C}^{n} which is represented with respect to the canonical basis by the matrix $F\left(c_{n}\right)$ is called the discrete Fourier transform of \mathbb{C}^{n}. This endomorphism is of great importance in applied mathematics. An algorithm, known as the fast Fourier transform (FFT), introduced by J.W. Cooley and John Tukey in 1965, allows one to calculate $\varphi_{n}(v)$ in an order of $n \log (n)$ arithmetic operations, rather than n^{2}, as one would anticipate. This facilitates the use of Fourier transforms in applications. A similar construction is also possible over finite fields, and especially over fields of the form $\operatorname{GF}(p)$. We will look at this example again in Chap. 15.

A closely-related endomorphism, the discrete cosine transform, is used in defining the JPEG algorithm for image compression.

> With kind permission of the Smithsonian Institution.
> Joseph Fourier was a close friend of Napoleon and served for many years as permanent secretary of the Parisian Academy of Sciences. He worked primarily in applied mathematics, and developed many important tools in this area. John Tukey was a twentieth-century American statistician who developed many advanced mathematical tools in statistics.

Let (K, \bullet) be an algebra over a field F. A matrix representation of K by matrices over F is a homomorphism of F-algebras from K to $\mathcal{M}_{n \times x}(F)$ for some positive integer n. Matrix representations are a very important tool in studying the structure of algebras over fields. More generally, a representation of K over F is a homomorphism of F-algebras from K to $\operatorname{End}(V)$ for some vector space V, not necessarily finitely generated, over F.

Example Recall that \mathbb{C} is an algebra of dimension 2 over \mathbb{R}. The function $\gamma: \mathbb{C} \rightarrow$ $\mathcal{M}_{2 \times 2}(\mathbb{R})$ defined by $\gamma: a+b i \mapsto\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$ is a matrix representation of \mathbb{C} by matrices over \mathbb{R}. In fact, this representation is clearly monic and its image is the subalgebra T of $\mathcal{M}_{2 \times 2}(\mathbb{R})$ consisting of all matrices of the form $\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$, so γ is an \mathbb{R}-algebra isomorphism from \mathbb{C} to T.

Let (K, \bullet) be an associative unital algebra over a field F having multiplicative identity e, and let n be a positive integer. Let E be the multiplicative identity of $\mathcal{M}_{n \times n}(K)$ A matrix $A=\left[c_{i j}\right] \in \mathcal{M}_{n \times n}(K)$ is an elementary matrix if and only if it is of one of the following forms:
(1) $E_{h k}$, the matrix formed from E by interchanging the h th and k th columns, where $h \neq k$;
(2) $E_{h ; c}$, the matrix formed from E by multiplying the h th column by $0_{K} \neq c \in K$;
(3) $E_{h k ; c}$, the matrix formed from E by adding c times the k th column to the h th column, where $h \neq k$, where $c \in K$.
It is easy to verify that matrices of the form $E_{h k}$ and $E_{h k ; c}$ are always nonsingular, with $E_{h k}^{-1}=E_{h k}$ and $E_{k h ; c}^{-1}=E_{h k ;-c}$. If c is a unit in K, then matrices of the form $E_{h ; c}$ are nonsingular, with $E_{h ; c}^{-1}=E_{h, c^{-1}}$. Thus, if K is a field (and in particular, if $K=F$), every elementary matrix of the form $E_{h ; c}$ is nonsingular. We note that the transpose of an elementary matrix is again an elementary matrix. Indeed, $E_{h k}^{T}=E_{h k}$ and $E_{h ; c}^{T}=E_{h ; c}$ for all $1 \leq h, k \leq n$ and $0_{K} \neq c \in K$, while $E_{h k ; c}^{T}=E_{k h ; c}$ for all $1 \leq h \neq k \leq n$ and all $c \in K$.

As the name clearly implies, there is a connection between the elementary automorphisms which we defined previously and the elementary matrices. Indeed, if $K=F$ and if B is the canonical basis of F^{n}, then $E_{h k}=\Phi\left(\varepsilon_{h k}\right), E_{h ; c}=\Phi\left(\varepsilon_{h ; c}\right)$, and $E_{h k ; c}=\Phi\left(\varepsilon_{h k ; c}\right)$.

Let us see what happens when one multiplies an arbitrary matrix in $\mathcal{M}_{n \times n}(K)$ on the left by an elementary matrix:
(1) If $B \in \mathcal{M}_{n \times n}(K)$ then $E_{h k} B$ is the matrix obtained from B by interchanging the h th and k th rows of B. Thus, for example, in $\mathcal{M}_{4 \times 4}(\mathbb{Q})$ we look at the effect
of $E_{24}:\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{llll}5 & 6 & 4 & 1 \\ 3 & 2 & 2 & 2 \\ 0 & 4 & 2 & 7 \\ 3 & 3 & 2 & 2\end{array}\right]=\left[\begin{array}{llll}5 & 6 & 4 & 1 \\ 3 & 3 & 2 & 2 \\ 0 & 4 & 2 & 7 \\ 3 & 2 & 2 & 2\end{array}\right]$.
(2) If $B \in \mathcal{M}_{n \times n}(K)$ then $E_{h ; c} B$ is the matrix obtained from B by multiplying the h th row of B by c. Thus, for example, in $\mathcal{M}_{4 \times 4}(\mathbb{Q})$ we look at the effect of $E_{2 ; 5}:\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{llll}5 & 6 & 4 & 1 \\ 3 & 2 & 2 & 2 \\ 0 & 4 & 2 & 7 \\ 3 & 3 & 2 & 2\end{array}\right]=\left[\begin{array}{rrrr}5 & 6 & 4 & 1 \\ 15 & 10 & 10 & 10 \\ 0 & 4 & 2 & 7 \\ 3 & 3 & 2 & 2\end{array}\right]$.
(3) If $B \in \mathcal{M}_{n \times n}(K)$ then $E_{h k ; c} B$ is the matrix obtained from B by adding c times the h th row to the k th row. Thus, for example, in $\mathcal{M}_{4 \times 4}(\mathbb{Q})$ we look at the effect of $E_{13 ; 2}:\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{llll}5 & 6 & 4 & 1 \\ 3 & 2 & 2 & 2 \\ 0 & 4 & 2 & 7 \\ 3 & 3 & 2 & 2\end{array}\right]=\left[\begin{array}{rrrr}5 & 6 & 4 & 1 \\ 3 & 2 & 2 & 2 \\ 10 & 16 & 10 & 9 \\ 3 & 3 & 2 & 2\end{array}\right]$.

Proposition 9.1 If F is a field, if n is a positive integer, and if $A, B, C, D \in$ $M_{n \times n}(F)$ then:
(1) When A and B are nonsingular, so is $A B$, with $(A B)^{-1}=B^{-1} A^{-1}$;
(2) When $A B$ is nonsingular, both A and B are nonsingular;
(3) When A and B are nonsingular, $A^{-1}+B^{-1}=A^{-1}(B+A) B^{-1}$;
(4) When $I+A B$ is nonsingular, so is $I+B A$, and $(I+B A)^{-1}=I-$ $B(I+A B)^{-1} A$;
(5) (Guttman's Theorem) If A is nonsingular and if $v, w \in F^{n}$ satisfy the condition that $1+w \odot A^{-1} v \neq 0$, then the matrix $A+v \wedge w \in$ $M_{n \times n}(F)$ is nonsingular and satisfies $(A+v \wedge w)^{-1}=A^{-1}-(1+w \odot$ $\left.A^{-1} v\right)^{-1}\left(A^{-1}[v \wedge w] A^{-1}\right)$.
(6) (Sherman-Morrison-Woodbury Theorem) When the matrices C, D, $D^{-1}+A C^{-1} B$, and $C+B D A$ are nonsingular, then $(C+B D A)^{-1}=$ $C^{-1}-C^{-1} B\left(D^{-1}+A C^{-1} B\right)^{-1} A C^{-1}$.

Proof (1) This is a special case of a general remark about units in associative F-algebras, which we have already noted.
(2) Let V a vector space of dimension n over F, and let D be a basis of V. Then there exist endomorphisms α and β of V satisfying $A=\Phi_{D D}(\alpha)$ and $B=\Phi_{D D}(\beta)$, and so $A B=\Phi_{D D}(\alpha \beta)$. Since $A B$ is nonsingular, we know that $\alpha \beta \in \operatorname{Aut}(V)$. Then there exists an automorphism γ of V satisfying $\gamma(\alpha \beta)=\sigma_{1}=(\alpha \beta) \gamma$. Then $(\gamma \alpha) \beta=\sigma_{1}=\alpha(\beta \gamma)$ and so, by Proposition 7.4, we know that both α and β are automorphisms of V, and hence both A and B are nonsingular.
(3) This is an immediate consequence of the fact that $A\left(A^{-1}+B^{-1}\right) B=B+A$.
(4) We note that

$$
\begin{aligned}
(I+B A)\left[I-B(I+A B)^{-1} A\right] & =I+B A-(B+B A B)(I+A B)^{-1} A \\
& =I+B A-B(I+A B)(I+A B)^{-1} A \\
& =I+B A-B A=I .
\end{aligned}
$$

(5) A simple calculation shows us that if $x, y \in F^{n}$ satisfy the condition that $c=1+y \odot x$ is nonzero, then

$$
\begin{aligned}
\left(I-c^{-1}[x \wedge y]\right)(I+[x \wedge y]) & =I+x \wedge y-c^{-1}[x \wedge y]-c^{-1}[x \wedge y]^{2} \\
& =I+x \wedge y-c^{-1} c[x \wedge y]=I,
\end{aligned}
$$

and so $(I+[x \wedge y])^{-1}=I-c^{-1}[x \wedge y]$. Therefore, if we set $d=1+w \odot A^{-1} v$, then

$$
\begin{aligned}
(A+v \wedge w)^{-1} & =\left[A\left(I+A^{-1}[v \wedge w]\right)\right]^{-1}=\left(I+A^{-1}[v \wedge w]\right)^{-1} A^{-1} \\
& =\left[I-d^{-1}\left(A^{-1}[v \wedge w]\right)\right] A^{-1} \\
& =A^{-1}-d^{-1}\left(A^{-1}[v \wedge w] A^{-1}\right),
\end{aligned}
$$

as required.
(6) First, note that $I+C^{-1} B D A=C^{-1}(C+B D A)$ and so, by (1), this matrix is nonsingular as well. By (4), $\left(I+C^{-1} B D A\right)^{-1}=I-C^{-1} B\left(I+\left(D A C^{-1} B\right) D A\right.$, and so

$$
\begin{aligned}
(C+B D A)^{-1} & =\left[C\left(I+C^{-1} B D A\right)\right]^{-1} \\
& =\left[I-C^{-1} B\left(I+D A C^{-1} B\right)^{-1} D A\right] C^{-1} \\
& =C^{-1}-C^{-1} B\left[D^{-1}\left(I+D A C^{-1} B\right)\right]^{-1} A C^{-1} \\
& =C^{-1}-C^{-1} B\left(D^{-1}+A C^{-1} B\right)^{-1} A C^{-1},
\end{aligned}
$$

as required.

With kind permission of Nurit Guttman.
Louis Guttman was a twentieth-century American/Israeli statistician and sociologist who developed many advanced mathematical tools for use in statistics. The Sherman-Morrison-Woodbury Theorem was in fact first published by British aeronautics professor W.J. Duncan, but is named after the twentieth-century American statisticians Jack Sherman, Winifred J. Morrison, and Max Woodbury who used it extensively.

Guttman's Theorem is important in the following context: assume we have calculated A^{-1} for some square matrix A and now we have to calculate B^{-1}, where B differs from A in only one entry. With the help of this result, we can make use of our knowledge of A^{-1} to calculate B^{-1} with relative ease and speed. The Sherman-Morrison-Woodbury Theorem has similar uses.

In particular, we note from Proposition 9.1 that if $A, B \in \mathcal{M}_{n \times n}(F)$ then $A B$ is nonsingular if and only if $B A$ is nonsingular. We should also note that if $A, B \in$ $\mathcal{M}_{n \times n}(F)$ then $B^{T} A^{T}=(A B)^{T}$, and so if A is a nonsingular matrix and $B=A^{-1}$ then $A B=I$, and so $B^{T} A^{T}=I^{T}=I$. Thus A^{T} is also nonsingular. Moreover, this also shows that $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$ for every nonsingular matrix $A \in \mathcal{M}_{n \times n}(F)$.

Proposition 9.2 Let F be a field, let n be a positive integer, and let $A, B \in$ $M_{n \times n}(F)$, where A is nonsingular. Then there exist unique matrices C and D in $M_{n \times n}(F)$ satisfying $C A=B=A D$.

Proof Define $C=B A^{-1}$ and $D=A^{-1} B$. Then surely $C A=B=A D$. If C^{\prime} and D^{\prime} are matrices satisfying $C^{\prime} A=B=A D^{\prime}$ then $C^{\prime}=\left(C^{\prime} A\right) A^{-1}=B A^{-1}=C$ and $D^{\prime}=A^{-1}\left(A D^{\prime}\right)=A^{-1} B=D$, and so we have uniqueness.

Example The matrices C and D in Proposition 9.2 need not be the same. For example, if $A, B \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ are defined by $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$ then $A^{-1}=\left[\begin{array}{rr}1 & -3 \\ 0 & 1\end{array}\right], C=\left[\begin{array}{ll}1 & -3 \\ 3 & -8\end{array}\right]$, and $D=\left[\begin{array}{rr}-8 & -3 \\ 3 & 1\end{array}\right]$.

Proposition 9.3 Let F be a field, let n be a positive integer, and let $A=\left[a_{i j}\right] \in M_{n \times n}(F)$. Then the following conditions are equivalent:
(1) A is nonsingular;
(2) The columns of A are distinct and the set of these columns is a linearlyindependent subset of F^{n};
(3) The rows of A are distinct and the set of these rows is a linearlyindependent subset of $M_{1 \times n}(F)$.

Proof (1) \Leftrightarrow (2): Denote the columns of A by y_{1}, \ldots, y_{n}. Let $V=F^{n}$ and let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be the canonical basis of V. If two columns of A are equal or if the set of columns is linearly dependent, there exist scalars c_{1}, \ldots, c_{n}, not all equal to 0 , such that $A\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]=\sum_{i=1}^{n} c_{i} y_{i}=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$. But if (1) holds, then
$\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]=A^{-1}\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$, which is a contradiction. Therefore, (2) holds. Con-
versely, assume (2) holds. Then the endomorphism α of V given by $v \mapsto A v$ is a monic and so an automorphism of V. But $A=\Phi_{B B}(\alpha)$, and so, as we have seen, A is nonsingular.
(1) $\Leftrightarrow(3)$: This follows directly from the equivalence of (1) and (2), given the fact that a matrix A is nonsingular if and only if A^{T} is nonsingular.

Example Let F be a field and let $n>1$ be an integer. If $v, w \in F^{n}$, then the columns of $v \wedge w \in \mathcal{M}_{n \times n}(F)$ are linearly dependent and so $v \wedge w$ is always singular.

Example If F is a field and if $U=\left[u_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ is an upper-triangular matrix satisfying the condition that $u_{i i} \neq 0$ for all $1 \leq i \leq n$ then, by Proposition 9.3, it is clear that U is nonsingular. We claim that, moreover, U^{-1} is again upper triangular. Let us prove this contention by induction on n. It is clearly true for $n=1$. Assume therefore that $n>1$ and that we have already shown that the inverse of any upper-triangular matrix in $\mathcal{M}_{(n-1) \times(n-1)}(F)$ is upper-triangular. Write
$U=\left[\begin{array}{cc}A & y \\ z & u_{n n}\end{array}\right]$, where $A \in \mathcal{M}_{(n-1) \times(n-1)}(F), y \in F^{n-1}$, and $z=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]^{T}$. Assume that $U^{-1}=\left[\begin{array}{cc}B & x \\ w^{T} & b\end{array}\right]$, where $B \in \mathcal{M}_{(n-1) \times(n-1)}(F)$ and $w, x \in F^{n-1}$. Then $A B+y \wedge w=I, A x+b y=z^{T}, u_{n n} w^{T}=z$, and $u_{n n} b=1$, so we must have $b=u_{n n}^{-1} \neq 0$ and $w^{T}=z$. Therefore, $y \wedge w=O$ and so $B=A^{-1}$. By hypothesis, B is upper triangular and so U^{-1} is again upper triangular. A similar argument holds for lower-triangular matrices.

Proposition 9.4 Let F be a field and let n be a positive integer. A matrix in $M_{n \times n}(F)$ is nonsingular if and only if it is a product of elementary matrices.

Proof Since each of the elementary matrices is nonsingular, we know that any product of elementary matrices is also nonsingular. Conversely, let $A=\left[a_{i j}\right]$ be a nonsingular matrix in $\mathcal{M}_{n \times n}(F)$ and let $B=\left[b_{i j}\right]$ be A^{-1}. Then B is also nonsingular and so, by Proposition 9.3, the columns of B are distinct and the set of columns is linearly independent in F^{n}. In particular, there exists a nonzero entry $b_{h 1}$ in the first column of B. Multiply B on the left by $E_{h 1}$ to get a new matrix in which the $(1,1)-$ entry nonzero. Now multiply it on the left by $E_{1 ; c}$, where $c=b_{h 1}^{-1}$, in order to get a matrix of the form $\left[\begin{array}{cccc}1 & * & \ldots & * \\ * & * & \ldots & * \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \ldots & *\end{array}\right]$. Now let $1<t \leq n$, and let $d(t)$ be the ad-
ditive inverse of the $(t, 1)$-entry of the matrix. Multiplying the matrix on the left by $E_{t 1 ; d(t)}$, we will get a matrix with 0 in the $(t, 1)$-entry and so, after this for each such t, we see that a matrix $B^{\prime}=C_{1} B$, where C_{1} is a product of elementary matrices, and which is of the form $\left[\begin{array}{cccc}1 & * & \ldots & * \\ 0 & * & \ldots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \ldots & *\end{array}\right]$. This matrix is still nonsingular, since it is a product of two nonsingular matrices, and so its columns are distinct and form a linearly-independent subset of F^{n}. Therefore, there exists a nonzero entry $b_{h 2}^{\prime}$ in the second column, with $h>1$. Repeating the above procedure, we can find a matrix C_{2} which is a product of elementary matrices and such that $C_{2} C_{1} B$ is of the form
$\left[\begin{array}{ccccc}1 & 0 & * & \ldots & * \\ 0 & 1 & * & \ldots & * \\ 0 & 0 & * & \ldots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & * & \ldots & *\end{array}\right]$. Continuing in this manner, we obtain matrices C_{1}, \ldots, C_{n},
each of them a product of elementary matrices, such that $C_{n} \cdots C_{1} B=I$. Therefore, $C_{n} \cdots C_{1}=B^{-1}=A$, as we wanted to show.

Example Let F be a field and let n be a positive integer. Every permutation π of the set $\{1, \ldots, n\}$ defines a matrix $A_{\pi}=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ by setting $a_{i j}=1$ if $j=\pi(i)$ and $a_{i j}=0$ otherwise, called the permutation matrix defined by π. This matrix is clearly a result of multiplying I by a number of elementary matrices of the form $E_{h k}$, and so is nonsingular.

The order of multiplication given in Proposition 9.4 is not unique. Indeed, we claim that it is possible to write any nonsingular matrix $A \in \mathcal{M}_{n \times n}(F)$ in the form $P C$, where P is a permutation matrix and C is a product of elementary matrices of the form $E_{i ; c}$ and $E_{i j ; c}$. To see how this is done, we note that if $1 \leq i, h, k \leq m$ and if $c \in F$ then $E_{i ; c} E_{h k}=E_{h k} E_{i ; c}$ if $i \notin\{h, k\}$ and $E_{h ; c} E_{h k}=E_{h k} E_{k ; c}$ and a similar result holds for elementary matrices of the form $E_{i j ; c}$ and $E_{h k}$. Thus, one by one, the elementary matrices the form $E_{h k}$ can be "moved to the left" until we obtain the desired decomposition.

Proposition 9.4 allows us to construct an algorithm for computing A^{-1} when A is a nonsingular matrix in $\mathcal{M}_{n \times n}(F)$. First of all, we construct the matrix $\left[\begin{array}{ll}I & A\end{array}\right] \in \mathcal{M}_{n \times 2 n}(F)$ and on this matrix we perform a series of elementary operations, namely operations which are the result of multiplying it on the left by elementary matrices, which bring the right-hand block into the form I. Then the left-hand block is A^{-1}. To calculate A^{-1} by this method, we use $n^{3}-2 n^{2}+n$ additions and n^{3} multiplications.

Example Consider the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 0 \\ 0 & 1 & 2\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{Q})$. Therefore, we begin with the matrix $\left[\begin{array}{llllll}1 & 0 & 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 2 & 3 & 0 \\ 0 & 0 & 1 & 0 & 1 & 2\end{array}\right] \in \mathcal{M}_{3 \times 6}(\mathbb{Q})$. Then we
(1) Get $\left[\begin{array}{rrrrrr}1 & 0 & 0 & 1 & 2 & 3 \\ -2 & 1 & 0 & 0 & -1 & -6 \\ 0 & 0 & 1 & 0 & 1 & 2\end{array}\right]$ after multiplying the first row by -2 and adding it to the second row;
(2) Get $\left[\begin{array}{rrrrrr}1 & 0 & 0 & 1 & 2 & 3 \\ -2 & 1 & 0 & 0 & -1 & -6 \\ -2 & 1 & 1 & 0 & 0 & -4\end{array}\right]$ after adding the second row to the third row;
(3) Get $\left[\begin{array}{cccccc}1 & 0 & 0 & 1 & 2 & 3 \\ 2 & -1 & 0 & 0 & 1 & 6 \\ 0.5 & -0.25 & -0.25 & 0 & 0 & 1\end{array}\right]$ after multiplying the second row by -1 and then multiplying the third row by -0.25 ;
(4) Get $\left[\begin{array}{cccccc}1 & 0 & 0 & 1 & 2 & 3 \\ -1 & 0.5 & 1.5 & 0 & 1 & 0 \\ 0.5 & -0.25 & -0.25 & 0 & 0 & 1\end{array}\right]$ after multiply the third row by -6 and adding it to the second row;
(5) Get $\left[\begin{array}{cccccc}-0.5 & 0.75 & 0.75 & 1 & 2 & 0 \\ -1 & 0.5 & 1.5 & 0 & 1 & 0 \\ 0.5 & -0.25 & -0.25 & 0 & 0 & 1\end{array}\right]$ after multiplying the third row by -3 and adding it to the first row;
(6) Finally, get $\left[\begin{array}{cccccc}1.5 & -0.25 & -2.25 & 1 & 0 & 0 \\ -1 & 0.5 & 1.5 & 0 & 1 & 0 \\ 0.5 & -0.25 & -0.25 & 0 & 0 & 1\end{array}\right]$ after multiplying the second row by -2 and adding it to the first row.
Therefore, we see that $A^{-1}=\frac{1}{4}\left[\begin{array}{rrr}6 & -1 & -9 \\ -4 & 2 & 6 \\ 2 & -1 & -1\end{array}\right]$.
Example When one uses computer to compute matrix inverses, one must always be aware of hardware limitations. For example, one can show that Nievergelt's matrix $A=\left[\begin{array}{ll}888445 & 887112 \\ 887112 & 885871\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{Q})$ is nonsingular, while the matrix $B=A-\left[\begin{array}{ll}c & c \\ c & c\end{array}\right]$, where $c=\frac{1}{3548450}$ (which is approximately 2.818×10^{-7}) is not. Nonetheless, a computer or calculator capable of only 12-digit accuracy cannot differentiate between the two.

Example For each positive integer n, let $H_{n} \in \mathcal{M}_{n \times n}(\mathbb{Q})$ be the matrix $\left[a_{i j}\right]$ in which $a_{i j}=\frac{1}{i+j-1}$. This matrix is called the $n \times n$ Hilbert matrix. Hilbert matrices are all nonsingular but, while their entries all lie between 0 and 1 , the entries in their
inverses are very large. For example, H_{6}^{-1} equals

$$
\left[\begin{array}{rrrrrr}
36 & -630 & 3360 & -7560 & 7560 & -2772 \\
-630 & 14700 & -88200 & 211680 & -220500 & 83160 \\
3360 & -88200 & 564480 & -1411200 & 1512000 & -582120 \\
-7560 & 211680 & -1411200 & 3628800 & -3969000 & 1552320 \\
7560 & -220500 & 1512000 & -3969000 & 4410000 & -1746360 \\
-2772 & 83160 & -582120 & 1552320 & -1746360 & 698544
\end{array}\right] .
$$

Therefore, these matrices are often used as benchmarks to judge the efficiency and accuracy of computer programs to calculate matrix inverses. In particular if the computer we are using has only 7 -digit accuracy, it is reasonable to assume that we will have a 100% error in computing H_{6}^{-1}.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach.
German David Hilbert was one of the foremost mathematicians in the world at the beginning of the twentieth century. He and his students were among the first to study infinite-dimensional vector spaces.

It is sometimes possible to use a representation of a nonsingular matrix A in block form in order to calculate A^{-1}. Indeed, suppose that $A \in \mathcal{M}_{n \times n}(F)$ is a matrix which can be written in block form $\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$, where $A_{11} \in \mathcal{M}_{k \times k}(F)$. If A_{11} and $C=A_{22}-A_{21} A_{11}^{-1} A_{12}$ are both nonsingular, then A is also nonsingular, with

$$
A^{-1}=\left[\begin{array}{cc}
I & -A_{11}^{-1} A_{12} \\
O & I
\end{array}\right]\left[\begin{array}{cc}
A_{11}^{-1} & O \\
O & C^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & O \\
-A_{21} A_{11}^{-1} & O
\end{array}\right] .
$$

Similarly, if A_{22} and $D=A_{11}-A_{12} A_{22}^{-1} A_{21}$ are both nonsingular, then A is also nonsingular, with

$$
A^{-1}=\left[\begin{array}{cc}
I & O \\
-A_{22}^{-1} A_{21} & O
\end{array}\right]\left[\begin{array}{cc}
D^{-1} & O \\
O & A_{22}^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & A_{12} A_{22}^{-1} \\
O & I
\end{array}\right] .
$$

The matrices C and D are, respectively, the Schur complements of A_{11} and A_{22} in A. These conditions, however, are sufficient but not necessary for A to be nonsingular, as the following example shows.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach.
Issai Schur was a twentieth-century German mathematician who is known primarily for his work in group theory.

Example The matrix $\left.A=\left[\begin{array}{lll}{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]} & {\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]} \\ {\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]}\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right] \mathcal{M}_{4 \times 4}(\mathbb{Q})$ is nonsingular, de-
spite the fact that all of the given 2×2 blocks are singular.

It is important to make clear, however, that it is hardly ever necessary, in applications, to actually compute the inverse of a nonsingular matrix. One is more likely to have to compute a product of the form $A^{-1} B$, which can usually be done without explicitly computing A^{-1} first.

Let F be a field and let k and n be positive integers. Two matrices $B, C \in \mathcal{M}_{k \times n}(F)$ are equivalent if and only if there exist nonsingular matrices $P \in \mathcal{M}_{k \times k}(F)$ and $Q \in \mathcal{M}_{n \times n}(F)$ such that $P B Q=C$. This is, indeed, an equivalence relation on $\mathcal{M}_{k \times n}(F)$ since:
(1) $I B I=B$ for each such matrix B, showing that B is equivalent to itself;
(2) If $P B Q=C$ then $P^{-1} C Q^{-1}=B$;
(3) If $P B Q=C$ and $P^{\prime} C Q^{\prime}=D^{\prime}$ then $\left(P^{\prime} P\right) B\left(Q Q^{\prime}\right)=D$, where we note that both $P^{\prime} P$ and $Q Q^{\prime}$ are again nonsingular.
Similarly, we say that B and C are row equivalent if and only if there exists a nonsingular matrix $P \in \mathcal{M}_{k \times k}(F)$ satisfying $P B=C$, and we say that B and C are column equivalent if and only if there exists a nonsingular matrix $Q \in \mathcal{M}_{n \times n}(F)$ satisfying $B Q=C$. Both of these relations are also equivalence relations on $\mathcal{M}_{k \times n}(F)$, and it is clear that if B and C are row equivalent then they are equivalent (take $Q=I$) and if they are column equivalent then they are equivalent (take $P=I$).

Equivalence of matrices is a very strong concept. Indeed, it is easy to show that any matrix $B \in \mathcal{M}_{k \times n}(F)$ is equivalent to one which is in block form $\left[\begin{array}{ll}I & O \\ O & O\end{array}\right]$. Therefore, it is more useful to consider row equivalence of matrices as our basic tool.

Now let V be a vector space of dimension n over a field F and choose bases $B=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ and $D=\left\{w_{1}, \ldots, w_{n}\right\}$ of V. For each $1 \leq j \leq n$ there exist elements $q_{1 j}, \ldots, q_{n j}$ of F satisfying $w_{j}=\sum_{i=1}^{n} q_{i j} v_{i}$. By Proposition 9.3, we know that the matrix $Q=\left[q_{i j}\right]$ is nonsingular. If $v=\sum_{i=1}^{n} a_{i} v_{i}=\sum_{j=1}^{n} b_{j} w_{j}$ is an element of V, then we see that $v=\sum_{j=1}^{n} b_{j} w_{j}=\sum_{j=1}^{n} b_{j}\left(\sum_{i=1}^{n} q_{i j} v_{i}\right)=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} q_{i j} b_{j}\right) v_{i}$
and so we must have $a_{i}=\sum_{j=1}^{n} q_{i j} b_{j}$ for all $1 \leq i \leq n$. Thus we see that

$$
\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]=Q\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right] .
$$

The matrix Q is called the change-of-basis matrix from D to B.
Example Let F be a field, let n be a positive integer, and let V be the subspace of the vector space $F[X]$ made up of all polynomials of degree at most $n-1$. Then $\operatorname{dim}(V)=n$, and it has a canonical basis $B=\left\{1, X, \ldots, X^{n-1}\right\}$. Let c_{1}, \ldots, c_{n} be distinct scalars, and for each $1 \leq i \leq n$, consider the polynomial

$$
p_{i}(X)=\prod_{j \neq i} \frac{1}{c_{i}-c_{j}}\left(X-c_{j}\right) \in V
$$

This polynomial is called the i th Lagrange interpolation polynomial, and we will return to these polynomials below in another context. It is clear that

$$
p_{i}\left(c_{j}\right)= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { otherwise } .\end{cases}
$$

Thus, for example, if $n=4$ and if we choose $c_{1}=1, c_{2}=3, c_{3}=5$, and $c_{4}=7$, we obtain

$$
\begin{aligned}
& p_{1}(X)=-\frac{1}{48} X^{3}+\frac{5}{16} X^{2}-\frac{71}{48} X+\frac{35}{16} \\
& p_{2}(X)=\frac{1}{16} X^{3}-\frac{13}{16} X^{2}+\frac{47}{16} X-\frac{35}{16} \\
& p_{3}(X)=-\frac{1}{16} X^{3}+\frac{11}{16} X^{2}-\frac{31}{16} X+\frac{21}{16}, \\
& p_{4}(X)=\frac{1}{48} X^{3}-\frac{3}{16} X^{2}+\frac{23}{48} X-\frac{5}{16}
\end{aligned}
$$

Returning to the general case, we see that the set $D=\left\{p_{1}(X), \ldots, p_{n}(X)\right\}$ of Lagrange interpolation polynomials is linearly independent since, if we have $\sum_{i=1}^{n} a_{i} p_{i}(X)=0$, then for each $1 \leq h \leq n$ we have $a_{h}=\sum_{i=1}^{n} a_{i} p_{i}\left(c_{h}\right)=0$. Therefore, D is also a basis of V. If $q(X)$ is an arbitrary polynomial in V then there exist scalars a_{1}, \ldots, a_{n} satisfying $q(X)=\sum_{i=1}^{n} a_{i} p_{i}(X)$. Again, this implies that $a_{i}=q\left(c_{i}\right)$ for all i. In particular, if $q(X)=X^{k}$ we see that $X^{k}=\sum_{i=1}^{n} c_{i}^{k} p_{i}(X)$.

Therefore, the change of basis matrix from D to B is

$$
\left[\begin{array}{cccc}
1 & c_{1} & \ldots & c_{1}^{n} \\
1 & c_{2} & \ldots & c_{2}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
1 & c_{n} & \ldots & c_{n}^{n}
\end{array}\right] \text {. A matrix }
$$

of this form is called a Vandermonde matrix, and such matrices are always nonsingular.

With kind permission of ETH-Bibliothek Zurich, Image
Archive (Lagrange).
Joseph-Louis Lagrange was one of the applied mathematicians who surrounded Napoleon, and his book on analytical mechanics is considered a mathematical classic. Alexandre-Théophile
Vandermonde was an eighteenth century French chemist and mathematician who studied determinants of matrices. Vandermonde matrices do not appear in his work, and it is not clear why they are named after him.

Lagrange interpolation allows us to represent a polynomial $p(X)$ of degree less than n in a computer not by its list of coefficients but rather by a list of its values $p\left(a_{1}\right), \ldots, p\left(a_{n}\right)$ at n preselected elements of F. Such representations can be used to obtain algorithms for rapid multiplication of polynomials, especially in the case the field F is finite (having n elements, of course). Indeed, if $p(X)$ and $q(X)$ are polynomials in $F[X]$ of positive degree satisfying $\operatorname{deg}(p)+\operatorname{deg}(q)=h<n$, then $p(X) q(X)$ is the unique polynomial $t(X)$ of degree h satisfying $t\left(a_{i}\right)=p\left(a_{i}\right) q\left(a_{i}\right)$ for all $1 \leq i \leq h+1$.

Let us now return to the matter of change of basis, and now let us assume that we have a linear transformation $\alpha: V \rightarrow Y$, where V is a vector space of dimension n over a field F and Y is a vector space of dimension k over F. We have bases $B=\left\{v_{1}, \ldots, v_{n}\right\}$ and $D=\left\{w_{1}, \ldots, w_{n}\right\}$ of V. Choose a basis $E=\left\{y_{1}, \ldots, y_{k}\right\}$ of Y. Then $\Phi_{B E}(\alpha)$ is a matrix $C=\left[c_{i j}\right]$. If $Q=\left[q_{i j}\right]$ is the change of basis matrix from D to B then for each $1 \leq j \leq n$ we have $\alpha\left(w_{j}\right)=\alpha\left(\sum_{h=1}^{n} q_{h j} v_{h}\right)=\sum_{h=1}^{n} q_{h j} \alpha\left(v_{h}\right)=\sum_{h=1}^{n} q_{h j}\left(\sum_{i=1}^{k} c_{i h} y_{i}\right)=$ $\sum_{i=1}^{k}\left(\sum_{h=1}^{n} c_{i h} q_{h j}\right) y_{i}$, and so $\Phi_{D E}(\alpha)=C Q$, showing that $\Phi_{D E}(\alpha)$ and C are column equivalent. In the same manner, if we have another basis $G=\left\{z_{1}, \ldots, z_{k}\right\}$ of Y and if $P=\left[p_{i j}\right]$ is the change of basis matrix from E to G, then $z_{j}=\sum_{i=1}^{k} p_{i j} y_{i}$ for all $1 \leq j \leq k$. If $\Phi_{B G}(\alpha)$ is the matrix $C^{\prime}=\left[c_{i j}^{\prime}\right]$, then for all $1 \leq j \leq n$ we have $\alpha\left(v_{j}\right)=\sum_{h=1}^{k} e_{h j} z_{h}=\sum_{h=1}^{k} e_{h j}\left(\sum_{i=1}^{k} p_{i h} y_{i}\right)=\sum_{i=1}^{k}\left(\sum_{h=1}^{k} p_{i h} e_{h j}\right) y_{i}$ and this equals $\sum_{i=1}^{k} c_{i j} y_{i}$, implying $C=P C^{\prime}$, and so $C^{\prime}=P^{-1} C$. Thus $\Phi_{B G}(\alpha)$ and C are row equivalent. If we put both of these results together, we see that $\Phi_{D G}(\alpha)=P^{-1} \Phi_{B E}(\alpha) Q$, and so $\Phi_{D G}(\alpha)$ and $\Phi_{B E}(\alpha)$ are equivalent.

Example Let $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by

$$
\alpha:\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \mapsto\left[\begin{array}{l}
a+b \\
b+c
\end{array}\right]
$$

Choose bases $B=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ -1 \\ 0\end{array}\right]\right\}$ and $D=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]\right\}$ of \mathbb{R}^{3} and bases $E=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ -1\end{array}\right]\right\}$ and $G=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -1\end{array}\right]\right\}$ of \mathbb{R}^{2}. Then $\Phi_{B E}(\alpha)=$ $\left[\begin{array}{rrr}1 & 1 & -1 \\ 0 & -2 & 1\end{array}\right]$ since

$$
\begin{aligned}
& \alpha\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=1\left[\begin{array}{l}
1 \\
0
\end{array}\right]+0\left[\begin{array}{r}
0 \\
-1
\end{array}\right], \\
& \alpha\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]=1\left[\begin{array}{l}
1 \\
0
\end{array}\right]-2\left[\begin{array}{r}
0 \\
-1
\end{array}\right], \\
& \alpha\left(\left[\begin{array}{r}
0 \\
-1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]=(-1)\left[\begin{array}{l}
1 \\
0
\end{array}\right]+1\left[\begin{array}{r}
0 \\
-1
\end{array}\right],
\end{aligned}
$$

and similarly, $\Phi_{D G}(\alpha)=\frac{1}{2}\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 0 & 1\end{array}\right]$ since

$$
\begin{gathered}
\alpha\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{r}
1 \\
-1
\end{array}\right], \\
\alpha\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]=1\left[\begin{array}{l}
1 \\
1
\end{array}\right]+0\left[\begin{array}{r}
1 \\
-1
\end{array}\right], \\
\alpha\left(\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] .
\end{gathered}
$$

Further, we also see that

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=1\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+0\left[\begin{array}{r}
0 \\
-1 \\
0
\end{array}\right],} \\
& {\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=1\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+1\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+1\left[\begin{array}{r}
0 \\
-1 \\
0
\end{array}\right],}
\end{aligned}
$$

and $\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]=0\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]-1\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]-2\left[\begin{array}{r}0 \\ -1 \\ 0\end{array}\right]$, so $Q=\left[\begin{array}{rrr}1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & -2\end{array}\right]$.

$$
\begin{aligned}
& \text { Moreover, }\left[\begin{array}{l}
1 \\
1
\end{array}\right]=1\left[\begin{array}{l}
1 \\
0
\end{array}\right]-1\left[\begin{array}{r}
0 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=1\left[\begin{array}{l}
1 \\
0
\end{array}\right]+1\left[\begin{array}{r}
0 \\
-1
\end{array}\right] \text { so } P= \\
& {\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right] \text { and } P^{-1}=\frac{1}{2}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right] . \text { Note that } P^{-1} \Phi_{B E}(\alpha) Q=\Phi_{D G}(\alpha) .}
\end{aligned}
$$

Example We will now see an application of linear algebra to calculus. Let V be the vector space over \mathbb{R} consisting of all infinitely-differentiable functions $f \in \mathbb{R}^{\mathbb{R}}$, and let $\delta \in \operatorname{End}(V)$ be the differentiation endomorphism.
(1) If a and b are given real numbers, not both equal to 0 , then the functions $f_{0}: x \mapsto e^{a x} \sin (b x)$ and $f_{1}: x \mapsto e^{a x} \cos (b x)$ belong to V and the subspace $W=\mathbb{R}\left\{f_{0}, f_{1}\right\}$ of V is invariant under δ. The restriction of δ to W can be represented with respect to the basis $\left\{f_{0}, f_{1}\right\}$ of W by the nonsingular matrix $A=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$. It is easy to check that $A^{-1}=\left(a^{2}+b^{2}\right)^{-1}\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$. Therefore,

$$
\begin{aligned}
& \int f_{0}(t) d t=\delta^{-1}\left(f_{0}\right)=\left(\frac{1}{a^{2}+b^{2}}\right)\left[a f_{0}-b f_{1}\right] \quad \text { and } \\
& \int f_{1}(t) d t=\delta^{-1}\left(f_{1}\right)=\left(\frac{1}{a^{2}+b^{2}}\right)\left[b f_{0}+a f_{1}\right]
\end{aligned}
$$

(2) The functions $g_{0}: x \mapsto x^{2} e^{x}, g_{1}: x \mapsto x e^{x}$, and $g_{2}: x \mapsto e^{x}$ all belong to V and the subspace $Y=\mathbb{R}\left\{g_{0}, g_{1}, g_{2}\right\}$ of V is invariant under δ. The restriction of δ to Y can be represented with respect to the basis $\left\{g_{0}, g_{1}, g_{2}\right\}$ of Y by the nonsingular matrix $B=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$. Since $B^{-1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 2 & -1 & 1\end{array}\right]$, we see that

$$
\begin{aligned}
& \int g_{0}(t) d t=\delta^{-1}\left(g_{0}\right)=g_{0}-2 g_{1}+2 g_{2}, \\
& \int g_{1}(t) d t=\delta^{-1}\left(g_{1}\right)=g_{1}-g_{2}, \quad \text { and } \\
& \int g_{2}(t) d t=\delta^{-1}\left(g_{2}\right)=g_{2} .
\end{aligned}
$$

Let us turn to problems connected with the implementation of this theory. Let F be a field and let n be a positive integer. Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ belong to $\mathcal{M}_{n \times n}(F)$ and let $C=A B$. In order to calculate each one of the n^{2} entries in C, we need n multiplications and $n-1$ additions/subtractions, and so to calculate C we need n^{3} multiplications and $n^{3}-2 n^{2}+n$ additions/subtractions. Putting this in another way, the total number of operations needed to calculate $A B$ from the definition is on the order of n^{c}, where $c=3$. If n is very large,
this can entail considerable computational overhead and leaves room for the introduction of significant error due to roundoff and truncation in the course of the calculation. It is therefore very important to find a more sophisticated method of matrix multiplication, if possible. One such method is the Strassen-Winograd algorithm.

With kind permission of Volker Strassen (Strassen); With kind permission of the Department of Computer Science, City University of Hong Kong (Winograd).
Variants of this algorithm were discovered by the contemporary German mathematician Volker Strassen and the contemporary Israeli mathematician Shmuel Winograd who later served as director of mathematical research at IBM.

To illustrate the Strassen-Winograd algorithm, let us first begin with the special case $n=2$. First, calculate

$$
\begin{array}{lll}
p_{0}=\left(a_{11}+a_{12}\right)\left(b_{11}+b_{12}\right), & p_{1}=\left(a_{11}+a_{22}\right) b_{11}, & p_{2}=a_{11}\left(b_{12}-b_{22}\right), \\
p_{3}=\left(a_{21}-a_{11}\right)\left(b_{11}+b_{12}\right), & p_{4}=\left(a_{11}+a_{12}\right) b_{22}, & p_{5}=a_{22}\left(b_{21}-b_{11}\right), \\
p_{6}=\left(a_{12}-a_{22}\right)\left(b_{21}+b_{22}\right), & &
\end{array}
$$

and then note that $C=\left[\begin{array}{cc}p_{0}+p_{5}-p_{4}+p_{6} & p_{2}+p_{4} \\ p_{1}+p_{5} & p_{0}-p_{1}+p_{2}+p_{3}\end{array}\right]$. In this calculation, we used 7 multiplications and 18 additions/subtractions (Winograd's variant of this algorithm uses only 15 additions/subtractions, but these are more interdependent, and so the algorithm is less amenable to implementation on parallel computers) instead of 8 multiplications and 4 additions/subtractions. In the early days of computers, when multiplication was several orders of magnitude slower than addition, this in itself was a great accomplishment. If $n=4$, we write our matrices in block form: $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$ and $B=\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$, where each block is a 2×2 matrix. We now calculate 2×2 matrices P_{0}, \ldots, P_{6} and then construct $C=A B$ as above. To do this, we need 49 multiplications and 198 additions/subtractions, as opposed to 64 multiplications and 46 additions/subtractions if one goes according to the definition. We continue recursively. If $n=2^{h}$, then the number of multiplications needed is $M(h)=7^{h}$ and the number of additions/subtractions needed is $A(h)=6\left(7^{h}-4^{h}\right)$ and so $M(h)+A(h)<7^{h+1}$. (If n is not a power of 2 , we can add rows and columns of 0 's in order to enlarge it to the desired size.) Thus, we see that the number of arithmetic operations needed to calculate $A B$ is on the order of n^{c}, where $c \leq \log _{2} 7=2.807 \ldots$ and so, for large n, we have a definite advantage over multiplication following from the definition. Using even more sophisticated techniques, it is possible to reduce the number of arithmetic operations to the order of n^{c}, where $c \leq 2.376 \ldots$, as was done by Winograd and Coppersmith in 1986. Recent results by American mathematicians Chris Ulmas and Henry Cohn, using
sophisticated group-theoretic techniques, suggest that c can be reduced still further, but their methods are not, as yet, practical for all but matrices of immense size.

For sparse matrices-namely matrices in which a very large majority of the entries are 0 -these algorithms can be combined with other sophisticated techniques to produce even faster multiplication. If the matrices are in $\mathcal{M}_{n \times n}(F)$ but have no more than n nonzero entries, then one can multiply them in an order of $n^{2+k(n)}$ operations, where $k(n) \rightarrow 0$ as $n \rightarrow \infty$.

The size of matrices for which the Strassen-Winograd algorithm is significantly faster than the regular method depends, of course, on the particular hardware on which it is being used. The Strassen-Winograd algorithm can also be modified to multiplication of matrices which are not necessarily square.

Unfortunately, the Strassen-Winograd algorithm is no less susceptible to roundoff and truncation errors than the regular algorithm. On a computer with seven-digit accuracy, the product
$\left[\begin{array}{cccc}211 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 0.001 & 0.032 & 0.043 & 0.044 \\ 311 & 0.0032 & 1233 & 0.0324\end{array}\right]\left[\begin{array}{cccc}50 & 0.32 & 0.0023 & 421 \\ 60 & 0.023 & 0.033 & 982 \\ 23 & 0.032 & 0.03 & 623 \\ 33 & 0.043 & 0.022 & 44\end{array}\right]$
equals $\left[\begin{array}{cccc}10871 & 67.834 & 0.7293 & 92840 \\ 371 & 0.634 & 0.2463 & 4430 \\ 4.411 & 0.0043 & 0.0033 & 60.57 \\ 43910.3 & 138.977 & 37.7061 & 899094.0\end{array}\right]$ using the ordinary method of matrix multiplication, whereas, using the Strassen-Winograd algorithm, we obtain $\left[\begin{array}{cccc}10871 & 68.54 & 0.6294 & 92840 \\ 370.9 & 1.0 & 0.2463 & 4430.18 \\ 4.411 & 0.0043 & 0 & 62.0 \\ 43910.3 & 139.047 & 37.7 & 899095.0\end{array}\right]$. This problem can be overcome to
some extent by stopping the recursion in the Strassen-Winograd algorithm early, and doing the bottom-level matrix multiplication using the ordinary method. Another disadvantage of this algorithm is that it requires a much larger amount of scratch memory space to perform its calculations.

There are other tricks that can be used to reduce the computations necessarily in matrix multiplication. For example, if n is a positive integer and if $A, B, C, D \in$ $\mathcal{M}_{n \times n}(\mathbb{R})$, then the matrix product $(A+i B)(C+i D)$ in $\mathcal{M}_{n \times n}(\mathbb{C})$ can be calculated using only three matrix multiplications in $\mathcal{M}_{n \times n}(\mathbb{R})$, rather than the expected four, by noting that

$$
(A+i B)(C+i D)=A C-B D+i[(A+B)(C+D)-A C-B D]
$$

If we have a parallel-processing computational system at our disposal, matrix multiplication can be done much more rapidly. There exist parallel algorithms to multiply two $n \times n$ matrices in an order of $\log (n)$ time, on the condition that we have n^{3} processors working in parallel. Given the availability of
such parallel computational power, one can also invert a nonsingular $n \times n$ matrix in an order of $\log ^{2}(n)$ time. The first such algorithm was developed by Laszlo Csanky in 1977, though this algorithm has the disadvantage of being wildly unstable.

Again, we keep in mind that real and complex numbers are represented in a computer by approximations having a limited degree of accuracy. The longer calculations become, the error due to roundoff and truncation increases and limits the correctness of the calculations. It is possible to reduce the effect of roundoff and truncation errors as much as possible. Let us recall how our algorithm for inverting a matrix A worked:
(1) We formed the matrix $[I A]=\left[b_{i j}\right]$;
(2) We interchanged the first row which one of the rows below it, if necessary, such that $b_{1, n+1} \neq 0$; we then multiplied this row by $b_{1, n+1}^{-1}$ so that this element is now equal to 1 , and we subtracted multiples of this row from the rows below it, in order to make $b_{i, n+1}$ equal to 0 for all $1<i \leq n$.
(3) We now go iterate this process for the elements $b_{h, n+h}$, where $h=2,3, \ldots$ and so forth. If we cannot do it, i.e., if there exists an h such that $b_{i, n+h}$ for all $h \leq i \leq n$, the matrix A is nonsingular. Otherwise, at the end of the process, we have brought the matrix to the form $\left[A^{-1} I\right]$.
The elements $b_{h, n+h}$ are called pivots of the algorithm. If we are working over \mathbb{R} or \mathbb{C}, we can minimize roundoff and truncation errors, to some extent, by making sure that each time we interchange rows we choose to bring into the pivot position a nonzero number having maximal absolute value. This strategy is known as partial pivoting. We could do better by also interchanging columns in order to bring into the pivot position $b_{h, n+h}$ the element $b_{i j}(h \leq i, j \leq n)$ having maximal absolute value. This strategy is known as full pivoting; it requires a certain amount of computational overhead on the side so that the columns can be returned to their proper positions at the end of the algorithm. Although there are matrices so pathological that full pivoting rather than partial pivoting is needed in order to invert them, most experts believe that it is not worth the effort and the computational overhead and that for such matrices one should use other methods altogether. Partial pivoting also does not work well on parallel or systolic-array computers, since it requires many nonlocal data movements. Several variants of pivoting strategies for matrices having specific structures have, however, been developed and are in wide use.

Indeed, let us now consider another method. It is clearly easier to invert a nonsingular upper-triangular or lower-triangular matrix-namely a matrix in one of these forms all of the diagonal elements of which are nonzero. Therefore, our job would be much easier if we could write A in the form $L U$, where L is lower triangular nonsingular and U is upper triangular nonsingular, for then $A^{-1}=U^{-1} L^{-1}$. This is not always possible. For example, one can see that there is no way of writing the $\operatorname{matrix}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ in this form. However, it is always possible to write A in the form $L U$ when A equals a product of elementary matrices of the form $E_{i ; c}$ and $E_{i j ; c}$ only.

How can this be done? Assume that $A=\left[a_{i j}\right], U=\left[u_{i j}\right]$, and $L=\left[v_{i j}\right]$ and that $A=L U$, where U is upper-triangular nonsingular and L is lower-triangular nonsingular. Then for each $1 \leq i, j \leq n$ we have $a_{i j}=\sum_{h=1}^{n} v_{i h} u_{h j}$. In each of L and U there are only $\frac{1}{2}\left(n^{2}+n\right)$ entries which can be nonzero and so our problem is one of solving n^{2} nonlinear equations in $n^{2}+n$ unknowns. This means that we can allow ourself to choose the value of n of these variables arbitrarily, and we will do so by insisting that $v_{i i}=1$ for all $1 \leq i \leq n$. Now we have a system of $n^{2}+n$ nonlinear equations in $n^{2}+n$ unknowns, which can be solved by a method known as Crout's algorithm:
(1) First set $v_{i i}=1$ for all $1 \leq i \leq n$;
(2) For all $2 \leq j \leq n$ and all $1 \leq i \leq j$, first calculate $u_{i j}=a_{i j}-\sum_{h=1}^{i-1} v_{i h} u_{h j}$ and then $v_{i j}=\frac{1}{u_{j j}}\left(a_{i j}-\sum_{h=1}^{j-1} v_{i h} u_{h j}\right)$ for all $j<i \leq n$.

With kind permission of the National Portrait Gallery (Turing); With kind permission of Sir Peter Swinnerton-Dyer (Swinnerton-Dyer).
The LU method was devised by the British mathematician Alan Turing who is better known as the founder of automata theory and one of the fathers of the electronic computer. It appears implicitly in the work of Jacobi on bilinear forms. The first computer algorithm to compute LU factorizations using partial pivoting was described by the contemporary British mathematicians D.W. Barron and Sir Peter Swinnerton-Dyer. Prescott Crout was a twentieth-century American mathematician.

We note that if A is a nonsingular matrix which can be written in the form $L U$, where $L=\left[v_{i j}\right]$ is a lower-triangular nonsingular matrix satisfying $v_{i i}=1$ for all $1 \leq i \leq n$ and $U=\left[u_{i j}\right]$ is upper-triangular and nonsingular, then this factorization must be unique. Indeed, assume that $L_{1} U_{1}=L_{2} U_{2}$ where the L_{h} are lower triangular matrices with 1's on the diagonal, and the U_{h} are nonsingular upper-triangular matrices. Then $L_{2}^{-1} L_{1}=U_{2} U_{1}^{-1}$. Since the product of lower-triangular matrices is lower triangular and the product of upper-triangular matrices is upper triangular, this matrix must be a diagonal matrix. But then $L_{2}^{-1} L_{1}=I$ and so $L_{1}=L_{2}$ and that implies that $U_{1}=U_{2}$, proving uniqueness.

Example Some singular matrices may also be written in the form $L U$, but for them the above uniqueness result is no longer necessarily true. For example,

$$
\left[\begin{array}{rrr}
1 & -1 & 2 \\
-1 & 1 & -1 \\
2 & -2 & 4
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & b & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & 2 \\
0 & 0 & 1 \\
0 & 0 & -b
\end{array}\right]
$$

for any scalar $b \in \mathbb{R}$.
As was previously remarked, not all nonsingular matrices can be written in the form $L U$. However, we have already noted that any nonsingular matrix A can be
written in the form $P C$, where P is a permutation matrix and C is a product of elementary matrices of the form $E_{i ; c}$ and $E_{i j ; c}$ and C can be written in the desired $L U$ form.

Example It is easy to verify that $\left[\begin{array}{rrrr}0 & 1 & 1 & -3 \\ -2 & 4 & 1 & 4 \\ 0 & 0 & 0 & 1 \\ 3 & 1 & 1 & 0\end{array}\right]=P L U$, where $P=$
$\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$ is a permutation matrix, $L=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{3}{2} & 7 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ is lower trian-
gular, and $U=\left[\begin{array}{rrrr}-2 & 4 & 1 & 4 \\ 0 & 1 & 1 & -3 \\ 0 & 0 & -\frac{9}{2} & 27 \\ 0 & 0 & 0 & 1\end{array}\right]$ is upper triangular.
In general, the problem of factorization of a square matrix into a product of matrices of a more desirable form is one which arises often in computational matrix theory, and many techniques have been developed to facilitate such computations. One method, for example, is to associate with any matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ an undirected graph Γ_{A} the vertices of which are $\{1, \ldots, n\}$ and in which there exists an edge connecting i and j if and only if $a_{i j} \neq 0$ or $a_{j i} \neq 0$. If this graph has nice structure-if it is a tree, for example-then this structure can be exploited to produce efficient factorization algorithms for A, as has recently been shown by Israeli computer scientist Sivan Toledo.

Exercises

Exercise 441
Let $F=\operatorname{GF}(5)$. Calculate $\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 3\end{array}\right]\left[\begin{array}{lll}1 & 2 & 2 \\ 4 & 3 & 2 \\ 1 & 4 & 2\end{array}\right]$ in $\mathcal{M}_{3 \times 3}(F)$.

Exercise 442
Does there exist a real number b such that the matrices

$$
A=\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rrrr}
b & -1 & -1 & 0 \\
-1 & b & 0 & -1 \\
1 & 0 & \frac{b}{2} & -1 \\
0 & 1 & -1 & \frac{b}{2}
\end{array}\right]
$$

are a commuting pair in $\mathcal{M}_{4 \times 4}(\mathbb{R})$?

Exercise 443

Let $F=\mathrm{GF}(7)$ and let K be the subalgebra of $\mathcal{M}_{2 \times 2}(F)$ consisting of all matrices of the form $\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$, for $a, b \in F$. Show that K is a field. Is it a field if $F=\mathrm{GF}(5)$?

Exercise 444

Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. Find the set of all matrices $B \in \mathcal{M}_{n \times n}(\mathbb{R})$ satisfying $B A=A B$.

Exercise 445

Let $A=\left[\begin{array}{rr}1 & i \\ -i & 1\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{C})$. Find a complex number c satisfying $(c A)^{2}=A$.

Exercise 446

Let $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Find a positive integer k satisfying $A^{k}=A^{-1}$.

Exercise 447

Let F be a field. Find all matrices $A \in \mathcal{M}_{3 \times 3}(F)$ satisfying $A^{2}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.

Exercise 448

Let n be a positive integer and let F be a field of characteristic 0 . Show that $A B-B A \neq I$ for all $A, B \in \mathcal{M}_{n \times n}(F)$ (in other words, that I is not the product of any two elements of the Lie algebra $\left.\mathcal{M}_{n \times n}(F)^{-}\right)$.

Exercise 449

Show that there are infinitely-many pairs (a, b) of real numbers satisfying the condition $\left[\begin{array}{lll}a & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & b\end{array}\right]\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{lll}a & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & b\end{array}\right]$.

Exercise 450

Does there exist a positive integer k satisfying

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]^{k}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] ?
$$

Exercise 451

Let $F=\mathrm{GF}(3)$. Show that there exist at least 27 distinct matrices A in $\mathcal{M}_{3 \times 3}(F)$ satisfying $A^{3}=I$.

Exercise 452

If $F=\mathrm{GF}(2)$, find the set of all pairs (A, B) of matrices in $\mathcal{M}_{2 \times 2}(F)$ satisfying $A B-B A=I$.

Exercise 453

For a field F, find $\left\{A \in \mathcal{M}_{2 \times 2}(F) \mid A^{2}=O\right\}$.

Exercise 454

Find a matrix $A \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ satisfying $A\left[\begin{array}{rrr}1 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1\end{array}\right]=\left[\begin{array}{rrr}1 & -1 & 3 \\ 4 & 3 & 2 \\ 1 & -2 & 5\end{array}\right]$.

Exercise 455

Show that if $A=\left[\begin{array}{ccc}a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ then for each $n>1$ we have $A^{n}=$ $\left[\begin{array}{ccc}a^{n} & n a^{n-1} & \frac{n(n-1)}{2} a^{n-2} \\ 0 & a^{n} & n a^{n-1} \\ 0 & 0 & a^{n}\end{array}\right]$.

Exercise 456

Let (K, \bullet) be an associative unital algebra over a field F and let S be the subset of $\mathcal{M}_{3 \times 3}(K)$ consisting of all matrices of the form $\left[\begin{array}{lll}v_{11} & 0_{K} & v_{13} \\ 0_{K} & v_{22} & 0_{K} \\ v_{31} & 0_{K} & v_{33}\end{array}\right]$. Is S an F-subalgebra of $\mathcal{M}_{3 \times 3}(K)$?

Exercise 457

Let n be a positive integer and let F be a field. A matrix in $\mathcal{M}_{n \times n}(F)$ of the form
$\left[\begin{array}{cccc}a_{1} & a_{2} & \ldots & a_{n} \\ a_{n} & a_{1} & \ldots & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{2} & a_{3} & \ldots & a_{1}\end{array}\right]$ is called a circulant matrix. Determine if the set of all
circulant matrices in $\mathcal{M}_{n \times n}(F)$ is an F-subalgebra of $\mathcal{M}_{n \times n}(F)$.

© Collections artistiques de l'Université de Liège. Reprinted with kind permission.
Circulant matrices, which have many important applications, were first studied by the nineteenth-century French mathematician Eugène Catalan.

Exercise 458

Let n be a positive integer and let F be a field. If $A \in \mathcal{M}_{n \times n}(F)$ is a nonsingular circulant matrix, is A^{-1} necessarily a circulant matrix?

Exercise 459

Let K be the subset of $\mathcal{M}_{2 \times 2}(\mathbb{Q})$ consisting of all matrices of the form $\left[\begin{array}{rr}a & b \\ 2 b & a\end{array}\right]$, where $a, b \in \mathbb{Q}$. Show that K is a \mathbb{Q}-subalgebra of $\mathcal{M}_{2 \times 2}(\mathbb{Q})$ which is, in fact, a field.

Exercise 460

Find a matrix $A \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ satisfying $A^{2}=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$.

Exercise 461

Find all matrices $A \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ satisfying $A\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 0 & 1 & 1\end{array}\right]=O$.
Exercise 462
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ be an idempotent matrix. Show that $a+d \in$ $\{0,1,2\}$.

Exercise 463

Show that $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]^{n}=\left[\begin{array}{ll}2^{n-1} & 2^{n-1} \\ 2^{n-1} & 2^{n-1}\end{array}\right]$ for all $n \geq 1$.

Exercise 464

Let F be a field and let $A=\left[\begin{array}{ll}0 & b \\ c & 0\end{array}\right] \in \mathcal{M}_{2 \times 2}(F)$. Find A^{n} for all $n \geq 1$.

Exercise 465

Find matrices $A, B \in \mathcal{M}_{2 \times 2}(\mathbb{Q})$ for which

$$
(A-B)(A+B) \neq A^{2}-B^{2} .
$$

Exercise 466
Let F be a field and let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right] \in \mathcal{M}_{3 \times 3}(F)$. Show that $A^{k+2}=A^{k}+$ $A^{2}-I$ for all positive integers k.

Exercise 467

Let n be a positive integer and let F be a field. Let $A, B \in \mathcal{M}_{n \times n}(F)$ satisfy $A+B=I$. Show that $A B=O$ if and only if A and B are idempotent.

Exercise 468

Let n be a positive integer and let (K, \bullet) be an associative unital algebra over a field F. Define a new operation \square on $\mathcal{M}_{n \times n}(K)$, called the Schur product (sometimes also called the Hadamard product, especially in the context of statistics), by setting $\left[v_{i j}\right] \boxtimes\left[w_{i j}\right]=\left[v_{i j} \bullet w_{i j}\right]$, for all $1 \leq i, j \leq n$. Is $\left(\mathcal{M}_{n \times n}(K),+, \boxtimes\right)$ an F-algebra? Is it associative? Is it unital? When is it commutative?

Exercise 469

Let n be a positive integer and for each $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$, let $\mu(A)=$ $\max _{1 \leq i, j \leq n}\left|a_{i j}\right|$. Show that $\mu\left(A^{2}\right) \leq n \mu(A)^{2}$ for all $A \in \mathcal{M}_{n \times n}(\mathbb{R})$.

Exercise 470
Let F be a field. Find a matrix $A \in \mathcal{M}_{3 \times 3}(F)$ satisfying $A^{2}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ or show that no such matrix exists.

Exercise 471

Find a matrix $A \in \mathcal{M}_{2 \times 2}(\mathbb{Q})$ satisfying $A\left[\begin{array}{ll}0 & c \\ c & 0\end{array}\right] A^{T}=\left[\begin{array}{cc}2 c & 0 \\ 0 & -\frac{c}{2}\end{array}\right]$ for all $c \in \mathbb{Q}$.

Exercise 472

Let F be a field and let n be a positive integer. Show that $H_{11} A H_{11} B H_{11}=$ $H_{11} B H_{11} A H_{11}$ for all $A, B \in \mathcal{M}_{n \times n}(F)$.

Exercise 473

Let F be a field and let n be a positive integer. Show that $\left(\sum_{i=1}^{n} \sum_{j=1}^{n} H_{i j} A H_{j i}\right) B$ $=B\left(\sum_{i=1}^{n} \sum_{j=1}^{n} H_{i j} A H_{j i}\right)$ for all $A, B \in \mathcal{M}_{n \times n}(F)$.

Exercise 474

Is the set $\left\{\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]\right\}$ of matrices in $\mathcal{M}_{3 \times 3}(\mathbb{Q})$ closed under taking products?

Exercise 475

Find infinitely-many triples (A, B, C) of nonzero matrices in $\mathcal{M}_{3 \times 3}(\mathbb{Q})$, the entries of which are nonnegative integers, satisfying the condition $A^{3}+B^{3}=C^{3}$.

Exercise 476

Let F be a field. Find a matrix $A \in \mathcal{M}_{4 \times 4}(F)$ satisfying $A^{4}=I \neq A^{3}$.

Exercise 477

Let n be a positive integer and let $F=\operatorname{GF}(p)$ for some prime integer p. Show that for any $A \in \mathcal{M}_{n \times n}(F)$ there exist positive integers $k>h$ satisfying $A^{k}=A^{h}$. Would this also be true if we chose $F=\mathbb{Q}$?

Exercise 478

Let $A=\left[a_{i j}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{C})$ be a matrix satisfying the condition that $\frac{1}{2}\left[a_{11}+\right.$ $\left.a_{22}\right] \neq \sqrt{a_{11} a_{22}-a_{12} a_{21}}$. Show that there exist four distinct matrices $B \in$ $\mathcal{M}_{2 \times 2}(\mathbb{C})$ satisfying $B^{2}=A$.

Exercise 479

Let c be a given complex number. Find the set of all matrices $A \in \mathcal{M}_{2 \times 2}(\mathbb{C})$ satisfying $(A-c I)^{2}=O$.

Exercise 480

Show that $\left[\begin{array}{rrr}3-4 c & 2-4 c & 2-4 c \\ -1+2 c & 2 c & -1+2 c \\ -3+2 c & -3+2 c & -2+2 c\end{array}\right]$ is involutory for all complex numbers c.

Exercise 481
Let n be a positive integer and let F be a field. How many matrices $A=\left[a_{i j}\right] \in$ $\mathcal{M}_{n \times n}(F)$ having entries in $\{0,1\}$ satisfy the condition that each row and each column contain exactly one 1 .

Exercise 482

Show that for an integer $n \geq 4$ and for a field F there exist matrices A and B in $\mathcal{M}_{n \times n}(F)$ satisfying $A^{2}=B^{2}=O$ but $A B=B A \neq O$.

Exercise 483

Let $F=\mathrm{GF}(2)$ and let F^{\prime} be a field of characteristic other than 2. Define a function $\varphi: \mathcal{M}_{2 \times 2}\left(F^{\prime}\right) \rightarrow \mathcal{M}_{2 \times 2}(F)$ as follows: If $A=\left[a_{i j}\right] \in \mathcal{M}_{2 \times 2}\left(F^{\prime}\right)$ then set $\varphi(A)=\left[b_{i j}\right]$, where

$$
b_{i j}= \begin{cases}1 & \text { if } a_{i j} \neq 0, \\ 0 & \text { otherwise } .\end{cases}
$$

Is $\varphi\left(A+A^{\prime}\right)=\varphi(A)+\varphi\left(A^{\prime}\right)$ for all $A, A^{\prime} \in \mathcal{M}_{2 \times 2}\left(F^{\prime}\right)$? Is $\varphi\left(A A^{\prime}\right)=$ $\varphi(A) \varphi\left(A^{\prime}\right)$ for all $A, A^{\prime} \in \mathcal{M}_{2 \times 2}\left(F^{\prime}\right)$?

Exercise 484

Find a matrix $I \neq A \in \mathcal{M}_{3 \times 3}(\mathbb{Q})$ satisfying

$$
A\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A \quad \text { and } \quad A\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] A .
$$

Exercise 485

For each real number a, find a matrix $B(a) \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ satisfying

$$
\left[\begin{array}{cc}
\cos (a) & -\sin (a) \\
\sin (a) & \cos (a)
\end{array}\right]=B(a)\left[\begin{array}{cc}
1 & 0 \\
\sin (a) & 1
\end{array}\right]
$$

or show that such matrices need not exist.

Exercise 486

Let $A=\left[\begin{array}{rr}5 & 7 \\ -3 & -4\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. What is A^{1024} ?

Exercise 487

Find all pairs (a, b) of rational numbers such that the matrix $A=\left[\begin{array}{cc}2 a & -a \\ 2 b & -b\end{array}\right] \in$ $\mathcal{M}_{2 \times 2}(\mathbb{Q})$ is idempotent.

Exercise 488

Let F be a field and let n be a positive integer. Show that there do not exist nonsingular matrices $P, Q \in \mathcal{M}_{n \times n}(F)$ satisfying $P A Q=A^{T}$ for all $A \in \mathcal{M}_{n \times n}(F)$.

Exercise 489

Let F be a field and let $A, B \in \mathcal{M}_{n \times n}(F)$ be a commuting pair of matrices, where B is nonsingular. Is $\left(A, B^{-1}\right)$ necessarily a commuting pair?

Exercise 490

Let F be a field. Is $S=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a+c=b+d\right\}$ an F-subalgebra of $\mathcal{M}_{2 \times 2}(F) ?$

Exercise 491

Let F be a field of characteristic other than 2 , let n be a positive integer, and let $A \in \mathcal{M}_{n \times n}(F)$ be an involutory matrix. For each $c \in F$, let $B_{c}=c(A+I)$. For which values of c do we have $B_{c}^{2}=B_{c}$?

Exercise 492

Find all rational numbers a, b, and d satisfying the condition that $\left[\begin{array}{ll}a & b \\ 1 & d\end{array}\right] \in$ $\mathcal{M}_{2 \times 2}(\mathbb{Q})$ is involutory.

Exercise 493
Let $F=\mathrm{GF}(3)$ and let $A=\left[\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right] \in \mathcal{M}_{3 \times 3}(F)$. Show that the subset $\{O, I, 2 I, A, I+A, 2 I+A, 2 A, I+2 A, 2 I+2 A\}$ of $\mathcal{M}_{3 \times 3}(F)$ is a field under addition and multiplication of matrices.

Exercise 494

Let $F=\mathrm{GF}(p)$, where p is a prime integer, and let K be the subset of $\mathcal{M}_{2 \times 2}(F)$ consisting of all matrices of the form $\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$, where $a, b \in F$. Show that K, together with the operations of matrix addition and multiplication, is a field when $p=3$ and is not a field when $p=5$. What happens when $p=7$?

Exercise 495

Let n be a positive integer, let F be a field, and let $O \neq A, B \in \mathcal{M}_{n \times n}(F)$. Show that there exists a matrix $C \in \mathcal{M}_{n \times n}(F)$ satisfying $A C B \neq O$.

Exercise 496

Find all matrices $A, B \in \mathcal{M}_{2 \times 2}(\mathbb{R})$, the entries of which are nonnegative integers, which satisfy $A B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.

Exercise 497

Let $V=\mathcal{M}_{3 \times 3}(\mathbb{Q})$. For each rational number t, let $\alpha_{t}: V \rightarrow V$ be the linear transformation $A \mapsto A\left[\begin{array}{rrr}0 & 1 & 3 \\ t & 0 & 0 \\ 0 & -1 & 4\end{array}\right]$. Is the function $t \mapsto \alpha_{t}$ a linear transformation from \mathbb{Q} to $\operatorname{End}(V)$, both considered as vector spaces over \mathbb{Q} ?

Exercise 498

Let n be a positive integer, let F be a field, and for some fixed $c \in F$, let $A=\left[a_{i j}\right]$ be the matrix in $\mathcal{M}_{n \times n}(F)$ defined by

$$
a_{i j}= \begin{cases}c & \text { when } i+j \text { is even } \\ 0 & \text { otherwise }\end{cases}
$$

Show that the subset $\left\{A, A^{2}, A^{3}\right\}$ of $\mathcal{M}_{n \times n}(F)$ is linearly dependent.

Exercise 499

Let $F=\mathrm{GF}(2)$ and let $A=\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right] \in \mathcal{M}_{4 \times 4}(F)$. Let $L=\{O\} \cup$
$\left\{A^{i} \mid i \geq 0\right\} \subseteq \mathcal{M}_{4 \times 4}(F)$. Show that L is closed under addition. Is L, under the usual definitions of addition and multiplication of matrices, a field?

Exercise 500
Let K be the set of all matrices in $\mathcal{M}_{2 \times 2}(\mathbb{Q})$ of the form $\left[\begin{array}{rr}a & -3 b \\ b & a\end{array}\right]$. Show that K is a subalgebra of $\mathcal{M}_{2 \times 2}(\mathbb{Q})$ which is in fact a field.

Exercise 501

Find the set of all matrices $A \in \mathcal{M}_{2 \times 2}(\mathbb{Q})$ which satisfy $A^{2}+A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.

Exercise 502

Let $A=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{Q})$ and let B and C be matrices in $\mathcal{M}_{2 \times 2}(\mathbb{Q})$ satisfying $A B=B A$ and $A C=C A$. Show that $B C=C B$.

Exercise 503

Find infinitely-many matrices $A \in \mathcal{M}_{3 \times 3}(\mathbb{Q})$ satisfying

$$
A\left[\begin{array}{rrr}
1 & -1 & 2 \\
2 & 0 & 1 \\
3 & -1 & 3
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rrr}
2 & 0 & 1 \\
0 & 2 & -3 \\
0 & 0 & 0
\end{array}\right] .
$$

Exercise 504

Let $A=\left[\begin{array}{rrr}1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{Q})$. Find functions f and g from the set of all positive integers to \mathbb{Q} satisfying the condition that $A^{n}=\left[\begin{array}{lll}f(n) & g(n) & g(n) \\ g(n) & f(n) & g(n) \\ g(n) & g(n) & f(n)\end{array}\right]$
for all $n \geq 1$.

Exercise 505

Let $F=\mathrm{GF}(2)$. Do there exist matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ in $\mathcal{M}_{2 \times 2}(F)$ satisfying $a_{11}+a_{22}=1, b_{11}+b_{22}=0$, and $A B=I$?

Exercise 506

Let F be a field and let G be the set of all matrices in $\mathcal{M}_{3 \times 3}(F)$ of the form $\left[\begin{array}{ccc}1 & 0 & 0 \\ a & 0 & 0 \\ 0 & 0 & b\end{array}\right]$, where $a, b \in F$. Is G closed under matrix multiplication? Does
there exist a matrix J in G satisfying the condition that $A J=A$ for all $A \in G$? If such a matrix J exists, is it necessarily true that $J A=A$ for all $A \in G$?

Exercise 507

Let n be a positive integer and let F be a field. Let A and B be matrices in $\mathcal{M}_{n \times n}(F)$ of the form $\left[\begin{array}{cc}I & A^{\prime} \\ O & I\end{array}\right]$ and $\left[\begin{array}{cc}I & B^{\prime} \\ O & I\end{array}\right]$, respectively, where A^{\prime} and B^{\prime}
are (not-necessarily square) matrices of the same size. Find necessary conditions for A and B to satisfy $A B=B A$.

Exercise 508
Let F be a field and let $A, B \in \mathcal{M}_{2 \times 2}(F)$. Show that $(A B-B A)^{2}$ is a diagonal matrix.

Exercise 509

Let n be a positive integer and let F be a field. Let $A \in \mathcal{M}_{n \times n}(F)$ be a diagonal matrix having distinct entries on the diagonal. Let $B \in \mathcal{M}_{n \times n}(F)$ be a matrix satisfying $A B=B A$. Show that B is also a diagonal matrix.

Exercise 510

Let n be a positive integer and let F be a field. For each integer $-n<t<n$, let $D_{t}(F)$ be the set of all matrices $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ satisfying the condition that $a_{i j}=0$ when $j \neq i+t$. Thus, for example, $D_{0}(F)$ is the set of all diagonal matrices in $\mathcal{M}_{n \times n}(F)$. If $A \in D_{t}(F)$ and $B \in D_{s}(F)$, does there necessarily exist an integer $-n<u<t$ such that $A B \in D_{u}(F)$?

Exercise 511
Let $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ -1 & -2 & -3 \\ 2 & 4 & 6\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ be matrices in $\mathcal{M}_{3 \times 3}(\mathbb{R})$.
Find infinitely-many lower-triangular matrices C satisfying $A=C B$.

Exercise 512

Let n be a positive integer and let F be a field. Let A_{1}, \ldots, A_{n} be upper-triangular matrices in $\mathcal{M}_{n \times n}(F)$ satisfying the condition that the (i, i)-entry in A_{i} is equal to 0 for $1 \leq i \leq n$. Show that $A_{1} \cdots A_{n}=O$.

Exercise 513

Let F be a field in which we have elements $a \neq 0$ and b. Show that there exists an upper-triangular matrix $C \in \mathcal{M}_{2 \times 2}(F)$ satisfying $\left[\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right] C=\left[\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right]$. Is C necessarily unique?

Exercise 514

Let F be a field. Find an element A of $\mathcal{M}_{2 \times 2}(F)$ satisfying $A A^{T} \neq A^{T} A$.

Exercise 515

Let F be a field and let $n>1$. If a matrix $A \in \mathcal{M}_{n \times n}(F)$ satisfies $A A^{T}=O$, does it necessarily follow that $A^{T} A=O$?

Exercise 516

Let n be a positive integer, let F be a field, and let $A \in \mathcal{M}_{n \times n}(F)$ satisfy the condition $A=A A^{T}$. Show that $A^{2}=A$.

Exercise 517

Let n be a positive integer, let F be a field, and let $A, B \in \mathcal{M}_{n \times n}(F)$ be symmetric matrices. Is $A B A$ necessarily symmetric?

Exercise 518

Let n be a positive integer and let F be a field. If $A \in \mathcal{M}_{n \times n}(F)$ is symmetric, is A^{h} symmetric for all $h>1$?

Exercise 519

Show that $\left\{\left[\begin{array}{rr}1 & -2 \\ -2 & 1\end{array}\right],\left[\begin{array}{ll}1 & 3 \\ 3 & 6\end{array}\right],\left[\begin{array}{rr}-1 & 1 \\ 1 & -3\end{array}\right]\right\}$ forms a basis for the subspace of $\mathcal{M}_{2 \times 2}(\mathbb{Q})$ consisting of all symmetric matrices.

Exercise 520

Does there exist a matrix $A \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ satisfying $A A^{T}=\left[\begin{array}{ll}1 & 9 \\ 9 & 1\end{array}\right]$?

Exercise 521

Given real numbers a, b, and c, find all real numbers d such that

$$
\left[\begin{array}{rrrr}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & a \\
0 & -1 & a & b \\
-1 & a & b & c
\end{array}\right]\left[\begin{array}{llll}
a & b & c & 1 \\
1 & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

is symmetric.

Exercise 522

Find a matrix $B \in \mathcal{M}_{2 \times 2}(\mathbb{Q})$ such that the Nievergelt's matrix equals $B^{T} B$.

Exercise 523

Calculate $\left[\begin{array}{rrr}1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]^{-1}$ in $\mathcal{M}_{3 \times 3}(\mathbb{R})$.

Exercise 524
Let $a \in \mathbb{R} \backslash\{1,-2\}$. Calculate $\left[\begin{array}{lll}a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a\end{array}\right]^{-1} \in \mathcal{M}_{3 \times 3}(\mathbb{R})$.

Exercise 525
Does there exist an $a \in \mathbb{R}$ such that $\left[\begin{array}{rrr}-3 & 4 & 0 \\ 8 & 5 & -2 \\ a & -7 & 6\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ is singular?

Exercise 526
Let n be a positive integer. Each complex number c defines a matrix $A(c)=$ $\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{C})$ given by $a_{i j}=c^{(i-1)(j-1)}$ for all $1 \leq i, j \leq n$. If $w=e^{2 \pi i / n} \in$ \mathbb{C}, show that $A(w)$ is nonsingular and satisfies $A(w)^{-1}=\frac{1}{n} A\left(w^{-1}\right)$.

Exercise 527

Let n be a positive integer and let F be a field. Given a matrix $B \in \mathcal{M}_{n \times n}(F)$, do there exist vectors $u, v \in F^{n}$ such that the matrix $\left[\begin{array}{cc}B & -B v \\ -u^{T} B & u^{T} B v\end{array}\right]$ is nonsingular?

Exercise 528

Is the matrix $\left[\begin{array}{cc}1+X & -X \\ X & 1-X\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{Q}[X])$ nonsingular?

Exercise 529
Is the matrix $\left[\begin{array}{ccc}1-a^{2} & 1-a & 0 \\ 0 & 1-a^{2} & 1-a \\ 1-a & 0 & 1-a^{2}\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{C})$ nonsingular, where $a=$ $-\frac{1}{2}+\frac{1}{2} \sqrt{-3} \in \mathbb{C}$.

Exercise 530

Let n be a positive integer and let F be a field. If $A \in \mathcal{M}_{n \times n}(F)$ nonsingular, is the same necessarily true for $A+A^{T}$?

Exercise 531

Let n be a positive integer and let F be a field. Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ satisfy the condition that $\sum_{i=1}^{n} a_{i j}=1$ for all $1 \leq j \leq n$. Show that the matrix $I-A$ is singular.

Exercise 532

Let n be a positive integer and let F be a field. If $A \in \mathcal{M}_{n \times n}(F)$ is a Markov matrix, is A^{-1} necessarily a Markov matrix?

Exercise 533

Let n be a positive integer and let F be a field. For $A \in \mathcal{M}_{n \times n}(F)$, show that A^{2} is nonsingular if and only if A^{3} is nonsingular.

Exercise 534

Let $F=\mathrm{GF}(p)$, where p is a prime integer, and let n be a positive integer. What is the probability that a matrix in $\mathcal{M}_{n \times n}(F)$, chosen at random, is nonsingular?

Exercise 535
Let $P=\left[\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ and let A and Q be nonsingular matrices in $\mathcal{M}_{2 \times 2}(\mathbb{R})$. Set $B=A Q^{-1} P Q$. Show that B is nonsingular and $A^{-1}+B^{-1}=$ $(A+B)^{-1}$.

Exercise 536

Show that there are infinitely-many involutory matrices in $\mathcal{M}_{2 \times 2}(\mathbb{Q})$.

Exercise 537

Let $F=\mathrm{GF}(2)$. Is the sum of all nonsingular matrices in $\mathcal{M}_{2 \times 2}(F)$ nonsingular?

Exercise 538

Let F be a field and let U be the set of all nonsingular matrices in $\mathcal{M}_{2 \times 2}(F)$. Is the function $\theta: U \rightarrow U$ defined by $\theta: A \mapsto A^{2}$ a permutation of U ?

Exercise 539

Let n be a positive integer, let F be a field, and let $A \in \mathcal{M}_{2 n \times 2 n}(F)$ be a matrix which can be written in the form $\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$, where each $A_{i j} \in \mathcal{M}_{n \times n}(F)$ is nonsingular. Is A necessarily nonsingular?

Exercise 540

Let n be a positive integer and let F be a field. Do there exist matrices $A, B \in$ $\mathcal{M}_{n \times n}(F)$ such that the matrix $\left[\begin{array}{cc}A^{2} & A B \\ B A & B^{2}\end{array}\right] \in \mathcal{M}_{2 n \times 2 n}(F)$ is nonsingular?

Exercise 541

Let n be a positive integer and let F be a field. For $A, B \in \mathcal{M}_{n \times n}(F)$ with A nonsingular, show that $(A+B) A^{-1}(A-B)=(A-B) A^{-1}(A+B)$.

Exercise 542

Let n and p be positive integers and let F be a field. Let $A \in \mathcal{M}_{n \times n}(F)$ and let $B, C \in \mathcal{M}_{n \times p}(F)$ be matrices satisfying the condition that A and $\left(I+C^{T} A^{-1} B\right)$ are nonsingular. Show that $A+B C^{T}$ is nonsingular, and that

$$
\left(A+B C^{T}\right)^{-1}=A^{-1}-A^{-1} B\left(I+C^{T} A^{-1} B\right)^{-1} C^{T} A^{-1} .
$$

Exercise 543

Let n be a positive integer and let F be a field. If $\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right] \neq v \in F^{n}$, show that there exists a nonsingular matrix in $\mathcal{M}_{n \times n}(F)$ the rightmost column of which is v.

Exercise 544

Let F be a field. Show that every nonsingular matrix in $\mathcal{M}_{2 \times 2}(F)$ can be written as a product of matrices of the form $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, or $\left[\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right]$ for $a \in F$.

Exercise 545

For each real number t, let $A(t)=\left[\begin{array}{ccc}1 & 0 & t \\ -t & 1 & -\frac{1}{2} t^{2} \\ 0 & 0 & 1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Show that each such matrix is nonsingular and that the set of all such matrices is closed under taking products.

Exercise 546

Let n be a positive integer and let F be a field. Let $A \in \mathcal{M}_{n \times n}(F)$ be a matrix for which there exists a positive integer k satisfying $A^{k}=O$. Show that the matrix $I-A$ is nonsingular and find $(I-A)^{-1}$.

Exercise 547

Let n be a positive integer and let F be a field. Let $A \in \mathcal{M}_{n \times n}(F)$ be a matrix for which there exists a matrix $B \in \mathcal{M}_{n \times n}(F)$ satisfying $I+A+A B=O$. Show that A is nonsingular.

Exercise 548

Let n be a positive integer and let F be a field. Let $A, B \in \mathcal{M}_{n \times n}(F)$ satisfy the condition that A and $A+B$ are nonsingular. Show that $I+A^{-1} B$ is nonsingular and that $\left(I+A^{-1} B\right)^{-1}=(A+B)^{-1} A$.

Exercise 549

Find matrices A and B in $\mathcal{M}_{2 \times 2}(\mathbb{R})$ satisfying $A^{2}=B^{2}=O$ such that $A+i B$ is a nonsingular matrix in $\mathcal{M}_{2 \times 2}(\mathbb{C})$.

Exercise 550

Let F be a field and let $A=\left[\begin{array}{ccc}1 & 0 & b \\ 0 & 1 & 0 \\ a & 0 & 1\end{array}\right] \in \mathcal{M}_{3 \times 3}(F)$, where $a b \neq 1$. Show that A is nonsingular and calculate A^{-1}.

Exercise 551

Let $c \neq 0$ be an element of a field F and let $A=\left[\begin{array}{cccc}c & 1 & 0 & 0 \\ 0 & c & 1 & 0 \\ 0 & 0 & c & 1 \\ 0 & 0 & 0 & c\end{array}\right] \in \mathcal{M}_{4 \times 4}(F)$. Is A is nonsingular? If so, find A^{-1}.

Exercise 552

Let $n>1$ and let $B \in \mathcal{M}_{n \times n}(\mathbb{Q})$ be the matrix all of the entries of which are equal to 1 . Show that there exists a matrix $A \in \mathcal{M}_{n \times n}(\mathbb{Q})$ satisfying the condition that $A+c B$ is nonsingular for all rational numbers c.

Exercise 553

Let $n>1$ and let $B \in \mathcal{M}_{n \times n}(\mathbb{Q})$ be the matrix all of the entries of which are equal to 1 . Find a rational number t such that $(I-B)^{-1}=I-t B$.

Exercise 554

Let n be a positive integer and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ be the matrix defined by $a_{i j}=\min \{i, j\}$ for all $1 \leq i, j \leq n$. Show that A is nonsingular.

Exercise 555

Let $A=\left[a_{i j}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{R})$ be the matrix defined by

$$
a_{i j}= \begin{cases}2 & \text { if } i=j-1, \\ 1 & \text { otherwise } .\end{cases}
$$

Show that A is nonsingular and calculate A^{-1}.

Exercise 556

For each real number a, let $G(a)=\left[\begin{array}{rr}\cos (a) & \sin (a) \\ -\sin (a) & \cos (a)\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. Given real numbers a, b, and c, show that $G(a, b, c)=\left[\begin{array}{cc}G(a) & G(b) \\ O & G(c)\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{R})$ is nonsingular, and find $G(a, b, c)^{-1}$.

Exercise 557

Find a singular matrix in $\mathcal{M}_{3 \times 3}(\mathbb{Q})$ the entries of which (in some order) are the integers $1,2, \ldots, 9$.

Exercise 558

Let n be a positive integer and let F be a field. Given elements $b, c \in F$, let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ be the matrix defined by

$$
a_{i j}= \begin{cases}b & \text { if } i=j, \\ c & \text { otherwise }\end{cases}
$$

Find necessary and sufficient conditions for A to be nonsingular.

Exercise 559

Give an example of a singular matrix in $\mathcal{M}_{3 \times 3}(\mathbb{Q})$ the entries of which are distinct prime positive integers, or show that no such matrix can exist.

Exercise 560
Let F be a field and let $D=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right] \in \mathcal{M}_{2 \times 2}(F)$. Let $A \in \mathcal{M}_{2 \times 2}(F)$ satisfy the condition that $A^{T} D A=D$. Show that A is nonsingular.

Exercise 561

Let n be a positive integer and let F be a field. Is the set of all singular matrices in $\mathcal{M}_{n \times n}(F)$ closed under taking products?

Exercise 562

Let n be a positive integer, let F be a field, and let $A, B \in \mathcal{M}_{n \times n}(F)$. Show that A and B are both nonsingular if and only if the matrix $\left[\begin{array}{ll}A & O \\ O & B\end{array}\right] \in \mathcal{M}_{2 n \times 2 n}(F)$ is nonsingular.

Exercise 563

Write the matrix $\left[\begin{array}{rr}1 & -2 \\ 2 & 2\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ as a product of elementary matrices.

Exercise 564

Find the change of basis matrix from the canonical basis B of \mathbb{R}^{3} to the basis $D=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$ and the change of basis matrix from D to B.

Exercise 565

Let $G=\left\{\left.\left[\begin{array}{ll}a & a \\ a & a\end{array}\right] \right\rvert\, 0 \neq a \in \mathbb{R}\right\}$. Show that there exists a matrix $E \in G$ satisfying the condition that $E A=A=A E$ for all $A \in G$. For each $A \in G$, show that there exists a matrix $A^{\ddagger} \in G$ satisfying $A A^{\ddagger}=E=A^{\ddagger} A$.

Exercise 566

Let F be a field. Given matrices $A, B \in \mathcal{M}_{2 \times 2}(F)$, find the set of all matrices $C \in \mathcal{M}_{2 \times 2}(F)$ satisfying $(A B-B A) C=C(A B-B A)$.

Exercise 567

Let F be a field and let G be the set of all automorphisms of F^{2} which are represented with respect to the canonical basis by a matrix of the form $\left[\begin{array}{cc}a & b \\ 0 & a^{-1}\end{array}\right]$. Is G a group of automorphisms of F^{2} ?

Exercise 568

Let G be the set of all automorphisms of \mathbb{Q}^{2} which are represented with respect to the canonical basis by a matrix of the form $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$, where $a, d>0$. Is G a group of automorphisms of \mathbb{Q}^{2} ?

Exercise 569

Let $W_{1} \subseteq W_{2} \subseteq \cdots \subseteq W_{n}$ be a fixed sequence of subspaces of a vector space V finitely generated over a field F. If $\alpha \in \operatorname{Aut}(V)$, we say that given sequence is an α-fan if and only if each of the W_{i} is invariant under α. Show that $G=\{\alpha \in \operatorname{Aut}(V) \mid$ the given sequence is an α-fan $\}$ is a group of automorphisms of V.

Exercise 570
For any real number t and any positive integer n, we can define the matrix $P(n, t) \in \mathcal{M}_{n \times n}(\mathbb{R})$ to equal the identity matrix I in the case $t=0$ and otherwise to equal the matrix [$p_{i j}$] defined by

$$
p_{i j}= \begin{cases}0 & \text { if } i<j, \\ \binom{i-1}{j-1} t^{i-j} & \text { otherwise } .\end{cases}
$$

Show that $P(n, s) P(n, t)=P(n, s+t)$ for all $s, t \in \mathbb{R}$. In particular, show that each matrix $P(n, t)$ is nonsingular.

Exercise 571

Let F be a field and let X be an indeterminate over F. Find matrices P and Q in $\mathcal{M}_{2 \times 2}(F[X])$ such that the matrix $P\left[\begin{array}{cc}1+X^{2} & X \\ X & 1+X\end{array}\right] Q$ is a diagonal matrix.

Exercise 572

Let n be a positive integer and let $\alpha: \mathcal{M}_{2 \times 2}(\mathbb{C}) \rightarrow \mathcal{M}_{4 \times 4}(\mathbb{R})$ be the function defined by $\alpha:\left[\begin{array}{ll}a+b i & c+d i \\ e+f i & g+h i\end{array}\right] \mapsto\left[\begin{array}{rrrr}a & b & c & d \\ -b & a & -d & c \\ e & f & g & h \\ -f & e & -h & g\end{array}\right]$. Show that α is a linear transformation of vector spaces over \mathbb{R}. Is it a homomorphism of unital \mathbb{R} algebras?

Exercise 573
Let F be a field and let $A \in \mathcal{M}_{2 \times 2}(F)$. Explicitly find a nonsingular matrix $P \in \mathcal{M}_{2 \times 2}(F)$ satisfying $P A P^{-1}=A^{T}$.

Exercise 574

Let Y be the subspace of $\mathcal{M}_{3 \times 3}(\mathbb{R})$ consisting of all skew-symmetric matrices. Show that Y is isomorphic to \mathbb{R}^{3} and find an isomorphism $\alpha: \mathbb{R}^{3} \rightarrow Y$ satisfying the condition that $\alpha(v) w=v \times w$ for all $v, w \in \mathbb{R}^{3}$.

Exercise 575

Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. Does there exist a matrix $B \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ satisfying $B^{2}=A$? Does there exist a matrix $C \in \mathcal{M}_{4 \times 4}(\mathbb{R})$ satisfying $C^{2}=$ $\left[\begin{array}{ll}A & O \\ O & A\end{array}\right]$?

Exercise 576

Let $A=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{Q})$. Find the set of all monic polynomials $p(X) \in \mathbb{Q}[X]$ of degree 2 satisfying the condition that $p(A)^{2}=A$. (Caution: this set may be empty.)

Exercise 577

(Simpson's rule) Let $a<b$ be real numbers and let $c=\frac{1}{2}(a+b)$ be the midpoint of the interval $[a, b]$. Given a continuous function $f \in \mathbb{R}^{[a, b]}$, use Lagrange interpolation to show that $\int_{a}^{b} f(t) d t$ is approximately equal to $\frac{b-a}{6}[f(a)+4 f(c)+$ $f(b)]$.

The eighteenth-century British mathematician Thomas Simpson was noted for his work on numerical approximations in calculus.

Exercise 578

Let F be a field and let $k<n$ be positive integers. Let $A \in \mathcal{M}_{n \times n}(F)$ be written in block form as $\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$, where A_{11} is nonsingular. Let $v, w \in F^{k}$
and $v^{\prime}, w^{\prime} \in F^{n-k}$ and let $B=\left[\begin{array}{cc}A_{11}^{-1} & -A_{11}^{-1} A_{12} \\ A_{21} A_{11}^{-1} & A_{22}-A_{21} A_{11}^{-1} A_{12}\end{array}\right]$. Show that
$A\left[\begin{array}{c}v \\ v^{\prime}\end{array}\right]=\left[\begin{array}{c}w \\ w^{\prime}\end{array}\right]$ if and only if $B\left[\begin{array}{c}w \\ v^{\prime}\end{array}\right]=\left[\begin{array}{c}v \\ w^{\prime}\end{array}\right]$.

Systems of Linear Equations

Let k and n be positive integers. The classical problem of linear algebra is to find all solutions (if any exist) to a system of k linear equations in n unknowns of the form

$$
\begin{gathered}
a_{11} X_{1}+\cdots+a_{1 n} X_{n}=b_{1}, \\
a_{21} X_{1}+\cdots+a_{2 n} X_{n}=b_{2}, \\
\vdots \\
a_{k 1} X_{1}+\cdots+a_{k n} X_{n}=b_{k},
\end{gathered}
$$

where the $a_{i j}$ and the b_{i} are scalars belonging to some field F and the X_{j} are variables which take values in the field.

What about infinite systems of equations? The study of infinite systems of linear equations over \mathbb{R} was indeed initiated by Hill and formalized by Poincaré but has since been subsumed into functional analysis and will not be considered here. It is known that every finite subsystem of an infinite system of linear equations over an arbitrary field F has a solution over F if and only if the infinite system has a solution over F.

Example Let $a<b$ be real numbers and let $V=C(a, b)$. If W is a subspace of V of dimension n then the interpolation problem of V is the following: given a function $f \in V$ and given real numbers $a \leq t_{1}<\cdots<t_{n} \leq b$, find a function $g \in W$ satisfying $f\left(t_{j}\right)=g\left(t_{j}\right)$ for $1 \leq j \leq n$. If we are given a basis $\left\{g_{1}, \ldots, g_{n}\right\}$ of W
then we want to find real numbers c_{1}, \ldots, c_{n} satisfying $\sum_{i=1}^{n} c_{i} g_{i}\left(t_{j}\right)=f\left(t_{j}\right)$ for all $1 \leq j \leq n$. In other words, we want to solve a system of linear equations of the above form, where $k=n, a_{i j}=g_{j}\left(t_{i}\right)$ and $b_{i}=f\left(t_{i}\right)$ for all $1 \leq i, j \leq n$.

Example In Proposition 4.2, we noted that if F is a field and if $f(X)$ and $g(X) \neq 0$ are elements of $F[X]$, then there exist unique polynomials $u(X)$ and $v(X)$ in $F[X]$ satisfying $f(X)=g(X) u(X)+v(X)$ and $\operatorname{deg}(v)<\operatorname{deg}(g)$. If we set

$$
g(X)=\sum_{i=0}^{k} a_{i} X^{i} \quad \text { and } \quad f(x)=\sum_{i=1}^{n} b_{i} X^{i},
$$

then the coefficients of $u(X)=\sum_{i=0}^{n-k} c_{i} X^{i}$ are found by solving the system of linear equations

$$
\begin{aligned}
a_{k} Y_{0}+a_{k-1} Y_{1}+\cdots+a_{0} Y_{k} & =b_{k}, \\
a_{k} Y_{1}+a_{k-1} Y_{2}+\cdots+a_{0} Y_{k+1} & =b_{k-1}, \\
& \vdots \\
a_{k} Y_{n-k-1}+a_{k-1} Y_{n-k} & =b_{n-1}, \\
a_{k} Y_{n-k} & =b_{n}
\end{aligned}
$$

by any of the methods we will discuss.
Example Sometimes we can transform systems of nonlinear equations into systems of linear equations. For example, suppose that we want to find positive real numbers r_{1}, r_{2}, and r_{3} satisfying the following nonlinear system of equations:

$$
\begin{aligned}
r_{1} r_{2} r_{3} & =1, \\
r_{1}^{3} r_{2}^{2} r_{3}^{2} & =27, \\
r_{3} / r_{1} r_{2} & =81 .
\end{aligned}
$$

Since each of the integers on the right is a power of 3 , we can take the logarithm to the base 3 of both sides of each equation. Setting $X_{i}=\log _{3}\left(r_{i}\right)$ for $1 \leq i \leq 3$, the system now becomes linear

$$
\begin{array}{r}
X_{1}+X_{2}+X_{3}=0, \\
3 X_{1}+2 X_{2}+2 X_{3}=3, \\
-X_{1}-X_{2}+X_{3}=4,
\end{array}
$$

and this has a unique solution (which we can find by methods to be discussed in this chapter) $X_{1}=3, X_{2}=-5$, and $X_{3}=2$, showing that the original system has a solution $r_{1}=27, r_{2}=1 / 243$, and $r_{3}=9$.

A system of linear equations of the above form is homogeneous if and only if $b_{i}=0$ for all $1 \leq i \leq k$; otherwise it is nonhomogeneous. At this stage, we do not yet know answers to the following questions:
(1) Does a given system of linear equations have a solution?
(2) If it has a solution, is that solution unique?
(3) If the solution is not unique, can we characterize the set of all solutions?
(4) If there are solutions, how do we compute them efficiently?

In order to answer these questions, we have to move to the language of matrices. The use of matrices for this purpose was developed in Europe in the nineteenth century by Cayley, Sylvester, and Laguerre. However, the real pioneers were the Chinese and Japanese mathematicians. During the time of the Han dynasty in China, around 2000 years ago, the Nine Chapters on the Mathematical Art (Jiuzhang Suanshu) presented a method for solving systems of linear equations using matrices. A major commentary on this was subsequently written by Liu Hui. This, in turn, formed the basis for the later work of Seki.

To see how this is done, let us write the above system in the form

$$
\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{k 1} & \ldots & a_{k n}
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{k}
\end{array}\right] .
$$

The matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{k \times n}(F)$ is the coefficient matrix of the system. If we set $w=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{k}\end{array}\right] \in F^{k}$, then the matrix $\left[\begin{array}{cc}A & w\end{array}\right] \in \mathcal{M}_{k \times(n+1)}(F)$ is called the extended coefficient matrix of the system. The set of all vectors $v=\left[\begin{array}{c}d_{1} \\ \vdots \\ d_{n}\end{array}\right] \in F^{n}$ satisfying $A v=w$ is the solution set of the system. This is clearly equal to $\alpha^{-1}(w)$, where $\alpha: F^{n} \rightarrow F^{k}$ is the linear transformation satisfying $\Phi_{B D}(\alpha)=A$, where B and D are the canonical bases of F^{n} and F^{k}, respectively. In particular, if the system is homogeneous then its solution set is just the kernel of α, and is called the solution space of the system.

We note the following simple but important point: if F is a subfield of a field K and if k and n are positive integers, then any matrix A in $\mathcal{M}_{k \times n}(F)$ also belongs to $\mathcal{M}_{k \times n}(K)$ and any vector $v \in F^{n}$ also belongs to K^{n}. Therefore, if $w \in F^{k}$, any element of the solution set of $A v=w$, considered as a system of linear equations over F, remains a solution when we consider this as a system of linear equations over K.

Proposition 10.1 The solution set of a homogeneous system of linear equations in n unknowns is a subspace of F^{n}.

Proof This is a direct consequence of Proposition 6.4.
For nonhomogeneous systems, the situation is a bit more complicated.

Proposition 10.2 Let $A X=w$ be a nonhomogeneous system of linear equations in n unknowns over a field F and let $v_{0} \in F^{n}$ be a solution to this systems. Then the solution set of the system is the set of all vectors in F^{n} of the form $v_{0}+v$, where v is a solution to the homogeneous system $A X=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$.

Proof This is an immediate consequence of Proposition 6.6.
We should emphasize that the solution set of a nonhomogeneous system of linear equations is not a subspace of F^{n} but rather an affine subset of that space.

Example If we identify \mathbb{R}^{2} with the Euclidean plane by associating each vector $\left[\begin{array}{l}a \\ b\end{array}\right]$ with the point with coordinates (a, b), then we see its subspaces of dimension 1 are precisely the straight lines going through the origin. The solutions of linear equations of the form $a_{1} X_{1}+a_{2} X_{2}=b$, where $b \neq 0$, and at least one of the a_{i} is also nonzero, are the straight lines in the plane which do not go through the origin.

We are still left with the question of how to actually find a solution to a system of linear equations. Here we can distinguish between two approaches:
Direct Methods These methods involve the manipulation of the matrix A, either replacing it with another matrix which is easier to work with or factoring it into a product of matrices which are easier to work with, and thus reducing the difficulty of the problem.
Iterative Methods These methods involve selecting a likely solution for the system and then repeatedly modifying it to obtain a sequence of vectors which (hopefully)
will converge to an actual solution to the system. Such methods work, of course, only if our vector space is one in which the notion of convergence is meaningfully defined. As we shall see, this is possible when the field of scalars is \mathbb{R} or \mathbb{C}.
We begin by looking at direct methods. Let P be a nonsingular matrix in $\mathcal{M}_{k \times k}(F)$. A vector $v \in F^{n}$ is a solution to the system $A X=w$ over F if and only if it is a solution to the system $(P A) X=P w$. In particular, this is true for elementary matrices. Thus, given a system of linear equations, we can change the order of the equations, multiply one of the equations by a nonzero scalar, or add a scalar multiple of one equation to another, without changing the solution set of the system, so long as we do the same thing on both sides of the equal sign. In order to do this efficiently, it is best to work with the extended coefficient matrix $[A w]$ and perform elementary operations on it to reduce it to a convenient form.

Let F be a field, let k and n be positive integers, and let $B=\left[b_{i j}\right] \in \mathcal{M}_{k \times n}(F)$. The matrix B is in row echelon form if and only if for each $1 \leq i \leq k$ there exists an integer $1 \leq s(i) \leq n+1$ such that
(1) $b_{i j}=0$ for all $1 \leq j<s(i)$ but $b_{i, s(i)} \neq 0$ if $s(i) \leq n$; and
(2) $s(1)<s(2)<\cdots<s(k)$.

Example The matrices $\left[\begin{array}{lllll}1 & 6 & 7 & 7 & 1 \\ 0 & 9 & 2 & 1 & 1 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$ and $\left[\begin{array}{lllll}8 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ are in row echelon form. The matrix $\left[\begin{array}{ccccc}1 & 5 & 2 & 9 & 0 \\ 0 & 0 & 1 & 5 & 4 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 7\end{array}\right]$ is not in row echelon form.

Example If n is a positive integer and if $B \in \mathcal{M}_{n \times n}(F)$ is in row echelon form, then B is surely upper triangular. However, $\left[\begin{array}{llll}1 & 0 & 2 & 7 \\ 0 & 0 & 3 & 8 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 5\end{array}\right]$ is an upper-triangular matrix which is not in row echelon form.

We claim that for any matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{k \times n}(F)$ is row equivalent to a matrix in row echelon form. By Proposition 9.4, this is equivalent to saying that A can be transformed into a matrix in row echelon form by a series of elementary operations, as follows:
(1) Find the leftmost column of A which has a nonzero entry and interchange rows if necessary, so that this entry is in the first row. Thus we now have a matrix A in which $a_{1 h} \neq 0$ and $a_{i j}=0$ for all $1 \leq i \leq k$ and all $1 \leq j<h$.
(2) For each $1<i \leq k$, if $a_{i h} \neq 0$ then we multiply the first row by $-a_{i j} a_{1 h}^{-1}$ and add it to the i th row, which creates a new row in which the (i, h)-entry is equal to 0 . Thus, we now have a matrix in which $a_{i h}=0$ for all $1<i \leq k$.
(3) Now consider the submatrix of A from which we deleted the first row and the first h columns, and repeat the above procedure.

Example Let us begin with the matrix $A=\left[\begin{array}{rrrr}1 & 2 & 3 & 1 \\ 2 & 1 & 4 & 2 \\ 1 & -1 & 1 & 1\end{array}\right] \in \mathcal{M}_{3 \times 4}(\mathbb{R})$. We already have $a_{11} \neq 0$. Multiplying the first row by -2 and adding it to the second row, we obtain $\left[\begin{array}{rrrr}1 & 2 & 3 & 1 \\ 0 & -3 & -2 & 0 \\ 1 & -1 & 1 & 1\end{array}\right]$ and then multiplying the first row by -1 and adding it to the third row, we obtain $\left[\begin{array}{rrrr}1 & 2 & 3 & 1 \\ 0 & -3 & -2 & 0 \\ 0 & -3 & -2 & 0\end{array}\right]$. We also already have $a_{22} \neq 0$. Multiplying the second row by -1 and adding it to the third row, we obtain $\left[\begin{array}{rrrr}1 & 2 & 3 & 1 \\ 0 & -3 & -2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, and this is in row echelon form.

If $A=\left[a_{i j}\right] \in \mathcal{M}_{k \times n}(F)$ is a matrix in row echelon form, and if the h th row of A contains nonzero entries, then the leftmost nonzero entry of the row is the leading entry. The matrix A is in reduced row echelon form if it is in row echelon form and, in addition, satisfies the following additional conditions:
(1) The leading entry in each nonzero row is equal to 1 ;
(2) If $a_{h j}$ is a leading entry, then $a_{i j}=0$ for all $i \neq h$.

Any matrix in row echelon is row-equivalent to one in reduced row echelon form; that is to say, such a matrix can be converted to one in reduced row echelon form by performing additional elementary operations: first, we multiply each nonzero row by the multiplicative inverse of its leading entry, to obtain a matrix in which the leading entry of each nonzero row equals 1 . Then, if $a_{h j}$ is a leading entry and if $i<h$, we multiply the h th row by $-a_{i j}$ and add it to the i th row, which will give us a matrix with the (i, j)-entry equal to 0 . The reduced row echelon form of any given matrix is clearly unique.

Example Let us go back and look at the matrix $\left[\begin{array}{rrrr}1 & 2 & 3 & 1 \\ 0 & -3 & -2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ in row echelon form. The leading entry of the first row is already equal to 1 . Multiplying the second row by $-\frac{1}{3}$ to obtain, $\left[\begin{array}{llll}1 & 2 & 3 & 1 \\ 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, a matrix in which the leading entry of the second row is equal to 1 as well. Now multiply the second row by -2 and add it to the first row, to obtain $\left[\begin{array}{llll}1 & 0 & \frac{8}{3} & 1 \\ 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, which is in reduced row echelon form.

Example Even this very simple algorithm can lead to computational problems. Let n be a positive integer and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ be the matrix defined as follows:

$$
a_{i j}= \begin{cases}1 & \text { if } i=j \text { or } j=n \\ -1 & \text { if } i>j \\ 0 & \text { otherwise }\end{cases}
$$

If we use the above method to reduce A to reduced row echelon form we obtain a matrix $B=\left[b_{i j}\right]$ where

$$
b_{i j}= \begin{cases}1 & \text { if } i=j<n \\ 2^{i-1} & \text { for } j=n \\ 0 & \text { otherwise }\end{cases}
$$

If n is sufficiently large, the element $b_{n n}$ may be considerably corrupted due to roundoff and truncation error.

Reduction of a matrix in $\mathcal{M}_{k \times n}(F)$ to reduced row-echelon form depends strongly on the fact that every nonzero element in a field has a multiplicative inverse. If we are considering matrices in $\mathcal{M}_{k \times n}(K)$, where K is the unital commutative associative algebra of polynomials in one or several variables over F, this now longer holds. In such situations, however, it is possible to reduce a matrix to a form known as Howell Canonical Form, which is equivalent to row-echelon form with leading entries equal to 1 in the case we are working over a field. This is important for computations since, as we will see, algebras of the form $\mathcal{M}_{k \times n}(F[X])$ have an important part to play in the theory we are developing.

Now let us return to the system of linear equations $A X=w$ in n unknowns and consider methods of solution. The most well-known is Gaussian elimination or the Gauss-Jordan method. In this method, we first perform elementary operations on the extended coefficient matrix [$A w$] to bring it to reduced row echelon form. Having done this, we now have a new system of linear equations $A^{\prime} X=w^{\prime}$, the solution set of which is the same as that of the original system. Let t be the greatest integer i such that the i th row has nonzero entries. There are several possibilities:
(1) $b_{t} \neq 0$ but $a_{t j}^{\prime}=0$ for all $1 \leq j \leq n$. Then the system has no solutions, and we are done.
(2) There is precisely one index j such that $a_{t j}^{\prime} \neq 0$. Then this must in fact be the leading entry of the t th row and so $a_{t j}^{\prime}=1$. This means that in any element of the solution set of the system we must have the j th entry equal to b_{j}. We can therefore substitute b_{j} for X_{j} in each of the other equations, and reduce the system to one of equations of $n-1$ unknowns.
(3) There are several indices j such that $a_{t j}^{\prime} \neq 0$, say those in columns $h_{1}<h_{2}<$ $\cdots<h_{m}$. Then $a_{t h_{1}}^{\prime}$ is the leading entry of the t th row and so equals 1 . Moreover, for any values z_{1}, \ldots, z_{m} we substitute for $X_{h_{2}}, \ldots, X_{h_{m}}$, we will get a solution to the system with these values and with $b_{t}-\sum_{s=2}^{m} z_{s}$ substituted
for $X_{h_{1}}$. Thus we can consider the z_{i} as parameters of a general solution and again reduce the system to one in a smaller number of unknowns.
(4) Having reduced the system, we now recursively apply the previous steps until the system is solved.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach © Universität Göttingen, Sammlung Sternwarte
Carl Friedrich Gauss, who lived in Germany at the beginning of the nineteenth century, is considered to be the leading mathematician of all times, as well as a physicist and astronomer of the first rank. He developed this method in connection with his work in astronomy in 1809. Gaussian elimination first appeared in print in a handbook by German geodesist Wilhelm Jordan, who applied the method to problems in surveying. The first computer program to solve a system of linear equations by Gaussian elimination was written by Lady Augusta Ada Lovelace, a student of De Morgan and daughter of the poet Lord Byron, who developed software for Charles Babbage's (never completed) mechanical computer in the nineteenth century. Her program was capable of solving systems of 10 linear equations in 10 unknowns.

Strassen's insight that Gaussian elimination may not be the optimal method of solving systems of linear equations, as had been previously thought, led to the development of his method of matrix multiplication.

Example Let us consider the system of linear equations

$$
\begin{aligned}
3 X_{1}+2 X_{2}+X_{3} & =0 \\
-2 X_{1}+X_{2}-X_{3} & =2 \\
2 X_{1}-X_{2}+2 X_{3} & =-1
\end{aligned}
$$

over the field \mathbb{R}. The extended coefficient matrix of this system is

$$
\left[\begin{array}{rrrr}
3 & 2 & 1 & 0 \\
-2 & 1 & -1 & 2 \\
2 & -1 & 2 & -1
\end{array}\right]
$$

and this is row equivalent to the matrix $\left[\begin{array}{rrrr}1 & \frac{2}{3} & \frac{1}{3} & 0 \\ 0 & 7 & -1 & 6 \\ 0 & 0 & 1 & 1\end{array}\right]$ in row echelon form, which is in turn row equivalent to the matrix $\left[\begin{array}{rrrr}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$ in reduced row echelon form. Thus we see that the solution set of the system is $\left\{\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right]\right\}$.

Example Let us consider the system of linear equations

$$
\begin{aligned}
X_{1}+X_{2} & =1, \\
X_{1}-X_{2} & =3, \\
-X_{1}+2 X_{2} & =-2
\end{aligned}
$$

over the field \mathbb{R}. The extended coefficient matrix of this system equals

$$
\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 3 \\
-1 & 2 & -2
\end{array}\right],
$$

and this is row equivalent to the matrix $\left[\begin{array}{rrr}1 & 1 & 1 \\ 0 & -2 & 2 \\ 0 & 0 & 2\end{array}\right]$ in row echelon form, which is row equivalent to the matrix $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ in reduced row echelon form. Therefore, this system has no solutions at all.

Example Let us consider the system of linear equations

$$
\begin{aligned}
X_{1}+2 X_{2}+X_{3} & =-1, \\
2 X_{1}+4 X_{2}+3 X_{3} & =3, \\
3 X_{1}+6 X_{2}+4 X_{3} & =2
\end{aligned}
$$

over \mathbb{R}. The extended coefficient matrix of this system is $\left[\begin{array}{rrrr}1 & 2 & 1 & -1 \\ 2 & 4 & 3 & 3 \\ 3 & 6 & 4 & 2\end{array}\right]$ and this is row equivalent to $\left[\begin{array}{rrrr}1 & 2 & 1 & -1 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0\end{array}\right]$ in row echelon form, which is in turn row equivalent to $\left[\begin{array}{rrrr}1 & 2 & 0 & -6 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0\end{array}\right]$ in reduced row echelon form. From the second row, we see that we must have $X_{3}=5$. From the first row, we have $X_{1}+2 X_{2}=-6$ and so, for each value $X_{2}=z$, we have a solution with $X_{1}=-6-2 z$. Therefore, the solution set to our system is $\left\{\left.\left[\begin{array}{c}-6-2 z \\ z \\ 5\end{array}\right] \right\rvert\, z \in \mathbb{R}\right\}$.

Gaussian elimination can also be used to check if a set of vectors in F^{k} is linearly independent. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of vectors in F^{k}, where $v_{j}=\left[\begin{array}{c}a_{1 j} \\ \vdots \\ a_{k j}\end{array}\right]$ for all j. We want to know if there are scalars b_{1}, \ldots, b_{n} in F, not all equal to 0 , satisfying $\sum_{j=1}^{n} b_{j} v_{j}=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$. That is, we want to know if the homogeneous systems of linear equations $A X=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$ has a nonzero solution, where $A=\left[a_{i j}\right] \in \mathcal{M}_{k \times n}(F)$.

Example Let us check if the subset $\left\{\left[\begin{array}{r}1 \\ -1 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{r}3 \\ -3 \\ 6 \\ 4\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 0 \\ 4\end{array}\right]\right\}$ of \mathbb{Q}^{4} is linearly dependent, and to do so we need to consider the matrix $A=\left[\begin{array}{rrrr}1 & 3 & -1 & 0 \\ -1 & -3 & 1 & 0 \\ 3 & 6 & 0 & 0 \\ 4 & 4 & 4 & 0\end{array}\right]$. This matrix is row equivalent to the matrix $\left[\begin{array}{rrrr}1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ in reduced row echelon form. Therefore, the set of solutions to the homogeneous system $A X=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$
is $\left\{\left.\left[\begin{array}{r}-2 z \\ z \\ z\end{array}\right] \right\rvert\, z \in \mathbb{Q}\right\}$ so that if we pick one such nonzero element, say $\left[\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right]$, we see that $(-2)\left[\begin{array}{r}1 \\ -1 \\ 3 \\ 4\end{array}\right]+\left[\begin{array}{r}3 \\ -3 \\ 6 \\ 4\end{array}\right]+\left[\begin{array}{r}-1 \\ 1 \\ 0 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$, showing that the set is indeed linearly dependent.

We note that if $A \in \mathcal{M}_{k \times n}(F)$ then the number of arithmetic operations needed so solve a system of linear equations of the form $A X=w$ using Gaussian elimination, is no more than $\frac{1}{6} k(k-1)(3 n-k-2)$ if $k<n$ and no more than $\frac{1}{6} n\left[3 k n+3(k-n)-n^{2}-2\right]$ otherwise. Of course, if the matrix A is of a special form, this procedure can be much faster. For example, if $A \in \mathcal{M}_{n \times n}(F)$ is a
tridiagonal matrix, then a system of equations of the form $A X=w$ can be solved using $3 n$ additions/subtractions and $5 n$ multiplications.

If $A \in \mathcal{M}_{k \times n}(F)$ is a nonsingular matrix which can be written in the form $L U$, where L is lower triangular and U is upper triangular, then a system of linear equations of the form $U X=w$ is easy to solve using Gaussian elimination, since U is already in row-echelon form. Moreover, since U must also be nonsingular, this system has a unique solution $y=U^{-1} w$. Then the system $A X=w$ has a unique solution, which is also the solution to the system $L X=y$ and that system too is easy to solve. We therefore see the importance of the $L U$-decomposition of matrices, assuming that one exists.

Given a matrix $A \in \mathcal{M}_{k \times n}(F)$, we define the column space of A to be the subspace of F^{k} generated by the set of all columns of A. The dimension of the column space of A is called the rank of A. Moreover, there exists a linear transformation $\alpha: F^{n} \rightarrow F^{k}$ satisfying the condition that $\Phi_{B D}(\alpha)=A$, where B and D be the canonical bases of F^{n} and F^{k}, respectively, and it is clear that the column space of A is just $\operatorname{im}(\alpha)$. Similarly, we define the row space of A to be the subspace of $\mathcal{M}_{1 \times n}(F)$ generated by the rows of A. We will show that the dimension of this space is also equal to the rank of A.

Proposition 10.3 Let F be a field, let k and n be positive integers, and let $A \in M_{k \times n}(F)$ and let $w=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{k}\end{array}\right] \in F^{k}$. Then the system of linear equations $A X=w$ has a solution if and only if w belongs to the column space of A.

Proof If $v=\left[\begin{array}{c}d_{1} \\ \vdots \\ d_{n}\end{array}\right]$ is a solution of the system $A X=w$ then

$$
w=\left[\begin{array}{c}
\sum_{j=1}^{n} a_{1 j} d_{j} \\
\vdots \\
\sum_{j=1}^{n} a_{k j} d_{j}
\end{array}\right]=\sum_{j=1}^{n} d_{j}\left[\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{k j}
\end{array}\right]
$$

and so w is a linear combination of the columns of A. Conversely, if we assume that there exist scalars d_{1}, \ldots, d_{n} in F such that $w=\sum_{j=1}^{n} d_{j}\left[\begin{array}{c}a_{1 j} \\ \vdots \\ a_{k j}\end{array}\right]$, then $v=\left[\begin{array}{c}d_{1} \\ \vdots \\ d_{n}\end{array}\right]$ is a solution of the given system.

In particular, we get the following consequence of this result.

Proposition 10.4 Let F be a field, let k and n be positive integers, and let $A \in M_{k \times n}(F)$ and let $w=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{k}\end{array}\right] \in F^{k}$. Then the system of linear equations $A X=w$ has a solution if and only if the rank of the coefficient matrix A is equal to the rank of the extended coefficient matrix.

Now let us return to the problem of identifying the solution sets of homogeneous systems of linear equations.

Proposition 10.5 Let F be a field, let k and n be positive integers, and let $A \in M_{k \times n}(F)$ be a matrix the columns of which are vectors y_{1}, \ldots, y_{n} in F^{k}. Assume these columns are arranged such that $\left\{y_{1}, \ldots, y_{r}\right\}$ is a basis for the column space of A, for some $r \leq n$. Moreover, for all $r<h \leq n$, let us select scalars $b_{h 1}, \ldots, b_{h n}$ such that:
(1) $y_{h}=b_{h 1} y_{1}+\cdots+b_{h r} y_{r}$;
(2) $b_{h h}=-1$;
(3) $b_{h j}=0$ otherwise.

For each $r<h \leq n$, let $v_{h}=\left[\begin{array}{c}b_{h 1} \\ \vdots \\ b_{h n}\end{array}\right] \in F^{n}$. Then $\left\{v_{r+1}, \ldots, v_{n}\right\}$ is a basis for the solution space of the homogeneous system of linear equations $A X=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$.
(Comment before the proof: Since $\left\{y_{1}, \ldots, y_{n}\right\}$ is a set of generators for the column space of A, it contains a subset that is a basis. The assumption that this is $\left\{y_{1}, \ldots, y_{r}\right\}$ is for notational convenience only.)

Proof If $r=n$ then the solution space of the system of linear equations is $\left\{\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]\right\}$, and so the result is immediate. Hence let us assume that $r<n$. If $r<h \leq n$, then $A v_{h}=\sum_{j=1}^{r} b_{h j} y_{j}-y_{h}=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$, and so each v_{h} belongs to the solution space of $A X=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$. Moreover, the set $\left\{v_{r+1}, \ldots, v_{n}\right\}$ is linearly independent, since if
$\sum_{j=r+1}^{n} c_{j} v_{j}=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$ then for each $r<h \leq n$ we note that the h th entry on the left-hand side is $-c_{h}$ whereas the corresponding entry on the right-hand side is 0 , proving that $c_{h}=0$ for all $r<h \leq n$.

We are therefore left to show that $\left\{v_{r+1}, \ldots, v_{n}\right\}$ is a generating set for the solution space of the given homogeneous system. And, indeed, let $w=\left[\begin{array}{c}d_{1} \\ \vdots \\ d_{n}\end{array}\right]$ be a vector in this solution space. Then $w+\sum_{h=r+1}^{n} d_{h} v_{h}=\left[\begin{array}{c}e_{1} \\ \vdots \\ e_{n}\end{array}\right]$, where $e_{r+1}=$ $\cdots=e_{n}=0$. Therefore, this vector belongs to solution space of the system, and so $\sum_{h=q}^{r} e_{h} y_{h}=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$. However, since the set $\left\{y_{1}, \ldots, y_{r}\right\}$ is linearly independent, this implies that $e_{1}=\cdots=e_{r}=0$ as well. Therefore, $w=-\sum_{h=r+1}^{n} d_{h} v_{h}$, showing that $\left\{v_{r+1}, \ldots, v_{n}\right\}$ is a generating set for the solution space, as required.

As an immediate consequence of Proposition 10.5, we obtain the following result.

Proposition 10.6 Let F be a field, let k and n be positive integers, and let $A \in M_{k \times n}(F)$. Then the dimension of the solution space of the homogeneous system of linear equations $A X=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$ is $n-r$, where r is the rank of the coefficient matrix A.

We are now ready to prove the characterization of rank which we mentioned before.

Proposition 10.7 Let F be a field, let k and n be positive integers, and let $A \in M_{k \times n}(F)$. Then the rank of A equals the dimension of the row space of A.

Proof Let v_{1}, \ldots, v_{k} be the rows of A, which generate a subspace of $\mathcal{M}_{1 \times n}(F)$. We can reorder these rows in such a way that $\left\{v_{1}, \ldots, v_{t}\right\}$ is a basis for the row space, for some $1 \leq t \leq k$. This, as we know, does not change the solution space
of the homogeneous system of linear equations $A X=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$ and hence does not change the rank r_{A} of A. Let $B \in \mathcal{M}_{t \times n}(F)$ be the matrix obtained from A by deleting rows $t+1, \ldots, k$. The columns of B belong to F^{t} and so the rank r_{B} of B satisfies $r_{B} \leq t$, which implies that $n-t \leq n-r_{B}$. But we have already seen that the homogeneous systems of linear equations $A X=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$ and $B X=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$ have the same solution space and so, by Proposition 10.6, $n-t \leq n-r_{A}$. From this we conclude that $r_{A} \leq t$. We have thus shown that the rank of any matrix is less than or equal to the dimension of its row space. In particular, this is also true for A^{T}. But the rank of A^{T} is t, while the dimension of its row space is r_{A}, and so we have $t \leq r_{A}$ as well, proving equality.

Example Let us find a basis for the solution space of the system of linear equations $\left[\begin{array}{rrrr}1 & 2 & -3 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}X_{1} \\ X_{2} \\ X_{3} \\ X_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ over \mathbb{R}. We know that the coefficient matrix is row-equivalent to the matrix $\left[\begin{array}{rrrr}1 & 0 & 5 & 1 \\ 0 & 1 & -4 & 0\end{array}\right]$ in reduced row echelon form, and this matrix has rank 2. Therefore, the solution space of the system has dimension $4-2=2$. Indeed, it is easy to check that $\left\{\left[\begin{array}{r}-5 \\ 4 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for this solution space.

Gaussian elimination requires an order of magnitude of n^{3} arithmetic operations to solve a system of n linear equations in n unknowns. This computational overhead is quite significant if n is large (say, over 10,000), even with the use of supercomputers. As a result, there is considerable continuing research into finding faster methods of computation, especially in those cases in which we have additional information on the structure of the matrix of coefficients, originating in knowledge of the particular problem from which the system arose. Often this structural information is immediately noticeable, but sometimes it appears only after a sophisticated consideration of the problem.

Example It is often possible to show that the matrix we are interested in, while not itself having a special structure, is equal to the product of two matrices having a special structure, a situation which arises in many mathematical models. Let us consider one such case. An $n \times n$ symmetric Toeplitz matrix is a matrix $B=\left[b_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ satisfying the condition that there exist real numbers c_{0}, \ldots, c_{n-1} such that $b_{i j}=c_{h}$
whenever $|i-j|=h$. Thus, for example, the matrix $\left[\begin{array}{llll}1 & 2 & 0 & 7 \\ 2 & 1 & 2 & 0 \\ 0 & 2 & 1 & 2 \\ 7 & 0 & 2 & 1\end{array}\right]$ is a symmetric Toeplitz matrix. Clearly, the set of all symmetric Toeplitz matrices is a subspace of $\mathcal{M}_{n \times n}(\mathbb{R})$. However, it is not a subalgebra, since the product of two such matrices need not be a symmetric Toeplitz matrix. They are also convenient to store in a computer, since we need to keep in memory only the n scalars c_{0}, \ldots, c_{n-1}. Note that symmetric Toeplitz matrices are symmetric with respect to both main diagonals.

Many mathematical models in economics are built around solving systems of linear equations of the form $A X=w$, where A is a product of two symmetric Toeplitz matrices-a fact which emerges from a knowledge of economic theory.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach.
Otto Toeplitz was a twentieth-century German mathematician who studied endomorphisms of infinite-dimensional vector spaces.

The proper use of mathematical techniques, and especially computational techniques, also depends very much on a deep understanding of the particular problem one is dealing with. Also, it is crucial to emphasize once again that any method we use to solve a system of linear equations on a computer will induce errors as a result of roundoff and truncation in our computations. With some methods-such as Gaussian elimination-these errors tend to accumulate, whereas with others they often cancel each other out, within certain limits. It is therefore necessary, especially when we are dealing with large matrices, to have on hand several methods of handling such systems of equations and to be able to keep track of the way in which errors can propagate in each of the different methods at one's disposal. The matter of the numerical stability of solutions to such systems was investigated by Wilkinson, among many others.

> © Sergei Vostok (Faddeev); © Dr. Vera Simonova (Faddeeva).
> The problem computing solutions of systems of linear equations was the subject of considerable research in the early days of computers. Among the contributors were the Russian husband-andwife team of Dimitri Konstantinovich Faddeev and Vera Nikolaevna Faddeeva.

The following is a useful trick which we will need later.

Proposition 10.8 Let F be a subfield of a field K. Let k and n be positive integers and let $A \in \mathcal{M}_{k \times n}(F)$. Suppose that there exists a nonzero vector $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right] \in K^{n}$ satisfying $A x=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$. Then there exists a nonzero vector
$y \in F^{n}$ satisfying $A y=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$.

Proof Let $V=F\left\{x_{1}, \ldots, x_{n}\right\}$, which is a subspace of K, considered as a vector space over F. Let $E=\left\{v_{1}, \ldots, v_{p}\right\}$ be a basis for V over F and set $v=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{p}\end{array}\right] \in K^{p}$. Then there exists a nonzero matrix $B \in \mathcal{M}_{n \times p}(F)$ satisfying $B v=x$ and so $A B v=A x=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$. But E is linearly independent and so we must have $A B=O$. Now take y to be any nonzero column of B.

We now turn to iterative methods of solution of systems of linear equations. For simplicity, we will assume that our field of scalars is always \mathbb{R}. The basic idea is, as we have already noted, to guess a possible solution and then use this initial guess to compute a sequence of further approximations to the solution which, hopefully, will converge (in some topology) with relative rapidity. Usually, the initial guess is based on knowledge of the real-life problem which gave rise to the system of equations, something that can often be done with good accuracy. In very large and computationally-difficult situations (for example, weather prediction, chip design, large-scale economic models, computational acoustics, or the modeling the chemistry of polymer chains), one can even use Monte Carlo methods, based on statistical sampling and estimation techniques, to come up with an initial guess or even an approximate solution.

To illustrate this approach, let us consider the problem of solving a system of linear equations of the form $A X=w$, where $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ is a nonsingular matrix and $w=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right] \in \mathbb{R}^{n}$. We know that this system has a unique solution, namely $A^{-1} w$, but inverting the matrix A may be computationally timeconsuming and prone to error, so we are looking for another method. Suppose that we can write $A=E-D$, where E is some matrix which is easy to invert. Then if $v \in \mathbb{R}^{n}$ satisfies $A v=w$, we know that $E v=D v+w$ and so $v=E^{-1}(D v+w)$.

We now guess a value for v, call it $v^{(0)}$. Then, using this formula, we can define new vectors $v^{(1)}, v^{(2)}, \ldots$ iteratively by setting $v^{(h)}=E^{-1}\left(D v^{(h-1)}+w\right)$ for each $h>0$. This can be done relatively quickly since, by assumption, E^{-1} was relatively easy to compute and, having computed it once for the first step of the iteration, we don't need to recompute it for subsequent steps. Our hope is that the sequence $v^{(0)}, v^{(1)}, v^{(2)}, \ldots$ will in fact converge. Indeed, if this sequence does converge to some vector v then it is easy to verify that v must be the unique solution of $A X=w$.

For example, let us assume that the diagonal entries $a_{i i}$ of A are all nonzero, and let us choose E to be the diagonal matrix having these entries on the diagonal. Then E^{-1} is also a diagonal matrix having the entries $a_{i i}^{-1}$ on the diagonal. If our initial guess is $v^{(0)}=\left[\begin{array}{c}c_{1}^{(0)} \\ \vdots \\ c_{n}^{(0)}\end{array}\right]$, then it is easy to see that for $h>0$ we have $v^{(h)}=\left[\begin{array}{c}c_{1}^{(h)} \\ \vdots \\ c_{n}^{(h)}\end{array}\right]$, where $c_{i}^{(h+1)}=a_{i i}^{-1}\left[b_{i}-\sum_{j \neq i} a_{i j} c_{j}^{(h)}\right]$ for all $1 \leq i \leq n$. This method is known as the Jacobi iteration method. Another possibility, again under the assumption that the diagonal entries $a_{i i}$ of A are all nonzero, is to choose E to be the upper-triangular matrix $\left[e_{i j}\right]$ defined by setting $e_{i j}=a_{i j}$ if $i \leq j$. Given an initial guess $v^{(0)}=\left[\begin{array}{c}c_{1}^{(0)} \\ \vdots \\ c_{n}^{(0)}\end{array}\right]$, we see that $v^{(h)}=\left[\begin{array}{c}c_{1}^{(h)} \\ \vdots \\ c_{n}^{(h)}\end{array}\right]$ for $h>0$, where $c_{i}^{(h+1)}=a_{i i}^{-1}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} c_{j}^{(h+1)}-\sum_{j=i+1}^{n} a_{i j} c_{j}^{(h)}\right]$ for all $1 \leq i \leq n$. This method is known as the Gauss-Seidel iteration method, since it was discovered independently by Gauss and by Jacobi's student Philipp Ludwig von Seidel.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach.
Carl Gustav Jacob Jacobi was a nineteenth-century German mathematician, who worked mostly in analysis and applied mathematics. His work in astronomy led him to solve large systems of linear equations, and his papers on determinants helped make them well-known.

In both of the above methods, and in other iteration methods (and there are many of these), there is no guarantee that the sequence of approximations will always converge or that, even if it does converge, it will do so rapidly. Understanding the conditions for convergence and analyzing the speed of convergence requires sophisticated techniques in numerical analysis, and indeed there are many examples of matrices for which one iteration scheme converges whereas another doesn't, as well as various necessary and sufficient conditions for a given iteration method to
converge. For example, a sufficient condition for the Jacobi iteration method to converge for a matrix $A=\left[a_{i j}\right]$ is that, $\sum_{j \neq i}\left|a_{i j}\right|<\left|a_{i i}\right|$ for all $1 \leq i \leq n$. It is also known that if the matrix A is tridiagonal, then the Jacobi method converges if and only if the Gauss-Seidel method converges, but the latter always converges faster.

Example Let $A=\left[\begin{array}{rrr}4 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & 1 & 3\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ and let $w=\left[\begin{array}{l}7 \\ 2 \\ 4\end{array}\right]$. The system of linear equations $A x=w$ has a unique solution $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. If we use the Jacobi iteration method beginning with the initial guess $v^{(0)}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, we get the sequence of vectors (written to six-digit accuracy):

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
1.75000 \\
2.00000 \\
1.33333
\end{array}\right], \quad\left[\begin{array}{l}
0.41667 \\
1.08333 \\
0.66667
\end{array}\right],\left[\begin{array}{l}
1.04167 \\
1.08333 \\
0.97222
\end{array}\right],\left[\begin{array}{l}
0.96528 \\
1.09722 \\
0.97222
\end{array}\right],} \\
& {\left[\begin{array}{l}
0.95833 \\
1.02083 \\
0.96759
\end{array}\right], \quad\left[\begin{array}{l}
0.99768 \\
1.02314 \\
1.01157
\end{array}\right], \quad\left[\begin{array}{l}
0.99016 \\
1.01157 \\
0.99228
\end{array}\right], \quad\left[\begin{array}{l}
0.99614 \\
1.00559 \\
0.99614
\end{array}\right],} \\
& {\left[\begin{array}{l}
0.99816 \\
1.00386 \\
0.99814
\end{array}\right], \quad\left[\begin{array}{l}
0.99853 \\
1.00190 \\
0.99871
\end{array}\right], \ldots}
\end{aligned}
$$

and if we use the Gauss-Seidel iteration method with the same initial guess, we get the sequence of vectors (written to six-digit accuracy):

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{r}
1.75000 \\
-0.66667 \\
1.33333
\end{array}\right], \quad\left[\begin{array}{l}
1.04167 \\
0.63889 \\
1.55556
\end{array}\right], \quad\left[\begin{array}{l}
1.06944 \\
0.80093 \\
1.12037
\end{array}\right],\left[\begin{array}{l}
1.01504 \\
0.93672 \\
1.06636
\end{array}\right],} \\
& {\left[\begin{array}{l}
1.00829 \\
0.97287 \\
1.02109
\end{array}\right], \quad\left[\begin{array}{l}
1.00264 \\
0.99020 \\
1.00904
\end{array}\right], \quad\left[\begin{array}{l}
1.00113 \\
0.99611 \\
1.00326
\end{array}\right],\left[\begin{array}{l}
1.00040 \\
0.99853 \\
1.00129
\end{array}\right],}
\end{aligned}
$$

$$
\left[\begin{array}{l}
1.00016 \\
0.99943 \\
1.00049
\end{array}\right], \quad\left[\begin{array}{l}
1.00006 \\
0.99978 \\
1.00019
\end{array}\right], \quad \ldots
$$

so we see that both methods converge, albeit quite differently.
Example Let $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 1 & 2 \\ 0 & 2 & 1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ and let $w=\left[\begin{array}{r}0 \\ -1 \\ 3\end{array}\right]$. The system of linear equations $A x=w$ has a unique solution $\left[\begin{array}{r}-2 \\ 1 \\ 1\end{array}\right]$. If we try to solve this system using the Gauss-Seidel method with the initial guess $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, we get the sequence of vectors $\left[\begin{array}{r}0 \\ -1 \\ 5\end{array}\right],\left[\begin{array}{r}2 \\ -15 \\ 33\end{array}\right],\left[\begin{array}{r}30 \\ -127 \\ 257\end{array}\right],\left[\begin{array}{r}254 \\ -1023 \\ 2049\end{array}\right], \ldots$ which clearly diverges.

A more sophisticated iteration technique is, at each stage, not to replace $v^{(i)}$ by the computed $v^{(i+1)}$ but rather by a linear combination of the form $r v^{(i+1)}+$ $(1-r) v^{(i)}$, where $r \in \mathbb{R}$ is a relaxation parameter. Doing this with Jacobi iteration gives us the Jacobi overrelaxation (JOR) method, and doing it with the GaussSeidel method gives us the successive overrelaxation (SOR) method. The relaxation parameter r is chosen on the basis of certain properties of the matrix A. By choosing this parameter wisely, one can often achieve a considerable improvement in convergence. For the JOR method, one normally chooses $0<r<1$. In 1958, Kahan showed that the SOR method does not converge for r outside the open interval $(0,2)$.

© Neville Miles, Imperial College London (Southwell); With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Kahan, Young).
Relaxation methods were first developed by the twentieth-century British mathematician Richard \mathbf{V}.
Southwell. Contemporary Canadian mathematician William Kahan has made major contributions to numerical analysis and matrix computation. The optimal relaxation parameters for the SOR method were calculated by the twentieth-century American mathematician David M. Young, Jr.

As a rule of thumb, iteration methods work best for large sparse matrices, such as those arising from the solution of systems of partial differential equations. As
previously remarked, in iteration methods truncation and roundoff errors tend to cancel each other out, rather than accumulate. While sparse matrices arise in many applications-as circuit simulation, analyses of chemical processes, and magneticfield computation - there are also important situations, such as the matrices arising in radial-basis function interpolation, a technique of great important in computer graphics, which lead to very large matrices almost all entries of which are nonzero.

The Jacobi, Gauss-Seidel, JOR, and SOR methods are examples of iteration methods of the form $v^{(h+1)}=\alpha\left(v^{(h)}\right)$, where α is an affine transformation of \mathbb{R}^{n} that does not depend on h. Such methods are known as stationary iteration methods. In a later chapter, we shall also mention some iteration methods which are not stationary.

Example In the beginning of this chapter, we saw an example of how a nonlinear system of equations can be turned into a linear system. This can often be done in more general cases, producing large systems of linear equations of the form $A X=w$, where the matrix A is usually sparse and for which iteration methods are therefore appropriate. Consider, for example, the problem of finding real numbers a, b, and c such that the following conditions hold:

$$
\begin{aligned}
a^{2}-b^{2}+c^{2} & =6, \\
a b+a c+4 b c & =29, \\
a^{2}+2 a b-2 b c & =-7, \\
2 a^{2}-3 a b+c^{2} & =5, \\
b^{2}-c^{2}+5 a b & =5, \\
2 a c-3 b^{2} & =-6 .
\end{aligned}
$$

To linearize this, we begin by assigning variables to all of the terms appearing in the equations: $X_{1}=a^{2}, X_{2}=b^{2}, X_{3}=c^{2}, X_{4}=a b, X_{5}=a c$, and $X_{6}=b c$. This then yields the system of linear equations

$$
\left[\begin{array}{rrrrrr}
1 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 4 \\
1 & 0 & 0 & 2 & 0 & -2 \\
2 & 0 & 1 & -3 & 0 & 0 \\
0 & 1 & -1 & 5 & 0 & 0 \\
0 & -3 & 0 & 0 & 2 & 0
\end{array}\right] X=\left[\begin{array}{r}
6 \\
29 \\
-7 \\
5 \\
5 \\
-6
\end{array}\right]
$$

which has a unique solution $X_{1}=1, X_{2}=4, X_{3}=9, X_{4}=2, X_{5}=3$, and $X_{6}=6$, from which we deduce that $a=1, b=2$, and $c=3$.

The iterative methods we have discussed so far are all linear, in the sense that they involve only methods of linear algebra. There are, however, also families of nonlinear iterative methods, involving the calculus of functions of several variables,
of which one should be aware. These include gradient (steepest-descent) methods and conjugate-direction methods. A discussion of these methods is beyond the scope of this book.

Finally, another important warning. When we attempt to solve systems of linear equations on a computer, it is important to remember that the system may be very sensitive, and small changes in the entries of the coefficient matrix may lead to large changes in the solution. Such systems are said to be ill-conditioned. Applied mathematicians and others who design mathematical models often take considerable pains to avoid creating ill-conditioned systems.

Example Let $A=\left[\begin{array}{rrrr}7 & 7 & 8 & 10 \\ 5 & 5 & 6 & 7 \\ 6 & 9 & 10 & 8 \\ 5 & 10 & 9 & 7\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{R})$. This matrix is nonsingular, with inverse equal to $\left[\begin{array}{rrrr}41 & 68 & -17 & 10 \\ -6 & 10 & -3 & 2 \\ 10 & -17 & 5 & -3 \\ 25 & -41 & 10 & -6\end{array}\right]$. Let $w=\left[\begin{array}{l}32 \\ 23 \\ 33 \\ 31\end{array}\right]$. Then the system of equations $A X=w$ has a unique solution $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$. However, we also note that $A\left[\begin{array}{r}-7.2 \\ -0.1 \\ 2.9 \\ 6.0\end{array}\right]=\left[\begin{array}{l}32.10 \\ 22.90 \\ 32.90 \\ 31.10\end{array}\right]$.

Example Consider the system of linear equations

$$
\left[\begin{array}{rrrrrr}
1 & -10 & 0 & 0 & 0 & 0 \\
0 & 1 & -10 & 0 & 0 & 0 \\
0 & 0 & 1 & -10 & 0 & 0 \\
0 & 0 & 0 & 1 & -10 & 0 \\
0 & 0 & 0 & 0 & 1 & -10 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] X=\left[\begin{array}{r}
-9 \\
-9 \\
-9 \\
-9 \\
-9 \\
1
\end{array}\right]
$$

over \mathbb{R}. This system has a unique solution, namely $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$. However, if we alter the
coefficient matrix by changing the $(6,6)$-entry to $\frac{1}{1.001}$ (which is roughly equal to
0.9990009), we will obtain a completely different solution, namely $\left[\begin{array}{c}101 \\ 11 \\ 2 \\ 1.1 \\ 1.01 \\ 1.001\end{array}\right]$.

Since real-life computations are based, as a rule, on numbers gathered through some sort of a measurement process, which is, as a matter of fact, not completely accurate and certainly beyond our control, it is extremely important to know how sensitive the system is to possible small variations in the values of the entries. The numerical analysis of matrices deals extensively with this issue, and here we can only present a simplistic measure of this sensitivity for nonsingular square matrices over \mathbb{R}. To any matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$, we will assign the number $\theta(A)$ defined by $\theta(A)=\max _{1 \leq j \leq n}\left\{\sum_{i=1}^{n}\left|a_{i j}\right|\right\}$. The number $\theta(A) \theta\left(A^{-1}\right)$ is the condition number of the matrix A. Note that A has the same condition number as A^{-1} and as $c A$, for any $0 \neq c \in \mathbb{R}$.

> With kind permission of the American Mathematical Society.
> Condition numbers were introduced by John von Neumann, one of the great mathematical geniuses of the twentieth century, who contributed to practically all branches of mathematics-pure and applied. Von Neumann was a major force in the introduction of digital computers after World War II and the development of numerical methods for them.

The condition number can be written in the form $g \times 10^{t}$. where $0.1 \leq g<1$. If $t>0$ then, as a rule of thumb, one can expect that the solution of a system of linear equations $A X=w$ will have t significant digits fewer than that of the entries of A. Thus, if A is the matrix in the previous example, then $\theta(A)=11$. Moreover,

$$
A^{-1}=\left[\begin{array}{rrrrrr}
1 & 10 & 100 & 1000 & 10000 & 100000 \\
0 & 1 & 10 & 100 & 1000 & 10000 \\
0 & 0 & 1 & 10 & 100 & 1000 \\
0 & 0 & 0 & 1 & 10 & 100 \\
0 & 0 & 0 & 0 & 1 & 10 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and so $\theta\left(A^{-1}\right)=111,111$. Therefore $\theta(A) \theta\left(A^{-1}\right)$ is roughly 12×10^{7}, and so we cannot, as we have seen, expect any accuracy in our solution, if we assume our data is only good to 6-digit accuracy.

Similarly, Nievergelt's matrix $\left[\begin{array}{ll}888445 & 887112 \\ 887112 & 885871\end{array}\right]$, which we have already encountered, has condition number roughly equal to 0.39×10^{5}.

Of course, computing the condition number of a given matrix may also be a problem, since it involves calculating A^{-1}. Fortunately, there are many fairly-efficient condition number estimators, algorithms that give a good estimate of the condition number of a matrix with relatively low computational overhead.

Various techniques, going under the collective name of preconditioning techniques, are also often used to increase the speed of convergence and accuracy of various iterative methods. A discussion of these can be found in any advanced book on numerical matrix computation.

Exercises

Exercise 579
Are the matrices $\left[\begin{array}{rrr}-3 & 4 & 1 \\ -2 & -4 & -6 \\ 5 & 2 & 7\end{array}\right]$ and $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$ in $\mathcal{M}_{3 \times 3}(\mathbb{R})$ row equivalent?

Exercise 580
Bring the matrix $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \\ 2 & 3 & 1 & 4\end{array}\right] \in \mathcal{M}_{3 \times 4}(\mathbb{R})$ to reduced row echelon form.

Exercise 581
Let $F=\mathrm{GF}(5)$. Bring the matrix $\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 2 & 3 & 1 & 1 \\ 1 & 2 & 4 & 0\end{array}\right] \in \mathcal{M}_{3 \times 4}(F)$ to reduced row echelon form.

Exercise 582
Solve the system of linear equations

$$
\begin{aligned}
(3-i) X_{1}+(2-i) X_{2}+(4+2 i) X_{3} & =2+6 i \\
(4+3 i) X_{1}-(5+i) X_{2}+(1+i) X_{3} & =2+2 i \\
(2-3 i) X_{1}+(1-i) X_{2}+(2+4 i) X_{3} & =5 i
\end{aligned}
$$

over \mathbb{C}.
Exercise 583
Solve the system of linear equations

$$
\begin{aligned}
X_{1}+2 X_{2}+4 X_{3} & =31 \\
5 X_{1}+X_{2}+2 X_{3} & =29 \\
3 X_{1}-X_{2}+X_{3} & =10
\end{aligned}
$$

over \mathbb{R}.

Exercise 584

Solve the system of linear equations

$$
\begin{aligned}
3 X_{1}+4 X_{2}+10 X_{3} & =1, \\
2 X_{1}+2 X_{2}+2 X_{3} & =0, \\
X_{1}+X_{2}+5 X_{3} & =1
\end{aligned}
$$

over GF(11).

Exercise 585
Find all solutions to the system

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 2 & 3 \\
3 & 2 & 1 & 2 \\
4 & 3 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]=\left[\begin{array}{r}
5 \\
1 \\
1 \\
-5
\end{array}\right]
$$

over \mathbb{R}.

Exercise 586

Find all solutions to the system

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 1 & 2 & 3 & 4 \\
2 & 2 & 1 & 2 & 3 \\
2 & 2 & 2 & 1 & 2 \\
2 & 2 & 2 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4} \\
X_{5}
\end{array}\right]=\left[\begin{array}{r}
13 \\
10 \\
11 \\
6 \\
3
\end{array}\right]
$$

over \mathbb{R}.

Exercise 587

Find all solutions to the system

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

over GF(2).

Exercise 588
Find all solutions to the system

$$
\left[\begin{array}{rrr}
1 & 3 & 2 \\
2 & -1 & 3 \\
3 & -5 & 4 \\
1 & 17 & 4
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

over \mathbb{R}.

Exercise 589

Find a real number a so that the system of linear equations

$$
\begin{array}{r}
2 X_{1}-X_{2}+X_{3}+X_{4}=1 \\
X_{1}+2 X_{2}-X_{3}+4 X_{4}=2 \\
X_{1}+7 X_{2}-4 X_{3}+11 X_{4}=a
\end{array}
$$

has a solution over \mathbb{R}.

Exercise 590

Find all real numbers c such that the system of equations

$$
\begin{aligned}
X_{1}+X_{2}-X_{3} & =1, \\
X_{1}+c X_{2}+3 X_{3} & =2, \\
2 X_{1}+3 X_{2}+c X_{3} & =3
\end{aligned}
$$

has a unique solution over \mathbb{R}; find those real numbers c for which it has infinitelymany solutions over \mathbb{R}; find those real numbers c for which it has no solution over \mathbb{R}.

Exercise 591

Solve the system of linear equations

$$
\begin{aligned}
X_{1}+2 X_{2}+X_{3} & =1, \\
X_{1}+X_{2}+X_{3} & =0
\end{aligned}
$$

over GF(3).

Exercise 592

Solve the system of linear equations

$$
\begin{aligned}
X_{1}+(\sqrt{2}) X_{2}+(\sqrt{2}) X_{3} & =3, \\
X_{1}+(1+\sqrt{2}) X_{2}+X_{3} & =3+\sqrt{2}, \\
X_{1}+X_{2}-(\sqrt{2}) X_{3} & =4+\sqrt{2}
\end{aligned}
$$

over $\mathbb{Q}(\sqrt{2})$.

Exercise 593
Solve the system of linear equations

$$
\begin{array}{r}
4 X_{1}-3 X_{2}=3, \\
2 X_{1}-X_{2}+2 X_{3}=1,
\end{array}
$$

$$
3 X_{1}+2 X_{3}=4
$$

over GF(5).

Exercise 594

Solve the system of linear equations

$$
\begin{aligned}
4 X_{1}+6 X_{2}+2 X_{3} & =8, \\
X_{1}-a X_{2}-2 X_{3} & =-5, \\
7 X_{1}+3 X_{2}+(a-5) X_{3} & =7
\end{aligned}
$$

over \mathbb{R}, for various values of the real number a.

Exercise 595

For a given real number a, solve the system

$$
\begin{aligned}
& a X_{1}+X_{2}+X_{3}=1, \\
& X_{1}+a X_{2}+X_{3}=1, \\
& X_{1}+X_{2}+a X_{3}=1
\end{aligned}
$$

over \mathbb{R}.
Exercise 596
For a given $a \in \mathbb{R}$, does the system of linear equations

$$
\begin{aligned}
a X_{1}+X_{2}+2 X_{3} & =0 \\
X_{1}-X_{2}+a X_{3} & =1 \\
X_{1}+X_{2}+X_{3} & =1
\end{aligned}
$$

have a unique solution in \mathbb{R} ?

Exercise 597

Let a be an element of a field F. Find the set of all solutions to the system of linear equations

$$
\begin{aligned}
X_{1}+X_{2}+a X_{3} & =a \\
X_{1}+a X_{2}-X_{3} & =1 \\
X_{1}+X_{2}-X_{3} & =1
\end{aligned}
$$

over F.

Exercise 598

For which $a \in \mathbb{Q}$ does the system of linear equations

$$
\begin{aligned}
X_{1}+3 X_{2}-2 X_{3} & =2 \\
3 X_{1}+9 X_{2}-2 X_{3} & =2 \\
2 X_{1}+6 X_{2}+X_{3} & =a
\end{aligned}
$$

have a unique solution in \mathbb{Q} ?

Exercise 599

Find real numbers a, b, c, and d such that the points $(1,2),(-1,6),(-2,38)$, and $(2,6)$ all lie on the curve $y=a x^{4}+b x^{3}+c x^{2}+d$ in the Euclidean plane.

Exercise 600

Find a polynomial $p(X)=a_{2} X^{2}+a_{1} X+a_{0} \in \mathbb{R}[X]$ satisfying $p(1)=-1$, $p(-1)=9$, and $p(2)=-3$.

Exercise 601

Find a polynomial $p(X)=a_{3} X^{3}+a_{2} X^{2}+a_{1} X+a_{0} \in \mathbb{R}[X]$ satisfying $p(0)=2$, $p(2)=6, p(4)=3$, and $p(6)=-5$.

Exercise 602

Let $F=\mathrm{GF}(13)$. Find a homogeneous system of linear equations over F satisfying the condition that its solution space equals

$$
F\left\{\left[\begin{array}{l}
2 \\
1 \\
9 \\
7 \\
4
\end{array}\right],\left[\begin{array}{r}
8 \\
3 \\
10 \\
5 \\
12
\end{array}\right],\left[\begin{array}{r}
7 \\
6 \\
2 \\
11 \\
7
\end{array}\right]\right\}
$$

Exercise 603

Let F be a field. Let $b \in F$ and let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right] \in \mathcal{M}_{2 \times 3}(F)$ be a matrix satisfying the condition that the sum of the entries in each row and each column of A equals b. Show that $b=0$.

Exercise 604

Let $p(X)=X^{5}-7 X^{3}+12 \in \mathbb{Q}[X]$. Find a polynomial $q(X) \in \mathbb{Q}[X]$ of degree at most 3 satisfying $p(a)=q(a)$ for all $a \in\{0,1,2,3\}$.

Exercise 605

Find the rank of the matrix

$$
\left[\begin{array}{rrrrr}
1 & -1 & 2 & 3 & 4 \\
2 & 1 & -1 & 2 & 0 \\
-1 & 2 & 1 & 1 & 3 \\
1 & 5 & -8 & -5 & -12 \\
3 & -7 & 8 & 9 & 13
\end{array}\right] \in \mathcal{M}_{5 \times 5}(\mathbb{R}) .
$$

Exercise 606

Find the rank of the matrix

$$
\left[\begin{array}{rrrrr}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 1 & 1
\end{array}\right] \in \mathcal{M}_{5 \times 5}(\mathbb{R}) .
$$

Exercise 607

Let $F=\mathrm{GF}(2)$. Find the rank of the matrix $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right] \in \mathcal{M}_{3 \times 3}(F)$.

Exercise 608

Let $F=\mathrm{GF}(5)$. Find the rank of the matrix

$$
\left[\begin{array}{rrrrr}
1 & 2 & 3 & 4 & a \\
4 & 3 & a & 1 & 2 \\
a & 1 & 2 & 3 & 4 \\
2 & 3 a & 2 & 4 a & 1
\end{array}\right] \in \mathcal{M}_{4 \times 5}(F)
$$

for various values of $a \in F$.

Exercise 609
Do there exist a lower-triangular matrix L and an upper-triangular matrix U in
$\mathcal{M}_{3 \times 3}(\mathbb{Q})$ satisfying the condition $L U=\left[\begin{array}{rrr}1 & -1 & 2 \\ 2 & -1 & 3 \\ 0 & 1 & 8\end{array}\right]$?

Exercise 610

Let $F=\mathrm{GF}(5)$. For which values of $a \in F$ do there exist a lower-triangular matrix L and an upper-triangular matrix U in $\mathcal{M}_{3 \times 3}(F)$ satisfying the condition that $L U=\left[\begin{array}{lll}1 & 1 & a \\ 4 & 1 & 0 \\ a & 1 & 4\end{array}\right]$?

Exercise 611
Find the LU-decomposition of $\left[\begin{array}{rrrr}4 & 2 & 3 & 4 \\ 2 & 0 & 2 & 2 \\ 3 & 4 & -4 & 5 \\ -1 & 0 & 2 & 3\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{R})$.

Exercise 612

Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ be a tridiagonal matrix all diagonal entries of which are nonzero. Can we write $A=L U$, where L is a lower-triangular matrix and U is an upper-triangular matrix, both of which are also tridiagonal?

Exercise 613

Let F be a field and let $a, b, c \in F$. Find the rank of the matrix

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
b+c & c+a & a+b \\
b c & c a & a b
\end{array}\right] \in \mathcal{M}_{3 \times 3}(F) .
$$

Exercise 614

Let F be a field and let $a, b, c, d \in F$. Find the rank of the matrix

$$
\left[\begin{array}{ccc}
a & c & c \\
d & a+b & c \\
d & d & b
\end{array}\right] \in \mathcal{M}_{3 \times 3}(F)
$$

Exercise 615
Find the rank of the matrix $\left[\begin{array}{rrrr}3 & 1 & 1 & 4 \\ a & 4 & 10 & 1 \\ 1 & 7 & 17 & 3 \\ 2 & 2 & 4 & 3\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{R})$ for various values of the real number a.

Exercise 616
Find the rank of $\left[\begin{array}{rrrr}a & -1 & 2 & 1 \\ -1 & a & 5 & 2 \\ 10 & -6 & 1 & 1\end{array}\right] \in \mathcal{M}_{3 \times 4}(\mathbb{Q})$ for various values of the rational number a.

Exercise 617

Find the set of all real numbers a such that the rank of the matrix

$$
\left[\begin{array}{rrr}
a & 1 & 1 \\
-1 & -1 & -1 \\
1 & 1 & a
\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})
$$

equals 2.

Exercise 618

Let n be a positive integer and, for each $A \in \mathcal{M}_{n \times n}(\mathbb{R})$, let $r(A)$ be the rank of A. Define a relation \preceq on $\mathcal{M}_{n \times n}(\mathbb{R})$ by setting $B \preceq A$ if and only if $r(A-B)=$ $r(A)-r(B)$. Is this a partial order relation?

Exercise 619

Let F be a subfield of a field K. Let k and n be positive integers and let $A \in \mathcal{M}_{k \times n}(F)$ be a matrix having rank r. If we now think of A as an element of $\mathcal{M}_{k \times n}(K)$, is its rank necessarily still equal to r ?

Exercise 620
Find $k \in \mathbb{Z}$ such that the rank of $\left[\begin{array}{rrrr}1 & 7 & 17 & 3 \\ 4 & 4 & 8 & 6 \\ 3 & 1 & 1 & 4 \\ 2 k & 8 & 20 & 2\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{Q})$ is minimal.
Exercise 621
Let F be a field and let k and n be positive integers. For a matrix $A \in \mathcal{M}_{k \times n}(F)$ having rank h, show that there exist matrices $B \in \mathcal{M}_{k \times h}(F)$ and $C \in \mathcal{M}_{h \times n}(F)$ such that $A=B C$.

Exercise 622

Let k and n be positive integers and let F be a field. For matrices $A, B \in$ $\mathcal{M}_{k \times n}(F)$, show that the rank of $A+B$ is no more than the sum of the ranks of A and of B.

Exercise 623

Let k and n be positive integers and let F be a field. Let $A, B \in \mathcal{M}_{k \times n}(F)$ be matrices satisfying the condition that he row space of A and the row space of B are disjoint. Does it follow from this that the rank of $A+B$ equals the sum of the rank of A and the rank of B ?

Exercise 624

Find bases for the row space and column space of the matrix

$$
\left[\begin{array}{rrrrr}
1 & 2 & -3 & -7 & -2 \\
-1 & -2 & 1 & 1 & 0 \\
1 & 2 & 0 & 2 & 1
\end{array}\right] \in \mathcal{M}_{3 \times 5}(\mathbb{R})
$$

Exercise 625

Find matrices $P, Q \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ satisfying

$$
P\left[\begin{array}{rrr}
1 & 2 & 3 \\
2 & -2 & 1 \\
3 & 0 & 4
\end{array}\right] Q=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Exercise 626
Write the rows of the matrix $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ i-1 & 2 & i \\ 0 & 2 & -i\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{C})$ as linear combinations of the rows of A^{T}.

Exercise 627
Calculate $\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]^{-1} \in \mathcal{M}_{5 \times 5}(\mathbb{R})$.

Exercise 628

Let k and n be positive integers and let F be a field. Let $A=\left[\begin{array}{cc}B & C \\ D & E\end{array}\right]$ be a matrix in $\mathcal{M}_{k \times n}(F)$, where B is a nonsingular matrix in $\mathcal{M}_{r \times r}(F)$ for some $1 \leq r<$ $\min \{k, n\}$. Show that the rank of A equals r if and only of $D B^{-1} C=E$.

Exercise 629

Let F be a field and let a, b, c be distinct elements of F. Furthermore, let d, e, f be distinct elements of F. What is the rank of the matrix

$$
\left[\begin{array}{llll}
1 & a & d & a d \\
1 & b & e & b e \\
1 & c & f & c f
\end{array}\right] \in \mathcal{M}_{3 \times 4}(F) ?
$$

Exercise 630

Let k and n be positive integers and let F be a field. Let $A \in \mathcal{M}_{k \times n}(F)$ and let $w \in F^{k}$ be such that the system of linear equations $A X=w$ has a nonempty set of solutions and that all of these solutions satisfy the condition that the h th entry in them is some fixed scalar c. What can we deduce about the columns of the matrix A ?

Exercise 631

Let n be a positive integer and let F be a field. Let $O \neq A \in \mathcal{M}_{n \times n}(F)$. Show that there exists a nonnegative integer k such that the rank of A^{h} equals the rank of A^{k} for all $h>k$.

Exercise 632
Let $A=\left[\begin{array}{rrr}1 & -1 & 1 \\ -1 & -1 & 1 \\ 1 & 1 & 1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Find the condition number of A.

Exercise 633

Let a be a positive real number. It is necessarily true that the condition number of $A=\left[\begin{array}{rrr}a & 1 & a \\ 0 & 0 & -1 \\ a & -1 & a\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ is greater than $2 a+1$?

Exercise 634

Find a positive real number a for which the condition number of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & a & a \\
1 & 1 & 1
\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})
$$

is maximal.

Exercise 635

Does there exist a system $A X=w$ of linear equations in n unknowns (for some positive integer n) over \mathbb{R} having precisely 35 distinct solutions?

Exercise 636

Can one find an integer h such that the condition number of the matrix

$$
\left[\begin{array}{rrr}
1 & -1000 & 1 \\
1 & -100 & 0 \\
1 & h & 1
\end{array}\right]
$$

is greater than 10^{6} ?

Determinants

Let F be a field and let n be a positive integer. We would like to find a function from $\mathcal{M}_{n \times n}(F)$ to F which will serve as an oracle of singularity, namely a function that will assign a value of 0 to singular matrices and a value other than 0 to nonsingular matrices. Indeed, let F be a field and let n be a positive integer. A function $\delta_{n}: \mathcal{M}_{n \times n}(F) \rightarrow F$ is a determinant function if and only if it satisfies the following conditions:
(1) $\delta_{n}(I)=1$;
(2) $\delta_{n}(A)=0$ if A is a matrix having a row all of the entries of which are 0 ;
(3) $\delta_{n}\left(E_{i j} A\right)=-\delta_{n}(A)$ for all $1 \leq i \neq j \leq n$;
(4) $\delta_{n}\left(E_{i j ; c} A\right)=\delta_{n}(A)$ for all $1 \leq i \neq j \leq n$ and all $c \in F$;
(5) $\delta_{n}\left(E_{i ; c} A\right)=c \delta_{n}(A)$ for all $1 \leq i \leq n$ and all $0 \neq c \in F$.

In particular, we note that for each $1 \leq i \neq j \leq n$ and all $c \in F$ we have $\delta_{n}\left(E_{i j}\right)=$ $-1=\delta_{n}\left(E_{i j}^{T}\right), \delta_{n}\left(E_{i j ; c}\right)=1=\delta_{n}\left(E_{i j ; c}^{T}\right)$, and $\delta_{n}\left(E_{i ; c}\right)=c=\delta_{n}\left(E_{i ; c}^{T}\right)$.

We have yet to show that such functions exist for all values of n, but certainly they exist for a few small ones.

Example For $n=1$, the function $\delta_{1}:[a] \mapsto a$ is a determinant function. For $n=2$, the function $\delta_{2}:\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \mapsto a_{11} a_{22}-a_{12} a_{21}$ is a determinant function.

As an immediate consequence of parts (1) and (5) of the definition, we see that if $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ is a diagonal matrix and if $\delta_{n}: \mathcal{M}_{n \times n}(F) \rightarrow F$ is a determinant function, then $\delta_{n}(A)=\prod_{i=1}^{n} a_{i i} \delta_{n}(I)=\prod_{i=1}^{n} a_{i i}$.

We now want to show that for each positive integer n there exists a determinant function $\delta_{n}: \mathcal{M}_{n \times n}(F) \rightarrow F$, and indeed that this function is unique. We will first establish the uniqueness of these functions and check some of their properties, holding off on existence until later in this chapter.

Proposition 11.1 Let F be a field. For each positive integer n there exists at most one determinant function $\delta_{n}: M_{n \times n}(F) \rightarrow F$.

Proof Let us assume that $\delta_{n}: \mathcal{M}_{n \times n}(F) \rightarrow F$ and $\eta_{n}: \mathcal{M}_{n \times n}(F) \rightarrow F$ are determinant functions and let $\beta=\eta_{n}-\delta_{n}$. Then the function β satisfies the following conditions:
(1) $\beta(I)=0$;
(2) $\beta(A)=0$ if A is a matrix having a row all of the entries of which are 0 ;
(3) $\beta\left(E_{i j} A\right)=-\beta(A)$ for all $1 \leq i \neq j \leq n$;
(4) $\beta\left(E_{i j ; c} A\right)=\beta(A)$ for all $1 \leq i \neq j \leq n$ and all $c \in F$;
(5) $\beta\left(E_{i ; c} A\right)=c \beta(A)$ for all $1 \leq i \leq n$ and all $0 \neq c \in F$.

In particular, if $A \in \mathcal{M}_{n \times n}(F)$ and E is an elementary matrix, then $\beta(A)$ and $\beta(E A)$ are either both equal to 0 or both of them are different from 0 . But for any matrix A we know that there exist elementary matrices E_{1}, \ldots, E_{t} in $\mathcal{M}_{n \times n}(F)$ such that either $E_{1} \cdots E_{t} A=I$ or $E_{1} \cdots E_{t} A$ is a matrix having at least one row all of the entries of which equal 0 . Therefore, $\beta(A)=0$ for every $A \in \mathcal{M}_{n \times n}(F)$. Thus β is the zero-function, and so $\delta_{n}=\eta_{n}$.

Proposition 11.2 Let F be a field and let $\delta_{n}: M_{n \times n}(F) \rightarrow F$ be a determinant function. Then $\delta_{n}(A) \neq 0$ if and only if A is nonsingular.

Proof If A is nonsingular, there exist elementary matrices E_{1}, \ldots, E_{t} in $\mathcal{M}_{n \times n}(F)$ such that $E_{1} \cdots E_{t} A=I$, and so, by the definition of the determinant function, $\delta_{n}(A)=c \delta_{n}(I)=c$, where $0 \neq c \in F$, and so $\delta_{n}(A) \neq 0$. Now assume that $\delta_{n}(A) \neq 0$ and that A is singular. Then there exist elementary matrices E_{1}, \ldots, E_{t} in $\mathcal{M}_{n \times n}(F)$ such that $E_{1} \cdots E_{t} A$ is a matrix having at least one row all of the entries of which equal 0 . But then, for some $0 \neq c \in F$, we have $0 \neq \delta_{n}(A)=$ $c \delta_{n}\left(E_{1} \cdots E_{t} A\right)=c 0=0$, which is a contradiction, proving that A must be nonsingular.

Thus we see that the determinant function, to the extent it exists, is the oracle we are seeking.

Example The subset $\left\{\left[\begin{array}{l}a+b i \\ c+d i\end{array}\right],\left[\begin{array}{r}-c+d i \\ a-b i\end{array}\right]\right\}$ of \mathbb{C}^{2} is linearly dependent if and only if $A=\left[\begin{array}{rr}a+b i & -c+d i \\ c+d i & a-b i\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{C})$ is singular. We have already noted that $\delta_{2}:\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \mapsto a_{11} a_{22}-a_{12} a_{21}$ is a determinant function, and so this happens if and only if $\delta_{2}(A)=a^{2}+b^{2}+c^{2}+d^{2}=0$, i.e., if and only if $a=b=c=$ $d=0$.

Proposition 11.3 Let F be a field and let $\delta_{n}: M_{n \times n}(F) \rightarrow F$ be a determinant function. If A is a matrix in $M_{n \times n}(F)$ having two identical rows then $\delta_{n}(A)=0$.

Proof Suppose that rows h and k of A are identical. First, assume that the characteristic of F is other than 2 . Then $A=E_{h k}(A)$ and so $\delta_{n}(A)=\delta_{n}\left(E_{h k} A\right)=-\delta_{n}(A)$, which implies that $\delta_{n}(A)=0$. If the characteristic of F equals 2 then $\delta_{n}(A)=$ $\delta_{n}\left(E_{h k ; 1} A\right)$, and $E_{h k ; 1} A$ is a matrix having a row in which the entries of one row are all 0 . Therefore, by Proposition 11.2, $\delta_{n}(A)=0$.

Proposition 11.4 Let F be a field and let $\delta_{n}: M_{n \times n}(F) \rightarrow F$ be a determinant function. If $A, B \in M_{n \times n}(F)$ then
(1) $\delta_{n}(A B)=\delta_{n}(A) \delta_{n}(B)$;
(2) $\delta_{n}(A B)=\delta_{n}(B A)$.

Proof (1) By Proposition 9.1, we know that $A B$ is nonsingular if and only if both A and B are nonsingular. Therefore, $\delta_{n}(A)=0$ or $\delta_{n}(B)=0$ if and only if $\delta_{n}(A B)=0$. If $\delta_{n}(A) \neq 0 \neq \delta_{n}(B)$ then there exist elementary matrices $E_{1}, \ldots, E_{t}, G_{1}, \ldots, G_{s}$ in $\mathcal{M}_{n \times n}(F)$ such that $B=E_{1} \cdots E_{t} I$ and $A=G_{1} \cdots G_{s} I$ and so $A B=G_{1} \cdots G_{s} E_{1} \cdots E_{t} I$, which implies that $\delta_{n}(A B)=\delta_{n}(A) \delta_{n}(B)$ from the definition of a determinant function.
(2) This is an immediate consequence of (1), since $\delta_{n}(A) \delta_{n}(B)=\delta_{n}(B) \delta_{n}(A)$ in F.

Proposition 11.5 Let F be a field and let $\delta_{n}: M_{n \times n}(F) \rightarrow F$ be a determinant function. If $A \in M_{n \times n}(F)$ is nonsingular then $\delta_{n}\left(A^{-1}\right)=\delta_{n}(A)^{-1}$.

Proof By Proposition 11.4, we see that $\delta_{n}\left(A^{-1}\right) \delta_{n}(A)=\delta_{n}\left(A^{-1} A\right)=\delta_{n}(I)=1$ and from this the result follows immediately.

Proposition 11.6 Let F be a field and let $\delta_{n}: M_{n \times n}(F) \rightarrow F$ be a determinant function. If $A \in M_{n \times n}(F)$ then:
(1) $\delta_{n}\left(A E_{i j}\right)=-\delta_{n}(A)$ for all $1 \leq i \neq j \leq n$;
(2) $\delta_{n}\left(A E_{i j ; c}\right)=\delta_{n}(A)$ for all $1 \leq i \neq j \leq n$ and all $c \in F$;
(3) $\delta_{n}\left(A E_{i ; c}\right)=c \delta_{n}(A)$ for all $1 \leq i \leq n$ and all $0 \neq c \in F$.

Proof This is a direct consequence of the definition of the determinant function and Proposition 11.4(2).

Proposition 11.7 Let F be a field and let $\delta_{n}: M_{n \times n}(F) \rightarrow F$ be a determinant function. If $A \in M_{n \times n}(F)$ then $\delta_{n}(A)=\delta_{n}\left(A^{T}\right)$.

Proof If A is singular then so is A^{T}, and so $\delta_{n}(A)=0=\delta_{n}\left(A^{T}\right)$. If A is nonsingular then there exist elementary matrices E_{1}, \ldots, E_{t} in $\mathcal{M}_{n \times n}(F)$ such that $E_{1} \cdots E_{t} A=I=I^{T}=A^{T} E_{t}^{T} \cdots E_{1}^{T}$. By our remarks in Chap. 9 concerning the transposes of elementary matrices, and by the remarks at the beginning of this chapter, we see that $\delta_{n}(A)=\delta_{n}\left(E_{1} \cdots E_{t} A\right)=\delta_{n}\left(A^{T} E_{t}^{T} \cdots E_{1}^{T}\right)=\delta_{n}\left(A^{T}\right)$ and so $\delta_{n}(A)=\delta_{n}\left(A^{T}\right)$.

Of course, at this stage we do not know that determinant functions δ_{n} : $\mathcal{M}_{n \times n}(F) \rightarrow F$ even exist for the case $n>2$ and so we now have to construct them. Let us denote the set of all permutations of the set $\{1, \ldots, n\}$ by S_{n}. We note that any $\pi \in S_{n}$ is a bijective function from $\{1, \ldots, n\}$ to itself and so there exists a function $\pi^{-1} \in S_{n}$ satisfying the condition that $\pi \pi^{-1}$ and $\pi^{-1} \pi$ are equal to the identity function $i \mapsto i$. We also note that if $\pi, \pi^{\prime} \in S_{n}$ then $\pi \pi^{\prime} \in S_{n}$.

Proposition 11.8 If n is a positive integer then the number of elements of S_{n} equals $n!$.

Proof Suppose we wanted to construct an arbitrary element π of S_{n}. There are n possibilities for selecting $\pi(1)$. Once we have done that, there are $n-1$ ways of selecting $\pi(2)$, then $n-2$ ways of selecting $\pi(3)$, etc. Thus, the total number of ways in which we can define π is $n(n-1) \cdots 1=n$!.

Now let $\pi \in S_{n}$ and let $1 \leq i<j \leq n$. The pair (i, j) is called an inversion with respect to π if and only if $\pi(i)>\pi(j)$. That is to say, (i, j) is an inversion with respect to π if and only if

$$
\frac{i-j}{\pi(i)-\pi(j)}<0 .
$$

We will denote the number of distinct inversions with respect to π by $h(\pi)$, and define the signum of π to be $\operatorname{sgn}(\pi)=(-1)^{h(\pi)}$. Thus

$$
\operatorname{sgn}(\pi)= \begin{cases}1 & \text { if there are an even number of inversions with respect to } \pi \\ -1 & \text { if there are an odd number of inversions with respect to } \pi\end{cases}
$$

It is easy to check that $\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\pi^{-1}\right)$ for all $\pi \in S_{n}$. If $\operatorname{sgn}(\pi)=1$, the permutation π is even; if $\operatorname{sgn}(\pi)=-1$, the permutation π is odd.

Example Let $\pi \in S_{4}$ be defined by $1 \mapsto 3,2 \mapsto 4,3 \mapsto 2$, and $4 \mapsto 1$. Then if we consider all possible pairs (i, j) with $1 \leq i<j \leq 4$ we get

(i, j)	$(\pi(i), \pi(j))$	inversion?
$(1,2)$	$(3,4)$	no
$(1,3)$	$(3,2)$	yes
$(1,4)$	$(3,1)$	yes
$(2,3)$	$(4,2)$	yes
$(2,4)$	$(4,1)$	yes
$(3,4)$	$(2,1)$	yes

and so we see that $\operatorname{sgn}(\pi)=-1$.

Now let n be a positive integer and let (K, \bullet) be an associative and commutative unital F-algebra. Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(K)$. We then define the function $A \mapsto|A|$ from $\mathcal{M}_{n \times n}(K)$ to K by setting

$$
|A|=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{\pi(1), 1} \bullet a_{\pi(2), 2} \bullet \cdots \bullet a_{\pi(n), n}
$$

Note that, by the commutativity of K, if $\tau=\pi^{-1}$ then

$$
a_{\pi(1), 1} \bullet a_{\pi(2), 2} \bullet \cdots \bullet a_{\pi(n), n}=a_{1, \tau(1)} \bullet a_{2, \tau(2)} \bullet \cdots \bullet a_{n, \tau(n)}
$$

and so $|A|=\sum_{\tau \in S_{n}} \operatorname{sgn}(\tau) a_{1, \tau(1)} \bullet a_{2, \tau(2)} \bullet \cdots \bullet a_{n, \tau(n)}$. Thus we see immediately that $|A|=\left|A^{T}\right|$ for every $A \in \mathcal{M}_{n \times n}(K)$. If $K=\mathbb{C}$ then, since $\overline{c+d}=\bar{c}+\bar{d}$ and $\overline{c d}=\bar{c} \bar{d}$, we also see that for $\bar{A}=\left[\bar{a}_{i j}\right]$ we have $|\bar{A}|=\overline{|A|}$. Defining this function for an arbitrary commutative and associative unital F-algebra is important for us, as we will need it in the case that $K=F[X]$, where F is a field.

Example If $A=\left[a_{i j}\right] \in \mathcal{M}_{3 \times 3}(K)$, for an associative and commutative unital F-algebra (K, \bullet), then

$$
\begin{aligned}
|A|= & a_{11} \bullet a_{22} \bullet a_{33}+a_{12} \bullet a_{23} \bullet a_{31}+a_{13} \bullet a_{21} \bullet a_{32} \\
& -a_{11} \bullet a_{23} \bullet a_{32}-a_{13} \bullet a_{22} \bullet a_{31}-a_{12} \bullet a_{21} \bullet a_{33} .
\end{aligned}
$$

Proposition 11.9 Let F be a field, let (K, \bullet) be an associative and commutative unital F-algebra, and let $A=\left[a_{i j}\right] \in M_{n \times n}(K)$. Pick $1 \leq h \leq n$ and write $a_{h j}=b_{h j}+c_{h j}$ in K for all $1 \leq j \leq n$. For all $1 \leq i \leq n$ satisfying $i \neq h$, set $b_{i j}=c_{i j}=a_{i j}$. Set $B=\left[b_{i j}\right]$ and $C=\left[c_{i j}\right]$, matrices in $M_{n \times n}(K)$. Then $|A|=|B|+|C|$.

Proof From the definition of $|A|$, we have

$$
\begin{aligned}
|A|= & \sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1, \pi(1)} \bullet \cdots \bullet a_{h, \pi(h)} \bullet \cdots \bullet a_{n, \pi(n)} \\
= & \sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1, \pi(1)} \bullet \cdots \bullet\left[b_{h, \pi(h)}+c_{h, \pi(m)}\right] \bullet \cdots \bullet a_{n, \pi(n)} \\
= & \sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1, \pi(1)} \bullet \cdots \bullet b_{h, \pi(h)} \bullet \cdots \bullet a_{n, \pi(n)} \\
& +\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1, \pi(1)} \bullet \cdots \bullet c_{h, \pi(h)} \bullet \cdots \bullet a_{n, \pi(n)} \\
= & |B|+|C|
\end{aligned}
$$

as required.

We are now ready to prove that determinant functions, in fact, always exist.

Proposition 11.10 For an integer $n>1$ and a field F, the function $M_{n \times n}(F) \rightarrow F$ defined by $A \mapsto|A|$ is a determinant function.

Proof In order to simplify our notation, we will make the following temporary convention: if $\pi \in S_{n}$ and if $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$, we will write $u(\pi, A)=$ $\operatorname{sgn}(\pi) a_{1, \pi(1)} \cdots a_{n, \pi(n)}$. Now let us check the five conditions of a determinant function.
(1) Clearly, $u(\pi, I)$ equals 1 if π is the identity permutation and 0 otherwise, and so $|I|=1$.
(2) Let A be a matrix one of the rows of which has all of its entries equal to 0 . Since a factor from each row appears in every term $u(\pi, A)$, we conclude that all of these are equal to 0 and hence $|A|=0$.
(3) Let A be a matrix and let $B=E_{i j} A$. Let $\rho \in S_{n}$ be the permutation which interchanges i and j and leaves all of the other numbers between 1 and n fixed. Then $\operatorname{sgn}(\pi \rho) \neq \operatorname{sgn}(\pi)$ for all $\pi \in S_{n}$ and so for each $\pi \in S_{n}$ we have $-u(\pi, A)=$ $u(\pi \rho, A)=u(\pi, B)$. This implies that $|B|=-|A|$.
(4) Let A be a matrix and let $B=E_{i j ; c} A$. Then $B=\left[b_{h t}\right]$, where $b_{h t}=a_{h t}$ when $h \neq j$ and $1 \leq t \leq n$, and where $b_{j t}=a_{j t}+c a_{i t}$ for all $1 \leq t \leq n$. By Proposition 11.9, we have $|B|=|A|+|C|$, where C is the matrix all of the rows of which except the j th are identical with those of A, and where in the j th row we have $c_{j t}=c a_{i t}$ for all $1 \leq t \leq n$. Then $|C|=c|D|$ where D is a matrix in which two rows, the i th and the j th, are equal. If the characteristic of F is other than 2 , then $D=E_{i j} D$ and so, by (3), we get $|D|=-|D|$, and so we get $|C|=c|D|=0$ and we have $|A|=|B|$, which is what we want. Therefore, let us assume that the characteristic of F equals 2 . Let $\rho \in S_{n}$ be the permutation which interchanges i and
j and leaves all other numbers between 1 and n fixed. Let H be the set of all even permutations in S_{n} and let K be the set of all odd permutations. The function from H to K defined by $\pi \mapsto \rho \pi$ is bijective since $\rho \pi_{1}=\rho \pi_{2}$ implies that $\pi_{1}=\rho^{-1} \rho \pi_{1}=\rho^{-1} \rho \pi_{2}=\pi_{2}$. Moreover, since the characteristic of F is 2 and since $u(\pi, D)=u(\rho \pi, D)$ for all $\pi \in H$, we see that $u(\pi, D)+u(\rho \pi, D)=0$ for all $\pi \in H$. Therefore, $|D|=\sum_{\pi \in H}[u(\pi, D)+u(\rho \pi, D)]=0$ and this implies, again, that $|C|=0$ and so $|A|=|B|$.
(5) It is clear from the definition of $|A|$ and if $B=E_{i ; c} A$ then $|B|=c|A|$.

Thus, in summary, we see that if F is a field and if n is a positive integer, then there exists a unique determinant function $\mathcal{M}_{n \times n}(F) \rightarrow F$, namely $A \mapsto|A|$. We call the scalar $|A|$ the determinant of the matrix A.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Scherk).
Determinants were first used in the work of the seventeenth-century German mathematician, philosopher, and diplomat Gottfried von Leibnitz, who developed calculus along with Sir Isaac Newton. The common properties of determinants were first studied by the nineteenth-century German mathematician Heinrich Scherk, and the first systematic analysis of the theory of determinants was done by the nineteenth-century French mathematician Augustin-Louis Cauchy, relying on the work of many mathematicians who preceded him. His work was continued by Cayley and Sylvester. The term "determinant" was first used by Gauss in 1801, and was popularized by Jacobi.

Example Let $n>1$ be an integer. If c_{1}, \ldots, c_{n} are distinct elements of a field F and if $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ is the Vandermonde matrix defined by $a_{i j}=c_{i}^{j-1}$ for all $1 \leq i, j \leq n$, then it is easy to verify that $|A|=\prod_{i<j}\left(c_{j}-c_{i}\right) \neq 0$. This result can, in fact, be generalized. Suppose that, for $1 \leq h \leq n$, we have a polynomial $p_{h}(X)=\sum_{i=0}^{h} b_{h i} X^{i} \in F[X]$ with $b_{h h} \neq 0$. Let c_{1}, \ldots, c_{n} be distinct elements of a field F and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ be defined by $a_{i j}=p_{j}\left(c_{i}\right)$ for all $1 \leq i, j \leq n$. Then $|A|=b_{11} \cdots b_{n n} \prod_{i<j}\left(c_{j}-c_{i}\right) \neq 0$.

Example As a consequence of Proposition 11.7, we note that if $n>0$ is odd and if $A \in \mathcal{M}_{n \times n}(F)$ is a skew-symmetric matrix then $|A|=\left|A^{T}\right|=|-A|=-|A|$ and so $|A|=0$. Therefore, by Proposition 11.2, A is singular. If n is even, then one can use the definition of $|A|$ to show that $|A|=b^{2}$ for some b which is a sum of products of the $a_{i j}$. Thus, for example,

$$
\left|\begin{array}{cccc}
0 & a_{12} & a_{13} & a_{14} \\
-a_{12} & 0 & a_{23} & a_{24} \\
-a_{13} & -a_{23} & 0 & a_{34} \\
-a_{14} & -a_{24} & -a_{34} & 0
\end{array}\right|=\left[a_{12} a_{34}-a_{13} a_{24}+a_{14} a_{23}\right]^{2} .
$$

This number b is called the Pfaffian of the matrix A. Pfaffians arise naturally in combinatorics, differential geometry, and other areas of mathematics.

Pfaffians were first defined by Cayley, and named in honor of Johann Pfaff, an eighteenth-century German mathematician whose most famous doctoral student was Gauss.

We now give two examples of why it was worthwhile to define $|A|$ for matrices A with entries in an associative and commutative unital F-algebra, and not just a field.

Example Let V be a vector space of finite dimension n over a field F and let $B=\left\{v_{1}, \ldots, v_{k}\right\}$ be a linearly-independent subset of V. Let y_{1}, \ldots, y_{k} be a list of vectors in V. We claim that there are at most finitely-many elements a of F satisfying the condition that the list $v_{1}+a y_{1}, \ldots, v_{k}+a y_{k}$ is linearly dependent. To establish this claim, we will consider determinants of matrices over $F[X]$. Indeed, extend B to a basis $D=\left\{v_{1}, \ldots, v_{n}\right\}$ of V. Then, for each $1 \leq i \leq k$, we can write $y_{i}=\sum_{j=1}^{n} c_{i j} w_{j}$. For each $1 \leq i, j \leq k$, define the polynomial $p_{i j}(X) \in F[X]$ by setting

$$
p_{i j}(X)= \begin{cases}c_{i i} X+1 & \text { if } i=j \\ c_{i j} X & \text { otherwise }\end{cases}
$$

and consider the matrix $B=\left[p_{i j}(X)\right] \in \mathcal{M}_{k \times k}(F[X])$. Then $|B|$ is a polynomial $q(X)$ in $F[X]$, which is not the 0 -polynomial since $q(0)=1$. Moreover, for any $a \in F$, we see that $q(a)=0$ whenever the list $v_{1}+a y_{1}, \ldots, v_{k}+a y_{k}$ is linearly dependent. Since a polynomial can have only finitely-many distinct roots, this can happen only for finitely-many values of a.

Example Let $n>1$ be an integer and let U be an open interval of real numbers. Let K be the set of all functions in \mathbb{R}^{U} which are differentiable at least $n-1$ times. Then K is an associative and commutative unital \mathbb{R}-algebra which is not entire, let alone a field. We will denote the derivative of a function $f \in K$ by $D f$ and, if $h>1$, we will denote the h th derivative of f by $D^{h} f$. Given $f_{1}, \ldots, f_{n} \in K$, the function

$$
W\left(f_{1}, \ldots, f_{n}\right): t \mapsto\left|\begin{array}{cccc}
f_{1}(t) & f_{2}(t) & \ldots & f_{n}(t) \\
\left(D f_{1}\right)(t) & \left(D f_{2}\right)(t) & \ldots & \left(D f_{n}\right)(t) \\
\vdots & \vdots & \ddots & \vdots \\
\left(D^{n-1} f_{1}\right)(t) & \left(D^{n-1} f_{2}\right)(t) & \ldots & \left(D^{n-1} f_{n}\right)(t)
\end{array}\right|
$$

is called the Wronskian of f_{1}, \ldots, f_{n}. One can show that if we have $W\left(f_{1}, \ldots\right.$, $\left.f_{n}\right)(t) \neq 0$ for some $t \in U$ then the subset $\left\{f_{1}, \ldots, f_{n}\right\}$ of K is linearly independent
over \mathbb{R}. The converse is false. To see this, let U be an open interval containing the origin, let $f_{1}: t \mapsto t^{3}$, and let $f_{2}: t \mapsto\left|t^{3}\right|$. Then $\left\{f_{1}, f_{2}\right\}$ is linearly independent over \mathbb{R}, but $W\left(f_{1}, f_{2}\right)(t)=0$ for any $t \in U$.

The insight of Josef Wronski, a nineteenth-century Polish mathematician living in France, was obscured by his decidedly eccentric philosophical ideas and style of writing, and was recognized only after his death. The notion of a determinant of functions was first used by Jacobi.

Example Let n be a positive integer equal to 2 or divisible by 4. A matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{C})$ with $\left|a_{i j}\right| \leq 1$ for all $1 \leq i, j \leq n$ having maximal possible determinant (in absolute value) is known as an Hadamard matrix (though, in fact, such matrices were studied by Sylvester, a generation before Hadamard considered them). For such a matrix, we have $|A|=n^{n / 2}$, and the entries of A are all ± 1. Indeed, a matrix A is an Hadamard matrix precisely when all of its entries are ± 1 and $A A^{T}=n I$. Thus, $\left[\begin{array}{rrrr}-1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1\end{array}\right]$ and $\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right]$ are Hadamard matrices. Moreover, for each $t \geq 1$, there exists an Hadamard matrix H_{t} of size $2^{t} \times 2^{t}$, defined recursively by setting $H_{1}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$ and $H_{t}=$ $\left[\begin{array}{rr}H_{t-1} & H_{t-1} \\ H_{t-1} & -H_{t-1}\end{array}\right]$ for each $t>1$.

We also note immediately that if A is an Hadamard matrix so are A^{T} and $-A$. Hadamard matrices have important applications in algebraic coding theory, especially in defining the error-correcting Reed-Muller codes. Needless to say, the determinants of Hadamard matrices get very big very quickly. If A is a 16×16 Hadamard matrix, then $|A|=4,294,967,296$ and If B is a 32×32 Hadamard matrix, then $|B|=1,208,925,819,614,629,174,706,176$.

We still are faced with the problem of actually computing the determinant of an $n \times n$ matrix A, especially when n is large. If we work using the definition, we see that we must add n ! summands, each of which requires $n-1$ multiplications. The total number of arithmetic operations need is therefore $(n-1) n!+(n!-1)=$ $n(n!)-1$, which is a huge number even if n is relatively small. For example, if we are using a computer capable of performing a billion arithmetic operations per second, it would take us $12,200,000,000$ years of nonstop computation to compute the determinant of a 25×25 matrix, based on the definition. Thus we must find better methods of computing determinants, a task which became a high priority for many nineteenth-century mathematicians.

Example Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ be a matrix in which $a_{11} \neq 0$. Then Chiò, Dodgson, and others showed that $|A|=a_{11}^{2-n}|B|$, where $B \in \mathcal{M}_{(n-1) \times(n-1)}(F)$ is the matrix obtained from A by erasing the first row and first column and replacing each other $a_{i j}$ by $\left|\begin{array}{cc}a_{11} & a_{1 j} \\ a_{i 1} & a_{i j}\end{array}\right|$. Thus, for example,

$$
\begin{aligned}
\left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
8 & 7 & 6 & 5 \\
1 & 8 & 2 & 7 \\
3 & 6 & 4 & 5
\end{array}\right| & \left.=\left|\begin{array}{ll}
\left|\begin{array}{ll}
1 & 2 \\
8 & 7
\end{array}\right| & \left|\begin{array}{ll}
1 & 3 \\
8 & 6
\end{array}\right| \\
\left|\begin{array}{ll}
1 & 2 \\
1 & 8
\end{array}\right|\left|\begin{array}{ll}
1 & 4 \\
8 & 5
\end{array}\right| \\
\left|\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right|\left|\begin{array}{ll}
1 & 4 \\
1 & 7
\end{array}\right| \\
1 & 2 \\
3 & 6
\end{array}\right|\left|\begin{array}{ll}
1 & 3 \\
3 & 4
\end{array}\right|\left|\begin{array}{ll}
1 & 4 \\
3 & 5
\end{array}\right| \right\rvert\, \\
& =\left|\begin{array}{rrr}
-9 & -18 & -27 \\
6 & -1 & 3 \\
0 & -5 & -7
\end{array}\right| \\
& =-144 .
\end{aligned}
$$

This method can, of course, be iterated. The method of evaluating determinants in this way is known as the method of condensation.

© George E. Andrews (Andrews).
During the nineteenth century, matrix theory and the theory of determinants attracted many gifted mathematicians and mathematical amateurs. Felice Chiò was a nineteenth-century Italian mathematician and physicist. On the other hand, Rev. Charles Lutwidge Dodgson was an amateur who is better known by his pen name Lewis Carroll, the author of Alice in Wonderland. Dodgson published several works on mathematics and mathematical logic. In the twentieth century, ingenious ways for computing determinants of matrices arising from various combinatorial problems have been devised by American mathematician George Andrews.

Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(K)$, where K is an associative and commutative unital F-algebra. For each $1 \leq i, j \leq n$, we define the minor of the entry $a_{i j}$ of A to be $\left|A_{i j}\right|$, where $A_{i j} \in \mathcal{M}_{(n-1) \times(n-1)}(K)$ is the matrix obtained from A by erasing the i th row and the j th column.

Example If $A=\left[\begin{array}{lll}4 & 3 & 1 \\ 2 & 8 & 9 \\ 7 & 3 & 4\end{array}\right]$, then $A_{13}=\left[\begin{array}{ll}2 & 8 \\ 7 & 3\end{array}\right]$ and $A_{22}=\left[\begin{array}{ll}4 & 1 \\ 7 & 4\end{array}\right]$.

Proposition 11.11 Let F be a field, let (K, \bullet) be an associative and commutative unital F-algebra. If n is a positive integer, and $A=\left[a_{i j}\right] \in M_{n \times n}(K)$, then $|A|=\sum_{j=1}^{n}(-1)^{t+j} a_{t j} \bullet\left|A_{t j}\right|$ for each $1 \leq t \leq n$.

Proof In order to simplify our notation, let $\operatorname{det}\left(y_{1}, \ldots, y_{n}\right)$ denote the determinant of the matrix the rows of which are y_{1}, \ldots, y_{n}. We will first prove the theorem for the case $t=1$. That is to say, we must show that $|A|$ equals $\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \bullet\left|A_{1 j}\right|$. For each $1 \leq h \leq n$, let $v_{h} \in \mathcal{M}_{1 \times n}(K)$ be the matrix [$d_{1} \ldots d_{n}$] defined by

$$
d_{i}= \begin{cases}1 & \text { if } i=h, \\ 0 & \text { otherwise } .\end{cases}
$$

Then the i th row of A can be written as $w_{i}=\sum_{j=1}^{n} a_{i j} v_{j}$ and so

$$
\begin{aligned}
|A| & =\operatorname{det}\left(w_{1}, \ldots, w_{n}\right)=\operatorname{det}\left(\sum_{j=1}^{n} a_{1 j} v_{j}, w_{2}, \ldots, w_{n}\right) \\
& =\sum_{j=1}^{n} a_{1 j} \bullet \operatorname{det}\left(v_{j}, w_{2}, \ldots, w_{n}\right) .
\end{aligned}
$$

Thus we will prove the desired result if we can show that

$$
\operatorname{det}\left(v_{j}, w_{2}, \ldots, w_{n}\right)=(-1)^{1+j}\left|A_{1 j}\right|
$$

for each $1 \leq j \leq n$. Denote the matrix the rows of which are $v_{j}, w_{2}, \ldots, w_{n}$ by $B=\left[b_{i h}\right]$, where

$$
b_{i h}= \begin{cases}1 & \text { if } i=1 \text { and } h=j, \\ 0 & \text { if } i=1 \text { and } h \neq j, \\ a_{i h} & \text { if } i>1 .\end{cases}
$$

For $1 \leq j \leq n$, set $G_{1 j}=\left\{\pi \in S_{n} \mid \pi(1)=j\right\}$.
Suppose that $j=1$. Then, in particular, there is a bijective correspondence between G_{11} and the set of all permutations of $\{2, \ldots, n\}$ which does not affect the signum of the permutation since if $\pi \in G_{11}$ then 1 does not appear in any inversion of π. Since $b_{11}=1$ and $b_{1 h}=0$ if $h>1$, we thus have

$$
\begin{aligned}
|B| & =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) b_{1, \pi(1)} \bullet \cdots \bullet b_{n, \pi(n)} \\
& =\sum_{\pi \in G_{11}} \operatorname{sgn}(\pi) b_{1, \pi(1)} \bullet \cdots \bullet b_{n, \pi(n)} \\
& =\sum_{\pi \in G_{11}} \operatorname{sgn}(\pi) b_{2, \pi(2)} \bullet \cdots \bullet b_{n, \pi(n)}=\left|A_{11}\right|,
\end{aligned}
$$

and so we have shown, as desired, that $|B|=(-1)^{1+1}\left|A_{11}\right|$. If $j>1$ put column j of B in the position of the first column and shift columns 1 to $j-1$ of B to the right by one column position. This involves $j-1$ column interchanges, and we have

$$
\operatorname{det}\left(v_{j}, w_{2}, \ldots, w_{n}\right)=(-1)^{j-1}\left|\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
a_{2 j} & a_{21} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n j} & a_{n 1} & \ldots & a_{n n}
\end{array}\right|=(-1)^{j+1}\left|A_{1 j}\right| .
$$

Now assume that $t>1$. Again, we can interchange the t th row with the first row by $t-1$ exchanges with the row above, and we get $|A|=(-1)^{t-1}|C|$, where C is a matrix satisfying $\left|C_{1 j}\right|=\left|A_{t j}\right|$ for each $1 \leq j \leq n$. Therefore,

$$
|A|=(-1)^{t-1}|C|=(-1)^{t-1} \sum_{j=1}^{n}(-1)^{j+1} c_{1 j} \bullet\left|C_{1 j}\right|=\sum_{j=1}^{n}(-1)^{j+t} a_{t j} \bullet\left|A_{t j}\right|
$$

as desired.
Example For $A=\left[\begin{array}{llll}1 & 7 & 3 & 0 \\ 4 & 0 & 1 & 3 \\ 0 & 2 & 4 & 0 \\ 3 & 1 & 5 & 1\end{array}\right]$ we see that

$$
\begin{aligned}
|A| & =1\left|\begin{array}{lll}
0 & 1 & 3 \\
2 & 4 & 0 \\
1 & 5 & 1
\end{array}\right|-7\left|\begin{array}{lll}
4 & 1 & 3 \\
0 & 4 & 0 \\
3 & 5 & 1
\end{array}\right|+3\left|\begin{array}{lll}
4 & 0 & 3 \\
0 & 2 & 0 \\
3 & 1 & 1
\end{array}\right|-0\left|\begin{array}{lll}
4 & 0 & 1 \\
0 & 2 & 4 \\
3 & 1 & 5
\end{array}\right| \\
& =16+140-30+0=126
\end{aligned}
$$

and

$$
\begin{aligned}
|A| & =0\left|\begin{array}{lll}
7 & 3 & 0 \\
0 & 1 & 3 \\
1 & 5 & 1
\end{array}\right|-2\left|\begin{array}{lll}
1 & 3 & 0 \\
4 & 1 & 3 \\
3 & 5 & 1
\end{array}\right|+4\left|\begin{array}{lll}
1 & 7 & 0 \\
4 & 0 & 3 \\
3 & 1 & 1
\end{array}\right|-0\left|\begin{array}{lll}
1 & 7 & 3 \\
4 & 0 & 1 \\
3 & 1 & 5
\end{array}\right| \\
& =0-2+128-0=126 .
\end{aligned}
$$

Even this method of computing determinants is not easy, however, unless there is a row (or column) of the matrix a significant number of the entries in which are equal to 0 . To see the computational overhead of computing the determinant of a general $n \times n$ matrix using minors, let us denote the number of arithmetic operations needed to do so by p_{n}. Clearly $p_{1}=1$ and $p_{2}=3$. Suppose that we have already found p_{n-1}. Then, by Proposition 11.11, we see that in order to compute the determinant of an $n \times n$ matrix we have to compute the determinants of n matrices of size $(n-1) \times$ ($n-1$) and then perform n multiplications and $n-1$ additions/subtractions. That is to say, we obtain the recursive formula

$$
p_{n}=n p_{n-1}+n+(n-1)=n p_{n-1}+2 n-1,
$$

when $n>2$. Setting $t_{n}=\frac{1}{n!} p_{n}$, we see that

$$
t_{n}-t_{n-1}=\frac{2}{(n-1)!}-\frac{1}{n!}
$$

and so

$$
\begin{aligned}
t_{n} & =\left[t_{n}-t_{n-1}\right]+\left[t_{n-1}-t_{n-2}\right]+\cdots+\left[t_{3}-t_{2}\right]+t_{2} \\
& =\left[\frac{2}{(n-1)!}-\frac{1}{n!}\right]+\cdots+\left[\frac{2}{2!}-\frac{1}{3!}\right]+1 \\
& =2\left[\frac{1}{(n-1)!}+\cdots+\frac{1}{1!}\right]-\left[\frac{1}{n!}+\cdots+\frac{1}{1!}\right]+1 \\
& =\frac{1}{(n-1)!}+\cdots+\frac{1}{1!}+1-\frac{1}{n!} \\
& =\left[\frac{1}{n!}+\frac{1}{(n-1)!}+\cdots+\frac{1}{1!}+1\right]-\frac{2}{n!}
\end{aligned}
$$

and thus we see that $p_{n}=n!\left[\frac{1}{n!}+\frac{1}{(n-1)!}+\cdots+\frac{1}{1!}+1\right]-2$. But from calculus we know that e, the base of the natural logarithms, has an expansion of the form

$$
e=1+\frac{1}{1!}+\cdots+\frac{1}{n!}+\frac{e^{c}}{(n+1)!},
$$

where $0<c<1$, and so $p_{n}=n!\left[e-\frac{e^{c}}{(n+1)!}\right]-2$. If $n>2$, we see that

$$
0<\frac{e^{c}}{n+1}<\frac{e}{n+1} \leq \frac{e}{3}<1
$$

and so we conclude that $e n!-3<p_{n}<e n!-2$. Since p_{n} is a positive integer, we see that $p_{n}=\lfloor e n!\rfloor-2$, where $\lfloor r\rfloor$ denotes the largest whole number less than or equal to r, for any real number r. In particular, we see that p_{n} grows even faster than exponentially, as a function of n, which is very rapid growth indeed. For example, $p_{10}=9,864,094$ and $p_{15}=3,554,625,081,047$.

Recently, sophisticated numerical techniques have been developed to compute the determinants of matrices with entries from a finite field.

In special cases, it is also possible to find bounds on the value of the determinant of a matrix, without actually computing it. For example, we will see below that if $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ and if g is a positive real number greater than or equal to the absolute value of each of the entries of A, then the absolute value of $|A|$ is at most $g^{n} \sqrt{n^{n}}$. In 1980, American mathematicians Charles R. Johnson and Morris Newman proved a surprising bound. Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$. For each $1 \leq i \leq n$, let b_{i} be the sum of all positive entries in the i th row of A and let c_{i} be the sum of all negative entries in the i th row of A (the sum of an empty list is taken to be 0). The absolute value of $|A|$ is then at most $\prod_{i=1}^{n} \max \left\{b_{i},-c_{i}\right\}-\prod_{i=1}^{n} \min \left\{b_{i},-c_{i}\right\}$.

Proposition 11.12 Let n be a positive integer, let F be a field, and let (K, \bullet) be an associative and commutative unital F-algebra. Let $A=\left[a_{i j}\right] \in$ $\mathcal{M}_{n \times n}(K)$ be a matrix which can be represented in block form as

$$
\left[\begin{array}{cccc}
B_{11} & O & \ldots & O \\
B_{21} & B_{22} & \ldots & O \\
\vdots & \vdots & \ddots & \vdots \\
B_{m 1} & B_{m 2} & \ldots & B_{m m}
\end{array}\right],
$$

where $m>1$ and each of the $B_{h h}$ is square. Then $|A|=\prod_{h=1}^{m}\left|B_{h h}\right|$.

Proof Let us first consider the case $m=2$, and assume that $B_{11} \in \mathcal{M}_{t \times t}(K)$ for some $t<n$. We will proceed by induction on t. If $t=1$, then, by Proposition 11.11, $|A|=a_{11}\left|B_{22}\right|=\left|B_{11}\right| \bullet\left|B_{22}\right|$, and we are done. Now assume that $t>1$ and that the result has been established for all matrices of the form $\left[\begin{array}{cc}B_{11} & O \\ B_{21} & B_{22}\end{array}\right]$, where $B_{11} \in \mathcal{M}_{(t-1) \times(t-1)}(K)$. Let C_{j} be the matrix obtained from B_{12} by deleting the j th column. Then, by Proposition 11.11 and the induction hypothesis,

$$
\begin{aligned}
|A| & =\sum_{j=1}^{t}(-1)^{j+1} a_{1 j} \bullet\left|\begin{array}{cc}
\left(B_{11}\right)_{1 j} & O \\
C_{j} & B_{22}
\end{array}\right| \\
& =\sum_{j=1}^{t}(-1)^{j+1} a_{1 j} \bullet\left(\left|\left(B_{11}\right)_{1 j}\right| \bullet\left|B_{22}\right|\right) \\
& =\left(\sum_{j=1}^{t}(-1)^{j+1} a_{1 j} \bullet\left|\left(B_{11}\right)_{1 j}\right|\right) \bullet\left|B_{22}\right|=\left|B_{11}\right| \bullet\left|B_{22}\right|,
\end{aligned}
$$

which establishes this case.
Now assume, inductively, that the result has been established for m and consider a matrix $A \in \mathcal{M}_{n \times n}(K)$ which can be written in block form as

$$
\left[\begin{array}{cccc}
B_{11} & O & \ldots & O \\
B_{21} & B_{22} & \ldots & O \\
\vdots & \vdots & \ddots & \vdots \\
B_{m+1,1} & B_{m+1,2} & \ldots & B_{m+1, m+1}
\end{array}\right]
$$

If we set $C=\left[\begin{array}{cccc}B_{11} & O & \ldots & O \\ B_{21} & B_{22} & \ldots & O \\ \vdots & \vdots & \ddots & \vdots \\ B_{m 1} & B_{m 2} & \ldots & B_{m m}\end{array}\right]$ then, by the case $m=2$ and the induction hypothesis, $|A|=|C| \bullet\left|B_{m+1, m+1}\right|=\prod_{h=1}^{m+1}\left|B_{h h}\right|$.

Note that, as an immediate consequence of Proposition 11.4, we see that if all of the matrices $B_{h h}$ are of the same size, then $|A|=\left|B_{11} \cdots B_{m m}\right|$.

Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(K)$ for some associative and commutative unital F $\operatorname{algebra}(K, \bullet)$. We define the adjoint of A to be the matrix $\operatorname{adj}(A)=\left[b_{i j}\right] \in$ $\mathcal{M}_{n \times n}(K)$, where $b_{i j}=(-1)^{i+j}\left|A_{j i}\right|$ for all $1 \leq i, j \leq n$.

Example If $A=\left[\begin{array}{rrrr}1 & 0 & 3 & 5 \\ -3 & 1 & 3 & 1 \\ 4 & 2 & 1 & 2 \\ 1 & 1 & 2 & 5\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{R})$ then

$$
\operatorname{adj}(A)=\left[\begin{array}{rrrr}
-20 & 9 & -17 & 25 \\
50 & -18 & -16 & -40 \\
-40 & -18 & -16 & 50 \\
10 & 9 & 13 & -35
\end{array}\right]
$$

Proposition 11.13 Let F be a field and let n be a positive integer. If $A=\left[a_{i j}\right] \in M_{n \times n}(F)$ then $A[\operatorname{adj}(A)]=|A| I$. In particular, if the matrix A is nonsingular then $A^{-1}=|A|^{-1} \operatorname{adj}(A)$.

Proof Suppose that $\operatorname{adj}(A)=\left[b_{i j}\right]$. Then $A[\operatorname{adj}(A)]=\left[c_{i j}\right]$, where $c_{i j}=$ $\sum_{k=1}^{n} a_{i k} b_{k j}=\sum_{k=1}^{n}(-1)^{j+k} a_{i k}\left|A_{j k}\right|$. If $i=j$, then, by Proposition 11.11, this is just $|A|$. If $i \neq j$, this is just $\left|A^{\prime}\right|$, where A^{\prime} is a matrix identical to A in all of its rows except the i th row, and that is equal to the j th row of A. Thus the matrix A^{\prime} has two identical rows, and so by Proposition 11.3, $\left|A^{\prime}\right|$ is equal to 0 . Hence $A[\operatorname{adj}(A)]=|A| I$, from which we also immediately deduce the second statement since if A is nonsingular then $|A| \neq 0$.

In particular, we note that if A is nonsingular then so is $\operatorname{adj}(A)$.

Proposition 11.14 Let F be a field, let (K, \bullet) be an associative and commutative unital F-algebra, and let n be a positive integer. If $A=\left[a_{i j}\right] \in$ $M_{n \times n}(K)$ is an upper-triangular matrix then $|A|=\prod_{i=1}^{n} a_{i i}$.

Proof We can prove this by induction on n. For the case $n=1$, it is immediate. Assume therefore that we have already established it for all matrices in $\mathcal{M}_{n \times n}(K)$. Then, by Proposition 11.11, $|A|=\left|A^{T}\right|=\sum_{j=1}^{n}(-1)^{1+j} a_{j 1} \bullet\left|A_{j 1}\right|=a_{11} \bullet\left|A_{11}\right|$. But, by the induction hypothesis, $\left|A_{11}\right|=\prod_{i=2}^{n} a_{i i}$, and we are done.

By Proposition 11.14, we see that in general, from a computational point of view, it is much faster to first perform elementary operations on a matrix to reduce it to upper-triangular form, and then calculate the determinant (making use of the fact that, from the definition of a determinant function and from Proposition 11.4, we easily know the determinants of the elementary matrices), than to calculate the determinant directly. When working in associative and commutative unital algebras over a field, or when working with matrices of integers, this presents somewhat of a problem since it is not always possible to divide by nonzero scalars in such contexts. However, various variants on Gaussian elimination which do not involve division have been developed to overcome this.

© The Daily Northwestern.
One of the major researchers instrumental in the development of such methods was the twentieth-century Swiss/American computer scientist Erwin Bareiss.

Combining Propositions 11.4 and 11.14 , we see that if $A \in M_{n \times n}(F)$ can be written in the form $L U$, where L is a lower-triangular matrix and U is an uppertriangular matrix, then $|A|$ is the product of the diagonal elements of L and the diagonal elements of U.

Proposition 11.15 (Cramer's Theorem) Let F be a field and let n be a positive integer. If $A=\left[a_{i j}\right] \in M_{n \times n}(F)$ is a nonsingular matrix and if $w=$ $\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right] \in$ $\in F^{n}$, then the system of linear equations $A X=w$ has the unique
solution $v=\left[\begin{array}{c}d_{1} \\ \vdots \\ d_{n}\end{array}\right]$ in which, for each $1 \leq i \leq n$, we have $d_{i}=|A|^{-1}\left|A_{(i)}\right|$, where $A_{(i)}$ is the matrix formed from A by replacing the ith column of A by w.

Proof If $A v=w$ then $|A| v=\left(|A| A^{-1}\right) A v=\operatorname{adj}(A) A v=\operatorname{adj}(A) w$ and so for each $1 \leq i \leq n$, we have $|A| d_{i}=\sum_{j=1}^{n}(-1)^{i+j} b_{j}\left|A_{j i}\right|$. But the expression on the righthand side of this equation is just, by Proposition 11.11, $\left|A_{(i)}\right|$, developed by minors on the i th column.

Gabriel Cramer was an eighteenth-century Swiss mathematician and friend of Johann Bernoulli (one of the formulators of calculus) who was among the first to study determinants and their use in solving systems of linear equations. Cramer's rule was also described independently by the eighteenth-century Scottish mathematician Colin Maclaurin.

Cramer's theorem, published in 1750, was the first systematic method for solving a system of linear equations, though special cases of it were known to Leibnitz 75 years earlier. While it is elegant mathematically, it is clearly not computationally feasible, even when n is only moderately large, as was immediately realized by mathematicians of the time. Indeed, solving a system of linear equations $A X=w$ by Cramer's method, where A is a nonsingular $n \times n$ matrix over a field F, requires $\frac{1}{3} n^{4}-\frac{1}{6} n^{3}-\frac{1}{3} n^{2}+\frac{1}{6} n$ additions and $\frac{1}{3} n^{4}+\frac{1}{3} n^{3}+\frac{2}{3} n^{2}+\frac{2}{3} n-1$ multiplications, which is considerably worse than the methods we have previously studied, for which the number of arithmetic operations necessary grows as n^{3}, rather than as n^{4}.

Example Consider the system of linear equations $A X=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right]$, where $A=$ $\left[\begin{array}{rrr}1 & -1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & -1\end{array}\right]$. Then $|A|=-5$ and $\left|A_{(1)}\right|=\left|\begin{array}{rrr}2 & -1 & 1 \\ 1 & 2 & 0 \\ 4 & 0 & -1\end{array}\right|=-13, \quad\left|A_{(2)}\right|=\left|\begin{array}{rrr}1 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 4 & -1\end{array}\right|=4, \quad$ and $\left|A_{(3)}\right|=\left|\begin{array}{rrr}1 & -1 & 2 \\ 1 & 2 & 1 \\ 1 & 0 & 4\end{array}\right|=7$.

As a consequence, we see that the unique solution to the equation is $\frac{1}{5}\left[\begin{array}{c}13 \\ -4 \\ -7\end{array}\right]$.
We note that if $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ then the polynomial

$$
\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) X_{\pi(1)} X_{\pi(2)} \cdots X_{\pi(n)} \in F\left[X_{1}, \ldots, X_{n}\right]
$$

is flat and of degree n. This allows us to make an interesting use of Proposition 4.5.

Proposition 11.16 Let F be a field of characteristic other than 2, let $A=$ $\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ be an arbitrary matrix, and let $C=\left[c_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ be a diagonal matrix with nonzero entries on the diagonal. Then there exists a diagonal matrix $E=\left[e_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ with diagonal entries ± 1 such that $E C+A$ is nonsingular.

Proof Let X_{1}, \ldots, X_{n} be indeterminates over F and let $D=\left[d_{i j}\right] \in \mathcal{M}_{n \times n}\left(F\left[X_{1}\right.\right.$, $\left.\ldots, X_{n}\right]$) be the diagonal matrix with $d_{i i}=X_{i}$ for $1 \leq i \leq n$. Then $|D C+A|$ is a flat polynomial in $F\left[X_{1}, \ldots, X_{n}\right]$ of degree n, and so the result follows immediately from Proposition 4.5.

Example If $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ and if $e>0$ then, by Proposition 11.16, it is possible to "tweak" the diagonal of A to obtain a nonsingular matrix $\left[a_{i j}^{\prime}\right]$, where

$$
a_{i j}^{\prime}= \begin{cases}a_{i j} \pm e & \text { if } i=j \\ a_{i j} & \text { otherwise }\end{cases}
$$

The sum which appears in the definition of the determinant shows up in other contexts related to matrix algebras. An associative algebra (K, \bullet) over a field F satisfies the standard identity of degree n if and only if $\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{\pi(1)} \bullet a_{\pi(2)} \bullet$ $\cdots \bullet a_{\pi(n)}=0$ for any list a_{1}, \ldots, a_{n} of elements of K. Thus, for example, the standard identity of degree 2 is $a_{1} \bullet a_{2}-a_{2} \bullet a_{1}=0$. The algebra K satisfies this identity precisely when it is commutative. The Amitsur-Levitzki Theorem states that for any field F and any positive integer n, the F-algebra $\mathcal{M}_{n \times n}(F)$ satisfies the standard identity of degree k for each $k \geq 2 n$. There are several proofs of this result, all beyond the scope of this book. Some of these are based on a generalization of the Cayley-Hamilton Theorem, which we shall see in the following chapter.

© Alexander Levitzki (Levitzki).
Yaakov Levitzki and his student Shimshon Amitsur were twentieth-century Israeli algebraists.

We end this chapter by showing how an important construction in analysis can be considered in terms of determinants of matrices over the \mathbb{R}-algebra $\mathbb{R}[X]$. Let c_{0}, c_{1}, \ldots be real numbers and let us consider the analytic function $f: x \mapsto$ $\sum_{i=0}^{\infty} c_{i} x^{i}$, which converges for all x in some subset U of \mathbb{R}. We know that $U \neq \varnothing$ since surely $0 \in U$. Given positive integers k and n, we want to find polynomials
$p(X), q(X) \in \mathbb{R}[X]$ of degrees at most k and n, respectively, such that the function
$x \mapsto p(x) q(x)^{-1}-f(x)$ also converges for all $x \in U$ and is representable there by a power series of the form $x \mapsto \sum_{i=1}^{\infty} d_{i} x^{k+n+i}$. If we find such p and q, then the function $x \mapsto p(x) q(x)^{-1}$ is called the Padé approximant to f of type k / n. Padé approximants are very important tools in differential equations and in approximation theory. Hermite made use of Padé approximants in his proof of the transcendence of e.

Henri Padé was a nineteenth-century French engineer who developed these approximants in the course of his work. Interest in them intensified in the early twentieth century when the French mathematician Émile Borel made extensive use of them in his work on analysis.

Example If $f: x \mapsto e^{x}=\sum_{i=0}^{\infty} \frac{1}{i!} x^{i}$ then the function $g_{1}: x \mapsto \frac{x^{2}+4 x+6}{6-2 x}$ is a Padé approximant to f of type $2 / 1$ and the function $g_{2}: x \mapsto \frac{x^{2}+6 x+12}{x^{2}-6 x+12}$ is a Padé approximant to f of type $2 / 2$.

If we are given an analytic f as above, how do we calculate Padé approximants to it? One way is by using determinants. First of all, define $c_{-i}=0$ for all positive integers i. Then, given positive integers k and n, define the matrices $P_{k / n}(X), Q_{k / n}(X) \in \mathcal{M}_{(n+1) \times(n+1)}(\mathbb{R}[X])$ by setting:

$$
P_{k / n}(X)=\left[\begin{array}{cccc}
c_{k-n+1} & c_{k-n+2} & \ldots & c_{k+1} \\
c_{k-n+2} & c_{k-n+3} & \ldots & c_{k+2} \\
\vdots & \vdots & \ddots & \vdots \\
c_{k} & c_{k+1} & \ldots & c_{k+n} \\
\sum_{i=0}^{k-n} c_{i} X^{n+i} & \sum_{i=0}^{k-n+1} c_{i} X^{n+i-1} & \ldots \sum_{i=0}^{k} c_{i} X^{i}
\end{array}\right]
$$

and

$$
Q_{k / n}(X)=\left[\begin{array}{cccc}
c_{k-n+1} & c_{k-n+2} & \ldots & c_{k+1} \\
c_{k-n+2} & c_{k-n+3} & \ldots & c_{k+2} \\
\vdots & \vdots & \ddots & \vdots \\
c_{k} & c_{k+1} & \ldots & c_{k+n} \\
X^{n} & X^{n-1} & \ldots & 1
\end{array}\right]
$$

Then the polynomials $p(X)=\left|P_{k / n}(X)\right|$ and $q(X)=\left|Q_{k / n}(X)\right|$ are of the desired size, and our approximant is given by $x \mapsto p(x) q(x)^{-1}$.

Exercises

Exercise 637

Calculate $\left|\begin{array}{cc}\sin (a) & \cos (a) \\ \sin (b) & \cos (b)\end{array}\right|$ and $\left|\begin{array}{cc}\cos (a) & \sin (a) \\ \sin (b) & \cos (b)\end{array}\right|$ for real numbers a and b.

Exercise 638

Calculate $\left|\begin{array}{ccc}1 & i & 1+i \\ -i & 1 & 0 \\ 1-i & 0 & 1\end{array}\right| \in \mathbb{C}$.

Exercise 639

Calculate $\left|\begin{array}{cccc}a-6 & 0 & 0 & -8 \\ 5 & a-4 & 0 & 12 \\ -1 & 3 & a-2 & -6 \\ 0 & -\frac{1}{2} & 1 & 1\end{array}\right|$ for any $a \in \mathbb{R}$.

Exercise 640

Find the image of the function f from \mathbb{R} to itself defined by

$$
f: t \mapsto\left|\begin{array}{ccc}
1 & 0 & -t \\
1 & 1 & -1 \\
t & 0 & -1
\end{array}\right|
$$

Exercise 641

For real numbers a, b, c, and d, show that

$$
\left|\begin{array}{llll}
a^{2} & (a+1)^{2} & (a+2)^{2} & (a+3)^{2} \\
b^{2} & (b+1)^{2} & (b+2)^{2} & (b+3)^{2} \\
c^{2} & (c+1)^{2} & (c+2)^{2} & (c+3)^{2} \\
d^{2} & (d+1)^{2} & (d+2)^{2} & (d+3)^{2}
\end{array}\right|=0
$$

Exercise 642

Let n be a positive integer and let c be a fixed real number. Calculate the determinant of the matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ defined by

$$
a_{i j}= \begin{cases}c & \text { if } i<j \\ i & \text { if } i=j \\ 0 & \text { if } i>j\end{cases}
$$

Exercise 643

For $a, b \in \mathbb{R}$, calculate $\left|\begin{array}{ccc}a & b & a+b \\ b & a+b & a \\ a+b & a & b\end{array}\right|$.

Exercise 644

Let $F=\mathrm{GF}(2)$. Does there exist a matrix $A \in \mathcal{M}_{2 \times 2}(F)$ other than I satisfying the condition that $|A|=\left|A^{T} A\right|=1$?

Exercise 645

If n is a positive integer, we define the nth Hankel matrix $H_{n} \in \mathcal{M}_{n \times n}(\mathbb{R})$ to be the matrix $\left[a_{i j}\right]$ satisfying

$$
a_{i j}= \begin{cases}0 & \text { if } i+j-1>n \\ i+j-1 & \text { otherwise }\end{cases}
$$

Calculate $\left|H_{n}\right|$.

The nineteenth-century German mathematician Hermann Hankel was among the first to recognize and popularize the work of Grassmann.

Exercise 646

Let $p(X)=a_{0}+a_{1} X+a_{2} X^{2}$ and $q(X)=b_{0}+b_{1} X+b_{2} X^{2}$ be polynomials in $\mathbb{C}[X]$. Show that there exists a complex number c satisfying $p(c)=q(c)=0$ if and only if $\left|\begin{array}{cccc}a_{0} & a_{1} & a_{2} & 0 \\ 0 & a_{0} & a_{1} & a_{2} \\ b_{0} & b_{1} & b_{2} & 0 \\ 0 & b_{0} & b_{1} & b_{2}\end{array}\right|=0$.

Exercise 647

Find the set of all pairs (a, b) of real numbers such that

$$
\left|\begin{array}{cccc}
a+1 & 3 a & b+3 a & b+1 \\
2 b & b+1 & 2-b & 1 \\
a+2 & 0 & 1 & a+3 \\
b-1 & 1 & a+2 & a+b
\end{array}\right|=0
$$

Exercise 648
For $a, b, c \in \mathbb{R}$, show that $\left|\begin{array}{ccc}0 & (a-b)^{2} & (a-c)^{2} \\ (b-a)^{2} & 0 & (b-c)^{2} \\ (c-a)^{2} & (c-b)^{2} & 0\end{array}\right| \geq 0$.

Exercise 649

Let n be a positive even integer and let $c, d \in \mathbb{Q}$. Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{Q})$ be the matrix defined by

$$
a_{i j}= \begin{cases}c & \text { if } i=j \\ d & \text { if } i+j=n+1, \\ 0 & \text { otherwise }\end{cases}
$$

Calculate $|A|$.

Exercise 650

Let n be a positive integer and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{Q})$ be the tridiagonal matrix defined by

$$
a_{i j}= \begin{cases}1 & \text { if }|i-j| \leq 1, \\ 0 & \text { otherwise } .\end{cases}
$$

Show that

$$
|A|= \begin{cases}-1 & \text { if } n=3 k \\ 1 & \text { if } n=3 k+1 \\ 0 & \text { if } n=3 k+2\end{cases}
$$

for some nonnegative integer k.
Exercise 651
Find $a, b, c \in \mathbb{Z}$ for which $\left|\begin{array}{ccc}a+b & c & c \\ a & b+c & a \\ b & b & a+c\end{array}\right|$ is divisible by 8 .

Exercise 652

Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{Q})$ be a nonsingular matrix satisfying the condition that all of the entries of A and of A^{-1} are integers. Show that $|A|= \pm 1$.

Exercise 653
For elements a, b, and c of a field F, calculate $\left|\begin{array}{ccc}-2 a & a+b & a+c \\ a+b & -2 b & b+c \\ a+c & b+c & -2 c\end{array}\right|$.

Exercise 654

We know that the integers $23028,31882,86469,6327$, and 61902 are all divisible
by 19. Show that $\left|\begin{array}{lllll}2 & 3 & 0 & 2 & 8 \\ 3 & 1 & 8 & 8 & 2 \\ 8 & 6 & 4 & 6 & 9 \\ 0 & 6 & 3 & 2 & 7 \\ 6 & 1 & 9 & 0 & 2\end{array}\right|$ is also divisible by 19 .

Exercise 655

Let $q \in \mathbb{Q}$. Show that there are infinitely-many matrices in $\mathcal{M}_{3 \times 3}(\mathbb{Q})$ of the form $\left[\begin{array}{ccc}2 & 2 & 3 \\ 3 q+2 & 4 q+2 & 5 q+3 \\ a & b & c\end{array}\right]$, where $a<b<c$, the determinant of which equals q.

Exercise 656

Let n be a positive integer and let F be a field. Let $A \in \mathcal{M}_{n \times n}(F)$ be a nonsingular matrix which can be written in block form $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$, where $A_{11} \in \mathcal{M}_{k \times k}(F)$ for some integer $k<n$. Write A^{-1} as $\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$, where $B_{11} \in \mathcal{M}_{k \times k}(F)$. Show that $\left|A_{11}\right|=|A| \cdot\left|B_{22}\right|$.

Exercise 657

Find all real numbers a for which $\left|\begin{array}{rrrr}a & 1 & 1 & 1 \\ 1 & a & 2 & 3 \\ 0 & -1 & 0 & 1 \\ -1 & 1 & 1 & 2\end{array}\right|=0$.

Exercise 658

Let a_{1}, a_{2}, \ldots be a sequence of real numbers. For each positive integer n, define the nth continuant c_{n} of the sequence to be the determinant of the tridiagonal matrix $A_{n}=\left[a_{i j}\right] \in \mathcal{M}_{n \times x}(\mathbb{R})$ given by

$$
a_{i j}= \begin{cases}a_{i} & \text { if } i=j, \\ -1 & \text { if } i=j-1, \\ 1 & \text { if } i=j+1, \\ 0 & \text { otherwise }\end{cases}
$$

Show that $c_{n}=a_{n} c_{n-1}+c_{n-2}$ for all $n>2$.

Exercise 659

Let $n>1$ be an integer, let d be a real number, and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ be the matrix defined as follows:

$$
a_{i j}= \begin{cases}0 & \text { if } i=j, \\ 1 & \text { if } i>1 \text { and } j=1 \text { or } i=1 \text { and } j>1, \\ d & \text { otherwise. }\end{cases}
$$

Show that $|A|=(-1)^{n-1}(n-1) d^{n-2}$.

Exercise 660

Let b_{1}, \ldots, b_{n} be nonzero real numbers and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ be the matrix defined as follows:

$$
a_{i j}= \begin{cases}1+b_{j} & \text { if } i=j \\ 1 & \text { otherwise }\end{cases}
$$

Calculate $|A|$.

Exercise 661

Let $A=\left[a_{i j}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{Q})$ be a matrix each entry of which is either -2 or 3 .
Show that $|A|$ is an integer multiple of 125 .

Exercise 662

Let a, b, c, and d be real numbers not all of which are equal to 0 . Show that the matrix $\left[\begin{array}{rrrr}a & b & c & d \\ b & -a & d & -c \\ c & -d & -a & b \\ d & c & -b & -a\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{R})$ is nonsingular.

Exercise 663

Does there exist a rational number a satisfying the condition that the matrix $\left[\begin{array}{rrr}1 & a & 0 \\ a & 1 & 1 \\ -1 & a & -1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{Q})$ is nonsingular?

Exercise 664

Find all matrices $I \neq A \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ satisfying $A^{3}=I$.

Exercise 665

Find all triples (a, b, c) of real numbers satisfying the condition

$$
\left|\begin{array}{lll}
1 & a & a^{3} \\
1 & b & b^{3} \\
1 & c & c^{3}
\end{array}\right|=(b-c)(c-a)(a-b)(a+b+c)
$$

Exercise 666

Let n be a positive integer, let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{C})$ and let $B=\left[b_{i j}\right] \in$ $\mathcal{M}_{n \times n}(\mathbb{C})$ be defined by $b_{i j}=\bar{a}_{j i}$ for each $1 \leq i, j \leq n$. Show that $|A B|$ is a nonnegative real number.

Exercise 667

Calculate $\left|\begin{array}{cc}1 & \log _{b} a \\ \log _{a} b & 1\end{array}\right|$ for given positive real numbers a and b.

Exercise 668
Let F be a field. Calculate $\left|\begin{array}{cccc}1 & a & a^{2} & a^{3} \\ a^{3} & a^{2} & a & 1 \\ 1 & 2 a & 3 a^{2} & 4 a^{3} \\ 4 a^{3} & 3 a^{2} & 2 a & 1\end{array}\right|$ for any $a \in F$.

Exercise 669

Calculate $\left|\begin{array}{rrrr}\cos (a) & \sin (a) & \cos (a) & \sin (a) \\ \cos (2 a) & \sin (2 a) & 2 \cos (2 a) & 2 \sin (2 a) \\ \cos (3 a) & \sin (3 a) & 3 \cos (3 a) & 3 \sin (3 a) \\ \cos (4 a) & \sin (4 a) & 4 \cos (4 a) & 4 \sin (4 a)\end{array}\right|$ for $a \in \mathbb{R}$.

Exercise 670
Let n be a positive integer and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ be the matrix defined by

$$
a_{i j}= \begin{cases}0 & \text { if } i=j \\ 1 & \text { otherwise }\end{cases}
$$

Calculate $|A|$.

Exercise 671
Let $A=\left[\begin{array}{rrr}3 & -1 & 1 \\ 0 & 2 & 4 \\ 1 & -1 & 1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R}) . \operatorname{Calculate} \operatorname{adj}(A)$.

Exercise 672
Let $F=\mathrm{GF}(2)$ and let $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right] \in \mathcal{M}_{3 \times 3}(F)$. Calculate $\operatorname{adj}(A)$.

Exercise 673

Let F be a field, let n be a positive integer, and let $A, B \in \mathcal{M}_{n \times n}(F)$. Is it necessarily true that $\operatorname{adj}(A B)=\operatorname{adj}(A) \operatorname{adj}(B)$?

Exercise 674

Let F be a field, let n be a positive integer, and let $A \in \mathcal{M}_{n \times n}(F)$. Is it necessarily true that $\operatorname{adj}\left(A^{T}\right)=\operatorname{adj}(A)^{T}$?

Exercise 675

Let F be a field, let n be a positive integer, and let the matrices $A, B \in \mathcal{M}_{n \times n}(F)$ be nonsingular. Show that $\operatorname{adj}\left(B^{-1} A B\right)=B^{-1} \operatorname{adj}(A) B$.

Exercise 676

Let F be a field, let n be a positive integer, and let $A, B \in \mathcal{M}_{n \times n}(F)$ be matrices satisfying $B \neq O$ and $A B=O$. Show that $|A|=0$.

Exercise 677
Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 4 \\ 1 & 4 & 3\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Use the adjoint of A to calculate A^{-1}.

Exercise 678
Let F be a field, let n be a positive integer, and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$. Let $B=\left[b_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ defined by $b_{i j}=(-1)^{i+j} a_{i j}$ for all $1 \leq i, j \leq n$. Show that $|A|=|B|$.

Exercise 679

Let F be a field, let n be a positive integer, and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$. Let $B=\left[b_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ defined by $b_{i j}=(-1)^{i+j+1} a_{i j}$ for all $1 \leq i, j \leq n$. Show that $(-1)^{n}|A|=|B|$.

Exercise 680

Let n be a positive integer and let $\pi \in S_{n}$. Let $A \in \mathcal{M}_{n \times n}(\mathbb{Q})$ be the permutation matrix defined by π. Calculate $|A|$.

Exercise 681

Is the set of all permutation matrices in $\mathcal{M}_{n \times n}(\mathbb{Q})$ closed under multiplication? Is the inverse of a permutation matrix a permutation matrix?

Exercise 682

Let $A=\left[a_{i j}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ be a matrix in which $a_{i 2} \neq 0$ for all $1 \leq i \leq 3$. Denote the minor of $a_{i j}$ for all $1 \leq i, j \leq n$ by $A_{i j}$. Show that

$$
|A|=\frac{1}{a_{12}}\left|\begin{array}{ll}
A_{21} & A_{23} \\
A_{31} & A_{32}
\end{array}\right|+\frac{1}{a_{22}}\left|\begin{array}{ll}
A_{11} & A_{13} \\
A_{31} & A_{33}
\end{array}\right|+\frac{1}{a_{32}}\left|\begin{array}{ll}
A_{11} & A_{13} \\
A_{21} & A_{22}
\end{array}\right| .
$$

Exercise 683

Let F be a field, let n be a positive integer, and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ be nonsingular. Show that $\operatorname{adj}(\operatorname{adj}(A))=|A|^{n-2} A$.

Exercise 684

Let a and b be real numbers and let n be an integer greater than 2 . Let $D=\left[d_{i j}\right] \in$ $\mathcal{M}_{n \times n}(\mathbb{R})$ be the matrix defined by $d_{i j}=\sin (i a+j b)$ for all $1 \leq i, j \leq n$. Show that $|D|=0$.

Exercise 685

Let F be a field and let $a, b, c, d, e, f, g \in F$. Show that

$$
\left|\begin{array}{lll}
a & b & b \\
c & d & e \\
f & g & g
\end{array}\right|+\left|\begin{array}{lll}
a & b & b \\
e & c & d \\
f & g & g
\end{array}\right|+\left|\begin{array}{lll}
a & b & b \\
d & e & c \\
f & g & g
\end{array}\right|=0
$$

Exercise 686

Let F be a field, let n be a positive integer, and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$. Let $B=\left[b_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ be the matrix defined by

$$
b_{i j}= \begin{cases}a_{i j}+a_{i, j+1} & \text { if } j<n \\ a_{i n} & \text { otherwise }\end{cases}
$$

Show that $|B|=|A|$.

Exercise 687

Let k and n be integers greater than 1 . Let F be a field and let $A=\left[a_{i j}\right]$ be a matrix in $\mathcal{M}_{k \times n}(F)$, the upper row of which contains at least one nonzero entry. For each $2 \leq i \leq k$ and each $2 \leq j \leq n$, let $d_{i j}=\left|\begin{array}{cc}a_{11} & a_{1 j} \\ a_{i 1} & a_{i j}\end{array}\right|$. Show that the rank of the matrix $D=\left[\begin{array}{ccc}d_{22} & \ldots & d_{2 n} \\ \vdots & \ddots & \vdots \\ d_{k 2} & \ldots & d_{k n}\end{array}\right] \in \mathcal{M}_{(k-1) \times(n-1)}(F)$ is $r-1$, where r is the rank of A.

Exercise 688

Let F be a field, let $a \neq b$ be elements of F, and let $A, B \in \mathcal{M}_{2 \times 2}(F)$ be matrices satisfying the condition that $|A+h B| \in\{a, b\}$ for $h=1,2,3,4,5$. Show that $|A+9 B| \in\{a, b\}$.

Exercise 689

Let F be a field and let $a, b, c \in F$. Make use of the matrix $\left[\begin{array}{ccc}b & c & 0 \\ a & 0 & c \\ 0 & a & b\end{array}\right]$ in order to calculate the determinant of the matrix $\left[\begin{array}{ccc}b^{2}+c^{2} & a b & a c \\ a b & a^{2}+c^{2} & b c \\ a c & b c & a^{2}+b^{2}\end{array}\right]$.

Exercise 690

Let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ be a nonsingular matrix, which we will write in the form $B+i C$, where $B, C \in \mathcal{M}_{n \times n}(\mathbb{R})$. Show that there is a real number d such that the matrix $B+d C \in \mathcal{M}_{n \times n}(\mathbb{R})$ is nonsingular.

Exercise 691

Let F be a field and let n be a positive integer. Let $A \in \mathcal{M}_{n \times n}(F)$ be a matrix having the property that the sum of all even-numbered columns (considered as vectors in F^{n}) of A equals the sum of all odd-numbered columns of A. What is $|A|$?

Exercise 692
Let $V=\mathbb{R}^{2}$ and let $f: V^{3} \rightarrow \mathbb{R}$ be the function defined as follows: if $v_{i}=$ $\left[\begin{array}{l}a_{i} \\ b_{i}\end{array}\right]$ for $i=1,2,3$, then $f:\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right] \mapsto\left|\begin{array}{lll}a_{1} & b_{1} & 1 \\ a_{2} & b_{2} & 1 \\ a_{3} & b_{3} & 1\end{array}\right|$. Show that $f\left(v_{1}, v_{2}, v_{3}\right)=$ $f\left(v_{4}, v_{2}, v_{3}\right)+f\left(v_{1}, v_{4}, v_{3}\right)+f\left(v_{1}, v_{2}, v_{4}\right)$ for all $v_{1}, v_{2}, v_{3}, v_{4} \in V$.

Exercise 693

Let F be a field and let n be a positive integer. Let $D=\left[d_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ be the matrix defined by $d_{i j}=1$ for all $1 \leq i, j \leq n$. Show that for any matrix $A \in \mathcal{M}_{n \times n}(F)$ precisely one of the following conditions holds: (1) There is a unique scalar $a \in F$ such that $A+a D$ is singular; (2) $A+a D$ is singular for all scalars $a \in F$; (3) $A+a D$ is nonsingular for all scalars $a \in F$.

Exercise 694

Let $A, B, C, D \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ and let M be the matrix $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{R})$. If all of the "formal determinants" $A D-B C, A D-C B, D A-B C$, and $D A-C B$ are nonsingular, is M necessarily nonsingular?

Exercise 695

Let $A, B, C, D \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ and let M be the matrix $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{R})$. If M is a nonsingular matrix, is at least one of the "formal determinants" $A D-B C$, $A D-C B, D A-B C$, and $D A-C B$ also nonsingular?

Exercise 696

Let $n>1$ be an integer and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{Q})$ be a matrix satisfying the condition that each $a_{i j}$ is either equal to 1 or to -1 . Show that $|A|$ is an integer multiple of 2^{n-1}.

Exercise 697

If a, b, c, d, e, f are nonzero elements of a field F, show that

$$
\left|\begin{array}{cccc}
0 & a^{2} & b^{2} & c^{2} \\
a^{2} & 0 & f^{2} & e^{2} \\
b^{2} & f^{2} & 0 & d^{2} \\
c^{2} & e^{2} & d^{2} & 0
\end{array}\right|=\left|\begin{array}{cccc}
0 & a d & b e & c f \\
a d & 0 & c f & b e \\
b e & c f & 0 & a d \\
c f & b e & a d & 0
\end{array}\right| .
$$

Exercise 698

Let n be a positive integer and let c_{1}, \ldots, c_{n} be distinct real numbers transcendental over \mathbb{Q}. For $1 \leq h \leq n$, let $p_{h}(X)=\sum_{i=0}^{h-1} a_{i} X^{i} \in \mathbb{Q}[X]$ be a polynomial of degree $h-1$. Let $A=\left[p_{i}\left(c_{j}\right)\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$. Show that $|A|=$ $\left(a_{0} \cdots a_{n-1}\right) \prod_{i<j}\left(c_{j}-c_{i}\right)$.

Exercise 699

Let n be a positive integer and let c_{1}, \ldots, c_{n} be distinct real numbers transcendental over \mathbb{Q}. For each $1 \leq i, j \leq n$, set $d_{i j}=c_{i}^{j}-c_{i}^{-j}$ and let $A=$ $\left[d_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$. Show that $|A|$ equals $\left(c_{1} \cdots c_{n}\right)^{-n} \prod_{i<j}\left[\left(c_{i}-c_{j}\right)(1-\right.$ $\left.\left.c_{i} c_{j}\right)\right] \prod_{i=1}^{n}\left(c_{i}^{2}-1\right)$.

Exercise 700

Let a, b, c, d be elements of a field F. Solve the equation

$$
\left|\begin{array}{llll}
a & b & c & d \\
b & c & d & a \\
c & d & a & b \\
d & a & b & c
\end{array}\right|=X\left|\begin{array}{rrrr}
0 & 1 & -1 & 1 \\
1 & c & d & a \\
1 & d & a & b \\
1 & a & b & c
\end{array}\right| .
$$

Exercise 701

Let F be a field. Does there exist a matrix A in $\mathcal{M}_{3 \times 3}(F)$ satisfying the condition that the rank of $\operatorname{adj}(A)$ equals 2 ?

Exercise 702

Let a, b, and c be nonzero real numbers. Under which conditions does the equation $\left|\begin{array}{ccc}0 & a-X & b-X \\ -a-X & 0 & c-X \\ -b-X & -c-X & 0\end{array}\right|=0$ have more than one solution?

Exercise 703

Use determinants to show that there is no matrix $A \in \mathcal{M}_{4 \times 4}(\mathbb{Q})$ satisfying the condition that $A^{4}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.

Exercise 704

Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ be a matrix satisfying the condition $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$ for all $1 \leq i \leq n$. Such matrices are called strictly diagonally dominant. Show that $|A| \neq 0$.

Exercise 705

Let F be a field and let $a, b, c \in F$. Is it true that

$$
\left|\begin{array}{rrrr}
a & b & c & 0 \\
b & a & 0 & c \\
c & 0 & a & b \\
0 & c & b & a
\end{array}\right|=\left|\begin{array}{rrrr}
-a & b & c & 0 \\
b & -a & 0 & c \\
c & 0 & -a & b \\
0 & c & b & -a
\end{array}\right| ?
$$

Exercise 706

Let F be a field and let $n>2$ be an integer. Give an example of a matrix $A \in \mathcal{M}_{n \times n}(F)$ all of the entries in which are nonzero, satisfying $\operatorname{adj}(A)=O$.

Exercise 707
Let F be a field and let $n>2$ be an integer. Show that $|\operatorname{adj}(A)|=|A|^{n-1}$ for all $A \in \mathcal{M}_{n \times n}(F)$.

Exercise 708

Is the function adj : $\mathcal{M}_{2 \times 2}(\mathbb{R}) \rightarrow \mathcal{M}_{2 \times 2}(\mathbb{R})$ epic?

Exercise 709

For real numbers s and t, let $A(s, t)=\left[\begin{array}{lll}s & 0 & t \\ 1 & 1 & 1 \\ t & 0 & 1\end{array}\right]$ and let $B(s, t)=\operatorname{adj}(A(s, t))$.
Find the set of all real numbers s satisfying the condition that $|A(s, t)| \neq|B(s, t)|$ for all $t \in \mathbb{R}$.

Exercise 710

Let n be a positive integer and for all $1 \leq j \leq n$, let m_{j} be a positive integer. Define the matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{Q})$ by setting $a_{i j}=\binom{m_{j}+i-1}{j-1}$ for all $1 \leq i, j \leq n$. Calculate $|A|$.

Exercise 711

Let a and b be distinct elements of a field F and let n be a positive integer. Let $A(n)=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ be the matrix defined by

$$
a_{i j}= \begin{cases}a & \text { if } i=j, \\ b & \text { otherwise }\end{cases}
$$

Use induction on n to prove that $|A(n)|=[a+(n-1) b](a-b)^{n-1}$.

Exercise 712

Let n be a positive integer and pick integers $1 \leq h, k \leq n$. Let $f, g \in \mathbb{R}^{\mathbb{R}}$ be the functions defined by

$$
f: c \mapsto \begin{cases}\left|E_{h, c}\right| & \text { if } c \neq 0, \\ 0 & \text { if } c=0\end{cases}
$$

and $g: c \mapsto\left|E_{h k ; c}\right|$. Are these functions continuous?

Exercise 713

Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{Q})$ be a nonsingular matrix the entries of which are integers and the determinant of which is ± 1. Show that all of the entries of A^{-1} are integers.

Exercise 714
Let F be a field and let $A \in \mathcal{M}_{2 \times 2}(F)$. Show that the matrix $A^{2}+|A| I$ belongs to the subspace of $\mathcal{M}_{2 \times 2}(F)$ generated by $\{A\}$.

Exercise 715

Let $A=\left[a_{i j}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{Q})$ be a matrix all of the entries of which are nonnegative one-digit integers. Let d be a positive integer dividing the three-digit integers $a_{11} a_{12} a_{13}, a_{21} a_{22} a_{23}$, and $a_{31} a_{32} a_{33}$. Show that d divides $|A|$.

Exercise 716

Let n be a positive integer and let F be a field. Let $A \in \mathcal{M}_{n \times n}(F)$ be a matrix satisfying the condition that $|A+B|=|A|$ for all $B \in \mathcal{M}_{n \times n}(F)$. Show that $A=O$.

Exercise 717

Let n be an odd positive integer let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Show that there exists a diagonal matrix B the diagonal entries of which are ± 1 such that $A+B$ is nonsingular.

Exercise 718

Let $n>1$ be an integer and let F be a field. Show that there exist subspaces W and Y of $\mathcal{M}_{n \times n}(F)$ satisfying $\mathcal{M}_{n \times n}(F)=W \oplus Y$ such that the restrictions of the determinant function δ_{n} to W and to Y are linear transformations.

Exercise 719

Let $n>1$ be an integer and let B be the set of all of the nonsingular matrices in $\mathcal{M}_{n \times n}(\mathbb{R})$ all of the entries of which are either 1 or 0 . Show that in every matrix in B there are at least $n-1$ entries which are equal to 0 and that there exists a matrix in B in which there are precisely $n-1$ entries equal to 0 .

Exercise 720

Let A be a matrix formed by permuting the rows or columns of an Hadamard matrix. Is A necessarily an Hadamard matrix?

Exercise 721

Let V be a vector space of finite dimension n over a field F and let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a given basis for V. Let U be the subset of V consisting of all vectors of the form $y_{a}=\sum_{i=1}^{n} a^{i-1} v_{i}$, for $0 \neq a \in F$. Show that any subset of U having n elements is a basis for V.

Exercise 722

Let F be a field and let n be an even positive integer. Let $A \in \mathcal{M}_{n \times n}(F)$ be a matrix which can be written in block form as $\left[A_{i j}\right]$, where $A_{i j}=\left[\begin{array}{rc}0 & c_{i} \\ -c_{i} & 0\end{array}\right]$ if $i=j$, and $A_{i j}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ otherwise. Calculate the Pfaffian of A.

Exercise 723

Let F be a field and let n be an even positive integer. Let $c \in F$ and let $A \in \mathcal{M}_{2 \times n}(F)$ be a skew-symmetric matrix having Pfaffian d. What is the Pfaffian of $c A$?

Exercise 724

Let $c=\frac{1}{2}(1+i \sqrt{3})$. Find the set of all real numbers a such that

$$
\left|\begin{array}{ccc}
a & 1 & 1 \\
1 & c & c^{2} \\
1 & c^{2} & c
\end{array}\right| \in \mathbb{R} .
$$

Exercise 725
For elements a, b, c, d of a field F, calculate the value of $\left|\begin{array}{llll}a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a\end{array}\right|$.

Exercise 726

Let F be a field and let n be a positive integer. Set $V=\mathcal{M}_{n \times n}(F)$ and let $A, B \in V$ satisfy the condition that $|A B|=1$. Then the function $\alpha: C \mapsto A C B$ is an endomorphism of V satisfying $|C|=|\alpha(C)|$ for all $C \in V$. Find an endomorphism of V satisfying the same condition, which is not of this form.

Exercise 727

Let F be a field and let n be a positive integer. For $A, B, C, D \in \mathcal{M}_{n \times n}(F)$, show that $\left|\begin{array}{ll}A & B \\ C & D\end{array}\right|=\left|\begin{array}{rr}-C & -D \\ A & B\end{array}\right|$.

Exercise 728

Let F be a field and let $A, B, C, D \in \mathcal{M}_{n \times n}(F)$ for some positive integer n. If $C D=D C$ and $|D| \neq 0$, show that $\left|\begin{array}{ll}A & B \\ C & D\end{array}\right|=|A D-B C|$.

Exercise 729

If F is a field and $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ for some positive integer n, then we define the permanent of A to be

$$
\sum_{\pi \in S_{n}} a_{\pi(1), 1} \bullet a_{\pi(2), 2} \bullet \cdots \bullet a_{\pi(n), n}
$$

(i) Show that the permanent of A is the coefficient of $X_{1} \cdots X_{n}$ in the polynomial $\prod_{i=1}^{n}\left(a_{i 1} X_{1}+\cdots+a_{i n} X_{n}\right) \in F\left[X_{1}, \ldots, X_{n}\right]$.
(ii) If A is a permutation matrix, what is its permanent?

Exercise 730
Does there exist a matrix $A \in \mathcal{M}_{5 \times 5}(\mathbb{Q})$ the permanent of which equals 120 ?

Exercise 731
Let F be a field. For any matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{2 \times 2}(F)$, let $U(A)$ be the set of all matrices $B \in \mathcal{M}_{2 \times 2}(F)$ satisfying $|A+B|=|A|+|B|$. Is $U(A)$ a subspace of $\mathcal{M}_{2 \times 2}(F)$?

Exercise 732
Let F be a field and let $A \in \mathcal{M}_{2 \times 2}(F)$. Find a necessary and sufficient condition for $|I+A|=1+|A|$ to hold.

Exercise 733
Let F be a field and let n be a positive integer. If $A, B, C, D \in \mathcal{M}_{n \times n}(F)$ with D nonsingular, show that $\left|\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\right|=\left|A D-B D^{-1} C D\right|$.

Exercise 734

Let $a, b, c \in \mathbb{Z}$. Find a positive integer n such that

$$
\left|\left[\begin{array}{ccc}
2 c & a+b+c & a+b+c \\
a+b+c & n a & a+b+c \\
a+b+c & a+b+c & 2 b
\end{array}\right]\right|
$$

is divisible by $a b c$.

Exercise 735

Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{Q})$ be a matrix all entries of which are integers and satisfying $|A|= \pm 1$. Show that all entries of A^{-1} are integers.

Exercise 736

Find the Padé approximant to $x \mapsto e^{x}$ of type $2 / 4$.

Exercise 737

Let a, b, and c be elements of a field F. Find an element x of F such that

$$
\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & x & b^{2} \\
1 & c & c^{2}
\end{array}\right|=\left|\begin{array}{lll}
1 & -b-c & b c \\
1 & -c-a & c a \\
1 & -a-b & a b
\end{array}\right|
$$

Eigenvalues and Eigenvectors

One of the central problems in linear algebra is this: given a vector space V finitely generated over a field F, and given an endomorphism α of V, is there a way to select a basis B of V so that the matrix $\Phi_{B B}(\alpha)$ is as nice as possible? In this chapter, we will begin by defining some basic notions which will help us address this problem.

Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$. A scalar $c \in F$ is an eigenvalue of α if and only if there exists a vector $v \neq 0_{V}$ satisfying $\alpha(v)=c v$. Such a vector is called an eigenvector ${ }^{1}$ of α associated with the eigenvalue c. Thus we see that a nonzero vector $v \in V$ is an eigenvector of α if and only if the subspace $F v$ of V is invariant under α. Every eigenvector of α is associated with a unique eigenvalue of α but any eigenvalue has, as a rule, many eigenvectors associated with it. The set of all eigenvalues of α is called the spectrum of α and is denoted by $\operatorname{spec}(\alpha)$. Thus, $c \in \operatorname{spec}(\alpha)$ if and only if the endomorphism $c \sigma_{1}-\alpha$ of V is not monic.

Example If V is a vector space over \mathbb{R} and if $\alpha \in \operatorname{End}(V)$ satisfies $\alpha^{2}=-\sigma_{1}$, then $\operatorname{spec}(\alpha)=\varnothing$. To see this, note that if v is an eigenvector corresponding to an eigenvalue c then $-v=\alpha^{2}(v)=c^{2} v$ and so $\left(c^{2}+1\right) v=0_{V}$, implying that $c^{2}=-1$, which is impossible for a real number c. In particular, if $\alpha \in \operatorname{End}\left(\mathbb{R}^{2}\right)$ is defined by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{r}-b \\ a\end{array}\right]$ then $\operatorname{spec}(\alpha)=\varnothing$.

[^7]Example Let $\alpha \in \operatorname{End}\left(\mathbb{R}^{2}\right)$ be defined by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{l}b \\ a\end{array}\right]$. Then $c \in \operatorname{spec}(\alpha)$ if and only if there exists a vector $\left[\begin{array}{l}a \\ b\end{array}\right]$ satisfying $\left[\begin{array}{c}b \\ a\end{array}\right]=\left[\begin{array}{c}c a \\ c b\end{array}\right]$. Therefore, we see that $\operatorname{spec}(\alpha)=\{-1,1\}$, where $\left[\begin{array}{r}a \\ -a\end{array}\right]$ is an eigenvector of α associated with -1 and $\left[\begin{array}{l}a \\ a\end{array}\right]$ is an eigenvector of α associated with 1 , for any $0 \neq a \in \mathbb{R}$.

Example Let V be the vector space of all infinitely-differentiable functions from \mathbb{R} to itself and let δ be the endomorphism of V which assigns to each such function its derivative. Then a function f, which is not the 0 -function, is an eigenvector of δ if and only if there exists a scalar $c \in \mathbb{R}$ such that $\delta(f)=c f$. For any real number c, there is indeed such a function in V, namely the function $x \mapsto e^{c x}$. Thus $\operatorname{spec}(\delta)=\mathbb{R}$. The set of all eigenvectors of δ associated with c is $\left\{a e^{c x} \mid a \neq 0\right\}$. This fact has important applications in the theory of differential equations.

The first use of eigenvalues to study differential equations is due to the French mathematician Jean d'Alembert, one of the foremost researchers of the eighteenth century. Important solutions of eigenvalue problems for secondorder differential equations were obtained in the nineteenth century by Swiss mathematician Charles-François Sturm and French mathematician Joseph Liouville.

Let α be an endomorphism of a vector space V of a field F having an eigenvalue c. If $\beta \in \operatorname{Aut}(V)$ then c is also an eigenvalue of $\beta \alpha \beta^{-1}$. Indeed, if v is an eigenvector of α associated with c then $\beta \alpha \beta^{-1}(\beta(v))=\beta \alpha(v)=\beta(c v)=c \beta(v)$ and $\beta(v) \neq 0_{V}$ since β is an automorphism. Therefore, $\beta(v)$ is an eigenvector of $\beta \alpha \beta^{-1}$ associated with c.

Similarly, let $p(X)=\sum_{i=0}^{n} b_{i} X^{i} \in F[X]$. If $v \in V$ is an eigenvector of α associated with an eigenvalue c, then v is also an eigenvector of $p(\alpha) \in \operatorname{End}(V)$ associated with the eigenvalue $p(c)$, since $p(\alpha) v=\sum_{i=0}^{n} b_{i} \alpha^{i}(v)=\sum_{i=0}^{n} b_{i} c^{i} v=p(c) v$. In particular, we see that, for any positive integer n, the vector v is an eigenvector of α^{n} associated with the eigenvalue c^{n}.

Let V be a vector space over a field F and let α be an endomorphism of V. A vector $v \in V$ is a fixed point of α if and only if $\alpha(v)=v$. It is clear that 0_{V} is a fixed point of every endomorphism of V and a nonzero vector v is a fixed point of α if and only if $1 \in \operatorname{spec}(\alpha)$ and v is an eigenvalue of α associated with 1 .

Proposition 12.1 Let V be a vector space over a field F and let α be an endomorphism of V having an eigenvalue c. The subset W composed of 0_{V} and all eigenvectors of α associated to c is a subspace of V.

Proof If $w, w^{\prime} \in W$ and $a \in F$ then $\alpha\left(w+w^{\prime}\right)=\alpha(w)+\alpha\left(w^{\prime}\right)=c w+c w^{\prime}=$ $c\left(w+w^{\prime}\right)$ and $\alpha(a w)=a \alpha(w)=a(c w)=c(a w)$ and so $w+w^{\prime}, a w \in W$, proving that W is a subspace of V.

Let V be a vector space over a field F and let α be an endomorphism of V having an eigenvalue c. The subset W composed of 0_{V} and all eigenvectors of α associated with c, which we know by Proposition 12.1 is a subspace of V, is called the eigenspace of α associated with c. In particular, if 1 is an eigenvalue of α then the fixed space of α is the eigenspace associated with 1 . If $1 \notin \operatorname{spec}(\alpha)$ then the fixed space of α is taken to be $\left\{0_{V}\right\}$.

Example Define $\alpha \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ by $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{l}a \\ 0 \\ c\end{array}\right]$. Then $1 \in \operatorname{spec}(\alpha)$ and the eigenspace of α associated with 1 (namely the fixed space of α) is $\mathbb{R}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.

Example Small errors in recording data may lead to considerable errors in the calculation of eigenspaces, even if the eigenvalues are calculated correctly. For example, let $a, b, c, e \in \mathbb{R}$ and let α and β be the endomorphisms of \mathbb{R}^{3} represented with respect to some fixed basis by the matrices $\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$ and $\left[\begin{array}{lll}a & e & e \\ 0 & b & e \\ 0 & 0 & c\end{array}\right]$, respectively. Then $\operatorname{spec}(\alpha)=\operatorname{spec}(\beta)=\{a, b, c\}$. The eigenspaces of α associated with a, b, c are $\mathbb{R}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbb{R}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $\mathbb{R}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. The eigenspaces of β associated with a, b, c are $\mathbb{R}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbb{R}\left[\begin{array}{c}e \\ b-a \\ 0\end{array}\right]$, and $\mathbb{R}\left[\begin{array}{c}e(e+c-b) \\ e(c-a) \\ (c-a)(c-b)\end{array}\right]$.

Example Let $V=C(0,1)$ and let α be the endomorphism of V defined by $\alpha(f): x \mapsto \int_{0}^{1} \cos (\pi[x-t]) f(t) d t$ for all $f \in V$. To find the eigenvalues of α, recall the trigonometric identity

$$
\cos (\pi[x-t])=\cos (\pi x) \cos (\pi t)+\sin (\pi x) \sin (\pi t) .
$$

Using this identity, we see that if $f \in V$ then

$$
\alpha(f): x \mapsto\left[\int_{0}^{1} \cos (\pi t) f(t) d t\right] \cos (\pi x)+\left[\int_{0}^{1} \sin (\pi t) f(t) d t\right] \sin (\pi x)
$$

and so the image of α is contained in the subspace $W=\mathbb{R}\left\{g_{1}, g_{2}\right\}$ of V, where $g_{1}: x \mapsto \cos (\pi x)$ and $g_{2}: x \mapsto \sin (\pi x)$. It is easy to see that $\alpha\left(g_{1}\right)=\frac{1}{2} g_{1}$ and $\alpha\left(g_{2}\right)=\frac{1}{2} g_{2}$, so both of these functions are eigenvectors of α associated with the eigenvalue $\frac{1}{2}$. Moreover, $\left\{g_{1}, g_{2}\right\}$ is linearly independent. Thus we see that $\operatorname{spec}(\alpha)=\left\{\frac{1}{2}\right\}$ and the eigenspace associated with this sole eigenvalue is W.

Proposition 12.2 Let V be a vector space finitely generated over a field F and let α be an endomorphism of V. Then the following conditions on a scalar c are equivalent:
(1) c is an eigenvalue of α;
(2) $c \sigma_{1}-\alpha \notin \operatorname{Aut}(V)$;
(3) If $A=\Phi_{B B}(\alpha)$ for some basis B of V, then $|c I-A|=0$.

Proof (1) $\Leftrightarrow(2)$: Condition (1) is satisfied if and only if there exists a nonzero vector $v \in V$ satisfying $\alpha(v)=c v$, i.e., if and only if $\left(c \sigma_{1}-\alpha\right)(v)=0_{V}$. This is true if and only if $\operatorname{ker}\left(c \sigma_{1}-\alpha\right) \neq\left\{0_{V}\right\}$. Since V is finitely generated, by Proposition 7.3, we know that this is true if and only if condition (2) holds.
(2) \Leftrightarrow (3): This is a direct consequence of the fact that a matrix is nonsingular if and only if its determinant is nonzero.

From Proposition 12.2, we see how to define eigenvalues of square matrices over a field: if F is a field and n is a positive integer, then $c \in F$ is an eigenvalue of a matrix $A \in \mathcal{M}_{n \times n}(F)$ if and only if $|c I-A|=0$, namely if and only if the matrix $c I-A$ is singular. The set of all eigenvalues of A will be denoted by $\operatorname{spec}(A)$. In particular, we observe that a matrix A is nonsingular if and only if $0 \notin \operatorname{spec}(A)$. A vector $\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right] \neq v \in F^{n}$ is an eigenvector of A associated with the eigenvalue c if and only if $A v=c v$. The subset of F^{n} consisting of $\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$ and all eigenvectors of A associated with c is a subspace of F^{n} called the eigenspace associated with c. In the case that F equals \mathbb{R} or \mathbb{C}, the number $\rho(A)=\max \{|c| \mid c \in \operatorname{spec}(A)\}$ is called the spectral radius of the matrix A, and plays a very important part in the numerical analysis of matrices. Note that if $F=\mathbb{C}$, then $\rho(A)$ is just the radius of the smallest circle in the complex plane, centered at the origin, containing $\operatorname{spec}(A)$. Moreover, since $\operatorname{spec}(A)$ consists precisely of the poles of the function $z \mapsto|z I-A|^{-1}$, this
observation allows the use of powerful techniques of complex analysis in the study of the spectra of complex matrices.

Calculating the spectra of matrices is a critical tool in many applications of mathematics. Thus, for example, in statistics one learns that finding the spectrum of covariance matrices is an integral part of several data analysis techniques.

Example It is not necessarily true that $\rho(A B)=\rho(A) \rho(B)$ for square matrices A and B. For example, if $A=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 2 & 0\end{array}\right]$ in $\mathcal{M}_{2 \times 2}(\mathbb{R})$, then $\rho(A)=$ $0=\rho(B)$, whereas $\rho(A B)=4$.

Given a matrix $A \in \mathcal{M}_{n \times n}(F)$, we note that $|c I-A|=\left|(c I-A)^{T}\right|=\left|c I-A^{T}\right|$ and so $\operatorname{spec}(A)=\operatorname{spec}\left(A^{T}\right)$. However, for each such common eigenvalue, the associated eigenvectors may be different.

Example Let $A=\left[\begin{array}{rrr}1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Then $\operatorname{spec}(A)=\{-1,1,2\}$ and so this is also $\operatorname{spec}\left(A^{T}\right)$.
(1) The eigenspace of A associated with -1 is $\mathbb{R}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and the eigenspace of A^{T} associated with -1 is $\mathbb{R}\left[\begin{array}{r}1 \\ 2 \\ -7\end{array}\right]$;
(2) The eigenspace of A associated with 1 is $\mathbb{R}\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ and the eigenspace of A^{T} associated with 1 is $\mathbb{R}\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$;
(3) The eigenspace of A associated with 2 is $\mathbb{R}\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]$ and the eigenspace of A^{T} associated with 2 is $\mathbb{R}\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right]$.

It is interesting to note the following. Let F be a field and let n be a positive integer. If $v, w \in F^{n}$, then $v \wedge w=v w^{T} \in \mathcal{M}_{n \times n}(F)$ and $v \odot w=v^{T} w \in F$. Direct calculation then yields $(v \wedge w) v=(v \odot w) v$, showing that v is an eigenvector of $v \wedge w$ associated with the eigenvalue $v \odot w$.

Example Let n be a positive integer and let $A=\left[a_{u j}\right]$ be an $n \times n$ Markov matrix, which we will consider as an element of $\mathcal{M}_{n \times n}(\mathbb{C})$. We claim that $\rho(A) \leq 1$. Indeed,
let $c \in \operatorname{spec}(A)$ and let $v=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right] \in \mathbb{C}^{n}$ be an eigenvector associated with c. Let $1 \leq h \leq n$ satisfy the condition that $\left|b_{i}\right| \leq\left|b_{h}\right|$ for all $1 \leq i \leq n$. Then $A v=c v$ implies, in particular, that $\sum_{j=1}^{n} a_{h j} b_{j}=c b_{h}$ and so

$$
|c| \cdot\left|b_{h}\right|=\left|c b_{h}\right|=\left|\sum_{j=1}^{n} a_{h j} b_{j}\right| \leq \sum_{j=1}^{n} a_{h j}\left|b_{j}\right| \leq\left(\sum_{j=1}^{n} a_{h j}\right)\left|b_{h}\right|=\left|b_{h}\right| .
$$

Hence $|c| \leq 1$, as claimed.
Example Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ be a skew-symmetric matrix. We claim that $\operatorname{spec}(A) \subseteq\{0\}$, with equality when n is odd. Indeed, let $c \in \operatorname{spec}(A)$ and let $v \in \mathbb{R}^{n}$ be an eigenvector of A associated with c. Then $-A^{T} v=A v=c v$ and so $-A^{T}(A v)=-A^{T}(c v)=c\left(-A^{T} v\right)=c^{2} v$. Therefore, $-(A v \odot A v)=-v^{T} A^{T} A v=c^{2} v^{T} v=c^{2}(v \odot v)$. But if $y=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]$ is any vector in \mathbb{R}^{n}, then $y \odot y=\sum_{i=1}^{n} b_{i}^{2} \geq 0$, with equality if and only if $y=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$. Since v is nonzero, we conclude that we must have $c^{2}=0$ and so $c=0$. Therefore, $\operatorname{spec}(A) \subseteq\{0\}$. If n is odd then, by the remark after Proposition 11.7, we know that A is singular and so $0 \in \operatorname{spec}(A)$, establishing equality.

Example Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. If c is a nonzero eigenvalue of A and if $v \in \mathbb{C}^{n}$ is an eigenvector associated with c then, by Proposition 11.13, we know that $|A| v=\operatorname{adj}(A) A v=c[\operatorname{adj}(A)] v$ and so $[\operatorname{adj}(A)] v=$ $c^{-1}|A| v$. Thus v is also an eigenvector of $\operatorname{adj}(A)$ associated with the eigenvalue $c^{-1}|A|$.

If F is a field, if n is a positive integer, and if $A \in \mathcal{M}_{n \times n}(F)$ is a matrix having eigenvalue c, then $|c I-A|=0$ and so, by Proposition 11.13, we have $(c I-A) \operatorname{adj}(c I-A)=O$, whence $A[\operatorname{adj}(c I-A)]=c[\operatorname{adj}(c I-A)]$. From this we conclude that each of the columns of $\operatorname{adj}(c I-A)$ must belong to the eigenspace of A associated with c.

Example Let $A=\left[\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Then one can calculate that $\operatorname{spec}(A)=\{2-\sqrt{3}, 2+\sqrt{3}, 4\}$. Moreover, $\operatorname{adj}(4 I-A)=\left[\begin{array}{rrr}1 & -4 & 1 \\ 4 & -16 & 4 \\ 16 & -64 & 16\end{array}\right]$ and
it is easy to check that the columns of this matrix are indeed eigenvectors of A associated with 4.

Proposition 12.3 If V is a vector space finitely generated over a field F and if $\alpha, \beta \in \operatorname{End}(V)$ then $\operatorname{spec}(\alpha \beta)=\operatorname{spec}(\beta \alpha)$.

Proof Let $c \in \operatorname{spec}(\alpha \beta)$. If $c=0$, this means that $\alpha \beta \notin \operatorname{Aut}(V)$. Therefore, either α or β is not an automorphism of V, and so $\beta \alpha \notin \operatorname{Aut}(V)$ as well. Therefore, we can assume $c \neq 0$. Let v be an eigenvector of $\alpha \beta$ associated with c and let $w=\beta(v)$. Then $\alpha(w)=\alpha \beta(v)=c v \neq 0_{V}$ and so $w \neq 0_{V}$. Moreover, $\beta \alpha(w)=\beta \alpha \beta(v)=$ $\beta(c v)=c \beta(v)=c w$ and so w is an eigenvector of $\beta \alpha$ associated with c. Thus $\operatorname{spec}(\alpha \beta) \subseteq \operatorname{spec}(\beta \alpha)$. A similar argument shows the reverse inclusion, and so we have equality.

In particular, as a consequence of Proposition 12.3, we see that if F is a field, if n is a positive integer, and if $A, B \in \mathcal{M}_{n \times n}(F)$ then $\operatorname{spec}(A B)=\operatorname{spec}(B A)$.

As we noted at the beginning of the chapter, if we are given a vector space V finitely generated over a field F and an endomorphism α of V, we would like to find, to the extent possible, a basis B of V such that the matrix $\Phi_{B B}(\alpha)$ is nice, in the sense that it is amenable to quick and accurate calculations. Let V be a vector space over a field F (not necessarily finitely generated) and let $\alpha \in \operatorname{End}(V)$. Then α is diagonalizable if and only if there exists a basis B of V composed of eigenvectors of α.

Example We have already seen that the set B of all functions in $\mathbb{R}^{\mathbb{R}}$ of the form $x \mapsto e^{a x}$, for some $a \in \mathbb{R}$, is linearly independent. Therefore, $W=\mathbb{R} B$ is a subspace of $\mathbb{R}^{\mathbb{R}}$ which is not finitely generated, and B is a basis for W. Let α be the endomorphism of W which assigns to each $f \in W$ its derivative. Since each element of B is an eigenvector of α, we see that α is diagonalizable.

The following result characterizes the diagonalizable endomorphisms of finitelygenerated vector spaces.

Proposition 12.4 Let V be a vector space finitely generated over a field F and let $\alpha \in \operatorname{End}(V)$. Then the following conditions on a basis $B=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ are equivalent:
(1) v_{i} is an eigenvector of α for each $1 \leq i \leq n$;
(2) $\Phi_{B B}(\alpha)$ is a diagonal matrix.

Proof (1) \Rightarrow (2): By (1), we know that for each $1 \leq i \leq n$ there exists a scalar c_{i} satisfying $\alpha\left(v_{i}\right)=c_{i} v_{i}$ and so, by definition, $\Phi_{B B}(\alpha)$ is the diagonal matrix [$a_{i j}$]
given by

$$
a_{i j}=\left\{\begin{array}{cl}
c_{i} & \text { if } i=j \\
0 & \text { otherwise }
\end{array}\right.
$$

(2) \Rightarrow (1): If $\Phi_{B B}(\alpha)=\left[a_{i j}\right]$ is a diagonal matrix then for each $1 \leq i \leq n$ we have $\alpha\left(v_{i}\right)=a_{i i} v_{i}$ and so v_{i} is an eigenvector of α for each $1 \leq i \leq n$.

Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$. If B is a basis of V made up of eigenvectors of α then, as we have seen above, the elements of B are also eigenvectors of $p(\alpha)$ for any polynomial $p(X) \in F[X]$. We need not stick to polynomials: suppose that each $v \in B$ is an eigenvector of α associated with an eigenvalue c_{v} of α. Given any function whatsoever $f: \operatorname{spec}(\alpha) \rightarrow F$, we can define the endomorphism $f(\alpha)$ of V by setting $f(\alpha): \sum_{v \in B} a_{v} v \mapsto \sum_{v \in B} a_{v} f\left(c_{v}\right) v$ and the elements of B are also eigenvectors of $f(\alpha)$. We note that if f and g are functions from $\operatorname{spec}(\alpha)$ to F then $f(\alpha) g(\alpha)=g(\alpha) f(\alpha)$.

Now assume that V is finitely generated over F and that $B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V made up of eigenvectors of $\alpha \in \operatorname{End}(V)$. For each $1 \leq i \leq n$, let c_{i} be the eigenvalue of α associated with v_{i}. We have already seen that for each such i there exists a polynomial $p_{i}(X)$, namely the Lagrange interpolation polynomial, satisfying the condition that

$$
p_{i}\left(c_{j}\right)= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { otherwise } .\end{cases}
$$

Thus, given a function $f: \operatorname{spec}(\alpha) \rightarrow F$, the polynomial $p(X)=\sum_{i=1}^{n} f\left(c_{i}\right) p_{i}(X)$ satisfies $p\left(c_{i}\right)=f\left(c_{i}\right)$ for all $1 \leq i \leq n$, and so $p(\alpha)=f(\alpha)$. Thus, for finitelygenerated vector spaces, the above generalization does not in fact contribute anything new; it is important, however, in the case of vector spaces which are not finitely generated.

We now show that the size of the spectrum of an endomorphism of a finitelygenerated vector space is limited.

Proposition 12.5 Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$. If c_{1}, \ldots, c_{k} are distinct eigenvalues of α and if v_{i} is an eigenvector of α associated with c_{i} for each $1 \leq i \leq k$, then the set $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent.

Proof Assume that the set $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly dependent. Since $v_{1} \neq 0_{V}$, we know that the set $\left\{v_{1}\right\}$ is linearly independent. Thus there exists an integer $1 \leq t<k$ such that the set $\left\{v_{1}, \ldots, v_{t}\right\}$ is linearly independent but $\left\{v_{1}, \ldots, v_{t+1}\right\}$ is linearly dependent. In other words, there exist scalars a_{1}, \ldots, a_{t+1}, not all of which are equal to 0 , such that $\sum_{i=1}^{t+1} a_{i} v_{i}=0_{V}$ and so $0_{V}=c_{t+1}\left(\sum_{i=1}^{t+1} a_{i} v_{i}\right)=\sum_{i=1}^{t+1} a_{i} c_{t+1} v_{i}$. On the other hand, $0_{V}=\alpha\left(\sum_{i=1}^{t+1} a_{i} v_{i}\right)=\sum_{i=1}^{t+1} a_{i} \alpha\left(v_{i}\right)=\sum_{i=1}^{t+1} a_{i} c_{i} v_{i}$. Therefore, $0_{V}=\sum_{i=1}^{t+1} a_{i} c_{i} v_{i}-\sum_{i=1}^{t+1} a_{i} c_{t+1} v_{i}=\sum_{i=1}^{t} a_{i}\left(c_{i}-c_{t+1}\right) v_{i}$. But the set $\left\{v_{1}, \ldots, v_{t}\right\}$
is linearly independent and so $a_{i}\left(c_{i}-c_{t+1}\right)=0$ for all $1 \leq i \leq t$. Since, by assumption, $c_{i} \neq c_{t+1}$ for all $1 \leq i \leq t$, we have $a_{i}=0$ for all $1 \leq i \leq t$ and hence $a_{t+1}=0$ as well, which is a contradiction. Thus $\left\{v_{1}, \ldots, v_{k}\right\}$ must be linearly independent.

Thus we see that if F is a field and if $A \in \mathcal{M}_{n \times n}(F)$, then $\operatorname{spec}(A)$ can have at most n elements. In particular, if F has more than n elements, then there exists an element $c \in F \backslash \operatorname{spec}(A)$, and so $(c I-A) v \neq\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$ for all $v \neq\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$. This implies that $c I-A$ is nonsingular.

From Proposition 12.5, we see that if α is a an endomorphism of a vector space V over a field F having distinct eigenvalues c_{1}, \ldots, c_{k}, and if W_{i} is the eigenspace associated with c_{i} for all $1 \leq i \leq t$, then the collection $\left\{W_{1}, \ldots, W_{k}\right\}$ of subspaces of V is independent. Moreover, if V is finitely generated over F then the number of elements in $\operatorname{spec}(\alpha)$ is no greater than $\operatorname{dim}(V)$.

Proposition 12.6 Let V be a vector space of finite dimension n over a field F.
Then any endomorphism α of V having n distinct eigenvalues is diagonalizable.

Proof This is a direct consequence of Proposition 12.4 and Proposition 12.5.
Example Let $\alpha \in \operatorname{End}\left(\mathbb{R}^{2}\right)$ be defined by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{l}3 a-b \\ 3 b-a\end{array}\right]$. Then $\alpha\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=$ $\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and so $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector of α associated with the eigenvalue 2. Also, $\alpha\left(\left[\begin{array}{r}1 \\ -1\end{array}\right]\right)=\left[\begin{array}{r}4 \\ -4\end{array}\right]$ and so $\left[\begin{array}{r}1 \\ -1\end{array}\right]$ is an eigenvector of α associated with the eigenvalue 4. Thus $B=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -1\end{array}\right]\right\}$ is a basis for \mathbb{R}^{2} and $\Phi_{B B}(\alpha)=\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right]$.

Example Let $\alpha \in \operatorname{End}\left(\mathbb{R}^{2}\right.$) be defined by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{c}a+b \\ b\end{array}\right]$. If $\left[\begin{array}{l}a \\ b\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $\alpha\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=c\left[\begin{array}{l}a \\ b\end{array}\right]$ then $c b=b$ and $a+b=c a$, and this can happen only when $b=0$ and $c=1$. Thus $\operatorname{spec}(\alpha)=\{1\}$ and the eigenspace associated with this sole eigenvalue is $\mathbb{R}\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Since this is not all of \mathbb{R}^{2}, we know that there is no basis of \mathbb{R}^{2} made up of eigenvectors of α, and hence α is not diagonalizable.

Note that the converse of Proposition 12.6 is false, as we easily see by taking $\alpha=\sigma_{1}$.

From the above, we know that if $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ then the matrix has at most n distinct eigenvalues. However, it may have many fewer than that. If we assume that the entries of this matrix were chosen independently and randomly from a standard normal distribution, how many distinct eigenvalues should we expect? American mathematicians Alan Edelman, Eric Kostlan, and Michael Shub have shown that if ε_{n} denotes the mathematical expectancy for the number of eigenvalues of such a matrix in \mathbb{R}, then $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \varepsilon_{n}=\sqrt{\frac{2}{\pi}}$. The situation over the complex numbers is quite different. Given a matrix $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ one can, with probability 1 , pick a matrix $B \in \mathcal{M}_{n \times n}(\mathbb{C})$ as near to A as we wish, which has n distinct eigenvalues in \mathbb{C}.

If F is a field, if n is a positive integer, and if $A \in \mathcal{M}_{n \times n}(F)$, then we can consider the matrix of polynomials $X I-A \in \mathcal{M}_{n \times n}(F[X])$. The determinant of this matrix, $|X I-A|$, is a polynomial in $F[X]$ called the characteristic polynomial of A. Note that this polynomial is always monic and of degree n.

Example The characteristic polynomial of $\left[\begin{array}{rrr}1 & -1 & 0 \\ 2 & 1 & 5 \\ 4 & 2 & 1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ is $X^{3}-$ $3 X^{2}-5 X+27$.

Example The characteristic polynomial of $A=\left[\begin{array}{llll}1 & 2 & 1 & 2 \\ 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 1 \\ 1 & 1 & 2 & 0\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{R})$ is $X^{4}-3 X^{3}-11 X^{2}-25 X-15$. If we sketch the graph of the polynomial function $t \mapsto t^{4}-3 t^{3}-11 t^{2}-25 t-15$, we see that it has real roots in the neighborhoods of -0.8 and 5.8. (More precisely, they are approximately equal to -0.8062070604 and 5.7448832706 .) These are the only real eigenvalues of the matrix A.

Example Let $F=\mathrm{GF}(3)$. The characteristic polynomial of $A=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 2 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0\end{array}\right] \in$ $\mathcal{M}_{4 \times 4}(F)$ equals $X^{4}+X^{3}+1=(X+2)\left(X^{3}+2 X^{2}+2 X+2\right)$ and so A has only one eigenvalue, namely 1 .

Example The characteristic polynomial of $A=\left[\begin{array}{lll}5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2\end{array}\right]$ in $\mathcal{M}_{3 \times 3}(\mathbb{Q})$ is $(X-10)(X-1)^{2}$ and so $\operatorname{spec}(A)=\{1,10\}$. The eigenspace of A associated with 10 is $\mathbb{Q}\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$, while the eigenspace of A associated with 1 is $\mathbb{Q}\left\{\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 0 \\ 2\end{array}\right]\right\}$.

Example Let $F=\mathrm{GF}(2)$ and let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right] \in \mathcal{M}_{2 \times 2}(F)$. The characteristic polynomial of A is $p(X)=X^{2}+X+1$ and, since $p(0)=p(1)=1$ we see that $\operatorname{spec}(A)=\varnothing$. In fact, it is possible to show that for every prime integer p there is a symmetric 2×2 matrix A over $\operatorname{GF}(p)$ satisfying $\operatorname{spec}(A)=\varnothing$. Later, we will show that any symmetric matrix over \mathbb{R} must have an eigenvalue.

Example Let α be the endomorphism of \mathbb{C}^{2} represented with respect to the canonical basis by the matrix $A=\left[\begin{array}{cc}1+i & 1 \\ 1 & 1-i\end{array}\right] \in \mathcal{M}_{2 \times x}(\mathbb{C})$. The characteristic polynomial of A is $(X-1)^{2}$ and so $\operatorname{spec}(A)=1$ The eigenspace associated with it is $\mathbb{C}\left[\begin{array}{l}i \\ 1\end{array}\right]$, which has dimension 1 . Therefore, α is not diagonalizable.

Proposition 12.7 Let F be a field and let n be a positive integer. If $A \in M_{n \times n}(F)$ has characteristic polynomial $p(X)=\sum_{i=0}^{n} a_{i} X^{i}$, then $|A|=(-1)^{n} a_{0}$.

Proof We note that $a_{0}=p(0)=|0 I-A|=|-A|=(-1)^{n}|A|$ and so $|A|=$ $(-1)^{n} a_{0}$.

The speed with which we can compute the characteristic polynomial of a matrix depends on the speed with which we can multiply two matrices. In 1985, Swiss computer scientist Walter Keller-Gehrig showed that if we can multiply two $n \times n$ matrices over a field F in an order of n^{c} operations, then we can calculate the characteristic polynomial of an $n \times n$ matrix over F in an order of $n^{c} \log (n)$ operations. In 2007, French mathematician Clément Pernet and German/Canadian computer scientist Arne Storjohann constructed a new algorithm with an expected cost on the order of n^{c}, provided that the field F has at least $2 n^{2}$ elements. If one has the use of a computer with n^{3} parallel processors, then much faster computation times can be obtained.

Any monic polynomial in $F[X]$ of positive degree is the characteristic polynomial of some square matrix over F. To see this, consider a polynomial $p(X)=$ $\sum_{i=0}^{n} a_{i} X^{i}$, for $n>0$. If $p(X)$ is monic, define the companion matrix of $p(X)$, denoted by $\operatorname{comp}(p) \in \mathcal{M}_{n \times n}(F)$, to be the matrix [$a_{i j}$] given by

$$
a_{i j}= \begin{cases}1 & \text { if } i=j+1 \text { and } j<n, \\ -a_{i-1} & \text { if } j=n, \\ 0 & \text { otherwise }\end{cases}
$$

Otherwise, define $\operatorname{comp}(p)$ to be $\operatorname{comp}\left(a_{n}^{-1} p\right)$.

© Mathematical Association of America 2011. All rights reserved (Macduffee).

Companion matrices were first studied at the beginning of the twentieth century by German mathematician Alfred Loewy. The term was first introduced by the twentieth-century American mathematician Cyrus Macduffee.

Proposition 12.8 Let F be a field and let n be a positive integer. If $p(X)=$ $\sum_{i=0}^{n} a_{i} X^{i} \in F[X]$ is monic, then $p(X)$ is the characteristic polynomial of $\operatorname{comp}(p) \in M_{n \times n}(F)$.

Proof We will proceed by induction on n. For $n=1$, the result is immediate. If $n=2$ and if $p(X)=X^{2}+a_{1} X+a_{0}$, then $\operatorname{comp}(p)=\left[\begin{array}{ll}0 & -a_{0} \\ 1 & -a_{1}\end{array}\right]$ and so the characteristic polynomial of $\operatorname{comp}(p)$ is $\left|\begin{array}{cc}X & a_{0} \\ -1 & X+a_{1}\end{array}\right|=p(X)$ and we are done. Assume now that $n>2$ and the result has been established for $n-1$. Then the characteristic polynomial of $\operatorname{comp}(p)$ is $\left|\begin{array}{cccc}X & 0 & \ldots & a_{0} \\ -1 & X & \ldots & a_{1} \\ & \ddots & \ddots & \vdots \\ 0 & \ldots & -1 & X+a_{n-1}\end{array}\right|$. By Proposition 11.11, this equals $X|\operatorname{comp}(q)|+a_{0}(-1)^{n-1}|B|$, where $q(X)=\sum_{i=0}^{n-1} a_{i+1} X^{i}$ and where $B \in \mathcal{M}_{(n-1) \times(n-1)}(F)$ is an upper-triangular matrix with diagonal entries all equal to -1 . Thus $|B|=(-1)^{n-1}$ and, by the induction hypothesis, $|\operatorname{comp}(q)|=q(X)$. Thus the characteristic polynomial of $\operatorname{comp}(p)$ is $X q(X)+a_{0}=p(X)$, as desired.

Let F be a field and let n be a positive integer. Every nonsingular matrix $P \in \mathcal{M}_{n \times n}(F)$ defines a function ω_{P} from $\mathcal{M}_{n \times n}(F)$ to itself given by $\omega_{P}: A \mapsto$ $P^{-1} A P$. In fact, $\omega_{P} \in \operatorname{Aut}\left(\mathcal{M}_{n \times n}(F)\right)$, where $\omega_{P}^{-1}=\omega_{P^{-1}}$. This is an automorphism of F-algebras and, indeed, it can be shown that every automorphism of unital F-algebras in $\operatorname{Aut}\left(\mathcal{M}_{n \times n}(F)\right)$ is of this form. Therefore, the set of all automorphisms of the form ω_{P} is a group of automorphisms of $\mathcal{M}_{n \times n}(F)$ and so defines an equivalence relation \sim by setting $A \sim B$ if and only if $B=P^{-1} A P$. In this case, we say that the matrices A and B are similar. From what we have already seen, two matrices in $\mathcal{M}_{n \times n}(F)$ are similar if and only if they represent the same endomorphism of an n-dimensional vector space over F with respect to different bases. One of the problems before us is to decide, given two square matrices of the same size, if they are similar or not.

Note that if a matrix $A \in \mathcal{M}_{n \times n}(F)$ is similar to O, then it must equal O. Indeed, if $P^{-1} A P=O$ then $A=\left(P P^{-1}\right) A\left(P P^{-1}\right)=P\left(P^{-1} A P\right) P^{-1}=P O P^{-1}=O$.

Example In $\mathcal{M}_{3 \times 3}(\mathbb{Q})$, the matrices

$$
A=\left[\begin{array}{rrr}
20 & 10 & 10 \\
10 & 0 & 10 \\
10 & 10 & 10
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rrr}
80 & 130 & 100 \\
10 & 10 & 10 \\
-50 & -80 & -60
\end{array}\right]
$$

are similar, since $B=P^{-1} A P$, where $P=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 0 & 1 \\ 2 & 3 & 3\end{array}\right]$. Thus we note that a symmetric matrix may be similar to a matrix which is not symmetric.

Example The matrices $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$ in $\mathcal{M}_{3 \times 3}(\mathbb{Q})$ are not similar since, were they similar, the matrices $A-I$ and $B-I$ would also be similar, and thus have the same rank. But it is easy to see that the rank of $A-I$ equals 1 , while the rank of $B-I$ equals 2 .

Example If matrices $A, B \in \mathcal{M}_{n \times n}(F)$ are similar, it does not follow that they commute. For example, let $A=\left[\begin{array}{rrr}1 & 0 & -1 \\ 2 & 3 & 0 \\ -1 & 0 & -2\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Then $P=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$ is nonsingular and so $B=P A P^{-1}=\left[\begin{array}{rrr}1 & 1 & -1 \\ 2 & 3 & 0 \\ 1 & 5 & -2\end{array}\right]$ is similar to A. However, $A B \neq B A$.

Example Let F be a field and, for each $1 \leq h \leq t$, let A_{h} be a square matrix over F, which is similar to a square matrix B_{h} over F. That is to say, there exists a nonsingular square matrix P_{h} such that $B_{h}=P_{h} A_{h} P_{h}^{-1}$. Let A be the matrix in block form $\left[\begin{array}{cccc}A_{1} & O & \ldots & O \\ O & A_{2} & \ldots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \ldots & A_{t}\end{array}\right]$ in which all blocks not on the diagonal are equal to O, and
let $B=\left[\begin{array}{cccc}B_{1} & O & \ldots & O \\ O & B_{2} & \ldots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \ldots & B_{t}\end{array}\right]$. Then A is similar to B, since $B=P A P^{-1}$, where
$P=\left[\begin{array}{cccc}P_{1} & O & \ldots & O \\ O & P_{2} & \ldots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \ldots & P_{t}\end{array}\right]$. We will make us of this fact in the next chapter.

Proposition 12.9 Let F be a field and let $k<n$ be positive integers. Let $A \in M_{n \times n}(F)$ be a matrix which can be written in block form as $A=\left[\begin{array}{cc}A_{11} & A_{12} \\ O & A_{22}\end{array}\right]$, where $A_{11} \in M_{k \times k}(F)$ and $A_{22} \in M_{(n-k) \times(n-k)}(F)$. Then $\operatorname{spec}(A)=\operatorname{spec}\left(A_{11}\right) \cup \operatorname{spec}\left(A_{22}\right)$.

Proof Let $c \in \operatorname{spec}(A)$ and let $v \in F^{n}$ be an eigenvector associated with c. Write $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$, where $v_{1} \in F^{k}$ and $v_{2} \in F^{n-k}$. Then

$$
\left[\begin{array}{c}
A_{11} v_{1}+A_{12} v_{2} \\
A_{22} v_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{11} & A_{12} \\
O & A_{22}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=A v=c v=\left[\begin{array}{l}
c v_{1} \\
c v_{2}
\end{array}\right] .
$$

From this we see immediately that if $v_{2} \neq\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$ then $c \in \operatorname{spec}\left(A_{22}\right)$, while if $v_{2}=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$ then $c \in \operatorname{spec}\left(A_{11}\right)$. Therefore, $\operatorname{spec}(A)$ is contained in $\operatorname{spec}\left(A_{11}\right) \cup$ $\operatorname{spec}\left(\bar{A}_{22}\right)$.

Conversely, let $c \in \operatorname{spec}\left(A_{11}\right)$ and let $v_{1} \in F^{k}$ be an eigenvector associated with c. Then $A\left[\begin{array}{l}v_{1} \\ O\end{array}\right]=\left[\begin{array}{c}A_{11} v_{1} \\ O\end{array}\right]=c\left[\begin{array}{l}v_{1} \\ O\end{array}\right]$, proving that $c \in \operatorname{spec}(A)$. Now assume that $d \in \operatorname{spec}\left(A_{22}\right) \backslash \operatorname{spec}\left(A_{11}\right)$ and let $v_{2} \in F^{n-k}$ be an eigenvector associated with d. Since $d \notin \operatorname{spec}\left(A_{11}\right)$, we know that the matrix $B=A_{11}-d I \in \mathcal{M}_{k \times k}(F)$ is nonsingular. Set $v_{1}=B^{-1} A_{12}\left(-v_{2}\right)$. Then $(A-d I)\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{c}B v_{1}+A_{12} v_{2} \\ \left(A_{22}-d I\right) v_{2}\end{array}\right]=$ $\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$, showing that $d \in \operatorname{spec}(A)$. Therefore, $\operatorname{spec}\left(A_{11}\right) \cup \operatorname{spec}\left(A_{22}\right) \subseteq \operatorname{spec}(A)$, proving equality.

Example Let $A=\left[\begin{array}{rrrr}1 & 1 & 5 & 6 \\ -1 & 1 & 7 & 3 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & -4 & 3\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{C})$. Then

$$
\begin{aligned}
\operatorname{spec}(A) & =\operatorname{spec}\left(\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]\right) \cup \operatorname{spec}\left(\left[\begin{array}{rr}
2 & 1 \\
-4 & 3
\end{array}\right]\right) \\
& =\{1 \pm i\} \cup\left\{\frac{1}{2}[5 \pm i \sqrt{15}]\right\} .
\end{aligned}
$$

Proposition 12.10 Similar matrices in $M_{n \times n}(F)$, where F is a field and where n is a positive integer, have identical characteristic polynomials.

Proof If $A, B \in \mathcal{M}_{n \times n}(F)$ satisfy $B=P^{-1} A P$ then

$$
\begin{aligned}
|X I-B| & =\left|X I-P^{-1} A P\right|=\left|P^{-1}(X I-A) P\right| \\
& =|P|^{-1}|X I-A||P|=|X I-A|,
\end{aligned}
$$

as required.
Example The converse of Proposition 12.10 is false. Indeed, the matrices $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are not similar, despite the fact that both of them have the same characteristic polynomial, $(X-1)^{2}$.

A generalization of Proposition 12.10 tells us that if $P, Q \in M_{n \times n}(F)$ are nonsingular matrices satisfying $|P Q|=1$, then the endomorphism α of $M_{n \times n}(F)$ given by $\alpha_{P Q}: A \mapsto P A Q$ satisfies the condition that A and $\alpha(A)$ always have identical characteristic polynomials. The same goes for the linear transformation $\beta_{P Q}: A \mapsto P A^{T} Q$. Frobenius proved that any endomorphism of $M_{n \times n}(\mathbb{C})$ which preserves characteristic polynomials must be of one of these two forms. Note that endomorphisms of the form $\alpha_{P Q}$ or $\beta_{P Q}$ are in fact automorphisms of $M_{n \times n}(F)$. They also satisfy the property that $\alpha_{P Q}(A)$ is singular if and only if A is singular, and similarly $\beta_{P Q}(A)$ is singular if and only if A is singular. Indeed, Dieudonné has shown that, for any field F, an endomorphism of $M_{n \times n}(F)$ satisfying this condition must be of one of these two forms.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach.

The twentieth-century French mathematician Jean Dieudonné was one of the founders of the influential group who wrote under the collective name of Nicholas Bourbaki.

Example If A and B are square matrices over a field F, then we know that the matrices $A B$ and $B A$ are not necessarily equal. They are also not necessarily similar. For example, if $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$ then $A B=O \neq B A$, and so $A B$ and $B A$ are not similar. Nonetheless, by Proposition 12.3, we see that $\operatorname{spec}(A B)=$ $\operatorname{spec}(B A)$.

Proposition 12.10 can be used to facilitate computation, as the following example shows.

Example Let n be a positive integer, let F be a field, and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ be a symmetric tridiagonal matrix. That is to say, the entries of A satisfy the condition that $a_{i j}=a_{j i}$ when $|i-j|=1$ and $a_{i j}=0$ when $|i-j|>1$. Set $p_{0}(X)=0$ and, for each $1 \leq k \leq n$, let $p_{k}(X)$ be the characteristic polynomial of the $k \times k$ submatrix of A consisting of the first k rows and first k columns of the matrix $X I-A \in F[X]$. Then $p_{n}(X)$ is the characteristic polynomial of A and we have $p_{1}(X)=X-a_{11}$ and $p_{k}(X)=\left(X-a_{k k}\right) p_{k-1}(X)-a_{i j}^{2} p_{k-2}(X)$ for each $2 \leq k \leq n$. This recursion relation allows us to compute the characteristic polynomial of A quickly. Therefore, if A is any symmetric matrix, a good strategy is to try and find a symmetric tridiagonal matrix similar to it and then compute its characteristic polynomial.

Let α be an endomorphism of a vector space V finitely generated over a field F and let $c \in \operatorname{spec}(\alpha)$. The algebraic multiplicity of c is the largest integer k such that $(X-c)^{k}$ divides the characteristic polynomial of α. The geometric multiplicity of c is the dimension of the eigenspace of α associated with c. The geometric multiplicity of c is not greater than its algebraic multiplicity, but these two numbers need not be equal, as the following examples show. If these two multiplicities are equal, we say that c is a semisimple eigenvalue of α; an eigenvalue which is not semisimple is defective. In particular, if the algebraic multiplicity of c is 1 then the same must be true for its geometric multiplicity. In that case, we say that c is a simple eigenvalue of α. If at least one eigenvalue of α has geometric multiplicity greater than 1 , then α is derogatory; otherwise, it is nonderogatory.

Example If $\alpha \in \operatorname{End}\left(\mathbb{R}^{2}\right)$ is defined by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{c}a+b \\ b\end{array}\right]$ then $c=1$ is an eigenvalue of α with associated eigenspace $\mathbb{R}\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and so the geometric multiplicity of c is 1 . On the other hand, α is represented with respect to the canonical basis by the matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, so its characteristic polynomial is $(X-1)^{2}$, implying that the algebraic multiplicity of c is 2 .

Example Let $\alpha \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ be the endomorphism represented with respect to the canonical basis by the matrix $\left[\begin{array}{rrr}2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1\end{array}\right]$. The characteristic polynomial of α is $(X-5)(X+1)^{2}$ and so $\operatorname{spec}(\alpha)=\{-1,5\}$, where the algebraic multiplicity of -1 equals 2 and the algebraic multiplicity of 5 equals 1 . The eigenspace associated with -1 is $\mathbb{R}\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$ and the eigenspace associated with 5 is $\mathbb{R}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$. Thus both
eigenvalues have geometric multiplicity 1 . Hence, 5 is a simple eigenvalue of α whereas -1 is defective.

Let n be a positive integer. If $\alpha \in \operatorname{End}\left(\mathbb{R}^{n}\right)$ is represented with respect to a given basis of \mathbb{R}^{n} by a matrix all entries in which are positive, then Perron, using analytic methods, showed that the eigenvalue of largest absolute value of α is simple and positive, and has an associated eigenvector all entries of which are positive. This result has many important applications in statistics and economics, especially in input-output analysis. It was also used by Thurston in his classification of surface diffeomorphisms in topology. Perron's results were later extended by Frobenius to certain matrices all entries in which are nonnegative, and later by Karlin to certain endomorphisms of spaces which are not finite-dimensional. In 1948, Philip Stein and R.L. Rosenberg used Frobenius' extension of Perron's results to compare the convergence rates of the Jacobi and Gauss-Seidel iteration methods for solution of systems of linear equations. Their results have since been considerably extended.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Perron, Frobenius, Thurston).

The twentieth-century German mathematician Oskar Perron worked in many areas of algebra and geometry. Fellow German mathematician Georg Frobenius is known for his important work in group theory and his work on bilinear forms. He was also the first to consider the rank of a matrix. William Thurston is a contemporary American geometer; the twentieth-century American applied mathematician Samuel Karlin published extensively in probability and statistics, as well as mathematical biology.

Proposition 12.11 Let V be a vector space finitely generated over a field F and let α be an endomorphism of V satisfying the condition that the characteristic polynomial of α is completely reducible. Then α is diagonalizable if and only if every eigenvalue of α is semisimple.

Proof Let $\operatorname{spec}(\alpha)=\left\{c_{1}, \ldots, c_{k}\right\}$. First of all, we will assume that there exists a basis D of V such that $\Phi_{D D}(\alpha)$ is a diagonal matrix. For each $1 \leq j \leq k$, denote by $m(j)$ the number of times that c_{j} appears on the diagonal of $\Phi_{D D}(\alpha)$. Then $\sum_{j=1}^{k} m(j)=n$ and, by Proposition 12.4, we know that for each $1 \leq j \leq k$ there exists a subset of D, having $m(j)$ elements, which is a basis for the eigenspace of α associated with c_{j}. Moreover, the characteristic polynomial of α is $\prod_{j=1}^{k}\left(X-c_{j}\right)^{m(j)}$
and so $m(j)$ equals both the algebraic multiplicity and the geometric multiplicity of c_{j} for each $1 \leq j \leq k$, proving that each such c_{j} is semisimple. Conversely, assume that each c_{j} is semisimple, and for each $1 \leq j \leq k$ let $m(j)$ be the algebraic (and geometric) multiplicity of c_{j}. Let D_{j} be a basis for the eigenspace of α associated with c_{j}, and let $D=\bigcup_{j=1}^{k} D_{j}$. Then D is a linearly-independent subset of V having n elements, and so is a basis of V over F. The result then follows from Proposition 7.5.

Example The condition in Proposition 12.11 that the characteristic polynomial of α be completely reducible is essential. To see this, consider the endomorphism α of \mathbb{R}^{3} represented with respect to the canonical basis by the matrix $A=\left[\begin{array}{rrr}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$. The characteristic polynomial of α is $(X-1)\left(X^{2}+1\right) \in \mathbb{R}[X]$ and $\operatorname{so} \operatorname{spec}(\alpha)=\{1\}$, where 1 is a simple eigenvalue of α and so it is surely semisimple. The eigenspace of α associated with this eigenvalue is $\mathbb{R}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and so its dimension is 1 . Hence α is not diagonalizable.

Example Consider the endomorphism α of \mathbb{R}^{3} represented with respect to the canonical basis by the matrix $\left[\begin{array}{rrr}-1 & -1 & -2 \\ 8 & -11 & -8 \\ -10 & 11 & 7\end{array}\right]$ and let β be the endomorphism of \mathbb{R}^{3} represented with respect to the canonical basis by the matrix $\left[\begin{array}{rrr}1 & -4 & -4 \\ 8 & -11 & -8 \\ -8 & 8 & 5\end{array}\right]$. These two endomorphisms have the same characteristic poly-
nomial $X^{3}+5 X^{2}+3 X-9=(X-1)(X+3)^{2}$. Thus the algebraic multiplicity of the eigenvalue 1 equals 1 and the algebraic multiplicity of the eigenvalue -3 equals 2. But for α, the geometric multiplicity of -2 equals 1 , so α is not diagonalizable. On the other hand, for β the geometric multiplicity of -2 equals 2 , and so β is diagonalizable.

Let F be a field and let (K, \bullet) be an associative unital F-algebra. If $v \in K$ and if $p(X)=\sum_{i=0}^{k} c_{i} X^{i} \in F[X]$, then $p(v)=\sum_{i=0}^{k} c_{i} v^{i} \in K$. For any polynomial $q(X) \in F[X]$ we have $p(v) \bullet q(v)=q(v) \bullet p(v)$. In particular, $v \bullet p(v)=$ $p(v) \bullet v$. It is clear that $\operatorname{Ann}(v)=\left\{p(X) \in F[X] \mid p(v)=0_{K}\right\}$ is a subspace of $F[X]$. If $p(v)=0_{K}$, we say that v annihilates the polynomial $p(X)$.

In particular, we note that all of the above is true for the associative unital F-algebra $\mathcal{M}_{n \times n}(F)$, where n is a positive integer. We note that if $A \sim B$ in $\mathcal{M}_{n \times n}(F)$ then there is a nonsingular matrix P such that $B=P^{-1} A P$ and so $p(B)=P^{-1} p(A) P$ so that if $p(A)=O$ then $p(B)=O$. Thus we see that $\operatorname{Ann}(A)=\operatorname{Ann}(B)$ whenever the matrices A and B are similar.

Example Let $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ and let $p(X)=X^{2}-X+2 \in \mathbb{R}[X]$. Then $p(A)=A^{2}-A+2 I=\left[\begin{array}{ll}5 & 1 \\ 1 & 3\end{array}\right]$. If $q(X)=X^{2}-2 X-1$ then $q(A)=O$ so $q(X) \in$ Ann(A).

Proposition 12.12 Let F be a field and let (K, \bullet) be an associative unital F-algebra finitely generated over F. Then $\operatorname{Ann}(v)$ is nontrivial for each $v \in K$.

Proof Let $\operatorname{dim}(V)=n$. If $v \in K$ then $\left\{v^{0}, v^{1}, \ldots, v^{n}\right\}$ cannot be a linearly independent set and so there exist scalars a_{0}, \ldots, a_{n}, not all equal to 0 , such that $\sum_{i=0}^{n} a_{i} v^{i}=0_{K}$. In other words, there exists a nonzero polynomial $p(X)=$ $\sum_{i=0}^{n} a_{i} X^{i}$ in $\operatorname{Ann}(v)$.

We now show why one cannot define "three-dimensional complex numbers".

Proposition 12.13 If n is an odd integer greater than 1 then there is no way of defining on \mathbb{R}^{n} the structure of an \mathbb{R}-algebra which is also a field.

Proof Assume that we can define an operation on \mathbb{R}^{n} (which we will denote by concatenation) which turns it into an \mathbb{R}-algebra which is also a field, and let v_{1} be the identity element for this operation. Then $V \neq \mathbb{R} v_{1}$ since $\operatorname{dim}(V)>1$. Pick an element $y \in V \backslash \mathbb{R} v_{1}$ and let $\alpha \in \operatorname{End}(V)$ be given by $\alpha: v \mapsto y v$, which is represented with respect to the canonical basis of \mathbb{R}^{n} by a matrix A. The characteristic polynomial $p(X)$ of A belongs to $\mathbb{R}[X]$ and has odd degree; therefore, it has a root c in \mathbb{R}. Thus $p(X)=(X-c)^{k} q(X)$ for some $k \geq 1$ and some $q(X) \in \mathbb{R}[X]$ satisfying $q(c) \neq 0$. Let $\beta \in \operatorname{End}(V)$ be given by $\beta: v \mapsto\left(y-c v_{1}\right)^{k} v$. Then $\beta \neq \sigma_{0}$ since $y \notin \mathbb{R} v_{1}$ and $0_{V} \neq q(c)=q\left(c v_{1}\right)$. But then $\left(y-c v_{1}\right)^{k} q\left(c v_{1}\right)=0_{V}$, contradicting Proposition 2.3(12).

Let F be a field and let (K, \bullet) be an associative unital F-algebra. If $v \in K$ satisfies the condition that $\operatorname{Ann}(v)$ is nontrivial then $\operatorname{Ann}(v)$ must contain a polynomial $p(X)=\sum_{i=0}^{n} a_{i} X^{i}$ of minimal degree. This means, in particular, that $a_{n} \neq 0$ and so the monic polynomial $a_{n}^{-1} p(X)$ also belongs to $\operatorname{Ann}(v)$. We claim that it is the unique monic polynomial of minimal degree in $\operatorname{Ann}(v)$. Indeed, if $q(X)$ is a monic polynomial of degree n belonging to $\operatorname{Ann}(v)$ not equal to $a_{n}^{-1} p(X)$, then $r(X)=q(X)-a_{n}^{-1} p(X) \in \operatorname{Ann}(v)$. But $\operatorname{deg}(r)<n$, contradicting the minimality of the degree n of $p(X)$. Thus we see that $\operatorname{Ann}(v)$, if nonempty, contains a unique monic polynomial of minimal positive degree, which we call the minimal polynomial of v over F and denote by $m_{v}(X)$.

Example We know that \mathbb{C} is an associative unital \mathbb{R}-algebra. If $c=a+b i \in \mathbb{C} \backslash \mathbb{R}$, then its minimal polynomial over \mathbb{R} is $(X-c)(X-\bar{c})=X^{2}-2 a X+\left(a^{2}+b^{2}\right)$.

In particular, if F is a field and if n is a positive integer, then any matrix $A \in \mathcal{M}_{n \times n}(F)$ has a minimal polynomial, which we denote by $m_{A}(X)$. If A and B are similar matrices, then $m_{A}(X)=m_{B}(X)$. Similarly, if V is a vector space finitely generated over a field F, and if $\alpha \in \operatorname{End}(V)$ then α has a minimal polynomial $m_{\alpha}(X)$, and this equals the minimal polynomial of $\Phi_{D D}(\alpha)$ for any basis D of V. If $f(X) \in F[X]$ then it is easy to see that $f(X)=m_{\operatorname{comp}(f)}(X)$ and so every polynomial is the minimal polynomial of some matrix.

Example Let (K, \bullet) be an associative unital entire \mathbb{R}-algebra. Assume that $v \in K$ has a minimal polynomial $m_{v}(X) \in \mathbb{R}[X]$. By Proposition 4.4, we know that $m_{v}(X)=\prod_{i=1}^{t} p_{i}(X)$, where the $p_{i}(X)$ are irreducible polynomials of degree at most 2. But then $\prod_{i=1}^{t} p_{i}(v)=0_{K}$ and, since K is entire, there is some index h such that $p_{h}(v)=0_{K}$. By minimality, this means that $m_{v}(X)=p_{h}(X)$. We thus conclude that any element of v having a minimal polynomial has one of degree at most 2.

Proposition 12.14 Let F be a field and let (K, \bullet) be an associative F-algebra finitely generated over F. If $v \in K$ satisfies the condition that $\operatorname{Ann}(v)$ is nontrivial and if $p(X) \in \operatorname{Ann}(v)$, then there is a polynomial $q(X) \in F[X]$ satisfying $p(X)=m_{v}(X) q(X)$.

Proof If $p(X)$ is the 0 -polynomial, pick $u(X)$ to be the 0 -polynomial, and we are done. Therefore, assume that $\operatorname{deg}(p) \geq 0$. From Proposition 4.2, we know that we can write $p(X)=m_{v}(X) q(X)+r(X)$, where $q(X), r(X) \in F[X]$, with $\operatorname{deg}(r)<$ $\operatorname{deg}\left(m_{v}\right)$. Since $p(v)=0_{K}$, we see that $0_{K}=m_{v}(v) \bullet q(v)+r(v)=r(v)$. Since $\operatorname{deg}(v)<\operatorname{deg}\left(m_{A}\right)$, we must have $\operatorname{deg}(v)=-\infty$, and so $p(X)=m_{v}(X) q(X)$.

[^8]Proposition 12.15 Let F be a field and let (K, \bullet) be an associative unital F-algebra with multiplicative identity e. If $v \in K$ has a minimal polynomial $m_{v}(X)=\sum_{i=0}^{n} a_{i} X^{i}$ then:
(1) v is a unit of K if and only if $a_{0} \neq 0$; and
(2) If v is a unit of K then $v^{-1}=g(v)$, where $g(X)=\sum_{i=1}^{n}\left(-a_{0}^{-1} a_{i}\right) X^{i-1} \in$ $F[X]$.

Proof If $a_{0} \neq 0$ then $m_{v}(v)=0_{K}$ implies that $e=a_{0}^{-1}\left[-\sum_{i=1}^{n} a_{i} v^{i}\right]=$ $a_{0}^{-1}\left[-\sum_{i=1}^{n} a_{i} v^{i-1}\right] \bullet v=g(v) \bullet v=v \bullet g(v)$ and so v is a unit and $v^{-1}=$ $g(v)$. Conversely, assume that v is a unit. Had we $a_{0}=0$, we would have $0_{V}=m_{v}(v)=v \bullet\left[\sum_{i=1}^{n} a_{i} v^{i-1}\right]$ and so $0_{K}=v^{-1} m_{v}(v)=\sum_{i=1}^{n} a_{i} v^{i-1}$. Thus $\sum_{i=1}^{n} a_{i} X^{i-1} \in \operatorname{Ann}(v)$, contradicting the minimality of the degree $m_{v}(X)$. Hence $a_{0} \neq 0$.

It is important to note that the minimal polynomial of a matrix over a field need not equal its characteristic polynomial. For example, if we consider $I \in \mathcal{M}_{n \times n}(F)$ for any field F and any integer $n>1$, then the characteristic polynomial of I is $(X-1)^{n}$ whereas its minimal polynomial is $X-1$.

Example Let F be a field. The matrix $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \in \mathcal{M}_{2 \times 2}(F)$ annihilates the polynomial $X(X-1)$, and this is in fact its minimal polynomial. It is also the characteristic polynomial of A. Thus we see that the minimal polynomial of a matrix does not have to be irreducible. Notice too that the rank of A equals 1 , but the degree of its minimal polynomial is 2 . Thus the degree of the minimal polynomial of a matrix may be larger than its rank.

Example Let F be a field. The matrix $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \in \mathcal{M}_{3 \times 3}(F)$ annihilates the polynomial $X(X-1)$, and this is in fact its minimal polynomial. The characteristic polynomial of A is $X^{2}(X-1)$.

Example One can check that $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{Q})$ are not similar, but they both have the same minimal polynomial, namely $(X-1)$. $(X-3)$.

Example Proposition 12.15 can be used to calculate the inverse of a nonsingular matrix, though it is rarely the most efficient method of doing so. For example, the matrix $A=\left[\begin{array}{rrr}2 & -2 & 4 \\ 2 & 3 & 2 \\ -1 & 1 & -1\end{array}\right]$ has minimal polynomial $X^{3}-4 X^{2}+7 X-10=0$
so

$$
A^{-1}=\frac{1}{10}\left(A^{2}-4 A+7 I\right)=\frac{1}{10}\left[\begin{array}{rrr}
-5 & 2 & -16 \\
0 & 2 & 4 \\
5 & 0 & 10
\end{array}\right] .
$$

Proposition 12.16 (Cayley-Hamilton Theorem) Let F be a field and let n be a positive integer. Then every matrix in $M_{n \times n}(F)$ annihilates its characteristic polynomial.

Proof Let A be a matrix in $\mathcal{M}_{n \times n}(F)$ having minimal polynomial $p(X)=X^{n}+$ $\sum_{i=0}^{n-1} a_{i} X^{i}$. Let us look at the matrix $\left[g_{i j}(X)\right]=\operatorname{adj}(X I-A) \in \mathcal{M}_{n \times n}(F[X])$, where each $g_{i j}(X)$ is a polynomial of degree at most $n-1$. Then we can write this matrix in the form $\sum_{i=1}^{n} B_{i} X^{n-i}$, where the B_{i} are matrices in $\mathcal{M}_{n \times n}(F)$. Moreover, we know that

$$
p(X) I=|X I-A| I=(X I-A) \operatorname{adj}(X I-A)=(X I-A)\left(\sum_{i=1}^{n} B_{i} X^{n-i}\right)
$$

Equating coefficients of the various powers of X, we thus see

$$
\begin{aligned}
B_{1} & =I, \\
B_{2}-A B_{1} & =a_{n-1} I, \\
B_{3}-A B_{2} & =a_{n-2} I, \\
& \vdots \\
B_{n}-A B_{n-1} & =a_{1} I, \\
-A B_{n} & =a_{0} I .
\end{aligned}
$$

For $1 \leq h \leq n$, multiply both sides of the h th equation above on the left by A^{n+1-h} and then sum both sides, to obtain $O=p(A)$.

We see from Proposition 12.14 and Proposition 12.16 that the minimal polynomial of any $n \times n$ matrix over a field divides its characteristic polynomial and so the degree of the minimal polynomial is at most n.

Let V be a vector space finitely generated over a field F and let $\sigma_{0} \neq \alpha \in \operatorname{End}(V)$. In Proposition 12.4, we saw that α is diagonalizable if and only if there is a basis that is composed of eigenvectors of V. Moreover, if $\operatorname{spec}(\alpha)=\left\{c_{1}, \ldots, c_{k}\right\}$ and if, for each $1 \leq i \leq k$, we denote the eigenspace of α associated with c_{i} by W_{i}, then for each $1 \leq i \leq k$ we have a projection $\pi_{i} \in \operatorname{End}(V)$ satisfying the following conditions:
(1) $\operatorname{im}\left(\pi_{i}\right)=W_{i}$;
(2) $\pi_{1}+\cdots+\pi_{n}=\sigma_{1}$;
(3) $\pi_{i} \pi_{j}=\sigma_{0}$ whenever $i \neq j$;
(4) $\alpha=c_{1} \pi_{1}+\cdots+c_{k} \pi_{k}$.

For each $1 \leq h \leq k$, let $p_{h}(X)$ be the h th Lagrange interpolation polynomial determined by c_{1}, \ldots, c_{k}. Then we can check that $\pi_{h}=p_{h}(\alpha)$ for each h, since $p_{h}(X)\left(X-c_{h}\right)$ is just a scalar multiple of the minimal polynomial of α.

Is it possible to simultaneously diagonalize two distinct endomorphisms of V ? Indeed, let V be a vector space finitely generated over a field F and let α and β be distinct elements of $\operatorname{End}(V) \backslash\left\{\sigma_{0}\right\}$. There exists a basis D of V such that both $\Phi_{D D}(\alpha)$ and $\Phi_{D D}(\beta)$ are diagonal matrices if and only if the elements of D are eigenvectors of α as well as of β. Suppose that we have in hand such a basis $D=\left\{u_{1}, \ldots, u_{k}\right\}$. Since diagonal matrices commute with each other, we see that $\Phi_{D D}(\alpha \beta)=\Phi_{D D}(\alpha) \Phi_{D D}(\beta)=\Phi_{D D}(\beta) \Phi_{D D}(\alpha)=\Phi_{D D}(\beta \alpha)$ and so $\alpha \beta=\beta \alpha$. Therefore, a necessary condition for both endomorphisms of V to be represented by diagonal matrices with respect to the same basis is that they form a commuting pair.

We also note that if D is a basis for a vector space V over a field F then the set of all endomorphisms α of V satisfying the condition that $\Phi_{D D}(\alpha)$ is a diagonal matrix is a subspace of $\operatorname{End}(V)$. Indeed, this is an immediate consequence of the fact that the set of all diagonal $n \times n$ matrices is a subspace of $\mathcal{M}_{n \times n}(F)$.

Proposition 12.17 Let V be a vector space over a field F and let α, β be a commuting pair of endomorphisms of V. Then $p(\alpha) q(\beta)=q(\beta) p(\alpha)$ for any $p(X), q(X) \in F[X]$.

Proof Initially, we will consider the special case of $q(X)=X$. If $p(X)=$ $\sum_{i=0}^{n} a_{i} X^{i}$ then $\beta \alpha^{2}=(\beta \alpha) \alpha=(\alpha \beta) \alpha=\alpha(\beta \alpha)=\alpha(\alpha \beta)=\alpha^{2} \beta$, and, by induction, we similarly have $\beta \alpha^{k}=\alpha^{k} \beta$ for every positive integer k. Therefore

$$
\beta p(\alpha)=\beta\left(\sum_{i=0}^{n} a_{i} \alpha^{i}\right)=\sum_{i=0}^{n} a_{i} \beta \alpha^{i}=\sum_{i=0}^{n} a_{i} \alpha^{i} \beta=\left(\sum_{i=0}^{n} a_{i} \alpha^{i}\right) \beta=p(\alpha) \beta .
$$

Now a proof similar to the first part shows that $p(\alpha) \beta^{k}=\beta^{k} p(\alpha)$ for every positive integer k and hence, by a proof similar to the second part, we get $p(\alpha) q(\beta)=$ $q(\beta) p(\alpha)$ for any $p(X), q(X) \in F[X]$.

As a consequence of this we note that if $\alpha, \beta \in \operatorname{End}(V)$ are commuting projections then $(\alpha \beta)^{2}=(\alpha \beta)(\alpha \beta)=\alpha(\beta \alpha) \beta=\alpha(\alpha \beta) \beta=\alpha^{2} \beta^{2}=\alpha \beta$ and so $\alpha \beta$ is a projection as well.

Proposition 12.18 Let V be a vector space finitely generated over a field F and let $\alpha, \beta \in \operatorname{End}(V)$ be diagonalizable endomorphisms of V. Then there exists a basis of V relative to which both α and β can be represented by diagonal matrices if and only if $\alpha \beta=\beta \alpha$.

Proof We have already noted that if α and β can both be represented by diagonal matrices with respect to a given basis of V then we must have $\alpha \beta=\beta \alpha$. Conversely, assume that α and β are diagonalizable endomorphisms of V satisfying $\alpha \beta=\beta \alpha$. Then, as we have already seen, there exist distinct scalars c_{1}, \ldots, c_{k} and projections $\pi_{1}, \ldots, \pi_{k} \in \operatorname{End}(V)$ such that $\pi_{1}+\cdots+\pi_{k}=\sigma_{1}, \pi_{i} \pi_{j}=\sigma_{0}$ for $i \neq j$, and $c_{1} \pi_{1}+\cdots+c_{k} \pi_{k}=\alpha$. Similarly, there exist scalars d_{1}, \ldots, d_{t} and projections $\eta_{1}, \ldots, \eta_{k} \in \operatorname{End}(V)$ such that $\eta_{1}+\cdots+\eta_{k}=\sigma_{1}, \eta_{i} \eta_{j}=\sigma_{0}$ for $i \neq j$, and $d_{1} \eta_{1}+\cdots+d_{k} \eta_{k}=\beta$. Therefore, $\alpha=\alpha \sigma_{1}=\left(\sum_{i=1}^{k} c_{i} \pi_{i}\right)\left(\sum_{j=1}^{t} \eta_{j}\right)=$ $\sum_{i=1}^{k} \sum_{j=1}^{t} c_{i} \pi_{i} \eta_{j}$ and $\beta=\beta \sigma_{1}=\left(\sum_{j=1}^{t} d_{j} \eta_{j}\right)\left(\sum_{i=1}^{k} \pi_{i}\right)=\sum_{j=1}^{t} \sum_{i=1}^{k} d_{j} \eta_{j} \pi_{i}$. Since we saw that for each $1 \leq i \leq k$ we have $\pi_{i}=p_{i}(\alpha)$ for some $p_{i}(X) \in F[X]$ and similarly for each $1 \leq j \leq t$ we have $\eta_{j}=q_{j}(\beta)$ for some $q_{j}(X) \in F[X]$, we conclude that $\pi_{i} \eta_{j}=\eta_{j} \pi_{i}$ for each such i and j. Call this common value $\theta_{i j}$. By the comments after Proposition 12.17, we see that $\theta_{i j}$ is also a projection in End (V).

We note that $\theta_{i j} \theta_{h m}=\pi_{i} \eta_{j} \pi_{h} \eta_{m}=\pi_{i} \pi_{h} \eta_{j} \eta_{m}$ and this equals σ_{0} when $i \neq j$ or $h \neq m$. Thus $\sum_{i=1}^{k} \sum_{j=1}^{t} \theta_{i j}=\left(\sum_{i=1}^{k} \pi_{i}\right)\left(\sum_{j=1}^{t} \eta_{j}\right)=\sigma_{1}$. Hence we have shown that α and β are simultaneously diagonalizable, using those projections $\theta_{i j}$ which are nonzero (as some of them may be zero).

We now turn to another classical result.

Proposition 12.19 Let V be a vector space over a field F and let K be a subalgebra of $\operatorname{End}(V)$ such that there is no nontrivial proper subspace of V which is invariant under every $\alpha \in K$. Suppose that $\beta \in \operatorname{End}(V)$ has a nonempty spectrum and commutes with every element of K. Then $\beta=\sigma_{c}$ for some $c \in F$.

Proof Pick $c \in \operatorname{spec}(\beta)$ and let W be the eigenspace of β associated with c. This is a nontrivial subspace of V. If $\alpha \in K$ and $w \in W$ then $\beta \alpha(w)=\alpha \beta(w)=\alpha(c w)=$ $c \alpha(w)$ and so $\alpha(w) \in W$. Thus W is a nontrivial subspace of W invariant under every $\alpha \in K$ and so, by assumption, it cannot be proper. Therefore, $W=V$ and so $\beta=\sigma_{c}$.

Recall that if the field F is algebraically closed then any element of $\operatorname{End}(V)$ other than σ_{0} has a nonempty spectrum.

Proposition 12.20 Let V be a vector space over an algebraically-closed field F and let K be a unital subalgebra of $\operatorname{End}(V)$ such that there is no nontrivial proper subspace of V which is invariant under every $\alpha \in K$. Let $v \in V$ and let W be a finitely-generated subspace of V satisfying the condition that if $\alpha \in K$ and $W \subseteq \operatorname{ker}(\alpha)$ then $v \in \operatorname{ker}(\alpha)$. Then $v \in W$.

Proof We will prove the result by induction on $n=\operatorname{dim}(W)$. If $n=0$ then W is trivial. Since K is unital, $\sigma_{1} \in K$ and $W \subseteq \operatorname{ker}\left(\sigma_{1}\right)$. Therefore, by hypothesis, $v \in \operatorname{ker}\left(\sigma_{1}\right)$ and so $v=0_{V} \in W$.

Now assume, inductively, that $n>1$ and that the result has been established for all subspaces of V of dimension less than n. Pick $0_{V} \neq w_{0} \in W$ and let W_{1} be a complement of $F w_{0}$ in W. Set $L=\left\{\alpha \in K \mid W_{1} \subseteq \operatorname{ker}(\alpha)\right\}$. This set is nonempty since $\sigma_{0} \in L$. Moreover, it is in fact a subspace of L as a vector space over F. Moreover, if $\alpha \in L$ and $\beta \in K$ then $\beta \alpha \in L$, so in particular L is a subalgebra of K. Moreover, $Y=\left\{\alpha\left(w_{0}\right) \mid \alpha \in L\right\}$ is a subspace of V.

Since $w_{0} \notin W_{1}$, we know that there exists an element α_{0} of L satisfying $w_{0} \notin \operatorname{ker}\left(\alpha_{0}\right)$ and so Y is nontrivial. However, $\beta(y) \in Y$ for each $y \in Y$ and $\beta \in K$. Thus Y is invariant under every element of K and so, by hypothesis, $Y=V$. Define the function $\theta: V \rightarrow V$ by $\theta: \alpha\left(w_{0}\right) \mapsto \alpha(v)$. This function is well-defined for if $\alpha_{1}\left(w_{0}\right)=\alpha_{2}\left(w_{0}\right)$ then $w_{0} \in \operatorname{ker}\left(\alpha_{1}-\alpha_{2}\right)$ and so $W \subseteq \operatorname{ker}\left(\alpha_{1}-\alpha_{2}\right)$. Hence, by assumption, $v \in \operatorname{ker}\left(\alpha_{1}-\alpha_{2}\right)$, i.e., $\alpha_{1}(v)=\alpha_{2}(v)$. It is straightforward to check that in fact $\theta \in \operatorname{End}(V)$.

If $\beta \in K$ then $(\theta \beta)\left(\alpha\left(w_{0}\right)\right)=\theta\left(\beta \alpha\left(w_{0}\right)\right)=\beta \alpha(v)=\beta\left(\theta \alpha\left(w_{0}\right)\right)=(\beta \theta)\left(\alpha\left(w_{0}\right)\right)$ and so θ commutes with every element of K. By Proposition 12.19, this implies that $\theta=\sigma_{c}$ for some $c \in \mathbb{C}$. Thus, for any $\alpha \in K$ we have $\alpha(v)=\theta \alpha\left(w_{0}\right)=c \alpha\left(w_{0}\right)=$ $\alpha\left(c w_{0}\right)$ and so $\alpha\left(v-c w_{0}\right)=0_{V}$. By the induction hypothesis, this implies that $v-c w_{0} \in W_{0}$ and so $v \in W$, as desired.

Proposition 12.21 (Burnside's Theorem) Let V be a vector space finitely generated over an algebraically-closed field F and let K be a unital subalgebra of $\operatorname{End}(V)$ the elements of which commute with all endomorphisms of the form σ_{c} for $c \in F$. Assume furthermore that there is no nontrivial proper subspace of V which is invariant under every $\alpha \in K$. Then $K=\operatorname{End}(V)$.

Proof Pick a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for V over F and, for all $1 \leq i, j \leq n$, let $\theta_{i j}$ be the endomorphism of V defined by the condition that

$$
\theta_{i j}: v_{k} \mapsto \begin{cases}v_{j} & \text { if } k=i, \\ 0_{V} & \text { otherwise } .\end{cases}
$$

This is a basis for $\operatorname{End}(V)$ and so it suffices to show that $\theta_{i j} \in K$ for all $1 \leq i, j \leq n$. Fix $i \in\{1, \ldots, n\}$ and let

$$
L_{i}=\left\{\alpha \in K \mid \alpha\left(v_{h}\right)=0_{V} \text { for all } h \neq i\right\} .
$$

By Proposition 12.20, there is an element α_{0} of L_{i} satisfying $\alpha_{0}\left(v_{i}\right) \neq 0_{V}$ and so, as in the proof of that proposition, we see that $\left\{\alpha\left(v_{h}\right) \mid \alpha \in L_{i}\right\}$ equals V. In particular, if $1 \leq j \leq n$ there exists an element β_{j} of L_{i} satisfying $\beta_{j}\left(v_{i}\right)=v_{j}$. Thus $\theta_{i j}=$ $\beta_{j} \in K$.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Tate).
The British mathematician William Burnside published important works on group theory at the end of the nineteenth century. Burnside's original result has been extensively generalized. The above proof is based on the proof of one such generalization, by the twentieth-century American mathematician John Tate.

Proposition 12.21 holds for the case of $F=\mathbb{C}$. If the field F is not algebraically closed, this theorem may not hold.

Example Let $F=\mathbb{R}$ and let α be the endomorphism of \mathbb{R}^{2} defined by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto$ $\left[\begin{array}{r}-b \\ a\end{array}\right]$. Then $\alpha^{2}=-\sigma_{1}$ and so $K=\left\{c \alpha+c \sigma_{1} \mid c \in \mathbb{R}\right\}$ is a proper subalgebra of $\operatorname{End}\left(\mathbb{R}^{2}\right)$ for which there are no nontrivial proper subspaces of \mathbb{R}^{2} invariant under every element of K.

Algorithms for the computation of the eigenvalues and eigenvectors of a given matrix are usually very complicated, especially if speed of computation is a major consideration. Therefore, we shall not go into the description of such algorithms in detail. As a rule of thumb, it is best to try to compute eigenvectors directly, and not through finding roots of the characteristic polynomial, since small errors in the computation of eigenvalues may often lead to large errors in the computation of the corresponding eigenvectors. For matrices over \mathbb{R}, there are often reasonably efficient iterative methods to find at least some of the eigenvectors. We will bring here one example to find an eigenvector associated with the real eigenvalue of a matrix over \mathbb{R} having greatest absolute value (often called the dominant eigenvalue), under assumption that such an eigenvalue indeed exists. The algorithm is based on the observation that if c is an eigenvalue of a matrix $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ then c^{k} is an eigenvalue of A^{k}. Hence, if k is sufficiently large, the matrix $A\left(A^{k}\right)$ is approximately equal to $c A^{k}$. Therefore, if we select an arbitrary vector $v^{(0)} \in \mathbb{R}^{n}$ and successively define vectors $v^{(1)}, v^{(2)}, \ldots$ by setting $v^{(i+1)}=A v^{(i)}$ for each $i \geq 0$, then $A v^{(k)}=A^{k+1} v^{(0)}$ and this is roughly equal to $c v^{(k)}$. So, if the circumstances are amenable (and we will not go into the precise conditions necessary for this to happen), the vector $v^{(k)}$ is a reasonable approximation to an eigenvector of A associated with c. Of course, we must always remember that repeated computations lead to accumulating roundoff and truncation errors; one way of combating these is to divide each entry in $v^{(i)}$ by the absolute value of the largest entry, and use this "normalized" vector in the next iteration.

With kind permission of NPL (Wilkinson); with kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (von Mises).

Of the many numerical analysts who studied computational methods for finding eigenvalues, one of the most important is the British mathematician James H. Wilkinson, a former assistant of Alan Turing and one of the major early innovators in numerical linear algebra. The iteration algorithm given here was first studied in the 1920s by the Austrian applied mathematician Richard von Mises, who later emigrated to the United States.

After one calculates the dominant eigenvalue of a matrix in $\mathcal{M}_{n \times n}(\mathbb{R})$, there are various techniques, known as deflation techniques, for creating a new matrix in $\mathcal{M}_{(n-1) \times(n-1)}(\mathbb{R})$ the eigenvalues of which are the same as all of the eigenvalues of the original matrix, except for the dominant eigenvalue.

Example Consider $A=\left[\begin{array}{rr}5 & 1 \\ -3 & 1\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ and let us pick $v^{(0)}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, then

$$
A v^{(0)}=\left[\begin{array}{r}
6 \\
-2
\end{array}\right], \quad \text { and so we will take } \quad v^{(1)}=\left[\begin{array}{r}
1 \\
-\frac{1}{3}
\end{array}\right]
$$

$$
A v^{(1)}=\frac{1}{3}\left[\begin{array}{r}
14 \\
-10
\end{array}\right], \quad \text { and so we will take } \quad v^{(2)}=\left[\begin{array}{r}
1 \\
-\frac{5}{7}
\end{array}\right] ;
$$

$$
A v^{(2)}=\frac{1}{7}\left[\begin{array}{r}
30 \\
-26
\end{array}\right], \quad \text { and so we will take } \quad v^{(3)}=\left[\begin{array}{r}
1 \\
-\frac{15}{13}
\end{array}\right] ;
$$

$$
A v^{(3)}=\frac{1}{13}\left[\begin{array}{r}
62 \\
-58
\end{array}\right], \quad \text { and so we will take } \quad v^{(4)}=\left[\begin{array}{r}
1 \\
-\frac{29}{31}
\end{array}\right] ;
$$

$$
A v^{(4)}=\frac{1}{31}\left[\begin{array}{r}
126 \\
-122
\end{array}\right], \quad \text { and so we will take } \quad v^{(5)}=\left[\begin{array}{r}
1 \\
-\frac{61}{63}
\end{array}\right] .
$$

It seems that this sequence of vectors is converging to $\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and, indeed, one can check that this is an eigenvector of A associated with the eigenvalue 4.

Again, preconditioning can be used to make iterative methods for finding eigenvalues converge more rapidly.

Example Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ be a matrix of the form $[c B+(1-c) D]^{T}$, where $B \in \mathcal{M}_{n \times n}(\mathbb{R})$ is a Markov matrix, $c \in \mathbb{R}$ satisfies $0 \leq c \leq$ 1 , and $D=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right] \wedge\left[\begin{array}{c}d_{1} \\ \vdots \\ d_{n}\end{array}\right]$ for nonnegative real numbers d_{i} satisfying $\sum_{i=1}^{n} d_{i}=1$.

Such matrices have been called Google matrices since they are needed for the PageRank algorithm used by the internet search engine Google ${ }^{\text {TM }}$ to compute an estimate of webpage importance for ranking search results (for these purposes, a typical value for c is 0.85). The value of n can be very large, often far larger than 10^{9}.

One can show that the eigenvalues e_{1}, \ldots, e_{n} of such a matrix satisfy $1=\left|e_{1}\right| \geq$ $\left|e_{2}\right| \geq \cdots \geq\left|e_{n}\right| \geq 0$, and so the power method mentioned above can be (and is) used by Google to rapidly compute an eigenvector associated to e_{1}. Stanford University researchers Taher Haveliwala and Sepandar Kamvar have shown that for any Google matrix, $\left|e_{2}\right| \leq c$, with equality happening under conditions that hold in the case of those matrices arising in this particular application. Eigenvectors corresponding to this second eigenvalue can be used to detect and combat link spamming on the internet.

One can also consider various generalizations of the eigenvalue problem. Thus, for example, given endomorphisms α and β of a vector space V, one can seek to find all scalars c such that $c \beta-\alpha$ is not monic. Problems of this sort arise naturally, for example, in plasma physics and in the design of control systems. Very often, such problems can be formulated as a matter of minimizing the largest generalized eigenvalue of a pair of symmetric matrices. When β is an automorphism, as is usually the case, such generalized eigenvalue problems can be reduced to the usual eigenvalue problem for the endomorphism $\beta^{-1} \alpha$, but there are often reasons for not wanting to do so. For example, even if both α and β are represented with respect to a given basis by symmetric matrices, the matrix representing $\beta^{-1} \alpha$ may not be symmetric. Therefore, some specialized algorithms have been developed to find solutions of the generalized eigenvalue problem directly.

If V has finite dimension n and the endomorphisms α and β are represented with respect to some basis by matrices A and B, respectively, one can look at the generalized characteristic polynomial $|X B-A|$. Problems arise, however, since the degree of this polynomial may be less than n, if the matrix B is singular. In fact, this polynomial may even be the 0-polynomial.

A further generalization of the eigenvalue problem is the following: Given endomorphisms $\alpha_{0}, \ldots, \alpha_{n}$ of V, find all scalars c such that the endomorphism $\sum_{i=0}^{n} c^{i} \alpha_{i}$ is not monic. Various techniques have been developed to handle this problem directly in special cases. Also, it can sometimes be reduced to the case of $n=1$. For example, finding a vector $0_{V} \neq v \in V$ in the kernel of $c^{2} \alpha_{2}+c \alpha_{1}+\alpha_{0}$ is equivalent to finding a nonzero element of the form $\left[\begin{array}{c}c v \\ v\end{array}\right]$ in the kernel of $c \beta_{1}-\beta_{0}$, where the β_{i} are the endomorphisms of V^{2} defined by

$$
\beta_{0}:\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{c}
\alpha_{1}(x)+\alpha_{0}(y) \\
\alpha_{0}(y)
\end{array}\right] \quad \text { and } \quad \beta_{1}:\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{c}
-\alpha_{2}(x) \\
\alpha_{0}(y)
\end{array}\right] .
$$

Exercises

Exercise 738

Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{Q})$. Let c_{1}, \ldots, c_{n} be the list of (not necessarily distinct) eigenvalues of A, considered as a matrix in $\mathcal{M}_{n \times n}(\mathbb{C})$. Show that $\sum_{i=1}^{n} c_{i}$ and $\prod_{i=1}^{n} c_{i}$ are rational numbers.

Exercise 739

Let F be a field, let n be a positive integer, and let $A, B \in \mathcal{M}_{n \times n}(F)$. Assume that A and B have the same characteristic polynomial $p(X) \in F[X]$. Is it necessarily true that $p(X)$ is the characteristic polynomial of $A B$?

Exercise 740

Find infinitely-many matrices in $\mathcal{M}_{3 \times 3}(\mathbb{R})$, all of which have characteristic polynomial $X(X-1)(X-2)$.

Exercise 741
Find the characteristic polynomial of $\left[\begin{array}{rrr}3 & 2 & 2 \\ 1 & 4 & 1 \\ 2 & -4 & -1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$.

Exercise 742

Let $a, b, c \in \mathbb{R}$. Find the characteristic polynomial of the matrix

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & a \\
a & 0 & 0 & b \\
0 & b & 0 & c \\
0 & 0 & c & 0
\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{R})
$$

Exercise 743

Let n be a positive integer. Show that every matrix $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ can be written as the sum of two nonsingular matrices.

Exercise 744

Let $F=\mathrm{GF}(3)$ and let n be a positive integer. Let $D=\left[d_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ be a nonsingular diagonal matrix and let $A \in \mathcal{M}_{n \times n}(F)$. Show that $1 \notin \operatorname{spec}(D A)$ if and only if $D-A$ is nonsingular.

Exercise 745

Let F be a field of characteristic other than 2 . For each positive integer n, let T_{n} be the set of all diagonal matrices in $\mathcal{M}_{n \times n}(\mathbb{R})$ the diagonal entries of which belong to $\{-1,1\}$. For any $A \in \mathcal{M}_{n \times n}(\mathbb{R})$, show that there exists a matrix $D \in T_{n}$ satisfying $1 \notin \operatorname{spec}(D A)$.

Exercise 746

Let n be a positive integer and let $\alpha: \mathcal{M}_{n \times n}(\mathbb{C}) \rightarrow \mathbb{C}^{n}$ be the function defined by $\alpha: A \mapsto\left[\begin{array}{c}a_{0} \\ \vdots \\ a_{n-1}\end{array}\right]$, where $X^{n}+\sum_{i=0}^{n-1} a_{i} X^{i}$ is the characteristic polynomial of A. Is α a linear transformation?

Exercise 747
Define $\alpha \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ by $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{c}a-b \\ a+2 b+c \\ -2 a+b-c\end{array}\right]$. Find the eigenvalues of α and, for each eigenvalue, find the associated eigenspace.

Exercise 748

Let A is a nonempty set and let V be the collection of all subsets of A, which is a vector space over GF(2). Let B be a fixed subset of A and let $\alpha: V \rightarrow V$ be the endomorphism defined by $\alpha: Y \mapsto Y \cap B$. Find the eigenvalues of α and, for each eigenvalue, find the associated eigenspace.

Exercise 749

Let V be a vector space over a field F and let α be an endomorphism of F. Show that the one-dimensional subspaces of V invariant under α are precisely those of the form $R v$, where v is an eigenvector of α.

Exercise 750
Define $\alpha \in \operatorname{End}\left(\mathbb{R}^{4}\right)$ by $\alpha:\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right] \mapsto\left[\begin{array}{c}b+c \\ c \\ 0 \\ 0\end{array}\right]$. Find the eigenvalues of α. Do there exist two-dimensional subspaces W and Y of \mathbb{R}^{4}, both invariant under α, such that $\mathbb{R}^{4}=W \oplus Y$?

Exercise 751

Let V be a vector space finitely generated over a field F and let α be an endomorphism of V having an eigenvalue c. For any $p(X) \in F[X]$, show that $p(c)$ is an eigenvalue of $p(\alpha)$.

Exercise 752

Let V be the vector space of all functions in $\mathbb{R}^{\mathbb{R}}$ which are infinitely differentiable and let $\alpha: V \rightarrow V$ be the endomorphism of V defined by $\alpha: f \mapsto f^{\prime \prime}$. If $n>0$ is an integer, show that the function $f: x \mapsto \sin (n x)$ is an eigenvector of α^{2} and find the associated eigenvalue.

Exercise 753
Let F be a field and let $V=F^{(\mathbb{Z})}$. Let α be the endomorphism of V defined by $\alpha(f): i \mapsto f(i+1)$ for all $i \in \mathbb{Z}$. Determine whether $\operatorname{spec}(\alpha)$ is nonempty or not.

Exercise 754
Let V be the vector space composed of all polynomial functions from \mathbb{R} to itself, let $a \in \mathbb{R}$, and let α be the endomorphism of V defined by $\alpha(p): x \mapsto(x-$ a) $\left[p^{\prime}(x)+p^{\prime}(a)\right]-2[p(x)-p(a)]$, where p^{\prime} denotes the derivative of p. Find the eigenvalues of α and for each such eigenvalue, find the associated eigenspace.

Exercise 755

Let α be the endomorphism of $\mathcal{M}_{2 \times 2}(\mathbb{R})$ defined by

$$
\alpha:\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \mapsto\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] .
$$

Find the eigenvalues of α and for each such eigenvalue, find the associated eigenspace.

Exercise 756

Let V be a vector space over \mathbb{Q} and let $\alpha \in \operatorname{End}(V)$ be a projection. Show that $\operatorname{spec}(\alpha) \subseteq\{0,1\}$. Is the converse true?

Exercise 757

Let V be a vector space of dimension $n>0$ over a field F. Let α be an endomorphism of V for which there exists a set A of $n+1$ distinct eigenvectors satisfying the condition that every subset of A of size n is a basis for V. Show that all of the eigenvectors in V are associated with the same eigenvalue c of α and that $\alpha=c \sigma_{1}$.

Exercise 758
For $a, b \in \mathbb{R}$, let $A=\left[\begin{array}{lll}a & b & 0 \\ b & a & b \\ 0 & b & a\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Find the eigenvalues of A.
Exercise 759
Let $A \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ be a matrix of the form $\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]$, where $a>0$ and $b c>0$. Show that A has two distinct eigenvalues in \mathbb{R}.

Exercise 760
Find the eigenvalues of the matrix $\left[\begin{array}{rrr}5 & 6 & -3 \\ -1 & 0 & 1 \\ 2 & 2 & -1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ and, for each such eigenvalue, find the associated eigenspace.

Exercise 761
Find the eigenvalues of the matrix $\left[\begin{array}{rrr}0 & 2 & 1 \\ -2 & 0 & 3 \\ -1 & -3 & 0\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{C})$ and, for each such eigenvalue, find the associated eigenspace.

Exercise 762

Let W be the subspace of \mathbb{R}^{∞} consisting of all convergent sequences and let α be the endomorphism of W defined by

$$
\alpha:\left[a_{1}, a_{2}, \ldots\right] \mapsto\left[\left(\lim _{i \rightarrow \infty} a_{i}\right)-a_{1},\left(\lim _{i \rightarrow \infty} a_{i}\right)-a_{2}, \ldots\right] .
$$

Find all eigenvalues of α and, for each eigenvalue, find the corresponding eigenspace.

Exercise 763

Find the eigenvalues of the matrix $\left[\begin{array}{rrr}1 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ in $\mathcal{M}_{3 \times 3}(\mathbb{C})$ and, for each such eigenvalue, find the associated eigenspace.

Exercise 764

Does there exist a real number a such that

$$
\operatorname{spec}\left(\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & a & -1 \\
-6 & 11 & -5
\end{array}\right]\right)=\{-2,-1,0\} ?
$$

Exercise 765

Let α be an endomorphism of a vector space V over a field F and let v and w be eigenvectors of α. If $v+w \neq 0_{V}$, show that $v+w$ is an eigenvector of α if and only if both v and w correspond to the same eigenvalue.

Exercise 766

Show that the matrix $A=\left[\begin{array}{rrr}1 & 0 & a \\ a & a & a \\ a & 0 & -1\end{array}\right]$ has three distinct eigenvalues for any real number a.

Exercise 767

Let n be a positive integer and let t be a nonzero real number. Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ be the matrix all of the entries of which equal t. Find the eigenvalues of A and, for each such eigenvalue, find the associated eigenspace.

Exercise 768

Let n be a positive integer and let F be a field. Let A be a nonsingular matrix in $\mathcal{M}_{n \times n}(F)$. Given the eigenvalues of A, find the eigenvalues of A^{-1}.

Exercise 769

Let n be a positive integer and let F be a field. Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$, and let $c \in \operatorname{spec}(A)$. If $b, d \in F$, show that $b c+d \in \operatorname{spec}(b A+d I)$.

Exercise 770
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. If $t \in \mathbb{R}$ is a root of the polynomial $b X^{2}+$ $(a-d) X-c \in \mathbb{R}[X]$, show that $\left[\begin{array}{l}1 \\ t\end{array}\right]$ is an eigenvector of A associated with the eigenvalue $a+b t$.

Exercise 771

Let $A \in \mathcal{M}_{2 \times 2}(\mathbb{C})$ be a matrix having two distinct eigenvalues. Show that there are precisely four distinct matrices $B \in \mathcal{M}_{2 \times 2}(\mathbb{C})$ satisfying $B^{2}=A$.

Exercise 772

Find all $a \in \mathbb{R}$ such that $\left[\begin{array}{rrr}a & 0 & 0 \\ 2 a & 2 a & 2 a \\ 0 & 0 & a\end{array}\right]$ has a unique eigenvalue.

Exercise 773

Find a real number a such that the only eigenvalue of the matrix

$$
\left[\begin{array}{rrr}
a & 1 & 0 \\
-1 & 0 & -1 \\
0 & 1 & -a
\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})
$$

is 0 .
Exercise 774
For each $1 \leq i \leq 3$ and $2 \leq j \leq 3$, find a real number $a_{i j}$ such that $\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right]$, $\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$
$\mathcal{M}_{3 \times 3}(\mathbb{R})$. and $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ are all eigenvectors of the matrix $\left[\begin{array}{lll}1 & a_{12} & a_{13} \\ 1 & a_{22} & a_{23} \\ 1 & a_{32} & a_{33}\end{array}\right] \in$

Exercise 775

Let $0 \neq r \in \mathbb{C}$ and let n and m be positive integers. Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{C})$ be given and let $B=\left[b_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{C})$ be the matrix defined by $b_{i j}=r^{m+i-j} a_{i j}$ for all $1 \leq i, j \leq n$. Show that if $d \in \mathbb{C}$ is an eigenvalue of A then $r^{m} d$ is an eigenvalue of B.

Exercise 776

Let n be a positive integer and let F be a field. A matrix $A \in \mathcal{M}_{n \times n}(F)$ is a magic matrix if and only if there exists a scalar $c \in F$ such that the sum of the
entries in each row and each column is c. Characterize magic matrices in terms of their eigenvalues.

Exercise 777

Let $A \in \mathcal{M}_{2 \times 2}(\mathbb{C})$ be a matrix having distinct eigenvalues $a \neq b$. Show that, for all $n>0$,

$$
A^{n}=\frac{a^{n}}{a-b}(A-b I)+\frac{b^{n}}{b-a}(A-a I) .
$$

Exercise 778
Let $A \in \mathcal{M}_{2 \times 2}(\mathbb{C})$ be a matrix having a unique eigenvalue c. Show that $A^{n}=c^{n-1}[n A-(n-1) c I]$ for all $n>0$.

Exercise 779

Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. Show that every eigenvector of A is also an eigenvector of $\operatorname{adj}(A)$.

Exercise 780

Let n be a positive integer. Let G be the set of all matrices $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ satisfying the condition that \mathbb{C}^{n} has a basis composed of eigenvectors of A. Is G closed under taking sums? Is it closed under taking products?

Exercise 781

Let $p(X) \in \mathbb{C}[X]$ and let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ for some positive integer n. Calculate the determinant of the matrix $p(A)$ using the eigenvalues of A.

Exercise 782
Let $-1 \neq a \in \mathbb{R}$ and let $A=\left[\begin{array}{cc}1-a+a^{2} & 1-a \\ a-a^{2} & a\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. Calculate A^{n} for all $n \geq 1$.

Exercise 783

Let n be a positive integer. Given a matrix $A \in \mathcal{M}_{n \times n}(\mathbb{Q})$, find infinitely-many distinct matrices having the same eigenvalues as A.

Exercise 784
Let $c \in \mathbb{R}$. Find the spectral radius of $A=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & -c & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{C})$.
Exercise 785
Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ be a matrix all entries in which are positive and let c be a positive real number greater than the spectral radius of A. Show that $|c I-A|>0$.

Exercise 786

Let n be a positive integer. Show that 1 is an eigenvalue of any Markov matrix in $\mathcal{M}_{n \times n}(\mathbb{R})$.

Exercise 787
Let n be a positive integer. Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ satisfy the condition that $\sum_{j=1}^{n}\left|a_{i j}\right| \leq 1$ for all $1 \leq j \leq n$. Show that $|c| \leq 1$ for all $c \in \operatorname{spec}(A)$.

Exercise 788

Let n be a positive integer and let F be a field. Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ be a matrix satisfying the condition that the sum of the entries in each row equals 1 .
Let $1_{F} \neq c \in \operatorname{spec}(A)$ and let $\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]$ be an eigenvector of A associated with c. Show that $\sum_{j=1}^{n} b_{j}=0$.

Exercise 789

Give an example of a matrix $A \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ satisfying the condition that $\operatorname{spec}(A)=\varnothing \operatorname{but} \operatorname{spec}\left(A^{4}\right) \neq \varnothing$.

Exercise 790

Find an example of matrices $A, B \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ satisfying the condition that every element of $\operatorname{spec}(A) \cup \operatorname{spec}(B)$ is positive but every element of $\operatorname{spec}(A B)$ is negative.

Exercise 791
Find a polynomial $p(X) \in \mathbb{C}[X]$ of degree 2 satisfying the condition that all matrices in $\mathcal{M}_{2 \times 2}(\mathbb{C})$ of the form $\left[\begin{array}{cc}1-a & 1 \\ p(a) & a\end{array}\right]$, for $a \in \mathbb{C}$, have the same characteristic polynomial.

Exercise 792

Let F be a field and let n be an even positive integer. Let $A, B \in \mathcal{M}_{n \times n}(F)$ be matrices satisfying $A=B^{2}$. Let $p(X)$ be the characteristic polynomial of A and let $q(X)$ be the characteristic polynomial of B. Show that $p\left(X^{2}\right)=q(X) q(-X)$.

Exercise 793

Let F be a field. Characterize the matrices in $\mathcal{M}_{2 \times 2}(F)$ having the property that their characteristic polynomial is not equal to their minimal polynomial.

Exercise 794

Let (K, \bullet) be an associative unital F-algebra, let $v \in K$, and let $\alpha: K \rightarrow K$ be a homomorphism of F-algebras. Show that $\operatorname{Ann}(v) \subseteq \operatorname{Ann}(\alpha(v))$.

Exercise 795
Are the matrices $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $\left[\begin{array}{ll}4 & 2 \\ 3 & 1\end{array}\right]$ in $\mathcal{M}_{2 \times 2}(\mathbb{R})$ similar?

Exercise 796
Are the matrices $\left[\begin{array}{rrr}1 & i & 0 \\ i & 2 & -1 \\ 0 & i & 1\end{array}\right]$ and $\left[\begin{array}{ccc}1+i & 7 & 2 \\ 0 & 1 & 9 \\ 0 & 0 & 2-i\end{array}\right]$ in $\mathcal{M}_{3 \times 3}(\mathbb{C})$ similar?

Exercise 797
Let n be a positive integer and let $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$. Show that if A and B are similar when considered as elements of $\mathcal{M}_{n \times n}(\mathbb{C})$, they are also similar in $\mathcal{M}_{n \times n}(\mathbb{R})$.

Exercise 798

Find a diagonal matrix in $\mathcal{M}_{3 \times 3}(\mathbb{R})$ similar to the matrix $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$.

Exercise 799

Find a diagonal matrix in $\mathcal{M}_{3 \times 3}(\mathbb{R})$ similar to the matrix $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$.

Exercise 800

Is there a diagonal matrix in $\mathcal{M}_{3 \times 3}(\mathbb{R})$ similar to the matrix

$$
\left[\begin{array}{rrr}
8 & 3 & -3 \\
-6 & -1 & 3 \\
12 & 6 & -4
\end{array}\right] ?
$$

Exercise 801

Show that every matrix in the subspace of $\mathcal{M}_{2 \times 2}(\mathbb{R})$ generated by

$$
\left\{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\right\}
$$

is similar to a diagonal matrix.

Exercise 802

Determine if the matrices $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ and $\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ in $\mathcal{M}_{3 \times 3}(\mathrm{GF}(5))$ are similar.

Exercise 803

Is there a diagonal matrix in $\mathcal{M}_{3 \times 3}(\mathbb{R})$ similar to the matrix

$$
\left[\begin{array}{rrr}
1 & -1 & 1 \\
-2 & 1 & 2 \\
-2 & -1 & 4
\end{array}\right] ?
$$

Exercise 804

Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Find a nonsingular matrix $P \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ such that $P^{-1} A P$ is a diagonal matrix.

Exercise 805

Show that the matrix $A=\left[\begin{array}{cc}1 & i \\ i & -1\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{C})$ is not similar to a diagonal matrix.

Exercise 806
Are the matrices $\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 2 & 5 \\ 0 & 0 & 3\end{array}\right]$ and $\left[\begin{array}{rrr}2 & 0 & 0 \\ -1 & 4 & 0 \\ 0 & 3 & 7\end{array}\right]$ in $\mathcal{M}_{3 \times 3}(\mathbb{Q})$ similar?

Exercise 807
Let k and n be positive integers and let F be a field. Let $A \in \mathcal{M}_{k \times n}(F)$ and $B \in \mathcal{M}_{n \times k}(F)$. Is the matrix $\left[\begin{array}{cc}A B & O \\ B & O\end{array}\right]$ similar to the matrix $\left[\begin{array}{cc}O & O \\ B & B A\end{array}\right]$?

Exercise 808

Let F be a field and let $A=\left[\begin{array}{ccc}a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a\end{array}\right] \in \mathcal{M}_{3 \times 3}(F)$. For any $p(X) \in F[X]$,
show that $p(A)=\left[\begin{array}{ccc}p(a) & p^{\prime}(a) & \frac{1}{2} p^{\prime \prime}(a) \\ 0 & p(a) & p^{\prime}(a) \\ 0 & 0 & p(a)\end{array}\right]$, where $p^{\prime}(X)$ denotes the formal derivative of the polynomial $p(X)$ and $p^{\prime \prime}(X)$ is the formal derivative of $p^{\prime}(X)$.

Exercise 809

Find the characteristic and minimal polynomials of the matrix

$$
\left[\begin{array}{rrr}
7 & 4 & -4 \\
4 & -8 & -1 \\
-4 & -1 & -8
\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})
$$

Exercise 810

Let n be a positive integer. Let V be the vector space over \mathbb{R} consisting of all polynomial functions from \mathbb{R} to itself having degree at most n. Let α be the endomorphism of V which assigns to each $f \in V$ its derivative, and let A be a matrix representing α with respect to some basis of V. Find the minimal polynomial of A.

Exercise 811

Find six distinct matrices in $\mathcal{M}_{2 \times 2}(\mathbb{R})$ which annihilate the polynomial $X^{2}-1$.

Exercise 812

Let n be a positive integer and let c be an element of a field F. Find a matrix $A \in \mathcal{M}_{n \times n}(F)$ having minimal polynomial $(X-c)^{n}$.

Exercise 813

Use the Cayley-Hamilton Theorem to find the inverse of

$$
\left[\begin{array}{rrr}
5 & 1 & -1 \\
-6 & 0 & 2 \\
0 & 0 & 2
\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})
$$

Exercise 814

Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(F)$ be a matrix of rank h. Show that the degree of the minimal polynomial of A is at most $h+1$.

Exercise 815

Let n be a positive integer and let F be a field. Show that a matrix $A \in \mathcal{M}_{n \times n}(F)$ is nonsingular if and only if $m_{A}(0) \neq 0$.

Exercise 816
Find the eigenvalues of the matrix $\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{Q})$ and determine the algebraic multiplicity of each.

Exercise 817

Find the minimal polynomial of the matrix $\left[\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 3 & -3\end{array}\right]$ in $\mathcal{M}_{3 \times 3}(\mathbb{R})$.

Exercise 818

Let α and β be the endomorphisms of \mathbb{Q}^{4} represented with respect to the canonical basis by the matrices $\left[\begin{array}{rrrr}1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1\end{array}\right]$ and $\left[\begin{array}{rrrr}4 & -1 & -1 & 0 \\ -1 & 4 & 0 & -1 \\ 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 2\end{array}\right]$, respectively. Does there exist a basis of \mathbb{Q}^{4} with respect to which both of them can be represented by diagonal matrices?

Exercise 819

Let α be the endomorphisms of \mathbb{R}^{3} represented with respect to the canonical basis by the matrix $\left[\begin{array}{rrr}-6 & 2 & -5 \\ 4 & 4 & -2 \\ 10 & -3 & 8\end{array}\right]$. Calculate the algebraic and geometric multiplicities of each of the eigenvalues of α.

Exercise 820

Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{C})$ be a symmetric tridiagonal matrix having an eigenvalue c with algebraic multiplicity k. Show that $a_{i-1, i}=0$ for at least $k-1$ values of i.

Exercise 821

Let α be the endomorphisms of \mathbb{R}^{3} represented with respect to the canonical basis by the matrix $\left[\begin{array}{rrr}-8 & -13 & -14 \\ -6 & -5 & -8 \\ 14 & 17 & 21\end{array}\right]$. Does there exist a basis of \mathbb{R}^{3} with respect to which α can be represented by a diagonal matrix?

Exercise 822
Let $A=\left[\begin{array}{rrrr}17 & -8 & -12 & 14 \\ 46 & -22 & -35 & 41 \\ -2 & 1 & 4 & -4 \\ 4 & -2 & -2 & 3\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{Q})$. Find the minimal polynomial A.

Exercise 823
For each $t \in \mathbb{R}$, set $A(t)=\left[\begin{array}{cc}\cos ^{2}(t) & \cos (t) \sin (t) \\ \cos (t) \sin (t) & \sin ^{2}(t)\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. Show that all of these matrices have the same characteristic and minimal polynomials.

Exercise 824

Let $a, b, c \in \mathbb{C}$. Find a necessary and sufficient condition for the minimal polynomial of $\left[\begin{array}{lll}2 & 0 & 0 \\ a & 2 & 0 \\ b & c & 1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{C})$ to be equal to $(X-1)(X-2)$.

Exercise 825
Let $A=\left[\begin{array}{rrr}1 & a & 0 \\ a & a & 1 \\ a & a & -1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Find the set of all real numbers a for which the minimal and characteristic polynomials of A are equal.

Exercise 826

Let $F=\mathrm{GF}(5)$. For which values of $a, b \in F$ are the characteristic polynomial
and minimal polynomial of the 5×5 matrix $\left[\begin{array}{ccccc}a & b & 4 & 2 & 0 \\ b & b & b & 3 & 3 \\ 3 & 4 & 2 b & 1 & 3 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 3 b & 0\end{array}\right]$ equal? What
if $F=\mathrm{GF}(7)$?

Exercise 827

Let F be a field and let $O \neq A \in \mathcal{M}_{3 \times 3}(F)$ be a matrix satisfying $A^{k}=O$ for some positive integer k. Show that $A^{3}=O$.

Exercise 828

Let F be a field and let $A \in \mathcal{M}_{3 \times 3}(F)$ be a matrix which can be written in the form $B C$, where B and C are involutory matrices in $\mathcal{M}_{3 \times 3}(F)$. Show that A is nonsingular and similar to A^{-1}.

Exercise 829

Let $A \in \mathcal{M}_{n \times n}(F)$ be written in the form $A=P B$, where $P, B \in \mathcal{M}_{n \times n}(F)$ and P is nonsingular. Show that A is similar to $B P$.

Exercise 830

Let $A \in \mathcal{M}_{3 \times 3}(\mathbb{Q})$ be a matrix satisfying the condition that $A^{5}=I$. Show that $A=I$.

Exercise 831

Let n be a positive integer and let α be an endomorphism of $\mathcal{M}_{n \times n}(\mathbb{C})$, considered as a vector space over \mathbb{C}, which satisfies the condition that $\alpha(A)$ is nonsingular if and only if A is nonsingular. Show that α is an automorphism.

Exercise 832

Let F be a field and let n be a positive integer. Let $A \in \mathcal{M}_{n \times n}(F)$ be a matrix having characteristic polynomial $p(X)=X^{n}+\sum_{i=0}^{n-1} c_{i} X^{i}$. Show that, for each $k \geq n$, we have $A^{k}=\sum_{j=0}^{n-1} b_{j}(k) A^{j}$, where
(1) $b_{j}(n)=-c_{j}$ for all $0 \leq j \leq n-1$;
(2) $b_{-1}(k)=0$ for all $k \geq n$;
(3) $b_{j}(k+1)=b_{j-1}(k)-a_{j} b_{n-1}(k)$ for all $k \geq n$ and all $0 \leq j \leq n-1$.

Exercise 833

Show that there is no matrix $A \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ satisfying the condition that $A^{2}=\left[\begin{array}{rr}-1 & 0 \\ 0 & -c\end{array}\right]$, where $c \neq 1$.

Exercise 834

Let V be a vector space finitely generated over \mathbb{C} and let $\alpha \in \operatorname{End}(V)$ be diagonalizable. If W is a nontrivial subspace of V invariant under α, is the restriction of α to W necessarily diagonalizable?

Exercise 835

Let V be a vector space finitely generated over a field F and let $\alpha \in \operatorname{End}(V)$. Show that α is diagonalizable if and only if the sum of all of its eigenspaces equals V.

Exercise 836

Find all rational numbers a satisfying the condition the endomorphism of \mathbb{Q}^{3} represented with respect to some basis by the matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & a & 0 \\ 0 & 0 & 1\end{array}\right]$ is diagonalizable.

Exercise 837

Give an example of an endomorphism α of \mathbb{R}^{3} having nullity 2 which is not diagonalizable.

Exercise 838

Let n be a positive integer and let $B \in \mathcal{M}_{n \times n}(\mathbb{R})$ be a matrix all entries of which are positive. Let $r>\rho(B)$. Show that
(1) The matrix $A=r I-B$ is nonsingular;
(2) All nondiagonal entries of A are nonpositive;
(3) All entries of A^{-1} are nonnegative; and
(4) If $a+b i \in \mathbb{C}$ is an eigenvalue of A, then $a>0$.

Exercise 839

Let V be a vector space of finite odd dimension over \mathbb{R} and let $\alpha_{1}, \ldots, \alpha_{k}$ be distinct mutually-commuting endomorphisms of V, for some $k>1$. Show that these endomorphisms have a common eigenvector.

Exercise 840

Let $A \in \mathcal{M}_{3 \times 3}(\mathbb{Q})$ have characteristic polynomial $X^{3}-b X^{2}+c X-d$. For all $n \geq 3$, show that

$$
A^{n}=t_{n-1} A+t_{n-2} \operatorname{adj}(A)+\left(t_{n}-b t_{n-1}\right) I
$$

where $t_{n}=\sum_{2 i+3 j \leq n}(-1)^{i}\binom{i+j}{j}$.

Exercise 841
Show that the endomorphisms $\alpha:\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right] \mapsto\left[\begin{array}{l}2 b \\ 2 a \\ 2 d \\ 2 c\end{array}\right]$ and $\beta:\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right] \mapsto\left[\begin{array}{l}c \\ d \\ a \\ b\end{array}\right]$ of \mathbb{Q}^{4} are diagonalizable and commute. Find a basis of \mathbb{Q}^{4} relative to which both α and β are represented by diagonal matrices.

Exercise 842

Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ be a Markov matrix all entries of which are positive. If $c \in \mathbb{C}$ is an eigenvalue of A satisfying $|c|=1$, show that $c=1$.

Exercise 843

Let F be a finite field. Show that there exists a symmetric matrix in $\mathcal{M}_{2 \times 2}(F)$ having no eigenvalues.

Exercise 844

Does there exist a square matrix A over \mathbb{R} which is not idempotent but satisfies the condition that $\operatorname{spec}(A)=\{1\}$?

Exercise 845
Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{Q})$ be a matrix all entries of which are integers. Let k be an integer which is an eigenvalue of A. Show $|A|$ is and integer and that k divides $|A|$.

Exercise 846

Let V be a vector space of dimension 3 over a field F and let $\alpha \in \operatorname{End}(V)$ have nullity 2 . Show that the characteristic polynomial of α is of the form $X^{2}(X-c)$ for some $c \in F$.

Krylov Subspaces

Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$. If $0_{V} \neq v_{0} \in V$ then the subspace $F\left\{v_{0}, \alpha\left(v_{0}\right), \alpha^{2}\left(v_{0}\right), \ldots\right\}$ of V is called the Krylov subspace of V defined by α and v_{0}. The elements of this subspace are precisely those vectors in V of the form $p(\alpha)\left(v_{0}\right)$, where $p(X) \in F[X]$, and so it is natural to denote it by $F[\alpha] v_{0}$. It is clear that $F[\alpha] v_{0}$ is invariant under α.

Alexei Nikolaevich Krylov was a Russian applied mathematician who at the end of the nineteenth century developed many of the methods mentioned here in connection with the solution of differential equations.

Proposition 13.1 Let V be a vector space over a field F, let $\alpha \in \operatorname{End}(V)$, and let $0_{V} \neq v_{0} \in V$.
(1) $F[\alpha] v_{0}$ is the intersection of all subspaces of V containing v_{0} and invariant under α;
(2) v_{0} is an eigenvector of α if and only if $\operatorname{dim}\left(F[\alpha] v_{0}\right)=1$.

Proof (1) Since $F[\alpha] v_{0}$ contains v_{0} and invariant under α, it certainly contains the intersection of all such subspaces of V. Conversely, if W is a subspace of V which contains v_{0} and invariant under α, then $p(\alpha)\left(v_{0}\right) \in W$ for all $p(X) \in F[X]$ and so $F[\alpha] v_{0} \subseteq W$. Thus we have the desired equality.
(2) If v_{0} is an eigenvector of α associated with an eigenvalue c then for each $p(X)=\sum_{j=0}^{k} a_{j} X^{j} \in F[X]$ we have $p(\alpha)\left(v_{0}\right)=\sum_{j=0}^{k} a_{j} \alpha^{j}\left(v_{0}\right)=\sum_{j=0}^{k} a_{j} c^{j} v_{0}$ $\in F v_{0}$, proving that $F[\alpha] v_{0}=F v_{0}$ and so $\operatorname{dim}\left(F[\alpha] v_{0}\right)=1$. Conversely, assume
that $\operatorname{dim}\left(F[\alpha] v_{0}\right)=1$. Then $F[\alpha] v_{0}=F v_{0}$ since $F v_{0}$ is a one-dimensional subspace of $F[\alpha] v_{0}$. In particular, $\alpha\left(v_{0}\right) \in F v_{0}$ and so there exists a scalar c such that $\alpha\left(v_{0}\right)=c v_{0}$, which proves that v_{0} is an eigenvector of α.

Since the set $\left\{v_{0}, \alpha\left(v_{0}\right), \alpha^{2}\left(v_{0}\right), \ldots\right\}$ is a generating set for $F[\alpha] v_{0}$ over F, Proposition 13.1(2) suggests that $\operatorname{dim}\left(F[\alpha] v_{0}\right)$ can be used to measure how far v_{0} is from being an eigenvector of α.

As a first example of the use to which we can put Krylov subspaces, we will see how to use the minimal polynomial to solve systems of linear equations. Let V be a vector space over a field F and let V^{∞} be the space of all infinite sequences of elements of V. Every polynomial $p(X)=\sum_{j=0}^{k} a_{j} X^{j}$ $\in F[X]$ defines an endomorphism θ_{p} of V^{∞} by $\theta_{p}:\left[v_{0}, v_{1}, \ldots\right] \mapsto\left[\sum_{j=0}^{k} a_{j} v_{j}\right.$, $\left.\sum_{j=0}^{k} a_{j} v_{j+1}, \sum_{j=0}^{k} a_{j} v_{j+2}, \ldots\right]$. Note that if $p(X)=c$ is a polynomial of degree no greater than 0 , then $\theta_{p}=\sigma_{c}$. It is also easy to verify that $\theta_{p q}=\theta_{p} \theta_{q}=\theta_{q} \theta_{p}$ for all $p(X), q(X) \in F[X]$.

A sequence $y \in V^{\infty}$ is linearly recurrent if and only if there exists a polynomial $p(X) \in F[X]$ with $y \in \operatorname{ker}\left(\theta_{p}\right)$. In this case, we say that $p(X)$ is a characteristic polynomial of y. If $p(X) \in F[X]$ is a characteristic polynomial of $y \in V^{\infty}$ and if $q(X) \in F[X]$ is a characteristic polynomial of $z \in V^{\infty}$ then $\theta_{p q}(y+z)=\theta_{q} \theta_{p}(y)+$ $\theta_{p} \theta_{q}(z)=[0,0, \ldots]$ and so $p(X) q(X)$ is a characteristic polynomial of $y+z$. It is also clear that $p(X)$ is a characteristic polynomial of $c y$ for all $c \in F$. Thus we see that the set of all linearly recurrent sequences in V^{∞} is a subspace of V^{∞}, which we will denote by $\operatorname{LR}(V)$. If $y \in \operatorname{LR}(V)$, there is precisely one characteristic polynomial which is monic and of minimal degree. This polynomial will be called the minimal polynomial of y. The degree of the minimal polynomial of y is the order of recurrence of y.

Linearly recurrent sequences in \mathbb{R}^{∞} were considered by the seventeenth-century French-born mathematician Abraham de Moivre, who spent most of his life in exile in England and was one of the fathers of the theory of probability.

Example Let F be a field and let n be a positive integer. If $A \in \mathcal{M}_{n \times n}(F)$, a polynomial $p(X) \in F[X]$ is a characteristic (resp., minimal) polynomial of the sequence [I, A, A^{2}, \ldots] if and only if it is the characteristic (resp., minimal) polynomial of the matrix A.

Example Let $V=F=\mathbb{Q}$ and let $y=\left[a_{0}, a_{1}, \ldots\right] \in V^{\infty}$ be the sequence defined by $a_{0}=0, a_{1}=1$, and $a_{i+2}=a_{i+1}+a_{i}$ for all $i \geq 0$. This sequence is called
the Fibonacci sequence. Its minimal polynomial is $X^{2}-X-1$. The roots of this polynomial are $\frac{1}{2}(1 \pm \sqrt{5})$. The number $\frac{1}{2}(1+\sqrt{5})$ is called the golden ratio and artists consider rectangles the sides of which are related by the golden ratio to be of high aesthetic value. This ratio-which appears in ancient Egyptian and Babylonian texts-appears in nature and is basic in the analysis of certain patterns of growth in nature (such as the spirals of a snail shell or a sunflower), of Greek architecture, of Renaissance painting, and even such modern designs as the ratio of the dimensions of a credit card or of A4 paper. Notice that $X^{2}-X-1$ is also the characteristic polynomial of the matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$, and so the eigenvalues of this matrix are also precisely $\frac{1}{2}(1 \pm \sqrt{5})$. The eigenspace associated with $\frac{1}{2}(1+\sqrt{5})$ is $\mathbb{R}\left[\begin{array}{c}\frac{1}{2}(1+\sqrt{5}) \\ 1\end{array}\right]$ and the eigenspace associated with $\frac{1}{2}(1-\sqrt{5})$ is $\mathbb{R}\left[\begin{array}{c}\frac{1}{2}(1-\sqrt{5}) \\ 1\end{array}\right]$.

Leonardo Fibonacci was born in Italy in the twelfth century and educated in Tunis, bringing back the fruits of Arab mathematics to Europe. His book Liber Abaci, written in 1202, contained the first new mathematical research in Christian Europe in over 1000 years. In 1509, Fra Luca Pacioli, one of the most important Renaissance mathematicians, wrote a book, The Divine Proportion, illustrated by his friend Leonardo da Vinci, about the golden ratio.

We note that if $V=F$ and if $y \in \operatorname{LR}(F)$ is a sequence having order of recurrence at most n, then there exist algorithms, which are essentially extensions of the Euclidean algorithm, to calculate the coefficients of the minimal polynomial of y in an order of n^{2} arithmetic operations in F.

Now let V be a vector space of finite dimension n over a field F and let α be an automorphism of V having minimal polynomial $p(X) \in F[X]$. If $w \in V$ then the sequence $y=\left[w, \alpha(w), \alpha^{2}(w), \ldots\right]$ belongs to $\operatorname{ker}\left(\theta_{p}\right)$ and hence to $\operatorname{LR}(V)$. Therefore, this sequence has a minimal polynomial $q(X)=\sum_{j=0}^{d} c_{j} X^{j}$, which divides the polynomial $p(X)$ in $F[X]$. Since α is an automorphism, we can assume that $c_{0} \neq 0$ and so we see that if $u=-c_{0}^{-1} \sum_{j=1}^{d} c_{j} \alpha^{j-1}(w)$ then $\alpha(u)=w$ and so $u=\alpha^{-1}(w)$. In particular, if $V=F^{n}$ for some positive integer n and if α is represented by a matrix A with respect to the canonical basis, then $u=-c_{0}^{-1} \sum_{j=1}^{d} c_{j} A^{j-1} w$ is the unique solution of the system of linear equations $A X=w$. If we set $q^{*}(X)=-c_{0}^{-1} \sum_{j=1}^{d} c_{j} X^{j-1}$ then $u=q^{*}(A) w$, and this could be computed quickly were we to already know $q(X)$.

How does one calculate $q^{*}(X)$ in practice? One method used is basically probabilistic: we randomly choose a vector $u \in F^{n}$ and compute the minimal polynomial
$q_{u}(X)$ of $\left.y_{u}=\left[u \odot w, u \odot(A w), u \odot A^{2} w\right), \ldots\right] \in F^{\infty}$, something which can be done, as we have already observed, in an order of n^{2} arithmetic operations in F. After that, we check whether the minimal polynomial of y_{u} is also the minimal polynomial of y. In general, it will not be so, but it will divide the minimal polynomial of y and so after a reasonable number of such attempts we will, usually, have enough information on hand to reconstruct the minimal polynomial of y.

Example Let $F=\mathrm{GF}(5)$, let $A=\left[\begin{array}{lll}1 & 4 & 4 \\ 4 & 0 & 3 \\ 1 & 2 & 4\end{array}\right] \in \mathcal{M}_{3 \times 3}(F)$, and let $w=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right] \in$ F^{3}. The sequence $w, A w, A^{2} w, \ldots$ looks like

$$
\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
3 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
4 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \ldots .
$$

If we choose $u=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ we obtain the sequence $y_{u}=[3,0,4,2,3,0, \ldots]$ in F^{∞} and the minimal polynomial $q_{u}(X)$ of this sequence equals $X^{2}+2 X+2$. Since $q_{u}(A) w=\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right]$, we see that this polynomial is not the minimal polynomial of y. We will try again with $u=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$. For this choice, we get $y_{u}=[0,1,2,2,3,2, \ldots]$ and this has minimal polynomial $X^{3}+3 X+1$. Since the minimal polynomial of y has to be a multiple of this polynomial, and has to be of degree 3 , it must equal $X^{3}+$ $3 X+1$ and, indeed, $q_{u}(A) w=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. Therefore, $q^{*}(X)=X^{2}+3$ and $q^{*}(A) w=$ $q_{u}(A) w=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$.

Now let us return to an important problem which was considered in the previous chapter. Let V be a vector space finitely generated over a field F. Given an endomorphism $\alpha \in \operatorname{End}(V)$, how can we find a basis of V relative to which α is represented by a matrix which is as nice as possible? We have already found out when α is diagonalizable. But what if α is not diagonalizable? Given a vector $0_{V} \neq w \in V$, there exists a positive integer k such that the set $\left\{w, \alpha(w), \ldots, \alpha^{k-1}(w)\right\}$ is linearly independent but the set $\left\{w, \alpha(w), \ldots, \alpha^{k}(w)\right\}$ is linearly dependent. Then $\left\{w, \alpha(w), \ldots, \alpha^{k-1}(w)\right\}$ is a basis for the Krylov subspace $F[\alpha] w$ of V, which is called the canonical basis of this subspace. The restriction of α to $F[\alpha] w$ is
represented by a matrix of the form $\left[\begin{array}{cccccc}0 & 0 & \ldots & 0 & 0 & c_{1} \\ 1 & 0 & \ldots & 0 & 0 & c_{2} \\ 0 & 1 & \ldots & 0 & 0 & c_{3} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & 0 & c_{k-1} \\ 0 & 0 & \ldots & 0 & 1 & c_{k}\end{array}\right]$ with respect to the canonical basis, where the scalars c_{1}, \ldots, c_{k} satisfy $\alpha^{k}(w)=\sum_{i=1}^{k} c_{i} \alpha^{i-1}(w)$. This, of course, is just the companion matrix of the polynomial $X^{k}-\sum_{i=1}^{k} c_{i} X^{i-1}$.

Krylov subspaces are also the basis for a family of non-stationary iterative algorithms, known as Krylov algorithms, used for approximating solutions to systems of equations of the form $A X=w$, where $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ or $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. Similarly, Krylov subspaces are a basis for a family of non-stationary iterative algorithms, known as Lanczos algorithms, used for approximating eigenvalues of sufficientlynice (e.g., symmetric) matrices. Such algorithms work even under the assumption that we don't even have direct access to the entries of A but do have a "black box" ability to compute $A v$ or $A^{T} v$ for any given vector $v \in \mathbb{R}^{n}$. Of course, they do not work for all matrices, but when they work they tend to be fairly efficient and rapid, and are especially good for large sparse matrices. Moreover, they are also amenable to implementation on parallel computers. Parallel Lanczos algorithms have also been developed for solving generalized eigenvalue problems, if the matrices involved are symmetric, Lanczos algorithms can be adapted to work for matrices over finite fields. However, in this case there are also other algorithms available. In particular, one should mention the Wiedemann algorithm to solve systems of linear equations of the form $A X=w$, where A is a large nonsingular matrix over a finite field. Such problems arise in the computation of discrete logarithms and in other modes of attack on various encryption methods for transmission of data over the internet. They have also been used to factor large integers. The Wiedemann algorithm,

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Hestenes, Stiefel); With kind permission of Andrew Odlyzko (Odlyzko).
Hungarian-born applied mathematician Cornelius Lanczos developed many important numerical methods for computers in the period after World War II, while working at the US National Bureau of Standards and, later, at the University of Dublin in Ireland. Other major researchers of Krylov algorithms were the American numerical analyst Magnus Hestenes and the Swiss numerical analyst Eduard Stiefel. A major innovator in the use of Wiedemann and similar algorithms over finite fields has been the contemporary American mathematician Andrew Odlyzko.
which is based on computing the minimal polynomial of a certain linearly-recurrent sequence, works especially well for sparse matrices, and is amenable to parallel computation.

A nonzero element a of an associative algebra (K, \bullet) is nilpotent if and only if there exists a positive integer k satisfying $a^{k}=0_{K}$. The smallest such integer k, if one exists, is called the index of nilpotence of a. In particular, if V is a vector space over a field F, then $\alpha \in \operatorname{End}(V)$ is nilpotent if and only if there exists a positive integer k satisfying $\alpha^{k}=\sigma_{0}$.

Example Let F be a field and let α be the endomorphism of F^{3} defined by $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{l}0 \\ a \\ b\end{array}\right]$. Then α is a nilpotent endomorphism, having index of nilpotence 3. The endomorphism β of F^{3} defined by $\beta:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{c}-a+2 b+c \\ 0 \\ -a+2 b+c\end{array}\right]$ is a nilpotent endomorphism, having index of nilpotence 2 .

Example Let F be a field and let α and β be the endomorphisms of F^{2} defined by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{l}b \\ 0\end{array}\right]$ and $\beta:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{l}0 \\ a\end{array}\right]$. Both endomorphisms are nilpotent, but $\alpha+\beta$ is clearly not nilpotent.

If α is a nilpotent endomorphism of a vector space V and $w \in V \backslash \operatorname{ker}(\alpha)$ then the restriction of α to $F[\alpha] w$ is represented with respect to the canonical basis of $F[\alpha] w$ by a matrix of the form

$$
\left[\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & 0 \\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right] .
$$

Proposition 13.2 Let V be a vector space over a field F and let α be a nilpotent endomorphism of V having index of nilpotence k. Then there exists a vector $w \in V$ satisfying the condition that $\operatorname{dim}(F[\alpha] w)=k$.

Proof We know that $\alpha^{k}=\sigma_{0}$ but not that there exists a vector $0_{V} \neq w \in V$ such that $\alpha^{k-1}(w) \neq 0_{V}$. We will have proven the theorem should we are able to show that the set $\left\{w, \alpha(w), \ldots, \alpha^{k-1}(w)\right\}$ is linearly independent. And, indeed, assume that we have scalars $a_{0}, \ldots, a_{k-1} \in F$ satisfying $\sum_{i=0}^{k-1} a_{i} \alpha^{i}(w)=0_{V}$. Let t be the smallest index such that $a_{t} \neq 0$. Then if we apply the endomorphism α^{k-t-1} to
$\sum_{i=0}^{k-1} a_{i} \alpha^{i}(w)$ we get $0_{V}=a_{t} \alpha^{k-1}(w)+a_{t+1} \alpha^{k}(w)+\cdots+a_{k-2} \alpha^{2 k-t-2}(w)$ and so $a_{t}=0$, which is a contradiction. Therefore, we conclude that $a_{i}=0$ for all i, and so the set is linearly independent, as required.

In particular, we see that if V is a vector space of finite dimension over a field F and if α is a nilpotent endomorphism of V, then the index of nilpotence of α is no greater than $\operatorname{dim}(V)$.

Proposition 13.3 Let V be a vector space finitely generated over a field F and let α be a nilpotent endomorphism of V having index of nilpotence k. If $w \in V$ satisfies the condition that $\operatorname{dim}(F[\alpha] w)=k$ then the subspace $F[\alpha] w$ of V has a complement in V which is invariant under α.

Proof We will proceed by induction on k. If $k=1$ then $\alpha=\sigma_{0}$ and so $F[\alpha] w=$ $F w$. Then there is a subset B of $V \backslash\{F w\}$ such that $B \cup\{w\}$ is a basis for V, and B is a basis for a complement of $F w$ in V. Assume that $k>1$ and that the result has been established for any vector space finitely generated over F and any nilpotent endomorphism of that space having index of nilpotence less than k.

We know that $\operatorname{im}(\alpha)$ is invariant under α and that the restriction of α to $\operatorname{im}(\alpha)$ is nilpotent, having index of nilpotence $k-1$. We know that the set $\left\{w, \alpha(w), \ldots, \alpha^{k-1}(w)\right\}$ forms a basis for $F[\alpha] w$ and so the set $\{\alpha(w), \ldots$, $\left.\alpha^{k-1}(w)\right\}$ forms a basis for the image U of $F[\alpha] w$ under α. Therefore, $U=$ $F[\alpha] \alpha(w)$ is a subspace of $\operatorname{im}(\alpha)$ and, by the induction hypothesis, it has a complement W_{2} in im (α) invariant under α.

Let $W_{0}=\left\{v \in V \mid \alpha(v) \in W_{2}\right\}$. This is a subspace of V containing W_{2}, since W_{2} is invariant under α. But $\alpha(v) \in W_{2} \subseteq W_{0}$ for all $v \in W_{0}$ and so W_{0} is also invariant under α. Our first assertion is that $V=F[\alpha] w+W_{0}$. And, indeed, if $x \in V$ then $\alpha(x) \in \operatorname{im}(\alpha)=U \oplus W_{2}$ and so $\alpha(x)=u+w_{2}$, where $u \in U$ and $w_{2} \in W_{2}$. But $u=\alpha(y)$ for some $y \in F[\alpha] w$ and $x=y+(x-y)$. The first summand belongs to $F[\alpha] w$, whereas, as to the second, we have $\alpha(x-y)=\alpha(x)-\alpha(y)=\alpha(x)-u=$ $w_{2} \in W_{2}$ and so $x-y \in W_{0}$, proving the assertion.

Our second assertion is that $F[\alpha] w \cap W_{0} \subseteq U$. Indeed, if $x \in F[\alpha] w \cap W_{0}$ then $\alpha(x) \in U \cap W_{2}=\left\{0_{V}\right\}$ and so $x \in \operatorname{ker}(\alpha)$. Since $x \in F[\alpha] w$, we know that there exist scalars a_{0}, \ldots, a_{k-1} such that $x=\sum_{i=0}^{k-1} a_{i} \alpha^{i}(w)$ and hence $0_{V}=$ $\alpha(x)=\sum_{i=0}^{k-2} a_{i} \alpha^{i+1}(w)$, which implies that $a_{0}=\cdots=a_{k-2}=0$. Therefore, $x=$ $a_{k-1} \alpha^{k-1}(w) \in U$, proving the second assertion.

In particular, from what we have seen. we deduce that the subspaces W_{2} and $F[\alpha] w \cap W_{0}$ are disjoint. Therefore, $W_{2} \oplus\left(F[\alpha] w \cap W_{0}\right)$ is a subspace of W_{0}. This subspace has a complement W_{1} in W_{0}. Thus we have $W_{0}=W_{1} \oplus W_{2} \oplus$ $\left(F[\alpha] w \cap W_{0}\right)$.

Our third assertion is that $W=W_{1} \oplus W_{2}$ is a complement of $F[\alpha] w$ in V which is invariant under α, and should we prove this, we will have proven the proposition. Indeed, we immediately note that $\alpha(W) \subseteq \alpha\left(W_{0}\right) \subseteq W_{2} \subseteq W$ and so W is surely
invariant under α. Moreover, $F[\alpha] w \cap W=\left\{0_{V}\right\}$ since this subspace is contained in the intersection of W and $F[\alpha] w \cap W_{0}$, which, by the choice of W, equals $\left\{0_{V}\right\}$. Finally,

$$
\begin{aligned}
V & =F[\alpha] w+W_{0}=F[\alpha] w+\left[W_{1}+W_{2}+\left(F[\alpha] w \cap W_{0}\right)\right] \\
& =F[\alpha] w+W_{1}+W_{2}=F[\alpha] w+W,
\end{aligned}
$$

and so $V=F[\alpha] w \oplus W$.

Proposition 13.4 (Rational Decomposition Theorem) Let V be a vector space of finite dimension n over a field F let α be a nilpotent endomorphism of V having index of nilpotence k. Then there exist natural numbers $k=k_{1} \geq$ $\cdots \geq k_{t}$ satisfying $k_{1}+\cdots+k_{t}=n$, and there exist vectors v_{1}, \ldots, v_{t} in V such that $\left\{v_{1}, \alpha\left(v_{1}\right), \ldots, \alpha^{k_{1}-1}\left(v_{1}\right), v_{2}, \alpha\left(v_{2}\right), \ldots, \alpha^{k_{2}-1}\left(v_{2}\right), \ldots, v_{t}, \alpha\left(v_{t}\right)\right.$, $\left.\ldots, \alpha^{k_{t}-1}\left(v_{t}\right)\right\}$ forms a basis for V. The matrix which represents α with re-
spect to this basis is of the form $\left[\begin{array}{cccc}A_{1} & O & \ldots & O \\ O & A_{2} & \ldots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \ldots & A_{t}\end{array}\right]$, where each A_{i} is of the form $\left[\begin{array}{ccccc}0 & 0 & \ldots & 0 & 0 \\ 1 & 0 & \ldots & 0 & 0 \\ 0 & 1 & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & 0\end{array}\right]$ in $\mathcal{M}_{k_{i} \times k_{i}}(F)$.

Proof Choose $k_{1}=k$ and choose $v_{1} \notin \operatorname{ker}\left(\alpha^{k_{1}-1}\right)$. Then $U_{1}=F[\alpha] v_{1}$ has a basis $\left\{v_{1}, \alpha\left(v_{1}\right), \ldots, \alpha^{k_{1}-1}\left(v_{1}\right)\right\}$. It is invariant under α and of dimension k_{1}. By Proposition 13.3, $V=U_{1} \oplus W_{1}$, where W_{1} is a subspace of V invariant under α. The restriction of α to W_{1} is a nilpotent endomorphism of W_{1} with index of nilpotence $k_{2} \leq k_{1}$. We now repeat the above procedure for W_{1}. Pick $v_{2} \in W_{1} \backslash \operatorname{ker}\left(\alpha^{k_{2}-1}\right)$. Then $U_{2}=F[\alpha] v_{2}$ of W_{1} has a basis $\left\{v_{2}, \alpha\left(v_{2}\right), \ldots, \alpha^{k_{2}-1}\left(v_{2}\right)\right\}$. It is invariant under α and of dimension k_{2}. Moreover, we can write $W_{1}=U_{2} \oplus W_{2}$, where W_{2} is invariant under α. Continuing in this manner, we end up with a decomposition $V=U_{1} \oplus \cdots \oplus U_{t}$, where each U_{i} is a subspace of V invariant under α having a basis of the form $\left\{v_{i}, \alpha\left(v_{i}\right), \ldots, \alpha^{k_{i}-1}\left(v_{i}\right)\right\}$ as above. This proves the first contention of the proposition. The second one follows since $U_{i}=F[\alpha] v_{i}$ for all i, which leads to a matrix of the desired form.

A matrix of the form given in Proposition 13.4 is called a representation of the nilpotent endomorphism α in Jordan canonical form. Let V be a vector space over a field F and let α be an endomorphism of V having an eigenvalue c. A vector $0_{V} \neq v \in V$ is a generalized eigenvector of α associated with c of degree $k>0$ if and only if v is in $\operatorname{ker}\left(\left(\alpha-c \sigma_{1}\right)^{k}\right) \backslash \operatorname{ker}\left(\left(\alpha-c \sigma_{1}\right)^{k-1}\right)$. Thus, in particular, the
eigenvectors of α associated with c, in the previous sense, are just the generalized eigenvectors of α of degree 1 associated with c.

The nineteenth-century French mathematician Camille Jordan made major contributions to linear algebra, group theory, the theory of finite fields, and the beginnings of topology.

Example Let α be the endomorphism of \mathbb{R}^{4} represented with respect to the canonical basis by the matrix $\left[\begin{array}{rrrr}2 & -2 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{array}\right]$. This endomorphism has an eigenvector $\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right]$ associated with the eigenvalue 1 and an eigenvector $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$ associated with the eigenvalue 2. It also has a generalized eigenvector $\left[\begin{array}{r}0 \\ -1 \\ -1 \\ 0\end{array}\right]$ of degree 2 associated with the eigenvalue 2 and a generalized eigenvector $\left[\begin{array}{r}0 \\ -1 \\ -1 \\ -1\end{array}\right]$ of degree 3 associated with the eigenvalue 2 .

We now prove a generalization of Proposition 12.1.

Proposition 13.5 Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$ have an eigenvalue c. Then the set of all generalized eigenvectors of α (of all degrees) associated with c, together with 0_{V}, forms a subspace of V which is invariant under any endomorphism of V which commutes with α.

Proof Let $a \in F$ and let $v, w \in V$ be generalized eigenvectors of α associated with c, of degrees k and h, respectively. Then both v and w belong to $\operatorname{ker}(\alpha-$ $\left.c \sigma_{1}\right)^{h+k}$ and hence the same is true for $v+w$ and $a v$. This means that there exist positive integers $s, t \leq h+k$ such that $v+w \in \operatorname{ker}\left(\left(\alpha-c \sigma_{1}\right)^{s}\right) \backslash \operatorname{ker}\left(\left(\alpha-c \sigma_{1}\right)^{s-1}\right)$ and $a v \in \operatorname{ker}\left(\left(\alpha-c \sigma_{1}\right)^{t}\right) \backslash \operatorname{ker}\left(\left(\alpha-c \sigma_{1}\right)^{t-1}\right)$, proving that we have a subspace.

If β is an endomorphism of V which commutes with α and if v is a generalized eigenvector of α associated with c such that $v \in \operatorname{ker}\left(\left(\alpha-c \sigma_{1}\right)^{k}\right)$, then $\left(\alpha-c \sigma_{1}\right)^{k} \beta(v)=\beta\left(\alpha-c \sigma_{1}\right)^{k}(v)=0_{V}$ so $\beta(v)$ is also a generalized eigenvector of α associated with c, proving invariance.

Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$ have an eigenvalue c. The subspace of V defined in Proposition 13.5 is called the generalized eigenspace of α associated with c.

Proposition 13.6 Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$ have an eigenvalue c. Let v be a generalized eigenvector of degree k associated with c. Then the set of vectors $\left\{v,\left(\alpha-c \sigma_{1}\right)(v), \ldots,\left(\alpha-c \sigma_{1}\right)^{k-1}(v)\right\}$ is linearly independent.

Proof Set $\beta=\alpha-c \sigma_{1}$ and, for each $1 \leq j \leq k$, let $v_{j}=\beta^{k-j}(v)$. Assume that there exist scalars $c_{1}, \ldots, c_{k} \in F$ satisfying $\sum_{j=1}^{k} c_{j} v_{j}=0_{V}$. Then $0_{V}=$ $\beta^{k-1}\left(\sum_{j=1}^{k} c_{j} v_{j}\right)=\beta^{k-1}\left(c_{k} v_{k}\right)=c_{k} \beta^{k-1}\left(v_{k}\right)$ and so, since $\beta^{k-1}\left(v_{k}\right) \neq 0_{V}$, we conclude that $c_{k}=0$. We work backwards in this manner to see that $c_{j}=0$ for all $1 \leq j \leq k$, and so the given set is linearly independent.

In particular, let V be a vector space of finite dimension n over a field F and let $\alpha \in \operatorname{End}(V)$. If v is a generalized eigenvector of α of degree k associated to an eigenvalue c of α, then we must have $k \leq n$. Thus we see that $\operatorname{dim}(V)$ is an upper bound to the degree of generalized eigenvalue of α and we see that the generalized eigenspace of α associated to an eigenvalue c is just $\operatorname{ker}\left(\left(\alpha-c \sigma_{1}\right)^{n}\right)$.

Proposition 13.7 Let V be a vector space of finite dimensionn over a field F and let $\alpha \in \operatorname{End}(V)$ satisfy the condition that the characteristic polynomial $p(X)$ of α is completely reducible, say $p(X)=\prod_{j=1}^{m}\left(X-c_{j}\right)^{n_{j}}$, where $\operatorname{spec}(\alpha)=\left\{c_{1}, \ldots, c_{m}\right\}$. Then there exist subspaces U_{1}, \ldots, U_{m} of V, each of which invariant under α, such that:
(1) $V=U_{1} \oplus \cdots \oplus U_{m}$;
(2) $\operatorname{dim}\left(U_{h}\right)=n_{h}$ for each $1 \leq h \leq m$;
(3) For each $1 \leq h \leq m$, the restriction of α to U_{h} is of the form $c_{h} \tau_{h}+\beta_{h}$, where $\beta_{h} \in \operatorname{End}\left(U_{h}\right)$ is nilpotent and τ_{h} is the restriction of σ_{1} to U_{h}.

Proof For each $1 \leq h \leq m$, consider the endomorphism $\beta_{h}=\alpha-c_{h} \sigma_{1}$ of V, and let U_{h} be the generalized eigenspace of α associated with c_{h}. Then U_{h} is a subspace of V invariant under β_{h} and also invariant under α since for all $v \in U_{h}$ we have $\beta_{h}^{n} \alpha(v)=\alpha \beta_{h}^{n}(v)=\alpha\left(0_{V}\right)=0_{V}$. We claim that there exists a positive integer k, independent of h, such that all elements of U_{h} are generalized eigenvectors of α of
degree at most k. Indeed, we see that $\operatorname{ker}\left(\beta_{h}\right) \subseteq \operatorname{ker}\left(\beta_{h}^{2}\right) \subseteq \operatorname{ker}\left(\beta_{h}^{3}\right) \subseteq \cdots$ and since V is finitely-generated, there are at most a finite number of proper containments. Thus there exists a k such that $\operatorname{ker}\left(\beta_{h}^{k}\right)=\operatorname{ker}\left(\beta_{h}^{k+1}\right)=\cdots$. From here it is clear that $\operatorname{ker}\left(\beta_{h}^{k}\right)=U_{h}$, proving the claim.

In particular, this claim shows that the restriction of β_{h} to U_{h} is a nilpotent endomorphism having index of nilpotence k. More than that, the restriction of α to U_{h} equals $c_{h} \tau_{h}+\beta_{h}$, proving (3). We now notice that if $t \neq h$ then U_{t} is invariant under β_{h}. We claim that the restriction of β_{h} to U_{t} is an automorphism. Since U_{t} is finitedimensional, it is sufficient to prove that it is a monomorphism. Indeed, suppose that $v \in U_{t} \cap \operatorname{ker}\left(\beta_{h}\right)$. Then there exists a positive integer k such that $\beta_{t}^{k}(v)=0_{V}$ and so $0_{V}=\beta_{t}^{k}(v)=\left[\beta_{h}+\left(c_{h}-c_{t}\right)\right]^{k}(v)=\left(c_{h}-c_{t}\right)^{k}(v)$ and, since $c_{h}-c_{t} \neq 0$, we must have $v=0_{V}$, proving the claim.

The next step is to show that the collection $\left\{U_{1}, \ldots, U_{m}\right\}$ of subspaces of V is independent. Indeed, let $1 \leq h \leq m$ and let $Y=U_{h} \cap \sum_{j \neq h} U_{j}$. Then Y is a subspace of V invariant under β_{h} on which β_{h} is monic (since $Y \subseteq \sum_{j \neq h} U_{j}$) and nilpotent (since $Y \subseteq U_{h}$), which is possible only if $Y=\left\{0_{V}\right\}$. This proves independence, and we will set $U=U_{1} \oplus \cdots \oplus U_{m}$. We want to show that $U=V$. Let $v \in U$. By the Cayley-Hamilton Theorem (Proposition 12.16), we see that α annihilates its characteristic polynomial $p(X)$ and so $\left[\prod_{i=1}^{m} \beta_{i}^{n_{i}}\right](v)=0_{V} \in U$. Suppose that $\beta_{t}^{n_{1}}(v) \in U$, say that it is equal to $\sum_{i=1}^{m} u_{i}$, where $u_{h} \in U_{h}$ for all $1 \leq h \leq m$. Since $\beta_{t}^{n_{1}}$ is epic when restricted to U_{h}, for each $h \neq 1$, we can find an elements w_{h} of U_{h} for each $1<h \leq m$, such that $u_{h}=\beta_{t}^{n_{1}}\left(w_{h}\right)$ for all such h. Therefore, $\beta_{t}^{n_{1}}\left(u-\sum_{h=2}^{m} w_{h}\right)=u_{1} \in U_{1}$. By definition of U_{1}, it follows that $w_{1}=u-\sum_{h=2}^{m} w_{h} \in U_{1}$. Therefore, $v=\sum_{h=1}^{m} w_{h} \in U$. If, on the other hand, $\beta_{t}^{n_{1}}(v) \notin U$, then let t be the smallest element of $\{2, \ldots, m\}$ satisfying the condition that $\left[\prod_{i=1}^{t} \beta_{i}^{n_{i}}\right](v) \in U$ and $\left[\prod_{i=1}^{t-1} \beta_{i}^{n_{i}}\right](v) \notin U$. A similar argument to the preceding then shows that we must have $v \in U$.

We are left to show that $\operatorname{dim}\left(U_{h}\right)=n_{h}$ for all $1 \leq h \leq m$. Pick a basis for V which is a union of bases of the U_{h}. With respect to this basis, the endomorphism
α is represented by a matrix of the form $\left[\begin{array}{cccc}O & A_{2} & \ldots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \ldots & A_{m}\end{array}\right]$, where each A_{h}
is a matrix representing the restriction of α to U_{h}. By Proposition 11.12, the characteristic polynomial of α is therefore of the form $|X I-A|=\prod_{h=1}^{m}\left|X I-A_{h}\right|$. From this decomposition and from the fact that each β_{h} restricts to an automorphism of U_{t} for all $t \neq h$, it follows that the only eigenvalue of the restriction of α to U_{h} is c_{h}, and the algebraic multiplicity of this eigenvalue is at most n_{h}. Since $\sum_{h=1}^{m} \operatorname{dim}\left(U_{h}\right)=\sum_{h=1}^{m} n_{h}$, it then follows that $\operatorname{dim}\left(U_{h}\right)=n_{h}$ for each h.

Proposition 13.7 shows that when conditions are right-for example, when the field F is algebraically closed-and when we are given an endomorphism α of a finite-dimensional vector space V, it is possible to choose a basis for V relative to which α is represented in a particularly simple form. We do this in two steps.
(I) Write V as a direct sum $U_{1} \oplus \cdots \oplus U_{m}$ as above. By choosing a basis for V which is a union of bases of the U_{h}, we get a matrix representing α composed of blocks strung out along the main diagonal, each representing the restriction of α to one of the subspaces U_{h}.
(II) For each h, we have $\alpha=c_{h} \tau_{h}+\beta_{h}$, where β_{h} is a nilpotent endomorphism of U_{h}. We now choose a basis of U_{h} relative to which β_{h} is represented in Jordan canonical form.

Thus, in the end, we have a representation of α by a matrix of the form
$\left[\begin{array}{cccc}A_{1} & O & \ldots & O \\ O & A_{2} & \ldots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \ldots & A_{m}\end{array}\right]$, where each block A_{h} is a matrix with blocks of the form
$\left[\begin{array}{ccccc}c_{h} & 0 & 0 & \ldots & 0 \\ 1 & c_{h} & 0 & \ldots & 0 \\ 0 & 1 & c_{h} & \ldots & 0 \\ & & \ddots & \ddots & \\ 0 & 0 & \ldots & 1 & c_{h}\end{array}\right]$ on its diagonal (these may be $1 \times 1!$) and all other en-
tries equal to 0 . A matrix of this form is called the Jordan canonical form of α. By Proposition 13.7, we see that if V is a vector space finitely generated over a field F and if α is an endomorphism of V having a completely reducible characteristic polynomial in $F[X]$, then there is a basis of V relative to which α can be represented by a matrix in Jordan canonical form. Thus, this can always be done if the field F is algebraically closed. If F is not algebraically closed then it is always possible to extend the field F to a larger field K such that the characteristic polynomial of α is completely reducible in $K[X]$.

Example Consider $\alpha \in \operatorname{End}\left(\mathbb{R}^{4}\right)$ represented with respect to the canonical basis by $A=\left[\begin{array}{rrrr}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 4 & -6 & 4\end{array}\right]$. The characteristic polynomial of A is $X^{4}-4 X^{3}+$ $6 X^{2}-4 X+1=(X-1)^{4}$ and so its only eigenvalue is 1 . Then A is similar to $B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
$P=\left[\begin{array}{rrrr}-1 & 3 & -3 & 1 \\ 1 & -2 & 1 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$.

Example Consider $\alpha \in \operatorname{End}\left(\mathbb{R}^{5}\right)$ represented with respect to the canonical basis by $A=\left[\begin{array}{rrrrr}3 & 0 & 0 & 0 & 0 \\ 0 & 4 & 2 & -1 & 4 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 3 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2\end{array}\right]$. The characteristic polynomial of A is $(X-3)^{3}$.
$(X-2)^{2}$ and A is similar to $B=\left[\begin{array}{lllll}2 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 3\end{array}\right]$ in Jordan canonical form. Indeed,
$B=P A P^{-1}$, where $P=\left[\begin{array}{rrrrr}0 & 0 & -3 & 0 & -4 \\ 0 & 1 & -1 & -1 & 3 \\ 2 & 1 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & 0\end{array}\right]$.
Example Consider $\alpha \in \operatorname{End}\left(\mathbb{C}^{4}\right)$ which is represented with respect to the canonical basis by $A=\left[\begin{array}{rrrr}0 & 0 & 2 i & 0 \\ 1 & 0 & 0 & 2 i \\ -2 i & 0 & 0 & 0 \\ 0 & -2 i & 1 & 0\end{array}\right]$. The characteristic polynomial of A
is $(X-2)^{2}(X+2)^{2}$ and A is similar to $B=\left[\begin{array}{rrrr}-2 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 2\end{array}\right]$. Indeed, $B=P A P^{-1}$, where $P=\frac{1}{2}\left[\begin{array}{rrrr}1 & 0 & -i & 0 \\ 0 & 1 & 0 & -i \\ 1 & 0 & i & 0 \\ 0 & 1 & 0 & i\end{array}\right]$.

We now use Jordan canonical forms to prove a result interesting in its own right.

Proposition 13.8 Let n be a positive integer and let $A \in M_{n \times n}(F)$, where F is an algebraically-closed field. Then A can be written as a product of two symmetric matrices.

Proof By Proposition 13.7, we know that A is similar to a matrix B in Jordan canonical form. In other words, there exists a nonsingular matrix $Q \in \mathcal{M}_{n \times n}(F)$ satisfying $A=Q B Q^{-1}$. If we can write $B=C D$, where both C and D are symmetric, then $A=Q B D Q^{-1}=\left(Q C Q^{T}\right)\left(\left(Q^{T}\right)^{-1} D Q^{-1}\right)=\left(Q C Q^{T}\right)\left(\left(Q^{-1}\right)^{T} D Q^{-1}\right)$, where both $Q C Q^{T}$ and $\left(Q^{-1}\right)^{T} D Q^{-1}$ are symmetric. Therefore, without loss of
generality, we can assume that A is in Jordan canonical form, say

$$
A=\left[\begin{array}{cccc}
A_{1} & O & \ldots & O \\
O & A_{2} & \ldots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \ldots & A_{m}
\end{array}\right]
$$

where each block A_{h} is of the form

$$
\left[\begin{array}{ccccc}
a_{h} & 0 & 0 & \ldots & 0 \\
1 & a_{h} & 0 & \ldots & 0 \\
0 & 1 & a_{h} & \ldots & 0 \\
& & \ddots & \ddots & \\
0 & 0 & \ldots & 1 & a_{h}
\end{array}\right] \in \mathcal{M}_{n_{h} \times n_{h}}(F) .
$$

Define the matrix $D_{h} \in \mathcal{M}_{n_{h} \times n_{h}}(F)$ to be $\left[d_{i j}\right]$, where

$$
d_{i j}= \begin{cases}1 & \text { if } i+j=n_{h}+1, \\ 0 & \text { otherwise } .\end{cases}
$$

Then D_{h} is a symmetric matrix satisfying $D_{h}^{-1}=D_{h}$. Moreover, the matrix

$$
D=\left[\begin{array}{cccc}
D_{1} & O & \ldots & O \\
O & D_{2} & \ldots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \ldots & D_{m}
\end{array}\right] \in \mathcal{M}_{n \times n}(F)
$$

is also symmetric and satisfies $D^{-1}=D$. Furthermore, the matrix

$$
C=\left[\begin{array}{cccc}
A_{1} D_{1} & O & \ldots & O \\
O & A_{2} D_{2} & \ldots & O \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \ldots & A_{m} D_{m}
\end{array}\right] \in \mathcal{M}_{n \times n}(F)
$$

is also symmetric and $A=C D$, as required.

Another interesting result is the following.

Proposition 13.9 If $A \in \mathcal{M}_{n \times n}(F)$, where F is an algebraically-closed field, then A is similar to its transpose.

Proof Since F is algebraically closed, we know that A is similar to a matrix B in Jordan canonical form, and to show that B is similar to its transpose it suffices to
show that each Jordan block is similar to its transpose. This is surely true of blocks
of size 1×1. If $C=\left[\begin{array}{ccccc}c & 0 & 0 & \ldots & 0 \\ 1 & c & 0 & \ldots & 0 \\ 0 & 1 & c & \ldots & 0 \\ & & \ddots & \ddots & \\ 0 & 0 & \ldots & 1 & c\end{array}\right]$ is a Jordan block of size $h \times h$ for
$h>1$, then we note that $P C P=C^{T}$, where $P=\left[p_{i j}\right]$ is the involutory matrix defined by the condition that

$$
p_{i j}= \begin{cases}1 & \text { if } i+j=n+1, \\ 0 & \text { otherwise }\end{cases}
$$

thus proving the result.
Contemporary American mathematician Richard Brualdi and Chinese mathematicians Pei Pei and Xingzhi Zhan have shown that the Jordan canonical form of a matrix in $\mathcal{M}_{n \times n}(\mathbb{C})$ is the best one can get in terms of sparseness, namely they proved that among all the matrices that are similar to a given matrix in $\mathcal{M}_{n \times n}(\mathbb{C})$, the Jordan canonical form has the greatest number of off-diagonal zero entries.

Exercises

Exercise 847

Find endomorphisms α and β of \mathbb{R}^{3} satisfying the condition that $\alpha \beta$ is not nilpotent but $c \alpha+d \beta$ is nilpotent for all $c, d \in \mathbb{R}$.

Exercise 848

Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$ be nilpotent, having index of nilpotence $k>0$. Show that $\sigma_{1}+\alpha \in \operatorname{Aut}(V)$.

Exercise 849

Let V be a vector space finitely-generated over \mathbb{C}. Do there exist endomorphisms α and β of V satisfying the condition that $\sigma_{1}+\alpha \beta-\beta \alpha$ is nilpotent?

Exercise 850

Let F a field and let B be a given basis of F^{3}. Let $a \in F$ and let α be the endomorphism of F^{3} satisfying $\Phi_{B B}(\alpha)=\left[\begin{array}{rrr}-a & a & a \\ 0 & 0 & 0 \\ -a & a & a\end{array}\right]$. For which values of a is this endomorphism nilpotent?

Exercise 851

Let F be a field. Give an example of a nilpotent endomorphism of F^{5} having index of nilpotence 3 .

Exercise 852

Let α be the endomorphism of $V=\mathbb{R}^{4}$ represented with respect to a basis B of
V by the matrix $\left[\begin{array}{rrrr}2 & -8 & 12 & -60 \\ 2 & -5 & 9 & -48 \\ 6 & -17 & 29 & -152 \\ 1 & -3 & 5 & -26\end{array}\right]$. Show that α is nilpotent and find its index of nilpotence.

Exercise 853

Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$ be nilpotent. Does $\beta \alpha$ have to be nilpotent for all $\beta \in \operatorname{End}(V)$?

Exercise 854

Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$ be nilpotent. Find $\operatorname{spec}(\alpha)$.

Exercise 855

Let V be a vector space finitely generated over \mathbb{C} and let $\alpha \in \operatorname{End}(V)$ satisfy $\operatorname{spec}(\alpha)=\{0\}$. Show that α is nilpotent.

Exercise 856

Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$ be nilpotent, having index of nilpotence k. Find the minimal polynomial of α.

Exercise 857

Let V be a vector space finitely generated over a field F and let $\alpha \in \operatorname{End}(V)$ satisfy the condition that for each $v \in V$ there exists a positive integer $n(v)$ satisfying $\alpha^{n(v)}(v)=0_{V}$. Show that α is nilpotent. Does the same result hold if V is not assumed to be finitely generated over F ?

Exercise 858

Let F be a field and let α be an endomorphism of F^{3} represented with respect to a basis B of F^{3} by the matrix $\left[\begin{array}{lll}0 & a & 0 \\ 0 & 0 & b \\ 0 & 0 & 0\end{array}\right]$, where a and b are nonzero scalars. Does there exist a endomorphism β of F^{3} satisfying $\beta^{2}=\alpha$?

Exercise 859

Let α be a nilpotent endomorphism of a vector space V over a field F having characteristic 0 . Show that there exists an endomorphism β of V belonging to $F[\alpha]$ and satisfying $\beta^{2}=\sigma_{1}+\alpha$.

Exercise 860
Let $\alpha \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ be represented with respect to the canonical basis by the matrix $\left[\begin{array}{rrr}1 & 2 & -2 \\ 3 & 0 & 3 \\ 1 & 1 & -2\end{array}\right]$. Calculate $\mathbb{R}[\alpha]\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.

Exercise 861

Let V be the space of all infinitely-differentiable functions from \mathbb{R} to itself. Let δ be the endomorphism of V which assigns to each function its derivative. What is $\mathbb{R}[\delta] \sin (x)$?

Exercise 862

Define $\alpha \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ by $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{c}a+c \\ b-a \\ b\end{array}\right]$. Find $\mathbb{R}[\alpha]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

Exercise 863

Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$. Let $v \in V$ be a vector satisfying $F\left[\alpha^{2}\right] v=V$. Show that $F[\alpha] v=V$.

Exercise 864

Given $a \in \mathbb{R}$, let $\alpha_{a} \in \operatorname{End}\left(\mathbb{R}^{4}\right)$ be represented with respect to the canonical basis by the matrix $\left[\begin{array}{rrrr}0 & a & 1 & 0 \\ 1 & -2 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -2\end{array}\right]$. For which values of a is the dimension of $\mathbb{R}\left[\alpha_{a}\right]\left[\begin{array}{r}0 \\ 0 \\ 0 \\ -1\end{array}\right]$ equal to 3 ?

Exercise 865

Let $\alpha \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ be represented with respect to the canonical basis by the matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$. Find the eigenvalues of α and the generalized eigenspace associated with each.

Exercise 866

Let V be a vector space finitely generated over \mathbb{C} and let $\alpha \in \operatorname{End}(V)$. Show that α is diagonalizable if and only if every generalized eigenvector of α is an eigenvector of α.

Exercise 867

Let $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ be the canonical basis of \mathbb{R}^{3} and let α be the endomorphism of \mathbb{R}^{3} satisfying $\Phi_{B B}(\alpha)=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Show that $W=\mathbb{R}\left\{v_{1}, v_{3}\right\}$ and $Y=\mathbb{R} v_{2}$ are complements of each other in \mathbb{R}^{3} and that each of these spaces is invariant under α.

Exercise 868

Let $A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 0 & 2 & 0 \\ 2 & -2 & -1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Find the Jordan canonical form of A.

Exercise 869

Let $A=\left[\begin{array}{rrr}-2 & 8 & 6 \\ -4 & 10 & 6 \\ 4 & -8 & -4\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Find the Jordan canonical form of A.

Exercise 870
Let $O \neq A \in \mathcal{M}_{3 \times 3}(\mathbb{C})$ be of the form $\left[\begin{array}{rrr}0 & a & -b \\ -a & 0 & c \\ b & -c & 0\end{array}\right]$, where a, b, and c are real numbers. What is the Jordan canonical form of A ?

Exercise 871

Let $A \in \mathcal{M}_{5 \times 5}(\mathbb{Q})$ be a matrix in Jordan canonical form having minimal polynomial $(X-3)^{2}$. What does A look like?

Exercise 872

Give an example of a matrix in $\mathcal{M}_{4 \times 4}(\mathbb{R})$ which is not similar to a matrix in Jordan canonical form.

Exercise 873

Let V be a vector space finitely generated over a field F and let α and β be nilpotent endomorphisms of V represented with respect to some given basis by matrices A and B, respectively. If the matrices A and B are similar, does the index of nilpotence of α have to equal that of β ?

Exercise 874
Let F be a field and let $A=\left[\begin{array}{ccc}a & 0 & 0 \\ 1 & a & 0 \\ 0 & 1 & a\end{array}\right] \in \mathcal{M}_{3 \times 3}(F)$. Show that $A^{k}=\left[\begin{array}{ccc}a^{k} & 0 & 0 \\ k a^{k-1} & a^{k} & 0 \\ \frac{1}{2} k(k-1) a^{k-2} & k a^{k-1} & a^{k}\end{array}\right]$ for all $k>0$.

Exercise 875

Let n be a positive integer and, for all $1 \leq i, j \leq n$, let $p_{i j}(X) \in \mathbb{C}[X]$. Let $\varphi: \mathbb{C} \rightarrow \mathcal{M}_{n \times n}(\mathbb{C})$ be the function defined by $\varphi: z \mapsto\left[p_{i j}(z)\right]$. Furthermore, let us assume that $\varphi(z)$ is nonsingular for each $z \in \mathbb{C}$. Show that there exists a nonzero complex number d such that $|\varphi(z)|=d$ for all $z \in \mathbb{C}$.

Exercise 876

For each $t \in \mathbb{C}$, let α_{t} be the endomorphism of \mathbb{C}^{3} represented with respect to the canonical basis by the matrix $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ t & 0 & 0\end{array}\right]$. Is the representation of α_{t} in Jordan canonical form dependent on t ?

Exercise 877

Let $A=\left[\begin{array}{lll}0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{C})$. Find the set of all $c \in \mathbb{C}$ satisfying the condition that $c A$ is similar to A.

Exercise 878

Find the Jordan canonical form of $A=\frac{1}{2}\left[\begin{array}{rrr}-1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$.

Exercise 879

Let $a \in \mathbb{R}$ be positive. Find the Jordan canonical form of

$$
\left[\begin{array}{llll}
a & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{R})
$$

Exercise 880

Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ differ from I and O. If A is idempotent, show that its Jordan canonical form is a diagonal matrix.

Exercise 881

Let $I \neq A \in \mathcal{M}_{n \times n}(\mathbb{R})$ be an involutory matrix. Show that the Jordan canonical form of A is a diagonal matrix.

The Dual Space

Let V be a vector space over a field F. A linear transformation from V to F (considered as a vector space over itself) is a linear functional on V. The space $\operatorname{Hom}(V, F)$ of all such linear functionals is called the dual space of V and will be denoted by $D(V)$. Note that $D(V)$ is a vector space over F, the identity element of which for addition is the 0 -functional, $v \mapsto 0$. Since $\operatorname{dim}(F)=1$, we immediately see that every linear functional other than the 0 -functional must be an epimorphism.

Example Let F be a field and let n be a positive integer. Any $v \in F^{n}$ defines a linear functional in $D\left(F^{n}\right)$ by $w \mapsto v \odot w$.

Example Let V be a vector space over a field F and let B be a basis for V. Each $u \in B$ defines a function $f_{u} \in F^{B}$ defined by

$$
f_{u}: u^{\prime} \mapsto \begin{cases}1 & \text { if } u^{\prime}=u \\ 0 & \text { otherwise }\end{cases}
$$

and by Proposition 6.2 we know that this function in turn defines a linear functional $\delta_{u} \in D(V)$. In particular, if $V=F^{n}$ and if $B=\left\{u_{1}, \ldots, u_{n}\right\}$ is the canonical basis for V, then $\delta_{u_{h}}:\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right] \mapsto a_{h}$ for each $1 \leq h \leq n$.

Example Suppose that $V=C(a, b)$ and that $g_{0} \in V$. Then the function $\eta: V \rightarrow \mathbb{R}$ defined by $\eta: f \mapsto \int_{a}^{b} f(x) g_{0}(x) d x$ belongs to $D(V)$. Hadamard's initial work on linear functionals concerned those of the form $f \mapsto \lim _{n \rightarrow \infty} \int_{a}^{b} f(x) g_{n}(x) d x$ for suitable sequences g_{1}, g_{2}, \ldots in V.

Example Let V be the subspace of $\mathbb{R}^{\mathbb{R}}$ consisting of all infinitely-differentiable functions f satisfying the condition that there exist real numbers $a \leq b$ such that $f(x)=0$ if $x \notin[a, b]$. Then the function $f \mapsto \int_{-\infty}^{\infty} f(x) d x$ belongs to $D(V)$. Elements of $D(V)$ are known as distributions and play an important role in analysis and theoretical physics.

Note that the linear functional tr : $\mathcal{M}_{n \times n}(F) \rightarrow F$ is not a homomorphism of F-algebras whenever $n>1$. If (K, \bullet) is an algebra over a field F then a nonzero linear functional $\delta \in D(K)$ which is also a homomorphism of F-algebras is called a weight function on K and an algebra having a weight function is called a baric algebra. ${ }^{1}$ Nonassociative baric algebras are an important context for mathematical models in genetics.

Let F be a field and let n be a positive integer. Then there exists a linear functional $\operatorname{tr}: \mathcal{M}_{n \times n}(F) \rightarrow F$ which assigns to each matrix the sum of the elements of its diagonal, i.e., $\operatorname{tr}:\left[a_{i j}\right] \mapsto \sum_{i=1}^{n} a_{i i}$. This linear functional is called the trace. This functional will play an important part in our later discussion. Note that $v \odot w=\operatorname{tr}(v \wedge w)$ for all $v, w \in F^{n}$.

If $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are matrices in $\mathcal{M}_{n \times n}(F)$, then it is easy to see that $\operatorname{tr}(A B)=\sum_{i=1}^{n} \sum_{h=1}^{n} a_{i h} b_{h i}=\operatorname{tr}(B A)$. We also notice that $\operatorname{tr}(I)=n$, where I is the identity matrix of $\mathcal{M}_{n \times n}(F)$. If the characteristic of the field F does not divide n, we claim that these conditions uniquely characterize the trace.

With kind permission of the Clarke University Archives.
The trace of a matrix was first defined by the nineteenth-century American mathematician Henry Taber.

Proposition 14.1 Let n be a positive integer and let F be a field the characteristic of which does not divide n. Let δ be a linear functional on $\mathcal{M}_{n \times n}(F)$ satisfying the conditions that $\delta(A B)=\delta(B A)$ for all $A, B \in \mathcal{M}_{n \times n}(F)$ and that $\delta(I)=n$. Then $\delta=\operatorname{tr}$.

[^9]Proof If $\left\{H_{i j} \mid 1 \leq i, j \leq n\right\}$ is the canonical basis of $\mathcal{M}_{n \times n}(F)$, then it suffices to show that $\delta\left(H_{i j}\right)=\operatorname{tr}\left(H_{i j}\right)$ for all $1 \leq i, j \leq n$. In particular, if $1 \leq i, j \leq n$ then $\delta\left(H_{i i}\right)=\delta\left(H_{i j} H_{j i}\right)=\delta\left(H_{j i} H_{i j}\right)=\delta\left(H_{j j}\right)$. Since $I=\sum_{i=1}^{n} H_{i i}$, this implies that $n=\delta(I)=\sum_{i=1}^{n} \delta\left(H_{i i}\right)$ and so $\delta\left(H_{i i}\right)=1=\operatorname{tr}\left(H_{i i}\right)$ for all $1 \leq i \leq n$. If $i \neq j$ then $H_{1 j} H_{i 1}=O$ and so $\delta\left(H_{i j}\right)=\delta\left(H_{i 1} H_{1 j}\right)=\delta\left(H_{1 j} H_{i 1}\right)=\delta(O)=0=\operatorname{tr}\left(H_{i j}\right)$, and we are done.

By the above, we see that if F is a field, if n is a positive integer, and if $A, B \in$ $\mathcal{M}_{n \times n}(F)$, then $\operatorname{tr}(A \bullet B)=\operatorname{tr}(A B)-\operatorname{tr}(B A)=0$, where \bullet denotes the Lie product on $\mathcal{M}_{n \times n}(F)$. In fact, over fields of characteristic 0 the converse is also true. In order to establish this fact, we first need a technical result.

Proposition 14.2 Let F be a field of characteristic 0 and let n be a positive integer. Let $A \in \mathcal{M}_{n \times n}(F)$ have the property that it is similar to no matrix in $\mathcal{M}_{n \times n}(F)$ having a 0 for its $(1,1)$-entry. Then A is a scalar matrix.

Proof Clearly, A is not O and so there exists a vector $w \in F^{n}$ satisfying $A^{T} w \neq\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$. Assume that there exists a vector $v \in F^{n}$ satisfying the condition that $w \odot v=1$ and $\left(A^{T} w\right) \odot v=0$. Let $\delta \in D\left(F^{n}\right)$ be given by $\delta: y \mapsto w \odot y$. Then the nullity of δ is $n-1$ and we can pick a basis $\left\{y_{2}, \ldots, y_{n}\right\}$ for $\operatorname{ker}(\delta)$. Since $v \notin \operatorname{ker}(\delta)$, we see that the set $\left\{v, y_{2}, \ldots, y_{n}\right\}$ is linearly independent. Therefore, the matrix P the columns of which are v, y_{2}, \ldots, y_{n} is nonsingular, and w^{T} is the first row of P^{-1}. Moreover, the $(1,1)$-entry of the matrix $P^{-1} A P$ is $\left(A^{T} w\right) \odot v=0$, contradicting the assumption on A. This means that there is no vector v satisfying the given conditions and so $A^{T} w=c_{w} w$ for some scalar $c_{w} \in F$. Thus we conclude that if w is any vector in F^{n} then $A^{T} w$ is either the 0 -vector or a scalar multiple of w and so, for any nonsingular matrix $Q \in \mathcal{M}_{n \times n}(F)$ we see that $Q^{-1} A Q=\left[b_{i j}\right]$ is a diagonal matrix. If $b_{h h} \neq b_{k k}$ and if y is the difference between the h th and k th rows of Q^{-1}, then $A^{T} y$ cannot be of the form $c_{y} y$, which is again a contradiction. Thus A must in fact be a scalar matrix.

Proposition 14.3 Let F be a field of characteristic 0 , let n be a positive integer, and let $C \in \mathcal{M}_{n \times n}(F)$. Then $\operatorname{tr}(C)=0$ if and only if C is the Lie product of matrices $A, B \in \mathcal{M}_{n \times n}(F)$.

Proof We have already seen that if C is the Lie product of two matrices in $\mathcal{M}_{n \times n}(F)$ then $\operatorname{tr}(C)=0$. We will prove the converse by induction on n. The result is clearly true if $n=1$ so we can assume, inductively, that $n>1$ and that the result has been established for matrices in $\mathcal{M}_{k \times k}(F)$ for any $k<n$. Moreover, if $C=O$, take $A=B=O$ and we are done. Hence we can assume that $C \neq O$.

Since F has characteristic 0 and $\operatorname{tr}(C)=0$, we know that C is not a scalar matrix. By Proposition 14.2, this means that there is a nonsingular matrix P such that $P^{-1} C P$ has a 0 for its $(1,1)$-entry. That is to say, we can write $P^{-1} C P$ in block form as $\left[\begin{array}{ll}0 & x^{T} \\ z & C^{\prime}\end{array}\right]$, where $x, z \in F^{n-1}$ and $C^{\prime} \in \mathcal{M}_{(n-1) \times(n-1)}(F)$. Moreover, $\operatorname{tr}(D)=\operatorname{tr}\left(P^{-1} C P\right)=\operatorname{tr}(C)=0$ and so, by the induction hypothesis, there exist matrices $A^{\prime}, B^{\prime} \in \mathcal{M}_{(n-1) \times(n-1)}(F)$ satisfying $C^{\prime}=A^{\prime} B^{\prime}-B^{\prime} A^{\prime}$. If A^{\prime} is singular, then we can replace A^{\prime} by $A^{\prime}-c^{\prime} I$ for any scalar $c^{\prime} \notin \operatorname{spec}\left(A^{\prime}\right)$ (and such an element c^{\prime} exists since F has characteristic 0 and hence is infinite). Therefore, without loss of generality, we can assume that A^{\prime} is nonsingular. Then $P^{-1} C P=A^{\prime \prime} B^{\prime \prime}-B^{\prime \prime} A^{\prime \prime}$, where $A^{\prime \prime}=\left[\begin{array}{cc}0 & O \\ O & A^{\prime}\end{array}\right]$ and $B^{\prime \prime}=\left[\begin{array}{cc}0 & -x^{T} A^{\prime-1} \\ A^{\prime-1} z & B^{\prime}\end{array}\right]$. Thus $C=\left(P A^{\prime \prime} P^{-1}\right)\left(P B^{\prime \prime} P^{-1}\right)-\left(P B^{\prime \prime} P^{-1}\right)\left(P A^{\prime \prime} P^{-1}\right)$.

The first of many proofs of this result was given by Kenjiro Shoda, one of the major figures in the twentieth-century Japanese algebra. The proof given here is due to Kahan.

Example Note that this result may be false if the field F has positive characteristic. For example, if $F=\mathrm{GF}(2)$ then $\operatorname{tr}\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)=0$ but there are no matrices A and B in $\mathcal{M}_{2 \times 2}(F)$ satisfying $A B-B A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

Thus, if F has characteristic 0 then the set of all matrices $C \in \mathcal{M}_{n \times n}(F)$ satisfying $\operatorname{tr}(C)=0$ forms a subalgebra of the general Lie algebra $\mathcal{M}_{n \times n}(F)^{-}$, called the special Lie algebra defined by F^{n}.

If n is a positive integer, F is a field, and P is a nonsingular matrix in $\mathcal{M}_{n \times n}(F)$, then $\operatorname{tr}\left(P A P^{-1}\right)=\operatorname{tr}\left(P P^{-1} A\right)=\operatorname{tr}(A)$ and so similar matrices have identical traces. In general, if B and C are fixed matrices in $\mathcal{M}_{n \times n}(F)$ then the functions $A \mapsto \operatorname{tr}(B A)$ and $A \mapsto \operatorname{tr}(A C)$ belong to $D\left(\mathcal{M}_{n \times n}(F)\right)$.

The following result shows that traces essentially define all linear functionals on spaces of square matrices.

Proposition 14.4 Let F be a field, let n be a positive integer, and let $\delta \in D\left(\mathcal{M}_{n \times n}(F)\right)$. Then there exists a matrix $C \in \mathcal{M}_{n \times n}(F)$ satisfying $\delta: A \mapsto \operatorname{tr}(A C)$ for all $A \in \mathcal{M}_{n \times n}(F)$.

Proof For each $1 \leq i, j \leq n$, let $H_{i j}$ be the matrix having (i, j)-entry equal to 1 and all of the other entries equal to 0 . Then we know that the set of all such matrices is a basis for $\mathcal{M}_{n \times n}(F)$. Let $C=\left[c_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ be the matrix defined by $c_{i j}=$ $\delta\left(H_{j i}\right)$ for all $1 \leq i, j \leq n$. Then for each matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ we have $\delta(A)=\delta\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} H_{i j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \delta\left(H_{i j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} c_{j i}=$ $\operatorname{tr}(A C)$.

Proposition 14.5 Let F be a field, let n be a positive integer, and let $\delta \in D\left(\mathcal{M}_{n \times n}(F)\right)$ be a linear functional satisfying $\delta(A B)=\delta(B A)$ for all $A, B \in \mathcal{M}_{n \times n}(F)$. Then there exists a scalar $c \in F$ such that $\delta(A)=c \cdot \operatorname{tr}(A)$ for all $A \in \mathcal{M}_{n \times n}(F)$.

Proof Again, for each $1 \leq i, j \leq n$, let $H_{i j}$ be the matrix having (i, j)-entry equal to 1 and all of the other entries equal to 0 . If $1 \leq i \neq j \leq n$ then $\delta\left(H_{i j}\right)=$ $\delta\left(H_{i i} H_{i j}\right)=\delta\left(H_{i j} H_{i i}\right)=\delta(O)=0$. Moreover, for all $1 \leq j, k \leq n$ we have $\delta\left(H_{j j}\right)=\delta\left(H_{j k} H_{k j}\right)=\delta\left(H_{k j} H_{j k}\right)=\delta\left(H_{k k}\right)$. Thus we see that there exists a $c \in F$ such that $\delta\left(H_{j j}\right)=c$ for all $1 \leq j \leq n$ and from Proposition 14.4 we conclude that $\delta(A)=\operatorname{tr}(A \cdot c I)=c \cdot \operatorname{tr}(A)$ for all $A \in \mathcal{M}_{n \times n}(F)$.

Proposition 14.6 (Taber's Theorem) Let F be a field, let n be a positive integer, and let $A \in \mathcal{M}_{n \times n}(F)$ be a matrix the characteristic polynomial of which is completely reducible. Then $\operatorname{tr}(A)$ is the sum of the eigenvalues of A (with the appropriate multiplicities).

Proof Let $p(X)=\sum_{i=0}^{n} c_{i} X^{i}$ be the characteristic polynomial of A. We know that this polynomial is completely reducible, say $p(X)=\prod_{i=1}^{n}\left(X-b_{i}\right)$, and after multiplying this out, we see that $c_{n-1}=-\sum_{i=1}^{n} b_{i}$. But from the definition of the characteristic polynomial, we also see that $c_{n-1}=-\operatorname{tr}(A)$. Thus we see that, for any such matrix, $\operatorname{tr}(A)$ is the sum of the eigenvalues of A (with the appropriate multiplicities).

Example Let F be a field, let Ω be a nonempty set, and let $V=F^{\Omega}$. For each $a \in \Omega$ there exists a linear functional $\delta_{a} \in D(V)$ defined by evaluation: $\delta_{a}: f \mapsto f(a)$. In the case that F is \mathbb{R} and Ω is the unit interval of the real line, this functional is known to physicists as the Dirac functional. In analysis, evaluation functionals are often used to establish boundary conditions on classes of functions being studied.

Paul Dirac, the Nobel-prize-winning twentieth-century British physicist, built the first accepted model of quantum mechanics, in which linear functionals played a fundamental part.

Example Let n be a positive integer and let c and d be complex numbers. Can we find all matrices $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ having the property that c is an eigenvalue of A having geometric multiplicity $n-1$ and d is an eigenvalue of A having geometric multiplicity 1 ? (Certainly one such matrix always exists, namely a diagonal matrix with c appearing $n-1$ times on the diagonal and d once.) In general, in order for c to be an eigenvalue of A of geometric multiplicity $n-1$, the eigenspace associated with it has to be of dimension $n-1$. In other words, the nullity of the matrix $A-c I$ must equal $n-1$. From this we see that the dimension of the column space of $A-c I$ must equal 1 , and so there must exist nonzero vectors $u=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]$ and $v=\left[\begin{array}{c}e_{1} \\ \vdots \\ e_{n}\end{array}\right]$ in \mathbb{C}^{n} such that $A-c I=u \wedge v$, whence $A=u \wedge v+c I$. Conversely, if A is a matrix of the form $u \wedge v+c I$, then c is an eigenvalue of A having multiplicity at least $n-1$. Note that $\operatorname{tr}(A)=\sum_{i=1}^{n} b_{i} e_{i}+n c$. But, as we just noted, $\operatorname{tr}(A)$ is also the sum of the eigenvalues of A, counted by multiplicity, and so we want it to equal $d+(n-1) c$. Thus we are reduced to finding vectors u and v as above satisfying the condition that $\sum_{i=1}^{n} b_{i} e_{i}=d-c$. This is easy to do in concrete cases.

The following proposition shows that there always enough linear functionals to enable us to distinguish between vectors.

Proposition 14.7 Let V be a vector space of a field F. If $v \neq w$ are elements of V then there exists a linear functional $\delta \in D(V)$ satisfying $\delta(v) \neq \delta(w)$.

Proof Since the set $\{v-w\}$ is linearly independent, it can be completed to a basis B of V. By Proposition 6.2, there exists a linear functional $\delta \in D(V)$ satisfying $\delta(v-w)=1$ and $\delta(u)=0$ for all $u \in B \backslash\{v-w\}$. This is the linear functional we want.

In particular, if $0_{V} \neq v \in V$ then there is a linear functional $\delta \in D(V)$ satisfying $\delta(v) \neq 0$.

Proposition 14.8 Let V be a vector space of a field F. Then $D(V) \cong F^{B}$. In particular, if V is finitely generated over F then $D(V) \cong V$.

Proof We have a function $\alpha: D(V) \rightarrow F^{B}$ given by restriction, and it is straightforward to check that this function is an R-homomorphism. Since every element of $D(V)$ is totally defined by its action on a basis, this function is monic and, by Proposition 6.2, it is epic. Therefore, it is an isomorphism. If B is finite, then $V \cong F^{(B)}=F^{B}$.

In particular, we see the important relationship between $F^{(\Omega)}$ and F^{Ω} for any nonempty set Ω, namely that F^{Ω} is isomorphic to the dual space of $F^{(\Omega)}$. Note too that $D(V) \nsubseteq V$ whenever the vector space V is not finitely generated over F since it can be shown, using the arithmetic of transfinite cardinals, that $F^{(\Omega)}$ and F^{Ω} are never isomorphic when Ω is infinite.

Let us consider the idea inherent in Proposition 14.8. Let V be a vector space over a field F and let B be a given basis for V. For each $v \in B$, let $\delta_{v} \in D(V)$ satisfy $\delta_{v}(v)=1$ and $\delta_{v}(u)=0$ for all $v \neq u \in B$. We claim that $E=\left\{\delta_{v} \mid\right.$ $v \in B\}$ is a linearly-independent subset of $D(V)$. Indeed, if c_{1}, \ldots, c_{n} are scalars in F and u_{1}, \ldots, u_{n} are elements of B satisfying the condition that $\sum_{i=1}^{n} c_{i} \delta_{u_{i}}$ is the 0 -functional. Then for all $1 \leq h \leq n$ we have $0=\left(\sum_{i=1}^{n} c_{i} \delta_{u_{i}}\right)\left(u_{h}\right)=$ $\sum_{i=1}^{n} c_{i} \delta_{u_{i}}\left(u_{h}\right)=c_{h}$. This establishes the claim. If V is finitely-generated then B is finite and so E is a basis for $D(V)$, since it is easy to check that $\delta=\sum_{u \in B} \delta(u) \delta_{u}$ for all $\delta \in D(V)$. Such a basis E for $D(V)$ is called the dual basis of the basis B for V. If V is not finitely generated, then $F E$ is a subspace of $D(V)$ composed of all those linear functionals $\delta \in D(V)$ satisfying the condition that $\delta(u) \neq 0$ for at most finitely-many elements u of B. This subspace is called the weak dual space of V.

Example Let V be the vector space of all polynomial functions in $\mathbb{R}^{\mathbb{R}}$ having degree at most 4 . Suppose that $B=\left\{a_{1}, \ldots, a_{5}\right\}$ is a set of distinct positive real numbers and, for each $1 \leq i \leq 5$, let $\delta_{i} \in D(V)$ be the linear transformation defined by $\delta_{i}: p(t) \longmapsto \int_{0}^{a_{i}} p(t) d t$. We claim that $B=\left\{\delta_{1}, \ldots, \delta_{5}\right\}$ is a basis for $D(V)$. Indeed, since we know by Proposition 14.8 that $\operatorname{dim}(D(V))=5$, all we have to show is that the set B is linearly independent. That is to say, we must show that if there exist real numbers b_{1}, \ldots, b_{5} satisfying the condition that $\sum_{i=1}^{5} b_{i} \delta_{i}$ is the 0 functional, then $b_{i}=0$ for all $1 \leq i \leq 5$. Since $\sum_{i=1}^{5} b_{i} \delta_{i}\left(t^{h}\right)=\sum_{i=1}^{5}\left[\frac{1}{h+1} a_{i}^{h+1}\right] b_{i}$
for all $0 \leq h \leq 4$, we must show that

$$
\left[\begin{array}{ccccc}
a_{1} & \frac{1}{2} a_{1}^{2} & \frac{1}{3} a_{1}^{3} & \frac{1}{4} a_{1}^{4} & \frac{1}{5} a_{1}^{5} \\
a_{2} & \frac{1}{2} a_{2}^{2} & \frac{1}{3} a_{2}^{3} & \frac{1}{4} a_{2}^{4} & \frac{1}{5} a_{2}^{5} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{5} & \frac{1}{2} a_{5}^{2} & \frac{1}{3} a_{5}^{3} & \frac{1}{4} a_{5}^{4} & \frac{1}{5} a_{5}^{5}
\end{array}\right] \text { is nonsingu- }
$$

lar, which is the case since this is just a nonzero scalar multiple of a Vandermonde matrix.

Example Let $a<b$ be real numbers and let t_{1}, \ldots, t_{n} be distinct real numbers in the closed interval $[a, b]$ of the real line and let W be the subspace of $\mathbb{R}^{\mathbb{R}}$ consisting of all polynomial functions of degree less than n. Then $\operatorname{dim}(W)=n$. For each $1 \leq i \leq n$, let $\delta_{i} \in D(W)$ be the linear functional defined by $\delta_{i}: p \mapsto p\left(t_{i}\right)$. We claim that the subset $B=\left\{\delta_{1}, \ldots \delta_{n}\right\}$ of $D(W)$ is linearly independent. Indeed, if $\sum_{i=1}^{n} c_{i} \delta_{i}$ is the 0 -functional and if $1 \leq h \leq n$, then $0=\left(\sum_{i=1}^{n} c_{i} \delta_{i}\right) \prod_{j \neq h}(X-$ $\left.t_{j}\right)=c_{h} \prod_{j \neq h}\left(t_{h}-t_{j}\right)$, which implies that $c_{h}=0$ since the t_{i} are distinct. Therefore, by Proposition $14.8, B$ is a basis for $D(W)$. Since the function $p \mapsto \int_{a}^{b} p(x) d x$ also belongs to $D(W)$, we conclude that there exist real numbers c_{1}, \ldots, c_{n} satisfying $\int_{a}^{b} p(x) d x=\sum_{i=1}^{n} c_{i} p\left(t_{i}\right)$ for any $p \in W$.

Let V and W be vector spaces over a field F and let $\alpha \in \operatorname{Hom}(V, W)$. If $\delta \in D(W)$ then $\delta \alpha \in D(V)$. Moreover, if $\delta_{1}, \delta_{2} \in D(W)$ and if $v \in V$ then $\left[\left(\delta_{1}+\delta_{2}\right) \alpha\right](v)=\left(\delta_{1}+\delta_{2}\right) \alpha(v)=\delta_{1} \alpha(v)+\delta_{2} \alpha(v)=\left[\delta_{1} \alpha+\delta_{2} \alpha\right](v)$ and so $\left(\delta_{1}+\right.$ $\left.\delta_{2}\right) \alpha=\delta_{1} \alpha+\delta_{2} \alpha$. Similarly, if $c \in F$ and if $\delta \in D(W)$ then $c(\delta \alpha)=(c \delta) \alpha$. Therefore, we see that α defines a linear transformation $D(\alpha) \in \operatorname{Hom}(D(W), D(V))$ by setting $D(\alpha): \delta \mapsto \delta \alpha$. If V, W, and Y are vector spaces over F and if $\alpha \in \operatorname{Hom}(V, W)$ and $\beta \in \operatorname{Hom}(W, Y)$ then it is straightforward to show that $D(\beta \alpha)=D(\alpha) D(\beta)$. If α is an isomorphism, then $D(\alpha)$ is also an isomorphism, where $D(\alpha)^{-1}=D\left(\alpha^{-1}\right)$.

Proposition 14.9 Let F be a field and let V and W be vector spaces finitely generated over F. Let $B=\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for V, the dual basis of which is $C=\left\{\delta_{1}, \ldots, \delta_{k}\right\}$, and let $D=\left\{w_{1}, \ldots, w_{n}\right\}$ be a basis for W, the dual basis of which is $E=\left\{\eta_{1}, \ldots, \eta_{n}\right\}$. If $\alpha: V \rightarrow W$ is a linear transformation then $\Phi_{E C}(D(\alpha))=\Phi_{B D}(\alpha)$.

Proof Let $\Phi_{B D}(\alpha)=\left[a_{i j}\right]$. For each $1 \leq i \leq k$ we have $\alpha\left(v_{i}\right)=\sum_{h=1}^{n} a_{h i} w_{h}$ and so for all $1 \leq i \leq k$ and all $1 \leq j \leq n$ we have $\left[D(\alpha)\left(\eta_{j}\right)\right]\left(v_{i}\right)=\eta_{j} \alpha\left(v_{i}\right)=$ $\sum_{h=1}^{n} a_{h i} \eta_{j}\left(w_{h}\right)=a_{j i}$. But each $\delta \in D(V)$ satisfies $\delta=\sum_{i=1}^{k} \delta\left(v_{i}\right) \delta_{i}$ and so, in particular, $D(\alpha)\left(\eta_{j}\right)=\sum_{i=1}^{k}\left[D(\alpha)\left(\eta_{j}\right)\right]\left(v_{i}\right) \delta_{i}=\sum_{i=1}^{k} a_{j i} \delta_{i}$, which gives the desired result.

We have already seen that, given a vector space V over a field F, we can build the dual space $D(V)$. Since this too is a vector space over F, we can go on to built its dual space, $D^{2}(V)=D(D(V))$. What do some elements of this space look like? Each $v \in V$ defines a function $\theta_{v}: D(V) \rightarrow F$ by setting $\theta_{v}: \delta \mapsto \delta(v)$. This is indeed a linear functional and so is an element of $D^{2}(V)$, which we call the evaluation functional at v.

Proposition 14.10 Let V be a vector space over a field F. The function $v \mapsto \theta_{v}$ is a monomorphism from V to $D^{2}(V)$, which is an isomorphism in the case V is finitely generated.

Proof We first have to show that this function is a linear transformation. And, indeed, if $v, w \in V$, if $a \in F$, and if $\delta \in D(V)$, then as a direct consequence of the definitions we obtain $\theta_{v+w}(\delta)=\delta(v+w)=\delta(v)+\delta(w)=\theta_{v}(\delta)+\theta_{w}(\delta)=$ $\left[\theta_{v}+\theta_{w}\right](\delta)$ and so $\theta_{v+w}=\theta_{v}+\theta_{w}$. Similarly, $\theta_{a v}(\delta)=\delta(a v)=a \delta(v)=a \theta_{v}(\delta)$ and so $\theta_{a v}=a \theta_{v}$. Thus we have shown that we do indeed have a homomorphism. If v belongs to the kernel of this function then $\theta_{v}(\delta)=\delta(v)$ for all $\delta \in D(V)$ and so, by Proposition 14.5, we know that $v=0_{V}$. Thus it is a monomorphism. Finally, if V is finitely generated then, by $\operatorname{Proposition~14.6,~we~see~that~} \operatorname{dim}\left(D^{2}(V)\right)=$ $\operatorname{dim}(D(V))=\operatorname{dim}(V)$ and so any monomorphism from V to $D^{2}(V)$ has to be an isomorphism.

We should note that the importance of Proposition 14.10 lies not in the existence of an isomorphism between V and $D^{2}(V)$, which could be inferred from dimension arguments alone, but in finding a specific, natural, such isomorphism.

A proper subspace W of a vector space V over a field F is a maximal subspace if and only if there is no subspace of V properly contained in V and properly containing W. By the Hausdorff Maximum Principle, we know that any nontrivial vector space contains a maximal subspace. The maximal subspaces of finitely-generated vector spaces are usually called hyperplanes of the space. We will now use linear functionals in order to characterize these subspaces of V.

Proposition 14.11 A subspace W of a vector space V over a field F is maximal if and only if there exists a linear functional $\delta \in D(V)$ which is not the 0 -functional, with kernel W.

Proof Let us assume that $W=\operatorname{ker}(\delta)$, where δ is a linear functional which is not the 0 -functional, and assume that there exists a proper subspace Y of V which properly contains W. Pick $y \in Y \backslash W$ and $x \in V \backslash Y$. These two vectors have to be nonzero and the set $\{x, y\}$ is linearly independent by Proposition 5.3, since $F y \subseteq Y$ and $x \notin Y$. Set $U=F\{x, y\}$. Then $\operatorname{ker}(\delta)$ and U are disjoint, so the restriction of δ to U is a monomorphism, which is impossible since $\operatorname{dim}(U)=2$ and $\operatorname{dim}(F)=1$. Therefore, W must be a maximal subspace of V. Conversely, let W be a maximal subspace of V and let $y \in V \backslash W$. Then $F y \cap W=\left\{0_{V}\right\}$ and $F y+W=V$ by the maximality of W. Therefore, $V=F y \oplus W$ and so every vector in V can be written in the form $a y+w$, where $a \in F$ and $w \in W$. The function $\delta: a y+w \mapsto a$ is a linear functional in $D(V)$ the kernel of which equals W.

Proposition 14.12 Let V be a vector space over a field F and let $\delta, \delta_{1}, \ldots, \delta_{n}$ be elements of $D(V)$. Then $\delta \in F\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ if and only if $\bigcap_{i=1}^{n} \operatorname{ker}\left(\delta_{i}\right) \subseteq$ $\operatorname{ker}(\delta)$.

Proof Assume that $\delta \in F\left\{\delta_{1}, \ldots, \delta_{n}\right\}$. Then there exist scalars a_{1}, \ldots, a_{n} such that $\delta=\sum_{i=1}^{n} a_{i} \delta_{i}$. If $v \in \bigcap_{i=1}^{n} \operatorname{ker}\left(\delta_{i}\right)$ then $\delta_{i}(v)=0$ for all $1 \leq i \leq n$ and so $\delta(v)=$ $\sum_{i=1}^{n} a_{i} \delta_{i}(v)=0$. Thus $v \in \operatorname{ker}(\delta)$. Conversely, suppose that $\bigcap_{i=1}^{n} \operatorname{ker}\left(\delta_{i}\right) \subseteq \operatorname{ker}(\delta)$. We will proceed by induction on n. First, assume that $n=1$. If δ is the 0 -functional, then surely we are done. Thus let us assume that this is not the case and let $v \in$ $V \backslash \operatorname{ker}(\delta)$. Since $\operatorname{ker}\left(\delta_{1}\right) \subseteq \operatorname{ker}(\delta)$, this means that $\delta_{1}(v) \neq 0$. Set $a=\delta_{1}(v)^{-1} \delta(v)$. Then $\delta(v)=a \delta_{1}(v)=\left(a \delta_{1}\right)(v)$ and so $v \in \operatorname{ker}\left(\delta-a \delta_{1}\right)$. But $\operatorname{ker}\left(\delta_{1}\right) \subseteq \operatorname{ker}\left(\delta-a \delta_{1}\right)$, and so this containment is again proper. By Proposition 14.11, $\operatorname{ker}\left(\delta_{1}\right)$ is a maximal subspace of V and so $\operatorname{ker}\left(\delta-a \delta_{1}\right)=V$, which shows that $\delta=a \delta_{1}$.

Now let us assume that we have prove the result for a given n and assume we have linear functionals $\delta, \delta_{1}, \ldots, \delta_{n+1}$ in $D(V)$ satisfying $\bigcap_{i=1}^{n+1} \operatorname{ker}\left(\delta_{i}\right) \subseteq \operatorname{ker}(\delta)$. Set $W=\operatorname{ker}\left(\delta_{n+1}\right)$ and for each $1 \leq i \leq n$ let β_{i} be the restriction of δ_{i} to W. Also, let β be the restriction of δ to W. Then $\bigcap_{i=1}^{n} \operatorname{ker}\left(\beta_{i}\right) \subseteq \operatorname{ker}(\beta)$ and so, by the induction hypothesis, we know that there exist scalars a_{1}, \ldots, a_{n} such that $\beta=$ $\sum_{i=1}^{n} a_{i} \beta_{i}$. Therefore, $\operatorname{ker}\left(\delta_{n+1}\right) \subseteq \operatorname{ker}\left(\delta-\sum_{i=1}^{n} a_{i} \delta_{i}\right)$ and, as in the case $n=1$, it follows that there exists a scalar a_{n+1} such that $\delta-\sum_{i=1}^{n} a_{i} \delta_{i}=a_{n+1} \delta_{n+1}$, proving that $\delta=\sum_{i=1}^{n+1} a_{i} \delta_{i}$.

In the context of functional analysis, the following consequence of Proposition 14.11, taken together with the Riesz Representation Theorem (Proposition 16.14), is known as the Fredholm alternative, and has many important applications.

The Swedish mathematician Ivar Fredholm was active in the late nineteenth century and studied the solvability of integral equations.

Proposition 14.13 Let V and W be vector spaces over a field F, let $\alpha \in \operatorname{Hom}(V, W)$, and let $w \in W$. Then $w \in \operatorname{im}(\alpha)$ if and only if $w \in \operatorname{ker}(\delta)$ for any $\delta \in D(W)$ satisfying $\operatorname{im}(\alpha) \subseteq \operatorname{ker}(\delta)$.

Proof If $w \in \operatorname{im}(\alpha)$ then the given condition clearly holds. Conversely, assume that $w \notin \operatorname{im}(\alpha)$ and let B be a basis for $\operatorname{im}(\alpha)$. By Proposition 5.3, the set $\{w\} \cup B$
is linearly independent, and so there exists a subset B^{\prime} of W containing B such that $\{w\} \cup B^{\prime}$ is a basis for W. Then $F B^{\prime}$ is a maximal subspace of W and so, by Proposition 14.11, there exists a $\delta \in D(W)$ satisfying $\delta(w) \neq 0$ and $\operatorname{im}(\alpha) \subseteq F B^{\prime}=$ $\operatorname{ker}(\delta)$.

Exercises

Exercise 882

Let $V=C(0,1)$. From calculus we know that for each $f \in V$ there exists a maximal element a_{f} of $\{f(t) \mid 0 \leq t \leq 1\}$. Is the function $f \mapsto a_{f}$ a linear functional on V ?

Exercise 883
Let W be a subspace of $\mathbb{Q}[X]$ generated by a countably-infinite linearlyindependent set $\left\{p_{1}(X), p_{2}(X), \ldots\right\}$ of polynomials. Let $\delta: W \rightarrow \mathbb{Q}$ be the function defined by $\delta: \sum_{i=1}^{\infty} a_{i} p_{i}(X) \mapsto \sum_{i=1}^{\infty} a_{i} \operatorname{deg}\left(p_{i}\right)$ (where only finitely-many of the a_{i} are nonzero). Does δ belong to $D(W)$?

Exercise 884

Let $F=\mathrm{GF}(2)$ and let $\delta: F^{3} \rightarrow F$ be the function which assigns to each vector $v=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ the value (0 or 1) appearing in the majority of entries of v. Is δ a linear functional?

Exercise 885

Find a linear functional $\delta \in D\left(\mathbb{R}^{3}\right)$ which is not the 0 -functional but which satisfies $\delta\left(\left[\begin{array}{r}3 \\ 2 \\ -1\end{array}\right]\right)=\delta\left(\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]\right)=0$.

Exercise 886

Let $V=\mathbb{Q}[X]$ and to each vector $v=\left[b_{1}, b_{2}, \ldots\right] \in \mathbb{Q}^{\infty}$ assign a linear functional $\delta_{v} \in D(V)$ defined by $\delta_{v}: \sum_{n=0}^{\infty} a_{n} X^{n} \mapsto \sum_{n=0}^{\infty} n!a_{n} b_{n+1}$. Is the function $\alpha: \mathbb{Q}^{\infty} \rightarrow D(V)$ defined by $v \mapsto \delta_{v}$ an isomorphism?

Exercise 887

Let V be a vector space over a field F and let $\alpha, \beta \in D(V)$ satisfy the condition that $\operatorname{ker}(\beta) \subseteq \operatorname{ker}(\alpha)$. Show that $\alpha \in F \beta$.

Exercise 888

Let F be a field and let $0 \neq a \in F$. Let $\alpha: F[X] \rightarrow F$ be the function defined by $\alpha: p(X) \mapsto p(a)-p(0)$. Is α a linear functional?

Exercise 889

Let F be a field of characteristic 0 and let n be a positive integer. Show that any matrix $A \in \mathcal{M}_{n \times n}(F)$ is similar to a matrix all diagonal entries of which are equal to 0 .

Exercise 890

Let $V=\mathbb{R}^{3}$ and consider the linear functionals

$$
\begin{aligned}
& \delta_{1}:\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \mapsto 2 a-b+3 c, \quad \delta_{2}:\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \mapsto 3 a-5 b+c, \quad \text { and } \\
& \delta_{3}:\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \mapsto 4 a-7 b+c
\end{aligned}
$$

on V. Is $\left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$ a basis for $D(V)$?

Exercise 891

Let V be a vector space finitely generated over a field F and let W be a subspace of V having a complement Y in V. Show that $D(V)=W^{\prime} \oplus Y^{\prime}$, where W^{\prime} is a subspace of $D(V)$ isomorphic to W and Y^{\prime} is a subspace of $D(V)$ isomorphic to Y.

Exercise 892

Let n be a positive integer and let V be the vector space of all polynomial functions from \mathbb{R} to itself of degree no more than n. For all $0 \leq k \leq n$, let $\delta_{n}: V \rightarrow \mathbb{R}$ be the function defined by $\delta_{k}: p \mapsto \int_{-1}^{1} t^{k} p(t) d t$. Show that $\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ is a basis of $D(V)$.

Exercise 893

Let $B=\left\{\left[\begin{array}{r}0 \\ 3 \\ -2\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 3\end{array}\right]\right\} \subseteq \mathbb{R}^{3}$. Find the dual basis of B.

Exercise 894

Let n be a positive integer and let V be a vector space of dimension n over a field F. Let $B=\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ be a subset of $D(V)$ and assume that there exists a vector $0_{V} \neq v \in V$ satisfying $\delta_{i}(v)=0$ for all $0 \leq i \leq n$. Show that B is linearly dependent.

Exercise 895

Let V be a vector space over a field F. For every subspace W of V, let $E(W)=$ $\{\delta \in D(V) \mid \operatorname{ker}(\delta) \supseteq W\}$. Show that $E(W)$ is a subspace of $D(V)$. Moreover, if $\left\{W_{i} \mid i \in \Omega\right\}$ is a family of subspaces of V, show that $E\left(\sum_{i \in \Omega} W_{i}\right)=$ $\bigcap_{i \in \Omega} E\left(W_{i}\right)$.

Exercise 896

Let V be a vector space finitely generated over a field F and let W be a subspace of V. For $E(W)=\{\delta \in D(V) \mid \operatorname{ker}(\delta) \supseteq W\}$, show that $\operatorname{dim}(W)+\operatorname{dim}(E(W))=$ $\operatorname{dim}(V)$.

Exercise 897
Let V be a vector space finitely generated over a field F, let W be a subspace of V, and let Y be a subspace of $D(V)$. Are the following conditions equivalent:
(1) $Y=\{\delta \in D(V) \mid \operatorname{ker}(\delta) \supseteq W\}$;
(2) $W=\bigcap_{\delta \in Y} \operatorname{ker}(\delta)$?

Exercise 898

Let $A, B \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. Show that $\operatorname{tr}(A B)=\operatorname{tr}(A) \cdot \operatorname{tr}(B)$ if and only if $|A+B|=$ $|A|+|B|$.

Exercise 899

Let n be a positive integer and let U be a finite subset of $\mathcal{M}_{n \times n}(\mathbb{C})$ which is closed under multiplication of matrices. Show that there exists a matrix A in U satisfying $\operatorname{tr}(A) \in\{1, \ldots, n\}$.

Exercise 900

Let n be a positive integer and let F be a field. For any matrix $A=\left[a_{i j}\right] \in$ $\mathcal{M}_{n \times n}(F)$, define the antitrace of A to be $\operatorname{antitr}(A)=\sum_{i=1}^{n} a_{i, n+1-i}$. Is the function $A \mapsto \operatorname{antitr}(A)$ a linear functional on $\mathcal{M}_{n \times n}(F)$?

Exercise 901

Let F be a field and let $A \in \mathcal{M}_{2 \times 2}(F)$ be a matrix satisfying $\operatorname{tr}(A)=\operatorname{tr}\left(A^{2}\right)=0$. Is it necessarily true that $A=O$?

Exercise 902

Let k and n be positive integers. If $O \neq A \in \mathcal{M}_{k \times n}(\mathbb{R})$, does there necessarily exist a matrix $B \in \mathcal{M}_{n \times k}(\mathbb{R})$ satisfying $\operatorname{tr}(A B) \neq 0$?

Exercise 903

Let F be a field and let $k \neq n$ be positive integers. Let $A \in \mathcal{M}_{k \times n}(F)$ and $B \in \mathcal{M}_{n \times k}(F)$. Are $\operatorname{tr}(A B)$ and $\operatorname{tr}(B A)$ necessarily equal?

Exercise 904
Show that the matrices $\left[\begin{array}{ccc}1 & 2-i & 1+i \\ 4+i & 1+i & 0 \\ 1+i & 1 & 1\end{array}\right]$ and $\left[\begin{array}{ccc}1 & 1+i & 2-i \\ 3-i & 1+i & 0 \\ 1 & 27 & 1-i\end{array}\right]$ in
$\mathcal{M}_{3 \times 3}(\mathbb{C})$ are not similar.

Exercise 905

Let n be a positive integer and let V be the subspace of $\mathbb{R}[X]$ composed of all polynomials of degree at most n. What is the dual basis of $\left\{1, X, \ldots, X^{n}\right\}$?

Exercise 906

Let n be a positive integer. If B and C are elements of $\mathcal{M}_{n \times n}(\mathbb{R})$ satisfying $\operatorname{tr}(B) \leq \operatorname{tr}(C)$, and if $A \in \mathcal{M}_{n \times n}(\mathbb{R})$, is it necessarily true that $\operatorname{tr}(A B) \leq \operatorname{tr}(A C)$?

Exercise 907
For a matrix $A \in \mathcal{M}_{3 \times 3}(\mathbb{R})$, find a positive integer c satisfying

$$
|A|=\frac{1}{c}\left|\begin{array}{ccc}
\operatorname{tr}(A) & 1 & 0 \\
\operatorname{tr}\left(A^{2}\right) & \operatorname{tr}(A) & 2 \\
\operatorname{tr}\left(A^{3}\right) & \operatorname{tr}\left(A^{2}\right) & \operatorname{tr}(A)
\end{array}\right|
$$

Exercise 908

Let k and n be positive integers and let F be a field. Define a function $\alpha: \mathcal{M}_{k n \times k n}(F) \rightarrow \mathcal{M}_{n \times n}(F)$ as follows: if $A \in \mathcal{M}_{k n \times k n}(F)$, write $A=\left[A_{i j}\right]$, where each $A_{i j}$ is a $(k \times k)$-block. Then set $\alpha(A)=\left[b_{i j}\right] \in \mathcal{M}_{n \times n}(F)$, where $b_{i j}=\operatorname{tr}\left(A_{i j}\right)$ for each $1 \leq i, j \leq n$. Is α a linear transformation? Is it a homomorphism of unital F-algebras?

Exercise 909

Let A be a nonempty set and let V be the collection of all subsets of A, which is a vector space over $\mathrm{GF}(2)$. Is the characteristic function of $\varnothing \neq D \subseteq A$ a linear functional on V ?

Exercise 910

For each integer $n>1$, find a nonsingular matrix $A \in \mathcal{M}_{n \times n}(\mathbb{Q})$ satisfying $\operatorname{tr}(A)=0$.

Exercise 911

Let $n>1$ be an integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Does there necessarily exist a symmetric matrix $B \in \mathcal{M}_{n \times n}(\mathbb{R})$ satisfying $\operatorname{tr}(A)=\operatorname{tr}(B)$?

Exercise 912

Let V be a vector space finitely generated over \mathbb{Q} and let $\alpha \in \operatorname{End}(V)$ be a projection. Show that there is a basis D of V satisfying the condition that the rank of α equals $\operatorname{tr}\left(\Phi_{D D}(\alpha)\right)$.

Exercise 913

Let W be a proper subspace of a vector space V over a field F and let $v \in V \backslash W$. Show that there is a linear functional $\delta \in D(V)$ satisfying $\delta(v) \neq 0$ but $\delta(w)=0$ for all $w \in W$.

Exercise 914

Let V be a vector space finitely generated over a field F and let W_{1} and W_{2} be proper subspaces of V satisfying $V=W_{1} \oplus W_{2}$. Show that $D(V)=E_{1} \oplus E_{2}$, where $E_{j}=\left\{\delta \in D(V) \mid W_{j} \subseteq \operatorname{ker}(\delta)\right\}$ for $j=1,2$.

Exercise 915
Let F be a field and let $A \in \mathcal{M}_{2 \times 2}(F)$. Show that we always have $A^{2}-\operatorname{tr}(A) A+$ $|A| I=O$.

Exercise 916

Let V be the subspace of \mathbb{R}^{∞} consisting of all sequences $\left[a_{1}, a_{2}, \ldots\right] \in \mathbb{R}^{\infty}$ satisfying the condition that $\lim _{i \rightarrow \infty} a_{i}$ exists in \mathbb{R}. Define linear functionals $\delta_{1}, \delta_{2}, \ldots, \delta_{\infty} \in D(V)$ by setting $\delta_{h}:\left[a_{1}, a_{2}, \ldots\right] \mapsto a_{h}$ for each $h=1,2, \ldots$ and $\delta_{\infty}:\left[a_{1}, a_{2}, \ldots\right] \mapsto \lim _{i \rightarrow \infty} a_{i}$. Is the subset $\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{\infty}\right\}$ of $D(V)$ necessarily linearly independent?

Exercise 917

Let F be a field and, for each $a \in F$, let $\varepsilon_{a}: F[X] \rightarrow F$ be the linear functional defined by $\varepsilon_{a}: p(X) \mapsto p(a)$. Show that the subset $\left\{\varepsilon_{a} \mid a \in F\right\}$ of $D(F[X])$ is linearly independent.

Exercise 918

Let V be a vector space over a field F and let $\delta_{1}, \delta_{2} \in D(V)$ be linear functionals satisfying the condition that $\delta_{1}(v) \delta_{2}(v)=0$ for all $v \in V$. Show that one of the δ_{i} must be the 0 -functional.

Exercise 919

Let $n>1$ be an integer and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function which maps the 0 -vector to 0 and which satisfies the condition that $f(v+w)+f(v-w)=$ $2 f(v)$ for all $v, w \in \mathbb{R}^{n}$. Show that $f \in D\left(\mathbb{R}^{n}\right)$.

Exercise 920

Let $a \in \mathbb{R}$, let n be a positive integer, and let $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$. Does there necessarily exist a matrix $C \in \mathcal{M}_{n \times n}(\mathbb{R})$ satisfying $A C+\operatorname{tr}(C) A=B$?

Exercise 921

Let F be a field and let n be a positive integer. Let $\delta: \mathcal{M}_{n \times n}(F) \rightarrow F$ be the linear functional given by $\delta:\left[a_{i j}\right] \mapsto \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}$. Find an endomorphism α of $\mathcal{M}_{n \times n}(F)$ satisfying the condition that $\delta(A)=a \cdot \operatorname{tr}(\alpha(A))$ for all $A \in \mathcal{M}_{n \times n}(F)$.

Exercise 922

Let F be a field and let n be a positive integer. Let $A, B \in \mathcal{M}_{n \times n}(F)$ be matrices satisfying $A^{2}+B^{2}=I$ and $A B+B A=O$. Show that $\operatorname{tr}(A)=\operatorname{tr}(B)=0$.

Exercise 923

Let F be a field and let n be a positive integer. Given a positive integer k, is it necessarily true that $\operatorname{tr}\left((A B)^{k}\right)=\operatorname{tr}\left(A^{k}\right) \operatorname{tr}\left(B^{k}\right)$ for all $A, B \in \mathcal{M}_{n \times n}(F)$?

Exercise 924

Let V be a vector space finitely generated over a field F and let $\alpha \in \operatorname{End}(V)$. Show that α and $D(\alpha)$ have identical minimal polynomials.

Exercise 925

Let V be a vector space over a field F and let n be a positive integer. Let v_{1}, \ldots, v_{n} be distinct vectors in V and assume that there exist $\alpha \in \operatorname{End}(V)$ and $\delta \in D(V)$ such that the matrix $\left[\delta \alpha^{i-1}\left(v_{j}\right)\right] \in \mathcal{M}_{n \times n}(F)$ is nonsingular. Show that the set $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent.

Exercise 926
Let W be a subspace of a vector space V over a field F. Show that W is a maximal subspace of V if and only if every complement of W in V has dimension 1.

Exercise 927

Let F be a field and let n be a positive integer. For matrices $A, B \in \mathcal{M}_{n \times n}(F)$, calculate $\operatorname{tr}([A B-B A][A B+B A])$.

Exercise 928

Let n be a positive integer. Can we find matrices $A, B \in \mathcal{M}_{n \times n}(\mathbb{C})$ satisfying the condition that all eigenvalues of A and of B are positive real numbers, but not all eigenvalues of $A+B$ are positive real numbers?

Exercise 929

Let k and n be positive integers, let F be a field, and let $O \neq A \in \mathcal{M}_{k \times n}(F)$. Does there necessarily exist a matrix $B \in \mathcal{M}_{n \times k}(F)$ satisfying $\operatorname{tr}(A B) \neq 0$.

Exercise 930

Let V be a vector space of finite dimension n over a field F. A nonempty finite collection $\left\{W_{1}, \ldots, W_{k}\right\}$ of hyperplanes of V is co-independent if and only if $\operatorname{dim}\left(\bigcap_{i=1}^{k} W_{i}\right)=n-k$. Is a nonempty subcollection of a co-independent collection of hyperplanes necessarily co-independent?

Exercise 931

If V is a vector space over \mathbb{R} then the complexification of $D(V)$ is isomorphic to $\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})$ as vector spaces over \mathbb{C}.

Exercise 932

Let F be a field and let k and n be positive integers. If $A \in \mathcal{M}_{k \times n}(F)$, are $\operatorname{tr}\left(A A^{T}\right)$ and $\operatorname{tr}\left(A^{T} A\right)$ necessarily equal?

Exercise 933

Let F be a field of characteristic other than 2 . Show that any matrix $A \in \mathcal{M}_{2 \times 2}(F)$ can be written in the form $c I+B$, where $c \in F$ and $\operatorname{tr}(B)=0$.

Inner Product Spaces

In this chapter, we will have to restrict the set of fields over which we work. A subfield F of \mathbb{R} is real Euclidean if and only if for each $0 \leq c \in F$ there exists an element $d \in F$ satisfying $d^{2}=c$ and a subfield K of \mathbb{C} is Euclidean if and only if there exists a real Euclidean field F such that $K=\{a+b i \mid a, b \in F\}$. It is immediately clear that if K is a Euclidean field and $c \in K$, then $\bar{c} \in K$. Being a Euclidean field is intimately tied in with the constructibility of elements of the complex plane by straightedge and compass constructions, and in fact every real Euclidean field must contain all those real numbers which are then lengths of line segments obtainable from the unit line segment by straightedge and compass construction methods. Clearly, \mathbb{R} itself is real Euclidean, while \mathbb{Q}, as we have already noted, is not; the set real numbers algebraic over \mathbb{Q} is real Euclidean and properly contained in \mathbb{R}. The field \mathbb{C} is Euclidean, and the set of all algebraic numbers is Euclidean and properly contained in \mathbb{C}.

Let V be a vector space over a Euclidean field F. A function μ from $V \times V$ to F is an inner product on V if and only if:
(1) For each $w \in V$, the function $v \mapsto \mu(v, w)$ from V to F is a linear functional;
(2) If $v, w \in V$ then $\mu(v, w)=\overline{\mu(w, v)}$;
(3) If $v \in V$ then $\mu(v, v)$ is a nonnegative real number, which equals 0 if and only if $v=0_{V}$.
Note that, in the above situation, if $v, w \in V$ then, as a consequence of (2), $\mu(v, w)+\mu(w, v)=2 \operatorname{Re}(\mu(v, w))$ is also always a real number, though it may, of course, be negative.

In general, once we have fixed an inner product on a space, we will write $\langle v, w\rangle$ instead of $\mu(v, w)$. A vector space over a Euclidean subfield F of \mathbb{C} on which we have an inner product defined is called an inner product space. Another term for such a space, coming from functional analysis, is a pre-Hilbert space. Abstract inner product spaces were first studied in an axiomatic manner by von Neumann. While inner product spaces over general Euclidean fields may prove to be interesting in the future, at the moment the study of such spaces is almost universally restricted to spaces over \mathbb{R} or \mathbb{C}, and so from now on we will do the same and consider only these as possible fields of scalars. When we talk about an inner product space
without specifying the field of scalars, we will always assume that it is one of these two fields.

Example Let n be a positive integer and let F be either \mathbb{R} or \mathbb{C}. We define an inner product on F^{n}, called the dot product, as follows: if $v=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]$ and $w=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]$, then we set $v \cdot w=\sum_{i=1}^{n} a_{i} \bar{b}_{i}$. Note that if $F=\mathbb{R}$, then this product just coincides with the interior product $v \odot w$ which defined earlier. However, that is not true for the case $F=\mathbb{C}$, so we must be very careful to distinguish between the two products. This modification of the definition is necessary since, over \mathbb{C}, we have $\left[\begin{array}{l}1 \\ i\end{array}\right] \odot\left[\begin{array}{l}1 \\ i\end{array}\right]=0$, even though $\left[\begin{array}{l}1 \\ i\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Hence the interior product \odot is not an inner product as we have defined it in this chapter.

We can generalize the previous example. If F is either \mathbb{R} or \mathbb{C}, and if $D=\left[d_{i j}\right]$ is a nonsingular matrix in $\mathcal{M}_{n \times n}(F)$, we can define an inner product on F^{n} by set$\operatorname{ting}\left\langle\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right],\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]\right\rangle=\left[\begin{array}{lll}a_{1} & \ldots & a_{n}\end{array}\right] D D^{H}\left[\begin{array}{c}\bar{b}_{1} \\ \vdots \\ \bar{b}_{n}\end{array}\right]$, where $D^{H}=\left[\bar{d}_{i j}\right]^{T}$. The matrix D^{H} is called theconjugate transpose or Hermitian transpose of D, and it again belongs to $\mathcal{M}_{n \times n}(F)$. Conjugate transposes of matrices over \mathbb{C} will play an important part in the following discussion; of course, $D^{H}=D^{T}$ for any matrix $D \in \mathcal{M}_{n \times n}(\mathbb{R})$.

The properties of the conjugate transpose are very much like those of the transpose. Indeed, we note that if $A, B \in \mathcal{M}_{n \times n}(\mathbb{C})$ and $c \in \mathbb{C}$, then $(A+B)^{H}=A^{H}+$ $B^{H},(c A)^{H}=\bar{c} A^{H}, A^{H}=A$, and $(A B)^{H}=B^{H} A^{H}$. In particular, if A is nonsingular then $I=I^{H}=\left(A A^{-1}\right)^{H}=\left(A^{-1}\right)^{H} A^{H}$, proving that $\left(A^{-1}\right)^{H}=\left(A^{H}\right)^{-1}$.

Example If we are given positive real numbers c_{1}, \ldots, c_{n} and consider the diagonal matrix $D=\left[d_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ the diagonal entries of which are given by $d_{i i}=\sqrt{c_{i}}$ for $1 \leq i \leq n$, then, by the above, we have an inner product on \mathbb{C}^{n} given by
$\left\langle\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right],\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]\right\rangle=\sum_{i=1}^{n} c_{i} a_{i} \bar{b}_{i}$. Such a product is called a weighted dot product.
Weighted dot products are extremely important in statistics and data analysis, where we often want to emphasize the values of certain parameters and de-emphasize others.

Example Let $a<b$ be real numbers and let $V=C(a, b)$. This is, as we have seen, a vector space over \mathbb{R}, on which we can define an inner product $\langle f, g\rangle=$ $\int_{a}^{b} f(x) g(x) d x$. Continuity is important here. The set Y of all functions from $[a, b]$ to \mathbb{R} which are continuous at all but finitely-many points is a subspace of $\mathbb{R}^{[a, b]}$ properly containing $C(a, b)$ but $\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x$ is not an inner product on Y. Indeed, if we select a real number c satisfying $a<c<b$ and define the function $f \in Y$ by

$$
f: x \mapsto \begin{cases}1 & \text { if } x=c, \\ 0 & \text { otherwise }\end{cases}
$$

then f is a nonzero element of Y but $\langle f, f\rangle=0$.
Similarly, if V be the set of all continuous complex-valued functions defined on the closed interval $[a, b]$ in \mathbb{R}, then V is a vector space over \mathbb{C}, on which we can define an inner product $\langle f, g\rangle=\int_{a}^{b} f(x) \overline{g(x)} d x$.

Example Let F be \mathbb{R} or \mathbb{C}, and let $V=\mathcal{M}_{n \times n}(F)$, which is a vector space over F. Define an inner product on V by setting $\langle A, B\rangle=\operatorname{tr}\left(A B^{H}\right)=\operatorname{tr}\left(B^{H} A\right)$. If $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$, then $\langle A, B\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \bar{b}_{i j}$. In particular, $\langle A, A\rangle=$ $\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}$.

Example Let V be the subspace of \mathbb{C}^{∞} composed of all those sequences $\left[c_{0}, c_{1}, \ldots\right]$ of complex numbers satisfying $\sum_{i=0}^{\infty}\left|c_{i}\right|^{2}<\infty$. This vector space is very important in analysis, and we can define an inner product on it by setting $\left\langle\left[c_{0}, c_{1}, \ldots\right]\right.$, $\left.\left[d_{0}, d_{1}, \ldots\right]\right\rangle=\sum_{i=0}^{\infty} c_{i} \bar{d}_{i}$.

Let F be \mathbb{R} or \mathbb{C}, and let W be a subspace of an inner product space V over F. The restriction of this inner product to a function from $W \times W$ to F is an inner product on W. Thus we can always assume that any subspace of an inner product space V inherits the inner-product-space structure of V.

Example Let V be an inner product space over \mathbb{R} and let K be the set of all matrices of the form $\left[\begin{array}{ll}a & v \\ w & b\end{array}\right]$, where $a, b \in \mathbb{R}$ and $v, w \in V$. Then K is a vector space over \mathbb{R}, where addition and scalar multiplication are defined by

$$
\left[\begin{array}{cc}
a & v \\
w & b
\end{array}\right]+\left[\begin{array}{cc}
a^{\prime} & v^{\prime} \\
w^{\prime} & b^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
a+a^{\prime} & v+v^{\prime} \\
w+w^{\prime} & b+b^{\prime}
\end{array}\right] \quad \text { and } \quad c\left[\begin{array}{cc}
a & v \\
w & b
\end{array}\right]=\left[\begin{array}{cc}
c a & c v \\
c w & c b
\end{array}\right] .
$$

We create the structure of an \mathbb{R}-algebra on K by defining an operation \bullet as follows:

$$
\left[\begin{array}{ll}
a & v \\
w & b
\end{array}\right] \bullet\left[\begin{array}{cc}
a^{\prime} & v^{\prime} \\
w^{\prime} & b^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
a a^{\prime}+\left\langle v, w^{\prime}\right\rangle & a v^{\prime}+b^{\prime} v \\
a^{\prime} w+b w^{\prime} & b b^{\prime}+\left\langle w, v^{\prime}\right\rangle
\end{array}\right] .
$$

This algebra is a division algebra, called the Cayley algebra, and it is not associative.
We now look at some properties of general inner product spaces.

Proposition 15.1 Let V be an inner product space. For $v, w_{1}, w_{2} \in V$ and for a scalar a, we have:
(1) $\left\langle v, w_{1}+w_{2}\right\rangle=\left\langle v, w_{1}\right\rangle+\left\langle v, w_{2}\right\rangle$;
(2) $\left\langle v, a w_{1}\right\rangle=\bar{a}\left\langle v, w_{1}\right\rangle$;
(3) $\left\langle 0_{V}, w_{1}\right\rangle=\left\langle v, 0_{V}\right\rangle=0$.

Proof From the definition of the inner product, we have $\left\langle v, w_{1}+w_{2}\right\rangle=$ $\overline{\left\langle w_{1}+w_{2}, v\right\rangle}=\overline{\left\langle w_{1}, v\right\rangle+\left\langle w_{2}, v\right\rangle}=\overline{\overline{\left\langle v, w_{1}\right\rangle}+\overline{\left\langle v, w_{2}\right\rangle}}=\left\langle v, w_{1}\right\rangle+\left\langle v, w_{2}\right\rangle$, which proves (1). We also have $\left\langle v, a w_{1}\right\rangle=\overline{\left\langle a w_{1}, v\right\rangle}=\overline{a\left\langle w_{1}, v\right\rangle}=\bar{a} \overline{\left.w_{1}, v\right\rangle}=\bar{a}\left\langle v, w_{1}\right\rangle$, which proves (2). Finally, $\left\langle 0_{V}, w_{1}\right\rangle=\left\langle 00_{V}, w_{1}\right\rangle=0$, and similarly $\left\langle v, 0_{V}\right\rangle=0$, proving (3).

By Proposition 15.1 we see that if V is an inner product space over \mathbb{R} then for each $v \in V$ the function $w \mapsto\langle v, w\rangle$ from V to F is a linear transformation, but that is not the case for inner product spaces over \mathbb{C}.

Let V be a finitely-generated inner product space and let v_{1}, \ldots, v_{k} be a list of vectors in V. The Gram matrix of this list is the $k \times k$ matrix $G=\left[g_{i j}\right]$ defined by $g_{i j}=\left\langle v_{i}, v_{j}\right\rangle$ for all $1 \leq i, j \leq k$. Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V. Given vectors $v=\sum_{i=1}^{n} a_{i} v_{i}$ and $w=\sum_{j=1}^{n} b_{j} v_{j}$ in V, we note that

$$
\langle v, w\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \bar{b}_{j}\left\langle v_{i}, v_{j}\right\rangle=\left[\begin{array}{lll}
a_{1} & \ldots & a_{n}
\end{array}\right] G\left[\begin{array}{c}
\bar{b}_{1} \\
\vdots \\
\bar{b}_{n}
\end{array}\right],
$$

where G is the Gram matrix of B.

Jorgen Gram was a Danish mathematician who at the end of the nineteenth century developed computational techniques for inner product spaces in connection with his work for insurance companies.

Example Let V be the subspace of $\mathbb{C}[X]$ consisting of all polynomials of degree at most 5, and let B be the canonical basis for V. Define an inner product on V by setting $\langle f, g\rangle=\int_{0}^{1} f(x) \overline{g(x)} d x$. (Note that we are using the same notation for a polynomial and its corresponding polynomial function in $\mathbb{C}^{\mathbb{R}}$.) Then the Gram matrix defined by B is precisely the Hilbert matrix H_{6}, which we have seen earlier.

Proposition 15.2 (Cauchy-Schwarz-Bunyakovsky Theorem) Let V be an inner product space. If $v, w \in V$, then $|\langle v, w\rangle|^{2} \leq\langle v, v\rangle\langle w, w\rangle$.

Proof If $v=0_{V}$ or $w=0_{V}$ then the result is immediate, and so we can assume that both vectors differ from 0_{V}. Let $a=-\langle w, v\rangle$ and $b=\langle v, v\rangle$. Then $\bar{a}=-\langle v, w\rangle$ and $\bar{b}=b$ so

$$
\begin{aligned}
0 & \leq\langle a v+b w, a v+b w\rangle=a \bar{a}\langle v, v\rangle+a b\langle v, w\rangle+b \bar{a}\langle w, v\rangle+b^{2}\langle w, w\rangle \\
& =a \bar{a} b-a \overline{b a}-a b \bar{a}+b^{2}\langle w, w\rangle=b[-a \bar{a}+b\langle w, w\rangle] .
\end{aligned}
$$

Since $v \neq 0_{V}$, it follows that b is a positive real number and so $a \bar{a} \leq b\langle w, w\rangle$, which is what we want.

With kind permission of ETH-Bibliothek Zurich, Image Archive (Schwarz).
Herman Schwarz was a German mathematician who in the late nineteenth century studied spaces of functions and their structure as inner product spaces. Viktor Yakovlevich Bunyakovsky was a Russian student of Cauchy who proved this theorem a generation before Schwarz, but since his work was published in an obscure journal, it was not widely recognized until the twentieth century.

Example If $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, c_{1}, \ldots, c_{n}$ are real numbers, with $c_{i}>0$ for all $1 \leq i \leq n$, then

$$
\left|\sum_{i=1}^{n} c_{i} a_{i} b_{i}\right| \leq\left(\sqrt{\sum_{i=1}^{n} c_{i} a_{i}^{2}}\right)\left(\sqrt{\sum_{i=1}^{n} c_{i} b_{i}^{2}}\right) .
$$

Indeed, this is a consequence of the Cauchy-Schwarz-Bunyakovsky Theorem, using the weighted dot product $\left\langle\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right],\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]\right\rangle=\sum_{i=1}^{n} c_{i} a_{i} b_{i}$ defined on \mathbb{R}^{n}.

In general, the Cauchy-Schwarz-Bunyakovsky Theorem is an extremely rich source of inequalities between real-valued functions of several real variables. For example, consider the vectors $v=\frac{1}{\sqrt{a+b+c}}\left[\begin{array}{c}\sqrt{a+b} \\ \sqrt{a+c} \\ \sqrt{b+c}\end{array}\right]$ and $w=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ in \mathbb{R}^{3}, where a, b, and c are positive. Then, by the Cauchy-Schwarz-Bunyakovsky Theorem, we see that

$$
\sqrt{\frac{a+b}{a+b+c}}+\sqrt{\frac{a+c}{a+b+c}}+\sqrt{\frac{b+c}{a+b+c}}=v \cdot w \leq \sqrt{\langle v, v\rangle\langle w, w\rangle}=\sqrt{6} .
$$

Similarly, we note that the matrix $D=\left[\begin{array}{cc}\sqrt{3} & 0 \\ 1 & \sqrt{2}\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ is nonsingular and so, by a previous example, we have an inner product μ on \mathbb{R}^{2} defined by

$$
\mu\left(\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
c \\
d
\end{array}\right]\right)=\left[\begin{array}{l}
a \\
b
\end{array}\right]^{T} D D^{T}\left[\begin{array}{l}
c \\
d
\end{array}\right]=3(a c+b d)+(\sqrt{3})(a d+b c)
$$

Applying the Cauchy-Schwarz-Bunyakovsky Theorem, we see that for all real numbers a, b, c, and d we have

$$
\begin{aligned}
& {[3(a c+b d)+(\sqrt{3})(a d+b c)]^{2}} \\
& \quad \leq\left[3\left(a^{2}+b^{2}\right)+(2 \sqrt{3}) a b\right]\left[3\left(c^{2}+d^{2}\right)+(2 \sqrt{3}) c d\right]
\end{aligned}
$$

In particular, if we take $b=d=\sqrt{3}$, we see that $(a c+a+c+3)^{2} \leq\left(a^{2}+2 a+\right.$ 3) $\left(c^{2}+2 c+3\right)$ for all real numbers a and c.

Let V be an inner product space. The norm of a vector $v \in V$ is defined to be the scalar $\|v\|=\sqrt{\langle v, v\rangle}$. A vector v satisfying $\|v\|=1$ is normal.

Example Let $V=\mathbb{R}^{n}$, and endow V with the dot product. Then

$$
\left\|\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]\right\|=\sqrt{\sum_{i=1}^{n} a_{i}^{2}}
$$

This norm is known as the Euclidean norm on V.
Example Let $V=C(-\pi, \pi)$, on which we have defined the inner product $\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x$. For each positive integer k, consider the function $f_{k}: x \mapsto \sin (k x)$. Then $\left\|f_{k}\right\|=\sqrt{\left\langle f_{k}, f_{k}\right\rangle}=\sqrt{\int_{-\pi}^{\pi} \sin ^{2}(k x) d x}=\sqrt{\pi}$ and so $g_{k}=\frac{1}{\sqrt{\pi}} f_{k}$ is a normal vector in this space.

We have seen how the vector space \mathbb{R}^{3}, endowed with the cross product \times, is a Lie algebra. It is easy to check that the cross product is related to the dot product on
\mathbb{R}^{3} by the relations

$$
\begin{aligned}
& u \times(v \times w)=(u \cdot w) v-(u \cdot v) w \quad \text { and } \\
& (u \times v) \times w=(u \cdot w) v-(v \cdot w) u
\end{aligned}
$$

for all $u, v, w \in \mathbb{R}^{3}$. Moreover, we have the following identities:
(1) $v \cdot(v \times w)=0$ for all $v, w \in \mathbb{R}^{3}$;
(2) (Lagrange identity) $\|v \times w\|^{2}=\|v\|^{2}\|w\|^{2}-(v \cdot w)^{2}$.

There are only two possible anticommutative operations on \mathbb{R}^{3} which turn it into an \mathbb{R}-algebra satisfying these two identities, namely \times and the operation x^{\prime} given by $v \times^{\prime} w=-(v \times w)$. Furthermore, if $n>3$ no such operation can be defined on \mathbb{R}^{n}, except for the case of $n=7$. In that case, we can define an operation \times as follows: write elements of \mathbb{R}^{7} in the form $\left[\begin{array}{c}v \\ a \\ v^{\prime}\end{array}\right]$, where $v, v^{\prime} \in \mathbb{R}^{3}$ and $a \in \mathbb{R}$ and then set

$$
\left[\begin{array}{c}
v \\
a \\
v^{\prime}
\end{array}\right] \times\left[\begin{array}{c}
w \\
b \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{c}
a w^{\prime}-b v^{\prime}+(v \times w)-\left(v^{\prime} \times w^{\prime}\right) \\
-v \cdot w+v^{\prime} \cdot w \\
b v-a w+\left(v \times w^{\prime}\right)-\left(v^{\prime} \times w\right)
\end{array}\right] .
$$

We also note that if $u=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right], v=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$, and $w=\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]$ in \mathbb{R}^{3} then $u \cdot(v \times w)=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$. As an immediate consequence, we observe that if $u, v, w \in \mathbb{R}^{3}$ then:
(1) $u \cdot(v \times w)=v \cdot(w \times u)=w \cdot(u \times v)$;
(2) $u \cdot(v \times w)=0$ if and only if two of these vectors are equal or the set $\{u, v, w\}$ is linearly dependent.
The scalar value $u \cdot(v \times w)$ is often called the scalar triple product of the vectors u, v, w, to distinguish it from the vector triple product $u \times(v \times w)$.

Proposition 15.3 Let V be an inner product space. If $v, w \in V$ and if a is a scalar, then:
(1) $\|a v\|=|a| \cdot\|v\|$;
(2) $\|v\| \geq 0$, with equality if and only if $v=0_{V}$;
(3) (Minkowski's inequality): $\|v+w\| \leq\|v\|+\|w\|$;
(4) (Parallelogram law): $\|v+w\|^{2}+\|v-w\|^{2}=2\left(\|v\|^{2}+\|w\|^{2}\right)$;
(5) (Triangle difference inequality): $\|v-w\| \geq|\|v\|-\|w\||$.

With kind permission of ETH-Bibliothek Zurich, Image Archive.

Hermann Minkowski, a German mathematician at the end of the nineteenth century, built an elegant mathematical framework for the theory of relativity, using four-dimensional non-Euclidean geometry.

Proof We see that $\|a v\|=\sqrt{\langle a v, a v\rangle}=\sqrt{a \bar{a}\langle v, v\rangle}=|a| \cdot\|v\|$, proving (1). Inequality (2) follows immediately from the definition. As for (3), note that if $z=a+b i$ then $z+\bar{z}=2 a \leq 2|a|=2 \sqrt{a^{2}} \leq 2 \sqrt{a^{2}+b^{2}}=2|z|$. As a consequence of the Cauchy-Schwarz-Bunyakovsky Theorem, we see that $|\langle v, w\rangle|=|\langle w, v\rangle| \leq\|v\| \cdot$ $\|w\|$, and so

$$
\begin{aligned}
\|v+w\|^{2} & =\langle v+w, v+w\rangle=\langle v, v\rangle+\langle v, w\rangle+\langle w, v\rangle+\langle w, w\rangle \\
& \leq\|v\|^{2}+2\|v\| \cdot\|w\|+\|w\|^{2}=(\|v\|+\|w\|)^{2}
\end{aligned}
$$

and that proves (3). Moreover, we know that

$$
\|v+w\|^{2}=\langle v+w, v+w\rangle=\langle v, v\rangle+\langle v, w\rangle+\langle w, v\rangle+\langle w, w\rangle
$$

and $\|v-w\|^{2}=\langle v-w, v-w\rangle=\langle v, v\rangle-\langle v, w\rangle-\langle w, v\rangle+\langle w, w\rangle$. Adding these two gives us (4).

Finally, by (3), we have $\|w\|=\|w+(v-w)\| \leq\|w\|+\|v-w\|$, and so $\|v-w\| \geq\|v\|-\|w\|$. Interchanging the roles of v and w and using (1), gives us $\|v-w\|=\|w-v\| \geq\|w\|-\|v\|$, and so we have (5).

Note that by Proposition 15.3 we see that if $0_{V} \neq v \in V$ then $\frac{1}{\|v\|} v$ is a normal vector. Moreover, if v is normal and c is a scalar satisfying $|c|=1$, then $c v$ is again normal.

Example Let V be an inner product space, and let Ω be a nonempty set. A function $f \in V^{\Omega}$ is bounded if and only if there exists a real number b_{f} satisfying $\|f(i)\| \leq$ b_{f} for all $i \in \Omega$. If $f, g \in V^{\Omega}$ are bounded functions then, from Minkowski's inequality, we conclude that $\|(f+g)(i)\| \leq\|f(i)\|+\|g(i)\| \leq b_{f}+b_{g}$ for all $i \in \Omega$. If c is a scalar then $\|(c f)(i)\|=|c| \cdot\|f(i)\| \leq|c| b_{f}$ for all $i \in \Omega$. Thus both $f+g$ and $c f$ are both bounded, and we see that the set of all bounded elements of V^{Ω} is a subspace of V^{Ω}.

Example We now return to a previous example. Let p be an integer greater than 1 , not necessarily prime, and let $G=\mathbb{Z} /(p)$, on which we have an operation of addition as defined in Chap. 2. Let $V=\mathbb{C}^{G}$, which is a vector space of dimension p over \mathbb{C}. On this space, we can define an inner product by setting $\langle f, g\rangle=\sum_{n \in G} f(n) \overline{g(n)}$. Every element $n \in G$ defines a function $h_{n}: k \mapsto$
$\cos \left(\frac{2 \pi n k}{p}\right)+i \sin \left(\frac{2 \pi n k}{p}\right)$ which belongs to V. Given a function $f \in V$, define a function $\widehat{f} \in V$ as $\widehat{f}: n \mapsto\left\langle f, h_{n}\right\rangle=\sum_{k \in G} f(k) h_{n}(-k)$. This function is called the discrete Fourier transform of f of order p. One can show that the function $f \mapsto \widehat{f}$ is in fact an automorphism of V. Moreover, $f(n)=\frac{1}{p} \widehat{f}(-n)$ and $\|f\|=\frac{1}{\sqrt{p}}\|\widehat{f}\|$ for all $f \in V$ and all $n \in G$.

Example There are various generalizations of Theorem 15.2 which, as a rule, require more sophisticated methods of complex analysis to prove. For example, the contemporary Greek mathematicians Manolis Magiropoulos and Dimitri Karayannakis have shown that if V is an inner product space and if u, v, and w are distinct elements of V, then

$$
2|\langle u, v\rangle| \cdot|\langle u, w\rangle| \leq\langle u, u\rangle[\|v\| \cdot\|w\|+|\langle v, w\rangle|] .
$$

In case the set $\{v, w\}$ is linearly dependent, it is clear that this reduces to the inequality in Proposition 15.2. Inequalities such as these allow us to get better bounds on inner products. For example, let $0<a<b$ be real numbers and let $V=C(a, b)$, on which we have the inner product $\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x$. If $u, v, w \in V$ are given by $u: x \mapsto 1 / x, v: x \mapsto \sin (x)$, and $w: x \mapsto \cos (x)$ then Proposition 15.2 gives us the bound

$$
|\langle u, v\rangle| \cdot|\langle u, w\rangle| \leq\left(\int_{a}^{b} \frac{d x}{x^{2}}\right) \sqrt{\int_{a}^{b} \sin ^{2}(x) d x} \sqrt{\int_{a}^{b} \cos ^{2}(x) d x}
$$

whereas this result gives us the better upper bound

$$
\frac{1}{2}\left(\int_{a}^{b} \frac{d x}{x^{2}}\right)\left[\sqrt{\int_{a}^{b} \sin ^{2}(x) d x} \sqrt{\int_{a}^{b} \cos ^{2}(x) d x}+\left|\int_{a}^{b} \sin (x) \cos (x) d x\right|\right] .
$$

Proposition 15.4 Let V be an inner product space and let $\alpha \in \operatorname{End}(V)$ satisfy the condition that there exists a real number $0<c<1$ such that $\|\alpha(v)\| \leq$ $c\|v\|$ for all $v \in V$. Then $\sigma_{1}+\alpha$ is monic.

Proof If $0_{V} \neq v \in V$ then, by Proposition 15.3,

$$
\begin{aligned}
\|v\| & =\|v+\alpha(v)-\alpha(v)\| \leq\|v+\alpha(v)\|+\|\alpha(v)\| \\
& =\left\|\left(\sigma_{1}+\alpha\right)(v)\right\|+\|\alpha(v)\|,
\end{aligned}
$$

and so $\left\|\left(\sigma_{1}+\alpha\right)(v)\right\| \geq\|v\|-\|\alpha(v)\| \geq(1-c)\|v\|>0$, which shows that $v \notin \operatorname{ker}\left(\sigma_{1}+\alpha\right)$. Thus $\sigma_{1}+\alpha$ is monic.

In particular, if V is a finitely-generated inner product space and if $\alpha \in \operatorname{End}(V)$ satisfies the condition that there exists a real number $0<c<1$ such that $\|\alpha(v)\| \leq$
$c\|v\|$ for all $v \in V$, then $\sigma_{1}+\alpha \in \operatorname{Aut}(V)$. Let $\beta=\left(\sigma_{1}+\alpha\right)^{-1}$. If $0_{V} \neq v \in V$ then

$$
\begin{aligned}
\|v\| & =\left\|\left(\sigma_{1}+\alpha\right) \beta(v)\right\|=\|\beta(v)+\alpha \beta(v)\| \geq\|\beta(v)\|-\|\alpha \beta(v)\| \\
& \geq\|\beta(v)\|-c\|\beta(v)\|=(1-c)\|\beta(v)\| .
\end{aligned}
$$

Similarly, $\|v\| \leq\|\beta(v)\|+\|\alpha \beta(v)\| \leq\|\beta(v)\|+c\|\beta(v)\|=(1+c)\|\beta(v)\|$ and so $\frac{1}{1+c}\|v\| \leq\|\beta(v)\| \leq \frac{1}{1-c}\|v\|$ for all $v \in V$.

Sometimes, however, we need a bit more generality. If V is a vector space over \mathbb{R} or \mathbb{C} then, in general, a function $v \mapsto\|v\|$ satisfying conditions (1)-(3) of Proposition 15.3 is called a norm and a vector space on which a fixed norm is defined is called a normed space or, in a functional-analysis context, a pre-Banach space. An immediate question is whether every norm defined on a vector space comes from an inner product. The answer is negative: if, for example, we define the norm $\|\cdot\|_{1}$ on \mathbb{C}^{n} by setting $\left\|\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]\right\|_{1}=\sum_{i=1}^{n}\left|a_{i}\right|$, then this cannot come from an inner product since the parallelogram law is not satisfied by this norm. In fact, satisfying the parallelogram law is necessary for a norm to come from an inner product in the following sense: let V be a vector space over \mathbb{R} or \mathbb{C} on which we have a norm $\psi: V \rightarrow \mathbb{R}$ satisfying $\psi(v+w)^{2}+\psi(v-w)^{2}=2\left[\psi(v)^{2}+\psi(w)^{2}\right]$ for all $v, w \in V$, and write $\lambda(v, w)=\frac{1}{4}\left[\psi(v+w)^{2}-\psi(v-w)^{2}\right]$. Then it is possible to define an inner product on V relative to which the norm of a vector v is precisely $\psi(v)$. In the case the field of scalars is \mathbb{R}, then this inner product is defined by $\langle v, w\rangle=\lambda(v, w)$ and otherwise this inner product is defined by $\langle v, w\rangle=\lambda(v, w)+i \lambda(v, i w)$.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Wiener); © Stefan Banach (Banach).
Normed spaces were first studied at the beginning of the twentieth century by the Austrian mathematician Hans
Hahn, and then by the American mathematician Norbert Wiener and the Polish mathematician Stefan Banach.

Example Every vector space over \mathbb{R} can be turned into a normed space in at least one way. Indeed, let V be a vector space over \mathbb{R} for which we fix a basis $\left\{v_{i} \mid i \in \Omega\right\}$. Then the function $\psi: V \rightarrow \mathbb{R}$ defined by $\psi: \sum_{i \in \Omega} a_{i} v_{i} \mapsto \sum_{i \in \Omega}\left|a_{i}\right|$ can easily be seen to be a norm on V.

Example Let $V=C(0,1)$, which is a vector space over \mathbb{R}, and for each positive integer n, let $f_{n} \in V$ be the function defined by

$$
f_{n}: x \mapsto \begin{cases}1-n x & \text { if } 0 \leq x \leq \frac{1}{n} \\ 0 & \text { otherwise }\end{cases}
$$

Let $\|\cdot\|$ be the norm defined on V by the inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$ and let $\|\cdot\|_{\infty}$ be the norm on V defined by $\|f\|_{\infty}=\sup \{|f(x)| \mid 0 \leq x \leq 1\}$. Then $\left\|f_{n}\right\|=\frac{1}{\sqrt{3 n}}$ for all positive integers n, whereas $\left\|f_{n}\right\|_{\infty}=1$ for all positive integers n. Thus there can be no real number c satisfying $\|f\|_{\infty} \leq c\|f\|$ for all $f \in V$.

Example Let V and W be normed spaces over the same field of scalars F (which is either \mathbb{R} or \mathbb{C}). If $\alpha \in \operatorname{Hom}(V, W)$, set

$$
\|\alpha\|=\sup \left\{\left.\frac{\|\alpha(v)\|}{\|v\|} \right\rvert\, 0_{V} \neq v \in V\right\}
$$

where the norm in the numerator is the one defined on W and the norm in the denominator is the one defined on V. (If V is trivial then the only such α is the 0 -function, the norm of which we set equal to 0 .) Note that the fraction $\|\alpha(v)\| /\|v\|$ is just $\left\|\alpha\left(v^{\prime}\right)\right\|$, where v^{\prime} is the normal vector $\frac{1}{\|v\|} v$, so we see that $\|\alpha\|$ is just $\sup \left\{\left\|\alpha\left(v^{\prime}\right)\right\|\right\}$, where the supremum runs over all normal vectors v^{\prime} in V. In particular, if $\delta \in D(V)$ then we define the norm of δ to be

$$
\|\delta\|=\sup \left\{\left.\frac{|\delta(v)|}{\|v\|} \right\rvert\, 0_{V} \neq v \in V\right\} .
$$

Note that $\|\alpha\|$ may not be finite, though it surely will be if α is bounded. For example, let V be the space of all polynomial functions in $\mathbb{R}^{\mathbb{R}}$ on which we define the norm $\|f\|=\max \{f(t) \mid 0 \leq t \leq 1\}$. Let α be the differentiation endomorphism of V and, for each $h \geq 1$, let $f_{h} \in V$ be given by $f_{h}: x \mapsto x^{h}$. Then

$$
\frac{\left\|\alpha\left(f_{h}\right)\right\|}{\left\|f_{h}\right\|}=h
$$

for each $h \geq 1$, showing that $\|\alpha\|$ is infinite. If V is finitely generated, then we assert that $\|\alpha\|$ is finite for all $\alpha \in \operatorname{Hom}(V, W)$, a claim which we will justify in the next chapter.

We claim that, if $\|\alpha\|$ is finite for all α, then this is a norm defined on $\operatorname{Hom}(V, W)$, called norm induced by the respective norms on V and W. Indeed, as an immediate consequence of the definition we see that $\|\alpha\| \geq 0$ for all $\alpha \in \operatorname{Hom}(V, W)$, with equality happening only when α is the 0 -function. We also see that if α is not the 0 -function then $\|\alpha\|$ is the smallest positive real number c such that $\|\alpha(v)\| \leq c\|v\|$ for all $v \in V$. (We note a subtle point here: the norms on V and W are, of course, different. Therefore, in the case $V=W$, and if we have two different norms defined on V, we may use one in the numerator and another in the denominator, though usually one uses the same norm in both instances.)

Now let $\alpha \in \operatorname{Hom}(V, W)$ and $a \in F$. Then

$$
\begin{aligned}
\|a \alpha\| & =\sup \left\{\left.\frac{\|a \alpha(v)\|}{\|v\|} \right\rvert\, 0_{V} \neq v \in V\right\} \\
& =\sup \left\{\left.\frac{|a| \cdot \mid\|\alpha(v)\|}{\|v\|} \right\rvert\, 0_{V} \neq v \in V\right\}=|a| \cdot\|\alpha\| .
\end{aligned}
$$

Finally, if $\alpha, \beta \in \operatorname{Hom}(V, W)$ then

$$
\begin{aligned}
\|\alpha+\beta\| & =\sup \left\{\left.\frac{\|(\alpha+\beta)(v)\|}{\|v\|} \right\rvert\, 0_{V} \neq v \in V\right\} \\
& =\sup \left\{\left.\frac{\|\alpha(v)+\beta(v)\|}{\|v\|} \right\rvert\, 0_{V} \neq v \in V\right\} \\
& \leq \sup \left\{\left.\frac{\|\alpha(v)\|+\|\beta(v)\|}{\|v\|} \right\rvert\, 0_{V} \neq v \in V\right\} \leq\|\alpha\|+\|\beta\| .
\end{aligned}
$$

If $V=F^{n}$ and $W=F^{k}$, endowed with respective dot products and the norms defined by them, then the induced norm on $\operatorname{Hom}(V, W)$ does, in fact, always exist and is called the spectral norm. If $A \in \mathcal{M}_{k \times n}(F)$, then the spectral norm of A is defined to be the spectral norm of the homomorphism from F^{n} to F^{k} given by $v \mapsto A v$.

In 1941, Gelfand showed that if n is a positive integer and $A \in \mathcal{M}_{n \times n}(\mathbb{C})$, then the spectral radius of A satisfies $\rho(A)=\lim _{k \rightarrow \infty} \sqrt[k]{\left\|A^{k}\right\|}$, where $\|\cdot\|$ is any norm defined on $\mathcal{M}_{n \times n}(\mathbb{C})$. In other words, we see that, given $A \in \mathcal{M}_{n \times n}(\mathbb{C})$, there exists a sufficiently large k such that $\left\|A^{k}\right\|$ is approximately equal to $\rho(A)^{k}$.

Example If p is any positive integer, we can define the Hölder norm $\|\cdot\|_{p}$ on \mathbb{C}^{n} by setting $\left\|\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]\right\|_{p}=\left[\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right]^{1 / p}$. For the case $p=2$, this, of course, reduces to the norm coming from the dot product. The proof that this is a norm in the general case relies on a generalization of Minkowski’s inequality: $\|v+w\|_{p} \leq\|v\|_{p}+\|w\|_{p}$ for all $v, w \in \mathbb{C}^{n}$ and any positive integer p. This norm can be used to define a norm on $\operatorname{Hom}\left(\mathbb{C}^{n}, \mathbb{C}^{k}\right)$ for positive integers k and n, by setting

$$
\|\alpha\|_{p}=\sup \left\{\left.\frac{\|\alpha(v)\|_{p}}{\|v\|_{p}} \right\rvert\, 0_{V} \neq v \in V\right\}
$$

for any $\alpha \in \operatorname{Hom}\left(\mathbb{C}^{n}, \mathbb{C}^{k}\right)$.

With kind permission of The City University of New York (Bowker); With kind permission of UAL, FS N 191 (Hölder).
General matrix norms were first discussed by the twentieth-century American mathematician Albert H. Bowker. The nineteenth-century German algebraist Otto Hölder was strongly influenced by the work of Kronecker.

Example Let n be a positive integer. If $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$, set $\|A\|_{C}=$ $\max \left\{\left|\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} c_{i} c_{j}^{\prime}\right| \mid c_{i}, c_{j}^{\prime} \in\{0,1\}\right\}$. This defines a norm on $\mathcal{M}_{n \times n}(\mathbb{R})$, known as the cut norm. This norm has important applications in graph theory and combinatorics, but is hard to calculate. However, efficient methods of approximating the cut norm of a matrix exist, making use of the following remarkable result, known as Grothendieck's inequality: there exists a universal constant k_{G} (not dependent of n) satisfying the condition that any normal vectors $v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{n}$ in \mathbb{R}^{n} and any scalars $e_{1}, \ldots, e_{n}, e_{1}^{\prime}, \ldots, e_{n}^{\prime} \in\{-1,1\}$ satisfy $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} v_{i} \cdot w_{j} \leq k_{G} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} e_{i} e_{j}^{\prime}$. The precise value of the constant k_{G}, known as Grothendieck's constant, has not been determined, but the French mathematician Jean-Louis Krivine has shown that $1.677 \ldots \leq k_{G} \leq 1.782 \ldots$

Example For positive integers k and n, we define the Frobenius norm or HilbertSchmidt norm of $A=\left[a_{i j}\right] \in \mathcal{M}_{k \times n}(\mathbb{C})$ by

$$
\|A\|_{\mathfrak{F}}=\sqrt{\operatorname{tr}\left(A A^{H}\right)}=\sqrt{\sum_{i=1}^{k} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}} .
$$

This is precisely the norm coming from the inner product on $\mathcal{M}_{k \times n}(\mathbb{C})$ given by $\langle A, B\rangle=\operatorname{tr}\left(A B^{H}\right)$. If $A \in \mathcal{M}_{k \times n}(\mathbb{C})$ has spectral norm $\|A\|$ and Frobenius norm $\|A\|_{\mathfrak{F}}$, then it is straightforward to show that $\|A\| \leq\|A\|_{\mathfrak{F}} \leq(\sqrt{n})\|A\|$.

For vector spaces V finitely generated over \mathbb{R} or \mathbb{C}, it does not matter which norm once chooses. To see this, we need the following preliminary result.

Proposition 15.5 Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a finite linearly-independent subset of a normed space V. Then there exists a positive real number c such that $\left\|\sum_{i=1}^{n} a_{i} v_{i}\right\| \geq c\left(\sum_{i=1}^{n}\left|a_{i}\right|\right)$ for all scalars a_{1}, \ldots, a_{n}.

Proof Let W be the subspace of V generated by $\left\{v_{1}, \ldots, v_{n}\right\}$ and let Y be the subset of W consisting of all linear combinations $\sum_{i=1}^{n} a_{i} v_{i}$ for which $\sum_{i=1}^{n}\left|a_{i}\right|=1$. Pick $w=\sum_{i=1}^{n} a_{i} v_{i} \in W$. If $w=0_{V}$, then $a_{i}=0$ for each i and so $\sum_{i=1}^{n}\left|a_{i}\right|=0$. Therefore, any positive real number c will do. Hence we can assume that $w \neq 0_{V}$ and so $d=\sum_{i=1}^{n}\left|a_{i}\right|>0$. Moreover, $y=\sum_{i=1}^{n}\left(a_{i} d^{-1}\right) v_{i} \in Y$ and $\|w\| \geq c\left(\sum_{i=1}^{n}\left|a_{i}\right|\right)$ if and only if $\|y\| \geq c$. Therefore, to prove the proposition it suffices to show that there exists a positive real number c satisfying the condition that $\|y\| \geq c$ for all $y \in Y$.

Suppose that this is not the case. Then we can find a sequence y_{1}, y_{2}, \ldots of vectors in Y such that $y_{h}=\sum_{i=1}^{n} b_{i h} v_{i}$ with $\sum_{i=1}^{n}\left|b_{i h}\right|=1$ and $\lim _{h \rightarrow \infty}\left\|y_{h}\right\|=0$. In particular, we note that $\left|b_{i h}\right| \leq 1$ for each $1 \leq i \leq n$ and each $h \geq 1$. Thus, in particular, the sequence b_{11}, b_{12}, \ldots of scalars is bounded. By the Bolzano-Weierstrass Theorem (which holds for both real and complex numbers), this sequence must therefore have a convergent subsequence. Throwing away all of y_{h} for which $b_{1 h}$ is not in that subsequence, we can assume without loss of generality that the sequence b_{11}, b_{12}, \ldots converges to some scalar b_{1}. Similarly, the sequence b_{21}, b_{22}, \ldots has a convergent subsequence and, throwing away all of the y_{h} for which $b_{2 h}$ is not in that sequence, we can assume that the sequence b_{21}, b_{22}, \ldots converges to some scalar b_{2} as well. Continuing in this manner, we finally obtain an infinite sequence y_{1}, y_{2}, \ldots of vectors in Y such that, for each $1 \leq i \leq n$, the sequence of scalars $b_{i 1}, b_{i 2}, \ldots$ converges to some scalar b_{i}.

Set $y=\sum_{i=1}^{n} b_{i} v_{i}$. Clearly, $y \in W$ and so not all of the b_{i} are equal to 0 . In particular, $y \neq 0_{V}$ and so $\|y\|=r>0$. On the other hand, for each $h \geq 1$ we have $\|y\| \leq\left\|y-y_{h}\right\|+\left\|y_{h}\right\|=\left\|\sum_{i=1}^{n}\left(b_{i}-b_{i h}\right) v_{i}\right\|+\left\|y_{h}\right\| \leq\left(\sum_{i=1}^{n}\left|b_{i}-b_{i h}\right| \cdot\left\|v_{i}\right\|\right)+$ $\left\|y_{h}\right\|$. But $\lim _{h \rightarrow \infty}\left\|y_{h}\right\|=0$ and $\lim _{h \rightarrow 0}\left|b_{i}-b_{i h}\right|=0$ for each $1 \leq i \leq n$, and so there exists an integer h so large that $\|y\|<r$. This is a contradiction, from which the result follows.

Norms $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are defined on the same vector space V are equivalent if and only if there exist positive real numbers c and d such that $c\|v\|_{a} \leq\|v\|_{b} \leq$ $d\|v\|_{a}$ for all $v \in V$.

Proposition 15.6 Any two norms defined on a finitely-generated vector space V over \mathbb{R} or \mathbb{C} are equivalent.

Proof Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for a vector space V over \mathbb{R} or \mathbb{C} on which we have norms $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ defined. By Proposition 15.5, there exists a scalar c such that $\left\|\sum_{i=1}^{n} a_{i} v_{i}\right\|_{b} \geq c\left(\sum_{i=1}^{n}\left|a_{i}\right|\right)$ for any vector $v=\sum_{i=1}^{n} a_{i} v_{i}$ in V. On the other
hand, from the triangle inequality, we have $\|v\|_{a} \leq \sum_{i=1}^{n}\left|a_{i}\right| \cdot\left\|v_{i}\right\|_{a} \leq r \sum_{i=1}^{n}\left|a_{i}\right|$, where $r=\max \left\{\left\|v_{1}\right\|_{a}, \ldots,\left\|v_{n}\right\|_{a}\right\}>0$ and so $\left(c r^{-1}\right)\|v\|_{a} \leq\|v\|_{b}$ for each $v \in V$. Interchanging the roles of $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$, we repeat this proof to obtain a positive real number d such that $\|v\|_{b} \leq d\|v\|_{a}$ for each $v \in V$.

Proposition 15.7 (Hahn-Banach Theorem) Let V be a vector space over a field F which is either \mathbb{R} or \mathbb{C} and let $v \mapsto\|v\|$ be a norm defined on V. Moreover, let W be a subspace of V and let $\delta \in D(W)$ satisfy the condition that $|\delta(w)| \leq\|w\|$ for all $w \in W$. Then there exists a linear functional $\theta \in D(V)$ which is an extension of δ satisfying $|\theta(v)| \leq\|v\|$ for all $v \in V$.

Proof (1) We first consider the case $F=\mathbb{R}$. Let \mathcal{C} be the set of all pairs (Y, ψ), where Y is a subspace of V containing W and $\psi \in D(Y)$ satisfies the conditions that $\psi(y) \leq\|y\|$ for all $y \in Y$ and ψ is an extension of δ. This set is nonempty since $|\delta(w)| \leq\|w\|$ surely implies that $\delta(w) \leq\|w\|$ and so $(W, \delta) \in \mathcal{C}$. Moreover, we can define a partial order on \mathcal{C} by setting $(Y, \psi) \preccurlyeq\left(Y^{\prime}, \psi^{\prime}\right)$ if and only if $Y \subseteq Y^{\prime}$ and $\psi^{\prime}(y)=\psi(y)$ for all $y \in Y$. If $\left(\left(Y_{h}, \psi_{h}\right) \mid h \in \Omega\right)$ is a chain in \mathcal{C}, set $Y=\bigcup_{h \in \Omega} Y_{h}$ and define $\psi \in D(Y)$ by setting $\psi(y)=\psi_{h}(y)$ when $y \in Y_{h}$. This function is welldefined since \mathcal{C} is a chain, and it surely belongs to \mathcal{C}. Moreover, it is clear that $\left(Y_{h}, \psi_{h}\right) \preccurlyeq(Y, \psi)$ for each $h \in \Omega$. Therefore, by the Hausdorff Maximum Principle, \mathcal{C} has a maximal element, which we will denote by $\left(Y_{0}, \theta\right)$.

We want to show that $Y_{0}=V$. Indeed, assume that this is not the case and let $z \in V \backslash Y_{0}$. Then $Y_{1}=Y_{0}+\mathbb{R} z$ properly contains Y_{0} and, for any $c_{0} \in \mathbb{R}$ we can define the linear functional $\theta_{1} \in D\left(Y_{1}\right)$ defined by $\theta_{1}: y_{0}+a z \mapsto \theta\left(y_{0}\right)+a c_{0}$ which surely is an extension of θ. We will be done if we can pick c_{0} in such a manner that $\theta_{1}\left(y_{1}\right) \leq\left\|y_{1}\right\|$ for each $y_{1} \in Y_{1}$, for if we can do that, then we would have $\left(Y_{1}, \theta\right) \in \mathcal{C}$, contradicting the maximality of Y_{0}. If $y_{1}, y_{2} \in Y_{1}$ then

$$
\begin{aligned}
\theta\left(y_{1}\right)-\theta\left(y_{2}\right) & =\theta\left(y_{1}-y_{2}\right) \leq\left\|y_{1}-y_{2}\right\| \\
& =\left\|y_{1}+z-z-y_{2}\right\| \leq\left\|y_{1}+z\right\|+\left\|-z-y_{2}\right\| .
\end{aligned}
$$

This implies that $-\left\|-z-y_{2}\right\|-\theta\left(y_{2}\right) \leq\left\|y_{1}+z\right\|-\theta\left(y_{1}\right)$. Since y_{2} does not appear on the right side of this equality nor does y_{1} appear on the left side, we see that the real numbers

$$
d_{1}=\inf \left\{\left\|y_{1}+z\right\|-\theta\left(y_{1}\right) \mid y_{1} \in Y_{1}\right\}
$$

and

$$
d_{2}=\sup \left\{-\left\|-z-y_{2}\right\|-\theta\left(y_{2}\right) \mid y_{2} \in Y_{1}\right\}
$$

satisfy $d_{2} \leq d_{1}$. Now choose c_{0} to be any real number satisfying $d_{2} \leq c_{0} \leq d_{1}$.
We claim that $\theta\left(y_{0}\right)+a c_{0} \leq\left\|y_{0}+a z\right\|$ for all real numbers a. If $a=0$, we know it is true by the choice of θ. If $a>0$ we have $c_{0} \leq d_{1} \leq\left\|a^{-1} y_{0}+z\right\|-\theta\left(a^{-1} y_{0}\right)$
and so $a c_{0} \leq a\left\|a^{-1} y_{0}+z\right\|-\theta\left(y_{0}\right)=\left\|y_{0}+a z\right\|-\theta\left(y_{0}\right)$, whence $\theta\left(y_{0}\right)+a c_{0}$ $\leq\left\|y_{0}+a z\right\|$. If $a<0$ we have $c_{0} \geq d_{2} \geq-\left\|-z-a^{-1} y_{0}\right\|$ and so $-a c_{0} \geq$ $-a\left\|-z-a^{-1} y_{0}\right\|+\theta\left(y_{0}\right)=-\left\|a z+y_{0}\right\|+\theta\left(y_{0}\right)$ and so $-\theta\left(y_{0}\right)-a c_{0} \geq$ $-\left\|a z+y_{0}\right\|$, whence $\theta\left(y_{0}\right)+a c_{0} \leq\left\|y_{0}+a z\right\|$.

Thus we see that $\theta \in D(V)$ satisfies $\theta(v) \leq\|v\|$ for all $v \in V$. If $v \in V$. then $-\theta(v)=\theta(-v) \leq\|-v\|=|(-1)| \cdot\|v\|=\|v\|$ as well as so $|\theta(v)| \leq\|v\|$ for all $v \in V$, proving our result in the case the field of scalars is \mathbb{R}.
(2) Now assume that $F=\mathbb{C}$. Since W and V are vector spaces over \mathbb{C}, they are also vector spaces over \mathbb{R}. Write δ as $\delta: w \mapsto \delta_{1}(w)+i \delta_{2}(w)$, where $\delta_{1}, \delta_{2} \in D(W)$, considering W as a vector space over \mathbb{R}. Moreover, $\delta_{1}(w) \leq|\delta(w)|$ for all $w \in W$, since $\operatorname{Re}(z) \leq|z|$ for any $z \in \mathbb{C}$. Therefore, $\delta_{1}(w) \leq\|w\|$ for all $w \in W$ and, as in the last part of the proof of part (1), we actually have $\left|\delta_{1}(w)\right| \leq\|w\|$ for all $w \in W$. By part (1), we then know that there exists a linear functional $\theta_{1} \in D(V)$ satisfying $\theta_{1}(v) \leq\|v\|$ for all $v \in V$.

But $i\left[\delta_{1}(w)+i \delta_{2}(w)\right]=i \delta(w)=\delta(i w)=\delta_{1}(i w)+i \delta_{2}(i w)$ for all $w \in W$. Since the real parts of both sides must be equal, we see that $\delta_{2}(w)=-\delta_{1}(i w)$. Now define the function $\theta: V \rightarrow \mathbb{C}$ by setting $\theta: v \mapsto \theta_{1}(v)-i \theta_{1}(i v)$. This is a linear functional on V, considered as a vector space over \mathbb{C}, since clearly $\theta\left(v+v^{\prime}\right)=\theta(v)+\theta\left(v^{\prime}\right)$ for all $v, v^{\prime} \in V$ and for each $a+b i \in \mathbb{C}$ and $v \in V$ we have

$$
\begin{aligned}
\theta((a+b i) v) & =\theta_{1}(a v+i b v)-i \theta_{1}(i a v-b v) \\
& =a \theta_{1}(v)+b \theta_{1}(i v)-i\left[a \theta_{1}(i v)-b \theta_{1}(v)\right] \\
& =(a+b i)\left[\theta_{1}(v)-i \theta_{1}(i v)\right]=(a+i b) \theta(v) .
\end{aligned}
$$

Furthermore, θ is an extension of δ.
We claim that $|\theta(v)| \leq\|v\|$ for all $v \in V$. To begin with, we note that if $\theta(v)=0$ this holds, since $\|v\| \geq 0$ for all $v \in V$. Now assume that $\|v\|>0$. Then there exists a real number r such that $\theta(v)=|\theta(v)| e^{i r}$ and so $|\theta(v)|=\theta(v) e^{-i r}$. Since $|\theta(v)|$ is real, this means that $\theta(v) e^{-i r} \in \mathbb{R}$ and so $|\theta(v)|=\theta(v) e^{-i r}=\theta_{1}\left(e^{-i r} v\right) \leq$ $\left\|e^{-i r} v\right\|=\left|e^{-i r}\right| \cdot\|v\|=\|v\|$. Thus the proposition is proven.

Proposition 15.8 Let V be a normed space and let W be nontrivial subspace of V on which we are given a linear functional δ, for which $\|\delta\|$ is finite. Then there exists a linear functional $\theta \in D(V)$ which is an extension of δ satisfying $\|\theta\|=\|\delta\|$.

Proof For each $w \in W$ we have $|\delta(w)| \leq\|\delta\| \cdot\|w\|$. Moreover, we have a norm $v \mapsto\|v\|^{*}$ on V by setting $\|v\|^{*}=\|\delta\| \cdot\|v\|$ for all $v \in V$. Therefore, by Proposition 15.7, we know that there exists a linear functional $\theta \in D(V)$ extending δ and satisfying $|\theta(v)| \leq\|v\|^{*}=\|\delta\| \cdot\|v\|$, and so $\frac{|\theta(v)|}{\|v\|} \leq\|\delta\|$ for all $0_{V} \neq v \in V$. Thus
$\|\theta\| \leq\|\delta\|$. On the other hand,

$$
\|\delta\|=\sup \left\{\left.\frac{|\delta(w)|}{\|w\|} \right\rvert\, 0_{W} \neq w \in W\right\} \leq \sup \left\{\left.\frac{|\theta(v)|}{\|v\|} \right\rvert\, 0_{V} \neq v \in V\right\}=\|\theta\|
$$

and so we have the desired equality.

The norm $\|\cdot\|_{1}$ defined on \mathbb{C}^{n} is important in various contexts. Let n be a positive integer and let θ be the function from $\mathcal{M}_{n \times n}(\mathbb{C})$ to \mathbb{R} defined by $\theta:\left[a_{i j}\right] \mapsto$ $\max \left\{\sum_{i=1}^{n}\left|a_{i j}\right| \mid 1 \leq j \leq n\right\}$, which we have already seen when we defined condition numbers. Numerical algorithms that compute the eigenvalues of a matrix, as a rule, make roundoff errors on the order of $c \theta(A)$, where c is a constant determined by the precision of the computer on which the algorithm is running. Since the eigenvalues of similar matrices are identical, it is usually useful, given a square matrix A, to find a matrix B similar to A with $\theta(B)$ small. This can often be done by choosing B of the form $P A P^{-1}$, where P is a nonsingular diagonal matrix.

Example If $A=\left[\begin{array}{ccc}1 & 0 & 10^{-4} \\ 1 & 1 & 10^{-2} \\ 10^{4} & 10^{2} & 1\end{array}\right]$, then $\theta(A)=1002$. However, if we choose $P=\left[\begin{array}{ccc}10^{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 10^{-2}\end{array}\right]$, then $\theta\left(P A P^{-1}\right)=3$.

Let α be the endomorphism of \mathbb{C}^{n} represented with respect to the canonical basis by a matrix $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. Then for each $v \in \mathbb{C}^{n}$ we have $\theta(A)\|v\|_{1} \geq\|\alpha(v)\|_{1}$. In particular, if c is an eigenvalue of α associated with an eigenvector v then $\theta(A)\|v\|_{1} \geq\|\alpha(v)\|_{1}=|c| \cdot\|v\|_{1}$ and so $\theta(A) \geq|c|$. Thus we see that $\theta(A) \geq \rho(A)$, where $\rho(A)$ is the spectral radius of A. This bound is called the Gershgorin bound. In fact, we can sharpen this result.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Taussky-Todd).

Semyon Aranovich Gershgorin was a twentieth century Russian mathematician. Gershgorin's theorem was published in a Russian journal in 1931 and was generally ignored, until it was noticed and publicized by the Austrian-born American mathematician Olga Taussky-Todd, one of the most important researchers in matrix theory, who worked on the development of numerical linear algebra methods for computers after World War II.

Proposition 15.9 (Gershgorin's Theorem) Let α be the endomorphism of \mathbb{C}^{n} represented with respect to the canonical basis by the matrix $A=\left[a_{i j}\right] \in$ $M_{n \times n}(\mathbb{C})$ and, for each $1 \leq i \leq n$, let $r_{i}=\sum_{j \neq i}\left|a_{i j}\right|$. Let K_{i} be the circle in the complex plane with radius r_{i} and center $a_{i i}$. Then $\operatorname{spec}(\alpha) \subseteq K=$ $\bigcup_{i \neq j} K_{i}$.

Proof Let c be an eigenvalue of α and let $v=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]$ be an eigenvector of α associated with c. Let h be an index satisfying $\left|b_{h}\right| \geq\left|b_{i}\right|$ for all $1 \leq i \leq n$. Then $b_{h} \neq 0$ and $A v=c v$ so $\left(c-a_{h h}\right) b_{h}=\sum_{j \neq h} a_{h j} b_{j}$ and hence $\left|c-a_{h h}\right|\left|b_{h}\right| \leq$ $\sum_{j \neq i}\left|a_{h j} b_{j}\right| \leq\left|b_{h}\right| r_{h}$. Thus $\left|c-a_{h h}\right| \leq r_{h}$ and so $c \in K_{h} \subseteq K$, as desired.

Proposition 15.10 (Diagonal Dominance Theorem ${ }^{1}$) Let n be a positive integer and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{C})$ satisfy the condition that $\left|a_{i i}\right|>$ $\sum_{j \neq i}\left|a_{i j}\right|$ for all $1 \leq i \leq n$. Then A is nonsingular.

Proof The stated condition says that 0 does not belong to any of the circles K_{i} defined in Gershgorin's Theorem and so it cannot be an eigenvalue of A. Hence A is nonsingular.

Example Let α be the endomorphism of \mathbb{C}^{4} represented with respect to the canonical basis by the matrix $A=\left[\begin{array}{rrrr}3 & 1 & 2 & 0 \\ 4 & 15 & 0 & -2 \\ -3 & 0 & 0 & -1 \\ 0 & 0 & 3 & 5\end{array}\right]$. Then $\operatorname{spec}(A)=$ $\{15.32,4.49,1.59 \pm 2.35 i\}$. These numbers are found in the union K of the following circles in the complex plane: the circle of radius 3 around the point $(3,0)$; the circle of radius 6 around the point $(15,0)$, the circle of radius 4 around the point $(0,0)$, and the circle of radius 3 around the point $(5,0)$. We furthermore note that $\operatorname{spec}(A)=\operatorname{spec}\left(A^{T}\right)$ and so, by the same argument, we see that the eigenvalues of α lie in the union K^{\prime} of the following circles in the complex plane: the circle of radius 7 around the point $(3,0)$, the circle of radius 1 around the point $(15,0)$, the circle of radius 5 around the point $(0,0)$, and the circle of radius 3 around the point $(5,0)$.

[^10]

These circles and the location of the eigenvalues can be seen in the figure above. Thus, the eigenvalues of α lie in $K \cap K^{\prime}$.

Since any polynomial in $\mathbb{C}[X]$ is the characteristic polynomial of a matrix, we can use Gershgorin's Theorem to get a bound on the location of the zeros of any polynomial. However, there are more sophisticated methods available to get much better bounds.

We will not go into the many results explicating Gershgorin's Theorem. One of these, for example, states that if the union of s of the disks in the complex plane defined by Gershgorin circles forms a connected domain which is isolated from the disks defined by the remaining circles, then this domain contains precisely s of the eigenvalues of the given matrix. There are also many generalizations of Gershgorin's Theorem, the best-known of which is the following.

Proposition 15.11 (Brauer's Theorem) Let α be the endomorphism of \mathbb{C}^{n} represented with respect to the canonical basis by the matrix $A=\left[a_{i j}\right] \in$ $M_{n \times n}(\mathbb{C})$ and, for each $1 \leq i \leq n$, let $r_{i}=\sum_{j \neq i}\left|a_{i j}\right|$. For each $1 \leq i \neq$ $j \leq n$, let $K_{i j}$ be the Cassini oval $\left\{z \in \mathbb{C}\left|\left|z-a_{i i}\right|\right| z-a_{j j} \mid \leq r_{i} r_{j}\right\}$ in the complex plane. Then $\operatorname{spec}(\alpha) \subseteq K=\bigcup_{i \neq j} K_{i j}$.

Proof Let c be an eigenvalue of α and let $v=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]$ be an eigenvector of α associated with c. Let h and k be indices such that $\left|b_{h}\right| \geq\left|b_{k}\right| \geq\left|b_{i}\right|$ for all $i \neq h, k$. We know that $b_{h} \neq 0$, and we can assume, as well, that $b_{k} \neq 0$ for otherwise we would have $a_{h h}=c$, in which case surely $c \in K$. Since $A v=c v$, we have
$\left(c-a_{h h}\right) b_{h}=\sum_{j \neq h} a_{h j} b_{j}$ so

$$
\left|c-a_{h h}\right|\left|b_{h}\right|=\left|\sum_{j \neq h} a_{h j} b_{j}\right| \leq \sum_{j \neq h}\left|a_{h j}\right|\left|b_{j}\right| \leq \sum_{j \neq h}\left|a_{h j}\right|\left|b_{k}\right|=r_{h}\left|b_{k}\right| .
$$

In other words, $\left|c-a_{h h}\right| \leq r_{h}\left|b_{k}\right|\left|b_{h}\right|^{-1}$. In the same manner, we obtain $\left|c-a_{k k}\right| \leq$ $r_{k}\left|b_{h}\right|\left|b_{k}\right|^{-1}$ and so, multiplying these two results together, we see that $\left|c-a_{h h}\right| \mid c-$ $a_{k k} \mid \leq r_{h} r_{k}$, so $c \in K_{h k} \subseteq K$, as desired.

Note that Gershgorin's Theorem involves n circles, whereas Brauer's Theorem involves $\binom{n}{2}=\frac{1}{2} n(n-1)$ ovals.

Example It is sometimes useful to consider norms on vector spaces V not over subfields of \mathbb{C}, namely functions $v \mapsto\|v\|$ from V to \mathbb{R} satisfying conditions (1)-(3) of Proposition 15.3. For example, let F be a finite field and let $V=F^{n}$ for some positive integer n. Define $\|v\|$ to be the number of nonzero entries in v, for each $v \in V$. This function is called the Hamming norm and is of extreme importance in algebraic coding theory, where one is interested in vector spaces over F in which every nonzero vector has a large Hamming norm. In an example at the beginning of Chap. 5, we showed a vector space of dimension 3 over $\operatorname{GF}(2)$, every nonzero element of which has Hamming norm equal to 4.

With kind permission of the Special Collections \& Archives, Dudley Knox Library, Naval Postgraduate School.
Richard Hamming, a twentieth-century American mathematician and computer scientist, is best known for his development of the theory of error-detecting and error-correcting codes.

If v and w are vectors in space V over which we have a norm defined, then the distance between v and w is defined as $d(v, w)=\|v-w\|$. If $v \in V$ and $\varnothing \neq$ $U \subseteq V$, we define the distance of v from U by $d(v, U)=\inf \{d(v, u) \mid u \in U\}$.

When $V=\mathbb{R}^{n}$ on which we have the dot product, this just gives us the ordinary notion of Euclidean distance. The ability to define the notion of distance in such spaces is important, since it allows us to measure the degree of error in algorithmic computations by measuring the distance between a computed value and the value predicted by theory. It also allows us to define the notion of convergence.

The following proposition shows that this abstract notion of distance indeed has the geometric properties that one would expect from a notion of distance.

Proposition 15.12 Let V be a normed space and let $v, w, y \in V$. Then:
(1) $d(v, w)=d(w, v)$;
(2) $d(v, w) \geq 0$, where equality exists if and only if $v=w$;
(3) (Triangle inequality) $d(v, w) \leq d(v, y)+d(y, w)$.

Proof This is an immediate consequence of Proposition 15.3.

Example Let A be a finite set, and let V be the collection of all subsets of A, which is a vector space over $F=\mathrm{GF}(2)$. We have a norm defined on V by letting $\|B\|$ be the number of elements in B. Then the distance between subsets B and C of A is $\|B+C\|$, namely the number of elements in their symmetric difference.

If A and B are nonempty subsets of a space V over which we have a norm defined, then we set $d(A, B)=\inf \{d(v, w) \mid v \in A$ and $w \in B\}$. In particular, if $v \in V$ and B is a nonempty subset of V, we set $d(v, B)=d(\{v\}, B)$.

Let n be a positive integer. If $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{C})$, and if $k>0$ is an integer, let us define the matrix $P(k)=\left[p_{i j}^{(k)}\right]$ to be $I+\sum_{h=1}^{k} \frac{1}{h!} A^{h}$. We claim that, for each fixed $1 \leq i, j \leq n$, the limit $\lim _{h \rightarrow \infty} p_{i j}^{(h)}$ exists in \mathbb{C}. Indeed, if $B=\left[b_{i j}\right] \in \mathcal{M}_{n \times n}(F)$, set $m(B)=\max _{1 \leq i, j \leq n}\left|b_{i j}\right|$. Then every entry in the matrix A^{2} equals the sum of n products of pairs of entries of A and so, in absolute value, is equal to at most $m(A)^{2} n$. Thus we see that $m\left(A^{2}\right) \leq m(A)^{2} n$. Similarly, $m\left(A^{3}\right) \leq m\left(A^{2}\right) m(A) n \leq m(A)^{3} n^{2}$ and so forth. Thus, in general,

$$
m\left(\frac{1}{k!} A^{k}\right) \leq \frac{n^{k-1}}{k!} m(A)^{k} \leq \frac{1}{k!}[m(A) n]^{k}
$$

and so, in particular, $m(P(k)) \leq \sum_{k=0}^{k} \frac{1}{k!} m(A)^{k}$ for all $k \geq 1$. But from calculus we know that the series $\sum_{h=0}^{\infty} \frac{1}{h!} r^{h}$ converges absolutely to e^{r} for each real number r. Therefore, the limit we seek exists, and, at least by analogy, we are justified in denoting the matrix $\left[\lim _{h \rightarrow \infty} p_{i j}^{(h)}\right]$ by e^{A}.

Matrix exponentials were explicitly studied by the American mathematician William Henry Metzler at the end of the nineteenth century. They appear earlier in the work of Laguerre and Peano.

Proposition 15.13 If n is a positive integer $A=\left[a_{i j}\right] \in M_{n \times n}(F)$ is a diagonal matrix, where F is \mathbb{R} or \mathbb{C}, then $e^{A}=\left[b_{i j}\right]$ is a diagonal matrix with $b_{i i}=e^{a_{i i}}$ for all $1 \leq i \leq n$.

Proof This is an immediate consequence of the definition.

In particular, $e^{O}=I$. Moreover, this implies that if $B \in M_{n \times n}(F)$ is similar to a diagonal matrix then B and e^{B} have the same eigenvectors, while the eigenvalues of e^{B} are the exponentials of the eigenvalues of B.

Actually, we can do a bit better: if $A=\left[\begin{array}{cccc}A_{1} & O & \ldots & O \\ O & A_{2} & \ldots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \ldots & A_{m}\end{array}\right]$, where each A_{h}
is a square matrix, then $e^{A}=\left[\begin{array}{cccc}e^{A_{1}} & O & \ldots & O \\ O & e^{A_{2}} & \ldots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \ldots & e^{A_{m}}\end{array}\right]$.

Example If $O \neq A \in \mathcal{M}_{n \times n}(F)$, where F is either \mathbb{R} or \mathbb{C}, is a nilpotent matrix with index of nilpotence k, then $e^{A}=I+\sum_{h=1}^{k} \frac{1}{h!} A^{h}$. Thus, for example, if $A=\left[\begin{array}{rrr}0 & 1 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 0\end{array}\right]$, we have $e^{A}=I+A+\frac{1}{2} A^{2}=\left[\begin{array}{rrr}1 & 1 & \frac{3}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$.

Example If $A=\left[\begin{array}{ll}0 & k \\ 0 & 0\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$, then $e^{A}=\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right]$; if $B=\left[\begin{array}{rr}0 & r \\ -r & 0\end{array}\right]$ then $e^{B}=\left[\begin{array}{rr}\cos (r) & \sin (r) \\ -\sin (r) & \cos (r)\end{array}\right]$.

Example If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$, then

$$
e^{A}=\left[\begin{array}{lll}
\frac{2}{3}+\frac{1}{3} e^{3} & \frac{1}{3} e^{3}-\frac{1}{3} & \frac{1}{3} e^{3}-\frac{1}{3} \\
\frac{1}{3} e^{3}-\frac{1}{3} & \frac{2}{3}+\frac{1}{3} e^{3} & \frac{1}{3} e^{3}-\frac{1}{3} \\
\frac{1}{3} e^{3}-\frac{1}{3} & \frac{1}{3} e^{3}-\frac{1}{3} & \frac{2}{3}+\frac{1}{3} e^{3}
\end{array}\right] .
$$

If $P \in \mathcal{M}_{n \times n}(F)$ is nonsingular, where F is \mathbb{R} or \mathbb{C}, then

$$
P^{-1}\left[I+\sum_{h=1}^{k} \frac{1}{h!} A^{h}\right] P=I+\sum_{h=1}^{k} \frac{1}{h!}\left(P^{-1} A P\right)^{h}
$$

for each k and so $P^{-1} e^{A} P=e^{P^{-1} A P}$. Thus we see that the exponentials of similar matrices are themselves similar. This is very important in calculations. In particular, if A is diagonalizable there exists a nonsingular matrix P such that $P^{-1} A P$ is a diagonal matrix $D=\left[d_{i j}\right]$ and so $P^{-1} e^{A} P=e^{D}$ is also a diagonal matrix. Thus e^{A} is diagonalizable whenever A is.

If A, B is a commuting pair of matrices in $\mathcal{M}_{n \times n}(F)$, then as a direct consequence of the definition we see that $e^{A} e^{B}=e^{A+B}=e^{B} e^{A}$. But this is not true in general, as the following example shows.

Example If $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{rr}-1 & 0 \\ 0 & 0\end{array}\right]$, then

$$
e^{A} e^{B}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{-1} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
e^{-1} & 1 \\
0 & 1
\end{array}\right] \neq\left[\begin{array}{cc}
e^{-1} & 1-e^{-1} \\
0 & 1
\end{array}\right]=e^{A+B}
$$

Example The condition that A, B be a commuting pair is sufficient for $e^{A} e^{B}=$ e^{A+B} to hold, but is not necessary. Thus, for example, if $A=\left[\begin{array}{rr}0 & \pi \\ -\pi & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & (7+4 \sqrt{3}) \pi \\ (-7+4 \sqrt{3}) \pi & 0\end{array}\right]$, then $A B \neq B A$, but $e^{A}=e^{B}=-I$ so $e^{A} e^{B}=I=e^{A+B}$.

This fact is significant when it comes to calculating e^{A} in many cases. For example, suppose that A is an $n \times n$ matrix having a single eigenvalue c of multiplicity n. Then for each scalar t, the matrices $c t I$ and $t(A-c I)$ commute and so $e^{t A}=e^{t c I} e^{t(A-c I)}=\left(e^{t c} I\right) \sum_{k=0}^{\infty} \frac{t^{k}}{k!}(A-c I)^{k}$ and, from the Cayley-Hamilton Theorem, we know that $(A-c I)^{k}=O$ for all $k \geq n$. Thus we see that $e^{t A}=$ $\left(e^{t c} I\right) \sum_{k=0}^{n-1} \frac{t^{k}}{k!}(A-c I)^{k}$ and so there exists a polynomial $p(X) \in F[X]$ satisfying $e^{t A}=p(A)$.

Thus we can put much of what we said together. Given a matrix $A \in \mathcal{M}_{n \times n}(\mathbb{C})$, we know by Proposition 13.7 that it is similar to a matrix in Jordan canonical form. That is to say, there exists a nonsingular matrix P such that $P^{-1} A P$ is of the form $\left[\begin{array}{cccc}A_{1} & O & \ldots & O \\ O & A_{2} & \ldots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \ldots & A_{m}\end{array}\right]$, where each A_{i} is a square matrix of the form $c_{i} I+N_{i}$, for
N_{i} a nilpotent matrix of a particularly simple form. Thus, for each i, we have $e^{A_{i}}=$ $e^{c_{i}} e^{N_{i}}$ and so $e^{A}=P\left[\begin{array}{cccc}e^{c_{1}} e^{N_{1}} & O & \cdots & O \\ O & e^{c_{2}} e^{N_{2}} & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \ldots & e^{c_{m}} e^{N_{m}}\end{array}\right] P^{-1}$. Moreover, each $e^{N_{i}}$ is just $p_{i}\left(N_{i}\right)$ for some polynomial $p_{i}(X) \in \mathbb{C}[X]$.

We also note that any matrix A commutes with $-A$, so $e^{A} e^{-A}=e^{A-A}=$ $e^{O}=I$, proving that e^{A} is nonsingular and $e^{-A}=\left(e^{A}\right)^{-1}$. Therefore, we have a function $A \mapsto e^{A}$ from $\mathcal{M}_{n \times n}(F)$ (where F is either \mathbb{R} or \mathbb{C}) to the set of all nonsingular matrices in $\mathcal{M}_{n \times n}(F)$, which is not monic. In the case $F=\mathbb{C}$, this function is in fact epic. If $A \in \mathcal{M}_{n \times n}(F)$ then a matrix $B \in \mathcal{M}_{n \times n}(F)$ is a matrix logarithm of A if and only if $A=e^{B}$. From the previous discussion, we see that only nonsingular matrices have logarithms. If $F=\mathbb{C}$, then every nonsingular matrix has a logarithm, but not necessarily a unique one.

Example If $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 2 \pi \\ -2 \pi & 0\end{array}\right]$ then $e^{A}=e^{B}=I$. Therefore, both A and B are logarithms of I, which are not even similar.

A similar proof can be used to show that if A has distinct eigenvalues $\left\{c_{1}, \ldots, c_{n}\right\}$ and if $p_{k}(X)=\prod_{j \neq k}\left(c_{k}-c_{j}\right)^{-1}\left(X-c_{j} I\right)$ for all $1 \leq k \leq n$ then for any scalar t we have $e^{t A}=\sum_{k=1}^{n} e^{t c_{k}} p_{k}(A)$.

What about, say, $\cos (A)$ and $\sin (A)$? We know that the cosine function has a Maclaurin representation

$$
\cos (x)=\sum_{i=0}^{\infty} \frac{(-1)^{i}}{(2 i)!} x^{2 i}
$$

For each natural number n, let us consider the polynomial

$$
p_{n}(X)=\sum_{i=0}^{n} \frac{(-1)^{i}}{(2 i)!} X^{2 i}
$$

Then we can surely calculate $p_{n}(A)$ for each n and see whether the sequence of such matrices converges in some sense. However, there is another possibility. We know that for any real or complex number z we have $\cos (z)=\frac{1}{2}\left[e^{i z}+e^{-i z}\right]$ and so
we can just define $\cos (A)$ to be the matrix $\frac{1}{2}\left[e^{i A}+e^{-i A}\right]$, which we know always exists.

Example We see that $\cos (I)=\left[\begin{array}{ccc}\cos (1) & 0 & 0 \\ 0 & \cos (1) & 0 \\ 0 & 0 & \cos (1)\end{array}\right]$ and

$$
\cos \left(\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\right)=\left[\begin{array}{lll}
\frac{2}{3}+\frac{1}{3} \cos (3) & \frac{1}{3} \cos (3)-\frac{1}{3} & \frac{1}{3} \cos (3)-\frac{1}{3} \\
\frac{1}{3} \cos (3)-\frac{1}{3} & \frac{2}{3}+\frac{1}{3} \cos (3) & \frac{1}{3} \cos (3)-\frac{1}{3} \\
\frac{1}{3} \cos (3)-\frac{1}{3} & \frac{1}{3} \cos (3)-\frac{1}{3} & \frac{2}{3}+\frac{1}{3} \cos (3)
\end{array}\right] .
$$

Similarly, we know that $\sin (z)=\frac{-i}{2}\left[e^{i z}-e^{-i z}\right]$ and so we can define $\sin (A)$ to be $\frac{-i}{2}\left[e^{i A}-e^{-i A}\right]$.

Exercises

Exercise 934

Let $V=C(-1,1)$ and let $a>-\frac{1}{2}$ be a real number. Is the function μ : $V \times V \rightarrow \mathbb{R}$ defined by $\langle f, g\rangle=\int_{-1}^{1}\left[1-t^{2}\right]^{a-1 / 2} f(t) g(t) d t$ an inner product on V ?

Exercise 935
Is the function $\mu: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
\mu:\left(\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right],\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right) \mapsto a_{1}\left(b_{1}+b_{2}\right)+a_{2}\left(b_{1}+2 b_{2}\right)
$$

an inner product on \mathbb{R}^{2} ?

Exercise 936

Is the function $\mu: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
\mu:\left(\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right],\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right) \mapsto a_{1} b_{1}-a_{1} b_{2}-a_{2} b_{1}+4 a_{2} b_{2}
$$

an inner product on \mathbb{R}^{2} ?

Exercise 937

Is the function $\mu: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by

$$
\mu:\left(\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right],\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]\right) \mapsto a_{1} b_{1}+2 a_{2} b_{2}+3 a_{3} b_{3}+a_{1} b_{2}+a_{2} b_{1}
$$

an inner product on \mathbb{R}^{3} ?

Exercise 938
Verify whether the function $\mu: \mathbb{R}[X] \times \mathbb{R}[X] \rightarrow \mathbb{R}$ defined by $\mu:(f, g) \mapsto$ $\operatorname{deg}(f g)$ is an inner product on $\mathbb{R}[X]$.

Exercise 939

Give an example of a function $\mu: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ which satisfies the first two conditions of an inner product, which does not satisfy the third, but does satisfy

$$
\mu\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=1
$$

Exercise 940

Is the function $\mu: \mathbb{R}[X] \times \mathbb{R}[X] \rightarrow \mathbb{R}$ defined by

$$
\mu:\left(\sum_{i=0}^{\infty} a_{i} X^{i}, \sum_{j=0}^{\infty} b_{j} X^{j}\right) \mapsto \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{1}{i+j+1} a_{i} b_{j}
$$

an inner product on $\mathbb{R}[X]$?

Exercise 941

Let V be the vector space of all continuous functions from \mathbb{R} to itself. Let $\mu: V \times V \rightarrow \mathbb{R}$ be the function given by $\mu:(f, g) \mapsto \lim _{t \rightarrow \infty} \frac{1}{t} \int_{-t}^{t} f(s) g(s) d s$. Is μ an inner product?

Exercise 942

Let V be a vector space over \mathbb{C} and let $\mu: V \times V \rightarrow \mathbb{C}$ be a function satisfying the following conditions:
(1) For each $w \in V$, the function $v \mapsto \mu(v, w)$ from V to \mathbb{C} is a linear functional;
(2) If $v, w \in V$ then $\mu(v, w)=\overline{\mu(w, v)}$;
(3) If $v \in V$ satisfies $\mu(v, w)=0$ for all $w \in V$, then $v=0_{V}$.

Is μ an inner product on V ?

Exercise 943

Let V be the vector space of all continuously differentiable functions from the interval $[a, b]$ in \mathbb{R} to \mathbb{R}. If $f, g \in V$, define the Sobolev inner product

$$
\langle f, g\rangle=\int_{a}^{b} f(t) g(t) d t+\int_{a}^{b} f^{\prime}(t) g^{\prime}(t) d t
$$

where f^{\prime} and g^{\prime} are the derivatives of f and g, respectively. Verify that this is indeed an inner product on V.

Exercise 944

Let $\{u, v\}$ be a linearly-dependent subset of an inner product space V. Show that $\|u\|^{2} v=\langle v, u\rangle u$.

Exercise 945

Let n be a positive integer and let $v=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right] \in \mathbb{R}^{n}$. Is the function μ_{v} : $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right] \times \mathbb{R}\left[X_{1}, \ldots, X_{n}\right] \rightarrow \mathbb{R}$ defined by

$$
\mu_{v}:(p, q) \mapsto p\left(c_{1}, \ldots, c_{n}\right) q\left(c_{1}, \ldots, c_{n}\right)
$$

an inner product on $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$?

Exercise 946

Let $a<b$ be real numbers and let $V=C(a, b)$. Let $h_{0} \in V$ be a function satisfying the condition that $h_{0}(t)>0$ for all $a<t<b$. Show that the function $\mu: V \times V \rightarrow \mathbb{R}$ defined by $\mu:(f, g) \mapsto \int_{a}^{b} f(x) g(x) h_{0}(x) d x$ is an inner produt on V.

Exercise 947

Let c and d be given real numbers. Find a necessary and sufficient condition that the function $\mu:\left(\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right],\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]\right) \mapsto c a_{1} b_{1}+d a_{2} b_{2}$ be an inner product on \mathbb{R}^{2}.

Exercise 948

Is the function $\mu: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by

$$
\mu:\left(\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right],\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]\right) \mapsto a_{1}^{2} b_{2}+b_{1}^{2} a_{2}+\left(a_{3} b_{3}\right)^{2}
$$

an inner product on \mathbb{R}^{3} ?

Exercise 949

Let V be an inner product space over \mathbb{R} and let $n>1$ be an integer. For positive real numbers a_{1}, \ldots, a_{n}, define the function $\mu: V^{n} \times V^{n} \rightarrow \mathbb{R}$ by

$$
\mu:\left(\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right],\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right]\right) \mapsto \sum_{i=1}^{n} a_{i}\left\langle v_{i}, w_{i}\right\rangle .
$$

Is μ an inner product on V^{n} ?
Exercise 950
Let n be a positive integer and let V be the subspace of $\mathbb{R}[X]$ consisting of all polynomials of degree at most n. Is the function $\mu: V \times V \rightarrow \mathbb{R}$ defined by $\mu:(p, q) \mapsto \sum_{i=0}^{n} p\left(\frac{i}{n}\right) q\left(\frac{i}{n}\right)$ an inner product on V ?

Exercise 951

Let $0<n \in \mathbb{Z}$. Is the function $\mu: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ defined by

$$
\mu:\left(\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right],\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]\right) \mapsto \sum_{i=1}^{n} a_{i} \bar{b}_{n-i+1}
$$

an inner product?

Exercise 952

Let $V=\mathbb{C}^{2}$ on which we have defined the dot product, and let $D=\{v \in V \mid$ $\|v\|=1\}$. Find $\{\langle A v, v\rangle \mid v \in D\}$, where $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{C})$.

Exercise 953

Let n be a positive integer and let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a set of vectors in \mathbb{R}^{n} satisfying $v_{i} \cdot v_{j} \leq 0$ for all $1 \leq i<j \leq k$. Show that $k \leq 2 n$ and give an example in which equality holds.

Exercise 954

Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ be idempotent. Is A^{H} necessarily idempotent?

Exercise 955

Let V be an inner product space and let $v \neq v^{\prime}$ be vectors in V. Show that there exists a vector $w \in V$ satisfying $\langle v, w\rangle \neq\left\langle v^{\prime}, w\right\rangle$.

Exercise 956

Let V be an inner product space finitely generated over its field of scalars, and let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V. Show that there exists a basis $\left\{w_{1}, \ldots, w_{n}\right\}$ of V satisfying the condition that

$$
\left\langle v_{i}, w_{j}\right\rangle= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Exercise 957

Let W be a subspace of a vector space V over \mathbb{R} and let Y be a complement of W in V. Define an inner product μ on W and an inner product ν on Y. Is the function from $V \times V \rightarrow \mathbb{R}$ defined by $\left(w+y, w^{\prime}+y^{\prime}\right) \mapsto \mu\left(w, w^{\prime}\right)+v\left(y, y^{\prime}\right)$ an inner product on V ?

Exercise 958

Let $V=C(0,1)$. Let $A=\left\{f_{1}, \ldots, f_{n}\right\}$ be a linearly-independent subset of V and define a function $u: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by $u:(a, b) \mapsto \sum_{j=1}^{n} f_{j}(a) \cos ^{j}(b)$. Show that if $h \in V$ and if there exists a function $g \in V$ such that $h(x)=\int_{0}^{1} u(x, y) g(y) d y$ for all $x \in \mathbb{R}$, then $h \in \mathbb{R} A$.

Exercise 959

Let V be an inner product space over \mathbb{R}. For each real number a, set $U(a)=\{v \in V \mid\langle v, v\rangle \leq a\}$. Given a real number a, find a real number b such that $\langle v+w, v+w\rangle \in U(b)$ for all $v, w \in U(a)$.

Exercise 960

Let V be an inner product space and let $\alpha \in \operatorname{End}(V)$. Show that $\langle\alpha(v), v\rangle\langle v, \alpha(v)\rangle$ $\leq\|\alpha(v)\|^{2}$ for every normal vector $v \in V$.

Exercise 961

For real numbers a_{1}, \ldots, a_{n}, show that

$$
\sum_{i=1}^{n} a_{i} \leq\left(\sqrt{\sum_{i=1}^{n}\left|a_{i}\right|^{2 / 3}}\right)\left(\sqrt{\sum_{i=1}^{n}\left|a_{i}\right|^{4 / 3}}\right) .
$$

Exercise 962
(Binet-Cauchy identity) For $u, v, w, y \in \mathbb{R}^{3}$, show that $(v \times w)(y \times u)=$ $(v \cdot y)(w \cdot u)-(v \cdot u)(y \cdot w)$.

Exercise 963
Let v be a normal vector in \mathbb{R}^{3}. Show that the function $\alpha_{v}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $\alpha_{v}: w \mapsto v \times(v \times w)+w$ is a projection in $\operatorname{End}\left(\mathbb{R}^{3}\right)$.

Exercise 964

Let V be an inner product space and let $\alpha \in \operatorname{End}(V)$ be a projection. Does it necessarily follow that $\|\alpha(v)\| \leq\|v\|$ for all $v \in V$?

Exercise 965

For $u, v, w, y \in \mathbb{R}^{3}$, show that $(u \times v) \cdot(w \times y)=\left|\begin{array}{ll}u \cdot w & u \cdot y \\ v \cdot w & v \cdot y\end{array}\right|$.

Exercise 966

For nonnegative real numbers a, b, and c, show that

$$
(a+b+c) \sqrt{2} \leq \sqrt{a^{2}+b^{2}}+\sqrt{b^{2}+c^{2}}+\sqrt{a^{2}+c^{2}}
$$

Exercise 967

For real numbers $0<a \leq b \leq c$, show that

$$
\sqrt{b^{2}+c^{2}} \leq(\sqrt{2}) a \leq \sqrt{(b-a)^{2}+(c-a)^{2}}
$$

Exercise 968

Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ be a matrix the n Gershgorin circles of which are mutually disjoint. Prove that all of the eigenvalues of A are real.

Exercise 969

Show that $\left[\int_{0}^{1} f(x) d x\right]^{2} \leq \int_{0}^{1} f(x)^{2} d x$ for any $f \in C(0,1)$.

Exercise 970

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the constant function $x \mapsto 1$. Calculate $\|f\|$ when f is considered as an element of $C\left(0, \frac{\pi}{2}\right)$ and compare it to $\|f\|$, when f is considered as an element of $C(0, \pi)$.

Exercise 971
Let V be an inner product space over \mathbb{R} and let $v, w \in V$ satisfy $\|v+w\|=$ $\|v\|+\|w\|$. Show that $\|a v+b w\|=a\|v\|+b\|w\|$ for all $0 \leq a, b \in \mathbb{R}$.

Exercise 972
(Real polarization identity) Let V be an inner product space over \mathbb{R}. Show that $\langle u, v\rangle=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right)$ for all $u, v \in V$.

Exercise 973

(Complex polarization identity) Let V be an inner product space over \mathbb{C}. Show that $\langle u, v\rangle=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}+i\|u+i v\|^{2}-i\|u-i v\|^{2}\right)$ for all $u, v \in V$.

Exercise 974

Let $V=C(0,1)$ on which we have defined the inner product $\langle f, g\rangle=$ $\int_{0}^{1} f(t) g(t) d t$. Let W be the subspace of V generated by the function $x \mapsto x^{2}$. Find all elements of W normal with respect to this inner product.

Exercise 975

Let V be an inner product space over \mathbb{R} and assume that $v, w \in V$ are nonzero vectors satisfying the condition $\langle v, w\rangle=\|v\| \cdot\|w\|$. Show that $\mathbb{R} v=\mathbb{R} w$.

Exercise 976

Let V be a vector space over \mathbb{R} on which we have two inner products, μ and μ^{\prime} defined, which in turn define distance functions d and d^{\prime} respectively. If $d=d^{\prime}$, does it necessarily follow that $\mu=\mu^{\prime}$?

Exercise 977
(Apollonius' identity) Let V be an inner product space. Show that

$$
\|u-w\|^{2}+\|v-w\|^{2}=\frac{1}{2}\|u-v\|^{2}+2\left\|\frac{1}{2}(u+v)-w\right\|^{2}
$$

for all $u, v, w \in V$.

Exercise 978
Let n be a positive integer and let $\|\cdot\|$ be a norm defined on \mathbb{C}^{n}. For each $A \in \mathcal{M}_{n \times n}(\mathbb{C})$, let $\|A\|$ be the spectral norm of A. If $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ is nonsingular, show that every singular matrix $B \in \mathcal{M}_{n \times n}(\mathbb{C})$ satisfies $\|A-B\| \geq$ $\left\|A^{-1}\right\|^{-1}$. Does there necessarily exist a singular matrix B for which equality holds?

Exercise 979

Let V be an inner product space over \mathbb{R} and consider the function $\theta: V \times V \times$ $V \rightarrow \mathbb{R}$ defined by
$\theta(v, w, y)=\|v+w+y\|^{2}+\|v+w+y\|^{2}-\|v-w-y\|^{2}-\|v-w+y\|^{2}$.
Show that, for any $v, w, y \in V$, the value of $\theta(v, w, y)$ does not depend on y.

Exercise 980

Let V be an inner product space over \mathbb{R} and let $n>2$. Let $\theta: V^{n} \rightarrow V$ be the function defined by $\theta:\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right] \mapsto \frac{1}{n} \sum_{i=1}^{n} v_{i}$. Show that

$$
\sum_{i=1}^{n}\left\|v_{i}-\theta\left(\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]\right)\right\|^{2}=\sum_{i=1}^{n}\left\|v_{i}\right\|^{2}-n\left\|\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]\right\|^{2}
$$

Exercise 981

Let V be an inner product space over \mathbb{R} and let v and w be nonzero vectors in V. Show that $|\langle v, w\rangle|^{2}=\langle v, v\rangle\langle w, w\rangle$ if and only if the set $\{v, w\}$ is linearly dependent.

Exercise 982

Let V be a finitely-generated inner product space and let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of vectors in V. Show that B is linearly dependent if and only if its Gram matrix is singular.

Exercise 983

Let V be a vector space over \mathbb{R} and let $\|\cdot\|$ be a norm defined on V. Show that $|\|v\|-\|w\|| \leq\|v-w\|$ for all $v, w \in V$.

Exercise 984

Let V be an inner product space finitely generated over \mathbb{R} and let $\delta \in D(V)$. Pick $v_{0} \in V$. Show that for each real number $e>0$ there exists a real number $d>0$ such that $\left|\delta(v)-\delta\left(v_{0}\right)\right|<e$ whenever $\left\|v-v_{0}\right\|<d$.

Exercise 985

Let V be an inner product space. For any $u, v, w \in V$, show that

$$
\left|\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & d(u, v)^{2} & d(u, w)^{2} \\
1 & d(u, v)^{2} & 0 & d(v, w)^{2} \\
1 & d(u, w)^{2} & d(v, w)^{2} & 0
\end{array}\right| \leq 0 .
$$

Exercise 986

Let $n>1$. Show that there is no norm $v \mapsto\|v\|$ defined on \mathbb{C}^{n} satisfying $\|A\|_{\mathfrak{F}}=\sup \left\{\left.\frac{\|A v\|}{\|v\|} \right\rvert\, 0_{V} \neq v \in \mathbb{C}^{n}\right\}$ for all $A \in \mathcal{M}_{n \times n}(\mathbb{C})$.

Exercise 987

Let $n>1$ be an integer. For each $A \in \mathcal{M}_{n \times n}(\mathbb{C})$, let $\|A\|=\rho(A)$, the spectral radius of A. Does this turn $\mathcal{M}_{n \times n}(\mathbb{C})$ into a normed space?

Exercise 988

Let V be the vector space of all continuous functions from the unit interval $[0,1]$ on the real line to \mathbb{R} and for each $f \in V$, set $\|f\|=\int_{0}^{1}|f(t)| d t$. Is $\|\cdot\|$ a norm on V ?

Exercise 989

Let $p>2$ be prime and let n be a positive integer. For each $1 \leq i \leq n$, define $w(i)=\min \{i-1, p-i+1\}$. Does the function $\operatorname{GF}(p)^{n} \rightarrow \mathbb{R}$ defined by $\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right] \mapsto \sum_{i=1}^{n} w(i) a_{i}$ turn $\operatorname{GF}(p)^{n}$ into a normed space?

Exercise 990

Let $0<p<1$ and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the function defined by

$$
f:\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] \rightarrow\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p} .
$$

Show that this is not a norm but does satisfy the inequality $f(v+w) \leq$ $2^{(1-p) / p}[f(v)+f(w)]$ for all $v, w \in \mathbb{R}^{n}$.

Exercise 991

Let V_{1}, \ldots, V_{n} be normed spaces over the same field and let $V=\prod_{i=1}^{n} V_{i}$. For each $1 \leq i \leq n$, denote the norm defined on V_{i} by $\|\cdot\|_{i}$ and define a function $v \mapsto\|v\|$ from V to \mathbb{R} by setting $\left\|\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]\right\|=\sum_{i=1}^{n}\left\|v_{i}\right\|_{i}$. Is this a norm on V ?

Exercise 992

Let V be a normed space and let $0_{V} \neq v_{0} \in V$. Show that there exists a linear functional $\theta \in D(V)$ satisfying $\|\theta\|=1$ and $\theta\left(v_{0}\right)=\left\|v_{0}\right\|$.

Exercise 993

Let $n>1$ and let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. Show that there are infinitely-many other matrices in $\mathcal{M}_{n \times n}(\mathbb{C})$ having the same Gershgorin circles as A.

Exercise 994
Let $A=\left[a_{i j}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{C})$ and let K be the Cassini oval defined by A. Show that every point on the boundary of K is an eigenvalue of a matrix $B \in \mathcal{M}_{2 \times 2}(\mathbb{C})$ defining the same Cassini oval.

Exercise 995

Let $n>1$ be an integer and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$. For any $e>0$, show that there exists a nonsingular matrix $B \in \mathcal{M}_{n \times n}(\mathbb{R})$ satisfying $\|A-B\|_{\mathfrak{F}}<e$.

Exercise 996
Let n be a positive integer and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{C})$. Let $f: \mathbb{R} \rightarrow \mathcal{M}_{n \times n}(\mathbb{C})$ be defined by $f: t \mapsto e^{t A}$. Show that the derivative of f is given by $f^{\prime}: t \mapsto A e^{t A}$.

Exercise 997

Let F be a field and let n be a positive integer. Let $\alpha \in \operatorname{End}\left(F^{n}\right)$ and let V be a subspace of F disjoint from $\operatorname{ker}(\alpha)$. If $\|\cdot\|$ denotes the Hamming norm on F^{n}, is it necessarily true that $\|v\|=\|\alpha(v)\|$ for all $v \in V$?

Exercise 998

Let n be a positive integer and let α be an endomorphism of \mathbb{C}^{n} represented with respect to the canonical basis by a matrix $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. Then the canonical inner product on \mathbb{C}^{n} defines norms on \mathbb{C}^{n} and on End $\left(\mathbb{C}^{n}\right)$. Show that $\rho(A) \leq\left\|\alpha^{k}\right\|^{1 / k}$ for any integer $k>0$.

Exercise 999

Let V and W be normed spaces over \mathbb{R} or \mathbb{C} and let $\alpha: V \rightarrow W$ be a linear transformation for which $\|\alpha\|$ exists. Show that $D(\alpha)$ satisfies $\|D(\alpha)\|=\|\alpha\|$.

Exercise 1000

Let V be a vector space finitely-generated over a field F and let L be the set of all subspaces of V. For $W, Y \in L$, define $d(W, Y)=\operatorname{dim}(W+Y)-\operatorname{dim}(W \cap Y)$. Does this function satisfy the conditions of Proposition 15.12 ?

Exercise 1001

For each real number t, set $A(t)=\left[\begin{array}{lll}t & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & t\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Does there exist a value of t for which $\|A(t)\|_{\mathfrak{F}}=\|A(t)\|_{2}$?

Exercise 1002

For each $t>0$, let $f(t)=\left\|\left[\begin{array}{cccc}t & 1 & 0 & 0 \\ 1 & t & 0 & 0 \\ 0 & 0 & 1 & t \\ 0 & 0 & t & 1\end{array}\right]\right\|_{\mathfrak{F}}$. Calculate $\lim _{t \rightarrow \infty} \frac{1}{t} f(t)$.

Exercise 1003

Let V be a vector space over \mathbb{R} and let Y be its complexification. Define a function $\mu: Y \times Y \rightarrow \mathbb{C}$ by

$$
\mu:\left(\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right],\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]\right) \mapsto\left\langle v_{1}, w_{1}\right\rangle+\left\langle v_{2}, w_{2}\right\rangle+i\left[\left\langle v_{w}, w_{1}\right\rangle-\left\langle v_{1}, w_{2}\right\rangle\right] .
$$

Show that μ is an inner product on Y and calculate $\left\|\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]\right\|$ for each $\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \in Y$.

Exercise 1004

Let V be a normed space and let $\alpha \in \operatorname{End}(V)$ have an induced norm satisfying $\|\alpha\|<1$. Show that $\sigma_{1}-\alpha \in \operatorname{Aut}(V)$.

Exercise 1005

Let V be the set of all "infinite matrices" $A=\left[a_{i j}\right]$, where $a_{i j} \in \mathbb{R}$ for all $i, j \geq 0$, which is a vector space over \mathbb{R} with addition and scalar multiplication defined elementwise. Let $p>1$ be a real number and let q be a real number satisfying $\frac{1}{p}+\frac{1}{q}=1$. Let W be the subset of V consisting of all those matrices A satisfying the condition that $\sum_{i=1}^{\infty}\left[\sum_{j=1}^{\infty}\left|a_{i j}\right|^{q}\right]^{p / q}$ is finite. Show that W is a subspace of V and that the function $A \mapsto\left(\sum_{i=1}^{\infty}\left[\sum_{j=1}^{\infty}\left|a_{i j}\right|^{q}\right]^{p / q}\right)^{1 / p}$ is a norm on W.

Orthogonality

Let V be an inner product space and let $0_{V} \neq v, w \in V$. From Proposition 15.2 we see that

$$
-1 \leq \frac{\langle v, w\rangle+\langle w, v\rangle}{2\|v\| \cdot\|w\|} \leq 1
$$

and so there exists a real number $0 \leq t \leq \pi$ satisfying

$$
\cos (t)=\frac{\langle v, w\rangle+\langle w, v\rangle}{2\|v\| \cdot\|w\|}
$$

This number t is the angle between v and w. Note that if we are working over \mathbb{R}, then

$$
\cos (t)=\frac{\langle v, w\rangle}{\|v\| \cdot\|w\|}
$$

Example If $V=\mathbb{R}^{n}$ is endowed with the dot product, and if $0_{V} \neq v, w \in V$ then, using analytic geometry, it is easy to show that the angle as defined here is indeed the angle between the straight line determined by v and the origin, and the straight line determined by w and the origin. If we define different inner products on V, we build in this manner various non-Euclidean geometries in n-space.

Example Let $V=C(0,1)$, on which we have defined the inner product $\langle f, g\rangle=$ $\int_{0}^{1} f(x) g(x) d x$. In particular, consider the functions $f: x \mapsto 5 x^{2}$ and $g: x \mapsto 3 x$. Then $\|f\|=\sqrt{5}$ and $\|g\|=\sqrt{3}$, and the angle t between f and g satisfies $\cos (t)=$ $\sqrt{\frac{1}{15}} \int_{0}^{1}\left(5 x^{2}\right)(3 x) d x=\frac{1}{4} \sqrt{15}$.

Vectors v and w in an inner product space V are orthogonal if and only if $\langle v, w\rangle=0$. In this case, we write $v \perp w$. We note that if $v \perp w$ then $\|v+w\|^{2}=$ $\|v\|^{2}+\langle v, w\rangle+\langle w, v\rangle+\|w\|^{2}=\|v\|^{2}+\|w\|^{2}$. A nonempty subset D of V is a set of mutually orthogonal vectors if $v \perp w$ whenever $v \neq w$ in D. If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a mu-
tually orthogonal set of vectors in V then one shows, similarly, that $\left\|\sum_{i=1}^{n} v_{i}\right\|^{2}=$ $\sum_{i=1}^{n}\left\|v_{i}\right\|^{2}$.

Example We have already seen that if $v, w \in \mathbb{R}^{3}$, then $v \cdot(v \times w)=0$. This says that a vector v is orthogonal to $v \times w$, for any vector w. The same is also true for w and $v \times w$ and so we see that if $\{v, w\}$ is a linearly-independent subset of \mathbb{R}^{3} then the set $\{v, w, v \times w\}$ is linearly independent and so is a basis of \mathbb{R}^{3}.

Moreover, as an immediate consequence of the Lagrange identity on \mathbb{R}^{3}, we see that if $v \times w=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ and $v \cdot w=0$ then either $v=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ or $w=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. If $v, w \in \mathbb{R}^{3}$, then the angle t between them satisfies the condition that $v \cdot w=(\|v\| \cdot\|w\|) \cos (t)$. Using the Lagrange identity, we see that

$$
\begin{aligned}
\|v \times w\|^{2} & =\|v\|^{2}\|w\|^{2}-(v \cdot w)^{2}=\|v\|^{2}\|w\|^{2}\left[1-\cos ^{2}(t)\right] \\
& =\|v\|^{2}\|w\|^{2} \sin ^{2}(t)
\end{aligned}
$$

and so $\|v \times w\|=(\|v\| \cdot\|w\|)|\sin (t)|$. Thus $|\cos (t)|=\frac{\|v \times w\|}{\|v\| \cdot\|w\|}$.
Example If $V=\mathbb{C}^{2}$ on which we have the dot product, then it is easy to see that $\left[\begin{array}{c}2+3 i \\ -1+5 i\end{array}\right] \perp\left[\begin{array}{c}1+i \\ -i\end{array}\right]$.

Example Let $V=C(-1,1)$, on which we have defined the inner product $\langle f, g\rangle=$ $\int_{-1}^{1} f(x) g(x) d x$. For all $i \geq 0$, define the functions $p_{i} \in V$ as follows: $p_{0}: x \mapsto 1$; $p_{1}: x \mapsto x$; and

$$
p_{h+1}: x \mapsto\left(\frac{2 h+1}{h+1}\right) x p_{h}(x)-\left(\frac{h}{h+1}\right) p_{h-1}(x) \quad \text { whenever } \quad h>1 .
$$

These polynomial functions are known as Legendre polynomials. It is easy to verify that $p_{i} \perp p_{h}$ whenever $i \neq h$.

On the same space, we can define another inner product, namely

$$
\langle f, g\rangle=\int_{-1}^{1} \frac{f(x) g(x)}{\sqrt{1-x^{2}}} d x
$$

For each $i \geq 0$, define the function $q_{i} \in V$ by setting $q_{0}: x \mapsto 1 ; q_{1}: x \mapsto x$; and $q_{h+1}: x \mapsto 2 x q_{h}(x)-q_{h-1}(x)$ whenever $h>1$. These polynomial functions are known as Chebyshev polynomials. It is again easy to verify that $q_{i} \perp q_{h}$ whenever $i \neq h$.

Both of the these products are special instances of a more general construction. For any $-1<r, s \in \mathbb{R}$, it is possible to define an inner product on $C(-1,1)$ by
setting $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x)(1-x)^{r}(1+x)^{s} d x$. The set of polynomial functions which are mutually orthogonal with respect to this inner product is called the set of Jacobi polynomials of type (r, s). Such polynomials are important in many areas of numerical analysis, and in particular in numerical integration.

With kind permission of the Bibliothèque de l'Institut de France (Legendre).
Adrien-Marie Legendre was one of the first-rate mathematicians who worked in France during the time of the revolution and the generation after it. Among other things, he served on the committee that defined the metric system. Pafnuty Lvovich Chebyshev, a nineteenth-century Russian mathematician, made important contributions to both pure and applied mathematics.

Proposition 16.1 Let V be an inner product space over a field of scalars F.
(1) If $v \in V$ satisfies $v \perp w$ for all $w \in V$, then $v=0_{V}$.
(2) If $\varnothing \neq A \subseteq V$ and if $v \in V$ satisfies the condition that $v \perp w$ for all $w \in A$, then $v \perp w$ for $w \in F A$.

Proof (1) is an immediate consequence of the fact that if $v \neq 0_{V}$ then $\langle v, v\rangle \neq 0$. Now assume that $\varnothing \neq A \subseteq V$ and that $v \perp w$ for all $w \in A$. If $y \in F A$ then there exist elements $w_{1}, \ldots, w_{n} \in A$ and scalars a_{1}, \ldots, a_{n} such that $y=\sum_{i=1}^{n} a_{i} w_{i}$ and so $\langle v, y\rangle=\sum_{i=1}^{n} \bar{a}_{i}\left\langle v, w_{i}\right\rangle=0$, whence $v \perp y$.

Proposition 16.2 Let V be an inner product space and let A be a nonempty set of nonzero mutually-orthogonal vectors in V. Then A is linearly independent.

Proof Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a finite subset of A and assume that there exist scalars c_{1}, \ldots, c_{n} such that $\sum_{i=1}^{n} c_{i} v_{i}=0_{V}$. Then, for $1 \leq h \leq n$, we have $c_{h}\left\langle v_{h}, v_{h}\right\rangle=$ $\sum_{i=1}^{n} c_{i}\left\langle v_{i}, v_{h}\right\rangle=\left\langle\sum_{i=1}^{n} c_{i} v_{i}, v_{h}\right\rangle=\left\langle 0_{V}, v_{h}\right\rangle=0$ and hence $c_{h}=0$. Thus any finite subset of A is linearly independent, and therefore A is linearly independent.

If V is an inner product space then any vector $0_{V} \neq w \in V$ defines a function

$$
\pi_{w}: v \mapsto \frac{\langle v, w\rangle}{\langle w, w\rangle} w
$$

from V to itself, which is in fact a projection the image of which is the subspace of V generated by $\{w\}$. This easily-checked remark is the basis for the following theorem.

Proposition 16.3 (Gram-Schmidt Theorem) Any finitely-generated inner product space V has a basis composed of mutually-orthogonal vectors.

Proof We will proceed by induction on $\operatorname{dim}(V)$. If $\operatorname{dim}(V)=1$ the result is immediate. Therefore, we can assume that the proposition is true for any inner product space of dimension k, and assume that $\operatorname{dim}(V)=k+1$. Let W be a subspace of V of dimension k. By the induction hypothesis, there exists a basis $\left\{v_{1}, \ldots, v_{k}\right\}$ of W composed of mutually-orthogonal vectors. Let $v \in V \backslash W$ and set $v_{k+1}=v-\sum_{i=1}^{k} \pi_{v_{i}}(v)$. This vector does not belong to W since $v \notin W$. Therefore, $\left\{v_{1}, \ldots, v_{k+1}\right\}$ is a generating set for V. Moreover, for $1 \leq j \leq k$, we have

$$
\left\langle v_{k+1}, v_{j}\right\rangle=\left\langle v, v_{j}\right\rangle-\sum_{i=1}^{k} \frac{\left\langle v, v_{i}\right\rangle}{\left\langle v_{i}, v_{i}\right\rangle}\left\langle v_{i}, v_{j}\right\rangle=\left\langle v, v_{j}\right\rangle-\frac{\left\langle v, v_{j}\right\rangle}{\left\langle v_{j}, v_{j}\right\rangle}\left\langle v_{j}, v_{j}\right\rangle=0
$$

and so $v_{k+1} \perp v_{j}$ for all $1 \leq j \leq k$. By Proposition 5.3, it follows that the set $\left\{v_{1}, \ldots, v_{k+1}\right\}$ is linearly independent and so is a basis for V.

We should note that the proof of Proposition 16.3 is an algorithm, called the Gram-Schmidt process, which is easy to implement by a computer program to create a basis composed of mutually-orthogonal vectors of V, when we are given a basis of any sort for the space.

Example Let $v_{1}=\left[\begin{array}{l}3 \\ 0 \\ 0 \\ 0\end{array}\right], \quad v_{2}=\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 1\end{array}\right]$, and $v_{3}=\left[\begin{array}{r}3 \\ -1 \\ 3 \\ 2\end{array}\right]$ be vectors in \mathbb{R}^{4}, on which we have defined the dot product. The set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent and so generates a three-dimensional subspace W of \mathbb{R}^{4}. Let us use the GramSchmidt process to build a basis for W composed of mutually-orthogonal vectors.
Indeed, we define $u_{1}=v_{1}, u_{2}=v_{2}-\pi_{u_{1}}\left(v_{2}\right)=\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 1\end{array}\right]$, and $u_{3}=v_{3}-\pi_{u_{1}}\left(v_{3}\right)-$ $\pi_{u_{2}}\left(v_{3}\right)=\frac{1}{6}\left[\begin{array}{r}0 \\ -13 \\ 4 \\ 5\end{array}\right]$ then $\left\{u_{1}, u_{2}, u_{3}\right\}$ is a basis for W, the vectors of which are mutually orthogonal.

Example Let $V=C(-1,1)$, on which we have defined the inner product $\langle f, g\rangle=$ $\int_{-1}^{1} f(x) g(x) d x$. For all $i \geq 0$, let f_{i} be the polynomial function $f_{i}: x \mapsto x^{i}$. Then for each $n>0$, the set $\left\{f_{0}, \ldots, f_{n}\right\}$ is linearly independent and so forms a basis for a subspace W of V. We now apply the Gram-Schmidt process to this basis, to obtain
a basis $\left\{p_{0}, \ldots, p_{n}\right\}$ of vectors in V which are mutually orthogonal, where the p_{j} are precisely the Legendre polynomials we introduced earlier.

Example If α is a diagonalizable endomorphism of a finitely-generated inner product space V then there exists a basis B composed of eigenvectors of α. Applying the Gram-Schmidt process to B will yield a basis of V composed of mutuallyorthogonal vectors, but they may no longer be eigenvectors of α. Thus, for example, if $V=\mathbb{R}^{2}$, if $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{c}a+b \\ 2 b\end{array}\right]$, and if $B=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$, then the GramSchmidt process yields $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$, where $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is not an eigenvector of α.

Actually, the assumption that we have a basis in hand when initiating the GramSchmidt process is one of convenience rather than necessity. We could begin with an arbitrary generating set $\left\{v_{1}, \ldots, v_{n}\right\}$ for the given space. In that case, at the h th stage of the process we would begin by checking whether v_{h} is a linear combination of the set of mutually-orthogonal vectors $\left\{u_{1}, \ldots, u_{h-1}\right\}$ we have already created. If it is, we just discard it and go on to v_{h+1}.

We should point out that the Gram-Schmidt process is not considered computationally stable-small errors and roundoffs in the computational process accumulate rapidly and can lead at the end to a significant difference between the true solution and the computed solution. There are, fortunately, other more sophisticated methods of constructing a basis composed of mutually-orthogonal vectors from a given basis.

Proposition 16.4 (Hadamard inequality) Let n be a positive integer, let $A=$ $\left[a_{i j}\right] \in M_{n \times n}(\mathbb{R})$ be a nonsingular matrix, and let $e=|A|$. Then $|e| \leq g^{n} \sqrt{n^{n}}$, where $g=\max \left\{\left|a_{i j}\right| \mid 1 \leq i, j \leq n\right\}$.

Proof Denote the rows of A by v_{1}, \ldots, v_{n}. Then $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for $V=\mathbb{R}^{n}$ and so, using the Gram-Schmidt method, we can find a new basis $\left\{u_{1}, \ldots, u_{n}\right\}$ for V, on which we consider the dot product, composed of mutually-orthogonal vectors, and defined by setting $u_{1}=v_{1}$ and $u_{h}=v_{h}-\sum_{j=1}^{h-1} c_{h j} u_{j}$, where $c_{h j}=$ $\left(v_{h} \cdot u_{j}\right)\left(u_{j} \cdot u_{j}\right)^{-1}$. If $B \in \mathcal{M}_{n \times n}(\mathbb{R})$ is the matrix the rows of which are u_{1}, \ldots, u_{n}, then $A=C B$, where $C=\left[\begin{array}{ccccc}1 & 0 & 0 & \ldots & 0 \\ c_{21} & 1 & 0 & \ldots & 0 \\ c_{31} & c_{32} & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ c_{n 1} & c_{n 2} & \ldots & c_{n, n-1} & 1\end{array}\right]$. Since C is a lowertriangular matrix, its determinant is the product of the entries on its diagonal, namely 1 . Therefore $e=|B|$.

By looking at the Gram-Schmidt method, we see that $\left\|u_{i}\right\| \leq\left\|v_{i}\right\|$ for all $1 \leq i \leq n$. Moreover, since the u_{i} are mutually orthogonal, we see that $B B^{T}=D$, where $D=\left[d_{i j}\right]$ is the diagonal matrix defined by $d_{i i}=\left\|u_{i}\right\|^{2}$ for all $1 \leq i \leq n$. Therefore, $e^{2}=\left|B B^{T}\right|=|D|=\prod_{i=1}^{n}\left\|u_{i}\right\|^{2}$. Now let $g=\max \left\{\left|a_{i j}\right| \mid 1 \leq i, j \leq\right.$ $n\}$. Then $\left\|u_{i}\right\| \leq\left\|v_{i}\right\| \leq g \sqrt{n}$ for all $1 \leq i \leq n$ and so $|e| \leq g^{n} \sqrt{n^{n}}$, as desired.

Let V be an inner product space having a subspace W. Let $W^{\perp}=\{v \in V \mid$ $\langle v, w\rangle=0$ for all $w \in W\}$. By Proposition 16.1, we know that W^{\perp} is a subspace of V. Since $\langle v, v\rangle \neq 0$ for all $0_{V} \neq v \in V$, it is clear that W and W^{\perp} are disjoint. Also, again by Proposition 16.1, we see that $V^{\perp}=\left\{0_{V}\right\}$ and $\left\{0_{V}\right\}^{\perp}=V$. The space W^{\perp} is called the orthogonal complement of W in V, and this name is justified by the following result:

Proposition 16.5 Let W be a subspace of a finitely-generated inner product space V. Then $V=W \oplus W^{\perp}$ and $W=\left(W^{\perp}\right)^{\perp}$. Moreover, if Y is another subspace of V then $W^{\perp} \cap Y^{\perp}=(W+Y)^{\perp}$.

Proof By Proposition 16.3, we know that it is possible to find a basis $\left\{v_{1}, \ldots, v_{k}\right\}$ of W which is composed of mutually-orthogonal vectors, and by the construction method used in the proof of this proposition, we see that this can be extended to a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V, the elements of which are still mutually orthogonal. Thus $v_{i} \in W^{\perp}$ for all $k<i \leq n$, proving that $V=W+W^{\perp}$. But we already know that W and W^{\perp} are disjoint and so we have $W \oplus W^{\perp}$. Moreover, $\left\{v_{k+1}, \ldots, v_{n}\right\}$ is a basis for W^{\perp} and so $W=\left(W^{\perp}\right)^{\perp}$.

Now let Y be another subspace of V. If $v \in W^{\perp} \cap Y^{\perp}$ then, for each $w \in Y$ and $y \in Y$ we have $\langle v, w+y\rangle=\langle v, w\rangle+\langle v, y\rangle=0$ and so $v \in(W+Y)^{\perp}$. Conversely, if $v \in(W+Y)^{\perp}$ then $\langle v, w\rangle=\langle v, y\rangle=0$ for all $w \in W$ and $y \in Y$, so $v \in W^{\perp} \cap Y^{\perp}$.

In particular, if V is an inner product space having a subspace W then we have a natural projection of $W \oplus W^{\perp}$ onto W, called the orthogonal projection. The image of a vector $v \in W \oplus W^{\perp}$ under this projection is the unique element of W closest to v, according to the distance function defined by the inner product on V, in the sense of the following theorem.

Proposition 16.6 Let W be a subspace of an inner product space V and let $v=w+y$, where $w \in W$ and $y \in W^{\perp}$. Then $\left\|v-w^{\prime}\right\| \geq\|v-w\|$ for all $w^{\prime} \in W$, with equality holding if and only if $w^{\prime}=w$.

Proof If $w^{\prime} \in W$ then

$$
\begin{aligned}
\left\|v-w^{\prime}\right\|^{2} & =\left\|w-w^{\prime}+y\right\|^{2}=\left\langle w-w^{\prime}+y, w-w^{\prime}+y\right\rangle \\
& =\left\langle w-w^{\prime}, w-w^{\prime}\right\rangle+\left\langle y, w-w^{\prime}\right\rangle+\left\langle w-w^{\prime}, y\right\rangle+\langle y, y\rangle \\
& =\left\langle w-w^{\prime}, w-w^{\prime}\right\rangle+\langle y, y\rangle \\
& =\left\|w-w^{\prime}\right\|^{2}+\|y\|^{2}=\left\|w-w^{\prime}\right\|^{2}+\|v-w\|^{2},
\end{aligned}
$$

and from here the result follows immediately.
One of the important problems in computational algebra is the following: Given an endomorphism α of a finitely-generated inner product space and a vector $0_{V} \neq$ $v_{0} \in V$, find an efficient procedure to define an orthogonal projection onto the Krylov subspace $F[\alpha] v_{0}$. One of the first of these is the Arnoldi process, a modification of the Gram-Schmidt process. Several variants of this procedure have been devised, depending on special properties of α. This process is not considered as computationally efficient as the Lanczos algorithm mentioned earlier. Arnoldi's process is also the basis for the GMRES algorithm (GMRES $=$ generalized minimal residual) for solution of systems of linear equations, devised by Yousef Saad and Martin Schultz in 1986.

© Y. Saad (Saad); © Martin Schultz (Schultz).
Algerian/American Yousef Saad and American
Martin H. Schultz are contemporary computer scientists. Walter Edward Arnoldi was a twentieth century American engineer whose career was mostly spent with United Aircraft Corporation.

Note that Proposition 16.5 is not necessarily true if the space V is not finitely generated, as the following example shows.

Example Let $V=\mathbb{R}^{(\infty)}$. For each $h \geq 0$, let v_{h} be the sequence in which the h th entry equals 1 and all other entries equal 0 . Then $B=\left\{v_{h} \mid h \geq 0\right\}$ is a basis for V composed of mutually-orthogonal vectors. Let $W=\mathbb{R}\left\{v_{0}-v_{1}, v_{1}-v_{2}, \ldots\right\}$. This subspace of V is proper since $v_{0} \in V \backslash W$. If $0_{V} \neq y \in W^{\perp}$ then there exists a nonnegative integer n such that $y=\sum_{i=0}^{n} a_{i} v_{i}$, where the a_{i} are real numbers and $a_{n} \neq 0$. But then $a_{n}=\left\langle y, v_{n}-v_{n+1}\right\rangle=0$, and that is a contradiction. Therefore, we have shown that $W^{\perp}=\left\{0_{V}\right\}$, despite the fact that $W \neq V$. Moreover, in this case $V \neq W \oplus W^{\perp}$ and $\left(W^{\perp}\right)^{\perp}=V \neq W$.

Let V be an inner product space. A nonempty subset A of V is orthonormal if and only if the elements of A are mutually orthogonal, and each of them is normal. Thus, for example, the canonical basis of \mathbb{R}^{n}, equipped with the dot product, is orthonormal.

Example Let $V=C(-\pi, \pi)$, on which we have an inner product defined by $\langle f, g\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x$. Then we have an orthonormal subset $\left\{\frac{1}{\sqrt{2}}\right\} \cup\{\sin (n x) \mid$ $n \geq 1\} \cup\{\cos (n x) \mid n \geq 1\}$ of V.

Example Let V be the subspace of $\mathbb{R}^{\mathbb{R}}$ consisting of all functions f for which $\int_{-\infty}^{\infty}|f(x)|^{2} d x$ is finite, where the norm is taken with respect to the inner product $\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) g(x) d x$ defined on V. Let $h \in V$ be the function defined by

$$
h: x \mapsto \begin{cases}1 & \text { for } 0<x \leq \frac{1}{2} \\ -1 & \text { for } \frac{1}{2}<x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

This function is known as the Haar wavelet. For each $j, k \in \mathbb{N}$ define the function $h_{k}^{j} \in V$ by setting $h_{k}^{j}: x \mapsto 2^{j / 2} h\left(2^{j} x-k\right)$. Then the subset $\left\{h_{k}^{j} \mid j, k \in \mathbb{N}\right\}$ of V is orthonormal. Haar wavelets have important applications in image compression.

Proposition 16.7 Every finitely-generated inner product space V has an orthonormal basis.

Proof By Proposition 16.3, we know that V has a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ the elements of which are mutually orthogonal. For each $1 \leq i \leq n$, let $w_{i}=\left\|v_{i}\right\|^{-1} v_{i}$. Then each w_{i} is normal and $\left\{w_{1}, \ldots, w_{n}\right\}$ is a basis for V, the elements of which remain mutually orthogonal.

We can modify the Gram-Schmidt method to provide an algorithm for constructing an orthonormal basis from any given basis of a finitely-generated inner product space V, by normalizing each basis element as it is created. This has the added advantage of tending to reduce accumulated roundoff and truncation errors. The examples after Proposition 16.3 and Proposition 16.6 show that inner product spaces which are not finitely generated may have orthonormal bases as well, but this is not always true. Making use of the Hausdorff Maximum Principle, it is possible to show that every inner product space V has a maximal orthonormal set, which must be linearly independent by Proposition 16.2. Such a subset is called a Hilbert subset of V. Clearly, a subset A of V is a Hilbert subset if and only if for every $0_{V} \neq y \in V$
there exists a $v \in A$ satisfying $\langle v, y\rangle \neq 0$. If V is finitely generated then any Hilbert subset of V is a basis for V, but this is not necessarily true for inner product spaces which are not finitely generated.

Example Let V be the set of all infinite sequences c_{0}, c_{1}, \ldots of complex numbers satisfying the condition that $\sum_{i=0}^{\infty}\left|c_{i}\right|<\infty$. We have already seen that this is an inner product space. For each $k \geq 0$, let v_{k} be the sequence c_{0}, c_{1}, \ldots in which

$$
c_{i}= \begin{cases}1 & \text { if } i=k, \\ 0 & \text { otherwise } .\end{cases}
$$

Then $\left\{v_{k} \mid k \geq 0\right\}$ is a Hilbert subset of V which is not a basis for V.
Example It is, of course, possible that a finitely-generated inner product space may have many different orthonormal bases. For example, the canonical basis of \mathbb{R}^{4} is orthonormal, as is the basis

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\} .
$$

We can use Proposition 16.7 to verify the assertion made in the previous chapter.

Proposition 16.8 If V and W are inner product spaces over the same field F, and if V is finitely generated, then $\|\alpha\|$ is finite for all $\alpha \in \operatorname{Hom}(V, W)$.

Proof Pick an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for V and let $\alpha \in \operatorname{Hom}(V, W)$. If $v \in \sum_{i=1}^{n} a_{i} v_{i}$ is normal, then $1=\|v\|^{2}=\langle v, v\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \bar{a}_{j}\left\langle v_{i}, v_{j}\right\rangle=$ $\sum_{i=1}^{n}\left|a_{i}\right|^{2}$ and so $\left|a_{i}\right| \leq 1$ for each $1 \leq i \leq n$. Therefore, $\|\alpha(v)\| \leq \sum_{i=1}^{n}\left|a_{i}\right|$. $\left\|\alpha\left(v_{i}\right)\right\| \leq \sum_{i=1}^{n}\left\|\alpha\left(v_{i}\right)\right\|$. Thus $\|\alpha\|$ is finite and less than $c=\sum_{i=1}^{n}\left\|\alpha\left(v_{i}\right)\right\|$.

Example Of course, $\|\alpha\|$ may be finite even when V is not finitely generated. For example, let $V=C(0,1)$ and define a norm on V by setting $\|f\|=\max \{|f(t)| \mid$ $0 \leq t \leq 1\}$. Let $g:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be a continuous function. Let α be the endomorphism of V defined by $\alpha(f): t \mapsto \int_{0}^{1} g(t, s) f(s) d s$. Since g is continuous on a closed subset of \mathbb{R}^{2}, we note that it is bounded there, say $|g(t, s)| \leq c$ for all $0 \leq t, s \leq 1$. Moreover, $|f(s)| \leq \max \{|f(t)| \mid 0 \leq t \leq 1\}=\|f\|$ for all $0 \leq s \leq 1$, and so

$$
\begin{aligned}
\|\alpha(f)\| & =\max \left\{\left|\int_{0}^{1} g(t, s) f(s) d s\right| \mid 0 \leq t \leq 1\right\} \\
& \leq \max \left\{\int_{0}^{1}|g(t, s)| \cdot|f(s)| d s \mid 0 \leq t \leq 1\right\} \leq c\|f\|
\end{aligned}
$$

for all $f \in V$.

Proposition 16.9 Let V be an inner product space having an orthonormal basis B. If $v=\sum_{y \in B} a_{y} y$ and $w=\sum_{y \in B} b_{y} y$ are vectors in V (where only finitely-many of the a_{y} and b_{y} are nonzero), then $\langle v, w\rangle=\sum_{y \in B} a_{y} \bar{b}_{y}$.

Proof By the properties of the inner product, we have

$$
\langle v, w\rangle=\left\langle\sum_{y \in B} a_{y} y, \sum_{x \in B} b_{x} x\right\rangle=\sum_{y \in B} \sum_{x \in B} a_{y} \bar{b}_{x}\langle y, x\rangle=\sum_{y \in B} a_{y} \bar{b}_{y} .
$$

Proposition 16.10 Let V be an inner product space having an orthonormal basis B. Then each $v \in V$ satisfies $v=\sum_{x \in B}\langle v, x\rangle x$.

Proof We know that there exist scalars $\left\{a_{x} \mid x \in B\right\}$, only finitely-many of which are nonzero, such that $v=\sum_{x \in B} a_{x} x$. Then for each $x \in B$ we have $\langle v, x\rangle=$ $\left\langle\sum_{y \in B} a_{y} y, x\right\rangle=\sum_{y \in B} a_{y}\langle y, x\rangle=a_{x}\langle x, x\rangle=a_{x}$, which yields the desired result.

The coefficients $\left\langle v, v_{i}\right\rangle$ encountered in Proposition 16.10 are called the Fourier coefficients of the vector v with respect to the given orthonormal basis.

Example Consider the vector space $C(-1,1)$ over \mathbb{R}, on which we have the inner product $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$. We want to find a polynomial function of degree at most 3 which most closely approximates the function $f: x \mapsto \sin (x)$ on the interval $[-1,1]$. To do so, consider the subspace V of $C(-1,1)$ generated by the functions $p_{i}: x \mapsto x^{i}$ for $0 \leq i \leq 3$ and f. Apply the Gram-Schmidt process to the basis $\left\{p_{0}, \ldots, p_{3}, f\right\}$ of V to get an orthonormal basis $\left\{q_{0}, \ldots, q_{3}, g\right\}$, where $q_{0}: x \mapsto \frac{1}{2} ; q_{1}: x \mapsto \sqrt{\frac{3}{2}} x ; q_{2}: x \mapsto \sqrt{\frac{5}{2}}\left(\frac{3}{2} x^{2}-\frac{1}{2}\right)$; and $q_{3}: x \mapsto \sqrt{\frac{7}{2}}\left(\frac{5}{2} x^{3}-\frac{9}{6} x\right)$. By Proposition 16.6 and Proposition 16.10, we know that the polynomial function of degree at most 3 which most closely approximates the function f is $\sum_{i=0}^{3}\left\langle f, q_{i}\right\rangle q_{i}$, where the Fourier coefficients $\left\langle f, q_{i}\right\rangle$ are given by

$$
\begin{aligned}
\left\langle f, q_{0}\right\rangle & =\int_{-1}^{1} \frac{1}{2} \sin (x) d x=0 \\
\left\langle f, q_{1}\right\rangle & =\int_{-1}^{1} \sqrt{\frac{3}{2}} \sin (x) x d x=\sqrt{6}(\sin (1)-\cos (1))=0.738 ; \\
\left\langle f, q_{2}\right\rangle & =\int_{-1}^{1} \sqrt{\frac{5}{2}}\left(\frac{3}{2} x^{2}-\frac{1}{2}\right) \sin (x) d x=0 ; \\
\left\langle f, q_{3}\right\rangle & =\int_{-1}^{1} \sqrt{\frac{7}{2}}\left(\frac{5}{2} x^{3}-\frac{9}{6} x\right) \sin (x) d x \\
& =14 \sqrt{14} \cos (1)-9 \sqrt{14} \sin (1)=-0.034
\end{aligned}
$$

Thus the polynomial function we seek is given by $u: x \mapsto-0.315 x^{3}+0.998 x$.

Proposition 16.11 Let F be \mathbb{R} or \mathbb{C} and let k and n be positive integers. Let $A \in M_{k \times n}(F)$ be a matrix the columns of which are linearly independent in F^{k}. Then there exist matrices $Q \in M_{k \times n}(F)$ and $R \in M_{n \times n}(F)$ such that
(1) $A=Q R$;
(2) The columns of Q are orthonormal with respect to the dot product on F^{k};
(3) R is nonsingular and upper-triangular.

Proof Let u_{1}, \ldots, u_{n} be the columns of A. Apply the Gram-Schmidt process to the set $\left\{u_{1}, \ldots, u_{n}\right\}$ and then normalize each of the resulting vectors to obtain an orthonormal set $\left\{v_{1}, \ldots, v_{n}\right\}$ of vectors in F^{k}. Let $Q \in \mathcal{M}_{k \times n}(F)$ be the matrix having columns v_{1}, \ldots, v_{n}. Then, by Proposition 16.10, we see that $u_{i}=$ $\sum_{j=1}^{n}\left(u_{i} \cdot v_{j}\right) v_{j}$ for all $1 \leq i \leq n$, and so $A=Q R$, where $R=\left[r_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ is given by $r_{i j}=u_{j} \cdot v_{i}$ for all $1 \leq i, j \leq n$. This matrix is clearly nonsingular. Moreover, we note that the Gram-Schmidt process is such that v_{j} is orthogonal to u_{1}, \ldots, u_{j-1} for all $2 \leq j \leq n$ and so $r_{i j}=0$ when $i>j$. Therefore, R is also upper-triangular.

A factorization of a matrix in the form given by Proposition 16.11 is called a QR-decomposition. Such decompositions form a basis of many important numerical algorithms, and are widely used, for example, in computing eigenvalues of large matrices. The use is primarily iterative. If A is an $n \times n$ matrix over \mathbb{R} or \mathbb{C} the eigenvalues of which have distinct absolute values and if we can indefinitely perform the iteration
(1) $A_{1}=A$;
(2) If A_{i} has a QR-decomposition $A_{i}=Q_{i} R_{i}$ then set $A_{i+1}=R_{i} Q_{i}$; then, under rather mild conditions on A, the sequence A_{1}, A_{2}, \ldots of matrices tends to an upper triangular matrix in which the eigenvalues of A appear in decreasing order of absolute value along the diagonal.

© Walter Gander (Rutishauser); © Vera Kublanovskaya (Kublanovskaya); © Frank Uhlig (Francis).
QR-decompositions were developed independently by the Swiss computer scientist Heinz Rutishauser, one of the fathers of ALGOL, by the Russian computer scientist Vera
Kublanovskaya, and by John G.F. Francis of the British computer manufacturer Ferranti Ltd.

One of the major advantages of QR-decompositions is that they are easy to update. If we are given a decomposition $A=Q R$, and then the matrix A is altered
slightly to obtain a matrix A^{\prime} by changing a few of its entries, it is relatively easy to alter Q and R to get a QR-decomposition for A^{\prime}. This is important since many applications of linear algebra involve solving successive systems of linear equations of the form $A^{(i)} X=w^{(i)}$, where $A^{(i+1)}$ and $w^{(i+1)}$ are obtained from $A^{(i)}$ and $w^{(i)}$ by relatively minor modifications, based on data from some external source which is periodically updated.

The following $Q R$-algorithm is used to compute a QR-decomposition of a matrix $A \in \mathcal{M}_{k \times n}(F)$ with columns u_{1}, \ldots, u_{n} :

For $i=1$ to n do steps (1)-(3):
(1) $v_{i}=u_{i}$;
(2) For $j=1$ to $i-1$ set $r_{j i}=u_{i} \cdot v_{j}$ and $v_{i}=v_{i}-r_{j i} v_{j}$;
(3) Set $r_{i i}=\left\|v_{i}\right\|$ and $v_{i}=r_{i i}^{-1} v_{i}$.

Then Q is the matrix with columns v_{1}, \ldots, v_{n} and $R=\left[r_{i j}\right]$. Note that step (3) presupposes that we have already checked that the set of columns of A is linearly independent. If not, then we have to add an initial check to insure that $r_{i i}$ is nonzero, before we attempt to invert it. As already noted, the Gram-Schmidt method is not numerically stable and hence neither is this algorithm for finding a QR-decomposition. It can be modified to produce a somewhat more stable algorithm by replacing the definition of $r_{j i}$ in step (2) by $r_{j i}=v_{i} \cdot v_{j}$.

A variant on this algorithm, called the QZ algorithm, has been devised by Moler and Stewart to find solutions for generalized eigenvalue problems.

With kind permission of The MathWorks, Inc. (Moler); © Eric de Sturler (Stewart).
The contemporary American computer scientist Cleve Moler, after a distinguished academic career, became chairman and chief scientist of MathWorks, the company that developed MATLAB. G.W. Stewart is a contemporary American computer scientist.

Proposition 16.12 Let V be an inner product space having an orthonormal basis B. Then for all $v, w \in V$:
(1) (Parseval's identity) $\langle v, w\rangle=\sum_{y \in B} \overline{\langle y, v\rangle}\langle y, w\rangle$;
(2) (Bessel's identity) $\|v\|^{2}=\sum_{y \in B}|\langle y, v\rangle|^{2}$.

Proof Parseval's identity follows from the calculation

$$
\langle v, w\rangle=\left\langle\sum_{y \in B}\langle v, y\rangle y, w\right\rangle=\sum_{y \in B}\langle v, y\rangle\langle y, w\rangle=\sum_{y \in B} \overline{\langle y, v\rangle}\langle y, w\rangle ;
$$

Bessel's identity derives from this in the special case $v=w$.

With kind permission of the Leibniz-Institut für Astrophysik Potsdam.
Wilhelm Bessel was a nineteenth century astronomer and a friend of Gauss; his mathematical work came as a result of his research on planetary orbits. The French mathematician Marc-Antoine Parseval published only five short papers at the end of the eighteenth century.

The following results shows that orthogonality can be used to determine the relation between two different inner products defined on a vector space over \mathbb{R}.

Proposition 16.13 Let V be a vector space over \mathbb{R} on which we have defined two inner products, μ_{1} and μ_{2}. For $i=1,2$, let $Y_{i}=\{(v, w) \in V \times V \mid$ $\left.\mu_{i}(v, w)=0\right\}$. Then the following conditions are equivalent:
(1) There exists a positive real number c such that $\mu_{2}=c^{2} \mu_{1}$;
(2) $Y_{1}=Y_{2}$;
(3) $Y_{1} \subseteq Y_{2}$.

Proof Since it is clear that (1) implies (2), and (2) implies (3), all we have to prove is that (3) implies (1). Therefore, assume (3). First, let us consider the case $\operatorname{dim}(V)=1$, i.e., the case in which $V=\mathbb{R}$. Then, for $i=1,2$, the scalar $b_{i}=\mu_{i}(1,1)$ is nonzero. Set $d=\mu_{2}(1,1) / \mu_{1}(1,1)$. If $a, b \in \mathbb{R}$, then $\mu_{2}(a, b)=$ $a b \mu_{2}(1,1)=a b d \mu_{1}(1,1)=d \mu_{1}(a, b)$ and so, taking $c=\sqrt{d}$, we have established (1). Thus we can assume that $\operatorname{dim}(V) \geq 2$. For each $i=1,2$, and each $v \in V$, let $\|v\|_{i}=\sqrt{\mu_{i}(v, v)}>0$. Without loss of generality, we can assume that there exist elements $v, w \in V$ and positive real numbers $a<b$ such that $\|v\|_{2}=a\|v\|_{1}$ and $\|w\|_{2}=b\|w\|_{1}$, since otherwise we would immediately have (1). Suppose that $w=d v$ for some $0 \neq d \in \mathbb{R}$. Then $\|w\|_{2}=|d| \cdot\|v\|_{2}=|d| a \cdot\|v\|_{1} a\|w\|_{1}$ and so $a=b$, which is contrary to our assumption that $a<b$. Therefore, we conclude that the set $\{v, w\}$ is linearly independent. Normalizing v and w with respect to μ_{1} if necessary, we can furthermore assume that $\|v\|_{1}=1=\|w\|_{1}$.

We claim that $(v, w) \notin Y_{1}$. Indeed, assume otherwise. Then we have $\mu_{1}(v+w, v-w)=\mu_{1}(v, v)-\mu_{1}(w, w)=\|v\|_{1}^{2}-\|w\|_{1}^{2}=0$, which implies $(v+w, v-w) \in Y_{1}$. Therefore, by (3), $(v+w, v-w) \in Y_{2}$. But then we have $\mu_{2}(v+w, v-w)=\|v\|_{2}^{2}-\|w\|_{2}^{2}=a^{2}-b^{2} \in \mathbb{R} \backslash\{0\}$, yielding a contradiction and establishing the claim. Set $y=v-\|v\|_{1}^{2} \mu_{1}(v, w)^{-1} w$. Then $\mu_{1}(y, v)=$ $\|v\|_{1}^{2}-r \mu_{1}(v, w)=0$, where $r=\|v\|_{1}^{2} \mu_{1}(v, w)^{-1}$, and so $(y, v) \in Y_{1} \subseteq Y_{2}$. Since the set $\{v, w\}$ is linearly independent, we know that $y \neq 0_{V}$. If we set $y^{\prime}=\|y\|_{1}^{-1} y$, then $\left(y^{\prime}, v\right) \in Y_{1} \subseteq Y_{2}$ and so, as before, $\mu_{1}\left(y^{\prime}+v, y^{\prime}-v\right)=$ $\left\|y^{\prime}\right\|_{1}^{2}-\|v\|_{1}^{2}=0$. Hence $\left(y^{\prime}+v, y^{\prime}-v\right) \in Y_{1}$. Thus $\|y\|_{1}^{2}+\|v\|_{1}^{2}=\|-y+$ $v\left\|_{1}^{2}=\right\| r w\left\|_{1}^{2}=\right\| v\left\|_{1}^{4}\left|\mu_{1}(v, w)\right|^{-2}\right\| w \|_{1}^{2}$ and so $\|y\|_{1}^{2}=\|v\|_{1}^{4}\left|\mu_{1}(v, w)\right|^{-2}\|w\|_{1}^{2}-$ $\|v\|_{1}^{2}$. Since $\mu_{2}(y, v)=0$, we see that $\|y\|_{2}^{2}+\|v\|_{2}^{2}=\|-y+v\|_{2}^{2}=\|r w\|_{2}^{2}=$
$\|v\|_{1}^{4}\left|\mu_{1}(v, w)\right|^{-2}\|w\|_{2}^{2}$, Thus

$$
\begin{aligned}
\|y\|_{2}^{2} & =\|v\|_{1}^{4}\left|\mu_{1}(v, w)\right|^{-2}\|w\|_{2}^{2}-\|v\|_{2}^{2} \\
& =\|v\|_{1}^{4}\left|\mu_{1}(v, w)\right|^{-2} b^{2}\|w\|_{1}^{2}-a^{2}\|v\|_{1}^{2} \\
& >a^{2}\left(\|v\|_{1}^{4}\left|\mu_{1}(v, w)\right|^{-2}\|w\|_{1}^{2}-\|v\|_{1}^{2}\right)=a^{2}\|y\|_{1}^{2} .
\end{aligned}
$$

Since $\mu_{2}\left(y^{\prime}, v\right)=0$, this implies that $\mu_{2}\left(y^{\prime}+v, y^{\prime}-v\right)=\left\|y^{\prime}\right\|_{2}^{2}-\|v\|_{2}^{2}>a^{2}-$ $a^{2}=0$, contradicting (3) and the fact that $\mu_{1}\left(y^{\prime}+v, y^{\prime}-v\right)=0$. From this contradiction, we conclude that there can be no elements a and b as above, so there must exist a positive real number c such that $\|v\|_{2}^{2}=c\|v\|_{1}^{2}$ for each nonzero vector $v \in V$. Then for each $v, w \in V$ we have

$$
\begin{aligned}
\mu_{2}(v, w) & =\frac{1}{4}\left[\|v+w\|_{2}-\|v-w\|_{2}\right] \\
& =\frac{c^{2}}{4}\left[\|v+w\|_{1}-\|v-w\|_{1}\right]=c^{2} \mu_{1}(v, w)
\end{aligned}
$$

which proves (1).

Let V be an inner product space. We have already seen that, for each $w \in V$, the function from V to the field of scalars given by $v \mapsto\langle v, w\rangle$ belongs to $D(V)$. If V is finitely generated, we claim that every element of $D(V)$ is of this form. The following result is actually a special case of a much wider, and more complicated, theorem.

Proposition 16.14 (Riesz Representation Theorem) Let V be a finitelygenerated inner product space. If $\delta \in D(V)$ then there exists a unique vector $y \in V$ satisfying $\delta(v)=\langle v, y\rangle$ for all $v \in V$.

Proof Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthonormal basis for V and let $y=\sum_{i=1}^{n} \overline{\delta\left(v_{i}\right)} v_{i}$. Then for all $1 \leq h \leq n$ we have

$$
\left\langle v_{h}, y\right\rangle=\left\langle v_{h}, \sum_{i=1}^{n} \overline{\delta\left(v_{i}\right)} v_{i}\right\rangle=\sum_{i=1}^{n} \delta\left(v_{i}\right)\left\langle v_{h}, v_{i}\right\rangle=\delta\left(v_{h}\right),
$$

and so $\langle v, y\rangle=\delta(v)$ for all $v \in V$. The vector y is unique since if $\langle v, x\rangle=\langle v, y\rangle$ for all $v \in V$ then $x=\sum_{i=1}^{n}\left\langle x, v_{i}\right\rangle v_{i}=\sum_{i=1}^{n} \overline{\delta\left(v_{i}\right)} v_{i}=y$, as desired.

The twentieth century Hungarian mathematician Frigyes Riesz was one of the founders of functional analysis.

Example Let $n>1$ be an integer and let V be the subspace of $\mathbb{R}^{\mathbb{R}}$ consisting of all polynomial functions of degree at most n, on which we have an inner product defined by $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$. Let $\delta \in D(V)$ be the linear functional defined by $\delta: f \mapsto f(0)$. By Proposition 16.14, there exists a polynomial function $p \in V$ satisfying the condition $f(0)=\int_{-1}^{1} f(t) p(t) d t$ for all $f \in V$. The function p is defined to be $\sum_{i=0}^{n} p_{i}(0) p_{i}$, where p_{i} is the i th Legendre polynomial.

Proposition 16.15 Let V and W be finitely-generated inner product spaces, and let $\alpha: V \rightarrow W$ be a linear transformation. Then there exists a unique linear transformation $\alpha^{*}: W \rightarrow V$ satisfying the condition $\langle\alpha(v), w\rangle=$ $\left\langle v, \alpha^{*}(w)\right\rangle$ for all $v \in V$ and all $w \in W$.

Proof Let w be a given vector in W. It is easy to check that the function δ from V to F defined by $\delta: v \mapsto\langle\alpha(v), w\rangle$ is a linear functional. By Proposition 16.14, we know that there exists a unique vector $y_{w} \in V$ satisfying $\delta(v)=\left\langle v, y_{w}\right\rangle$ for all $v \in V$. Define the function $\alpha^{*}: W \rightarrow V$ by $\alpha^{*}: w \mapsto y_{w}$. We have to prove that this function is indeed a linear transformation. Indeed, if $w_{1}, w_{2} \in W$ then

$$
\begin{aligned}
\left\langle v, \alpha^{*}\left(w_{1}+w_{2}\right)\right\rangle & =\left\langle\alpha(v), w_{1}+w_{2}\right\rangle=\left\langle\alpha(v), w_{1}\right\rangle+\left\langle\alpha(v), w_{2}\right\rangle \\
& =\left\langle v, \alpha^{*}\left(w_{1}\right)\right\rangle+\left\langle v, \alpha^{*}\left(w_{2}\right)\right\rangle=\left\langle v, \alpha^{*}\left(w_{1}\right)+\alpha^{*}\left(w_{2}\right)\right\rangle,
\end{aligned}
$$

and this is true for all $v \in V$, so we have $\alpha^{*}\left(w_{1}+w_{2}\right)=\alpha^{*}\left(w_{1}\right)+\alpha^{*}\left(w_{2}\right)$ for all $w_{1}, w_{2} \in W$. If c is a scalar and if $w \in W$ then

$$
\left\langle v, \alpha^{*}(c w)\right\rangle=\langle\alpha(v), c w\rangle=\bar{c}\langle\alpha(v), w\rangle=\bar{c}\left\langle v, \alpha^{*}(w)\right\rangle=\left\langle v, c \alpha^{*}(w)\right\rangle
$$

for all $v \in V$, and hence $\alpha^{*}(c w)=c \alpha^{*}(w)$. Thus α^{*} is a linear transformation and, since y_{w} is uniquely defined, it is also unique.

Let V and W be inner product spaces and let $\alpha: V \rightarrow W$ be a linear transformation. A linear transformation $\alpha^{*}: W \rightarrow V$ satisfying the condition $\langle\alpha(v), w\rangle=$ $\left\langle v, \alpha^{*}(w)\right\rangle$ for all $v \in V$ and $w \in W$ is called an adjoint transformation of α. If such an adjoint exists, it must be unique. Indeed, assume that $\alpha: V \rightarrow W$ has adjoints α^{*} and α^{\times}and that there exists an element $w^{\prime} \in W$ satisfying $\alpha^{*}\left(w^{\prime}\right) \neq \alpha^{\times}\left(w^{\prime}\right)$. Set
$v^{\prime}=\alpha^{*}\left(w^{\prime}\right)-\alpha^{\times}\left(w^{\prime}\right)$. Then $\left\langle v^{\prime}, v^{\prime}\right\rangle=\left\langle v^{\prime}, \alpha^{*}\left(w^{\prime}\right)\right\rangle-\left\langle v^{\prime}, \alpha^{\times}\left(w^{\prime}\right)\right\rangle=\left\langle\alpha\left(v^{\prime}\right), w^{\prime}\right\rangle-$ $\left\langle\alpha\left(v^{\prime}\right), w^{\prime}\right\rangle=0$ and so $v^{\prime}=0_{V}$, which is a contradiction.

By Proposition 16.15, we know that if V and W are finitely generated then every $\alpha \in \operatorname{Hom}(V, W)$ has an adjoint.

Proposition 16.16 Let V and W be finitely-generated inner product spaces, having orthonormal bases $B=\left\{v_{1}, \ldots, v_{n}\right\}$ and $D=\left\{w_{1}, \ldots, w_{k}\right\}$, respectively. Let $\alpha: V \rightarrow W$ be a linear transformation. Then $\Phi_{B D}(\alpha)$ is the matrix $A=\left[a_{i j}\right]$, where $a_{j i}=\left\langle\alpha\left(v_{i}\right), w_{j}\right\rangle$ and $\Phi_{D B}\left(\alpha^{*}\right)=A^{H}$.

Proof For all $1 \leq i \leq n$, let $\alpha\left(v_{i}\right)=\sum_{h=1}^{k} a_{h j} w_{h}$. Then for all $1 \leq j \leq k$ we have $\frac{\left\langle\alpha\left(v_{i}\right), w_{j}\right\rangle}{}=\left\langle\sum_{h=1}^{k} a_{h j} w_{h}, w_{j}\right\rangle=a_{j i}$ and also $\left\langle\alpha^{*}\left(w_{j}\right), v_{i}\right\rangle=\overline{\left\langle v_{i}, \alpha^{*}\left(w_{j}\right)\right\rangle}=$ $\overline{\left\langle\alpha\left(v_{i}\right), w_{j}\right\rangle}=\bar{a}_{j i}$, as needed.

Example It is, of course, possible that a linear transformation between inner product spaces can have an adjoint even if the spaces are not finitely generated. For example, let $[a, b]$ be a closed interval on the real line and let V be the vector space of all differentiable functions from $[a, b]$ to \mathbb{R}. Define an inner product on V by setting $\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x$. This is an inner product space which is not finitely generated over \mathbb{R}. Let α be the endomorphism of V satisfying $\alpha(f): x \mapsto \int_{a}^{b} e^{-t x} f(t) d t$. Then $\langle\alpha(f), g\rangle=\langle f, \alpha(g)\rangle$ for all $f, g \in V$, and so α^{*} exists, and equals α.

Proposition 16.17 Let V, W, and Y be inner product spaces. Let α and β be linear transformations from V to W having adjoints, let ζ be a linear transformation from W to Y having an adjoint, and let c be a scalar. Then:
(1) $(\alpha+\beta)^{*}=\alpha^{*}+\beta^{*}$;
(2) $(c \alpha)^{*}=\bar{c} \alpha^{*}$;
(3) $(\zeta \alpha)^{*}=\alpha^{*} \zeta^{*}$;
(4) $\alpha^{* *}=\alpha$.

Proof (1) For all $v \in V$ and all $w \in W$, we have

$$
\begin{aligned}
\left\langle v,(\alpha+\beta)^{*}(w)\right\rangle & =\langle(\alpha+\beta)(v), w\rangle=\langle\alpha(v)+\beta(v), w\rangle \\
& =\langle\alpha(v), w\rangle+\langle\beta(v), w\rangle=\left\langle v, \alpha^{*}(w)\right\rangle+\left\langle v, \beta^{*}(w)\right\rangle \\
& =\left\langle v,\left(\alpha^{*}+\beta^{*}\right)(w)\right\rangle,
\end{aligned}
$$

and so by the uniqueness of the adjoint we get $(\alpha+\beta)^{*}=\alpha^{*}+\beta^{*}$.
(2) For all $v \in V$ and all $w \in W$, we have

$$
\begin{aligned}
\left\langle v,(c \alpha)^{*}(w)\right\rangle & =\langle(c \alpha)(v), w\rangle=\langle c(\alpha(v)), w\rangle=c\langle\alpha(v), w\rangle \\
& =c\left\langle v, \alpha^{*}(w)\right\rangle=\left\langle v, \bar{c} \alpha^{*}(w)\right\rangle=\left\langle v,\left(\bar{c} \alpha^{*}\right)(w)\right\rangle,
\end{aligned}
$$

and so $(c \alpha)^{*}=\bar{c} \alpha^{*}$.
(3) For all $v \in V$ and all $y \in Y$, we have $\left\langle v,(\zeta \alpha)^{*}(y)\right\rangle=\langle(\zeta \alpha)(v), y\rangle=$ $\left\langle\alpha(v), \zeta^{*}(y)\right\rangle=\left\langle v, \alpha^{*} \zeta^{*}(y)\right\rangle$, and so $(\zeta \alpha)^{*}=\alpha^{*} \zeta^{*}$.
(4) For all $v \in V$ and all $w \in W$, we have $\left\langle w, \alpha^{* *}(v)\right\rangle=\left\langle\alpha^{*}(w), v\right\rangle=$ $\overline{\left\langle v, \alpha^{*}(w)\right\rangle}=\overline{\langle\alpha(v), w\rangle}=\langle w, \alpha(v)\rangle$, and so $\alpha^{* *}=\alpha$.

If (K, \bullet) is an algebra over a field F, then a function $a \mapsto a^{*}$ from K to itself is an involution of K if and only if the following additional conditions are satisfied:
(1) $(a+b)^{*}=a^{*}+b^{*}$ and $(a \bullet b)^{*}=b^{*} \bullet a^{*}$ for all $a, b \in K$;
(2) $a^{* *}=a$ for all $a \in K$.

Note that $0^{*}=(0+0)^{*}=0^{*}+0^{*}$ and so $0^{*}=0$. This means that if $0 \neq a \in K$ then $0 \neq a^{*}$, by (2). If K is unital, then $1=1^{* *}=\left(1 \bullet 1^{*}\right)^{*}=1^{* *} \bullet 1^{*}=1 \bullet 1^{*}=1^{*}$. If this case, if a is a unit of K then $\left(a^{-1}\right)^{*} a^{*}=\left(a a^{-1}\right)^{*}=1^{*}=1$ and similarly $a^{*}\left(a^{-1}\right)^{*}=1$, so $\left(a^{-1}\right)^{*}=\left(a^{*}\right)^{-1}$.

An element a of K is symmetric with respect to $*$ if and only if $a^{*}=a$. If $b \in K$ is a unit symmetric with respect to $*$ then it is straightforward to verify that the function $a \mapsto b^{-1} a^{*} b$ is also an involution of K.

Example If V is a finitely-generated inner product space, then we see that the function $\alpha \mapsto \alpha^{*}$ is an involution of the F-algebra $\operatorname{End}(V)$. Another involution we have already seen is the function $A \mapsto A^{T}$ of the F-algebra $\mathcal{M}_{n \times n}(F)$, for any field F. Of course, in the case $F=\mathbb{R}$, the relation between these two involutions can be seen from Proposition 16.16. We have also seen that the function $A \mapsto A^{H}$ is an involution on $\mathcal{M}_{n \times n}(\mathbb{C})$, and its relation to the involution $\alpha \mapsto \alpha^{*}$ is also immediate from Proposition 16.15.

Example Let F be a field and let (K, \bullet) be an F-algebra. Define an operation \diamond on K^{2} by setting $\left[\begin{array}{l}a \\ b\end{array}\right] \diamond\left[\begin{array}{l}c \\ d\end{array}\right]=\left[\begin{array}{ll}a \bullet c \\ d \bullet b\end{array}\right]$. Then $\left(K^{2}, \diamond\right)$ is an F-algebra and the function $\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{l}b \\ a\end{array}\right]$ is an involution of this algebra.

Proposition 16.18 Let $\alpha: V \rightarrow W$ be a linear transformation between finitely-generated inner product spaces. Then:
(1) $\operatorname{ker}\left(\alpha^{*}\right)=\operatorname{im}(\alpha)^{\perp}$;
(2) $\operatorname{ker}(\alpha)=\operatorname{im}\left(\alpha^{*}\right)^{\perp}$;
(3) $\operatorname{im}(\alpha)=\operatorname{ker}\left(\alpha^{*}\right)^{\perp}$;
(4) $\operatorname{im}\left(\alpha^{*}\right)=\operatorname{ker}(\alpha)^{\perp}$.

Proof (1) We note that

$$
\begin{aligned}
\operatorname{ker}\left(\alpha^{*}\right) & =\left\{w \in W \mid \alpha^{*}(w)=0_{V}\right\} \\
& =\left\{w \in W \mid\left\langle v, \alpha^{*}(w)\right\rangle=0 \text { for all } v \in V\right\} \\
& =\{w \in W \mid\langle\alpha(v), w\rangle=0 \text { for all } v \in V\}=\operatorname{im}(\alpha)^{\perp} .
\end{aligned}
$$

(2) This follows from the same argument as (1), replacing α by α^{*}.
(3) By (1) and Proposition 16.6, we have $\operatorname{im}(\alpha)=\left(\operatorname{im}(\alpha)^{\perp}\right)^{\perp}=\operatorname{ker}\left(\alpha^{*}\right)^{\perp}$.
(4) This follows from (2) in the way (3) follows from (1).

Proposition 16.19 If α is an endomorphism of a finitely-generated inner product space V then $\operatorname{null}(\alpha)=\operatorname{null}\left(\alpha^{*}\right)$.

Proof By Proposition 6.10 and Proposition 16.18, we see that $\operatorname{null}(\alpha)=$ $\operatorname{dim}\left(\operatorname{im}\left(\alpha^{*}\right)^{\perp}\right)=\operatorname{dim}(V)-\operatorname{dim}\left(\operatorname{im}\left(\alpha^{*}\right)\right)=\operatorname{null}\left(\alpha^{*}\right)$.

Example Proposition 16.19 is not necessarily true for inner product spaces which are not finitely generated. For example, let $V=\mathbb{R}^{(\infty)}$ with the inner product $\left\langle\left[a_{0}, a_{1}, \ldots\right],\left[b_{0}, b_{1}, \ldots\right]\right\rangle=\sum_{i=0}^{\infty} a_{i} b_{i}$. Let $\alpha \in \operatorname{End}(V)$ be given by α : $\left[a_{0}, a_{1}, \ldots\right] \mapsto\left[0, a_{0}, a_{1}, \ldots\right]$. Then α^{*} exists and is given by $\alpha^{*}:\left[a_{0}, a_{1}, \ldots\right] \mapsto$ $\left[a_{1}, a_{2}, \ldots\right]$. Clearly, $\operatorname{ker}(\alpha)$ is trivial but $\operatorname{ker}\left(\alpha^{*}\right)$ is not.

Proposition 16.20 Let $\alpha: V \rightarrow W$ be a linear transformation between finitely-generated inner product spaces. Then
(1) If α is a monomorphism then $\alpha^{*} \alpha$ is an automorphism of V;
(2) If α is an epimorphism then $\alpha \alpha^{*}$ is an automorphism of W.

Proof (1) It suffices to prove that the linear transformation $\alpha^{*} \alpha$ is monic. And, indeed, if $v \in V$ satisfies $\alpha^{*} \alpha(v)=0_{V}$ then $\langle\alpha(v), \alpha(v)\rangle=\left\langle\alpha^{*} \alpha(v), v\right\rangle=\left\langle 0_{V}, v\right\rangle=$ 0 and so $\alpha(v)=0_{W}$. Since α is a monomorphism, $v=0_{V}$ and so we have shown that $\alpha^{*} \alpha$ is monic, as we needed.
(2) First of all, we will show that α^{*} is a monomorphism. Indeed, if $w_{1}, w_{2} \in$ W are vectors satisfying $\alpha^{*}\left(w_{1}\right)=\alpha^{*}\left(w_{2}\right)$ then for all $v \in V$ we have $\langle\alpha(v)$, $\left.w_{1}-w_{2}\right\rangle=\left\langle v, \alpha^{*}\left(w_{1}\right)-\alpha^{*}\left(w_{2}\right)\right\rangle=0$ and since α is an epimorphism, we conclude that $\left\langle w, w_{1}-w_{2}\right\rangle=0$ for all $w \in W$. This implies that $w_{1}-w_{2}=0_{V}$ and so $w_{1}=w_{2}$, showing that α^{*} is indeed monic. Now we will show that $\alpha \alpha^{*}$ is also monic, which will suffice to prove (2). Indeed, if $\alpha \alpha^{*}(w)=0_{W}$ then $\left\langle\alpha^{*}(w), \alpha^{*}(w)\right\rangle=\left\langle\alpha \alpha^{*}(w), w\right\rangle=0$ and so $\alpha^{*}(w)=0_{V}$, proving that $w=0_{W}$.

Proposition 16.21 Let $\alpha: V \rightarrow W$ be an isomorphism between finitelygenerated inner produce spaces. Then $\left(\alpha^{*}\right)^{-1}=\left(\alpha^{-1}\right)^{*}$.

Proof Let $\beta=\left(\alpha^{-1}\right)^{*}$. Then for all $v_{1}, v_{2} \in V$ we have $\left\langle v_{1}, v_{2}\right\rangle=\left\langle\alpha^{-1} \alpha\left(v_{1}\right), v_{2}\right\rangle=$ $\left\langle\alpha\left(v_{1}\right), \beta\left(v_{2}\right)\right\rangle=\left\langle v_{1}, \alpha^{*} \beta\left(v_{2}\right)\right\rangle$ and so $\alpha^{*} \beta\left(v_{2}\right)=v_{2}$ for all $v_{2} \in V$, which means that $\alpha^{*} \beta$ is the identity map on V. Thus $\beta=\left(\alpha^{*}\right)^{-1}$.

Finally, we mention a few consequences of some of the above results with which we will not deal at length, but have extensive and interesting discussions in the mathematical literature.
(1) In an inner product space over \mathbb{R}, we can also project onto affine subsets and not just onto subspaces. Indeed, if V is an inner product space over \mathbb{R} then any element v of V defines a linear functional $\delta_{v} \in D(V)$ given by $\delta_{v}: w \mapsto\langle w, v\rangle$. If $0 \neq c \in \mathbb{R}$, then $\delta_{c}^{-1}(c)$ is an affine subset of V. Define a function $\theta_{v}: V \rightarrow V$ by setting

$$
\theta_{v}: y \mapsto y+\left[\frac{c-\delta_{v}(y)}{\|v\|^{2}}\right] v .
$$

Then for all $y \in V$ we have $\delta_{v} \theta_{v}(y)=c$ and so we see that $\theta_{v}(y) \in \delta_{c}^{-1}(c)$, so that $\operatorname{im}\left(\theta_{v}\right) \subseteq \delta_{c}^{-1}(c)$. Moreover, $\theta_{v}^{2}=\theta_{v}$. We call the function θ_{v} the projection on the affine set $\delta_{c}^{-1}(c)$. Such projections have many applications, such as the algebraic reconstruction technique (ART), which is very important in computerized imaging.
(2) From Proposition 16.5, we see that the rule which assigns to each subspace W of a finitely-generated inner product space V the orthogonal projection of V onto W is an embedding of the set of all subspaces of V into the algebra $\operatorname{End}(V)$. This observation has many ramifications, of which we mention but one. Let V be a finitely-generated inner product space. For subspaces W and Y of V, we can define the gap between W and Y to be $g(W, Y)=\left\|\pi_{W}-\pi_{Y}\right\|$, where π_{W} and π_{Y} are the orthogonal projections of V onto W and Y, respectively. This allows us to measure the distance between subspaces of V in a natural way. One immediately sees that $g(W, Y)=g\left(W^{\perp}, Y^{\perp}\right)$ and that $g(W, Y) \leq 1$ for all such W and Y. Since the gap is a distance function-in the sense of Proposition 15.12-it turns the set of all subspaces of V into a metric space, the topological properties of which can be studied. For example, one can show that this space is compact and, as a result, also complete, meaning that every sequence W_{1}, W_{2}, \ldots of subspaces of V satisfying $\lim _{i, j \rightarrow \infty} g\left(W_{i}, W_{j}\right)=0$ is convergent. It also makes sense to talk about continuous families of subspaces of V. The analysis of the topological space of all subspaces of a finite-dimensional inner product space has proven to be an extremely important tool.

Exercises

Exercise 1006

Let $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. Does there exist a matrix $B \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ of the form $\left[\begin{array}{rr}\cos (t) & -\sin (t) \\ \sin (t) & \cos (t)\end{array}\right]$ such that the columns of $A+B$ are orthogonal, when considered as elements of the space \mathbb{R}^{2}, endowed with the dot product?

Exercise 1007

Calculate the angle between the vectors $\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{r}3 \\ 1 \\ -2\end{array}\right]$ in the space \mathbb{R}^{3}, endowed with the dot product.

Exercise 1008
Calculate the angle between the vectors $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2 \\ 1\end{array}\right]$ and $\left[\begin{array}{r}1 \\ -1 \\ 1 \\ -1 \\ 1\end{array}\right]$ in the space \mathbb{R}^{5}, endowed with the dot product.

Exercise 1009

Let n be a positive integer. A matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{C})$ is a complex Hadamard matrix if and only if $\left|a_{h j}\right|=1$ for all $1 \leq h, j \leq n$ and any pair of distinct rows of A, considered as vectors in \mathbb{C}^{n}, is orthogonal. For each n, find a complex number d such that $A=\left[d^{h j}\right]$ is a complex Hadamard matrix. For $n=6$, find a complex Hadamard matrix which is not of this form.

Exercise 1010

Let A and B be nonempty subsets of \mathbb{R}^{3} which satisfy the condition that $u \times v \in$ B whenever $u \in A$ and $v \in B$. Is it true that $u \times w \in B^{\perp}$ whenever $u \in A$ and $w \in B^{\perp}$.

Exercise 1011

Let $V=C(0,1)$ on which we have defined the inner product $\langle f, g\rangle=$ $\int_{0}^{1} f(x) g(x) d x$. Calculate $\|\cos (t)\|$.

Exercise 1012

Let $V=\mathcal{M}_{2 \times 2}(\mathbb{R})$ and define an inner product on V by setting

$$
\left\langle\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right],\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]\right\rangle=\sum_{i=1}^{2} \sum_{j=1}^{2} a_{i j} b_{i j} .
$$

Find the angle between the matrices $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]$.

Exercise 1013

Let V be the space \mathbb{R}^{4}, together with the dot product. Find a normal vector in V
which is orthogonal to each of the vectors $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ -1 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 3\end{array}\right]$.

Exercise 1014

Let $V=\mathbb{R}^{3}$ on which some inner product is defined. Does there exist a vector $0_{V} \neq v \in V$ which is orthogonal to each of the vectors $\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}2 \\ 0 \\ 4\end{array}\right]$?

Exercise 1015

Let $f, g \in \mathbb{R}^{\mathbb{R}}$ be defined by $f: x \mapsto x$ and $g: x \mapsto x^{2}-\frac{1}{2}$. Are f and g orthogonal as elements of $C(0,1)$? Are they orthogonal as elements of $C(0,2)$?

Exercise 1016

Find a real number c such that $\|v-w\|=c$ for every orthonormal pair $\{v, w\}$ of vectors in \mathbb{R}^{n}, on which the dot product is defined.

Exercise 1017

Let n be a positive integer and let c_{1}, \ldots, c_{n} is a list of real numbers. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthonormal basis for \mathbb{R}^{n}, let $d=\min \left\{c_{1}, \ldots, c_{n}\right\}$. For each $1 \leq i \leq n$, set $d_{i}=\sqrt{c_{i}-d}$ and let $w_{i}=d v_{i}$. Let $B \in \mathcal{M}_{n \times n}(\mathbb{R})$ be the matrix the columns of which are d_{1}, \ldots, d_{n} and let $A=B B^{T}+d I$. For $1 \leq i \leq n$, show that v_{i} is an eigenvector of A associated with the eigenvalue c_{i}.

Exercise 1018

Let $V=C(0,1)$ on which we have defined the inner product $\langle f, g\rangle=$ $\int_{0}^{1} f(x) g(x) d x$, and let $W=\mathbb{R}\left\{e^{x}\right\} \subseteq V$. Find an infinite set of elements of W^{\perp}.

Exercise 1019

Let $V=\mathbb{R}^{4}$ on which some inner product is defined. Find distinct vectors $v, w, y \in V$ such that $v \perp w$ and $w \perp y$, but not $v \perp y$.

Exercise 1020

Let V be an inner product space over \mathbb{R} and let v and w be vectors in V. Show that $\|v\|=\|w\|$ if and only if $(v+w) \perp(v-w)$.

Exercise 1021
Let $V=C(-1,1)$ and define an inner product on V by setting $\langle f, g\rangle=$ $\int_{-1}^{1} f(x) g(x) d x$. Let W be the subspace of V composed of all even functions. Find W^{\perp}.

Exercise 1022

Let n be a positive integer and let $V=\mathcal{M}_{n \times n}(\mathbb{C})$, on which we have an inner product defined by $\langle A, B\rangle=\operatorname{tr}\left(A^{T} \bar{B}\right)$. Let W be the subspace of V consisting of all those matrices $A \in V$ satisfying $\operatorname{tr}(A)=0$. Find W^{\perp}.

Exercise 1023
Define an inner product on \mathbb{R}^{2} with respect to which the vectors $\left[\begin{array}{r}-1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 4\end{array}\right]$ are orthogonal.

Exercise 1024

Make use of the Gram-Schmidt process to find an orthonormal basis for the space \mathbb{R}^{3} together with the dot product, beginning with the initial basis

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right\}
$$

Exercise 1025

Let V be an inner product space and let A be an orthonormal subset of V. Show that A is a maximal orthonormal subset if and only if for every $0_{V} \neq y \in V$ there exists a $v \in A$ satisfying $\langle v, y\rangle \neq 0$.

Exercise 1026

Let V be an inner product space of finite dimension n over its field of scalars. Show that there exists a subset $\left\{v_{1}, \ldots, v_{2 n}\right\}$ of V satisfying the conditions that $\left\langle v_{i}, v_{j}\right\rangle \leq 0$ for all $1 \leq i \neq j \leq 2 n$.

Exercise 1027
Let V be the space of all polynomial functions in $\mathbb{R}^{\mathbb{R}}$ of degree less than 3 , with inner product $\langle p, q\rangle=\frac{1}{2} \int_{-1}^{1} p(t) q(t) d t$. Find an orthonormal basis $\left\{p_{0}, p_{1}, p_{2}\right\}$ of V satisfying $\operatorname{deg}\left(p_{h}\right)=h$ for $h=0,1,2$.

Exercise 1028
Consider the function $\mu: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by

$$
\mu:\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right],\left[\begin{array}{l}
a^{\prime} \\
b^{\prime} \\
c^{\prime}
\end{array}\right]\right) \mapsto 2 a a^{\prime}+a c^{\prime}+c a^{\prime}+b b^{\prime}+c c^{\prime}
$$

Show that μ is an inner product and find a basis of \mathbb{R}^{3} orthonormal with respect to μ.

Exercise 1029

Let V be an inner product space over \mathbb{R} and let W be a finitely-generated subspace of V with orthonormal basis $\left\{w_{1}, \ldots, w_{n}\right\}$. Let $\alpha \in \operatorname{Hom}(V, W)$ be defined by $\alpha: v \mapsto \sum_{i=1}^{n}\left\langle v, w_{i}\right\rangle w_{i}$. Show that $\alpha(v)-v \in W^{\perp}$ for all $v \in V$ and that $\|\alpha(v)-v\|<\|w-v\|$ for all $\alpha(v) \neq w \in W$.

Exercise 1030

Let W be the subspace of \mathbb{R}^{4} spanned by linearly-independent subset

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
0 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
0 \\
5 \\
8
\end{array}\right],\left[\begin{array}{l}
8 \\
1 \\
5 \\
6
\end{array}\right]\right\},
$$

which is an inner product space with respect to the dot product. Make use of the Gram-Schmidt process to find an orthonormal basis for W.

Exercise 1031

Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. If the set of rows of A is orthonormal with respect to the dot product, is the same true for the set of columns of A ?

Exercise 1032

Let $n>k$ be positive integers and let $A \in \mathcal{M}_{k \times n}(\mathbb{R})$ satisfy the condition that its set of rows is orthonormal with respect to the dot product. Show that $\left(A^{T} A\right)^{2}=A^{T} A$.

Exercise 1033

Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Show that A is symmetric if and only if for some $k<n$ there exists a matrix $B \in \mathcal{M}_{n \times k}(\mathbb{R})$ and a real number r such that $A=B B^{T}+r I$ and the columns of B are mutually orthogonal.

Exercise 1034

Let W be the subspace of \mathbb{R}^{4}, which is an inner product space with respect to the dot product, generated by $\left\{\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}4 \\ 2 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$. Find an orthonormal basis for W and an orthonormal basis for W^{\perp}.

Exercise 1035

Consider \mathbb{R}^{4} as an inner product space with respect to the dot product. Add two vectors to the set $\left\{\frac{1}{6}\left[\begin{array}{r}1 \\ 1 \\ 3 \\ -5\end{array}\right], \frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$ in order to get an orthonormal basis for this space.

Exercise 1036
Let n be a positive integer and let $V=\mathbb{R}^{n}$, which is an inner product space with respect to the dot product. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthonormal basis for V, let $a \in \mathbb{R}$, and let $1 \leq h \neq k \leq n$. Define vectors w_{1}, \ldots, w_{n} in V by setting

$$
w_{i}= \begin{cases}\cos (a) v_{h}-\sin (a) v_{k} & \text { if } i=h \\ \sin (a) v_{h}-\cos (a) v_{k} & \text { if } i=k \\ v_{i} & \text { otherwise }\end{cases}
$$

Is $\left\{w_{1}, \ldots, w_{n}\right\}$ an orthonormal basis for V ?

Exercise 1037

Consider \mathbb{R}^{3} as an inner product space with respect to the dot product. Is there a $k \in \mathbb{Z}$ such that $\left\{\left[\begin{array}{r}4 k \\ 4 \\ -k\end{array}\right],\left[\begin{array}{l}0 \\ k \\ 4\end{array}\right],\left[\begin{array}{r}-25 \\ 16 k \\ -12 k\end{array}\right]\right\}$ is an orthonormal basis for this space?

Exercise 1038

Consider \mathbb{R}^{4} as an inner product space with respect to the dot product. Find an orthonormal basis for $\mathbb{R}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 2\end{array}\right]\right\}$.

Exercise 1039

Define an inner product on \mathbb{R}^{2} by setting

$$
\left\langle\left[\begin{array}{l}
a \\
b
\end{array}\right],\left[\begin{array}{l}
c \\
d
\end{array}\right]\right\rangle=a c+\frac{1}{2}(a d+b c)+b d
$$

Find an orthonormal basis for this space.

Exercise 1040

Consider \mathbb{R}^{3} as an inner product space with respect to the dot product. Let a, b, c, d be nonzero real numbers satisfying the conditions that $a^{2}+b^{2}+c^{2}=d^{2}$
and $a b+a c=b c$. Show that the subset $\left\{\frac{1}{d}\left[\begin{array}{l}a \\ b \\ c\end{array}\right], \frac{1}{d}\left[\begin{array}{r}b \\ -c \\ a\end{array}\right], \frac{1}{d}\left[\begin{array}{r}c \\ a \\ -b\end{array}\right]\right\}$ of \mathbb{R}^{3} is orthonormal.

Exercise 1041
Define an inner product on \mathbb{R}^{3} by setting

$$
\left\langle\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right],\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]\right\rangle=a_{1} b_{1}+2\left(a_{2} b_{2}+a_{3} b_{3}\right)-\left(a_{1} b_{2}+a_{2} b_{1}\right)-\left(a_{2} b_{3}+a_{3} b_{2}\right) .
$$

Find an orthonormal basis for this space.

Exercise 1042

Let m be a positive integer and let

$$
W=\left\{f \in \mathbb{C}^{\mathbb{Z}} \mid f(i+m)=f(i) \text { for all } i \in \mathbb{Z}\right\}
$$

which is a subspace of the vector space $\mathbb{C}^{\mathbb{Z}}$ over \mathbb{C}. Define a function μ : $W \times W \rightarrow \mathbb{C}$ by setting $\mu:(f, g) \mapsto \sum_{h=0}^{m-1} f(h) \overline{g(h)}$. For each $0 \leq j<m$, let $f_{j} \in W$ be the function defined by

$$
f_{j}(h)= \begin{cases}1 & \text { if } h \text { is of the form } j+m i, \text { for } i \in \mathbb{Z}, \\ 0 & \text { otherwise } .\end{cases}
$$

Show that μ is an inner product on W and that, with respect to that product, $\left\{f_{0}, \ldots, f_{m-1}\right\}$ is an orthonormal basis for W.

Exercise 1043

A function $f \in \mathbb{R}^{\mathbb{R}}$ has bounded support if and only if there exist real numbers $a \leq b$ such that $f(x)=0$ for all x not in the interval $[a, b]$ on the real line. Let V be the set of all such functions and define a function $\mu: V \times V \rightarrow \mathbb{R}$ by setting $\mu(f, g)=\int_{-\infty}^{\infty} f(x) g(x) d x$. For each $k \in \mathbb{Z}$, let $f_{k} \in V$ be the function defined by

$$
f_{k}: x \mapsto \begin{cases}1 & \text { if } k \leq x \leq k+1, \\ 0 & \text { otherwise } .\end{cases}
$$

Show that μ is an inner product on V and that the subset $\left\{f_{k} \mid k \in \mathbb{Z}\right.$ of V is orthonormal with respect to this inner product.

Exercise 1044

Let V be the subspace of $\mathbb{R}^{\mathbb{R}}$ consisting of all infinitely-differentiable functions f which are periodic of period $h>0$. (In other words, $f(x+h)=f(x)$ for all $x \in \mathbb{R}$.) Define an inner product on V by setting $\langle f, g\rangle=\int_{-h}^{h} f(x) g(x) d x$. Let α be the endomorphism of V which assigns to every element of V its derivative. Find α^{*}.

Exercise 1045

Let V be an inner product space over \mathbb{R} and let $\left\{v_{1}, \ldots v_{n}\right\}$ be a set of mutuallyorthogonal nonzero vectors in V. Let a_{1}, \ldots, a_{n} be positive real numbers satisfying $\sum_{i=1}^{n} a_{i}=1$, and let $w=\sum_{i=1}^{n} a_{i} v_{i}$. Suppose that $w \perp v_{i}-v_{j}$ for all $1 \leq i \neq j \leq n$. Then show that $\|w\|^{-2}=\sum_{i=1}^{n}\left\|v_{i}\right\|^{-2}$.

Exercise 1046

Let V be a finitely-generated inner product space and let $\alpha, \beta_{1}, \beta_{2} \in \operatorname{End}(V)$ satisfy $\alpha^{*} \alpha \beta_{1}=\alpha^{*} \alpha \beta_{2}$. Show that $\alpha \beta_{1}=\alpha \beta_{2}$.

Exercise 1047

If W and Y are subspaces of a finitely-generated inner product space V, show that $g(W, Y)$ is the maximum of
$\sup \{d(w, Y) \mid w \in W$ and $\|w\|=1\} \quad$ and $\quad \sup \{d(y, W) \mid y \in Y$ and $\|y\|=1\}$.

Exercise 1048

Let W and Y be subspaces of a finite-dimensional inner product space V satisfying $g(W, Y)<1$. Show that $\operatorname{dim}(W)=\operatorname{dim}(Y)$.

Exercise 1049

Let K be an algebra over a field F on which we have an involution $a \mapsto a^{*}$ defined. Let c be an element of K satisfying the conditions that $c=c^{2}$ and that $c+c^{*}-1$ is a unit of K. Show that there exists an element $d \in K$ satisfying $d^{2}=d=d^{*}, d c=c$, and $c d=d$. Is d necessarily unique?

Exercise 1050

Let V be an inner product space over \mathbb{C} and let α be an endomorphism of V satisfying $\alpha^{*}=-\alpha$. Show that every eigenvalue of α is purely imaginary.

Selfadjoint Endomorphisms

Let V be an inner product space. An endomorphism α of V is selfadjoint if and only if $\langle\alpha(v), w\rangle=\langle v, \alpha(w)\rangle$ for all $v, w \in V$. Such endomorphisms always exist since σ_{c} is selfadjoint for any $c \in \mathbb{R}$. Selfadjoint endomorphisms have important applications in mathematical models in physics. For example, in mathematical models of quantum theory, selfadjoint operators on the state space of a system represent measurements which can be performed on the system. Note that if $\alpha \in \operatorname{End}(V)$ is selfadjoint, then $\langle\alpha(v), v\rangle=\langle v, \alpha(v)\rangle=\overline{\langle\alpha(v), v\rangle}$ and so $\langle\alpha(v), v\rangle \in \mathbb{R}$ for all $v \in V$.

Example Let $V=C(0,1)$, which is an inner product space over \mathbb{R} in which $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$. Then the endomorphism α of V defined by $\alpha(f): x \mapsto$ $\int_{0}^{1} \cos (x-y) f(y) d y$ for all $f \in V$ is selfadjoint.

Proposition 17.1 Let V be an inner product space. Then:
(1) If $\alpha \in \operatorname{End}(V)$ has an adjoint α^{*}, then $\alpha+\alpha^{*}$ is selfadjoint;
(2) If $\alpha \in \operatorname{End}(V)$ is selfadjoint, so is c α for each $c \in \mathbb{R}$;
(3) If $\alpha \in \operatorname{End}(V)$ is selfadjoint, so is α^{n} for each positive integer n;
(4) If $\alpha, \beta \in \operatorname{End}(V)$ are selfadjoint so are $\alpha+\beta$ and $\alpha \bullet \beta$, where \bullet is the Jordan product in $\operatorname{End}(V)$;
(5) If $\alpha \in \operatorname{End}(V)$ is selfadjoint and $\beta \in \operatorname{End}(V)$ has an adjoint, then $\beta \alpha \beta^{*}$ is selfadjoint.

Proof (1) If $v, w \in V$ then

$$
\begin{aligned}
\left\langle\left(\alpha+\alpha^{*}\right)(v), w\right\rangle & =\langle\alpha(v), w\rangle+\left\langle\alpha^{*}(v), w\right\rangle \\
& =\left\langle v, \alpha^{*}(w)\right\rangle+\langle v, \alpha(w)\rangle=\left\langle v,\left(\alpha+\alpha^{*}\right)(w)\right\rangle .
\end{aligned}
$$

(2) If $v, w \in V$ then $\langle(c \alpha)(v), w\rangle=c\langle\alpha(v), w\rangle=c\langle v, \alpha(w)\rangle=\langle v,(c \alpha)(w)\rangle$.
(3) This follows by an easy induction argument, using Proposition 16.17(3).
(4) The selfadjointness of $\alpha+\beta$ is an immediate consequence of Proposition 16.17(1). Also, recall that $\alpha \bullet \beta=\frac{1}{2}(\alpha \beta+\beta \alpha)$ and so, if $v, w \in V$ then

$$
\begin{aligned}
\langle(\alpha \bullet \beta)(v), w\rangle & =\frac{1}{2}\langle\alpha \beta(v), w\rangle+\frac{1}{2}\langle\beta \alpha(v), w\rangle \\
& =\frac{1}{2}\langle v, \beta \alpha(w)\rangle+\frac{1}{2}\langle v, \alpha \beta(w)\rangle=\langle v,(\alpha \bullet \beta)(w)\rangle .
\end{aligned}
$$

(5) By Proposition 16.17, we have $\left(\beta \alpha \beta^{*}\right)^{*}=\beta^{* *} \alpha \beta^{*}=\beta \alpha \beta^{*}$.

In particular, if α is a selfadjoint endomorphism of an inner product space V, and if $p(X) \in \mathbb{R}[X]$, then $p(\alpha)$ is selfadjoint. The product of selfadjoint endomorphisms of V need not be selfadjoint, as we will see in the example after Proposition 17.4. Thus we see that the set of all selfadjoint endomorphisms of V is a subspace, though not necessarily a subalgebra, of $\operatorname{End}(V)$.

Example Let V be an inner product space over \mathbb{R} and let $\alpha \in \operatorname{End}(V)$ be selfadjoint. Let $a, b \in \mathbb{R}$ satisfy the condition that $a^{2}<4 b$. Then, by the previous remark, we know that $\beta=\alpha^{2}+a \alpha+b \sigma_{1}$ is again a selfadjoint endomorphism of V. Moreover, if $0_{V} \neq v \in V$ then

$$
\begin{aligned}
\langle\beta(v), v\rangle & =\left\langle\alpha^{2}(v), v\right\rangle+a\langle\alpha(v), v\rangle+b\langle v, v\rangle \\
& =\langle\alpha(v), \alpha(v)\rangle+a\langle\alpha(v), v\rangle+b\langle v, v\rangle \\
& =\|\alpha(v)\|^{2}+a\langle\alpha(v), v\rangle+b\|v\|^{2} .
\end{aligned}
$$

By Proposition 15.2, we know that $|\langle\alpha(v), v\rangle| \leq\|\alpha(v)\| \cdot\|v\|$ and so

$$
\begin{aligned}
\langle\beta(v), v\rangle & \geq\|\alpha(v)\|^{2}-|a| \cdot\|\alpha(v)\| \cdot\|v\|+b\|v\|^{2} \\
& =\left(\|\alpha(v)\|-\frac{1}{2}|a| \cdot\|v\|\right)^{2}+\left(b-\frac{1}{4} a^{2}\right)\|v\|^{2}>0
\end{aligned}
$$

Thus $\beta(v) \neq 0_{V}$ for each $0_{V} \neq v \in V$, showing that β is monic. In particular, if V is finitely generated, this in fact shows that β is an automorphism of V.

Let V be a finitely-generated inner product space having an orthonormal basis D. If $\alpha \in \operatorname{End}(V)$ and if $\Phi_{D D}(\alpha)=\left[a_{i j}\right]$, then we know from Proposition 16.16 that $\Phi_{D D}\left(\alpha^{*}\right)=\Phi_{D D}(\alpha)^{H}=\left[\bar{a}_{i j}\right]^{T}$. Therefore, if α is selfadjoint we have $a_{i j}=\bar{a}_{j i}$ for all $1 \leq i, j \leq n$. In particular, $a_{i i}=\bar{a}_{i i}$ for all $1 \leq i \leq n$ and so the diagonal entries in $\Phi_{D D}(\alpha)$ belong to \mathbb{R}. Matrices A over \mathbb{C} satisfying the condition that $A=A^{H}$ are known as Hermitian matrices. When we are working over \mathbb{R}, these are, of course, just the symmetric matrices. It is clear that the sum of Hermitian matrices is again a Hermitian matrix, but the product of Hermitian matrices is not necessarily

Hermitian, just as we have seen that the product of symmetric matrices is not necessarily symmetric. We do note, however, that if a matrix $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ is Hermitian then so is A^{2}. Indeed, if A and B are Hermitian matrices in $\mathcal{M}_{n \times n}(\mathbb{C})$, then their Jordan product $\frac{1}{2}(A B+B A)$ is a Hermitian matrix and so, in particular, the product of a commuting pair of Hermitian matrices is again Hermitian. Moreover, any matrix $D \in \mathcal{M}_{n \times n}(\mathbb{C})$ can be written in the form $A+i B$, where $A=\frac{1}{2}\left(D+D^{H}\right)$ and $B=-\frac{1}{2}\left(D-D^{H}\right)$ are both Hermitian matrices. If $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ is Hermitian, then so is $c A$ for any $c \in \mathbb{R}$, and so the set of all Hermitian matrices in $\mathcal{M}_{n \times n}(\mathbb{C})$ is a subspace of $\mathcal{M}_{n \times n}(\mathbb{C})$, considered as a vector space over \mathbb{R}; indeed, it is a subalgebra of the commutative Jordan \mathbb{R}-algebra $\mathcal{M}_{n \times n}(\mathbb{C})^{+}$. However, this set is not closed under multiplication by complex scalars, and so it is not a vector space over \mathbb{C}.

We have already seen that if V is an inner product space and if $\alpha \in \operatorname{End}(V)$ is selfadjoint, then $\langle\alpha(v), v\rangle \in \mathbb{R}$ for all $v \in V$. If V is finitely generated, the reverse is also true, as follows immediately from the following result.

Proposition 17.2 Let V be an inner product space over \mathbb{C} and let $\alpha \in \operatorname{End}(V)$ have an adjoint. If $\langle\alpha(v), v\rangle \in \mathbb{R}$ for all $v \in V$, then α is selfadjoint.

Proof For vectors $v, w \in V$, we have

$$
\langle\alpha(v+w), v+w)\rangle=\langle\alpha(v), v\rangle+\langle\alpha(v), w\rangle+\langle\alpha(w), v\rangle+\langle\alpha(w), w\rangle
$$

and since, by assumption, we know that the scalars $\langle\alpha(v+w), v+w)\rangle,\langle\alpha(v), v\rangle$, and $\langle\alpha(w), w\rangle$ are all real, we see that $\langle\alpha(v), w\rangle+\langle\alpha(w), v\rangle \in \mathbb{R}$ as well. This implies that $\langle\alpha(v), w\rangle+\langle\alpha(w), v\rangle=\langle w, \alpha(v)\rangle+\langle v, \alpha(w)\rangle$ and so $i\langle\alpha(v), w\rangle+$ $i\langle\alpha(w), v\rangle=i\langle w, \alpha(v)\rangle+i\langle v, \alpha(w)\rangle$. Similarly,

$$
\langle\alpha(v+i w), v+i w)\rangle=\langle\alpha(v), v\rangle-i\langle\alpha(v), w\rangle+i\langle\alpha(w), v\rangle+\langle\alpha(w), w\rangle
$$

and so $-i\langle\alpha(v), w\rangle+i\langle\alpha(w), v\rangle \in \mathbb{R}$. This implies that

$$
-i\langle\alpha(v), w\rangle+i\langle\alpha(w), v\rangle=i\langle w, \alpha(v)\rangle-i\langle v, \alpha(w)\rangle
$$

and so, multiplying by i and adding it to the previous result, we get $2\langle\alpha(v), w\rangle=$ $2\langle w, \alpha(v)\rangle$, whence $\langle\alpha(v), w\rangle=\langle w, \alpha(v)\rangle$. Therefore, $\alpha=\alpha^{*}$.

Proposition 17.3 Let V be an inner product space and let $\sigma_{0} \neq \alpha \in \operatorname{End}(V)$ be selfadjoint. Then there exists a vector $v \in V$ satisfying $\langle\alpha(v), v\rangle \neq 0$.

Proof First, assume that the field of scalars is \mathbb{C}. Then it is easy to check that if $v, w \in V$ then

$$
\begin{aligned}
\langle\alpha(v), w\rangle= & \frac{1}{4}[\langle\alpha(v+w), v+w\rangle-\langle\alpha(v-w), v-w\rangle] \\
& +\frac{i}{4}[\langle\alpha(v+i w), v+i w\rangle-\langle\alpha(v-i w), v-i w\rangle] .
\end{aligned}
$$

Moreover, each term on the right-hand side of this equality is of the form $\langle\alpha(y), y\rangle$ for some $y \in V$, so if all of these were equal to 0 we would see that $\alpha(v) \perp w$ for all $v, w \in V$, which means that $\alpha(v)=0_{V}$ for all $v \in V$, contradicting the hypothesis that $\sigma_{0} \neq \alpha$. Thus the desired result must hold.

Now assume that the field of scalars is \mathbb{R}. Then for all $v, w \in V$ we have $\langle\alpha(w), v\rangle=\langle w, \alpha(v)\rangle=\langle\alpha(v), w\rangle$ and so

$$
\langle\alpha(v), w\rangle=\frac{1}{4}[\langle\alpha(v+w), v+w\rangle-\langle\alpha(v-w), v-w\rangle] .
$$

Again, each term on the right-hand side of this equality is of the form $\langle\alpha(y), y\rangle$ for some $y \in V$ so if all of these were all equal to 0 we would have $\alpha(v) \perp w$ for all $v, w \in V$ which, as we have seen in the previous case, leads to a contradiction.

We now return to a new variant of a question we have already posed: If α is an endomorphism of an inner product space V, when does there exist an orthonormal basis of V composed of eigenvectors of α ? If such a basis exists, we say that α is orthogonally diagonalizable.

Example Let $V=\mathbb{R}^{3}$ with the dot product, and let $\alpha \in \operatorname{End}(V)$ be given by $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{l}b \\ a \\ c\end{array}\right]$. Then $\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ is an orthogonal basis of V composed of eigenvectors of α, so α is orthogonally diagonalizable.

Proposition 17.4 Let V be an inner product space and let $\alpha \in \operatorname{End}(V)$ be selfadjoint. Then $\operatorname{spec}(\alpha) \subseteq \mathbb{R}$ and eigenvectors of α associated with distinct eigenvalues are orthogonal.

Proof Let c be an eigenvalue of α and let v be an eigenvector of α associated with c. Then $c\langle v, v\rangle=\langle c v, v\rangle=\langle\alpha(v), v\rangle=\langle v, \alpha(v)\rangle=\langle v, c v\rangle=\bar{c}\langle v, v\rangle$ and so, since $v \neq 0_{V}$, we see that $c=\bar{c}$, proving that $c \in \mathbb{R}$. Thus we have shown the first assertion.

If c and d are distinct eigenvalues of α associated with eigenvectors v and w, respectively, then $c\langle v, w\rangle=\langle c v, w\rangle=\langle\alpha(v), w\rangle=\langle v, \alpha(w)\rangle=\langle v, d w\rangle=d\langle v, w\rangle$. Since $c \neq d$, this implies that $\langle v, w\rangle=0$.

Example The endomorphisms α and β of \mathbb{C}^{2} which are given by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{l}b \\ a\end{array}\right]$ and $\beta:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{r}a \\ -b\end{array}\right]$ can easily be seen to be selfadjoint. However, $\operatorname{spec}(\beta \alpha)=$ $\{i,-i\}$ and so, by Proposition 17.4, $\beta \alpha$ is not selfadjoint.

We note the following consequence of Proposition 17.4: If the matrix $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ is symmetric, then all eigenvalues of A are real, and so the characteristic polynomial of A is completely reducible in $\mathbb{R}[X]$.

By Proposition 17.4, we see that if V is an inner-product space of finite dimension n over \mathbb{C} and if $\alpha \in \operatorname{End}(V)$ is selfadjoint, then the eigenvalues of α can be written uniquely as an n-tuple $\left(c_{1}(\alpha), \ldots, c_{n}(\alpha)\right)$ of real numbers, the entries of which form a nonincreasing sequence. If $\alpha, \beta \in \operatorname{End}(V)$ are selfadjoint, the problem of describing the possible sets of eigenvalues of $\alpha+\beta$ in terms of those of α and β is extremely important in particle physics, and is known as Weyl's Problem. Weyl himself showed that if $\alpha, \beta \in \operatorname{End}(V)$, if $1 \leq k \leq i \leq n$, and $1 \leq j \leq n-i+1$, then $c_{i+j-1}(\alpha)+c_{n-j+1}(\beta) \leq c_{i}(\alpha+\beta) \leq c_{i-k+1}(\alpha)+c_{k}(\beta)$ and so, if $j=k=1$, we have $c_{i}(\alpha)+c_{n}(\beta) \leq c_{i}(\alpha+\beta) \leq c_{i}(\alpha)+c_{1}(\beta)$ for each $1 \leq i \leq n$. In particular, $c_{1}(\alpha+\beta) \leq c_{1}(\alpha)+c_{1}(\beta)$ and $c_{n}(\alpha)+c_{n}(\beta) \leq c_{n}(\alpha+\beta)$. Since then, this problem has been extensively studied. A solution in terms of probability measures was given by the Australian mathematicians Anthony H. Dooley and Norman J. Wildberger, together with the Canadian mathematician Joe Repka, in 1993.

Weyl's result has many interesting consequences. We note that if V is an inner product space and if $\alpha \in \operatorname{End}(V)$ is selfadjoint and represented with respect to a given basis by some matrix $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ then the diagonal elements of A must also be real. Schur proved that if A is a matrix representing such an endomorphism α having eigenvalues $c_{1}(\alpha) \geq \cdots \geq c_{n}(\alpha)$ and diagonal entries $p_{1} \geq \cdots \geq p_{n}$ then $\sum_{j=1}^{k} p_{j} \leq \sum_{j=1}^{k} c_{j}(\alpha)$ for all $1 \leq k \leq n-1$ and $\sum_{j=1}^{n} p_{j}=\sum_{j=1}^{n} c_{j}(\alpha)$. The converse was proven by the American mathematician Alfred Horn: if $c_{1} \geq \cdots \geq c_{n}$ and $p_{1} \geq \cdots \geq p_{n}$ are sequences of real numbers satisfying $\sum_{j=1}^{k} p_{j} \leq \sum_{j=1}^{k} c_{j}$ for all $1 \leq k \leq n-1$ and $\sum_{j=1}^{n} p_{j}=\sum_{j=1}^{n} c_{j}$ then there exists a selfadjoint endomorphism α of \mathbb{C}^{n} with eigenvalues c_{1}, \ldots, c_{n} and having an orthonormal basis relative to which α is represented by a matrix having diagonal entries p_{1}, \ldots, p_{n}.

We now turn to the problem of finding the eigenvalues of a selfadjoint endomorphism of a finitely-generated inner product space. This problem arises in many important applications. For example, let Γ be a (nondirected) graph with vertex set $\{1, \ldots, n\}$. We associate to this graph a symmetric matrix, called the adjacency matrix $\left[a_{i j}\right]$, the entries of which are nonnegative integers, by setting $a_{i j}$ to be the number of edges in Γ connecting vertex i to vertex j. The matrix represents a selfadjoint endomorphism of \mathbb{R}^{n} with respect to some basis and its spectrum can be used to derive important information about Γ. This technique has important applications in the analysis of computer networks, in the design of error-correcting codes, and in such areas as chemistry, where it is used to make rough estimates of the electron density distribution of molecules. Another example is the following: If
$B=\left\{v_{1}, \ldots, v_{n}\right\}$ is a set of distinct vectors in \mathbb{R}^{n}, and if $\|\cdot\|$ is a norm on \mathbb{R}^{n}, then the distance matrix defined by B is the matrix $\left[\left\|v_{i}-v_{j}\right\|\right]$. This matrix is symmetric and so defines a selfadjoint endomorphism of \mathbb{R}^{n}. Computing the eigenvalues of such matrices has important applications in many areas, including bioinformatics and X-ray crystallography.

Proposition 17.5 If V is a nontrivial finitely-generated inner product space, then $\operatorname{spec}(\alpha) \neq \varnothing$ for any selfadjoint endomorphism α of V.

Proof Let α be a selfadjoint endomorphism of V. Choose an orthonormal basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ for V and let $A=\Phi_{B B}(\alpha)$. Since α is selfadjoint, we know that $A=A^{H}$. Let $W=\mathbb{C}^{n}$ on which we have defined the dot product. Then the endomorphism β of W defined by $\beta: w \mapsto A w$ is selfadjoint. The degree of the characteristic polynomial $|X I-A|$ of β is $n>0$ and so, by the Fundamental Theorem of Algebra, it has a root $c \in \mathbb{C}$. Thus the matrix $c I-A$ is singular and so there exists a nonzero vector $w \in W$ satisfying $A w=c w$. In other words, $c \in \operatorname{spec}(\beta)$. By Proposition 17.4, this implies that $c \in \mathbb{R}$ and so $c \in \operatorname{spec}(\alpha)$, even if V is an inner product space over \mathbb{R}.

In particular, we learn from Proposition 17.5 that every symmetric matrix over \mathbb{R} has an eigenvalue in \mathbb{R}. Compare this to the example we have already seen of a symmetric matrix in $\mathcal{M}_{2 \times 2}(\mathrm{GF}(2))$ having no eigenvalues. Similarly, the symmetric matrix $\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{Q})$ has no eigenvalues in \mathbb{Q}.

Let V be an inner product space finitely generated over \mathbb{C} and let α be a selfadjoint endomorphism of V. We know, by Proposition 17.4, that the eigenvalues of α are all real and that eigenvectors of α associated with distinct eigenvalues are orthogonal. Let us denote the eigenvalues of α by c_{1}, \ldots, c_{n} where the indices are so chosen that $c_{1} \geq \cdots \geq c_{n}$. An important result known as the Courant-Fischer Minimax Theorem states that, for each $1 \leq k \leq n$, we have $c_{k}=\sup \{\inf \{\langle\alpha(w), w\rangle \mid$ $w \in W$ and $\|w\|=1\}\}$, where the supremum runs over all subspaces W of V having dimension k.

Let us look at this from a different perspective. The function which assigns to each $0_{V} \neq v \in V$ the scalar $R_{\alpha}(v)=\langle v, \alpha(v)\rangle\|v\|^{-2}$ is called the Rayleigh quotient function. Note that the projection π_{v} defined in connection with the Gram-Schmidt theorem satisfies the condition that $\pi_{v}: \alpha(v) \mapsto R_{\alpha}(v) v$. By what we have already seen, the image D of this function is contained in \mathbb{R}. Moreover, if v is an eigenvector of α with associated eigenvalue c, then $R_{\alpha}(v)=c$, and so $\varnothing \neq \operatorname{spec}(\alpha) \subseteq D$. On the other hand, it is possible to show-though we will not do it here-that D is contained in the closed interval $\left[c_{n}, c_{1}\right.$] bounded by the largest and the smallest eigenvalues of α, both endpoints of which in fact belong to D. This observation can be used to define the Rayleigh quotient iterative scheme to find eigenvalues of a selfadoint endomorphism α :

As an initial guess, choose a normal vector v_{0} and let $d_{0}=R_{\alpha}\left(v_{0}\right)$. For $k=0,1,2, \ldots$ repeat the following steps:
(1) If $\alpha-d_{k} \sigma_{1} \notin \operatorname{Aut}(V)$, then d_{k} is an eigenvalue of α, and we are done;
(2) Otherwise, $\alpha-d_{k} \sigma_{1} \in \operatorname{Aut}(V)$. Set $y=\left(\alpha-d_{k} \sigma_{1}\right)^{-1}\left(v_{k}\right)$ and then compute $v_{k+1}=\|y\|^{-2} y$ and $d_{k+1}=R_{\alpha}\left(v_{k+1}\right)$.

This scheme will indeed produce an eigenvalue of α for all guesses of v_{0} except those in a set of measure 0 , and when it converges, the convergence is very rapid. Its main disadvantage is the time and effort needed in step (1) of the iteration to decide if $\alpha-d_{k} \sigma_{1}$ is an automorphism of V or not (usually, if the matrix representing this endomorphism is nonsingular or not) and, if it is, to compute its inverse; the algorithm is therefore worthwhile only if this can be done without major computational effort.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Fischer, Courant); With kind permission of the Science Photo Library (Strutt).
The twentieth-century German mathematicians Ernst Fischer and Richard
Courant studied spaces of functions. Courant, who headed the Mathematics Institute at the University of Göttingen, fled Germany in 1933 and founded a similar institute in New York City, which now bears his name. John William Strutt, Lord Rayleigh, was a nineteenthcentury British physicist and applied mathematician, who made important contributions to mathematical physics and who won the Nobel prize in 1904 for his discovery of the inert gas argon.

Example Let α be the endomorphism of \mathbb{R}^{3} represented with respect to the canonical basis by the symmetric matrix $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 4\end{array}\right]$. Then α is selfadjoint. Choose $v_{0}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Using the above algorithm, we see that $d_{0}=R_{\alpha}\left(v_{0}\right)=5$, which is not an eigenvalue of α. Moreover,

$$
\begin{aligned}
& v_{1}=\left[\begin{array}{l}
0.3841106399 \ldots \\
0.5121475201 \ldots \\
0.7682212801 \ldots
\end{array}\right] \text { and } d_{1}=5.213114754 \ldots, \\
& v_{2}=\left[\begin{array}{l}
0.3971170680 \ldots \\
0.5206615990 \ldots \\
0.7557840528 \ldots
\end{array}\right] \text { and } d_{2}=5.214319743 \ldots
\end{aligned}
$$

The actual value of an eigenvalue of α is $5.214319744 \ldots$, so we see that convergence was very rapid indeed.

Proposition 17.6 Let V be a finitely-generated inner product space and let $\alpha \in \operatorname{End}(V)$. If W is a subspace of V invariant under α, then W^{\perp} is invariant under α^{*}.

Proof If $w \in W$ and $y \in W^{\perp}$. Then $\alpha(w) \in W$ and so $\left\langle w, \alpha^{*}(y)\right\rangle=\langle\alpha(w), y\rangle=0$, whence $\alpha^{*}(y) \in W^{\perp}$.

If V is a nontrivial inner product space finitely generated over \mathbb{R} and assume that $\alpha \in \operatorname{End}(V)$ is orthogonally diagonalizable. Then there exists an orthonormal basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ composed of eigenvectors of α. Thus $\Phi_{B B}(\alpha)$ is a diagonal matrix and so symmetric. In particular, $\Phi_{B B}\left(\alpha^{*}\right)=\Phi_{B B}(\alpha)^{T}=\Phi_{B B}(\alpha)$, which proves that $\alpha=\alpha^{*}$ and so α is selfadjoint. The converse of this result follows from the following proposition.

Proposition 17.7 Let V be a nontrivial finitely-generated inner product space and let $\alpha \in \operatorname{End}(V)$ be selfadjoint. Then α is orthogonally diagonalizable. The converse holds if the field of scalars is \mathbb{R}.

Proof We will prove the result by induction on $n=\operatorname{dim}(V)$. For $n=1$, we know by Proposition 17.5 that α has an eigenvector $v \in V$, and so $\left\{v_{1}\right\}$ is the desired basis, where $v_{1}=\|v\|^{-1} v$. Now assume that $n>1$ and that the proposition has been established for all spaces of dimension less than n. Pick v_{1} as before and let W be the subspace of V generated by $\left\{v_{1}\right\}$. Then $V=W \oplus W^{\perp}$ and, by Proposition 17.6, we know that W^{\perp} is invariant under $\alpha^{*}=\alpha$. Moreover, W^{\perp} is an inner product space of dimension $n-1$ and the restriction of α to W^{\perp} is selfadjoint. Therefore, by the induction hypothesis, there exists an orthonormal basis $\left\{v_{2}, \ldots, v_{n}\right\}$ of W^{\perp} composed of eigenvectors of α. Since v_{1} is orthogonal to each of the vectors in this basis, we see that $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis of V.

Now assume that the field of scalars is \mathbb{R} and that $\alpha \in \operatorname{End}(V)$ is orthogonally diagonalizable. Then there exists an orthonormal basis D of V composed of eigenvectors of α. This means that $\Phi_{D D}(\alpha)$ is a diagonal matrix, which is surely symmetric, and so by Proposition 16.16 we see that α is selfadjoint.

Example The converse part of Proposition 17.7 is not true if the field of scalars is \mathbb{C}. Indeed, consider the endomorphism α of \mathbb{C}^{2} represented with respect to the canonical basis by the matrix $\left[\begin{array}{rr}1 & i \\ i & -1\end{array}\right]$. The characteristic polynomial of α is X^{2}, so were it diagonalizable, it would have to be equal to σ_{0}.

Let V be an inner product space. An endomorphism $\alpha \in \operatorname{End}(V)$ is positive definite (resp., positive semidefinite) if and only if it is selfadjoint and satisfies the condition that $\langle\alpha(v), v\rangle$ is a positive (resp., nonnegative) real number for all $0_{V} \neq v \in V$. If there exist $0_{V} \neq v, w \in V$ satisfying $\langle\alpha(v), v\rangle>0>\langle\alpha(w), w\rangle$, then α is indefinite.

We see that σ_{c} is positive definite for any positive real number c. We also note that a positive-definite endomorphism must be monic since if $\alpha(v)=0_{V}$ implies that $\langle\alpha(v), v\rangle=0$ and so $v=0_{V}$. Therefore, every positive-definite endomorphism of a finitely-generated inner product space is in fact an automorphism. Positive definite endomorphisms have important applications in optimization and linear programming. ${ }^{1}$

Example Let $D=\{z \in \mathbb{C}| | z \mid<1\}$. If z_{1}, \ldots, z_{n} are distinct complex numbers in D, and if we are given complex numbers w_{1}, \ldots, w_{n} in D, one can ask if there exists an analytic function $f: D \rightarrow D$ satisfying $f\left(z_{i}\right)=w_{i}$ for all $1 \leq i \leq n$. The Nevanlinna-Pick Interpolation Theorem states that such a function exists if and only if the matrix $\left[a_{i j}\right]$ in which $a_{i j}=\left(1-w_{i} \overline{w_{j}}\right)\left(1-z_{i} \overline{z_{j}}\right)^{-1}$ for all $1 \leq i, j \leq n$, represents a positive-definite endomorphism of \mathbb{C}^{n}. This theorem has been generalized considerably in many directions.

Rolf Nevanlinna was a twentieth-century Finnish mathematician who worked mostly in analysis. Georg Pick was a twentieth-century Austrian earth geometer, who was a good friend of Einstein.

Note that if α is positive definite and if $0_{V} \neq v \in V$ then $0<\langle\alpha(v), v\rangle=\|\alpha(v)\|$. $\|v\| \cos (t)$, where t is the angle between $\alpha(v)$ and v, showing that $0 \leq t<\frac{\pi}{2}$.

Example Let $V=\mathbb{R}^{n}$ on which we have the dot product defined, and let B be the canonical basis. An endomorphism α of V is positive definite if and only if $A=\Phi_{B B}(\alpha)$ is a symmetric matrix satisfying the condition that $v^{T} A v>0$ for all nonzero vectors $v \in V$. Such matrices have nice properties. For example, it can be shown that if A is of this form then the Gauss-Seidel method applied to an equation $A X=w$ will converge to the unique solution v, for any initial guess v_{0} chosen. If α is positive definite, then the norm on V defined by $\|v\|_{A}=\sqrt{v^{T} A v}$ is called an elliptic norm. Any norm on V can be reasonably approximated by an elliptic norm, a fact of importance in numerical analysis.

[^11]Example As an immediate consequence of the observation in the previous example, we see that the endomorphism α of \mathbb{R}^{2} defined by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{c}a+b \\ b\end{array}\right]$ satisfies the condition that $\langle\alpha(v), v\rangle \geq 0$ for all $0_{V} \neq v \in V$, but is not selfadjoint and so is not positive definite since $\Phi_{B B}(\alpha)=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is not symmetric.

Example Even if $\sigma_{0} \neq \alpha \in \operatorname{End}(V)$ is selfadjoint, it may be the case that neither α nor $-\alpha$ is positive definite. For example, if $\alpha \in \operatorname{End}\left(\mathbb{R}^{2}\right)$ is defined by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto$ $\left[\begin{array}{r}-a \\ b\end{array}\right]$, then $\alpha\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right) \cdot\left[\begin{array}{l}1 \\ 0\end{array}\right]=-1=(-\alpha)\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right) \cdot\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Example The endomorphism $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{l}a+b \\ a+b\end{array}\right]$ of \mathbb{R}^{2} is selfadjoint and, for any $v=\left[\begin{array}{l}a \\ b\end{array}\right]$, we check that $\langle\alpha(v), v\rangle=(a+b)^{2} \geq 0$, so α is positive semidefinite. On the other and, if $v=\left[\begin{array}{r}1 \\ -1\end{array}\right]$, then $\langle\alpha(v), v\rangle=0$, so α is not positive definite. Since α is represented with respect to the canonical basis by the matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, this also shows that in order for an endomorphism to be positive definite, it is not sufficient that it be represented by a matrix all of the entries of which are positive.

Let V an inner product space. If $\alpha, \beta \in \operatorname{End}(V)$ are selfadjoint, then $\alpha-\beta$ is also selfadjoint. We write $\alpha>\beta$ whenever $\alpha-\beta$ is positive definite. Thus, α is positive definite if and only if $\alpha>\sigma_{0}$. We write $\alpha \geq \beta$ if and only if $\alpha>\beta$ or $\alpha=\beta$. We claim this is a partial-order relation on the set of all selfadjoint endomorphisms of V. Indeed, it is sure that $\alpha \geq \alpha$ for all such endomorphisms α. Suppose that α_{1}, α_{2}, and α_{3} are selfadjoint endomorphisms of V satisfying $\alpha_{1} \geq \alpha_{2} \geq \alpha_{3}$. If $\alpha_{1}=\alpha_{2}$ or $\alpha_{2}=$ α_{3} then it is clear that $\alpha_{1} \geq \alpha_{3}$. Let us therefore assume that $\alpha_{1}>\alpha_{2}>\alpha_{3}$. Then for all $v \in V$ we see that $\left\langle\left(\alpha_{1}-\alpha_{3}\right)(v), v\right\rangle=\left\langle\alpha_{1}(v)-\alpha_{2}(v)+\alpha_{2}(v)-\alpha_{3}(v), v\right\rangle=$ $\left\langle\alpha_{1}(v)-\alpha_{2}(v), v\right\rangle+\left\langle\alpha_{2}(v)-\alpha_{3}(v), v\right\rangle>0$ and so $\alpha_{1}>\alpha_{3}$. Finally, assume that $\alpha_{1} \geq \alpha_{2}$ and $\alpha_{2} \geq \alpha_{1}$ but $\alpha_{1} \neq \alpha_{2}$. Then $\alpha_{1}>\alpha_{2}>\alpha_{1}$ and so, as we have seen, $\alpha_{1}>\alpha_{1}$, which is a contradiction. Thus we have a partial order on the set of all selfadjoint endomorphisms of V, called the Loewner partial order.

The Czech mathematician Karl Loewner emigrated to the United States in 1933. His research concentrated in complex function theory and spaces of functions.

Example Let V be a finite-dimensional inner product space. Inequalities of the form $\sum_{i=1}^{n} a_{i} \alpha_{i}>\sigma_{0}$, where the α_{i} are in $\operatorname{End}(V)$ and the a_{i} are scalars, play an important part in control theory, and have been studied extensively.

Proposition 17.8 Let V be an inner product space and let $\alpha \in \operatorname{End}(V)$ be an endomorphism for which α^{*} exists. Then α is positive definite if and only if the function $\mu:(v, w) \mapsto\langle\alpha(v), w\rangle$ from $V \times V$ to the field of scalars is also an inner product.

Proof First, let us assume that α is a positive-definite endomorphism of V. If $v_{1}, v_{2}, w \in V$ then $\mu\left(v_{1}+v_{2}, w\right)=\left\langle\alpha\left(v_{1}+v_{2}\right), w\right\rangle=\left\langle\alpha\left(v_{1}\right), w\right\rangle+\left\langle\alpha\left(v_{2}\right), w\right\rangle=$ $\mu\left(v_{1}, w\right)+\mu\left(v_{2}, w\right)$ and, similarly, we show that $\mu(c v, w)=c \mu(v, w)$ for all scalars c. We also see that $\mu(v, w)=\langle\alpha(v), w\rangle=\left\langle v, \alpha^{*}(w)\right\rangle=\langle v, \alpha(w)\rangle=$ $\overline{\langle\alpha(w), v\rangle}=\overline{\mu(w, v)}$. If $0_{V} \neq v \in V$ then, by the assumption of positive definiteness, we see that $\mu(v, v)=\langle\alpha(v), v\rangle$ is a positive real number, and it is clear that $\mu\left(0_{V}, 0_{V}\right)=0$. Thus μ is an inner product on V.

Conversely, assume that μ is an inner product on V. Then for all $v, w \in V$ we have $\left\langle v, \alpha^{*}(w)\right\rangle=\langle\alpha(v), w\rangle=\mu(v, w)=\overline{\mu(w, v)}=\overline{\langle\alpha(w), v\rangle}=\langle v, \alpha(w)\rangle$ and so $\alpha(w)=\alpha^{*}(w)$ for all $w \in V$, proving that α is selfadjoint. Moreover, for all $v \in V$ we have $\langle\alpha(v), v\rangle=\mu(v, v)$ for all $0_{V} \neq v \in V$ and so α is positive definite.

Proposition 17.9 Let V be an inner product space, with a given inner product $(v, w) \mapsto\langle v, w\rangle$, and let μ be another inner product defined on V. Then there exists a unique positive-definite endomorphism α of V satisfying the condition that $\mu(v, w)=\langle\alpha(v), w\rangle$ for all $v, w \in V$.

Proof Fix a vector $w \in V$. The function $v \mapsto \mu(v, w)$ belongs to $D(V)$ and so there exists a unique vector $y_{w} \in V$ satisfying $\mu(v, w)=\left\langle v, y_{w}\right\rangle$ for all $v \in V$. Define a function $\alpha: V \rightarrow V$ by $\alpha: w \mapsto y_{w}$. Then $\langle\alpha(v), w\rangle=\overline{\langle w, \alpha(v)\rangle}=\overline{\mu(w, v)}=$ $\mu(v, w)$ for all $v, w \in V$. We claim that $\alpha \in \operatorname{End}(V)$. Indeed, if $w_{1}, w_{2} \in V$ then for all $y \in V$ we have

$$
\begin{aligned}
\left\langle\alpha\left(w_{1}+w_{2}\right), y\right\rangle & =\mu\left(w_{1}+w_{2}, y\right)=\mu\left(w_{1}, y\right)+\mu\left(w_{2}, y\right) \\
& =\left\langle\alpha\left(w_{1}\right), y\right\rangle+\left\langle\alpha\left(w_{2}\right), y\right\rangle=\left\langle\alpha\left(w_{1}\right)+\alpha\left(w_{2}\right), y\right\rangle
\end{aligned}
$$

and so $\alpha\left(w_{1}+w_{2}\right)=\alpha\left(w_{1}\right)+\alpha\left(w_{2}\right)$. Similarly, we can show that $\alpha(c w)=c \alpha(w)$ for all $w \in V$ and all scalars c. Thus we see that α is indeed an endomorphism of V satisfying the condition $\mu(v, w)=\langle\alpha(v), w\rangle$ for all $v, w \in V$, and so it is positive definite.

Finally, α has to be unique since if $\mu(v, w)=\langle\beta(v), w\rangle$ for all $v, w \in V$, then $\langle(\alpha-\beta)(v), w\rangle=\langle\alpha(v)-\beta(v), w\rangle=\langle\alpha(v), w\rangle-\langle\beta(v), w\rangle=0$ for all $v, w \in V$, which implies that $(\alpha-\beta)(v)=0_{V}$ for all $v \in V$, showing that $\alpha=\beta$.

Proposition 17.10 Let V be a finitely-generated inner product space and let $\alpha \in \operatorname{End}(V)$. Then α is positive definite if and only if there exists an automorphism β of V satisfying $\alpha=\beta^{*} \beta$.

Proof Assume that there exists an automorphism β of V satisfying $\alpha=\beta^{*} \beta$. Then, as previously noted, α is selfadjoint. Moreover, for all $0_{V} \neq v \in V$ we have $\langle\alpha(v), v\rangle=\left\langle\beta^{*} \beta(v), v\right\rangle=\left\langle\beta(v), \beta^{* *}(v)\right\rangle=\langle\beta(v), \beta(v)\rangle>0$ since β is an automorphism and hence $\beta(v) \neq 0_{V}$. Therefore, α is positive definite.

Conversely, assume that α is a positive-definite endomorphism of V. Then the function $\mu:(v, w) \mapsto\langle\alpha(v), w\rangle$ is an inner product on V. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V which is orthonormal with respect to the original inner product on V and let $\left\{w_{1}, \ldots, w_{n}\right\}$ be a basis for V which is orthonormal with respect to μ. By Proposition 6.2, we know that there exists a unique endomorphism β of V satisfying $\beta\left(w_{i}\right)=v_{i}$ for all $1 \leq i \leq n$. Then β is an epimorphism since its image contains a basis for V and so, since V is finitely-generated, it is an automorphism of V. Therefore, if $v=\sum_{i=1}^{n} a_{i} w_{i}$ and $w=\sum_{j=1}^{n} b_{j} w_{j}$ are vectors in V we see that

$$
\begin{aligned}
\langle\alpha(v), w\rangle & =\mu(v, w)=\mu\left(\sum_{i=1}^{n} a_{i} w_{i}, \sum_{j=1}^{n} b_{j} w_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \bar{b}_{j} \mu\left(w_{i}, w_{j}\right)=\sum_{i=1}^{n} a_{i} \bar{b}_{i}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\left\langle\beta^{*} \beta(v), w\right\rangle & =\langle\beta(v), \beta(w)\rangle=\left\langle\beta\left(\sum_{i=1}^{n} a_{i} w_{i}\right), \beta\left(\sum_{j=1}^{n} b_{j} w_{j}\right)\right\rangle \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \bar{b}_{j}\left\langle w_{i}, w_{j}\right\rangle=\sum_{i=1}^{n} a_{i} \bar{b}_{i},
\end{aligned}
$$

and so we see that $\left\langle\beta^{*} \beta(v), w\right\rangle=\langle\alpha(v), w\rangle$ for all $v, w \in V$, which shows that $\alpha=\beta^{*} \beta$.

From Proposition 17.10 we know that if $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{C})$ is a matrix representing a positive-definite endomorphism of \mathbb{C}^{n}, namely if it is a Hermitian matrix satisfying the condition that $v \cdot A v>0$ for all nonzero vectors $v \in \mathbb{C}^{n}$, then there exists a nonsingular matrix B such that $A=B^{H} B$. Indeed, we can choose B to be upper triangular, so that it is a form of LU-decomposition, though it takes only half as many arithmetic operations to perform. This decomposition is known as a Cholesky decomposition of A. This decomposition need not be unique. Cholesky
decompositions are widely used in building economic and financial models. Because of this wide usage, there are many algorithms available to efficiently calculate Cholesky decompositions of general matrices or of matrices in special forms. Indeed, one of the computational advantages of the Cholesky decomposition is that it is numerically stable, even with no pivoting. On the other hand, if you change even one element of A you have to recompute the Cholesky decomposition of the new matrix from scratch.

With kind permission of the Collections École polytechnique (SABIX).
Major André-Louis Cholesky was a cartographer in the French army, who used this method in connection with the mapping of the island of Crete before World War I. It had previously been used by other cartographers, including Myrick H. Doolittle, of the computing division of the US Coast and Geodetic Survey, in 1878. A mathematical formulation had been given earlier by Toeplitz.

The following algorithm calculates a Cholesky decomposition for real symmetric matrices.

For $k=1, \ldots, n$ perform the following steps:
(1) For each $1 \leq i<k$ define $b_{i k}=b_{i i}^{-1}\left[a_{i k}-\sum_{j=1}^{i-1} b_{j i} b_{j k}\right]$;
(2) Set $b_{k k}=\sqrt{a_{k k}-\sum_{j=1}^{k-1} b_{j k}^{2}}$;
(3) For each $k<i \leq n$ set $b_{i k}=0$.

Note that if the matrix A did not satisfy $v \cdot A v>0$ for all nonzero vectors v, the algorithm would hang up at some stage, trying to take the square root of a negative number. Indeed, attempting a Cholesky decomposition is often used as a test to see whether a given matrix represents a positive-definite endomorphism or not.

Example Let $A=\left[\begin{array}{lll}5 & 2 & 3 \\ 2 & 1 & 1 \\ 3 & 1 & 4\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. This is a symmetric matrix satisfying the condition that $v \cdot A v>0$ for all nonzero vectors $v \in \mathbb{R}^{3}$ and having a Cholesky decomposition $B^{T} B$, where $B=\frac{1}{5}\left[\begin{array}{rrr}5 \sqrt{5} & 2 \sqrt{5} & 3 \sqrt{5} \\ 0 & \sqrt{5} & -\sqrt{5} \\ 0 & 0 & 5 \sqrt{2}\end{array}\right]$.

Notice that the Proposition 17.10 extends our ongoing analogy between the operation * and the conjugate operation on \mathbb{C}, just as the notion of "positive definite" is the analog of positivity of complex numbers: a complex number z is (real and) positive if and only if there exists a complex number y such that $z=\bar{y} y$.

Cholesky decompositions do not work for Hermitian matrices representing indefinite endomorphisms of \mathbb{C}^{n}. In such cases, one has to make use of other methods,
such as the Bunch-Kaufman algorithm, which is quite effective for sparse matrices.

Proposition 17.11 Let V be an inner product space. If $\alpha \in \operatorname{End}(V)$ is positive definite, then every eigenvalue of α is a positive real number. The converse holds if α is orthogonally diagonalizable.

Proof Assume that α is positive define. By Proposition 17.4, the eigenvalues of α are real numbers. If $c \in \operatorname{spec}(\alpha)$ is an eigenvalue of α associated with an eigenvector v, then $0<\langle\alpha(v), v\rangle=\langle c v, v\rangle=c\langle v, v\rangle$ and so $c>0$, since we know that $\langle v, v\rangle>0$. Conversely, assume that every eigenvalue of α is positive and that there exists an orthonormal basis B of V composed of eigenvectors of α. Let $v=\sum_{i=1}^{n} a_{i} v_{i}$, where $\left\{v_{1}, \ldots, v_{n}\right\} \subseteq B$. For each $1 \leq i \leq n$, let c_{i} be an eigenvalue of α associated with v_{i}. We can assume that the v_{i} are arranged in such a manner that $0<c_{1} \leq c_{2} \leq \cdots \leq c_{n}$. Then

$$
\begin{aligned}
\langle\alpha(v), v\rangle & =\left\langle\sum_{i=1}^{n} \alpha\left(a_{i} v_{i}\right), \sum_{j=1}^{n} a_{j} v_{j}\right\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \bar{a}_{j}\left\langle c_{i} v_{i}, v_{j}\right\rangle \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} a_{i} \bar{a}_{j}\left\langle v_{i}, v_{j}\right\rangle=\sum_{i=1}^{n} c_{i}\left|a_{i}\right|^{2} \geq c_{1} \sum_{i=1}^{n}\left|a_{i}\right|^{2}>0,
\end{aligned}
$$

and so α is positive definite.

From Propositions 17.11 and 17.7, we see that if V is an finitely-generated inner product space over \mathbb{R} or \mathbb{C} and if $\alpha \in \operatorname{End}(V)$ is positive definite, then there exists a basis of V relative to which α is represented by a diagonal matrix in which the entries of the diagonal are positive real numbers. Such a matrix is, of course, nonsingular.

Proposition 17.12 Let V and W be inner-product spaces finitely-generated over \mathbb{R} and let $\alpha \in \operatorname{Hom}(V, W)$. Then $\|\alpha\|=\sqrt{c}$, where c is the largest eigenvalue of $\alpha^{*} \alpha \in \operatorname{End}(V)$, and where $\|\alpha\|$ is the norm induced by the respective inner products on V and W.

Proof If c is an eigenvalue of $\beta=\alpha^{*} \alpha$ then there exists a nonzero vector v such that $\beta(v)=c v$ and so $c\|v\|^{2}=\langle v, c v\rangle=\left\langle v, \alpha^{*} \alpha(v)\right\rangle=\langle\alpha(v), \alpha(v)\rangle \geq 0$, and so $c \geq 0$. By Proposition 17.7, we know that there exists a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V composed of orthonormal eigenvectors of β. For each $1 \leq i \leq n$, let c_{i} be an eigenvalue of β associated with v_{i}. After renumbering, we can assume that $0 \leq c_{1} \leq \cdots \leq c_{n}$. If
$v=\sum_{i=1}^{n} a_{i} v_{i} \in V$, then

$$
\begin{aligned}
\|\alpha(v)\|^{2} & =\langle v, \beta(v)\rangle=\left\langle v, \alpha^{*} \alpha(v)\right\rangle=\sum_{j=1}^{n} \sum_{i=1}^{n} a_{j} c_{i} a_{i}\left\langle v_{j}, v_{i}\right\rangle \\
& =\sum_{i=1}^{n} c_{i} a_{i}^{2} \leq c_{n}\left(\sum_{i=1}^{n} a_{i}^{2}\right)=c_{n}\|v\|^{2}
\end{aligned}
$$

and so $\|\alpha(v)\|^{2} /\|v\|^{2} \leq c_{n}$. Therefore, by definition of the induced norm, $\|\alpha\| \leq$ $\sqrt{c_{n}}$. But one easily sees that $\left\|\alpha\left(v_{n}\right)\right\|^{2} /\left\|v_{n}\right\|^{2}=c_{n}$ and so $\sqrt{c_{n}} \leq\|\alpha\|$, proving equality.

Example Let $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $\alpha: v \mapsto A v$, where $A=\left[\begin{array}{rrr}1 & -2 & 1 \\ 3 & 0 & -1\end{array}\right]$. Then $\alpha^{*} \alpha$ is the endomorphism of \mathbb{R}^{3} given by $v \mapsto$ $\left[\begin{array}{rrr}10 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 2\end{array}\right] v$. The eigenvalues of this endomorphism are $0 \leq 8-2 \sqrt{2} \leq$ $8+2 \sqrt{2}$ and so $\|\alpha\|=\sqrt{8+2 \sqrt{2}}$, which is approximately equal to 3.291.

Let V and W be inner product spaces. A linear transformation $\alpha: V \rightarrow W$ preserves inner products if and only if $\left\langle v_{1}, v_{2}\right\rangle=\left\langle\alpha\left(v_{1}\right), \alpha\left(v_{2}\right)\right\rangle$ for all $v_{1}, v_{2} \in V$. Notice that any linear transformation which preserves inner products also preserves distances: $\left\|v_{1}-v_{2}\right\|=\left\|\alpha\left(v_{1}-v_{2}\right)\right\|=\left\|\alpha\left(v_{1}\right)-\alpha\left(v_{2}\right)\right\|$ for all $v_{1}, v_{2} \in V$. Also, as a direct consequence of the definition, such a linear transformation preserves the angles between vectors. Conversely, we have already noted that from the norm defined by an inner product we can recover the inner product itself, so that any linear transformation $\alpha: V \rightarrow W$ satisfying $\left\|v_{1}-v_{2}\right\|=\left\|\alpha\left(v_{1}\right)-\alpha\left(v_{2}\right)\right\|$ for all v_{1}, v_{2} also preserves inner products. Such a linear transformation is called an isometry.

Proposition 17.13 Let V be an inner product space over \mathbb{C} and let $\alpha \in$ $\operatorname{End}(V)$ be an isometry. Then the eigenvalues of α lie on the unit circle $\{z \in \mathbb{C}||z|=1\}$.

Proof If c is an eigenvalue of α with associated eigenvector v, then $\|v\|^{2}=\|c v\|^{2}=$ $|c|^{2}\|v\|^{2}$ and so $|c|=1$.

Example Let V be an inner product space over \mathbb{R} and let $0_{V} \neq y \in V$. This vector y defines an endomorphism α_{y} of V by setting

$$
\alpha_{y}: v \mapsto-v+2 \frac{\langle v, y\rangle}{\langle y, y\rangle} y .
$$

This endomorphism is an isometry which satisfies $\alpha_{y}^{2}=\sigma_{1}$, and y is a fixed point of α_{y}.

Proposition 17.14 Let V and W be finitely-generated inner product spaces and having equal dimensions. Then the following conditions on a linear transformation $\alpha: V \rightarrow W$ are equivalent:
(1) α is an isometry;
(2) α is an isomorphism which is an isometry;
(3) If $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis of V then the set $\left\{\alpha\left(v_{1}\right), \ldots, \alpha\left(v_{n}\right)\right\}$ is an orthonormal basis of W.

Proof (1) \Rightarrow (2): If $0_{V} \neq v \in V$ then $\langle v, v\rangle=\langle\alpha(v), \alpha(v)\rangle$, and so $\alpha(v) \neq 0_{W}$. Thus we see that $\operatorname{ker}(\alpha)=\left\{0_{V}\right\}$ and so α is an isomorphism, since V and W have the same finite dimension.
(2) \Rightarrow (3): If $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis of V then, since α is an isomorphism, we see that $\left\{\alpha\left(v_{1}\right), \ldots, \alpha\left(v_{n}\right)\right\}$ is a basis for W. Moreover, for all $1 \leq i, j \leq n$ we know that

$$
\left\langle\alpha\left(v_{i}\right), \alpha\left(v_{j}\right)\right\rangle=\left\langle v_{i}, v_{j}\right\rangle= \begin{cases}1 & \text { when } i=j, \\ 0 & \text { otherwise },\end{cases}
$$

and so this basis is orthonormal.
(3) \Rightarrow (1): Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthonormal basis of V. If $v=\sum_{i=1}^{n} a_{i} v_{i}$ and $y=\sum_{j=1}^{n} b_{j} v_{j}$, then $\langle v, y\rangle=\sum_{i=1}^{n} a_{i} \bar{b}_{i}$. Moreover,

$$
\begin{aligned}
\langle\alpha(v), \alpha(y)\rangle & =\left\langle\alpha\left(\sum_{i=1}^{n} a_{i} v_{i}\right), \alpha\left(\sum_{j=1}^{n} b_{j} v_{j}\right)\right\rangle \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \bar{b}_{j}\left\langle\alpha\left(v_{i}\right), \alpha\left(v_{j}\right)\right\rangle=\sum_{i=1}^{n} a_{i} \bar{b}_{i}=\langle v, y\rangle,
\end{aligned}
$$

and this proves (1).
In particular, if V and W are finitely-generated inner product spaces having equal dimensions, then every isometry $\alpha: V \rightarrow W$ is an isomorphism. If $w_{1}, w_{2} \in W$, then $\left\langle w_{1}, w_{2}\right\rangle=\left\langle\alpha \alpha^{-1}\left(w_{1}\right), \alpha \alpha^{-1}\left(w_{2}\right)\right\rangle=\left\langle\alpha^{-1}\left(w_{1}\right), \alpha^{-1}\left(w_{2}\right)\right\rangle$ and so we see that α^{-1} is also an isometry. Moreover, there is always at least one isometry α from V to W. Just pick orthonormal bases $\left\{v_{1}, \ldots, v_{n}\right\}$ for V and $\left\{w_{1}, \ldots, w_{n}\right\}$ for W and define α by $\alpha: \sum_{i=1}^{n} a_{i} v_{i} \mapsto \sum_{i=1}^{n} a_{i} w_{i}$.

Example The endomorphism of \mathbb{R}^{3} represented with respect to the canonical basis by $\frac{1}{\sqrt{6}}\left[\begin{array}{rrr}\sqrt{3} & \sqrt{2} & -1 \\ \sqrt{3} & -\sqrt{2} & 1 \\ 0 & \sqrt{2} & 2\end{array}\right]$ is an isometry.

Example Let W be the set of all matrices $A \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ satisfying $A^{T}=-A$, which is a subspace of $\mathcal{M}_{3 \times 3}(\mathbb{R})$ of dimension 3. Define an inner product on W as follows: if $A, B \in W$ then $\langle A, B\rangle=\frac{1}{2} \operatorname{tr}\left(A B^{T}\right)$. Let $V=\mathbb{R}^{3}$, which is an inner product space with respect to the dot product. Define a linear transformation $\alpha: V \rightarrow W$ by setting $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{rrr}0 & -c & b \\ c & 0 & -a \\ -b & a & 0\end{array}\right]$. If $A=\left[\begin{array}{rrr}0 & -c & b \\ c & 0 & -a \\ -b & a & 0\end{array}\right]$
and $B=\left[\begin{array}{rrr}0 & -f & e \\ f & 0 & -d \\ -e & d & 0\end{array}\right]$ then $A B^{T}=\left[\begin{array}{ccc}c f+b e & -b d & -d c \\ e a & c f+a d & e c \\ -a f & f b & b e+a d\end{array}\right]$ and so we can check that $\langle A, B\rangle=\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \cdot\left[\begin{array}{l}d \\ e \\ f\end{array}\right]$ and thus α is an isometry, and hence is an isomorphism.

Example Proposition 17.14 is no longer true if we remove the condition that the spaces are finitely generated. Indeed, let $V=C(0,1)$, on which we have the inner product $\mu(f, g)=\int_{0}^{1} f(x) g(x) x^{2} d x$, and let W be the same space on which we have the inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$. Let $\alpha: V \rightarrow W$ be the linear transformation defined by $\alpha: f(x) \mapsto x f(x)$. Then $\mu(f, g)=\langle\alpha(f), \alpha(g)\rangle$ and so α is an isometry. But α is not an isomorphism since the function $x \mapsto x^{2}+1$ does not belong to the image of α.

Let us now return to the case of inner product spaces the dimensions of which are not necessarily equal.

Proposition 17.15 Let V and W be inner product spaces finitely-generated over \mathbb{R} and let $\alpha \in \operatorname{Hom}(V, W)$. Then α is an isometry if and only if $\alpha^{*} \alpha=$ $\sigma_{1} \in \operatorname{End}(V)$.

Proof By Proposition 16.15, α^{*} exists. If $\alpha^{*} \alpha=\sigma_{1} \in \operatorname{End}(V)$, and if $v_{1}, v_{2} \in V$ then

$$
\begin{aligned}
\left\|v_{1}-v_{2}\right\|^{2} & =\left\langle v_{1}-v_{2}, v_{1}-v_{2}\right\rangle=\left\langle v_{1}-v_{2}, \alpha^{*} \alpha\left(v_{1}-v_{2}\right)\right\rangle \\
& =\left\langle\alpha\left(v_{1}-v_{2}\right), \alpha\left(v_{1}-v_{2}\right)\right\rangle=\left\|\alpha\left(v_{1}\right)-\alpha\left(v_{2}\right)\right\|^{2}
\end{aligned}
$$

and so $\left\|v_{1}-v_{2}\right\|=\left\|\alpha\left(v_{1}\right)-\alpha\left(v_{2}\right)\right\|$, proving that α is an isometry. Conversely, if α is an isometry and if $v_{1}, v_{2} \in V$ then $\left\langle\alpha^{*} \alpha\left(v_{1}\right), v_{2}\right\rangle=\left\langle\alpha\left(v_{1}\right), \alpha\left(v_{2}\right)\right\rangle=\left\langle v_{1}, v_{2}\right\rangle$. Therefore, by Proposition 16.14, we see that $\alpha^{*} \alpha\left(v_{1}\right)=v_{1}$ for all $v_{1} \in V$, so $\alpha^{*} \alpha=$ $\sigma_{1} \in \operatorname{End}(V)$.

Exercises

Exercise 1051
Let $V=\mathbb{C}[X]$ and define an inner product on V by setting

$$
\left\langle\sum_{i=0}^{\infty} a_{i} X^{i}, \sum_{i=0}^{\infty} b_{i} X^{i}\right\rangle=\sum_{i=0}^{\infty} a_{i} \bar{b}_{i} .
$$

Let α be the endomorphism of V defined by $\alpha: p(X) \mapsto(X+1) p(X)$. Calculate α^{*}, or show that it does not exist.

Exercise 1052
Let $V=\mathbb{C}[X]$ and define an inner product on V by setting

$$
\left\langle\sum_{i=0}^{\infty} a_{i} X^{i}, \sum_{i=0}^{\infty} b_{i} X^{i}\right\rangle=\sum_{i=0}^{\infty} a_{i} \bar{b}_{i}
$$

Let β be the endomorphism of V defined by $\beta: p(X) \mapsto p(X+1)$. Calculate β^{*}, or show that it does not exist.

Exercise 1053

Let $p>1$ be an integer, let $G=\mathbb{Z} /(p)$, and let $V=\mathbb{C}^{G}$, which is an inner product space over \mathbb{C} with inner product defined by $\langle f, g\rangle=\sum_{n \in G} f(n) \overline{g(n)}$. Let α be the endomorphism of V defined by $\alpha(f): n \mapsto f(n+1)+f(n-1)$. Is α selfadjoint?

Exercise 1054

Let V be a vector space over \mathbb{R}. A nonempty subset K of V is convex if and only if $c v+(1-c) w \in K$ whenever $v, w \in K$ and $0 \leq c \leq 1$. Is the set of all selfadjoint endomorphisms of an inner product space Y over \mathbb{R} necessarily a convex subset of the vector space $\operatorname{End}(Y)$?

Exercise 1055

Let V be an inner product space and let α be an endomorphism of V. Is the endomorphism $\alpha^{*} \alpha-\sigma_{1}$ of V selfadjoint?

Exercise 1056

Let n be a positive integer and let V be the space of all polynomial functions in $\mathbb{R}^{\mathbb{R}}$ of degree at most n. Define an inner product on V by setting $\langle f, g\rangle=$ $\int_{-1}^{1} f(t) g(t) d t$. Let $\alpha \in \operatorname{End}(V)$ be defined by $\alpha(f): x \mapsto\left(1-x^{2}\right) f^{\prime \prime}(x)-$ $2 x f^{\prime}(x)$. Show that α is selfadjoint.

Exercise 1057

Let V be an inner product space finitely generated over \mathbb{C} and let α be an endomorphism of V satisfying $\alpha \alpha^{*}=\alpha^{2}$. Show that α is selfadjoint.

Exercise 1058

Let V be an inner product space finitely generated over \mathbb{C} and let α and β be selfadjoint endomorphisms of V satisfying the condition that $\alpha \beta$ is a projection. Is $\beta \alpha$ necessarily also a projection?

Exercise 1059

Give an example of nonzero Hermitian matrices A and B satisfying $A B=O=$ $B A$, or show that no such matrices exist.

Exercise 1060

Let $A \in \mathcal{M}_{2 \times 2}(\mathbb{C})$ be Hermitian. Find real numbers w, x, y, and z satisfying $|A|=w^{2}-x^{2}-y^{2}-z^{2}$.

Exercise 1061

Let $O \neq A \in \mathcal{M}_{3 \times 3}(\mathbb{C})$ be a Hermitian matrix. Show that $A^{k} \neq O$ for all positive integers k.

Exercise 1062
Find complex numbers a and b such that $\left[\begin{array}{ccc}a & 0 & b \\ 0 & 2 a & a \\ i & 1 & a\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{C})$ is a Hermitian matrix.

Exercise 1063

Determine all Hermitian matrices $A \in \mathcal{M}_{5 \times 5}(\mathbb{C})$ satisfying $A^{5}+2 A^{3}+3 A=6 I$.

Exercise 1064

A matrix $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ is anti-Hermitian if and only if $A^{H}=-A$. Show that A is anti-Hermitian if and only if $i A$ is Hermitian.

Exercise 1065

If matrices $A, B \in \mathcal{M}_{n \times n}(\mathbb{C})$ are anti-Hermitian, show that the Lie product of A and B is also anti-Hermitian.

Exercise 1066

Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. Show that every eigenvalue of $A^{H} A$ is a positive real number.

Exercise 1067

Let V be an inner product space and let $\alpha \in \operatorname{End}(V)$ be selfadjoint. Show that $\operatorname{ker}(\alpha)=\operatorname{ker}\left(\alpha^{h}\right)$ for all $h \geq 1$.

Exercise 1068

Let V be a nontrivial finitely-generated inner product space and let $\alpha \in \operatorname{End}(V)$ be orthogonally diagonalizable and satisfy the condition that each of its eigenvalues is real. Is α necessarily selfadjoint?

Exercise 1069

Let $\alpha \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ be represented with respect to the canonical basis by the matrix
$\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & a & 4 \\ 3 & 4 & 5\end{array}\right]$. For which values of a is α positive definite?

Exercise 1070

For each complex number z, let α_{z} be the endomorphism of \mathbb{C}^{3} represented with respect to the canonical basis by $\left[\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & z \\ -1 & \bar{z} & 1\end{array}\right]$. Does there exist a z for which this endomorphism is positive definite?

Exercise 1071
Let V be an inner product space and let $\alpha \in \operatorname{End}(V)$ be positive definite. Is α^{2} necessarily positive definite?

Exercise 1072

Let α be a positive definite automorphism of an inner product space V. Is α^{-1} necessarily positive definite?

Exercise 1073

Do there exist $a, b, c, d \in \mathbb{R}$ such that the endomorphism of \mathbb{R}^{4} represented with respect to some basis by the matrix $\left[\begin{array}{cccc}1 & 1 & a & 0 \\ 1 & 1 & 1 & b \\ c & 1 & 1 & 1 \\ 0 & d & 1 & 1\end{array}\right]$ is positive definite?

Exercise 1074

Let V be an inner product space finitely generated over \mathbb{R} and let $\alpha \in \operatorname{End}(V)$. Let D be a fixed basis for V and let $A=\Phi_{D D}(\alpha)$. Recall that we can write $A=B+C$, where $B=\frac{1}{2}\left(A+A^{T}\right)$ is symmetric and $C=\frac{1}{2}\left(A-A^{T}\right)$ is skew symmetric. Let $\beta, \gamma \in \operatorname{End}(V)$ satisfy $B=\Phi_{D D}(\beta)$ and $C=\Phi_{D D}(\gamma)$. Show that α is positive definite if and only if γ is positive definite.

Exercise 1075

Let α be a positive semidefinite endomorphism of \mathbb{R}^{n}, represented with respect to the canonical basis $\left\{v_{1}, \ldots, v_{n}\right\}$ by a symmetric matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$. Show that $\left|a_{i j}\right| \leq \frac{1}{2}\left(a_{i i}+a_{j j}\right)$ for all $1 \leq i, j \leq n$.

Exercise 1076
Let U be the set of all vectors $\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{6}\end{array}\right] \in \mathbb{R}^{6}$ satisfying the condition that $\left[\begin{array}{lll}a_{1} & a_{2} & a_{2} \\ a_{2} & a_{4} & a_{5} \\ a_{3} & a_{5} & a_{6}\end{array}\right]$ is positive semidefinite. Is U a convex subset of \mathbb{R}^{6} ?

Exercise 1077
Do there exist real numbers a, b, c, d such that the matrix $\left[\begin{array}{llll}1 & 1 & a & 0 \\ 1 & 1 & 1 & b \\ c & 1 & 1 & 1 \\ 0 & d & 1 & 1\end{array}\right]$ is positive semidefinite?

Exercise 1078

A selfadjoint endomorphism α of \mathbb{R}^{n} is almost positive semidefinite if and only if $\alpha(v) \cdot v \geq 0$ for all nonzero vectors $v=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]$ satisfying $\sum_{i=1}^{n} a_{i}=0$. Give an example of an endomorphism of \mathbb{R}^{3} which is almost positive semidefinite but not positive semidefinite.

Exercise 1079

Let k and n be positive integers. A symmetric matrix in $\mathcal{M}_{k+n, k+n}(\mathbb{R})$ is quasidefinite when it is of the form $\left[\begin{array}{cc}-B & A^{T} \\ A & C\end{array}\right]$ where B is a matrix representing a positive-definite endomorphism of \mathbb{R}^{k} with respect to the canonical basis, and C is a matrix representing a positive-definite endomorphism of \mathbb{R}^{n} with respect to the canonical basis. Show that a quasidefinite matrix is nonsingular, and that its inverse is again quasidefinite.

Exercise 1080

Let $V=\mathbb{R}^{2}$ together with the dot product. Find positive-definite endomorphisms α and β of V satisfying the condition that their Jordan product is not positive definite.

Exercise 1081

Let V be an inner product space over \mathbb{R} and let $\alpha \in \operatorname{End}(V)$. Show that α is positive definite if and only if $\alpha+\alpha^{*}$ is positive definite.

Exercise 1082

Let V be an inner product space finitely generated over \mathbb{C} and let α and β be positive-definite endomorphisms of V satisfying $\alpha \beta=\sigma_{0}$. Is it necessarily true that $\alpha=\sigma_{0}$ or $\beta=\sigma_{0}$?

Exercise 1083
Let $V=\left\{\left.\left[\begin{array}{l}a \\ b \\ b \\ c\end{array}\right] \right\rvert\, a, b, c \in \mathbb{R}\right\}$ and let $W=\mathbb{R}^{3}$, both of which together with the
dot product, are inner product spaces of dimension 3 over \mathbb{R}. Find an isomorphism $\alpha: V \rightarrow W$ which is also an isometry.

Exercise 1084

Let V be an inner product space and let α be an endomorphism of V which is an isometry. Does α also preserve angles between vectors?

Exercise 1085

Let α be a positive-definite endomorphism of a finite-dimensional inner product space V represented with respect to some fixed basis by an $n \times n$ matrix $A=\left[a_{i j}\right]$. Show that $|A| \leq \prod_{i=1}^{n} a_{i i}$.

Exercise 1086

Let n be a positive integer and let α be a positive-definite endomorphism of \mathbb{C}^{n} represented with respect to the canonical basis by the matrix $A=\left[a_{i j}\right] \in$ $\mathcal{M}_{n \times n}(\mathbb{C})$. Show that $a_{i i}$ is a positive real number for all $1 \leq i \leq n$.

Exercise 1087
Let $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{c}b-2 c \\ a+c\end{array}\right]$. Calculate $\operatorname{spec}\left(\alpha \alpha^{*}\right)$ and $\operatorname{spec}\left(\alpha^{*} \alpha\right)$.

Exercise 1088

Let n be a positive integer and let $V=\mathbb{R}^{n}$, on which we have defined the dot product. Let α be a positive-definite endomorphism of V represented with respect to the canonical basis by the matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$. Show that $|A|>0$. Is it necessarily true that $\operatorname{tr}(A)>0$?

Exercise 1089

Find endomorphisms $\alpha, \beta \in \operatorname{End}\left(\mathbb{C}^{2}\right)$ satisfying $\alpha>\beta$ (in the sense of Loewner) but not $\alpha^{2}>\beta^{2}$.

Exercise 1090

Let V be an inner product space and let $\alpha, \beta \in \operatorname{End}(V)$ be positive definite. Is it necessarily true that $\alpha+\beta>\beta$?

Exercise 1091

Let V and W be inner product spaces finitely generated over \mathbb{C}. Let $\alpha \in \operatorname{Hom}(V, W), \theta \in \operatorname{Aut}(V)$, and $\varphi \in \operatorname{Aut}(W)$, where the automorphisms θ and
φ are positive definite. Show that the automorphism $\theta-\alpha^{*} \varphi \alpha$ of V is positive definite if and only if the automorphism $\varphi-\alpha \theta \alpha^{*}$ of W is positive definite.

Exercise 1092

Let $\alpha \in \operatorname{End}\left(\mathbb{R}^{n}\right)$ be represented with respect to the canonical basis by a symmetric matrix A. Show that $\langle\alpha(v), v\rangle \geq 0$ for all nonzero vectors $v \in \mathbb{R}^{n}$ if and only if $\alpha+c \sigma_{1}$ is positive definite for every positive real number c.

Exercise 1093

Let V be the vector space of all infinitely-differential functions in $\mathbb{R}^{\mathbb{R}}$, on which we define the inner product $\langle f, g\rangle=\int_{0}^{\pi} f(x) g(x) d x$. Let W be the subspace of all functions $f \in V$ satisfying $f(0)=f(\pi)=0$. Show that the endomorphism of W defined by $f \mapsto f^{\prime \prime}$ is selfadjoint.

Exercise 1094

Let V be a finitely-generated inner product space and let $\alpha \in \operatorname{End}(V)$ be selfadjoint. Show that $\|\alpha(v)\| \leq\|v\|$ for all $v \in V$.

Exercise 1095

Let V be an inner product space finitely generated over \mathbb{R} of dimension greater than 1 , and let α be a selfadjoint endomorphism of V. Show that there are eigenvalues $c<d$ of α satisfying $c\|v\|^{2} \leq\langle\alpha(v), v\rangle \leq d\|v\|^{2}$ for all $v \in V$.

Exercise 1096

Let V be an inner product space finitely generated over \mathbb{R} and let $\alpha, \beta \in \operatorname{End}(V)$ be selfadjoint. Assume that the eigenvalues of α all lie in the interval $[a, b]$ on the real line and that the eigenvalues of β all lie in the interval $[c, d]$ on the real line. Show that the eigenvalues of $\alpha+\beta$ all lie in the interval $[a+c, b+d]$ on the real line.

Exercise 1097

Let V be an inner product space finitely generated over \mathbb{C} and let α be a positivedefinite selfadjoint automorphism of V. Show that $\left\langle\left(\alpha+\alpha^{-1}\right)(v), v\right\rangle \geq 2\langle v, v\rangle$ for all $v \in V$.

Exercise 1098

Let V be an inner product space finitely generated over \mathbb{R} and let α be a positivedefinite selfadjoint automorphism of V. Show that $\left\langle\alpha^{-1}(v), v\right\rangle=\max \{2\langle v, w\rangle-$ $\langle\alpha(w), w\rangle \mid w \in W\}$ for all $v \in V$.

Exercise 1099

Let V be a finite-dimensional inner product space over \mathbb{C} and let $\alpha \neq \sigma_{1}$ positivedefinite endomorphism of V. Show that there exists no positive integer p satisfying $\alpha^{p}=\sigma_{1}$.

Exercise 1100
Let V be a vector space finitely-generated over \mathbb{R} and let $\alpha \in \operatorname{End}(V)$ be selfadjoint. Show that at least one of the values $\pm\|\alpha\|$ is an eigenvalue of α and any eigenvalue c of α satisfies $-\|\alpha\| \leq c \leq\|\alpha\|$.

Exercise 1101
Let $A=\left[\begin{array}{ll}a & b \\ \bar{b} & c\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{C})$ be Hermitian and let $r \geq s$ be the (necessarily real) eigenvalues of A. Show that $|b| \leq \frac{1}{2}(r-s)$.

Exercise 1102

Let V be a nontrivial finitely-generated inner product space and let α and β be selfadjoint endomorphisms of V satisfying $\alpha \beta=\beta \alpha$. Show that α and β have a common eigenvector.

Exercise 1103

Let n be a positive integer. An endomorphism α of \mathbb{R}^{n} is copositive if and only if it is selfadjoint and satisfies the condition that $\alpha(v) \cdot v$ is a positive real number whenever v is a nonzero vector all components of which are nonnegative. Clearly, positive-definite endomorphisms are copositive. Give an example of a copositive endomorphism which is not positive definite.

Exercise 1104

Is the endomorphism of \mathbb{C}^{3} represented with respect to the canonical basis by the matrix $\left[\begin{array}{ccc}4 & 2-i & 1+i \\ 2+i & 3 & 0 \\ 1-i & 0 & 2\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{C})$ positive definite?

Exercise 1105

Let α be the endomorphism of \mathbb{R}^{2} defined by setting $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{l}2 a-b \\ 2 b-a\end{array}\right]$. Show that α is positive definite by constructing an endomorphism β of \mathbb{R}^{2} satisfying $\alpha=\beta^{*} \beta$.

Exercise 1106

Find selfadjoint automorphisms α and β of \mathbb{R}^{2} satisfying the condition that $\alpha \geq \beta \geq-\alpha$ but $\alpha \nsucceq \sqrt{\beta^{*} \beta}$.

Exercise 1107

Let $\alpha \in \operatorname{End}\left(\mathbb{R}^{n}\right)$ be represented with respect to the canonical basis by a symmetric matrix $A=\left[a_{i j}\right]$. Let $\beta \in \operatorname{End}\left(\mathbb{R}^{n}\right)$ be represented by the matrix $B=\left[e^{a_{i j}}\right]$. If α is positive semidefinite, is β necessarily positive semidefinite? Is β necessarily positive definite?

Unitary and Normal Endomorphisms

Let V be an inner product space. An automorphism of V which is an isometry is called a unitary automorphism. It is easy to see that if α and β are unitary automorphisms of V then $\alpha \beta$ and α^{-1} are also unitary automorphisms of V. It is also clear that σ_{1} is unitary. Therefore, the set of all unitary automorphisms of V is a group of automorphisms.

Proposition 18.1 Let V be an inner product space and let $\alpha \in \operatorname{Aut}(V)$ have an adjoint. Then α is unitary if and only if $\alpha^{*}=\alpha^{-1}$.

Proof If α is unitary then $\langle\alpha(v), w\rangle=\left\langle\alpha(v), \alpha \alpha^{-1}(w)\right\rangle=\left\langle v, \alpha^{-1}(w)\right\rangle$ for all $v, w \in V$ and so $\alpha^{*}=\alpha^{-1}$. Conversely, if $\alpha^{*}=\alpha^{-1}$ then $\langle\alpha(v), \alpha(w)\rangle=$ $\left\langle v, \alpha^{*} \alpha(w)\right\rangle=\langle v, w\rangle$ for all $v, w \in V$ and so α is unitary.

As a direct consequence of Proposition 17.14, we see that if V is an inner product space finitely generated over its field of scalars then for $\alpha \in \operatorname{End}(V)$ the following conditions are equivalent:
(1) α is an isometry;
(2) α is unitary;
(3) α maps an orthonormal basis of V to an orthonormal basis of V.

If V is an inner product space finitely generated over its field of scalars F, and if α is a unitary automorphism of V represented by a matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ with respect to a given orthonormal basis, then we see that $A^{-1}=A^{H} \in \mathcal{M}_{n \times n}(F)$. A matrix of this form over F is called a unitary matrix. If A is a unitary matrix then so is A^{-1} since $\left(A^{-1}\right)^{H}=\left(A^{H}\right)^{-1}$. Also, if A and B are unitary matrices then $(A B)^{-1}=B^{-1} A^{-1}=B^{H} A^{H}=(A B)^{H}$ so $A B$ is also unitary. The converse is false. For example, the matrix $A=\left[\begin{array}{rr}-1 & 1 \\ 0 & 1\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ is not unitary, but $A^{2}=I$ is.

Thus we see that the set of unitary matrices in $\mathcal{M}_{n \times n}(F)$ define a group of automorphisms of F^{n} and so an equivalence relation \sim defined by the condition that
$A \sim B$ if and only if there exists a unitary matrix P such that $A=P^{-1} B P$. Matrices equivalent in this sense are unitarily similar. As an immediate consequence of the definition, we see that A is unitary if and only if the set of columns (resp., rows) of A is an orthonormal basis of F^{n} (resp., $\mathcal{M}_{1 \times n}(F)$) endowed with the dot product.

Proposition 18.2 Let n be a positive integer and let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be unitarily-similar matrices in $\mathcal{M}_{n \times n}(\mathbb{C})$. Then

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left|b_{i j}\right|^{2} .
$$

Proof We note that $\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}=\operatorname{tr}\left(A^{H} A\right)$. If P is a unitary matrix satisfying $B=P^{-1} A P$ then $\operatorname{tr}\left(B^{H} B\right)=\operatorname{tr}\left(P^{-1} A^{H} P P^{-1} A P\right)=\operatorname{tr}\left(P^{-1} A^{H} A P\right)=$ $\operatorname{tr}\left(A^{H} A P^{-1} P\right)=\operatorname{tr}\left(A^{H} A\right)$, and we are done.

Example If $c, d \in \mathbb{C}$ satisfy the condition that $|c|^{2}+|d|^{2}=1$, then the matrix $\left[\begin{array}{rr}c & d \\ -\bar{d} & \bar{c}\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{C})$ is unitary. A matrix of this form is known as a Givens rotation matrix. More generally, if $n>3$ then a matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{C})$ is a Givens rotation matrix if and only if there exist integers $1 \leq h<k \leq n$ and nonzero complex numbers c and d satisfying $|c|^{2}+|d|^{2}=1$ such that

$$
a_{i j}= \begin{cases}c & \text { if } i=j \in\{h, k\}, \\ 1 & \text { if } i=j \notin\{h, k\}, \\ d & \text { if } i=h \text { and } j=k, \\ -\bar{d} & \text { if } i=k \text { and } j=h, \\ 0 & \text { otherwise }\end{cases}
$$

These matrices play important roles in numerical algorithms.

Example The matrix $A=\frac{1}{2}\left[\begin{array}{ll}1-i & 1+i \\ 1+i & 1-i\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{C})$ is unitary. This matrix has important applications in the modeling of quantum computing, where it is often
denoted by $\sqrt{N O T}$, since $A^{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ represents the negation operator in this context.

Example It is easy to show that $A_{b}=\left[\begin{array}{cc}\sqrt{1+b^{2}} & b i \\ -b i & \sqrt{1+b^{2}}\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{C})$ satisfies $A_{b} A_{b}^{T}=I$ for any real number b, but, except for the case of $b=0$, it is not unitary.

Unitarily-similar matrices are surely similar, but the converse is not true.
Example The matrices $\left[\begin{array}{rr}3 & 1 \\ -2 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ in $\mathcal{M}_{2 \times 2}(\mathbb{R})$ are similar but not unitarily similar, as we can see from Proposition 18.2.

Proposition 18.3 (Schur's Theorem) If n is a positive integer, then every matrix in $\mathcal{M}_{n \times n}(\mathbb{C})$ is unitarily similar to an upper-triangular matrix.

Proof We will proceed by induction on n. For $n=1$, the result is trivial since every 1×1 matrix is upper triangular. Assume now that $n>1$ and that the result has been established for $\mathcal{M}_{(n-1) \times(n-1)}(\mathbb{C})$. Let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{C})$. Since we are working over \mathbb{C}, we know that the characteristic polynomial of A is completely reducible, and so A has an eigenvalue, call it c_{1}. Corresponding to that eigenvalue, we have a normal eigenvector $v_{1}=\left[\begin{array}{c}d_{1} \\ \vdots \\ d_{n}\end{array}\right]$ in which we can assume that $d_{1} \in \mathbb{R}$. We now are able to construct a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for \mathbb{C}^{n} to which we can apply the Gram-Schmidt procedure, and thus assume that it is in fact an orthonormal basis (the vector v_{1} does not change, since it was assumed to be normal to begin with). The matrix P_{1}, the columns of which are these vectors, is therefore unitary. Now set $A_{1}=P_{1}^{-1} A P_{1}$. It is easy to see that the first column of A_{1} is of the form $\left[\begin{array}{c}c_{1} \\ 0 \\ \vdots \\ 0\end{array}\right]$ so we can write A_{1} in block form as $\left[\begin{array}{cc}c_{1} & x \\ O & A_{2}\end{array}\right]$, where $A_{2} \in \mathcal{M}_{(n-1) \times(n-1)}(\mathbb{C})$. By the induction hypothesis, there is a unitary matrix $Q \in \mathcal{M}_{(n-1) \times(n-1)}(\mathbb{C})$ such that $Q^{-1} A_{2} Q$ is an upper-triangular matrix. Now set $P_{2}=\left[\begin{array}{cc}1 & O \\ O & Q\end{array}\right]$. Then P_{2} is a unitary matrix in $\mathcal{M}_{n \times n}(\mathbb{C})$ and $P_{2}^{-1} P_{1}^{-1} A P_{1} P_{2}=\left[\begin{array}{cc}c_{1} & y \\ O & Q^{-1} A_{2} Q\end{array}\right]$ is an upper triangular matrix in $\mathcal{M}_{n \times n}(\mathbb{C})$. Since $P_{1} P_{2}$ is again unitary, we are done.

If we are working over \mathbb{R}, then a matrix A representing a unitary automorphism of \mathbb{R}^{n} satisfies $A^{-1}=A^{T}$. Such a matrix is called an orthogonal matrix. It is clear that the matrix I is orthogonal and that A^{-1} is orthogonal whenever A is orthogonal. If A and B are orthogonal matrices then $(A B)^{-1}=B^{-1} A^{-1}=B^{T} A^{T}=(A B)^{T}$ and so $A B$ is also orthogonal. As an immediate consequence of the definition, we see that A is orthogonal if and only if the set of columns (resp., rows) of A is an orthonormal basis of \mathbb{R}^{n} (resp., $\mathcal{M}_{1 \times n}(\mathbb{R})$) endowed with the dot product. It is also clear that A is orthogonal if and only if A^{T} is orthogonal.

Example Permutation matrices, which we considered earlier, are clearly orthogonal.
Example The matrices $\left[\begin{array}{rr}\cos (t) & \sin (t) \\ -\sin (t) & \cos (t)\end{array}\right]$ and $\left[\begin{array}{rr}\cos (t) & \sin (t) \\ \sin (t) & -\cos (t)\end{array}\right]$ are orthogonal for every $t \in \mathbb{R}$, and one can show that these are the only orthogonal matrices in $\mathcal{M}_{2 \times 2}(\mathbb{R})$. Indeed, suppose that the matrix $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ is orthogonal. Then $a_{11}^{2}+a_{12}^{2}=1=a_{21}^{2}+a_{22}^{2}$ so $-1 \leq a_{11} \leq 1$. Hence there exists a real number t such that $a_{11}=\cos (t)$. Then $a_{12}^{2}=1-a_{11}^{2}=1-\cos ^{2}(t)=\sin ^{2}(t)$ and so $a_{12}=$ $\pm \sin (t)$. Also, $a_{11}=\cos (-t)$ and $\sin (-t)=-\sin (t)$. Thus, replacing t by $-t$ if necessary we can assume that $a_{11}=\cos (t)$ and $a_{12}=\sin (t)$. Similarly, there exists an angle s such that $a_{22}=\cos (s)$ and $a_{21}=\sin (s)$. Matrices of the first type are just Givens rotation matrices; matrices of the second type are known as Jacobi reflection matrices.

Since $0=a_{11} a_{21}+a_{12} a_{22}=\cos (t) \sin (s)+\sin (t) \cos (s)=\sin (t+s)$, we see that $t+s=0$ or $t+s=\pi$. If $t+s=0$, we obtain $A=\left[\begin{array}{rr}\cos (t) & \sin (t) \\ -\sin (t) & \cos (t)\end{array}\right]$. If $t+s=\pi$, then $s=\pi-t$ and so $A=\left[\begin{array}{rr}\cos (t) & \sin (t) \\ \sin (t) & -\cos (t)\end{array}\right] \operatorname{since} \sin (t)=\sin (\pi-t)$ and $-\cos (t)=\cos (\pi-t)$.

One can also show that every orthogonal matrix in $\mathcal{M}_{3 \times 3}(\mathbb{R})$ is similar to a matrix of the form $\left[\begin{array}{rrr}\cos (t) & \sin (t) & 0 \\ -\sin (t) & \cos (t) & 0 \\ 0 & 0 & \pm 1\end{array}\right]$ for some $t \in \mathbb{R}$. More generally, if $n>2$ then every orthogonal matrix in $\mathcal{M}_{n \times n}(\mathbb{R})$ is similar to a matrix in block form [$D_{i j}$], where $D_{i j}=O$ if $i \neq j$ and $D_{i i}$ is either $1,-1$, or a 2×2 matrix of the form $\left[\begin{array}{rr}\cos (t) & \sin (t) \\ -\sin (t) & \cos (t)\end{array}\right]$.

Example Let n be a positive integer. If $0 \leq c \leq 1$ is a real number, the matrix $\left[\begin{array}{cc}(\sqrt{c}) I & (-\sqrt{1-c}) I \\ (\sqrt{1-c}) I & (\sqrt{c}) I\end{array}\right] \in \mathcal{M}_{2 n \times 2 n}(\mathbb{R})$ is orthogonal, where I denotes the identity matrix in $\mathcal{M}_{n \times n}(\mathbb{R})$.

Example Let n be a positive integer and let $V=\mathbb{R}^{n}$, on which we have defined the dot product. If $v \in V$ is a normal vector, then the matrix $A=I-2(v \wedge v)$ is a

Householder matrix. These matrices are clearly symmetric. Moreover, if $A=I-$ $2(v \wedge v)$ then $A^{T} A=A^{2}=(I-2[v \wedge v])^{2}=I-4 v\left(v^{T} v\right) v^{T}+4 v\left(v^{T} v\right) v^{T}=I$ and so A is orthogonal. Householder matrices have important uses in numerical analysis. We should also mention that if $u \neq v$ are vectors in V satisfying $\|u\|=\|v\|$, then the vector $w=\|v-u\|^{-1}(v-u)$ defines a Householder matrix $A=I-2(w \wedge w)$ satisfying $A u=A v$. Since a Householder matrix is totally determined by one vector, it is easy to store in a computer. One of the important uses of Householder matrices is to compute QR-decompositions of matrices in a manner far more stable numerically than via the use of the Gram-Schmidt method.

Abstract

Alston Householder, a twentieth-century American mathematician, was among the pioneer researchers of the numerical analysis of matrices using computers, who developed many of the basic algorithms used in this field.

The complex analog of Householder matrices are matrices of the form $I-2 w w^{H}$, where $w \in \mathbb{C}^{n}$. Such matrices are Hermitian and unitary and, too, have an important role in numerical computation.

Example A general method for the construction of orthogonal matrices, due to the contemporary American mathematician George W. Soules, is given as follows: Let $n>1$ be an integer and let $w_{1} \in \mathbb{R}^{n}$ be a normal vector all of the entries of which are all positive. Let $1 \leq k<n$ and write $w_{1}=\left[\begin{array}{l}u \\ v\end{array}\right]$, where $u \in \mathbb{R}^{k}$ and $v \in \mathbb{R}^{n-k}$. Set $a=\frac{\|v\|}{\|u\|}$ and $w_{2}=\left[\begin{array}{c}a u \\ -a^{-1} v\end{array}\right]$. Then it is easy to see that w_{2} is normal and orthogonal to w_{1}. Moreover, by further partitioning the vectors $a u$ and $-a^{-1} v$, we can eventually construct a mutually-orthogonal normal vectors $w_{1}, w_{2}, \ldots, w_{n}$. The matrix with these vectors as columns is then orthogonal.

Notice that if F is either \mathbb{R} or \mathbb{C}, and if $A \in \mathcal{M}_{n \times n}(F)$ is a unitary matrix the columns of which are v_{1}, \ldots, v_{n}, then the identity $A A^{H}=I$ implies that $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal set of vectors in F^{n}, on which we have the dot product, and hence it is a basis for this space. Conversely, if $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis of F^{n} then the matrix the columns of which are these vectors is unitary. Similarly, a matrix in $\mathcal{M}_{n \times n}(\mathbb{R})$ is orthogonal if and only if the set of its columns forms an orthonormal basis for \mathbb{R}^{n} with the dot product. Another way of putting this is that a matrix in $\mathcal{M}_{n \times n}(\mathbb{R})$ the columns of which are v_{1}, \ldots, v_{n} is orthogonal if and only if $\sum_{i=1}^{n} v_{i} \wedge v_{i}=I$.

Proposition 18.4 Let V be an inner product space of finite dimension n over \mathbb{R}. Let α be a unitary automorphism of V, which is represented by a matrix $A \in M_{n \times n}(\mathbb{R})$ with respect to a given orthonormal basis of V. Then $|A|= \pm 1$.

Proof We know that if α is represented by $A=\left[a_{i j}\right]$ with respect to the given basis, then α^{*} is represented by A^{T}. From Proposition 18.1, we deduce that $A A^{T}=I$ and so $|A|^{2}=|A| \cdot\left|A^{T}\right|=|I|=1$, which in turn implies that $|A|= \pm 1$.

Example The converse of Proposition 18.4 is false, even for matrices the columns of which are orthogonal. Thus, the matrix $\left[\begin{array}{cc}0.25 & 0 \\ 0 & 4\end{array}\right]$ has determinant 1 , but does not represent a unitary automorphism of \mathbb{R}^{2}.

The orthogonal matrices in $\mathcal{M}_{n \times n}(\mathbb{R})$ having determinant equal to 1 are known as the special orthogonal matrices, and the set of all such matrices is denoted by $\mathrm{SO}(n)$. This subset of $\mathcal{M}_{n \times n}(\mathbb{R})$ is clearly closed under taking products as well as taking inverses, since if $A \in \mathrm{SO}(n)$ then $\left|A^{-1}\right|=\left|A^{T}\right|=|A|=1$. If $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ is a special orthogonal matrix, where n is an odd integer, then $1 \in \operatorname{spec}(A)$. To see this, we note that $|A-1 I|=|A-I|=\left|A-A A^{T}\right|=|A| \cdot\left|I-A^{T}\right|=\left|I-A^{T}\right|=$ $|I-A|$ and, since n is odd, $|I-A|=(-1)^{n}|A-I|$. Thus we must have $|A-I|=0$, and so $1 \in \operatorname{spec}(A)$.

Example We have already noted that the only orthogonal matrices in $\mathcal{M}_{2 \times 2}(\mathbb{R})$ are of the form $\left[\begin{array}{rr}\cos (t) & \sin (t) \\ -\sin (t) & \cos (t)\end{array}\right]$ or $\left[\begin{array}{rr}\cos (t) & \sin (t) \\ \sin (t) & -\cos (t)\end{array}\right]$ for some $t \in \mathbb{R}$. Matrices of the first type are special, whereas matrices of the second type are not.

Example The matrix $\left[\begin{array}{rrrrr}0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1\end{array}\right] \in \mathcal{M}_{5 \times 5}(\mathbb{R})$ is special orthogonal.
Let V be an inner product space. An endomorphism $\alpha \in \operatorname{End}(V)$ is normal if and only if α^{*} exists and satisfies $\alpha^{*} \alpha=\alpha \alpha^{*}$. From this definition, it is clear that α is normal if and only if α^{*} is normal. Clearly, selfadjoint endomorphisms of V are normal, as are unitary automorphisms.

Example If $a, b \in \mathbb{R}$ satisfy $b \neq 0$ and $a^{2}+b^{2} \neq 1$, then the automorphism α of \mathbb{R}^{2} defined by $\left[\begin{array}{l}c \\ d\end{array}\right] \mapsto\left[\begin{array}{c}a c+b d \\ a d-b c\end{array}\right]$ is normal but neither unitary nor selfadjoint.

Example If $0 \neq a, b \in \mathbb{R}$ then the automorphism α of \mathbb{C}^{2} defined by

$$
\left[\begin{array}{l}
c \\
d
\end{array}\right] \mapsto\left[\begin{array}{l}
c+i d \\
c-i d
\end{array}\right]
$$

is normal but neither unitary and nor selfadjoint.

Proposition 18.5 Let V be an inner product space. An endomorphism $\alpha \in \operatorname{End}(V)$ for which α^{*} exists is normal if and only if $\|\alpha(v)\|=\left\|\alpha^{*}(v)\right\|$ for all $v \in V$.

Proof If α is normal and $v \in V$, then $\|\alpha(v)\|^{2}=\langle\alpha(v), \alpha(v)\rangle=\left\langle v, \alpha^{*} \alpha(v)\right\rangle=$ $\left\langle v, \alpha \alpha^{*}(v)\right\rangle=\left\langle v, \alpha^{* *} \alpha^{*}(v)\right\rangle=\left\langle\alpha^{*}(v), \alpha^{*}(v)\right\rangle=\left\|\alpha^{*}(v)\right\|^{2}$ and so $\|\alpha(v)\|=$ $\left\|\alpha^{*}(v)\right\|$. Conversely, assume that this condition holds. Then for each $v \in V$ we have

$$
\begin{aligned}
\left\langle\left(\alpha \alpha^{*}-\alpha^{*} \alpha\right)(v), v\right\rangle & =\left\langle\alpha \alpha^{*}(v), v\right\rangle-\left\langle\alpha^{*} \alpha(v), v\right\rangle \\
& =\left\langle\alpha^{*}(v), \alpha^{*}(v)\right\rangle-\langle\alpha(v), \alpha(v)\rangle=0 .
\end{aligned}
$$

But $\alpha \alpha^{*}-\alpha^{*} \alpha$ is selfadjoint and so, by Proposition 17.3, we see that $\alpha \alpha^{*}-\alpha^{*} \alpha=\sigma_{0}$, and so $\alpha \alpha^{*}=\alpha^{*} \alpha$.

As a consequence of Proposition 18.5 we see that if α is a normal endomorphism of an inner product space V and if $v \in V$ then $v \in \operatorname{ker}(\alpha) \Leftrightarrow\|\alpha(v)\|=0 \Leftrightarrow$ $\left\|\alpha^{*}(v)\right\|=0 \Leftrightarrow v \in \operatorname{ker}\left(\alpha^{*}\right)$ and so $\operatorname{ker}(\alpha)=\operatorname{ker}\left(\alpha^{*}\right)$.

We now take a short look at the extensive theory of eigenvalues of normal endomorphisms of inner product spaces. We will restrict our attention to finitedimensional spaces, since the theory for infinite-dimensional spaces requires additional topological assumptions.

Proposition 18.6 Let V be an inner product space and let $\alpha \in \operatorname{End}(V)$ be normal. Then every eigenvector of α is also an eigenvector of α^{*} and if c is an eigenvalue of α then \bar{c} is an eigenvalue of α^{*}.

Proof If $v \in V$ then, as we have noted, $\|\alpha(v)\|=\left\|\alpha^{*}(v)\right\|$. For a scalar c, we see that

$$
\begin{aligned}
\left(\alpha-c \sigma_{1}\right)^{*}\left(\alpha-c \sigma_{1}\right) & =\left(\alpha^{*}-\bar{c} \sigma_{1}\right)\left(\alpha-c \sigma_{1}\right)=\left(\alpha-c \sigma_{1}\right)\left(\alpha^{*}-\bar{c} \sigma_{1}\right) \\
& =\left(\alpha-c \sigma_{1}\right)\left(\alpha-c \sigma_{1}\right)^{*}
\end{aligned}
$$

and so $\alpha-c \sigma_{1}$ is also normal. Thus, $\left\|\left(\alpha-c \sigma_{1}\right)(v)\right\|=\left\|\left(\alpha^{*}-\bar{c} \sigma_{1}\right)(v)\right\|$ for $v \in V$ and so, in particular, we see that $v \in \operatorname{ker}\left(\alpha-c \sigma_{1}\right)$ if and only if $v \in \operatorname{ker}\left(\alpha^{*}-\bar{c} \sigma_{1}\right)$. In other words, v is an eigenvector of α associated with the eigenvalue c if and only if it is an eigenvector of α^{*} associated with the eigenvalue \bar{c}.

Since $\alpha^{* *}=\alpha$ for any endomorphism α of V, we see from Proposition 18.6 that if α is normal then a scalar c is an eigenvalue of α if and only if \bar{c} is an eigenvalue of α^{*}.

Another interesting consequence of Proposition 18.6 is the following: Let V be a finitely-generated inner product space and let $\alpha \in \operatorname{Aut}(V)$ be unitary. Then α is surely normal. If $c \in \operatorname{spec}(\alpha)$ then $c \neq 0$ since α is an automorphism. If v is an eigenvector associated with c then $v=\left(\alpha^{*} \alpha\right)(v)=\alpha^{*}(c v)=c \alpha^{*}(v)$ and so $\alpha^{*}(v)=c^{-1} v$. This shows that c^{-1} is an eigenvalue of α^{*} and hence, by Proposition 18.6, $c^{-1} \in \operatorname{spec}(\alpha)$.

Example In Proposition 17.5, we saw that if α is a selfadjoint endomorphism of an inner product space V finitely generated over \mathbb{R}, then $\operatorname{spec}(\alpha) \neq \varnothing$. This is not necessarily true for normal endomorphisms of inner product spaces which are not selfadjoint. For example, let $V=\mathbb{R}^{2}$ together with the dot product, and if $\alpha \in \operatorname{End}(V)$ is defined by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto\left[\begin{array}{r}-b \\ a\end{array}\right]$, then we have already seen that $\operatorname{spec}(\alpha)=\varnothing$. One can easily check that α is normal but not selfadjoint.

Proposition 18.7 Let V be an inner product space finitely generated over \mathbb{C} and let $\alpha \in \operatorname{End}(V)$. Then α is normal if and only if it is orthogonally diagonalizable.

Proof Assume that α is normal. We will proceed by induction on $n=\operatorname{dim}(V)$. First, assume that $n=1$. Since we are working over \mathbb{C}, we know that $\operatorname{spec}(\alpha) \neq$ \varnothing and so there exists a normal eigenvector v_{1} of α. Then $V=\mathbb{C} v_{1}$ and we are done. Now assume that $n>1$ and that the result has been proven for subspaces of dimension $n-1$. Again, there exists a normal eigenvector v_{1} of α. Set $W=\mathbb{C} v_{1}$. The subspace W of V is invariant under α, and so, by Proposition 18.6, it is also invariant under α^{*}. Therefore, W^{\perp} is invariant under $\alpha^{* *}=\alpha$. The restriction of α to W^{\perp} is a normal endomorphism, the adjoint of which is the restriction of α^{*} to W^{\perp}. By induction, we know that there exists an orthonormal basis $\left\{v_{2}, \ldots, v_{n}\right\}$ composed of eigenvectors of α, and so $\left\{v_{1}, \ldots, v_{n}\right\}$ is the basis of V we are seeking.

Conversely, assume that there exists an orthonormal basis of $B=\left\{v_{1}, \ldots, v_{n}\right\}$ composed of eigenvectors of α. Then $\Phi_{B B}(\alpha)=\left[a_{i j}\right]$ is a diagonal matrix satisfying the condition that each $a_{i i}$ is an eigenvalue of α. Moreover, $\Phi_{B B}\left(\alpha^{*}\right)=\Phi_{B B}(\alpha)^{H}$ and this too is a diagonal matrix. Since diagonal matrices commute, we see that $\alpha \alpha^{*}=\alpha^{*} \alpha$, and so α is normal.

Note that Proposition 18.7 does not imply that if V is an inner product space finitely generated over \mathbb{C} and if $\alpha \in \operatorname{End}(V)$ is normal, then every basis B of V composed of eigenvectors of α is necessarily orthonormal or that its elements are even necessarily mutually orthogonal, merely that one such basis exists.

Example Let α be the endomorphism of \mathbb{C}^{4} represented with respect to the canonical basis by the matrix $A=\left[\begin{array}{rrrr}1 & 2 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 1 & 3\end{array}\right]$. One easily checks that $A A^{H}=$ $A^{H} A$, and so α is a normal automorphism of \mathbb{C}^{4}. The characteristic polynomial of A is

$$
X^{4}-8 X^{3}+27 X^{3}-50 X+50=\left(X^{2}-6 X+10\right)\left(X^{2}-2 X+5\right),
$$

and so $\operatorname{spec}(\alpha)=\{3 \pm i, 1 \pm 2 i\}$. The set

$$
\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-i \\
1 \\
0 \\
0
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{l}
i \\
1 \\
0 \\
0
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}
0 \\
0 \\
1 \\
-i
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{l}
0 \\
0 \\
1 \\
i
\end{array}\right]\right\}
$$

is an orthonormal basis for \mathbb{C}^{4} composed of eigenvectors of α.

Proposition 18.8 Let V be a finitely-generated inner product space. Then the following conditions on a projection $\alpha \in \operatorname{End}(V)$ are equivalent:
(1) α is normal;
(2) α is selfadjoint;
(3) $\operatorname{ker}(\alpha)=\operatorname{im}(\alpha)^{\perp}$.

Proof (1) \Rightarrow (2): From (1) we know that $\|\alpha(v)\|=\left\|\alpha^{*}(v)\right\|$ for all $v \in V$. In particular, $\alpha(v)=0_{V}$ if and only if $\alpha^{*}(v)=0_{V}$ so that $\operatorname{ker}(\alpha)=\operatorname{ker}\left(\alpha^{*}\right)$. If $v \in V$ and $w=v-\alpha(v)$ then $\alpha(w)=\alpha(v)-\alpha^{2}(v)=\alpha(v)-\alpha(v)=0_{V}$ and so $\alpha^{*}(w)=0_{V}$. Therefore, $\alpha^{*}(v)=\alpha^{*} \alpha(v)$ for all $v \in V$, whence $\alpha^{*}=\alpha^{*} \alpha$. This implies that $\alpha=\alpha^{* *}=\left(\alpha^{*} \alpha\right)^{*}=\alpha^{*} \alpha^{* *}=\alpha^{*} \alpha=\alpha^{*}$, which proves (2).
(2) \Rightarrow (3): If $v, w \in V$ then, from (2), we see that $\langle\alpha(v), w\rangle=\langle v, \alpha(w)\rangle$. In particular, if $v \in \operatorname{ker}(\alpha)$ then $\langle v, \alpha(w)\rangle=0$ for all $w \in V$, which is to say that $v \in \operatorname{im}(\alpha)^{\perp}$. Conversely, if $v \in \operatorname{im}(\alpha)^{\perp}$ then $\langle v, \alpha(w)\rangle=0$ for all $w \in V$, which
implies that $\alpha(v)$ is orthogonal to every element of V. Therefore, $\alpha(v)=0_{V}$ and so $v \in \operatorname{ker}(\alpha)$. This proves (3).
(3) \Rightarrow (1): Let $v, w \in V$. Since α is a projection, we have $v-\alpha(v) \in \operatorname{ker}(\alpha)$. It is also clear that $\alpha(w) \in \operatorname{im}(\alpha)$. Therefore,

$$
0=\langle v-\alpha(v), \alpha(w)\rangle=\langle v, \alpha(w)\rangle-\langle\alpha(v), \alpha(w)\rangle=\langle v, \alpha(w)\rangle-\left\langle v, \alpha^{*} \alpha(w)\right\rangle,
$$

and since this is true for all $v, w \in V$, we have $\alpha=\alpha^{*} \alpha$. This implies that $\alpha=\alpha^{*}$ is selfadjoint and therefore surely normal, proving (1).

We note that if V is a finitely-generated inner product space and if $\alpha \in \operatorname{End}(V)$ is normal, then, by Propositions 16.5, 16.7 and 18.5, we have $V=\operatorname{ker}(\alpha) \oplus \operatorname{im}(\alpha)$, and, in particular, $\{\operatorname{im}(\alpha), \operatorname{ker}(\alpha)\}$ is an independent set of subspaces of V. Moreover, $v \perp v^{\prime}$ for all $v \in \operatorname{ker}(\alpha)$ and $v^{\prime} \in \operatorname{im}(\alpha)$. While the direct-sum decomposition is valid for any projection, it is the normality which ensures the orthogonality.

Proposition 18.9 Let V be a finitely-generated inner product space. Let W_{1}, \ldots, W_{n} be subspaces of V and, for each $1 \leq i \leq n$, let α_{i} be the projection of Vonto the subspace W_{i} coming from the decomposition $V=W_{i} \oplus W_{i}^{\perp}$. Then the following conditions are equivalent:
(1) $V=\bigoplus_{i=1}^{n} W_{i}$ and $W_{h}^{\perp}=\bigoplus_{j \neq h} W_{j}$ for all $1 \leq h \leq n$;
(2) $\alpha_{1}+\cdots+\alpha_{n}=\sigma_{1}$ and $\alpha_{i} \alpha_{j}=\sigma_{0}$ for all $i \neq j$;
(3) If B_{i} is an orthonormal basis of W_{i} for each i, then $B=\bigcup_{i=1}^{n} B_{i}$ is an orthonormal basis of V.

Proof This has essentially already been established when we talked about the decomposition of a vector space into a direct sum of subspaces.

Proposition 18.10 Let F be either \mathbb{R} or \mathbb{C} and let V be a finitely-generated inner product space over F. If $p(X) \in F[X]$ and if α is a normal endomorphism of V, then $p(\alpha)$ is a normal endomorphism of V.

Proof If $p(X)=\sum_{i=0}^{n} a_{i} X^{i}$. Then $p(\alpha)=\sum_{i=0}^{n} a_{i} \alpha^{i}$ and $p(\alpha)^{*}=\sum_{i=0}^{n} \bar{a}_{i}\left(\alpha^{*}\right)^{i}$. Since $\alpha \alpha^{*}=\alpha^{*} \alpha$, it follows from the definition of the product that $p(\alpha) p(\alpha)^{*}=$ $p(\alpha)^{*} p(\alpha)$. Therefore, $p(\alpha)$ is a normal endomorphism of V.

Proposition 18.11 Let V be a finitely-generated inner product space and let α be a normal endomorphism of V. If the minimal polynomial of α is completely reducible, then it does not have multiple roots.

Proof Let $p(X)$ be the minimal polynomial of α, which we assume is completely reducible. Assume that there exists a scalar c and a polynomial $q(X)$ such that $p(X)=(X-c)^{2} q(X)$. Since $p(\alpha)=\sigma_{0}$, we have $\left(\alpha-c \sigma_{1}\right)^{2} q(\alpha)=\sigma_{0}$ and so $\operatorname{ker}\left(\left(\alpha-c \sigma_{1}\right)^{2} q(\alpha)\right)=V$. By Proposition 18.10, we know that $\beta=\alpha-c \sigma_{1}$ is a normal endomorphism of V. Let $v \in V$ and let $w=q(\alpha)(v)$. Then $\beta^{2}(w)=0_{V}$ and so $\beta(w) \in \operatorname{im}(\beta) \cap \operatorname{ker}(\beta)=\left\{0_{V}\right\}$. Thus we see that $\beta q(\alpha)(v)=0_{V}$ for all $v \in V$ and hence α annihilates the polynomial $(X-c) q(X)$, contradicting the minimality of $p(X)$.

Proposition 18.12 (Spectral Decomposition Theorem) Let V be an inner product space finitely generated over \mathbb{C} and let α be a normal endomorphism of V. Then there exist scalars c_{1}, \ldots, c_{n} and projections $\alpha_{1}, \ldots, \alpha_{n}$ of V satisfying:
(1) $\alpha=c_{1} \alpha_{1}+\cdots+c_{n} \alpha_{n}$;
(2) $\sigma_{1}=\alpha_{1}+\cdots+\alpha_{n}$;
(3) $\alpha_{h} \alpha_{j}=\sigma_{0}$ for all $h \neq j$.

Moreover, these c_{j} and α_{j} are unique. The c_{j} are precisely the distinct eigenvalues of α and each α_{j} is the projection of V onto the eigenspace W_{j} associated with c_{j} coming from the decomposition $V=W_{j} \oplus W_{j}^{\perp}$.

Proof Let $p(X)$ be the minimal polynomial of α, which we will write in the form $p(X)=\prod_{i=1}^{n}\left(X-c_{i}\right)$, where the c_{i} are complex numbers which, by Proposition 18.11, are distinct. For each $1 \leq j \leq n$, let $p_{j}(X)$ be the j th Lagrange interpolation polynomial determined by the c_{i}.

Let $f(X)$ be a polynomial of degree at most $n-1$. Then the polynomial $f(X)-$ $\sum_{i=1}^{n} f\left(c_{i}\right) p_{i}(X)$ is of degree at most $n-1$ and has n distinct roots c_{1}, \ldots, c_{n}. Thus it must be the 0-polynomial and so $f(X)=\sum_{i=1}^{n} f\left(c_{i}\right) p_{i}(X)$. In particular, we see that $1=\sum_{i=1}^{n} p_{i}(X)$ and $X=\sum_{i=1}^{n} c_{i} p_{i}(X)$. Set $\alpha_{j}=p_{j}(\alpha)$. Then $\sigma_{1}=\sum_{i=1}^{n} \alpha_{i}$ and $\alpha=\sum_{i=1}^{n} c_{i} \alpha_{i}$. Note that $\alpha_{j} \neq \sigma_{0}$ since $\alpha_{j}=p_{j}(\alpha)$ and the degree of $p_{j}(X)$ is less than the degree of the minimal polynomial of α. Moreover, if $h \neq j$ then there exists a polynomial $u(X) \in \mathbb{C}[X]$ satisfying $\alpha_{h} \alpha_{j}=u(\alpha) p(\alpha)=u(\alpha) \sigma_{0}=$ σ_{0}. Thus we see that for all $1 \leq j \leq n$ we have $\alpha_{j}=\alpha_{j} \sigma_{1}=\sum_{i=1}^{n} \alpha_{j} \alpha_{i}=\alpha_{j}^{2}$ and so each α_{j} is a projection. Thus we see that $\left\{\operatorname{im}\left(\alpha_{j}\right) \mid 1 \leq j \leq n\right\}$ is an independent set of subspaces of V.

Since the minimal polynomial and the characteristic polynomial of α have the same roots, we know that $\operatorname{spec}(\alpha)=\left\{c_{1}, \ldots, c_{n}\right\}$. To show that $W_{h}=\operatorname{im}\left(\alpha_{h}\right)$, we have to prove that a vector v belongs to $\operatorname{im}\left(\alpha_{h}\right)$ if and only if $\alpha(v)=c_{h} v$. Indeed, if $\alpha(v)=c_{h} v$ then $c_{h}\left[\sum_{j=1}^{n} \alpha_{j}(v)\right]=c_{h} v=\alpha(v)=\sum_{j=1}^{n}\left(c_{j} \alpha_{j}\right)(v)$ and so $\sum_{j=1}^{n}\left[\left(c_{h}-c_{j}\right) \alpha_{j}\right](v)=0_{V}$. Thus, for all $j \neq h$, we have $\alpha_{j}(v)=0_{V}$ and so $v=\alpha_{h}(v) \in \operatorname{im}\left(\alpha_{h}\right)$.

Finally, we note that α_{h} is the projection coming from the decomposition $V=W_{j} \oplus W_{j}^{\perp}$ since α_{h} is a polynomial in α and hence normal and so the result follows from the remark after Proposition 18.8.

Note that we could have deduced Proposition 18.12 directly from Proposition 18.7. What is important in the above proof is the explicit construction of the projection maps as polynomials in α.

If $\alpha=\sum_{i=1}^{n} c_{i} \alpha_{i}$ is as in Proposition 18.12, then $\alpha^{k}=\left(\sum_{i=1}^{n} c_{i} \alpha_{i}\right)^{k}=$ $\sum_{i=1}^{n} c_{i}^{k} \alpha_{i}$ for any positive integer k, and from this we see that if $p(X) \in \mathbb{C}[X]$ then $p(\alpha)=\sum_{i=1}^{n} p\left(c_{i}\right) \alpha_{i}$.

Proposition 18.13 Let V be an inner product space finitely generated over \mathbb{C}. A normal endomorphism α of V is positive definite if and only if each of its eigenvalues is positive.

Proof If α is positive definite then, by Proposition 17.11, each of its eigenvalues is positive. Conversely, assume each of the eigenvalues of α is positive. By Proposition 18.12, we write $\alpha=\sum_{i=1}^{n} c_{i} \alpha_{i}$, where the c_{i} are the eigenvalues of α and the α_{i} are projections in $\operatorname{End}(V)$ satisfying $\alpha_{i} \alpha_{j}=\sigma_{0}$ for $i \neq j$. If $0_{V} \neq v \in V$ then $\langle\alpha(v), v\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}\left\langle\alpha_{i}(v), \alpha_{j}(v)\right\rangle=\sum_{i=1}^{n} c_{i}\left\|\alpha_{i}(v)\right\|^{2}>0$ and so α is positive definite.

Example Let $V=\mathbb{R}^{3}$. For each $a \in \mathbb{R}$, let $\alpha_{a} \in \operatorname{End}(V)$ be the normal endomorphism of V represented with respect to the canonical basis by the matrix $\left[\begin{array}{ccc}1 & a & a \\ a & 1 & a \\ a & a & 1\end{array}\right]$. Then $\operatorname{spec}(\alpha)=\{2 a+1,1-a\}$ and so, by Proposition 18.13, α is positive definite precisely when $-1<2 a<2$.

As a consequence of Proposition 18.13 and the comments before it, we see that if α is a positive-definite endomorphism of a finitely-generated inner product space V over \mathbb{C} then there exists an endomorphism $\sqrt{\alpha}$ of V satisfying $(\sqrt{\alpha})^{2}=\alpha$. This endomorphism is defined by $\sqrt{\alpha}=\sum_{i=1}^{n}\left(\sqrt{c_{i}}\right) \alpha_{i}$, where the c_{i} are the eigenvalues of α, and where the α_{i} are defined as in Proposition 18.12. In particular, if β is an automorphism of V then, by Proposition 17.10, we can talk about $\sqrt{\beta^{*} \beta}$, which is also positive definite by Proposition 18.13.

Proposition 18.14 Let V be an inner product space finitely generated over \mathbb{C} and let $\alpha \in \operatorname{Aut}(V)$. Then there exists a unique positive-definite automorphism θ of V and a unique unitary automorphism ψ of V satisfying $\alpha=\psi \theta$.

Proof By Proposition 17.10, we know that the automorphism $\alpha^{*} \alpha$ of V is positive definite and so we can set $\theta=\sqrt{\alpha^{*} \alpha}$. Let $\varphi=\theta \alpha^{-1}$. Then $\varphi^{*}=\left(\alpha^{-1}\right)^{*} \theta^{*}=$ $\left(\alpha^{*}\right)^{-1} \theta$ so $\varphi^{*} \varphi=\left(\alpha^{*}\right)^{-1} \theta \theta \alpha^{-1}=\left(\alpha^{*}\right)^{-1} \alpha^{*} \alpha \alpha^{-1}=\sigma_{1}$, proving that φ is unitary by Proposition 18.1, and hence belongs to $\operatorname{Aut}(V)$. If we now define $\psi=\varphi^{-1}$, we
see that $\alpha=\psi \theta$. Moreover, we note that $\theta \in \operatorname{Aut}(V)$ since $\theta=\varphi \alpha$. To prove uniqueness, assume that $\psi \theta=\psi^{\prime} \theta^{\prime}$, where ψ and ψ^{\prime} are unitary automorphisms of V and where θ and θ^{\prime} are positive-definite automorphisms of V. Then $\psi^{2}=\psi \theta^{*} \theta \psi=$ $\psi^{\prime}\left(\theta^{\prime}\right)^{*} \theta^{\prime} \psi^{\prime}=\left(\psi^{\prime}\right)^{2}$. Since ψ is positive definite, this implies that $\psi=\psi^{\prime}$ and so, since ψ is an automorphism, we have $\theta=\psi^{-1} \psi \theta=\psi^{-1} \psi \theta^{\prime}=\theta^{\prime}$.

The representation of an automorphism α of an inner product space finitely generated over \mathbb{C} in the form given in Proposition 18.14 is sometimes called the polar decomposition of $\alpha .{ }^{1}$ If we move over to matrices, we see that the polar decomposition of a nonsingular matrix $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ is of the form $A=U M$, where U is a unitary matrix and M is a positive-definite Hermitian matrix. Similarly, there exists a unitary matrix U^{\prime} and a Hermitian matrix M^{\prime} satisfying $A^{H}=U^{\prime} M^{\prime}$ and so $A=M^{\prime}\left(U^{\prime}\right)^{H}$, where $\left(U^{\prime}\right)^{H}$ is again unitary. In the case we are working over \mathbb{R}, the matrix U is orthogonal, and M is symmetric and positive definite. Because polar decompositions are important in applications, several iterative algorithms exist to compute them.

Example If a and b are nonzero real numbers, then the polar decomposition of the matrix $\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$ is $\left[\begin{array}{rr}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]\left[\begin{array}{ll}r & 0 \\ 0 & r\end{array}\right]$, where $\theta=\arctan \left(\frac{b}{a}\right)$ and $r=$ $\sqrt{a^{2}+b^{2}}$.

Proposition 18.15 (Singular Value Decomposition Theorem) Let V and W be inner product spaces of finite dimensions k and n, respectively, and let $\alpha \in \operatorname{Hom}(V, W)$. Then there exists an integer $t \leq \min \{k, n\}$, together with positive real numbers $c_{1} \geq c_{2} \geq \cdots \geq c_{t}$ and with orthonormal bases $\left\{v_{1}, \ldots, v_{k}\right\}$ of V and $\left\{w_{1}, \ldots w_{n}\right\}$ of W satisfying

$$
\alpha\left(v_{i}\right)= \begin{cases}c_{i} w_{i} & \text { if } 1 \leq i \leq t, \\ 0_{W} & \text { otherwise }\end{cases}
$$

and

$$
\alpha^{*}\left(w_{i}\right)= \begin{cases}c_{i} v_{i} & \text { if } 1 \leq i \leq t \\ 0_{V} & \text { otherwise }\end{cases}
$$

Proof If α is the 0 -map, then the result is immediate, so assume that is not the case. We note that $\beta=\alpha^{*} \alpha$ is a selfadjoint endomorphism of V and so, by Proposition 17.7, it is orthogonally diagonalizable. Hence V has an orthonormal basis $\left\{v_{1}, \ldots, v_{k}\right\}$ composed of eigenvectors of β, where each v_{i} is associated with an eigenvalue b_{i}. By Proposition 17.10, we know that each b_{i} belongs

[^12]to \mathbb{R}. Moreover, for each i we note that $b_{i}=b_{i}\left\langle v_{i}, v_{i}\right\rangle=\left\langle b_{i} v_{i}, v_{i}\right\rangle=\left\langle\beta\left(v_{i}\right), v_{i}\right\rangle=$ $\left\langle\alpha\left(v_{i}\right), \alpha\left(v_{i}\right)\right\rangle \geq 0$. Indeed, renumbering if necessary, we can assume that there exists an integer $t \leq k$ such that $b_{1} \geq b_{2} \geq \cdots \geq b_{t}>0$ while $b_{t+1}=\cdots=b_{k}=0$. For each $1 \leq i \leq t$, set $c_{i}=\sqrt{b_{i}}$ and let $w_{i}=c_{i}^{-1} \alpha\left(v_{i}\right) \in W$. If $i \neq j$ then $\left\langle w_{i}, w_{j}\right\rangle=\left(c_{i} c_{j}\right)^{-1}\left\langle\alpha\left(v_{i}\right), \alpha\left(v_{j}\right)\right\rangle=\left(c_{i} c_{j}\right)^{-1}\left\langle\beta\left(v_{i}\right), v_{j}\right\rangle=\left(c_{i} c_{j}\right)^{-1} b_{i}\left\langle v_{i}, v_{j}\right\rangle=0$ while, for each $1 \leq i \leq t$, we have $\left\langle w_{i}, w_{i}\right\rangle=c_{i}^{-2}\left\langle\alpha\left(v_{i}\right), \alpha\left(v_{i}\right)\right\rangle=c_{i}^{-2}\left\langle\beta\left(v_{i}\right), v_{i}\right\rangle=$ $c_{i}^{-2}\left\langle b_{i} v_{i}, v_{i}\right\rangle=\left\langle v_{i}, v_{i}\right\rangle=1$. Thus we see that the set $\left\{w_{1}, \ldots, w_{t}\right\}$ is orthonormal. Moreover, for each $1 \leq i \leq t$ we have $\left\|\alpha\left(v_{i}\right)\right\|^{2}=b_{i}$ so $\left\|\alpha\left(v_{i}\right)\right\|=c_{i}$ and $\alpha^{*}\left(w_{i}\right)=$ $\alpha^{*}\left(c_{i}^{-1} \alpha\left(v_{i}\right)\right)=c_{i}^{-1} \alpha^{*} \alpha\left(v_{i}\right)=c_{i}^{-1} \beta\left(v_{i}\right)=c_{i}^{-1} b_{i} v_{i}=c_{i} v_{i}$. For $t+1 \leq i \leq k$ we have $\alpha^{*} \alpha\left(v_{i}\right)=\beta\left(v_{i}\right)=0_{V}$ and so $0=\left\langle\beta\left(v_{i}\right), v_{i}\right\rangle=\left\langle\alpha\left(v_{i}\right), \alpha\left(v_{i}\right)\right\rangle$, which implies that $\alpha\left(v_{i}\right)=0_{W}$. Thus $v_{i} \in \operatorname{ker}(\alpha)$ for each $t+1 \leq i \leq k$.

We are therefore left with the matter of defining w_{t+1}, \ldots, w_{n} in the case $t<n$. By Proposition 16.18, we know that $\operatorname{ker}\left(\alpha^{*}\right)=\operatorname{im}(\alpha)^{\perp}$ and so, if we pick an orthonormal basis $\left\{w_{i+1}, \ldots, w_{n}\right\}$ for $\operatorname{ker}\left(\alpha^{*}\right)$ we see that $\left\{w_{1}, \ldots, w_{n}\right\}$ is an orthonormal basis for W having the desired properties.

The first version of the Singular Value Decomposition Theorem was proven by the nineteenthcentury Italian mathematician Eugenio Beltrami; it was subsequently extended by many others, including Camille Jordan and Sylvester. Schmidt extended this theorem to infinite-dimensional spaces. Effective algorithms for computation of singular value decompositions were developed by the twentieth-century American computer scientist Gene H. Golub, along with William Kahan.

The scalars $c_{1} \geq c_{2} \geq \cdots \geq c_{t}$ given in the Proposition 18.15 are called the singular values of the linear transformation α. The number c_{1} / c_{t}, called the spectral condition number, is used as a measure of the numerical instability of the matrix representing $\alpha^{*} \alpha \in \operatorname{End}(V)$ with respect to the given basis.

If we consider the special case of a linear transformation $\alpha: \mathbb{C}^{k} \rightarrow \mathbb{C}^{n}$ represented with respect to the canonical bases by a matrix $A \in \mathcal{M}_{n \times k}(\mathbb{C})$, the Singular Value Decomposition Theorem says that there exist unitary matrices $P \in \mathcal{M}_{n \times n}(\mathbb{C})$ and $Q \in \mathcal{M}_{k \times k}(\mathbb{C})$ such that A can be written as $P\left[\begin{array}{ll}D & O \\ O & O\end{array}\right] Q^{H}$, where $D \in$ $\mathcal{M}_{t \times t}(\mathbb{R})$ is a diagonal matrix having the singular values of α on the diagonal. These singular values are precisely the square roots of the eigenvalues of $A^{H} A$. The columns of Q form an orthonormal basis for \mathbb{C}^{k} consisting of eigenvectors of $A^{H} A$, and the columns of P form an orthonormal basis for \mathbb{C}^{n}.

If $\alpha: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ then, of course, the matrices P and Q are orthogonal and $A=P\left[\begin{array}{ll}D & O \\ O & O\end{array}\right] Q^{T}$.

Example The matrix $A=\frac{1}{10}\left[\begin{array}{rrrr}20 & 20 & -20 & 20 \\ 1 & 17 & 1 & -17 \\ 18 & 6 & 18 & -6\end{array}\right]$ can be written as a product $P\left[\begin{array}{llll}4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0\end{array}\right] Q$, where

$$
P=\frac{1}{5}\left[\begin{array}{rrr}
5 & 0 & 0 \\
0 & 3 & -4 \\
0 & 4 & 3
\end{array}\right] \quad \text { and } \quad Q=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1 \\
1 & -1 & -1 & -1
\end{array}\right]
$$

are orthogonal and where the singular values of A are $4,3,2$.

Singular value decompositions have many applications, and play important roles in the mathematics of optimization, data compression, population genetics, and image processing. They are especially useful since accurate and relatively-efficient algorithms for computing these decompositions are readily available in many common linear-algebra software packages. In particular, in many applications one needs to compute the singular value decomposition of a product of a large number of matrices (often over 1,000) and there exist algorithms to do that without having to multiply out the matrices explicitly.

Exercises

Exercise 1108

Let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ be similar to a unitary matrix. Is A^{-1} necessarily similar to A^{H} ?

Exercise 1109

Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ be a nonsingular matrix having a singular value decomposition $A=P D Q^{H}$, where P and Q are unitary matrices and $D=\left[\begin{array}{ccc}c_{1} & & O \\ & \ddots & \\ O & & c_{n}\end{array}\right]$ is a diagonal matrix with $c_{1} \geq \cdots \geq c_{n}$. If B is a
singular matrix, show that $\|A-B\| \geq c_{n}$, where $\|\cdot\|$ denotes the spectral norm.

Exercise 1110

Let $n>1$ be an integer and let V be the subspace of $\mathbb{C}[X]$ consisting of all polynomials of degree at most n. Let $0 \neq c \in \mathbb{C}$ and let α be the endomorphism of V defined by $\alpha: p(X) \mapsto p(X+c)$. Is it possible to define an inner product on V relative to which α is normal?

Exercise 1111

Let $a, b, c \in \mathbb{C}$. Find the set of all triples (x, y, z) of complex numbers satisfying the condition that the matrix $\left[\begin{array}{lll}a & x & y \\ 0 & b & z \\ 0 & 0 & c\end{array}\right]$ represents a normal endomorphism of \mathbb{C}^{3}, endowed with the dot product, with respect to the canonical basis.

Exercise 1112

Show that any Givens rotation matrix in $\mathcal{M}_{2 \times 2}(\mathbb{R})$ can be written as the product of two Jacobi reflection matrices.

Exercise 1113

Let n be a positive integer. A matrix $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ is normal if and only if $A^{H} A=A A^{H}$. Show that every normal upper-triangular matrix is a diagonal matrix.

Exercise 1114

Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Then A is normal if and only if $A^{T} A=A A^{T}$. If A is normal, is e^{A} normal? Is the converse of this statement true?

Exercise 1115

Let $V=\mathbb{R}^{2}$, together with the dot product. Show that a matrix in $\mathcal{M}_{2 \times 2}(\mathbb{R})$ is of the form $\Phi_{B B}(\alpha)$ for some normal endomorphism α of V which is not selfadjoint if and only if it is of the form $\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$ for real numbers a and $b \neq 0$.

Exercise 1116

Let V be an inner product space finitely generated over \mathbb{R} and let S be the set of all isometries V. Is S an \mathbb{R}-subalgebra of $\operatorname{End}(V)$?

Exercise 1117

Let n be a positive integer and let $V=\mathbb{C}^{n}$ on which we have the dot product. If $\alpha \in \operatorname{End}(V)$, let $G(\alpha)=\{\langle\alpha(v), v\rangle \mid\|v\|=1\}$. For the special case $n=2$, find $G(\alpha)$ and $G(\beta)$, where α is represented with respect to the canonical basis by the matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and β is represented with respect to the canonical basis by the matrix $\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]$.

Exercise 1118

Let $V=\mathbb{R}^{3}$ on which we have the dot product, and let W be the space of all polynomial functions in $\mathbb{R}^{\mathbb{R}}$ of degree at most 2 , on which we define the inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$. Let $\alpha \in \operatorname{Hom}(V, W)$ be defined by

$$
\alpha\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right): x \mapsto 1+\frac{b}{2}+\frac{c}{6}+(b-c) x+c x^{2} .
$$

Is this linear transformation an isometry?

Exercise 1119

Let V be an inner product space and let α be an endomorphism of V satisfying the condition that $\alpha^{*} \alpha=\sigma_{0}$. Show that $\alpha=\sigma_{0}$.

Exercise 1120

Let $V=\mathbb{R}^{3}$ with the dot product, and let α be the automorphism of V defined by $\alpha:\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto\left[\begin{array}{l}-c \\ -b \\ -a\end{array}\right]$. Is α unitary?

Exercise 1121

Is the matrix $\left[\begin{array}{llll}0 & 0 & 0 & i \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ i & 0 & 0 & 0\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{C})$ unitary?

Exercise 1122

Find a real number a satisfying the condition that the matrix

$$
a\left[\begin{array}{ccc}
-9+8 i & -10-4 i & -16-18 i \\
-2-24 i & 1+12 i & -10-4 i \\
4-10 i & -2-24 i & -9+8 i
\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{C})
$$

is unitary.

Exercise 1123

Find a real number a satisfying the condition that the matrix

$$
\frac{1}{24}\left[\begin{array}{cccc}
12 & 6-12 i & 12+6 i & 6-6 i \\
6+12 i & a & 5 i & 3+i \\
12-6 i & -5 i & a & 1-3 i \\
6+6 i & 3-i & 1+3 i & -22
\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{C})
$$

is unitary.

Exercise 1124

Given a real number a, check if the matrix

$$
\left[\begin{array}{cc}
-\sin ^{2}(a)+i \cos ^{2}(a) & (1+i) \sin (a) \cos (a) \\
(1+i) \sin (a) \cos (a) & -\cos ^{2}(a)+i \sin ^{2}(a)
\end{array}\right] \in \mathcal{M}_{2 \times 2}(\mathbb{C})
$$

is unitary.

Exercise 1125

Find all possible triples a, b, c of real numbers, if any exist, such that the matrix $\frac{1}{3}\left[\begin{array}{rrr}1 & -2 & 2 \\ 2 & -1 & 2 \\ a & b & c\end{array}\right]$ is orthogonal.

Exercise 1126
For which $a \in \mathbb{R}$ is $\frac{1}{1+2 a^{2}}\left[\begin{array}{ccc}1 & -2 a & 2 a^{2} \\ 2 a & 1-2 a^{2} & 2 a \\ 2 a^{2} & 2 a & 1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ an orthogonal matrix?

Exercise 1127
Is the matrix $\frac{1}{2}\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{R})$ orthogonal?

Exercise 1128

If $v=\left[\begin{array}{l}c \\ d\end{array}\right] \in \mathbb{R}^{2}$, show that there exists an orthogonal matrix $A \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ and a real number b satisfying the condition that $A v=\left[\begin{array}{l}b \\ 0\end{array}\right]$.

Exercise 1129

Let a and b be real numbers, not both equal to 0 . Show that the matrix

$$
\frac{1}{a^{2}+a b+b^{2}}\left[\begin{array}{ccc}
a b & a(a+b) & b(a+b) \\
a(a+b) & -b(a+b) & a b \\
b(a+b) & a b & -a(a+b)
\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})
$$

is orthogonal.

Exercise 1130
Find all $a \in \mathbb{R}$ such that the matrix $\left[\begin{array}{rrr}2 a & -2 a & a \\ -2 a & -a & 2 a \\ a & 2 a & 2 a\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ is orthogonal.

Exercise 1131

Let $A=\left[\begin{array}{rrr}4 & -1 & 1 \\ -1 & 4 & -1 \\ 1 & -1 & 4\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Find an orthogonal matrix P such that $P^{T} A P$ is a diagonal matrix.

Exercise 1132
Let $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{R})$. Find an orthogonal matrix P such that $P^{T} A P$ is a diagonal matrix.

Exercise 1133

Let n be a positive integer and let A and B be orthogonal matrices in $\mathcal{M}_{n \times n}(\mathbb{R})$ satisfying $|A|+|B|=0$. Show that $|A+B|=0$.

Exercise 1134

Let $A=\frac{1}{2}\left[\begin{array}{ccc}1 & -1 & 2 \sqrt{2} \\ 2 \sqrt{2} & 2 \sqrt{2} & 0 \\ -1 & 1 & 2 \sqrt{2}\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Find an infinite number of pairs
(P, Q) of orthogonal matrices such that $P A Q$ is a diagonal matrix.

Exercise 1135

Find an $a \in \mathbb{R}$ such that the matrix $\left[\begin{array}{rrr}a & -\frac{4}{5} & 0 \\ \frac{4}{5} & a & 0 \\ 0 & 0 & 1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ is orthogonal.

Exercise 1136

Let $A, B \in \mathcal{M}_{k \times n}(\mathbb{R})$ be matrices such that the columns of each form orthonormal bases for the same subspace W of \mathbb{R}^{k}. Show that $A A^{T}=B B^{T}$.

Exercise 1137

Let $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ be orthogonal matrices. Is the matrix $\left[\begin{array}{ll}A & O \\ O & B\end{array}\right] \in$ $\mathcal{M}_{2 n \times 2 n}(\mathbb{R})$ necessarily orthogonal?

Exercise 1138

Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ be a skew-symmetric matrix. Show that $(A-I)^{-1}(A+I)$ is an orthogonal matrix which does not have 1 as an eigenvalue.

Exercise 1139

Find two distinct functions $f_{1}, f_{2}: \mathbb{R}^{4} \backslash\left\{\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right\} \rightarrow \mathbb{R}$ satisfying the condition that

$$
f_{i}\left(\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]\right)\left[\begin{array}{ccc}
a^{2}+b^{2}-c^{2}-d^{2} & 2(b c-d a) & 2(b d-c a) \\
2(b c-d a) & a^{2}+b^{2}-c^{2}-d^{2} & 2(c d-b a) \\
2(b d-c a) & 2(c d-b a) & a^{2}+b^{2}-c^{2}-d^{2}
\end{array}\right]
$$

is always an orthogonal matrix.

Exercise 1140

Let n be a positive integer and let $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ satisfy $A^{2}+B^{2}=I$. Is the matrix $\left[\begin{array}{rr}A & -B \\ B & A\end{array}\right] \in \mathcal{M}_{2 n \times 2 n}(\mathbb{R})$ necessarily orthogonal?

Exercise 1141

Let $O \neq A \in \mathcal{M}_{3 \times 3}(\mathbb{C})$ be a matrix satisfying $\operatorname{adj}(A)=A^{H}$. Show that A is a unitary matrix having determinant 1 .

Exercise 1142

Let n be a positive integer and let α be the endomorphism of \mathbb{C}^{n} defined by $\alpha: v \mapsto i v$. Is α normal?

Exercise 1143

Let V be an inner product space and let $\alpha, \beta \in \operatorname{End}(V)$ be normal. Is $\beta \alpha$ necessarily normal?

Exercise 1144

Let V be an inner product space finitely-generated over \mathbb{C} and let $\alpha \in \operatorname{End}(V)$ satisfy the condition that every eigenvector of $\beta=\alpha+\alpha^{*}$ is also an eigenvector of $\gamma=\alpha-\alpha^{*}$. Prove that α is normal.

Exercise 1145

Let α be the endomorphism of \mathbb{C}^{2} represented with respect to the canonical basis by the matrix $A=\left[\begin{array}{cc}2 & i \\ i & 2\end{array}\right]$. Is α normal?

Exercise 1146

Let V be an inner product space over \mathbb{C} and let $\alpha \in \operatorname{End}(V)$ be normal. If $c \in \mathbb{C}$, is the endomorphism $\alpha-c \sigma_{1}$ necessarily normal?

Exercise 1147

Let V be an inner product space finitely generated over \mathbb{C} and let $\sigma_{0} \neq \alpha \in$ $\operatorname{End}(V)$ be normal. Show that α is not nilpotent.

Exercise 1148
Let $a, b \in \mathbb{R}$ let $\alpha \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ be represented with respect to the canonical basis by $\left[\begin{array}{rrr}a & -2 & b \\ b & a & -2 \\ -2 & 3 & a\end{array}\right]$. For which values of a and b is this endomorphism normal?

Exercise 1149

Let $\alpha \in \operatorname{End}\left(\mathbb{R}^{3}\right)$ be represented with respect to the canonical basis by the matrix $\frac{1}{3}\left[\begin{array}{rrr}14 & 2 & 14 \\ 2 & -1 & -16 \\ 14 & -16 & 5\end{array}\right]$. Show that α is selfadjoint and find an orthonormal basis of \mathbb{R}^{3} composed of eigenvectors of α.

Exercise 1150

Let α be the endomorphism of \mathbb{C}^{3} represented with respect to the canonical basis by the matrix $\left[\begin{array}{rrr}6 & -2 & 3 \\ 3 & 6 & -2 \\ -2 & 3 & 6\end{array}\right]$. Show that α is normal and find an orthonormal basis of \mathbb{C}^{3} composed of eigenvectors of α.

Exercise 1151
Let V be an inner product space and let $\sigma_{0} \neq \alpha \in \operatorname{End}(V)$ be a normal projection. Show that $\|\alpha(v)\| \leq\|v\|$ for all $v \in V$, with equality whenever $v \in \operatorname{im}(\alpha)$. Give an example where this does not hold for α which is not normal.

Exercise 1152

Let n be a positive integer and let F be any field. A matrix $A \in \mathcal{M}_{n \times n}(F)$ is antiorthogonal if and only if $A^{-1}=-A^{T}$. Give an example of an antiorthogonal matrix in $\mathcal{M}_{2 \times 2}(\mathrm{GF}(3))$.

Exercise 1153
Let $\alpha \in \operatorname{End}\left(\mathbb{R}^{4}\right)$ be defined by $\alpha:\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right] \mapsto\left[\begin{array}{c}a_{1} \\ a_{2} \\ a_{3}+a_{4} \\ a_{4}-a_{3}\end{array}\right]$. Show that α is normal but not selfadjoint.

Exercise 1154

Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation represented with respect to the canonical bases by the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 2 \\ 2 & 2\end{array}\right]$. Find the singular values of α.

Exercise 1155

Let n be a positive integer, let F be a field, and let I be the identity matrix in $\mathcal{M}_{n \times n}(F)$. A matrix $A \in \mathcal{M}_{2 n \times 2 n}(F)$ is symplectic if and only if

$$
A\left[\begin{array}{cc}
O & I \\
-I & O
\end{array}\right] A^{T}=\left[\begin{array}{cc}
O & I \\
-I & O
\end{array}\right] .
$$

If $B, C \in \mathcal{M}_{n \times n}(\mathbb{R})$, show that $B+i C \in \mathcal{M}_{n \times n}(\mathbb{C})$ is unitary if and only if the matrix $\left[\begin{array}{rr}B & -C \\ C & B\end{array}\right] \in \mathcal{M}_{2 n \times 2 n}(\mathbb{R})$ is symplectic.

Exercise 1156
For which $c, d \in \mathbb{C}$ is the matrix $\left[\begin{array}{ccc}0 & -1 / \sqrt{2} & d \\ c & 1 / 2 & i / 2 \\ i / \sqrt{2} & -i / 2 & 1 / 2\end{array}\right]$ Hermitian? For which values of c and d is it unitary?

Exercise 1157

A polynomial $p(X) \in \mathbb{C}[X]$ of degree $n \geq 0$ is a reciprocal polynomial if and only if $p(X)= \pm X^{n} p\left(X^{-1}\right)$. Show that characteristic polynomials of orthogonal matrices are reciprocal and that the set of all reciprocal polynomials, together with the 0 -polynomial, forms a subalgebra of $\mathbb{C}[X]$.

Exercise 1158

(Cayley representation) For any real number t, with $\cos (t) \neq-1$, find a skewsymmetric matrix $A \in \mathcal{M}_{2 \times 2}(\mathbb{R})$ satisfying

$$
\left[\begin{array}{rr}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]=(I-A)(I+A)^{-1} .
$$

Exercise 1159

Let V be a vector space finitely generated over \mathbb{C} and let α be an automorphism of V having polar decomposition $\alpha=\psi \theta$, where ψ is unitary and θ is positive definite. Show that α is normal if and only if $\alpha=\theta \psi$.

Moore-Penrose Pseudoinverses

Let V and W be inner product spaces, and let $\alpha: V \rightarrow W$ be a linear transformation. We know that there exists a linear transformation $\beta: W \rightarrow V$ satisfying the condition that $\beta \alpha$ is the identity function on V and $\alpha \beta$ is the identity function on W if and only if α is an isomorphism; in this case, $\beta=\alpha^{-1}$. If both spaces are finitely generated, we also know that such an isomorphism can exist only when $\operatorname{dim}(V)=\operatorname{dim}(W)$. If α is not an isomorphism, it is possible to weaken the notion of the inverse of a function. Given a linear transformation $\alpha: V \rightarrow W$, we say that a linear transformation $\beta: W \rightarrow V$ is a Moore-Penrose pseudoinverse of α if and only if the following conditions are satisfied:
(1) $\alpha \beta \alpha=\alpha$ and $\beta \alpha \beta=\beta$;
(2) The endomorphisms $\beta \alpha \in \operatorname{End}(V)$ and $\alpha \beta \in \operatorname{End}(W)$ are selfadjoint.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Ober-
wolfach (Penrose).
Eliakim Hastings Moore developed this construction in 1922, but it did not receive much attention at the time; it was rediscovered independently in 1955 by Sir Roger Penrose, a contemporary British applied mathematician, best known for his collaboration with the physicist Stephen Hawking.

Example The two parts of condition (2) in the definition of the Moore-Penrose pseudoinverse are independent. To see this, consider the linear transformation $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $\alpha: v \mapsto\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0\end{array}\right] v$. For any $c, d \in \mathbb{R}$, let $\beta: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $\beta: w \mapsto\left[\begin{array}{cc}1-3 c & -2-3 d \\ 0 & 1 \\ c & d\end{array}\right]$. Then one can check that $\alpha \beta \alpha=\alpha$ and $\beta \alpha \beta=\beta$ and that $\alpha \beta=\sigma_{1}$ in $\operatorname{End}\left(\mathbb{R}^{2}\right)$. On the other
hand, $\beta \alpha: v \mapsto\left[\begin{array}{ccc}1-3 c & -6 c-3 d & 3-9 c \\ 0 & 1 & 0 \\ c & 2 c+d & 3 c\end{array}\right] v$, and it is easy enough to choose c and d so that this matrix is not symmetric and hence $\beta \alpha$ is not selfadjoint.

We will denote the Moore-Penrose pseudoinverse of α by α^{+}. Of course, in order to justify this notation we have to show that β exists and is unique, which we will do for the case that V and W are finitely generated. We will begin with uniqueness.

Proposition 19.1 Let V and W be inner product spaces and let $\alpha: V \rightarrow W$ be a linear transformation. If α has a Moore-Penrose pseudoinverse, it must be unique.

Proof Suppose that $\beta, \gamma \in \operatorname{Hom}(W, V)$ are Moore-Penrose pseudoinverses of α. Then $\beta=\beta \alpha \beta=(\beta \alpha)^{*} \beta=\alpha^{*} \beta^{*} \beta=(\alpha \gamma \alpha)^{*} \beta^{*} \beta=(\gamma \alpha)^{*} \alpha^{*} \beta^{*} \beta=\gamma \alpha \alpha^{*} \beta^{*} \beta=$ $\gamma \alpha(\beta \alpha)^{*} \beta=\gamma \alpha \beta \alpha \beta=\gamma \alpha \beta=\gamma \alpha \gamma \alpha \beta=\gamma(\alpha \gamma)^{*} \alpha \beta=\gamma \gamma^{*} \alpha^{*} \alpha \beta=\gamma \gamma^{*} \alpha^{*}(\alpha \beta)^{*}$ $=\gamma \gamma^{*}(\alpha \beta \alpha)^{*}=\gamma \gamma^{*} \alpha^{*}=\gamma(\alpha \gamma)^{*}=\gamma \alpha \gamma=\gamma$ and so we have proven uniqueness.

In particular, if $\alpha: V \rightarrow W$ is an isomorphism, then, by Proposition 19.1, we have $\alpha^{+}=\alpha^{-1}$. If α is the 0 -function then so is α^{+}.

Proposition 19.2 Let V and W be finitely-generated inner product spaces and let $\alpha: V \rightarrow$ Wee a linear transformation.
(1) If α is a monomorphism, then α^{+}exists and equals $\left(\alpha^{*} \alpha\right)^{-1} \alpha^{*}$. Moreover, $\alpha^{+} \alpha$ is the identity function on V;
(2) If α is an epimorphism, then α^{+}exists and equals $\alpha^{*}\left(\alpha \alpha^{*}\right)^{-1}$. Moreover, $\alpha \alpha^{+}$is the identity function on W.

Proof (1) From Proposition 16.20, we see that if α is a monomorphism then $\alpha^{*} \alpha \in \operatorname{Aut}(V)$, and so $\left(\alpha^{*} \alpha\right)^{-1}$ exists. Set $\beta=\left(\alpha^{*} \alpha\right)^{-1} \alpha^{*}$. Then $\beta \alpha$ is the identity function on V, and so $\beta \alpha$ is a selfadjoint endomorphism of V which satisfies $\alpha \beta \alpha=\alpha$ and $\beta \alpha \beta=\beta$. Finally, $(\alpha \beta)^{*}=\left[\alpha\left(\alpha^{*} \alpha\right)^{-1} \alpha^{*}\right]^{*}=\alpha\left[\left(\alpha^{*} \alpha\right)^{-1}\right]^{*} \alpha^{*}=$ $\alpha\left[\left(\alpha^{*} \alpha\right)^{*}\right]^{-1} \alpha^{*}=\alpha\left(\alpha^{*} \alpha\right)^{-1} \alpha^{*}=\alpha \beta$, and so $\alpha \beta$ is also selfadjoint. Thus $\beta=\alpha^{+}$.
(2) From Proposition 16.20, we see that if α is an epimorphism then $\alpha \alpha^{*} \in$ $\operatorname{Aut}(W)$ and so $\left(\alpha \alpha^{*}\right)^{-1}$ exists. As in (1), we see that $\alpha^{*}\left(\alpha \alpha^{*}\right)^{-1}=\alpha^{+}$.

Example Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation represented with respect to the canonical bases by the matrix $\left[\begin{array}{rr}1 & 2 \\ -1 & 3 \\ 2 & 4\end{array}\right]$. This is a monomorphism and so, by

Proposition 19.2, α^{+}exists and is represented with respect to the canonical bases by the matrix $\frac{1}{25}\left[\begin{array}{rrr}3 & -10 & 6 \\ 1 & 5 & 2\end{array}\right]$.

Proposition 19.3 Let V and W be finitely-generated inner product spaces. Then every $\alpha \in \operatorname{Hom}(V, W)$ has a Moore-Penrose pseudoinverse $\alpha^{+} \in$ $\operatorname{Hom}(W, V)$.

Proof Let $Y=\operatorname{im}(\alpha)$, and write $\alpha=\mu \beta$, where $\beta: V \rightarrow Y$ is an epimorphism given by $\beta: v \mapsto \alpha(v)$, and $\mu: Y \rightarrow W$ is the inclusion monomorphism. By Proposition 19.2, we know that $\beta^{+} \in \operatorname{Hom}(Y, V)$ and $\mu^{+} \in \operatorname{Hom}(W, Y)$ exist and satisfy the conditions that $\beta \beta^{+}$and $\mu^{+} \mu$ are equal to the identity function on Y. Therefore, we see that $(\mu \beta)\left(\beta^{+} \mu^{+}\right)(\mu \beta)=\mu \beta$ and $\left(\beta^{+} \mu^{+}\right)(\mu \beta)\left(\beta^{+} \mu^{+}\right)=\beta^{+} \mu^{+}$and we see that $\left(\beta^{+} \mu^{+}\right)(\mu \beta)=\beta^{+} \beta$ and $(\mu \beta)\left(\beta^{+} \mu^{+}\right)=\mu \mu^{+}$are selfadjoint. Thus α^{+}exists and equals $\beta^{+} \mu^{+}$.

As an immediate consequence of this, we note that if α is an endomorphism of a finitely-generated inner produce space V then, by Proposition 6.11, we see that $\operatorname{rk}\left(\alpha \alpha^{+}\right) \leq \operatorname{rk}(\alpha)$ and $\operatorname{rk}(\alpha)=\operatorname{rk}\left(\alpha \alpha^{+} \alpha\right) \leq \operatorname{rk}\left(\alpha \alpha^{+}\right)$and so $\operatorname{rk}\left(\alpha \alpha^{+}\right)=\operatorname{rk}(\alpha)$. Similarly, $\operatorname{rk}\left(\alpha^{+} \alpha\right)=\operatorname{rk}(\alpha)$.

If F is either \mathbb{R} or \mathbb{C}, and if we are given a linear transformation $\alpha: F^{k} \rightarrow F^{n}$ which is represented with respect to the canonical bases by the matrix $A=\left[a_{i j}\right]$, then we will denote the matrix representing α^{+}with respect to these bases by A^{+}. Thus the matrix A^{+}has the following properties:
(1) $A A^{+} A=A$ and $A^{+} A A^{+}=A^{+}$;
(2) The matrices $A A^{+}$and $A^{+} A$ are symmetric (in the case $F=\mathbb{R}$) or Hermitian (in the case $F=\mathbb{C}$).

Example Let $A=\left[\begin{array}{rrr}1 & -1 & 2 \\ 2 & 1 & -2 \\ 3 & 0 & 0\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. This matrix is clearly singular and hence A^{-1} does not exist. However, we can check that $A^{+}=\frac{1}{45}\left[\begin{array}{rrr}5 & 5 & 10 \\ -5 & 4 & -1 \\ 10 & -8 & 2\end{array}\right]$.

For nonsingular square matrices of the same size A and B, we know that $(A B)^{-1}=B^{-1} A^{-1}$. A similar equality does not hold for the Moore-Penrose pseudoinverse, as the following example shows.

Example If $A=\left[\begin{array}{ll}2 & 6 \\ 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ in $\mathcal{M}_{2 \times 2}(\mathbb{R})$, then $A B=\left[\begin{array}{rr}14 & 28 \\ 7 & 14\end{array}\right]$. Then $A^{+}=\frac{1}{50}\left[\begin{array}{ll}2 & 1 \\ 6 & 3\end{array}\right]$ and $B^{+}=\frac{1}{25}\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ so $B^{+} A^{+}=\frac{7}{1250}\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]$, while $(A B)^{+}=\frac{1}{175}\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]$.

The Singular Value Decomposition Theorem can be used to compute pseudoinverses. This is important since, as we have remarked previously, there exist several relatively efficient and stable numerical algorithms for computing such decompositions.

Example Let $\alpha: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be a monomorphism represented with respect to the canonical bases by a matrix A. By Proposition 19.2, we have $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$. By Proposition 18.15, we set $A=P E Q^{T}$, where $P \in \mathcal{M}_{k \times k}(\mathbb{R})$ and $Q \in$ $\mathcal{M}_{k \times n}(\mathbb{R})$ are orthogonal matrices and $E \in \mathcal{M}_{k \times n}(\mathbb{R})$ is of the form $\left[\begin{array}{ll}D & O \\ O & O\end{array}\right]$ for a diagonal matrix $D \in \mathcal{M}_{t \times t}(\mathbb{R})$, the diagonal entries of which are nonzero. Then

$$
\begin{aligned}
A^{+} & =\left(A^{T} A\right)^{-1} A^{T}=\left(Q E^{T} P^{T} P E Q^{T}\right)^{-1} Q E^{T} P^{T} \\
& =\left(Q E^{T} E Q^{T}\right)^{-1} Q E^{T} P^{T}=Q\left[\begin{array}{cc}
D^{-2} & O \\
O & O
\end{array}\right] Q^{T} Q E^{T} P^{T} \\
& =Q\left[\begin{array}{cc}
D^{-1} & O \\
O & O
\end{array}\right] P^{T} .
\end{aligned}
$$

Example If $A(t)=\left[\begin{array}{ll}1 & 0 \\ 0 & t\end{array}\right]$ for all real numbers t then we see that $A(t)^{+}=$ $\left[\begin{array}{cc}1 & 0 \\ 0 & t^{-1}\end{array}\right]$ when $t \neq 0$, but is equal to $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ for $t=0$. Thus we see that not only is $\lim _{t \rightarrow 0} A(t)$ not equal to $A(0)$, but indeed that the value of $A(t)$ moves farther and farther away from $A(0)$ as t approaches 0 .

Thus we see that the Moore-Penrose pseudoinverse is not computationally stable. This means that one has to be very careful in actual applications. Because of the importance and utility of Moore-Penrose pseudoinverses, there exists a considerable literature on techniques for computing A^{+}or $A^{+} A$, given a matrix A. One of the methods used in practice for computing the Moore-Penrose pseudoinverse over \mathbb{R} is a recursive one, known as Greville's method, which is based on the following result: If $A \in \mathcal{M}_{k \times n}(\mathbb{R})$, and if we write $A=[B \quad v]$, where $B \in \mathcal{M}_{k \times(n-1)}(\mathbb{R})$, then

$$
\begin{aligned}
& A^{+}=\left[\begin{array}{c}
B^{+}(I-v \wedge w) \\
w
\end{array}\right], \text { where } \\
& \qquad w= \begin{cases}\left(\left\|\left(I-B B^{+}\right) v\right\|\right)^{-2}\left(I-B B^{+}\right) v & \text { if }\left\|\left(I-B B^{+}\right) v\right\| \neq 0, \\
\left(1+\left\|B^{+} v\right\|^{2}\right)^{-1}\left(B^{+}\right)^{T} B^{+} v & \text { otherwise. }\end{cases}
\end{aligned}
$$

> © Mrs Greville (Greville); © Adi Ben-Israel (Ben-Israel)
> In the 1970s, the American mathematician Thomas N.E. Greville and the American/Israeli mathematician Adi Ben-Israel popularized and reinvigorated the use of the Moore-Penrose pseudoinverse as a computational tool.

Another technique is to break A up into blocks, if possible. Indeed, if $A=$ $\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$, where A_{11} is a nonsingular square matrix the rank of which equals the rank of A, then, by Zlobec's formula, we have $A^{+}=\left[\begin{array}{ll}A_{11} & A_{12}\end{array}\right]^{*} B^{*}\left[\begin{array}{l}A_{11} \\ A_{21}\end{array}\right]^{*}$, where $B=\left(\left[\begin{array}{ll}A_{11} & A_{12}\end{array}\right] A^{*}\left[\begin{array}{l}A_{11} \\ A_{21}\end{array}\right]\right)^{-1}$.

One can also use convergence methods to compute the Moore-Penrose pseudoinverse of a matrix. If $A \in \mathcal{M}_{k \times n}(\mathbb{C})$ then, by Proposition 17.4, we know that the eigenvalues of $A^{*} A$ are real. Let c be the largest such eigenvalue and pick a real number b satisfying $0<b c<2$. For each integer $p \geq 2$, define the sequence Y_{0}, Y_{1}, \ldots of matrices in $\mathcal{M}_{n \times k}(\mathbb{C})$ as follows:
(1) $Y_{0}=b A^{*}$;
(2) If $k \geq 0$ and Y_{k} has already been defined, set $T_{k}=I-Y_{k} A$ and set $Y_{k+1}=$ $Y_{k}+\sum_{i=1}^{p-1} T_{k}^{i} Y_{k}$. Then the sequence Y_{0}, Y_{1}, \ldots converges to A^{+}.
Another method is the following: if $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ is an arbitrary symmetric matrix we can define matrices A_{0}, A_{1}, \ldots by setting $A_{0}=A$ and $A_{k+1}=[I+(I-$ $\left.\left.A_{k}\right)\left(I+A_{k}\right)^{-1}\right] A_{k}$ for all $k \geq 0$. Also, we can define real numbers c_{0}, c_{1}, \ldots by setting $c_{0}=1$ and $c_{i+1}=2 c_{i}+1$ for each $i \geq 0$. Then the Kovarik algorithm states that if none of the numbers $-c_{i}^{-1}$ is an eigenvalue of A, the sequence A_{0}, A_{1}, \ldots converges to $A^{+} A$.

Let F be either \mathbb{R} or \mathbb{C}, let k and n be positive integers, and let $A \in \mathcal{M}_{k \times n}(F)$. We now look at what the matrix A^{+}says about a solution (if any) to a system of linear equations of the form $A X=w$, where $w \in F^{k}$. First of all, we note that in general the following proposition holds.

Proposition 19.4 Let F be either \mathbb{R} or \mathbb{C}, let k and nbe positive integers, let $A \in M_{k \times n}(F)$, and let $w \in F^{k}$. The system of linear equations $A X=w$ has a solution if and only if $\left(A A^{+}\right) w=w$.

Proof If there is a vector $v \in F^{n}$ satisfying $A v=w$ then $\left(A A^{+}\right) w=\left(A A^{+}\right)(A v)=$ $\left(A A^{+} A\right) v=A v=w$. Conversely, if $\left(A A^{+}\right) w=w$ then $A\left(A^{+} w\right)=w$ and so $A v=w$, where $v=A^{+} w$.

We also note that, in the situation above, if $y \in F^{n}$ then $A\left(I-A^{+} A\right) y=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$, and so we also see that $A^{+} w+\left(I-A^{+} A\right) y$ is also a solution to the system $A X=w$, assuming that the system has any solutions at all. Conversely, any solution to this system is of the form $A^{+} w+u$, where $A u=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$, and so $\left(I-A^{+} A\right) u=u$.

Proposition 19.5 Let F be either \mathbb{R} or \mathbb{C}, let k and n be positive integers, and let $A \in M_{k \times n}(F)$. Let $w \in F^{k}$. If the system $A X=w$ has a solution then in the set of all solutions to this system of linear equations there is precisely one having a minimal norm, and it is $A^{+} w$.

Proof If u is a solution to this system, then we have already seen that it is of the form $A^{+} w+\left(I-A^{+} A\right) y$. But we note that

$$
\begin{aligned}
\left\langle A^{+} w,\left(I-A^{+} A\right) y\right\rangle & =\left\langle A^{+} A A^{+} w,\left(I-A^{+} A\right) y\right\rangle \\
& =\left\langle A^{+} w,\left(A^{+} A\right)\left(I-A^{+} A\right) y\right\rangle \\
& =\left\langle A^{+} w,\left(A^{+} A-A^{+} A A^{+} A\right) y\right\rangle \\
& =\left\langle A^{+} w,\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]\right\rangle=0
\end{aligned}
$$

so

$$
\begin{aligned}
\|u\|^{2} & =\langle u, u\rangle=\left\langle A^{+} w+\left(I-A^{+} A\right) y, A^{+} w+\left(I-A^{+} A\right) y\right\rangle \\
& =\left\langle A^{+} w, A^{+} w\right\rangle+\left\langle\left(I-A^{+} A\right) y,\left(I-A^{+} A\right) y\right\rangle \\
& =\left\|A^{+} w\right\|^{2}+\left\|\left(I-A^{+} A\right) y\right\|^{2},
\end{aligned}
$$

which implies that $\|u\| \geq\left\|A^{+} w\right\|$.

Example Let $A=\left[\begin{array}{rrr}2 & -1 & 1 \\ 1 & 1 & 1\end{array}\right]$ and $w=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Then $A^{+}=\frac{1}{14}\left[\begin{array}{rr}4 & 2 \\ -5 & 8 \\ 1 & 4\end{array}\right]$ and so the solution to the system $A X=w$ having minimal norm is $A^{+} w=\frac{1}{14}\left[\begin{array}{r}8 \\ 11 \\ 9\end{array}\right]$. Its norm is $\frac{1}{14} \sqrt{266}$.

But what happens if the system $A X=w$ does not have a solution? Suppose that F is either \mathbb{R} or \mathbb{C} and that $A \in \mathcal{M}_{k \times n}(F)$, and $w \in F^{k}$, where k and n be positive integers. Then the system $\left(A^{+} A\right) X=A^{+} w$ always has a solution, namely $A^{+} w$, and, by Proposition 19.5, this is in fact the solution of minimal norm of this equation, which is the best approximation to a solution of $A X=w$.

Example Consider the system of linear equations $A X=w$, where

$$
A=\left[\begin{array}{rrr}
2 & -4 & 5 \\
6 & 0 & 3 \\
2 & -4 & 5 \\
6 & 0 & 3
\end{array}\right] \quad \text { and } \quad w=\left[\begin{array}{r}
1 \\
3 \\
-1 \\
3
\end{array}\right] .
$$

Then

$$
A^{+}=\frac{1}{72}\left[\begin{array}{rrrr}
-2 & 6 & -2 & 6 \\
-5 & 3 & -5 & 3 \\
4 & 0 & 4 & 0
\end{array}\right] \quad \text { and } \quad A^{+} w=\frac{1}{4}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] .
$$

In order to emphasize the use of Proposition 19.5, we briefly consider the least squares method, which is an important tool in many areas of applied mathematics and statistics. This method was developed at the beginning of the nineteenth century by Gauss and Legendre and, independently, by the American mathematical pioneer Robert Adrain. Suppose that we have before us the results of several observations, which, depending on values t_{1}, \ldots, t_{n} of a real parameter, give us real values c_{1}, \ldots, c_{n}. Our theory tells us that the set of points $\left\{\left(t_{i}, c_{i}\right) \mid 1 \leq i \leq n\right\}$ in the Euclidean plane should lie on a straight line. However, because of measuring and/or computational errors, this does not quite work out. So we want to find the equation of the line in the plane which best fits our observed data. In other words, we want to find a solution of minimal norm to the system of linear equations
$\left\{X_{1}+t_{i} X_{2}=c_{i} \mid 1 \leq i \leq n\right\}$, which can be written as $\left[\begin{array}{cc}1 & t_{1} \\ 1 & t_{2} \\ \vdots & \vdots \\ 1 & t_{n}\end{array}\right]\left[\begin{array}{c}X_{1} \\ X_{2}\end{array}\right]=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right]$.

As we have seen, the solution of minimal norm, if it exists, is $\left[\begin{array}{cc}1 & t_{1} \\ 1 & t_{2} \\ \vdots & \vdots \\ 1 & t_{n}\end{array}\right]^{+}\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right]$.
Otherwise, this is the best approximation to the solution the system.

With kind permission of the University of Pennsylvania Libraries.
Irish-born Robert Adrain emigrated to the United States in 1798. He published his own mathematics journal, but his work received no international attention at the time.

Example To find the equation of the line in the Euclidean plane which best fits the set of points $\{(1,3),(2,7),(3,8),(4,11)\}$, we calculate

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}\right]^{+}\left[\begin{array}{r}
3 \\
7 \\
8 \\
11
\end{array}\right]=\left(\frac{1}{20}\left[\begin{array}{rrrr}
20 & 10 & 0 & -10 \\
-6 & -2 & 2 & 6
\end{array}\right]\right)\left[\begin{array}{r}
3 \\
7 \\
8 \\
11
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
2 \\
5
\end{array}\right]
$$

so the line we want is given by $\left\{\left.\left(t, 1+\frac{5}{2} t\right) \right\rvert\, t \in \mathbb{R}\right\}$.
We can use the same method to find the best fit of any polynomial of a higher degree to a set of points. For example, if we wish to find a parabola which best fits the set of points $\left\{\left(t_{i}, c_{i}\right) \mid 1 \leq i \leq n\right\}$ in the Euclidean plane, we have to find a best approximation to a solution of the system of linear equations $\left\{X_{1}+t_{i} X_{2}+t_{i}^{2}=c_{i} \mid\right.$
$1 \leq i \leq n\}$, which we know is

$$
\left[\begin{array}{ccc}
1 & t_{1} & t_{1}^{2} \\
1 & t_{2} & t_{2}^{2} \\
\vdots & \vdots & \vdots \\
1 & t_{n} & t_{n}^{2}
\end{array}\right]^{+}\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] .
$$

Example To find the equation of the parabola in the Euclidean plane which best fits the set of points $\{(1,3),(2,7),(3,8),(4,11)\}$, we calculate

$$
\begin{aligned}
{\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 4 & 16
\end{array}\right]^{+}\left[\begin{array}{r}
3 \\
7 \\
8 \\
11
\end{array}\right] } & =\left(\frac{1}{20}\left[\begin{array}{rrrr}
45 & -15 & -25 & 15 \\
-31 & 23 & 27 & -19 \\
5 & -5 & -5 & 5
\end{array}\right]\right)\left[\begin{array}{r}
3 \\
7 \\
8 \\
11
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{r}
-1 \\
15 \\
-1
\end{array}\right]
\end{aligned}
$$

and so the parabola we want is given by $\left\{\left.\left(t,-\frac{1}{4}+\frac{15}{4} t-\frac{1}{4} t^{2}\right) \right\rvert\, t \in \mathbb{R}\right\}$.

Needless to say, we can also consider a much more general context. Suppose that W is a finitely-generated subspace of \mathbb{R}^{A}. Given a set of observations $\left\{\left(t_{i}, c_{i}\right) \mid 1 \leq\right.$ $i \leq n\} \subseteq A \times \mathbb{R}$, we want to find the function $g \in W$ which best approximates these observations.

To do this, we pick a basis $\left\{f_{1}, \ldots, f_{k}\right\}$ for W. Then we want to find a best approximation to a solution of the system of linear equations

$$
\left\{X_{1} f_{1}\left(t_{i}\right)+\cdots+X_{k} f_{k}\left(t_{i}\right)=c_{i} \mid 1 \leq i \leq n\right\}
$$

which can be written as $\left[\begin{array}{ccc}f_{1}\left(t_{1}\right) & \ldots & f_{k}\left(t_{1}\right) \\ \vdots & \ddots & \vdots \\ f_{1}\left(t_{n}\right) & \cdots & f_{k}\left(t_{n}\right)\end{array}\right]\left[\begin{array}{c}X_{1} \\ \vdots \\ X_{k}\end{array}\right]=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]$. As we have seen, this is $\left[\begin{array}{ccc}f_{1}\left(t_{1}\right) & \ldots & f_{k}\left(t_{1}\right) \\ \vdots & \ddots & \vdots \\ f_{1}\left(t_{n}\right) & \ldots & f_{k}\left(t_{n}\right)\end{array}\right]^{+}\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]$.

Least-squares approximations are often used to find best-fit solutions to very large systems of linear equations of the form $A X=w$ which, in theory, have an exact solution but in practice that solution cannot be found because of errors in measurement of the data and computational errors. Indeed, Gauss developed this method for finding solutions to the very large systems of linear equations which resulted from laying down a triangulation grid for a geodetic survey of the state of Hanover he conducted in 1818. In 1978, the American National Geodetic Survey used it to solve a system of over 2.5 million linear equations in 400,000 unknowns which resulted from the updating of the triangulation grid for the continental United States.

The constructions presented in this chapter can be generalized considerably. Indeed, if (K, \bullet) is an associative unital algebra over a field F on which we have defined an involution $a \mapsto a^{*}$, then an element a of K has a Moore-Penrose pseudoinverse b if and only if the following conditions are satisfied:
(1) $a \bullet b \bullet a=a$ and $b \bullet a \bullet b=b$;
(2) $(b \bullet a)^{*}=b \bullet a$ and $(a \bullet b)^{*}=a \bullet b$.

Proposition 19.1 can easily be modified to show that such a pseudoinverse, if it exists, is unique. Pseudoinverses of this sort show up in the study of C^{*}-algebras, or, more generally, associative unital algebras (K, \bullet) that satisfy the Gelfand-Naimark property, namely that $e+a^{*} \bullet a$ is a unit of K for each $a \in K$, where e is the multiplicative identity of K. In such algebras, it is possible to show that if $a \in K$ satisfies the condition that there exists an element $b \in K$ satisfying $a \bullet b \bullet a=a$ and $b \bullet a \bullet b=b$, then a has a Moore-Penrose pseudoinverse.

Finally, one should note that the Moore-Penrose pseudoinverse is just one of many "pseudoinverses" in the mathematical literature, each designed for a fairly specific purpose. The first of these was introduced by Fredholm in 1903 to deal with integral operators. Others are based on specific situations which arise in algebra or analysis, or which are used to implement specific computational methods.

Example Let V be a vector space finitely generated over a field F and let $\alpha \in \operatorname{End}(V)$. Let $k=\inf \left\{0<h \in \mathbb{N} \mid \operatorname{rk}\left(\alpha^{h}\right)=\operatorname{rk}\left(\alpha^{h+1}\right)\right\}$. Then the Drazin pseudoinverse of α is the endomorphism β of V satisfying $\alpha^{k+1} \beta=\alpha^{k}, \beta \alpha \beta=\beta$, and $\alpha \beta=\beta \alpha$. If such a β exists, it is necessarily unique. It is immediate that if $\alpha \in \operatorname{Aut}(V)$ then $k=1$ and $\beta=\alpha^{-1}$. If α is nilpotent then its Drazin pseudoinverse is σ_{0}. Drazin pseudoinverses have important applications in differential equations and in mathematical economics.

Exercises

Exercise 1160
Let V and W be finitely-generated inner product spaces and let $\alpha \in \operatorname{Hom}(V, W)$. Let $\beta \in \operatorname{Hom}(W, V)$ satisfy $\alpha \beta \alpha=\alpha$. Show that $\operatorname{rk}(\beta) \geq \operatorname{rk}(\alpha)$, with equality holding if and only if $\beta \alpha \beta=\beta$.

Exercise 1161
Let $A=\left[\begin{array}{rr}1 & 1 \\ -1 & 1 \\ 2 & 3\end{array}\right] \in \mathcal{M}_{3 \times 2}(\mathbb{R})$. Calculate A^{+}.

Exercise 1162

Let $A=\left[\begin{array}{lll}5 & 0 & 0\end{array}\right] \in \mathcal{M}_{1 \times 3}(\mathbb{Q})$. Calculate A^{+}.
Exercise 1163
Let $A=\left[a_{1} \ldots a_{n}\right] \in \mathcal{M}_{1 \times n}(\mathbb{C})$, where n is a positive integer. Show that $A^{+}=$ $\left(A A^{H}\right)^{-1} A^{H}$ 。

Exercise 1164
Let $A=\left[\begin{array}{lll}2 & 2 & 0 \\ 1 & 2 & 1 \\ 1 & 2 & 1\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$. Calculate A^{+}.

Exercise 1165

Let V and W be finitely-generated inner product spaces, and let $\alpha \in \operatorname{Hom}(V, W)$. For any nonzero scalar c, show that $(c \alpha)^{+}=\frac{1}{c} \alpha^{+}$.

Exercise 1166

Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ be a diagonal matrix. Calculate A^{+}.

Exercise 1167

Let V and W be finitely-generated inner product spaces, and let $\alpha \in \operatorname{Hom}(V, W)$. Show that $\left(\alpha^{*}\right)^{+}=\left(\alpha^{+}\right)^{*}$.

Exercise 1168

Let $V=\mathbb{R}^{2}$, which is endowed with the dot product and let $\alpha: V \rightarrow \mathbb{R}$ be the linear functional defined by $\alpha:\left[\begin{array}{l}a \\ b\end{array}\right] \mapsto a$. Let $\beta: \mathbb{R} \rightarrow V$ be the linear transformation defined by $\beta: a \mapsto\left[\begin{array}{l}a \\ a\end{array}\right]$. Show that $(\alpha \beta)^{+} \neq \beta^{+} \alpha^{+}$.

Exercise 1169

Let n be a positive integer and let $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(\mathbb{R})$ be the matrix all entries of which are equal to 1 . Show that $A^{+}=n^{-2} A$.

Exercise 1170

Let $A \in \mathcal{M}_{k \times n}(\mathbb{R})$ be a matrix of the form $\left[\begin{array}{ll}C & O \\ O & O\end{array}\right]$, where C is a $t \times t$ nonsingular diagonal matrix. Show that $A^{+}=\left[\begin{array}{ll}D & O \\ O & O\end{array}\right]$, where $D=C^{-1}$.

Exercise 1171

Let $V=\mathbb{R}^{n}$ on which we have the dot product defined, and let $\alpha \in \operatorname{End}(V)$ satisfy the condition that $\operatorname{ker}(\alpha)=\operatorname{im}(\alpha)^{\perp}$. Show that the restriction β of α to $\operatorname{im}(\alpha)$ is an automorphism of $\operatorname{im}(\alpha)$ and that the restriction of α^{+}to $\operatorname{im}(\alpha)$ equals β^{-1}.

Exercise 1172

Let n be a positive integer and let $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ be matrices satisfying the conditions $A B A=A, B A B=B$, and $A^{2}=A$. Is it necessarily true that $B^{2}=B$?

Exercise 1173

Let h, k, m, and n be positive integers, let $A \in \mathcal{M}_{h \times k}(\mathbb{R})$, let $B \in \mathcal{M}_{m \times n}(\mathbb{R})$, and let $C \in \mathcal{M}_{h \times n}(\mathbb{R})$. Show that there exists a matrix $X \in \mathcal{M}_{k \times m}(\mathbb{R})$ satisfying $A X B=C$ if and only if $A A^{+} C B^{+} B=C$.

Exercise 1174

Let k and n be positive integers and let $B \in \mathcal{M}_{k \times k}(\mathbb{R})$ and $C \in \mathcal{M}_{n \times n}(\mathbb{R})$ be orthogonal matrices. For $A \in \mathcal{M}_{k \times n}(\mathbb{R})$, show that $(B A C)^{+}=C^{T} A^{+} B^{T}$.

Exercise 1175

Let k and n be positive integers and let $A \in \mathcal{M}_{k \times k}(\mathbb{R})$ and $B \in \mathcal{M}_{k \times n}(\mathbb{R})$. Let $C \in \mathcal{M}_{n \times n}(\mathbb{R})$ be nonsingular. Prove that

$$
\left[\begin{array}{cc}
A & A B \\
O & C
\end{array}\right]^{+}=\left[\begin{array}{cc}
A^{+} & -A^{+} A B C^{-1} \\
O & C^{-1}
\end{array}\right]
$$

Bilinear Transformations and Forms

Let V, W, and Y be vector spaces over a field F. We say that a function f : $V \times W \rightarrow Y$ is a bilinear transformation if and only if the function $v \mapsto f\left(v, w_{0}\right)$ belongs to $\operatorname{Hom}(V, Y)$ for any given vector $w_{0} \in W$ and the function $w \mapsto f\left(v_{0}, w\right)$ belongs to $\operatorname{Hom}(W, Y)$ for any given vector $v_{0} \in V$. The set of all bilinear transformations from $V \times W$ to Y will be denoted by $\operatorname{Bil}(V \times W, Y)$. If $f, g \in \operatorname{Bil}(V \times$ $W, Y)$ and if $c \in F$ then $f+g$ and $c f$ also belong to $\operatorname{Bill}(V \times W, Y)$, and so $\operatorname{Bill}(V \times W, Y)$ is a subspace of the vector space $Y^{V \times W}$ over F. Also, any bilinear transformation $f: V \times W \rightarrow Y$ defines a bilinear transformation $f^{\text {op }}: W \times V \rightarrow Y$, called the opposite transformation of f, by setting $f^{\text {op }}:(w, v) \mapsto f(v, w)$. It is clear that the function

$$
()^{\mathrm{op}}: \operatorname{Bill}(V \times W, Y) \rightarrow \operatorname{Bill}(W \times V, Y)
$$

is an isomorphism of vector spaces. We say that a bilinear transformation $f \in \operatorname{Bill}(V \times V, Y)$ is symmetric if and only if $f=f^{\text {op }}$. It is skew symmetric if and only if $f=-f^{\text {op }}$.

In particular, if we consider a single vector space V over a field F, then we note that $f \in \operatorname{Bill}(V \times V, V)$ if and only if the operation \bullet on V defined by $v \bullet w=$ $f(v, w)$ turns V into an F-algebra. This algebra is commutative if and only if f is symmetric.

Example Let n be a positive integer and let $V=\mathbb{R}^{n}$, on which we have the dot product defined. A classical problem in geometry is to ask if there exists a bilinear transformation $f \in \operatorname{Bill}(V \times V, V)$ satisfying the condition that $\|f(v, w)\|=\|v\| \cdot\|w\|$ for all $v, w \in V$. Euler showed that such a transformation exists for the case $n=4$. At the end of the nineteenth century, Hurwitz showed that such transformations exist only when $n=1,2,4$, or 8 .

With kind permission of ETH-Bibliothek Zurich, Image Archive.
Adolph Hurwitz was a nineteenth-century German mathematician who taught both Hilbert and Minkowski.

Example Let F be a field and let k, n, and t be positive integers. Set $V=\mathcal{M}_{k \times n}(F)$, $W=\mathcal{M}_{t \times n}(F)$, and $Y=\mathcal{M}_{k \times t}(F)$. Then there exists a bilinear transformation $V \times W \rightarrow Y$ defined by $(A, B) \mapsto A B^{T}$. In particular, we have a bilinear transformation $F^{n} \times F^{n} \rightarrow \mathcal{M}_{n \times n}(F)$ given by $(v, w) \mapsto v \wedge w$. More generally, if V, W, and Y are as mentioned, every matrix $C \in \mathcal{M}_{n \times n}(F)$ defines a bilinear transformation $V \times W \rightarrow Y$ by setting $(A, B) \mapsto A C B^{T}$.

Example For vector spaces V and W over a field F, the function $\operatorname{Hom}(V, W) \times$ $V \rightarrow W$ given by $(\alpha, v) \mapsto \alpha(v)$ is a bilinear transformation.

Let V, W, and Y be vector spaces over a field F. The image of a bilinear transformation $f \in \operatorname{Bill}(V \times W, Y)$ is not necessarily a subspace of Y, as the following example shows.

Example Consider the bilinear transformation $f: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathcal{M}_{2 \times 2}(\mathbb{R})$ defined by $f:(v, w) \mapsto v \wedge w$. The image of f contains $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$, but is not a subspace since $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \notin \operatorname{im}(f)$.

As with linear transformations, bilinear transformations are totally determined by their behavior on bases. That is to say, let V and W be vector spaces over a field F, and let $B=\left\{v_{i} \mid i \in \Omega\right\}$ and $D=\left\{w_{j} \mid j \in \Lambda\right\}$ be bases of V and W, respectively. Let Y be a vector space over F and let $f_{0}: B \times D \rightarrow Y$ be a function. Then there exists a unique bilinear transformation $f \in \operatorname{Bill}(V \times W, Y)$ satisfying $f\left(v_{i}, w_{j}\right)=f_{0}\left(v_{i}, w_{j}\right)$ for all i and j, namely the function defined by $f:\left(\sum_{i \in \Omega} a_{i} v_{i}, \sum_{j \in \Lambda} b_{j} w_{j}\right) \mapsto \sum_{i \in \Omega} \sum_{j \in \Lambda} a_{i} b_{j} f_{0}\left(v_{i}, w_{j}\right)$. In the case that $V=W=Y$, we have already noted this fact in Proposition 5.5.

Proposition 20.1 If V, W, and Y are vector spaces over a field F, then $\operatorname{Bill}(V \times W, Y)$ is isomorphic to $\operatorname{Hom}(V, \operatorname{Hom}(W, Y))$.

Proof Define a function $\theta: \operatorname{Bill}(V \times W, Y) \rightarrow \operatorname{Hom}(V, \operatorname{Hom}(W, Y))$ as follows: given a bilinear transformation $f \in \operatorname{Bill}(V \times W, Y)$ and a vector $v \in V$, then
$\theta(f)(v): w \mapsto f(v, w)$. It is straightforward to check that indeed $\theta(f)(v) \in$ $\operatorname{Hom}(W, Y)$ for all $f \in \operatorname{Bill}(V \times W, Y)$ and all $v \in V$. Moreover, $\theta(f)\left(v_{1}+v_{2}\right)=$ $\theta(f)\left(v_{1}\right)+\theta(f)\left(v_{2}\right)$ and $\theta(f)(c v)=c \theta(f)(v)$ for all $v, v_{1}, v_{2} \in V$ and all $c \in F$, so $\theta(f) \in \operatorname{Hom}(V, \operatorname{Hom}(W, Y))$ for all $f \in \operatorname{Bill}(V \times W, Y)$. Finally, $\theta(f+g)=$ $\theta(f)+\theta(g)$ and $\theta(c f)=c \theta(f)$ for all $f, g \in \operatorname{Bill}(V \times W, Y)$ and all $c \in F$, and so we have shown that θ is a linear transformation.

It is also possible to define a function

$$
\varphi: \operatorname{Hom}(V, \operatorname{Hom}(W, Y)) \rightarrow \operatorname{Bill}(V \times W, Y)
$$

by setting $\varphi(\alpha):(v, w) \mapsto \alpha(v)(w)$ for all $v \in V$ and $w \in W$, and again it is easy to show that this is a linear transformation. If $\alpha \in \operatorname{Hom}(V, \operatorname{Hom}(W, Y))$ and $v \in V$, then $\theta \varphi(\alpha)(v): w \mapsto \varphi(\alpha)(v)(w)=\alpha(v)(w)$ and so $\theta \varphi(\alpha)(v)=\alpha(v)$ for all $v \in V$. Thus $\theta \varphi(\alpha)=\alpha$ for all $\alpha \in \operatorname{Hom}(V, \operatorname{Hom}(W, Y))$, and so $\theta \varphi$ is the identity function on $\operatorname{Hom}(V, \operatorname{Hom}(W, Y))$. Conversely, if $f \in \operatorname{Bill}(V \times W, Y)$ then

$$
\varphi \theta(f):(v, w) \mapsto \theta(f)(v)(w)=f(v, w)
$$

for all $v \in V$ and $w \in W$ and so $\varphi \theta(f)=f$ for all $f \in \operatorname{Bill}(V \times W, Y)$, proving that $\varphi \theta$ is the identity function on $\operatorname{Bill}(V \times W, Y)$. Thus we have established that θ is an isomorphism, with $\theta^{-1}=\varphi$.

Let V and W be vector spaces over a field F. A bilinear transformation $f: V \times W \rightarrow F$ is called a bilinear form. We will denote the set of all such bilinear forms by $\operatorname{Bill}(V \times W)$, instead of $\operatorname{Bill}(V \times W, F)$. By what we have seen above, $\operatorname{Bill}(V \times W)$ is a subspace of $F^{V \times W}$ which is isomorphic to $\operatorname{Hom}(V, D(W))$. If V and W are vector spaces over a field F, then a bilinear form $f \in \operatorname{Bill}(V \times W)$ is nondegenerate if and only if for each $0_{V} \neq v \in V$ there exists a $w \in W$ satisfying $f(v, w) \neq 0$ and for each $0_{W} \neq w \in W$ there exists a $v \in V$ satisfying $f(v, w) \neq 0$.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach.

Mathematicians at the beginning of the nineteenth century, such as Gauss and Jacobi, preferred to state their results in terms of bilinear forms rather than in terms of matrices. Sylvester contributed greatly to the theory of bilinear forms, as did the influential nineteenth-century German mathematician Karl Weierstrass.

Example If V is an inner product space over \mathbb{R}, then the function $(v, w) \mapsto\langle v, w\rangle$ belongs to $\operatorname{Bill}(V \times V)$. This is not true, of course, if our field of scalars is \mathbb{C}.

Example If F is a field and $V=F^{n}$ for some positive integer n, then the function $(v, w) \mapsto v \odot w$ belongs to $\operatorname{Bill}\left(F^{n} \times F^{n}\right)$. This function is particularly useful in the case $F=\mathrm{GF}(2)$. Indeed, if $v \in \mathrm{GF}(2)^{n}$, then

$$
v \odot v= \begin{cases}0 & \text { if an even number of entries in } v \text { are equal to } 1, \\ 1 & \text { if an odd number of entries in } v \text { are equal to } 1 .\end{cases}
$$

This value is known as the parity of v.
More generally, let A be a finite set and let V be the collection of all subsets of A. Define a function $f: V \times V \rightarrow \mathrm{GF}(2)$ by setting

$$
f(A, B)= \begin{cases}0 & \text { if } A \cap B \text { has an even number of elements, } \\ 1 & \text { if } A \cap B \text { has an odd number of elements. }\end{cases}
$$

Then $f \in \operatorname{Bill}(V \times V)$.
Example If V is a vector space over a field F, we have a nondegenerate bilinear form in $\operatorname{Bill}(D(V) \times V)$ given by $(\delta, v) \mapsto \delta(v)$. Similarly, if $\delta_{1}, \delta_{2} \in D(V)$, we have a bilinear form in $\operatorname{Bill}(V \times V)$ given by $(v, w) \mapsto \delta_{1}(v) \delta_{2}(w)$, which is nondegenerate if δ_{1} and δ_{2} are not the 0 -functional.

Example If F is a field and if k and n are positive integers, then each matrix $A \in \mathcal{M}_{k \times n}(F)$ defines a bilinear form in $\operatorname{Bill}\left(F^{k} \times F^{n}\right)$ by $(v, w) \mapsto v \odot A w$.

Example If F is a field of characteristic not equal to 2 and of V is a vector space over F, then any $f \in \operatorname{Bill}(V \times V)$ can be written as a sum of a symmetric bilinear form and a skew-symmetric bilinear form, namely $f=f_{1}+f_{2}$, where $f_{1}:(v, w) \mapsto$ $\frac{1}{2}[f(v, w)+f(w, v)]$ and $f_{2}:(v, w) \mapsto \frac{1}{2}[f(v, w)-f(w, v)]$. Moreover, this representation is unique, for if $f=g_{1}+g_{2}$, where g_{1} is symmetric and g_{2} is skew symmetric, then for each $(v, w) \in V \times V$ we have $f(v, w)+f(w, v)=2 g_{1}(v, w)$ and $f(v, w)-f(w, v)=2 g_{2}(v, w)$, from which we deduce that $g_{i}=f_{i}$ for $i=1,2$.

If V and W are vector spaces over F of finite dimension k and n, respectively, then any bilinear form on $V \times W$ can be represented as in the previous example. Indeed, if we fix bases $B=\left\{v_{1}, \ldots, v_{k}\right\}$ for V and $D=\left\{w_{1}, \ldots, w_{n}\right\}$ for W, then for any $f \in \operatorname{Bill}(V \times W)$ we define the matrix $T_{B D}(f)=\left[f\left(v_{i}, w_{j}\right)\right] \in \mathcal{M}_{k \times n}(F)$ and check that if $v=\sum_{i=1}^{k} a_{i} v_{i}$ and $w=\sum_{j=1}^{n} b_{j} w_{j}$, then $f(v, w)=v \odot T_{B D}(f) w$. Indeed, for fixed B and D, the function $f \mapsto T_{B D}(f)$ is an isomorphism from $\operatorname{Bill}(V \times W)$ to $\mathcal{M}_{k \times n}(F)$.

Example Let F be a field and let $V=F^{2}$. Consider the bases $B=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ and $D=\left\{\left[\begin{array}{r}1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ of V. If $f \in \operatorname{Bill}(V \times V)$ is given by $f:\left(\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right) \mapsto$ $(a+b)(c+d)$, then it is easy to verify that $T_{B B}(f)=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $T_{D D}(f)=$ $\left[\begin{array}{ll}0 & 0 \\ 0 & 4\end{array}\right]$.

Proposition 20.2 Let V and W be vector spaces finitely generated over a field F and having bases $B=\left\{v_{1}, \ldots, v_{k}\right\}$ and $D=\left\{w_{1}, \ldots, w_{n}\right\}$, respectively. Let $C=\left\{x_{1}, \ldots, x_{k}\right\}$ and $E=\left\{y_{1}, \ldots, y_{n}\right\}$ also be bases for V and W, respectively, and let $P=\left[p_{i r}\right] \in M_{k \times k}(F)$ and $Q=\left[q_{j s}\right] \in M_{n \times n}(F)$ be nonsingular matrices satisfying

$$
\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right]=P\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{k}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=Q\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right] .
$$

Then for $f \in \operatorname{Bill}(V \times W)$ we see that $T_{C D}(f)=P T_{B D}(f) Q^{T}$.

Proof As a direct consequence of the definitions, we see that

$$
f\left(x_{i}, y_{j}\right)=\left(\sum_{r=1}^{k} p_{i r} v_{r}, \sum_{s=1}^{n} q_{j s} w_{s}\right)=\sum_{r=1}^{k} \sum_{s=1}^{n} p_{i r} f\left(v_{r}, w_{s}\right) q_{j s},
$$

and this is precisely the (i, j) th-entry of $P T_{B D}(f) Q^{T}$.
In particular, we see that if $f \in \operatorname{Bill}(V \times V)$, where V is a vector space of finite dimension n over a field F, and if B and D are bases of V, then there exists a nonsingular matrix $P \in \mathcal{M}_{n \times n}(F)$ satisfying $T_{D D}(f)=P T_{B B}(f) P^{T}$. In general, matrices A and C in $\mathcal{M}_{n \times n}(F)$ are congruent if and only if there exists a nonsingular matrix $P \in \mathcal{M}_{n \times n}(F)$ satisfying $C=P A P^{T}$. Congruence is easily checked to be an equivalence relation on $\mathcal{M}_{n \times n}(F)$, which joins the relations of equivalence and similarity, that we have already defined. Congruent matrices clearly have the same rank, so that the rank of a matrix of the form $T_{B B}(f)$ depends only on f and not on the choice of basis B. Therefore, we call this the rank of the bilinear form f. Thus, for example, the bilinear forms in $\operatorname{Bill}(V \times V)$ of rank 1 are precisely those of the form $(v, w) \mapsto \alpha(v) \beta(w)$, where $\alpha, \beta \in D(V)$.

A matrix congruent to a symmetric matrix is again symmetric. Indeed, if $A \in \mathcal{M}_{n \times n}(F)$ is symmetric, then for any nonsingular matrix P we have $\left(P A P^{T}\right)^{T}=P^{T T} A^{T} P^{T}=P A P^{T}$.

Example The matrix $A=\left[\begin{array}{rrr}1 & -6 & -6 \\ -6 & 40 & 39 \\ -6 & 39 & 39\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ is congruent to I, since $P A P^{T}=I$, where $P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & \frac{1}{2} & 0 \\ \sqrt{3} & -\frac{\sqrt{3}}{2} & \frac{2 \sqrt{3}}{3}\end{array}\right]$.

As was the case with inner products, we can define orthogonality with respect to an arbitrary bilinear form. This concept has important applications when we are
working over fields other than \mathbb{R} or \mathbb{C}, and especially in areas such as algebraic coding theory, where all of the work is done over finite fields. Let V be a vector space over a field F and let $f \in \operatorname{Bill}(V \times V)$. Vectors $v, w \in V$ are f-orthogonal if and only if $f(v, w)=0$. In this case, we will write $v \perp_{f} w$. (One has to be careful here, it may be true that $v \perp_{f} w$ but false that $w \perp_{f} v$; this will not happen, of course, if f is symmetric.) If A is a nonempty subset of V, then we can talk about the right f-orthogonal complement of A to be the set $A^{\perp_{f}}=\left\{w \in V \mid v \perp_{f} w\right.$ for all $v \in A\}$. Complements of this form may behave very differently than complements defined by inner products, as the following example shows.

Example Let $F=\mathrm{GF}(2)$ and let $V=F^{4}$. Define $f \in \operatorname{Bill}(V \times V)$ by setting $f(v, w)=v \odot w$. Then $W=\left\{\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right]\right\}$ is a subspace of V which satisfies $W^{\perp_{f}}=W$.

We note that $V^{\perp_{f}}$ is trivial if and only if for any $0_{V} \neq w \in V$ there exists a vector $v \in V$ satisfying $f(v, w) \neq 0$. This condition is not a consequence of our definitions, and we must explicitly state it when we need it. It holds, of course, if f is nondegenerate.

Example Let $V=\mathbb{R}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ 1 \\ -1 \\ -1\end{array}\right]\right\} \subseteq \mathbb{R}^{4}$. If $f \in \operatorname{Bill}(V \times V)$ is defined by $f:\left(\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right],\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]\right) \mapsto a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}-a_{4} b_{4}$, then $\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right] \in V^{\perp_{f}}$ and, indeed, $V^{\perp_{f}}=\mathbb{R}\left\{\left[\begin{array}{r}1 \\ -1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$.

Proposition 20.3 Let V be a vector space over a field F, and let $f \in$ $\operatorname{Bill}(V \times V)$. If A is a nonempty subset of V then:
(1) $A^{\perp_{f}}$ is a subspace of V;
(2) $A^{\perp_{f}}=(F A)^{\perp_{f}}$;
(3) If $A \subseteq B$ then $B^{\perp_{f}} \subseteq A^{\perp_{f}}$.

Moreover, if $\left\{A_{i} \mid i \in \Omega\right\}$ is a collection of nonempty subsets of V, then $\left(\bigcup_{i \in \Omega} A_{i}\right)^{\perp_{f}}=\bigcap_{i \in \Omega} A_{i}^{\perp_{f}}$.

Proof The proof of (1)-(3) is an immediate consequence of the definitions. To prove the last statement, we note that if $w \in V$, then $w \in\left(\bigcup_{i \in \Omega} A_{i}\right)^{\perp_{f}}$ if and only if for each $i \in \Omega$ and each $v \in A_{i}$ we have $f(v, w)=0$. This is true if and only if $w \in A_{i}^{\perp_{f}}$ for each $i \in \Omega$, namely if and only if $w \in \bigcap_{i \in \Omega} A_{i}^{\perp_{f}}$.

Proposition 20.4 Let V be a vector space finitely generated over a field F and let $f \in \operatorname{Bill}(V \times V)$ satisfy the condition that $V^{\perp_{f}}$ is trivial. Then each subspace W of V satisfies the following conditions:
(1) If $\delta \in D(W)$ there exists a $v \in V$ such that $\delta(w)=f(v, w)$ for all $w \in W$;
(2) $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp_{f}}\right)=\operatorname{dim}(V)$.

Proof (1) Every vector $v \in V$ defines a linear functional $\delta_{v} \in D(V)$ by setting $\delta_{v}: y \mapsto f(y, v)$. Moreover, the function $v \mapsto \delta_{v}$ from V to $D(V)$ is a linear transformation, which is a monomorphism as a result of the condition that $V^{\perp_{f}}$ is trivial. But $\operatorname{dim}(V)=\operatorname{dim}(D(V))$ since V is finitely generated, and hence this is an isomorphism. Now let $\delta \in D(W)$ and let Y be a complement of W in V. Then the function from V to F given by $w+y \mapsto \delta(w)$ belongs to $D(V)$ and so there exists a vector $v \in V$ such that it equals δ_{v}. In particular, $\delta(w)=f(v, w)$ for all $w \in W$, proving (1).
(2) The function from V to $D(W)$ which assigns to each $v \in V$ the restriction of δ_{v} to W is a linear transformation which, by (1), is an epimorphism. The kernel of this epimorphism consists of all vectors $v \in V$ satisfying $f(w, v)=0$ for all $w \in W$, and that is precisely $W^{\perp_{f}}$. Therefore, by Proposition 6.10, we have (2).

In particular, we see from Proposition 20.4 that a necessary and sufficient condition for us to have $V=W \oplus W^{\perp_{f}}$ is that W and $W^{\perp_{f}}$ be disjoint.

Proposition 20.5 Let V and W be vector spaces finitely generated over a field F and let $f \in \operatorname{Bill}(V \times W)$ be a bilinear form which is not the 0 -function. Then there exist bases $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ of V and W, respectively, and there exists a positive integer $1 \leq t \leq \min \{k, n\}$ such that

$$
f\left(v_{i}, w_{j}\right)= \begin{cases}1 & \text { if } i=j \leq t \\ 0 & \text { otherwise }\end{cases}
$$

Proof Since f is not the 0 -function, there exist vectors $v_{1} \in V$ and $y_{1} \in W$ such that $f\left(v_{1}, y_{1}\right) \neq 0$. Therefore, if we set $w_{1}=f\left(v_{1}, y_{1}\right)^{-1} y_{1}$, we have $f\left(v_{1}, w_{1}\right)=1$. Let $V_{1}=F v_{1}$ and $W_{1}=F w_{1}$. If we set $W_{2}=\left\{w \in W \mid f\left(v_{1}, w\right)=0\right\}$, then $W_{1} \cap W_{2}=$ $\left\{0_{W}\right\}$ since $c w_{1} \notin W_{2}$ for all $0 \neq c \in F$. We claim that $W=W_{1} \oplus W_{2}$. Indeed, if
$w \in W$ and if $c=f\left(v_{1}, w\right)$ then we see that

$$
f\left(v_{1}, w-c w_{1}\right)=f\left(v_{1}, w\right)-c f\left(v_{1}, w_{1}\right)=c-c=0
$$

and so $w-c w_{1} \in W_{2}$, which proves the claim. In a similar way, we have $V=V_{1} \oplus V_{2}$, where $V_{2}=\left\{v \in V \mid f\left(v, w_{1}\right)=0\right\}$. Thus we see that $f(v, w)=0$ whenever $(v, w) \in\left[V_{1} \times W_{2}\right] \cup\left[V_{2} \times W_{1}\right]$.

By passing to the oppose form if necessary, we can assume without loss of generality that $k \leq n$. If $k=1$, we choose $\left\{v_{1}\right\}$ as a basis for V and $\left\{w_{1}, \ldots, w_{n}\right\}$ as a basis for W, where $\left\{w_{2}, \ldots, w_{n}\right\}$ is an arbitrary basis for W_{2}. This proves the proposition, with $t=1$. Now assume that $k>1$ (which implies $n>1$) and that the proposition has been proven whenever $\operatorname{dim}(V)<k$. In particular, we will look at the restriction of f to $V_{2} \times W_{2}$. By the induction hypothesis, there exist bases $\left\{v_{2}, \ldots, v_{k}\right\}$ of V_{2} and $\left\{w_{2}, \ldots, w_{n}\right\}$ of W_{2} such that

$$
f\left(v_{i}, w_{j}\right)= \begin{cases}1 & \text { if } 2 \leq i=j \leq t \\ 0 & \text { otherwise } .\end{cases}
$$

Then $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ are the bases we want.

We see that if V and W are vector spaces finitely generated over a field F and if $f \in \operatorname{Bill}(V \times W)$, then Proposition 20.5 says that there exist bases of V and W with respect to which f is represented by a matrix of the form $\left[\begin{array}{ll}I & O \\ O & O\end{array}\right]$.

We will be particularly interested in symmetric bilinear forms. As an immediate consequence of the definition, we see that if V is a vector space finitely generated over a field F and if B is a given basis for V, then a bilinear form $f \in \operatorname{Bill}(V \times V)$ is symmetric if and only if the matrix $T_{B B}(f)$ is symmetric. Moreover, every symmetric matrix is $T_{B B}(f)$ for some symmetric bilinear form $f \in \operatorname{Bill}(V \times V)$.

Example Let B be the canonical basis of \mathbb{R}^{3} and let $A=\left[\begin{array}{rrr}1 & -5 & 3 \\ -5 & 1 & 7 \\ 3 & 7 & 4\end{array}\right]$. Then $A=T_{B B}(f)$, where $f \in \operatorname{Bill}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)$ is defined by

$$
\begin{aligned}
f\left(\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right],\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]\right)= & a_{1} b_{1}+a_{2} b_{2}-5\left(a_{1} b_{2}+a_{2} b_{1}\right) \\
& +3\left(a_{1} b_{3}+a_{3} b_{1}\right)+7\left(a_{2} b_{3}+a_{3} b_{2}\right)+4 a_{3} b_{3}
\end{aligned}
$$

Proposition 20.6 Let F be a set of characteristic other than 2 and let V be a vector space finitely-generated over F. Let $f \in \operatorname{Bill}(V \times V)$ be symmetric. Then there exists a basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ of V such that $T_{B B}(f)$ is a diagonal matrix.

Proof The proposition is trivially true if f is the 0 -function, and so we can assume that is not the case. We will proceed by induction on $n=\operatorname{dim}(V)$. For $n=1$, the result is again immediate, and so we can assume that $n>1$ and that the result has been established for all spaces having dimension less than n. We first claim is that there exists a vector $v \in V$ satisfying $f(v, v) \neq 0$. Indeed, assume that this is not the case. Then if v and w are arbitrary vectors in V we have

$$
0=f(v+w, v+w)=f(v, v)+2 f(v, w)+f(w, w)=2 f(v, w)
$$

and since the characteristic of F is not 2 , this implies that $f(v, w)=0$, contradicting our assumption that f is not the 0 -function. Hence we can select a vector $v_{1} \in V$ satisfying $f\left(v_{1}, v_{1}\right) \neq 0$.

Let $V_{1}=F v_{1}$ and let $V_{2}=V_{1}^{\perp_{f}}$. From the definition of V_{1} it is clear that V_{1} and V_{2} are disjoint, and from Proposition 20.3 it follows that $V=V_{1} \oplus V_{2}$. In particular, $\operatorname{dim}\left(V_{2}\right)=n-1$ and so, by the induction hypothesis, there exists a basis $C=\left\{v_{2}, \ldots, v_{n}\right\}$ of V_{2}, such that, if f_{2} is the restriction of f to V_{2}, then $T_{C C}\left(f_{2}\right)$ is a diagonal matrix. Since $f\left(v_{1}, v_{i}\right)=0$ for all $2 \leq i \leq n$, it follows that $B=\left\{v_{1}, \ldots, v_{n}\right\}$ does indeed give us the desired result.

Thus we see that every symmetric matrix over a field of characteristic other than 2 is congruent to a diagonal matrix.

Proposition 20.7 Let V be a vector space finitely-generated over \mathbb{C} and let $f \in \operatorname{Bill}(V \times V)$ be a symmetric bilinear form of rank r. Then there exists a basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ of V satisfying the following conditions:
(1) $T_{B B}(f)$ is a diagonal matrix;
(2) $f\left(v_{i}, v_{i}\right)= \begin{cases}1 & \text { if } 1 \leq i \leq r, \\ 0 & \text { otherwise } .\end{cases}$

Proof By Proposition 20.6, we know that there is a basis $B=\left\{v_{1}, \ldots, v_{n}\right\}$ of V satisfying the condition that $T_{B B}(f)$ is a diagonal matrix. This matrix is of rank r and so, renumbering the basis elements if necessary, we can assume that $f\left(v_{i}, v_{i}\right) \neq$ 0 when and only when $1 \leq i \leq r$. For each $1 \leq i \leq r$, define $c_{i}=f\left(v_{i}, v_{i}\right)^{-1 / 2} \in \mathbb{C}$, and replace v_{i} by $c_{i} v_{i}$ to get a basis satisfying (2) as well.

Let V be a vector space finitely-generated over a field F of characteristic other than 2 and let $f \in \operatorname{Bill}(V \times V)$ be a bilinear form. The function $q: V \rightarrow F$ defined by $q: v \mapsto f(v, v)$ is called the quadratic form defined by f. Note that if $a \in F$ and $v \in V$ then $q(a v)=f(a v, a v)=a^{2} f(v, v)=a^{2} q(v)$. Moreover, if $f \in \operatorname{Bill}(V \times V)$ and if $g \in \operatorname{Bill}(V \times V)$ is the symmetric bilinear form $g:(v, w) \mapsto$ $\frac{1}{2}[f(v, w)+f(w, v)]$ then the quadratic forms defined by f and g are the same. Therefore, without loss of generality, we will always assume that all quadratic forms over such fields are defined by symmetric bilinear forms. We further see that different symmetric bilinear forms define different quadratic forms, since, for any
$v, w \in V$, we have $f(v, w)=\frac{1}{2}[q(v+w)-q(v)-q(w)]$. The classification of quadratic forms is of great importance in analytic geometry and in number theory.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Witt).

The theory of quadratic forms over \mathbb{R} was developed by Gauss and his student Eisenstein, and the need to study such forms was one of the factors which led to the development of determinant theory. Their work was extended to quadratic forms over \mathbb{C} by the nineteenth-century British mathematician Henry Smith. The fundamental development in the theory of symmetric bilinear forms on vector spaces over fields of characteristic other than 2 is due to the twentieth-century German mathematician Ernst Witt.

Let V be a vector space over \mathbb{R}. A quadratic form $q: V \rightarrow \mathbb{R}$ is positive if and only if $q(v)>0$ for all $0_{V} \neq v \in V$. If $q: V \rightarrow \mathbb{R}$ is a positive quadratic form defined by a symmetric bilinear form $f \in \operatorname{Bill}(V \times V)$, then f must be nondegenerate. Indeed, if $0_{V} \neq v \in V$ then $f(v, v) \neq 0$.

Example If V is the vector space of all polynomial functions from \mathbb{R} to itself, then we have a symmetric bilinear form from $V \times V$ to \mathbb{R} defined by $(f, g) \mapsto$ $\int_{0}^{1} f(t) g(t) d t$, which in turn defines the positive quadratic form $f \mapsto \int_{0}^{1} f(t)^{2} d t$.

Example Let $V=\mathbb{R}^{4}$ and let $f \in \operatorname{Bill}(V \times V)$ be the symmetric bilinear form $\left(\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right],\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]\right) \mapsto a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}-a_{4} b_{4}$, which lies at the center of
Minkowski's mathematical formulation of Einstein's relativity theory. The quadratic form defined by this bilinear form is $\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right] \mapsto a_{1}^{2}+a_{2}^{2}+a_{3}^{2}-a_{4}^{2}$. A similar symmetric bilinear form is the Lorentz form $\left(\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right],\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]\right) \mapsto a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}-$
$c^{2} a_{4} b_{4}$, where c is the speed of light. The quadratic form defined by this bilinear
form is $\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right] \mapsto a_{1}^{2}+a_{2}^{2}+a_{3}^{2}-c^{2} a_{4}^{2}$.

With kind permission of the Museum Boerhaave Leiden.
The Dutch physicist Hendrick Antoon Lorentz, the first to conceive of the notion of the electron, won a Nobel prize in 1902. His work formed a basis for much of Einstein's theory.

A more general result, also based on the work of Lorentz and Minkowski, gives a fascinating "reversal" of the Cauchy-Schwarz-Bunyakovski inequality. Let n be a positive integer and consider the subset (not subspace) U of \mathbb{R}^{n+1} consisting of all vectors of the form $\left[\begin{array}{l}a \\ v\end{array}\right]$, where a is a nonnegative real number and $v \in \mathbb{R}^{n}$ satisfies $\|v\| \leq a$. For $u=\left[\begin{array}{c}a \\ v\end{array}\right]$ and $y=\left[\begin{array}{c}b \\ w\end{array}\right]$ in U, let us define $u \boxtimes y$ to be $a b-v \cdot w$. By our assumption on U, we note at $u \boxtimes u \geq 0$ for every $u \in U$. Then one can show that $u \boxtimes y \geq[\sqrt{u \boxtimes u}][\sqrt{y \boxtimes y}]$. This inequality is often known as the lightcone inequality because of its applications in physics.

Example If V is an inner product space over \mathbb{R}, then we have already noted that the function $f:(v, w) \mapsto\langle v, w\rangle$ is a symmetric bilinear form. The quadratic form defined by f is given by $v \mapsto\|v\|^{2}$. This quadratic form is surely positive. The converse is also true. If $f \in \operatorname{Bill}(V \times V)$ is a symmetric bilinear form defining a positive quadratic form, then f is an inner product on V, in the sense of Chap. 15.

By Proposition 20.7, we see that if V is a vector space finitely generated over \mathbb{C} and if $f \in \operatorname{Bill}(V \times V)$ is symmetric and has rank r, we can find a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V such that the quadratic form q defined by f is given by $q: \sum_{i=1}^{n} a_{i} v_{i} \mapsto$ $\sum_{i=1}^{r} a_{i}^{2}$.

Example Let F be either \mathbb{R} or \mathbb{C}. Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(F)$ be symmetric. Let $f \in \operatorname{Bill}\left(F^{n} \times F^{n}\right)$ be the symmetric bilinear form given by $f:(v, w)=v^{T} A w$, and let q be the quadratic form defined by f. The set $\{q(v) \mid$ $\|v\|=1\}$ (here the norm is the one defined by the dot product on F^{n}) is called the numerical range of the matrix A. In the case $F=\mathbb{C}$, this is always a bounded convex subset which contains all of the eigenvalues of A. For the special case $n=2$, this set is an ellipse with its foci at the eigenvalues of A, assuming that they are distinct, or a circle with center at the sole eigenvalue of A, assuming that A has only one eigenvalue of multiplicity 2 . For $n>2$, the characterization of the numerical range is much more complicated.

Proposition 20.8 Let n be a positive integer and let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ be symmetric. Let $f \in \operatorname{Bill}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ be the symmetric bilinear form given by $f:(v, w) \mapsto v^{T} A w$, and let q be the quadratic form defined by f. Let $c_{1} \geq c_{2} \geq \cdots \geq c_{n}$ be the eigenvalues of A. Then the numerical range of A lies in the closed interval $\left[c_{n}, c_{1}\right]$. Moreover, both endpoints of this interval belong to the numerical range of A.

Proof By Proposition 17.7, we know that there exists an orthonormal basis $B=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ of V consisting of eigenvectors of A. Moreover, if $v \in V$ then $v=$ $\sum_{i=1}^{n}\left\langle v, v_{i}\right\rangle v_{i}$ by Proposition 17.9, and so $1=\|v\|^{2}=\langle v, v\rangle=\sum_{i=1}^{n}\left\langle v, v_{i}\right\rangle^{2}$. We also see that $A v=\sum_{i=1}^{n}\left\langle v, v_{i}\right\rangle A\left(v_{i}\right)=\sum_{i=1}^{n} c_{i}\left\langle v, v_{i}\right\rangle v_{i}$. Thus $v^{T} A v=\langle v, A v\rangle=$ $\sum_{i=1}^{n} c_{i}\left\langle v, v_{i}\right\rangle^{2}$. But $c_{1}=c_{1}\left(\sum_{i=1}^{n}\left\langle v, v_{i}\right\rangle^{2}\right) \geq \sum_{i=1}^{n} c_{i}\left\langle v, v_{i}\right\rangle^{2} \geq c_{n}\left(\sum_{i=1}^{n}\left\langle v, v_{i}\right\rangle^{2}\right)$ $=c_{n}$. Therefore, the numerical range of A lies in the closed interval $\left[c_{n}, c_{1}\right]$.

If v is a normal eigenvector of A corresponding to c_{n}, then $v^{T} A v=\langle v, A v\rangle=$ $\left\langle v, c_{n} v\right\rangle=c_{n}\langle v, v\rangle=c_{n}$, and similarly for the case of an eigenvector of A satisfying $\|v\|=1$ and corresponding to c_{1}.

In order to see the geometric significance of quadratic forms, let us recall that a general quadratic equation in three unknowns over \mathbb{R} is one of the form

$$
\begin{aligned}
& \left(a_{11} X_{1}^{2}+a_{22} X_{2}^{2}+a_{33} X_{3}^{2}\right)+2\left(a_{12} X_{1} X_{2}+a_{13} X_{1} X_{3}+a_{23} X_{2} X_{3}\right) \\
& \quad+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+c=0
\end{aligned}
$$

in which not all of the $a_{i j}$ are equal to 0 . Such an equation can be written in the form $f(v, v)+w \cdot v+c=0$, where $f \in \operatorname{Bill}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ is the symmetric bilinear form defined with respect to the canonical basis by the matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{22}\end{array}\right]$, where $w=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$, and where $v=\left[\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right]$. The graph of such an equation is a quadratic surface. The various quadratic surfaces in \mathbb{R}^{3} can then be classified by considering congruence classes of the matrices A, a task very important in analytic geometry.

We will now return to the general case of bilinear transformations. Let F be a field, let V and W be vector spaces over F, and let $G=F^{(V \times W)}$. Then G is a subspace of $F^{V \times W}$ having a basis $\left\{g_{v, w} \mid(v, w) \in V \times W\right\}$, where

$$
g_{v, w}:\left(v^{\prime}, w^{\prime}\right) \mapsto \begin{cases}1 & \text { if }\left(v^{\prime}, w^{\prime}\right)=(v, w) \\ 0 & \text { otherwise }\end{cases}
$$

Let H be the subspace of G generated by all functions of the form

$$
\begin{aligned}
& g_{v_{1}+v_{2}, w}-g_{v_{1}, w}-g_{v_{2}, w}, \quad g_{v, w_{1}+w_{2}}-g_{v, w_{1}}-g_{v, w_{2}}, \quad g_{a v, w}-a g_{v, w}, \\
& \text { or } \quad g_{v, a w}-a g_{v, w}
\end{aligned}
$$

for all $v, v_{1}, v_{2} \in V, w, w_{1}, w_{2} \in W$, and $a \in F$. Let us pick a complement of H in G, and call it $V \otimes W$. By Proposition 7.8, we know that $V \otimes W$ is unique up to isomorphism. Let α be the projection of G with image $V \otimes W$ coming from the decomposition $G=H \oplus(V \otimes W)$ and, for all $v \in V$ and $w \in W$, denote $\alpha\left(g_{v, w}\right)$ by $v \otimes w$. Then $B=\{v \otimes w \mid(v, w) \in V \times W\}$ is a generating set for $V \otimes W$. It is important to emphasize that the elements of $V \otimes W$ are linear combinations of elements of B. In quantum physics, elements of $V \otimes W \backslash B$, for suitable spaces V and W, are known as entangled tensors and these have important physical interpretations. Elements of B are known as simple tensors.

If $v_{1}, v_{2} \in V$ and $w \in W$, then

$$
\left[v_{1}+v_{2}\right] \otimes w-\left(v_{1} \otimes w\right)-\left(v_{2} \otimes w\right)=\alpha\left(g_{v_{1}+v_{2}, w}-g_{v_{1}, w}-g_{v_{2}, w}\right)=0_{G}
$$

and so $\left[v_{1}+v_{2}\right] \otimes w=\left(v_{1} \otimes w\right)+\left(v_{2} \otimes w\right)$. Similarly, if $v \in V$ and $w_{1}, w_{2} \in W$ then $v \otimes\left[w_{1}+w_{2}\right]=v \otimes w_{1}+v \otimes w_{2}$. We also see that if $v \in V, w \in W$ and $c \in F$, then $c v \otimes w=c(v \otimes w)=v \otimes c w$. The vector space $V \otimes W$ is called the tensor product of V and W.

With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach (Chevalley).

There are many equivalent definitions of the tensor product. The definition given here is due to the twentieth-century French mathematician Claude Chevalley. The notion of a tensor was first introduced in differential calculus by the nineteenth-century Italian mathematicians Gregorio Ricci-Curbastro and Tullio Levi-Civita and became a central tool in relativity theory.

From the definition of the tensor product, we see that the function $t_{V W}$ from $V \times W$ to $V \otimes W$ given by $(v, w) \mapsto v \otimes w$ is a bilinear transformation. This transformation has a very special significance, due to the following theorem, which allows us to move from bilinear transformations to linear transformations.

Proposition 20.9 Let V, W, and Y be vector spaces over a field F. For each bilinear transformation $f \in \operatorname{Bill}(V \times W, Y)$ there exists a unique linear transformation $\alpha \in \operatorname{Hom}(V \otimes W, Y)$ satisfying $f=\alpha t_{V W}$.

Proof Given $f \in \operatorname{Bill}(V \times W, Y)$, there exists a linear transformation $\beta \in \operatorname{Hom}(G, Y)$ defined on the elements of a basis of the space G defined above, given by the condition that $\beta: g_{v, w} \mapsto f(v, w)$. Since f is a bilinear transformation, $H \subseteq \operatorname{ker}(\beta)$ and so we can define the linear transformation $\alpha \in \operatorname{Hom}(V \otimes W, Y)$ by setting
$\alpha: \sum_{i=1}^{n} a_{i}\left[v_{i} \otimes w_{i}\right] \mapsto \sum_{i=1}^{n} a_{i} f\left(v_{i}, w_{i}\right)$. This function is well-defined since if $\sum_{i=1}^{n} a_{i}\left[v_{i} \otimes w_{i}\right]=\sum_{i=1}^{n} b_{i}\left[v_{i} \otimes w_{i}\right]$ in $V \otimes W$ then $\sum_{i=1}^{n}\left(a_{i}-b_{i}\right) g_{v_{i}, w_{i}} \in H \subseteq$ $\operatorname{ker}(\beta)$. Therefore, we see that $\alpha\left(\sum_{i=1}^{n} a_{i}\left[v_{i} \otimes w_{i}\right]\right)=\alpha\left(\sum_{i=1}^{n} b_{i}\left[v_{i} \otimes w_{i}\right]\right)$. Clearly, α is a linear transformation and satisfies $f=\alpha t_{V W}$.

We are left to prove uniqueness. Suppose that $\gamma \in \operatorname{Hom}(V \otimes W, Y)$ satisfies $f=\gamma t_{V W}$. In particular, $\alpha(v \otimes w)=\gamma(v \otimes w)$ for all $(v, w) \in V \times W$. That is to say, α and γ act identically on a generating set for $V \otimes W$ and so, in particular, on a basis for $V \otimes W$ contained in this generating set. Therefore, by Proposition 6.2, it follows that $\alpha=\gamma$.

The following proposition is very important, and is often used as a basis for the definition of the tensor product.

Proposition 20.10 If V, W, and Y are vector spaces over a field F, then the vector spaces $\operatorname{Hom}(V \otimes W, Y)$ and $\operatorname{Hom}(V, \operatorname{Hom}(W, Y))$ are isomorphic.

Proof The function $\operatorname{Hom}(V \otimes W, Y) \rightarrow \operatorname{Bill}(V \times W, Y)$ defined by $\beta \mapsto \beta t_{V W}$ is clearly a linear transformation, and from Proposition 20.8 it follows that this is an isomorphism. Therefore, the result follows from Proposition 20.1.

Example Let V and W be vector spaces over a field F and let $\delta_{1} \in D(V)$ and $\delta_{2} \in D(W)$ be linear functionals. Then there exists a bilinear form in $\operatorname{Bill}(V \times W)$ defined by $(v, w) \mapsto \delta_{1}(v) \delta_{2}(w)$. From Proposition 20.9, it follows that there exists a linear functional $\delta_{1} \otimes \delta_{2} \in D(V \otimes W)$ satisfying $\delta_{1} \otimes \delta_{2}: \sum_{i=1}^{n} a_{i}\left[v_{i} \otimes w_{i}\right] \mapsto$ $\sum_{i=1}^{n} a_{i} \delta_{1}\left(v_{i}\right) \delta_{2}\left(w_{i}\right)$.

Example More generally, let V and W be vector spaces over a field F, let α be an endomorphism of V, and let β be an endomorphism of W. The function from $V \times W$ to $V \otimes W$ defined by

$$
(v, w) \mapsto \alpha(v) \otimes \beta(w)
$$

is a bilinear transformation and so defines an endomorphism $\alpha \otimes \beta$ of $V \otimes W$ satisfying $\alpha \otimes \beta: \sum_{i=1}^{n} a_{i}\left[v_{i} \otimes w_{i}\right] \mapsto \sum_{i=1}^{n} a_{i}\left[\alpha\left(v_{i}\right) \otimes \beta\left(w_{i}\right)\right]$.

By Proposition 5.13, we know that if $V \oplus W$ is a vector space finitely-generated over a field F, then $\operatorname{dim}(V \oplus W)=\operatorname{dim}(V)+\operatorname{dim}(W)$. We now prove the "multiplicative" analog of this assertion for tensor products.

Proposition 20.11 Let V and W be vector spaces finitely generated over a field F. Then $V \otimes W$ is also finitely generated, and $\operatorname{dim}(V \otimes W)=$ $\operatorname{dim}(V) \operatorname{dim}(W)$.

Proof Let us choose bases $\left\{v_{1}, \ldots, v_{k}\right\}$ of V and $\left\{w_{1}, \ldots, w_{n}\right\}$ of W. Then for any $v=\sum_{i=1}^{k} a_{i} v_{i} \in V$ and $w=\sum_{j=1}^{n} b_{j} w_{j} \in W$, we see that $v \otimes w=$ $\sum_{i=1}^{k} \sum_{j=1}^{n} a_{i} b_{j}\left(v_{i} \otimes w_{j}\right)$. Thus we see that $\left\{v_{i} \otimes w_{j} \mid 1 \leq i \leq k\right.$ and $\left.1 \leq j \leq n\right\}$ is a generating set for $V \otimes W$, showing that $V \otimes W$ is finitely-generated. Moreover, by Proposition 20.10 and Proposition 14.8, we see that the dimension of $V \otimes W$ is equal to the dimension of $D(V \otimes W)$ and hence to the dimension of $\operatorname{Hom}(V, D(W))$, and this is equal to the dimension of $\operatorname{Hom}(V, W)$, which is precisely $\operatorname{dim}(V) \operatorname{dim}(W)$.

In particular, we see that in the context of Proposition 20.10, the set $\left\{v_{i} \otimes w_{j} \mid\right.$ $1 \leq i \leq k$ and $1 \leq j \leq n\}$ is in fact a basis of $V \otimes W$.

Example Let F be a field and let k and n be positive integers. Then, by Proposition 20.11, we know that $\operatorname{dim}\left(F^{k} \otimes F^{n}\right)=k n=\operatorname{dim}\left(\mathcal{M}_{k \times n}(F)\right)$, and so the vector spaces $F^{k} \otimes F^{n}$ and $\mathcal{M}_{k \times n}(F)$ are isomorphic. Indeed, if we choose bases $\left\{v_{1}, \ldots, v_{k}\right\}$ of V and $\left\{w_{1}, \ldots, w_{n}\right\}$ of W, then the function $v_{i} \otimes w_{j} \mapsto v_{i} \wedge w_{j}$ extends to an isomorphism between these two spaces.

Example Let F be a field, let n be a positive integer, and let V be a vector space finitely generated over F and having a basis $\left\{v_{1}, \ldots, v_{k}\right\}$. The dimension of the vector space $\mathcal{M}_{n \times n}(V)$ over F is $n^{2} k$. Consider the bilinear transformation $f: \mathcal{M}_{n \times n}(F) \times V \rightarrow \mathcal{M}_{n \times n}(V)$ defined by $\left(\left[a_{i j}\right], v\right) \mapsto\left[a_{i j} v\right]$. By Proposition 20.9, we know that this bilinear transformation defines a linear transformation $\alpha: \mathcal{M}_{n \times n}(F) \otimes V \rightarrow \mathcal{M}_{n \times n}(V)$ and it is clear that this is an epimorphism. But, by Proposition 20.10, we see that the dimension of $\mathcal{M}_{n \times n}(F) \otimes V$ is also equal to $n^{2} k$ and so α must be an isomorphism.

Example Let F be a field and let k, n, s, and t be positive integers. Let f : $\mathcal{M}_{k \times n}(F) \times \mathcal{M}_{s \times t}(F) \rightarrow \mathcal{M}_{k s \times n t}(F)$ be the function defined by

$$
f:(A, B) \mapsto\left[\begin{array}{ccc}
a_{11} B & \ldots & a_{1 n} B \\
\vdots & \ddots & \vdots \\
a_{k 1} B & \ldots & a_{k n} B
\end{array}\right]
$$

This is a bilinear transformation of vector spaces over F and so, by Proposition 20.8, it defines a linear transformation $\alpha: \mathcal{M}_{k \times n}(F) \otimes \mathcal{M}_{s \times t}(F) \rightarrow \mathcal{M}_{k s \times n t}(F)$ which, again, can be shown to be an isomorphism. In the literature, it is usual to write $A \otimes B$ instead of $f(A, B)$. This matrix is called the Kronecker product of the matrices A and B. Kronecker products are very important in matrix theory and its applications. It is easy to see that for all such matrices A and B we have $(A \otimes B)^{T}=A^{T} \otimes B^{T}$. Moreover, if $k=n$ and $s=t$ and if A and B are nonsingular, then $A \otimes B$ is nonsingular, and $(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}$. We also note that if A and B are symmetric then so is $A \otimes B$. Furthermore, Cholesky or QR-factorizations of $A \otimes B$ come immediately from the corresponding factorizations of A and B.

As an example of the use of Kronecker products, we note the following result, established in the 1970s by the American mathematicians Michael Gauger and Christopher Byrnes: Let F be a field, let n be a positive integer, and let $A, B \in \mathcal{M}_{n \times n}(F)$. Let I be the multiplicative identity of $\mathcal{M}_{n \times n}(F)$. Then the matrices A and B are similar if and only if they have the same characteristic polynomial and the $n^{2} \times n^{2}$ matrices $A \otimes I-I \otimes A, B \otimes I-I \otimes B$, and $A \otimes I-I \otimes B$ all have the same rank.

Because of the utility of Kronecker products, one can raise the following problem: Given positive integers k, n, s, and t, and given $C \in \mathcal{M}_{k s \times n t}(\mathbb{R})$, find matrices $A \in \mathcal{M}_{k \times n}(\mathbb{R})$ and $B \in \mathcal{M}_{s \times t}(\mathbb{R})$ such that $\|C-A \otimes B\|$ is minimal. Several algorithms have been developed for finding a solution to this problem, the first by the American computer scientists Charles Van Loan and Nikos Pitsianis.

Let V, V^{\prime}, W, and W^{\prime} be vector spaces over a field F. If $\alpha \in \operatorname{Hom}\left(V, V^{\prime}\right)$ and $\beta \in \operatorname{Hom}\left(W, W^{\prime}\right)$ then we have a bilinear transformation $V \times W \rightarrow V^{\prime} \otimes W^{\prime}$ defined by $(v, w) \mapsto \alpha(v) \otimes \beta(w)$ and so, by Proposition 20.8, there exists a linear transformation from $V \otimes W$ to $V^{\prime} \otimes W^{\prime}$ satisfying $v \otimes w \mapsto \alpha(v) \otimes \beta(w)$. We will denote this linear transformation by $\alpha \otimes \beta$.

Proposition 20.12 Let V, V^{\prime}, W, and W^{\prime} be vector spaces finitely generated over a field F. Any element of the space $\operatorname{Hom}\left(V \otimes W, V^{\prime} \otimes W^{\prime}\right)$ is of the form $\sum_{i=1}^{n} \alpha_{i} \otimes \beta_{i}$, where $\alpha_{i} \in \operatorname{Hom}\left(V, V^{\prime}\right)$ and $\beta_{i} \in \operatorname{Hom}\left(W, W^{\prime}\right)$ for each $1 \leq i \leq n$.

Proof The function $(\alpha, \beta) \mapsto \alpha \otimes \beta$ from $\operatorname{Hom}\left(V, V^{\prime}\right) \times \operatorname{Hom}\left(W, W^{\prime}\right)$ to $\operatorname{Hom}(V \otimes$ $\left.W, V^{\prime} \otimes W^{\prime}\right)$ is bilinear and so defines a linear transformation $\varphi: \operatorname{Hom}\left(V, V^{\prime}\right) \otimes$ $\operatorname{Hom}\left(W, W^{\prime}\right) \rightarrow \operatorname{Hom}\left(V \otimes W, V^{\prime} \otimes W^{\prime}\right)$. We are done if we can show that φ is an isomorphism. By Propositions 8.1 and 20.11, we know that

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{Hom}\left(V, V^{\prime}\right) \otimes \operatorname{Hom}\left(W, W^{\prime}\right)\right) & =\operatorname{dim}\left(\operatorname{Hom}\left(V, V^{\prime}\right)\right) \operatorname{dim}\left(\operatorname{Hom}\left(W, W^{\prime}\right)\right) \\
& =\operatorname{dim}(V) \operatorname{dim}\left(V^{\prime}\right) \operatorname{dim}(W) \operatorname{dim}\left(W^{\prime}\right) \\
& =\operatorname{dim}(V \otimes W) \operatorname{dim}\left(V^{\prime} \otimes W^{\prime}\right) \\
& =\operatorname{dim}\left(\operatorname{Hom}\left(V \otimes W, V^{\prime} \otimes W^{\prime}\right)\right),
\end{aligned}
$$

and so it suffices to prove that φ is a monomorphism.
Indeed, assume that $\sum_{i=1}^{n} \alpha_{i} \otimes \beta_{i} \in \operatorname{ker}(\varphi)$, where the set $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ is linearly independent, and where none of the α_{i} is the 0 -function. Then $\sum_{i=1}^{n} \alpha_{i}(v) \otimes$ $\beta_{i}(w)=0_{V^{\prime} \otimes W^{\prime}}$ for all $v \in V$ and all $w \in W$. Pick $v \in V$ satisfying $\alpha_{1}(v) \neq 0_{V^{\prime}}$. By renumbering if necessary, we can assume that $\left\{\alpha_{1}(v), \ldots, \alpha_{k}(v)\right\}$ is a maximal linearly-independent subset of $\left\{\alpha_{1}(v), \ldots, \alpha_{n}(v)\right\}$. Therefore, for each $k<h \leq n$ there exists a scalar $b_{h j}$, not all of them being equal to 0 , such that $\alpha_{h}(v)=$ $\sum_{j=1}^{k} b_{h j} \alpha_{j}(v)$ and so

$$
\begin{aligned}
0_{V^{\prime} \otimes W^{\prime}} & =\sum_{i=1}^{k} \alpha_{i}(v) \otimes \beta_{i}(w)+\sum_{h=k+1}^{m}\left(\sum_{j=1}^{k} b_{h j} \alpha_{j}(v)\right) \otimes \beta_{h}(w) \\
& =\sum_{i=1}^{k} \alpha_{i}(v) \otimes \beta_{i}(w)+\sum_{j=1}^{k} \alpha_{j}(v) \otimes\left(\sum_{h=k+1}^{m} b_{h j} \beta_{h}(w)\right) \\
& =\sum_{i=1}^{k} \alpha_{i}(v) \otimes\left(\beta_{i}(w)+\sum_{h=k+1}^{m} b_{h j} \beta_{h}(w)\right) .
\end{aligned}
$$

Since the set $\left\{\alpha_{1}(v), \ldots, \alpha_{k}(v)\right\}$ is linearly independent, we must have $\beta_{i}(w)+$ $\sum_{h=k+1}^{m} b_{h j} \beta_{h}(w)=0_{W^{\prime}}$ for all $1 \leq i \leq k$ and all $w \in W$. Hence $\beta_{i}+\sum_{h=k+1}^{m} b_{h j} \beta_{h}$ is the 0 -function for all $1 \leq i \leq k$, contradicting the assumption that the set $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ is linearly independent. We therefore conclude that $\operatorname{ker}(\varphi)$ is trivial, which is what we needed to prove.

Proposition 20.13 If U, V, and W are vector spaces over a field F, then

$$
U \otimes(V \otimes W) \cong(U \otimes V) \otimes W
$$

Proof The bilinear transformation $U \times(V \otimes W) \rightarrow(U \otimes V) \otimes W$ defined by $(u, v \otimes$ $w) \mapsto(u \otimes v) \otimes w$ induces a linear transformation $\alpha: U \otimes(V \otimes W) \rightarrow(U \otimes V) \otimes W$ which satisfies $u \otimes(v \otimes w) \mapsto(u \otimes v) \otimes w$. Similarly, we have a linear transformation $\beta:(U \otimes V) \otimes W \rightarrow U \otimes(V \otimes W)$ which satisfies $(u \otimes v) \otimes w \mapsto u \otimes(v \otimes w)$. Since $\alpha \beta$ and $\beta \alpha$ are clearly the respective identity maps, we see that α must be the isomorphism we seek.

Proposition 20.14 If V and W are vector spaces over a field F, then $V \otimes W \cong W \otimes V$.

Proof The bilinear transformation $V \times W \rightarrow W \otimes V$ defined by $(v, w) \mapsto w \otimes v$ induces a linear transformation α from $V \otimes W$ to $W \otimes V$ satisfying $\alpha: v \otimes w \mapsto$ $w \otimes v$. Similarly, there exists a linear transformation $\beta: W \otimes V \rightarrow V \otimes W$ satisfying $\beta: w \otimes v \mapsto v \otimes w$. Since $\alpha \beta$ and $\beta \alpha$ are clearly the respective identity maps, we see that α must be the isomorphism we seek.

Finally, let us briefly mention two algebras built on the notion of the tensor product. The study of these algebras is beyond the scope of this book. However, the reader should be aware of them and will find it fruitful to explore them further. In what ensues, V is an arbitrary vector space over a field F.
(I) For each nonnegative integer k, we define the vector space $V^{\otimes k}$ over F by setting $V^{\otimes 0}=V$ and $V^{\otimes k}=V^{\otimes(k-1)} \otimes V$ if $k>0$. Let $T(V)=\coprod_{k=0}^{\infty} V^{\otimes k}$. We can define a product \bullet on $T(V)$ by setting $\left(v_{1} \otimes \cdots \otimes v_{k}\right) \bullet\left(v_{k+1} \otimes \cdots \otimes v_{m}\right)=$ $v_{1} \otimes \cdots \otimes v_{k+m}$ for all $v_{1}, \ldots, v_{k+m} \in V$ and extend linearly. This is an F-algebra, known as the tensor algebra of V over F. The tensor algebra has several important properties, one of which is that if K is any algebra over F then any linear transformation $\alpha: V \rightarrow K$ can be uniquely extended to a homomorphism of F algebras from $T(V)$ to K. Moreover, if W is a vector space over F then any linear transformation $\alpha: V \rightarrow W$ can be uniquely extended to a homomorphism of F-algebras from $T(V)$ to $T(W)$. (In the language of category theory, this says that $T(\cdot)$ is a functor from the category of vector spaces over F to the category of F-algebras.)
(II) Let Y be the subspace of $V \otimes V$ generated by $\{v \otimes v \mid v \in V\}$. Then a complement of Y in $V \otimes V$ is called an exterior square of V and is denoted by $V \wedge V$. This space is unique up to isomorphism. If α is the projection of $V \otimes V$ with image $V \wedge V$ and kernel Y, denote $\alpha(v \otimes w)$ by $v \wedge w$. Since $(v+w) \otimes(v+w)=v \otimes v+v \otimes w+w \otimes v+w \otimes w$ for all $v, w \in V$, we see that $v \wedge w=-w \wedge v$ for all $v, w \in V$. Therefore, if V is finitely-generated over F with basis $\left\{v_{1}, \ldots, v_{n}\right\}$, we see that $\left\{v_{i} \wedge v_{j} \mid 1 \leq i<j \leq n\right\}$ is a basis for $V \wedge V$, and hence $\operatorname{dim}(V \wedge V)=\binom{n}{2}=\frac{1}{2} n(n-1)$. This construction can be iterated to more than two factors. If $k>0$ is an integer, we can consider the subspace Y of $V^{\otimes k}$ generated by all expressions of the form $v_{1} \otimes \cdots \otimes v_{k}$ in which $v_{i}=v_{j}$ for some $i \neq j$. A complement of Y is denoted by $\bigwedge^{k} V$ and is called the k th exterior power of V. If V has finite dimension n, then $\operatorname{dim}\left(\bigwedge^{k} V\right)=\binom{n}{k}$. In particular, we note that $\bigwedge^{k} V$ is trivial when $k>n$. The subspace $\bigwedge(V)=\coprod_{k=0}^{n}\left(\bigwedge^{k} V\right)$ of $T(V)$ is known as the exterior algebra of V, and has important applications in geometry and cohomology theory. One can show that if (K, \bullet) is a unital F-algebra and if $\alpha: V \rightarrow K$ is a linear transformation satisfying the condition that $\alpha(v) \bullet \alpha(v)=0_{K}$ for all $v \in V$, then α can be uniquely extended to a homomorphism of unital F-algebras from $\bigwedge(V)$ to K.

Exercises

Exercise 1176

Let n be a positive integer and let V be the space of all polynomials in $\mathbb{C}[X]$ of degree at most n. For $p(X)=\sum a_{i} X^{i}$ and $q(X)=\sum b_{i} X^{i}$ in V, we define the nth Bézout matrix $\operatorname{Bez}_{n}(f, g) \in \mathcal{M}_{n \times x}(\mathbb{C})$ defined by f and g as follows: $\operatorname{Bez}_{n}(f, g)=\left[c_{i j}\right]$, where $c_{i j}=\sum_{k=1}^{m(i, j)}\left[a_{j+k-1} b_{i-k}-a_{i-k} b_{j+k-1}\right]$ and $m(i, j)=\min \{i, n+1-j\}$. Show that the function $\mathrm{Bez}_{n}: V \times V \rightarrow \mathcal{M}_{n \times x}(\mathbb{C})$ is a bilinear transformation satisfying the conditions that $\operatorname{Bez}_{n}(f, f)=O$ for all $f \in V$. If $n=\max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$, show that $\operatorname{Bez}_{n}(f, g)$ is nonsingular if and only if f and g have no common roots.

Étienne Bézout was an eighteenth-century French mathematician.

Exercise 1177

Find $a \in \mathbb{R}$ such that the matrices $\left[\begin{array}{lll}1 & a & a \\ 0 & 1 & a \\ 0 & 0 & 1\end{array}\right]$ and $\left[\begin{array}{rrr}1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1\end{array}\right]$ define the same bilinear form in $\operatorname{Bill}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$.

Exercise 1178

Let $V=\mathbb{Q}^{\mathbb{Q}}$. Is the function from $V \times V$ to \mathbb{Q} given by $(f, g) \mapsto(f+g)\left(\frac{1}{2}\right)$. $(f-g)(2)$ a bilinear form?

Exercise 1179

Let F be a field and let $u: \mathbb{N} \times \mathbb{N} \rightarrow F$ be an arbitrary function. Is the function $f_{u}: F[X] \times F[X] \rightarrow F[X]$ defined by

$$
f_{u}:\left(\sum_{i=0}^{\infty} a_{i} X^{i}, \sum_{j=0}^{\infty} b_{j} X^{j}\right) \mapsto \sum_{k=0}^{\infty}\left(\sum_{i+j=k} u(i, j) a_{i} b_{j} X^{k}\right)
$$

a bilinear transformation?

Exercise 1180

Let B be the canonical basis for the vector space $V=\mathbb{R}^{2}$. Find a bilinear form $f \in \operatorname{Bill}(V \times V)$ satisfying the condition $T_{B B}(f)=\left[\begin{array}{rr}2 & 2 \\ 4 & -1\end{array}\right]$.

Exercise 1181

Let B be the canonical basis for \mathbb{R}^{3}. Find $T_{B B}(f)$, where $f: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ is the bilinear form defined by

$$
f:\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right],\left[\begin{array}{l}
a^{\prime} \\
b^{\prime} \\
c^{\prime}
\end{array}\right]\right) \mapsto a a^{\prime}+2 b c^{\prime}+c c^{\prime}+2 c b^{\prime}-a b^{\prime}+b b^{\prime}-b a^{\prime}
$$

Exercise 1182

Let $f: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the bilinear form defined by

$$
f:(v, w) \mapsto v \cdot\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right] w .
$$

Find the matrix representing f with respect to the basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$ of \mathbb{R}^{3}.

Exercise 1183

Let V and W be vector spaces over a field F and let $\alpha \in \operatorname{Hom}(V, W)$. For each $g \in \operatorname{Bill}(W \times W)$, let us define the bilinear form $g_{\alpha} \in \operatorname{Bill}(V \times V)$ by setting $g_{\alpha}:\left(v, v^{\prime}\right) \mapsto g\left(\alpha(v), \alpha\left(v^{\prime}\right)\right)$. Is the function $g \mapsto g_{\alpha}$ a linear transformation?

Exercise 1184

Let F be a field of characteristic other than 2 and let V be a vector space over F. Let $f \in \operatorname{Bill}(V \times V)$. Show that $f(v, v) \neq 0$ for all $0_{V} \neq v \in V$ if and only if for every nontrivial subspace W of V and for every $0_{V} \neq w \in W$ there exists a vector $w^{\prime} \in W$ satisfying $f\left(w, w^{\prime}\right) \neq 0$.

Exercise 1185

Show that if V and W are vector spaces finitely generated over a field F of unequal dimensions, then there is no nondegenerate $f \in \operatorname{Bill}(V \times W)$.

Exercise 1186

Let F be a field of characteristic 0 and let the bilinear form $f \in \operatorname{Bill}\left(F^{3} \times F^{3}\right)$ be defined by $f:\left(\left[\begin{array}{l}a \\ b \\ c\end{array}\right],\left[\begin{array}{l}a^{\prime} \\ b^{\prime} \\ c^{\prime}\end{array}\right]\right) \mapsto a a^{\prime}+b b^{\prime}-c c^{\prime}$. Is there a nontrivial subspace W of V satisfying $f\left(w, w^{\prime}\right)=0$ for all $w, w^{\prime} \in W$?

Exercise 1187

Let $f \in \operatorname{Bill}\left(\mathbb{R}^{4} \times \mathbb{R}^{4}\right)$ be defined by $f:(v, w) \mapsto v \cdot(A w)$, where

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] .
$$

Find a basis $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ of \mathbb{R}^{4} satisfying the condition that $f\left(v_{i}, v_{i}\right)=0$ for all $1 \leq i \leq 4$.

Exercise 1188
Let $f: \mathcal{M}_{n \times n}(F) \times \mathcal{M}_{n \times n}(F) \rightarrow F$ be the function defined by $f:(A, B) \mapsto$ $\operatorname{tr}(A B)$, where F is a field and n is a positive integer. Is f a bilinear form? Is f symmetric?

Exercise 1189
Let n be a positive integer and let $f: \mathcal{M}_{n \times n}(\mathbb{C}) \times \mathcal{M}_{n \times n}(\mathbb{C}) \rightarrow \mathbb{C}$ be the function defined by $f:(A, B) \mapsto n \cdot \operatorname{tr}(A B)-\operatorname{tr}(A) \operatorname{tr}(B)$. Show that f is a symmetric bilinear form.

Exercise 1190

Let V be a vector space over a field F and let $f \in \operatorname{Bill}(V \times V)$ be a symmetric bilinear form. Let $Y=F \times V$ and define an operation \bullet on Y by setting

$$
\left[\begin{array}{l}
a \\
v
\end{array}\right] \bullet\left[\begin{array}{c}
b \\
w
\end{array}\right]=\left[\begin{array}{c}
a b+f(v, w) \\
a w+b v
\end{array}\right] \quad \text { for all } a, b \in F \text { and all } v, w \in V
$$

Show that (Y, \bullet) is a Jordan algebra.

Exercise 1191

Let V be a vector space over \mathbb{Q}. Is the function $V \times V \rightarrow V$ defined by $\left(v, v^{\prime}\right) \mapsto$ $v+v^{\prime}$ a bilinear transformation?

Exercise 1192
Are the matrices $\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$ and $\frac{1}{25}\left[\begin{array}{rrr}25 & -5 & 35 \\ 0 & -3 & 21 \\ 0 & -4 & 28\end{array}\right]$ in $\mathcal{M}_{3 \times 3}(\mathbb{R})$ congruent?

Exercise 1193
Find an upper-triangular matrix in $\mathcal{M}_{3 \times 3}(\mathbb{R})$ congruent to $\left[\begin{array}{rrr}1 & 0 & -2 \\ -1 & 1 & 0 \\ 0 & -2 & 4\end{array}\right]$ or show that there is no such matrix.

Exercise 1194

Let F be a field and let n be a positive integer. A matrix $A=\left[a_{i j}\right] \in \mathcal{M}_{n \times n}(F)$ is an upper Hessenberg matrix if and only if $a_{i j}=0$ whenever $i-j \geq 2$. Is every matrix in $\mathcal{M}_{n \times n}(\mathbb{R})$ necessarily congruent to an upper Hessenberg matrix?

Exercise 1195

Let F be a field. Show that every upper triangular matrix in $\mathcal{M}_{3 \times 3}(F)$ is congruent to a lower triangular matrix.

Exercise 1196

Let n be a positive integer and let A be a nonsingular symmetric matrix in $\mathcal{M}_{n \times n}(\mathbb{C})$. Show that A is congruent to A^{-1}.

Exercise 1197
Find a matrix $P \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ such that the matrix $P\left[\begin{array}{lll}2 & 1 & 3 \\ 1 & 0 & 1 \\ 3 & 1 & 3\end{array}\right] P^{T}$ is diagonal.

Exercise 1198
Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right] \in \mathcal{M}_{4 \times 4}(\mathbb{R})$. Find a nonsingular matrix $P \in \mathcal{M}_{4 \times 4}(\mathbb{R})$ such that $P A P^{T}$ is diagonal.

Exercise 1199

Find a diagonal matrix in $\mathcal{M}_{4 \times 4}(\mathbb{R})$ congruent to the matrix

$$
\left[\begin{array}{rrrr}
1 & 2 & 3 & 2 \\
2 & 3 & 5 & 8 \\
3 & 5 & 8 & 10 \\
2 & 8 & 10 & -8
\end{array}\right] .
$$

Exercise 1200
Is the matrix $\left[\begin{array}{ccc}1 & i & 1+i \\ i & 0 & 2-i \\ 1+i & 2-i & 10+2 i\end{array}\right] \in \mathcal{M}_{3 \times 3}(\mathbb{C})$ congruent to I ?

Exercise 1201
Let n be a positive integer and let α be a positive-definite endomorphism of \mathbb{R}^{n} represented with respect to the canonical basis by the matrix A. If A^{\prime} is a matrix congruent to A, does it too represent a positive-definite endomorphism of \mathbb{R}^{n} with respect to the canonical basis?

Exercise 1202

Let V be a vector space finitely generated over be a field F of characteristic other than 2. If $f \in \operatorname{Bill}(V \times V)$ is symmetric and not the 0 -function, show that there exists a vector $v \in V$ satisfying $f(v, v) \neq 0$.

Exercise 1203

Let V be a vector space finitely generated over be a field F of characteristic other than 2. If $f \in \operatorname{Bill}(V \times V)$, show that $f(v, v)=0$ for all $v \in V$ if and only if $f(v, w)=-f(w, v)$ for all $v, w \in V$.

Exercise 1204

Let n be a positive integer, let F be a field, and let $A \in \mathcal{M}_{n \times n}(F)$. Show that there exists a symmetric matrix $B \in \mathcal{M}_{n \times n}(F)$ satisfying $v \cdot A v=v \cdot B v$ for all $v \in F^{n}$.

Exercise 1205
Find a bilinear form $f \in \operatorname{Bill}\left(\mathbb{R}^{3} \times\left[\begin{array}{r}1 \\ 3 \\ -1 \\ 3\end{array}\right] \mathbb{R}^{3}\right)$ which defines the quadratic
form $\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto a^{2}-2 a b+4 a c-2 b c+2 c^{2}$.

Exercise 1206

Let $f \in \operatorname{Bill}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ be the symmetric bilinear form defined by the matrix $\left[\begin{array}{rrr}-3 & 1 & 0 \\ 1 & -6 & 1 \\ 0 & 1 & 7\end{array}\right]$. Find the quadratic form defined by f.

Exercise 1207
Let $f \in \operatorname{Bill}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ be the symmetric bilinear form defined by the matrix $\left[\begin{array}{rrr}2 & -1 & 5 \\ -1 & 0 & \frac{1}{3} \\ 5 & \frac{1}{3} & -3\end{array}\right]$. Find the quadratic form defined by f.

Exercise 1208

Find a symmetric bilinear form $f \in \operatorname{Bill}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ which defines the quadratic form $\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \mapsto 2 a b+4 a c+6 b c$.

Exercise 1209

Let F be a field of characteristic other than 2, and let V be a vector space over F. Let $q: V \rightarrow F$ be a function satisfying the condition that $q(v+w)+q(v-w)=$ $2 q(v)+2 q(w)$ for all $v, w \in V$. Show that the function $f: V \times V \rightarrow F$ defined by $f:(v, w) \mapsto \frac{1}{4}[q(v+w)-q(v-w)]$ is a symmetric bilinear form.

Exercise 1210
Let V be a vector space over a field F of characteristic other than 2, and let $f \in \operatorname{Bill}(V \times V)$ be a symmetric bilinear form which defines a quadratic form $q: V \rightarrow F$. Show that

$$
q(u+v+w)=q(u+v)+q(u+w)+q(v+w)-q(u)-q(v)-q(w)
$$

for all $u, v, w \in V$.

Exercise 1211

Let V be a vector space over a field F. Show that $V \cong F \otimes V$.

Exercise 1212
Let V and W be vector spaces over a field F. Let $x \in V \otimes W$ be written in the form $x=\sum_{i=1}^{n} v_{i} \otimes w_{i}$, where n is minimal in the sense that there is no way to express x in the form $\sum_{i=1}^{k} v_{i}^{\prime} \otimes w_{i}^{\prime}$ for any $k<n$. Show that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly-independent subset of V and that $\left\{w_{1}, \ldots, w_{n}\right\}$ is a linearly-independent subset of W.

Exercise 1213

Let K be a field containing F as a subfield. If V is a vector space over F, show that $K \otimes V$ is a vector space over K.

Exercise 1214

Let V be a vector space of finite dimension n over a field F and let Y be the subspace of $V \otimes V$ generated by all elements of the form $v \otimes v^{\prime}-v^{\prime} \otimes v$, where $v, v^{\prime} \in V$. Find the dimension of Y.

Exercise 1215

Let V and W be finite dimensional vector spaces over a field F. Let $v, v^{\prime} \in V$ and $w, w^{\prime} \in W$ be vectors satisfying the condition $v \otimes w=v^{\prime} \otimes w^{\prime}$ and this is not the identity element of $V \otimes W$ with respect to addition. Show that there exists a scalar $c \in F$ such that $v=c v^{\prime}$ and $w^{\prime}=c w$.

Exercise 1216

Let F be a field and, for all $A, B \in \mathcal{M}_{2 \times 2}(F)$, denote the Kronecker product of A and B by $A \otimes B$. If $\left\{H_{1}, \ldots, H_{4}\right\}$ is the canonical basis for $\mathcal{M}_{2 \times 2}(F)$, is $\left\{H_{i} \otimes H_{j} \mid 1 \leq i, j \leq 4\right\}$ a basis for $\mathcal{M}_{4 \times 4}(F)$.

Exercise 1217

Find the numerical range of the quadratic form $q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $q: v \mapsto$ $v^{T}\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] v$.

Exercise 1218

Let n be a positive integer and let F be a field. If $A \in \mathcal{M}_{n \times n}(F)$ is a magic matrix, is the same true for $A \otimes A \in \mathcal{M}_{2 n \times 2 n}(F)$?

Exercise 1219
Let F be a field and let k and n be positive integers. If matrices $A \in \mathcal{M}_{k \times k}(F)$ and $B \in \mathcal{M}_{n \times n}(F)$ have eigenvalues a and b, respectively, show that $a b$ is an eigenvalue of $A \otimes B$.

Exercise 1220
Let F be a field and let k and n be positive integers. If matrices $A \in \mathcal{M}_{k \times k}(F)$ and $B \in \mathcal{M}_{n \times n}(F)$ have eigenvalues a and b respectively, find a matrix $C \in \mathcal{M}_{k n \times k n}(F)$ with eigenvalue $a+b$.

Exercise 1221

Let F be a field of characteristic other than 2 and let V be a vector space over F. Find the minimal polynomial of the endomorphism α of $V \otimes V$ defined by $\alpha: \sum_{i=1}^{n} a_{i}\left(v_{i} \otimes w_{i}\right) \mapsto \sum_{i=1}^{n} a_{i}\left(w_{i} \otimes v_{i}\right)$.

Exercise 1222

Let F be a field, let k, n, s, and t be positive integers, and consider matrices $A \in \mathcal{M}_{k \times n}(F)$ and $B \in \mathcal{M}_{s \times t}(F)$. Is the rank of $A \otimes B$ necessarily equal to the product of the ranks of A and B ?

Exercise 1223

Let $V, V^{\prime}, W, W^{\prime}$ be vector spaces over a field F and let $\alpha: V \rightarrow V^{\prime}$ and $\beta: W \rightarrow W^{\prime}$ be monic linear transformations. Let $\alpha \otimes \beta$ be the linear transformation from $V \otimes V^{\prime}$ to $W \otimes W^{\prime}$ defined by $\alpha \otimes \beta: \sum_{i=1}^{n} a_{i}\left(v_{i} \otimes v_{i}^{\prime}\right) \mapsto$ $\sum_{i=1}^{n} a_{i}\left[\alpha\left(v_{i}\right) \otimes \beta\left(v_{i}^{\prime}\right)\right]$. Is $\alpha \otimes \beta$ monic?

Exercise 1224

Let F be a field and let (K, \bullet) and $(L, *)$ be F-algebras. Define an operation \diamond on $V \otimes W$ by setting $(v \otimes w) \diamond\left(v^{\prime} \otimes w^{\prime}\right)=\left(v \bullet v^{\prime}\right) \otimes\left(w * w^{\prime}\right)$ for all $v, v^{\prime} \in K$ and $w, w^{\prime} \in L$. Is $(K \otimes L, \diamond)$ an F-algebra?

Exercise 1225

Let $V=\mathbb{R}^{2}$ and let $W=V \otimes V$. If $w \in W$ is normal, do there necessarily exist normal vectors $v, v^{\prime} \in V$ such that $w=v \otimes v^{\prime}$?

Exercise 1226

Let V be a vector space over \mathbb{R}. Show that the complexification of V is isomorphic to $\mathbb{C} \otimes V$.

Exercise 1227

Let V be an inner product space over \mathbb{R} having a basis $\left\{v_{i} \mid i \in \Omega\right\}$ and let W be an inner product space over \mathbb{R} having a basis $\left\{w_{j} \mid j \in \Lambda\right\}$ Define a function $\mu:(V \otimes W) \times(V \otimes W) \rightarrow \mathbb{R}$ by setting

$$
\begin{gathered}
\mu:\left(\sum_{i \in \Omega} \sum_{j \in \Lambda} a_{i j}\left(v_{i} \otimes w_{j}\right), \sum_{i \in \Omega} \sum_{j \in \Lambda} b_{i j}\left(v_{i}^{\prime} \otimes w_{j}^{\prime}\right)\right) \\
\mapsto \sum_{i \in \Omega} \sum_{j \in \Lambda} a_{i j} b_{i j}\left[\left\langle v_{i}, v_{i}^{\prime}\right\rangle+\left\langle w_{j}, w_{j}^{\prime}\right\rangle\right]
\end{gathered}
$$

Is μ an inner product on $V \otimes W$?

Exercise 1228

Let V be a vector space over a field F and let $\alpha \in \operatorname{End}(V)$. Is the function $V \wedge V \rightarrow V \wedge V$ defined by $\sum_{i=1}^{n} c_{i}\left(v_{i} \wedge w_{i}\right) \mapsto \sum_{i=1}^{n} c_{i}\left(\alpha\left(v_{i}\right) \wedge \alpha\left(w_{i}\right)\right)$ a linear transformation?

Exercise 1229
Let n be a positive integer and let $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ be orthogonal matrices. Is their Kronecker product $A \otimes B$ an orthogonal matrix?

Exercise 1230

Let n be a positive integer and let $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ be permutation matrices. Is their Kronecker product $A \otimes B$ a permutation matrix?

Exercise 1231

Let k and n be positive integers and let F be a field. Let $A \in \mathcal{M}_{k \times k}(F)$ and let $B \in \mathcal{M}_{n \times n}(F)$. Is it necessarily true that $\operatorname{tr}(A \otimes B)=\operatorname{tr}(A) \operatorname{tr}(B)$?

Exercise 1232

Let k and n be positive integers and let F be a field. For $A \in \mathcal{M}_{k \times k}(F)$ and $B \in \mathcal{M}_{n \times n}(F)$, find a matrix $C \in \mathcal{M}_{k n \times k n}(F)$ such that $e^{C}=e^{A} \otimes e^{B}$.

Exercise 1233
The matrix $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ plays an important part in quantum information theory. Write this matrix as a sum of Kronecker products of $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and the three Pauli matrices.

Summary of Notation

$\operatorname{Re}(z), 7$
im(z), 7
$\bar{z}, 8$
$\mathbb{Q}(\sqrt{p}), 8$
$\mathbb{Z} /(p), 8$
$\operatorname{GF}(p), 8$
$\prod_{i \in \Omega} V_{i}, 23$
$\mathcal{M}_{k \times n}(V), 24$
$V^{\Omega}, 23$
$\chi_{B}, 24$
$\coprod_{i \in \Omega} V_{i}, 26$
$V^{(\Omega)}, 26$
Fv, 26
$C(a, b), 26$
FD, 27
$\operatorname{affh}(D), 29$
$\sum_{i \in \Omega} W_{i}, 30$
$K^{-}, 42$
$v \times w, 42$
$K^{+}, 43$
$\operatorname{deg}(f), 44$
$F[X], 44$
$F[g(X)], 45$
$\Phi_{q}(X), 48$
$\mu(d), 48$
$F\left[X_{1}, \ldots, X_{n}\right], 50$
$\operatorname{dim}(V), 71$
$U \oplus W, 74$
$\bigoplus_{i \in \Omega} W_{i}, 74$
$\operatorname{gr}(f), 91$
$\operatorname{Hom}(V, W), 92$
$\operatorname{ker}(\alpha), 94$
$\operatorname{im}(\alpha), 94$
$A^{T}, 95$
$\operatorname{Aff}(V, W), 96$
$\cong, 97$
rk $(\alpha), 98$
null $(\alpha), 98$
$V / W, 110$
$\operatorname{End}(V), 113$
$\sigma_{c}, 113$
$\operatorname{Aut}(V), 115$
$\varepsilon_{h k}, 116$
$\varepsilon_{h ; c}, 116$
$\varepsilon_{h k ; c}, 116$
$\Phi_{B D}, 133$
$v \odot w, 136$
$v \wedge w, 136$
$E_{h k}, 153$
$E_{h ; c}, 153$
$E_{h k ; c}, 153$
$S_{n}, 224$
$\operatorname{sgn}(\pi), 224$
|A|, 225
$\operatorname{adj}(A), 235$
$\operatorname{spec}(\alpha), 255$
$\rho(A), 258$
$\operatorname{comp}(p), 265$
$A \sim B, 266$
$\operatorname{Ann}(v), 272$
$m_{A}(X), 274$
$F[\alpha] v_{0}, 297$
LR(V), 298
D(V), 317
$\operatorname{tr}(A), 318$
$\langle v, w\rangle, 333$
$v \cdot w, 334$
$D^{H}, 334$
$\|v\|, 338$
$e^{A}, 353$
$\cos (A), 357$
$\sin (A), 357$
$v \perp w, 369$
$W^{\perp}, 374$
$\alpha^{*}, 383$
$R_{\alpha}, 400$
$\mathrm{SO}(n), 424$
$\sqrt{\alpha}, 430$
$\alpha^{+}, 442$
$\operatorname{Bil}(V \times W, Y), 453$
$f^{o p}, 453$
$\operatorname{Bil}(V \times W), 455$
$T_{B D}(f), 456$
$v \perp_{f} w, 458$
$A^{\perp_{f}}, 458$
$q(v), 461$
$V \otimes W, 465$
$v \otimes w, 465$
$A \otimes B, 467$
$V \wedge V, 470$
$V^{\otimes k}, 470$
$\bigwedge^{k} V, 470$
$\bigwedge(V), 470$

Index to Thumbnail Photos

A

Niels Henrik Abel, 15, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Robert Adrain, 448, Edgar Fahs Smith Collection; reproduced with the kind permission of the University of Pennsylvania Libraries
A. Adrian Albert, 44, courtesy of the American Mathematical Society

Shimshon Amitsur, 238, source unknown
George Andrews, 230, with kind permission of George E. Andrews
Apollonius of Perga, 363, source unknown
Jean-Robert Argand, 7, Bibliothèque nationale de France
Emil Artin, 334, Archives of the Mathematisches Forschungsinstitut Oberwolfach

B

Stefan Banach, 342, Stefan Banach homepage http://banach.univ.gda.pl/
Erwin Bareiss, 236, with kind permission of The Daily Northwestern
Giusto Bellavitis, 7, source unknown
Eugenio Beltrami, 432, source unknown
Adi Ben-Israel, 445, with kind permission of Adi Ben-Israel
Sergei Natanovich Bernstein, 105, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Wilhelm Bessel, 381, with kind permission of the Leibniz-Institut für Astrophysik Potsdam
Étienne Bézout, 471, source unknown
Jacques Philippe Binet, 139, source unknown
George D. Birkhoff, 148, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Andreas Blass, 69, courtesy of A. Blass
Maxime Bôcher, 151, Harvard University Archives, HUP
Bernard Bolzano, 23, with kind permission of Frommann-Holzboog Publishers
Emile Borel, 239, source unknown
Raoul Bott, 72, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Albert H. Bowker, 345, The City University of New York
Alfred Brauer, 352, Archives of the Mathematisches Forschungsinstitut Oberwolfach

Viktor Yakovlevich Bunyakovsky, 337, source unknown
William Burnside, 280, source unknown

C

Giovanni Domenico Cassini, 352, source unknown
Eugène Catalan, 173, © Collections artistiques de l'Université de Liège; reprinted with kind permission
Augustin-Louis Cauchy, 227, source unknown
Arthur Cayley, 133, courtesy of Special collections, Fine Arts Library, Harvard University
Pafnuty Lvovich Chebyshev, 371, source unknown
Claude Chevalley, 465, Archives of the Mathematisches Forschungsinstitut Oberwolfach
André-Louis Cholesky, 407, Collections École polytechnique (SABIX)
William Kingdon Clifford, 66, courtesy of the London Mathematical Society
Richard Courant, 401, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Gabriel Cramer, 237, source unknown

D

Jean d'Alembert, 256, source unknown
Richard Dedekind, 6, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Abraham de Moivre, 298, source unknown
Augustus DeMorgan, 6, source unknown
René Descartes, 7, Harvard Arts Museum
Leonard Dickson, 40, courtesy of the American Mathematical Society
Jean Dieudonné, 269, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Paul Dirac, 322, source unknown
Charles Lutwidge Dodgson, 230, source unknown

E

Arthur Eddington, 139, source unknown
Ferdinand Eiseinstein, 48, source unknown
Leonhard Euler, 7, ETH-Bibliothek Zurich, Image Archive

F

Dimitri Konstantinovich Fadeev, 203, with kind permission of Sergei Vostok
Vera Nikolaevna Fadeeva, 203, with kind permission of Dr. Vera Simonova
Leonardo Fibonacci, 299, source unknown
Ernst Fischer, 401, Archives of the Mathematisches Forschungsinstitut Oberwolfach Joseph Fourier, 153, Smithsonian Institution
John G.F. Francis, 379, with kind permission of Frank Uhlig
Maurice Fréchet, 317, Archives of the Mathematisches Forschungsinstitut Oberwolfach

Ivar Fredholm, 326, source unknown
Georg Frobenius, 271, Archives of the Mathematisches Forschungsinstitut Oberwolfach

G

Galileo Galilei, 23, © National Maritime Museum, Greenwich, London
Evariste Galois, 9, Bibliothèque nationale de France
Carl Friedrich Gauss, 196, Archives of the Mathematisches Forschungsinstitut Oberwolfach © Universität Göttingen, Sammlung Sternwarte
Israil Moisseevich Gelfand, 450, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Semyon Aranovich Gershgorin, 349, source unknown
Josiah Willard Gibbs, 22, Office of Public Affairs, Yale University, 1879-1989 (inclusive). Manuscripts \& Archives, Yale University
James Wallace Givens, 420, with kind permission of Walter Gander
Gene H. Golub, 432, Wikimedia commons
Jorgen Gram, 336, source unknown
Hermann Grassman, 22, source unknown
Thomas Greville, 445, with kind permission of Mrs Greville
Alexandre Grothendieck, 345, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Louis Guttman, 155, with kind permission of Nurit Guttman

H

Alfréd Haar, 376, source unknown
Jacques Hadamard, 317, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Hans Hahn, 342, source unknown
Georg Hamel, 69, courtesy of Professor Richard von Mises
Richard Hamming, 352, Special Collections \& Archives, Dudley Knox Library, Naval Postgraduate School
Hermann Hankel, 241, source unknown
Felix Hausdorff, 68, Hausdorff Research Institute for Mathematics
Oliver Heaviside, 22, © the estate of Oliver Heaviside, reproduced with kind permission of Alan Heather
Kurt Hensel, 274, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Charles Hermite, 73, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Karl Hessenberg, 473, with kind permission of Karl Hessenberg's daughter, Brigitte Bossert
Magnus Hestenes, 301, Archives of the Mathematisches Forschungsinstitut Oberwolfach
David Hilbert, 160, Archives of the Mathematisches Forschungsinstitut Oberwolfach
George William Hill, 189, courtesy of the American Mathematical Society

Otto Hölder, 345, UAL, FS N 191
Heinz Hopf, 72, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Alston Householder, 423, source unknown
Loo-Keng Hua, 12, source unknown
Adolph Hurwitz, 454, ETH-Bibliothek Zurich, Image Archive

J

Carl Gustav Jacob Jacobi, 205, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Nathan Jacobson, 44, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Camille Jordan, 432, source unknown
Pascual Jordan, 44, the estate of Friedrich Hund, with kind permission of Gerhard Hund
Wilhelm Jordan, 196, source unknown

K

William Kahan, 432, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Anatoli Alexeevich Karatsuba, 46, with kind permission of Ekatherina Karatsuba
Samuel Karlin, 271, source unknown
Wilhelm Karl Joseph Killing, 42, source unknown
Helmut Kneser, 49, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Leopold Kronecker, 6, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Alexei Nikolaevich Krylov, 297, source unknown
Vera Kublanovskaya, 379, with kind permission of Vera Kublanovskaya

L

Joseph-Louis Lagrange, 163, ETH-Bibliothek Zurich, Image Archive
Edmund Laguerre, 191, source unknown
Cornelius Lanczos, 301, source unknown
Adrien-Marie Legendre, 371, Bibliothèque de l'Institut de France
Tullio Levi-Civita, 465, source unknown
Yaakov Levitzki, 238, with kind permission of Alexander Levitzki
Joseph Liouville, 256, source unknown
Dudley Littlewood, 42, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Liu Hui, 191, source unknown
Karl Loewner, 404, source unknown
Alfred Loewy, 266, source unknown
Hendrick Antoon Lorentz, 463, Museum Boerhaave Leiden

M

Cyrus C. Macduffee, 266, © Mathematical Association of America 2011; all rights reserved
Colin Maclaurin, 237, Maclaurin, C., A Treatise of Fluxions, T.W. and T. Ruddimans, 1742
Andrei Andreyevich Markov, 151, source unknown
James Clerk Maxwell, 22, courtesy of Special collections, fine Arts Library, Harvard University
William Henry Metzler, 354, source unknown
John Milnor, 72, Archives of the Mathematisches Forschungsinstitut Oberwolfach Hermann Minkowski, 340, ETH-Bibliothek Zurich, Image Archive
Cleve Moler, 380, courtesy of The MathWorks, Inc.
Eliakim Hastings Moore, 9, courtesy of the American Mathematical Society

N

Mark Aronovich Naimark, 450, courtesy of the American Mathematical Society Alexander Ivanovich Nekrasov, 206, source unknown
Rolf Nevanlinna, 403, source unknown
Emmy Noether, 40, Bryn Mawr College Library, Special Collections

0

Andrew Odlyzko, 301, with kind permission of Andrew Odlyzko
Alexander Markovich Ostrowski, 47, Archives of the Mathematisches Forschungsinstitut Oberwolfach

P

Luca Pacioli, 299, source unknown
Henri Padé, 239, source unknown
Giuseppe Peano, 67, Department of Mathematics, University of Torino, Italy, www. peano2008.unito.it
Benjamin Peirce, 40, Harvard University Archives, HUP
Charles Sanders Peirce, 40, Harvard University Archives, HUP
Roger Penrose, 441, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Oskar Perron, 271, Archives of the Mathematisches Forschungsinstitut Oberwolfach Johann Pfaff, 228, source unknown
Georg Pick, 403, source unknown
Salvadore Pincherle, 89, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Jules Henri Poincaré, 189, The University of Chicago Yerkes Observatory, courtesy AIP Emilio Segre Visual Archives, Physics Today Collection and Tenn Collection

R

Gregorio Ricci-Curbastro, 465, source unknown
Frigyes Riesz, 383, source unknown
Heinz Rutishauser, 379, with kind permission of Walter Gander

S

Yousef Saad, 375, with kind permission of Y. Saad
Jean Claude Saint-Venant, 22, source unknown
Heinrich Scherk, 227, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Erhardt Schmidt, 26, Archives of the Mathematisches Forschungsinstitut Oberwolfach

Isaac Jacob Schoenberg, 56, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Otto Schreier, 334, source unknown
Martin Schultz, 375, with kind permission of Martin Schultz
Issai Schur, 161, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Hermann Schwarz, 337, ETH-Bibliothek Zurich, Image Archive
Takazaku Seki Kowa, 191, source unknown
Kenjiro Shoda, 320, source unknown
Thomas Simpson, 187, source unknown
Henry Smith, 462, source unknown
Sergei Lvovich Sobolev, 359, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Richard V. Southwell, 207, Neville Miles, Imperial College London
Ernst Steinitz, 6, Archives of the Mathematisches Forschungsinstitut Oberwolfach
G. W. Stewart, 380, with kind permission of Eric de Sturler

Eduard Stiefel, 301, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Marshall Stone, 425, courtesy of the American Mathematical Society
Volker Strassen, 166, with kind permission of Volker Strassen
John William Strutt (Lord Rayleigh), 401, Science Photo Library
Charles-François Sturm, 256, source unknown
Peter Swinnerton-Dyer, 169, with kind permission of Sir Peter Swinnerton-Dyer
James Joseph Sylvester, 24, source unknown

T

Henry Taber, 318, Clarke University Archives
William Guthrie Tait, 66, courtesy of Special collections, Fine Arts Library, Harvard University
John Tate, 280, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Olga Taussky-Todd, 349, Archives of the Mathematisches Forschungsinstitut Oberwolfach

Angus Taylor, 72, with kind permission of UC Berkeley
William Thurston, 271, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Otto Toeplitz, 203, Archives of the Mathematisches Forschungsinstitut Oberwolfach Alan Turing, 169, National Portrait Gallery

V

Alexandre-Théophile Vandermonde, 163, source unknown
Ferdinand von Lindemann, 73, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Richard von Mises, 281, Archives of the Mathematisches Forschungsinstitut Oberwolfach
John von Neumann, 210, courtesy of the American Mathematical Society

W

Heinrich Weber, 6, Archives of the Mathematisches Forschungsinstitut Oberwolfach Joseph Henry Wedderburn, 40, source unknown
Karl Weierstrass, 455, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Hermann Weyl, 71, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Hassler Whitney, 57, The Shelby White and Leon Levy Archives Center, Institute for Advanced Study, Princeton, NJ, USA; photographer Herman Landshoff
Norbert Wiener, 342, Archives of the Mathematisches Forschungsinstitut Oberwolfach
James Wilkinson, 281, courtesy of NPL
Shmuel Winograd, 166, with kind permission of the Department of Computer Science, City University of Hong Kong
Ernst Witt, 462, Archives of the Mathematisches Forschungsinstitut Oberwolfach
Josef Wronski, 229, source unknown

Y

David M. Young, Jr., 207, Archives of the Mathematisches Forschungsinstitut Oberwolfach

[^13]
Index

A

Addition
in a field, 5
vector, 21
Adjacency matrix, 399
Adjoint matrix, 235
Adjoint transformation, 383
Affine combination, 29
Affine hull, 29
Affine subset, 96
Affine transformation, 96
Algebra, 39
anticommutative, 39
associative, 39
baric, 318
Baxter, 90
Cayley, 336
commutative, 39
convolution, 41
division, 52
entire, 44
exterior, 470
Jordan, 43
Lie, 41
optimization, 9
quaternion, 66
tensor, 470
unital, 39
Algebraic, 72
Algebraic degree, 110
Algebraic multiplicity, 270
Algebraically closed, 49
Almost positive semidefinite, 415
Alphabet, 23
Amitsur-Levitzki Theorem, 238
Angle, 369
Annihilate, 272
Anti-Hermitian matrix, 413
Anticommutative algebra, 39
Antitrace, 329

Apollonius' identity, 363
Arnoldi process, 375
Associative algebra, 39
Automorphism, 115
elementary, 115
of algebras, 115
unitary, 419
Axiom of Choice, 2

B

Band matrix, 149
Baric algebra, 318
Basis, 63
canonical, 64, 300
dual, 323
Hamel, 69
Baxter algebra, 90
Bernstein function, 105
Bessel's identity, 380
Best approximation, 447
Bijective, 2
Bilinear form, 455
nondegenerate, 455
Bilinear transformation, 453
skew-symmetric, 453
symmetric, 453
Binet-Cauchy identity, 361
Binomial formula, 17
Block form, 138
Bounded, 67, 340
Bounded support, 393
Bra-ket product, 136
Brauer's Theorem, 351
Bunch-Kaufman algorithm, 408
Burnside's Theorem, 279

C

Canonical basis, 64, 300
Cantor set, 69
Cartesian product, 2
Cassini oval, 351

Cauchy-Schwarz-Bunyakovsky Theorem, 337
Cayley algebra, 336
Cayley representation, 440
Cayley-Hamilton Theorem, 276
Chain, 61
Chain subset, 61
Change-of-basis matrix, 162
Characteristic, 9
Characteristic function, 24
Characteristic polynomial, 264, 298
generalized, 282
Characteristic value, 255
Characteristic vector, 255
Chebyshev polynomial, 370
Cholesky decomposition, 406
Circuit, 71
Circulant matrix, 172
Co-independent hyperplanes, 332
Coefficient, 44
Fourier, 378
leading, 44
Taylor, 117
Coefficient matrix, 191
Column equivalent, 161
Column space, 199
Combination affine, 29
linear, 27
uniform, 38
zero-sum, 38
Commutative algebra, 39
Commuting pair, 40
Companion matrix, 265
Complement, 75 orthogonal, 374
Completely reducible, 49
Complex conjugate, 8
Complex Hadamard matrix, 388
Complex number, 7
Complex polarization identity, 363
Complexification, 72
Condensation, method of, 230
Condition number, 210 spectral, 432
Congruent matrices, 457
Conjugate, complex, 8
Conjugate transpose, 334
Continuant, 243
Convex subset, 412
Convolution algebra, 41
Copositive, 418
Coproduct
direct, 26
Courant-Fischer Minimax Theorem, 400
Cramer's Theorem, 236
Cross product, 42
Crout's algorithm, 169
Cut norm, 345
Cyclic, 117
Cyclotomic polynomial, 48

D

Decomposition
Cholesky, 406
direct sum, 74
LU, 168
polar, 431
QR, 379
singular value, 431
spectral, 429
Defective eigenvalue, 270
Deflation, 281
Degree
algebraic, 110
of a generalized eigenvector, 304
of a multivariate polynomial, 50
of a polynomial, 44
of a polynomial function, 47
Derivation, 114
Derogatory endomorphism, 270
Determinant, 227
Determinant function, 221
Diagonal Dominance Theorem, 350
Diagonal matrix, 148
Diagonalizable endomorphism, 261
Difference set, 2
Differential, 90
Differential operator, 114
Dimension, 71
Dirac functional, 321
Direct coproduct, 26
Direct product, 23
Direct sum, 74
Direct sum decomposition, 74
Discrete cosine transform, 152
Discrete Fourier transform, 152, 341
Disjoint subspaces, 27
Distance, 352
Distance matrix, 400
Distribution, 318
Division algebra, 52
Division Algorithm, 46
Domain, 2
integral, 9
Dominant eigenvalue, 280
Dot product, 334
weighted, 335
Drazin pseudoinverse, 450
Dual basis, 323
Dual space, 317
weak, 323
Dyadic product, 145

E

Eigenspace, 257, 258
generalized, 306
Eigenvalue, 255, 258
defective, 270
dominant, 280
semisimple, 270
simple, 270
Eigenvector, 255, 258
generalized, 304
Eisenstein's criterion, 47
Elementary automorphism, 115
Elementary matrix, 153
Elementary operation, 158
Elliptic norm, 403
Endomorphism, 113
almost positive semidefinite, 415
bounded, 125
copositive, 418
derogatory, 270
diagonalizable, 261
indefinite, 403
integration, 114
nilpotent, 302
nonderogatory, 270
normal, 424
orthogonally diagonalizable, 398
positive definite, 403
positive semidefinite, 403
selfadjoint, 395
Entangled tensors, 465
Entire, 44
Epic, 2
Epimorphism, 95
Equal functions, 2
Equivalence relation, 120
Equivalent matrices, 161
Equivalent norms, 346
Euclidean
norm, 338
subfield, 333
Evaluation functional, 324
Even function, 76
Even permutation, 224
Exchange Property, 29

Extended coefficient matrix, 191
Extension, 2
Exterior algebra, 470
Exterior power, 470
Exterior product, 136
Exterior square, 470

F

Factor space, 110
Fan, 186
Fast Fourier transform, 152
Fibonacci sequence, 299
Field, 5
algebraically closed, 49
formally-real, 334
Galois, 8
orderable, 18
Field of algebraic numbers, 73
Finite dimensional, 71
Finitely generated, 29
Fixed point, 256
Fixed space, 257
Flat polynomial, 51
Form
bilinear, 455
Lorentz, 462
quadratic, 461
Formal differentiation, 117
Formal Laurent series, 18
Formally real field, 334
Fourier coefficient, 378
Fredholm alternative, 326
Frobenius norm, 345
Full pivoting, 168
Function, 2
characteristic, 24
determinant, 221
even, 76
inverse, 2
linearly independent, 110
odd, 76
periodic, 69
piecewise constant, 34
spline, 56
weight, 318
Functional
Dirac, 321
evaluation, 324
linear, 317
zero, 317
Fundamental Theorem of Algebra, 49
Fuzzification, 87
Fuzzy subspace, 37

G

Galois field, 8
Gap, 387
Gauss-Jordan method, 195
Gauss-Seidel iteration method, 205
Gaussian elimination, 195
Gelfand-Naimark Property, 449
General Lie algebra, 147
General quadratic equation, 464
Generalized characteristic polynomial, 282
Generalized eigenspace, 306
Generalized eigenvector, 304
Generating set, 28
Geometric multiplicity, 270
Gershgorin bound, 349
Gershgorin's Theorem, 350
Givens rotation matrix, 420
GMRES algorithm, 375
Golden ratio, 299
Google matrix, 282
Gram matrix, 336
Gram-Schmidt process, 372
Gram-Schmidt Theorem, 372
Graph, 91
Grassmann's Theorem, 77
Greville's method, 444
Grothendieck's inequality, 345
Group of automorphisms, 120
Guttman's Theorem, 154

H

Haar wavelet, 376
Hadamard inequality, 373
Hadamard matrix, 229
complex, 388
Hadamard product, 174
Hahn-Banach Theorem, 347
Hamel basis, 69
Hamming norm, 352
Hankel matrix, 241
Hausdorff Maximum Principle, 67
Hermitian matrix, 396
Hermitian transpose, 334
Hibert subset, 376
Hilbert matrix, 159
Hilbert-Schmidt norm, 345
Homogeneous system of linear equations, 190
Homomorphism, 89
of algebras, 89
of unital algebras, 89
Householder matrix, 423
Hua's identity, 12

Hull
uniform, 38
zero-sum, 38
Hyperplane, 325

I

Idempotent, 118
Ill-conditioned, 209
Image, 94
Imaginary part, 7
Improper subspace, 25
Indefinite endomorphism, 403
Independent subspaces, 74
Indeterminate, 44
Index of nilpotence, 302
Induced norm, 343
Infinite dimensional, 71
Inner product, 333
Inner product space, 333
Integral domain, 9
Integration endomorphism, 114
Interior product, 136
Interpolation problem, 189
Intersection, 1
Invariant subspace, 117
Inverse function, 2
Inversion, 224
Involution, 385
Involutory matrix, 151
Irreducible, 47
Isometry, 409
Isomorphic vector spaces, 97
Isomorphism, 95
of algebras, 95
of unital algebras, 95
Iteration method
Gauss-Seidel, 205
Jacobi, 205
JOR, 207
SOR, 207
stationary, 208

J

Jacobi identity, 41
Jacobi iteration method, 205
Jacobi overrelaxation method, 207
Jacobi polynomial, 371
Jacobi reflection matrix, 422
JOR, 207
Jordan algebra, 43
Jordan canonical form, 304, 308
Jordan identity, 43
Jordan product, 43

K

Karatsuba's algorithm, 45
Kernel, 94
Ket-bra product, 136
Kovarik algorithm, 445
Kronecker product, 467
Krylov algorithm, 301
Krylov subspace, 297

L

Lagrange identity, 339
Lagrange interpolation polynomial, 162
Lanczos algorithm, 301
Laurent series, formal, 18
Leading coefficient, 44
Leading entry, 194
Least squares method, 447
Legendre polynomial, 370
Lie algebra, 41
general, 147
special, 320
Lie product, 42
Lightcone inequality, 463
Linear combination, 27
Linear functional, 317
Linear transformation, 89 adjoint of, 383
Linear variety, 96
Linearly dependent, 57
locally, 92
Linearly independent, 57, 110
nearly, 82
with respect to a fuzzification, 87
Linearly recurrent sequence, 298
List, 1
Locally linearly dependent, 92
Loewner partial order, 404
Lorentz form, 462
Lower-triangular matrix, 150
LU-decomposition, 168

M

Magic matrix, 287
Markov matrix, 150
Matrices
column-equivalent, 161
congruent, 457
equivalent, 161
Pauli, 82
row-equivalent, 161
similar, 266
unitarily similar, 420
Matrix, 23
adjacency, 399
adjoint, 235
anti-Hermitian, 413
band, 149
change-of-basis, 162
circulant, 172
coefficient, 191
companion, 265
complex Hadamard, 388
determinant of, 227
diagonal, 148
distance, 400
elementary, 153
extended coefficient, 191
Givens rotation, 420
Google, 282
Gram, 336
Hadamard, 229
Hankel, 241
Hermitian, 396
Hilbert, 159
Householder, 423
in block form, 138
in reduced row echelon form, 194
in row echelon form, 193
involutory, 151
Jacobi reflection, 422
lower-triangular, 150
magic, 287
Markov, 150
Nievergelt's, 159
nonsingular, 151
normal, 434
orthogonal, 422
permutation, 158
quasidefinite, 415
scalar, 148
singular, 151
skew-symmetric, 150
sparse, 167
special orthogonal, 424
stochastic, 150
strictly diagonally dominant, 249
symmetric, 150
symmetric Toeplitz, 202
symplectic, 440
transpose, 95
tridiagonal, 149
unitary, 419
upper Hessenberg, 473
upper-triangular, 149
Vandermonde, 163
zero, 24
Matrix logarithm, 356
Matrix representation, 153

Maximal, 61
Maximal subspace, 325
Method of condensation, 230
Minimal, 61
Minimal polynomial, 273, 298
Minkowski's inequality, 339
Minor, 230
Modular Law, 31
Moebius function, 48
Monic
function, 2
polynomial, 44
Monomorphism, 95
Moore-Penrose pseudoinverse, 441
Multiplication
in a field, 5
scalar, 21
Multiplication table, 65
Multiplicity
algebraic, 270
geometric, 270
Mutually orthogonal, 369

N

Nearly linearly independent, 82
Nevanlinna-Pick Interpolation Theorem, 403
Nievergelt's matrix, 159
Nilpotent, 302
Nondegenerate bilinear form, 455
Nonderogatory endomorphism, 270
Nonhomogeneous system of linear equations, 190
Nonsingular matrix, 151
Nontrivial subspace, 25
Norm, 338, 342
cut, 345
elliptic, 403
Euclidean, 338
Frobenius, 345
Hamming, 352
Hilbert-Schmidt, 345
induced, 343
spectral, 344
triangular, 37
Normal endomorphism, 424
Normal matrix, 434
Normal vector, 338
Normed space, 342
Norms
equivalent, 346
Nullity, 98
Number
complex, 7
rational, 5
real, 5
Numerical range, 463

0

Odd function, 76
Odd permutation, 224
Operation
elementary, 158
Opposite transformation, 453
Optimization algebra, 9
Order of recurrence, 298
Orderable field, 18
Orthogonal, 369
Orthogonal complement, 374
right, 458
Orthogonal matrix, 422
Orthogonal projection, 374
Orthogonality with respect to a bilinear form, 458
Orthogonally diagonalizable, 398
Orthonormal, 375

P

Padé approximant, 239
Pairwise disjoint, 27
Parallelogram law, 339
Parity, 456
Parseval's identity, 380
Partial order, 60
Loewner, 404
Partial pivoting, 168
Partially-ordered set, 60
Pauli matrices, 82
Periodic function, 69
Permanent, 252
Permutation, 2
even, 224
odd, 224
Permutation matrix, 158
Pfaffian, 228
Piecewise constant, 34
Pivot, 168
Pivoting full, 168
partial, 168
Poincaré-Birkhoff-Witt Theorem, 42
Polar decomposition, 431
Polarization identity
complex, 363
real, 363
Polynomial, 44
characteristic, 264, 298
Chebyshev, 370
completely reducible, 49

Polynomial (cont.)
cyclotomic, 48
flat, 51
in several indeterminates, 50
irreducible, 47
Jacobi, 371
Lagrange interpolation, 162
Legendre, 370
minimal, 273, 298
monic, 44
reciprocal, 440
reducible, 47
trigonometric, 56
zero, 44
Polynomial function, 47
Positive definite, 403
Positive quadratic form, 462
Positive semidefinite, 403
Power
exterior, 470
Pre-Banach space, 342
Pre-Hilbert space, 333
Primitive root of unity, 152
Principal component analysis, 118
Process
Arnoldi, 375
Gram-Schmidt, 372
Product
bra-ket, 136
Cartesian, 2
cross, 42
direct, 23
dot, 334
dyadic, 145
exterior, 136
Hadamard, 174
inner, 333
interior, 136
Jordan, 43
ket-bra, 136
Kronecker, 467
Lie, 42
scalar triple, 339
Schur, 174
tensor, 465
vector triple, 339
Projection, 118
onto an affine set, 387
orthogonal, 374
Proper subspace, 25
Pseudoinverse
Drazin, 450
Moore-Penrose, 441

Q

QR algorithm, 380
QR-decomposition, 379
Quadratic form, 461
positive, 462
Quadratic surface, 464
Quasidefinite matrix, 415
Quaternion
algebra, 66
real, 66
QZ algorithm, 380

R

Range, 2
numerical, 463
Rank, 98, 199, 457
Rational Decomposition Theorem, 304
Rational number, 5
Rayleigh quotient
function, 400
iteration scheme, 400
Real Euclidean, 333
Real number, 5
Real part, 7
Real polarization identity, 363
Real quaternion, 66
Reciprocal polynomial, 440
Reduced row echelon form, 194
Reducible, 47
Relation
equivalence, 120
partial order, 60
Relaxation method, 207
Representation, 153
Restriction, 2
Riesz Representation Theorem, 382
Right orthogonal complement, 458
Row echelon form, 193
Row equivalent, 161
Row space, 199

S

Scalar, 22
Scalar matrix, 148
Scalar multiplication, 21
Scalar triple product, 339
Schur complement, 160
Schur product, 174
Schur's Theorem, 421
Selfadjoint, 395
Semifield, 9
Semisimple eigenvalue, 270

Sequence, 1
Fibonacci, 299
linearly recurrent, 298
Set
difference, 2
generating, 28
partially-ordered, 60
spanning, 28
Sherman-Morrison-Woodbury Theorem, 154
Signum, 224
Similar matrices, 266
Simple eigenvalue, 270
Simple tensors, 465
Simpson's rule, 187
Singular matrix, 151
Singular value, 432
Singular Value Decomposition Theorem, 431
Skew symmetric bilinear form, 453
Skew symmetric matrix, 150
Solution set, 191
Solution space, 191
SOR, 207
Space
dual, 317
inner product, 333
normed, 342
pre-Banach, 342
pre-Hilbert, 333
solution, 191
Spanning set, 28
Sparse matrix, 167
Special Lie algebra, 320
Special orthogonal matrix, 424
Spectral condition number, 432
Spectral Decomposition Theorem, 429
Spectral norm, 344
Spectral radius, 258
Spectrum, 255
Spline function, 56
Stabilizer, 131
Standard identity, 238
Stationary iteration method, 208
Steinitz Replacement Property, 60
Stochastic matrix, 150
Strassen-Winograd algorithm, 166
Strictly diagonally dominant, 249
Subalgebra, 41
unital, 41
Subfield, 6
Euclidean, 333
real Euclidean, 333
Subset
affine, 96
bounded, 67
chain, 61
convex, 412
Hilbert, 376
orthonormal, 375
underlying, 1
Subspace, 25
cyclic, 117
fuzzy, 37
generated by, 28
improper, 25
invariant, 117
Krylov, 297
maximal, 325
nontrivial, 25
proper, 25
spanned by, 28
trivial, 25
Subspaces
disjoint, 27
independent, 74
pairwise disjoint, 27
Successive overrelaxation method, 207
Sylvester's Theorem, 98
Symmetric
bilinear transformation, 453
matrix, 150
Toeplitz matrix, 202
with respect to an involution, 385
Symmetric difference, 24
Symplectic matrix, 440
System of linear equations, 189
homogeneous, 190
nonhomogeneous, 190

T

Taber's Theorem, 321
Taylor coefficient, 117
Tensor algebra, 470
Tensor product, 465
Tensors
entangled, 465
simple, 465
Ternary ring, 18
Trace, 318
Transcendental, 73
Transform
discrete cosine, 152
discrete Fourier, 152, 341
fast Fourier, 152
Transformation
affine, 96
bilinear, 453
linear, 89
opposite, 453

Transpose, 95
conjugate, 334
Hermitian, 334
Triangle difference inequality, 339
Triangle inequality, 353
Triangular norm, 37
Tridiagonal matrix, 149
Trigonometric polynomial, 56
Trivial subspace, 25

U

Underlying subset, 1
Uniform combination, 38
Uniform hull, 38
Union, 1
Unit, 40
Unital algebra, 39
Unital subalgebra, 41
Unitarily similar matrices, 420
Unitary automorphism, 419
Unitary matrix, 419
Upper Hessenberg matrix, 473
Upper-triangular matrix, 149

V

Vandermonde matrix, 163
Variety
linear, 96
Vector, 22
normal, 338

Vector addition, 21
Vector space, 21
finite dimensional, 71
finitely generated, 29
infinite dimensional, 71
Vector triple product, 339
Vectors
orthogonal, 369
orthogonal with respect to a bilinear form, 458

W

Wavelet
Haar, 376
Weak dual space, 323
Weight function, 318
Weight of a Baxter algebra, 90
Weighted dot product, 335
Well Ordering Principle, 61
Weyl's Problem, 399
Width of a band matrix, 149
Wiedemann algorithm, 301
Word, 23
Wronskian, 228

Z

Zero-sum combination, 38
Zero-sum hull, 38
Zlobec's formula, 445
Zorn's Lemma, 67

[^0]: ${ }^{1}$ This law, attributed to John Crow of King's College, London, is quoted by R.V. Jones in his book Most Secret War, Wordsworth, 1998 (ISBN 978-1853266997).

[^1]: ${ }^{1}$ Mathematically, these two ways of defining a set are equivalent, but philosophically and functionally they are not. Listing the elements of a set involves denotation whereas giving a rule for determining set membership involves connotation. This distinction becomes important when we attempt to use computers to manipulate sets.

[^2]: ${ }^{1}$ When a mathematician says that something is "easy to see" or "trivial", it means that you are expected to take out a pencil and paper and spend some time-often considerable-checking it out by yourself.

[^3]: ${ }^{2}$ These series were first studied by the nineteenth-century French engineer and mathematician, Pierre Alphonse Laurent.

[^4]: ${ }^{1}$ Triangular norms play a very important part in the theory of probabilistic metric spaces and have important applications in statistics and in mathematical economics, as well as such areas as pattern recognition and capacity theory.

[^5]: ${ }^{1}$ The usual notation is $v \cdot w$, but that can cause confusion with the dot product, which we will study later, in the case that $F=\mathbb{C}$. For that reason, also, we use the term "interior product" rather than the often-seen "inner product".

[^6]: ${ }^{2}$ We will often mention large matrices, without being too specific as to what that means. As a rule of thumb, a matrix is "large", and calls for special treatment as such, when it cannot be stored in the RAM memory of whatever computer we are using for our computations. Such matrices occur in sufficiently-many applications that considerable research is devoted to dealing with them.

[^7]: ${ }^{1}$ The terms "eigenvalue" and "eigenvector" are due to Hilbert. Eigenvalues and eigenvectors are sometimes called characteristic values and characteristic vectors, respectively, based on terminology used by Cauchy. Sylvester coined the term "latent values" since, as he put it, such scalars are "latent in a somewhat similar sense as vapor may be said to be latent in water or smoke in a tobacco-leaf".

[^8]: With kind permission of the Archives of the Mathematisches Forschungsinstitut Oberwolfach.
 This fundamental result was first established at the beginning of the twentieth century by the German mathematician Kurt Hensel.

[^9]: ${ }^{1}$ Such structures were first studied by the twentieth-century Scottish mathematician I.M.H. Etherington, who formulated the Mendelian laws algebraically.

[^10]: ${ }^{1}$ This theorem was proven by the French mathematicians L. Lévy and J. Desplanques at the end of the nineteenth century. It was independently rediscovered by several other algebraists, including Hadamard, Minkowski, and Nekrasov.

[^11]: ${ }^{1}$ Systems of linear equations defined by positive-definite endomorphisms of \mathbb{R}^{n} first appear in Gauss' work on least-squares approximation, which we will consider in a later chapter.

[^12]: ${ }^{1}$ Polar decompositions were first studied by the French engineer Léon Autonne at the beginning of the twentieth century.

[^13]: Z
 Hans Zassenhaus, 49, Archives of the Mathematisches Forschungsinstitut Oberwolfach
 Max Zorn, 68, with kind permission of Jens Zorn

