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v

 Developments in  omics  are now impacting on patient care. They are being driven by increas-
ingly more sophisticated analytic platforms allowing changes in diagnostic strategies from 
the traditional focus on a single or a small number of analytes (DNA, RNA, metabolites, 
proteins) to what might be possible when large numbers or all analytes are measured. These 
developments come at a price as the data sets generated are growing exponentially with 
megabytes now giving way to gigabytes or terabytes as routine outputs. Bioinformatics has 
arrived as a component of patient care as shown in somatic and germ-line DNA testing, and, 
more recently metabolic medicine through metabolomics. With genomics, samples can be 
sent to distant centralized analytic facilities leading to faster and cheaper DNA sequencing 
thereby shifting the focus even more to bioinformatics at the laboratory–patient interface. 
This interface is particularly relevant in patient care where understanding the clinical signifi -
cance of data generated remains a signifi cant roadblock. While a few years ago the focus was 
on  how to generate large data sets , today the questions revolve around  what do the data mean ? 
This is a signifi cant challenge for the medical testing laboratory particularly as the time taken 
for translation of novel fi ndings from research to clinical practice shortens. 

 I would like to acknowledge the help of Carol Yeung in the preparation of this edition.  

    Sydney, Camperdown, Australia Ronald     Trent    

  Pref ace       
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    Chapter 1   

 From the Phenotype to the Genotype via Bioinformatics 

           Cali     E.     Willet     and     Claire     M.     Wade    

    Abstract 

   Moving a project from the status of observing a trait of interest to identifying the underlying causal variant 
is a challenging task requiring a series of bioinformatics procedures and ideally the availability of a suitable 
reference genome sequence and its associated resources. We visit common practices for discovering the 
biology underlying observed traits in mammals.  

  Key words     Association analysis  ,   Bioinformatics  ,   Candidate gene  ,   Causal variant  ,   Exome  ,   Filtering  , 
  Gene mapping  ,   Mutation detection  ,   Sequencing  ,   Whole-genome sequence  

  Abbreviations 

   bp    Base pair   
  CNV    Copy number variant   
  GC    Guanine–cytosine   
  GWAS    Genome-wide association study   
  Indel    Insertion deletion   
  Kb    Kilobase   
  Mb    Megabase   
  NGS    Next-generation sequencing   
  RAD    Restricted site-associated DNA   
  SNP    Single-nucleotide polymorphism   

1        Introduction 

 Low-cost DNA sequencing has revolutionized our ability to locate 
and characterize the mutations that are responsible for many inher-
ited disorders in mammals. The approaches taken to discover 
genetic alterations that underpin characteristics or disorders of 
interest by individual researchers are heavily infl uenced by access to 
technology and access to samples that refl ect the phenotype of 
interest. In the ideal world, researchers would have at their disposal 
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unlimited samples, time, and money. Dealing with the limitations 
of the data is one of the primary challenges of science, but with 
developments in genomic tools and resources this task is becoming 
far easier. 

 In human medicine, we are driven to discover the mutations 
underlying observed phenotypes primarily by a desire to understand 
the biology of how the human body functions. For disorder pheno-
types, this biological understanding facilitates the discovery of new 
interventions or improved treatment regimens. Screening for 
known disease mutations can enable parents to make informed 
reproductive decisions or prepare for potential disorders in their 
offspring. Similarly in animal species, identifying the mutations 
underlying traits of interest can enable targeted treatment options 
for disorder phenotypes, and the results of genetic tests can be uti-
lized by animal breeders to enable better breeding decisions. The 
effi cacy of applying this information within animal populations is 
affected by several factors including the complexity of the inheri-
tance of the phenotypes and the quality of the test being applied. 

 In this chapter we outline the methods currently used for deter-
mining the genotypic changes that underlie observed phenotypes.  

2    Materials 

  In most cases pinpointing the genetic basis of an observed pheno-
type begins with gene mapping, a process which identifi es a loca-
tion within the affected individual’s genome that is signifi cantly 
more likely to harbor the causal variant for the trait of interest than 
the remainder of the genome. Gene mapping is not possible with-
out fi rst having a means of distinguishing unique DNA signatures 
in individuals with and without the characteristic being assessed. 
This requires the discovery of genetic markers at known coordi-
nates in the genome of the species under investigation. The most 
commonly assessed type of genetic marker in recent years has been 
the single-nucleotide polymorphism (SNP). These single-base dif-
ferences in DNA sequence are the most abundant form of genetic 
variant, with approximately four to six million SNPs within mam-
malian genomes. Their high frequency and the ease of which they 
can be genotyped on modern high-throughput multiplexed sys-
tems make them ideal for gene mapping, enabling a higher density 
and thus statistical power than previously used restriction fragment 
length polymorphisms and microsatellites. 

 SNP markers are discovered through the comparison of 
DNA sequences of different individuals from the same species or 
from the comparison of the maternal and paternal chromosomes 
within the same individual. SNPs most commonly have two pos-
sible alleles, although triallelic SNPs do occur at low frequency. 

2.1  Genetic Marker 
Discovery

Cali E. Willet and Claire M. Wade
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Triallelic SNPs are less useful for mapping and so are usually 
 discarded. Typically a reference genome    ( see  Subheading  2.4 ) pro-
vides one allele, and the discovery of alternate alleles in the popula-
tion is provided by the alignment of sequences from other individuals 
of the same species to the reference. The quality of the nucleotide 
calling in both the reference and the query sequence is of paramount 
importance to the expected validation rate of the markers discovered 
this way. Typical quality metrics interrogate the proximity of the 
marker to others nearby, assess the reference sequence for the pres-
ence of known repetitive elements which can lead to false-positive 
SNP calls, ensure that the alignment of the query sequence is 
uniquely placed on the reference, and assess the base calling quality 
assigned by the sequencing technology to the individual nucleotides 
in the aligned sequence reads. Similar methods can be used to dis-
cover other markers, such as microsatellites and small insertions or 
deletions (indels) although these are relatively less abundant and so 
provide lower resolution in the mapping process. Rare variants are 
not informative for gene mapping, so a wider sample of individuals 
are genotyped at potential markers to estimate population polymor-
phism rates and only those with minor allele frequency of >10 % are 
carried forward for inclusion in the gene mapping resource.  

  Genotyping arrays offer collections of genetic markers (most com-
monly these are SNPs) that are assessed simultaneously in a single 
individual. DNA probes complementary to the target sequence 
containing the SNP are physically anchored to the surface of micro-
arrays at known coordinates. Single-stranded genomic DNA from 
the individual of interest is applied to the surface of the array. 
Hybridization or failure to hybridize is detected by imaging soft-
ware and indicates the genotype at each SNP marker. Such biologi-
cal devices are capable of rapidly assessing up to many millions of 
SNPs in a single experiment. Many competing commercial plat-
forms for SNP genotyping are available, not only for human genom-
ics but also for many animal species notably including the domestic 
dog, domestic cat, horse, cattle, and sheep. Most platforms offer 
sample multiplexing, with numerous individuals assayed at the same 
markers simultaneously. Genotyping accuracy is generally >99 % 
and genotyping rate >95 % depending on the quality of input DNA. 
The ability to quickly and accurately genotype multiple individuals 
at numerous genomic locations in a single experiment makes geno-
typing arrays a very affordable resource, with cost per sample cur-
rently less than a few hundred US dollars depending on platform, 
sample size and service provider.  

  Association analysis or genome-wide association analysis (GWAS) 
( see  Subheading  3.1 ) is a bioinformatics approach to gene map-
ping. Data generated from genotyping arrays or other genotyping 
methodologies are analyzed statistically to isolate a candidate 

2.2  Genotyping 
Arrays

2.3  Association 
Mapping Software

Phenotype to Genotype
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genomic region for the causal variant of interest. A number of 
freely available algorithms enable the conduct of association analy-
ses including PLINK [ 1 ], Emma-X [ 2 ], and GCTA [ 3 ]. Extensive 
documentation for each tool can be found from the software 
websites.  

   The post-Sanger sequencing technologies developed over the last 
decade, referred to as next-generation sequencing (NGS), have 
revolutionized our ability to sequence entire genomes for relatively 
small costs. Thanks to these technologies and improved bioinfor-
matics strategies and algorithms enabling assembly of shorter 
sequence fragments, reference genome sequences are now avail-
able for over a thousand species, with this number increasing on a 
daily basis. Up-to-date information on sequenced genomes and 
access to related resources are available from the National Center 
for Biotechnology    Information (  www.ncbi.nlm.nih.gov/genome    ). 

 A reference genome comprises the entire collection of DNA of 
a single representative individual of a species. While all mammals 
have a maternal and paternal set of chromosomes, the reference 
assembly is presented as a single  reference  chromosome which may 
be made up of a combination of haplotypes from each parental set. 
Although the goal of an assembled reference genome is to portray 
the complete sequence along each chromosome, current techno-
logical limitations prevent this. Regions of the genome which are 
high in guanine and    cytosine (GC) content are diffi cult to sequence, 
leaving gaps in the genome particularly around fi rst exons of genes 
which are notoriously high in GC. Repetitive genomic features, 
representing as much as 50 % of the DNA content of mammalian 
genomes, are diffi cult to assemble accurately, creating many gaps in 
the genome represented as strings of  N  for unknown nucleotides. 

 The next or  third  generation of sequencers will ameliorate 
these limitations to some extent by sequencing single DNA mole-
cules in a theoretically unbroken chain of sequence, in contrast to 
current platforms that fi rst amplify fragmented libraries of genomic 
DNA. While current reports from Oxford Nanopore Technologies 
state 10,000 base pairs (bp) as the read length achieved, we are yet 
to see these targets attained in practice and base calling accuracy is 
currently much lower than next (current)-generation sequencers. 
It is also important to keep in mind that even if the reference indi-
vidual’s set of chromosomes could be entirely sequenced and 
seamlessly assembled, genomic variation at the nucleotide and 
structural levels means that there is no such thing as the perfect 
reference. Sequenced samples may contain DNA that is absent 
from the reference individual, meaning that those fragments will 
not be placed against the reference and vice versa. 

 Despite these limitations, a reference genome sequence for the 
species of interest is an indispensable resource in modern genetics. 
It serves as the foundation for genetic marker discovery, gene 

2.4  Reference 
Genome Sequence

Cali E. Willet and Claire M. Wade

http://www.ncbi.nlm.nih.gov/genome
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 mapping, primer design, comparative studies, and  re-sequencing. 
 Re-sequencing  is the term given to sequencing the genome of an 
individual for which there exists a reference genome from the same 
species and using comparison of the sequenced samples and the 
reference genome to identify sequence variants. Re-sequencing is 
quickly becoming the go-to experimental approach for isolating 
the genetic basis for phenotypes of interest (discussed further in 
Subheading  3 ). For species which currently lack a reference 
genome, cross-species approaches can be used to variable success, 
generally with greater success when the study species has a closely 
related species with a good-quality reference genome. 

 The quality of a reference genome will impact its usefulness in 
genetic investigations. Quality is affected by many aspects but 
notably the level of fold coverage to which the individual was 
sequenced and the nature of the methods used to assemble the 
fragments. Typically, the best genomes are assembled using a com-
bination of long reads to aid contig and scaffold creation and a 
large pool of shorter preferably paired-end reads to fi ll in the gaps 
and enhance sequence accuracy. This can be achieved using tradi-
tional approaches such as Sanger sequencing of bacterial artifi cial 
chromosomes in conjunction with NGS. Currently, a number of 
reference genome sequences are being released that have relied 
solely on NGS and these are at risk of being poorly assembled with 
a high frequency of gaps due to the increased challenges associated 
with assembling shorter fragments in the face of repetitive DNA 
sequence. In addition to continuity and coverage, the level of 
genome annotation also impacts the ease of downstream analysis. 

  Genome annotation  refers to the informative tracks that can be 
placed upon a genome and include features such as the location 
and orientation of genes and their intron and exon boundaries, 
regulatory features, and stretches of sequence that show conserva-
tion across mammalian genomes. Genome annotation allows the 
researcher to quickly identify potentially important features within 
a region of the genome mapped by GWAS and often drives experi-
mental design of the mutation detection phase of the project. 
Genomes are annotated through a combination of manual addi-
tion of known information as well as bioinformatics approaches 
including gene prediction software and comparative tools that 
apply information from other annotated genomes to suggest where 
important features may lie in the new assembly. The University of 
Santa Cruz genome browser is ideal for visualizing various genome 
annotation tracks (  http://genome.ucsc.edu/    ).  

  Access to accurately phenotyped samples for the trait of interest is 
crucial to the success of a study. The numbers of case and control 
samples that must be evaluated to provide adequate statistical power 
in gene mapping are affected by the mode of inheritance and the 
effective sizes and lengths of linkage disequilibrium of the populations 
in which the trait occurs and the magnitudes of the observed effects. 

2.5  Samples

Phenotype to Genotype

http://genome.ucsc.edu/
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Typically, recessively inherited conditions in populations with long 
linkage disequilibrium and low effective size such as within domestic 
dog breeds require the fewest samples. Strategies for determining 
power in association analysis are outlined in the literature [ 4 ,  5 ] .  

 During the mutation detection stage, an increased number of 
cases and controls decrease the list of variants that segregate with 
the phenotype. Given our ability to sequence entire candidate 
regions or whole genomes, the numbers of variants discovered are 
numerous, and case–control fi ltering substantially increases our 
prospects of isolating the causal variant. Causal loci have been suc-
cessfully identifi ed from single-case studies (for example in refs.  6  
and  7 ); however, both these investigations benefi ted from a strong 
set of candidate genes as well as genetic material from the unaf-
fected parents. 

 The propensity of the trait to be accurately phenotyped also 
impacts the number of samples required. Traits which are diffi cult 
to measure, traits which may appear later in life thus leading to 
inappropriate designation as control rather than case, and those 
that are incompletely penetrant or epistatically modifi ed, all require 
a greater number of samples than do projects investigating simple-
to- measure and simply inherited phenotypes.   

3     Methods 

   The highest chance of success in discovering the genetic change 
underlying a phenotype is experienced when the phenotype of 
interest is inherited in a simple Mendelian recessive pattern. 
Typically recessive deleterious mutations exist for long periods in 
populations because if the allele drifts to high frequency, natural 
selection will work to reduce the frequency again by removing 
homozygous affected individuals from the breeding population. If 
the mutant allele frequency falls to a low value, the allele can exist 
for long periods in the population, escaping detection because its 
expression relies upon the mating of two carrier individuals. Such 
alleles most frequently come to light when effective population 
sizes are reduced, when certain breeding animals are used widely in 
a population, or when related parents have offspring. 

 When the allele exists on a segment of DNA that is experienc-
ing neutral evolution, small alterations such as SNPs and indels 
accumulate on the DNA and enable it to be readily distinguished 
as a unique genetic haplotype, or pattern, that can be readily 
mapped by association analysis. Depending upon the age of the 
allele, the specifi c haplotype on which it exists might span several 
hundreds of thousands of nucleotides in populations with modest 
effective population sizes. Such long segments of  linkage disequi-
librium  (which refers to the physical connectivity of markers) 
reduce the numbers of markers that must be assessed in order to 
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map the trait of interest. The lengths of these segments are popula-
tion  specifi c, and having some idea of the expected length of link-
age disequilibrium aids the researcher in selecting the appropriate 
marker density. Nowadays, this knowledge is gained through 
whole-genome assembly projects and commercial genotyping 
arrays are developed with the required density for most studies 
within the species. When greater resolution is required to map a 
trait, genotypes at additional loci can be inferred with reasonably 
high accuracy on the basis of haplotypes through an approach 
known as genotype  imputation  (reviewed in ref.  8 ). 

 Using association analysis ( see  also Chapters   4     and   5    ), unre-
lated individuals with the trait to be mapped are matched with 
counterparts without the trait of interest. The two groups of indi-
viduals are statistically compared at the large number of polymor-
phic sites assayed by genotyping arrays. The algorithms exploit 
linkage disequilibrium and variable allelic frequencies to identify 
candidate genomic regions. More sophisticated techniques can be 
used to either fi rst correct the genomic region for unforeseen pop-
ulation structure using mixed-model methodology or make use of 
the regional allelic structure of haplotypes to discern better genetic 
differences between individuals under assessment. Detailed guide-
lines on using PLINK to map causal variants to a candidate genomic 
region using worked examples are available [ 9 ,  10 ]. 

 Association analysis has enabled researchers to harness the 
inherent power of chromosomal recombination to identify stretches 
of the genome underlying phenotypes caused by common variants. 
However, disorders of a complex nature are recalcitrant to the use 
of association analysis, inspiring debate as to the relative impor-
tance of common and rare variants in the genetics of human com-
plex genetic disorders [ 11 ].  

  Fine mapping is the method taken to reduce the size of a candidate 
genomic region by identifying associated markers that tightly fl ank 
the causal locus. Regions mapped by association analysis may con-
tain hundreds of genes, hindering mutation detection. While gene 
databases can be used to refi ne the list of genes within the region 
to functional candidates, current knowledge about the function of 
all genes is incomplete and thus poses the risk of overlooking the 
gene which infl uences the trait of interest. Reducing the size of the 
candidate region and so the number of genes to explore is a good 
approach to avoiding over-fi ltering and false negatives. 

 To conduct fi ne mapping, additional markers are selected 
within the candidate region and genotyped in cases and controls. 
Custom genotyping arrays may be designed for this purpose, or 
samples may be genotyped using traditional molecular methods. 
Genotype imputation from whole-genome sequence can also be 
applied. The increased marker density may afford the ability to 
genotype the new markers in a reduced set of samples compared to 
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the original gene mapping analysis. Association analysis is then 
 performed on this dense collection of markers and may reduce the 
size of the region by an order of magnitude, often from megabases 
(Mb) or hundreds of kilobases (Kb) down to tens of Kb.  

  NGS and high-throughput genomic technologies have seen a shift 
in the conduct of mutation detection. Nowadays, the most chal-
lenging aspect is not discovering polymorphisms but sifting through 
millions of variants to fi nd that which causes the trait of interest. 
Identifi cation of candidate genomic regions through GWAS can 
signifi cantly reduce this task. However, prior knowledge about the 
condition or similar conditions, or some assumption about the 
nature of the causal variant, may guide researchers to select a par-
ticular method to detect mutations. Three main approaches are 
considered: (1) targeted sequencing of candidate genes, (2) whole-
exome sequencing, and (3) whole-genome sequencing. 

 For candidate gene sequencing, the researcher makes assump-
tions about the nature of the genes involved. Whole-exome 
sequencing may be chosen either as a means of rapidly assaying 
coding variants since they are most likely to be functional or if the 
phenotype is one consistent with ablation or major disruption of a 
gene. Whole-genome sequencing makes no assumptions about the 
locus but has the attendant disadvantage of increased cost and bio-
informatics involvement required. While each method can be 
employed without prior gene mapping, most commonly a candi-
date region has fi rst been identifi ed, particularly for candidate gene 
and whole-genome approaches. 

  For many classes of disorders and phenotypes, candidate genes may 
be identifi able based on the biology of the trait and knowledge of 
gene function. Identifi cation of candidate genes may be performed 
manually using a literature search or online databases such as Gene 
Cards (  www.genecards.org/    ) which summarize current knowl-
edge of the gene or Mouse Genome Browser (  http://gbrowse.
informatics.jax.org/    ) which describes the phenotypes of gene 
knockouts. This browser is a useful tool for extracting likely candi-
dates from large genomic regions by fi rst identifying the genomic 
region in mouse which is syntenic with the candidate region in the 
species of interest and then fi ltering genes in this region by those 
that have been found to affect a certain pathway or body system in 
mouse mutants. Often, the genes annotated onto the reference 
genome assembly within a mapped region can be quickly assessed 
for candidate status. For very large candidate regions or dense gene 
clusters harboring numerous genes, the list can be fi ltered bioin-
formatically by downloading the offi cial gene names or accession 
codes for all genes within the region and searching this list against 
known mutation databases such as Online Mendelian Inheritance 
in Man or OMIM (  www.omim.org/    ) and Online Mendelian 
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Inheritance in Animals or OMIA (  http://omia.angis.org.au/
home/    ). Candidate gene selection can be automated using tools 
like GeneSeeker [ 12 ] and Endeavour [ 13 ], which consider the 
biology of the phenotype in light of existing knowledge to rank 
genes according to those most likely to produce such a phenotype. 
One or a handful of the most likely candidate genes are then taken 
forward for sequencing. 

 Sequencing may target the coding and regulatory portions of the 
genes only or sequence the gene in its entirety including fl anking 
sequence and introns. The former approach may be faster and more 
cost effective producing a more concise list of identifi ed variants. The 
latter method has the advantage of enabling detection of noncoding 
variants which may infl uence the phenotype. The success of either 
approach depends on the researcher having selected the right candi-
date gene, and this is the main disadvantage of targeted sequencing 
over whole-exome or whole-genome approaches. To sequence the 
desired regions, researchers may design overlapping primer pairs and 
employ Sanger sequencing to produce a consensus sequence. 

 In recent years projects are more commonly utilizing NGS fol-
lowing the use of a sequence capture array. The reference genome 
sequence is used to design oligonucleotide probes complementary 
to the target regions, and these probes are anchored to the sur-
face of a microarray which is hybridized with target DNA. The 
captured DNA is then eluted, sequenced, and aligned to the refer-
ence genome sequence, and differences from the reference are 
identifi ed with variant detection software ( see  Subheading  3.3.3 ). 
While Sanger sequencing is more accurate at the individual nucleo-
tide level than NGS, it is generally less cost effi cient and may have 
diminished capacity to detect heterozygous indels than NGS.  

  Exome sequencing obtains DNA sequence for all known exons 
within the reference genome sequence. This is typically achieved 
using commercially available or custom-designed sequence capture 
arrays which use complementary probes to capture the target DNA 
fragments for NGS [ 14 ,  15 ]. This approach has the benefi t of 
obtaining a large amount of information from what is generally 
perceived as the most important fraction of the genome in a very 
short time frame and at low cost. The smaller dataset is an impor-
tant consideration in studies with large numbers of sequenced sam-
ples, as whole-genome datasets and their analysis require incredibly 
large amounts of physical disk space and computing power. 

 The major defi ciency of exome sequencing is that it can only detect 
mutations occurring in the actual regions targeted and is unable to 
accurately detect genomic insertions or rearrangements. If the causal 
variant happens to exist within a previously unidentifi ed exon, within 
the non-coding region of the genome, or resides in the approximate 5 % 
of the targeted sequence that fails to be  captured for sequencing it will 
fail to be recovered using exome sequencing. In these instances, time 
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and fi nancial resources have been wasted and additional experiments are 
required to locate the genetic variant contributing to the trait. Despite 
these limitations exome sequencing has been a highly successful tool in 
mutation detection and diagnosis. An overview of the computational 
approaches to whole-exome analysis is provided in [ 16 ].  

   Over the last decade, the cost per Mb of DNA sequence has fallen 
from >US $5,000 to <10 cents. This has seen whole-genome 
sequencing emerge as the method of choice for many laboratories, 
both large and small. The affordability of massively parallel 
sequencing technologies in combination with a reference genome 
has made it possible to observe the DNA of individuals with very 
fi ne detail. Theoretically, every variant from SNPs through to 
large-scale rearrangements can be identifi ed within each sequenced 
individual. In practice, this is limited by (1) the quality and content 
of the reference genome which the sequence is aligned to, (2) the 
amount and quality of sequence coverage obtained, and (3) the 
evenness of distribution of sequence coverage across the genome. 

 Another favorable aspect of whole-genome datasets is the 
unlimited life-span of the data. As the basic unit of biology, raw 
DNA sequence can be shared amongst research groups in a 
platform- independent manner. Existing sequence libraries can be 
added to over time as sequencing technology improves and current 
technical challenges are overcome. The ability to reuse whole- 
genome sequences across multiple projects helps to offset the rela-
tively high initial cost of obtaining the data. 

 Given that each mammalian genome contains millions of vari-
ants, even within fi ne mapped candidate regions the number of 
potential candidate loci is impracticable without bioinformatics fi l-
tering. Even after fi ltering to those that segregate as expected 
between cases and controls, the remaining variants will number in 
the tens of thousands depending on the number of samples in the 
dataset. Researchers must choose to prioritize these segregating 
variants for investigation as candidates using one or a combination 
of methods. Mutations that reside within genes with a function 
likely to infl uence the trait are often considered fi rst. Alternatively, 
bioinformatics software can be used to rank the variants according 
to their predicted severity on gene function. 

 There are likely to be a number of potentially devastating vari-
ants within such lists, and again some knowledge about the biol-
ogy of the phenotype and molecular pathways involved is benefi cial 
in choosing which variants to investigate further. It is important to 
keep in mind that prediction software emits both false positives 
and false negatives. By reducing the quantity of input variants, a 
well-mapped candidate region can ameliorate the temptation to 
over-fi lter results. 

 Experimental designs typically include sequenced case and 
control individuals, but researchers also have the option of sequenc-
ing case and control pools. While detailed information is lost at the 
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individual level, the benefi t is a much reduced dataset and increased 
ease of identifi cation of variants which segregate with the trait of 
interest. Many studies have successfully identifi ed causal variants 
from pooled DNA sequences. 

 Given the trend towards mutation detection from whole- 
genome sequence data, we provide a general overview of the steps 
taken using this method.

    1.    Obtain DNA samples from cases and controls. DNA sourced 
from blood samples typically gives the best sequence results. 
However, other forms of DNA can be sequenced.   

   2.    Submit either DNA samples or prepared DNA libraries for 
individuals or case and control pools to a sequencing center of 
choice. Larger laboratories often own NGS equipment and 
perform sequencing in-house. Libraries must be prepared fol-
lowing the recommendations of the sequencing platform used. 
Most commercial platforms have kits available.   

   3.    DNA is sequenced on high-throughput sequencing machine. 
Most platforms offer paired-end sequencing, where the DNA 
fragment is sequenced from either end with an unsequenced 
gap in the center of approximately known size. Paired-end 
reads are currently 100–150 bp in length from either end of a 
fragment of around 500 bp. Mate pair sequencing obtains 
paired data from either end of fragments up to 10 Kb in length. 
These large insert sizes are benefi cial to resolve structural varia-
tions. In either case, having sequence from two ends of a single 
molecule has greatly improved the ability of bioinformatics 
software to unambiguously place sequence reads in the face of 
repetitive sequence. Sequencers that produce single reads 
require longer read lengths to facilitate alignment.   

   4.    Sequence is returned in fastq format, which contains the 
unique read identifi er, the sequence read itself, as well as indi-
vidual quality scores for each sequenced base. The quality 
scores are utilized by alignment and variant calling software. 
The data are often compressed, and most freely available align-
ment tools can process the data in this form.   

   5.    Fastq fi les are aligned to the reference genome sequence. If 
paired, reads within the fi les must be retained in their original 
order, as read members of a pair appear on corresponding lines 
of the fastq fi les. The steps to perform alignment and the 
parameters applied vary depending on the alignment software 
used. Popular software include MAQ [ 17 ], BWA [ 18 ], Bowtie 
[ 19 ], SOAP2 [ 20 ], and Stampy [ 21 ]. A discussion of align-
ment software selection criteria is presented in [ 22 ]. For most 
experiments, performing the alignment with the default set-
tings recommended by the software developers is suffi cient. 
Some sequencing centers offer commercial alignment packages 
tailored to their instrument or may provide aligned data as well 

Phenotype to Genotype



12

as raw reads. The result of alignment is a sequence alignment 
map (SAM) fi le, which is a standardized format developed after 
the  Human Genome Project  to facilitate compatibility amongst 
datasets and analysis tools. This may be seen in the binary form 
(BAM).   

   6.    Alignment processing is optional and may include removing 
PCR duplicates, which are evident as pairs of reads with identi-
cal outer mapping coordinates; trimming low-quality sequence 
or removing reads with consistently low base quality; and per-
forming local realignment around indels. The primary align-
ment is conducted in a naïve fashion, one read pair at a time, 
frequently leading to mal-alignments and false SNP calls around 
indel sites. During local realignment, information from collec-
tions of adjacent and overlapping reads is considered simultane-
ously to resolve polymorphisms or poor-quality alignment. The 
Broad Institute Genome Analysis Toolkit (GATK,   www.
broadinstitute.org/gatk/    ) documents a best practice approach 
to alignment processing as well as variant calling.   

   7.    Variant calling is performed either genome wide or within 
select regions of the genome. Many freely available tools exist 
to call variants. Popular software include GATK and SAMtools 
[ 23 ]. Most programs that call SNPs can also call indels, but 
different algorithms are required to identify other forms of 
variants such as copy number variations (CNVs), inversions, 
translocations, and structural rearrangements. Calling variants 
within the mapped candidate region only saves substantial 
computing time; however, for long-term data storage it is 
often benefi cial to have genome-wide variants at hand for 
sequenced samples rather than the entire alignments, particu-
larly if samples from one project are to be used as controls in 
another project.   

   8.    Variant fi ltering for quality is an essential step. Calling software 
usually assigns a quality score to identifi ed variants. These 
scores are based on many features including the number of 
reads that support the variant call, the quality of the individual 
base calls from the sequencing machine within these reads, the 
number of mismatches surrounding the variant, the allelic fre-
quency (if multi-sample variant calling or pooled sequencing is 
carried out), and whether the variant is seen on both strands 
(strand bias can suggest a false-positive variant call triggered by 
repetitive sequence). Researches can apply a hard fi lter when 
calling variants, so that only those above a certain quality 
threshold are reported. This greatly simplifi es the bioinformat-
ics involvement required. However, experience has shown that 
applying a hard fi lter may discard true variants. This is particu-
larly relevant for samples sequenced to an average read depth 
of <10× (tenfold). In such cases, the standard  thresholds may 
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be too stringent and bespoke fi ltering may be more effective. 
The complexities of variant calling and fi ltering with current 
algorithms are reviewed in [ 24 ].   

   9.    Variant fi ltering for those that segregate with the phenotype is 
then applied to produce a list of candidate mutations. For simply 
inherited  recessive  traits, this is a straightforward approach of 
extracting all variants that are homozygous in all cases and either 
heterozygous or homozygous for the other allele in all controls. 
For  dominant  traits, the opposite is true. In both cases, it is 
essential to consider the level of sequence coverage at the variant 
site in all samples. Absent or inadequate quality sequence at a 
locus can cause a no call within one or a few samples, and this 
must be considered when fi ltering variants to avoid missing 
potential candidate loci affected by coverage issues. Identifying 
homozygous variants from pooled case data circumvents this 
issue. Coverage issues within individual samples are exacerbated 
when relatively low levels of sequence coverage are employed. 
However, even very high levels of sequence redundancy cannot 
overcome the diffi culty in sequencing regions of high GC or 
sequence that has a propensity to form internal secondary struc-
tures, or in aligning regions of repetitive structure.   

   10.    Selecting candidate causal variants: In most cases, the number 
of variants segregating within the candidate region are too 
numerous to allow investigation of each locus. Researchers 
must prioritize these variants for consideration as candidates. 
Variants within candidate genes are usually examined fi rst 
although bioinformatics tools have made it possible to assess 
the likely functional status of very large lists of SNPs and indels. 
These include SIFT [ 25 ], PolyPhen-2 [ 26 ], ANNOVAR [ 27 ], 
SnpEff [ 28 ], and Ensembl Variant Effect Predictor (formerly 
SNP Effect Predictor) [ 29 ]. Coding mutations are categorized 
on their effect on protein sequence and structure, and non-
coding variants within important genomic features such as 
splice sites, conserved sequence, microRNA, promoters, and 
various other regulatory elements are identifi ed. The quality 
and quantity of genomic annotation are crucial to the extent to 
which these tools can identify important functional variants. 
While designed for human genomics, where an extremely well-
annotated reference genome is available, these tools can also 
be applied to non-model animal datasets with varying levels of 
ease and accuracy. Candidate variants may also be excluded by 
consulting common variant databases such as dbSNP (  www.
ncbi.nlm.nih.gov/SNP/    ).   

   11.    Investigating candidate causal variants: Plausible candidates are 
explored systematically by performing simple molecular genetic 
tests such as PCR, RFLP, or Sanger sequencing in a wider 
cohort of cases and controls. If the variant continues to segregate 
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with the phenotype, functional studies may be carried out to 
further support the role of the variant in the trait. A variant 
predicted to alter protein sequence can be tested by sequenc-
ing RNA. The impact of regulatory mutations can be assessed 
through gene expression array data from relevant tissues or the 
use of reporter gene constructs in cell culture. The impact of 
the variant on an organism level can be observed through 
induced mutant laboratory mouse models.      

  While an ever-increasing number of species have reference genomes 
available, availability is not universal. The discovery of mutations in 
the absence of a reference genome is a far more complicated task 
that requires the application of advanced computational methods 
including de novo genome assembly. A competitive evaluation of 
current de novo methodologies is described in [ 30 ]. The task is 
made easier when a reference genome for a closely related species 
is available. Any close species reference assists the relative position-
ing of the assembled genomic fragments and allows the fragments 
from individuals with and without the phenotype of interest to be 
aligned and compared for genetic mapping. 

 If computational resources are limited, the quantity of sequence 
to be assembled can be substantively reduced by the application of 
technologies that limit genomic complexity such as restriction site- 
associated DNA (RAD) sequencing [ 31 ]. RAD sequencing involves 
fi rst digesting the genomes to be compared with the same restric-
tion enzyme. The resulting fragments for each sample are sized 
using electrophoresis, and a narrow size range is selected for 
genomic sequencing. The expectation is that most of the resulting 
fragments should be common for individuals of the same species, 
and when assembled, the fragments should align to common loci 
in the genome. This enables high-coverage sequencing of ran-
domly ascertained loci at relatively low cost. The calling of variants 
within the fragments enables markers to be discovered which can 
be designed onto custom genotyping arrays, allowing gene map-
ping by association analysis to be carried out. Conserved sequence 
primers can also be used to amplify regions of the genome for 
sequencing variant discovery. 

 With ever-increasing computing power and concomitant bioin-
formatics advancements we are beginning to see a shift away from 
basic re-sequencing and alignment to reference-guided or refer-
ence-independent approaches. Reference-guided approaches, like 
that of using a closely related species to facilitate de novo genome 
assembly or cross-species alignment, may be adopted within species 
that have a reference genome assembly available. This method is 
useful in articulating structural rearrangements and CNVs that fail 
to be identifi ed through straightforward alignment. It also allows 
identifi cation of smaller variants present within tracts of sequence 
that may not be a part of the reference genome sequence, either 
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biologically or technically missing from the     assembly. A reference-
independent method for the detection of homozygous causal muta-
tions from case and control pools was recently published [ 32 ]. 
Direct comparison of sequence reads was performed by analyzing 
the frequencies of substrings within reads. Developments of this 
and other reference-free bioinformatics techniques are likely over 
the coming years, not only benefi ting research within species with-
out a reference genome sequence but also offering a novel strategy 
to overcome the limitations associated with a reference genome.    

4    Conclusion 

 Association-based gene mapping remains a powerful tool in muta-
tion detection despite the ability to sequence entire genomes on an 
unprecedented scale. The technique complements whole- genome 
studies by reducing the amount of sequence to be searched for 
causal loci. We can dissect candidate regions using advanced com-
putational fi ltering techniques to reduce the millions of genomic 
variants to a handful of loci most likely to impact phenotype. Given 
the rapid decline in sequencing costs and improvement in sequenc-
ing technologies, targeted re-sequencing of candidate genes and 
possibly exome sequencing are likely to be completely surpassed by 
whole-genome re-sequencing. As the third wave of sequencing 
technologies reach the market, many of the technical challenges of 
current whole-genome sequencing affecting regions that are diffi -
cult to sequence, assemble, align, or call variants within will be 
overcome, potentially making mutation detection as simple as ref-
erence-free single-molecule string comparison. In the meantime, 
GWAS followed by sequencing and bioinformatics ranking of can-
didate variants will remain a tried and true format for determining 
the genetic basis underlying phenotypes of interest.     

   References 

    1.    Purcell S, Neale B, Todd-Brown K et al (2007) 
PLINK: a tool set for whole-genome associa-
tion and population-based linkage analyses. 
Am J Hum Genet 81:559–575  

    2.    Kang HM, Sul JH, Service SK et al (2010) 
Variance component model to account for 
sample structure in genome-wide association 
studies. Nat Genet 42:348–354  

    3.    Yang J, Lee SH, Goddard ME et al (2011) 
GCTA: a tool for genome-wide complex trait 
analysis. Am J Hum Genet 88:76–82  

    4.    Purcell S, Cherny SS, Sham PC (2003) Genetic 
Power Calculator: design of linkage and asso-
ciation genetic mapping studies of complex 
traits. Bioinformatics 19:149–150  

    5.    Goddard ME, Hayes BJ (2009) Mapping 
genes for complex traits in domestic animals 

and their use in breeding programmes. Nat 
Rev Genet 10:381–391  

    6.    Lupski JR, Reid JG, Gonzaga-Jauregui C et al 
(2010) Whole-genome sequencing in a patient 
with Charcot–Marie–Tooth neuropathy. N 
Engl J Med 362:1181–1191  

    7.    Hauswirth R, Haase B, Blatter M et al (2012) 
Mutations in MITF and PAX3 cause “splashed 
white” and other white spotting phenotypes in 
horses. PLoS Genet 8:e1002653  

    8.    Marchini J, Howie B (2010) Genotype impu-
tation for genome-wide association studies. 
Nat Rev Genet 11:499–511  

    9.    Kijas JW (2013) Detecting regions of homo-
zygosity to map the cause of recessively 
inherited disease. Methods Mol Biol 1019:
331–345  

Phenotype to Genotype



16

    10.    Rentería ME, Cortes A, Medland SE (2013) 
Using PLINK for genome-wide association 
studies (GWAS) and data analysis. Methods 
Mol Biol 1019:193–213  

    11.    Cirulli ET, Goldstein DB (2010) Uncovering 
the roles of rare variants in common disease 
through whole-genome sequencing. Nat Rev 
Genet 11:415–425  

    12.    van Driel MA, Cuelenaere K, Kemmeren PP 
et al (2005) GeneSeeker: extraction and inte-
gration of human disease-related information 
from web-based genetic databases. Nucleic 
Acids Res 33:W758–W761  

    13.    Tranchevent LC, Barriot R, Yu S et al (2008) 
ENDEAVOUR update: a web resource for 
gene prioritization in multiple species. Nucleic 
Acids Res 36:W377–W384  

    14.    Okou DT, Steinberg KM, Middle C et al 
(2007) Microarray-based genomic selection 
for high-throughput resequencing. Nat 
Methods 4:907–909  

    15.    Gnirke A, Melnikov A, Maguire J et al (2009) 
Solution hybrid selection with ultra-long oligo-
nucleotides for massively parallel targeted 
sequencing. Nat Biotechnol 27:182–189  

    16.    Stitziel NO, Kiezun A, Sunyaev S (2011) 
Computational and statistical approaches to 
analyzing variants identifi ed by exome sequenc-
ing. Genome Biol 12:227  

    17.    Li H, Ruan J, Durbin RM (2008) Mapping 
short DNA sequencing reads and calling vari-
ants using mapping quality scores. Genome 
Res 18:1851–1858  

    18.    Li H, Durbin RM (2009) Fast and accurate 
short read alignment with Burrows-Wheeler 
transform. Bioinformatics 25:1754–1760  

    19.    Langmead B, Trapnell C, Pop M et al (2009) 
Ultrafast and memory-effi cient alignment of 
short DNA sequences to the human genome. 
Genome Biol 10:R25  

    20.    Li R, Yu C, Li Y et al (2009) SOAP2: an 
improved ultrafast tool for short read align-
ment. Bioinformatics 25:1966–1967  

    21.    Lunter G, Goodson M (2011) Stampy: a statis-
tical algorithm for sensitive and fast mapping of 

Illumina sequence reads. Genome Res 21:
936–939  

    22.    Fonseca NA, Rung J, Brazma A et al (2012) 
Tools for mapping high-throughput sequenc-
ing data. Bioinformatics 28:3169–3177  

    23.    Li H, Handsaker B, Wysoker A et al (2009) 
The sequence alignment/map (SAM) format 
and SAMtools. Bioinformatics 25:2078–2079  

    24.    Nielsen R, Paul JS, Albrechtsen A et al (2011) 
Genotype and SNP calling from next- 
generation sequencing data. Nat Rev Genet 
12:443–451  

    25.    Ng PC, Henikoff S (2003) SIFT: predicting 
amino acid changes that affect protein func-
tion. Nucleic Acids Res 31:3812–3814  

    26.    Adzhubei IA, Schmidt S, Peshkin L et al 
(2010) A method and server for predicting 
damaging missense mutations. Nat Methods 
7:248–249  

    27.    Wang K, Li M, Hakonarson H (2010) 
ANNOVAR: functional annotation of genetic 
variants from high-throughput sequencing 
data. Nucleic Acids Res 38:e164  

    28.       Cingolani P, Platts A, Wang LL et al (2012) A 
program for annotating and predicting the effects 
of single nucleotide polymorphisms, SnpEff: 
SNPs in the genome of Drosophila melanogaster 
strain w1118; iso-2; iso-3. Fly 6:80–92  

    29.    McLaren W, Pritchard B, Rios D et al (2010) 
Deriving the consequences of genomic variants 
with the Ensembl API and SNP Effect 
Predictor. Bioinformatics 26:2069–2070  

    30.    Earl D, Bradnam K, St John J et al (2011) 
Assemblathon 1: a competitive assessment of 
de novo short read assembly methods. Genome 
Res 21:2224–2241  

    31.    Davey JW, Hohenlohe PA, Etter PD et al 
(2011) Genome-wide genetic marker discov-
ery and genotyping using next-generation 
sequencing. Nat Rev Genet 12:499–510  

    32.    Nordström KJ, Albani MC, James GV et al 
(2013) Mutation identifi cation by direct com-
parison of whole-genome sequencing data 
from mutant and wild-type individuals using 
k-mers. Nat Biotechnol 31:325–330    

Cali E. Willet and Claire M. Wade



17

Ronald Trent (ed.), Clinical Bioinformatics, Methods in Molecular Biology, vol. 1168,
DOI 10.1007/978-1-4939-0847-9_2, © Springer Science+Business Media New York 2014

    Chapter 2   

 Production and Analytic Bioinformatics for
Next-Generation DNA Sequencing 

            Richard     James     Nigel     Allcock    

    Abstract 

   The bioinformatics requirements within the clinical environment are very specifi c, and analytic techniques 
need to be fi t for purpose, robust, and predictable. At the same time, the bewildering amount of informa-
tion produced during these analyses needs to be carefully managed, used and interpreted correctly. The 
challenge for clinical laboratories now is to implement production analytical processes that are capable of 
handling different experimental approaches on current equipment, as well as to incorporate ways for these 
systems to evolve to take account of developments likely to make impacts in the near future. This is com-
plicated by the many options available at each of the critical processing steps and a clear method needs to 
be developed to assemble appropriate pipelines. Here, I discuss the issues relevant to the development of 
an informatics pipeline that meets these criteria that should allow individual laboratories to assess their 
proposed strategies.  

  Key words     Annotation  ,   Bioinformatics  ,   DNA  ,   Filtering  ,   Indel  ,   Mapping  ,   NGS  ,   Sequencing  , 
  SNP  ,   SNV  ,   Variants  

  Abbreviations 

   BAM    Binary version of SAM fi le   
  CNV    Copy number variant   
  NGS    Next-generation sequencing   
  Q    Quality score   
  QC    Quality control   
  SNV    Single nucleotide variant   
  SSV    Variant instance   
  VCF    Variant call format   
  WES    Whole-exome sequencing   
  WGS    Whole-genome sequencing   
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1        Introduction 

 The past 10 years have seen a revolution in the techniques for 
DNA sequencing. Where once high-throughput sequencing was 
the domain of a few highly specialized core facilities, next- 
generation sequencing (NGS) and benchtop sequencing have 
evolved to such a point that individual laboratories are capable of 
sequencing panels of genes, exomes, and even whole genomes with 
relatively minimal cost and effort ( see  refs.  1 ,  2  for reviews of 
sequencing technologies). This has completely transformed the 
research world, especially in the area of genetic diseases (inherited 
disease, as well as cancer). The obvious potential of NGS and its 
promise of the  $1,000 genome  is so great that many clinical DNA 
testing laboratories have also sought to evaluate and implement 
NGS techniques. This represents a signifi cant change in the 
approach of clinical laboratories where new techniques have only 
entered routine use after signifi cant periods of stability within the 
research world. Aside from the obvious differences in laboratory 
approaches and sequencing technologies, the use of genomic tech-
niques has been paralleled by a signifi cant increase in the complex-
ity of data analysis, now called  bioinformatics  (also known as 
 informatics  or  computational biology ). 

 A wide array of new methods have been developed in a very 
short space of time and bioinformatics is emerging as a fi eld in its 
own right. This presents the other signifi cant challenge for imple-
mentation in the clinical laboratory—mastery and assembly of a 
robust set of analytical techniques that will meet the criteria and 
standards of modern medical and diagnostic practice [ 3 ]. 

 One of the critical features enabled by NGS is the move away 
from the analysis of individual genes (genetics) to analysis of much 
larger regions or even whole genomes (genomics). Within the clin-
ical laboratory this is proving disruptive, with clinicians able to 
order very powerful tests that have signifi cant diagnostic capability, 
albeit with a manyfold increase in analytical complexity, requiring 
much more signifi cant input from laboratory scientists and bioin-
formaticians [ 4 ]. Until relatively recently, the required analytical 
techniques were not stable and the subject of much research in the 
literature. There is recent evidence that this is changing, with broad 
acceptance of critical techniques beginning to emerge [ 5 – 7 ]. 
However, there are still often multiple ways to implement individ-
ual methods and the particular combination of software packages 
needs to be resolved on an individual laboratory basis, depending 
on the type of testing being performed, the equipment utilized, 
and the computing resources available, as well as the specifi c 
requirements of medical professionals and regulatory agencies. 

 For the clinical laboratory, the following features are critically 
important:

Richard James Nigel Allcock
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 ●    A stable bioinformatic/computational environment, with 
defi ned inputs and outputs. Thought should be given as to 
how the system can be updated/improved and the effect of 
differences measured and quantifi ed. Ideally data should be 
analyzed along predefi ned, automated pathways or pipelines.  

 ●   A defi ned series of analytical metrics allowing tracking and 
troubleshooting of the process.  

 ●   The process must be tuned to support the particular instru-
ment platforms used in the laboratory.  

 ●   The process should be designed so that alternative sequencing 
platforms could be used in the laboratory. This allows for a 
changing laboratory environment, including new equipment 
that is in the pipeline but does not yet exist.    

 There are a wide variety of laboratory approaches within the 
genomics discipline. A major focus of clinical laboratories will 
be the detection of variations in the genome, be they variations 
in chromosome numbers, large indels/rearrangements, and 
 small- scale variants such as single nucleotide variants (SNV) and 
indels. The specifi c characteristics of the variants sought after by 
individual laboratories will determine a range of laboratory 
techniques that may be appropriate, including (1) Whole-
genome sequencing (WGS), (2) Whole-exome sequencing 
(WES), (3) Targeted panel/gene sequencing, and (4) Individual 
gene sequencing. 

 With the exception of WGS, there are many different labora-
tory approaches for each of the other techniques, each with advan-
tages and disadvantages, i.e., hybridization, small-scale PCR, 
massively parallel PCR, as well as specifi c ways in interpreting and 
troubleshooting them. Appropriate QC metrics will need to be 
developed by individual laboratories relevant to the approaches 
used. 

 Overall, six distinct processes can be defi ned leading from 
DNA to interpretable data:

 ●    Sequence generation, whose primary output is sequence 
“reads” in a standard format, e.g., FASTQ, BAM.  

 ●   Quality control (QC).  
 ●   Alignment of reads to a reference sequence.  
 ●   Multiple analyses of the aligned data generating single nucleo-

tide variants (SNV), CNVs, and other structural variants.  
 ●   Annotation of variants. Annotations may include gene, loca-

tion, effect on amino acids, presence and frequency in relevant 
databases, others.  

 ●   Positive identifi cation of known variants in genes of interest 
and/or negative selection (fi ltering) to remove unimportant 
variants (according to precisely defi ned parameters).    

 Bioinformatics for NGS
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 Some of these processes will occur without human intervention, 
according to previously set parameters, whilst others may require a 
degree of interpretation from laboratory scientists or clinicians. 
Some of the steps (especially  step 1 ) will occur on the chosen 
sequencing instrument, while others may occur on a variety of 
computing platforms. The combination of hardware and software 
requirements to perform NGS is the source of much confusion. 
However, while there is a vast array of programs for performing 
individual tasks, it is important to distinguish between the underly-
ing algorithms performing a particular task and the program in 
which it is implemented. There is also a mixture of commercial and 
open-source programs that can be used. Care should be taken to 
ensure that a particular program is not used merely because it is 
easily available, fi ts with a particular IT policy or other criteria—
ultimately, the process must fi rst be capable of performing the 
intended task.  

2    Materials 

  Reads are the primary input into a bioinformatics pipeline and can 
be either single-end or paired-end. In addition, individual base 
quality scores (so called “Q” scores) are required. Reads and Q 
scores can be large fi les, are often compressed and can come in a 
number of different formats. The most common formats include 
FASTQ (a text fi le containing reads, together with ASCII-33 offset 
Q scores; [ 8 ]) and BAM (a binary compressed format often used 
for alignment;   http://samtools.sourceforge.net/SAMv1.pdf    ; [ 9 ]). 
Occasionally, reads and Q scores are contained in separate fi les. 
Rapid, accurate convertors are available to transpose data between 
formats.  

  This is the program that will perform the mapping of reads to a 
reference sequence. The chosen mapper must be capable of 
interpreting the read format used. Some sequencing systems 
perform read mapping on instrument, whilst others do not, in 
which case an appropriate mapper needs to be run on the read fi le. 
Mappers can be “tuned” to change the stringency. Some mappers 
only use the base and quality information provided in the read fi le, 
whilst others take account of other data produced during primary 
sequence generation to enhance mapping. The specifi c parameters 
used for mapping reads will likely be very different depending on 
the sequencing system used, and will need to be independently 
determined. A variety of mappers, both proprietary and open- 
source, are available ( see   Note 1 ).  

2.1  Sequence Reads

2.2  A Read Mapper
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  After mapping, specifi c evaluation of the mapping must be 
performed. This will be performed in association with fi les 
specifying the regions being analyzed.  

  These are the programs that will evaluate specifi c sites of interest 
for the presence of variants, i.e., differences between the sample 
and the chosen reference sequence. A variety of variant callers each 
with advantages and disadvantages is available ( see   Note 2 ). 
Different variant callers may be required for different classes of 
variants and the results of individual analyses may need to be 
aggregated for further analysis and fi ltering. The emerging data 
format for variants is called VCF—variant call format [ 10 ]. VCF 
allows a variety of data fi elds regarding variant quality to be 
conveniently stored and manipulated.  

  These are the programs that will be used to add additional 
information to variants, as well as to identify specifi cally or fi lter 
out particular variants of note. A variety of programs can perform 
annotation and be used for fi ltering. Depending on the scale of the 
sequencing being performed, the fi ltering step may be performed 
on csv fi les in commonly used programs such as Microsoft Excel, 
whilst more sophisticated approaches will be required for larger 
data sets, e.g., WES, WGS ( see   Note 3 ).  

  Regardless of the methods and programs chosen, a variety of static 
fi les will also be required. For simplicity, wherever possible, well- 
curated, standardized fi les and databases should be used. However, 
as these change on a reasonably regular basis, it may be convenient 
to download the appropriate fi les from a central repository and use 
these static fi les until updated fi les can be tested and validated. It is 
also important to note that most databases and reference sequences 
are linked via specifi c versions and it is essential to obtain the 
correct set of fi les and databases. The minimum requirements are 
as follows:

 ●     A reference sequence —the Human Genome hg19 build 
(GRCh37;   https://genome.ucsc.edu    ) is the most commonly 
used reference sequence. It is likely to be superseded by hg20 
(GRCh38) in future, although hg19 will continue to be usable 
for a substantial period. If a whole-genome reference is not to 
be used, laboratories should clearly identify the origin and ver-
sion number of the chosen reference sequence and maintain 
local copies.  

 ●    An annotation database . A number are available and they 
change occasionally. The particular database chosen should be 
shown to contain accurate annotation for genes of interest. It 
is worth noting that there may be sequence differences between 
individual gene-specifi c references used in clinical laboratories 

2.3  Mapping 
Assessment Tools

2.4  Variant Callers

2.5  Annotation 
and Filtering

2.6  Reference/
Database Files
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and the hg19 genome reference. There may also be differences 
in what is regarded as the primary transcript for a particular 
gene.  

 ●    A fi le of regions/genes being targeted , listed by chromosome and 
position. This fi le will be in standard BED format [ 11 ].  

 ●    Databases of known and/or important variants . These will be 
local databases, but may also contain bigger data sets acquired 
elsewhere, e.g., the Human Gene Mutation Database or 
HGMD ( see  also Chapter   15    ).  

 ●    Databases of known and/or unimportant variants . These are 
useful as they identify very common variants in the population. 
These are generally assumed to be unimportant in certain dis-
eases (mostly rare diseases). Common databases include the 
1000 genomes database (  www.1000genomes.org    ; [ 12 ]), 
the Exome Sequencing Project (  http://evs.gs.washington.
edu/EVS    ), and the SNP database (dbSNP;   www.ncbi.nlm.nih.
gov/SNP    ).  

 ●    Other databases containing information that might be consid-
ered useful . Commonly used databases include precomputed 
matrices of scores derived from programs such as SIFT [ 13 ], 
Polyphen2 [ 14 ], and MutationTaster [ 15 ] which can be used 
to assess the possibility that if a particular variant is pathogenic 
or not ( see  Chapters   13     and   14     for further discussion).      

3    Methods 

  Having performed the required laboratory preparations and 
sequencing, the raw data will usually be stored in FASTQ or BAM 
format. Other formats are possible but are increasingly rare and it 
is unlikely that most clinical laboratories will make use of them for 
very much longer. An example is the Life Technologies SOLID- 
specifi c XSQ format, which is the equivalent of a binary compressed 
colorspace FASTQ fi le. Depending on the particular laboratory 
setup and choice of sequencing platform, various QC steps may 
have already been performed automatically. If not, they will need 
to be performed before proceeding. QC will usually take the form 
of fi ltering and trimming.

    1.    First, a number of reads may be fi ltered, i.e., removed entirely 
because of quality issues. The quality of reads can be quite vari-
able and laboratory/platform-specifi c criteria for inclusion/
exclusion will need to be determined.   

   2.    Second, poor quality bases, often at the 3′ end of a read pass 
may fall below a defi ned quality threshold and are automati-
cally trimmed off as part of signal processing/base calling on 
the sequencer. Where this does not happen automatically, 

3.1  Perform Quality 
Control on Reads
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the Q scores will need to be assessed and the reads trimmed 
accordingly. In some sequencing platforms, e.g., Illumina 
GAII, Hiseq, MiSeq, the base-quality scores decline predict-
ably across a read and hence reads can simply be trimmed from 
the 3′ end until the fi rst base with a Q score above a defi ned 
threshold is reached. This trimming strategy will result in reads 
of uneven length and so some trimming strategies simply trim 
all reads back to a set length such that all bases are above a 
particular threshold. In other sequencing platforms, e.g., 
Roche GS-FLX, Life Technologies Ion Torrent, it is possible 
for Q scores to vary substantially across a read and trimming 
using such a strategy deletes most of the data at the expense of 
the high quality bases throughout the remainder of individual 
reads. Hence, in this case, read trimming is performed using a 
sliding window,  trimming reads back only from the 3′ end 
until a threshold average is reached. This strategy explicitly 
results in reads of varying lengths and with variable base quali-
ties internal to individual reads. It is important to note that 
these features directly affect the choice of mapping and variant 
calling algorithms, as they need to be able to take account of 
these varying qualities. Hypothetically, if mappers and variant 
callers were able to completely incorporate Q scores in the sta-
tistical assessment of reads and positions, read trimming would 
be unnecessary.   

   3.    Finally, it is worth noting that in the older SOLID sequencing 
system (being phased out, but still in use in some clinical labo-
ratories given its extremely high individual read accuracy), 
reads are not trimmed at all until alignment with a reference 
sequence, i.e., there is no Q score-based trimming, and that 
specialized mappers and variant callers capable of handling col-
orspace data are required.   

   4.    The program FASTqc (  http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/    ) has been used to assess Q score distri-
butions and other features of larger read sets including GC/
AT distribution across reads (should be consistent across most 
reads) and this can also be used to assist read trimming. 
Regardless of the specifi c trimming/fi ltering strategy used 
within a particular laboratory, a number of metrics should be 
recorded here. These include the following features:

 ●    Total number of reads.  
 ●   Total number of reads after fi ltering, i.e., complete removal 

of reads.  
 ●   The number of bases removed by trimming.  
 ●   The fi nal number of reads and their average length 

(or some other indication of the read distribution).        
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 For a given sequencing application, e.g., WES, these metrics 
should remain consistent from run to run. If not, it suggests varia-
tions in the process. The specifi c variations may be indicative of the 
part of the process in which a problem has occurred.  

  After QC fi ltering and read trimming, the reads are mapped to a 
reference sequence. Specifi c parameters for the read mapper should 
be set based on experiments with particular laboratory applications. 
For bulk mapping of reads to the hg19 human genome reference 
sequence, there is signifi cant experience and guidance to be 
obtained from the literature, specifi c to individual sequencing 
platforms and applications. For DNA derived from blood or tissues, 
>95 % of reads should map to the human genome reference 
sequence. The percentage of reads mapping to the reference 
sequence should be recorded. Large reductions in this metric 
suggest contamination with nonhuman DNA. This is unlikely from 
blood and most other tissues, but a substantial problem in saliva or 
buccal-derived DNA [ 16 ]. 

 For most NGS-applications, the best choice of reference 
sequence will usually be the entire human genome. Of course there 
will be some applications where an individual gene sequence is a 
superior choice, but this will be based on the specifi c characteristics 
of the gene(s) being analyzed. Most NGS preparative techniques 
(WES, multiplex PCR and so on) are inherently “noisier” than 
previous techniques which relied on the ability to specifi cally 
amplify a single sequence. When working with human exomes, 
e.g., the hybridization process is not absolute and highly similar 
regions can be enriched. Mapping reads to the entire genome 
should not be mistaken for performing whole-genome analysis. 
Once reads have been mapped, further analyses should be restricted 
to genes of interest using bed fi les specifying chromosomal posi-
tions of interest. The failure to allow reads to map to the appropri-
ate genomic loci may result in reads being mis-mapped, which may 
cause problems in further analyses, usually because reads from an 
alternative locus have been forced to align to a single-gene refer-
ence sequence. This is a fundamental difference between tradi-
tional editing/alignment of Sanger chromatograms performed 
semi-automatically or manually, and bulk read-mapping performed 
computationally in NGS. Given the wide range of different local 
sequence-specifi c contexts, it is not possible to ensure that every 
read is completely properly mapped—only to ensure that a read is 
mapped to its most likely location in the genome. Greater specifi c-
ity can be achieved at the cost of a substantial reduction in the 
number of reads mapped to a particular gene or region, with some 
regions essentially becoming “unmappable” because of the specifi c 
sequence context.  

3.2  Map the Reads 
to a Reference 
Sequence
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  After mapping, the number and proportion of reads assigned to 
the targeted regions/genes must be determined. This task is usually 
performed by the same software performing the read mapping. 
A number of metrics should be recorded at this step and are 
strongly indicative of the success or failure of the laboratory 
enrichment protocol. The specifi c ranges of value are application 
dependent rather than sequencing-platform dependent. Many 
laboratories record  average coverage  within a given set of targets. 
However, this metric alone is often not suffi cient to guarantee 
consistent enrichment across multiple gene/region targets. It is 
often also necessary to quantify a number of other factors such as 
the proportion (and identity) of regions and bases with zero 
coverage (either failures of enrichment or failures in sequencing) or 
substantially lower than average coverage. Other metrics can also 
be recorded, such as the proportion of bases covered at greater 
than a predetermined threshold. The consistency of poorly 
performing regions should be identifi ed during assay workup and 
monitored during production. One metric that has emerged as 
proxy for the consistency of coverage in exome sequencing is the 
proportion of the exome covered at >20× [ 17 ]. Most regions with 
20× coverage should result in reliable variant-calling, whilst regions 
with fewer reads are much more unreliable. The relationship 
between average coverage and a metric such as % base >20× is 
highly application dependent and should be determined and used 
to identify the necessary balance between appropriate coverage and 
volume of sequence required.  

  Generating and mapping large volumes of sequence data, even as 
far as sequencing an entire human genome is a relatively simple 
process in the laboratory. However, in clinical settings it is 
important to distinguish between the most effi cient laboratory 
techniques (effi ciency can be defi ned in terms of reducing the 
different number of assays, costs, staff requirements, and equipment 
requirements) and the genes that have been requested to be 
analyzed. Hence, once reads have been mapped and the analysis 
restricted to regions/genes of interest, the specifi c targets of 
interest can be analyzed for variants such as SNVs, indels (small 
and large) and CNVs. As an extreme example, it may soon be likely 
that the most effi cient and cheapest way to analyze a single large 
gene might actually be to sequence the entire exome (or even 
entire genome) from a particular sample and then electronically 
extract only the information from the gene of interest. This 
electronic extraction is best performed at the variant-calling step, 
with regions or genes of interest defi ned using bed fi les. 

 There are a number of approaches to SNV calling and the area 
is still developing. Fundamentally, variant-callers examine all the 
reads covering a particular base and counts the number of reads 
containing the reference base and the number of reads containing a 
variant or non-reference base. The differences in approach to variant 

3.3  Determine 
the Distribution 
of Reads in Targets 
of Interest

3.4  Call Variants 
and Merge Outputs
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calling result from the way different information regarding reads 
and bases is used. In the fi rst approach, reads are heavily QC’ed 
to remove those with poor quality bases and those that map poorly. 
A variety of other factors can be used to exclude reads. The number 
of reads containing different bases at each position is then counted 
and assessed statistically to determine the likelihood. A second 
approach excludes some reads that pass below various parameter 
thresholds, but then also weights the remaining reads according to 
the values of the Q scores of individual bases covering the region. 
Other factors such as the presence of other variants within a read 
and proximity to the 3′ or 5′ end of a read can be used to reduce the 
weighting of a particular base. The emerging standard is the devel-
opment of a genotype quality (similar to base Q scores) as a statisti-
cal assessment of a variant call at a particular position. 

 Analyses of small and large indels and/or CNVs should also be 
performed where required. The inputs to all of these algorithms 
are the BAM fi les produced during read-mapping. Certain analyses 
such as CNV-calling may require control datasets, i.e., a large 
number of normal samples with which a test sample can be 
compared. 

 After different kinds of variant-calling have been performed, it 
may be necessary to combine and aggregate the different analyses 
into a single output for further consideration. The fi le format that 
has emerged as a standard is VCF—  http://vcftools.sourceforge.
net/specs.html     [ 10 ]. VCF fi les can be viewed in many software 
packages and the VCFTools suite of program can be used to 
manipulate VCF fi les. Metrics to be recorded in variant calling 
include the total number of variants, homozygous/heterozygous 
ratio, number of SNVs/indels, and the breakdown of variants per 
chromosome. Variations in these metrics can be indicative of a 
number of issues and problems including strand biases, poor 
sequencing quality, enrichment issues, as well as samples that are 
highly disparate from the mostly Caucasian-derived hg 19 genomes 
reference sequence.  

  Various analyses can be performed on BAM fi les to generate variant 
candidates. It is implicit that the generated variant candidates will 
contain a mixture of real variants and variants that arise as a result 
of specifi c platform, analytical, or sequence-context issues. All NGS 
platforms suffer from these issues [ 17 ]. Whilst this is of concern to 
some, the next stage in analyzing genome-wide variant is the 
annotation and fi ltering of variants to derive a prioritized list for 
further consideration. There are a variety of ways to perform 
annotation and a variety of annotations that can be added to 
variants, including (but not limited to) gene, location within gene, 
effect on amino acid, i.e., synonymous versus non-synonymous, 
identity and frequency within various databases (commonly 
HGMD, dbSNP, 1000 genomes, Exome Sequencing Project), 
identity and frequency within various in-house databases of known 

3.5  Annotate 
and Filter Variants 
According 
to Predefi ned Criteria
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pathogenic variants as well as known systematic sequencing errors. 
Once annotated, variants can then be fi ltered by various criteria. 
These criteria will vary between laboratories and even within 
laboratories, dependent on the characteristics of genes and/or 
diseases being investigated. It is critical to record the various 
fi ltering steps and the numbers of variants retained or excluded at 
any point. Most programs with inbuilt fi lters allow a series of fi lters 
to be predefi ned, and these can then be run automatically with the 
user observing the outputs from each fi ltering step. 

 Two approaches to fi ltering are possible.

    1.    Variants may be fi ltered against a known list of disease-caus-
ing/pathogenic variants and hence important variants in the 
sample are positively identifi ed. This requires a database of 
such  variants and there are numerous efforts to produce com-
prehensively annotated pathogenic variants for specifi c diseases 
and genes. This approach is relatively straightforward. 
Following positive identifi cation of specifi c variants in genes, 
they may need to be confi rmed by an orthogonal method such 
as Sanger sequencing. It is important to defi ne the logic by 
which a particular variant or pair of variants is declared as 
pathogenic. In the past, following a clinical diagnosis, a single 
gene might have been sequenced and any variants within 
declared pathogenic simply because they were found in a gene 
known to cause the disease. However, the introduction of 
NGS also includes the much wider screening of many genes at 
once. In addition, databases are available to provide a wealth of 
information. These are particularly relevant for the second 
method of fi ltering variants.   

   2.    The exclusion approach allows variants unlikely to be important 
to be removed, enriching for likely important variants. Many 
approaches are possible for this task and the individual work-
fl ows are beyond the scope of this article. However, they should 
be clearly defi ned, rigorously justifi ed and implemented. Using 
this negative fi ltering approach will likely result in a list of poten-
tial gene candidates, with priorities for further investigation.     

 Other investigations may include showing that the inheritance 
of particular variants is consistent with disease status in a family as 
well as functional assays for particular variants.  

  Genomic techniques have developed rapidly over the past decade. 
There have been advances in almost every aspect of the process, 
from laboratory techniques, sequencing platforms, databases and 
approaches to analysis. Whilst many of these techniques are 
entering clinical use, they have not yet fi nished developing and 
every month brings with it a host of new changes, updates, and 
improvements to some or all aspects of the process. The 
continuing challenge for the clinical laboratory running a 

3.6  Keeping Pace 
with Developments
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production informatics pipeline is to build a process which can 
change and grow, accommodating changes and improvements 
with minimal interruption, allowing individual laboratories to 
take advantage of improvements in accuracy, workfl ow, time, and 
cost as the various parts of the system evolve. Individual changes 
to the pipeline will need to evaluated and validated to show that 
they do not degrade the performance in some aspects whilst 
improving others or introducing new components. A systematic 
program to maintain and develop these pipelines should be 
implemented by laboratories to ensure that this happens, taking 
account of individual circumstances.   

4    Notes 

     1.     Read Mapping/alignment software . A signifi cant number of 
software packages are available to align reads to a reference 
sequence. It is beyond the scope of this article to provide and 
review an exhaustive list. There is a substantial literature on 
read alignment software [ 18 ], online references are often 
more up to date. Useful Web pages for read aligners include 
  http://en.wikibooks.org/wiki/Next_Generation_Sequencing_
%28NGS%29/Alignment     and   http://wwwdev.ebi.ac.uk/fg/
hts_mappers/    .   

   2.     Variant callers . Variant callers take as their base input aligned 
sequence reads in BAM format. The assumptions underlying 
the particular variant-calling strategy are critically affected by 
the specifi c methodology used for variant calling. Unlike tradi-
tional forms of variant detection, i.e., manual inspection of 
Sanger electropherograms, different algorithms must be per-
formed independently to call different variant types, e.g., SNVs 
and indels. Each of these algorithms will differ in their sensitivity 
and specifi city, and this will also be infl uenced by the laboratory 
workfl ow, e.g., WES versus WGS, and mapping parameters. 
There is currently no universal standard variant caller applicable 
to all data types. A useful discussion of the differences between 
some variant callers can be found in ref.  19 .   

   3.     Annotation and fi ltering . The critical step in annotation and 
fi ltering is the defi nition of the process. The program used to 
implement the process is often chosen based on convenience 
or cost. This is an active and growing area, with a signifi cant 
number of commercial software companies producing packages 
which may perform these tasks. The fi nal choice of software 
will often depend on the interactions of consideration of cost 
and convenience. A large number of groups have made use of 
the Annovar package [ 20 ], a freely available program, well 
supported by its author and developer which is powerful 
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enough to annotate and fi lter very large datasets, including 
whole-genome data on even modest computing hardware. Its 
principal drawback is the requirement for operation via the 
command line, although there are now also freely available 
Web-based implementations of the algorithm—  http:// 
wannovar.usc.edu/     [ 21 ] .          
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    Chapter 3   

 Analyzing the Metabolome 

           Francis     G.     Bowling      and     Mervyn     Thomas   

    Abstract 

   Metabolites, the chemical entities that are transformed during metabolism, provide a functional readout of 
cellular biochemistry that offers the best prediction of the phenotype and the nature of a disease. Mass 
spectrometry now allows thousands of metabolites to be quantitated. The targeted or untargeted data 
from metabolic profi ling can be combined with either supervised or unsupervised approaches to improve 
interpretation. These sophisticated statistical techniques are computationally intensive. This chapter 
reviews techniques applicable to metabolomics approaches to disease.  

  Key words     Mass spectrometry  ,   Metabolites  ,   Metabolomics  ,   Pathway analysis  ,   Targeted metabolomics  , 
  Untargeted metabolomics  ,   Supervised analysis  ,   Unsupervised analysis  

  Abbreviations 

   AUC    Area under curve   
  LC    Liquid chromatography   
  MS    Mass spectrometry   
  NMR    Nuclear magnetic resonance   
  ROC    Receiver operating characteristic   

1        Introduction 

 Metabolites are small molecules that are chemically transformed 
during metabolism and, as such, provide a functional readout of 
the cellular state. Unlike genes and proteins, whose function is 
subject to epigenetic regulation and posttranslational modifi ca-
tions respectively, metabolites serve as direct signatures of bio-
chemical activity. Thus, they are easier to correlate with phenotype 
[ 1 ]. In this context, metabolite profi ling, or metabolomics, has 
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become a powerful approach that has been widely adopted for 
clinical diagnostics because of the correlation of biochemical 
changes with phenotype. Metabolomic techniques are designed to 
measure rapidly thousands of metabolites simultaneously from 
only minimal amounts of sample. 

 Metabolomics can be used for diagnosis, monitoring therapy, 
and predicting the natural history of a disease state. A  targeted 
metabolomics approach  which focuses on a set of predetermined 
molecular species is particularly useful for inherited metabolic 
 disorders, which are a group of diseases caused by defects in bio-
chemical pathways [ 2 ]. An  untargeted approach  can be used for 
more general diseases, e.g., acute renal failure, where the nature of 
the molecular disruption may be more diverse than that in a single 
pathway disorder, but where the predictive value of combining many 
independent molecular markers is greater than the value of measur-
ing a single marker [ 3 ]. With an untargeted approach, it is not neces-
sary to know the identity of the disease related metabolites. 

 The application of these technologies has revealed system-wide 
alterations of unexpected metabolic pathways in response to phenotypic 
perturbations. Moreover, many of the molecules detected are currently 
not included in databases and metabolite repositories, indicating the 
extent to which our picture of cellular metabolism is incomplete [ 4 ].  

2    Materials 

  As the general principle with metabolomics is to compare specifi c 
samples against a matched control group, careful consideration 
should be given to the composition of the study groups. Affected 
may be compared against unaffected. Treated cohorts may be 
compared against an untreated set, or longitudinally in a case 
control series. Cross-sectional data may be useful to dilute the 
effect of confounding factors such as other disease conditions or 
disturbances to metabolism. Generally, cohorts should be matched 
for age, particularly in pediatric studies, and possibly for gender. It 
may also be necessary to match samples for fasting state, exercise, 
medications, and diet. Population based reference data can be used 
for comparison also ( see   Note 1 ).  

  Serum samples have been used most commonly and are generally 
considered to be the most informative [ 2 ]. Other fl uids such as 
urine and cerebrospinal fl uid can be studied. Investigation may 
now be also undertaken on tissue samples, either from biopsy or by 
in vivo techniques such as magnetic resonance spectroscopy. 
Sampling of the affected tissue is the most informative. Again, 
sample collection, preparation, and storage should be standardized 
to prevent artifactual changes in metabolites ( see   Note 2 ).  

2.1  Case 
Ascertainment

2.2  Samples

Francis G. Bowling and Mervyn Thomas
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  Developments in mass spectrometry (MS) and nuclear magnetic 
resonance (NMR) offer distinct advantages for performing targeted 
metabolomic studies because of their specifi city and quantitative 
reproducibility. However, there are many analytical tools available 
for measuring metabolites that could in principle be considered 
such as high performance liquid chromatography and ultraviolet-
visible spectroscopy [ 5 ]. Triple quadrupole MS used to perform 
selected reaction monitoring experiments are now available to 
analyze most of the metabolites of amino acids, organic acids, 
lipids, steroids, fatty acids, glycans, and purines at their naturally 
occurring physiological concentrations. These techniques are 
highly sensitive and robust methods able to measure a signifi cant 
number of biologically important metabolites with relatively high 
throughput. However, their applications are often limited by lack 
of understanding of informatics and statistics ( see   Note 3 ). 

 Untargeted metabolomics methods are global in scope and 
have the aim to measure simultaneously as many metabolites as 
possible from biological samples without bias. Although untar-
geted metabolomics can be performed using NMR, liquid chro-
matography (LC) followed by MS (LC/MS) enables the detection 
of the most metabolites and has therefore become the technique of 
choice for global metabolite profi ling efforts [ 6 ]. Most frequently 
data are collected on a quadrupole time-of-fl ight (QTOF) mass 
spectrometer or an Orbitrap mass spectrometer, but other time-of- 
fl ight and ion trap instruments can also be used.   

3    Methods 

  The fi rst step in performing metabolomics is to determine the 
number of metabolites to be measured and the context in which 
they are to be measured. In some instances, it may be of interest to 
examine a defi ned set of metabolites by using a  targeted  approach 
( see   Note 4 ). In other cases, an  untargeted  or global approach may 
be taken in which as many metabolites as possible are measured 
and compared between samples without bias. Ultimately, the 
number and chemical composition of metabolites to be studied is 
a defi ning attribute of any metabolomic experiment that then 
shapes experimental design with respect to sample preparation and 
choice of instrumentation. 

  The principle behind a targeted approach is to combine the 
information from multiple (known) metabolites to improve data 
interpretation. The combination of multiple (independent) meta-
bolites is more discriminatory than a single metabolite. Classical 
biochemical metabolism shows metabolites arising as substrates, 
intermediates, and products in pathways. This suggests that 
sequential pathway metabolites may not be independent variables. 

2.3  Equipment

3.1  Overview

3.1.1  Targeted 
Metabolomics

Metabalome
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However, regulatory mechanisms, fl ux analysis, alternative 
pathways, organelle distribution of pathway steps, and intermediate 
pools show that the relationships between pathway metabolite 
concentrations are not simply linear. Hence, combining their 
values may be more informative than simply relying on limited 
traditional disease markers [ 7 ]. 

 Targeted analyses are usually conducted to answer well defi ned 
clinical questions, examining the differences between clinical 
groups which are defi ned a priori, e.g., healthy control subjects 
versus individuals with mitochondrial disease. In this situation, 
the primary statistical analysis should be based on a supervised 
technique. Supervised techniques are designed to exploit the 
known a priori clinical structure of the data. A comprehensive 
analysis will usually include some unsupervised techniques, e.g., 
cluster analysis or principal components, principally for quality 
checking. In short,  supervised  techniques look for the differences 
we expect to fi nd in the data;  unsupervised  techniques look for 
unexpected differences.  

  Untargeted metabolite profi les require more analytical effort but 
offer a great discriminatory yield if the experiments are tightly 
controlled. This approach will require a greater number of samples 
or combination of data through meta-analysis techniques. Non- 
supervised statistical analyses may be employed in untargeted 
metabolomics experiments for research or exploratory reasons. 
They can also be used for quality checking of the assumptions and 
identifi cation of features in a supervised analysis of the same set, 
e.g., Identifi cation of clusters of metabolites not known to be 
related to the phenotype or disease presentation in question. 
Artifacts in sample collection and handling may be identifi ed 
through this untargeted analysis.   

   The aim in design of a targeted metabolomic analysis is to ensure 
correct quantitation of a known set of molecular species. 
Commercial kits are available for this purpose. Assay preparation 
may be performed in multi-well plates with isotope labeled internal 
standards. Plasma samples are derivatized by agents such as 
phenylisothiocyanate and extracted with an organic solvent. 
Alternatively, to reduce cost, laboratories may establish a calibration 
curve from varying concentrations of each metabolite. These 
curves are stored against the metabolite in the MS library for that 
laboratory and are referenced against an internal standard such as 
trophic acid added to each run. This approach reduces the effect of 
inter-assay variation and does not require isotopic standards to be 
used for every compound in every run. 

 For MS, a standard fl ow injection method may be used without 
chromatographic separation. Two injections, one for the positive and 
one for the negative detection mode analysis can be employed [ 8 ]. 

3.1.2  Untargeted 
Metabolomics

3.2  Sample 
Preparation 
and Data Acquisition

3.2.1  Targeted 
Metabolomics
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For laboratories investigating inherited disorders of metabolism, a 
QTRAP 5500 tandem mass spectrometer (AB SCIEX, USA) with 
electrospray ionization is often employed. Multiple reaction moni-
toring detection allows for identifi cation and quantifi cation of 
approximately 200 endogenous metabolites from different metab-
olite classes.  

  The fi rst step in the untargeted metabolomic workfl ow is to isolate 
metabolites from biological samples. Various approaches, 
 depending on the experimental design, involving sample 
homogenization and protein precipitation may be utilized. Prior to 
MS analysis, isolated metabolites are separated chromatographically 
by using relatively short solvent gradients (in the order of minutes) 
that allow for high-throughput analysis of large numbers of 
samples [ 9 ]. Because of physicochemical differences in the variety 
of molecular species constituting the metabolome, multiplexing 
extraction and separation methods maximizes the number of 
metabolites detected. Sample extraction using both organic and 
aqueous solvents increases the yield of hydrophobic and hydrophilic 
compounds [ 10 ]. Reverse-phase chromatography is better suited 
for the separation of hydrophobic metabolites, whereas hydrophilic- 
interaction chromatography separates hydrophilic compounds. 
Given the challenge of predicting a triple quadrupole fragmentation 
pattern for most metabolites, untargeted metabolomic profi ling 
typically acquires only the mass-to-charge ratio ( m/z ) of the intact 
metabolite. By using chromatographic separation in combination 
with mass spectrometry, thousands of peaks with a unique mass-to-
charge ratio and unique retention time are detected from biological 
samples [ 11 ].   

   For targeted metabolomics approaches, it is necessary to identify 
each metabolite. The metabolites are defi ned by their retention on 
the chromatographic method and their ion spectra. Usually, each 
laboratory will validate the retention time for their conditions and 
enter the data into a metabolite library. In commercial kits with 
standardized conditions, the complete analytical process may be 
performed using integral software, e.g., MetIQ software. For in- 
house assays, bioinformatic tools such as MetaboAnalyst allow for 
identifi cation of metabolites [ 12 ]. Metabolic software programs 
are available to identify metabolite features that are differentially 
altered between sample groups. These can include methods for 
peak picking, nonlinear retention time alignment, visualization, 
relative quantitation, and statistics. XCMS is an example of 
publically available metabolomic software [ 13 ]. Users can upload 
data, perform data processing, and browse results within a Web-
based interface.  

3.2.2  Untargeted 
Metabolomics

3.3  Metabolite 
Identifi cation

3.3.1  Targeted 
Metabolomics

Metabalome
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  Untargeted metabolomic software does not output metabolite 
identifi cations. Typically, it provides a list of features with relative 
changes derived from the difference in relative intensity between 
samples. A separate analysis must be undertaken to determine the 
identity of a feature of interest. The mass of the compound is 
searched in metabolite databases such as the Human Metabolome 
Database [ 14 ] and METLIN [ 15 ,  16 ]. A database match represents 
only a tentative identifi cation that must be confi rmed in a separate 
experiment or by comparing the retention time and mass 
spectrometry data of a model ( see   Note 5 ). The Human 
Metabolome Database includes detailed data for each of its 
included metabolites (~8,550). In addition to having molecular 
weights and experimental NMR spectra, the biochemical pathway, 
biological concentration, tissue/cellular location, involved 
enzymes, and related disorders are included. METLIN contains 
experimental data for approximately 45,000 compounds.   

   In a targeted approach, there will be a well-defi ned set of candidate 
analytes used to differentiate (clinical) sample groups. These 
candidate analytes will be known a priori from understanding of 
the pathway involved or from biomarkers already observed in the 
disease state. Metabolites related to the altered pathway may be 
increased proximal to a block, decreased distal to a block, generated 
from alternate branched pathways, or may even be formed my 
mechanisms not known to be linked to the blocked pathway. 

 Classical approaches, before the advent of metabolomics tech-
nologies, typically considered one analyte at a time. Often the dis-
tribution of values in the clinical cohort was compared against the 
distribution in a reference cohort. The concentration distributions 
for an analyte may not have a normal distribution, and the sample 
and control distributions will often overlap. For single analytes, 
 Receiver Operating Characteristic  (ROC) curves may be con-
structed and the  Area Under the Curve  (AUC) calculated [ 17 ]. 
This allows for comparison of the performance of single (or com-
bined) biomarkers ( see   Note 6 ). 

 The powerful advantage of metabolomics is the ability to con-
sider many analytes simultaneously. This may be intended either 
for screening purposes (to narrow down the set of candidate ana-
lytes to a small number that show strong diagnostic promise), to 
improve diagnostic performance by combining information from 
multiple analytes, or some combination of the two. Whatever the 
objective, the multiplicity which provides the advantage of metab-
olomics also poses special challenges. 

 For screening purposes it is essential to remember that when a 
very large number of analytes are examined, some will show very 
large between-group-separations by chance alone. For example, 
consider a hypothetical study with ten samples, fi ve from a control 
group and fi ve from a disease group. Assume there are 1,000 
independently distributed analytes, and there are no true differences 

3.3.2  Untargeted 
Metabolomics

3.4  Statistical 
Analysis

3.4.1  Targeted 
Metabolomics
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between the groups for any analyte. Then the probability that there 
will be at least one analyte which is perfectly separated between the 
groups (i.e., a ROC AUC of 1.0) is 0.98. 

 One useful strategy for dealing with this is to fi rst screen 
 analytes by comparing groups using the Mann–Whitney  U  statistic 
[ 18 ]. Only consider ROC AUCs for those analytes which are sig-
nifi cant following  p -value adjustment using Holm’s method [ 19 ]. 
Holm’s method ensures that the probability of falsely rejecting the 
null hypothesis of no group difference for at least one analyte is 
maintained at the desired signifi cance level (0.05 by convention). 
This is referred to as the family-wise type I error rate. Holm’s 
method is an extremely conservative procedure, and for many 
 analytes it may substantially reduce the chance of fi nding any 
metabolites which are differentially represented in the clinical 
groups. A somewhat less conservative approach would be to use 
the Benjamini Hochberg adjustment [ 20 ]. This approach controls 
the false discovery rate rather than the family-wise Type I error. 
The false discovery rate is the proportion of analytes fl agged as 
 different that are not truly different between clinical groups. 

 If the objective is to improve diagnostic power by integrating 
information across a set of biomarkers, then the process is to use a 
machine learning algorithm to induce a classifi cation rule. There are 
many different machine learning algorithms, based on very 
 different statistical models (and some based only on simple heuris-
tics with no well-articulated model at all) [ 21 ]. No single machine 
learning algorithm is uniformly better than all the others; their 
relative performance is problem dependent ( see  also Chapter   16    ). 

 Nevertheless there are a few approaches which usually are 
amongst the best for any given problem. The rigor with which 
results are validated, and spurious diagnostic power is avoided are 
much more important than the choice of machine learning 
 algorithm. These general issues are discussed before making rec-
ommendations about specifi c machine learning algorithms. 

 The starting point for the machine learning exercise is a data 
set with multiple analytes for each subject, and a clinical group 
label, e.g., control or disease for each subject. The naïve approach 
is to develop a diagnostic rule using the entire data set, and then to 
assess its performance by re-substituting the analyte values from 
the data set into the rule. This generates a predicted label for each 
subject, or a probability of being in the disease group. Sensitivity 
and specifi city are then calculated, or perhaps a ROC AUC using 
the probability of being in the diseased group as a multivariate 
index biomarker [ 22 ]. Unfortunately, this naïve strategy produces 
results which are so optimistic as to be meaningless. In the extreme 
case, where there are at least as many analytes as subjects, many 
algorithms will produce a classifi cation rule which works without 
error in re-substitution. Such rules generally have very poor 
 performance for future cases, independent of those used to gener-
ate the diagnostic rule. 

Metabalome
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 The ideal solution to this problem is to have to have two 
 independent data sets. The diagnostic rule is developed (or “trained”) 
using one data set, and it is evaluated using the independent test 
data set. The two data sets may be generated by a random partition 
of the original data set. This approach leads to unbiased estimates 
of diagnostic performance ( see   Note 7 ). 

 Unfortunately, many observations may not be available in early 
stage investigations. An alternative strategy is to use cross- validation 
[ 23 ]. In  k -fold cross-validation, the data set is randomly parti-
tioned into  k  subgroups. Typically, this is stratifi ed by the disease 
state such that each of the  k  random groups has approximately the 
same proportion of disease and control cases. Each of the  k  subsets 
is dropped in turn, and the diagnostic rule is developed using the 
remaining  k  − 1 groups. The classifi er developed using those  k  − 1 
groups is then used to predict the dropped group (either the dis-
ease state or the probability of disease). The dropped subgroup is 
reinstated, and the process repeated with the next subgroup. 
Predictions are recorded across the  k  subgroups. At the end of this 
process, each observation has been used to develop the classifi er 
(actually  k  − 1 times), and each observation has been used to test 
the classifi er. But now observation has been used to train and test 
the classifi er at the same time. The resulting estimates of diagnostic 
performance (sensitivity, specifi city, ROC AUC or any other suc-
cess metric of choice) are almost as unbiased as those obtained 
from an independent test data set. In the extreme case,  k  may be 
set to the number of observations, and each observation is let out 
in turn. This is known as  leave one out  cross-validation.  k -fold cross- 
validation may be repeated many times with different random par-
titions into the  k  groups. This is the usual practice ( see   Note 8 ), 
and should always be adopted because although cross-validation 
error estimates may be nearly unbiased in small samples they have 
very high variance [ 24 ]. Repeating cross-validation many times 
with different random folds goes some way towards ameliorating 
the problems of highly variable error or performance estimates; 
but this variability is an inherent limitation of small study sizes. 

 Machine learning algorithms differ in motivation and approach. 
Some, like the Elastic Net [ 25 ] or Generave [ 26 ], use a generalized 
linear model structure, with a variable selection engine based on a 
penalty function designed to ensure a sparse solution. That is, they 
produce classifi cation models with relatively few analytes included. 
This is particularly useful when the fi nal clinical platform will not 
be MR, and will quantify relatively few analytes (such as in in vivo 
magnetic resonance spectroscopy). 

 Other methods such as partial least squares discriminant analysis 
[ 27 ], or penalized discriminant analysis [ 28 ] retain all the analytes, 
but project into a low dimensional space. Kernel methods, such as 
support vector machines [ 29 ,  30 ], adopt yet another strategy. 
Some of the most powerful methods are Meta learners; which 
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combine information from an ensemble of relatively weak classifi ers. 
Examples include random forests [ 31 ] and LogitBoost methods 
[ 32 ,  33 ]. 

 In general, it is advisable to explore at least one method from 
each class of algorithm. A good default selection would be the 
Elastic Net, penalized discriminant analysis, support vector 
machines, and LogitBoost. The number of iterations in LogitBoost, 
the kernel width and penalty factors of support vector machines 
and the penalty weights of penalized discriminant analysis will all 
be chosen by cross-validation. It is important that this tuning is 
not allowed to bias performance estimates. If sample numbers allow, 
it is by far the best strategy to use a separate test set for  validation 
and to use cross-validation within the training set for model 
 tuning ( see   Note 9 ).  

  In contrast to targeted metabolomic results, untargeted 
metabolomic data sets are exceedingly complex with fi le sizes on 
the order of gigabytes per sample for some new high-resolution 
MS instruments. Manual inspection of the thousands of peaks 
detected is impractical and complicated by experimental drifts in 
instrumentation. In LC/MS experiments, for example, there are 
deviations in retention time from sample to sample as a consequence 
of column degradation, sample carryover, small fl uctuations in 
room temperature and mobile phase pH. These variations present 
diffi culty for interpreting untargeted profi ling data. Metabolomics 
software such as MetaboAnalyst [ 12 ], MathDAMP [ 34 ], MetAlign 
[ 35 ], MZMine [ 36 ], and XCMS [ 37 ] allow for an approach to 
these data. 

 In untargeted metabolomics, supervised training analysis may 
be employed, as with the targeted approach. The problem will be 
more challenging computationally (simply because of the larger 
number of analytes), but not beyond the bounds of feasibility. The 
problems of very high dimensionality will be more pressing with 
untargeted metabolomics than with targeted metabolomics, but 
the same approaches and considerations apply. For research or 
exploratory investigations, and for quality checking purposes, 
unsupervised techniques may be employed to fi nd hidden and 
unexpected structure in the unlabeled data. There are many 
approaches for unsupervised data exploration, and a range should 
be employed in any analysis. 

 Principal components analysis [ 38 ], projection pursuit [ 39 ], 
and independent components analysis [ 40 ] project the data into a 
low dimensional space that seeks to preserve “interesting” features 
of the data [ 11 ]. The techniques differ in terms of the criteria that 
defi ne the interest under consideration. In principal components 
analysis, the criterion is maximum variance (subject to orthonor-
mality constraints), in independent components analysis, the crite-
rion is a likelihood function based on a mixture of non-normal 

3.4.2  Untargeted 
Metabolomics
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distributions, and in projection pursuit the criterion is negative 
entropy (which can be interpreted as a measure of difference from 
normality). Subjects are plotted in the space of the summary 
 variables produced by these techniques; and groups of subjects are 
noted. These summary variables may also be plotted against aspects 
of the experimental protocol which are unrelated to clinical  features, 
such as sequence of samples through the mass spectrometer, length 
of time the sample has been in storage, assay kits, site from which 
the sample was sourced. Occasionally, such checking procedures 
will reveal substantial sources of bias quite unrelated to the clinical 
questions. 

 In addition to dimension reduction techniques, attempts may 
be made to represent the multivariate similarity between samples 
and analytes by means of  cluster analysis  [ 41 ]. There are two broad 
categories of cluster analysis: Hierarchical and non-hierarchical. 
Hierarchical cluster analysis usually works by combining sets of 
observations in a tree structure. Non-hierarchical cluster analysis 
usually works by separating observations into a predetermined 
number of groups. The most popular non-hierarchical method is 
 k -means clustering [ 42 ]. The question often arises as to how many 
clusters are suggested by the data. For  k -means the most widely 
used method is Tibshirani’s Gap statistic [ 43 ], but this method can 
work badly for very high numbers of clusters [ 44 ]. 

 Hierarchical clustering algorithms differ in terms of the differ-
ence metric they use, and the algorithm used to combine sets of 
observations. The three algorithms most commonly used are sin-
gle linkage, average linkage and complete linkage. Single linkage 
often produces cluster solutions represented by uninterpretable 
long chains of observations joined together [ 45 ]. For this reason, 
many researchers avoid single linkage. Rather than being a weak-
ness of single linkage algorithms, however, this can be a strength. 
If a clear cluster structure is found with single linkage it is a strong 
indication that the structure is real. Complete linkage can usually 
be relied upon to provide aesthetically pleasing beautifully bal-
anced cluster trees for which the researcher fi nds it all too easy to 
provide spurious post hoc rationalizations. 

 More modern, model based techniques are available. They are 
computationally more demanding but may give a better insight 
into the appropriate number of clusters [ 46 ]. 

 In general, it is suggested that cluster solutions should be pro-
duced with multiple algorithms and multiple metrics. They should 
only be interpreted if the broad features of the solution are com-
mon across the analyses.   

  Untargeted metabolomics profi ling of a particular disease entity 
can reveal alterations that are unlikely to have mechanistic 
implications. In rare diseases, which are not fully understood, the 
range of sample data may be limited. Because of the effort of 

3.5  Meta-analysis
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additional experiments needed to identify both known and 
unknown compounds, strategies to reduce lists of potentially 
interesting features increase the effi ciency. Meta-analysis, by which 
untargeted profi ling data from multiple studies are compared, 
increases the data available and the case and control sample sizes. 
By comparing multiple models of a disease, for example, features 
that are not similarly altered in each of the comparisons may be 
de-prioritized as being less likely to be related to the shared 
phenotypic pathology. To automate the comparison of untargeted 
metabolomic data, software such as metaXCMS [ 47 ] may be used.  

  Undoubtedly the most comprehensive software for metabolomics 
data processing and analysis is found in the extensions to the R 
package [ 48 ,  49 ], especially in the Bioconductor project [ 50 , 
 51 ]. In addition to a comprehensive suite of tools for supervised 
and unsupervised high dimensional data analysis in R, 
Bioconductor provides packages designed to facilitate the 
preliminary spectrum recalibration, peak identifi cation, 
normalization, and preprocessing requirements of data from a 
range of mass spectroscopy instrument technologies. It also 
supports comprehensive pathway analysis tools. 

 R and Bioconductor are open source projects and are free to 
download. They are supported by an enthusiastic and active com-
munity which includes some of the leading researchers in applied 
statistics and bioinformatics. R is the tool of choice for most pro-
fessional statisticians and statistical bioinformaticians. However, R 
does have a somewhat steep learning curve. Nevertheless, for any-
one who will be involved in regular analysis of metabolomic data 
it is well worth while investing the time and effort to become 
skilled with R.   

4    Notes 

     1.    It is important that assay techniques are standardized to ensure 
the same molecular species can be identifi ed with similar yield 
and quantitated (against a reference standard).   

   2.    These changes may be introduced through cellular leakage, 
ongoing metabolism, contamination, or oxidation.   

   3.    Additionally, triple quadrupole methods are quantitatively reli-
able and allow for absolute quantitation of low-concentration 
metabolites that are diffi cult to detect with less sensitive meth-
ods such as NMR.   

   4.    With targeted metabolomics, a specifi ed list of metabolites is 
measured, typically focusing on pathways of interest. Targeted 
metabolomics approaches are commonly driven by a specifi c 
biochemical question or hypothesis that motivates the 

3.6  Statistical 
Software
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investigation of a particular pathway. This approach can be 
effective for pharmacokinetic studies of drug metabolism as 
well as for measuring the infl uence of therapeutics or genetic 
modifi cations on a specifi c enzyme. Although the term  metab-
olomics  has only recently been coined, examples of targeted 
studies of metabolites date back to the earliest of scientifi c 
inquiries.   

   5.    If necessary, MS/MS data for features selected from the profi l-
ing results are obtained from additional experiments and 
matching of MS/MS fragmentation patterns is performed 
manually by inspection. These additional analyses are time 
intensive and represent the rate limiting step of the untargeted 
metabolomic workfl ow. Additionally, although metabolite 
databases have grown considerably over the last decade, a sub-
stantial number of metabolite features detected from biological 
samples do not return any matches. Identifi cation of these 
unknown features requires de novo characterization with tradi-
tional methods. Taken together, it should be recognized that 
comprehensive identifi cation of all metabolite features detected 
by LC/MS is currently impractical for most samples analyzed.   

   6.    When comparing the ROC curves calculated using different 
analytes measured on the same samples it is important to use a 
statistical method which models the dependence appropriately, 
e.g., Venkatraman and Begg [ 52 ].   

   7.    The issue of bias in estimates of diagnostic performance is 
complex [ 53 ]. Independent test data sets will ensure that the 
estimate of performance is unbiased  for the sample from which 
the test data set is drawn . In early stage research this may very 
well not be the target clinical population. For example, it may 
contain especially severe disease cases, and healthy controls 
who are active young adults. Estimates based on this popula-
tion will almost certainly exhibit spectrum bias, even if an 
independent test set is used.   

   8.    Although cross-validation provides a high degree of protection 
against over optimistic results it is possible to subvert that 
protection. There are several common errors which lead to this 
subversion.

 ●    Cross-validation may be applied after the biomarkers have 
been fi ltered, and only those biomarkers showing large 
between group differences have been retained. This 
approach destroys the benefi ts of cross-validation and 
leads to major biases. If the analysis strategy requires fi lter-
ing, then the fi ltering must take place  inside  the cross- 
validation [ 54 ].  

 ●   Cross-validation works well when observations are 
 independent. It will break down when there are strong 
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dependencies between observations—as would be the case 
with longitudinal data where there are multiple observa-
tions on each subject. It is possible to adopt more sophis-
ticated cross-validation strategies, but professional 
statistical advice is necessary.  

 ●   Many machine learning algorithms involve one or more 
tuning parameters (a penalty factor, kernel bandwidth, 
number of dimensions, etc.), which are often selected using 
cross-validation. If cross-validation is used to select tuning 
parameters, then this should be achieved in a two stage 
cross-validation, with parameters set in an inner cross-
validation loop and performance estimated using an outer 
loop. Again, professional statistical input is desirable.      

   9.    Any researcher intending to become seriously involved in 
metabolomics would be well advised to invest some time in 
acquiring the basics of machine learning. One of the more 
accessible texts is Witten, Hastie, and Tibshirani’s “An 
Introduction to Statistical Learning: with Applications in R” 
(Springer Texts in Statistics) [ 55 ]. This book by leading 
researchers in the fi eld manages to avoid unnecessary mathe-
matics, and yet is an authoritative resource.         
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    Chapter 4   

 Statistical Perspectives for Genome-Wide Association 
Studies (GWAS) 

           Jennifer     H.     Barrett     ,     John     C.     Taylor    , and     Mark     M.     Iles   

    Abstract 

   In this chapter we consider some key elements in conducting a successful genome-wide association study or 
GWAS. The fi rst step is to design the study well (Subheading 3.1), paying particular attention to case and 
control selection and achieving adequate sample size to deal with the large burden of multiple testing. 
Second, we focus on the crucial step of applying stringent quality control (Subheading 3.2) to genotyping 
results. The most crucial potential confounding factor in GWAS is population stratifi cation, and we describe 
methods for accounting for this in study design and analysis (Subheading 3.3). The primary association 
analysis is relatively straightforward, and we describe the main approaches to this, including evaluation of 
results (Subheading 3.4). More comprehensive coverage of the genome can be achieved by using an external 
reference panel to estimate genotypes at untyped variants using imputation (Subheading 3.5), which we 
consider in some detail. We fi nish with some observations on following up a GWAS (Subheading 3.6).  

  Key words     Genome-wide association study  ,   GWAS  ,   Imputation  ,   Multiple testing  ,   Population 
 stratifi cation  ,   Quality control  

  Abbreviations 

   GWAS    Genome-wide association study   
  HWE    Hardy–Weinberg equilibrium   
  LD    Linkage disequilibrium   
  PCA    Principal component analysis   
  QC    Quality control   
  SNP    Single-nucleotide polymorphism   

1        Introduction 

 Genome-wide association studies (GWAS) have been successfully 
used to investigate many major diseases and traits. The basic idea is 
a simple one: genotype a set of individuals with the disease of inter-
est (cases) and a set of individuals from the same population 
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without the disease (controls) for many (typically ~1 million) 
 common variants across the genome and compare genotype distri-
butions between the two groups, thus identifying genetic variants 
that are associated with disease risk. These studies have only been 
possible since about 2006 due to advances in genotyping technol-
ogy. Since then over 1,800 publications have reported associations 
with over 13,000 single-nucleotide polymorphisms (SNPs) [ 1 ]. 

 Although most common diseases have now been investigated 
using large sample sizes, many populations have not been well 
studied, and many outcomes that are potentially genetically con-
trolled (such as adverse response to treatment) remain to be inves-
tigated, so GWAS are likely to continue to be of value for some 
time to come. In this chapter we outline the main steps on how to 
carry out successfully and interpret a GWAS ( see  also Chapter   5    ).  

2       Materials 

 A great deal of specialist software is freely available to assist in the 
statistical analysis of a GWAS. The following programs are all 
referred to later in the text. The most widely used program for 
association analysis is PLINK (  http://pngu.mgh.harvard.
edu/~purcell/plink/    ), which also has many other features includ-
ing tools for data management and QC. 

 Population stratifi cation can be handled using an approach 
based on principal components using Eigenstrat, implemented in 
EIGENSOFT software (  www.hsph.harvard.edu/faculty/alkes- 
price/software/    ), or mixed effects models using EMMAX (  http://
genetics.cs.ucla.edu/emmax/    ) or TASSEL (  www.maizegenetics.
net/    ). 

 Several programs are available for imputation: IMPUTE 
(  https://mathgen.stats.ox.ac.uk/impute/impute_v2.html    ), 
MACH (  www.sph.umich.edu/csg/abecasis/MACH/    ), and BEAGLE 
(  http://faculty.washington.edu/browning/beagle/ beagle.html    ). 

 Finally, results at a particular locus can be illustrated using 
LOCUSZOOM (  http://csg.sph.umich.edu/locuszoom/    ).  

3    Methods 

  Most GWAS investigate a specifi c disease (a binary phenotype) and 
use a case–control study design ( see   Note 1 ). There has been some 
relaxation of the usual principles of case–control study design in 
GWAS, so that controls are sometimes ascertained quite differently 
to the cases; this can be justifi ed in view of the need for large sam-
ple sizes and the fact that an individual’s genotype does not differ 
over time and is less subject to confounding than many environ-
mental factors. 

3.1  Study Design
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  The cases are a set of individuals from the population(s) with the 
disease in question; it is not generally important to collect incident 
cases, as it may be in a classical case–control study, since issues of 
recall bias do not arise when investigating genes. Although the 
ascertainment criteria for case recruitment may be broad, it is 
important that this is clearly specifi ed in order to facilitate compari-
sons between studies. Many “diseases” are complex and variable, 
and phenotype heterogeneity may be a contributing factor to 
 differences in results between studies and the failure to replicate. 

 The power of a GWAS to detect risk factors may be increased 
by attempting to select “genetically enriched” cases, for example 
those with a family history of disease or early disease onset [ 2 ]. 
Risk estimates from such studies may not be generalizable to dis-
ease in the population, but the primary aim of a GWAS is to iden-
tify associated genetic variants or regions rather than estimating 
risk. In any case estimates from a GWAS are likely to be upwardly 
biased because of the winner’s curse phenomenon [ 3 ]. Follow-up 
studies of particular variants in an independent sample can be used 
to provide unbiased risk estimates.  

  Similarly, the principles behind selection of controls are often more 
relaxed in a GWAS context, partly because of the expense of geno-
typing a separate large set of controls for each disease studied. This 
is also acceptable for a strictly genetic study, but care must be taken, 
e.g., over possible socioeconomic differences between cases and 
controls, if environmental factors are also considered at a later date 
( see   Note 2 ). In addition a control group consisting of unselected 
samples from the population is likely to include cases, which will 
reduce power when studying very common conditions such as 
high blood pressure. The most important criterion for control 
selection for a purely genetic study is that the controls be selected 
from the same population as cases with respect to ethnic origin 
(Subheading  3.3 ).  

  Since GWAS consider a huge number of variables and aim to detect 
variants with modest or even low effect sizes, the sample size needs 
to be large to obtain adequate power to compensate for multiple 
testing. With one million SNPs genotyped, 50,000 would be 
expected to be signifi cantly associated with outcome at the usual 
5 % signifi cance level just by chance. Additionally imputation is 
often used (Subheading  3.5 ), increasing the number of tests per-
haps tenfold. 

 A simple Bonferroni correction for the number of tests con-
ducted is likely to be conservative because of correlation between 
SNPs, which increases as marker density increases, e.g., through 
imputation. In practice, a signifi cance threshold of 5 × 10 −8  has 
been accepted by many as a threshold for “genome-wide signifi -
cance” ( see   Note 3 ). In Table  1  power calculations are presented 

3.1.1  Selection of Cases

3.1.2  Selection 
of Controls

3.1.3  Sample Size

 Statistics and GWAS
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   Table 1  
     Power calculations for a Cochran–Armitage trend test assuming a 
signifi cance level of 5 × 10 −8 , an additive genetic model, and a baseline 
disease risk of 5 %   

 Minor allele 
frequency 

 Number of cases 
(= number 
of controls) 

 Per allele genetic 
relative risk  Power (%) 

 0.01  2,000  ≤1.5  0 

 2.0  4 

 0.05  ≤1.2  0 

 1.3  1 

 1.5  19 

  2.0    100  

 0.1  ≤1.2  0 

 1.3  6 

 1.5  79 

  2.0    100  

 0.3  1.1  0 

 1.2  7 

 1.3  66 

  ≥1.5    100  

 0.5  1.1  0 

 1.2  13 

 1.3  79 

  ≥1.5    100  

 0.01  5,000  ≤1.3  0 

 1.5  2 

 2.0  75 

 0.05  1.1  0 

 1.2  1 

 1.3  17 

  1.5    96  

  2.0    100  

 0.1  1.1  0 

 1.2  11 

(continued)
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 Minor allele 
frequency 

 Number of cases 
(= number 
of controls) 

 Per allele genetic 
relative risk  Power (%) 

 1.3  76 

  ≥1.5    100  

 0.3  1.1  2 

  1.2    82  

  ≥1.3    100  

 0.5  1.1  3 

  1.2    92  

  ≥1.3    100  

  Estimates are based on 10,000 simulations for each set of parameters. Values 
are in bold where at least 80 % power is achieved  

Table 1
(continued)

using this signifi cance level for a range of different minor allele 
frequencies and effect sizes assuming an additive genetic model 
(Subheading  3.4 ). It can be seen that with 2,000 cases and 
2,000 controls, only common variants with quite a strong effect 
can be reliably detected at this level; with 5,000 cases and con-
trols, common variants of modest effect can be detected, 
although the power to detect rare variants (minor allele fre-
quency <0.05) is still quite low.

      With the large number of SNPs analyzed, any unchecked system-
atic errors occurring during the genotyping process are likely to 
result in a number of false-positive signals of association. A number 
of quality control (QC) steps concerning both samples and SNPs 
are essential to prevent this. 

  Genotype calls from genome-wide chips are based on allele intensities; 
a high intensity for only one allele indicates a homozygote for that 
allele, while intermediate intensities for both alleles indicate a het-
erozygote. Plotting the intensities of one allele versus the other for 
all samples for a particular SNP should result in three distinct clusters 
of points (Fig.  1 ) ( see   Note 4 ). The boundaries of the clusters 
may be provided by the chip manufacturer but may also be 
defi ned applying a clustering algorithm to the users’ own data. 
Genotypes are called depending on the cluster the sample falls 
within, and samples falling outside of the cluster boundaries are 

3.2  Quality Control

3.2.1  Identifying 
Failed SNPs
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not called for that particular SNP. Poorly clustered SNPs may 
not be identifi ed by the calling algorithm, but there are a num-
ber of methods to identify these. SNPs should be excluded if 
they have a low call rate (<95 % or possibly stricter) or show 
deviation from Hardy–Weinberg equilibrium (HWE) in control 
samples ( see   Note 5 ).

  Fig. 1    Cluster plots generated from GenomeStudio (  www.illumina.com/software/
genomestudio_software.ilmn    ), showing ( a ) a well-called SNP with three defi ned 
clusters, ( b ) a poorly called SNP with a large proportion of samples ( black points  ) 
falling outside the cluster boundary for the common homozygote ( blue points  ), 
and ( c ) a poorly called SNP where no cluster separation is observed       

 

Jennifer H. Barrett et al.
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     Studies involving a large number of samples or coming from several 
laboratories have an increased potential for sample mix-ups or 
labelling errors. The gender of samples can be estimated from the 
genotype calls on the X and Y chromosome and checked against 
the recorded gender. Males should have a near-zero heterozygote 
rate on the X chromosome. Females should have heterozygote 
rate >20 % on the X chromosome and missing Y chromosome SNP 
data. The recorded gender of any discrepant samples should be 
checked. An additional check on potential sample mix-ups is to 
look at concordance rates between any existing genotype data 
available for the samples. 

 With large numbers of SNPs on a relatively homogeneous 
sample, pairwise estimates of the proportion of alleles shared iden-
tical by descent can be obtained and used to identify closely related 
and duplicate samples. A closely related pair of individuals will 
share a far greater number of alleles identical by descent than an 
unrelated pair. Duplicate samples may arise from sample mix-ups 
or unknowingly recruiting the same sample more than once. 
Generally the sample within the duplicate or the closely related pair 
(or group) that has the highest call rate will be retained and the 
other sample(s) dropped, although related samples may be retained 
and adjusted for in the analysis [ 4 ].  

  When combining genotype data from several different sources, 
QC should be carried out separately for each dataset. This is 
because a SNP may be of poor quality in one of the datasets but 
not in the other(s). Performing QC after combining could have 
two consequences if genotyping is poor on a subset of samples: (1) 
The SNP may be unnecessarily dropped from all the datasets as it 
fails QC on the combined set, or (2) the marker passes QC on the 
combined dataset, leading to unreliable results.   

    Ideally the samples used in a study should be collected with the 
aims of that study in mind. However, given that GWAS are so 
large, existing sample collections are often used. The collection of 
these samples may thus not have taken into account issues of 
 specifi c importance to GWAS, most notably the problem of popu-
lation stratifi cation. Population stratifi cation occurs when a sample 
consists of distinct subpopulations between which there is little 
mating, so that allele frequencies may differ between subpopula-
tions. If the proportions of each subpopulation differ between 
cases and controls, any variants that differ in frequency between 
these subpopulations will appear to be associated with disease risk 
( see   Note 6 ). 

 Differential sampling across subpopulations may occur as a 
result of bad design, by chance, or because one subpopulation has 
a higher incidence of disease (for cultural, environmental, or 
genetic reasons). The differences in allele frequencies seen in samples 

3.2.2  Identifying 
Problem Samples

3.2.3  Data from 
Different Sources

3.3  Population 
Stratifi cation
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from different parts of Europe are too small to have affected 
candidate gene association studies but may give rise to false posi-
tives in GWAS, that are designed to fi nd variants of smaller effect. 
Thus, case–control matching in GWAS should be tighter than 
merely being from the same continent, e.g., matching by country 
may be appropriate within Europe ( see   Note 7 ). 

 The simplest method for identifying population stratifi cation is 
to check for deviation from HWE, although this will only pick up 
strong stratifi cation. 

 Another simple approach is that of the Q–Q (quantile–quantile) 
plot. Here the test of association is conducted, and the ordered test 
statistics for all SNPs (having excluded those of low quality) are 
plotted against the corresponding quantiles of the distribution 
expected under the null hypothesis of no association. While some 
SNPs may genuinely be associated with disease, the vast majority 
should not. Thus, a deviation from the  x  =  y  line other than at 
the highest quantiles indicates that there is some overall infl ation 
of the test statistics. Such infl ation is usually measured by dividing 
the median of the test statistics by its expectation under the null 
hypothesis, denoting this ratio  λ . This gives rise to the genomic 
control method for correcting for such infl ation, whereby each test 
statistic is divided by  λ  [ 5 ,  6 ]. However, this is a rather crude 
approach that is only really suitable for quite distinct subpopula-
tions [ 7 ]. 

 The most commonly used approach for detecting and adjust-
ing for population stratifi cation is the application of principal 
component analysis (PCA) [ 7 ] (using EIGENSTRAT,  see  
Subheading  2 ). The idea is that individuals who are geographi-
cally close are likely to be more correlated in terms of genotypes 
(i.e., closely related) than those who are far apart. Even if there is 
only a slight correlation on a SNP-by-SNP basis, when this is con-
sidered genome wide, it may be enough to distinguish between 
subpopulations (when these are distinct) or reveal gradients in 
SNP frequencies when there are no distinct subpopulations. The 
fi rst principal component gives the linear combination of geno-
types that best captures the variation in the data. The second prin-
cipal component is the orthogonal combination that best captures 
the remaining variation in the data, and so forth. 

 The sample may be combined with data from across the world, 
for example the HapMap data (  www.hapmap.org    ), which include 
samples from Europe, Asia, and Africa, and PCA applied to the 
combined sample. This will identify individuals who are ethnically 
distinct from the rest of the sample. For example, in a study of a 
European population, combining with the HapMap data and 
applying PCA will produce principal components 1 and 2 that sep-
arate out the continents into three distinct clusters. Anyone who is 
not of European origin will appear in one of the non-European 
clusters [ 8 ]. Ethnic outliers from the sample can then be excluded 
from further analyses. 

Jennifer H. Barrett et al.
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 Once outliers have been removed to give a more homoge-
neous sample, PCA can be reapplied to detect more subtle stratifi -
cation. It has been shown [ 9 ,  10 ] that the fi rst and second principal 
components are likely to correspond to orthogonal two- 
dimensional geographical axes, such as latitude and longitude. 
Further principal components may correspond to further orthogo-
nal axes, depending on the structure of the population. It is impor-
tant when applying PCA that the SNPs are fi rst thinned so that 
linkage disequilibrium (LD) is minimized; otherwise, the principal 
components may just pick out regions of strong LD. In Europe, 
PCA distinguishes individuals from different countries extremely 
well [ 10 ,  11 ] (Fig.  2 ). The principal components may then be used 
to adjust for population stratifi cation, for example by  including as 
covariates in a logistic regression on disease status.

   Another, more recent, approach is to use a mixed effects model. 
Here the SNP genotypes and other phenotypic variables of interest 

  Fig. 2    Plot of principal components 1 and 2 for a sample of European and Israeli origin. Each circle indicates a 
single sample, and color indicates the country/city from which the sample was collected: England ( dark brown  ), 
Genoa ( light blue  ), Cesena ( red  ), the Netherlands ( dark blue  ), France ( black  ), Sweden and Norway ( orange  ), 
Spain ( magenta  ), Scotland ( light green  ), Israel ( dark green  ), and Poland ( grey  ). Note that not only does PCA 
group individuals from the same country/city together, but it also arranges countries according to their geo-
graphic location, allowing rough north–south and east–west gradients to be observed       

 

 Statistics and GWAS



56

(sex, age, etc.) are modelled as fi xed effects, while the   population 
structure is modelled as a random effect based on estimated relat-
edness between individuals (from genotypic information). It is only 
recently that such approaches have become computationally feasible 
(EMMAX [ 12 ] and TASSEL [ 13 ],  see  Subheading  2 ). 

 While such approaches to correcting for stratifi cation work 
well for common genetic variants, there is evidence that they may 
be less successful for rarer variants. Rare variants are likely to have 
arisen more recently and so correlate more weakly (if at all) with 
the broad demographic history recreated by PCA or mixed effects 
modelling. This means that testing of such variants (say those with 
minor allele frequency <0.05) may result in an excess of false- 
positive associations with disease status [ 14 ]. To date there has 
been little investigation into this as commercial chips have typically 
focussed on capturing common variation. However, with the 
advent of much denser chips and large-scale sequencing, rarer vari-
ants are becoming more widely studied, and careful study design 
becomes ever more important.  

   Post-QC genotype data are commonly analyzed ( see   Note 8 ) using 
the Cochran–Armitage trend test, which has 1 degree of freedom 
and assumes a log-additive mode of inheritance. This has consis-
tently good power over a wide range of genetic models (although 
of course specifi c models would have greater power for particular 
SNPs) [ 15 ]. 

  Logistic regression of case–control status on genotype (measured as 
a continuous trait taking the value 0 for the common homozygote, 
1 for the heterozygote, or 2 for the rare homozygote) is asymptoti-
cally equivalent to the trend test. This is useful in order to adjust 
for other factors, such as age, gender, geographical origin, or the 
fi rst few principal components (Subheading  3.3 ). Similarly, if the 
study outcome is a continuous trait, such as body mass index, lin-
ear regression can be performed.  

  The  p -values from the test used are often plotted on a log scale 
against the SNP chromosomal position (Fig.  3 ). The peaks of the 
Manhattan plot enable initial identifi cation of signifi cant regions. 
Once analysis has been performed, any signifi cant SNPs should be 
checked thoroughly against the above QC criteria. Particular 
attention should be paid to those SNPs that are highly signifi cant 
but whose neighboring SNPs show no evidence of association, 
which will appear as isolated points on the Manhattan plot. This 
could only be a possible true association in the unlikely event that 
the highly associated SNP was not in LD with any of the neighboring 
SNPs; a more likely explanation is genotype error. Finally, the 
cluster plots (Fig.  1 ) of the remaining signifi cant SNPs should be 
examined before any attempt at replication analysis.

3.4  Association 
Analysis

3.4.1  Alternative 
Analyses

3.4.2  Examination 
of Results
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       Even though commercial genotyping arrays now include a huge 
number of polymorphisms, these are still a subset of all known 
genetic variation. Many of the untyped genetic variants will be of 
less interest to researchers, either because they are so rare that even 
if they are associated with disease risk a typical GWAS will be 
underpowered to detect this or because they are in such strong LD 
with genotyped markers that they add little information. However, 
more exhaustive coverage of genetic variation may be of interest 
for two reasons: (1) a region may be associated with disease risk, 
but only the ungenotyped markers have a strong enough signal to 
reach the signifi cance threshold and so the association is missed 
using data from the array alone, and (2) a region is established as 
being associated with disease, but there is interest in fi ne-mapping 
the region to understand better the source of the association, 
ideally to identify the functional variants, but at least to delimit the 
associated region (Fig.  4 ).

   Even for a small region, either genotyping all variants or 
sequencing all individuals in the GWAS may be prohibitively 
expensive, particularly if the region in question is large. One alter-
native is to impute the genotypes at those SNPs that have not been 
typed. By using a dataset such as the 1000 Genomes Project 

3.5  Imputation

  Fig. 3    Manhattan plot of  p -values from a Cochran–Armitage trend test showing four regions on chromosomes 5, 
9, 11, and 16 that are signifi cantly associated with outcome at a level of 5 × 10 −8 , indicated by the  dashed line        
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(  www.1000genomes.org    ), which contains far denser genotype 
data than is currently available on commercial SNP chips, the pat-
tern of LD between nearby SNPs can be established and then 
applied to the sample data so that genotypes of untyped SNPs can 
be estimated. The most popular programs for this are IMPUTE 
[ 16 ], MACH [ 17 ], and BEAGLE [ 18 ] ( see  Subheading  2 ). Those 
SNPs that are estimated with suitable confi dence in suffi cient 
 samples can be treated as though genotyped and the data analyzed 
as usual, although it is more correct to account for this uncertainty, 
using either the full posterior distribution or, as an approximation, 
the expected genotype count (or dosage). Researchers should of 
course be more cautious about the results at SNPs that are imputed 
rather than genotyped. Before imputation, the usual QC should be 
applied and low-quality markers excluded, although it is advisable 
to apply more stringent QC to genotyped markers before imputing, 
since a poorly genotyped marker may adversely impact a number of 
imputed markers. Post-imputation QC should also be applied to 
identify poorly imputed SNPs ( see   Note 9 ). 

  Fig. 4    A Manhattan-style plot of the region around the  FTO  gene, which has been associated with melanoma 
risk after imputation of a GWAS case–control study [ 21 ]. The  x -axis shows position along the chromosome, the 
 left-hand y -axis (and the  points ) −log 10   p -value, and the  right-hand y -axis (and the  line ) the estimated recom-
bination rate. The most signifi cant SNP (rs16953002) is colored  purple , and the remaining SNPs are colored 
according to the degree of LD with this SNP. Plotting performed using LocusZoom [ 22 ]       
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 Reporting either a novel associated region or fi ne-mapping of 
a region of interest based solely on imputed genotype data is likely 
to be treated with some scepticism, particularly for rare markers. 
Thus, it is good practice to genotype the key variant(s), at least in 
a subset of samples, to establish that the imputation is working 
reliably.  

  In practice loci will not be fully established as associated with a 
disease or a trait until a high level of statistical signifi cance has been 
reached and the fi nding has been replicated in independent 
 samples. Once this has been achieved there is much work still to do 
in understanding what underlies the fi nding. Detailed consider-
ation of this is beyond the scope of this chapter. An important 
 element is fi ne-mapping, where imputation and denser genotyping 
are used to narrow down the association signal and identify the 
most parsimonious model(s) that explains the observed associa-
tions. This may turn out to consist of a single SNP, but it is also 
common to fi nd that more than one variant and even more than 
one gene show independent association within the region. 
Additionally, bioinformatics can be used to mine the publically 
available databases to evaluate the potential function of any SNPs 
identifi ed by fi ne-mapping.   

4    Notes 

     1.    For a continuous outcome, such as blood pressure, a popula-
tion sample could be analyzed, although it may be more pow-
erful to select subjects with extreme phenotypes [ 19 ].   

   2.    The relaxed attitude to case ascertainment has, however, 
limited the wider utility of many large GWAS, for example in 
looking at survival or incorporating information on environ-
mental exposure.   

   3.    Although a signifi cance level of 5 × 10 −8  is now generally 
regarded as the benchmark for “genome-wide signifi cance,” 
like all  p -value thresholds, this is only useful if interpreted intel-
ligently. In particular, there will still be some false-positive 
results (especially with serial testing); conversely, a result just 
failing to meet this threshold but with prior or external sup-
porting evidence is unlikely to be a false positive.   

   4.    This assumes that allele frequencies are common enough to 
generate heterozygotes and both sets of homozygotes. Since 
three clusters are expected, this can lead to errors in calling the 
genotypes when the minor allele is very rare.   

   5.    In addition, the log  R  ratio (ratio of observed to expected 
intensity based on other samples) and the B allele frequency 
can be used to detect copy number variation and other 

3.6  Next Steps

 Statistics and GWAS



60

 chromosomal anomalies. It is also wise to check for unexpected 
differences (in allele frequencies or effect sizes) between 
batches or plates.   

   6.    Subpopulations, even within Europe, might be quite distinct, 
e.g., population isolates such as Sardinia. More common, and 
more of a problem, is subtle stratifi cation, as it is harder to 
detect and more diffi cult to correct for analytically.   

   7.    Existing datasets may not record information on ethnicity, or 
the defi nition of ethnicity may not be precise enough to identify 
homogeneous groups: for example samples from the USA of 
“European origin” may be quite diverse. Fortunately, methods 
exist for detecting unobserved (cryptic) population stratifi ca-
tion and correcting for this, as discussed here, but it should be 
remembered that such approaches are never as satisfactory as a 
well-matched case–control set.   

   8.    Specialized software such as PLINK [ 20 ] is required to reduce 
analysis times for a large number of SNPs.   

   9.    The most commonly used QC metric for imputed markers is 
to estimate how much of the variation in a marker has been 
captured by imputation as compared to how much would be 
expected if the marker were genotyped (also interpretable as 
the correlation between the imputed genotype and the actual 
genotype, were it available). Both the INFO score in IMPUTE 
and R 2  in MACH and BEAGLE are versions of this metric. 
There are no strict thresholds for this metric, and values from 
0.3 to 0.9 have been utilized. Given that this is, in effect, a 
ratio of two estimated variances, the score will be less reliable 
for rarer variants.         
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    Chapter 5   

 Bioinformatics Challenges in Genome-Wide 
Association Studies (GWAS) 

              Rishika     De    ,     William     S.     Bush    , and     Jason     H.     Moore    

    Abstract 

   Genome-wide association studies (GWAS) are a powerful tool for investigators to examine the human 
genome to detect genetic risk factors, reveal the genetic architecture of diseases and open up new oppor-
tunities for treatment and prevention. However, despite its successes, GWAS have not been able to identify 
genetic loci that are effective classifi ers of disease, limiting their value for genetic testing. This chapter 
highlights the challenges that lie ahead for GWAS in better identifying disease risk predictors, and how we 
may address them. In this regard, we review basic concepts regarding GWAS, the technologies used for 
capturing genetic variation, the  missing heritability  problem, the need for effi cient study design especially 
for replication efforts, reducing the bias introduced into a dataset, and how to utilize new resources 
available, such as electronic medical records. We also look to what lies ahead for the fi eld, and the 
approaches that can be taken to realize the full potential of GWAS.  

  Key words     Data imputation  ,   Epistasis  ,   Electronic medical records  ,   Filtering  ,   Gene–gene interactions  , 
  GWAS  ,   Meta-analysis  ,   Missing heritability  ,   Replication  

  Abbreviations 

   EMR    Electronic medical record   
  GWAS    Genome-wide association study/studies   
  LD    Linkage disequilibrium   
  MAF    Minor allele frequency   
  SNP    Single nucleotide polymorphism   

1        Introduction 

 In the fi eld of genetics and epidemiology, genome-wide association 
studies (GWAS) have become a standard approach for querying 
the genetic basis of disease susceptibility. This study design mea-
sures and analyzes a million or more DNA sequence variations 
such as single nucleotide polymorphisms (SNPs) that capture 
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much of the common variation in the genome, in an effort to 
identify genetic risk factors for diseases [ 1 ]. Moreover, technologi-
cal advances that have lowered the cost of genotyping have also 
fueled an increase in the number of GWAS over the years. In 2012 
alone, the National Human Genome Research Institute (NHGRI) 
GWAS catalog recorded 1,350 published studies [ 2 ]. GWAS pro-
vide us with a unique opportunity to make disease risk predictions 
for the general population on the basis of the disease susceptibility 
loci that are identifi ed. Knowledge of these loci may also provide 
clues to the biological basis for various diseases, and open up new 
avenues for prevention and treatment strategies. The key steps 
involved in conducting a GWAS are summarized in Fig.  1 .

   The GWAS approach is not  hypothesis-free ; it is based upon the 
Common Disease—Common Variant (CD–CV) hypothesis. This 
hypothesis ties together the basic principle of GWAS and the design 
of genotyping chips. It states that common diseases are caused in 
part by genetic variations that are also common in the population 
[ 3 ]. Testing the CD–CV hypothesis provides an insight into the 
underlying genetic architecture of common diseases, e.g., type 2 
diabetes, rheumatoid arthritis, or essential hypertension, and some 
evidence that they are driven by multiple susceptibility alleles. If 
common variants have a small effect size but common diseases 
show a strong inheritance in families (high heritability), then 
almost by defi nition the disease must be infl uenced by multiple 
genetic factors. For example, if a disease shows a heritability of 
30 %, this indicates that 30 % of the total variance in the disease risk 
comes from genetic factors. Hence, if a SNP has a modest effect on 
disease risk, it can only account for a small portion of the total vari-
ance due to genetic factors. Consequently, the total risk of disease 
due to common genetic variation then must be distributed over 
multiple susceptibility alleles. 

 Published concurrently with family-based linkage studies, one 
of the earliest GWAS success stories was the identifi cation of 
Complement Factor H as a major risk factor for age-related macular 
degeneration [ 4 – 7 ]. This study not only showed that DNA 
sequence variations in the gene were associated with the disease but 
also provided a new insight into the biological basis for the disease. 
However, despite the moderate success of the risk variants identi-
fi ed for age-related macular degeneration, most loci identifi ed by 
GWAS are known to be associated with small increases in disease 
risk, thereby limiting their value for genetic testing [ 2 ,  8 ,  9 ]. 

 The example of breast cancer best highlights the failures 
and successes of GWAS during its tumultuous history. Familial 
breast cancer, a rare disease with high heritability, is believed 
to have a simple underlying genetic architecture. In 2007, 
Easton et al.  identified five significant associations by GWAS 
that were also  replicated in multiple independent samples [ 10 ]. In 
a follow-up study two additional susceptibility loci were identifi ed. 
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These two loci accounted for <1 % of the familial risk of breast 
cancer [ 11 ]. When these loci were combined with previously 
known genetic risk factors, together they were able to explain only 
5.9 % of the familial risk of breast cancer. On the other hand, the 
 BRCA1  and  BRCA2  mutations together account for 20–40 % of 
familial breast cancer, and have been very successful as markers for 

Population
sample

Phenotyping and
collection of

genetic material

Genotyping

Quality Control
Dataset

preparation

Test for
association

Replication

  Fig. 1    Overview of the GWAS process. A sample of individuals, e.g., a group of 
families or cases/controls, is selected from the population to study a disease or 
phenotype of interest. After strict criteria have been established, phenotypic infor-
mation and genetic material are collected from the study participants. This is 
followed by genotyping of the collected material using popular genotyping 
 platforms such as those available from Illumina or Affymetrix. Genotypic data 
obtained for genetic variants such as SNPs (single nucleotide polymorphisms) are 
cleaned using quality control procedures such as MAF (minor allele frequency) or 
LD (linkage disequilibrium) fi ltering. Data are also adjusted for various covariates 
and population stratifi cation if required. Next, single locus or multi- locus associa-
tion tests can be performed to identify genetic variants associated with the phenotype 
of interest. Ultimately, identifi ed genotype–phenotype associations must be repli-
cated in an independent dataset to assert their credibility       
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genetic testing. Hence, although the susceptibility loci identifi ed 
via GWAS analyses have been useful in providing a new insight 
regarding the biology of the disease, they have not resulted in new 
genetic tests. 

 Similar to the discouraging results with familial breast cancer, 
GWAS has had limited success in detecting genetic variants that 
account for a large portion of the heritability of any common dis-
ease trait. This chapter will highlight the challenges that lie ahead 
for GWAS in identifying genetic risk factors that are better classifi -
ers of disease, and how these may be addressed. 

 First, we must address this  missing heritability  problem by 
specifi cally designing our studies to search for nonlinear interac-
tions amongst SNPs. However, this can be a very computationally 
intensive problem due to the enormous number of pair-wise com-
binations possible from a GWAS dataset. Linkage disequilibrium 
(LD) patterns within a dataset may be used to devise strategies for 
 prioritizing SNPs for inclusion in an analysis, reducing this compu-
tational burden. Second, we must improve the study design of our 
GWAS to ensure we increase our statistical power to detect true 
genetic effects and replicate them by using methods such as meta- 
analysis and data imputation. Additionally, we must make use of 
new resources such as electronic medical records (EMRs) to unravel 
a wealth of phenotypic detail that was previously unavailable. Third, 
to reduce the biases in GWAS design, we must establish strict 
 criteria for defi ning phenotypes, adjust for confounding variables 
that may affect the phenotype of interest, and correct for multiple 
hypothesis testing ( see  also Chapter   4    ).  

2    Materials 

  Much of the growth and success of GWAS refl ects the technology 
behind the thumb-sized DNA microarray chips designed to probe 
one million or more SNPs dispersed throughout the genome. 

 The genotyping platforms used by most GWAS belong to one 
of two commercial companies: Illumina (San Diego, CA) or 
Affymetrix (Santa Clara, CA). The two companies’ products differ 
slightly in their approaches to measure SNP variation, and provide 
researchers with options in terms of cost, coverage, amount of tar-
get DNA required, and protocol complexity. 

 Affymetrix chips use a printed array format, where each spot 
on the array, representing a locus or allele, contains a cluster of 
25-mer oligonucleotides. This platform also offers a cost-effective 
approach for high-volume GWAS, as most costs are mainly up 
front. Illumina, however, produces chips that consist of an ordered 
array of beads, each representing 50-mer oligonucleotides. Even 
though this platform offers higher sensitivity, it comes at a cost—
the arrays are more expensive and the protocols for decoding bead 
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positions are time intensive. Ragoussis et al. provide an excellent 
review of these genotyping platforms and their unique strengths 
and weaknesses [ 12 ]. Ultimately, GWAS using either of these plat-
forms have been equally successful in the search for genetic risk 
factors for common, complex diseases.  

  EMRs, which were primarily designed for hospital administrative 
processes, have recently given way to a new model of genetic 
discovery. These records are being used to extract relevant 
phenotypic information for a subject population. Medical centers 
can leverage this information for genetic studies by linking these 
data to biological samples to create large-scale biobanks. 

 EMRs are a rich resource for different types of information, 
such as—billing data, diagnosis codes, laboratory results, vital 
signs, provider documentation from reports and tests, and medica-
tion records. The billing data and certain laboratory results are 
made available as structured “name-value” pair data. The clinical 
documentation such as test results and medication records are pro-
vided as narrative or semi-narrative texts. Provider documentation 
and medical records form an important resource for correct phe-
notype characterization. Many hospitals are also installing barcodes 
to keep records of each drug administration for all patients, which 
may improve accuracy of pharmacogenomic traits [ 13 ].   

3    Methods 

   A major goal for both the International HapMap Project as well as 
the 1000 Genomes Project was to capture and catalog sequence 
variation in the human genome [ 14 ,  15 ]. SNPs, which are single 
base pair changes in the DNA sequence, have now become the 
modern unit of genetic variation. Currently, the public catalog of 
variant sites (dbSNP Build 138) contains approximately 44 million 
SNPs [ 16 ]. 

 SNPs have been shown to have important functional conse-
quences such as affecting mRNA transcript stability or transcrip-
tion factor binding affi nity [ 17 ]. However, it is the ability of SNPs 
to explain much of the genetic diversity observed amongst humans 
that makes them ideal candidates for use as markers of a genomic 
region in GWAS. 

 For each SNP location, there are two or more allele possibili-
ties. The frequency of the less common allele is referred to as minor 
allele frequency (MAF). The MAF, along with the minor allele, can 
be specifi c to a population. Variants can be classifi ed as common or 
rare: SNPs with a MAF ≥5 % are usually referred to as common 
variants, and those with MAF <5 % are rare. For example, a SNP 
with a minor allele (A) frequency of 0.30 indicates that 30 % of the 
population carries the A allele at the SNP location, instead of the 
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more common allele. Traditionally, most GWAS focus on common 
variants as witnessed by the long list of validated examples— FTO  
(type 2 diabetes and body mass index) [ 18 – 20 ],  GCKR  (triglycer-
ides) [ 21 ], and  APOE4  (Alzheimer disease) [ 22 ]. Nevertheless, it 
has been suggested that rare variants play a role in disease and 
hereditary risk as well [ 23 ,  24 ].  

  Linkage disequilibrium (LD) is a measure of correlation between 
SNP alleles at one site and the specifi c alleles carried at variant sites 
nearby. Likewise, a particular combination of alleles along a 
chromosome is termed a  haplotype . The concept of LD is closely 
related to chromosomal linkage, where two markers on a 
chromosome are physically linked through multiple generations of 
a family. Both these properties can be eroded by recombination 
and mutation events across multiple generations, thereby breaking 
up any contiguous stretches of chromosome. The LD observed in 
a population is also dependent upon its ancestry. Consequently, 
populations of African descent show smaller regions of LD, as they 
are more ancestral compared to Asian and European populations 
and have undergone greater extents of recombination. 

 The most common measures for LD are—D′ and  r  2 . Both 
measures try to capture the difference in the observed frequency of 
two alleles that occur together, and how often they would be 
expected to occur together if they were independent of each other 
[ 14 ,  25 ]. 

 Measures of LD are extremely useful in GWAS design.  r  2   values 
are used to select  tag SNPs , which are variants selected specifi cally 
because they are in strong LD with other variants surrounding 
them ( see   Notes 1  and  2 ). This advantageous property of tag SNPs 
allows them to be used for capturing the variation in that specifi c 
stretch of LD. Tag SNPs have been especially useful in reducing 
genotyping costs for GWAS. According to HapMap, more than 
80 % of commonly occurring SNPs in populations of European 
descent can be captured by a set of 500,000 to a million SNPs 
spread across the genome [ 26 ,  27 ]. This is what forms the basis of 
selecting a panel of markers for genotyping chips. 

 An understanding of LD is also essential for correct compre-
hension of results from a GWAS analysis. Positive results from a 
GWAS may represent two types of associations—direct or indirect. 
A direct association involves a SNP that was directly genotyped in 
the study. Such a SNP is also referred to as a  functional SNP  or the 
causal variant. An indirect association is a positive association where 
the SNP of interest was not directly genotyped in the GWAS. This 
association represents a tag SNP that was genotyped in the study 
and is in strong LD with the variant altering the biology of the 
organism. Usually, follow-up tests, such as resequencing the spe-
cifi c genomic region or performing functional studies to examine 
the role of the variant in the disease, are required to distinguish 
between these two possibilities [ 1 ,  28 ].   
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  In this section we begin with an overview of GWAS design and the 
steps that we can take to reduce the bias introduced into a dataset—
such as setting a rigorous criteria for defi ning phenotypes. 
Moreover, we talk about the exciting opportunity of extracting 
phenotypic information from EMRs and the unique challenges 
that presents. 

  Case–control GWAS utilize categorical phenotypes, which are 
often binary outcomes such as case/control or  affected/unaffected. 
The case group includes individuals who have been diagnosed 
with the disease phenotype of interest. However, the control group 
can be chosen in one of two valid ways—individuals who are 
unaffected by the disease or randomly selected from the population. 
To avoid false positive results, cases and controls must be matched 
carefully ( see   Note 3 ). Overall, the case–control study design 
compares the frequency of SNPs or alleles between the two study 
groups. A higher frequency of a SNP within the cases instead of 
controls is indicative of that SNP being associated with increased 
disease risk [ 28 ,  29 ]. 

 As the name suggests,  quantitative  study designs assess quan-
titative or  continuous  traits that can be measured, to obtain a quan-
titative value such as HDL (high-density lipoprotein) and LDL 
(low-density lipoprotein) cholesterol levels [ 30 ]. This study design 
is statistically more powerful for detecting genetic effects. 
Quantitative traits also make it easier for researchers to obtain a 
precise measurement, and provide an outcome that is clinically 
easier to interpret. Ultimately, such a study design measures if the 
frequency of a SNP or allele is associated with a certain amount of 
change in the quantitative trait being studied [ 31 ].  

  For any GWAS, it is important to establish measures to standardize 
the criteria for defi ning the phenotype of interest. This is especially 
true for diseases that do not have well-established quantitative 
measures to describe the disease phenotype, such as multiple 
sclerosis. In such a situation, patients are usually classifi ed as either 
being  affected  or  unaffected  by the disease in question. However, in 
these cases a simple misclassifi cation error of categorizing someone 
as a  case  instead of a  control  can have more serious consequences 
than an error in recording a precise quantitative measure. 

 Despite a complex clinical phenotype that is diffi cult to diag-
nose, multiple sclerosis studies have been successful [ 32 ]. This is 
mainly because these studies use a rule list based on various clinical 
variables such as the McDonald criteria to establish case–control 
status [ 33 ]. This is especially important when studies are based on 
collaborations between multiple institutions and centers. In such 
cases, strict criteria ensure that phenotype defi nitions are applied 
uniformly across various clinicians, thereby avoiding any site-based 
effects. This brings to notice that the success of a GWAS does not 
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always depend on the nature of the phenotypic outcome being 
analyzed, but rather on the awareness of the specifi c challenges 
each phenotypic category presents.  

  In recent years, the growth of EMR-linked DNA databanks has 
presented an exciting new avenue for genetic research. EMRs 
provide an alternative source for researchers to derive phenotype 
information about a large population of individuals. They are 
especially appealing as they contain a longitudinal record of robust 
clinical data due to routine clinical care of patients. Furthermore, 
EMR-linked DNA databanks provide researchers with the unique 
opportunity of reusing genetic information to investigate 
additional phenotypes. Nevertheless, identifying phenotypes from 
EMRs presents its own set of challenges, because these records 
were designed with the logistical problems and billing practices of 
hospitals in mind [ 13 ,  34 ]. 

 The fi rst step in phenotype extraction involves the use of an 
initial selection algorithm that chooses a subset of records from the 
bio-repository through text mining of unstructured text or by 
making use of structured data fi elds such as billing codes, in the 
EMR. The choice of billing codes available for use in the EMR is 
also important in ensuring the accuracy of the phenotype informa-
tion extracted or the diagnosis established from the record. The 
CPT (Current Procedural Terminology) coding system is known 
to have a higher specifi city and lower sensitivity, in comparison to 
the ICD (International Classifi cation of Diseases) coding system. 
Though the availability of a single type of code is usually suffi cient 
for identifying a phenotype, often a combination of the codes 
works better as ICD codes also provide the reason for a clinical 
encounter or procedure [ 13 ]. 

 Similarly, to complement the information from billing and 
procedure codes, they can be combined with free text in the 
EMR. Such free text can be parsed using Natural Language 
Processing (NLP) procedures, which apply syntactic and semantic 
rules to extract structured information. They do so by connecting 
the text with medical concepts from a controlled vocabulary such 
as the Unifi ed Medical Language System (UMLS) or with medi-
cation information from vocabularies such as RxNorm [ 13 ,  35 – 37 ] 
( see  also Chapter   16    ). 

 Ultimately, as a gold standard measure, clinicians and pheno-
type experts examine the accuracy of the results obtained from the 
subset of EMR records selected for the study. A measure of preci-
sion, the positive predictive value (PPV) of the initial selection 
algorithm is assessed. The algorithm is then continually refi ned 
based on the feedback from these experts. This process continues 
until the desired PPV is achieved [ 13 ,  34 ]. This approach has not 
only been applied to various pharmacogenomic and clinical condi-
tions [ 38 – 41 ], but has also successfully replicated established gen-
otype–phenotype relationships [ 42 ].   
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  In addition to ensuring a strong study design, there are a few 
challenges that must be addressed at the level of association analysis 
in a GWAS. In this section we describe the steps involved in 
preparing a dataset prior to an association analysis and in adjusting 
for confounding variables that may also affect the phenotypic 
outcome of interest. Moreover, the  missing heritability  problem is 
addressed, as are the steps that can be taken during an association 
analysis to prioritize SNPs and search for nonlinear interactions. 

  Prior to testing for a genetic association with a disease outcome of 
interest, researchers must go through a few steps to prepare their 
dataset for this analysis. First, a method must be chosen for 
encoding the genotype information in the dataset, as this may have 
important implications on the statistical power of an association 
test. As such, association tests can test for either allelic or genotypic 
associations. Allelic associations look for an association between an 
allele and the phenotype of interest, whereas genotypic associations 
search for associations between genotypes or genotypic classes and 
the phenotype. There are several ways to form these genotypic 
classes—using a dominant, recessive, multiplicative, or additive 
model [ 29 ,  31 ]. 

 Datasets must also be adjusted for a range of factors or 
covariates—age, sex, clinical covariates like Body Mass Index 
(BMI) or the study site used for data collection—that are known 
to affect the phenotype outcome, to prevent spurious associa-
tions from being detected. Regression methods are a popular 
choice for covariate adjustment; logistic regression is used for 
binary traits and linear regression for examining quantitative 
traits. These methods calculate the “residuals” for the trait of 
interest, after covariate adjustment. This is the portion of the 
trait that is not accounted for by the covariates [ 43 ]. 

 Population substructure is one of the more important covari-
ates to address in a dataset, especially when the population com-
prises various ethnicities. The prevalence of a disease phenotype, as 
well as allele frequencies, can vary between different human sub-
populations. Due to this, within a dataset of multiple ethnicities, 
ethnic-specifi c SNPs may show up to be associated with a trait due 
to population stratifi cation [ 44 ]. To prevent any false associations, 
the ancestry of each subsample needs to be measured using one of 
various methods such as STRUCTURE [ 45 ] or EIGENSTRAT 
[ 46 ]. These methods compare genome-wide allele frequencies 
with ethnic-specifi c frequencies on HapMap. This allows for sam-
ples to be excluded if they are found to be similar to a nontarget 
population. As an alternative, EIGENSTRAT can also use a statis-
tical method such as principle component analysis (PCA) to gener-
ate principle component values or  ethnicity scores , which can then 
be used as covariates for adjustments.  
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  The popular approach for analyzing GWAS data includes a series of 
single-locus statistical tests, which compare the genotype 
distributions for cases and controls, one SNP at a time. On the 
whole, these methods aim to identify an association between a 
SNP and the disease/phenotype of interest. However, the type of 
association test chosen is dependent upon the phenotypic class 
(case–control or quantitative) being studied. 

 Binary traits and case–control study designs are analyzed using 
a contingency table method or logistic regression. For a set of cases 
and controls, a contingency table summarizes the number of indi-
viduals within each genotypic group for a single biallelic SNP [ 28 ]. 
It searches for a deviation from the  null hypothesis  that there is no 
association between the phenotype and genotype. Popular statisti-
cal tests using this method are the chi-square test or the Fisher’s 
exact test. In addition, contingency tables can be analyzed using 
standard statistical software packages such as SAS, SPSS, Stata, or 
Microsoft Excel [ 29 ]. As for logistic regression, it is an extension 
of linear regression where the phenotypic outcome studied is trans-
formed using a logistic function. This method predicts the proba-
bility of an individual having a  case  status, given their genotype 
class. Moreover, logistic regression is often the method of choice as 
it allows for covariate adjustment. 

 A popular method for analyzing quantitative traits is the 
Analysis of Variance (ANOVA), which is similar to linear regression 
with a categorical predictor variable. For single-SNP analysis, 
ANOVA functions under the null hypothesis, which states that 
there is no difference between the trait means for any genotype 
group. However, ANOVA does function on the basis of certain 
assumptions: it assumes that the trait is normally distributed, the 
variance of the trait is the same within each group, and that the 
groups are independent. 

 For such GWAS analysis, PLINK is a popular and useful 
 software. It has robust features to handle large amounts of data. It 
can perform association tests per SNP using either the allelic or 
inheritance model, or by using the Cochran-Armitage test (a con-
tingency table method). Most importantly, PLINK provides a very 
detailed user manual that is easy to follow [ 47 ]. 

 As mentioned earlier in this chapter, the fi eld of GWAS has had 
limited success in detecting genetic variants that explain a large por-
tion of the heritability for any given trait. This has led researchers to 
propose potential sources of  missing heritability . One such possibil-
ity is that  missing heritability  may be found within epistatic interac-
tions between various genes [ 48 ].  Epistasis  is usually defi ned in one 
of two ways—biological or statistical. Biological epistasis refers to 
the physical interactions between biomolecules that are infl uenced 
by multiple genetic variants. Statistical epistasis is the term for the 
nonadditive interactions between multiple genes, each of which 
affects disease susceptibility, and the environment [ 49 ,  50 ]. 
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 The  missing heritability  problem may be exacerbated by GWAS 
approaches that use a linear modeling framework to analyze SNPs 
one at a time, thereby failing to recognize the genetic and environ-
mental context of each SNP [ 51 ,  52 ]. Hence, this has led to the 
adoption of more holistic approaches that recognize the complex 
landscape of the genotype–phenotype relationship and examine 
nonlinear interactions between genetic variants throughout the 
genome. This is referred to as a  multi-locus analysis , which brings 
with it a new of set of challenges [ 53 ,  54 ]. Amongst these, the big-
gest challenge is that the exhaustive examination of all pair-wise 
interactions involving 500,000 SNPs can be very computationally 
intensive. This often makes it necessary to use specifi c criteria to 
fi lter the 500,000 markers to make the problem computationally 
tractable. 

 Traditionally, most GWAS approaches using a chip of this size 
perform an initial fi ltering based on MAF, LD, and other initial 
quality control checks [ 47 ]. Even though these steps reduce the 
number of markers greatly, a researcher may still be left with about 
300,000 SNPs in the dataset. In such cases, a single SNP analysis 
can be performed to select markers with main effects (these are 
single SNPs that show a strong association with the disease out-
come), based on an arbitrary threshold set as the  signifi cance crite-
ria . This creates a manageable data subset for an unbiased search 
of all pair-wise interactions. 

 Conversely, the dataset can also be fi ltered so that only those 
multi-marker interactions will be examined that fi t within a cer-
tain biological context such as a biological pathway, protein fam-
ily, and group of genes or proteins involved in a certain molecular 
function. For example, the Biofi lter algorithm combines biomedi-
cal knowledge from multiple public repositories with statistical 
methods such as logistic regression or multifactor dimensionality 
reduction (MDR) method to analyze SNP–SNP combinations [ 55 ]. 
MDR is a novel method that detects and characterizes higher 
order combinations of genetic and environmental factors that may 
be predictive of a phenotype or clinical outcome of interest [ 56 ]. 
Another similar method is INTERSNP, which uses logistic regres-
sion, log-linear, and contingency table methods to assess SNP–
SNP models [ 57 ]. However, it is important to keep in mind that 
any dataset fi ltering based on particular criteria will introduce its 
own biological bias into the dataset ( see   Notes 4  and  5 ).  

  A  p -value is defi ned as the probability of observing a test statistic 
that is equal to or greater than the observed test statistic, if the null 
hypothesis is true. It is generated for each statistical test that is 
carried out. A common  p -value cut off ( α ) that is used in scientifi c 
literature is 0.05. When a  p -value is equal to or falls below this  α  
cut off, the null hypothesis is rejected. This means that 5 % of the 
time, when the null hypothesis is rejected, it will actually be true, 
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representing a false positive. This probability value is with regard 
to a single hypothesis or statistical test. However, for a GWAS 
study that tests numerous hypotheses and applies many statistical 
tests, each of these tests has their own false positive probability. 
Hence, the combined likelihood of a GWAS result being a false 
positive is a lot higher than from one test. This brings to light the 
importance of correcting for multiple hypothesis testing and 
adjusting the  p -value threshold accordingly. 

 There are a few popular ways to approach correction for mul-
tiple testing:

 ●     The Bonferroni correction.  This is the most stringent of the 
three; it assumes that each association test in a GWAS is inde-
pendent of all the others. It corrects an  α  = 0.05 to  α  = (0.05/ k ), 
where  k  is the number of statistical tests performed. However, 
this assumption of independence between all the association 
tests is not necessarily true, due to the presence of LD between 
markers. For a GWAS with 500,000 markers, the statistical sig-
nifi cance threshold for an association would be corrected to 
1e−7.  

 ●    Adjusting the False Discovery Rate (FDR).  Developed by 
Benjamini and Hochberg this provides an estimate of the pro-
portion of the statistically signifi cant results that are false posi-
tives, at an  α  = 0.05 [ 58 ]. The approach essentially corrects for 
this expected number of  false discoveries , giving the user an 
idea of the proportion of true associations within their results. 
The FDR approach is less stringent than the Bonferroni cor-
rection as it allows for a proportion of false positive results 
rather than calculating the probability of observing one or 
more false positive results over the entire analysis. These pro-
cedures have been used extensively in GWAS and also extended 
in a variety of ways [ 59 ].  

 ●    Using permutation testing to adjust the signifi cance threshold.  
Although it is computationally intensive, it is the best approach 
for generating an empirical distribution of test statistics for a 
given dataset when the null hypothesis is true. The dataset is 
permuted by rearranging the phenotype labels for all the indi-
viduals, but leaving the genotypic information intact. This 
breaks up any genotype–phenotype relationship within the 
dataset. However, this technique ensures that the inherent 
genotype architecture of the dataset is kept intact. This rear-
rangement of the phenotype labels is done  N  times (a prespeci-
fi ed number). Each time the labels are rearranged, it represents 
a new permuted dataset, i.e., a possible sampling of individuals 
under the null hypothesis. There are a number of software 
packages that can perform permutation testing for GWAS such 
as—PLINK [ 60 ], PRESTO [ 61 ], and PERMORY [ 62 ].      
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  The biggest concern regarding GWAS results has been the lack of 
replication of genotype–phenotype associations in an independent 
study. But an equally formidable challenge is to ensure that a 
replication study has suffi cient statistical power to detect the initial 
fi nding. Accordingly, meta-analysis and data imputation  procedures 
can help to tackle this type of challenge. 

  The sole purpose of a replication study is to evaluate an initial 
positive fi nding from a GWAS and replicate it to assert its validity 
and give the association higher credibility. But, despite the general 
consensus regarding its importance, what actually constitutes a 
replication is still up for debate. This was the topic of a National 
Human Genome Research Institute (NHGRI) working group—to 
outline various criteria involved in defi ning a replication of a GWAS 
result [ 63 ]. 

 One of the fi rst criteria for establishing a positive replication is 
that the sample size of the replication study be large enough to 
detect the effect of the susceptibility allele. This is especially crucial 
because the effects detected in the original GWAS are often over-
estimated in the study population it was identifi ed in, as compared 
to the general population, due to a phenomenon called  winner’s 
curse  [ 64 ]. Hence, in reality the sample size required to detect this 
effect, would have to be much larger than the original study popu-
lation. This is especially true when trying to distinguish the pro-
posed effect from no effect. 

 The replication study must be carried out in an independent 
dataset derived from the same population to avoid any introduc-
tion of bias due to differences in ethnicity. Additionally, identical 
criteria should be used in the replication set to defi ne the pheno-
type in question. Since the ultimate goal is to replicate a statistical 
model—a given SNP with a given phenotypic effect—using even 
slightly different phenotypic defi nitions can adversely affect the 
interpretation of the replication results. 

 Since GWAS markers are chosen based on LD patterns, 
researchers should aim to replicate a  genomic region , and not neces-
sarily the original SNP from the initial study. All SNPs in high LD 
with the original SNP would be considered as candidates for repli-
cation. However, a strong rationale should be provided regarding 
the SNPs being selected for replication, based on linkage disequi-
librium, published literature, or putative functional signifi cance. 
To be considered a successful replication, the magnitude and direc-
tion of the genetic effect should be similar across both discovery 
and replication studies.  

  Meta-analysis is a statistical method for combining several different 
studies to provide one summary result. It is a widely applied 
technique in the GWAS fi eld; it allows researchers to increase the 
power to detect association signals by increasing sample size and 
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examining a larger number of variants across the genome. 
Ultimately this helps reduce the chances of false positive fi ndings. 
An essential component to combining multiple GWAS for a meta-
analysis is that all the studies should be  examining the same 
hypothesis . A key advantage to the meta-analysis method is the 
inherent protection of patient and clinical data. It only requires the 
transfer of statistical results and not the original data that other 
parties may not have permission for. 

 In the initial stages of a meta-analysis, researchers should set up 
strong collaborative agreements ahead of time. Accordingly, a 
detailed analysis plan should be formulated to avoid any heteroge-
neity being introduced into the study ( see   Note 6 ). There are vari-
ous statistical measures to quantify heterogeneity and to measure 
how much the various combined studies differ from each other. 
Some typical measures of heterogeneity are Cochran’s  Q  or the  I  2  
statistic [ 65 ,  66 ]. The Cochran’s  Q  statistic aims at revealing 
whether there is statistically signifi cant heterogeneity or not. It is 
the weighted sum of squared differences between individual study 
effects and the summary effect across studies. However, the statis-
tic is often underpowered when too few studies are involved in the 
meta-analysis. 

 The  I  2  statistic, which is favored more in recent studies, mea-
sures the proportion of heterogeneity between studies that is true 
and not due to chance. A major advantage is that the power of the 
statistic is not dependent upon the number of studies combined in 
the meta-analysis.  I  2  values may fall within low (<25), medium 
(>25 and <75) and high (>75) heterogeneity values. These ranges 
are helpful in identifying which studies may need to be removed 
from the meta-analysis ( see   Note 7 ).  

  A meta-analysis aims to examine the effect of the same allele across 
all studies. However, this proves diffi cult when the combined 
studies have been carried out using different genotyping platforms, 
each using a different set of markers. To ease this challenge, GWAS 
can use data or genotype imputation to generate results for a 
common set of SNP across all the combined studies. The imputation 
procedure makes use of the known LD and haplotype patterns in 
reference panels such as HapMap and the 1000 Genomes project, 
to estimate genotypes for SNPs that were not directly genotyped 
within a study ( see   Note 8 ) [ 67 ,  68 ]. 

 Some popular algorithms for genotype imputation are 
BimBam [ 69 ], IMPUTE [ 70 ], MaCH [ 71 ], and Beagle [ 72 ]. The 
underlying principle for these algorithms is similar to that of hap-
lotype phasing algorithms, which estimate the contiguous set of 
alleles that lie on a specifi c chromosome. Genotype imputation 
algorithms identify the shared underlying haplotypes between the 
study population and the reference panel. This set of shared hap-
lotypes is then used to calculate haplotype frequencies within the 
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genotyped SNPs. The phased haplotypes are next compared with 
a reference set of haplotypes such as those from the HapMap or 
1000 Genomes projects. The matched reference haplotypes are 
also able to provide genotypic information for surrounding mark-
ers that were not directly genotyped. Additionally, haplotypes 
from the study sample may match more than one reference haplo-
type. In such cases, the surrounding genotypes are given a score or 
probability of a match, based on the amount of overlap. These 
scores are also useful for getting an idea about the amount of 
uncertainty in the genotype imputation process.    

4    Future Directions 

 Irrespective of its victories and failures, GWAS have ushered in an 
exciting era in the fi eld of genetics and has added new knowledge 
to our understanding of various diseases and their underlying 
mechanisms. Although, as the content of genotyping chips, cohort 
sizes, and biobanks grow even larger, the challenges of data manip-
ulation, quality control, strong study design, and strict phenotypic 
defi nitions grow more complex. Hence, moving forward human 
geneticists will have to develop bioinformatics infrastructure and 
expertise to overcome such challenges. Most importantly, scientists 
will have to combine their bioinformatics efforts with genetics, 
biochemistry and cell biology to confi rm the functional conse-
quence and biological relevance of the genotype–phenotype asso-
ciations that are identifi ed. Ultimately, the translation of GWAS 
fi ndings into clinical practice will rely upon correct assumptions 
regarding the genetic architecture of complex traits especially in 
the context of gene–gene and gene–environment interactions.  

5    Notes 

     1.    An  r  2  value of 1 is a sign of complete LD and that the alleles at 
these two associated markers have identical frequencies. To 
select a tag SNP, an  r  2  value of 0.8 or greater is considered to 
be high and appropriate for using one SNP to tag another in a 
GWAS [ 73 ,  74 ].   

   2.    LD structures vary between populations, hence, tag SNPs 
picked for one population may not work for another. 
Accordingly, populations with high LD will require fewer tag 
SNPs to capture their variation.   

   3.    Appropriate matching of cases and controls in a GWAS is cru-
cial for preventing any genetic difference between the two 
groups from being detected due to biased sampling. Researchers 
must ensure that cases and controls share the same ethnicity, 
and, if possible, come from the same geographical area.   
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   4.    A created dataset based on SNPs that show main effects, 
enriches for markers that fi rst show a strong association on 
their own, before searching for pair-wise interactions. This will 
 prevent the detection of certain  purely epistatic  multi-marker 
interactions—i.e., interactions between markers which by 
themselves may not have a detectable main effect, and a large 
part of the heritability is concentrated in their interaction, not 
individual effects [ 53 ].   

   5.    An obvious drawback of fi ltering datasets based on biological 
criteria is the reliance upon existing biomedical knowledge, 
and the quality of this knowledge in public databases. However, 
SNP combinations identifi ed from the examination of such a 
data subset are easier to interpret within a biological context.   

   6.    There are several measures that can be taken to avoid introduc-
ing heterogeneity in a meta-analysis. The general design of 
each included study, the quality control procedures, covariate 
adjustment, and phenotypic defi nition applied should be the 
same across all studies. Similarly, the SNP analysis strategies at 
the level of each individual study should also follow near-iden-
tical procedures. Most importantly, the samples added from 
each study should be independent of each other. Lastly, all 
results from the individual studies should be reported relative 
to a common genomic build and reference allele [ 66 ,  75 ].   

   7.    As is true with using any statistical values, these measures 
should only be used as guides to identify studies introducing 
an obvious bias. For example, a study may examine a different 
hypothesis or it may be unduly infl uential as an outlier. 
Furthermore, removing a study based solely on a statistical 
score increases the chances for false discoveries, as it does not 
make correct use of an agnostic statistical procedure designed 
to reduce such bias.   

   8.    The reference panel chosen for genotype imputation should be 
derived from a population with the same ethnicity as the study 
population to avoid poor quality of the haplotype matches. 
Additionally, the reference allele for each SNP must be identi-
cal between the study population and the reference panel used.         
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    Chapter 6   

 Studying Cancer Genomics Through Next-Generation 
DNA Sequencing and Bioinformatics    

           Maria     A.     Doyle     ,     Jason     Li    ,     Ken     Doig    ,     Andrew     Fellowes    , 
and     Stephen     Q.     Wong   

    Abstract 

   Cancer is a complex disease driven by multiple mutations acquired over the lifetime of the cancer cells. 
These alterations, termed somatic mutations to distinguish them from inherited germline mutations, can 
include single-nucleotide substitutions, insertions, deletions, copy number alterations, and structural rear-
rangements. A patient’s cancer can contain a combination of these aberrations, and the ability to generate 
a comprehensive genetic profi le should greatly improve patient diagnosis and treatment. Next-generation 
sequencing has become the tool of choice to uncover multiple cancer mutations from a single tumor 
source, and the falling costs of this rapid high-throughput technology are encouraging its transition from 
basic research into a clinical setting. However, the detection of mutations in sequencing data is still an 
evolving area and cancer genomic data requires some special considerations. This chapter discusses these 
aspects and gives an overview of current bioinformatics methods for the detection of somatic mutations in 
cancer sequencing data.  

  Key words     Bioinformatics  ,   Cancer  ,   Copy number alterations  ,   Next-generation sequencing  , 
  Somatic mutations  ,   Structural rearrangements  

  Abbreviations 

   CNA    Copy number alterations   
  CNV    Copy number variants   
  SNV    Single-nucleotide variants   
  SR    Structural rearrangements   

1        Introduction 

 Cancer, the uncontrolled growth of cells commonly arising from a 
series of mutations, is caused by a number of factors including 
inherited genetic defects, lifestyle factors, certain infections, expo-
sure to radiation, and environmental pollutants. The mutations the 
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cancer cells acquire range from single-nucleotide mutations to 
large structural rearrangements. In the last few years, one technol-
ogy has signifi cantly increased our ability to detect mutations: 
next-generation sequencing (NGS). NGS allows many millions of 
short DNA sequence reads to be generated from a single sample 
and has greatly expanded our knowledge of the mutations in can-
cer. The fi rst cancer genome sequenced was in 2008 [ 1 ]; and this 
has been followed by a plethora of cancer sequencing studies from 
around the world, especially from multicenter collaborations such 
as the Cancer Genome Atlas (TCGA) [ 2 ] and the International 
Cancer Genome Consortium (ICGC) [ 3 ]. 

 Successes from cancer sequencing studies include the surpris-
ing identifi cation of a metabolic enzyme,  IDH1 , as a cancer- driving 
oncogene in glioblastoma [ 4 ], which has defi ned the important 
roles of metabolic genes in cancer, and the identifi cation of the 
 BRAF  V600E mutation in hairy cell leukemia patients [ 5 ], open-
ing up the possibility of using targeted therapeutics already 
approved for treating patients with  BRAF  mutant melanoma. 
Notably, these studies have revealed that, depending on the type of 
cancer, there can be a large assortment of different genes mutated 
that can provide a selective advantage for tumor growth. 

 The DNA variants that confer the growth advantage are 
referred to as  driver  mutations as opposed to mutational events 
which are present in a tumor but do not provide a selective 
advantage and are referred to as  passenger  mutations. While the 
number of mutations can vary depending on the tumor type, 
over a hundred cancer-driving genes have been identifi ed from 
these sequencing studies with the average tumor containing two 
to eight driver mutations [ 6 ]. For any given tumor, multiple 
genes may need to be analyzed to determine what mutations are 
present. Current molecular diagnostic tests screen for mutations 
in selected loci only and often evaluate only one locus at a time 
which is costly and ineffi cient. Sanger sequencing is, at present, 
the main technique employed for clinical sequencing, but it lacks 
sensitivity. Thus, the greater sensitivity and high-throughput 
nature of NGS make it a very attractive technology for clinical 
diagnostics. 

 However, while researchers are increasingly using sequencing, 
its uptake into the clinical environment has been slower, in a large 
part due to diffi culties in bioinformatics analysis. Inherent issues 
associated with tumor samples including heterogeneity, ploidy, and 
cellularity (purity) present major challenges for the analysis. 
Because cancer can contain a broad and diverse variety of somatic 
alterations, a large range of bioinformatics tools are also required. 
The aim of this chapter is to give an overview of somatic mutation 
detection in cancer NGS data and the bioinformatics methods 
being used to decipher cancer complexity.  
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2    Materials 

  Tumor material, when used for NGS, has a number of associated 
challenges that are often not present in other sample types such as 
blood. These factors—tumor heterogeneity, purity, ploidy, and 
sample quality, which often vary vastly between samples—affect 
the ability of the bioinformatics programs to detect all types of 
somatic mutations and are critical determinants of whether the 
sequencing depth will be enough to identify a mutation. These fac-
tors are discussed further below. 

  Tumors are not a homogenous mass of cells, all containing the 
same genetic profi le. This is because tumor cells constantly undergo 
mutational changes and evolve to compete for growth advantages, 
to metastasize, to avoid immune responses, and to survive therapy. 
A tumor can, and usually does, contain multiple subpopulations of 
cells that differ in the mutations they harbor. These subpopulations 
arise when a cancer cell acquires a new mutation(s) and goes on to 
produce a population of cells different from the parent clone, a 
subclonal population. As well as subclonal heterogeneity within a 
primary tumor, there can also be heterogeneity between a primary 
tumor and its metastases and between the metastases themselves, 
and, as tumors are evolving populations, there can also be hetero-
geneity between samples taken at different time points. 

 Heterogeneity has important implications for patient care, as 
a subclone resistant to a drug could expand in number and lead 
to relapse in the patient. Ding et al. showed using sequencing 
that a subclone representing just 5 % of the initial tumor cell 
population in a leukemia patient expanded during treatment and 
led to relapse of the disease [ 7 ]. In another study in chronic lym-
phocytic leukemia, the presence of a subclone with a cancer- 
driving mutation was a risk factor for faster disease progression 
[ 8 ]. Thus, being able to obtain a comprehensive genetic profi le 
of a tumor and its subpopulations may be able to help predict if 
relapse or poor prognosis is likely or even identify additional tar-
getable mutations. 

 Heterogeneity, however, may also be a cause of failure to detect 
a mutation, as a single biopsy may not capture all mutations present 
in a patient’s cancer. An important study by Gerlinger et al. analyzed 
tumor samples taken from spatially separated sites in renal cancer 
patients and discovered that only ~30 % of mutations were found in 
all regions sampled [ 9 ]. Therefore, the level of heterogeneity in a 
patient’s tumor may lead to some mutations being missed. Programs 
and methods for assessing the level of heterogeneity in NGS data are 
now emerging such as tumor heterogeneity analysis (THetA) [ 10 ] 
and mutant-allele tumor heterogeneity (MATH) [ 11 ].  

2.1  Tumor Samples

2.1.1  Heterogeneity
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  A further challenge, particularly for solid cancers, is that tumors are 
usually contaminated with normal cells that surround the tumor 
cells, such as stromal tissue. Normal contamination makes muta-
tion detection more diffi cult as it reduces the number of tumor 
cells in the sample. The level of tumor cellularity should be assessed 
by a pathologist before a sample is sequenced as low cellularity 
could mean that a mutation may be below the sensitivity of detec-
tion and therefore missed. The large omics studies have tended to 
aim for >60 % tumor purity [ 12 ]. For low-purity samples, dissec-
tion methods can be used to isolate tumor cells from surrounding 
normal tissue to increase the purity of the tumor DNA prior to 
sequencing. Programs such as PurityEst [ 13 ] and PurBayes [ 14 ] 
can be used to estimate tumor purity using NGS data.  

  With the exception of germ cells, normal human cells are diploid 
containing two copies of each chromosome, one from each parent. 
Tumor cells, however, can contain abnormal numbers of chromo-
somes, a state termed aneuploidy. Aneuploidy is very common in 
cancer and ubiquitous in solid tumors; one quarter of the genome 
of the average tumor sample contains gains or losses of whole chro-
mosomes or chromosome arms [ 15 ], and genome doubling (tetra-
ploidization) is a common occurrence in epithelial tumors such as 
breast, lung, ovarian, esophageal, and colorectal [ 16 ]. Alterations 
in ploidy will affect the amount of sequence obtained for the 
regions of interest. For example, in a fully tetraploid tumor sample 
every chromosome present would be represented by half the reads 
as in a normal diploid sample if equal amounts of DNA were used.  

  The quality and quantity of DNA extracted from tumor samples 
can vary quite considerably. This is because solid tumor biopsies 
are typically formalin fi xed and paraffi n embedded. Formalin fi xa-
tion is essential to preserve tissue and necessary to diagnose if a 
patient has cancer based on the morphology of a specimen. 
However, it can lead to degradation (fragmentation) of genomic 
material, reducing the amount of DNA template that can be 
sequenced. Low amounts of input DNA can often result in ampli-
fi cation of a reduced number of regions during the PCR step prior 
to sequencing leading to low overall sequencing coverage. Formalin 
fi xation can also result in non-reproducible base changes in the 
sample DNA that can mimic true variants [ 17 ]. This can be a par-
ticular issue for amplicon sequencing (where specifi c loci of interest 
are amplifi ed, generally using primers) as duplicate reads which 
may contain artifacts are not removed ( see   Note 1 ).   

  The use of a matched normal sample is a common practice in can-
cer research sequencing studies (Fig.  1 ). The matched normal sam-
ple is taken from the same patient as the tumor and is usually a 
blood sample, unless it is a leukemia or a lymphoma being studied; 
if so, another tissue must be utilized. Matched normal samples are 

2.1.2  Purity

2.1.3  Ploidy

2.1.4  Formalin-Fixed 
and Paraffi n- Embedded 
Tumor Biopsies: Sample 
Quality and Quantity

2.2  Matched Normal
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used to defi ne the germline status of the individual. Every indi-
vidual has polymorphisms in their germline genome, i.e., sequence 
changes present at conception that differ between individuals. 
These are not the mutations acquired by the cancer and are gener-
ally not relevant to cancer development and progression. Exome 
(where only exons are sequenced) and whole-genome sequencing 
typically identify tens of thousands of germline variants per sample. 
Sequencing a tumor and matched normal enables the germline 
variants to be subtracted, narrowing down the number of variants 
for follow-up analysis. However, this doubles the sequencing costs, 
as two samples (tumor and normal) must be analyzed for each indi-
vidual. Most of the current cancer bioinformatics programs have 
been developed for tumor samples with matched normal, although 
some will work without a matched normal sample. When no 
matched normal is available databases of common variants (such as 
dbSNP, 1000 Genomes, and Exome Variant Server) can be used to 
help eliminate likely germline variants and identify the tumor- 
specifi c variants for downstream analysis and interpretation.

     The decision as to the type of sequencing to be performed is largely 
driven by cost. While whole-genome and exome sequencing allow 
for a broader analysis of the patient’s tumor genome since they 

2.3  Whole Genome, 
Exome, or Targeted 
Gene Panels

  Fig. 1    Somatic variant in NGS data. Integrative Genomics Viewer (IGV) [ 54 ] screenshot showing reads from a 
melanoma tumor and its matched normal sample aligned to the human reference genome. A single base 
change  BRAF  V600E mutation is highlighted in the tumor reads. It is not present in the normal sample indicat-
ing that it is a somatic variant       
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cover more genomic regions, they remain too costly for everyday 
clinical use, both economically and in terms of effort required for 
analysis. Targeted gene panels on the other hand allow focused 
analysis of selected cancer genes. A benefi t of this approach is that 
the reduction in the size of the genomic region being analyzed 
allows sequencing to be carried out to a much greater depth 
 (several hundred- or thousandfold depth), increasing the ability to 
identify low-frequency mutations. 

 Therefore, targeted gene panels are the current method of 
choice for clinical cancer research as refl ected in the growing num-
ber of commercially available assays (Table  1 ) and tests such as the 
CLIA-certifi ed test from Foundation Medicine, which is a targeted 
gene panel of >200 genes. Current targeted cancer gene panels can 
be either hybridization capture based or amplicon based. 
Hybridization capture panels have a similar bioinformatics 
 workfl ow compared to exome and whole-genome data with the 
exception that the higher sequencing depth may mean that the 
parameters of programs such as variant callers need to be modifi ed 
to take the higher depth into account. In contrast, amplicon 
sequencing requires some modifi cation to the bioinformatics anal-
ysis ( see   Notes 1  and  2 ). For detection of copy number variations, 
current methods have largely been developed for whole-genome 
and exome data, and for structural rearrangement detection, 
whole- genome sequencing has usually been used. In principle, the 
general theories these methods are based on should be applicable 
to all types of sequencing data. A list of the bioinformatics pro-
grams mentioned below can be found in Table  2  ( see   Note 3 ).

   Table 1  
  Currently available cancer panels   

 Panel name  Targets 

 Illumina TruSeq Amplicon Cancer Panel  Mutational hotspots across 48 oncogenes 

 Illumina TruSight Tumor Panel  175 exonic regions from 26 genes 

 NimbleGen SeqCap EZ Comprehensive 
Cancer Panel 

 578 genes from Cancer Gene Census and NCBI Gene 
Tests 

 Agilent HaloPlex Cancer Research Panel  COSMIC mutations within 47 genes 

 Ion AmpliSeq Cancer Hotspot Panel v2  2,800 COSMIC mutations across 50 oncogenes and 
tumor-suppressor genes 

 Ion AmpliSeq Comprehensive Cancer Panel  Exons in >400 oncogenes and tumor-suppressor genes 

 RainDance ONCOSeq Cancer Panel  142 cancer genes, including >90 % of the genes from 
the Cancer Gene Census 

 Ambry Genetics Somatic Mutation Analysis 
(SOMA) Panel 

 Clinically actionable mutations in 26 genes 
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3         Methods 

  The following pipeline is commonly used for somatic variant detec-
tion in whole genome, exome, and many targeted hybridization 
methodologies. A typical analysis starts with quality checking of the 
raw sequence reads, i.e., trimming low-quality base calls at the ends 
of reads including removal of contaminating sequencing adapters 
and primers. Next the reads are aligned (mapped) to the human 
reference genome to identify the genomic location of the reads. 
Reads for the tumor and the normal sample are aligned separately 
to the reference genome using an aligner such as BWA [ 18 ] 
( see   Note 4 ). After alignment, post-processing steps may be carried 
out. This may include duplicate read removal ( see   Note 1 ), local 
realignment of reads ( see   Note 5 ), and base quality score recalibra-
tion, as these steps generally improve the accuracy of the fi nal results.  

  Single-base changes are the easiest type of variant to detect since 
they require only the consistent detection of a mismatched base 
compared to the aligned reference sequence. However, there are 
still challenges in distinguishing true somatic variants from back-
ground errors, such as sequencing errors which typically occur at 
about 1 % frequency. Unlike germline mutations, which would be 
expected to be present at 50 % frequency for heterozygous muta-
tions or 100 % for homozygous mutations, somatic variants can be 
present at a range of frequencies, the frequency of the variant being 
dependent on aspects previously discussed—the purity, ploidy, and 
heterogeneity of the tumor. 

 As the two most commonly employed variant callers in NGS, 
GATK’s Unifi ed Genotyper [ 19 ] and SAMtools [ 20 ], were not 
specifi cally developed for somatic variants they assume normal dip-
loid samples. With these programs, tumor and normal samples 
should be analyzed separately followed by a subtraction step to 

3.1  Alignment 
and Processing 
of Reads

3.2  Detection 
of Single- Nucleotide 
Variants and Indels

   Table 2  
  Examples of programs used in cancer genomics ( see   Note 3 )   

 Application  Programs 

 SNV detection  MuTect, SomaticSniper, JointSNVMix, Strelka, Varscan2 

 Indel detection  GATK Somatic Indel Detector, Strelka, Varscan2 

 Structural rearrangement detection  CREST, BreakDancer, PRISM 

 Copy number detection  ExomeCNV, ADTEx, Control-FREEC 

 Annotation and interpretation  Polyphen, SIFT, COSMIC, My Cancer Genome, 
Genomics of Drug Sensitivity in Cancer 
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remove variants common to both samples. This method has been 
used in early cancer sequencing studies [ 21 ]. However, analyzing 
the tumor and normal separately is not ideal as tumor variants also 
present in the normal sample but just below the detection thresh-
old will be falsely called somatic. 

 Several callers have been released in recent years that aim to 
detect single-nucleotide variants (SNVs) in cancer samples: Varscan 
2 [ 22 ], MuTect [ 23 ], SomaticSniper [ 24 ], JointSNVMix [ 25 ], and 
Strelka [ 26 ]. They are designed to analyze the tumor and normal 
sample together and to detect variants present at lower frequencies 
than would be expected in germline samples. These callers assess 
the total number of reads covering a site in the tumor and normal 
samples and the number of those reads that contain the SNV, with 
different callers applying different thresholds for read numbers. 

 Variant callers will also typically apply fi lters, for example, 
excluding bases with low base-call quality scores, as these refl ect 
low confi dence of the sequencer in calling the base, and excluding 
reads with low mapping quality scores, as these refl ect low confi -
dence of the aligner in assigning the genomic location for the read. 
Other features that may be used in deciding to call a variant include 
DNA strand information, which refers to whether the variant has 
been seen in reads mapped to both the forward and reverse strands. 
Some sequencing artifacts show strand bias, being seen in reads 
from one strand only [ 27 ,  28 ]. 

 Varscan takes a relatively simple approach to detect somatic 
SNVs using read depth and base quality thresholds followed by 
Fisher’s exact test to compare the tumor and normal samples and 
identify the variants that are tumor specifi c. Other somatic callers 
use Bayesian approaches which incorporate prior knowledge of 
what would be expected, for example, the probability of seeing 
particular genotypes for the tumor and the normal. 

 Sequencing studies typically use one variant caller, but a recent 
comparison of four variant callers (Varscan, Strelka, SomaticSniper, 
and JointSNVMix) found that they differed considerably in their 
output, with only a small fraction of variants identifi ed in common 
by all four callers [ 29 ]. SNVs identifi ed with high confi dence by 
some callers were identifi ed with low confi dence by others. Indeed, 
large discrepancies in variant calls among programs have been 
noted by others [ 30 ], including the TCGA benchmarking studies 
[ 27 ]. Low concordance between programs is not just an issue for 
somatic variant calling; it has also been reported for germline vari-
ant detection [ 31 ]. To address this issue, some groups have devel-
oped pipelines that incorporate multiple somatic variant callers in 
an attempt to integrate the different caller outputs [ 30 ] and 
because mutations detected by more than one caller are more likely 
to be true variants [ 27 ,  30 ]. The considerable differences in results 
obtained from different callers emphasize the need for rigorous 
testing and validation of variant calling pipelines. 
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 While several programs have been released in the last few years 
for the detection of somatic SNVs, the number of programs avail-
able for calling indels (small insertions and deletions typically 
<50 bp) is more limited. GATK’s Somatic Indel detector, Varscan, 
and Strelka are among the few currently available options. The 
reason for the paucity of programs is that detection of indels even 
in normal samples is challenging [ 31 ,  32 ]. Reads containing large 
indels may not align to the reference (Fig.  2 ), or the exact location 
of the indel may be diffi cult to identify if it falls within a region 

  Fig. 2    Indel in NGS data. IGV screenshot showing reads from a tumor sample aligned with BWA ( top panel  ) and 
with a custom in-house aligner ( bottom panel  ). BWA failed to map the reads containing the large indel in the 
 KIT  gene       
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containing a repeated sequence of bases. For example, if a read 
contains a deletion of an AT dinucleotide and the reference genome 
contains a stretch of ATATAT at that location, there are three 
 possible locations where the aligner can place the deletion and an 
arbitrary decision will be made. Realignment of reads around indels 
with a program like GATK, prior to indel calling, is useful for 
improving calls. Some programs such as Strelka perform their own 
local alignment of reads prior to calling indels.

     Herceptin (trastuzumab) is used to treat breast cancers that have 
overexpression of the ERBB2 (HER2) receptor detected by fl uo-
rescent in situ hybridization (FISH). This can be caused by ampli-
fi cation of the  ERBB2  gene through its duplication in the genome 
of the cancer cell. Such large duplications or deletions are called 
copy number variants (CNVs) which are found within the class of 
variants called structural variants—these also include structural 
rearrangements ( see  Subheading  3.4 ). CNVs are common in the 
normal population with about 12 % of the human genome affected 
by CNVs [ 33 ]. Somatic copy number changes are sometimes 
termed copy number alterations (CNAs) to distinguish them from 
germline CNVs. CNAs are widespread in tumors with one-third of 
the genome of the average cancer sample affected by CNAs [ 15 ]. 
In the past, CNAs have typically been identifi ed using comparative 
genomic hybridization (CGH) arrays ( see  Chapter   8    ) where the 
tumor and normal samples are hybridized to probe sequences and 
differences in fl uorescence signal intensity measured. 

 NGS provides the potential to obtain copy number information 
alongside information on the presence of other variants like SNVs 
and rearrangements, which cannot be obtained from copy number 
arrays alone. While methods for CNA detection for clinical use are 
still in their infancy, programs are being developed to identify these 
alterations in NGS data. Copy number changes are identifi ed in 
NGS data through detection of genomic regions that have increased 
or decreased numbers of reads in tumor samples relative to normal 
samples, suggesting amplifi cations or deletions, respectively (Fig.  3 ). 
Programs that have been written to detect CNAs in cancer using 
sequencing data include Control-FREEC [ 34 ], ExomeCNV [ 35 ], 
and ADTEx (originally known as CoNVEX) [ 36 ]. These programs 
detect copy changes using a  windowing approach, counting reads 
within genomic regions of defi ned size after normalization for vari-
able coverage across the genome.

   Variable coverage is the biggest issue for copy number detection, 
and it arises from differences in GC content, read mapping, and dif-
ferences in bait capture effi ciencies in targeted sequencing, leading 
to biases in the numbers of reads mapping to different regions 
[ 37 ]. Read mapping issues result from repetitive regions of the 
genome where reads may not map at all or map ambiguously caus-
ing diffi culties with detecting copy number changes in these regions. 

3.3  Detection 
of Copy Number 
Alterations
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Longer reads such as from newer sequencing chemistries may help 
with this issue. How different somatic copy number callers compare 
in performance has not been comprehensively assessed.  

   Structural rearrangements (SRs) occur where large pieces of the 
genome have moved or been rearranged as in the case of transloca-
tions and inversions. The Philadelphia chromosome, an abnormal-
ity seen in some types of leukemia, results from a translocation 
between chromosomes 9 and 22 and gives rise to the BCR–ABL 
fusion gene, which is a target for the drug imatinib (Gleevec). In 
comparison to other methodologies such as FISH, sequencing can 
provide base pair resolution of SRs. In 2008 Campbell and col-
leagues showed how whole-genome sequencing could be used to 
detect SRs in cancer [ 38 ]. 

 SRs can be identifi ed in paired-end sequencing from reads that 
are not  properly paired. Paired-end sequencing  results from the 
sequencing of opposite ends of DNA fragments.  Properly paired 
reads  are reads that map to the genome within an expected dis-
tance of each other (related to the size of the fragments sequenced) 
and in the expected orientation (the forward and reverse reads 
of the pair oriented towards each other on opposite strands). 

3.4  Detection 
of Structural 
Rearrangements

  Fig. 3    CNA in NGS data in NGS data. IGV screenshot showing reads from the  TP53  gene from an acute promyelo-
cytic leukemia patient compared to a normal individual. The  arrows  indicate where no reads have 
aligned for the leukemia patient suggesting copy number loss of this region       
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Most aligned reads would be expected to be of the properly paired 
type.  Discordant paired reads , on the other hand, are reads that do 
not map in the correct orientation or where the reads from the pair 
map with an unexpected distance, for example, far apart on the same 
chromosome or to different chromosomes, suggesting a transloca-
tion.  Split reads  are also used to identify SRs.  Split reads  are reads that 
map across the junction (breakpoint) of the structural rearrange-
ment, where one part of the read maps to one region of the genome 
while the second part of the read belongs to a  different region. 

 Programs like CREST [ 39 ] use a split read strategy to detect 
SRs, while others like BreakDancer use the discordant pair approach 
[ 40 ]. PRISM [ 41 ] is a newer program that combines paired-end 
and split read strategies to increase detection accuracy and can be 
used to identify SRs in cancer genomes. As with copy number 
detection, current issues with detection of rearrangements include 
the repetitive regions of the genome and the diffi culties they cause 
for read mapping [ 42 ]. Moreover, no comprehensive assessment of 
the various programs has been performed.  

  False negatives in cancer mutation detection most likely result from 
sample-specifi c issues, such as the quality, heterogeneity, ploidy, or 
purity of the tumor sample, resulting in sequencing lacking suffi cient 
depth to detect the mutation. False negatives may also arise in 
regions of low or zero coverage, such as those that do not amplify or 
capture well, or regions where it is diffi cult for reads to map. The 
thresholds and criteria used by the various variant detection pro-
grams are important to keep in mind as variants may be missed if 
they are just outside cutoffs or fail some fi lter used by the program. 

 False positives can be a concern because cancer mutations may 
be present at low frequencies making it diffi cult to separate true 
mutations from background error. This would be a particular chal-
lenge for early detection of cancer through screening of circulating 
tumor DNA [ 43 ] where mutations may be present at extremely 
low frequencies. False positives generally result from sequencing 
error [ 44 ,  45 ], artifacts introduced during the sample preparation 
from steps such as PCR amplifi cation [ 17 ,  46 ] and DNA shearing 
[ 47 ], and misalignment of reads. 

 Ensuring that false negatives and false positives are as low as 
possible is critical to the adoption of sequencing for clinical use, 
and it will be essential to test and thoroughly validate any analysis 
pipeline. The New York State Department of Health have released 
guidelines for somatic variant detection from sequencing (avail-
able at   http://www.wadsworth.org/labcert/TestApproval/forms/
NextGenSeq_ONCO_Guidelines.pdf    ). They have recommenda-
tions for QC of the analysis pipeline and should be a useful and 
evolving point of reference. 

 Adding to these complications, sequencing from formalin- fi xed 
samples often results in a low number of reads due to the limited 
amount of DNA available for sequencing. Moreover, sequencing 

3.5  False Negatives 
and False Positives 
in Somatic Mutation 
Detection
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from formalin-fi xed samples also results in the appearance of 
 non-reproducible sequencing errors caused by formalin- induced 
cross-linking of cytosine bases. Beyond applying strict fi ltering 
thresholds for variant calling, enzymatic [ 17 ] and sequence tagging 
[ 48 ] approaches have been developed over the last few years that 
have made variant calling in formalin-fi xed samples more reliable.  

  The clinical interpretation of variants identifi ed by NGS is moving 
towards a tier-based classifi cation scheme that is dependent on the 
level of clinical and biological relevance. While many variants are 
clearly actionable and indicate clinical intervention or drug admin-
istration, others are diffi cult to classify due to lack of scientifi c and 
clinical understanding, in some cases because it is the fi rst time the 
mutation has been identifi ed; i.e., it is novel. Bioinformatics pro-
grams which predict the effect of a mutation on protein function 
and structure such as PolyPhen-2 [ 49 ] and SIFT [ 50 ] aid in the 
interpretation of these unclassifi ed variants by predicting the likeli-
hood of the mutation causing a functional deleterious effect. 
However, results from these types of predictive in silico programs 
need to be interpreted with considerable caution as described else-
where ( see  Chapters   13     and   14    ). 

 Two useful resources providing information on cancer variants 
are My Cancer Genome [ 51 ] and the Catalogue of Somatic 
Mutations in Cancer (COSMIC) [ 52 ]. My Cancer Genome is a new 
online website aimed at providing physicians and patients with infor-
mation on cancer mutations and available therapies. It can inform 
whether there is a drug available to target a mutation, and it also lists 
information on whether there are clinical trials for which the patient 
may qualify. While the information currently available is limited, it 
will likely grow to be a valuable resource. COSMIC is a database 
that aims to catalogue all human somatic mutations reported in the 
literature and is a useful resource for fi nding information on whether 
a variant has been previously linked to cancer. The current COSMIC 
version v66 (August 2013) contains information on >1.2 million 
unique variants gathered from >900,000 samples. Other databases 
such as the Genomics of Drug Sensitivity in Cancer [ 53 ], which is 
linked to COSMIC, are useful in determining the sensitivity and 
resistance to specifi c therapies based on mutational data. 

 Ultimately, clinical translation of sequencing results to guide 
diagnosis and treatment decisions will require multidisciplinary 
collaborations with expertise across many disciplines.   

4    Notes 

     1.    In whole-genome sequencing, or exome, or targeted sequenc-
ing using hybridization capture, the sequence reads will align to 
the genome in an overlapping pattern. Reads that align to 
exactly the same site, termed duplicate reads, are considered 

3.6  Interpretation 
of Cancer Variants
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PCR amplifi cation artifacts and are typically removed. However, 
in amplicon sequencing the reads for any one amplicon will all 
align to exactly the same site (as in Fig.  1 ), so the duplicate 
removal step cannot be employed.   

   2.    With amplicon sequencing, if primers are used to amplify the 
targets of interest, either the primer sequences should be 
trimmed from the reads or variants should not be called from 
the primer regions, since that sequence refl ects the sequence of 
the primer and not the sample. In addition, if an amplicon is 
shorter than the combined length of the read pairs, e.g., if 
150 bp paired-end sequencing is performed on a <300 bp 
amplicon, the paired reads will overlap. The overlapping 
regions will result in double counting of those bases, so a con-
sensus of the region must be used. We developed a custom 
in-house aligner for amplicon data as no currently available 
solution met our needs.   

   3.    Somatic variant detection is a rapidly evolving fi eld, new pro-
grams are being released at a frenetic rate, and current pro-
grams are regularly being updated. Therefore, to obtain 
up-to-date guidance on the best programs to use it is advis-
able to check a recent review in the specifi c area and popular 
online forums like   http://www.seqanswers.com     or   http://
www.biostars.org    .   

   4.    The Novoalign aligner (  http://www.novcraft.com    ) could be 
used for possibly greater alignment accuracy, but it is substan-
tially slower than aligners like BWA, so it is best used if there 
are only a few samples or if computational cost and time are 
not an issue.   

   5.    Indel realignment is a local alignment of reads around indel 
sites. This step is usually performed because the initial align-
ment aligns each read separately to the reference genome, 
potentially resulting in slight differences in the indel position 
between aligned reads. This step then realigns an indel seen in 
multiple reads to the same genomic position. For somatic vari-
ant detection, it is preferred to realign both tumor and normal 
samples together so that an indel present in both samples will 
be realigned to the same location.         
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    Chapter 7   

 Using Bioinformatics Tools to Study the Role 
of microRNA in Cancer 

           Fabio     Passetti     ,      Natasha     Andressa     Nogueira     Jorge    , and     Alan     Durham   

    Abstract 

   High-throughput sequencing (HTS) has emerged as a promising method to study gene expression in 
neoplastic and normal tissues. Using HTS, many research groups have described transcript variants as well 
as discovering new transcribed loci and noncoding RNAs, including microRNAs. In oncology, expression 
profi ling of microRNAs in matched tumor and normal tissues has been used to detect differential expres-
sion of microRNAs in cancer. We present one approach for laboratories with few bioinformatics support 
to assist in the analysis of microRNA HTS data focused in oncology. This approach can also be adapted to 
study other systems.  

  Key words     Bioinformatics  ,   High-throughput sequencing  ,   microRNA  ,   miRNA databases  ,   miRNA 
target  

  Abbreviations 

   HTS    High-throughput sequencing   
  miRNA    microRNA   
  ncRNA    Noncoding RNA   

1        Introduction 

 A fraction of the transcriptome in eukaryotic cells is translated into 
proteins via coding RNA. The majority of the transcriptome is not 
translated although biological function for this so-called  dark mat-
ter  is starting to be described. Some noncoding RNAs (ncRNAs) 
are essential to the translation process (rRNA and tRNA), and in 
the past few years many other types of ncRNAs have been studied. 
One of the most important classes of small ncRNA is microRNA 
(miRNA). This comprises ncRNAs 22 nucleotides in length that 
may prevent mRNA translation and lead to its degradation [ 1 ]. 
Because miRNAs can be preserved in either formalin-fi xed, 
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paraffi n- embedded (FFPE) or fresh tissues samples, many studies 
have focused on the identifi cation of potential molecular markers 
of diseases using the expression profi le for this class of ncRNA. 
Differentially expressed miRNAs have been found in tumor sam-
ples using microarray, qPCR, and, more recently, high-throughput 
sequencing (HTS) technologies. 

 Many of these technologies can be accessed through core facil-
ities in universities and research institutes, and there are software 
packages available that can be used by individual researchers or 
small groups to do fi rst round analyses. If the datasets are not very 
large, a standard workstation suffi ces to perform these analyses. 

 In this chapter, we present a step-by-step protocol to analyze 
miRNA HTS data and the usage of bioinformatics databases and 
tools to start the process of unveiling the biological meaning of 
differentially expressed miRNAs.  

2    Materials 

 This chapter consists of three parts: HTS data quality control and 
mapping, identifi cation of differentially expressed genes, and func-
tional annotation of a selected miRNA. To perform each step, we 
will guide you on how to use the Galaxy Web site [ 2 – 4 ], the 
Bioconductor’s package EdgeR [ 5 ], the statistical environment R, 
and the public Web sites Rfam [ 6 ], miRBase [ 7 ], TargetScan [ 8 ], 
and Tarbase [ 9 ]. 

 We will adopt the data published by Witten et al. [ 10 ] as an 
example of miRNA HTS data. The authors sequenced the miRNAs 
present in the normal and cervical tumors of 29 patients from the 
Gynecologic Oncology Group Tissue Bank (PA, USA); 19 paired 
sequencing runs are available at the NCBI SRA database [ 11 ]. 

 Galaxy is an open Web-based platform for genomic research 
with easily accessible tools and storage for RNA-Seq experiments 
[ 2 ]. In order to have access to all Galaxy's site functionality, such 
as saving and sharing objects and increasing the data quota, one 
must be a registered user. To register, access the Galaxy Web site 
(  http://main.g2.bx.psu.edu    ), go to “User” and “Register”, enter 
an e-mail, user name, password and press the submit button. 

 Both the Bioconductor’s package and the R environment may 
be used in either Unix-like (Linux, MacOS X) or Windows operat-
ing systems. In this chapter, the user will need to use some basic 
Unix command-line programs such as mkdir (create a directory), 
cd (change directory), cp (copy), and mv (move). For an introduc-
tion to the use of Linux, we recommend the following tutorial 
(  http://www.ncbi.nlm.nih.gov/books/NBK6827/    ). 

 All fi les and scripts which are expected to be created during 
this chapter are available for download at   http://lbbc.inca.gov.br/
ClinicalBioinformatics2ed/supporting_fi les.zip    .  
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3    Methods 

  The fi rst step is quality checking and genome mapping. For this, 
you will use the Galaxy Web site to upload the data, to eliminate 
from the dataset information that can be erroneous and mislead 
you into creating artifacts, and fi nally to map the ncRNA sequences 
into the human genome to fi nd from where the miRNA was 
originally transcribed. This mapping phase is important to identify 
the miRNAs present in the samples and to create measures of the 
expression level of each miRNA. These measures are the counts of 
reads mapped by each genomic region. This step assists making 
expression data more precise. 

  To import the Witten et al. data [ 10 ] into Galaxy, go to the left 
panel, click on “Get Data”, then “EBI SRA”. In the fi eld “Text 
search”, type SRP002326, and then press “Search”. This will 
open a screen with details of the study. In the column “Fastq 
fi les (galaxy)”, click on “File 1” for all available runs. The 
Galaxy Web site also allows users to upload their own data 
( see   Note 1 ).  

  Tools available in the Galaxy Web site are preprogrammed to use 
the Sanger quality format ( see   Note 2 ), but some sequencing 
platforms, such as Illumina prior to version 1.8, produce data in 
a different format. In these cases, the user must convert the 
quality data. 

 The data from the Witten dataset were generated by the Illumina 
platform. In order to convert the quality format from Illumina to 
Sanger, you should use the Galaxy Web site. In Galaxy’s home page, 
the user must click on “NGS: QC and manipulation”, on the left 
panel, then on “FASTQ Groomer”. Next, choose the uploaded fi les 
to groom, keep the “Input FASTQ quality scores type” as “Sanger 
& Illumina 1.8+”, and execute it. Repeat this step for all uploaded 
fi les. This step will generate several groomed FASTQ fi les, which are 
the original FASTQ fi les in Sanger quality format.  

  HTS generates miscalled or unidentifi ed bases, bases with poor 
quality, adapter contamination, and artifacts. All these features 
must be removed prior to alignment to save computational time 
and, more importantly, to avoid incorrect mapping [ 12 ]. To this 
end, you need fi rst to perform the analysis of the sequencing data, 
which may be performed in the Galaxy Web site. First, click on the 
“FastQC: Read QC”, on the left panel. Select the groomed data 
and execute it. 

 This step will generate a quality report on the selected data. 
The user can download this report by clicking on the job, then on 
the fl oppy disk icon; extract the downloaded fi le and open the 

3.1  Quality Checking 
and Genome Mapping

3.1.1  Getting the Data

3.1.2  Changing 
Quality Format

3.1.3  Quality Analysis

Bioinformatics for Cancer microRNA



102

“FastQC_FASTQ_Groomer_on_data_ X _html” fi le, where  X  is 
the number of the groomed data provided. This fi le contains basic 
statistics, per base quality score, GC content, N content, duplica-
tion level, overrepresented sequences, among others.  

  Next, you will remove from your dataset information that is not 
useful and can be detrimental to subsequent analysis, such as 
sequence artifacts, adapter and barcode sequences (from the 
sequencing process), and low-quality sequences as well.

 ●     Removing sequencing artifacts . To remove sequencing arti-
facts, go to the “Remove Sequencing artifacts” link, on the left 
panel. Select the groomed data and execute it for each groomed 
run. This tool will remove reads with an excessive number of 
identical bases; in this case, the read will be kept if it has more 
than three bases that are different from the rest of the bases of 
the read.  

 ●    Removing the adapter sequence . Usually small RNAs are smaller 
than the sequenced read size; therefore, it is usual to fi nd a 
subsequence of the 3′ adaptor at the end of the read [ 13 ]. 
Because this sequence does not belong to the studied organ-
ism, it must be removed prior alignment to avoid incorrect 
mapping. On the left panel, click on “Clip”, choose the library 
without sequencing artifacts and keep the minimum length of 
15 nucleotides. In the fi eld “Source”, choose “Enter custom 
sequence” and type the adapter sequence (in the case of our 
data, the sequence should be CTGTAGGCACCATCAAT
AGATCGGAAGAGCTCG) ( see   Note 3 ). Be sure not to keep 
any bases after the adapter by choosing “yes” on “discard 
sequences with unknown bases” and “Output only clipped 
sequences”, i.e., sequences which contained the adapter. This 
step will also discard reads with unidentifi ed bases.  

 ●    Barcode trimming . Barcoding a sequence emerged as an option 
to allow the sequencing of more than one sample in a HTS, 
since each run is likely to produce more data than necessary for 
analysis. Witten et al. [ 10 ] added one of four barcode sequences 
( AAA ,  TTT ,  CCC , and  GGG ) after the 5′ adapter in all runs. 
To identify the barcodes in the library, the user must fi rst create 
a text fi le with the barcode’s identifi cation and its sequence, 
separated by a tab ( see   Note 4 ). One such example can be 
found in Fig.  1 , where  B.A  stands for  Barcode AAA .

3.1.4  Quality Processing

B.A AAA
B.T TTT
B.C CCC
B.G GGG

  Fig. 1    Example of fi le for barcode identifi cation       
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   The text fi le with the barcodes must be uploaded to Galaxy 
( see   Note 1 ), then, on the left panel, click on “Barcode split-
ter”. On “Barcodes to use”, choose the uploaded fi le; on 
“Library to split” choose the clipped data; and change the 
number of allowed mismatches to zero. Once the process is 
completed, go to the right panel and click on the eye icon of 
the barcode splitter data; this reveals a table showing how 
many reads there are for each of the barcodes listed; the last 
column is a link for the sequences. In the case of Witten et al. 
[ 10 ], there is only one barcode per run, so it can be trimmed 
directly by choosing “Trim sequences”, on the left panel; on 
“Library to keep” choose the clipped data; the fi rst base to 
keep is 4 and the last is 36 ( see   Note 5 ).  

 ●    Filtering by quality . Low quality bases may arise from poor 
quality libraries or sequencing faults [ 14 ]. Due to their uncer-
tainty they must be removed prior to alignment. On the left 
panel, choose “Filter by quality”, in “Library to fi lter”, choose 
the trimmed data and set the “Quality cut-off value” to 20 and 
“Percent of bases in sequence that must have quality equal to 
(higher than a cut-off value)” to 90 ( see   Note 6 ).     

  As stated earlier, mapping sequences into the genome is important 
to identify the RNAs expressed in the samples and to obtain 
expression levels. The alignment of thousands of small sequences 
onto a reference genome or transcriptome can be a computationally 
demanding task. This motivated the creation of many aligners to 
deal specifi cally with the task of genome mapping of large datasets 
of small sequences. Linder and Friedel [ 14 ] have performed a 
comparison of the most common alignment programs. 

 On the left panel, click on “NGS: Mapping” and “Map with 
BWA for Illumina”. Use a built-in index and select the reference 
genome as “Human ( Homo sapiens ): hg18 Canonical”, and choose 
the fi ltered data as “FASTQ fi le” ( see   Note 7 ).   

   The second part of this chapter is the analysis of differential 
expression. In the previous part, you have identifi ed a set of 
miRNAs that are being expressed for each clinical condition. 
However, these numbers have to undergo a statistical signifi cance 
analysis before we can conclude which of these miRNAs can be 
considered to be differentially expressed with some degree of 
certainty. This analysis will depend, among other factors, on the 
relative abundance of miRNAs in each clinical condition. 

  Most mapping software produce a result fi le in SAM format [ 15 ] 
(for detailed explanation about the SAM fi le format, we recommend 
reference [ 16 ]). This fi le must be converted to its binary form 
(BAM) in the next step to reduce space usage. The conversion can 
be done using the “NGS: SAM Tools” and “SAM-to- BAM” link. 
Just choose the mapped data and execute it.  

3.1.5  Mapping

3.2  Finding 
Differentially 
Expressed miRNAs

3.2.1  SAM to BAM
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  In HTS, the measure of a gene’s expression level in a sample is 
determined by counting how many reads were mapped in the same 
region of the gene. This can be performed by comparing the 
mapped regions of the BAM fi le with a gene annotation fi le. 
However, raw read counts are subject to sample and experimental 
variation, and therefore, they must be normalized before being 
compared with other samples [ 17 ]. After normalization, the proper 
statistical method can be applied to identify the differentially 
expressed genes.

    1.     Getting the miRNA gene annotation fi le . The annotation fi le 
for miRNAs can be downloaded from the Web site ncRNA.org 
[ 18 ]. Access the NcRNA.org Web site (  http://www.ncrna.
org    ) and click in the “UCSC Genome Browser for Functional 
RNA” icon in the center of the page. On the new screen, click 
on “Tables”; then choose the “Mar 2006 NCBI36/hg18” 
assembly ( see   Note 8 ); in “group” choose “miRNA-related 
Tracks”; in “output format” choose “BED—browser extensi-
ble data”; check the “Send output to Galaxy” box; and click on 
the “get output” button. On the next screen, check the “cod-
ing exons” box and click on “Send query to Galaxy” button. 
This will send to Galaxy a BED format fi le ( see   Note 9 ) with 
the coordinates of the mature miRNAs.   

   2.     Counting the reads that overlap annotated regions . In the map-
ping step, you have identifi ed the genomic regions expressed 
in each sample and in this step you will identify the microRNA 
genes annotated in those regions. Because a BED annotation 
fi le is uploaded, click on “BEDTools”, on the left panel, and 
“Count intervals in one fi le overlapping intervals in another 
fi le”. In the box “Count how many intervals in this BED or 
BAM fi le (source)” choose the converted BAM data, and on 
“Overlap the intervals in this BED fi le (target)” box choose 
the uploaded BED fi le. In the “Count” fi eld, choose “Only 
overlaps occurring on the **same** strand” and execute it. 

 This command will generate another BED fi le with one 
additional column at the end of the line with the read counts 
overlapping that annotation. Download all BED fi les by clicking 
on the fl oppy disk icon.    

    In this step, you will create a text fi le with the count table to use as 
input for the statistical test. In this table, columns correspond to 
samples and rows to microRNAs. As Witten et al. [ 10 ] made 
available 38 fi les corresponding to normal tissue and tumor sample 
for 19 patients, the table will have 39 columns (the 38 patients plus 
a column for miRNA identifi cation). The user must know the 
order the samples will be added to the table because its group (type 
of sample and patient’s identifi cation) must be provided 
subsequently to the statistical software. 

3.2.2  Counting and 
Identifying Differentially 
Expressed miRNA Genes

3.2.3  Creating a 
Count Table
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 To create a count table, we must use the Unix (Linux or Mac) 
command line. The following commands will create the count table 
by obtaining the read counts and miRNA identifi cation list, and 
adding a header line ( see   Notes 10  and  11 ). Open a terminal in your 
Linux-like operating system and go to the directory where the saved 
BED fi les are (to do so type “cd” followed by the folder name and 
press the enter key in your keyboard), then type the commands:

 ●    awk -F ‘\t’ ‘{print $4}’ Galaxy X _fi le>miRNA_ids.txt    

 Where “Galaxy X _fi le” is one of the BED    fi les downloaded 
from Galaxy and “miRNA_ids.txt” is the name of the new fi le 
which will contain the miRNAs identifi cation;

 ●    awk ‘{a[FNR]=(a[FNR] ? a[FNR] FS : “”) $7} END {for 
(i=1;i<=FNR;i++) print a[i]}’ *.bed>counts.txt    

 This command will create a text fi le with all read counts.

 ●    paste miRNA_ids.txt counts.txt>count_table.txt  
 ●   sed -i ‘1imiRNA_id\tN1\tT1\tN2\tT2\tN3\tT3\tN4\tT4\tN5\

tT5\tN6\tT6\tN7\tT7\tN8\tT8\tN9\tT9\tN10\tT10\tN11\
tT11\tN12\tT12\tN13\tT13\tN14\tT14\tN15\tT15\tN16\
tT16\tN17\tT17\tN18\tT18\tN19\tT19’ count_table.txt    

 This command line creates a header for the count table; the 
fi rst column is “miRNA_id”; the second is “1n”, indicating that 
those values belong to the normal sample of the fi rst patient; the 
third is “1t”, indicating it belongs to the tumor sample of the fi rst 
patient, and so on. The column labels are separated by “\t” which 
is a symbol for tab. 

 Note that the fi les were downloaded and joined in the order of 
patient and type of sample. The user must be aware of the joining 
order to be able to properly identify the samples and perform the 
differential expression test.  

  The normalization and statistical test can be undertaken using the R 
environment ( see   Note 12 ) and the Bioconductor’s package EdgeR 
( see   Note 13 ). The following commands will identify the different 
conditions for each sample, normalize the count values, and apply 
the negative binomial test to identify differentially expressed genes. 
These and other commands can be found in the EdgeR User’s 
manual at   http://www.bioconductor.org/packages/2.12/bioc/
html/edgeR.html     ( see   Notes 14  and  15 ). 

 So to enter the R environment, simply type R in the command 
line window. Your terminal will enter an interactive mode with the 
R system and all commands typed will be forwarded to R. You 
should then type the following series of R commands:

 ●    count.table = read.table (“count_table.txt”, header=T)  
 ●   count.table[is.na(count.table)]<-0  

3.2.4  Identifying 
Differentially 
Expressed Genes
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 ●   rownames(count.table)=count.table$miRNA_id  
 ●   count.table$miRNA_id=NULL  
 ●   library(edgeR)  
 ●   y=DGEList(counts=count.table)  
 ●   keep = rowSums(cpm(y) > 1) >= 1  
 ●   y = y[keep,]  
 ●   y$samples$lib.size = colSums(y$counts)  
 ●   y = calcNormFactors(y)  
 ●   sample = as.factor(c(“N”,“T”,“N”,“T”,“N”,“T”,“N”,“T”,“N”,

“T”,“N”,“T”,“N”,“T”,“N”,“T”,“N”,“T”,“N”,“T”,“N”,“T”,
“N”,“T”,“N”,“T”, “N”,“T”,“N”,“T”,“N”,“T”,“N”,“T”,“N”,
“T”,“N”,“T”))  

 ●   patient = factor(c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,
11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19))  

 ●   design=model.matrix(~sample+patient)  
 ●   rownames(design)=colnames(y)  
 ●   y=estimateGLMCommonDisp(y,design)  
 ●   y=estimateGLMTrendedDisp(y,design)  
 ●   y=estimateGLMTagwiseDisp(y,design)  
 ●   fi t=glmFit(y,design)  
 ●   lrt=glmLRT(y,fi t)  
 ●   de=topTags(lrt,n=length(lrt))  
 ●   write.table(de, fi le=“differentially_expressed_genes.txt”,sep=“\t”)    

 This script will only keep genes with a count per million >1 in 
≥2 samples. Please notice that the objects sample and patient must 
be created in the same order as the count.table object with N and 
T symbolizing the normal and tumor samples, respectively, and the 
identifi cation for which patient the sample belongs to; that is why 
the patient object has two 1, 2, 3, until 19, indicating that the fi rst 
two samples belong to patient 1. 

 The last command will create a text fi le with the differentially 
expressed genes ordered by their  p -value. This fi le can be opened 
by any text editor or spreadsheet software.   

  The last part of this chapter is directed to fi nding the biological 
function of selected miRNAs. In particular, we are going to guide 
you in trying to discover more about the miRNAs that are 
differentially expressed in cancer patients. You will perform analyses 
of miRNAs using Web-based databases. 

 There is a plethora of Web sites designed to help the analysis of 
ncRNAs. Web sites can be searched in many different ways. In 
particular, you can search based on the miRNA’s name or on its 

3.3  Finding the 
Biological Function
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sequence. Searching by sequence is the only option when you have 
a sequence that is a potential miRNA, but has not been character-
ized before. In the example for this chapter, we have restricted our 
analysis to miRNAs that have been previously annotated as miR-
NAs and which have assigned names, so we will not describe search 
by similarity. However, all sites that will be described in this chap-
ter can be searched by sequence similarity and the reader is encour-
aged to use them if he or she has an unfi ltered dataset with 
uncharacterized sequences. 

 To fi nd Web sites that can assist the analysis of ncRNAs in gen-
eral, and miRNAs in particular, a good starting point is the Web 
site NRDR (  http://www.ncrnadatabases.org    ). This Web site pro-
vides a comprehensive list of published databases for ncRNAs [ 19 ], 
including miRNA, piRNA (Piwi-interacting), and lncRNA (long 
noncoding), and was designed to assist researchers to fi nd ncRNA 
databases that satisfy their research needs. The user can search Web 
resources based on miRNA types, the source of information, and 
other options. 

 You will be guided to confi gure a search to fi nd miRNA reposi-
tories with data obtained both from experimental data and in silico 
prediction. If you are interested in miRNAs, you can either confi g-
ure to NRDR to search databases that are specifi c for miRNAs, or 
for databases that contain multiple classes of ncRNAs. To do this, 
fi rst click on the SEARCH button that appears just below the Web 
site’s title; you will be directed to the search page (Fig.  2 ).

   In this case, fi rst select “miRNA” in the RNA Families list (A), 
check the boxes “Experimental” (B) and “Prediction” (C) on the 
information source list, and check the boxes “TAG” (D), “key-
word” (E), and “similarity” (F) on the search method list. Once 
we click on the “Search” button (G), you will have as a result a 
page with links to the description of 34 different databases. Of 
these, you will concentrate your attention on three: miRBase, 
dbDEMC and TarBase. Clicking on the Web resource’s name in 
the result page will lead you to a page with a detailed description 
that includes a summary of its content, information source, search 
methods, and a link to the Web site, among others. 

 As mentioned previously, if you are interested in miRNAs, you 
should also search for Web resources that include multiple types of 
ncRNAs. This is done by changing the RNA family choice to 
“Multiple classes” in the original search page. This particular search 
will provide nine different results, from which we will choose 
RFAM. 

 Next, we will proceed to describe the analysis of one of our 
miRNAs using the three Web sites mentioned and also a literature 
search using PubMed. However, the reader is encouraged to read 
the description of the Web sites listed in the two searches described 
above, and also to try different searches. 

Bioinformatics for Cancer microRNA
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 The analysis performed in Subheading  3.2  showed that com-
pared to others, hsa-miR-21 is more expressed in tumor than in 
normal tissue samples ( see   Note 16 ). You will use this miRNA to 
model your analysis. Next, we describe the use of each site. 

  The Web-based miRBase [ 7 ] is one of the central repositories for 
miRNA data housing >24,000 different entries. The Web site 
contains information collected from the scientifi c literature, the 
Ensemble site and the UCSC Genome browser. The site is divided 
in three parts: (1) Predicted target genes, (2) miRNA sequences 
and annotations, and (3) A registry with the option to provide a 
unique name for novel miRNA genes discovered. Searches can be 
performed by miRNA name or nucleotide sequence. 

 To use miRBase, go to the Web site   http://www.mirbase.org     
and click on the search tab on top of the page. A new page with all 

3.3.1  miRBase

  Fig. 2    Using NDNR to search for miRNA databases       
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the search options will appear. The database can be searched by 
miRNA identifi er, genomic location, by clusters, by tissue expres-
sion, and by sequence. Type hsa-miR-21 in the fi rst box to search 
for miR-21 human data. A new page will open presenting informa-
tion both on the precursor stem-loop sequences and the mature 
sequences. Additional resources provided include a community 
annotation box that links to a Wikipedia entry, the secondary 
structure of the precursor stem-loop, deep sequencing data, 
genomic coordinate, validated and predicted targets, and literature 
references. 

 As mentioned, the same database can be searched by the nucle-
otide sequence of the miRNA of interest. This is particularly useful 
if the reader has an unidentifi ed miRNA. To exemplify this search 
highlight the nucleotide sequence of the mature hsa-miR-21-5p 
(UAGCUUAUCAGACUGAUGUUGA), go back to the search 
tab (top of the miRBase home page), and paste the sequence in the 
last search box (“By sequence”). Next, select “SSEARCH” in the 
“Search method” selection, which is recommended for short 
sequences, and click on the “search miRNAs” button on the bot-
tom left part of the box. The result will be a page with a table sum-
marizing all database hits, including the accession and ID, and data 
on the alignment. Clicking on the fi rst description of the table will 
lead to the original hsa-miR-21-5p description page. Other entries 
contain miRNAs from different organisms for this highly con-
served family.  

  This Web resource [ 20 ] is particularly relevant for researchers 
interested in cancer, as it is a repository of differentially expressed 
miRNAs in human cancers. It includes information on tumor, cell 
line, tissue and annotation of the differentially expressed miRNAs. 

 To use dbDEMC go to the Web page   http://159.226.118.44/
dbDEMC/index.html     and click on the “Search db” link on the 
left box and type hsa-miR-21 in the search box. The results page 
will show the expression profi les in different cancers. In our case 
the Web site registers 29 different experiments that contain hsa-
miR- 21, including 11 different cancer types. A table at the bottom 
summarizes the results of each experiment, including the cancer 
type, organism, cell line, and expression status (upregulated or 
downregulated). All lines in the table include the miRNA ID, 
which is a link to another description page with more details such 
as expression data from various experiments, summaries of the 
expression profi les, levels of differential expression across various 
cancers, predicted targets, and validation. The validation summary 
shows that miR-21’s expression has been validated by three differ-
ent publications using quantitative RT-PCR and northern blot. 
The original articles can be accessed by links to PubMed. 

 As with miRBase, information in dbDEMC can also be 
searched by sequence similarity. To do this, click on the “Blast” 

3.3.2   dbDEMC
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link on the “Web Pages” box in the left part of the page. This will 
open the Blast search page; paste the original hsa-miR-21 sequence 
(UAGCUUAUCAGACUGAUGUUGA) in the big box and click 
the “submit” button. The page will show the text output of the 
blast program. It will list any sequences showing signifi cant align-
ments, if there are any. In our case the software reports what fol-
lows: “hsa-miR-21 j MI0000077  Homo Sapiens  miR-21”. Now 
you can copy the miRNA’s name hsa-miR-21 and go to the “Search 
DB” link as we have performed at the beginning of this section. 

 The result page for the “Search DB” link also includes target 
prediction links. We can focus on the results using TargetScan. 
Following the link will lead us into the TargetScan Web site result 
page for hsa-miR-21. In the result page, you will fi nd a table with 
a list of 186 target genes. One important column to look carefully 
at is Total context + score ( see   Notes 17  and  18 ). By default, the 
TargetScan result table is sorted by this column. The target gene 
with the lower value in the Total context + score column is  ZNF367 , 
a gene which produces a protein that has affi nity based on DNA 
sequence but no association with tumor development. The 
TargetScan result table can also be sorted by the “Aggregate Pct” 
column. Higher values of Aggregate Pct permit the selection of 
stronger sites. In the case of hsa-miR-21, the gene having the 
higher value for Pct is  TIMP3 , which is a metallopeptidase inhibi-
tor. According to NCBI Gene summary for the  TIMP3  gene 
(  http://www.ncbi.nlm.nih.gov/gene/7078    ), “proteins encoded 
by this gene family are inhibitors of the matrix metalloproteinases, 
a group of peptidases involved in degradation of the cellular 
matrix”. Hence, if hsa-miR-21 targets to  TIMP3  mRNA, it may 
reduce TIMP3 protein, which will not inhibit degradation of the 
extracellular matrix, an important step during cancer metastasis.  

  The identifi cation of a miRNA target sequence in an mRNA is still 
a demanding task and only a few predictions have been 
experimentally confi rmed to date. Hence, TarBase [ 9 ] provides a 
list of experimentally defi ned targets for a given miRNA. Accessing 
TarBase Web site (  http://diana.cslab.ece.ntua.gr/tarbase/    ), select 
“Human” in the fi rst dropbox, “miR-21” in the second dropbox, 
and “Any gene” in the last dropbox. A new page will open and you 
will fi nd four human genes with experimental support for being 
targets of miR-21. They are  TPM1  (variant 1 and 5),  SERPINB5 , 
 PTEN , and  PDCD4 . If you compare this list with that provided by 
TargetScan, we will fi nd that TargetScan also detected the  PDCD4  
gene as a target for miRNA. If sorted by Pct column,  PDCD4  will 
be the 10th best ranked, with a 67 % probability to be correct 
(check the “Aggregate Pct” column). According to NCBI Gene 
report for  PDCD4  (  http://www.ncbi.nlm.nih.gov/gene/27250    ), 
this gene is a  programmed cell death 4 (neoplastic transformation 
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inhibitor) . Hence, if hsa-miR-21 targets  PDCD4  mRNA, it may 
reduce  PDCD4  protein level, leading to less inhibition of neoplastic 
transformation. These fi ndings are supported by recent articles, 
such as by Qiu et al. (2013) [ 21 ] in which they associate the 
hepatitis B virus X protein upregulating miR-21 and downregulating 
 PDCD4  in hepatocellular carcinoma.  

  RFAM is a large repository of ncRNAs from many classes, grouped 
in >2,200 families characterized by probabilistic models called 
Covariation Models, since Rfam has not been designed to provide 
data for any specifi c species. Each ncRNA family has a  seed  dataset 
of manually curated sequences used to build the initial structural 
alignment required to build the probabilistic models and the 
 complete  dataset that includes sequences that were automatically 
aligned. 

 The Web site has links to the ncRNA Wikipedia entry, views on 
the abundance of the ncRNA across different species, phylogenetic 
tree of the ncRNA family, visualization of the structural alignment 
of the ncRNA family, and consensus secondary structure. 

 To use RFAM [ 6 ] go to the Web page    http://rfam.sanger.
ac.uk         and use the keyword miR-21 in the search fi eld in the main 
page of Rfam. A new page will open describing this ncRNA family. 
The page will have a left box with nine tabs:

    1.     Summary —the tab selected initially, shows the Wikipedia page 
describing the miR-21 family;   

   2.     Sequences —shows a table listing the seed sequences and a sec-
ond table with all the sequences deposited in the database that 
are included in this family. The table lists accession number, 
alignment information, description, and species;   

   3.     Alignments —shows the structural alignments of the family;   
   4.     Secondary structure —shows the consensus secondary structure 

for the family, with a color scheme indicating sequence conser-
vation for the various nucleotides in the structure;   

   5.     Species —shows the sequences in the database across different 
species in two views:  sunburst  and  tree .   

   6.     Trees —shows a phylogenetic tree for all sequences from that 
family.   

   7.     Structures —shows 3D structures when available   
   8.     Database references —shows links to Literature references in 

PubMed, and annotation information in the form of three 
links: GO terms in the Gene Ontology database, SO terms in 
the Sequence Ontology database, and miRBase [ 7 ] entries.   

   9.     Curation —detailed information on the RFAM [ 6 ] family 
characterization.    

3.3.4   RFAM
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  As we have mentioned, RFAM’s families are based on a proba-
bilistic technique called  Covariation Models . These models are a 
development on the well-known Hidden Markov Models (HMMs) 
that have the advantage of including secondary structure informa-
tion on the probabilistic data. As a consequence, a more sensitive 
similarity search for miRNA precursor sequences becomes possi-
ble. The searches in RFAM take into considerations sequence simi-
larity, but allow for more variation than a general BLAST search, 
provided the sequence maintains the family’s base-paring struc-
ture. Unfortunately, RFAM cannot be searched using only the 
mature miRNA sequence. To perform a similarity search we need 
to obtain a sequence that should include at least part of the precur-
sor miRNA secondary structure. We obtain the precursor sequence 
by mapping the miRNA onto the human genome and extracting a 
genomic region including the mapped sequence and the neighbor-
ing nucleotides (100 nucleotides in each direction should be suf-
fi cient). To illustrate the RFAM similarity search, we will use the 
precursor sequence for hsa-miR-21 available at miRBase 
(UGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUU
GAAUCUCAUGGCAACACCAGUCGAUGGGCUGU
CUGACA). 

 To perform the similarity search, you will go back to the search 
page, select the tab “Sequence”, type the precursor sequence in the 
“Sequence” box and click on the “Submit” button. The result 
page will show all matches found among RFAM families. In your 
case, there is just one, not surprisingly miR-21. The summary table 
displays the family ID, accession number, alignment information 
and a button to show the alignment. Clicking on the button will 
show a multiple alignment with the secondary structure in the fi rst 
line, the family consensus sequence in the second, the matching 
information on the third and the submitted sequence in the last 
line. Clicking on the Accession number of the table will lead to the 
family description page described above.  

  PubMed is a large repository indexing literature in the fi elds of 
Biology and Medicine. Using PubMed (  http://www.ncbi.nlm.nih.
gov/pubmed    ) to search for articles having the keywords 
miR-21 and cancer, you will fi nd the work by Defteros et al. [ 22 ] 
reporting that miR-21 increased expression is associated with 
poorer clinical outcome. Moreover, they identifi ed lower 
concentrations of PDCD4 protein in invasive cell carcinoma than 
in the early stages of disease. Therefore, combining the experimental 
small ncRNA-seq by Witten et al. [ 10 ] with other independent 
fi ndings, we can conclude that miR-21 is overexpressed in cervical 
cancer and there is evidence this miRNA inhibits the production of 
the PDCD4 protein. It is also important to note that although we 
described how to do this type of analysis in cervical cancer data, 
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other experimental data show that hsa-miR-21 is frequently more 
expressed in tumor than in normal tissues (reviewed by Buscaglia 
and Li, 2011) [ 23 ].    

4    Notes 

     1.    If your data are <2 GB, you may upload them via “Get Data”, 
then “Upload File” link. Larger datasets should be uploaded 
via FTP. The instructions are found at   http://wiki.galaxypro-
ject.org/FTPUpload?action=show&redirect=Learn%2FUploa
d+via+FTP    .   

   2.    To upload data already in the Sanger format, the user must 
choose “fastqsanger” in the “File Format” fi eld, otherwise 
Galaxy will not detect the quality format automatically and 
conversion will be necessary.   

   3.    Adapter sequence must be known for every HTS dataset.   
   4.    There is no name standard for this fi le format, so you can use 

any that makes sense to you.   
   5.    Some like to trim the bases with poor quality from the 3′ end. 

This can be done by changing the last base to keep in “Trim 
sequences”.   

   6.    Some select other values such as 99 % [ 24 ]. Others only trim 
the 3′ end of the read.   

   7.    According to the Galaxy Web site, the Full version of the 
Genome contains all primary chromosomes, plasmid, and 
other sequences, while the Canonical version contains only the 
primary chromosomes.   

   8.    The UCSC is currently under migration to the latest version of 
the Human Genome sequence (hg19/NCBI37) [ 15 ], so we 
used the previous version. The hg18 version of the human 
genome was chosen because there is no annotation of miRNA 
genes on the hg19 version in the ncRNA.org database.   

   9.    A BED fi le is a gene annotation fi le format with its chromo-
somes, genomic coordinates, strand and other information. 
A detailed description of the BED format can be found in 
  http://genome.ucsc.edu/FAQ/FAQformat.html#format1     
(Accessed in September 2013).   

   10.    The count table fi le provided is an example of is accepted by 
EdgeR. Errors during the execution of Galaxy’s procedures 
may alter the initial fi le order. Therefore, users must be aware 
of the order of their fi les and to which sample they correspond. 
The second awk command will look for any fi le with Galaxy 
and put its counting in the counts.txt fi le. To see the order, 
simply type “ls | grep Galaxy” in the command line of your 
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Linux or Mac terminal. This command returns a list of fi les in 
that directory starting with Galaxy. The corresponding header 
for this experiment is the order the Galaxy fi le was created in 
the sed command. If the user’s order is any different, he or she 
must alter this line after “1imiRNA_id\t” to his or hers corre-
sponding order. We also recommend against creating any other 
fi le with “Galaxy” on the name in the working directory, 
because this may cause the script to add the content of the 
unrelated fi le in counts.txt. If the user wants to use the pro-
vided shell script, he or she must type the following command 
line: ./creating_a_count_table.sh   

   11.    The EdgeR software was designed to identify the differentially 
expressed genes in an experiment from the raw read count in 
each sample. Do not insert modifi ed or normalized values 
because this may lead to wrong assumptions about differentially 
expressed genes.   

   12.    The R environment can be downloaded from:   http://www.r-
project.org/    , on the “CRAN” link on the left panel; instructions 
for installation are also available on this site on the “Manuals” 
link.   

   13.    To install the EdgeR bioconductor’s package, while running R: 
 source(  http://bioconductor.org/biocLite.R    ) 
 biocLite(“edgeR”).   

   14.    This R script is specifi c for the type of experiment described by 
Witten et al. [ 10 ] and for the order in which the fi les were 
added to the count table. If the user’s count table is in a different 
order than ours, he or she must alter the sample and patient 
lines to the corresponding order in the user’s count table. If 
the user has a different type of experiment to analyze, we sug-
gest reading EdgeR’s User’s Guide found on the EgdeR’s 
Bioconductor’s page (  http://bioconductor.org/pack-
ages/2.12/bioc/html/rdger.html    ). In this fi le the user will 
fi nd detailed explanations about EdgeR’s methodology, and 
examples of its applications.   

   15.    If the user decides to use the provided R script, he or she must 
type the following command on the command line: 
 R--o-save--lave<de_script.r 

 This command will execute EdgeR and write the differen-
tially_expressed_genes.txt fi le.   

   16.    Usually a miRNA identifi ed in the human genome has its name 
prefi xed by hsa- for  Homo sapiens  followed by the miR identi-
fi er. For example, miR-21 in humans is hsa-miR-21. miR-21 in 
mouse ( Mus musculus ) would be mmu-miR-21.   

   17.    TargetScan uses a computational approach based on assump-
tions in evolution to provide more reliable target genes. 
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Target sequence conservation among distinct species is one 
feature to enable a prediction to be made in more than one 
organism. Based on this, there are two subdivisions in the pre-
diction sites in the result table of Target scan: Conserved sites 
and Poorly conserved sites. TargetScan gives more weight to 
predictions in Conserved sites than in Poorly conserved sites. 
This is based on the evolutionary assumption that conserved 
sequences among species are more likely to have a biological 
signifi cance than the rest. A miRNA target prediction in a 
Poorly conserved site is not necessarily a wrong fi nding.   

   18.    TargetScan works on the knowledge that the base-pairing effi -
cacy of miRNA and its target mRNA depends on how the fi rst 
eight miRNA nucleotides align to the target sequence. There 
are different miRNA target site types and TargetScan presents 
three of them in the prediction results page: 8mer, 7mer-m8, 
and 7mer-1A. For the purpose of this chapter, consider that 
the target site recognition effi cacy is based on the following 
hierarchal rule: miRNA aligning to a target sequence based on 
the 8mer rule has a stronger specifi city than 7mer-m8, which 
in turn has stronger specifi city than 7mer-1A. A complete and 
detailed explanation regarding miRNA target site rules is 
found in [ 25 ].         
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    Chapter 8   

 Chromosome Microarrays in Diagnostic Testing: 
Interpreting the Genomic Data    

           Greg     B.     Peters      and     Mark     D.     Pertile   

    Abstract 

   DNA-based Chromosome MicroArrays (CMAs) are now well established as diagnostic tools in clinical 
genetics laboratories. Over the last decade, the primary application of CMAs has been the genome-wide 
detection of a particular class of mutation known as copy number variants (CNVs). Since 2010, CMA test-
ing has been recommended as a fi rst-tier test for detection of CNVs associated with intellectual disability, 
autism spectrum disorders, and/or multiple congenital anomalies…in the post-natal setting. CNVs are 
now regarded as pathogenic in 14–18 % of patients referred for these (and related) disorders. 

 Through consideration of clinical examples, and several microarray platforms, we attempt to provide 
an appreciation of microarray diagnostics, from the initial inspection of the microarray data, to the com-
posing of the patient report. In CMA data interpretation, a major challenge comes from the high fre-
quency of clinically irrelevant CNVs observed within “patient” and “normal” populations. As might be 
predicted, the more common and clinically insignifi cant CNVs tend to be the smaller ones <100 kb in 
length, involving few or no known genes. However, this relationship is not at all straightforward: CNV 
length and gene content are only very imperfect indicators of CNV pathogenicity. Presently, there are no 
reliable means of separating, a priori, the benign from the pathological CNV classes. 

 This chapter also considers sources of technical “noise” within CMA data sets. Some level of noise is 
inevitable in diagnostic genomics, given the very large number of data points generated in any one test. 
Noise further limits CMA resolution, and some miscalling of CNVs is unavoidable. In this, there is no ideal 
solution, but various strategies for handling noise are available. Even without solutions, consideration of 
these diagnostic problems per se is informative, as they afford critical insights into the biological and tech-
nical underpinnings of CNV discovery. These are indispensable to any clinician or scientist practising 
within the fi eld of genome diagnostics.  

  Key words     CGH  ,   CMA  ,   CNV  ,   Deletion  ,   Duplication  ,   LOH  ,   Microarray  ,   SNP  ,   VOUS  

  Abbreviations 

   BAF    B allele frequency   
  CGH    Comparative (competitive) genomic hybridization   
  CMA    Chromosome microarrays   
  CNV    Copy number variant   
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  DLR     Derivative log ratio   
  LCSH     Long continuous stretches of homozygosity   
  LOH     Loss of heterozygosity   
  SNP     Single nucleotide polymorphism   
  UPD     Uniparental disomy   
  VOUS     Variant of unknown signifi cance   

1         Introduction 

    CMA testing [ 1 – 3 ] is concerned primarily with mutations that 
change gene copy number but not the primary DNA sequence. 
These are referred to collectively as copy number variants (CNVs). 

 In genetics and population biology, the concept of CNV has 
had a long history, perhaps underappreciated since the advent of 
molecular biology. Germane to this is the concept of  chromosome 
balance , established from the 1920s [ 4 ] and based on studies of 
various plant and insect species. This evolved to become the g ene 
balance hypothesis  [ 5 ]. Clinical cytogenetics studies of the 1970s 
and 1980s [ 6 ,  7 ] extended the balance concept to the human 
karyotype. Critical to it, and the related  gene dosage hypothesis  
[ 8 ,  9 ], is the notion that for any species, deviations from the “nor-
mal” (= euploid) chromosome or gene copy number can often lead 
to some form of developmental abnormality. 

 When viewed under the light microscope, human chromo-
some imbalances are visible only at the resolution of the G-banded 
mitotic karyotype. However, following such observation of many 
trisomies and monosomies, often detected as unbalanced autoso-
mal translocations [ 6 ,  10 ], cytogeneticists confi rmed that hetero-
zygous gain or loss of almost any discernible genomic region would 
result in a clinically signifi cant phenotype. These phenotypes 
ranged in severity through mild intellectual handicap, to multiple 
congenital abnormalities, to fi rst trimester death in utero [ 10 ]. 
It also became apparent that deletions generally have more severe 
effects on phenotype, when compared with duplications of compa-
rable length. But, for both deletions and duplications, the more 
severe phenotypes were associated with the larger imbalances [ 10 ]. 
Accordingly, whole autosome duplication (trisomy) results in early 
miscarriage although trisomies 13, 18, and 21 can be exceptions 
[ 7 ]. Signifi cantly, common to all live-born cases of chromosome 
segment imbalance is some degree of intellectual impairment. 
Thus, it appears likely that many loci scattered through the genome 
contribute, in some degree, to this critical and complex trait. 

 The scale of resolution available via the G-banded karyotype 
was no better than 5–10 Mb, as expressed in DNA bases. Following 
the Human Genome Project, much higher resolution became pos-
sible, at the molecular level. When the  chromosome balance / gene 
dosage  concept is extended to those submicroscopic monosomies 
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and trisomies that can now be discerned as the larger CNVs (of size 
~100 kb to ~5 Mb), intellectual impairment is still the most consis-
tent clinical association [ 11 ]. Indeed, these associated phenotypes 
may be categorized under the general term “developmental brain 
dysfunction” [ 12 ,  13 ]. This category includes developmental delay, 
autism spectrum disorders, neurodevelopmental defects, personal-
ity disorders, and others. As mentioned earlier, the severity of the 
phenotype is (very roughly) associated with the size of the CNV 
detected, and so larger CNV imbalances can additionally produce 
severe dysmorphic phenotypes and multiple defects, some lethal. 

 For any genes implicated under the g ene balance hypothesis , it is 
not suffi cient that the DNA sequence be normal. It is also critical 
that the normal sequence be present in the standard number, 
which, for the autosomes of all diploid species, is two copies (= 
disomy). Such genes are said to be  dosage-sensitive , and may them-
selves be of two classes: haplo-insuffi cient (HI) or triplo-sensitive 
(TS) [ 11 ]. These two classes need not be mutually exclusive. As 
the names imply, these two states involve (respectively) gene loss/
deletion, i.e., partial haploidy, partial monosomy, or hemizygosity, 
and gene gain/duplication (partial trisomy), when having a phe-
notypic effect. 

 Well over 30,000 human CNVs are now recorded (for example 
the ISCA database   https://www.iscaconsortium.org    ), dispersed    
through the genome. Their effects range from pathological to nil, 
and their ubiquity, even among “normal” individuals, is indeed stag-
gering [ 14 ,  15 ]. Using a high resolution array, with molecular 
 confi rmation, ~1,100 validated CNVs were found per individual, 
among 41 normal subjects. Of mean length 2.9 kb, these    CNVs 
ranged in size from ~500 bases to 1.3 Mb. 8,600 different CNV 
loci were confi rmed overall, and 40 % included at least one known 
gene [ 14 ]. 

 On this basis, one might predict that a sample of 41  patients  
referred for CMA testing would carry an equally large number of 
presumably benign CNVs, and perhaps 14–18 % of these 41 peo-
ple would carry those very few, but critical CNVs responsible for 
their abnormal phenotypes. Overall, the clinician and/or scientist 
will be confronted with a vast number of clinically irrelevant CNVs. 
Some form of compromise using data fi lters is necessary, and a cur-
rent view is that only CNVs ≥200 kb are practicable targets for 
routine CMA testing [ 16 ]. This indeed is consistent with the 
genome balance concept, whereby most smaller CNVs might be 
expected to be benign. 

 In the light of these arguments, some labs may report only 
those CNVs of >100–200 kb. This renders unreportable the 
shorter 95 % of the research-observed size range mentioned above 
[ 14 ], but still leaves multiple CNVs per normal individual, as 
potential false positives on routine testing. While not straightfor-
ward, there are other ways of dealing with these. 
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 A second fi lter is based on the assumption that the most 
 common or polymorphic CNVs (of population frequency >1 %) 
are likely to be benign, regardless of their length or gene content 
[ 17 ,  18 ]. While this is an arbitrary distinction, it has broad accep-
tance in the fi eld. 

 A third type of fi lter involves selective microarray design. One 
might, for example, “target” those loci known to be relevant to dos-
age-dependent disease, using a higher array probe density than for 
the remainder of the genome [ 19 ,  20 ]. On this basis, microarrays are 
often designed with a genome-wide “backbone” probe set, at lower 
density, within which are regions of higher density, at the targeted 
loci. Despite their widespread acceptance, targeted designs offer no 
panacea (as yet), because many pathogenic and  dosage- sensitive loci 
still await discovery. And perhaps their discovery will be postponed, 
if all laboratories choose to use only targeted arrays! 

 As argued here, it is in the nature of CNV testing that compro-
mises (by fi ltering) need to be applied—even in the knowledge that 
they will inevitably result in occasional diagnostic errors. As more 
of the genome’s pathological and dosage-sensitive loci are discov-
ered, errors will be reduced, but the ultimate solution remains a 
long way off. Until then how are dosage-sensitive genes recog-
nized, when interpreting CNV data in routine CMA testing? 

 An important preliminary question concerns the magnitude of 
the problem: what proportion of all genes might be dosage- 
sensitive? Given that very many of the common and benign CNVs 
do contain genes, one might predict that many genes are  not  HI 
(or TS). Using complex bioinformatics study [ 21 ], it has been esti-
mated that the chance of any one human gene being haplo- 
insuffi cient is ~20 %. Consistent with this, the authors noted that 
their defi ned haplo-insuffi cient genes were more likely to be associ-
ated with dominant inheritance, than chance would predict. The 
latter is important, since the vast majority of detected CNVs are 
heterozygous. A more recent study makes a very similar estimate— 
21 % genome-wide haplo-insuffi cient frequency [ 22 ]. In the diag-
nostic laboratory, these are important fi ndings. If ~80 % of genes 
are not haplo-insuffi cient, then any CNV deletion involving, say, 
one gene, will most likely be benign. Such CNVs might therefore 
be very common in normal subjects, and as seen earlier, there is 
much evidence to support this. 

 From the study quoted above [ 14 ], comes another result, 
equally important in CMA diagnostics: Genomic mapping indi-
cates a paucity of CNVs (especially deletions) overlapping recog-
nized structural genes, when compared with the density expected 
under models of random distribution. This relative absence, it is 
argued, refl ects a history of (purifying) selection, against those 
putative and  no-longer-extant  CNVs that included some of these 
genes. The corollary is that the vast numbers of CNVs remaining 
are those to which such selection did not apply, i.e., these are, in 
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effect, selectively neutral. On this argument, one is most likely to 
fi nd those CNVs sensitive to selection by detecting them before 
the selection process is complete. Accordingly, one should expect 
the selection-sensitive CNVs to be most frequent among de novo 
mutations. And that, indeed, informs much of our work in CMA 
diagnostics, for it is in the  patient  population that these CNVs 
under current selection are most likely to be encountered. 

 The arguments above are consistent with the  structural- 
variant disease hypothesis  [ 23 ], i.e., many larger CNVs (>100 kb) 
may arise recurrently during gametogenesis, but will come under 
strong selective constraint in any progeny bearing them. Therefore, 
those CNVs detected as de novo are, by that fact, those more likely 
to cause disease. (This hypothesis does not imply that all familial 
CNVs are innocuous, as we shall see). 

 Consistent also with this hypothesis is the de novo paradigm 
for mental retardation [ 24 ], which relies on parallel evidence in 
respect of point mutations. On considering all the above, and 
despite some contrary views in the literature [ 25 ], we are drawn to 
conclude that the majority of the  extant  CNVs are likely to be 
selectively neutral, serving no selectable function and having no 
effect on fi tness, either deleterious or otherwise. 

 As argued so far, the routine practice of CMA diagnostics has 
come to rely heavily on considering:  What is the likely clinical 
 signifi cance (if any) of the diverse copy number imbalances detected ? 
At present, no bioinformatics aids can provide reliable a priori evi-
dence whether novel CNVs can be described as disease-causing, or 
dismissed as benign, within the patient report. But these studies do 
warn us that many CNVs are likely to be clinically insignifi cant, 
even when including known genes. 

 In this chapter, we present examples of pathological and other 
CNV fi ndings from our own laboratories, illustrating some of the 
common problems encountered in preparing the fi nal patient 
report. We emphasize methods to sort likely disease-causing CNVs 
from the clinically insignifi cant or laboratory artifacts. We do not 
aim to deal with CNV testing in the prenatal or malignancy set-
tings, nor do we deal with any microarrays designed to measure 
levels of gene expression.  

2    Materials and Methods 

 This chapter emphasizes the in silico aspects of CMA copy num-
ber analysis, rather than the wet lab processes that generate the 
data. However, since the quality of any array data set is largely 
determined by either the patient sample and/or the laboratory 
process, any clinical interpretation of the CMA output must fi rst 
ask: Is the quality of the output data suffi cient to meet the level of 
resolution expected by the clinician referral? In this context, it is 
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critical to appreciate that no CMA data set will ever be perfect 
[ 20 ,  26 ,  27 ]. Bearing this in mind, we must quantify the imper-
fection—and hence consideration of quality control (QC) param-
eters is always obligatory, as the fi rst step in the analysis. Further 
description of CMA hardware, including variations on microarray 
design, is widely accessible from the literature [ 19 ,  20 ], and the 
Internet, e.g.,   https://earray.chem.agilent.com    . 

 The  Materials  here comprise the CMA data output fi le, which 
is presented to the pathologist or scientist in the form of a graphi-
cal user interface (GUI), examples of which are provided in the 
 Methods  section as cases 1–5. As included within the array 
 manufacturers’ analytical software suites, these interfaces also offer 
alternative displays for the same CMA data, in the form of a long 
list, where probe name, map location, log 2  ratio, quality control 
data, and various other parameters may be viewed as text. 

 In the fi eld of DNA copy number analysis, microarray platforms 
fall into two major categories. Cases 1 and 2 of this chapter provide 
examples of the fi rst type, often described as  CGH arrays  (CGH—
comparative genomic hybridization). Cases 3–5 present more com-
plex data sets from  SNP arrays  (SNP—single nucleotide 
polymorphism). The latter can generate genome-wide genotype data 
[ 28 ] in addition to the same copy number data produced by CGH 
arrays. We will consider the diagnostic applications of two commer-
cial packages, with emphasis on their roles in: (1) Quality control 
parameters critical to CMA data acceptance; (2) Presentation of array 
data to the user; (3) Their fl agging of statistically signifi cant CNVs. 

  We will here use  Agilent  arrays as examples. These currently utilize 
the manufacturer’s  Cytogenomics  software suite (  http://www.
genomics.agilent.com    ). We also present data displays from a 
hardware- independent software suite:  CGH Fusion  software 
( InfoQuant ,  UK :   https://www.infoquant.com/index/cghfusion    ). 
Though we are using these two software packages here for CGH 
data only, they also have SNP array capabilities. 

 Despite the high abundance of CNVs overall, it is not diffi cult, 
in theory, to distinguish these from the copy-number-normal 
majority of the genome. This is because, over any one genome, the 
vast majority of array probes tested should be in the same  normal  
state, i.e., diploidy (= 2 copies), and the theoretically possible devi-
ations from this (generally) occur as discrete (integer) entities, i.e., 
0, 1, 3, etc., copies. Furthermore, the latter states are few in num-
ber since germ-line copy number increase is limited, in practical 
terms, to about six copies only. However, this is not true for the 
CNVs of cancer cells. 

 For these reasons, almost all plotted array data will cluster along 
the  normal  line, where the log 2  ratio = 2/2, or 0. Hence, the chance 
that, for example, ten consecutive probes will cluster around some 
distinctively different, and theoretically predetermined value (say, 
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log 2  = 3/2, or +0.58, for 3 copies) is extremely small. Obviously, the 
power to discriminate, say, 0 from +0.58, will diminish if: (1) 
Dealing with smaller CNVs, detected only by stretches of say, <5 
consecutive probes, or (2) Technical issues including noise in the 
data arising from suboptimal DNA sample (Cases 2 and 4); prob-
lems with the hybridization experiment itself; or properties inherent 
to some probe sequences chosen for the array design [ 16 ,  27 ]. 

 In order to detect signifi cant deviations from the normal diploid 
state, the minimum number of adjacent probes required can range 
from two (for the earlier-used, large BAC probes, of >50 kb in 
length) up to perhaps fi ve or more (for oligomeric CGH probes of 
say 40–60 bases). These minima are usually suggested in the manu-
facturer’s specifi cations. Diagnostic laboratories may apply their own 
more stringent rules in some cases, but less stringent rules may be 
problematic. The user is able to set the software to any preferred in-
house minimum probe number,  n  (for Cases 1 and 2,  n  = 5 was 
used). Other parameters may also be varied at the user’s discretion. 
These include the desired level of statistical signifi cance, minimal 
acceptable probe signal intensity, maximum background signal, min-
imum signal-to-noise ratio, and so on. It is critical that each labora-
tory decides on these values in a systematic manner, based upon 
local needs, and determined by the laboratory’s own series of valida-
tion cases. Once these parameters are set, they should not be altered, 
without revalidation. These last points also apply to SNP array use.  

  As to the measurement of data quality per se, various CMA quality 
control parameters have been devised, and included in software 
packages both commercial and in the public domain. These QC 
parameters calculate microarray data noise, appreciation of which is 
critical to matters considered here. For a recent general account of 
some quality and performance parameters  see  refs.  20 ,  26 . 

 For those CGH arrays manufactured by  Agilent Technologies , 
the major QC parameter is known as the derivative log ratio, or 
DLR, which may be described notionally, as follows: Consider the 
difference in log 2  ratio for any two adjacent probes, e.g., the data 
in Fig.  1a . The mean log ratio difference for all such adjacent data 
pairs can be calculated as the average for the entire autosomal 
data set. When this mean value rises, it should refl ect the increase in 
map-position- independent  sources of noise in the CMA data, and 
is thus used as a quality control measure. An example of such noise 
is that due to a low signal-to-background ratio, across the test chip.

   DLR values of <0.20 usually indicate acceptable data, but 
<0.15 is desirable. With suboptimal DNA sources, e.g., from 
formalin- fi xed or postmortem specimens, it may be necessary to 
accept higher DLRs in certain circumstances, e.g., Case 2. But for 
optimal specimens (freshly collected whole blood in EDTA), the 
laboratory may reject the data (and/or the specimen) if the 
DLR > 0.20. One should always strive for the lowest achievable 
DLR levels. However, because some noise is inevitable, there is a 
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  Fig. 1    ( a ) Case 1: CMA data for chromosome 16.  Upper panel : Array data for the whole of chromosome 16. 
 Y-axis  presents the log 2  ratio (patient signal/control signal).  X-axis : all chromosome 16 probes on the “ Agilent 
SurePrint G3 Human CGH Microarray 8x60K ,” as analyzed initially by  Agilent Cytogenomics  software. However, 
the data are displayed here via a different software suite: “ CGH Fusion ”  software (InfoQuant, UK) . Each data 
point represents the log 2  ratio for one chromosome 16 probe (other chromosomes not shown). These data 
points are plotted in genomic order, from the p terminus of chromosome 16 ( extreme left  ) to the q terminus 
( extreme right  ). Scale: total length of chromosome 16 is 90.3 Mb. Below this is a horizontal schematic of 
chromosome 16, showing the G-band ideogram. Both a deletion ( red ) and a duplication ( green ) have been 
auto-detected by the algorithm (as delimited by the  red bar ). Note the array includes no probes in the centro-
meric region (= central gap of 10–15 Mb), where highly repeated sequences and extreme segmental polymor-
phism would render CMA data unreadable. This is true for all chromosomes, but the gap is larger here than for 
most others.  Lower panel : expansion of the deleted region ( red  ) shows the 0.71 Mb deletion of 16p11.2, and 
its fl anks. ( b ) Detail of CMA data for Case 1, showing the 0.27 Mb “?triplication” CNV ( green ) in chromosome 
10, fl agged here by only fi ve consecutive probes. Note that for both a heterozygous triplication, or a homozy-
gous duplication, the log 2  ratio expected (log 2 (4/2) = +1.0) is observed here. Other features are as for ( a ). The 
algorithm-detected CNV is here shown as a  green bar . Note that each end of this bar corresponds with 
one data point. For any CMA data, this pair of data points defi nes only the  minimum  length of the CNV, because 
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Fig. 1 (continued) we cannot know exactly how far it extends beyond them, in either direction. What we do 
know is that it does not extend as far beyond them as the next (or fl anking) pair of data points, and this fl anking 
pair thus defi nes the  maximum  extent of the CNV.  Caveat : We are relying on a single data point to defi ne a CNV 
boundary. But due to the inherent noise in the data, any single array probe alone does not comprise a reliable 
estimator of copy number, and hence such measurements of CNV length are approximations. ( c ) Image from 
  http://genome.ucsc.edu    , showing the genes, CNVs, etc. for the genomic segment 29.0–30.5 Mb (hg19), 
within chromosome band 16p11.2 (also indicated as the  small red box  within the ideogram at the  top  of the 
picture). The  horizontal orange bar  in the  upper center  has been added, to indicate the extent of the deletion 
detected for Case 1.  NB : in order to fi t this image on the page, it has been greatly truncated in the  vertical axis  
(at four places, as shown), removing the great majority of both deletions ( red  ) and duplications ( blue ) known 
for this 16p11.2 recurrent CNV. ( d ) Image from   http://genome.ucsc.edu    , showing the genes, CNVs etc. for 
the genomic segment from 25.3 to 26.7 Mb (hg19), within chromosome band 10p12.1. The  horizontal orange 
bar  in the  lower center  indicates the 10p triplication detected for Case 1. Other features are as for ( c ), but this 
screenshot has not been truncated, refl ecting the relative paucity of CNV reports for this region. Note that 
no CNV here ( red or blue ) matches the 10p CNV of Case 1 ( orange bar  ). Also, no OMIM disease-causing gene 
lies within this CNV. The only gene that does ( in part  ) is  KIAA1136  also called  GPR158  ( the latter name is 
truncated, at left edge ), which as yet has no disease association. The horizontal blue bars under “ISCA CNVs 
Pathogenic” etc., extend beyond either side of this fi gure, indicating longer length and additional genes. That 
these CNVs are pathogenic does not, therefore, imply any necessary pathogenicity for the much smaller 
CNV detected         
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limit to what is routinely achievable, at a minimum DLR of 
 approximately 0.10. Noise in the data may also be map-position-
 dependent , for which the DLR is a poor measure. Probe-specifi c 
(and GC-content related) correction factors have been built into 
some second generation algorithms such as ADM2, and can assist 
in controlling for this noise source [ 29 ].  

  In the cytogenomics market, two companies,  Illumina  (  http://
www.illumina.com/    ) and  Affymetrix  (  http://www.affymetrix.
com/    ), are well recognized for producing several generations of 
SNP-based microarrays for use by clinical laboratories. Both manu-
facturers employ their own assay chemistry and proprietary software 
to generate copy number and genotyping calls, but the basic prin-
ciples are similar. The  Illumina  assay uses a single base extension 
method for generating differentially labelled SNP probes, while 
 Affymetrix  utilizes a base mismatch hybridization assay [ 30 – 32 ]. 

 For this review, the  Illumina Infi nium BeadChip  platform 
( HumanCytoSNP-12  microarray) and  Illumina KaryoStudio  soft-
ware are used to provide examples of SNP-based microarray data 
analysis. The  Illumina Infi nium  assay employs 50-mer oligo probes 
bound to the  BeadChip  array. Once fragmented, the unlabelled 
patient DNA is hybridized to the array, and an enzymatic single 
base extension step is used to incorporate a differentially labelled 
 fl uorescent nucleotide at the site of the SNP (one color for each of 
the two SNP alleles). 

2.3  SNP Arrays

Fig. 1 (continued)
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 For all SNP arrays, copy number is estimated from a  normalized 
ratio of probe total fl uorescence intensity (R) relative to a reference 
set of probes from many control samples, while genotyping calls 
(allelic ratios) are determined from the relative fl uorescence inten-
sities of the two separate SNP allele probes included for each SNP 
locus. This pair of probes has two 50-mers differing at a single base 
at the polymorphic site. Therefore, targeted SNP probe sites for 
microarray analysis are bi-allelic. All SNP array allele pairs are 
referred to arbitrarily (in the software displays) as allele A or B. 

 The addition of the genotyping data provides a powerful tool that 
expands the clinical utility beyond the detection of copy number 
imbalances alone. Deviations from the expected allele frequencies 
among adjacent bi-allelic SNPs allows for the detection of some copy-
neutral changes that may have clinical relevance in the identifi cation of 
uniparental disomy (UPD) (Case 4), chimerism [ 33 ], low grade mosa-
icism (Case 5), consanguinity and, indirectly, DNA sequence muta-
tions for recessive diseases [ 28 ,  34 – 36 ]. Furthermore, some other 
whole of genome copy number abnormalities such as triploidy can also 
be detected, which is not possible with CGH. Somatically acquired 
copy-neutral loss of heterozygosity (LOH) events are the hallmark of 
many cancers, and these are also readily identifi ed using SNP-based 
whole genome microarrays [ 37 – 40 ]. They are not dealt with here. 

 The analytical process differs from that of the CGH array, in that 
a reference control genome is not hybridized competitively with 
each test sample. Accordingly, Log R ratio (normalized intensity val-
ues, where Log R ratio = Log2 (Robserved/Rexpected)) and allelic intensity 
ratio (B-allele frequency: BAF) are determined not by comparison 
with the control genome, but by canonical cluster position informa-
tion, derived from a reference set of many normal data samples, 
which are included in the software itself ( see   Notes 1 and 8 ). Hence, 
each bi-allelic SNP probe, when used to interrogate the normal 
(= diploid) two copy state, will produce three positional clusters rep-
resenting the genotypes AA, AB, and BB. 

 In an analytical setting, copy number loss and gain are seen to 
alter both the expected BAF and Log R intensity ratio values (Case 
3), whereas copy neutral changes, such as uniparental isodisomy, 
will alter the BAF but not copy number (Case 4). Mosaicism for a 
copy number change may alter BAF, and may perhaps alter the 
Log R intensity ratio, depending on the relative proportion of nor-
mal and abnormal cells (Case 5). With respect to trisomy mosa-
icism, it is usually possible to determine whether the trisomic cells 
have a meiotic or mitotic origin based on the genotyping profi le 
generated by the SNP array data (also Case 5).  

  The  Illumina Infi nium HD  microarray software presents the user 
with the parameter LogRDev, which is the key quality metric 
used for measuring the level of noise in these SNP arrays. This 
metric is a measure of the standard deviation of the Log R ratios 
for    all autosomal SNPs. The manufacturer recommends a value 

2.4  QC with 
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<0.3, however, our experience suggests LogRDev should not be 
>0.22. As a guide, excellent data are obtained at values between 
0.07 and 0.12 when requiring a 0.2 Mb effective resolution, for 
the  Illumina 300K HumanCytoSNP-12  array. In our laboratory, 
reports are qualifi ed at 0.5 Mb resolution if LogRDev is in the 
range ≥0.16–0.22, while samples are generally failed if LogRDev 
exceeds 0.22. Other monitored quality metrics are BAFDev 
(standard deviation of all B allele frequency calls), which should 
be ≤0.03, and SNP calling rate (=the proportion of successfully 
genotyped SNPs), which should be >99 %.  

  The cases presented are discussed with reference to several CNV and 
genomic databases or browsers, available via the following links: The 
databases of “International Standards for Cytogenomic Arrays” 
(  https://www.iscaconsortium.org    ); the Decipher Consortium 
(  http://decipher.sanger.ac.uk    ); OMIM (  http://www.omim.org    ); 
the UCSC genome browser (  http://genome.ucsc.edu    ); the Toronto 
“Database of Genomic Variants” (  http://dgv.tcag.ca/dgv/app/
home    ); the “Copy Number Variation 3 Project of the Children’s 
Hospital of Philadelphia” (  http://cnv.chop.edu    ), and ECARUCA 
(  http://www.ecaruca.net/    ). 

 Among the above, the CHOP and DGV databases deal exclu-
sively with normal (or non-patient) cases. A thorough familiarity 
with these databases is important. Most are publicly available, to 
some extent, although registered users may have access to  additional 
data which is preferred. The CMA results for each case are expressed 
in the standardized terms of the “ International System for Human 
Cytogenomic Nomenclature ” [ 41 ], and all CMA laboratories should 
be familiar with this nomenclature, which can be very complex.   

3    Case Studies 

 Cases 1 and 2 were tested by CGH array, on  Agilent  platforms, 
(Case 1:  SurePrint G3 Human CGH Microarray 8x60K , and Case 
2:  SurePrint G3 Human CGH Microarray 2x400K ). Cases 3–5 are 
SNP array tests (with details given below). The CGH arrays were 
analyzed by  Agilent Cytogenomics  software, with user interface set-
tings as follows: “Aberration Algorithm: ADM-2, Threshold: 6.0, 
Centralization: ON, Bin Size: 10, Centralization Threshold 6.0, 
Fuzzy Zero: ON, Combine Replicates (Intra Array): OFF, 
Genome: hg19, Aberration Filters: minProbes = 5 AND minAvgAb-
sLogRatio = 0.25 AND maxAberrations = 30 AND percentPene-
trance = 0, Expand Non Unique Probes: OFF”. 

      Reason for referral : Speech problem, ?autistic features, joint 
hypermobility.  
   DNA source : whole peripheral blood in EDTA.  

2.5  Databases

3.1  CGH 
Example: Case 1
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   CGH array :  SurePrint G3 Human CGH Microarray 8x60K , 
 resolution 0.2 Mb  

   Quality score (QC) : DLR = 0.136 (=acceptable)  
   ISCN result : arr 10p12.1(25,843,396-26,106,162) ×4, 16p11.2 

(29,478,050-30,190,508) ×1    

 Case 1: Sample CMA Report (CGH Array) 

     Test type and reason for referral : Chromosome Microarray 
(CMA); female child referred for “speech problem, ?autistic 
features, joint hypermobility.”  

   Specimen : DNA from peripheral blood, in EDTA.  
   Test platform :  “Agilent SurePrint G3” Targeted Microarray 

8x60K (60-mer oligo probes, mean effective resolution: 
0.2Mb) . Array serial number: ##0042R4 1_4  

   QC data : DLR    = 0.136  
   Results : A likely triplication, and a deletion were detected on 

chromosome microarray.

   The ISCN (2013) description is:

   arr 10p12.1(25,843,396-26,106,162) ×4, 

 16p11.2(29,478,050-30,190,508) ×1        

   Interpretation :  
  This CMA test found a probable heterozygous triplication (= 4 

copies) within chromosome 10, band p12.1, and a heterozy-
gous deletion (1 copy) within chromosome 16, band p11.2. 

 The 10p12.1 ?triplication has minimum length 0.27 Mb, and 
extends from position 25.84 to 26.11 Mb (Max. length is 
0.37 Mb). This CNV contains part of one gene only 
(GPR158), and is regarded as a variant of uncertain signifi -
cance (VOUS). No equivalent CNV is represented in the 
 relevant databases. Even duplication CNVs are not well-
established, at this locus. Given however, that the patient’s 
deletion in 16p is likely to account for her clinical picture, this 
10p fi nding is regarded as likely benign and incidental. The 
absence of relevant genes supports this interpretation, but a 
clinical signifi cance cannot be excluded entirely. 

 The heterozygous deletion of 16p11.2 has minimum size 
0.71 Mb and extends from map position 29.48–30.19 Mb 
(Max. size is 0.95 Mb). This well-known deletion includes 
the region known as the “16p11.2 autism susceptibility 
locus” (  http://www.omim.org/entry/611913    ). This    dele-
tion includes here approx. 33 genes, from  LOC388242  to 
 MAPK3 . Three of the 33 genes are recorded in OMIM 
as disease causing, namely,  KIF22 ,  PRRT2 , and  ALDOA . 

Chromosome Microarrays
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   Some CGH data    collected in the CMA test for Case 1 are shown 
in Fig.  1a . Three CNVs were detected on this array platform. Of 
these, only (1) and (3) were reported ( Box ).

    1.     A well-known      and likely pathogenic 16p11.2 deletion  [ 42 ].   
   2.     A common and innocuous duplication, also in 16p11.2  

( see  above link to the  Database of Genomic Variants ).   
   3.    A very rare 10p12.1 triplication (or homozygous duplication), 

of unknown signifi cance.    

  The upper and lower panels of Fig.  1a  show respectively the 
CGH array data, for all of chromosome16, and the 16p11.2 deletion 

3.1.1  Results

But, the included gene  KCTD13  may also be relevant, as 
a likely candidate for the ASD phenotype (Zufferey et al., 
J Med Genet, 49:660–668, 2012) [ 42 ]. 

 In the present clinical context, we note that  KIF22  has been 
 associated with joint laxity, and mutations of this gene are 
known to be dominant in effect ( see    http://www.omim.org/
entry/603213    ).  PRRT2  mutation is also dominant, associ-
ated with phenotypes of paroxysmal kinesigenic dyskinesia 
(PKD) and infantile convulsions, which may be seen in com-
pany with the other features of this “autism susceptibility 
locus.” Patients can also present with obesity, or a range of 
dysmorphisms (Zuffery et al: cited above).  

   Indications for follow-up testing : 
 CMA testing of the proband’s parents is recommended. 
 The 16p11.2 deletion represents a susceptibility locus only, and 

inheritance via a normal (or mildly affected) carrier parent is 
known. If any parent carrier is confi rmed, then a signifi cant 
risk of transmission to other offspring is established, and 
appropriate counselling can be considered. 

 This same parental array testing can also exclude de novo muta-
tion of the 10p12.1 ?triplication. If a normal parent is found 
to carry this rare CNV, then its interpretation as a benign 
and incidental fi nding will be strongly supported.  

   Technical note : Map data presented above are based on the 
February 2009 human genome assembly (GRCh37, or 
hg19). Gene numbers and names are based on the “NCBI 
ReferenceSequence” (or RefSeq).  

   Standard Caveat for post-natal CGH arrays : Our current 
reporting policy is to omit copy number changes that do not 
contain genes, are well-established polymorphisms, or are 
smaller than 0.20 Mb (unless associated with a gene of known 
or suspected clinical signifi cance). This test does not exclude 
balanced rearrangements, DNA sequence mutations, or 
Fragile X syndrome.    
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region only. As the former shows, there is both a deletion (red) and a 
duplication (green), located just to the left of the chromosome16 
centromere, in the proximal p arm. The 16p11.2 duplication can be 
excluded immediately since it is a very well- known, benign, and thus 
incidental fi nding. As the various databases show, such CNVs 
are especially common, and polymorphic, in the pericentromeric 
(as here) or sub-telomeric regions of many chromosomes. Curiously 
though, the apparent “duplication” here can sometimes refl ect cross-
hybridization with paralog sequences in band Xq28 [ 43 ]. Originally, 
the paralogous region was mapped to 16p11.1, later corrected to 
16p11.2. Irrespective of the cause, this fi nding is benign. 

 The 16p deletion (lower panel: red dots) includes ten consecu-
tive data points, with a mean ratio of −0.55, auto-detected by the 
software algorithm as signifi cantly below the expected “normal” log 
ratio of 0.0 (as fl agged by the red horizontal bar). Despite the accept-
able QC value for these data (DLR = 0.136), note that there is con-
siderable noise within these ten data points, and that the mean ratio 
within the deletion (−0.55) is higher than the −1.0 ratio theoreti-
cally expected for a heterozygous deletion (since −1.0 = log 2  (1/2)). 
Such deviations from the expected can arise through various sources 
of noise (discussed below) and can affect CMA data, even if QC 
parameters are satisfactory as seen here. For the  heterozygous tripli-
cation/homozygous duplication CNV in 10p (Fig.  1b ), note that all 
fi ve abnormal probes (green) fall close to log 2  (4/2), or +1.0, as 
should be expected for four copies of the region in question. 

 The report for Case 1 ( Box ) has been written as an educational 
aid and so is longer than one routinely generated in a high- 
throughput laboratory with an automated reporting pipeline. But 
the subcategories listed (in bold) should all be included. As is 
required for any patient report that includes reference to  variants 
of unknown signifi cance  (VOUS), this one was composed via refer-
ence to several databases, as shown here in Fig.  1c , d, for the dele-
tion in 16p, and the query triplication in 10p respectively. 

 The ISCN result [ 41 ] is an obligatory feature of all CMA 
reports ( Box ). All details of this complex nomenclature cannot be 
included here, but the reader should be able to infer the following: 
(1) This is an array (“arr”) result, rather than a FISH or karyotype 
result; (2) The chromosome bands involved 10p12.1, meaning 
chromosome 10, band p12.1, and (3) The CNV’s genomic map 
coordinates for the relevant chromosome, which are placed imme-
diately after the band designation. Thus, coordinates here are for 
chromosome 10, from base 25,843,396–26,106,162, indicating a 
 minimum  length of 0.27 Mb. Equivalent results are given for the 
second CNV (as ordered by chromosome number): the deletion in 
16p11.2. In the legend to Fig.  1b , an explanation is given why 
these are  minimum  lengths for both the CNVs described. 

 Last, the number of copies for each CNV is indicated by the 
two numerical characters at the end of each CNV descriptor, thus 
×4 indicates four copies for the “query heterozygous triplication” 
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(or homozygous duplication) of 10p and ×1 indicates one copy for 
the heterozygous deletion in 16. 

 In respect of the map coordinates, a patient report must state 
to which version of the human genome build it refers. This may be 
stated as a suffi x to the ISCN result itself, but in the present report 
( Box ), it is given near the bottom, in the Technical Note. 

 The degree to which any individual genes are discussed in the 
patient’s CMA report will depend upon several factors. First, the 
size of the CNV: as very large CNVs will contain many genes mak-
ing it impractical to list them. In these cases the size of the CNV 
will likely attest to pathogenicity per se and this can be stated, but 
the relevant critical gene(s) may be impossible to identify. If an 
included gene’s phenotype appears relevant to the referral context, 
then it should be mentioned as for example, “possibly worthy of 
consideration” especially if is known to be dominantly expressed. 

 If the CNV corresponds to a well-established contiguous gene 
syndrome, e.g.,  Case 1 , it may be unnecessary to mention individ-
ual genes. A link to a site such as OMIM, in which the overall 
syndrome is discussed, may suffi ce. For some of the contiguous 
gene syndromes, the critical gene(s) may not be known. Indeed, 
this is true in part for the present deletion in 16p11.2, i.e., for its 
autism-related aspects. In all cases an extra comment is needed 
confi rming that the size and position of the reported CNV is con-
sistent with (or not) what would be expected for that syndrome. 

 In almost all cases, it is important to include the fi rst and last 
genes which map (completely or in part) within the  minimum  
detected CNV. This gives the reader a simple means of inferring 
the gene content of the CNV including which genes are  not  pres-
ent, even if unfamiliar with reading genomic map coordinates. It is 
 very  important here to consider the  minimum -length CNV only. If 
a gene closely fl anks a minimum length CNV, there are rare cir-
cumstances where this gene might also be mentioned, e.g., if rel-
evant to the clinical picture. But this is discouraged without a 
specifi c justifi cation, and any such mention must carry the specifi c 
caveat:  NB: the present CNV may not include these genes at all . 

 For a CNV as well-known as is this particular 16p deletion 
(Fig.  1c ), it is not often necessary to review any databases. But it is 
recommended periodically, as the databases are frequently updated. 
Little description of the clinical and population aspects of this 16p 
deletion are included here, but further details can be sought from 
the literature [ 12 ,  42 ]. 

 For any very unusual CNV, like the 10p here (which is regarded 
as a VOUS), extensive database reference is obligatory. Laboratories 
that have accumulated their own in-house CMA databases will also 
refer to these, at such times. No OMIM disease-causing gene lies 
within this CNV, although there is one gene nearby, namely,  MYO3A  
(Fig.  1d ). By clicking on the dark green icon representing this 
gene in the UCSC interface, one is taken to the OMIM Web site, 
where we fi nd it is a deafness gene involving recessive inheritance. 
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Deafness was not mentioned in the referral, and in any case, this 
gene is not in the CNV (even at its maximum length), and is unlikely 
to be affected by it. The “?triplication” does lie partly within one 
other gene ( GPR158 :  see  legend of Fig.  1d ), but this has no known 
disease association. 

 In the present setting, we conclude that this novel 10p CNV is 
very unlikely to be of any clinical signifi cance. But there is one 
aspect that bears slight consideration. Strictly speaking, the CMA 
result here does not distinguish between a heterozygous triplica-
tion, and a homozygous duplication (as both imply four copies). 
But the latter is extremely unlikely, given the overall rarity of CNVs 
at this locus ( see   Note 2 ). 

 Database details for both CNVs are summarized in Fig.  1c , d, 
which comprise screenshots taken from the UCSC gene browser at 
  http://genome.ucsc.edu    , as viewed after linkage from   https://
www.iscaconsortium.org    . Display options switched “on” include 
nine categories of CNVs from the ISCA database and others from 
the CHOP database, the Decipher Consortium, the OMIM dis-
ease genes, the DGV database, and segmental duplications of 
“>1,000 bases” (bottom Fig.  1c ). Note that two groups of seg-
mental duplications fl ank the common CNV locus, and it is within 
these that non-allelic homologous recombination can occur [ 14 , 
 44 ]. Under the categories “CHOP CNV…” and “ISCA CNVs 
benign” are included single examples of 16p11.2 deletions equiva-
lent to  Case 1 , but reported from presumed normal individuals. 
These two likely refl ect the occasional incomplete penetrant nor-
mal carrier of this “curated pathogenic” deletion. They may also 
represent possible entry errors in the database fi les. 

 When  deletion  CNVs are found as VOUS, another matter that 
may need to be considered is the possibility of recessive disease 
[ 11 ] as these genes will be hemizygous within the deleted region. 
For more discussion  see   Note 3 , and for reporting of incidental 
CMA fi ndings involving genes of later onset disease ( see   Note 4 ).  

  In the patient report ( Box ), follow-up testing was indicated, lead-
ing to results (1) and (2) below. The signifi cance of these fi ndings, 
and the reasons for their request are discussed, with a view to 
establishing a more general  modus operandi  for CMA follow-up.
   1.  Follow-up array testing of the parents showed that neither was a 

carrier of the critical deletion in 16p11.2—i.e., this is a de novo 
mutation . The absence of a deletion 16p11.2 carrier parent here 
is not at all surprising in view of what is known about this CNV 
[ 12 ,  18 ,  42 ]. But of course, the result has a major impact on the 
estimated risk of recurrence in future progeny, and so is an 
important justifi cation for follow-up. If a heterozygous carrier 
parent had been found, the progeny’s risk of inheriting the same 
heterozygous CNV would comprise the Mendelian expectation 
of 50 %. But absence of a carrier parent implies a much smaller 

3.1.2  Results 
of Follow-up Testing
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recurrence risk of ~1 %. In clinical genetics, the risk of recurrent 
dominant inheritance from a non-carrier parent is not regarded 
as zero. It is customarily quoted as 1 %, merely to account for 
the indisputable possibility of germ-line mosaicism, for the 
dominant mutation (CNV, or rearrangement), in either of the 
apparently “non-carrier” parents. Of course, this assumes pater-
nity is not an issue. 

 It is known that this 16p deletion is associated with incom-
plete penetrance [ 12 ,  17 ,  42 ], i.e., “normal” parent carriers are 
described. Penetrance for this 16p11.2 deletion has been 
reported as high as 93 % [ 17 ] to a lower estimate of 47 % [ 45 ]. 
The matter is complex and the topic of current research [ 12 ,  42 , 
 46 ] ( see   Note 5 ). But regardless of these details, follow-up test-
ing of the parents was appropriate since “normal” parent carri-
ers have been reported and so testing was necessary to establish 
 risk  for other offspring. 

 In terms of a clinical  diagnosis,  this follow-up result would 
have no bearing on our interpretation that the 16p11.2 deletion 
was responsible for the proband’s phenotype. With or without a 
carrier parent, the evidence here is equally compelling. 

 We have used the recurrent 16p11.2 deletion to exemplify 
the very common class of pediatric CMA referrals involving fea-
tures of autism spectrum disorder/developmental delay. 
However, despite being the second most common individual 
CNV associated with autism, this particular deletion accounts 
for only 0.5 % of cases [ 46 ]. This is not unexpected as many 
genomic regions can affect these phenotypes [ 2 ]. 

 We are also interested in the more general case that involves 
novel, or poorly characterized CNVs (or VOUS). For these, dif-
ferent rules of interpretation apply. We would in this context 
regard any de novo fi nding as evidence supporting  likely pathoge-
nicity.  In this regard, we are primarily informed by the structural-
variant disease hypothesis [ 23 ] described in Subheading  1 .  

   2. On parental follow-up, the proband’s 10p triplication was shown 
to be familial as one “normal” parent carried it . Because of the 
deletion 16p fi nding and this rare CNV’s minimal gene content 
(Fig.  1d ), it is presumed to be a benign incidental fi nding despite 
its very rare and unusual nature. Even in the absence of the 16p 
deletion, we would have reached the same conclusion, because 
of its familial nature. 

 One other point arises from follow-up here. We now know 
that the 10p CNV is a heterozygous triplication rather than a 
homozygous duplication, since both the proband’s extra copies 
of this CNV have come from the one parent. As suggested ear-
lier this is also as expected, given the relatively remote possibility 
of both parents being carriers. In our experience, appreciation 
of such nuances may be of more than academic interest, espe-
cially in some regions of the genome, where it can be diffi cult to 
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 distinguish duplications from normal, and triplications from 
duplications. A relevant example is at a clinically well- known 
locus in chromosome 7q11.23 [ 47 ,  48 ]. Such problematic 
regions may be characterized by atypical DNA parameters 
including GC content ( see   Note 6 ).     

   Because VOUS are so often encountered, some labs may severely 
limit the scope of their routine follow-up CMA analysis, to prevent 
indefi nite proliferation of follow-ups, and in deference to the pos-
sibilities raised in  Note 4 . In  Case 1 , for example, such limitation 
of scope would permit follow-up reporting of array data for bands 
16p11 and 10p12 only, since CNVs within both regions were 
included in the proband report. Under such a practice: Whether or 
not the proband’s CNV is found, the parent or relative tested will 
receive a “limited scope” CMA report, which must include the 
critical caveat:  This CMA analysis was limited to chromosome band…
only . Alternative to this though, many labs do not limit the analyti-
cal scope of their CMA follow-ups, and some others may conduct 
follow-ups via a locus-specifi c test, such as FISH.   

      Reason for referral : Neonatal death, ?alveolar capillary dysplasia.  
   DNA source : formalin-fi xed tissue  
   CGH array :  SurePrint G3 Human CGH Microarray 2x400K : typi-

cal resolution 0.06 Mb.  
   Quality Score (QC) : DLR = 0.457 (unacceptable in almost all 

circumstances)  
   ISCN Result : arr 16q24(86,201,128-86,326,963) ×1    

  Figure  2  presents the 16q24 deletion data for Case 2 using a higher 
resolution  Agilent  array. These data demonstrate a 16q24.1 dele-
tion of minimum size 0.13 Mb, mapping to the approximate inter-
val 86.20–86.33 Mb. However, the QC value is so poor that the 
data would normally be rejected. They were not, due to the posi-
tive and disease-specifi c result obtained, consistent with the very 
unusual referral context. The patient report was issued with the 
caveat that independent confi rmation was obligatory because of 
the poor data quality. On the other hand, if no positive CNV fi nd-
ing had been made, a report stating  No abnormality detected  would 
not have been issued. Instead, the report would state  No result 
obtainable, due to unacceptable QC values .

   The gene  FOXF1  is implicated in alveolar capillary dysplasia 
(  http://www.omim.org/entry/601089    ). Because of the nature 
of the referral, the specimen could not be recollected, and poor 
quality DNA was likely from the fi xed tissue sample available. For 
this type of referral a higher resolution array might be chosen from 
the start because: (1) A single gene was likely to be involved, and 

3.1.3  Regarding 
the Possible Limitation 
of Scope in Data Analysis, 
for CMA Follow-ups

3.2  CGH 
Example: Case 2
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hence, a small CNV is possible; (2) To compensate, for the loss of 
resolution inherent in the poorer quality data. 

 In Fig.  2 , note that the scatter of all data points is considerable, 
and that the mean log ratio within the fl agged deletion segment    
(log 2  = −0.57) does not reach the expected value of −1.0. The high 
DLR value here (=0.457) is attributable to the DNA quality, and 
map-position-independent noise is expected. Despite this, the 
probe concentration of this 400K array is suffi cient for the algo-
rithm’s auto-detection of this deletion. The deleted region includes 
no known genes, but does not correspond to any known benign 
CNV. However, relevant to the present context is the proximity of 
the gene  FOXF1  located 0.22 Mb from its distal end (Fig.  2 ). 

 Earlier in this chapter, we stressed that the ubiquity of small 
CNVs in the normal population necessitates the general applica-
tion of size fi lters to CMA data, so that vast numbers of small 
CNVs will be excluded from patient reports. However, we present 

  Fig. 2    Detail of the 16q24 deletion for Case 2, as presented via  Agilent 
Cytogenomics  software. The  X-axis  here plots the log 2  ratios, ranging from −1 to 
+0.5 ( top ), while the  Y-axis  indicates the hg19 map position within the genome 
(in megabases:  at far right ). Map coordinates of the two genes  LOC732275  and 
 FOXF1  are indicated, and  FOXF1  is  circled . The ADM2 algorithm (supplied with 
the  Agilent  software) fl ags an apparent 0.14 Mb deletion in chromosome 16, 
band q24.1, indicated here by the  vertical orange bar at left , and the  rectangular 
color box at center . The  dots  are data points for all probes in this region, with 
 green  and  red dots  indicating log 2  values signifi cantly lower or higher than zero, 
respectively. The  darker orange trace line  indicates the smoothed mean log 2  
ratio, with window size here set at  n  = 5 consecutive data points. Note the scatter 
of data points, as refl ected in the unacceptably high DLR of 0.457 ( see  text). 
Indeed, log 2  ratios for the fi ve right-most data points are consistent with duplica-
tion: an obviously false interpretation, given the broad scatter overall       
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here a case in which the  minimum size rule  for the lab reporting 
Case 1 ( Box ) has been ignored, very reasonably, on grounds of a 
highly specifi c clinical context. Also ignored is another Case 1 
caveat concerning gene content. 

 The implications here are that for very general phenotypes (like 
developmental delay and so on), a fi lter on CNV size, and gene 
content, may be applicable. But if, a priori, the clinical context indi-
cates a specifi c disease locus, then these fi lters may be relaxed. 
Important here also is the distinction made between a disease 
(or phenotype) locus, and the mapped limits of a known structural 
gene (although either may be referred to as a genetic locus). In some 
cases, mutations at sites outside of some structural gene, but usually 
not far from it, may affect gene regulation to produce the disease 
phenotype [ 49 ]. Thus, the small pathogenic 16q24.1 deletion 
detected here contains no known genes and lies 0.22 Mb from the 
structural gene  FOXF1  (Fig.  2 ). 

 The same specimen was retested and the deletion confi rmed as 
part of a research project which studied further this aspect of 
 FOXF1  regulation [ 49 ]. In a routine setting though, this fi nding 
would have been confi rmed by other means, e.g., FISH, if an 
appropriate sample had been available. While a carrier parent is not 
likely here, the possibility that a parent carried some balanced rear-
rangement involving this locus could probably be excluded, also by 
FISH ( see   Note 7 ). 

 In CMA diagnostics, it is useful to know that small non-gene 
containing CNVs can still be associated with severe clinical effects. 
However, proving that such a segment includes a cryptic func-
tional element does not mean they all do. In fact, it seems likely 
that the great majority do not [ 50 ].   

      Reason for referral : History of miscarriage in a 27 year old female.  
   DNA source : Fetal tissue (miscarriage sample)  
   Quality score : LogRDev = 0.08 (excellent)  
   ISCN result : arr 9p24.3p24.1(36,587-8,187,045) ×1, 11p15.5p1

5.4(193,788-6,197,926) ×3 dn    

  Figure  3  shows the effect of a deletion and duplication (both het-
erozygous) on Log R Ratio and BAF (B allele frequency) values in 
an  Illumina HumanCytoSNP-12  microarray analysis. These data 
are generated from a late fi rst trimester miscarriage sample in which 
two pathogenic copy number abnormalities are detected; a termi-
nal deletion of approximately 8.2 Mb from chromosome region 
9p24.3p24.1 and a terminal duplication of ~6.2 Mb from chromo-
some region 11p15.5p15.4. While both are large, their compara-
ble sizes, with reciprocal gain and loss, render them cryptic under 
the light microscope.

3.3  SNP 
Example: Case 3

3.3.1  Results
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   In excess of 350 genes are involved overall. The deleted 9p 
region is associated with a decrease in Log R ratio (Smoothed 
Log R) and an absence of heterozygous SNP calls at BAF = 0.5, 
consistent with one allele being deleted at each SNP site assayed. 
Thus, the BAF for genotype A/− is 0.0 and for B/− is 1.0. Note 
these values are the same as those generated for the two homozy-
gous states (AA or BB). Any deleted region will necessarily exhibit 
loss of heterozygosity (LOH) since only one allele can be present 
at any locus within this heterozygous deletion. In this context 
then, the LOH is explained by hemizygosity of the deleted region. 

  Fig. 3     KaryoStudio  SNP microarray data plots for chromosomes 9 and 11 (Case 3). The display incorporates 
Smoothed Log R ( lower X-axis ) and B Allele Frequency (BAF) ( upper X-axis ). The smoothed Log R is a sliding 
window of average Log R intensity ratio and is represented by a continuous  red line  that runs the length of the 
chromosomes. The Smoothed Log R decreases in value at the point of the terminal 9p deletion. The deletion 
call is supported by the genotyping data (SNP probes represented by  blue dots ), where heterozygous AB geno-
typing calls (BAF = 0.5) are absent. On chromosome 11p, the Smoothed Log R increases in value and is associ-
ated with BAF genotyping calls at 0.0 (AAA), 0.33 (AAB), 0.66 (ABB), and 1.0 (BBB), consistent with duplication 
of this region. At  right  is a schematic of chromosome 9 and 11 homologues showing the duplicated 11p ter-
minal region translocated onto the derivative (der) chromosome 9       
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The duplicated region from chromosome 11p is associated with an 
increase in Log R ratio, while BAF values of 0.0 (AAA), 0.33 
(AAB), 0.66 (ABB), or 1.0 (BBB) are consistent with a duplication 
( see   Note 8 ). 

 Readers familiar with cytogenetics will be aware that these 
copy number abnormalities suggest the presence of an unbalanced 
translocation, where the terminally duplicated segment of 
 chromosome 11p is translocated onto the deleted chromosome 
9p, resulting in a derivative chromosome (Fig.  3 ). An unbalanced 
translocation can be inherited from a balanced carrier parent, or 
less frequently it might arise de novo. In this case a subtelomere 
FISH analysis on parental samples indicated neither parent carried 
the translocation, demonstrating the rearrangement arose as a de 
novo event with low (1 %) risk for recurrence. 

 Although Case 3 was tested here by SNP array, the same result 
could have been achieved by CGH array testing.   

      Reason for referral : Unexplained fetal death in utero  
   DNA source : Fetal tissue  
   Quality score : LogRDev = 0.39 (very poor, indicating failure to 

meet standard QC guidelines)  
   ISCN result : upd(15)mat.arr 15q11.2q13.3(21,361,700-

29,256,215) ×2 hmz, 15q21.3q26.1(54,114,19-88,153,073)
 ×2 hmz    

  As with Case 2, this example is characterized by poor quality DNA. 
Evidence of this poor quality, and its effects on the CMA analysis, 
are considered. 

 SNP-based microarray analysis has the advantage of being able 
to identify copy neutral changes, where allele frequency is altered 
but copy number remains unchanged [ 28 ,  34 ,  35 ,  51 ]. The 
“abnormality” here appears as one or more  long continuous stretches 
of homozygosity  (LCSH). If the latter is observed on many chromo-
somes it suggests consanguinity, where identical segments of the 
genome are inherited from a common parental ancestor ( see   Note 9 ). 
For example, the offspring from a fi rst cousin union will have, on 
average, 6.25 % (1/16) of their genome  identical by descent . LCSH 
in this context is most often benign, and not in itself diagnostic for 
any condition. Nevertheless, it is associated with an increased risk 
for recessive disease [ 28 ,  34 ,  52 ]. 

 The present case deals with a completely different scenario. 
Here, only one chromosome is involved, and there is no history of 
consanguinity. Therefore, this fi nding is more likely to refl ect seg-
ments of isodisomy associated with uniparental disomy (UPD). 
UPD occurs when both members of one homologous pair of chro-
mosomes are inherited from the one parent, with no contribution 
from the other parent [ 53 ,  54 ]. UPD fi ndings may be clinically 

3.4  SNP 
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signifi cant per se, but only if the chromosome involved is among 
those few that are known to include imprinted segments, as is the 
case for chromosome 15 [ 54 ,  55 ]. However, as for the LCSH that 
arises via consanguinity, the LCSH of UPD can also be associated 
with recessive disease, but only within the isodisomic region itself. 

 Figure  4  shows the microarray profi le of chromosome 15 from 
a mid-trimester fetal death in utero. The fetal DNA is degraded, 
which is refl ected in the very poor array QC score (LogRDev > 0.30) 
and the erratic Smoothed Log R along the length of the chromo-
some. Despite this, the allele frequency data are of suffi cient quality 
to identify two large (7.8 Mb and 33.9 Mb) regions of LCSH on 
chromosome 15, without evidence for LCSH on any other chro-
mosome ( see   Note 10 ). This fi nding is suggestive of UPD15, where 
regions of LCSH likely refl ect segments of isodisomy that arose 
from recombination between chromosome 15 homologues at mei-
osis I, prior to conception. Confi rmation of UPD15 can be achieved 
by several molecular based approaches [ 56 ], including a compara-
tive analysis of parental and proband DNA using microsatellite or 
SNP data, or by using a methylation- specifi c assay that exploits the 
differential methylation of maternal and paternal DNA within the 
chromosome 15 imprinted region. In Case 4 a methylation-specifi c 
PCR (MS-PCR) assay was used to confi rm maternal UPD15 
(Fig.  4 ) which is associated with Prader-Willi syndrome [ 56 ].

          Sample : Placental chorionic villi (miscarriage sample)  
   Quality score : LogRDev = 0.10 (very good);  
   ISCN Result    : arr(16) × 2~3    

  Figure  5  shows the complex SNP microarray profi le (left panel) of 
a fi rst trimester miscarriage sample, associated with whole chromo-
some (=trisomy 16) mosaicism.

   This case illustrates meiotic, mitotic and copy number com-
plexities that can arise in SNP CMA data analysis. Understanding 
this case allows some insight into what might be found in the even 
more complex SNP analysis of cancer cells where many simultane-
ous CNVs, both heterozygous and homozygous, may evolve, even 
within a single chromosome. 

 Genomic mosaicism in the noncancer setting is typically char-
acterized by the presence of two cell lines in the one individual. 
The mosaicism itself arises from post-zygotic, and hence mitotic, 
abnormalities of cell division [ 57 ]. In the case of trisomy mosa-
icism, presence of suffi cient trisomic cells can (as for non-mosaic 
trisomies) result in miscarriage. However, with a suffi cient propor-
tion of normal cells, the pregnancy can persist, possibly resulting in 
morphological and/or developmental defects in the live-born child 
[ 34 ,  35 ,  58 ]. 

3.5  SNP 
Example: Case 5

3.5.1  Results
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 Commonly, trisomy mosaicism involves one abnormal plus 
one normal (= diploid) cell line. If the original (= zygotic) cell line 
is the abnormal one, then the one extra chromosome itself has a 
pre-zygotic (and usually meiotic) origin, in the germ cells of one 
parent or other. Detailed analysis of the SNP data here reveals that 

  Fig. 4     KaryoStudio  SNP microarray data plot for chromosome 15 from a fetal death in utero sample. Two large 
segments of long continuous stretches of homozygosity associated with uniparental isodisomy (Case 4) can 
be seen. The isodisomic segments show a loss of heterozygous SNP calls (BAF = 0.5 %,  upper X-axis ) in asso-
ciation with normal copy number (Smoothed Log R = 0.0,  lower X-axis ). Maternal UPD15 was ascertained 
using MS-PCR ( see upper gel  photo), in which the normal control sample produces paternal (100 kb) and 
maternal (174 kb) bands, but the test case produces the maternal band only. In the  lower gel , the degraded 
DNA used for the array shows a very light smear around 0.2 kb ( see  lane 2), compared with the non-degraded, 
high molecular weight (>12 kb) control sample in lane 3. (Lane 1 shows DNA size markers).  At right , a sche-
matic view of the chromosome 15 homologous pair, highlighting regions of uniparental isodisomy. This isodi-
somy is limited to the regions where both copies of 15 share  dark blue segments        
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an extra chromosome 16 arose here during gametogenesis (in 
 meiotic fi rst division), and one copy (from the same parent) was 
later lost, by post-zygotic mitotic nondisjunction, to form a nor-
mal disomic and  biparental  second cell line (and hence there is no 
LCSH to suggest UPD in this SNP data). 

  Fig. 5     Left panel :  KaryoStudio  SNP microarray data plot for mosaic trisomy 16 in a fi rst trimester miscarriage 
sample (Case 5). As per the  lower X-axis  scale, the smoothed Log R ( vertical red line ) plots at >0.0 and <0.5 
throughout its length, consistent with presence of mosaicism for a disomic and a trisomic cell line, with the former 
predominant.  Central panel  ( black frame ): the two schematic chromosomes indicate the inferred SNP genotypes 
of the two copies of 16 (m1 and p) remaining in the disomic cell line, after the third copy was lost. In the  right 
panel  ( green frame ) is shown the original trisomic (and bi-maternal) cell line, with genotypes, and positions of 
meiotic chiasmata in m2, as inferred from the SNP data at  left . In m2, the changes from  dark  to  light blue  indicate 
each chiasma position, with the  light blue  around the centromere indicating heterozygosity in that region, and 
thus a meiosis I nondisjunction, as the cause of the initial trisomy ( see  text). The regions of recombination are 
inferred from the changes in BAF profi les, in the  left panel . Note: the data here do not indicate in which parent the 
trisomy arose. The maternal origin depicted was established by separate parental testing, not shown       
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 In Fig.  5 , the smoothed Log R ratio (red vertical line, left 
panel) is raised marginally above 0.0 along the length of the chro-
mosome, indicating a mosaic copy number, of between two and 
three, while the BAF genotyping data are clearly abnormal. 

 We explain the abnormal BAF data as follows: Any trisomic 
cell line must have two chromosomes contributed by one parent 
(here as m1, m2), and one by the other (p,  see  green frame in 
Fig.  5 ). Given the multi-segment nature of the SNP data in this 
chromosome (left panel, Fig.  5 ), let us assume that the trisomic 
cell line here was the original one, and the extra chromosome had 
a meiotic origin. From these assumptions, this argument follows: 
For the two uniparental copies m1 and m2, some segments may 
be iso- allelic, or identical by descent (shown dark blue), while 
others are heterozygous (light blue), the distinction being due to 
inferred meiotic chiasmata, at the dark blue/light blue boundar-
ies. Such chiasmata refl ect exchange between non-sister (=light 
blue here) and sister (dark blue) chromatid segments, during mei-
otic prophase. 

 In the dark blue regions, therefore, m1 and m2 always carry 
the same allele (=identical by descent), and so there must be at 
least two copies of the same allele, whether A or B, for each tri-
somic SNP locus here (green box). Accordingly, when m2 is lost, 
to form the normal (disomic) cell line m1/p (black frame),  all 
initially heterozygous loci  (AAB or ABB) in the dark blue region 
can only become AB. Hence, as the new disomic cell line 
increases in frequency, genotype ratio (expressed as mean BAF) 
here shifts up from 0.33 → 0.5 (at some loci), or down, from 
0.66 → 0.5 (in others). This means that the number of “bands” 
of BAF data visible does not change from the initial number 
(= 4), although two of them will shift their mean plotted posi-
tion towards 0.5 (Fig.  5 , left panel, as aligned with dark blue 
segments at right). 

 In the light blue region, however, loci on m1 and m2 do not 
necessarily carry the same alleles, and so initial heterozygotes AAB 
and ABB may, with loss of m2, become either AA or AB, and AB 
or BB, respectively. So, with increase in disomic cell frequency, the 
BAF may shift up (from 0.66 → 1.0, and 0.33 → 0.5), or down 
(from 0.66 → 0.5, and 0.33 → 0). In the process, it is the presence 
of a third allele on m2 (not identical to that of m1 or p), that 
accounts for the two additional bands of genotype data. Thus the 
SNP data originally seen as four bands of BAF ratios will come to 
occupy six bands, as we see for the light blue regions of Fig.  5  
(right panel). Hence, our initial assumptions above are consistent 
with this interpretation of the SNP data. Generally, whenever six 
genotypic (BAF) bands appear anywhere within the SNP data for 
the extra chromosome, a meiotic origin is indicated. On the other 
hand, if the  entire chromosome  is comprised only of 4-banded 
regions, we regard this as tantamount to proof of a mitotic (and 
post-zygotic) origin of the extra chromosome. 
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 Both the degree to which the BAF bands are shifted, and the 
mean position of the smoothed Log R ratio, allow us to estimate 
the percentage of the abnormal cell line. In this case, it was about 
40 %. SNP arrays can, it is claimed, detect mosaicisms of ~10 %. 
Interested readers are directed to literature which provides detailed 
summaries [ 28 ,  35 ]. 

 Finally, the importance of inspecting the SNP array data  man-
ually  must be emphasized [ 34 ]. Some copy-neutral (or near copy 
neutral) aberrations, particularly low frequency mosaicism, and 
chimerism, may not be recognized automatically by the  Illumina  
(or other) software algorithms. The trisomy 16 mosaicism reported 
here was detected by manual data inspection only, and this is true 
for most cases of low to moderate level mosaicism involving whole 
chromosomes, or chromosomal segments. Although the data 
are less complex, the same caveats can apply to mosaicism detected 
by CGH arrays.    

4    Notes 

     1.    Quality of SNP array data can be improved by users creating 
their own cluster or reference fi les from in-house clinical sam-
ples, rather than relying on reference sets supplied by manufac-
turers. In our experience this is true for both  Illumina  and 
 Affymetrix  microarrays.   

   2.    In routine practice, homozygous duplications (and deletions) 
are not unusual for some very common CNVs. But for the rarer 
examples, dup homozygosity is so unlikely that one favors het-
erozygous triplication (or failing that, consanguinity or UPD) 
as an alternative explanation. Regardless of origins though, a 
homozygous duplication in the present CNV of 10p might per-
haps be signifi cant. It could imply sequence disruption for both 
copies of the one gene involved ( GPR158 : Fig.  1d ), and there-
fore, effective nullisomy. Any CNV that might involve nulli-
somy, regardless of the gene involved, is at least worthy of a 
second thought. For the various reasons stated, none of this is 
likely to be signifi cant for Case 1, but in the context of this 
chapter the implications are worth exploring. 

 Even when the CNV is heterozygous, determining signifi -
cance of any duplication (or triplication) that includes  only part  
of a gene is fraught with many unknowns. For example: is it 
a tandem duplication/triplication, or an inverted one? Is it a 
duplication/triplication in situ, or is an extra copy transposed 
elsewhere? None of these are known but will affect the gene 
sequence within and around the start or end point of the dupli-
cation (or triplication). Finally, is the start/end point intronic 
or exonic? This is something we might know from the CMA 
test itself, if using a very high resolution array: but this is not 
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usually the case for routine analysis. Without such information, 
we really have no idea what sequence will be expressed (if any), 
at or around the site of the duplication itself. 

 The smaller novel duplications are thus a challenge in 
CMA diagnostics. They rarely turn out to be of clinical signifi -
cance, but a disproportionate effort can be required to con-
sider their possible effects on gene expression. Often, a clinical 
signifi cance cannot be excluded entirely, and they are reported, 
and even followed up, as VOUS.   

   3.    For any deletion CNV that contains at least one gene, it is 
always possible that because of hemizygosity, a point mutation 
in the one remaining allele might result in a recessive disease. 
Awareness of this is important, as laboratories do occasionally 
fi nd such examples [ 11 ]. On the other hand, no deletion CNV 
should be reported (or even commented upon) on grounds of 
speculation alone. The only time this is justifi ed is when: (1) 
The deleted gene is known to result in a well-characterized 
recessive disorder,  and  (2) the patient referral indicates a phe-
notype suggestive of that disorder. Thus, these CNVs should 
not be reported if it is the laboratory’s policy not to report 
CNVs that are classifi ed as  likely benign  in the International 
Standards for Cytogenomics Arrays (ISCA), and are recorded 
in say, more than two studies. Policies are not simply changed 
on the grounds of speculation that one gene within a CNV 
might be mutated in the other allele (unless points (1) and (2) 
apply). 

 Consider also the case where parents are tested by CMA, 
as follow-up to a VOUS result for the proband, and one parent 
is found to be a carrier. In this circumstance, the follow-up 
report should not speculate:  This VOUS may thus be an inci-
dental fi nding for the proband, but the VOUS does include a 
particular gene…that might be mutated on the proband’s other 
allele . Instead, the lab’s general rule is followed as above, and 
the report should say only:  Assuming the carrier parent is of 
normal phenotype, this VOUS can be regarded as an incidental 
fi nding for the proband .   

   4.    There is one other class of CNV (usually a deletion) that 
requires special mention in the context of report writing. Most 
pathogenic CNVs contain multiple genes, some even a hun-
dred or more, and any such CNV is likely to have caused the 
patient phenotype described in the referral. However, most of 
the genes included in the CNV will not be contributing to that 
phenotype, i.e., these gene deletions on their own are inciden-
tal fi ndings. So it is not usually necessary to comment (or even 
list) them in the patient report. But if any gene deletion here 
predisposes to a later-onset disease, that single-gene fi nding 
might eventually have clinical signifi cance to the patient. 
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Questions then arise concerning how the laboratory (and the 
referring clinician) should treat this sensitive and unsought 
information. One way is to fi rst discuss the result with the 
referring clinician who may call in other specialists such as can-
cer geneticists, to reassess the data. Then, an agreed-upon 
report may be issued. 

 With special reference to genome sequencing rather than 
CMA, a recent US recommendation [ 59 ] states that the labo-
ratory has an obligation to report these types of incidental 
fi ndings, and suggests a list of 57 genes (plus others “as deemed 
appropriate by the laboratory”), which should be dealt with in 
this manner. This reporting should occur even in the absence 
of the patients’ prior agreement. However, the latter aspect is 
controversial and remains under debate, in terms of the 
patient’s “right not to know” any information that was not 
sought [ 60 ]. 

 These problems around incidental fi ndings require the 
CMA testing laboratory to be ever alert for the presence of such 
genes among all CNVs detected, even those smaller CNVs that 
might otherwise be regarded as benign. Fortunately, the latter 
are very rarely implicated, since the 57 genes are, by their 
nature, very unlikely to map within a recurrent CNV.   

   5.    As seen in Case 1, the strategies adopted in considering CMA 
results can turn on whether incomplete penetrance has been 
established for the CNV in question. Consider in this context 
an alternative scenario to Case 1, where such a CNV is found 
in a proband, but the published phenotype is inconsistent with 
the patient’s clinical picture. In this case, either the proband 
may be: (1) Expressing a rare or novel variant form, of that 
CNV’s possible range of phenotypes, or (2) A carrier of this 
CNV, in its non-penetrant form. For the latter, the detected 
CNV may be an incidental fi nding, despite its established 
pathogenicity. This is certainly possible, and might be sug-
gested in the report. Remember, at least 80 % of CMA tests do 
 not  solve the diagnostic problem. 

 The important consideration here is to be aware of the 
clinical notes, and so avoid reporting simply that:  A well-known 
CNV was found, which is consistent with the following features: 
… A machine-generated report might look like this, and such 
reports are seen. The CMA analysis software usually includes 
options for the auto-generation of patient reports, but they are 
not recommended for any complex or unusual fi ndings. 

 When faced with rare cases of apparent genotype/phenotype 
mismatch, it is necessary to consider also the possibility that 
two (or even three) pathological and unlinked mutations of 
uncertain penetrance are present, some possibly segregating 
among the family members. Surprisingly, such families are not 
that rare. The “other” mutation(s) may be other CNVs or they 
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may be sequence mutations, not detectable on CMA testing. 
The challenge then is to consider how these multiple factors 
might interact. 

 For the 16p11.2 deletion there is debate as to whether 
incomplete penetrance or variable expressivity (or both) are 
the relevant terms [ 12 ], and it is suggested that “the ultimate 
phenotype of the child is probably affected by his/her genetic 
background and other environmental factors, the vast majority 
of which are unknown and cannot be tested” [ 11 ,  45 ]. When 
microarray testing identifi es an additional CNV, it is likely to 
be even more diffi cult to predict the resultant phenotype. Such 
comments exemplify well the caveats often accompanying 
studies of recurrent CNVs (and other mutations), where the 
degree of penetrance (or expressivity) is inherently uncertain. 
For both the 16p11.2 and 22q11.2 deletions (the two most 
common CNVs of clinical signifi cance), evidence now suggests 
that variance in one aspect of their phenotypes (mean reduc-
tion in IQ) is partly explicable in terms of parental variance for 
that same trait [ 12 ]. 

 Consider also a related scenario: the  presumed normal parent  
(on follow-up) is found to carry a known pathogenic but incom-
pletely penetrant CNV that the proband does  not  carry. This 
 circumstance is not extremely rare, and can present diffi culties 
for reporting. Of course, if your lab has adopted a policy of 
 “limited scope” CMA analysis (or FISH) on follow-up (as per 
Subheading  3.1.3 ), then this scenario is unlikely to arise. 

 A further related situation is this: the parent is found to 
carry an unexpected CNV  of late onset disease . Clearly, such a 
fi nding would require special consideration ( see   Note 4 ).   

   6.    In various regions of the genome, GC-related genomic waves 
represent a substantial source of false positive identifi cations 
[ 27 ,  61 ]. The GC percentage varies across the genome’s DNA, 
and array platform designers go to considerable lengths to over-
come probe related noise related to this source via hardware 
[ 61 ] and software modifi cations [ 29 ]. GC-rich (also gene rich) 
regions correspond roughly with the pale (G-negative) bands 
of the G-banded karyotype [ 62 ], and many are of size order 
3–20 Mb. GC-dependent noise in the log 2  ratios of CMA data 
can thus appear to rise and fall in “GC waves,” and hence the 
oft-described “waviness” problem. These are map- position-
dependent  sources of CMA noise, and an acceptable QC value 
does not necessarily guarantee their absence. The problem may 
be exaggerated when conditions are suboptimal [ 7 ,  26 ]. 

 One example of GC-associated noise occurs at the Williams–
Beuren Syndrome (deletion) locus in chromosome 7q11.23 
[ 47 ,  48 ]. Here deletions, duplications, and triplications are all 
possible, and are variously signifi cant, in a clinical sense. CMA 
differentiation of the 2, 3, and 4 copy states can be unreliable, 
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and so likely errors to be aware of here are reporting a normal 
as a duplication, a duplication as a triplication or vice versa 

 A second error-prone region lies within the q terminal 
band of the X chromosome—Xq28. This region exhibits high 
GC percentage in places, but the values vary over a shorter 
scale [ 62 ]. Affected are regions to both sides of the gene 
 MECP2 , and particularly the proximal gene  SLC6A8  itself 
(Fig.  6a ). Both genes are associated with mental retardation, 
and so are often targeted on arrays. Unfortunately, this results 
in much poor data from the  SLC6A8  probes, which can have 
a disproportionate effect on the local log 2  ratio. The lower 
panel of Fig.  6a  depicts one attempt (by algorithm modifi ca-
tion) to overcome the problem [ 29 ].

   In regard to Xq28 itself, the most likely error is reporting 
a true normal as an Xq28 duplication (Fig.  6a , upper panel), or 
less likely, the reverse. The likelihood of error, though, is partly 
dependent on the patient’s sex. Regrettably, both authors have 
experienced misreporting of the Xq28 region in the early years 
of CMA testing. But with the many improvements, and the 
accumulation of databases since that time, this type of error 
should not now occur! 

 An additional confounding factor in Xq28 is the segmental 
duplication intrinsic to the region, including  SLC6A8  itself, 
which shares paralogous sequences with proximal 16p11.2 [ 43 ]. 
Recall that we noted the same 16p11.2 segment appearing as a 
? duplicated  CNV in Case 1 (Fig.  1a ). Of course, reciprocal errors 
of analysis might be expected in 16p11.2, but unlike Xq28, this 
particular part of 16p11.2 is not of clinical signifi cance. 

 Figure  6b  shows, in an abnormal case, some confusing log 2  
ratio scores, embedded within a large “true” duplication in dis-
tal Xq. On fi rst analysis, these data were interpreted erroneously 

Fig. 6 (continued) has been rescaled here, to best overlie the  blue trace . Note that the gene  SLC6A8  has high 
percentage GC unlike  MECP2 . Note also the close fi t of the two smoothed means, indicating that most of the 
noise within this CMA data is percentage GC-dependent.  Lower panel: X-axis : ~300 of the same Agilent array 
probes, from approximately the same region of Xq28, with positions of two genes indicated (not to map scale). 
 Y-axis : Scale indicates Agilent  Probescores , as designed into the algorithm ADM2, to correct for GC bias across 
the genome. Probes with high %GC have compensatory low  Probescores , designed bioinformatically as weight-
ing coeffi cients, to discount the undue infl uence of high GC regions and so reduce false CNV calls [ 29 ]. The very 
extreme weightings shown for  SLC6A8  refl ect its highly problematic nature. ( b )  X-axis : ~3,000 consecutive 
 Agilent  array probes are listed in genome order only, as for ( a ). Probes for the distal ~50 Mb of the Xq arm are 
shown, with Xqter to the right. The  Y-axis  (log 2  ratios) scores the CMA data for an unbalanced translocation car-
rier, with der(3)t(X;3)(q27.1;q29), and duplication for the distal 16 Mb of Xq ( yellow arrow  indicates inferred 
breakpoint). For this CMA test, QC was acceptable (DLR = 0.20). As expected for a male, the duplicated X region 
should show a log 2  ratio of approx. +1.0, for data to the  right of the yellow arrow . Unexpectedly, however, at the 
point indicated by the  black arrows , this value drops to around +0.35, then rising gradually back toward +1       
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  Fig. 6    ( a ) Effects of percentage GC variation in band Xq28:  Upper panel: X-axis : 370 consecutive  Agilent  array 
probes from a 4.2 Mb region within band Xq28, listed in genomic order only (data plotted here with  MS Excel , 
and not scaled to genomic map position). Probes within the two genes  SLC6A8  and  MECP2  are indicated by the 
 black and green arrows. Y-axis : scale shows the log 2  ratio data for the  blue dots  and (and the  blue smoothed 
mean ) indicating CMA data from an  Agilent 60K  test, with marginal DLR of 0.24. The  pink squares  (and  red 
line  = smoothed mean) show, in relative terms, the percentage GC contents for the 370 probes. The  red trace  
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as indicating a complex rearrangement, or an interstitial, rather 
than terminal Xq duplication. However, subsequent karyotyp-
ing revealed an unbalanced X;3 translocation. The vertical and 
horizontal arrows of Fig.  6b  show respectively the probe loca-
tion and mean log 2  ratios of the  SLC6A8  (black) and  MECP2  
(green) array probes. Consistent with Fig.  6a , the  SLC6A8  
probes perform poorly. But while they often overestimate copy 
number in the normal case ( see  Fig.  6a ), they are underestimat-
ing it here. Such error reversals are not unknown for other sce-
narios involving GC-dependent noise [ 26 ]. Underlying this 
may be a probe performance overly sensitive to DNA sample 
concentration or the critical matters of dynamic range and tar-
get saturation, which may be more problematic for some high 
GC ranges [ 16 ].   

   7.    If a proband’s duplication or deletion CNV appears de novo 
on parental CMA, further follow-up testing may be ordered 
for the parents and/or proband, in the form of a FISH test. 
This may be necessary to exclude the very rare case where the 
parents are balanced for the proband’s CNV, but one parent 
has one of their two copies (or alleles) transposed or translo-
cated to elsewhere in the genome (usually to a different linkage 
group). In such cases, meiotic segregation or recombination 
can result in the proband (or siblings) inheriting 2 or 0 copies 
from this one parent, plus 1 copy from the other. FISH testing 
can detect the ex situ allelic copy in the balanced-carrier par-
ent, whereas CMA will not. The same FISH follow-up may be 
applied to the proband, but this is useful for duplications only. 
Note also that due to technical limitations, standard FISH test-
ing may not be feasible for CNVs of size <100 kb. Finally, this 
type of follow-up may be unnecessary for those well- known 
(curated) CNV loci where de novo reports are common, and 
the recurrent mutation can be expected to arise in situ. This is 
true for many examples of non-allelic homologous recombina-
tion [ 14 ,  44 ], where a pair of commonly recombining non-
allelic, homologous segments map to either fl ank of the CNV’s 
usual locus. This is true for Case 1’s pathogenic deletion in 
16p11.2 (Fig.  1c : note fl anking segmental duplications at bot-
tom of fi gure).   

   8.    The B allele frequency (BAF) is calculated according to the 
proportion of B alleles for a given SNP, using the formula B/
(A + B). Thus, the genotypes AA, AB, and BB will produce 
expected BAF values of 0.0 (0/2 + 0), 0.5 (1/1 + 1), and 1.0 
(2/0 + 2), respectively, while the Log R intensity ratio (Log2 
ratio) will be 0.0, representing two copies (just as it does for 
CGH arrays). In comparison to copy number analysis, the sta-
tistical power inherent in tests for the three possible genotype 
frequencies is relatively limited. Unlike the case with copy 
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number per se, there is no defi nable “abnormal” state for the 
SNP genotype at any one locus. Although one allele will always 
be more frequent than the other, any of the three genotypic 
outcomes is “normal,” and none is particularly rare. 
Additionally, as is consistent with Hardy—Weinberg equilib-
rium (and BAF < 0.5) the majority of SNP loci will be homozy-
gous, even in the normal (=control) state, and so some stretches 
of homozygosity are always present due to chance alone. 
Resolution for LOH is thus much poorer than resolution for 
CNVs, and LOH regions of <5 Mb may not be reliably detect-
able, and even if detected, they may be of no clinical or bio-
logical signifi cance. A resolution of 5 Mb is adequate for 
clinical analysis, and the array software is usually set to detect 
LOH > 3–10 Mb [ 28 ]. The  Illumina HumanCytoSNP-12  
array, with higher density probe coverage (10 kb mean spac-
ing), high SNP heterozygosity (30–40 %), and accurate, repro-
ducible call rates (>99 %) can detect LOH reliably at 2–3 Mb. 

 The caveat above applies only to LOH testing in a 
 (presumed) balanced genome. But, when testing for copy 
number  imbalance , high density SNP-based arrays are advan-
tageous because the Log R and allelic ratios can be used as 
controls for each other. In particular, the genotyping data 
produced by heterozygous (AAB or ABB) duplication calls 
provides powerful  evidence that an increase in Log R inten-
sity ratio represents a true copy number gain. Likewise, dele-
tions resulting in monosomy should always be associated with 
a loss of heter ozygous SNP calls. In effect, these mutual cor-
roborations increase resolution, above what it would be for 
Log R intensity alone.   

   9.    The use of SNP-based arrays also identifi es excessive homozy-
gosity as caused by parental relatedness [ 28 ,  63 ]. The percent-
age of the scoreable genome affected by LCSH can be estimated 
by summing the lengths (Mb) of all autosomal LCSH seg-
ments of size >3–5 Mb, and dividing this by the total length of 
the euchromatic autosomal genome (approximately 2,881 Mb, 
per GRCh37/hg19). The American College of Medical 
Genetics has recently released standards and guidelines for 
documenting suspected consanguinity as an incidental fi nding 
of genomic testing [ 64 ].   

   10.    Clinical laboratories generally set their microarray software fi lters 
to detect LCSH of lengths >5 Mb, which is above the size of 
autozygous segments seen in demonstrably outbred populations 
[ 65 ]. Segments of LCSH associated with UPD are often large 
(>10 Mb) and will be confi ned to a single chromosome [ 51 ,  66 ]. 
Even so, in a routine setting, SNP- based arrays will not identify 
every case of UPD, but only those with suffi ciently large seg-
ments of isodisomy to raise suspicion for further investigation. 

Chromosome Microarrays



152

   1.    Miller DT, Adam MP, Aradhaya S et al (2010) 
Consensus statement: chromosomal microar-
ray is a fi rst-tier clinical diagnostic test for indi-
viduals with developmental disabilities or 
congenital abnormalities. Am J Hum Genet 
86:749–764  

    2.    Kearney H, Thorland E, Brown K et al (2011) 
American College of Medical Genetics stan-

dards and guidelines for interpretation and 
reporting of postnatal constitutional copy 
number variants. Genet Med 13:680–685  

   3.    Hochstenbach R, Buizer-Voskamp J, Vorstman 
J et al (2011) Genome arrays for the detection 
of copy number variations in idiopathic mental 
retardation, idiopathic generalized epilepsy and 
neuropsychiatric disorders: lessons for diagnos-

We have seen several instances of PWS associated with maternal 
uniparental heterodisomy with no evidence for isodisomy 
(unpublished data). Similar fi ndings have been reported by oth-
ers [ 66 ]. Such cases demonstrate a normal chromosome 15 pro-
fi le, and hence do not raise suspicion for UPD. For Case 4, poor 
DNA quality was a confounding factor (Fig.  4 ). Thus, it was for-
tunate the isodisomic regions were large, as smaller CNVs would 
not have been detected. Had we found no abnormality this case 
would not be reported as a straightforward normal result. 
Depending on the quality of the array data itself, one might issue 
a qualifi ed report, stating that resolution was limited, and hence 
certain (listed) abnormalities could not be excluded. Otherwise 
the report would state:  No result available due to poor QC, likely 
related to poor DNA quality . Although a clinically signifi cant 
CMA was reported, it is not possible to conclude that this fi nding 
explains the fetal death in this case. Prader–Willi syndrome is usu-
ally detected during infancy or childhood, and hence the present 
fi nding may be incidental to the fetal death in utero.         
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    Abstract 

   Bioinformatics-based applications have been incorporated into several medical disciplines, including 
 cancer, neuroscience, and recently psychiatry. Both the increasing interest in the molecular aspect of neu-
ropsychiatry and the availability of high-throughput discovery and analysis tools have encouraged the 
incorporation of bioinformatics and neurosystems biology techniques into psychiatry and neuroscience 
research. As applied to neuropsychiatry, systems biology involves the acquisition and processing of high- 
throughput datasets to infer new information. A major component in bioinformatics output is pathway 
analysis that provides an insight into and prediction of possible underlying pathogenic processes which 
may help understand disease pathogenesis. In addition, this analysis serves as a tool to identify potential 
biomarkers implicated in these disorders. In this chapter, we summarize the different tools and algorithms 
used in pathway analysis along with their applications to the different layers of molecular investigations, 
from genomics to proteomics.  

  Key words     Algorithms  ,   Bioinformatics  ,   Computational  ,   Data mining  ,   Genomics  ,   Omics  ,   Pathways  , 
  Phenotype  ,   Phenomics  ,   Polymorphisms  ,   Proteomics  ,   Psychiatry  ,   Tools  ,   Transcriptomics  

  Abbreviations 

   CNVs    Copy number variants   
  GWAS    Genome-wide association study   
  SNPs    Single-nucleotide polymorphisms   

1        Introduction 

 After the great success in the sequencing of the fi rst human genome 
in 2003 [ 1 ], the use of bioinformatics tools in biological and medi-
cal research has escalated enormously. The main reason behind this 
increase was the availability of large clinical and molecular datasets 
that could no longer be handled manually and required high 
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throughput processing tools [ 2 – 4 ]. The importance of computa-
tional applications in biological and clinical research has brought 
up several collaborative efforts between mathematicians, engineers, 
statisticians, biologists, and physicians and has boosted the fi eld of 
bioinformatics. This fi eld aims to provide the fastest and most reli-
able way to handle, analyze, store, and visualize massive datasets as 
well as to evaluate their clinical implications. 

 Bioinformatics has been incorporated in several medical disci-
plines including recently psychiatry. Psychiatry is a discipline with 
complex and heterogeneous diseases where computational bioin-
formatics tools are urgently needed. Until now, the fi eld of  molecu-
lar psychiatry  is still in its infancy and insight into the etiology and 
pathophysiology of psychiatric diseases is poor due to their multi-
factorial etiology and the infl uence of multiple environmental fac-
tors [ 5 – 7 ]. Similar to molecular psychiatry, psychiatric practices 
face major challenges involving the lack of objective techniques for 
disease diagnosis and classifi cation along with the need for 
 personalized medicine due to the unpredictable outcome of dis-
ease pharmacology. In this context, bioinformatics has enabled a 
new direction for understanding pathogenesis in molecular and 
clinical psychiatry through the ability to comprehend and draw 
inferences from data on genomics, transcriptomics, proteomics, 
and phenomics as well as other high-throughput data acquisition 
techniques [ 5 ]. These data inputs have been used in two major 
interrelated applications: biomarker discovery and pathway analy-
sis. In this chapter, we review the methods and applications of bio-
informatics tools in molecular psychiatry with major emphasis on 
pathway discovery and network analysis.  

2    Methods in Pathway Analysis 

 In addition to the challenges listed above, simple inspection of 
large datasets with basic visual computational aids and low-order 
statistical metrics will not extract the full informational potential of 
the available data, hence the importance of using computational 
methods for data mining. Data mining concerns information 
extraction technique from large and huge datasets using mathe-
matical methods [ 8 ]. In bioinformatics, data mining is used in 
applications such as fi nding keynotes in sequences to provision pat-
terns, fi nding genome pathways of diseases, and fi nding cluster 
rules for DNA and protein sequences [ 9 ]. Data mining method-
ologies and algorithms differ in techniques and goals from one 
application to another. The following is a list of the most impor-
tant categories of data mining methodologies with associated algo-
rithms, techniques, and sample applications. 
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   Since we are dealing with large datasets, it is necessary to separate 
the useful information from the distributed and heterogeneous 
data [ 9 ]. Many algorithms can be used to preprocess the data prior 
to analysis. Time-series fi ltering, outlier detection, data cleaning 
algorithms, and data normalization algorithms are some of the 
applied mathematical algorithms depending on the bioinformatics 
applications [ 8 ]. 

 The cleaning stage aims at ensuring the quality of raw data by 
manipulations based on answering some important questions 
related to the delivery, gathering, and analysis of the data. A micro-
array processing procedure represents a data quality continuum 
example [ 10 ]. 

 The preprocessing stage involves the use of several concepts 
including (1)  management , which covers unifying the data content 
and format [ 11 ,  12 ], automating the data preprocessing, e.g., 
microarray spot analysis [ 13 ], and publishing the data, e.g., by 
using online sites like MedLine and optimizing the data quality; (2) 
 documentation , which aims at preprocessing the fi les in a way that 
allows their smooth usage and storage [ 14 ]; and (3)  metrics specifi -
cation  that should be carefully selected based on the data analysis, 
in a way that mostly adheres with the studied information [ 15 ,  16 ]. 

  Integration  techniques such as unit normalization and statistical 
aggregation fi nd common representation of related data gathered 
from different sources. The resulting integrated data forms a nor-
malized input that is less biased than the data in its original form.  

  Data points can have several dimensions where each dimension, or 
a subset of dimensions, relates to a specifi c feature of the data. 
Often, when the dimensionality of the dataset is high, some of the 
dimensions turn out to be redundant or irrelevant to the classifi ca-
tion problem. A  feature selection algorithm  aims at choosing the 
minimum number of features that have the highest discrimination 
power among the available features of a given dataset. Examples of 
features include hair color, height, and weight. Recursive feature 
elimination (RFE) and  relief  are examples of feature selection algo-
rithms [ 17 ]. In contrast,  feature extraction  builds up synthetic fea-
tures by combining and aggregating data in existing dimensions 
that do not necessarily belong to the original set of features. 

 Feature selection is important because it (1) helps to escape 
data over-fi tting, (2) helps to achieve faster models, and (3) might 
allow a better understanding of the real parameters that produced 
the data. Feature selection algorithms can be classifi ed into three 
classes: (1) fi lter methods, (2) wrapper methods, and (3) embed-
ded methods (for more details refer to [ 18 ]). These feature selec-
tion algorithms are used for sequence analysis (content analysis and 
signal analysis) [ 19 ,  20 ], microarray analysis [ 21 ], mass spectra 
analysis [ 22 ], single-nucleotide polymorphism analysis [ 23 ,  24 ], 
and medical text mining [ 25 ].  

2.1  Mining 
Methodologies

2.1.1  Data Cleaning, 
Preprocessing, and 
Integration

2.1.2  Feature Selection/
Extraction
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  Given a certain dataset and possibly relevant expert information, 
machine learning techniques produce sets of rules that allow judg-
ing new data points. For example, such techniques can identify the 
patterns within the data provided by the high-throughput omics 
techniques [ 5 ]. Machine learning approaches include supervised 
methods, unsupervised methods, and semi-supervised methods 
( see  also Chapter   16    ).

 ●     Supervised learning . Supervised learning methods include 
algorithms and techniques that use a categorized subset of the 
dataset to train a computational model. Each point in the 
training subset is labeled with a known category, also known as 
a class. The points along with their class labels are passed to the 
computational model in the training phase where the model 
modifi es its parameters to learn. Then, once the training phase 
is done, the computational model works as a classifi er that 
takes an input point and returns its class. 

 Known algorithms belonging to this category include 
 artifi cial neural networks, Bayesian classifi ers, genetic algorithms, 
support vector machines (SVMs), k-nearest neighbor (KNN)-
based classifi ers, and others [ 26 – 31 ].  

 ●    Clustering (unsupervised) learning . When labels and classes of 
data points are not available or not trusted, techniques such as 
clustering algorithms exist that group  similar  points together. 
Clustering algorithms identify a structure that fi ts the training 
data points and allow for the use of the structure later to test 
new data. In the past, hierarchical clustering was fi rstly used on 
microarray data to fi nd similar patterns of gene expression 
[ 32 ]. Then several other clustering techniques were used 
including simple ones such as the k-means algorithm and more 
advanced techniques such as self-organizing maps (SOM), 
SVMs, association rules, and general neural networks. 
GeneSpring and Spotfi re use the above-listed algorithms for 
microarray analysis [ 9 ]. These algorithms return clustered data 
with an estimated accuracy. These clustered data can be 
imported to network analysis, modeling, simulation, and visu-
alization tools [ 5 ]. 

 New approaches using clustering algorithms were recently 
introduced like biclustering [ 33 ] and p-clustering [ 34 ]. Both 
work on microarray data ( see   Note 1 ). Greedy algorithms, 
 spectral biclustering, column reordering, and 0–1 fractional 
 programming provide other approaches to biclustering. In addi-
tion, biclustering may also be found in a supervised form 
depending on the application.  

 ●    Semi-supervised learning . Semi-supervised methods generally 
make use of both labeled and unlabeled data in the training 
process. They are useful in cases where part of the label is 
known but contains pairwise constraints; i.e., points a and b 

2.1.3  Machine Learning
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are part of the same class. This aims to use all the available 
information to produce a more accurate model that represents 
the existing data for evaluation and prediction [ 8 ].     

  Networks or graphs represent a way of visualizing the relations 
among different components of the system model after applying 
the suitable algorithms to process the bioinformatics data. These 
networks include the visualization of metabolic network or path-
way, protein network, and genetic or gene regulatory network. 
Tuning and cross-validation of a system (using k-fold, leave-one- 
out, and holdout cross validation) are methods used for improving 
the accuracy of the model.   

  Some tools are generic in the sense that they contain the different 
mining methodologies and allow users to make use of them 
 optimally based on the application. Others can be classifi ed as 
knowledge discovery in databases (KDD) and model visualization 
tools and interactive visualization environments for integrating 
data mining and visualization processes [ 35 ]. In addition, Weka 
(  http://www.cs.waikato.ac.nz/ml/weka    ) [ 36 ] is one of the tools 
that contain a collection of machine learning algorithms to pre- 
process, classify, regress, cluster, and select features and visualize 
the mined bioinformatics data. Other computational bioinformat-
ics tools that include a combination of some of the above-listed 
methods are:

 ●    R (  http://www.r-project.org    ).  
 ●   Cytoscape package [ 37 ].  
 ●   Octave (  http://www.gnu.org/software/octave/    ).  
 ●   LibSVM and SVMlite, which are open-source packages used to 

implement SVM and can be used to distinguish between 
schizophrenia patients and controls [ 38 ].  

 ●   Matlab Arsenal: A Matlab toolbox that contains a large num-
ber of functions related to data clustering, feature selection, 
and extraction.      

3    Applications in Psychiatric Research 

 The algorithms and tools summarized above are incorporated 
into different domains in psychiatric research. These include (1) 
analysis of gene associations with disease and implication of pos-
sible pathways, (2) evaluation of gene regulation and identifi ca-
tion of co-regulated proteins, (3) assay of disease-associated 
protein profi le changes along with protein network analysis, and 
(4) a holistic integration of all the previously enumerated factors 
with the ultimate phenotypic manifestations of the disease (Fig.  1 ). 

2.1.4  Visualizing

2.2  Tools and 
Illustrations

Bioinformatics and Interacting Pathways
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In this section, we illustrate the use of bioinformatics at different 
levels of pathway and network analysis as relevant to psychiatric 
disorders. The aim of this application is to investigate possible 
pathways implicated in the pathogenesis of the disease as well as 
identify disease-related network regulatory disturbances. Both 
the implicated pathways and the major nodes in the identifi ed 
networks serve as putative targets for theragnostics applications.

    Genome-wide association studies (GWAS) are large-scale genetic 
studies involving the study of large numbers of genes or SNPs across 
extensive populations with a particular phenotype compared to con-
trols. This allows gene discovery associated with disease predisposi-
tion, severity, comorbidity, outcome, and relapse. Detected gene 
variations may be a single nucleotide (single-nucleotide polymor-
phisms or SNPs) or structural changes in the genome (copy number 
variants or CNVs). Along with the discovery of implicated SNPs and 
CNVs, GWAS analysis utilizes several tools and online databases of 
gene–gene interactions among involved loci [ 39 ]. This provides 
insight into the underlying pathophysiology of the disease. 

3.1  Pathway 
Analysis in Psychiatric 
Genomics

  Fig. 1    Systems biology hierarchy. A proposed differential layer of investigation in 
a systems biology approach: at the very basic later interaction of genes whose 
polymorphism confers susceptibility to disease is fi rst mapped; then the interac-
tion and co-regulation of the different mRNA transcripts of the genes are mapped 
and correlated with the third-layer proteomics interactions. This fi nal layer of 
protein–protein interaction network is considered to be the closest contributor to 
the phenotypic manifestations and variations       

 

Ali Alawieh et al.



163

 Several tools are available for the use of investigators in this 
fi eld such as the R & Bioconductor-associated packages 
(GWAStools, GenABEL, and others) or SNPranker [ 40 – 42 ]. 
These tools help analyze, display, clean, and stratify GWAS data 
and allow for pathway analysis based on online data on gene inter-
actions ( see  Chapters   4     and   5    ). Special packages have also been 
dedicated for regional visualization of GWAS results, such as 
LocusZoom [ 43 ], the UCSC Genome Graphs (  http://genome.
ucsc.edu/cgi-bin/hgGenome    ) [ 44 ], and the Integrative Genomics 
Viewer or IGV (  http://www.broadinstitute.org/igv/viewing_
gwas    ). The latter can generate Manhattan plots from different 
GWAS formats [ 45 ]. The increasing use of these tools and their 
incorporation into psychiatric research have led to the association 
of different pathways with putative disease pathogenesis. For 
instance, the GWAS done by the Schizophrenia Psychiatric GWAS 
Consortium used both PLINK, an R-based GWAS tool, as well as 
Haploview for haplotype analysis and visualization of results and 
discovered the association of fi ve new loci with schizophrenia [ 46 ]. 
A major discovery of the study was the implication of an SNP, 
rs1625579, in the intron of MIR137 gene which is a known regu-
lator of neuronal development and for whom four target loci had 
also genome-wide signifi cance. This was behind the implication of 
the MIR137 pathway of neuronal development in the pathogene-
sis of schizophrenia. Other signifi cant pathways include calcium 
signaling in bipolar disorder; cholesterol metabolism and the innate 
immune response in Alzheimer disease; and postsynaptic signaling 
in schizophrenia and bipolar disorder [ 47 ]. A review of CNV stud-
ies followed by comprehensive pathway analysis have shown enrich-
ment of specifi c genes in autism spectrum disorders related to 
pathways of cellular proliferation, projection and motility, GTPase/
Ras signaling, neuronal synaptic complex genes, and ubiquitin 
degradation genes [ 48 ]. 

 The main avenue of pathway analysis in genomics research 
depends on predetermined knowledge of gene function and gene 
interaction maps obtainable from online databases like Gene 
Ontology (  http://www.geneontology.org/    ), GeneNet (  http://
wwwmgs.bionet.nsc.ru/mgs/gnw/genenet/    ), and KEGG 
(  http://www.genome.jp/kegg/    ). Assisted with pathway and net-
work prediction tools like Ingenuity Pathway Analysis (IPA), those 
databases help to discover if disease-associated CNVs or SNPs can 
be associated with a physiological or a clinical phenotype (Fig.  2 ). 
For instance, Greenwood et al. used Collaborative Oncological 
Gene-environment Study (COGS) SNP chips to associate several 
SNPs with neurophysiological and neurocognitive endopheno-
types in schizophrenia [ 49 ]. Results showed 47 SNP–endopheno-
type associations, and the involved genes were mapped into 
implicated pathways using IPA. Involved pathways in the patho-
genesis of different endophenotypes include neurotransmitter 
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receptor signaling, cell signal transduction, amino acid metabo-
lism, and axonal guidance. Similarly, Ayalew et al. used a transla-
tional convergent functional genomics to prioritize genes involved 
in schizophrenia pathogenesis and identifi ed, using IPA, the 
involvement of brain development, myelination, cell adhesion, glu-
tamate receptor signaling, G-protein-coupled receptor signaling, 
and cAMP-mediated signaling in the key pathophysiology of 
schizophrenia [ 50 ].

   One major challenge when dealing with large genomics datas-
ets is their high dimensionality, which complicates the identifi ca-
tion of patterns and correlates within the data. To handle this 
problem, the HapMap project used  perfect proxy sets  or co-sets, 
which are sets of directly correlated SNPs, to elucidate 
 interindividual differences allowing for reconstructing cellular 
interaction networks and their association with functional states 
[ 51 ]. Eventually, this opens a realm of possibilities for disease 
 classifi cation based on variations that lead to the same functional 
outcome. However, this bottom-up approach continues to have 
limited applicability in psychiatric research.  

  In addition to SNPs and CNVs, a better insight into the gene 
involvement in psychiatric disease pathogenesis comes from the 
assessment of gene regulation that is measured by mRNA expression 

3.2  Pathway 
Analysis in Psychiatric 
Transcriptomics

  Fig. 2    Flow chart of genome–genome interaction analysis. Huge datasets obtained from genome-wide 
 association studies (GWAS) using sequence detection chips. Then, high-throughput data processing is used to 
clean and analyze the data using available online databases. An SNP hit list is identifi ed among the obtained 
datasets, and the relevant genes are recognized. Finally, genes are mapped by pathway and function using 
online ontology and gene interaction tools to determine pathways and networks associated with the disease       
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levels, namely, transcriptomics. Similar to genomics, the same 
 clustering and data mining, cleaning, visualization, and prediction 
algorithms are employed. The goal of using such algorithms is to 
identify deregulated genes in each condition and the direction of 
deregulation, in addition to identifying clusters of co-regulated pro-
teins and clusters of functionally related proteins. Eventually, a wealth 
of information can be obtained from these transcriptomics studies. 
Data management in transcriptomics follows a general sequence 
depicted in Fig.  3 . First, tools like R-based bioconductor are utilized 
to process microarray data and obtain the differential expression pro-
fi le. Then, genes can be clustered by biological function based on 
gene ontology or other gene-function databases or using tools that 
allow functional aggregation and network  visualization like GenMAPP 
(  http://www.genmapp.org    ). In addition, clustering based on expres-
sion levels can also be performed to allow visualization of co-regu-
lated genes using a dendrogram (Fig.  3 ).

   The work of Hakak et al. is used as an illustrative example [ 52 ]. 
The group fi rst performed a microarray analysis comparing post-
mortem dorsolateral prefrontal cortices of schizophrenia patients 
to control data. This yielded a set of 89 deregulated proteins that 
were mapped into different functions including myelination, plas-
ticity, GABA signaling, signal transduction, and others. Following 
that, they used a hierarchical clustering algorithm with average 

  Fig. 3    Transcriptomics process overview. Gene expression profi les are obtained through microarray studies; 
then data cleaning and analysis with the help of online databases enable a list of dysregulated genes to be 
obtained. This list can be used to identify the pathways implicated in the disease process through functional 
clustering or to form a dendrogram of clusters of co-regulated genes       
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linkage methods to detect clusters of genes with similar expression 
profi le. Results were displayed in a dendrogram and showed that 
genes involved in myelination are co-regulated, whereas they were 
found to be downregulated in schizophrenic patients. This sug-
gested demyelination as a possible player in the pathogenesis of the 
disease. Sequeira et al. further reviewed transcriptional profi ling in 
schizophrenia emphasizing all implicated pathways [ 53 ]. 

 In addition, other bioinformatics tools were used for phe-
nome–transcriptome association studies in which transcriptomics- 
associated pathways are symmetrically correlated with phenotypic 
features. An example of this is the study done by Gormanns et al. 
on both depression and anxiety transcriptomes [ 54 ]. Data mining 
of available experimental microarray data was performed to build 
the disease transcriptome through extraction of annotations from 
Gene Expression Omnibus (GEO) repository. Then, MMTx 
library mapping with manual validation was used to map transcrip-
tomic annotations to Unifi ed Medical Language System (UMLS) 
concepts of anxiety and depression ( see   Note 2 ). The GEO datas-
ets where the diseased and controls are signifi cantly different were 
considered for further analysis resulting in a gene list with fold 
changes in expression. The genes were mapped into a protein list 
using pathway studio and into disease-related pathways using 
KEGG. Pathways were further enriched, the results showed six 
datasets matching anxiety-like phenotypes and fi ve matching 
depression ones, and the relevant pathways were mapped. 

 In another example, Nakatani and colleagues performed wide 
genome expression analysis in bipolar disorder using samples from 
Brodmann’s area [ 55 ]. They used false discovery rate algorithms to 
analyze the microarray datasets while using GeneChip to assess 
direction of deregulation. Results were further validated by 
RT-PCR. In total, the study identifi ed 84 differentially regulated 
genes with their functions and then mapped them using IPA soft-
ware into three main networks: (1) cell growth and proliferation, 
(2) cell death, and (3) nervous system development [ 55 ].  

  Proteomics is one of the most heavily investigated fi elds because of the 
work undertaken for biomarker discovery and disease pathway eluci-
dation. In terms of relevance to psychiatry, proteomic studies start 
from assay of the differential protein expression between  disease and 
control specimen using one of the two main techniques: 2D-differential 
in-gel electrophoresis (2D-DiGE) or liquid chromatography- mass 
spectrometric (LC-MS) analysis. Differentially expressed spots are 
detected, and MS is used to identify the proteins by mining MS data-
bases like X! Tandem (  http://www.thegpm.org/TANDEM/    ) or 
using tools like protein prospector (  http://prospector.ucsf.edu/ 
prospector/mshome.htm    ). Identifi ed proteins are assigned into func-
tional classes and inter action networks using several tools including 
PRrotein Ontology (PRO—  http://www.obofoundry.org/cgi-bin/
detail.cgi?id=protein    ), IPA, MPPI (  http://mips.gsf.de/proj/ppi/    ), 

3.3  Pathway 
Analysis in Proteomics
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Reactome (  http://www.reactome.org/    ), and others. Examples of 
such applications in psychiatric disorders are numerous. In the follow-
ing, we highlight two studies using this approach. 

 Martins-de-Souza et al. used a nano-LC coupled to shotgun 
proteomics approach to detect differential expression of proteins in 
the prefrontal cortex of schizophrenic patients compared to con-
trols. Acquired lists from the MS spectra were sent to the BioTools 
software package for analysis and searched against the NCBI data-
base. The identifi ed proteins were then clustered into groups based 
on biological functions using the human protein reference database 
(HPRD—  http://www.hprd.org    ). Deregulated pathways subse-
quently identifi ed included signal transduction, cell communica-
tion, cell growth maintenance, and energy metabolism [ 56 ]. 

 In a similar approach, the proteomic profi le of a mouse model 
was studied looking at the anxiety phenotype [ 57 ]. Proteins iso-
lated from the synaptosome of mice cingulate cortices were 
detected by LC-tandem MS (LC-MS/MS). MS data were searched 
against International Protein Index mouse database using the 
BioWorks and SEQUEST software packages, KEGG was used to 
identify overrepresented pathways, and statistical pathway analysis 
was performed in R and visualized by Pathway Studio software. 
Among the different pathways, oxidative phosphorylation, meta-
bolic processes, and fatty acid metabolism were overrepresented 
[ 57 ]. The proteomic fi ndings were also correlated with the molec-
ular processes involved in oxidative stress in a comparative approach 
described in the following section.  

  Comparative omics is an integrative approach that links high- 
throughput data from several layers of biological organizations, 
most commonly transcriptomics, proteomics, and metabolomics. 
Using this strategy, changes in regulatory pathways at each level 
are correlated with relevant changes at a different level in an inves-
tigation that aims to understand how different components of the 
central dogma contribute to the overall disease manifestation. This 
also serves as a means to validate fi ndings at one level by demon-
strating the corresponding interactive pathway at different levels. 
To illustrate this approach, we use the study done by Prabakaren 
et al. demonstrating the involvement of mitochondrial dysfunction 
and oxidative stress in the pathogenesis of schizophrenia [ 58 ]. 
Similar approaches to the ones previously described were used to 
analyze and interpret proteomics, transcriptomics, and metabolo-
mics data. Results showed that half of the altered proteins obtained 
from prefrontal cortex samples were involved in oxidative stress and 
mitochondrial dysfunction. This protein alteration was at the same 
time associated with both cluster analysis of transcriptomic data 
showing similar association and relevant molecular metabolomics 
changes. Similarly, Filiou et al. used the same strategy to study an 
animal model of anxiety [ 57 ].   

3.4  Comparative 
Omics Approaches
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4    Conclusions 

 The understanding of interacting pathways in neuropsychiatric 
 disorders is facilitated and made more accurate with the use of bio-
informatics tools. A fi rst step in the study of such disorders is the 
extraction and mathematical analysis of the massive amount of data 
engendered, a method referred to as  data mining . Data mining 
methodologies follow a certain pattern, starting with a data clean-
ing step where the raw data are validated. This is followed by a data 
preprocessing step where the data are unifi ed, automated, pub-
lished, optimized, documented, and metrics specifi ed. Finally, the 
integration step consists in normalizing the data, making them less 
biased than the original sets. In parallel, feature selection and 
extraction algorithms enable the elimination of any redundant or 
irrelevant feature of the disease and aggregate the data into differ-
ent dimensions compared to the starting ones, respectively. 

 Different machine learning approaches can also be used. The 
 supervised learning approach  matches each data point to its corre-
sponding class or category. The  unsupervised/clustering learning 
approach  classifi es  similar  points that could not be individually cat-
egorized.  Semi-supervised learning approach  makes use of labeled 
and unlabeled data so that points falling under the same category 
but with pairwise constraints become apparent. However, all these 
methodologies and algorithms tactics should be assembled into 
graphs and networks to visualize better the relation among the dif-
ferent components of the system model. Most common networks 
include metabolic network or pathway, protein network, and genetic 
or gene regulatory network. In addition, some tools referred to as 
 generic  tools enfold data mining and visualization tools altogether. 

 Most importantly, these bioinformatics tools allow us to dis-
cover possible pathways implicated in the pathogenesis of psychiat-
ric disorders and to identify disease-cross-related networks. Indeed, 
molecular and clinical psychiatry can be unveiled via bioinformatics 
tools that make use of data on psychiatric genomics, transcrip-
tomics, proteomics, and comparative omics approaches. In  psychi-
atric genomics , large-scale genetic analyses provided by GWAS 
along with disease-involved SNPs and CNVs give insight into 
pathways involving gene–gene interactions and so help in the 
understanding of the pathophysiology of the disease. In particular, 
LocusZoom, UCSC Genome Graphs, and IGV are dedicated for 
regional visualization of GWAS results. In addition, knowledge of 
gene function and gene interaction maps is obtained from online 
databases such as Gene Ontology, GeneNet, and KEGG. IPA is 
another bioinformatics tool that helps discover if disease-associated 
CNVs or SNPs can be associated with physiological or clinical psy-
chiatric phenotypes. Still another promising tool to analyze large 
genomics data is the HapMap project. This uses  perfect proxy sets  or 
co-sets that are made of directly correlated SNPs, so that it becomes 
feasible to reconstruct cellular interaction networks and associate 
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them with functional states. Although this tool offers the possibility 
to classify disease variations with same functional outcome, its 
application remains limited in psychiatric research. 

  Psychiatric transcriptomics  allows the assessment of gene regu-
lation by measuring mRNA expression levels. Interestingly, gene 
identifi cation in this category is done in a systematic way. First 
microarray data are processed via an R-based bioconductor. 
Second, genes are clustered by biological function via gene ontol-
ogy databases and networks can then be visualized through 
GenMAPP. Specifi cally, a dendrogram can be used to visualize co- 
regulated genes. Still under the fi eld of psychiatric transcriptomics, 
phenome–transcriptome association studies can be performed. In 
these studies, transcriptomics pathways are symmetrically corre-
lated with phenotypic features of psychiatric disorders. 

 The applications of  psychiatric proteomics  are many, which is not 
surprising since proteomics provides a core approach for biomarker 
discovery and disease pathway elucidation. Psychiatric proteomics 
studies all follow a common trend, starting with the assay of differen-
tial protein expression between disease and control specimen. This is 
done using either the 2D-DiGE or the LC-MS technique. Once the 
differentially expressed spots/proteins are detected and identifi ed by 
MS, they are assigned into functional classes and interaction networks 
using several tools including PRO, IPA, MPPI, and Reactome. Then 
they can be visualized through Pathway Studio software. 

 Finally,  psychiatric comparative omics  approaches link several 
layers of biological organizations, most commonly transcriptomics, 
proteomics, and metabolomics. Noteworthy, this approach serves 
to validate the fi ndings of one level by demonstrating the occur-
rence of similar pathways at different levels. Comparative omics 
are also necessary to understand how different components of the 
central dogma contribute to the overall disease manifestation. 

 To sum up, the analysis of psychiatric disorders such as schizo-
phrenia, autism, Alzheimer disease, and bipolar disorders among 
others is feasible and provides accurate results when applying bioin-
formatics tools. These novel approaches have the potential to allow 
a better pathway analysis and visualization of the pathophysiology 
of psychiatric disorders and, therefore, to help unravel and exploit 
the existing heterogeneity in biology of such conditions, potentially 
leading to a more effective targeted clinical interventions.  

5    Notes 
     1.    In the following are listed examples where clustering methods 

have used microarray gene expression data to cluster genes 
enabling each entry in the gene expression dataset to represent 
a gene feature:

   (a)    Row clustering was used to cluster genes having similar 
fl uctuating behavior in all conditions [ 59 ]. This application 
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Chapter 10

Pathogen Genome Bioinformatics

Vitali Sintchenko and Michael P.V. Roper

Abstract

Recent advances in DNA sequencing technology have made the whole-genome sequencing of pathogens 
in a clinically relevant turn-around time both technically and economically feasible. The DNA sequencing 
of pathogens with epidemic potential offers new and exciting opportunities for high-resolution public 
health surveillance. This chapter outlines major methods and bioinformatics tools for pathogen genome 
characterization, the identification of infectious disease clusters, as well as for genomics-guided biosurveil-
lance. Existing challenges are also considered.

Key words Disease clusters, Infectious disease bioinformatics, Microbial genomics, Public health 
surveillance

Abbreviations

ML Maximum likelihood
NGS Next-generation sequencing
PCA Principal component analysis
SNPs Single nucleotide polymorphisms
WGS Whole-genome sequencing

1 Introduction

The number of microbial threats—in the form of newly identified 
pathogens, infections crossing the species barrier to people, dis-
eases and vectors adapting to new environments, and microorgan-
isms appearing in more virulent forms—has multiplied to an 
unprecedented degree in recent years. Furthermore, the epidemi-
ology of well-known infectious diseases has been changing due to 
the globalization of trade, increased international travel and migra-
tion, and in response to immunization campaigns. This evolving 
epidemiology presents new challenges, both in terms of the under-
standing and monitoring of determinants of infections, and the 
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implementation of appropriate prevention measures. There is an 
urgent need to strengthen existing biosurveillance systems that 
remain vulnerable to the incomplete and delayed reporting of pub-
lic health threats.

It is helpful to consider the flow of information between diag-
nostic laboratories, clinicians, and public health professionals in 
order to appreciate the added value of bioinformatics approaches 
to communicable disease management and control. Laboratories, 
clinicians, and public health officers are requestors and receivers 
of information and are involved in the analysis of multiple lines of 
evidence both independently and collectively (Fig. 1). The synthe-
sis of these lines of evidence is enabled and supported by bioinfor-
matics tools. Broadly, these operations can be divided into three 
consecutive stages: (1) pathogen identification and  characterization; 
(2) detection of disease clusters; and (3) communicable disease 
monitoring and control (Fig. 1).

We believe that recent advances in DNA sequencing technol-
ogy have made it technically and economically feasible to complete 
the whole-genome sequencing (WGS) of pathogens of public 
health significance in a clinically relevant timeframe [1, 2]. 

Patient A

Clinician 
X

Public 
Health 
Officer

Signs & Symptoms
of Disease

Laboratory 
Test Orders

Outbreak 
Investigation

Potential
Epidemiological

Links

Epidemiological 
Follow-up

Pathogen 1
From Patient A

Public Health
Notification

Public Health
Registry

Patient B

Signs & Symptoms
of Disease

Clinician 
Y

Pathogen 2
From Patient B

Cluster
Identification

Pathogens 
1 & 2 are
related

Pathogen 
identification
& characterisation

Detection of
disease
clusters

Communicable disease
surveillance and 
decision support

Fig. 1 Summary of three main elements of microbiology laboratory-based biosurveillance. In general, it starts 
with the initial presentation of patients to different clinicians and the referral of appropriate specimens to 
diagnostic laboratories

Vitali Sintchenko and Michael P.V. Roper



175

DNA sequencing offers important advantages over other methods 
of pathogen characterization. First, it provides a nearly universal 
solution with the potential of high throughput and quality. The 
process of genome sequencing is essentially the same regardless of 
the nature of a pathogen, and different microorganisms could be 
processed simultaneously in a single sequencing run. This means 
that WGS could allow economies of scale at the regional or national 
level. Furthermore, a single WGS run has the potential to replace 
multiple traditional tests carried out on the same isolate at a refer-
ence laboratory while providing equivalent or superior quality 
information [1, 3]. DNA sequences also represent an agnostic and 
likely future-proof data format amenable to exchange between lab-
oratories and to comparison at national and international levels. 
Finally, the potential utility of WGS for public health surveillance 
has been supported by the rapid growth of public databases of ref-
erence genomes [2, 4]. Not surprisingly, researchers and public 
health professionals have turned their attention to genomics- 
guided approaches for biosurveillance [5]. Virologists have pio-
neered the use of WGS for pathogen characterization, targeting 
viral genomes small enough for WGS with traditional Sanger 
sequencing. This chapter, however, is focused on methods and 
tools for the genomics-guided biosurveillance of bacterial patho-
gens using DNA sequences.

The recovery of pathogens with epidemic potential requires 
notification to a public health registry which often leads to an 
investigation of epidemiological sources. In our scenario, patho-
gens 1 and 2 appeared to belong to the same species. When evi-
dence suggests potential epidemiological links between patients A 
and B that are not apparent to different clinicians caring for these 
patients, an outbreak investigation is initiated and the laboratory is 
requested to undertake the clustering of pathogens. This assess-
ment may progress to enhanced surveillance of the disease caused 
by the pathogen.

2 Materials

●● Velvet (www.ebi.ac.uk/~zerbino/velvet/) and Spades (http://
bioinf.spbau.ru/spades/) are de novo assembly programs.

●● BWA and samtools (http://samtools.sourceforge.net/) are 
used for the alignment and calling of SNPs and small indels.

●● Artemis (www.sanger.ac.uk/resources/software/artemis/) is 
a free genome browser and annotation tool that allows the 
visualization of sequence features.

●● Prokka (www.vicbioinformatics.com/software.prokka.shtml) 
is an automatic microbial genome annotation tool.

2.1 Software Tools 
Commonly Used 
and Freely Available 
for Pathogen 
Identification 
and Characterization

Pathogen Genome Informatics
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●● ACT [Artemis Comparison Tool] (www.sanger.ac.uk/
resources/software/act/) is a user-friendly tool for the pair-
wise comparison of two or more DNA sequences. It can be 
used to identify and analyze regions of similarity and difference 
between genomes in the context of the entire sequence and 
their annotation.

●● MEGA (www.megasotware.net/) is an integrated package that 
estimates phylogenetic trees by a variety of methods, including 
Neighbor Joining, Maximum Parsimony, and Maximum 
Likelihood [6].

●● BEAST (http://beast.bio.ed.ac.uk/) is a tool for the statistical 
phylogenetic analysis of molecular sequences in a Bayesian 
framework. It can be used to estimate phylogenies and test 
evolutionary hypotheses [7].

●● RAXml (www.sfu.ca/biology/staff/dc/raxml/) is a tool for 
the statistical phylogenetic analysis of molecular sequences in 
the frequentist framework. It can be used to estimate phylog-
enies and test evolutionary hypotheses.

●● Path-O-Gen (http://tree.bio.ed.ac.uk/software/pathogen/) 
is a program to estimate genome mutation rates by root-to-tip 
analysis. It can read and analyze contemporaneous trees (where 
all sequences have been collected at the same time) and dated- 
tip trees (where sequences have been collected at different 
times). It is useful for testing the molecular-clock hypothesis. 
It can also root the tree at the position that is likely to be the 
most compatible with the molecular clock assumption.

●● PathSeq (www.broadinstitute.org/software/pathseq/) can be 
used for the analysis of the non-host portion of sequencing 
data. It enables the detection of both known and novel patho-
gens as well as any resident microflora [8].

●● Galaxy (http://galaxyproject.org/) is a free, extensible, open- 
source, web-based framework that seeks to package together a 
large number of commonly used informatics tools, including, 
but not limited to, some of those listed above.

●● SplitsTree (www.splitstree.org/) is a tool that is primarily use-
ful for the estimation of phylogenetic networks from molecular 
sequence data. For this purpose, the program implements the 
split decomposition, neighbor-net, consensus network, and 
super-networks methods.

●● WEKA (The Waikato Environment for Knowledge Analysis, 
downloadable from www.cs.waikato.ac.nz/ml/weka/) is a 
collection of machine learning algorithms for data mining. 
It also offers tools for data preprocessing, classification, regres-
sion, clustering, association rules, and visualization.

2.2 Software 
Packages Commonly 
Used and Freely 
Available 
for Identifying 
Possible Infectious 
Disease Clusters by 
Genomic Comparison

2.3 Generic Software 
Packages Helpful for 
Analyzing Microbial 
Genomes
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3 Methods

The first steps in genomics guided biosurveillance and infectious 
disease control are laboratory based. DNA samples must be pre-
pared and then sequenced. There are a number of choices of 
benchtop sequencing platforms, e.g., Illumina’s MiSeq and Life 
Technology’s Ion Torrent, each with its relative merits. Presently, 
these platforms generate libraries of reads (DNA sequences) that 
contain large numbers (typically ~106) of short (usually ≤500 bp) 
sequences of DNA of variable, but reasonably well-characterized, 
quality. These sequences can be represented in different file for-
mats (see Note 1). The task of assembly has then been likened to 
accurately reconstructing a published Dickens novel based on mil-
lions of copies of overlapping sentence fragments (with spelling 
errors) possibly with missing pages. These libraries are then sub-
jected to multiple analytical steps to identify and characterize the 
pathogen (Fig. 2) identify infectious disease clusters, and for 
genomics-guided biosurveillance (Fig. 1).

Ideally, all genomes would be constructed de novo, i.e., with-
out the use of a reference genome to guide the assembly, as this 
introduces the assumption that the genome of an isolate has, in a 
sense, already been identified. Of course this is part of the task of 
genomics guided biosurveillance as we have characterized it. At this 
stage, however, this is a nontrivial task [9], so, for reasons of prac-
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ing sequencing data from an analyzer and assessing the data quality
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ticality, alignment to reference genomes is most commonly used to 
identify discriminatory features, e.g., SNPs, small indels, or gene 
alleles, useful for the stated purposes of this chapter [10].

Bioinformatics approaches for genome-wide analyses of patho-
gens are highly varied across the microbiology community, with an 
abundance of tools continually being developed, refined, and pack-
aged together as software pipelines. There is an urgent need for 
national and international standards to be established due to the 
differing results produced by the various tools and the different 
ways that errors are accounted for at each analytic step.

Parts of the analytic process can be and should be automated—
for the purposes of scientific reproducibility and economic effi-
ciency. To do this, laboratories can either purchase pre-packaged 
commercial pipelines or implement in-house solutions, typically 
using open-source software. The relative merits of these two 
approaches are frequently argued and are outside the scope of this 
chapter (see Note 2 for a brief discussion).

The advances in WGS have enabled computational pathogen iden-
tification in biological samples independently of traditional micro-
bial cultures. For example, sequence-based computational 
subtraction identifies novel pathogen-derived DNA sequences in 
infected tissues after subtracting human DNA sequences [8]. The 
method starts with a subtractive phase in which input reads are 
subtracted by alignment to human reference sequences. This is fol-
lowed by an analytic phase in which the remaining reads are aligned 
to microbial reference sequences and/or assembled de novo.

WGS might be the ultimate tool in clinical microbiological typ-
ing. Freeware such as SAMtoolscan identify single nucleotide poly-
morphisms (SNPs) and some other mutations. The evolutionary 
history and relatedness of isolates can be estimated using tools such 
as Path-O-Gen (http://tree.bio.ed.ac.uk/software/ pathogen/) 
and the other software packages listed in Subheading 2. Emerging 
evidence suggests that WGS-based identification and characteriza-
tion of microbial pathogens improves monitoring for emerging 
clones or new pathogens and the resolution of laboratory- based 
surveillance [11, 12]. Specifically, this technology enhances the 
tracing of disease transmission in community and hospital settings 
through the identification of likely covert clusters as well as through 
the estimation of transmission events within putative outbreaks and 
by estimating specific source attribution with hypothesized geo-
graphical structure among related isolates. Recent proof-of-concept 
studies have demonstrated the superiority of WGS to current typing 
methods [13–15]. However, the vast majority of genomic data are 
currently medically not actionable because WGS technology is still 
maturing, and its cost- effectiveness for public health surveillance 
and laboratory workflow requires further assessment [1].

3.1 Pathogen 
Identification and 
Characterization

3.1.1 Phenotype- 
Independent Identification 
of Pathogens
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Reference bacterial genomes can be identified by querying  available 
annotated genome sequences in the NCBI GenBank, typically 
using BLAST alignments and utilizing them to select the most 
appropriate reference sequence. It is important to note, however, 
that the genome sequences in the NCBI GenBank are not error 
free, as is evidenced by the relatively frequent issuing of updated 
versions for sequences.

The term cluster is context specific. For example, it can describe a 
set of potentially related sequences, or it can refer to patients with 
a disease grouped together by a common epidemiological link. 
There are two possible scenarios in which informatics tools are 
gainfully applied to identify disease clusters. The first is when the 
initial public health investigation points out an epidemiological 
link between patients, and the laboratory is requested to ascertain 
the similarity between microbial isolates obtained from these 
patients to lend credence to an existing epidemiological hypothe-
sis. Alternatively, the laboratory may retrospectively examine 
microbial genotypes in order to identify clusters of genomically 
similar pathogens recovered from patients with a particular infec-
tious disease. The recovery of such microorganisms aids in the 
identification of disease clusters. It provides quite strong evidence 
that the patients whose isolates are part of the genotyping cluster 
should be linked epidemiologically, e.g., share a common source of 
infection. Such analysis can be conducted prior to epidemiological 
follow-up. Ideally, genotyping clusters and clusters of patients 
defined by epidemiological links should coincide and overlap in 
time and space. However, this is not necessarily the case and cer-
tain assumptions must be satisfied for this to hold. The following 
subsections outline the main concepts and methods of assessing 
the similarity between microbial genomes. There are a number of 
methods available for determining the extent to which pathogens 
are genetically related. Arguably, this is best done by estimating a 
phylogeny from the available sequencing data. Nevertheless, the 
significant impact of genetic recombination on the evolution of 
bacteria should not be underestimated. Finally, even under the 
many simplifying assumptions made, phylogenetic analysis is very 
computationally intensive.

In order to assess the similarity between genes or genomes, it is 
customary to place a numerical value on pairs of observations, 
which satisfies certain simple constraints so that we can sensibly use 
the term distance. The choice of observational unit is of course 
important as is the choice of how we measure distance or similarity. 
As a simplistic but concrete example, let us ask the question how 
similar two isolates are with respect to antibiotic drug resistance. 
We will take as our observational units the number of SNPs relative 
to a given reference genome at two loci of the genomes of two 

3.1.2 Selecting 
Reference Genomes

3.2 Detection  
of Disease Clusters

3.2.1 Assessing 
Similarity Between Genes 
and Genomes
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isolates of a known pathogen as observations. We will let loci 1 be 
in a gene that codes for antibiotic drug resistance and loci 2 be in 
a stable area of the genome. We will denote these observations by 
x1 and x2 and let x1 = (0,0) and x2 = (1,1) where (0,0) means that 
observation 1 has no SNPs at loci 1 and no SNPs at loci 2, and 
similarly for observation 2. For the question at hand, x1 and x2 
should be considered to be identical and therefore have distance 0. 
Now, the most commonly used measure of distance is Euclidean 
distance. In our example, we have that the Euclidean distance 

between x1 and x2 is 0 1 0 1 22 2−( ) + −( ) = . Note that this dis-
tance gives equal weight (significance) to each component of each 
observation, and, as in the case in point, this may be inappropriate. 
Another frequently used measure of distance is the city-block or 
Manhattan distance. In our example, this is |0 − 1| + |0 − 1| = 2. 
Observe that the distances give different answers to our question 
both of which are clearly incorrect. This simple example serves to 
illustrate that the choice of units and distance function should be 
made in a way that is appropriate to the question at hand.

There are various methods of cluster analysis. A popular technique 
is agglomerative hierarchical clustering, which we will briefly sketch 
out here. Such methods do not require the number of clusters to 
be determined in advance and employ various measures of distance 
between clusters, for example, minimum distance, maximum dis-
tance, or distance between centroids. These methods initially treat 
each single observation as a distinct cluster. The clusters are then 
aggregated during subsequent iterations, deriving clusters of 
increasingly larger size. The algorithm is stopped when a single 
cluster including all the observations is reached. The mergers can 
be graphically represented as a tree, indicating on one axis the dis-
tance between clusters (Fig. 3a, b) and on the other axis the termi-
nal nodes of the (weighted) tree (a tree is a simple structure 
composed of nodes and branches with additional constraints that 
make it a special case of the more general object known as a graph, 
see Note 3). The interpretation of the nodes and branch lengths is 
context dependent. In the case of phylogenetic trees, the interpre-
tation of internal nodes is typically of hypothetical ancestors, and 
the branch lengths represent an estimate of time.

The technique of cluster analysis is, however, a general one that 
can be applied to many problems of interest. Now, the simple exam-
ple considered above already serves to illustrate that there are subtle-
ties involved here as well. How many (weighted) trees are possible? 
If we just consider the number of nodes, then there is clearly just one 
possible tree. However, if we also take into account branch lengths, 
then under most reasonable models of length there are already an 
infinite number of trees even in this simple case (see Note 3). There 
are other possible complications that may arise, but we will not 

3.2.2 Clustering  
of Pathogens Using 
Similarity Metrics
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 discuss them here. As above, the choice of a clustering method 
should be tailored to the specific question at hand. In addition, clus-
ter analysis and the resulting dendrograms should be clearly distin-
guished from phylogenetic trees.

Rooted trees or dendrograms always provide a hierarchy of clus-
ters. Phylogenetic trees have a particular interpretation. Statistical 
phylogenetics is based on explicit models of biological evolution 
which therefore allow for the more sophisticated analyses required 
to test hypotheses regarding evolutionary relationships between 
isolates. The evolutionary relationships of gene or protein 
sequences to their hypothesized ancestral sequences are repre-
sented by phylogenetic trees. Phylogenetic trees provide an esti-
mate of the evolutionary relationship between isolates typically 
including estimates of their divergence times (see Note 3). The 
interior nodes of the tree represent hypothetical ancestors. Trees 
can be rooted, with a single ancestral organism implied, or 
unrooted, with no clear origin. For the purposes of the current 
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chapter, rooted trees are preferred. To produce a rooted tree, a 
known sequence can be added as an outlier, in order to anchor or 
root the tree. However, this introduces a number of assumptions 
that may not always be appropriate.

There has been recent progress in linking methods of phyloge-
netic analysis with epidemiological modeling. This new area is 
termed phylodynamics. The motivating idea is that if the evolution-
ary rate of change of a pathogen is rapid, then the contact structure 
should be able to be inferred from genetic information (Fig. 3). 
As is always the case in statistics, the sampling scheme and sample 
size is of great importance. BEAST and associated packages  provide 
a flexible framework for such analyses [7]. Resulting trees can 
be spatially reconstructed with SPREAD [16]. Such visualization 
assists in inspection of key evolutionary changes in a geographical 
context and includes interactive exploration in the time dimension 
as well as with virtual globe software, e.g., Google Earth [16].

A variety of algorithms are used to estimate the relationship 
between sequences from a number of observations. The most pop-
ular distance estimation methods are UPGMA (Unweighted Pair- 
Group Method with Arithmetic Mean) and Neighbor Joining. 
Both convert aligned sequences into a matrix of pair-wise distances 
and compute branching order and branch lengths. UPGMA has 
been used in microbial epidemiology, however, several assump-
tions of its algorithm make it inappropriate. For example, the 
assumption of a constant rate of evolution is likely to be incorrect. 
Neighbor Joining does not construct clusters but directly calcu-
lates distances to internal nodes. In contrast, character-based 
methods such as Maximum Parsimony, Maximum Likelihood (ML) 
and Bayesian Inference systematically compare characters within 
each column in multiple alignments using every data point, not 
just a distance matrix. In essence, the Maximum Parsimony method 
looks for the trees with the minimum number of changes. The ML 
method chooses the tree that maximizes the likelihood of observ-
ing the data and provides estimates of the likelihood of the result-
ing tree or trees (subject to the constraint that it is not always 
possible to actually maximize this quantity). Bayesian Inference 
produces a set of trees with posterior probabilities. Neighbor 
Joining and ML phylogenies are often investigated using MEGA. 
Node reliability is typically assessed using a technique known as 
bootstrapping. A variety of principled methods are available for 
assessing the relative merits of estimated phylogenies. These 
include the Akaike Information Criteria and Bayes Factors [17].

A significant limitation of these methods is computational cost 
as they are essentially computationally intractable. Phylogenetic 
estimation solves this challenge by employing a number of heuris-
tics and other methods of approximation. Therefore, even the best 

3.2.4 Selecting Methods 
for Analysis
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phylogeny estimations by maximum parsimony cannot guarantee 
the production of the true optimal solution, even when algorithms 
are run for a very long time.

The most successful clones of pathogens can be inferred from phy-
logenetic trees. Methods derived from Principal Component 
Analysis (PCA) (see Note 4) and model-based algorithms are com-
monly used to identify microbial population structures and to 
assign isolates to their population of origin. Both methods have 
limitations in their prior assumptions, in their capacity to handle 
large-scale genomic data and in interpreting analysis outputs.

Recently, network theory has been successfully applied to 
examine fine-scale population structures. Network methods subdi-
vide the population into a network of nodes or community struc-
tures based on the density of the connections within and between 
different subgroups, which provides a means to identify and visual-
ize the structure of the entire population. A median-joining net-
work can be constructed with NETWORK (www.fluxus-engineering.
com) and used to infer intraspecific phylogenies from SNP-based 
matrices where small genetic distances are expected.

Concluding whether or not microorganisms are epidemiologically 
related remains a challenge. In practice, the relevant information 
about respective hosts, which may include such variables as age, sex, 
race, occupation, marital status, previous diseases, and contact 
structure, is often unavailable. Contact structure is clearly of great 
importance in determining epidemiological relatedness with respect 
to infectious diseases. It is important to model contact structure. 
Modeling of infectious disease dynamics is increasingly being done 
using social network theory [13]. Analysis of social network models 
can be much more difficult than of traditional deterministic models. 
However, this level of complexity is of importance on the short 
time scales, and in the small population sizes that are often of con-
cern when considering infectious disease clusters.

The clustering of isolates has enabled a shift from a predomi-
nantly retrospective confirmation of epidemiological hypotheses to 
prospective laboratory based surveillance. Such prospective 
microbial- genomics guided surveillance and monitoring of infec-
tious diseases demands the highest possible resolution and timeli-
ness. Therefore, bioinformatics pipelines have to be designed and 
implemented to support these major requirements.

The dynamics of bacterial spread can be explored using the models 
implemented in BEAST [7]. Constant bacterial population size, expo-
nential growth, and molecular clock of genome-wide changes can be 
used as variables in these models. For each analysis, simulations should 
be run for 100 million generations with sampling every 10,000th gen-
eration (these figures are intended as a general guide only).

3.2.5 Identifying 
Successful Clones 
of Pathogens 
from Phylogenies

3.3 Communicable 
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Genomes of many pathogens appear to be fairly clonal and 
stable over time. These features suggest that patterns of accumulat-
ing SNPs can be used as a marker of microevolution within a clone. 
Furthermore, this evolution by descent offers the potential to use 
sequencing data as an indicator of the direction of transmission 
within an outbreak [18]. The directionality of transmission can be 
inferred through the comparison of genomic changes in isolates 
recovered from patients that belong to putative epidemiological 
clusters. Figure 4 illustrates this concept with four hypothetical 
short sequences representing four isolates of the same species from 
four hypothetical individual cases with a clinical disease and the 
potential for transmission. The approach has been validated for 
outbreaks of pulmonary tuberculosis when the topology of a phy-
logenetic tree suggested the existence of a common source of 
 secondary cases and the secondary cases corresponded to the root 
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of a phylogenetic tree, accurately predicting the existence of a 
common source case that was sequenced at a later date [13, 19]. 
However, this approach is based on several assumptions regarding 
the evolution of pathogens, nature of infectious diseases transmis-
sion, and technical capacity of detecting mutations.

The hypothesis of metapopulation structure, i.e., existence of dif-
ferent bacterial subpopulations in distinct geographical locations 
such as hospitals or communities, can be tested with a modified 
version of the Slatkin and Madison test [20]. The bacterial gene 
flow among different hospitals can be traced using the state changes 
and stasis tool (MacClade software), which counts the number of 
changes in a tree for each pair-wise character state and reconstructs 
the maximum parsimony of the ancestral characters. Subpopulations 
of pathogens are often visualized with spanning trees or connected 
graphs without cycles that reach out to or span all vertices. When 
represented as a connected graph with the least total weight, this 
estimated tree is called a minimum spanning tree (see Note 3). 
Figure 5 illustrates the process of the representation of a set of 
microbial profiles, e.g., obtained from a variable tandem repeat 
genomic typing, with a minimum spanning tree starting with the 
assessment of a number of different alleles and closing with the 
assignment of clonal complexes to nodes with the highest number 
of isolates. We argue that the Manhattan distance is a more appro-
priate option than Euclidian distance to measure the similarity of 
genomic profiles based on variable tandem repeats in multiple 
independent loci across a genome.

3.3.3 Examining 
Microbial Subpopulations 
in Hospitals 
and Community Setting

Step 1: Assess number of different alleles Step 2: Create a distance matrix

Isolates Allele 1 Allele 2 Allele 3 Allele 4 Allele 5

A 3 4 7 0 523

B 3 5 7 0 523

C 3 4 8 0 523

D 3 5 9 1 523

E 3 4 7 0 523

A B C D E

A 0

B 1 0

C 1 2 0

D 3 2 3 0

E 0 1 1 3 0

C

D B
12

1

Step 3: Translate distance into treeStep 4: Assign clonal complexes

A,EA,EBD

C

1

1

2
BD

Fig. 5 Representation of microbial profiles of five isolates with a minimum spanning tree
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Most spatial and temporal cluster definitions satisfy two important 
properties. First, they provide a unique way of clustering cases that 
is independent of the order in which the isolates are considered. 
This property guarantees that any two cases assigned to a cluster at 
a given time will remain in one cluster in the presence of additional 
cases. This makes it possible to search, retrospectively, for clusters 
(for given parameters N, t, and d) in historical data, compute the 
number of clusters, and determine how early they would have been 
detected, prospectively. In this way, one can adjust future values of 
N, t, and d according to prospective surveillance needs and the 
availability of public health resources. Algorithms that implement 
the working definitions of outbreaks often have three steps [21]:

 1. Compute temporal and/or spatial distance of each new isolate 
with existing same-genotype isolates.

 2. (a) If an existing isolate is found for which temporal and/or 
spatial distance is smaller or equal to t and/or d then the new 
isolate joins the set of this existing isolate. (b) If more than one 
isolate is found for which temporal and/or spatial distance is 
smaller or equal to t and/or d and they belong to different sets 
then the sets merge into one. (c) When no isolates have been 
found for which temporal and/or spatial distance is smaller or 
equal to t and/or d then the new isolate forms a new set.

 3. A set becomes a cluster the moment it reaches N or more 
isolates.

The performance of these outbreak definitions in a prospective 
surveillance system can be tested by estimating how long it would 
take to detect each cluster in real time using a given outbreak defini-
tion. Following the algorithm described above, the detection date 
of an outbreak is simply the date at which a set of same genotype 
isolates that fulfil the appropriate spatiotemporal restrictions reaches 
N or more isolates and becomes a cluster (step 3) [21]. Figure 6 
provides an example of the cluster definition performance. It com-
pares three definitions, i.e., using 2, 4, and 6 isolates with indistin-
guishable genotypes recovered from patients who were getting ill in 
a comparable timeframe. The findings illustrate that these defini-
tions perform similarly and offer the detection of at least 60 % of 
clusters of a disease within the first half of the cluster duration [21].

An alternative and more complex way to account for time and 
space dependencies within a set of disease counts (and potentially 
within a genotyping cluster) is to use a statistical method such as 
the space-time permutation scan statistic [22]. In this method, a 
cluster is defined as the region in space and time where the prob-
ability of an incident case occurring is higher inside than outside. 
Expected values are estimated from existing counts (for a given day 
and location the expected counts are taken to be proportional to 

3.3.4 Assessing 
the Cluster Definition 
and Its Performance

3.3.5 Spatial and 
Temporal Clustering
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all the cases that occurred in that location multiplied by all the 
cases that occurred in that day).

Scan statistic has been one of the most popular methods for 
spatiotemporal analysis in both retrospective and prospective cases. 
Scan statistics were originally developed to test for spatial clusters. 
In the spatial case, scan statistics generally impose a circular win-
dow on the map under study and let the center of the circle move 
over the area so at different positions the window includes differ-
ent sets of neighboring cases. The analysis is repeated for different 
sizes of circular windows. Conditioning on the observed total 
number of cases (N), the spatial scan statistic S is defined as the 
generalized maximum likelihood ratio over all possible circles Z. 
The algorithm maximizes the generalized likelihood ratio over all 
the circles and eventually identifies the circle that constitutes the 
most likely cluster. The method has been extended to a spatiotem-
poral one to enable prospective data analysis. In this scenario, 
instead of a circular window in two dimensions, the space-time 
scan statistic uses a cylindrical window. The base of the cylinder 
represents geographical data, while height represents time [22].

The diversity and systematic heterogeneity of biological (in vitro 
and in vivo observations) and computational data require novel 
approaches to data synthesis. There are many strategies for data 
integration that employ statistical or mathematical models [23]. 

3.3.6 Data 
Transformation  
and Synthesis
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Fig. 6 Percentage of genotyping clusters as a function of their detection time 
(expressed as a fraction of cluster duration). Detection of spatiotemporal geno-
typing clusters with (t, d) = (no limit, no limit) for three different cluster size defi-
nitions (N): N = 2, i.e., at least two cases with undistinguishable microbial 
genotypes (solid line), N = 4 (dashed line), and N = 6 (dotted line). Modified from 
Gallego et al. [21]
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A well- known and useful tool in statistics is regression analysis. 
Bayesian statistics and Bayesian networks are becoming increas-
ingly popular. There are many differences between the frequen-
tist and Bayesian approaches to inference. In our view, Bayesian 
inference allows one to make predictions, including predictions 
about pathogen clusters and outbreaks, based both on the weight 
of evidence and a somewhat more explicit statement of the 
assumptions of a statistical model (Fig. 7). A related way of data 
integration is network inference. The premise of network infer-
ence is to quantify relationships between signals using some met-
ric which can vary between models and algorithms. The use of 
several network inference methods can improve confidence of 
estimation by circumventing the biases inherent in any single 
algorithm or model. The application of network inference meth-
ods provides insights into multivariate structures and, by quanti-
fying relationships between measured variables. These inferences 
can illuminate relationships or clusters not detectable by cluster-
ing of the raw data directly, especially when several different pre-
defined network topologies segregate the same clusters [24].

To reduce the complexity of these models or the number of 
parameters, dimensionality reduction is employed to identify the key 
components that contain the maximum amount of information con-
cerning the problem at hand. The most common form of dimension-
ality reduction is Principal Component Analysis (PCA) (see Note 4). 

Host:
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Host:
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Pathogen:
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Host:
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Pathogen:
Profile test

Pathogen:
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Fig. 7 A Bayesian network representing the relationship between infectious 
 disease incidence (Disease), virulence of a pathogen, and changes in gene X and 
gene Y of the pathogen and a susceptible host (e.g., mutation or SNP), respec-
tively. Edges represent probabilistic dependencies and the P notation defines 
conditional probability distributions between nodes
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The identification of the key contributors to disease virulence or drug 
resistance enables the development of in vitro diagnostic and prog-
nostic multivariate index assays (IVDMIAs) which typically measure 
gene levels and mutations, often with complex machine learning 
algorithms, e.g., as implemented in WEKA, www.cs.waikato.ac.nz/
ml/weka/. Such tests are composed of both a laboratory component 
and associated algorithms, used to score risk, the latter being an inte-
gral part to realizing the test’s value.

4 Conclusions

There are three main challenges in communicable disease infor-
matics: (1) technological, (2) statistical/mathematical, and (3) 
translational. First, sample sizes in current publications are often to 
enable pattern recognition which is statistically robust and consis-
tent across different data collection methods. Second, high- 
dimensional data pose difficulties for statistical analysis and machine 
learning because of the large number of interrelated components, 
i.e., “small n, large p” dilemma. A priori knowledge should be 
incorporated into the model in a principled manner to constrain 
the set of possible representations for the data and optimize a well- 
known trade-off between the small sample size and high model 
complexity. Despite these challenges, the application of WGS and 
informatics for pathogen detection and surveillance offers consid-
erable potential for improving healthcare delivery (Table 1).

In addition, the requirements for the data processing, storage, 
and backup of WGS data outstrip the existing capacity of labora-
tory information systems. Many universities and vendors such as 
Amazon, Google, and Microsoft have created centralized super-
computing facilities to support data-intensive analyses. The reli-
ance on the university-based or commercial computer clusters 
provided might be appropriate to support biomedical research 
WGS experiments but their potential use for the processing of 
public health surveillance data must be carefully reviewed. For 
example, external cloud services may not comply with local data 
transfer security, patient privacy and confidentiality regulations. 
Another critical variable is the policy regarding the long-term stor-
age and protection of clinical data in a commercial environment in 
which ownership is subject to change, mergers, or acquisition. 
Diagnostic and public health laboratories need to identify the juris-
dictional laws and regulatory guidelines that oversee the transfer 
and storage of clinical and laboratory data as well as types of 
sequence data laboratories may be mandated to disclose to public 
health authorities.

Analysis of NGS data requires multidisciplinary teams of 
microbiologists, bioinformaticians, clinicians, and epidemiologists 
with substantial institutional support for resources and personnel. 
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As WGS is applied to public health surveillance, standardizing 
quality metrics becomes critical. These metrics include standards 
for calibration, validation, and comparison among platforms; data 
reliability, robustness, and reproducibility, and the quality of assem-
blers. Like any technology, WGS has its advantages and limitations. 
Potential uncertainties and errors can be introduced into the 
sequence analysis by the sequencing machines, analytical algo-
rithms, and residual errors in the reference data we align the new 
sequence against. Proficiency testing programs that cover both 
sequencing wet laboratory and analytical dry laboratory steps are 
urgently required.

Table 1 
Main applications of WGS in pathogen genome informatics

Domains Applications Expected added value References

Laboratory 
diagnosis 
and decision 
support

Identification of new pathogens Improved timeliness of case 
detection; improved 
laboratory workflow

[1–3]

Discovery of virulence mechanisms Development of alternative 
therapeutics

[2, 25]

Detection of drug-resistance markers Optimized drug selection; 
reduced burden of drug 
resistance; improved patient 
outcomes

[3, 26, 27]

Laboratory- 
based public 
health 
surveillance

Detection of emerging clones Monitoring of immune escape 
during clonal spread; 
high-resolution surveillance

[2, 12, 28]

Tracing movements of mobile genetic 
elements between pathogens in 
clinical environments, e.g., new 
acquisitions by resident microflora 
by mutation or by spreading 
between patients

Improved hospital infection 
control practices; reduction 
in nosocomial transmissions

[11, 12]

Identification of covert clusters of 
infections

Improved public health 
surveillance

[15, 28]

Detection of disease outbreaks, ideally 
at point of first secondary case

Clinically and cost-effective 
targeted public health 
response

[15, 29]

Tracing transmission events within 
outbreaks and determining 
directionality of transmission

Integration of genomics 
guided surveillance into 
communicable disease 
control and response; 
cost-effective contact tracing

[18, 19], 
[30–32]

Source attribution with molecular 
compass of geographical population 
structure among related pathogens 
and their genomes

Cost-effective and timely 
response to public health 
threats

[2, 15, 33]
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5 Notes

 1. Sequencing techniques generate large files containing 
 thousands or millions of reads together with additional infor-
mation such as read identifiers and descriptions. Different file 
formats have been introduced to efficiently manage this infor-
mation. FASTQ is an extension of FASTA format. It stores a 
numeric quality score (PHRED) for every nucleotide in a 
sequence. Unfortunately, there is no uniform standard for 
encoding these quality scores and different PHRED-scales are 
in common use. SAM (Sequence Alignment Map) format is a 
file format for storing information about sequence alignments. 
The BAM file format is a binary representation of SAM, which 
was implemented to allow for efficient storage and processing 
of data. VCF (Variant Call Format) files have been introduced 
to store data about SNPs and small indels along with various 
types of metadata. The file format is simple and flexible.

 2. The size of data generated by WGS instruments (>1 Gb per 
genome) requires additional computational resources for 
data analysis. Currently, there is no single platform offering 
data processing, database and data warehousing capabilities, 
and thus, institutions are required to establish their own data 
analysis pipelines or link together a variety of commercial and 
open- source software packages and data sets that contain 
information about microbial genomes of interest. Data 
exchange and online analyses are limited by the relatively low 
bandwidth and firewalls of existing laboratory and clinical 
networks. Not surprisingly, many laboratories have opted for 
in-house solutions instead of outsourcing. There is significant 
variability in the processes of storing sequencing and second-
ary data files. The most common approach of relying on 
external hard drives is not sustainable and the scalable capac-
ity for systematic backup is needed. There is also a need for 
guidance for decisions regarding what types of WGS data 
should be stored and for how long, given the fact that the 
cost of storage will soon exceed the cost of data generation 
[34]. Whether to opt for commercial or open source solutions 
remains an open question. The enterprise software solu-
tions are costly to laboratory budgets and it is not possible for 
large vendors to provide for all the needs of a laboratory. 
In-house solutions developed using open source software can 
lead to high labor costs, but are entirely flexible, and enable 
the control of sample and data processing and sharing. This is 
clearly critical for clinical diagnostic sequencing where pro-
cess and quality control are of the utmost priority. It there-
fore seems likely that a mix of the two approaches will be 
appropriate for the foreseeable future.
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    Chapter 11   

    Setting Up Next-Generation Sequencing 
in the Medical Laboratory 

              Bing     Yu    

    Abstract 

   The introduction of next-generation sequencing (NGS) technologies in research has proven to be very 
successful in the past 8 years. Now, there is considerable demand to apply these technologies for clinical 
diagnosis. The translation of research-to-clinical practice brings with it a unique set of challenges, particu-
larly when it comes to setting up NGS in the medical laboratory. The practical issues related to infrastruc-
ture, selecting which NGS platform, and dealing with informatics requirements are discussed. Application 
of NGS for clinical diagnosis requires robust quality assurance at multiple levels including sample assess-
ment, library preparation, template generation, and sequencing data which need to be generated, ana-
lyzed, and stored. The requirements for data generation, analysis, and storage are considerable.  

  Key words     Genomic diagnosis  ,   Medical genetics laboratory  ,   Quality assurance  

  Abbreviations 

   ePCR    Emulsion PCR   
  NGS    Next-generation sequencing   
  qPCR    Real-time/quantitative PCR   

1        Introduction 

 Next-generation sequencing (NGS, also called second-generation 
(G2) sequencing) is so named relative to Sanger or fi rst generation 
(G1) sequencing. NGS has three characteristics: (1) A need for clonal 
amplifi cation of templates; (2) Sequencing is undertaken in a mas-
sively parallel way; and (3) Short read lengths (<700 bp) are gener-
ated [ 1 ]. The Genome Sequencer (GS) FLX was the fi rst commercially 
available NGS platform introduced by Roche 454 Life Science in 
2005 [ 2 ,  3 ]. Illumina ®  released the Solexa Genome Analyzer (GA) 
in 2006 [ 1 ,  4 ], followed by Life Technologies™ SOLiD™ (sequenc-
ing by Oligo Ligation Detection) by the end of 2007 [ 1 ,  5 ]. 
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The NGS platforms can be categorized into two groups: (1) High-
throughput instruments represented by HiSeq 2500 and SOLiD™ 
5500 series, and (2) Rapid benchtop instruments (Ion Torrent™ /
Proton™, MiSeq, and GS FLX/Junior) [ 6 ]. The Pacifi c Biosciences ®  
PacBio RSII is also considered a rapid platform with potential bene-
fi ts for the clinical laboratory [ 1 ,  7 ]. It represents third-generation 
(G3) sequencing methodology which does not require clonal ampli-
fi cation, captures the sequencing signals in real time, and has long 
reads, e.g., PacBio RSII >10 kb [ 1 ,  7 ]. 

 NGS technologies have been extensively used in a range of 
research activities including (1) de novo genome sequencing of 
human samples, model organisms, and evolutionary informative 
species; (2) Re-sequencing for variation identifi cation; (3) RNA- 
Seq for small RNA or transcriptome analyses; and (4) Characterizing 
cellular mechanisms such as chromatin/epigenomic modifi cations 
and spatial arrangement of cellular components [ 1 ]. The research 
applications of NGS have signifi cantly improved our understand-
ing of the human genome in the past 8 years. 

 Currently NGS technologies are moving from the research to 
the clinical laboratory [ 3 ], particularly the benchtop NGS instru-
ments. Clinical applications of NGS are having an impact on 
health care delivered to patients [ 3 ]. The top three clinical indica-
tions are (1) diagnosis of Mendelian disorders (identifi cation of 
disease- causing gene mutations), (2) molecular oncology analysis 
(a sequence-based companion diagnostic test), and (3) pharma-
cogenomics screening. 

 NGS limited to exome analysis can be used to address specifi c 
clinical questions and avoids overwhelming clinicians and patients 
with irrelevant or uninterpretable information obtained through 
whole genome sequencing. This approach has already had a signifi -
cant impact on identifying the underlying genes and causal variants 
for a number of Mendelian disorders particularly those involving 
rare diseases [ 8 ]. 

 Companion diagnostics based on a systematic NGS analysis are 
assuming greater importance for personalized (stratifi ed) medicine 
to guide decisions on therapy leading to higher quality treatment 
options for patients while lowering health costs by avoiding thera-
pies that are unlikely to work. Similarly, pharmacogenomics screen-
ing can improve drug effi cacy and reduce the number of adverse 
drug reactions by providing clinicians with additional guidance on 
drug dosage based on the individual’s genetic ability to metabolize 
or transport these drugs [ 3 ]. 

 However, the goal of a rapid translation of research-to-clinical 
practice brings with it a unique set of challenges based around 
robust quality assurance to ensure the required reliability of clinical 
results. Some issues that address NGS applications in clinical 
genomic testing can be found in the CAP (College of American 
Pathologists) Checklist for NGS Laboratory Standards [ 9 ] and in 
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several reviews [ 10 ,  11 ]. This chapter focuses on a number of 
 practical issues that should be considered when NGS is planned for 
implementation in the clinical laboratory.  

2    Materials 

  Successful NGS sequencing depends on generating massively 
 parallel reactions using either sequencing-by-synthesis or 
sequencing-by- ligation. These reactions can last for hours or even 
up to 12 days. Therefore, there will be specifi c infrastructural needs 
for rooms to host a NGS platform.

 ●     Temperature and humidity controls . These two parameters 
must be controlled to ensure optimal sequencing reactions.  

 ●    Vibration - free environment . Primary data acquisition in most 
NGS platforms except the post-light ones such as the Ion 
Torrent/Proton relies on “super-density scanning.” For this it 
is necessary to have minimal vibration of the building struc-
ture, and any nearby sources for vibration such as centrifuges.  

 ●    Uninterrupted power supply . It is essential to have a secure and 
surge-free electricity supply for a NGS platform. Electricity 
should come from an uninterrupted power supply (UPS) 
source which is ideally backed up by a diesel generator since a 
sequencing reaction run can take up to 12 days.  

 ●    Ultrapure water supply . Access to type 1 ultrapure water 
(18.2 MΩ cm at 25 °C and TOC (total organic carbon) <10 
parts per billion) is required particularly when using the post- 
light NGS platforms.  

 ●    Excellent informatics network . NGS can generate an unprece-
dented amount of data, which pose challenges for data analy-
sis, management and storage [ 10 ]. An effi cient transfer of such 
high volume data is necessary using sophisticated network 
connections between the data generation site to the analysis 
and storage servers. A 1 Gb (gigabyte = 1 × 10 9  bytes) network 
is essential for the NGS environment, with 10 Gb networks 
becoming more common using fi ber-optic cables as the 
demands increase [ 12 ].  

 ●   The clinical laboratory should be designed not only for the 
optimal operation of a NGS platform, but also to ensure no 
potential for contamination or mix-up of samples at different 
stages in the process ( see   Note 1 ).     

  Selection of which NGS platform should be carefully considered 
based on its particular characteristics and the clinical needs [ 6 ]. 
Overall, the clinical laboratory requires versatile, robust, and 
affordable NGS platforms with user-friendly bioinformatics tools. 

2.1  Laboratory 
Infrastructure

2.2  NGS Platform 
Selection for Clinical 
Laboratory

Setting Up NGS
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The latter, to some extent, will also be determined by the  experience 
of the operator. Finally, excellent technical support and service is 
essential since delays because of machine downtime are not accept-
able in patient care. Depending on the clinical indications, the 
turnaround time required will invariably infl uence the type of 
approach developed.

 ●     Minimal downtime . The acquisition of two NGS platforms 
should be considered to ensure minimal disruption to the 
diagnostic service. These do not have to be the same platforms 
but should be interchangeable. For example, the Ion Torrent™ 
and Ion Proton™ platforms share the same chemistry and use 
the Ion Chef™ System for template preparation and chip 
 loading. Alternatively, the rapid mode HiSeq 2500 can be the 
backup for the benchtop MiSeq instrument.  

 ●    G3 platform . G3 sequencing technologies are attractive for the 
clinical laboratory because of their shortened DNA preparation 
times, fast processing of sequencing signals in real time, and long 
read lengths [ 1 ,  7 ,  8 ]. However, a commercial Oxford Nanopore 
analyzer has yet to be released. The PacBio RSII analyzer pres-
ently has a relatively low throughput, high error rate for individ-
ual reads, high cost per Mb, and high capital cost [ 1 ,  7 ,  13 ].  

 ●    Fast turnaround time . It is essential in clinical NGS application 
to ensure an appropriate turnaround time for clinical decision 
making. For example, cancer somatic mutation profi ling using 
NGS is being used for prioritization of target therapy. This 
type of test must be completed within 5 days from DNA extrac-
tion to reporting. High-throughput platforms such as the 
SOLiD™ 5500 series and HiSeq 2000 are unlikely to provide 
such fast turnaround results.  

 ●    Flexibility . This is required to ensure cost-effective and effi -
cient applications in the clinical laboratory. Included here 
would be the batching of test samples when it is diffi cult to 
achieve a full run due to the rapid turnaround requirement. 
Different options for chip sizes or partial fl ow cells should be 
considered when selecting a platform based on the estimated 
sample numbers likely to be referred.  

 ●    Starting template amount . The DNA template requirement can 
be a signifi cant limitation in cancer somatic mutation analysis. 
Formalin-fi xed paraffi n-embedded (FFPE) tissues are the most 
common source for DNA extraction in this scenario and will 
yield small amounts of what is often fragmented DNA. Cytology 
samples including fi ne needle aspiration and bronchial washing 
are even more challenging for providing suffi cient DNA. PCR-
based target amplifi cation, particularly in a multiplex format, 
can be superior to capture-based method to overcome the lim-
ited template as well as formalin-mediated DNA damage.     
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  Automated library preparation is preferred in the clinical  laboratory 
to ensure reproducibility. It also reduces staff time and costs which 
comprise the laboratory’s major budget component. Special instru-
ments such as LifeTechnologies™ AB Library Builder™ and 
Beckman Coulter SPRIworks Fragment Library System are avail-
able. Alternatively, more fl exible liquid handling robots including 
Tecan Freedom EVO ® , Beckman Coulter Biomek ®  FXp, Agilent ®  
Bravo™, or Caliper’s Zephyr ®  Genomics Workstation can be intro-
duced for automated library preparation. 

 The Covaris ®  system is a frequently used NGS accessory for 
shearing DNA with adjustable fragment size distributions. It uses 
acoustic wave energy (15–30 times higher than a sonicator) trans-
mitted into a closed tube containing an aqueous DNA solution. 
This results in formation and collapse of air bubbles, which gen-
erate microscale water jets that cause physical shearing of the 
nucleic acid. The Covaris ®  enables rapid, reproducible, high-
recovery, and unbiased DNA shearing. It is also used to declump 
post-emulsion PCR beads before chip loading in the SOLiD™ 
sequencing process. 

 The Agilent 2100 Bioanalyzer is a microfl uidics-based plat-
form for sizing, quantifi cation, and quality control of NGS librar-
ies. This accessory has many advantages over conventional 
techniques including improved data precision and reproducibility, 
short analysis times, and minimal sample consumption. The qual-
ity of DNA shearing, the range or distribution of DNA fragmenta-
tion before and after size selection and fi nal quantifi cation of a 
library can be assessed using this instrument. The LabChip ®  GX/
GXII from Perkin Elmer is an alternative microfl uidics instrument 
for sample assessment with higher sample throughput and less 
hands- on time. 

 The NanoDrop ®  Spectrophotometer and Qubit ®  Fluorometer 
are also useful for the quantitative assessment for DNA as well as 
beads generated. NanoDrop ®  can provide some indication in rela-
tion to impurities due to protein, peptides, and organic solvents. 
The Qubit ®  is a fl uorescence-based quantifi cation assay which is 
highly sensitive and accurate for double-stranded DNA without 
interference from RNA or nucleotides.   

3    Methods 

 Validation, quality assurance, and quality control are essential for 
setting up NGS in the clinical laboratory ( see   Note 2 ) [ 10 ,  11 ]. 
Quality control measures should be implemented at different 
stages. Early detection and termination of a failed NGS test is 
required in the clinical laboratory. This is not only to avoid waste 
of expensive reagents but, perhaps more importantly, to reduce the 
risk for prolonged turnaround times. 

2.3  NGS Accessories
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  The criteria for accepting or excluding a sample for NGS testing 
should be agreed on at the initial stage. This is important as NGS 
diagnostic applications presently have relatively higher costs and 
longer turnaround times compared with conventional DNA tests. 

 DNA extracted for any NGS test should be checked qualita-
tively and quantitatively. Minute amounts of DNA may only be 
available for analysis in circumstances like preimplantation genetic 
diagnosis or the use of circulating DNA for noninvasive prenatal 
diagnosis or cancer cell monitoring. Fine needle aspiration for can-
cer somatic mutation analysis is another example. Routine methods 
for DNA quantifi cation such as spectrophotometry and fl uorome-
ter can be used, but these methods may be less suitable since the 
assay itself consumes a proportion of the available DNA. A multi-
plex PCR-assay which includes both identifi cation and assessment 
targets would be ideal. This approach would provide the informa-
tion for identity (useful for cross-checking when pooling samples) 
as well as its quality (amplifi able) and quantitation (available genome 
equivalent copies). Failure to exclude poor quality or insuffi cient 
DNA can signifi cantly affect the sensitivity and specifi city of NGS 
diagnosis and result in delay in the turnaround time. 

 In the diagnosis of Mendelian disorders, the collection of DNA 
samples from the index case  and  parents should be considered. Trio 
sample collection will enable more cost-effective data analysis and 
hence will achieve a reliable diagnostic result. It is also necessary to 
collect normal (non-tumor) genomic DNA to act as a control when 
a tumor sample is used for cancer somatic mutation analysis. 

 One should also consider whether two different samples from 
same individual are collected, e.g., a saliva sample collected in a 
physician’s room and a blood sample from a collection center. The 
clinical NGS laboratory can use DNA extracted from both sources 
to exclude errors arising from sample misidentifi cation or labora-
tory clerical errors. This will also help to verify the NGS results 
since there are many steps involved including sample pooling and 
barcoding [ 14 ].  

  Fragment library preparation involves DNA shearing, adaptor/
barcode ligation, size selection, amplifi cation of ligated products, 
library purifi cation, and fi nal quantifi cation. The initial DNA for 
library preparation has to undergo a target enrichment process. 
This can be achieved using different approaches including  PCR - 
based     (short multiplex or long range PCR products) or  capture - 
based     (fragmented genomic DNA) methods. Care should be taken 
to prevent any cross-contamination if the instruments are shared 
( see   Note 1 ). It is a common practice to sequence a multiplex 
library with pooled DNA samples. Therefore, best practice needs 
to be implemented to ensure one specifi c barcode for every indi-
vidual sample. Cross-checking by a coworker is required to prevent 
any sample swap during the barcode ligation [ 14 ]. 

3.1  Sample 
Assessment

3.2  Library 
Preparation
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 Human exome sequencing allowing the capture of all relevant 
protein-coding targets is increasingly being used for diagnostic 
purpose [ 8 ]. Enrichment of DNA targets can be assessed by a real- 
time/quantitative PCR (qPCR) and be compared between pre- 
and post-capture using equal amounts of the templates. Excellent 
enrichment indicates a successful capture process. Super-multiplex 
PCR-based human exome enrichment (58 Mb target region in 12 
pools of PCRs) is also available on the Ion Proton™ platform. 

 The Agilent 2100 Bioanalyzer is the method of choice to assess 
the quality and distribution of sheared DNA fragments. Effective 
size selection can narrow down the distribution peak, while suc-
cessful ligation will right shift the distribution peak. Bioanalyzer 
results can be used to verify the purifi cation quality, particularly 
how effective primers or primer dimers were removed. It also pro-
vides accurate quantifi cation for equimolar pooling among differ-
ent samples.  

  This step is unique to NGS since its aim is to generate millions 
of sequencing templates through clonal amplifi cation. There are 
two methods for clonal amplifi cation: emulsion PCR (ePCR) 
and bridge amplifi cation (also called cluster generation). ePCR 
occurs within aqueous microdroplets separated by oil so that 
thousands of independent reactions can occur per microliter of 
volume. This process involves monoclonal amplifi cation of indi-
vidual DNA templates from a complex library pool. Multiple 
copies of a single DNA sequence can be generated within a 
water-in-oil emulsion droplet and are coated onto a single bead. 
Optimal monoclonal amplifi cation without substantial multi-
clone generation (two or more mixed signals from one bead) 
requires appropriate bead-to- fragment ratio. Precise quantifi ca-
tion of the input library is critical for such optimal monoclonal 
amplifi cation. 

 qPCR is the preferred method for determining the amount of 
amplifi able template in a library since it provides the high level 
of specifi city and can accurately measure extremely low quantities 
of DNA. Consequently it allows the user to dilute libraries to very 
low concentrations for quantitation. The fi nal optimal concentra-
tion of the library can be determined based on trial runs. Similarly, 
the quantifi cation of template amount is also important in the 
library for bridge amplifi cation. Overloading DNA fragments will 
cause the cluster density to be too high resulting in an overlapping 
or breeching of the signals. 

 In the sample pooling analysis, one should ensure the equimo-
lar representation of multiple samples. Failure of equimolar pool-
ing will cause a biased coverage and so insuffi cient coverage for 
some samples. Any potential cross-contamination should be pre-
vented during clonal amplifi cation ( see   Note 1 ).  

3.3  Template 
Generation
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  The clinical laboratory must pay attention to base calling and raw 
data quality. This information is usually platform-dependent and 
should be monitored during each run. The expected signal inten-
sity across a read should be evaluated to establish the normal per-
formance ranges and expected decline in signal intensity. The raw 
data quality should pass the defi ned minimal criteria before the 
subsequent secondary or tertiary data processes are allowed to 
 precede. Mapping quality can be used as a measure of the uncer-
tainty that a read is mapped correctly to the genomic position. 
During validation, it should be shown that the test only provides 
sequence data that map to the specifi c regions interrogated in the 
test. Read mapping, coverage analysis, and variant calling with 
annotation will complement the quality profi le for data generated 
( see   Note 2 ).  

  NGS data analysis places signifi cant demands in both computa-
tional and information technologies. Even when generating rela-
tively limited data for clinical purposes, it is important to keep in 
mind that signifi cant institutional support for resources and per-
sonnel is needed, e.g., to maintain and upgrade servers or to set up 
and apply tools for data analysis and management [ 12 ]. Clinical 
analysis of NGS data requires a multidisciplinary team of molecular 
geneticists, bioinformaticians, statisticians, pathologists, and clini-
cians. Various strategies for NGS data analysis are described in this 
book. The analysis pipeline needs to be validated including every 
subsequent software upgrade.  

  The clinical laboratory will have to work within a number of legal 
obligations that will vary depending on local jurisdictional require-
ments. These will include obtaining the necessary accreditation to 
undertake clinical DNA testing as well as adhering to privacy legis-
lation. The latter in particular is a challenge in terms of the large 
data sets that are generated (up to 200–300 Gb per run) [ 12 ] as 
well as the potential for detecting changes in DNA that are not 
directly relevant to the patient’s current problem.  Incidental fi nd-
ings , as these results are called, are discussed further in Chapter   12    . 

 Of relevance to NGS is the storage of data sets many of which 
might need to be stored over long time periods to comply with 
legal and/or accreditation standards. VCF (variant information) 
fi le can be considered for long-term storage. The original genome 
sequence fi le (FASTQ format including quality information) or the 
alignment fi le (BAM format) should be retained for at least 1 year 
for potential reanalysis [ 14 ]. 

 Storage can be considered under local and distant solutions. 
For the former, NGS sequencing data could be downloaded on an 
external hard disk, which can be kept securely and is easy to carry 
around. However, downloading large quantities of NGS data in 
the range of 20–200 Gb (Gb = 1 × 10 9  bytes) from the production 

3.4  Data Generation

3.5  Analysis of Data

3.6  Storage of Data
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server and subsequently uploading the same data to the analysis 
server can introduce signifi cant bit errors during the two transmis-
sions. For example, a bit error ratio of 1 in 1,000,000 could have 
as many as 400,000 bit errors for 200 Gb of NGS data transferred. 
The external disk option could also undergo physical damage 
which is of particular concern as it is more diffi cult to ensure regu-
lar backup of data. 

 Dedicated local servers for NGS data analysis and storage are 
ideal as this would avoid the multiple transfers of large volume of 
data, and regular backups can to be scheduled. The initial setup 
budget should include dedicated servers. If the local server is not 
available, an array disk system with a high storage capacity 
(6–12 Tb, terabyte = 1 × 10 12  bytes) can be considered with the 
USB3 (Universal Serial Bus) connection or fast SATA3 (Serial 
Advance Technology Attachment) interface. This system can use 
RAID 5 (Redundant Array of Independent Disks Level 5), in 
which the data written to the system can be stripped across four 
disks in order to prevent data loss in case of a disk failure. The array 
disk system also supports “hot swap” in which a faulty disk can be 
replaced without shutting down the computer. 

 Ethical legal and social implications make remote storage (even 
analysis) of data using  cloud computing  less attractive in the  clinical  
context. The reasons are as follows: (1) Privacy legislation will vary 
depending on where the cloud computing facility is located. (2) 
Data security is controlled by the  cloud  provider and, like privacy, 
will refl ect the local jurisdictional requirements rather than those 
which the customer will need to address. Hopefully, these will be 
comparable but there might also be signifi cant differences. (3) 
There is the potential to expose the data to interception during 
Internet transfer. In these circumstances, any problems that might 
emerge would be diffi cult to follow up from a legal perspective if 
another country or jurisdiction is involved.   

4    Notes 

     1.    A clinical laboratory utilizing NGS requires both state-of-the- art 
platforms and careful planning to prevent contamination becom-
ing a source of error. Designated areas for pre- amplifi cation, 
amplifi cation, and post-amplifi cation should be present, in line 
with the requirements of one international diagnostic accredita-
tion standard (ISO 15189:2012). The airfl ow should be assessed 
and managed to reduce possible cross- contamination from post-
amplifi cation to pre-amplifi cation areas. 

 Some accessory instruments such as Covaris ®  and Agilent 
2100 Bioanalyzer may need to be duplicated in order to avoid 
the instrument being exposed to both genomic DNA and PCR 
products although the probability of cross-contamination is 
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relatively low at this stage. For example, DNA fragments are 
kept in a disposable and semi-closed microTUBE during the 
Covaris ®  process. 

 The locations for Life Technologies’ EZ Bead™ System, Ion 
OneTouch™ and OneTouch™ ES Enrichment Station, or 
Illumina ®  cBOT Station should be considered carefully. The 
potential input for those clonal amplifi cation instruments can 
be fragmented genomic DNA or PCR products. They should 
be located away from the conventional pre-PCR and PCR sta-
tions. The workfl ow in the clinical laboratory should be 
designed to move against any amplifi ed products (even after 
only 6–12 cycle amplifi cation) back to pre-PCR section, while 
the post-PCR area itself can affect the preparation for NGS 
template generation. As recommended by Life Technologies™, 
EZ Bead™ Emulsifi er should be kept in a different room to the 
EZ Bead™ Amplifi er or Enricher.   

   2.    The performance characteristics of NGS need to be validated 
and documented before any clinical testing [ 10 ,  11 ]. These 
include the accuracy, precision, analytic sensitivity, analytic 
specifi city, reportable range, and reference range.

 ●     Accuracy . For NGS this refers to the closeness of agree-
ment between the sequencing results and the true value of 
accepted reference materials such as those generated by 
the US FDA from the Sequencing Quality Control project 
[ 15 ]. Other reference materials can be blood samples or 
cell lines with well-characterized data sets established. 
Control blood samples taken from a young adult are pre-
ferred as they avoid age-related variations [ 16 ], but these 
may not be readily renewable. Cell lines are superior in 
terms of renewability as well as sources of stable mutations 
and structural changes, but they per se may have rear-
rangements or loss of DNA.  

 ●    Coverage . Sequencing errors in individual reads can be 
minimized via the analysis of multiple overlapping reads. 
The number of reads covering a given base position is 
defi ned as  depth of coverage. Average coverage  is the average 
number of overlapping reads within the regions of interest. 
Different diagnostic applications require different depths 
of coverage. For example, a heterogeneous sample such as 
tumor cells requires 500× to 1,000× average coverage to 
detect 1–5 % changes, while 50× average coverage is usu-
ally suffi cient for a homogeneous sample, e.g., in the diag-
nosis of Mendelian diseases. The  uniformity of coverage  is a 
better parameter than the average coverage to describe the 
distribution or coverage across the region of interest that 
must be achieved to produce reliable sequencing results. 
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It can be expressed as 0.2× of the mean over 90 % of the 
total target regions. The uniformity of coverage should be 
monitored during diagnostic testing and compared to that 
established during validation.  

 ●    Analytic sensitivity and specifi city . Analytic sensitivity is the 
likelihood that NGS will detect a sequence variation, if 
present, while analytic specifi city is the probability that 
NGS will not detect a sequence variation, if not present. 
The  gold standard  data can be obtained from samples that 
have been characterized using Sanger sequencing or micro-
array analysis. Particular assays such as DNA mass spec-
trometry and real-time PCR can be used for the 
confi rmation or exclusion of false positive and false nega-
tive results. The sensitivity of NGS diagnosis depends on 
the horizontal (how many target genes included) and ver-
tical (depth) coverage of the genomic regions of interest 
[ 14 ]. The mutation detection limit can be identifi ed using 
mutations present in known proportions in a cancer cell 
line that has been blended with different  proportions of 
wild-type genomic DNA. Genomic DNA from a real fro-
zen cancer tissue can also be used as the reference material 
for the assessment of NGS sensitivity and specifi city. Several 
reference mutations can be characterized and verifi ed by 
other methods such as DNA mass spectrometry, qPCR, or 
digital PCR.  

 ●    Precision . The clinical laboratory needs to demonstrate the 
precision, i.e., the degree to which repeated measurements 
give the same result—repeatedly (within-run precision) 
and reproducibility (between-run precision). Well-
characterized reference materials can be used to monitor 
the intra- and inter-run variability. 

 NGS technologies continue to evolve rapidly, and any 
clinical application should be fully validated against the 
best available standards. As a minimum, the output from 
NGS (G2) should match what is obtained by Sanger 
sequencing [ 17 ]. The relevant sequence calling, mapping, 
and variant calling software need to be validated along 
with the test system validation. The clinical laboratory 
should establish a reportable range, e.g., multiple genes, 
exomes, or large genomic regions. It could maximize the 
diagnostic yield and minimize costs if a workfl ow can be 
established to deal with  disease essential  genes [ 14 ]. 
Ongoing verifi cation and validation are necessary to dem-
onstrate unchanged performance characteristics or to rees-
tablish the characteristics when there are upgrades for the 
hardware and software, and changes in sequencing chem-
istries, reagents, or kits used for NGS diagnosis [ 9 ,  11 ]. 
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    Chapter 12   

 Managing Incidental Findings in Exome Sequencing 
for Research 

           Marcus     J.     Hinchcliffe    

    Abstract 

   Exome sequencing for research has become available for broadly based genomic studies as well as smaller 
targeted investigations. New exome research projects being considered will intentionally process a large 
amount of common and rare DNA variation for the purpose of fi nding specifi c links between genotype and 
phenotype. However, the risks of uncovering a clinically relevant  incidental fi nding  are not uniform across 
projects but are highly dependent on the question being asked and exactly how it is intended to be answered. 

 Factors that infl uence the possibility of revealing a clinically relevant incidental DNA variation include 
the following: The overall design of the study and the number of participants involved, the mode of inheri-
tance of the phenotype including whether the phenotype is likely to have a monogenic or a complex inheri-
tance, whether the study is assessing a known list of genes or not, and whether the causative DNA variation 
is likely to be rare or common. Importantly, differing bioinformatics DNA variant fi ltering strategies 
strongly infl uence the odds of discovering an incidental fi nding. This chapter provides a framework for 
understanding and assessing the likelihood of discovering clinically relevant, incidental DNA variations 
that are not directly related to the question being addressed in a particular exome research project. It also 
outlines DNA variant fi ltering and functional informatics approaches that can investigate specifi c genomic 
questions while minimizing the risks of uncovering an incidental fi nding.  

  Key words     Bioinformatics DNA variant fi ltering  ,   Exome sequencing  ,   Incidental fi nding  ,   Next- 
generation sequencing  

  Abbreviations 

   GWAS    Genome-wide association studies   
  NGS    Next-generation sequencing   
  SNV    Single-nucleotide variation   

1            Introduction 

 A clinically relevant incidental DNA variation can be defi ned as a 
verifi ed DNA variation that has a proven medically relevant pheno-
type not directly related to the condition being studied for research. 
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It is an unforeseen clinical fi nding relevant to the individual 
research participant involved. Therefore, it should be reported 
back to the participant and his/her doctor for follow-up. Thus, 
properly informed consent must explain the possibility of fi nding 
an incidental DNA variation. 

 Importantly, not all exome sequencing research projects have 
the same level of risk for uncovering an incidental fi nding. 
Understanding the factors affecting the likelihood of discovering 
an incidental fi nding is important for ensuring appropriate research 
ethics approval, for informed consent of the participants, and, for 
the researchers, to clarify their own study design and bioinformat-
ics pipeline before embarking on a particular project. 

 Here described is a framework to assess the risks of discovering 
clinically relevant incidental DNA variations in particular research 
projects. Subheading  2  outlines a bioinformatics variant fi ltering 
process to minimize the risk of discovering an incidental DNA fi nd-
ing while answering the question that the research wishes to address. 
Subheading  2  also outlines a stepwise process for calculating the 
expected number of DNA variations for further investigation and 
the likelihood of fi nding a clinically relevant DNA variation. 

 There are three broad [ 1 – 3 ] and four narrow [ 4 – 7 ] factors 
listed here that infl uence the likelihood of uncovering an incidental 
fi nding in any research. 

  A basic strategy of exome sequencing for research involves fi ltering 
out a very large number of DNA variations (25,000–30,000) 
sequenced from the 1.5 % of the genome that encompass the 
protein- coding section ( see   Note 1 ) to fi nd the single ( or  maybe 
two or more for complex inherited traits) DNA variation(s) directly 
linked to the disease/phenotype under investigation. There are 
approximately 200,000 exons across 20,000 protein-coding genes 
(average of 10 exons per gene) that comprise the exome. While 
there is clear evidence that much of the nonprotein-coding portion 
of the genome is functional, protein-coding mutations have been 
consistently linked to Mendelian diseases probably because loss of 
their function leads to signifi cantly greater alterations to cellular 
biology and so more penetrant phenotypes. This is refl ected in the 
relatively higher evolutionary conservation of protein-coding exons 
compared with the noncoding portion of the genome. Hence, 
 capturing and deep sequencing of the protein-coding exome is a 
worthwhile stratagem for gene and specifi c mutation discovery. 

 Beyond this general approach, there are specifi c study models 
that infl uence both the chance of fi nding the gene(s) of interest 
and the risk of also uncovering an incidental fi nding. Following is 
a list of some different study models and their respective incidental 
fi nding risks. 

1.1  Study Design
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  A study with  n  = 1 can leave the researcher vulnerable to uncover-
ing an incidental fi nding as the entire list of rare variants might be 
examined to fi nd the critical DNA variant. This method will work 
best for a rare condition that is likely to be monogenic and has 
been accurately phenotyped. It is an advantage to have either a list 
of genes to examine or a clear understanding of the biological sys-
tem that is disrupted. It is also an advantage to have other relatives 
similarly affected and/or to have a recessive condition. This is a 
poor study design for a common condition or an inadequately 
characterized phenotype. An example of this type of approach can 
be seen in a whole-genome sequencing study for a rare form of 
Charcot–Marie–Tooth neuropathy [ 1 ].  

   This strategy is designed to detect genic overlap/intersection across 
multiple individuals with the same condition. Both the chance of 
discovering the gene(s) of interest and reducing the risk of uncover-
ing an incidental fi nding are improved by enhancing the power of 
the study through an increase in the number of participants. If family 
segregation (linkage) analysis is also available subsequent to fi nding 
candidate DNA variation(s) this will also improve the chance of fi nd-
ing the gene(s) of interest and reduce the risk of uncovering an inci-
dental fi nding. Accurate phenotyping is essential to avoid dilution of 
any signal from similar phenocopies. An example of this approach 
can be seen in a recent study of two families with familial episodic 
pain where genome-wide linkage scans with microsatellite markers 
were able to narrow down the region of interest to 7.8 Mb [ 2 ]. 
Later exome sequencing uncovered different missense mutations in 
the  SCN11A  gene in each of the families involved.  

   The relationship distance between two directly related and simi-
larly affected individuals is correlated with the power of the study. 
Every meiotic recombination event that has occurred between any 
two affected relatives (within a single family) that have been exome 
sequenced halves the number of DNA variants to sift through and 
halves the risk of uncovering an incidental fi nding    (Fig.  1 ).

     This is an ideal study design for gene discovery. Again, the more 
individuals available for analysis the greater becomes the power of 
the study and the lower the risk of identifying an incidental fi nding 
if the condition does not have a signifi cant amount of genetic het-
erogeneity. On the other hand, it is possible to uncover a  signifi cant 
amount of genetic heterogeneity for a single condition with this 
study design if suffi cient numbers of well-phenotyped families are 
available but the risk of uncovering an incidental fi nding increases 
with lesser genic overlap between affected individuals.  

1.1.1  Exome of a Single 
Individual

1.1.2  Exomes of Multiple 
Unrelated Individuals for a 
Single Condition

1.1.3  Exomes of Multiple 
Related Individuals for a 
Single Condition

1.1.4  Exomes of Multiple 
Unrelated Individuals with 
Each Sequenced Individual 
Also Having a Pedigree 
Available for Subsequent 
Segregation Analysis, i.e., 
Combination of 
Subheadings  1.1.2  
and  1.1.3 
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  Exome sequencing of an affected offspring and his/her two unaf-
fected parents can effi ciently identify either an autosomal recessive 
condition with both parents being heterozygous carriers with the 
affected offspring compound heterozygous or a de novo mutation 
in the offspring ( see   Note 2 ) for confounder of a possible de novo 
mutation—all de novo mutations must be validated by a second 
method in all members of the trio. This study design has an inher-
ently low risk of uncovering an incidental fi nding as the bioinfor-
matics fi ltering process will only examine rare homozygous 
mutations, compound heterozygous mutations, or de novo muta-
tions. This necessarily eliminates the vast bulk of all DNA varia-
tions from the analysis.  See  refs.  3 ,  4  for examples of exome trio 
studies that identifi ed causal de novo mutations.  

  It is possible to identify a somatic mosaic DNA variation by com-
paring exomes of affected with unaffected tissue. Cancer genotyp-
ing provides a useful model for this type of testing where a broad 
exome approach examines both the germline exome and subse-
quent somatic changes in the cancerous tissue. There is a high risk 
of detecting incidental fi ndings associated with a familial basis 
for the cancer. This would have implications for blood relatives. 
A pure somatic mosaicism exome study by Lindhurst et al. [ 5 ] 
uncovered a rare activating mutation in  AKT1  as a common cause 
of Proteus syndrome. Bioinformatics fi ltering that focused on the 
differences between affected and normal tissue would have a very 
low risk of uncovering an incidental fi nding in this study design.  

1.1.5  Trio Exome 
Sequencing

1.1.6  Somatic 
Mosaicism Detection 
by Exome Sequencing

*

II-2II-1

I-1 I-2

II-3

III-2III-1

*

II-4

III-3 III-4

  Fig. 1    Autosomal dominant pedigree with two affected participant’s exomes ana-
lyzed. In this autosomal dominant condition with high-penetrance individuals 
III-2 and III-4 share 1/8th of their exome in common. Limiting the study’s fi nal 
DNA variant list to only the variants they have in common will reduce incidental 
fi nding risk to 1/8th and increase the focus on the likely candidate DNA variation 
( see   Note 2 )       
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  This form of exome sequencing would specifi cally look for homo-
zygosity of a rare DNA variant. If there is consanguinity in nearby 
generations then a relatively large number of rare homozygous 
variations may exist in an individual, thereby making the causal 
DNA variation diffi cult to track down. Homozygous variants that 
are diffi cult to interpret are likely to be found in this situation, and 
the incidental fi nding risk is potentially high but not easy to inter-
pret. Conditions with a founder effect would come under this cat-
egory of exome research. However, consanguinity may be distant, 
and the tracking down of a rare homozygous variant for a recessive 
condition becomes possible. The risks of an incidental fi nding in 
this case would depend on the degree of inbreeding of the study 
population.   

  Part of the DNA variant fi ltering strategy will be dictated by the 
likely inheritance pattern of the phenotype under study. This will in 
turn affect the number of DNA variants to examine for their func-
tional signifi cance after the variant fi ltering is complete. Therefore, 
it infl uences the chance of incidental fi ndings. 

 Careful scrutiny of the mode of inheritance from available 
pedigree(s) before embarking on an exome discovery project is 
prudent. The following is a list of some common inheritance pat-
terns and their respective implications for the bioinformatics fi lter-
ing strategy and hence the risk of fi nding an incidental fi nding. 

 ●      Autosomal dominant inheritance will limit the exome analysis 
to heterozygous variants in chromosomes 1 to 22. X and Y 
chromosome DNA variants can be excluded from further anal-
ysis. This is the monogenic inheritance pattern with the great-
est risk of uncovering an incidental fi nding.  

 ●   Autosomal recessive inheritance will necessarily limit the exome 
analysis to variants in genes that are either rare but homozy-
gous or double heterozygous for a potentially function- altering 
DNA variant. This will signifi cantly reduce the possibility of 
exposing an incidental fi nding.  

 ●   X-linked conditions will exclude from analysis over 90 % of 
the DNA variants that reside in the autosome. This will 
 proportionally reduce the basic risk of fi nding an incidental 
fi nding by >90 %.  

 ●   Primary mitochondrial inheritance will be indicated by a 
maternal inheritance pattern although heteroplasmy and 
threshold effects can obscure this particular inheritance pat-
tern. All autosome and sex chromosome-linked variants can be 
excluded in this case, signifi cantly reducing the risk of an inci-
dental fi nding. On the other hand, autosomally inherited, 

1.1.7  Exome Sequencing 
for Consanguinity/
Homozygosity Mapping 
(for Recessive Disorders)

1.2  Inheritance 
Pattern

1.2.1  Mendelian 
(Monogenic) Inheritance
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nuclear encoded mitochondrial genes number >1,000, and 
from personal experience there is potentially a great degree of 
genetic heterogeneity possible for some specifi c mitochondrial 
related conditions. The risk of uncovering an incidental fi nding 
within a large cohort involving a potentially autosomal mito-
chondrial condition is real unless well managed through a bio-
informatics functional analysis pipeline.     

  Unravelling the sources of a complex inheritance pattern is a sig-
nifi cant challenge for the genomic researcher. Exome sequencing 
can be both a blessing, because it simultaneously reveals an enor-
mous amount of rare and common DNA variation, and a curse 
because the researcher is forced to scrutinize a substantial fraction 
of this. This “curse” also exposes the study to a greater risk of 
uncovering an incidental fi nding. 

 Multiple (>1) alleles can contribute to a quantitative trait in an 
additive way. They can also contribute in a non-quantitative 
 combinatoric fashion; for example, epistasis and hypostasis can arise 
when specifi c rare and common digenic alleles interact in a com-
mon pathway. Both scenarios would require a signifi cant number of 
well-phenotyped participant exomes to begin to decipher the causes 
of the inheritance pattern whether the condition is purely autoso-
mal, sex linked, mitochondrial, or a combination of these. 

 Similarly, incomplete penetrance and variable expressivity also 
complicate exome interpretation potentially necessitating the anal-
ysis of a greater number of DNA variations, thus also exposing the 
study to a greater risk of uncovering an incidental fi nding.   

  The debate about whether common or rare DNA variation is 
responsible for the majority of genetic disease is an important one 
and infl uences how the researcher approaches exome analysis. 
There are reasonable indications now that rare variation (<0.1 % in 
general population) is more important than was realized from the 
original HapMap-based common SNP investigations which formed 
the basis of many large genome-wide association studies (GWAS) 
[ 6 – 9 ]. Indeed, molecular genetic pathology (clinical) laboratories 
routinely see a broad spectrum of allelic heterogeneity in most 
studied disease genes with family-specifi c and novel mutations 
prevalent. Most published GWAS have been based on microarray 
SNP genotyping technology which interrogate common and 
uncommon but listed ( known ) SNPs. The fundamental (and debat-
able) assumption behind most GWAS has been that this non-rare 
DNA variation is commonly (statistically) responsible, or associated 
via linkage disequilibrium (LD) blocks, for common disease. While 
many broad associations have been linked to loci across the genome 
using the statistical power of often enormous GWAS patient 
cohorts, the results on the whole have not been predictive for the 
individual to the same extent as a rare segregating DNA variant. 

1.2.2  Complex 
Inheritance

1.3  Population 
Frequency of Specifi c 
DNA Variations
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Exome sequencing research unlocks this rare variation door in a 
way that microarray-based, huge cohort GWAS simply cannot. 

 A helpful plan for any exome-based DNA variation research is 
to focus on the novel and rare variation fi rst and examine the more 
common variation secondarily, if necessary. This is also an impor-
tant strategy to reduce the risk of spotlighting a gene unnecessarily 
that is known to be linked to disease. 

 Common DNA variation can be bioinformatically fi ltered out 
of further analysis using a DNA variant frequency fi lter based upon 
many different sources including the following:

 ●     The US National Heart, Lung, and Blood Institute (NHLBI) 
GO Exome Sequencing Project (ESP) . At the time of writing, 
this resource had collated over 6,500 exomes (ESP6500 
release) representing a population frequency call of >13,000 
alleles per protein-coding nucleotide. This is an excellent 
source for fi ltering out common variation within protein- 
coding regions and splice sites. The only caveat being that the 
exomes in this population have a higher than normal frequency 
of heart, lung, and blood disorders. This should be taken into 
account if the exome research is examining a condition poten-
tially linked to one of these biological processes in some way. 
An overview and access to this resource can be viewed at 
  http://evs.gs.washington.edu/EVS/    .  

 ●    The 1000 Genome Project  (  www.1000genomes.org/    ). This 
derives its DNA variation data from many broad racial groups 
and covers protein-coding, intronic, and intergenic regions. 
One of its main goals was to collate all variations of at least 1 % 
frequency in the populations studied. The data are accessible 
via links to dbSNP (  www.ncbi.nlm.nih.gov/SNP/    ) and 
Ensembl (  http://ensembl.org/index.html    ).  

 ●    In-house . A collection of control exomes derived from  exactly  
the same exome sequencing and analysis pipeline as the study 
group being investigated is a valuable resource for both com-
mon and uncommon DNA variation. Most importantly, it is an 
essential resource for fi ltering out systematic false-positive DNA 
variant calls. The value of this fi ltering probably cannot be over-
stated as every next-generation sequencing (NGS) system and 
downstream exome DNA variant calling software algorithm 
 does  make idiosyncratic DNA variant calls that are novel, highly 
pathogenic looking, and completely false. These false calls are a 
function of a number of factors including the following:
 –    The NGS raw sequencing accuracy: Most NGS systems 

will now call individual bases with a high degree of accu-
racy (>99.9 % per base accuracy), but as there are 6 × 10 9  
bases in a diploid genome and approximately 9 × 10 7  bases 
in a diploid exome this small false-positive call rate becomes 
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important. Each NGS system has characteristic types of 
DNA sequence that the particular chemistry fi nds trouble-
some [ 10 ,  11 ].  

 –   The read depth (average coverage): Some regions of exome 
have low read depth and as a consequence imperfectly call 
some DNA variation.  

 –   The accuracy of the bioinformatics pipeline employed 
(both the initial basing calling and mapping steps as well as 
the fi nal DNA variant calling step) does vary between soft-
ware algorithms including whether a local realignment 
algorithm is employed or not.  

 –   Paralogous and repetitive regions within the genome can 
cause systematic misalignments in the primary sequence 
mapping set.       

 It is essential to fi lter out DNA variant calls that incorrectly 
appear like possible incidental fi ndings. A laboratory with many 
exomes, e.g., >100, already processed through the same pipeline is 
well placed to fi lter out effi ciently these systematic false-positive calls.  

  Genes differ in their respective tolerance to functional variation. 
For example, many immune-related genes necessarily contain a lot 
of variations. The HLA locus on chromosome 6 is a well-known 
“hot spot” of  rare  single-nucleotide variations (SNVs). Olfactory 
receptors are another group that recently acquired diminished evo-
lutionary importance to the human race and are a common source 
of function-altering mutations. On the other end of the spectrum, 
some genes are completely intolerant of non-synonymous DNA 
variation. A recent paper by Petrovski et al. [ 12 ] systematically 
quantifi ed the amount of variation in each gene using the ESP 
(6500 release) DNA variant data. A  Residual Variation Intolerance 
Score  for 16,900 of the 20,000 known protein-coding genes was 
derived, and the genes were ranked by a  Residual Variation 
Intolerance Score Percentile . These data can be employed as a valu-
able fi lter whereby the researcher can initially limit the search to 
those genes found to have function-altering rare variation in genes 
that do not tolerate variation. Again, this strategy will also reduce 
the risk of uncovering an incidental fi nding by limiting the candi-
date gene list.  

  The Human Reference Genome (Hg19) and ESP DNA variant 
dataset have a bias towards Caucasian genomic DNA sequence and 
variation, respectively. It is prudent to take this into account when 
collecting your control and affected cohorts for exome analysis. 
Two to three times as many DNA variants will remain after bioin-
formatics fi ltering from some non-Caucasian exomes.  

1.4  “Hot Spot” 
Genes

1.5  Racial 
Background 
of Participant 
and Control Exomes
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  It is worthwhile considering the background prevalence of the 
condition under study condition in both the research’s affected 
group (which ideally is exclusively affected)  and  control group. A 
highly prevalent condition might involve the control exome group 
unintentionally.  

  Narrowing the research to the biological system(s) involved in the 
condition under study can considerably reduce the risk of uncover-
ing an incidental fi nding. For example, if you are investigating a 
liver-specifi c problem then neuronal specifi c genes can be excluded, 
or if an inborn error of metabolism is suspected then the study will 
focus on metabolic enzymes and pathways and exclude unrelated 
genes. However, scientists must keep an open mind to an 
 unexpected genetic cause. More specifi cally, if a restricted, method-
ically derived list of Human Genome Nomenclature Committee 
(HGNC) gene candidates for the research is available then the risk 
of uncovering a potential incidental fi nding can be largely elimi-
nated. Finally, it is worthwhile noting that approximately two- 
thirds of all protein-coding genes have  not  had a specifi c genetic 
disease connected with them. This large fraction of genes cannot 
therefore be involved in any incidental fi nding back to the patient.  

  A large-scale analysis of human exomes for the frequency of patho-
genic SNVs found that 3.4 % of European-ancestry ( n  = 500) and 
1.2 % of African-ancestry ( n  = 500) exomes contained a high- 
penetrance medically actionable DNA variation in one of 114 
genes selected by an expert panel to contain medically important 
genetic conditions [ 13 ]. They were assessed by reviewing the pri-
mary literature, although they were mostly (17 out of 22) initially 
identifi ed by their listing in the Human Gene Mutation Database 
(HGMD). This may explain the bias towards European ancestry. 

 The American College of Medical Genetics and Genomics 
(ACMG) has provided recommendations for reporting incidental 
fi ndings in  clinical  exomes. However, there have been ongoing 
discussions regarding a number of its recommendations [ 14 ]. 
Major concerns include (1) the non-certain clinical utility of some 
incidental fi ndings and the possibility of doing more harm than 
good to the individual and relatives, (2) insuffi cient data on pene-
trance, (3) lack of resources to carry out specifi c reporting by cer-
tain clinical laboratories in genes they are not expert in, and (4) the 
lack of staffs to get through the workload. 

  Research  laboratories are at a major disadvantage in that many 
are not involved in medical reporting of genetic fi ndings often with 
little clinical genetics services available for pre- and post-test coun-
selling. Confi rmation of incidental fi ndings in an accredited labora-
tory was highlighted as being potentially expensive with the source 
of funding uncertain [ 15 ]. However there is a consensus among 

1.6  Prevalence of 
Condition Under Study

1.7  Biological 
System(s) Involved 
in Study

1.8  Practical 
and Ethical 
Considerations for the 
Return of Incidental 
Findings to Research 
Subjects
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researchers that the return of incidental fi ndings in some cases 
could be life saving and that there is a moral obligation to do so in 
these cases [ 15 ]. 

 It is worthwhile highlighting that DNA sequencing and iden-
tifi cation of DNA variation from initial sequence analysis is only an 
initial small step in the process of analyzing a  potentially  medically 
actionable fi nding. It is common for molecular genetic pathology 
laboratories to spend the majority of the time on any single DNA 
variation determining the confi dence level of pathogenicity. This 
involves fi nding and assessing the primary and interpretative litera-
ture about the specifi c DNA variant, in silico analysis interpreta-
tion, background frequency rates, conservation and protein 
function studies related back to the individual amino acid/s 
involved, and family studies. At the end of this process, DNA 
 variations may still be classifi ed as  variants of unknown signifi cance  
despite the laboratory staffs being relative experts in the gene and 
its clinical implications. 

 For these collective reasons, it is recommended that the 
research exome investigation be geared towards specifi cally answer-
ing the targeted question or fi nding  the  gene of interest. This 
involves a well-structured exome study and analysis pipeline that 
has a minimal likelihood of inadvertently discovering a potential 
incidental fi nding. The method below describes typical sequential 
steps in exome research and identifi es design factors in each that 
affect the chance of fi nding an answer to the research question and 
chance of uncovering an incidental fi nding.   

2      Materials and Methods 

 Primary DNA sequence mapping of massively parallel DNA 
sequencing and variant calling are usually carried out on multi- 
nodal dedicated computers. Subsequent exome fi ltering may be 
carried out on a personal computer. 

 The following idealized analysis pipeline follows a series of 
sequential steps in the process of exome research for gene and 
DNA variation identifi cation (Fig.  2 ). The exome research pipeline 
is split into fi ve broad stages: (1) cohort production, (2) produc-
tion of list of DNA variants, (3) fi ltering of DNA variants, (4) func-
tional analysis of gene and mutation(s), and (5) segregation 
analysis. Not all steps are relevant for every type of exome research.

    Step 1: Phenotyping . Accurate, objective phenotyping is essential for 
the  affected  cohort. Non-accurate alignment of individuals in the 
affected group will dilute the intersection gene signal ( see   step 13 ) 
and potentially expose the research to a larger probability of uncover-
ing an incidental fi nding. The control group does not necessarily have 
to be well phenotyped if the condition under investigation is rare. 
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In general, the larger the size of the affected cohort, the greater 
the gene signal will be and the lower the chances will be of inadver-
tently uncovering an incidental fi nding. This effect is strongest 
with a Mendelian inheritance unless there is genetic heterogeneity 
involved in the disorder. The incidental fi nding risk will be inversely 
proportional to the number of affected participants if the disorder 
is monogenic. The incidental fi nding risk will be further increased 
by a more polygenic disorder. If a prior identifi ed list of genes is to 
be investigated then the incidental fi nding risk may be minimal. 
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  Fig. 2    Exome research pipeline (see explanation in text)       
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  Step 2: DNA collection . From experience, both blood- and saliva-
extracted DNA work well during the exome hybridization and cap-
ture process ( see   Note 3 ). This can allow the mailing of saliva 
samples and increase the size of the cohort. 

  Step 3: Exome library construction . An experienced laboratory is 
likely to produce a better technical NGS output. More effi cient 
capture will produce greater on-target sequencing and greater 
depth of coverage, decreasing the false-positive DNA variant call 
rate and increasing the likelihood of fi nding the “needle in the 
haystack” causal DNA mutation. An average coverage of greater 
than ×40 is required for calling most variants (>90 %). There is 
little value in increasing the coverage beyond ×100. 

  Step 4: NGS output . Both of the major NGS systems currently in use 
produce high-quality raw DNA sequence. The author has experience 
with the SOLiD 5500 and in particular notes that its ligation-based 
chemistry provides a low rate of false-positive indels. False-positive 
indels can be bioinformatically fi ltered out if the researcher has access 
to a large normal control exome variant dataset derived from exactly 
the same sequencing and bioinformatics pipeline. 

  Step 5: Primary mapping . NGS short sequences are always mapped 
to the entire human reference genome (Hg19 at time of writing) 
fi rst rather than the 1.5 % of the genome that an exome targets. 
This necessarily reduces the number of false-positive DNA variant 
calls due to misaligned paralogous sequences. Most software pack-
ages can also produce a mapping quality value that indicates the 
likelihood that a particular DNA variant was called from uniquely 
mappable sequence. 

  Step 6: Secondary mapping and variant calling . BED fi les (SOliD 
systems) and Manifest fi les (Illumina systems) provide precise 
genomic coordinates to limit the variant calling to the exome cap-
ture regions ( see   Note 4 ). Local realignment algorithms are some-
times present in mapping software and can increase the accuracy of 
DNA variant calling, particularly in relation to small indels. Three 
types of variation can be sought:

 ●    SNVs (>95 % all variation), output is a .vcf fi le (variant calling fi le).  
 ●   Small insertions and deletions (<5 % all variation), .vcf output.  
 ●   Large multi-exonic deletions and duplications (by normalized 

 relative  read depth).    

  Step 7: DNA variant quality fi ltering . Both a minimum mapping 
quality threshold and a minimum sequence read depth on both 
alleles for each variant including an acceptable allelic bias/ratio ( see  
 Note 5 ) will reduce the number of false-positive calls. Variants 
called by low (<3) specifi c sequence read  start site  counts can also 
be fi ltered to avoid PCR artefact ( see   Note 6 ). There is a signifi cant 
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trade-off between sensitivity and specifi city of DNA variant calling. 
If the DNA quality fi ltering is too low then too many false-positive 
DNA variant calls will be made, but if the DNA quality fi ltering is 
too stringent then it is possible to fi lter out the single DNA variant 
that the research is trying to fi nd. Some empirical bioinformatics 
experimentation may be required before acceptable quality values 
are agreed on for the research. 

  Step 8: Chromosome and locus fi ltering . The risks of uncovering an 
incidental fi nding can be reduced by limiting the search to a spe-
cifi c chromosome or region previously identifi ed by linkage ( see  
 Note 4 ). For example, if the inheritance pattern indicates an auto-
somal condition then fi lter the X and Y chromosomes. If the condi-
tion is X linked, fi lter chromosomes 1–22 and Y. If the condition is 
mitochondrial, fi lter everything except the 16 kb of the mitochon-
drial genome ( see   Note 7 ). 

  Step 9: Zygosity fi ltering . As outlined in Subheading  1 , the inheri-
tance pattern will dictate whether homozygous DNA variants can 
be fi ltered out. Be aware of potential consanguinity, inbreeding, 
and founder effects before fi ltering homozygous variants. Most 
recessive conditions will be compound heterozygous due to allelic 
heterogeneity unless the above inheritance modifi ers are present. 

  Step 10: Variant-type fi ltering . Missense, nonsense, anti- nonsense, 
and canonical splice site mutations; frameshifts; in-frame deletions 
or insertions; and large deletions or insertions can be selected for. 
Keep in mind that synonymous amino acid DNA variants and deep 
intronic variants can be function altering, but as a fi rst step these 
can be fi ltered out and later analyzed if the initial search is fruitless. 
An  initial scan  through candidate DNA variations for the condi-
tion under investigation can be limited to variations that are likely 
to be function altering such as nonsense and frameshift mutations 
near the N terminus. 

  Step 11: Frequency fi ltering . As summarized in Subheading  1 , the 
frequency of a particular DNA variant in a background population 
can be the basis of a very good fi rst-line fi lter when searching for the 
important single-DNA variation in research. A rare variant is gener-
ally more likely to be function altering than a common variant. This 
fi lter can be titrated up or down to include more or less candidate 
DNA variants depending on the question in mind ( see  Table  1 ). 
Looking at a shorter list of DNA variants by viewing only the novel 
changes fi rst will reduce the risk of fi nding an incidental fi nding.

    Step 12: “Hot spot” gene fi ltering . A “hot spot” gene list can be 
derived from the control exome data. The greater the size of the 
control dataset, the better the list of genes that commonly contain 
rare variation will be. The  Residual Variation Intolerance Score 
Percentile  from Petrovski [ 12 ] is a very useful ESP-derived rank of 
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each gene’s tolerance of function-altering variation and could 
quickly highlight a single-DNA variation residing in a gene that 
does not tolerate variation. 

 At the end of the DNA variant fi ltering process, the number of 
variants that can be expected to remain  per exome  is listed in Table  1 . 
 This gives the researcher a raw level of expected DNA variation for a 
single individual within a research project . As can be seen from the 
table, the number of DNA variants per individual is strongly infl u-
enced by the variation frequency fi lter ( step 11 ). The DNA variant 
list can be <100 per individual if only high-quality, heterozygous, 
novel, or rare DNA variations (<1 in 10,000 alleles) are not fi ltered. 
Hence, it is important to consider this particular fi lter carefully. 

    Table 1  
  Number of variations by type and frequency from protein-coding regions ( per exome ) after NGS 
high-quality variation fi ltering up to the end of step 12 (derived from 70 exomes sequenced 
on a SOLiD 5   500)   

 Average number of  potentially function altering  a  variations seen  per individual 
exome  compared with the frequencies of those variations in the general 
population (value in bracket = 1 standard deviation) 

 Frequency 
category 
(in general 
population) 

 Novel  <1 in 
10,000 

 <1 in 
1,000 

 <1 in 200  <1 in 100 
(<1 %) 

 <1 in 50 
(<2 %) 

 <1 in 33 
(<3 %) 

 (Not seen in 
1KGP or 
ESP) 

 (Only 1 or 
0 seen in 
ESP) 

 (From 
ESP) 

 (From 
1KGP 
and 
ESP) 

 (From 1 
KGP 
and 
ESP) 

 (From 
1KGP 
and 
ESP) 

 (From 
1KGP 
and 
ESP) 

 Type of variation 
 SNVs—

heterozygous 
 76 (12)  93 (14)  145 (25)  259 (32)  330 (51)  401 (83)  437 (90) 

 Small indels b   16.5 (6.1) 
 Large multi- 

exonic 
deletions c  

 1.98 (0.94) 

   Note : From experience, there are two main causes of a signifi cantly increased numbers of rare variants seen in an indi-
vidual: (1) Non-Caucasian racial group as Hg19 is based largely on a Caucasian background and (2) sequencing chem-
istry artefact 
  1KGP  1000 Genome Project,  ESP  NHLBI Exome Sequencing Project (6500 exomes or >13,000 allele count for most 
 protein-coding bases  in database at the time of writing) 
  a Potentially function altering = missense, nonsense, anti-nonsense, canonical splice site mutations; frameshifts; in-frame 
deletions or insertions; and large deletions or insertions. This table  excludes  synonymous mutations and nonprotein- 
coding mutations (which are both sometimes function altering) 
  b Population frequencies of small indels can be sought from a control exome set that has been derived from the same 
DNA sequencing and bioinformatics pipeline. Individual NGS platforms and pipelines may perform differently, calling 
small indels at different rates. Small indel frequency datasets are not readily accessible from the 1KGP or the ESP. The 
value listed represents the average number of novel small insertions or deletions seen after bioinformatics fi ltering. From 
experience, a number of small indels in an individual exome with many standard deviations higher than the average of 
16.5, e.g., >100, can actually indicate a mismatch repair gene defect, and therefore an incidental fi nding involving a 
possible increased familial cancer risk should be investigated 
  c No frequency data available for multi-exonic deletions and duplications from 1KGP or ESP  
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  Step 13: Gene intersection fi ltering . This is the fi rst step in the exome 
analysis pipeline where multiple exome variant lists can be combined 
to potentially fi nd an answer to the research question. 

 If the research’s  affected  cohort has >1 individual then search-
ing for genic overlap is a powerful way of fi nding a new gene/phe-
notype relationship. It is the level of the  gene  that this sorting should 
occur on, as allelic heterogeneity is common. Be aware of possible 
pleiotropy as a single gene can be involved in more than one type of 
related or unrelated disease depending on the particular exact DNA 
variation and other environmental and epistatic factors. 

 The larger the number of affected exomes at this stage, the 
greater will be the chance of fi nding an answer to the research ques-
tion and the risk of uncovering an incidental fi nding will be less. 

  Step 14: Gene ontology and function . A candidate gene’s function 
can be initially searched at the GeneCards website (  www.gene-
cards.org/index.shtml    ). An Entrez gene summary on function can 
be found here together with a host of accompanying information. 
BioGPS (  http://biogps.org/#goto=search    ) allows the researcher 
to look up data on gene function and expression. Links to gene 
ontology terms including molecular function, biological process, 
and cellular component controlled ontological nomenclature can 
give helpful initial hints to a gene’s relevance to the research ques-
tion. PubMed (  www.ncbi.nlm.nih.gov/pubmed/    ) is a well-known 
medical publication retrieval database for searching and examining 
more closely the known function of the gene(s). 

  Step 15: Gene tissue expression . Obviously, a gene should be 
expressed in the tissue type of interest. Both BioGPS and GeneCards 
(see above) also give good-quality tissue expression data and graphs 
from different sources. 

  Step 16: Protein interactions, pathways, and modeling . String 
(  http://string-db.org    ) is a portal for the access of evidence-based 
protein interactions based on a number of lines of support includ-
ing experiments, databases, text mining, and homology modeling. 

 The protein data bank (  http://www.pdb.org    ) gives access to 
protein function and 3D structure modeling from the protein 
workshop. Individual amino acid locations within atomic structure- 
determined proteins can be accessed from here. 

  Step 17: Evaluation of individual DNA variants . This is a compli-
cated and potentially diffi cult step in the whole process. Determining 
the functional effect of a specifi c DNA variant relies on multiple 
lines of evidence as briefl y outlined in Subheading  1  and include 
the following:

 ●    Mutation databases (general or locus specifi c) which often list 
DNA variants that do not have a good line of evidence to sug-
gest that they are indeed function altering ( see  Chapter   15    ).  
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 ●   In silico programs such as SIFT, Polyphen, and Grantham 
deviation/variation which rely on amino acid conservation 
information and consequently have signifi cant idiosyncratic 
sensitivity and specifi city issues (these in silico programs should 
not be used, in my opinion, as a front-line fi lter in exome 
research as they run the risk of over-calling many variants’ 
effect and even incorrectly fi ltering the very DNA variation 
sought in the entire research project) ( see  Chapters   13     and   14    ).  

 ●   Published articles (both primary and interpretive).  
 ●   Frequency in the general population.    

 The fi nal  step 18  outlined next is highly recommended if fam-
ily phenotyping and DNA collections are available. 

  Step 18: Segregation analysis . As demonstrated in Subheading  1  
(Fig.  1 ), linkage of a candidate causal DNA variation with other 
affected family members is a potent way of demonstrating causality. 
The utility of a segregation analysis is exponentially (power of 2) 
powerful depending on the number and relationship distance of 
affected relatives to determine a DNA variant’s linkage to a pheno-
type. However, be mindful of linked chromosomal regions that if 
close may segregate with meiotic divisions with the true causal 
DNA variant. Non-affected family members are also useful if there 
is a low degree of non-penetrance in the condition under study. 
This is also one of the most useful ways to focus on the causal 
DNA variant and exclude other variants from analysis, thereby 
reducing the risk of uncovering an incidental fi nding in research 
exome analysis.  

3    Incidental Findings in the Medical Laboratory 

 Various options to deal with incidental fi ndings in the  research  
environment have been discussed. Most are also applicable in the 
 medical  testing laboratory which increasingly will generate inci-
dental fi ndings as the evolution from genetics to genomics contin-
ues. A key consideration in medical testing is what the patient 
understands about the genomics test being undertaken, i.e., the 
consent process, as this type of testing will not usually be overseen 
by a research ethics committee. Consent is presently the subject of 
much debate particularly when genomics-based approaches move 
beyond targeted diagnostic-type tests to include broader (screen-
ing) tests. The latter is more likely to generate incidental fi ndings 
of relevance to the health and well-being of the person being tested 
as well as family members.  
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4    Notes 

     1.    Most exome capture using hybridization kits from different 
suppliers are based on the consensus protein-coding sequences 
of the human reference genome which is about 38 Mb in size. 
However, many kits now also include extra regions of the 
genome that are known to be transcribed but not involve pro-
teins. They include many defi ned noncoding RNAs (ncRNAs) 
including microRNAs, small nucleolar RNAs, small nuclear 
RNAs, long ncRNAs, and others. The list of ncRNAs is large 
and growing. Some kits have over 55 Mb of target sequence as 
a consequence. Analyzing the functional signifi cance of DNA 
variations of ncRNAs is challenging, but a good study design 
would involve a number of unrelated participant exomes and 
the DNA variant fi ltering strategy should aim to show locus 
proximity of rare variants across a number of participants in a 
particular ncRNA. Functional information is diffi cult to deter-
mine for ncRNAs, so the greater the number of participants in 
the study, the greater the probability of showing statistical sig-
nifi cance of a link.   

   2.    Exome sequencing depth of coverage is not uniform across all 
target regions. Homologous and repetitive regions as well as 
regions of low sequence complexity and extreme GC or AT 
content can affect the capture hybridization or the accuracy 
for primary mapping of the short sequence reads to the 
genome. For these reasons there are certain exons that fre-
quently have poor coverage and therefore do not call all DNA 
variants present. Always bear in mind that exome studies may 
simply not sequence or call a particular causal DNA variant 
despite excellent study design.   

   3.    While DNA extraction from saliva kits is known to contain a 
level of bacterial DNA contamination, the exome capture pro-
cess and primary mapping of sequences to a human reference 
genome eliminate nonspecifi c sequences from generating 
false- positive variant calls. Nevertheless, it is advisable that the 
participant  giving a saliva sample not eat meat products prior 
to donation!   

   4.    BED or manifest fi les can specify limited genomic coordinates 
that limit the DNA variant calling to much more narrow 
genomic regions involved in genic pathways known to be 
associated with the disease in question. This can potentially 
eliminate or greatly reduce the risk of uncovering an incidental 
fi nding by not calling DNA variants outside the regions 
of interest.   

Managing Incidental Findings in Exome Sequencing for Research



224

     1.    Lupski JR, Reid JG, Gonzaga-Jauregui C et al 
(2010) Whole-genome sequencing in a patient 
with Charcot-Marie-Tooth neuropathy. N 
Engl J Med 362:1181–1191  

    2.    Zhang XY, Wen J, Yang W et al (2013) Gain-
of- Function Mutations in SCN11A Cause 
Familial Episodic Pain. Am J Hum Genet 93:
957–966  

     3.    Suls A, Jaehn JA, Kecskes A et al (2013) De 
Novo Loss-of-Function Mutations in CHD2 
Cause a Fever-Sensitive Myoclonic Epileptic 
Encephalopathy Sharing Features with Dravet 
Syndrome. Am J Hum Genet 93:967–975  

     4.    O'Roak BJ, Deriziotis P, Lee C et al (2011) 
Exome sequencing in sporadic autism spec-
trum disorders identifi es severe de novo muta-
tions. Nat Genet 43:585–589  

    5.    Lindhurst MJ, Sapp JC, Teer JK et al (2011) A 
mosaic activating mutation in AKT1 associated 
with the Proteus syndrome. N Engl J Med 
365:611–619  

    6.    Schork NJ, Murray SS, Frazer KA et al (2009) 
Common vs. rare allele hypotheses for complex 
diseases. Curr Opin Genet Dev 19: 212–219  

    7.    Do R, Kathiresan S, Abecasis GR (2012) 
Exome sequencing and complex disease: prac-
tical aspects of rare variant association studies. 
Hum Mol Genet 21:R1–9  

   8.    Tennessen JA, Bigham AW, O'Connor TD 
et al (2012) Evolution and functional impact 
of rare coding variation from deep sequencing 
of human exomes. Science 337:64–69  

    9.    Keinan A, Clark AG (2012) Recent explosive 
human population growth has resulted in an 
excess of rare genetic variants. Science 
336:740–743  

    10.    Liu L, Li Y, Li S et al (2012) Comparison of 
next-generation sequencing systems. J Biomed 
Biotechnol 2012:251364  

    11.    Quail MA, Smith M, Coupland P et al (2012) 
A tale of three next generation sequencing 
platforms: comparison of Ion Torrent. Pacifi c 
Biosciences and Illumina MiSeq sequencers, 
BMC Genomics 13:341  

     12.    Petrovski S, Wang Q, Heinzen EL et al (2013) 
Genic intolerance to functional variation and 
the interpretation of personal genomes. PLoS 
Genet 9:e1003709  

   5.    True DNA variant calls should have a reasonably even distri-
bution of allele counts on the reference and variant bases. 
A rule of thumb for SNVs is that if either allele has greater 
than triple the read count of the other the DNA variant may 
be a  false- positive call. All important DNA variants including 
 incidental fi ndings must be validated by a second method such 
as Sanger sequencing for SNVs and small indels or Gap PCR 
for large deletions. Small indels do have a greater allelic bias 
away from the variant allele due to capture hybridization bias. 
An increased capture probe density (kits differ on this param-
eter) will decrease this allelic bias.   

   6.    Allele start sites refer to an exact nucleotide coordinate on 
which a single DNA sequence begins. It is important to have 
more than one start site on both the forward and reverse 
sequence reads as the multiple PCR steps during library con-
struction can falsely increase the number of reads calling a par-
ticular variant. This artefact will be apparent by viewing a 
highly repeated start site in one read direction on the Broad 
Institute’s IGV software.   

   7.    Although most exome capture kits do not have any mitochon-
drial genome-specifi c probes, the mitochondrial genome out-
numbers the nuclear genome hugely so that off-target capture 
of the mitochondrial genome is usually present and can be 
seen if a mitochondrial chromosome-specifi c BED or manifest 
fi le is used in  step 6 .         

   References 

Marcus J. Hinchcliffe



225

    13.    Dorschner MO, Amendola LM, Turner EH 
et al (2013) Actionable, pathogenic incidental 
fi ndings in 1,000 participants’ exomes. Am J 
Hum Genet 93:631–640  

    14.    Green RC, Berg JS, Grody WW et al (2013) 
ACMG recommendations for reporting of 

incidental fi ndings in clinical exome and 
genome sequencing. Genet Med 15:565–574  

     15.    Klitzman R, Appelbaum PS, Fyer A et al 
(2013) Researchers' views on return of inci-
dental genomic research results: qualitative and 
quantitative fi ndings. Genet Med 15:888–895    

Managing Incidental Findings in Exome Sequencing for Research





227

Ronald Trent (ed.), Clinical Bioinformatics, Methods in Molecular Biology, vol. 1168,
DOI 10.1007/978-1-4939-0847-9_13, © Springer Science+Business Media New York 2014

    Chapter 13   

 Approaches for Classifying DNA Variants Found by Sanger 
Sequencing in a Medical Genetics Laboratory 

           Pak     Leng     Cheong     and     Melody     Caramins    

    Abstract 

   Diagnostic applications of DNA sequencing technologies present a powerful tool for the clinical manage-
ment of patients. Applications range from better diagnostic classifi cation to identifi cation of therapeutic 
options, prediction of drug response and toxicity, and carrier testing. Although the advent of massively 
parallel sequencing technologies has increased the complexity of clinical interpretation of sequence variants 
by an order of magnitude, the annotation and interpretation of the clinical effects of identifi ed genomic 
variants remain a challenge regardless of the sequencing technologies used to identify them. Here, we 
survey methodologies which assist in the diagnostic classifi cation of DNA variants and propose a practical 
decision analytic protocol to assist in the classifi cation of sequencing variants in a clinical setting. The 
methods include database queries, software tools for protein consequence, evolutionary conservation and 
pathogenicity prediction, familial segregation, case–control studies, and literature review. These methods 
are deliberately pragmatic as diagnostic constraints of clinically useful turnaround times generally preclude 
obtaining evidence from in vivo or in vitro functional experiments for variant assessment. Clinical consid-
erations require that variant classifi cation is stringent and rigorous, as misinterpretation may lead to inap-
propriate clinical consequences; thus, multiple parameters and lines of evidence are considered to determine 
potential biological signifi cance.  

  Key words     Clinical annotation  ,   Databases  ,   Diagnostics  ,   Pathogenicity prediction  ,   Sequencing  , 
  Variants  

  Abbreviations 

   HGMD    Human Gene Mutation Database   
  NCBI    National Center for Biotechnology Information   
  NG    Genomic   
  NM    mRNA   
  NP    Protein from RefSeq database   
  VUS    Variant of unknown signifi cance   
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1        Introduction 

 The increasingly higher throughput and lower cost of sequencing 
technologies have facilitated routine mutation identifi cation and 
characterization in medical laboratories. The ready availability of 
sequence data has expanded the incorporation of these results into 
clinical care and decision making. Consequently, the discovery of 
variants of unknown signifi cance (VUS) is a common occurrence in 
clinical sequencing, regardless of the sequencing methodology uti-
lized. The focus of a genetic diagnosis in response to a clinical ques-
tion increasingly revolves around the key challenge of accurate, 
reliable, and reproducible variant annotation and interpretation. 

 A review of the concepts of analytical validity, clinical utility, 
and clinical validity is useful in this context.  Analytic validity  is 
defi ned as the process by which the performance of a test system is 
measured and assessed and often involves addressing inherent 
issues of quality control, robustness, accuracy, reliability, effi ciency, 
and traceability. In this chapter, we assume that identifi ed DNA 
variants have been detected in an analytically valid manner and do 
not directly address this aspect.  Clinical validity  refers to the accu-
racy with which a test predicts the presence or the absence of the 
phenotype or, stated as a question,  how accurately does the sequenc-
ing result predict the clinical phenotype. Clinical utility  of a sequenc-
ing test is the capacity of the result to rule a diagnosis in or out and 
thus make a decision to adopt or to reject a therapeutic course of 
action possible. Or  does the sequencing result allow the recommenda-
tion of a clinical course of action?  Both clinical validity and clinical 
utility are of great importance when interpreting variants in a diag-
nostic environment. 

 The context of Sanger sequencing variant annotation and 
interpretation usually involves addressing a specifi c biological 
hypothesis, which can often be phrased as the following: “Could 
the patients’ signs and symptoms be the result of the detected 
variant(s) in this particular gene(s)?” Generally, Sanger sequencing 
will consider only a handful of genes to address this question, and 
therefore the hypothesis is tested only once or a handful of times. 
This contrasts with whole-exome or whole-genome sequencing, 
where multiple testing returns much larger numbers of variants 
and therefore requires greater interpretive caution due to the 
increased likelihood of a type I (false positive) error or the risk of 
increasing a type II error (false negative). Therefore, it is important 
that patients and physicians who order DNA genetic tests are aware 
of these limitations. 

 The diagnostic environment is also necessarily pragmatic; the 
need for clinically useful turnaround times precludes the ability to 
develop functional assays to assess directly biological effects of vari-
ants. Almost all assessments must be made more or less bioinfor-
matically (in silico) by reference to literature databases, mutation 
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databases, and variant prediction software. Impressive research 
efforts such as the Duke University Task Force for Neonatal 
Genomics, where functional characterization of variants occurs in 
near real time, thus enabling results to be returned in a time frame 
which is useful in a neonatal intensive care setting, offer an inter-
esting glimpse to the future. 

 In this chapter, we refer to many published international best 
practice guidelines on variant interpretation and classifi cation. The 
reader is also encouraged to seek further information by consulting 
local best practice guidelines and interpretation standards, where 
available.  

2    Materials 

 In order to illustrate clearly the approaches taken, we will use vari-
ants in the  CPOX ,  LDLR , and  BRCA2  genes as examples in a 
process utilizing resources which can generally be classifi ed into 
three groups: (1) databases (gene/locus specifi c and more generic), 
(2) browsers, and (3) tools. 

 Most of the resources are available online ( see  Table  1 ). Each 
step in variant assessment may use one or more of these. The lack 

    Table 1  
  Web resources used in variant classifi cation   

 Tool  URL address 

 Align GVGD    http://agvgd.iarc.fr/     

 IARC breast cancer database    http://brca.iarc.fr/PRIORS/index.php     

 Breast Cancer Information Core    http://research.nhgri.nih.gov/bic/     

 COSMIC    www.sanger.ac.uk/genetics/CGP/cosmic/     

 Gene Ontology    www.geneontology.org     

 HGMD    www.biobase-international.com/product/hgmd     

 HGVS recommendations for the 
description of sequence variants 

   www.hgvs.org/mutnomen/recs.html     

 MutPred    http://mutpred.mutdb.org/about.html     

 NCBI Gene    www.ncbi.nlm.nih.gov/gene     

 CD-Search on NCBI Conserved 
Domains Database 

   www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi     

 NCBI dbSNP    www.ncbi.nlm.nih.gov/projects/SNP/     

 PFAM    http://pfam.sanger.ac.uk     

(continued)
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of standardization and differences in database update and review 
dates can sometimes be a source of interpretive confl ict. In order 
to overcome this, the Human Variome Project (HVP) is consider-
ing the option of accreditation of databases for use in the clinical 
setting in the future.

3       Methods 

 There are several steps in establishing the potential clinical and bio-
logical signifi cance of a given variant. The initial step in this process 
hinges on accurate annotation. This facilitates other downstream 
steps, including in silico predictions, obtaining population fre-
quency data, and literature searches for functional information. 
A variant in the  CPOX  gene will be used as an example to illustrate 
these steps, followed by a comparative discussion on how this vari-
ant and two other variants in  LDLR  and  BRCA2  are classifi ed 
based on the evidence of pathogenicity in a clinical setting. 

  One of the fi rst annotation steps typically involves contextualizing 
a particular genomic position within the sequence of known gene/s, 
transcript/s, or regulatory regions. This facilitates the process of 
prediction of likely variant effects (if any) on the resulting protein. 

 The current standard nomenclature system used in the annota-
tion of variants has been developed by the Human Genome Variation 
Society (HGVS) for the description of genetic variants [ 1 ]. 
Older nomenclature systems may still be in historical use, referred 

3.1  Annotation 
of Variant and 
Visualization of 
Genomic Context

 Tool  URL address 

 PolyPhen-2    http://genetics.bwh.harvard.edu/pph2/     

 SIFT    http://sift.jcvi.org     

 SIFT BLink    http://sift.jcvi.org/www/SIFT_BLink_submit.html     

 SMART    http://smart.embl.de     

 SNPeffect    http://snpeffect.switchlab.org     

 SNPs&GO    http://snps.uib.es/snps-and-go/     

 T-COFFEE regular    www.igs.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi?stage1=1
&daction=TCOFFEE::Regular     

 UCSC Genome Browser    http://genome.ucsc.edu/     

 UniProt (for Swiss-Prot protein code)    www.uniprot.org     

 UCL  LDLR  FH database    www.ucl.ac.uk/ldlr/LOVDv.1.1.0/index.php?select_db=LDLR     

Table 1 
(continued)
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to in the literature or in databases; this should be noted during 
review by the user with appropriate caution. Annotation of variants 
from Sanger sequencing traces can be undertaken using commer-
cially available packages (Mutation Surveyor ®  from Softgenetics is 
one such example) or manually by using freely available software. 
In either instance, a reference sequence is generally a key initial 
requirement. 

 It is also important to note at this stage that available software 
(both commercial and free) will frequently come with a disclaimer 
that the product should only be used for research purposes and not 
clinical decision making. This should be recognized as it will mean 
that a formal evaluation is required to validate the software prior to 
its use for clinical testing. 

 Curated reference sequences can be obtained by searching for 
the gene name, e.g.,  CPOX  for coproporphyrinogen-III oxidase, at 
the National Center for Biotechnology Information (NCBI) Gene 
website.  G enomic,  m RNA, and  p rotein sequence accessions are 
listed with the prefi xes N G , N M , and N P , respectively, under the 
 NCBI Reference Sequences  (RefSeq) section (Fig.  1 ). For mRNAs, 

  Fig. 1    A view on NCBI Reference Sequences (RefSeq). The link to Sequence Viewer (Graphics) is  arrowed        
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the longest transcript is usually used as the reference transcript, 
although in some cases (for example, the  FECH  gene), the longest 
transcript may not be the predominant transcript in vivo. Arriving 
at that site page, the GenBank or FASTA format genomic reference 
sequences for the gene of interest can be downloaded under the 
NCBI Reference Sequences tab. A graphical view of the gene is also 
available by clicking the link “Sequencer Viewer (Graphics).”

   One method of locating a variant from the reference sequence 
involves searching the surrounding sequence on the “Find on 
Sequence” panel in the Sequencer Viewer (circled at the top of 
Fig.  2 ) by entering the sequence into this search box. In our 
example, for the sequence string containing the C>A change in exon 
4 of the  CPOX  gene (…GGATGTGACCTCACTCCAA(C/A)
ATACTTGAA…), enter the immediately adjacent sequence 
“GGATGTGACCTCACTCCAA” in the Sequence Viewer search 
box. This will pinpoint the region adjacent to the C>A change, and a 
marker can then be created at the SNP by right clicking on the nucle-
otide and selecting “Set New Marker At Position.” Once the marker 
is set (Marker 1 in this case), move the cursor to the “Marker 1” label 
and select “Marker Details” (highlighted by arrow in Fig.  2 ) to show 
the HGVS nomenclature of this variant in the fourth column. The 
amino acid change (A C A>A A A; Thr>Lys) can also be deduced. 
HGVS nomenclature for this variant is NM_000097.5:c.857C>A or 
NP_000088.3:p.Thr286Lys depending on whether the coding 
DNA sequence or amino acid change is emphasized.

   Once annotation is completed, the variant needs to be evalu-
ated further according to its sequence context and location. In the 
 CPOX  example above, there is a non-synonymous variant within 
the coding region (Table  2 ).

  Fig. 2    Searching for sequence and HGVS nomenclature on NCBI Sequence Viewer       
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     There are several considerations in assessing whether a missense 
variant is likely to be pathogenic or nonpathogenic. 

 

 When evaluating biological signifi cance, the following list presents 
some general considerations. In the absence of other evidence, these 
are listed from more to less likely predictive of functional effects:

    1.    Coding region variants— See  Table  2 .   
   2.    Invariant splice sites—Coding nucleotides close to the exon–

intron boundaries may not only affect amino acid sequence but 
also splicing; the fi rst two nucleotides at the start (donor site) 
or the end (acceptor site) of introns are invariable in 98.71 % of 
genes—these are called canonical dinucleotides, and mutation 
to these nucleotides is invariably associated with alternative 
splicing effects [ 2 ].   

   3.    5′ or 3′ untranslated region (UTR) of a transcript—Variants in 
these regions  may  have infl uence on gene expression.   

   4.    Noncoding exon—In some genes not all exons are transcribed, 
and this alternative transcription may be tissue specifi c. 

3.2  In Silico Analysis 
of Annotated Missense 
Variants

3.2.1  Location of Variant 
in Relation to the Transcript

    Table 2  
  For coding variants the following should also be considered when evaluating biological effects   

 Type of variant and 
potential effects  Additional points to consider 

 Frameshift—insertion 
or deletion 

 Is there an alteration in reading frame? 

 Missense—stop-gain/
nonsense (substitution 
resulting in a stop codon) 

 In some instances nonsense mutations may not have functional 
signifi cance, such as the p.Lys3326Ter variant in  BRCA2 , arising 
from an NM_000059.3:c.9976A>T substitution which results in a 
stop codon and loss of the fi nal 93 amino acids of the BRCA2 
protein. This variant has a reported allele frequency of 0.8 % in some 
populations and is not considered to be clinically signifi cant [ 5 ] 

 Missense—substitution 
resulting in loss of stop 
codon 

 For example Hb Constant Spring (p.Ter143Gln in  HBA2 ) resulting 
from a stop-loss mutation leading to a lengthened peptide [ 6 ] 

 Insertion/deletion not 
causing a frameshift 

 Caution is advised, e.g., in the  LDLR  c.2397_2405delCGTCTTCCT 
in-frame deletion. This deletion is interesting in that it has no or little 
effect per se in vitro but becomes functional when found in cis in 
combination with a non-synonymous variant p.Asn543His [ 7 ] 

 Non-synonymous single-
nucleotide variant (SNV) 
or synonymous SNV 

 Synonymous SNV can sometimes be pathogenic by affecting splicing. 
As an example, a critical yet translationally silent C>T variant at 
position 6 in  SMN2  exon 7 compromises its splicing, causing most of 
the  SMN2  mRNA (~80 %) to lack exon 7 (SMNΔ7). The resulting 
unstable molecule is rapidly degraded, leaving patients with SMN 
defi ciency, the degree of which correlates with clinical severity of 
spinal muscular atrophy [ 8 ] 
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For example, exon 1 and part of exon 2 of  HMBS  are  transcribed 
in non-erythroid tissues but not in erythroid tissue [ 3 ].   

   5.    Intronic—Intronic variants outside the canonical splice site can 
also affect splicing. As an example, the variant 
NM_000140.3:c.315-48T > C, in intron 3 of  FECH , pro-
motes the use of a cryptic acceptor site, resulting in an aberrant 
transcript with a premature stop codon [ 4 ].   

   6.    Upstream or downstream of transcript start site: An  arbitrary  
distance of 500–1,000 bp may be used by some laboratories.      

  An important consideration for predicting the functional signifi -
cance of a variant is its position within known protein domains, 
such as those defi ned by PFAM [ 9 ], SMART [ 10 ,  11 ], or other 
domain classifi cation approaches. Conserved residues within func-
tional domains are an indicator of negative evolutionary selection 
and so considered to provide some indirect evidence that changes 
will affect protein function. Conserved Domains Database (CDD) 
on NCBI [ 12 – 14 ] is a curated database that incorporates informa-
tion from such sources. The CD-Search tool can align a given 
accession, GenoInfo Identifi er (GI) number, or FASTA protein 
sequence to known domains in the database. An example using 
cystic fi brosis transmembrane conductance regulator (CFTR) pro-
tein sequence is provided in Fig.  3 . The two transmembrane 
domains (ABC_membrane), two ATPase domains (ABCC_CFTR1 
and 2), and R domain are shown with conserved amino acids 
within these domains marked in triangles. It is possible to identify 
whether variants of interest lie within these domains and if the 
amino acid of interest is conserved.

3.2.2  Functional 
Domains

  Fig. 3    Conserved protein domain of CFTR on NCBI Conserved Domains Database       
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     Where no experimental data are available, the effect of a missense 
variant on protein function may be predicted by using various in 
silico tools. These predictive tools are generally based on two prin-
ciples outlined below and should be used very cautiously, especially 
if predictions are not supported by additional evidence. Examples 
include the following:

 ●     Analyses based on evolutionary conservation of the nucleotide or 
amino acid . As highlighted, negative evolutionary selection is 
an important indicator of functional signifi cance of residues. 
By aligning nucleotide and amino acid sequences of orthologs 
from different species, the divergence of these residues and 
implication for putative functional effects may be deduced. 
Examples of these tools include phyloP, phastCons, SIFT, 
Align GVGD, Mutation Assessor, PANTHER, and MAPP 
(detailed discussion in Tavtigian et al. [ 15 ]).  

 ●    Structural and biophysical property-based analyses . This involves 
an analysis of the difference in biophysical properties between 
the reference and variant amino acid and predicting the prob-
ability that the resulting change will signifi cantly affect protein 
structure. Examples of these tools include PolyPhen-2, 
SNPeffect (incorporating FoldX which is a protein stability- 
based prediction), and LS-SNP/PDB.    

 Some tools (for example, Align GVGD and SNPs&GO) use a 
combination of both strategies and may include supervised machine 
learning to improve their predictions    (Table  3 ).

     As mentioned above, the following in silico prediction tools utilize 
three broad strategies/methodologies: (1) evolutionary conserva-
tion, (2) structural and biophysical properties, and (3) machine 
learning.

 ●     PhyloP and phastCons . PhyloP (phylogenetic  P -value) and 
phastCons are two phylogenetic scoring systems which quanti-
tatively measure evolutionary conservation [ 16 ,  17 ]. PhyloP 
scores are based on a measure of conservation at the level of 
individual nucleotides and are calculated as −log  P -values, 
where a positive score indicates conservation. PhastCons relies 
on identifying elements (“runs”) of conserved sites, with scores 
ranging between 0 and 1, representing the probability of nega-
tive selection. These scores are integrated into the University 
of California Santa Cruz (UCSC) Genome Browser under the 
conservation track (Fig.  4 ). PhyloP and phastCons scores can 
easily be visualized by changing the settings in the Conservation 
Track to include them (Fig.  5 ).

 ●        SIFT . Another commonly used tool based on sequence homol-
ogy is  S ort  I ntolerant  F rom  T olerant (SIFT) [ 18 – 21 ], which 
comes with a user protocol [ 22 ]. One advantage of SIFT is 

3.2.3  In Silico Prediction 
Strategies

3.2.4  Examples 
of In Silico Prediction Tools
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  Fig. 4    PhyloP and phastCons scores in UCSC Genome Browser. The nucleotide change leading to CPOX 
p.Thr286Lys ( arrowed ) is highly conserved as indicated by phyloP ( blue bar  at  top ) and phastCons ( green bars  
at the  bottom ). This is in contrast with the adjacent nucleotide where the negative phyloP (in  red  ) and low 
phastCons score indicate accelerated evolution (Color fi gure online)       

   Table 3  
  Examples of some classifi cations used for DNA variants   

 ACMG classifi cation 

 IARC classifi cation 
(with probability of the 
variant being pathogenic) 

 Variant previously reported and is a recognized cause of the disorder  Class 1—not pathogenic (<0.1 %) 

 Variant previously unreported and is expected to cause the disorder  Class 2—likely not pathogenic 
(likelihood of pathogenicity 
0.1–5 %) 

 Variant previously unreported and may or may not be causative 
of the disorder 

 Class 3—uncertain (5–94.9 %) 

 Variant previously unreported and is probably not causative of disease  Class 4—likely pathogenic 
(likelihood of pathogenicity 
95–99 %) 

 Variant previously reported and is a recognized natural variant  Class 5—pathogenic (>99 %) 

 Variant is not known or expected to be causative of disease but is 
found to be associated with a clinical presentation, e.g., variants 
associated to particular disease from genome-wide association 
studies or modifi er genes 
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that it accepts various input formats (e.g., Ensembl protein 
transcript ID, NCBI GI number, protein FASTA sequence, or 
RefSeq ID from dbSNP if it is a known SNP) for single-protein 
or -batch analyses. Users can either allow SIFT to build a mul-
tiple sequence alignment or they can submit their own. A SIFT 
score based on normalized probability of all 20 amino acids 
appearing in that particular position is calculated, and SIFT 
will “call” the variation damaging if the score lies below a 
threshold (predefi ned at 0.05). It also returns a median 
sequence conservation score which ranges from 0 (all 20 amino 
acid substitutions have been observed in multiple sequence 
alignment at the position) to 4.32 (where only one amino acid 
is observed at that position). Although a score of >3.25 would 
ordinarily indicate high conservation, if too few organisms are 
considered in the alignment, this may simply be refl ective of 
this lack of diversity. Ideally, representation should be as broad 
as possible, including species from all vertebrate groups, e.g., 
Mammalia, Primates, Aves, Amphibia, and Reptilia. In our 
example, we use SIFT BLink, a rapid version of SIFT, as it runs 
analysis with pre-computed multiple sequence alignment from 
BLAST search. The GI number for CPOX (41393599) was 
retrieved from NCBI Protein. Submitting a query for the vari-
ant of interest (T286K), SIFT BLink predicted the variant to 
be tolerated with a score of 0.20 (median sequence conserva-
tion score 2.94, with 83 sequences aligned at this position).  

 ●    Align GVGD . Align GVGD [ 23 ] combines biophysical charac-
teristics and multiple protein sequence alignments to predict 
the pathogenicity of variants. Align GVGD calculates the 
Grantham variation (GV, variation in the biophysical proper-
ties of all amino acids at a particular position in the multiple 
protein sequence alignment) and Grantham deviation (the 
deviation in biophysical properties of the altered amino acid 
from the reference). These scores are based on Grantham 
scores which measure the volume, polarity, and side chain 
composition of amino acids [ 24 ]. The two scores are combined 

  Fig. 5    Conservation track settings in UCSC Genome Browser. Click on “Conservation” under Comparative 
Genomics in the UCSC Genome Browser to adjust conservation track settings. Select “full” for Basewise 
Conservation (phyloP) and Element Conservation (phastCons) to display these scores in the Genome Browser 
( arrows )       
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to provide a classifi cation of pathogenicity likelihood, ranging 
from C0 (less likely to be deleterious) to C65 (most likely to be 
deleterious). 
 To perform Align GVGD:
 –    Download FASTA protein sequences for alignment. For 

CPOX, reference CPOX protein sequences were down-
loaded from NCBI. There are six NP accessions, i.e., 
 non- predicted protein sequences as prefi xed by XP, from 
 Homo sapiens ,  Sus scrofa ,  Mus musculus ,  Danio rerio , 
 Rattus norvegicus , and  Bos taurus .  

 –   Submit the downloaded FASTA fi le to T-COFFEE regular 
[ 25 ], a multiple sequence alignment tool ( see   Note 1 ).  

 –   The multiple sequence alignment is uploaded in FASTA 
format onto Align GVGD. Enter “T286K” for Substitutions 
list, and submit the job.    
 Align GVGD classifi ed the p.Thr286Lys variant as less 

likely to be deleterious with GV of 144.57 and GD of 8.11. The 
classifi cation (C0) remained unchanged even when all CPOX 
protein sequences including predicted sequences were used for 
alignment.  

 ●    SNPeffect . SNPeffect [ 26 ] analyzes the structural effect of vari-
ants on protein using various algorithms (TANGO, WALTZ, 
LIMBO, and FoldX). Some pre-computed variants are avail-
able for search on their database. Using the CPOX p.Thr286Lys 
example, SNPeffect showed that the variant had no effect on 
aggregation tendency, amyloid propensity, or chaperone bind-
ing. Structural analysis using FoldX however predicted that the 
Thr-to-Lys change would result in a difference in free energy 
and hence reduction in protein stability (Fig.  6 ).

   FoldX prediction is only provided if there is a homologous 
structural model available. Users can use partial protein sequence, 
e.g., a particular domain only, to broaden the homology search.  

 ●    MutPred . MutPred [ 27 ] predicts the effect of amino acid 
changes on (1) protein structure and dynamics, e.g., secondary 
structure and transmembrane helix; (2) predicted functional 
properties, e.g., catalytic residues and glycosylation sites; and 
(3) evolutionary information (based on SIFT). Input require-
ments include the FASTA sequence of the wild-type protein 
and the amino acid change. Two scores are returned—a gen-
eral score to predict whether the variant is deleterious and 
 P -values of the top fi ve properties that may be altered as a 
result. The calling algorithm is based on machine learning with 
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a random forest classifi er, using data from HGMD and Swiss- 
Prot as a training set. Depending on the two scores the poten-
tial alteration in molecular mechanism is categorized into 
actionable, confi dent, or very confi dent hypotheses (Fig.  7 ).

 ●       PolyPhen-2 . PolyPhen-2 uses machine learning to select 
 optimally 11 sequence- and structure-based predictive features 
for assessment of pathogenicity [ 28 ]. Various input formats are 
allowed. Two datasets (HumDiv and HumVar), both retrieved 
from UniProt, were used to train the algorithm ( see  supple-
mentary material in ref.  28  for details of the two datasets). 
PolyPhen-2 returns a probabilistic score on whether the  variant 
is likely to be damaging or not on both datasets. The scoring 
system for PolyPhen-2 is complex. For example, the HumVar-
trained PolyPhen-2 score is more conservative as the HumVar 
dataset assumes all non-synonymous SNPs with no disease 
annotation as benign, meaning that variants with mild effect 

  Fig. 6    FoldX prediction on the CPOX p.Thr286Lys variant from SNPeffect.    The empirical protein design force-
fi eld FoldX is used to calculate the difference in free energy of the mutation: ddG (delta delta G). If the mutation 
destabilizes the structure, ddG is increased, whereas stabilizing mutations decrease the ddG. Since the FoldX 
error margin is around 0.5 kcal/mol, changes in this range are considered insignifi cant. 2aex has 100.00 % 
homology with the submitted sequence. This pdb is then used to get some more information on the structural 
effect. The mutation from THR to LYS at position 286 results in a ddG of 3.29 kcal/mol. This implies that the 
mutation reduces the protein stability. Molecular visualization of the WT ( left  ) and variant ( right  ) amino acid. 
The residues colored in  red  represent the wild-type (THR) and variant residue (LYS)          

  Fig. 7    Output from MutPred. In the p.Thr286Lys example, MutPred returned a general score of 0.555 with three 
actionable hypotheses, suggesting some evidence that the variant may affect function       
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will be considered benign. On the other hand, the HumDiv-
trained PolyPhen-2 score would be more suitable for associa-
tion discovery albeit a higher false-positive rate. This difference 
can be highlighted in our example CPOX p.Thr286Lys, where 
it is  probably damaging  with a score of 0.0995 on HumDiv, 
but only  possibly damaging  with a score of 0.733 on HumVar.  

 ●    SNPs&GO . SNPs&GO [ 29 ,  30 ] is an algorithm that makes 
use of Gene Ontology (GO) functional annotation. It uses 
support vector machines to incorporate the amino acid change, 
surrounding protein sequence environment, residue conserva-
tion (all of which form the basis of the algorithm PhD-SNP 
developed by the same laboratory group [ 31 ]), multiple 
sequence alignment (based on another algorithm PANTHER), 
and GO terms. For an explanation on the actual calculation of 
GO analysis  see  Kaminker et al. [ 32 ]. To use SNPs&GO, fi nd 
the Swiss-Prot code for the protein of interest from the UniProt 
website, e.g., for CPOX it is HEM6_HUMAN. If Swiss-
Prot code is not available, the FASTA sequence may be utilized 
but the associated GO terms will need to be entered manually 
( see   Note 2 ). GO term associated to a protein can be searched 
on the Gene Ontology website. Enter the variant, and submit 
the job. The results will show predictions from SNPs&GO 
and the two related algorithms (PhD-SNP and PANTHER) 
(Fig.  8 ). A variant will be predicted as disease causing (sec-
ond column) if the probability is above the default setting of 
0.5. Measure of the quality of this binary classifi cation (dis-
ease or neutral) is provided as a reliability index (RI), which 
correlates to the accuracy and the Matthews correlation coef-
fi cient (MCC;  see  ref.  33  for explanation on using MCC in 
evaluating the accuracy of predictions). In our example of 
CPOX p.Thr286Lys, SNPs&GO and PhD-SNP predicted 
the variant to be disease causing, while PANTHER predicted 
it to be neutral. The lower probability and reliability index 
assigned by SNPs&GO as a fi nal score in this instance is 
refl ective of the differing information provided by the PhD-
SNP and PANTHER inputs.

        There is currently no single consensus method for assessing variant 
pathogenicity using in silico prediction tools, and no tool alone is 
universally acknowledged as providing the most accurate prediction 
in all circumstances. The National Genetics Reference Laboratory 
(NGRL) at Manchester, UK, has published an evaluation of some 
prediction tools [ 33 ]. This report recommended a consensus 
approach when the best in silico tool for the particular gene of 
interest is unknown. The combination of three commonly used in 
silico prediction tools (PolyPhen-2, SIFT, and Align GVGD) was 
shown to have inferior prediction, often because the predictions 

3.2.5  Evaluation 
of In Silico Prediction 
Tools
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from these tools are contradictory. These three tools are also those 
accessed directly through Alamut ®  (Interactive Biosoftware), a 
commercially available software package commonly used in many 
diagnostic laboratories. The combination of in silico tools that pro-
vided the most accurate predictions for the four genes investigated 
in the report ( BRCA1 ,  BRCA2 ,  MLH1 , and  MSH2 ) included 
MutPred, SNPs&GO, and MAPP. MutPred and SNPs&GO were 
also shown to have the best predictions in over 40,000 pathogenic 
and neutral variants tested in another study [ 34 ]. 

 Evolutionary conservation-based tools are highly sensitive to 
input multiple sequence alignments. The NGRL report demon-
strated that pathogenicity prediction could change substantially 
depending on input alignment. Align GVGD provides curated 
alignment for several cancer susceptibility genes. If a laboratory is 
performing regular assessment of particular genes, building an in- 
house alignment for these genes should be considered. 

 The NRGL report did not recommend the use of protein 
stability- based methods such as FoldX in variant effect prediction 
due to the variability of tolerance to stability change between 
proteins.   

  Fig. 8    SNPs&GO output for the CPOX variant p.Thr286Lys       
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  Large-scale sequencing projects such as the HapMap project, 1000 
Genomes Project, and Exome Sequencing Project from the 
National Heart, Lung, and Blood Institute (NHLBI-ESP) provide 
frequency information on polymorphisms that allow inference on 
pathogenicity. Although common polymorphisms are unlikely to 
be deleterious, this does not exclude the possibility of milder or 
modifying effects on protein function. 

 When accessing these data it is important to (1) understand 
the source, phenotype, and ethnicity of selected samples in these 
projects as these will infl uence variant frequency and (2) be aware 
of the validation status of reported SNPs. SNPs are considered vali-
dated on dbSNP when at least one of the submissions is obtained 
by experimental methods, the submission contains frequency 
information, e.g., data from HapMap or 1000 Genomes Project, 
or there are multiple independent observations [ 35 ]. SNPs that 
have not been validated may be false positives. 

 The NCBI dbSNP database collates frequency information 
from various sources. To view SNP summary on dbSNP, users can 
search for reported SNPs using the HGVS name (under “Search by 
ID on All Assemblies”). Alternatively, reported SNPs will be high-
lighted in red under the SNP track in the NCBI Sequence Viewer 
(see above). The SNP summary shows the minor allelic frequency 
(MAF) count using data from the 1000 Genomes cohort. Different 
levels of validation are also shown in symbols (Fig.  9 ).

   Ethnic based population frequencies can be obtained under 
the “Population Diversity” section (Fig.  10 ). In the example of 
rs5925, the allelic frequencies in European (CEU), Asian (HCB 
and JPT), sub-Saharan African (YRI), and other ethnicities 
obtained from the HapMap project are shown (red box). Where 
available, data from NHLBI-ESP are also provided (green box).

3.3  Population 
Frequencies

  Fig. 9    Summary of SNP information on NCBI dbSNP. Validation status is depicted by various  symbols . Click on 
the “Validation Status” link for description on these symbols       
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   The collection of in-house data where no dbSNP entry is 
 available is encouraged. An example is a promoter variant c.-24C>G 
in  HBA2  or  HBA1  that is commonly found in patients investigated 
for alpha thalassemia. This variant has been found in association 
with other known causative  HBA2 / HBA1  variants and is also seen 
on its own in association with a normal phenotype. Therefore this 
variant would be considered benign in terms of function.  

  Family studies provide information about whether a variant of 
interest is inherited or de novo, about its pattern of inheritance 
(dominant/recessive/paternal/maternal), and whether the variant 
co-segregates with the phenotype. This can be especially useful 
when interpreting variants private to a family which may not be 
described in the literature, a situation which is frequently present.  

3.4  Family Studies

  Fig. 10    Allelic frequency of rs5925 in different ethnicities on dbSNP       
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  Searching the published literature for functional evidence of a par-
ticular variant is essential when attempting to establish potential 
effects. In dbSNP, PubMed IDs for articles related to a reported 
SNP are listed under the “Cited Variants” track where available 
(Fig.  11 ). Locus-specifi c databases such as the University College 
of London  LDLR  familial hypercholesterolemia database for the 
 LDLR  gene [ 36 ], the Breast Cancer Information Core (BIC), and 
the International Agency for Research on Cancer (IARC) breast 
cancer database for  BRCA1  and  BRCA2  are also useful. The UK 
Clinical Molecular Genetics Society (CMGS) guidelines for inter-
pretation and reporting of unclassifi ed variants states under sec-
tion 4.1 that consulting locus-specifi c databases when reporting 
unclassifi ed variants is  essential , although curatorial rigor of all 
databases is a consideration [ 37 ]. It is envisaged that in the future, 
larger curated databases such as the Human Gene Mutation 
Database (HGMD) and Catalogue of Somatic Mutations in 
Cancer (COSMIC), which also provide links to reference journal 
articles, may become comprehensive enough to include informa-
tion available in locus-specifi c databases and may thus supplant 
this requirement.

   In all instances, the  quality  of source data must be carefully 
evaluated. It is important to establish whether the evidence pre-
sented has been based on in silico, in vitro, or in vivo studies, with 
robustness of reported results verifi ed by checking for reproduc-
ibility by independent groups and/or involving different popula-
tions. Too frequently a variant is reported as having been 
independently found a number of times, but, on closer inspection, 
the multiple observations are actually based on the one original 
publication. It may also be useful to search for information other 
than journal articles such as conference abstracts via search 
engines, although non-peer-reviewed data are of limited use in a 
clinical setting.  

3.5  Literature Search 
for Published Evidence 
of Biological Effect 
(Functional Studies, 
etc.)

  Fig. 11    PubMed IDs for articles related to a specifi c SNP can be viewed under “Cited Variants” ( arrowed  )       
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  Understanding the underlying molecular mechanisms of disease 
and their consequences in phenotype causation is essential for vari-
ant interpretation. For example, in dominant conditions (such as 
some inherited cancer syndromes) where homozygous/compound 
heterozygous allelic loss may be embryonic lethal, co-occurrence 
of a VUS with another known pathogenic mutation in trans can 
indicate that the variant is unlikely to be pathogenic. 

 In other instances, such as in the molecular diagnosis of thalas-
semia, laboratory phenotypic data may be helpful. In these instances 
it is important to correlate genotyping results with the phenotype 
to ascertain whether further studies are required. For example, a 
hematological profi le may be less or more severe than predicted on 
the basis of a known hemoglobin beta gene mutation. This may be 
indicative of gene–gene interactions such as a deletion, single-base 
change, or even a duplication of the hemoglobin alpha globin gene.  

  The classifi cation of variant pathogenicity is a complex task that 
requires professional judgment based on the collective evidence 
from all the aspects discussed and considered in this chapter. The 
American College of Medical Genetics (ACMG) has published an 
approach, detailed in a decision fl ow chart, on variant classifi cation 
([ 38 ]; Fig.  12 ). In both research and medical diagnostics, not all 
variants will have suffi cient information for an unequivocal deter-
mination, and not all evidence will have the same strength. As a 
general principle, variants demonstrated to have biological effects 
with in vivo and/or in vitro evidence are more convincing than 
those suggested solely on the basis of in silico predictive effects. 
Even an in vitro environment, although indicative, may not always 
be a true refl ection of in vivo effects as complex biological interac-
tions cannot be assessed. Cassa et al. [ 39 ] have shown that 8.5 % 
variants classifi ed as disease causing in the manually curated HGMD 
database are found in asymptomatic individuals. Conversely, a dis-
ease phenotype may be due to quantitative or pleiotropic effects of 
variants beyond the gene of interest. This is especially the case as 
more and more genotype–phenotype associations are unveiled by 
genomic scale researches. Interdisciplinary consortia such as 
evidence- based Network for the Interpretation of Germline Mutant 
Alleles (ENIGMA) are increasingly being formed to harmonize 
variant interpretation for some clinically important genes [ 40 ].

   There are various classifi cation systems to categorize variants in 
the clinical context. The ACMG have proposed a six-category clas-
sifi cation [ 38 ], and for cancer susceptibility genes the IARC 
Unclassifi ed Genetic Variants Working Group has suggested a fi ve- 
class classifi cation defi ned by the probability of a variant being 
pathogenic [ 2 ,  41 ] (Table  3 ). 

 With limited information, there are likely to be a large propor-
tion of variants classifi ed in the  uncertain  or the  likely 
pathogenic / likely nonpathogenic categories , complicating genetic 

3.6  Underlying 
Biological Knowledge

3.7  Classifi cation 
Models for Variants 
Based on Evidence 
of Pathogenicity
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counseling, potentially causing ongoing uncertainty for patients, 
and requiring follow-up studies. Diagnostic laboratories may be 
justifi ably reluctant to allocate the variant into the  likely pathogenic  
or the  expected to cause the disorder  categories without overwhelm-
ing supportive evidence, particularly if clinical stakes are high. In 
many instances, calculation of an exact posttest probability of dis-
ease for the variant may not be possible. These considerations are 
highlighted below.  

  Following are comparisons of three cases and the fi ndings utilizing 
the methods described above (summarized in Table  4 ).

    Case 1. CPOX variant (NM_000097.5:c.857C>A, NP_000088.3: 
p.Thr286Lys).  
 This variant was detected in two family members who had a bio-
chemical diagnosis of hereditary coproporphyria. The nucleotide 
and amino acid sequences are highly conserved. In silico evidence 
using SNPs&GO, MutPred, and Align GVGD was inconsistent. 
FoldX did suggest reduced stability, although as mentioned above 
it is not recommended for prediction. The variant is listed on 

3.8  Case Studies

  Fig. 12    ACMG fl ow chart on variant classifi cation and reporting. Adapted from [ 45 ] with permission from 
Nature Publishing Group       
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HGMD database and had been reported once in another patient 
with hereditary coproporphyria [ 42 ]. No functional studies were 
available. Due to the nature of variable penetrance in porphyria 
and lack of functional studies, the variant would be classifi ed as 
 may or may not be causative of the disorder . 

  Case 2. LDLR variant (NM_000527.4:c.301G>A (NP_000518.1: 
p.Glu101Lys)).  

   Table 4  
  Approaches used to classify variants in the three case studies   

 CPOX p.Thr286Lys  LDLR p.Glu101Lys  BRCA2 p.Asn289His 

 Nucleotide and 
amino acid 
conservation 
(PhyloP and 
phast Cons) 

 Conserved  Conserved  Not conserved 

 Protein domain  No association to 
functional domain 

 Calcium-binding site  No association to 
functional domain 

 SNPs&GO 
(probability of 
being disease causing) 

 0.696  0.965  0.966 

 MutPred (probability 
of being pathogenic) 

 0.555  0.937  0.163 

 Align GVGD  C0  C0–C55  C0 

 SIFT  Tolerated 
(score = 0.20) 

 Affect protein 
function (score = 0) 

 Tolerated 
(score = 0.12) 

 PolyPhen-2 (HumVar)  Possibly damaging 
(0.733) 

 Probably damaging (0.985)  Benign (0.075) 

 dbSNP entry  N/A  rs144172724  rs766173 

 Population frequency  No frequency 
information 

 No frequency information  Found in 5.8 % in 
population, up to 
20 % in Han 
Chinese 

 Literature and 
functional studies 

 Reported in one 
patient with 
hereditary 
coproporphyria. 
No functional 
studies available 

 Reported in multiple 
populations with familial 
hypercholesterolemia. 
Functional studies showed 
15–30 % of normal LDLR 
activity in homozygous state 

 Associated with 
decreased risk to 
breast cancer. No 
functional studies 
available 

 Variant classifi cation in 
database 

 Not available  Disease-causing mutation 
(HGMD) 

 Disease-associated 
polymorphism 
(HGMD) 

 Classifi cation  May be pathogenic  Pathogenic  Likely not 
pathogenic 
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 This variant was found in a patient with clinical familial 
 hypercholesterolemia. The nucleotide and amino acid sequences 
are highly conserved. The variant is within a calcium-binding site 
on NCBI CDD. It is reported in the locus-specifi c variation data-
base and had been described in various populations [ 36 ]. The vari-
ant is also known as FH Lancashire or E80K (using a different 
transcript as reference). Align GVGD prediction ranged from C0 
to C55 depending on the input of multiple protein sequence align-
ments. Manual curation of the sequence alignment (i.e., removing 
predicted/hypothetical protein or unrelated protein sequences) 
would see the classifi cation changing from C0 to C55. This high-
lights the importance of carefully selected alignment. SIFT pre-
dicted the variant to be not tolerated. SNPs&GO and MutPred 
predicted a high probability for the variant to be disease causing. 
Functional studies showed that LDLR activity was 15–30 % of nor-
mal in a homozygous individual [ 43 ]. The above evidence was 
considered to be suffi cient to classify this variant as  pathogenic . 

  Case 3. BRCA2 variant (NM_000059.3:c.865A>C (NP000050.2: 
p.Asn289His)).  
 This variant was detected in a Chinese patient referred for familial 
breast cancer testing. The variant is listed as a validated SNP 
(rs766173) on dbSNP with a minor allele frequency of 5.8 % in 1000 
Genomes Project. However, the population frequency of this variant 
is up to 20 % in Han Chinese. It is a polymorphic SNP where a differ-
ent nucleotide change (c.865A>G, p.Asn289Asp) is also found. The 
variant is reported in the HGMD database, and there is one article 
linked to the variant, reporting the variant to be associated with 
 decreased  risk of breast cancer [ 44 ]. In silico studies showed that the 
variant is not conserved based on PhyloP and phastCons, and it is not 
associated with any functional domain. Align GVGD using the built-
in sequence alignment for BRCA2 indicated that the variant is not 
likely to affect function (class C0). MutPred predicted the variant to 
be benign with the probability of it being deleterious at 0.163. 
However, SNPs&GO called it a disease- causing variant with a high 
RI of 9 (probability 0.966). Given the high population frequency 
especially in Han Chinese, it is unlikely that the variant is pathogenic, 
at least in the Chinese population. Results from in silico studies are 
inconsistent and therefore inconclusive. There was no positive asso-
ciation of this variant to breast cancer at the moment of reporting. 
The variant was therefore classifi ed as  likely not pathogenic .   

4    Notes 

     1.    Alternatively, one can perform multiple sequence alignment by 
SIFT BLink as described previously. SIFT will perform PSI- 
BLAST, and the FASTA fi le of the multiple protein sequence 
alignment can be downloaded. Beware that it may contain 
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unrelated proteins/predicted proteins which may need to be 
removed manually.   

   2.    If using FASTA sequence instead of Swiss-Prot code, 
SNPs&GO will  only  call the CPOX variant disease associated if 
one includes the two GO terms associated with CPOX 
(GO:0006779 and GO:0004109) while entering information 
in SNPs&GO. It will be called neutral if you do not!         
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    Chapter 14   

 Designing Algorithms for Determining Signifi cance 
of DNA Missense Changes 

           Sivakumar     Gowrisankar      and     Matthew     S.     Lebo   

    Abstract 

   Humans differ from each other in their genomes by <1 %. This determines the difference in susceptibility 
to disease, phenotypes, and traits. Predominantly, when looking for causal disease mutations, protein- 
coding sequences are screened fi rst since those have the highest probability of affecting the function of a 
protein. Recent technological advances have seen a rise in the number of experiments being conducted to 
study a variety of diseases from monogenic to complex traits. Several computational approaches have been 
developed to extract putative functional missense variants. In this chapter we review some of these 
approaches and describe a standard step-by-step procedure that can be used to classify variants for the 
purpose of clinical care. We also provide two examples demonstrating this approach, one for a patient with 
a dilated cardiomyopathy diagnosis, and the other for a patient with an unknown etiology undergoing 
whole-genome sequencing (WGS).  

  Key words     Missense variants  ,   Variant classifi cation  ,   Variants of unknown signifi cance  

  Abbreviations 

   ESP    Exome Sequencing Project   
  HGMD    Human Gene Mutation Database   
  LOF    Loss of Function   
  OMIM    Online Mendelian Inheritance in Man   
  SNV    Single Nucleotide Variation   
  VUS    Variant of Unknown Signifi cance   
  WES    Whole-Exome Sequencing   
  WGS    Whole-Genome Sequencing   

1        Introduction 

 Single nucleotide variations (SNVs) are one of the most common 
forms of alterations in the human genome and account for 99 % of 
the differences between people [ 1 ]. Missense variants, also known 
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as non-synonymous SNVs, are a class of variants that overlap the 
coding region of the genome and alter the amino-acid sequence of 
the encoded protein (Fig.  1 ). Missense SNVs are known to be 
responsible for a wide variety of adverse phenotypes and diseases. 
However, it is estimated that only 13–25 % of the known missense 
mutations are deleterious and the remainder are benign [ 2 ,  3 ].

   In research, several studies have been conducted to study 
 systematically various diseases and phenotypes to identify the causal 
genes and their pathogenic mutations [ 4 ,  5 ]. These studies employ 
techniques such as genome-wide association studies (GWAS) [ 6 , 
 7 ] and more recently high-throughput sequencing known as next- 
generation sequencing (NGS) [ 8 ,  9 ]. Briefl y, GWAS work under 
the hypothesis that the causal variants linked to disease can be cap-
tured by detecting adequate number of variants that are in linkage 
disequilibrium (LD). However, in most experiments the causal 
gene let alone the causal variant can be diffi cult to identify. The 
advent of NGS has seen a tremendous increase in the number of 
rare coding variants detected and associated with complex traits in 
case versus control studies. With this comes greater complexity in 
separating functional from benign variants. 

 In a clinical molecular diagnostic setting, the traditional mode 
of testing a patient for a known disease-associated gene and variant 
has shifted towards screening for a large number of disease- 
associated genes and variants. Although this has improved the clini-
cal sensitivity of diagnostic tests, the number of variants whose 
signifi cance cannot be determined (called VUS or variants of 
unknown signifi cance) has also increased. In addition several clini-
cal laboratories have begun offering whole-exome and whole- 
genome sequencing (WES and WGS) tests [ 10 ]. This raises the bar 
on the interpretation of new DNA variants as the genes they overlap 
with may not have a defi nitive proof of association with a disease. 

 Different kinds of information are currently being employed 
to classify variants by signifi cance. These can be broadly catego-
rized into genetics-based evidence, functional evidence, and com-
putational predictions (also  see   Note 1 ).

 ●    In genetics-based evidence one of the most commonly used 
metric is the population frequency of the variant allele. This 
refers to the proportion of any given population that carries 

A C G G T A G C A G T A A C A C A A G

A C G G T A G C A G C A A C A C A A G

Thr Val Ala Val Thr Gln

Thr Val Ala Ala Thr Gln

  Fig. 1    A hypothetical protein with a T>C missense variant causing a valine to 
alanine amino-acid change       
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the variant allele in question. If the variant allele frequency 
(also called as allele frequency) is greater than the prevalence of 
the disease in the population—assuming complete pene-
trance—then it can be inferred that this variant is not associ-
ated with the disease.  

 ●   In functional evidence the gene and protein expression are 
analyzed either in vivo or in vitro to assess the effect of a muta-
tion. Specifi cally mouse models have been used for character-
ization of specifi c diseases and phenotypes. When using mouse 
models as evidence for assessing clinical signifi cance of a muta-
tion care must be taken to ensure the phenotypes and diseases 
tested are related to the ones at hand.  

 ●   Computational prediction tools are available particularly to 
predict the functional signifi cance of coding mutations. 
A number of tools exist, and many of them share a number of 
features that go into their prediction model. These include 
nucleotide and amino-acid conservation, location of the muta-
tion on the coded-protein’s 3D structure, physicochemical 
properties of the protein itself, and so on. In spite of using 
similar features many tools have different underlying models to 
predict pathogenicity [ 11 ] (also  see   Note 2 ).    

 There are also databases and Web servers developed that pre- 
classify publically available variants from sources such as dbSNP 
and ESP (Exome Sequencing Project). These databases essentially 
provide a collection of information that includes several of the ones 
discussed above. However, before using these sources care must be 
taken to ensure the databases and Web servers are up-to-date.  

2    Materials 

  Variants need to be annotated with information such as conserva-
tion, allelic frequency, functional models, and so on. Several free 
and commercial tools exist that cater to this purpose. One such 
frequently used and freely available tool for academic institutions is 
ANNOVAR [ 12 ]. ANNOVAR accepts as input a text-based tab- 
delimited input fi le with the fi rst fi ve columns as chromosome 
number, start position, end position, wild-type allele, and variant 
allele. The rest of the columns can be used for any annotations and 
will be reproduced in the output. 

 Another tool that is commercially available for annotation is 
Alamut (Interactive Biosoftware, LLC. Rouen, France). Alamut is 
a powerful variant annotation and visualization tool that can be 
used to populate a variety of fi elds. One of the advantages of 
Alamut is that it can be used to obtain annotations for the same 
variant from different transcripts. Table  1  shows a list of currently 
used variant annotation tools.

2.1  Annotation Tools

Signifi cance of Missense Variants
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     A handful of consortia and various other efforts have sought to 
identify and determine the allele frequency for naturally occurring 
variants in various populations. These include the ESP (  http://evs.
gs.washington.edu/EVS/    ), the 1000 genomes project [ 16 ], and 
the PanSNPdb (The Pan-Asian SNP Genotyping Database) [ 17 ], 
ClinSeq [ 18 ]. The ESP has sequenced >6,500 African American 
and European American normal populations and subsequently 
identifi ed common and rare variants that occur in them. Similarly, 
the 1000 genomes project has sequencing and variant data for >24 
different populations. Another good source of common variants is 
dbSNP [ 19 ]. dbSNP data are an accumulation of variant submis-
sions from multiple different laboratories and  consortia. Hence, 
the quality of the downloaded data needs to be assessed before its 
use. These variants can either be downloaded in bulk or obtained 
through a Web interface.  

  Several in silico functional prediction tools are available as men-
tioned earlier to assess the functional signifi cance of the missense 
variant in question. More than often these tools use a similar set of 
features such as nucleotide conservation, amino-acid conservation, 
physicochemical properties, overlapping with known domains, 
among other things to make a prediction on the putative effect of 
the variant on protein function. Users are encouraged to read other 
detailed descriptions published [ 20 ,  21 ]. Table  2  shows some of 
the most commonly used tools.

2.2  Allele Frequency 
Databases

2.3  Computational 
Functional Impact 
Prediction Tools

   Table 1  
  Variant annotation tools   

 Tool name  Description  Reference/URL 

 VEP  Variant Effect Predictor—annotations 
with predicted effect on proteins 

 [ 13 ] 

 ANNOVAR  Annotate variants with a number 
of optional data 

 [ 12 ] 

 VAT  Variant Annotation Tool—cloud- based 
tool for variant annotation 

   http://vat.gersteinlab.org/     

 GenomeTrax™  Commercial tool to identify pathogenic 
variants in silico 

   www.biobase-international.com/
product/genome-trax     

 SeatleSeq  Variant annotation tool  [ 14 ] 

 Alamut  Commercial software for variant 
annotation and visualization 

   www.interactive-biosoftware.com/
software/alamut/     

 FAVR  Filtering and annotating of variants 
that are rare 

 [ 15 ] 
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     Many databases that store causal variants associated with clinically 
signifi cant phenotypes exist. For example OMIM, Online Mendelian 
Inheritance in Man (  http://omim.org/    ) is a database of human 
genes and associated phenotypes that also has information about 
causal variants. This information is gleaned from the literature and 
updated on a daily basis. It must be noted that this database primar-
ily focuses on inherited diseases and their causal variants. Another 
database of signifi cance is HGMD, Human Gene Mutation 
Database [ 29 ] that catalogs all known mutations and associated dis-
eases from the literature. For HGMD, one might need to obtain a 
license depending on the type of institution and the intended use. 
Table  3  shows some of the most commonly used databases.

2.4  Variants in 
Clinically Relevant 
Databases

   Table 2  
  Commonly used in silico analysis tools ( see  also Chapter   13    )   

 Tool name  URL  Reference 

 PolyPhen2    http://genetics.bwh.harvard.edu/pph2/      [ 22 ] 

 SIFT    http://sift.bii.a-star.edu.sg/      [ 23 ,  24 ] 

 MutationTaster2    www.mutationtaster.org/      [ 25 ] 

 SNAP    www.rostlab.org/services/SNAP/      [ 26 ] 

 MutationAssessor    http://mutationassessor.org/      [ 27 ] 

 MAPP    http://mendel.stanford.edu/SidowLab/downloads/MAPP/index.html      [ 28 ] 

   Table 3  
  Commonly used DNA variant and mutation databases   

 Tool name  Description  Reference 

 OMIM  Database of inherited mutations 
especially in humans 

   http://omim.org/     

 HGMD  Human Gene Mutation Database  [ 29 ] 

 ClinVar  Free archive of human variations and 
phenotypes with supporting evidence 

 [ 30 ] 

 LOVD  Leiden Open Variation Database  [ 31 ] 

 GET-Evidence  Collaborative database of human 
variants, traits, and diseases 

   http://evidence.personalgenomes.org/
about     

 PharmGKB  Tool to investigate effect of genetic 
variation on drug response 

 [ 32 ] 

 HGVS—database 
and other tools 

 Database of databases organized 
by various categories 

   www.hgvs.org/dblist/dblist.html     

Signifi cance of Missense Variants
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     Currently, there are limited sources that have accurately and thor-
oughly gathered variants of signifi cance from literature. Literature 
searches are essential for identifying the primary sources for family, 
case–control, and functional studies. Searches using PubMed and 
search engines such as Google are most effective, provided care is 
taken to include all possible nomenclature for the variant (also  see  
 Note 3 ).   

3    Methods 

 While there are no accepted universal standards to fi lter and cate-
gorize variants, there are steps that are used widely by a number of 
laboratories. The method described in this chapter is one of the 
approaches that our laboratory generally follows for fi ltering vari-
ants detected by NGS. In addition, for reporting variants to 
patients we follow a more elaborate set of rules that are detailed in 
ref.  33 . Although we have focused on NGS, the same approach can 
be used with other related technologies. 

  Depending on the size of the genomic region sequenced the 
 number of variants detected can range from a few hundreds to a 
few million [ 34 ]. Identifying variants of interest that might be 
functionally signifi cant can be like searching for a needle in a 
 haystack. Nevertheless, a variety of  fi ltering  mechanisms can be 
used to reduce the number of variants to a list of manageable size. 

  Most of the tools in use today to call variants include a set of stan-
dard metrics as part of the output. These range from depth of 
coverage, mapping quality, and strandedness. Depth of coverage or 
simply coverage is the number of reads overlapping the variant of 
interest. Usually for germ-line-based analysis a coverage of ≥20× 
indicates good quality [ 35 ], while for somatic mutations a higher 
depth >100× might be preferred to detect low percent tumor or 
heterogeneity. When analyzing whole-exome or whole-genome 
data, a lower coverage might be used as threshold to fi lter out 
likely false-positive variants. This might reduce the likelihood of 
incurring a false- negative variant [ 36 ].  

  When a variant present in a patient is commonly found in the gen-
eral population then that variant most likely is not clinically signifi -
cant. In general, an allele frequency of ≥5 % points to a variant 
being benign [ 37 ,  38 ]. This cutoff can be further reduced when 
assessing the signifi cance of variants pertaining to a specifi c disease 
with known prevalence, age of onset, and penetrance (also  see  
 Note  4 ). For example for assessing hypertrophic cardiomyopathy 
related genes a variant may be considered benign if its allele fre-
quency is >0.3 % [ 33 ].  

2.5  Literature Search

3.1  Filtering 
Strategies

3.1.1  Variant Call Quality

3.1.2  Population Allele 
Frequency
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  A variant present in a patient may be classifi ed pathogenic if it is 
already implicated with a disease in any of the clinically relevant 
databases mentioned earlier. However, two caveats need to be 
noted.

 ●    False-positive assertions exist in both commercial and public 
databases. These incorrectly implicate a variant with a disease. 
Therefore, it is always recommended to read the actual 
publication(s) that link(s) a variant to a disease. Even if the 
results of the publications are correctly cited in the database, it 
remains possible that conclusions in them are incorrect.  

 ●   In spite of having the variant in the database, it is possible that 
the variant is associated with a different phenotype or disease 
than what is present in the patient. A variant that might cause 
a particular disease does not necessarily cause the other.     

  If family-trio or other extended pedigrees are available, it is best to 
check for segregation of the variant with the affected. For example 
if the proband does not share a variant with other affected family 
members then that variant may not be the cause of the phenotype 
or disease. 

 In cases where the inheritance pattern of a disease is known, 
one might look for specifi c types of variants. For dominant inheri-
tance a single heterozygous variant is enough to cause the disease 
[ 39 ]. For recessive mode of inheritance, two compound heterozy-
gous variants might be expected, whereas in the case of consan-
guineous marriage a homozygous variant might be expected [ 40 ]. 
In rare cases when the parents are not affected a de novo mutation 
might be the cause of the disease [ 41 ]. A pedigree or detailed 
 family information is not always available but remains one of 
the most powerful ways of confi rming the causality of a variant 
with a phenotype.  

 ●       Conserved domains : Certain segments or domains of the pro-
tein may have greater functional signifi cance than others. 
These domains are often conserved across multiple species. A 
missense variant overlapping this domain will change the 
amino-acid structure and therefore might alter the domain’s 
functionality. For example, the RS domain in the gene  RBM20  
is commonly mutated in dilated cardiomyopathy [ 42 ].  

 ●    Conservation : A missense variant will cause a change in the 
amino-acid sequence. However, it is possible that the position 
of the amino acid is not evolutionarily conserved across mul-
tiple species indicating that it is not functionally signifi cant. 
Tools such as the UCSC genome browser [ 43 ] or Alamut can 
be used to do this. On the other hand it is possible to down-
load all this information from UCSC or NCBI and use it in 
custom tools for high-throughput processing.  

3.1.3  Presence of Variant 
in Clinically Relevant 
Databases

3.1.4  Segregation 
Patterns

3.1.5  Other General 
Considerations
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 ●   In silico prediction tools: The most commonly used tools 
among others include SIFT, PolyPhen2, and MutationTaster. 
Though these tools use a common set of features the algo-
rithms designed to make the predictions differ signifi cantly. 
Therefore, it is desirable to use more than one prediction tool. 
These tools are used in a research setting, but for  clinical  
assessment of a variant they are used with great care as they 
have not been validated for this purpose ( see   Note 5 ).     

  We have discussed earlier that a variant previously associated with 
disease in Mendelian disease databases is a sign of pathogenicity of 
the variant. Sometimes, however, a slightly different variant may 
have been implicated in the disease. Although the exact same vari-
ant was not observed earlier it indicates that the location of the 
variant is functionally important. This suggests that the current 
variant is also signifi cant. 

 Missense variants can also give rise to a splicing variant (Fig.  2 ) 
depending on its location. Many splicing variants have been impli-
cated in diseases [ 44 ]. It is important to check if a variant will affect 
the splicing event through in silico tools such as NNSPLICE [ 45 ] 
and GeneSplicer [ 46 ]. For clinical testing, the same cautions apply 
as described above for in silico prediction tools.

   It is also possible to obtain an estimation of the frequency of 
occurrence of missense variants in specifi c genes of interest. One 
could then relate the occurrence of a pathogenic missense variant to 
the likelihood of that type of variant occurring in a gene. For exam-
ple, missense variants are common in the  TTN  gene (dilated cardio-
myopathy) while relatively rare in the  PTPN11  gene (Noonan 
syndrome). Therefore, a missense variant in  PTPN11  has a higher  a 
priori  likelihood of being pathogenic than a missense variant in  TTN .  

3.1.6  Special 
Considerations for 
Mendelian Phenotypes

Exon13 Intron13 Exon14 Intron14 Exon15

Exon13 Exon14 Exon15

Exon13 Exon15

G
T

BRCA1

Missense Variant

Wild-Type

4603G>T

  Fig. 2    A 4603G>T missense variant at the splicing junction in  BRCA1  causing exon 14 skipping [ 47 ]       
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  For complex diseases such as diabetes it is hypothesized that a col-
lection of variants represent cumulative risk factors [ 48 ,  49 ] as 
opposed to a single variant causing a disease in the Mendelian dis-
orders. In these cases the problem becomes the identifi cation of 
risk alleles rather than causal alleles. Often, patient cohorts are 
needed to predict these alleles followed by model creation to pre-
dict risk for a new patient in acquiring the complex trait. The read-
ers are encouraged to read publications that give a much detailed 
account of these issues [ 50 ].  

  Analyzing cancer mutations is a broader topic. Here, we leave 
a brief description of what is involved in such an analysis. The 
 readers are encouraged to refer to other materials for detailed 
information. Somatic mutations are generally called accurately 
with the presence of tumor-normal sample pairs. Variant calling is 
typically done using tools such as VarScan2 [ 51 ], Strelka [ 52 ], and 
MuTect [ 53 ] which are developed specifi cally for cancer-related 
data. These variants can then be annotated with matches to cancer-
specifi c databases such as COSMIC [ 54 ]. As with Mendelian data-
bases care must be taken to ensure the validity of the entries by 
going through publications referenced in the database. For 
research- based studies the variant can be further annotated and 
fi ltered as part of a clinical trial or, via its effect if there are drugs 
that target the specifi c mutation and/or related pathway(s).   

   The panel covers a total of 51 genes covering only coding regions 
and can be developed in what is called  targeted  NGS. What follows 
is a step-by-step breakdown on the number variants remaining at 
each fi ltering step.

    1.    Total Variants: 142.   
   2.    Variants after quality fi ltering: 140.   
   3.    Variants after reference sequence error fi ltration: 132.   
   4.    Variants after fi ltration by population allele frequency: 6.   
   5.    Manual review (segregation, literature) which produces the 

fi nal breakdown into:
    (a)    One likely benign variant.   
   (b)    Four variants of unknown signifi cance (VUS).   
   (c)    One pathogenic variant.        

        1.    Total variants: 5,131,222 (SNVs and small indels).   
   2.    Filter by quality: 3,227,455 substitutions and 418,331 indels.   
   3.    Filter by coding region: 20,240 coding sequence (CDS) or 

splice variants (also  see   Note 6 ).   

3.1.7  Special 
Considerations 
for Complex Traits

3.1.8  Special 
Considerations for Somatic 
Mutations

3.2  Examples

3.2.1  Filtering Variants 
Obtained from a Dilated 
Cardiomyopathy-Specifi c 
Gene Panel

3.2.2  Filtering Variants 
Obtained from a Patient 
with Unknown Etiology 
Using WGS
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   4.    Filter by allele frequency: 616 Rare CDS/splice Variants.
    (a)     Present in clinical databases : 25 “Disease-Causing” Variants.

 ●    Manual review—two pathogenic.      
   (b)     Novel/rare loss-of-function (LOF) variants : 189 LOF 

Variants.
 ●    Variants present in medically relevant genes (11 variants).  
 ●   Manual review (two variants).               

4    Notes 

        1.    In the absence of pedigree/segregation information, any com-
putationally based method assessing the effect of a missense 
variant is as accurate as the annotations that go into it. It is 
possible that some disease-causing mutations may not have 
been studied in detail yet. As a result computational methods 
to assess signifi cance will be inconclusive.   

   2.    There can be important differences between  functional  signifi -
cance,  medical  signifi cance, and  population  signifi cance for any 
allele. Briefl y, a variant can be functionally signifi cant, meaning 
that it might be affecting the protein function, but may not be 
medically signifi cant, meaning that it may not give rise to a clini-
cally relevant trait. Similarly, a variant allele on a conserved loca-
tion might not necessarily have a medically signifi cant effect [ 11 ].   

   3.    When using allele frequency for variant fi ltration, care must be 
taken that the cutoff is fairly conservative based on disease 
prevalence, penetrance, and age of onset. Prevalence gives an 
estimate of how frequently the disease occurs in the popula-
tion. If the population frequency is more than the prevalence 
of the disease, then the variant is likely benign. In addition, the 
penetrance of the disease, defi ned as the percentage of people 
harboring the mutation that are symptomatic, must be deter-
mined. Finally, age of onset defi nes the age at which individu-
als harboring a mutation become symptomatic. Once a 
base-line threshold is set based on prevalence, the allele fre-
quency threshold should be further increased or decreased 
based on penetrance and age of onset.   

   4.    Not all functional prediction tools work well with all types of 
proteins, as these methods may have been trained on specifi c 
types of proteins, e.g., structural, and therefore are not gener-
alizable. For example PolyPhen2 is primarily trained on globu-
lar proteins and hence tend to work better with those kinds. 
Sometimes a different version of an existing tool is created for 
specifi c types of protein [ 55 ].   

   5.    At times extensive searches of the literature are needed to 
interpret accurately the signifi cance of a DNA variant. This can 
be time-consuming but is essential.   

Sivakumar Gowrisankar and Matthew S. Lebo
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   6.    The search for causal mutation typically begins with screening 
the coding missense variants. However, if the search is incon-
clusive or negative, it is generally recommended to look for 
other types of mutations including synonymous, stop loss, 
stop gain, splicing, and noncoding.         

   References 

    1.    Kruglyak L, Nickerson DA (2001) Variation is 
the spice of life. Nat Genet 27:234–236  

    2.    Fu W, O'Connor TD, Jun G et al (2013) 
Analysis of 6,515 exomes reveals the recent 
origin of most human protein-coding variants. 
Nature 493:216–220  

    3.    Yue P, Moult J (2006) Identifi cation and anal-
ysis of deleterious human SNPs. J Mol Biol 
356:1263–1274  

    4.    Ariyaratnam R, Casas JP, Whittaker J et al 
(2007) Genetics of ischaemic stroke among 
persons of non-European descent: a meta- 
analysis of eight genes involving approximately 
32,500 individuals. PLoS Med 4:e131  

    5.    Lopes LR, Rahman MS, Elliott PM (2013) A 
systematic review and meta-analysis of 
genotype- phenotype associations in patients 
with hypertrophic cardiomyopathy caused by 
sarcomeric protein mutations. Heart 99: 
1800–1811  

    6.    McCarthy MI, Zeggini E (2009) Genome- 
wide association studies in type 2 diabetes. 
Curr Diabetes Rep 9:164–171  

    7.    O'Seaghdha CM, Fox CS (2012) Genome- 
wide association studies of chronic kidney dis-
ease: what have we learned? Nat Rev Nephrol 
8:89–99  

    8.    Bolze A, Byun M, McDonald D et al (2010) 
Whole-exome-sequencing-based discovery of 
human FADD defi ciency. Am J Hum Genet 
87:873–881  

    9.    Foroud T (2013) Whole exome sequencing of 
intracranial aneurysm. Stroke 44:S26–S28  

    10.   Karow J (2011) Baylor Whole Genome 
Laboratory launches clinical exome sequenc-
ing test.   http://genomeweb.com/print/
988726      

     11.    Sunyaev SR (2012) Inferring causality and 
functional signifi cance of human coding DNA 
variants. Hum Mol Genet 21:R10–R17  

     12.    Wang K, Li M, Hakonarson H (2010) 
ANNOVAR: functional annotation of genetic 
variants from high-throughput sequencing 
data. Nucleic Acids Res 38:e164  

    13.    McLaren W, Pritchard B, Rios D et al (2010) 
Deriving the consequences of genomic vari-
ants with the Ensembl API and SNP Effect 
Predictor. Bioinformatics 26:2069–2070  

    14.    Ng SB, Turner EH, Robertson PD et al (2009) 
Targeted capture and massively parallel 
sequencing of 12 human exomes. Nature 461: 
272–276  

    15.    Pope BJ, Nguyen-Dumont T, Odefrey F et al 
(2013) FAVR (Filtering and Annotation of 
Variants that are Rare): methods to facilitate 
the analysis of rare germline genetic variants 
from massively parallel sequencing datasets. 
BMC Bioinformatics 14:65  

    16.    1000 Genome Project Consortium, Abecasis, 
G.R., Auton, A. et al (2012) An integrated 
map of genetic variation from 1,092 human 
genomes. Nature 491:56–65  

    17.    Ngamphiw C, Assawamakin A, Xu S et al 
(2011) PanSNPdb: the Pan-Asian SNP geno-
typing database. PLoS One 6:e21451  

    18.    Biesecker LG, Mullikin JC, Facio FM et al 
(2009) The ClinSeq Project: piloting large- scale 
genome sequencing for research in genomic 
medicine. Genome Res 19:1665–1674  

    19.    Sherry ST, Ward MH, Kholodov M et al 
(2001) dbSNP: the NCBI database of genetic 
variation. Nucleic Acids Res 29:308–311  

    20.    Tennessen JA, Bigham AW, O'Connor TD 
et al (2012) Evolution and functional impact 
of rare coding variation from deep sequencing 
of human exomes. Science 337:64–69  

    21.    Cooper GM, Shendure J (2011) Needles in 
stacks of needles: fi nding disease-causal vari-
ants in a wealth of genomic data. Nat Rev 
Genet 12:628–40  

    22.    Adzhubei IA, Schmidt S, Peshkin L et al 
(2010) A method and server for predicting 
damaging missense mutations. Nat Methods 
7:248–249  

    23.    Hu J, Ng PC (2013) SIFT Indel: predictions 
for the functional effects of amino acid inser-
tions/deletions in proteins. PLoS One 8: 
e77940  

    24.    Kumar P, Henikoff S, Ng PC (2009) Predicting 
the effects of coding non-synonymous variants 
on protein function using the SIFT algorithm. 
Nat Protoc 4:1073–1081  

    25.    Schwarz JM, Rodelsperger C, Schuelke M et al 
(2010) MutationTaster evaluates disease- 
causing potential of sequence alterations. Nat 
Methods 7:575–576  

Signifi cance of Missense Variants

http://genomeweb.com/print/988726
http://genomeweb.com/print/988726


262

    26.    Johnson AD, Handsaker RE, Pulit SL et al 
(2008) SNAP: a web-based tool for identifi ca-
tion and annotation of proxy SNPs using 
HapMap. Bioinformatics 24:2938–2939  

    27.    Reva B, Antipin Y, Sander C (2011) Predicting 
the functional impact of protein mutations: 
application to cancer genomics. Nucleic Acids 
Res 39:e118  

    28.    Stone EA, Sidow A (2005) Physicochemical 
constraint violation by missense substitu-
tions mediates impairment of protein function 
and disease severity. Genome Res 15:978–986  

     29.   Stenson PD, Mort M, Ball EV et al (2013) 
The Human Gene Mutation Database: build-
ing a comprehensive mutation repository for 
clinical and molecular genetics, diagnostic test-
ing and personalized genomic medicine .  Hum 
Genet [Epub ahead of print]  

    30.   Landrum MJ, Lee JM, Riley GR et al (2013) 
ClinVar: public archive of relationships among 
sequence variation and human phenotype. 
Nucleic Acids Res [Epub ahead of print]  

    31.    Fokkema IF, Taschner PE, Schaafsma GC et al 
(2011) LOVD v. 2.0: the next generation in 
gene variant databases. Hum Mutat 32: 
557–563  

    32.    Whirl-Carrillo M, McDonagh EM, Hebert JM 
et al (2012) Pharmacogenomics knowledge 
for personalized medicine. Clin Pharmacol 
Ther 92:414–417  

     33.    Duzkale H, Shen J, McLaughlin H et al (2013) 
A systematic approach to assessing the clinical 
signifi cance of genetic variants. Clin Genet 
84:453–63  

    34.    Shendure J, Lieberman Aiden E (2012) The 
expanding scope of DNA sequencing. Nat 
Biotechnol 30:1084–1094  

    35.    Gowrisankar S, Lemer-Ellis JP, Cox S et al 
(2010) Evaluation of second-generation 
sequencing of 19 dilated cardiomyopathy 
genes for clinical applications. J Mol Diagn 
12:818–827  

    36.    Kitzman JO, Snyder MW, Ventura M et al 
(2012) Noninvasive whole-genome sequenc-
ing of a human fetus. Sci Transl Med 4:
137ra76  

    37.    Johnson GC, Esposito L, Barratt BJ et al 
(2001) Haplotype tagging for the identifi ca-
tion of common disease genes. Nat Genet 
29:233–237  

    38.    Raychaudhuri S (2011) Mapping rare and 
common causal alleles for complex human dis-
eases. Cell 147:57–69  

    39.    Kottgen M (2007) TRPP2 and autosomal 
dominant polycystic kidney disease. Biochim 
Biophys Acta 1772:836–850  

    40.    Myerowitz R (1997) Tay-Sachs disease-caus-
ing mutations and neutral polymorphisms in 
the Hex A gene. Hum Mutat 9:195–208  

    41.    Simons C, Wolf NI, McNeil N et al (2013) A 
de novo mutation in the beta-tubulin gene 
TUBB4A results in the leukoencephalopathy 
hypomyelination with atrophy of the basal 
ganglia and cerebellum. Am J Hum Genet 
92:767–773  

    42.    Brauch KM, Karst ML, Herron KJ et al (2009) 
Mutations in ribonucleic acid binding protein 
gene cause familial dilated cardiomyopathy. 
J Am Coll Cardiol 54:930–941  

    43.   Karolchik D, Barber GP, Casper J et al (2013) 
The UCSC Genome Browser database: 2014 
update. Nucleic Acids Res [Epub ahead of print]  

    44.    Fan X, Tang L (2013) Aberrant and alternative 
splicing in skeletal system disease. Gene 
528:21–26  

    45.    Reese MG, Eeckman FH, Kulp D et al (1997) 
Improved splice site detection in genie. 
J Comput Biol 4:311–323  

    46.    Pertea M, Lin X, Salzberg SL (2001) 
GeneSplicer: a new computational method for 
splice site prediction. Nucleic Acids Res 
29:1185–1190  

    47.    Yang Y, Swaminathan S, Martin BK et al (2003) 
Aberrant splicing induced by missense muta-
tions in BRCA1: clues from a humanized mouse 
model. Hum Mol Genet 12:2121–2131  

    48.    Hakonarson H, Grant SF, Bradfi eld JP et al 
(2007) A genome-wide association study iden-
tifi es KIAA0350 as a type 1 diabetes gene. 
Nature 448:591–594  

    49.    Sladek R, Rocheleau G, Rung J et al (2007) A 
genome-wide association study identifi es novel 
risk loci for type 2 diabetes. Nature 445: 
881–885  

    50.    Manolio TA, Collins FS, Cox NJ et al (2009) 
Finding the missing heritability of complex 
diseases. Nature 461:747–753  

    51.    Koboldt DC, Zhang Q, Larson DE et al 
(2012) VarScan 2: somatic mutation and copy 
number alteration discovery in cancer by 
exome sequencing. Genome Res 22:568–576  

    52.    Saunders CT, Wong WS, Swamy S et al (2012) 
Strelka: accurate somatic small-variant calling 
from sequenced tumor-normal sample pairs. 
Bioinformatics 28:1811–1817  

    53.    Cibulskis K, Lawrence MS, Carter SL et al 
(2013) Sensitive detection of somatic point 
mutations in impure and heterogeneous can-
cer samples. Nat Biotechnol 31:213–219  

    54.    Forbes SA, Bindal N, Bamford S et al (2010) 
COSMIC: mining complete cancer genomes 
in the catalogue of somatic mutations in can-
cer. Nucleic Acids Res 39:D945–D950  

    55.    Jordan DM, Kiezun A, Baxter SM et al (2011) 
Development and validation of a computa-
tional method for assessment of missense vari-
ants in hypertrophic cardiomyopathy. Am J 
Hum Genet 88:183–192    

Sivakumar Gowrisankar and Matthew S. Lebo



263

Ronald Trent (ed.), Clinical Bioinformatics, Methods in Molecular Biology, vol. 1168,
DOI 10.1007/978-1-4939-0847-9_15, © Springer Science+Business Media New York 2014

    Chapter 15   

 DNA Variant Databases: Current State and Future 
Directions    

           John-Paul     Plazzer      and     Finlay     Macrae   

    Abstract 

   In this chapter we aim to provide an overview of DNA variant databases, commonly known as Locus- Specifi c 
Databases (LSDBs), or Gene-Disease Specifi c Databases (GDSDBs), but the term  variant database  will be 
used for simplicity. We restrict this overview to germ-line variants, particularly as related to Mendelian dis-
eases, which are diseases caused by a variant in a single gene. Common diffi culties associated with variant 
databases and some proposed solutions are reviewed. Finally, systems where technical solutions have been 
implemented are discussed. This work will be useful for anyone wishing to establish their own variant data-
base, or to learn about the global picture of variant databases, and the technical challenges to be overcome.  

  Key words     Disease  ,   Gene  ,   Ontology  ,   Phenotype  ,   Standards  ,   Variant database  

  Abbreviations 

   HGVS    Human Genome Variation Society   
  HPO    Human Phenotype Ontology   
  HVP    Human Variome Project   

1        Introduction 

 A genetic variant is a difference found in a DNA sequence as com-
pared to a reference sequence. A variant database stores variants 
that are found during clinical diagnostic testing, for the purpose of 
sharing information. There are two main reasons for sharing vari-
ant information. One is to assist with the interpretation of variant 
pathogenicity in relation to a clinical phenotype. The other is to 
enable research, either on specifi c genes or variants, or across mul-
tiple genes and diseases [ 1 ]. 

 A variant database stores information about variants which 
have been collected from one or more sources. There are three 
main sources of information in variant databases: (1) directly from 
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laboratory or clinical data, (2) indirectly by extraction from the 
published literature, or (3) a combination of both. The type of 
information collected is the gene and variant, patient demograph-
ics, and patient phenotype or disease. Additional data can be added 
to enhance the information and assist with clinical decision mak-
ing, including in silico predictions, pathology information, in 
vitro/functional assays, and family history. 

 Variant databases can be as simple as a spreadsheet or HTML 
table, to more complex relational databases. They are generally 
divided as  variant-specifi c  (each variant has a record with a summary 
of patient or phenotype information) or  patient-specifi c  (each patient 
has a record and variants are stored against the patient). Patient-
specifi c databases should be distinguished from patient registries 
which can house similar information, but in an identifi ed form for 
clinical management or ethically approved research purposes. 

 Variant databases are often started by a small group of research-
ers or clinical geneticists interested in collating variant information 
and sharing it with the wider community. Alternatively, individual 
researchers may start a database on their own initiative, if the data-
base for their gene(s) of interest does not yet exist. At the other 
end of the scale are larger organizations or consortiums that create 
databases in their fi elds of expertise [ 2 ]. Many varieties of databases 
exist, at different levels of organization—local, regional, national, 
and global. There are databases grouped by gene and disease and 
supported by organizations such as the International Society for 
Gastrointestinal Hereditary Tumours (InSiGHT). Variant data-
bases are also divided by their commercial, research, or clinical 
focus. These databases all have one thing in common, that is, to 
share information about genetic variations and their role in disease. 
A comprehensive list    of variant databases is available online:   http://
www.hgvs.org/dblist/glsdb.html    .  

2    Current State of Mutation Databases 

 Review articles have reported on the nature and quality of variant 
databases [ 2 ,  3 ]. The reviews cover the degree to which variant 
databases are supported by expert curation, the types of informa-
tion contained within a database, and the amount of data that is 
available. The 2010 review by Mitropoulou et al. found only 13 % 
of variant databases had information for all three of the most impor-
tant categories of information: (1) variant pathogenicity, (2) refer-
ence sequence, and (3) appropriate nomenclature for variant names. 

 Errors in reporting of genetic variants in published literature 
are also a recognized problem, and these errors can fi nd their 
way into variant databases [ 4 ]. The best way to prevent errors in 
variant descriptions is to use Mutalyzer software, as shown in 
Subheading  4.3  on Standards. Other errors are less likely to be 
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detected and fi xed, and submitters need to be relied upon to 
 provide accurate information. 

 Another major issue is how to defi ne adequate database struc-
tures. Most databases are now implemented through a relational 
database system [ 3 ]. Established databases usually have a table for 
variants, and commonly a second table for patient and phenotype 
information. However, this structure is not ideal if phenotypes and 
disease can change over time in a patient, or if treatments alter the 
course of disease development. A properly designed relational 
database will have a third table for phenotype, so that new pheno-
type records can be added for each patient as needed. This is rec-
ognized and implemented by more advanced databases. Defi ning 
fi elds to handle patient phenotype, family history, patient ethnicity 
and in vitro test results is also challenging. We will look at a poten-
tial solution for the issue of patient phenotypes. 

 Data for specifi c genes and diseases is shared by clinicians or 
laboratory diagnostic staff to variant databases. Historically, this 
has not always occurred, and unpublished variant information is 
held in private systems of diagnostic laboratories, clinic-based 
patient records or other registries [ 5 ]. Automated technologies, 
like Next-generation sequencing, should make sharing easier than 
in the past as information will be generated in a digital format and 
processed by software pipelines. Other factors that prevent sharing 
include concerns over patient privacy and consent. Guidelines con-
cerning the ethical sharing of patient information have been for-
mulated [ 6 ]. The most important rule is to remove identifying 
information from data submissions.  

3    Types of Variant Databases 

  Database systems designed to handle multiple genes and diseases 
can be called  universal  variant databases. There are two ways this is 
accomplished, generally divided into  locus-specifi c  versus  central-
ized  approaches [ 2 ]:

    1.     Locus-specifi c . Individual database tables are created and tai-
lored for each disease or disease grouping. Therefore, such a 
system can be viewed as a collection of variant databases, rather 
than a unifi ed whole, albeit running on the same software plat-
form. These universal variant databases collate variants from 
many genes and diseases into a single system. They are specifi -
cally designed to include detailed clinical data for any disease. 
A major advantage of this approach is the curator for a particu-
lar variant database can maintain close supervision over the 
database, informed by his or her dedicated expertise relating 
to the gene and associated diseases. The best example is the 
Leiden Open Variation Database (LOVD) (  http://www.lovd.nl    ) 
described in Subheading  3.2 .   

3.1  Universal 
Databases

DNA Variant Databases
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   2.     Centralized . A consistent database structure is used for all genes 
and diseases. This is a more standard relational database system 
with well-defi ned fi elds and data types. However, this approach 
loses the fl exibility of a decentralized database in favor of 
centralized control. The main limitation of centralized variant 
databases is a decrease in disease-specifi c information, with a 
focus on more generalized disease terms. ClinVar (  http://www.
ncbi.nlm.nih.gov/clinvar    ), a new system developed by the 
National Center for Biotechnology Information (NCBI) is an 
excellent example of a centralized database. However, as well as 
accepting submissions from diagnostic laboratories, data from 
some locus-specifi c variant databases is shared with ClinVar, 
showing the mutually benefi cial roles of both centralized and 
non- centralized databases. Another example of a centralized 
variant database is the Human Gene Mutation Database 
(HGMD), a commercially orientated system which stores 
information extracted from published literature.    

  There are circumstances where one approach is more suitable 
than the other, and both have value to the clinical genetics com-
munity. Universal databases can also provide automated integra-
tion with external databases and systems, such as the University of 
California Santa Cruz (UCSC) genome browser. However, any use 
nonstandard data limits full integration with external systems. 
Universal systems may also provide free hosting services for the 
databases and are recommended over in-house databases as they 
already incorporate tools for analyzing genetic variant information 
and are interconnected with other systems.  

   Leiden Open Variation Database (LOVD) could be considered the 
de facto standard for variant database systems. It was created to 
generate automatically locus-specifi c variant databases for any gene 
or disease [ 7 ]. These are then hosted by organizations on their 
own servers, or alternatively the LOVD developers may provide 
free hosting. LOVD has recently been upgraded to version 3 
(LOVDv3) which includes signifi cant enhancements to its archi-
tecture. An important feature LOVDv3 introduced is a more 
sophisticated patient phenotype model. This allows phenotype 
information to be recorded over time as a disease is diagnosed, 
treated, or as it progresses in a patient. LOVD also handles refer-
ence sequences automatically, and integrates with Mutalyzer and 
other external systems.  

  The Universal Mutation Database (UMD) (  http://www.umd.be    ) 
system also comprises multiple genes and diseases. It incorporates 
tools to enable the analysis of genotype–phenotype relations 
across genes and diseases, a benefi t for having a unifi ed architec-
ture [ 8 ]. The UMD central portal enables access to 37 genes 
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involved with cancer and non-cancer genetic diseases. Phenotypes, 
disease symptoms, and other clinical features can be selected and 
fi ltered by gene, regardless of whether the phenotype selected is 
normally associated with the gene.  

  A potential solution to the multiplicity of incompatible databases is 
the notion of federated databases. This is a top-down solution that 
requires cooperation between the developers of databases. Database 
federation entails a system that can query multiple databases and 
return a unifi ed response. This approach can also solve the multiple- 
database access problems which face clinicians and geneticists. 
However, for such a system to work it has to deal with issues of 
incompatible database systems, nonstandard disease fi elds, and dif-
ferent data formats. This approach works best when different 
groups adopt the same underlying database software. A federated 
approach has been applied in the case of FinDis (Subheading  5.3 ).   

4    Standards 

 In order to accomplish effi cient sharing of data and access to it, 
standards are necessary ( see   Note 1 ). They enable researchers and 
bioinformaticians to create systems without having to reinvent the 
wheel each time. Furthermore, the ability to interrogate many dif-
ferent databases using a common interface would have scientifi c 
value, and improve clinical decision making processes. Standards 
would make this all possible. However, there is a general lack of 
standards for variant databases, except for variant nomenclature 
and reference sequences [ 9 ]. 

 Standards for variant databases can be grouped into the follow 
categories:

 ●    Curation (Variant descriptions, reference sequences, data sharing).  
 ●   Disease and phenotype ontologies.  
 ●   Database systems and software applications.    

 Standards and guidelines exist which cater to some of these 
categories, though they may need refi nement to be fully accept-
able. There is often more than one standard to choose from, and 
also the task of ensuring that the standards are widely adopted. 

  The Human Variome Project (HVP) (  http://www.humanvari-
omeproject.org    ) has recognized the limitations and restrictions to 
the free sharing of data, and has developed a global strategy for 
data sharing. The HVP operates through two Councils—a dis-
ease/gene specifi c council and a country specifi c council, corre-
sponding to different ways databases are organized. It is 
incorporated as a nonprofi t organization, has a Board with elected 
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directors with limited terms of offi ce. It has high level UNESCO 
status as an offi cial NGO partner, and is in negotiation with the 
World Health Organization for similar status. Its mission is simple: 
 To facilitate the documentation and sharing of all genetic variation 
worldwide.  It aims to accomplish this through the development of 
standards and guidelines that can be adopted by any group or per-
son to improve the sharing of genetic information [ 9 ].  

  Some guidelines exist which defi ne a minimal set of fi elds for vari-
ant databases. The absolute minimum is the HGVS description of 
the variant, in combination with a reference sequence and the sub-
mitter name or identifi er. Additional preferred information includes 
patient gender, patient ethnicity, sample ID, patient phenotype, 
variant pathogenicity or classifi cation, and a publication identifi er if 
the variant has been published [ 9 ].  

   The Human Genome Variation Society (HGVS) has designed a 
nomenclature to describe variations at the DNA, RNA, and pro-
tein level which has been widely adopted [ 10 ]. This is a suitable 
way to denote variants in databases. Importantly, a free Web appli-
cation called Mutalyzer (  https://mutalyzer.nl/    ) makes checking 
variant nomenclature easy [ 11 ]. This tool checks that a variant is 
correctly formatted according to the HGVS standard. It can also 
check a batch of variants from a fi le, and has a Web service compo-
nent which can be called automatically from other systems. 
Mutalyzer’s other functions include converting between genomic 
and reference sequence coordinates.  

  Having a standard nomenclature description for genetic variants 
would be worthless without standard reference sequences for genes 
and proteins. Historically, this was diffi cult to achieve as the amount 
of DNA sequence data grew over time. One factor which hindered 
standardization was the use of ad hoc reference sequences with 
inconsistent nucleotides, amino acids, or even exon segments. 
Furthermore, when references sequences were available, incorrect 
reporting of the proper versions for genomic, cDNA, and protein 
sequences had led to ambiguous variant descriptions. 

  Locus Reference Genomic  (LRG) (  http://www.Irg-sequence.
org/    ) is a new scheme for standardizing reference sequences, 
which are not subject to change [ 12 ]. It encompasses all the 
sequence transcripts necessary for complete coverage of a gene and 
protein, and can handle legacy numbering formats. LRGs are ideal 
for variant databases and reporting of genetic variants in general. 
LRGs for genes or genomic regions are created only on request by 
individuals or groups, but are made freely available. The LRG Web 
site also provides a Web service for programmatic access to the 
reference sequences and annotated information.  
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  The most diffi cult aspect of variant databases is storing diverse 
 disease terms and related phenotypic descriptions. It is complicated 
by the fact that submitters often adhere to their own terminolo-
gies. This causes a wide range of terms to be stored in a database 
that in some cases mean the same thing but are not easy to com-
pare. Standard terminologies to describe diseases and associated 
phenotypes would allow databases to be linked, and enable 
 computational processing and analysis of genotype–phenotype 
associations. A number of systems exist for describing disease 
including the Systematized Nomenclature of Medicine 
(SNOMED), Online Mendelian Inheritance in Man (OMIM), 
International Classifi cation of Diseases (ICD), Medical Subject 
Headings (MeSH), Human Phenotype Ontology (HPO), and 
Disease Ontology (DO) [ 13 ]. However, a detailed examination of 
their suitability for variant databases is beyond the scope of this 
work, and we will review HPO only. In general, variant databases 
require a standard which allows submitters to describe diseases in a 
fl exible way, while still using well-defi ned terms. 

 The Human Phenotype Ontology (HPO) provides standard-
ized disease terms based on a hierarchical representation of human 
anatomy and phenotypes, at various levels of abstraction [ 14 ]. It is 
specifi cally aimed at the human genetics community. The HPO is 
suitable for variant databases given that different submitters may 
provide different details when describing the same disease or symp-
toms. Due to its hierarchical design, HPO can handle ambiguous 
terms that are submitted or found in biomedical literature. It also 
enables automated reasoning to be performed over the terms due 
to their relationships defi ned in the hierarchy. 

 Variant databases will need to be converted to use these stan-
dards. This may require translating existing fi elds to match the new 
standards. As many standards, including HPO, are not complete, 
database curators may need to develop the ontology terms in 
 collaboration with the ontology designers.   

5    Examples of Variant Databases and Technical Solutions 

 We describe now a few examples of variant databases that aim to 
provide technical solutions to the common challenges we have 
encountered. These examples focus on multiple genes and diseases 
within a disease class, which have more support in terms of funding 
and academic interest than would be the case with more isolated 
databases ( see   Note 2 ). 

  The fi eld of neurogenetics provides a microcosm of the challenges 
involved in the systematic collection of variants across the human 
genome. There are at least 2,400 neurogenetic disorders listed in 
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the Orphanet database [ 15 ]. The range and diversity of the 
 disorders, many with overlapping phenotypes, have resulted in 
over 1,200 databases covering almost 1,000 genes, as reviewed by 
Sobrido et al. [ 16 ]. The work of Köhler et al. has produced HPO 
terms for use in variant databases in the neurogenetics fi eld. This 
was accomplished by automated processing, using existing terms 
listed in Orphanet. With the HPO terms in place, researchers were 
then able to perform computational analysis over the  neurogenetics 
phenotypes and measure similarities between diseases. This is one 
example of the utility of the HPO and its applicability to variant 
databases. 

 The Alzheimer Disease & Frontotemporal Dementia Mutation 
(AD&FDM) Database has ten genes associated with neurodegen-
erative phenotypes, with fi elds for patient phenotype, variant fre-
quency, functional study data, patient ethnicity, and age of onset in 
addition to the variant fi eld [ 17 ]. A feature in this database is inte-
gration with the UCSC Genome Browser. It uses a system called 
PhenCode [ 18 ] to share data with the Genome Browser, where it 
may be viewed alongside useful functional and evolutionary infor-
mation. This means anyone looking at relevant genes via the 
Genome Browser can see the variants from the AD&FDM data-
base listed. Phencode is not in dynamic linkage with the variant 
database, but requires upload to a separate MySQL database. This 
requires some extra effort to ensure that the databases are kept in 
sync. However, it serves a useful and important role in bridging the 
gap between variant databases and centralized databases.  

  Similarly, Immunodefi ciency Databases (IDBases) also has links 
with UCSC genome browser. IDBases is a group of databases cov-
ering hundreds of genes associated with immunodefi ciency dis-
eases. This focus allows it to create an extensive database for specifi c 
genes, with well-defi ned fi elds. The advantage of combining data-
bases for genes that are associated with a disease or syndrome is 
that searching for variants is streamlined for clinicians or genetic 
counsellors. The ultimate aim is to have all genes and diseases that 
are not (necessarily) related in a unifi ed system. This will allow for 
so called  disease families  to be understood [ 14 ].  

   The Finnish Disease Heritage Database (FinDis) (  http://www.
fi ndis.org    ) records variant information for diseases that are more 
prevalent in Finland compared to other countries [ 19 ]. A federated 
system was implemented so that already existing databases could 
be incorporated into the FinDis network. It works using software 
designed to interrogate LOVD (versions 2 and 3) and other data-
bases and presents the results in a unifi ed portal. The software 
which was developed for this task is freely available on GitHub 
(  http://www.github.com/fi ndis-db    ). It is envisioned that other 

5.2  Immunode-
fi ciency

5.3  FinDis: 
A Federated National 
Database

John-Paul Plazzer and Finlay Macrae

http://www.findis.org/
http://www.findis.org/
http://www.github.com/findis-db


271

countries could create similar systems using this software, as Nodes 
for the Human Variome Project.  

  The need to centralize variant data relating to the mismatch repair 
gene syndromes (Lynch Syndrome) was recognized by InSiGHT in 
2008. Three databases merged—the original database curated from 
Finland which collected the early results of mutation detection, 
a database of the published literature curated from Canada, and a 
database of functional assays from the Netherlands. The merged 
database is now housed on a LOVD platform and is publically avail-
able through the InSiGHT Web site (  http://www.insight-group.
org    ). Strengths of the InSiGHT approach, which is widely recog-
nized as a leading example of variant databasing, is its governance 
through a committee which reports to InSiGHT’s democratically 
elected Council, the incorporation of InSiGHT to minimize any 
medicolegal threats engendered by publication of pathogenicity 
assignments on the database (which if incorrect, may lead to adverse 
health outcomes), funding for and appointment of a full time cura-
tor, and most particularly the work of its active Variant Interpretation 
Committee (VIC). This expert panel is systematically addressing all 
variants submitted to the database for pathogenicity assignment on 
a 5 class system. The VIC meets by teleconference every few months 
and matches data around variants (published and more powerfully, 
unpublished sourced through calls to the InSiGHT membership) 
against gene-specifi c classifi cation guidelines which have been 
refi ned during the work and experience of the committee. The 
committee currently has over 40 members from all continents. 
Deliberations of the Committee are published through the 
InSiGHT database. InSiGHT has utilized microattribution to pro-
vide improved acknowledgment to submitters of variant informa-
tion. This allows the submitters of small unpublishable parcels of 
information to be acknowledged in a form that can be incorporated 
into their publication record; publishing houses are beginning to 
recognize the process of microattribution [ 20 ].   

6    Conclusion 

 The fi eld of variant databases has matured over recent years. Its 
importance is even more pronounced in the era of Next-generation 
sequencing as the scientifi c community grapples with the challenge 
of interpreting the enormous quantities of sequencing data now 
emerging. More assistance, funding, and recognition are needed 
for these databases and groups that support them such as the HVP. 
Readers are invited to contact the authors of this chapter to engage 
in this challenge, for example, by offering support for curation 
relating to genes and diseases of their interest ( see   Note 3 ).  
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7    Notes 

     1.    There are already some guidelines, standards and database sys-
tems available which facilitate improved sharing of genetic 
information. They are important for implementing solutions 
that benefi t everyone, and are the result of many years of accu-
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   2.    Variant database systems and related applications are often 
open-source—it would be preferable to use these if possible to 
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necessary and share the updated code with the wider 
community.   

   3.    There are many genes and diseases that do not have adequate 
database curation—this is an opportunity for enterprising 
individuals to become involved in the clinical informatics fi eld.         
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 Natural Language Processing in Biomedicine   : A Unifi ed 
System Architecture Overview 
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    Abstract 

   In contemporary electronic medical records much of the clinically important data—signs and symptoms, 
symptom severity, disease status, etc.—are not provided in structured data fi elds but rather are encoded in 
clinician-generated narrative text. Natural language processing (NLP) provides a means of unlocking this 
important data source for applications in clinical decision support, quality assurance, and public health. 
This chapter provides an overview of representative NLP systems in biomedicine based on a unifi ed archi-
tectural view. A general architecture in an NLP system consists of two main components:  background 
knowledge  that includes biomedical knowledge resources and  a framework  that integrates NLP tools to 
process text. Systems differ in both components, which we review briefl y. Additionally, the challenge facing 
current research efforts in biomedical NLP includes the paucity of large, publicly available annotated cor-
pora, although initiatives that facilitate data sharing, system evaluation, and collaborative work between 
researchers in clinical NLP are starting to emerge.  
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1        Introduction 

 In contemporary electronic medical records (EMRs) most of the 
clinically important data—signs and symptoms, symptom severity, 
disease status, etc.—are not provided in structured data fi elds but 
are rather encoded in clinician-generated narrative text. Natural 
language processing (NLP) provides a means of unlocking this 
important data source, converting unstructured text to structured, 
actionable data for use in applications for clinical decision support, 
quality assurance, and public health surveillance. There are cur-
rently many NLP systems that have been successfully applied to 
biomedical text. It is not our goal to review all of them, but rather 
to provide an overview of how the fi eld evolved from producing 
monolithic software built on platforms that were available at the 
time they were developed to contemporary component-based 
 systems built on top of general frameworks. More importantly, the 
performance of these systems is tightly associated with their “ingre-
dients,” i.e., modules that are used to form its background knowl-
edge, and how these modules are combined on top of the general 
framework. We highlight certain systems because of their landmark 
status as well as on the diversity of components and frameworks on 
which they are based. 

 The Linguistic String Project (LSP) was an early project starting 
in 1965 that focused on medical language processing [ 1 ]. The proj-
ect created a new schema for representing clinical text and a diction-
ary of medical terms in addition to addressing several key clinical 
NLP problems such as de-identifi cation, parsing, mapping, and 
 normalization. The system’s methodology and architecture have 
substantially infl uenced many subsequent clinical NLP systems. 

 One of the main requirements for developing clinical NLP sys-
tems is a suitable biomedical knowledge resource. The Unifi ed 
Medical Language System (UMLS) [ 2 ], initiated in 1986 by the 
National Library of Medicine, is the most widely used knowledge 
resource in clinical NLP. The UMLS contains controlled vocabu-
laries of biomedical concepts and provides mappings across those 
vocabularies. 

 With the development of machine learning, NLP techniques, 
and open-source software, tools have been developed and are now 
available in open source, e.g., NLTK (  http://www.nltk.org    ), 
Mallet (  http://mallet.cs.umass.edu/    ), Lingpipe (  http://alias-i.
com/lingpipe/    ), and OpenNLP (  http://opennlp.apache.org/    ). 
These tools can help biomedical researchers reuse and adapt NLP 
tools effi ciently in biomedicine. Several software frameworks that 
facilitate the integration of different tools into a single pipeline 
have been developed, such as General Architecture for Text 
Engineering (GATE,   http://gate.ac.uk/    ) and Unstructured 
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Information Management Architecture (UIMA,   http://uima.
apache.org/    ). Given the success of IBM’s Watson in the 2011 
Jeopardy challenge, the UIMA framework, which was used for 
real-time content analysis in Watson, has now been applied 
widely by the biomedical NLP community. The highly recog-
nized open- source system clinical Text Analysis and Knowledge 
Extraction System (cTAKES) was the fi rst clinical NLP system to 
use the UIMA framework to integrate NLP components and is 
rapidly evolving. 

 In this chapter, we provide an overview of NLP systems from 
a unifi ed perspective focused on system architecture. There are 
already comprehensive reviews and tutorials about NLP in bio-
medicine. Spyns provided an overview of pre-1996 biomedical 
NLP systems [ 3 ], while Demner-Fushman et al. more recently 
reviewed and summarized NLP methods and systems for clinical 
decision support [ 4 ]. The use of NLP in medicine has been 
 comprehensively reviewed by Friedman [ 5 ], Nadkarni    et al. [ 6 ], 
and more recently by Friedman and Elhadad [ 7 ]. The review in 
this chapter differs from previous work in that it emphasizes the 
historical development of landmark clinical NLP systems and pres-
ents each system in light of a unifi ed system architecture. 

 We consider that each NLP system in biomedicine contains 
two main components: biomedical background knowledge and a 
framework that integrates NLP tools. In the rest of this chapter, we 
fi rst outline our model architecture for NLP systems in biomedi-
cine, before going on to review and summarize representative NLP 
systems, starting with an early NLP system, LSP-MLP, and closing 
our discussion with the presentation of a more recent system, 
cTAKES. Finally, we discuss challenges as well as trends in the 
development of current and future biomedical NLP systems.  

2    Materials 

  We start from a discussion by Friedman and Elhadad [ 8 ] in which 
NLP and its various components are illustrated, as reproduced in 
Fig.  1 . NLP aspects can be classifi ed into two parts in the fi gure: 
the left part contains trained corpora, domain model, domain 
knowledge, and linguistic knowledge; the right part contains 
methods, tools, systems, and applications. From the viewpoint of 
system architecture, we consider a general architecture in which an 
NLP system contains two main components:  background  knowledge ,  
which corresponds to the left part of the fi gure, and a  framework  
that integrates NLP tools and modules, which corresponds to the 
right part of the fi gure. Our view of a general architecture is 
depicted in Fig.  2 . Below we describe the two main components 
and their roles in biomedical NLP systems.

2.1  A General 
Architecture of an NLP 
System in Biomedicine
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  Fig. 1    Aspects of clinical NLP systems as described by Friedman and Elhadad [ 8 ]. 
The  rectangles on the left side  represent background knowledge, and the com-
ponents on the  right side  represent the framework, i.e., algorithms and tools. 
Background knowledge and framework are the main components of an NLP 
system       

  Fig. 2    The general architecture of a clinical NLP system contains two main 
 components: background knowledge and framework. Background contains 
ontologies, a domain model, domain knowledge, and trained corpora. Framework 
includes a low-level processor for tasks such as tokenization and part-of-speech 
tagging. A high-level processor is used for tasks such as named entity recogni-
tion and relation extraction. Tasks or modules in the framework can be depen-
dent or independent and are organized sequentially or hierarchically       
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     As mentioned in the introduction, biomedical knowledge is an 
important component in building clinical NLP systems. Domain 
knowledge and linguistic knowledge are key elements. Earlier sys-
tems such as LSP-MLP built their own medical vocabulary and 
tools due to the lack of easily available resources at that time. The 
creation of the UMLS, which began development in 1986, sub-
stantially benefi ted clinical NLP systems. The UMLS contains 
three main components: the Metathesaurus, the Semantic Network, 
and the SPECIALIST lexicon. For practical purposes, the UMLS 
can be considered as an ontology of biomedical concepts and their 
relations. Each UMLS component is briefl y summarized below.

 ●    The UMLS’s  Metathesaurus  currently contains over one mil-
lion biomedical concepts and fi ve millions concept names orig-
inating from over 150 controlled vocabularies in the biomedical 
sciences, such as ICD-10, MeSH, SNOMED CT, and 
RxNorm.  

 ●   The UMLS  Semantic Network  provides a consistent categori-
zation of all concepts represented in the UMLS Metathesaurus. 
It reduces the complexity of the Metathesaurus by grouping 
concepts according to semantic types. Currently, it contains 
135 broad categories and 54 relationships among categories. 
For example, the category  Disease or Syndrome  has a relation-
ship “associated_with” with the category  Finding , and the cat-
egory  Hormone  has a relationship “affects” with the category 
 Disease or Syndrome  in the semantic network.  

 ●   The UMLS  SPECIALIST lexicon  contains syntactic, morpho-
logical, and spelling information for biomedical terms [ 9 ]. 
Currently, it contains over 200,000 terms and is used by the 
UMLS lexical tools for NLP tasks.    

 Background knowledge also includes domain models and 
trained corpora, which are used to deal with specifi c domains such 
as radiology reports, pathology reports, and discharge summaries. 
Annotated corpora are manually marked up by human annotators 
and used to train machine learning linguistic classifi ers as well as to 
evaluate rule-based systems.  

  There are two main approaches for building NLP tools. The fi rst is 
rule based, which mainly uses dictionary lookup and rules. The 
second uses a machine learning approach that relies on annotated 
corpora to train learning algorithms. Early systems often used rule- 
based approach since they were relatively easy to design and imple-
ment. Currently, with the development of robust statistical machine 
learning methods and an increasing number of annotated corpora, 
many clinical NLP systems have moved away from relying exclu-
sively on rule-based methods, although there is still a high cost in 
generating new annotated training data, which are still required to 

2.1.1  Background 
Knowledge for NLP 
in Biomedicine: The Unifi ed 
Medical Language System

2.1.2  NLP Tools and 
Integrated Frameworks
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account for differences in tasks, types of documents, as well as their 
provenance. As shown in many clinical NLP challenges, machine 
learning methods often achieve better results than rule-based 
methods. However, rule-based methods are somewhat easier to 
customize and adapt to a new domain. Most contemporary NLP 
systems are hybrid, i.e., built from a combination of rule-based and 
machine learning methods [ 8 ]. 

 Figure  2  shows how NLP tools can be integrated into a pipeline 
built on top of a particular framework. By framework we mean a 
software platform for the control and management of components 
such as loading, unloading, and handling components of the pipe-
line. Components within a framework can be embedded and linked 
together or used as plug-ins. For NLP systems in biomedicine, the 
framework can be divided into two levels: low-level and high-level 
processors.  Low-level processors  perform foundational tasks in NLP 
such as sentence boundary detection, section tagging, part-of-
speech (POS) tagging, and noun phrase  chunking.  High-level pro-
cessors  perform semantic level processing such as named entity 
recognition (NER), e.g., diseases/disorders, sign/symptoms, med-
ications, relation extraction, and timeline extraction. 

 The framework can be integrated into the NLP system itself or 
it can leverage available general architectures with the two most 
widely used being GATE (  http://gate.ac.uk/    ) and UIMA (  http://
uima.apache.org/    ). Both consist of open-source software. 

 GATE, written in Java, was originally developed at the 
University of Sheffi eld in 1995 and is widely used in the NLP com-
munity. It includes basic NLP tools for low-level processing such as 
tokenizers, sentence splitters, POS taggers, packaged in a wrapper 
called Collection of REusable Objects for Language Engineering 
(CREOLE), and a high-level processor for NER packaged in an 
information extraction system called ANNIE. It can integrate 
available NLP tools and machine learning software such as Weka 
(  http://www.cs.waikato.ac.nz/ml/weka/    ), RASP (  http://www.
sussex.ac.uk/Users/johnca/rasp/    ), SVM Light (  http://svmlight.
joachims.org/    ), and LIBSVM (  http://www.csie.ntu.edu.
tw/~cjlin/libsvm/    ). Several clinical NLP systems have used GATE 
as their framework. They include HITEx (which will be in the next 
section) and caTIES (  http://caties.cabig.upmc.edu/    ) for cancer 
text information extraction. 

 UIMA, written in Java/C++, was originally developed by IBM 
and is part of the Apache Software Foundation software since 
2006. Its motivation is  to foster reuse of analysis components and to 
reduce duplication of analysis development. The pluggable architec-
ture of UIMA allows to easily plug in your own analysis components 
and combine them together with others  (  http://uima.apache.org/
doc-uima-why.html    ). 

Son Doan et al.
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 The framework is best known as the foundation of    IBM’s 2011 
Jeopardy challenge Watson system. UIMA’s functionalities are 
similar to GATE but are more general since UIMA can be used for 
analysis of audio and video data in addition to text. There are sev-
eral clinical NLP systems that use the UIMA framework such as 
cTAKES (described in the next section), MedKAT/P   http://ohnlp.
sourceforge.net/MedKATp/     for extracting cancer-specifi c charac-
teristics from text, and MedEx [ 10 ,  11 ] (Java version,   http://code.
google.com/p/medex-uima/    ) for medication extraction.  

  In order to give a unifi ed view of system architecture, we selected 
representative NLP systems in this review based on their historical 
importance and infl uence in the biomedical NLP community. 

 We fi rst chose two widely infl uential landmark clinical NLP sys-
tems: LSP-MLP and Medical Language Extraction and Encoding 
(MedLEE). LSP-MLP is a pioneering project and has greatly infl u-
enced subsequent NLP systems. MedLEE is a system that is cur-
rently widely used in clinical NLP communities. We then selected a 
specifi c-purpose system called SymText, which was designed for 
radiology report processing. SymTex began development in the 
1990s and is still in active use today. We also briefl y review MetaMap, 
a widely used tool in the biomedical NLP community. We chose 
two systems based on GATE and UIMA: HITEx and cTAKES, 
respectively. Summaries of characteristic features of the clinical NLP 
systems reviewed in this chapter are presented in Table  1 .

3         Methods (Systems) 

  The LSP (  http://www.cs.nyu.edu/cs/projects/lsp/    ) was devel-
oped in 1965 at New York University by Sager et al. [ 1 ,  12 ]. It is 
one of the earliest research and development projects in computer 
processing of natural language. The development of LSP was based 
on the linguistic theory of Zellig Harris: linguistic string theory, 
transformation analysis, and sublanguage grammar [ 13 – 15 ]. 
It mainly focused on medical language processing, including the 
sublanguage of clinical reporting, radiograph reports, and hospital 
discharge summaries. The LSP approach used a parsing program 
to identify the syntactic relations among words in a sentence. The 
project strongly infl uenced subsequent clinical NLP projects. The 
LSP’s system was called the Medical Language Processor (MLP). 

 The core component of MLP is a parser. The authors fi rst 
developed a general NLP parser for the general English language 
domain, including English grammar and lexicon, and then they 
extended the system to the sublanguage of biomedicine by adding 
a medical lexicon and corresponding grammar. Below we summa-
rize the main components of MLP. 

2.1.3  System Selection

3.1  Linguistic String 
Project: Medical 
Language Processor

NLP Processing in Biomedicine
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 ●      Lexicons: MLP developed lexicons for both general English 
 language and medical knowledge. In the lexicon, each word has 
an associated POS and grammatical and medical “attributes” 
called subclasses. The lexicon has 60 possible verb objects and 50 
medical subclasses. It also had lists of predefi ned prepositions, 
abbreviations, and doses. These attributes are used throughout 
the processing to guide the parsing and to resolve ambiguities. 
Predefi ned lists consist of:
 –    Standard numbers, times, and dates.  
 –   Medical terms.  
 –   Dose strings.  
 –   Organism terms.  
 –   Geographic nouns.  
 –   Patient nouns.  
 –   Institution/ward/service nouns.  
 –   Physician/staff nouns.     

 ●   Grammar: The grammar is written in Backus–Naur Form 
(BNF). It fi nds grammatical structures in clinical text and con-
tains the following components:
 –    BNF: The context-free component.  
 –   The RESTR (restriction) contains procedures written in 

the MLP’s “Restriction Language.” Those procedures test 
the parse tree for the presence or the absence of particular 
features.  

 –   The LISTS contains lists used in procedures other than 
RESTR.        

 ●      The  preprocessor  breaks input text into sentences. Then, the 
preprocessor identifi es possible spelling errors, abbreviations, 
and all forms for names of patients, staffs, facilities, and admin-
istrative and geographic areas for de-identifi cation. Numbers, 
units, and dates are transformed into ANSI standard format.  

 ●   The  MLP parser  uses a top-down, context-free grammar-based 
parser. The system generates multiple parses of ambiguous sen-
tences guided by a BNF grammar. The parser was originally 
written in FORTRAN and then partly converted into Prolog 
[ 16 ]. Today it is written in C++. The MLP system is now pub-
licly available through the Web site provided by Medical 
Language Processing, LLC—a Colorado corporation (  http://
mlp-xml.sourceforge.net/    ).    

 The parser proceeds from left to right through the sentence and 
top to bottom through the BNF defi nitions. Once the parser associ-
ates a terminal symbol of the parse tree, the attributes of the word 
can be tested by a restriction, for example, the agreement of subject 
and verb. The following steps are involved in the processing of text:

3.1.1  Background 
Knowledge

3.1.2  Pipeline
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 ●     Selection  passes or rejects a parse based on subtrees.  
 ●    Transformation  decomposes sentences into their basic canoni-

cal sentences.  
 ●    Regularization  connects basic canonical sentences by 

conjunctions.  
 ●    Information format  maps the syntactic parse trees into medical 

information structures. MLP considers 11 information struc-
tures related to patients such as patients, family, medication, 
treatments, and laboratory test.    

 Finally, the output is written into two formats: tab-delimited 
and XML format. 

 LSP-MLP was used for processing clinical narratives in English, 
and it was also extended into other languages such as French, 
German, and Dutch [ 1 ]. It has been used to map clinical text into 
SNOMED codes [ 17 ,  18 ]. LSP-MLP was designed for informa-
tion retrieval from clinical text; hence, there were no reports evalu-
ating mapping. The performance in information retrieval tasks 
indicated 92.5 % recall and 98.6 % precision [ 18 ]. With its com-
plete structures, LSP-MLP provided an early successful example 
for the development of subsequent NLP systems.   

  The MedLEE system was developed by Friedman et al. at Columbia 
University [ 19 ,  20 ] in 1994. It was fi rst designed for radiology 
reports and was then extended to other domains such as discharge 
summaries. The system was written in Quintus Prolog. MedLEE 
contains two main components: (1) a knowledge base including 
medical concepts and (2) a natural language processor. MedLee 
was the fi rst NLP system used as part of a system for actual patient 
care, and some systems in which it was embedded have been shown 
to improve care [ 21 ,  22 ]. It was commercialized in 2008. The 
architecture of MedLEE is depicted in Fig.  3 .

    MedLEE’s knowledge base is called the Medical Entities Dictionary 
(MED) [ 20 ], which contains a knowledge base of medical con-
cepts and their taxonomic and semantic relations. Each concept in 
MED is assigned to an identifi er. The MED originally contained 
over 34,000 concepts.  

  The natural language processor has three phases of processing as 
follows.

 ●     Phase 1 :  Parsing . Identifi es the structures of the text through 
the use of a grammar. It contains three main components: a set 
of grammar rules, semantic patterns, and lexicon.
 –    Grammar rules: MedLEE uses a BNF grammar which 

originally contained 350 grammar rules.  

3.2  MedLEE

3.2.1  Background 
Knowledge

3.2.2  Pipeline
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 –   Semantic classes: MedLEE considers sentences that  contain 
semantic patterns connected by conjunctions. Semantic 
patterns can be a word or a phrase and/or belong to a 
semantic class. Examples of semantic classes are Bodyloc, 
Cfi nding, and Disease. MedLEE also considers negation as 
a semantic pattern in its grammar.  

 –   Lexicon: The semantic lexicon originally contained both 
single words (1,700) and phrases (1,400).     

 ●    Phase 2 :  Phrase regularization . This module regularizes the 
output forms of phrases that are not contiguous. This is a criti-
cal step that further reduces the variety that occurs in natural 
language. The method is automatically applied by processing 
all phrasal lexical entries that begin with the symbol phrase. 
Phrase is used to specify that a phrase may occur in a non- 
contiguous variant form.  

 ●    Phase 3 :  Encoding . This step maps the regularized structured 
forms to controlled vocabulary concepts. This process is 
accomplished using a knowledge base containing synonymous 
terms. The synonym knowledge base consists of associations 
between standard output forms and a controlled vocabulary. 
At the end of this stage of processing, the only values that 
remain are unique controlled vocabulary concepts.    

 The output of MedLEE is represented as a formal model of 
clinical information in the domain of interest such as radiology. It 
has been extended to map extracted concepts into UMLS codes 
[ 23 ], and its architecture was also extended to build an information 

  Fig. 3    Architecture of MedLEE, where the background knowledge contains 
 components for the lexicon, grammar, mappings, and coding tables. The low- 
level processor is a preprocessor, and the high-level processor consists of mod-
ules for parsing, error recovery, phrase regularization, and encoding       
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extraction system for molecular pathways from journal articles [ 24 ]. 
Evaluation on 150 random sentences from clinical documents 
achieved 0.77 recall and 0.83 precision compared to 0.69–0.91 
recall and 0.61–0.91 precision for seven domain experts perform-
ing the same tasks [ 23 ].   

  SPRUS/SymText/MPLUS [ 25 – 28 ] was developed in 1994 by 
Haug et al. at the University of Utah. It has been implemented 
using common LISP, the Common Lisp Object System (CLOS), 
and C++. The original system was called SPRUS, and it evolved 
into Symbolic Text Processor (SymText), Natural Language 
Understanding System (NLUS), and the latest version of system, 
MPLUS (M++). The system was specifi cally designed for process-
ing chest radiograph reports. 

 ●      SPECIALIST lexicon from UMLS, a synonyms database, POS 
lexicon.  

 ●   An Augmented Transition Network (ATN) grammar, a trans-
formational rule base, and a set of resolution strategy rules.  

 ●   Knowledge bases also contain belief network node structures, 
values, and training cases for each context. The context was 
predefi ned such as events in chest radiology reports.     

  SymText consists of three primary modules for the analysis and 
interpretation of sentences [ 27 ].

 ●    First, a structural analyzer generates an initial structural inter-
pretation of a sentence.  

 ●   Second, a transformational module transforms the initial struc-
ture according to the targeted semantic contexts.  

 ●   Third, a resolution module semantically resolves the conceptu-
alizations of the text according to its structure. Encoded data 
are the system’s outputs.    

 SymText’s outputs contain three semantic concepts: fi nding, 
disease, and appliances (devices). 

 The distinct feature of SymText when compared to other sys-
tems is that it uses belief networks to represent biomedical domain 
knowledge and discover relationships between nodes within parse 
trees. SymText has been used in several applications such as mapping 
chief complaints into ICD-9 codes [ 29 ] and extracting pneumonia- 
related fi ndings from chest radiograph reports [ 30 ,  31 ]. 

 Evaluation using 292 chest radiograph reports to identify pneu-
monia-related concepts showed that the system achieved 0.94 recall, 
0.78 precision, and 0.84 specifi city, outperforming lay persons [ 31 ]. 
MPLUS was evaluated for the extraction of American College of 
Radiology utilization review codes from 600 head CT reports. The 
system achieved 0.87 recall, 0.98 specifi city, and 0.85 precision in 
identifying reports as positive, i.e., containing brain fi ndings [ 28 ].   

3.3  SPRUS/
SymText/ MPLUS

3.3.1  Background 
Knowledge

3.3.2  Pipeline
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  MetaMap (  http://metamap.nlm.nih.gov/    ) [ 32 ,  33 ] was originally 
developed in 1994 by Aronson at the National Library of Medicine. 
It was created for mapping the biomedical literature to concepts in 
the UMLS Metathesaurus [ 2 ]. It has been widely used for process-
ing clinical text [ 34 – 36 ]. The tool uses a variety of linguistic pro-
cesses to map from text to Concept Unique Identifi ers (CUI) in 
the UMLS. It is written in Perl, C, Java, and Prolog. The architec-
ture of MetaMap is depicted in Fig.  4 .

    The UMLS is used as the knowledge resource.  

  The most recent version of the system, as described by Aronson 
and Lang [ 33 ], has a two-stage architecture:

 ●    Lexical/syntactic processing:
 –    Tokenization (including sentence splitting and acronym 

expansion).  
 –   POS tagging.  
 –   Lexical lookup that uses the UMLS SPECIALIST 

lexicon.  
 –   Syntactic analysis that generates phrases for further 

processing.     
 ●   Phrasal processing:

 –    A table lookup is used to identify variants of phrase words.  
 –   Candidate identifi cation identifi es and ranks strings from 

the UMLS that match phrasal terms.  

3.4  MetaMap

3.4.1  Background 
Knowledge

3.4.2  Pipeline

  Fig. 4    Architecture of the MetaMap system, modifi ed from the original [ 33 ], 
where background knowledge is based on UMLS and different modules repre-
sent the pipeline       
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 –   Mapping to text through selection, combination, and 
mapping of candidates to the text.  

 –   Word sense disambiguation selects senses consistent with 
the surrounding text.       

 MetaMap’s output can be provided in XML format, MetaMap 
Output (MMO), or human-readable (HR) formats. Since its initial 
development MetaMap has been used in a variety of clinical text 
processing tasks. For example, Shah et al. [ 34 ] used it to extract the 
cause of death from EMRs, while Meystre et al. [ 35 ] used it to 
extract medication information from the clinical record. Pakhomov 
et al. [ 36 ] used MetaMap to extract health-related quality of life 
indicators from diabetes patients described in physician notes. 
Recently, Doan et al. [ 37 ] used MetaMap for phenotype mapping in 
the PhenDisco system, a new information retrieval system for the 
National Center for Biotechnology Information’s database of geno-
types and phenotypes (dbGaP   http://www.ncbi.nlm.nih.gov/gap    ). 

 The MetaMap tool is highly confi gurable, consisting of advanced 
features such as  negation detection  (using the NegEx algorithm 
described in Chapman et al. [ 38 ]) and  word sense disambiguation . 
Although not open source, the software is freely available from the 
National Library of Medicine as a stand-alone command-line tool 
implemented primarily in Prolog. In addition to the Prolog version 
of MetaMap, a Web-based interface is available that facilitates simple 
queries and also batch processing of text. Furthermore, a Java imple-
mentation of MetaMap, MMTx, is available although this version is 
no longer under active development. 

 MetaMap was used by the NLM team in the 2009 i2b2 chal-
lenge on medication extraction. It achieved an F-score of 0.803, 
with precision 0.784 and recall 0.823. Although it ranked fourth 
in the challenge, it had the highest recall among participating 
teams [ 39 ,  40 ]. Another system that used MetaMap, Textrator, 
developed by Meystre et al. was also among the top ten in that 
competition [ 35 ,  40 ].   

  Health Information Text Extraction (HITEx,   http://www.i2b2.
org/software/projects/hitex/hitex_manual.html    ) is an open- 
source NLP system (under i2b2 software license) developed at 
Brigham and Women’s Hospital and Harvard Medical School. It was 
built based on the GATE framework. The system leverages a set of 
NLP modules known as CREOLE in GATE for low-level process-
ing, such as sentence splitting and POS tagging. Other components 
for high-level processor, such as a UMLS mapper and classifi er, were 
developed as plug-in components and are easily handled for load-
ing/reloading. The architecture of HITEx is depicted in Fig.  5 .

    HITEx uses UMLS for background knowledge. It has trained cor-
pora for several tasks such as building a classifi er for smoking status.  

3.5  HITEx

3.5.1  Background 
Knowledge

Son Doan et al.
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  HITEx contains the following modules integrated in the GATE 
framework.

 ●    The  section splitter/fi lter  splits clinical reports into sections and 
assigns them to section headers. There are over 1,000 section 
headers in HITEx. Then it fi lters sections based on selection 
criteria such as section names.  

 ●   The  sentence splitter  breaks sections into sentences. It is based 
on regular based rules.  

 ●   The  sentence tokenizer  breaks sentences into words; it uses an 
extensive set of regular expressions that defi ne both token 
delimiters and special cases.  

 ●   The  POS tagger  assigns POS tags to each token in the sen-
tence. This module is a rule-based POS tagger as a plug-in for 
the GATE framework.  

 ●   The  noun phrase fi nder  groups POS-tagged words into the 
noun phrases using the set of rules and the lexicon. This mod-
ule is a plug-in for the GATE framework.  

 ●   The  UMLS mapper  associates the strings of text to UMLS con-
cepts. It uses a UMLS dictionary lookup: it fi rst attempts to 
fi nd exact matches, and when exact matches are not found it 
stems, normalizes, and truncates the string.  

 ●   The  negation fi nder  assigns the negation modifi er to existing 
UMLS concepts. It used the NegEx algorithm [ 38 ].  

 ●   The  N-Gram tool  extracts n-word text fragments along with 
their frequency from a collection of text.  

3.5.2  Pipeline

  Fig. 5    Architecture of HITEx system, simplifi ed from the original publication by 
Zeng et al. [ 41 ]       
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 ●   The  classifi er  takes a smoking-related sentence to determine 
the smoking status of a patient. It determines one of the 
 following classes:  current smoker ,  never smoked ,  denies smoking , 
 past smoker , or  not mentioned .    

 The system has been used for the extraction of family history 
from 150 discharge summaries, with accuracies of 0.82 for princi-
pal diagnosis, 0.87 for comorbidity, and 0.90 for smoking status 
extraction, when excluding cases labeled  insuffi cient data  in the 
gold standard [ 41 ,  42 ].   

  The cTAKES (  http://ctakes.apache.org/    ) system [ 43 ], initiated 
by a Mayo-IBM collaboration in 2000, was fi rst released as an 
open-source toolkit in 2009 by Savova et al. It is an open-source 
software system under the Apache v2.0 license and is widely used 
by multiple institutions. The system leverages NLP tools from 
OpenNLP [ 44 ] with trained clinical data from the Mayo Clinic. 
It is the fi rst clinical NLP system to adopt UIMA as its 
framework. 

  cTAKES used trained corpora from Mayo clinic data and other 
sources, utilizing the UMLS as the main background knowledge. 
Trained corpora were used for low-level processing such as sen-
tence splitting and tokenizing. The UMLS was used for NER 
lookup.  

  cTAKES employs a number of rule-based and machine learning 
methods. The system can take inputs in plain text or in XML for-
mat. It initially included these basic components:

 ●    The  sentence boundary detector  extends OpenNLP’s supervised 
maximum entropy sentence detection tool.  

 ●   The  tokenizer  breaks sentences into tokens and applies rules to 
create tokens for date, time, fraction, measurement, person 
title, range, and roman numerals.  

 ●   The  normalizer  maps multiple mentions of the same word that 
do not have the same string in the input data. It leverages the 
SPECIALIST NLP tools (  http://www.specialist.nlm.nih.
gov/    ) from the National Library of Medicine.  

 ●   The  POS tagger  and the  shallow parser  are wrappers around 
OpenNLP’s modules.  

 ●   The  NER  uses a dictionary lookup based on noun phrase 
matching. The dictionary resource is from UMLS. It maps 
words into UMLS semantic types including diseases/disor-
ders, signs/symptoms, procedure, anatomy, and medications. 
After being mapped into semantic types, name entities are also 
mapped into UMLS’s CUIs.    

3.6  cTAKES

3.6.1  Background 
Knowledge

3.6.2  Pipeline

Son Doan et al.
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 cTAKES incorporates the NegEx algorithm [ 38 ] for detecting 
negation from clinical text. Since UIMA is a framework that can 
easily adapt to new modules, cTAKES integrates other modules 
such as an assertion module, a dependency parser, a constituency 
parser, a semantic role labeller, a co-reference resolver, a relation 
extractor, and a smoker status classifi er. 

 There has been considerable focus on the evaluation of 
cTAKES core preprocessing modules. The sentence boundary 
detector achieved an accuracy of 0.949, while tokenizer accuracy 
was also very high at 0.949. Both POS tagger and shallow parsing 
performed well, achieving accuracies of 0.936 and 0.924, respec-
tively. For NER, the system achieved a 0.715 F-score for exact and 
a 0.824 F-score for overlapping span [ 43 ]. 

 cTAKES was fi rst applied to phenotype extraction studies [ 43 ] 
and then was extended to identify document-level patient smoking 
status [ 45 ] and patient-level summarization in the fi rst i2b2 challenge 
[ 46 ]. The system was used to generate features for a state-of- the-art 
system in the 2010 i2b2 challenge on relation extraction of medical 
problems, tests, and treatments [ 47 ].    

4    Conclusions 

 We have provided an overview of several clinical NLP systems 
under a unifi ed architectural view. Background knowledge plays a 
crucial role in any clinical NLP task, and currently the UMLS is a 
major background knowledge component of most systems. Rule- 
based approaches utilizing the UMLS are still dominant in many 
clinical NLP systems. Rule-based NLP systems have historically 
achieved very good performance within specifi c domains and doc-
ument types such as radiology reports and discharge summaries. 
One of the main reasons for using a rule-based approach is that 
rules are relatively easy to customize and adapt to new domains as 
well as to different types of clinical text. 

 Earlier NLP systems such as LSP-MLP and MedLEE comprise 
“hard coded” system modules that do not facilitate reuse. The 
development of general frameworks such as GATE and UIMA 
allows sub-tasks or modules to be developed independently and 
integrated easily into the framework. Machine learning algorithms 
have been shown to benefi t signifi cantly NLP sub-tasks such as 
NER. Therefore, they can serve as independent modules to be 
integrated into a framework to improve a sub-task in a clinical NLP 
system. The combination of machine learning and rule-based 
approaches in a single hybrid NLP system often achieves better 
performance than systems based on a single approach. In recent 
years, a clear trend has developed towards creating reusable NLP 
modules within open-source frameworks like GATE and UIMA. 
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Medical language processing: computer man-
agement of narrative data. Addison-Wesley, 
Reading, MA  
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(1993) The Unifi ed Medical Language System. 
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    3.    Spyns P (1996) Natural language processing in 
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introduction. J Am Med Inform Assoc 18:
544–551  
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guage processing in health care and biomedi-
cine. In: Shortliffe EH, Cimino J (eds) 
Biomedical informatics; computer applications 
in health care and biomedicine. Springer, 
London, pp 255–284  

      8.    Friedman C, Rindfl esch TC, Corn M (2013) 
Natural language processing: state of the art 
and prospects for signifi cant progress, a work-
shop sponsored by the National Library of 
Medicine. J Biomed Inform 46:765–773  

 The main limitation of machine learning when compared to 
rule-based approaches is that rule-based systems do not require sig-
nifi cant amounts of expensive, manually annotated training data 
machine learning algorithms typically do. This problem is  exacerbated 
in the biomedical domain, where suitably qualifi ed annotators can 
be both hard to fi nd and prohibitively expensive [ 48 ,  49 ]. 

 There is an increasing trend towards building community- 
wide resources and tools for clinical NLP. There have been several 
shared tasks that bring researchers in clinical NLP together to 
solve, evaluate, and compare different methods. Additionally, there 
are shared computing resources that aggregate several NLP tools 
to facilitate the work of researchers, such as the NLP environment 
in iDASH [ 50 ]. The Online Registry of Biomedical Informatics 
Tools (ORBIT   http://orbit.nlm.nih.gov    ) project is another plat-
form allowing sharing and collaborating for biomedical researchers 
in order to create and maintain a software registry, in addition to 
knowledge bases and data sets. 

 A unifi ed overview of a few exemplary NLP systems has been 
presented from the architectural perspective that all these systems 
have two important components: background knowledge and a 
computational framework. How these components are constructed 
and integrated into pipelines for biomedical NLP is a critical deter-
minant for their performance. Applications that benefi t from bio-
medical NLP systems, such as EMR linking to genomic information 
[ 51 ], are likely to have great utilization in the next few years.     
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    Chapter 17   

 Candidate Gene Discovery and Prioritization in Rare 
Diseases 

           Anil     G.     Jegga    

    Abstract 

   A rare or orphan disorder is any disease that affects a small percentage of the population. Most genes and 
pathways underlying these disorders remain unknown. High-throughput techniques are frequently applied 
to detect disease candidate genes. The speed and affordability of sequencing following recent technologi-
cal advances while advantageous are accompanied by the problem of data deluge. Furthermore, experi-
mental validation of disease candidate genes is both time-consuming and expensive. Therefore, several 
computational approaches have been developed to identify the most promising candidates for follow-up 
studies. Based on the  guilt by association  principle, most of these approaches use prior knowledge about a 
disease of interest to discover and rank novel candidate genes. In this chapter, a brief overview of some of 
the in silico strategies for candidate gene prioritization is provided. To demonstrate their utility in rare 
disease research, a Web-based computational suite of tools that use integrated heterogeneous data sources 
for ranking disease candidate genes is used to demonstrate how to run typical queries using this system.  

  Key words     Gene prioritization  ,   Gene ranking  ,   Test set  ,   Training/seed gene set  ,   Orphan disease  ,   Rare 
disease  

  Abbreviations 

   HSP    Hereditary spastic paraparesis   
  NCL    Neuronal ceroid lipofuscinosis   
  OD    Orphan disease   
  OMIM    Online Mendelian Inheritance in Man   
  PPIN    Protein–protein interaction networks   

1        Introduction 

 A rare or orphan disease (OD) is any disease that affects a small 
percentage of the population. Most of the known ODs appear 
early in life and are genetic. Hence, they are present throughout 
the life of an affected individual. A large number involve children 
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and about 30 % of affected children die before the age of fi ve. 
In the USA, the Rare Disease Act of 2002 defi nes an OD as any 
disease or condition that affects fewer than 200,000 persons in the 
USA. Although the incidence of individual ODs may be small, 
cumulatively, the 8,000 known ODs affect about 25 million 
Americans, or about 10 % of the US population [ 1 ]. Further, about 
250 new ODs and conditions are described each year [ 2 ]. While 
some of the ODs like cystic fi brosis are well known and well stud-
ied, the majority continue to be understudied mainly because a 
large number affect very few individuals. 

 Despite the advances in genome-wide techniques such as link-
age analysis and association studies, the selected disease loci are 
usually chromosomal regions and do not represent the precise 
location of a  gene . A  locus  thus identifi ed typically contains several 
hundred candidate genes. For example, in the OMIM database, 
>900 rare disorders are described that have been mapped to one or 
more such gene map loci and are classifi ed as having an  unknown 
molecular basis  (OMIM IDs prefi xed with “#”). The prioritization 
of the positional candidate genes in these rare disorder loci consti-
tutes an important step to facilitate gene identifi cation for further 
experimental studies. To this effect, as shown in Table  1 , several 
candidate gene prioritization methods have been developed [ 3 –
 13 ] (additional references in [ 14 ]). While most of these computa-
tional approaches are based on the assumption that similar 
phenotypes are caused by genes with comparable or related func-
tions [ 4 ,  13 ,  15 – 17 ], they differ by the data sources utilized and 
the algorithms used for calculating similarity [ 18 ]. Some of these 
state-of-art approaches (e.g., ENDEAVOUR [ 7 ,  18 ] and 
ToppGene [ 12 ,  13 ]) use an extensive set of gene features and data 
sources in computing similarities between known and candidate 
sets of genes for a disease.

   An alternate set of approaches adopt similar or modifi ed algo-
rithms used to analyze social and Web networks for disease gene 
identifi cation and ranking because biological networks have been 
found to be comparable to communication and social networks 
through commonalities such as scale-freeness and small-world 
properties [ 19 ]. These network-based approaches predominantly 
use protein–protein interaction networks (PPIN) and the candi-
date genes are typically ranked based on their connectivity to 
known disease genes (described as a  training  or  seed  set). While 
PPINs have been used widely to identify novel disease candidate 
genes [ 20 – 24 ], several recent studies [ 22 ,  23 ,  25 – 27 ] report also 
using them for candidate gene prioritization. 

 Recent technological advances in whole-genome or exome 
sequencing are increasingly used to search for Mendelian disease 
genes in an unbiased manner [ 28 ]. Of the ODs with a known causal 
gene mutation, about 70 % are monogenic [ 29 ] and according to 
the current version of OMIM, there are about 5,000 monogenic 
ODs and for half of these the underlying genes remain unknown. 

Anil G. Jegga
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The OD causal gene identifi cation thus represents the fi rst step to 
a better understanding of the pathophysiological mechanisms 
underlying ODs, which in turn can lead to developing effective 
therapeutic interventions. While massively parallel DNA sequenc-
ing technologies have rendered the whole-genome re- sequencing 
of individual humans increasingly practical, the associated expenses 
are still a hurdle. Since ~85 % of the known genetic causes for 
Mendelian disorders affect the protein-coding exonic regions [ 30 ], 
an alternative approach involves the targeted re- sequencing of all 
protein-coding subsequences (exome sequencing), potentially 

   Table 1  
  List of some of the bioinformatics approaches and tools to rank human disease candidate genes a    

 Approach  URL  Data types used  Training set (input) 

 Genes2Diseases 
[ 48 ,  49 ] 

   http://www.ogic.ca/
projects/g2d_2/     

 Sequence, Gene Ontology 
(GO), literature mining 

 Phenotype 
 GO terms 
 Known genes 

 BITOLA [ 50 ]    http://www.mf.uni-lj.si/bitola/      Literature mining  Concept 

 GeneSeeker 
[ 51 ,  52 ] 

   http://www.cmbi.ru.nl/
GeneSeeker/     

 Expression, phenotype, 
literature mining 

 N/A 

 GFINDer 
[ 53 ,  54 ] 

   http://www.bioinformatics.
polimi.it/GFINDer/     

 Expression, phenotype  N/A 

 ToppGene [ 13 ]    http://toppgene.cchmc.org      Mouse phenotype, 
expression, GO, pathways, 
literature mining 

 Known genes 

 ToppNet [ 27 ]    http://toppgene.cchmc.org      Protein interactions  Known genes 

 Endeavour [ 7 ]    http://www.esat.kuleuven.be/
endeavour     

 Sequence, expression, GO, 
pathways, literature mining 

 Known genes 

 Gene 
Weaver [ 55 ] 

   http://www.GeneWeaver.org      Variety of gene annotations  Known genes 

 TargetMine [ 56 ]    http://targetmine.nibio.go.jp      Gene annotations and 
protein interactions 

 Known genes 

 ProphNet    http://genome2.ugr.es/
prophnet     

 Gene annotations and 
protein interactions 

 Known genes 

 BioGraph [ 57 ]    http://www.biograph.be      Gene annotations and 
protein interactions 

 Known genes 
or keywords 

 PosMed [ 58 ]    http://biosparql.org/PosMed      Gene annotations and 
protein interactions 

 Known genes 
or keywords 

   a The  fi rst column  has the source or the name of the tool (including reference, if available) while the  second column  has 
the URL of the corresponding Web application. At the time of writing this manuscript, all the URLs were functional. 
The  third column  shows the list of genomic annotation types/features used by each of the methods for candidate gene 
ranking. The  last column  has details of the training or the input data, if used ( Note: This list is extensive ,  but not exhaus-
tive; reference  [ 14 ]  provides an additional list of tools )  

Rare Disorders

http://www.ogic.ca/projects/g2d_2/
http://www.ogic.ca/projects/g2d_2/
http://www.mf.uni-lj.si/bitola/
http://www.cmbi.ru.nl/GeneSeeker/
http://www.cmbi.ru.nl/GeneSeeker/
http://www.bioinformatics.polimi.it/GFINDer/
http://www.bioinformatics.polimi.it/GFINDer/
http://toppgene.cchmc.org/
http://toppgene.cchmc.org/
http://www.esat.kuleuven.be/endeavour
http://www.esat.kuleuven.be/endeavour
http://www.geneweaver.org/
http://targetmine.nibio.go.jp/
http://genome2.ugr.es/prophnet
http://genome2.ugr.es/prophnet
http://www.biograph.be/
http://biosparql.org/PosMed
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overcoming the fi nancial hurdle [ 31 ,  32 ]. Thus, whole-exome 
sequencing for identifying causative mutations in ODs is likely to 
become the most commonly used tool for OD gene identifi cation 
[ 28 ]. However, exome sequencing has some limitations: (1) The 
cause of a disease could be a noncoding  variation or a large indel or 
structural genomic variant, all of which are missed by exomic 
sequencing, and (2) Some variants may not be identifi ed because of 
lack of sequence coverage across the variant or due to technical 
errors, e.g., bioinformatics variant calling issues [ 28 ]. 

 In the following sections two examples from recently pub-
lished studies [ 33 ,  34 ] are presented showing how the 
bioinformatics- based disease-network analysis approach is used 
along with exome sequencing, to identify and prioritize novel 
orphan disease causal variants. 

 In the fi rst study, Erlich et al. [ 34 ] used exome re-sequencing 
experiments along with bioinformatics-based approaches success-
fully to prioritize OD candidate genes illustrating the potential of 
combining genomic variant and gene level information to identify 
and rank novel causal variants. Three different candidate gene pri-
oritization tools (Endeavour [ 7 ], ToppGene [ 13 ], and SUSPECTS 
[ 11 ]) were used to prioritize the most likely candidate gene for 
hereditary spastic paraparesis (HSP). Briefl y, a familial case of HSP 
was fi rst analyzed through whole-exome sequencing and four larg-
est homozygous regions (containing 44 genes) were identifi ed as 
potential HSP loci. This list was further narrowed using several 
fi lters. For example, a gene was considered as potentially causative 
if it contained at least one variant that is either under purifying 
selection or not inherited from the parents or absent in dbSNP or 
the 1,000 Genomes Project data. Because the majority of the 
known OD variants as mentioned earlier affect coding sequences, 
the authors also checked whether the variant was non-synonymous. 
After the multistep fi ltering step, 15 candidate genes were identi-
fi ed which were then subjected to computational ranking or priori-
tization using three methods (Endeavour [ 7 ], ToppGene [ 13 ], 
and SUSPECTS [ 11 ]), each of which uses different types of data 
and algorithms for prioritization. As a training set, a list of 11 seed 
genes associated with a pure type of HSP was compiled through 
literature mining. Interestingly, the top-ranking gene from all the 
three bioinformatics approaches was  KIF1A . Subsequent Sanger 
sequencing confi rmed that  KIF1A  indeed was the causative variant 
for HSP. The same example will be used to demonstrate the use of 
computational approaches to rank disease candidate genes. 

 In a second study, Benitez et al. [ 33 ] used Endeavour [ 7 ] and 
ToppGene [ 13 ] to rank the neuronal ceroid lipofuscinosis (NCL) 
candidate variant genes identifi ed by exome sequencing. Known 
causal genes for other NCLs along with genes that are associated 
with phenotypically similar disorders were used as a training set. 
Interestingly, the three variants identifi ed by exome sequencing 
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( PDCD6IP ,  DNAJC5 , and  LIPJ ) were in the top fi ve genes in the 
combined analysis using ToppGene and Endeavour suggesting that 
they may be functionally or structurally related with NCLs encoded 
genes and constituting true causative variants for adult NCL.  

2    Materials 

 Since the application presented here is Web-based, a computer 
with Internet connection and a compatible Web browser is needed. 
The system described here (Toppgene:   http://toppgene.cchmc.
org    ) is tested regularly on a number of browsers and operating 
systems and should not have compatibility issues. For any  guilt by 
association -based disease gene prioritization approach, a training 
set representing known knowledge in the form of genes associ-
ated/related to disease of interest is critical.  

3    Methods 

 The methods described here, and the screenshots used to illustrate 
them, are correct for the servers/databases at the time of writing 
(September 2013). From time to time, interfaces and query/
search options may be redeveloped in response to users’ feedback 
and details may change. 

 The Toppgene application from the ToppGene Suite [ 13 ] will 
be used for ranking candidate genes in the orphan disease HSP. 

  ToppGene takes into account multiple layers of data to generate a 
signature from a list of user-specifi ed training genes representing 
contemporary knowledge, e.g., known disease associated/caus-
ative genes. Based on this signature, the program then ranks user- 
uploaded list of new genes ( test  set). The backend knowledgebase 
of ToppGene consists of 17 gene feature types compiled from dif-
ferent publicly available resources. These include disease- dependent 
and disease-independent information such as known disease-genes, 
previous linkage regions, association studies, human and mouse 
phenotypes, known drug-targets, and microarray expression 
results, gene regulatory regions (transcription factor target genes 
and microRNA targets), protein domains, protein interactions, 
pathways, biological processes, literature co-citations, and so on. 
Each of these sources is used in an integrated manner to prioritize 
disease candidate genes. 

 As part of the workfl ow, a representative profi le of the training 
genes (functional enrichment) using 17 different features (as listed 
above) is generated fi rst. From the functional enrichment profi le of 
the training genes, over-representative terms are identifi ed. The test 
set genes are then compared to these overrepresented terms for all 

3.1  ToppGene: 
Functional 
Annotations- Based 
Candidate Gene 
Ranking
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categorical annotations and the average vector for the expression 
values. For each of the test set genes, a similarity score to the train-
ing profi le for each of the 17 features is then derived and summa-
rized (17 similarity scores). For computing similarity measures of 
categorical annotations, e.g., GO annotations, ToppGene uses a 
fuzzy-based similarity measure ( see  Popescu et al. [ 35 ] for additional 
details). In case of numeric annotations, e.g., microarray expression 
values, the similarity score is calculated as the Pearson correlation of 
the two expression vectors of the two genes. The 17 similarity scores 
are combined into an overall score using statistical meta-analysis 
and a  p-value  of each annotation of a test gene G is derived by ran-
dom sampling of the whole genome. For additional algorithmic 
details, validation, and comparison with other related applications, 
readers are referred to previously published studies [ 12 ,  13 ].  

  The disease HSP and a recently reported pathogenic mutation in 
 KIF1A  provide a model to illustrate the use of ToppGene [ 34 ]. 
The goal is to demonstrate the effectiveness of integrated func-
tional annotation-based approaches in ranking novel disease candi-
date genes. The following sections describe the workfl ow and the 
results. 

  The training and test gene sets for HSP were derived from [ 34 ] 
(Tables  2  and  3 ). The training set was expanded further using 
additional HSP-associated genes reported in NCBI’s Clinical 
Variations database. Some of the resources which are commonly 
used to compile known disease-associated genes are OMIM [ 36 ], 
the Genetic Association Database [ 37 ], GWAS [ 38 ], and the 
Comparative Toxicogenomics Database [ 39 ]. The latter database 
also integrates diseases biomarkers derived from literature and spe-
cialized database mining. The test set genes can come from a vari-
ety of approaches including sequencing, neighboring genes on the 
chromosome, protein interactome, or even the entire genome. 
Where no sequencing data are available, computational approaches 
can be used to compile test sets or, in some cases, the entire set of 
coding genes can be used for fi nding the most likely candidate 
genes for a disease. The test set or candidate genes in such cases 
can be compiled from mining protein interactomes and/or func-
tional linkage networks. Briefl y, for each of the training set genes 
(known disease causal gene), their interacting partners (both from 
the protein interactome and functional networks) can be extracted 
to generate a test set. The protein interactome data can be down-
loaded from the NCBI (  ftp://ftp.ncbi.nih.gov/gene/GeneRIF/
interactions.gz    ) while for functional networks, users can use either 
(1) Functional Linkage Network (FLN) [ 40 ] or (2) STRING [ 41 ]. 
The ToppGene Suite has an application which allows mining 
and ranking the protein interactome for novel candidate genes 
( see  Subheading  3.2.3 ).

3.2  Identifying 
and Ranking Disease 
Genes for Hereditary 
Spastic Paraparesis 
(HSP)

3.2.1  Compiling Training 
Set and Test Sets Genes 
for HSP
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       Now that you have the training and test set genes for HSP ready 
(Tables  2  and  3 ), proceed with the ranking of 14 HSP test set 
genes using ToppGene [ 13 ].

    1.    From the ToppGene Suite homepage (  http://toppgene.
cchmc.org    ) click on the second link (“ToppGene: Candidate 
gene prioritization”) (Fig.  1 ).

       2.    On the following page (“ToppGene: Candidate gene prioriti-
zation”), enter either gene symbols or Entrez gene IDs 
from the training and test set genes (21 and 14 genes respec-
tively in this case;  see  Tables  2  and  3 ), and click “Submit query” 
(Figs.  2  and  3 ).

3.2.2  Prioritization of 
HSP Candidate Genes

      Table 2  
  A list of HSP-associated genes used as the training set for ranking HSP-candidate genes   

 Entrez Gene ID  Gene symbol  Gene name 

 51062   ATL1   Atlastin GTPase 1 

 26580   BSCL2   Berardinelli–Seip congenital lipodystrophy 2 (seipin) 

 22948   CCT5   Chaperonin containing TCP1, subunit 5 (epsilon) 

 9420   CYP7B1   Cytochrome P450, family 7, subfamily B, polypeptide 1 

 57165   GJC2   Gap junction protein, gamma 2, 47 kDa 

 3329   HSPD1   Heat shock 60 kDa protein 1 (chaperonin) 

 9897   KIAA0196   KIAA0196 

 3798   KIF5A   Kinesin family member 5A 

 3897   L1CAM   L1 cell adhesion molecule 

 123606   NIPA1   Non imprinted in Prader–Willi/Angelman syndrome 1 

 5354   PLP1   Proteolipid protein 1 

 10908   PNPLA6   Patatin-like phospholipase domain containing 6 

 65055   REEP1   Receptor accessory protein 1 

 26278   SACS   Spastic ataxia of Charlevoix-Saguenay (sacsin) 

 6683   SPAST   Spastin 

 80208   SPG11   Spastic paraplegia 11 (autosomal recessive) 

 23111   SPG20   Spastic paraplegia 20 (Troyer syndrome) 

 51324   SPG21   Spastic paraplegia 21 (autosomal recessive, Mast syndrome) 

 6687   SPG7   Spastic paraplegia 7 (pure and complicated autosomal recessive) 

 23503   ZFYVE26   Zinc fi nger, FYVE domain containing 26 

 118813   ZFYVE27   Zinc fi nger, FYVE domain containing 27 
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        3.    Select the appropriate statistical parameters. For the “Training 
Parameters” and “Test Parameter” you can use the default 
parameters, i.e., Bonferroni correction and  p -value cutoff set 
to 0.05;  see  “Help” section for more details. Under the “Test 
parameter”, the “random sampling size” option is for select-

      Table 3  
  List of ToppGene ranked HSP candidate genes   

 ToppGene rank  Entrez gene ID  Gene symbol  Gene name 

 1  547   KIF1A   Kinesin family member 1A 

 2  728294   D2HGDH   D-2-hydroxyglutarate dehydrogenase 

 3  23192   ATG4B   Autophagy related 4B, cysteine peptidase 

 4  3069   HDLBP   High density lipoprotein binding protein 

 5  23178   PASK   PAS domain containing serine/threonine kinase 

 6  84289   ING5   Inhibitor of growth family, member 5 

 7  25992   SNED1   Sushi, nidogen and EGF-like domains 1 

 8  1841   DTYMK   Deoxythymidylate kinase (thymidylate kinase) 

 9  389090   OR6B2   Olfactory receptor, family 6, subfamily B, member 2 

 10  150681   OR6B3   Olfactory receptor, family 6, subfamily B, member 3 

 11  653437   AQP12B   Aquaporin 12B 

 12  375318   AQP12A   Aquaporin 12A 

 13  51078   THAP4   THAP domain containing 4 

 14  643905   PRR21   Proline rich 21 

  Fig. 1    The ToppGene Suite home page       
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  Fig. 2    The ToppGene entry page for launching gene prioritization showing the lists of training and test set 
genes for HSP       

  Fig. 3    Training and test set genes for HSP       
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  Fig. 4    The ToppGene entry page for selecting prioritization parameters       

ing the background gene set from the genome for computing 
the  p -value while the “Min. feature count” represents the 
number of features that need to be considered for prioritiza-
tion. The default options are 6 % of the genome (or 1,500 
genes from a total of 25,000 genes) for random sampling size, 
and feature count is 2 (Fig.  4 ).

       4.    If your gene lists contain alternate symbols or duplicates or 
obsolete symbols, they are ignored or presented with the 
option to resolve them and add them back to your input list. 
Additionally, if there are common genes between training and 
test sets, i.e., test set genes which are also found in training set, 
these will be removed from the test set and no ranks will be 
assigned to them. After selecting the appropriate statistical 
parameters (training and test) click on the “Start prioritiza-
tion” button.   

   5.    Once the analysis is complete, the fi rst half of the results page 
shows the enrichment results for the training set (Fig.  5 ).

       6.    The prioritized list of test set genes sorted according to their 
ranks based on the  p -values are displayed in the lower half 
(Fig.  6 ). Each column indicates the features used to compute 
similarity between training and test sets.
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  Fig. 5    Result of prioritization showing the input parameters and a partial view of the training set enrichment 
results       
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       7.    Additional details about the ranked genes can be obtained in 
both graphical and tabular format. For this, select the gene(s) 
you are interested in from the “Rank” column (Fig.  7 ), and 
click on the “Show Network” link. This will lead to the 
“Common Terms for selected genes and Training Set” page 
where you can see the details on how a test set gene is con-
nected to the training set (Fig.  8 ). The network view can be 
downloaded as an XGMML fi le and can be imported into 
Cytoscape [ 42 ] for visualization and further analysis.

        8.    The prioritized list can be downloaded as a table. Of the 14 
HSP candidate genes,  KIF1A  is ranked at the top (Table  3 ). 
Occasionally the ranks may vary a little because for every run, 
a different set of random genes are selected for computing the 
statistical signifi cance.    

     The ToppGeNet application from the ToppGene Suite will be used 
for fi nding and ranking novel candidate genes for HSP. 
ToppGeNet allows the user to rank the interacting partners (direct or 
indirect) of known disease genes for their likelihood of causing a dis-
ease. Here, given a training set of known disease genes, the test set is 

3.2.3  Mining HSP 
Interactome for Novel 
Candidate Genes

  Fig. 6    Result of prioritization showing the ranked list of test set genes       
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  Fig. 7    List of top ranked genes for HSP showing  KIF1A  ranked at the top       

  Fig. 8    Browsing details of the top ranked gene.  Red boxed  gene ( KIF1A ) is the target gene and the remaining 
are the training set genes. The “Feature” and “Name” columns show the details of functional annotations 
shared between the ranked test set gene and the training set (Color fi gure online)       
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generated by mining the protein interactome and compiling the genes 
interacting either directly or indirectly (based on user input) with 
the training set genes. The test set genes can then be ranked using 
either ToppGene (functional annotation-based method) or ToppNet 
(PPIN-based method).

    1.    From the ToppGene Suite homepage (  http://toppgene.
cchmc.org    ) click on the fourth link (“ToppGenet: Prioritization 
of neighboring genes in protein-protein interaction network”) 
(Fig.  1 ).   

   2.    On the following page, copy and paste the list of known HSP 
genes (from Table  2 ) in the box “Set of seeds”. Keep the 
“Distance to seeds” as 1 which means the immediate interact-
ing partners of known HSP genes will be considered as the test 
set. Select “Functional annotation based” for the “Prioritization 
method” and click “Submit Query” (Fig.  9 ).

       3.    The next page you can see the list of 21 training set genes and 
210 genes comprising the test set. The test set represents genes 
whose encoding proteins are direct interactants of training set 
genes encoded proteins. Of the 210 test set genes, 195 only are 
considered for ranking as the 15 training set overlapping genes 

  Fig. 9    The ToppGeNet entry page showing the list of HSP genes for interactome ranking (immediate interacting 
partners of HSP genes encoded proteins) using functional annotation based method (ToppGene)       
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are excluded from test set. The remaining steps are as described 
earlier ( see   steps 3  through  8  under Subheading  3.2.2 ).   

   4.    Based on ToppGene ranking, the top fi ve candidate genes for 
HSP are  KLC1 ,  CANX ,  PPP2R2B ,  KIF5C , and  MYC .       

  Candidate gene ranking approaches based on functional annota-
tion similarity have the following limitations:

 ●    Most of these approaches rank test set genes based on user- 
specifi ed training set. Although this is an improvement over 
the “favorite” gene method, it should be noted that they are 
based on the assumption that novel disease genes yet to be 
discovered will be consistent with what is already known about 
a disease and/or its genetic basis which may not always be 
true. Nevertheless, having a “good” or representative training 
set is critical. The training set may not necessarily be always a 
set of known causal genes but can be an implicated pathway or 
biological process or even a list of symptoms (or phenotype). 
Prior knowledge can sometimes be also inferred from related 
or similar diseases. This similarity can be either similar manifes-
tation or symptoms or similar molecular mechanisms of related 
or similar diseases.  

 ●   Second, selecting an appropriate approach is also important and 
frequently depends on the disease type and the molecular mech-
anism that causes it. For example, using protein–protein inter-
action data for identifying novel candidates may be useful when 
a disease is known to be caused by the disruption of a larger 
protein complex. On the other hand, using a protein interaction 
network may not be totally justifi ed for a disease known to be 
caused by aberrant regulatory mechanisms. In such cases, either 
using gene regulatory networks and/or high-throughput gene 
expression data may be more appropriate [ 14 ].  

 ●   The accuracy of the prioritization is heavily dependent not 
only on the training set but also on the accuracy and 
 completeness of the original literature-mining or 
 database-derived annotations. In other words, functional 
annotation based candidate gene prioritization approaches 
tend to be biased towards well studied or better annotated 
genes. For instance, a novel, “true” disease gene can be missed 
if it lacks suffi cient annotations.  

 ●   Although it has been speculated that complex traits result more 
often from noncoding regulatory variants than from coding 
sequence variants [ 43 – 45 ], current disease gene identifi cation 
and prioritization approaches predominantly are gene-centric. 
However, interpreting the consequences of noncoding 
sequence variants is relatively complex because the relation-
ships among promoter, intergenic, or noncoding sequence 

3.3  Limitations
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    Chapter 18   

 Computer-Aided Drug Designing 

           Mohini     Gore     and     Neetin     S.     Desai    

    Abstract 

   Computer-aided drug designing has emerged as a cost-effective and rapid tool for the discovery of newer 
therapeutic agents. Several algorithms have been developed to analyze protein structure and function, to 
identify interacting ligands, active site residues, and to study protein–ligand interactions, which can even-
tually lead to the identifi cation of new drugs. In silico drug designing involves identifi cation of the target 
protein which is responsible for the development of the disease under study. The three-dimensional struc-
ture of the protein can be predicted using homology modeling, while molecular docking is applied to 
study the interaction of a drug molecule with the protein. The best orientation of the ligand-protein 
docked structure which has overall minimum energy needs to be obtained. In silico methods can be used 
to identify potential drugs for various diseases. Thus, computer-aided drug designing has become an 
 indispensible and integral part of the drug discovery process.  

  Key words     Computer-aided drug designing  ,   Docking  ,   Homology modeling  ,   Virtual screening  

1      Introduction 

 The discovery and development of new drug is a long and compli-
cated process. It is estimated that a typical drug discovery process 
initiating from lead identifi cation to clinical trials can take up to 14 
years with a cost of 800 million US dollars [ 1 ]. The traditional 
approach involves random screening of chemical compounds 
obtained from nature or synthesized in the laboratories involving 
long design cycle and higher cost. Computer-aided drug design 
involves structure-based drug design using in silico approaches 
which has made the drug discovery process cost-effective and 
much faster [ 2 ]. In silico drug design plays a signifi cant role in all 
stages of drug development. By selecting only a potent lead mole-
cule it may avert the late stage clinical failures, thus reducing the 
cost by a signifi cant amount [ 3 ]. 

 Proteins are organic molecules, which are an essential part of 
metabolic reactions of a cell. The majority of the cell’s chemical 
reactions and structural components entail proteins crucial for 
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appropriate cell functions. Therefore, if their function is impaired, 
the consequences can lead to a number of diseases [ 4 ]. Studying 
protein structure, function, and interactions within and between 
cells is vital for drug discovery as any impairment in this function 
can result in malfunction and disease. Therefore, categorizing pro-
tein as a drug target may result in developing better lead molecule 
for drug development. A drug target is a molecule where the drug 
interacts to bring about the desired change. The goal of drug 
designing is to develop a drug that is highly specifi c to a particular 
target and affects it in a desired way, so as to interfere with the 
disease process. Computer-based simulation is being used exten-
sively to model drug–target interactions to guide drug discovery. 

 In simpler terms, drug discovery involves search for lead mol-
ecules which could alter a diseased pathway. As a part of the 
 discovery process, one or more molecular as well as cellular pro-
cesses that occur in the affected cells of a diseased tissue or organ 
need to be altered. Computer-aided drug designing is being used 
extensively to establish potential drugs for the treatment and con-
tainment of various diseases. In silico drug designing for a particu-
lar disease involves identifi cation of the protein molecule causing 
the disease in question. The three-dimensional structure of a pro-
tein molecule can be obtained by homology modeling using its 
amino acid sequence. Furthermore it has been observed that dur-
ing evolution, the protein structure is more stable than the sequence, 
so that similar sequences have identical structures [ 5 ]. Moreover, 
using the protein sequence alignment and template structure, the 
structure of a protein molecule can be predicted. The next step 
involves identifi cation of the drug molecule which can interact with 
the protein molecule. The interaction of the structures of protein 
molecule and drug molecule can be studied using docking methods 
[ 6 ]. The fi nest orientation of the ligand which forms a complex 
with overall minimum energy needs to be determined.  

2    Materials 

  Proteins are responsible for almost all essential functions of a cell 
including metabolism, regulation, and development. Impairment 
in the structure or function of a protein can result in disease. 
Computer-aided drug designing can be used for drug discovery by 
identifying drug molecules which can interact with the protein 
which is implicated in causing the disease. Hence, fi rst the caus-
ative protein molecule for the disease under study needs to be 
identifi ed. If the three-dimensional structure of the protein is not 
known, it can be predicted by using homology modeling. The 
sequence of the protein under study can be obtained by perform-
ing a search on NCBI’s Entrez database. Normally, the protein 
sequences are used in FASTA format. 

2.1  Identifi cation 
of Target Protein
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  In computer-aided drug designing, one can use the genetic (DNA 
or RNA) sequence or the protein’s amino acid sequence of several 
organisms or species. With this information one can determine the 
evolutionary relationships of a species by fi nding identical sequences 
in biological databases. There are two types of sequence analysis 
methods to determine similarity among biological sequences [ 7 ].

 ●     Pairwise sequence alignment . This predicts regions of similarity 
that may indicate functional, structural as well as evolutionary 
relationships between two protein or nucleic acid sequences.  

 ●    Multiple sequence alignment . Often applied to align three or 
more biological sequences of similar length, homology and the 
evolutionary relationships between the sequences studied from 
its output.      

  In silico methods can be used to predict a protein structure from 
its amino acid sequence. Homology modeling involves prediction 
of the three-dimensional structure of a protein from the known 
structures of one or more related proteins, which are used as tem-
plates. Several automated programs are available for homology or 
comparative modeling of protein three-dimensional structures. 
The models obtained can be subjected to structural validation by 
assessment of the Ramachandran plot. 

  The structures of the templates to be used for homology modeling 
have to be searched in protein structure databases such as the 
Protein Data Bank (PDB). The target sequence (query) is used for 
searching proteins with sequence similarity. There are a number of 
options available on the World Wide Web (WWW) to perform the 
sequence similarity study. A few examples of software programs are 
given in Table  1 .

     One or more of the template identifi cation methods can be 
employed to obtain a list of potential templates. It is necessary to 
select the appropriate templates for protein modeling so that there 
is a higher overall sequence similarity between the target and tem-
plate sequences, i.e., higher percentage of identical residues, lower 
number and shorter gap lengths in the alignment.  

  Once the templates have been selected, comparative modeling is 
done to build a three-dimensional protein model. Several software 
programs and servers are available for protein modeling. Some 
examples are mentioned in Table  1 .  

   Different software or servers used for comparative modeling will 
provide a number of models. These models need to be evaluated 
and the best one identifi ed. The stereochemical quality of the pro-
tein structure, like bond length, the phi/psi angles, etc., has to be 

2.1.1  Sequence Analysis

2.2  Homology 
Modeling

2.2.1  Identifi cation 
of Templates

2.2.2  Selection of the 
Templates

2.2.3  Three-Dimensional 
Structure Modeling

2.2.4  Model Validation
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assessed. One way of doing this is by generating Ramachandran 
plots [ 35 ]. This method evaluates the correctness of structural 
coordinates based on standard deviations in phi and psi angle pairs 
for residues in a protein. Some tools available for generating 
Ramachandran plots are RAMPAGE server [ 36 ], Molprobidity 
[ 37 ,  38 ], PROCHECK [ 39 ,  40 ], STAN server [ 41 ], ERRAT [ 42 ], 
Verify 3D [ 43 ], etc.  

  Small molecule databases embody a major resource for the study of 
biochemical interactions. A variety of repositories of biological 
molecules and their physicochemical properties are available. These 
include databases of known chemical compounds, drugs, carbohy-
drates, enzymes, reactants, natural products, and natural-product- 
derived compounds. PubChem (  http://pubchem.ncbi.nlm.nih.
gov/    ) provides information on the biological activities of more 
than 40 million small molecules and 19 million unique structures 
[ 1 ]. The chemical structures of the drug molecules to be used 
for docking studies can be drawn using software like ACD/
Chemsketch, MarvinSketch, ChemWriter, ChemPen, etc. If 
another protein molecule is to be used for docking studies, its 

2.2.5  Chemical Structure 
of the Drug Molecule

        Table 1  
  Software and servers for homology modeling and docking   

 Name  URL a   References 

  Homology modeling  
 BLAST    http://www.ncbi.nlm.nih.gov/BLAST/      [ 8 ] 
 HHpred    http://toolkit.tuebingen.mpg.de/hhpred      [ 9 ] 
 ModBase    http://modbase.compbio.ucsf.edu/      [ 10 ] 
 GeneSilico Metaserver    https://genesilico.pl      [ 11 ] 
 Predict protein    http://www.predictprotein.org/      [ 12 ] 
 UCLA-DOE    http://fold.doe-mbi.ucla.edu/      [ 13 ] 
 COMA    http://www.ibt.lt/en/coma.html      [ 14 ] 
 COMPASS    http://prodata.swmed.edu/compass      [ 15 ] 
 PMP    http://www.proteinmodelportal.org/      [ 16 ] 
 MODELLER    http://salilab.org/modeller/      [ 17 – 20 ] 
 I-TASSER    http://zhanglab.ccmb.med.umich.edu      [ 21 – 23 ] 
 Swiss model    http://swissmodel.expasy.org/      [ 24 – 26 ] 
 Phyre    http://www.sbg.bio.ic.ac.uk/phyre2/html      [ 27 ] 

  Docking  
 Autodock    http://autodock.scripps.edu/      [ 28 ] 
 DOCK    http://dock.compbio.ucsf.edu/      [ 29 ] 
 FlexX    http://www.biosolveit.de/fl exx/      [ 30 ] 
 GOLD    http://www.ccdc.cam.ac.uk/gold/      [ 31 ] 
 ICM    http://www.molsoft.com/docking.html      [ 32 ] 
 SwissDock    http://swissdock.vital-it.ch/      [ 33 ] 
 Hex    http://hexserver.loria.fr      [ 34 ] 

   a Accessed 24 May 2013  
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structure can be predicted by homology modeling. Virtual 
 screening for suitable ligands has emerged as a rapid and inexpen-
sive method for the identifi cation of lead compounds. Virtual 
screening enables systematic evaluation of large chemical libraries 
in a very short span of time to identify potential lead compounds. 
The ligand should have the maximum interaction with the target 
protein, i.e., it should have the lowest value of free energy of inter-
action. Interactions can be steric, hydrophobic, electrostatic, or 
hydrogen bonding (H-bonding). 

 Ligand–protein target interactions occur at the atomic level. 
For a detailed understanding of how and why ligands bind to 
receptors, one should consider the biochemical and biophysical 
properties of both the drug compound as well as the target at an 
atomic scale. For instance the Swiss-PDB tool can determine 
important physicochemical parameters, such as hydrophobicity 
and polarity that are the key factors in drug-protein binding [ 7 ].   

  Docking is a process, in which two molecules fi t or dock together 
in a three-dimensional space. Docking explores ways in which a 
target protein molecule and another molecule, such as a drug fi t 
together. Several docking software programs are available namely, 
interactive protein docking and molecular superposition programs. 
A few examples are given in Table  1 . Docking programs such as 
Autodock, GOLD, DOCK, ICM, etc. are based on the principle of 
achieving an optimized conformation of both protein and ligand, 
where the energy of the overall system is minimized ( see   Note 1 ).   

3    Methods 

  Selection and validation of the target protein is a crucial step for 
drug designing. The repositories of protein structures and 
sequences are rapidly growing and serve as a useful source for the 
identifi cation of potential protein targets for drug designing. For 
drug discovery, the function of a protein should be known. Protein 
function annotation is available in the protein databases. Once the 
causative protein for the disease under study has been identifi ed, its 
sequence can be retrieved using NCBI’s Entrez database for iden-
tifi cation of its structure using homology modeling.  

   The fi rst step in homology modeling involves searching for template 
structures using the target protein sequence as a query. This is nor-
mally achieved by comparing the target sequence with the sequence 
of each of the structures in the database. There are many servers 
that allow databases to be searched on the WWW. Examples of these 
are listed in Table  1 . Some servers search directly against the PDB. 
Threading programs and fold-recognition WWW servers can also 
be used to fi nd the maximum number of possible templates.  

2.3  Docking

3.1  Identifi cation 
of the Target Protein

3.2  Homology 
Modeling

3.2.1  Identifi cation 
of Templates
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  The list of templates obtained by the template search is then used 
to select the appropriate ones for homology modeling. Templates 
with higher overall sequence similarity are chosen. Model accuracy 
increases with the use of several templates. In cases where the 
target- template sequence identity is above 40 %, the alignment of 
the target and template sequences for model prediction is relatively 
simple and optimal. If the target–template sequence identity is 
lower than 40 %, the alignment generally has gaps and so the num-
bers of misaligned residues need to be minimized. Sequence- 
structure alignment, or fold recognition, is crucial to obtain an 
optimal model. Generally, the higher the sequence identity the 
more accurate is the model.  

  After the target-template alignment has been built, a three- 
dimensional model for the target protein can be constructed. The 
sequence of the unknown structure is threaded into the sequence 
of the known structure (template) and the fi tness of the sequences 
for that structure is examined. There are several software programs 
and servers available for this purpose (Table  1 ). Some modeling 
methods employ rigid-body assembly, in which models are con-
structed from a few core regions, loops and sidechains obtained 
from related structures. A few methods involve modeling that 
addresses spatial restraints. In this method distance geometry or 
optimization techniques to satisfy spatial restraints derived from 
the alignment of the target sequence with the template structures 
are used [ 19 ,  44 ]. A commonly used program called MODELLER 
applies this method for automated model construction. The user 
has to input the sequences of the target and the templates. The 
MODELLER program then calculates models based on multiple 
sequence alignment between target and template proteins, to dis-
tinguish between highly conserved residues from less conserved 
ones. Next, the model needs to be optimized using structural, ste-
reochemical and energy calculations.  

  Once the homology model has been constructed, it needs to be 
validated for reasonable bond length, bond angles, torsion angles, 
etc. The conformational rotations can then be verifi ed using 
Ramachandran Plot which shows whether the distribution of the 
backbone bond angles is optimum. A plot for the two torsional 
variables Φ (phi) and Ψ (psi) indicating energetically allowed com-
binations of the two backbone torsional angles adjacent to the α 
carbon is known as Ramachandran plot. Software packages avail-
able to generate Ramachandran plots for model validation are 
described in Subheading  2.2.4 . The overall quality of a model can 
be derived from the Ramachandran plot by computing the per-
centage of residues in the most favorable regions and the percent-
age of residues in the unfavorable regions. The models with 
maximum number of residues in the favorable region and the least 

3.2.2  Selection 
of Templates

3.2.3  Three-Dimensional 
Structure Modeling

3.2.4  Model Validation
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number of residues in the disallowed region are considered to be 
the fi nest models and are used for further docking studies.  

  Drug discovery involves study of the interaction between a protein 
molecule and a ligand. The chemical structure of the ligand can be 
drawn using a variety of software packages available. The chemical 
structures need to be drawn correctly and clearly using consistent 
long lengths and angles. The drawing programs should be able to 
deduce additional information about the compound for further use 
in docking studies. Several software programs are available for this 
purpose, e.g., ACD/ChemSketch. This program has other uses 
such as calculation of molecular properties, 2D and 3D structure 
cleaning, structure naming, etc. Chemical structures drawn using 
ACD/ChemSketch software can be saved as a .MOL fi le and then 
be converted to .PDB fi le using Argus laboratory software [ 45 ].   

  Docking studies involve the binding of two interacting molecules, 
with the aim to fi t them into favorable conformations. Docking 
algorithms search all the possible conformations of the ligand–
receptor molecule interaction. The scoring function of the docking 
algorithms evaluates the different conformations and returns an 
energy value for them. The lower the energy value the better is the 
conformation. The orientation of the ligand with respect to the 
protein molecule is verifi ed to ensure that there are no unaccept-
able steric interactions between the ligand and the protein mole-
cules. For acceptable orientation, an interaction energy is calculated 
which represents the score for the docking. Docking of the protein 
molecule and the receptor can be done using docking programs 
(Table  1 ). The receptor and ligand molecules have to be uploaded 
in PDB format. For example, the docked structures can be exam-
ined using PatchDock, which gives a geometric shape complemen-
tarity scores [ 46 – 48 ] ( see   Note 2 ). 

 In silico drug designing is being extensively used for drug discov-
ery. Several inhibitors including human lipoxygenase inhibitors, 
kinase inhibitors and cannabinoid CB2 receptor agonists have been 
discovered using virtual screening with homology models [ 1 ]. Several 
successful drugs have been developed using the drug design method 
and some of them have been marketed. Examples include: imatinib, 
which is used to treat hematologic cancers like chronic myelogenous 
(myeloid) leukemia (CML); ritonavir is a protease inhibitor used as 
an antiretroviral agent for treating HIV/AIDS [ 49 ].   

4    Notes 

     1.    Homology modeling and docking are complex tasks, because 
most molecules being fl exible can adopt a number of differ-
ent conformations of similar energy. During docking, the 

3.2.5  Chemical Structure 
of the Drug Molecule

3.3  Docking
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