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PREFACE 

This volume contains the papers presented at the IUT AM Symposium of 
"Mesoscopic Dynamics of Fracture Process and Materials Strength", held in July 
2003, at the Hotel Osaka Sun Palace, Osaka, Japan. 

The Symposium was proposed in 2001, aiming at organizing concentrated 
discussions on current understanding of fracture process and inhomogeneous 
deformation governing the materials strength with emphasis on the mesoscopic 
dynamics associated with evolutional mechanical behaviour under micro/macro 
mutual interaction. The decision of the General Assembly of International Union of 
Theoretical and Applied Mechanics (IUT AM) to accept our proposal was well-timed 
and attracted attention. Driven by the development of new theoretical and 
computational techniques, various novel challenges to investigate the mesoscopic 
dynamics have been actively done recently, including large-scaled 3D atomistic 
simulations, discrete dislocation dynamics and other micro/mesoscopic 
computational analyses. 

The Symposium attracted sixty-six participants from eight countries, and forty
two papers were presented. The presentations comprised a wide variety of 
fundamental subjects of physics, mechanical models, computational strategies as 
well as engineering applications. Among the subjects, discussed are (a) dislocation 
patterning, (b) crystal plasticity, (c) characteristic fracture of amorphous/nanocrystal, 
(d) nano-indentation, (e) ductile-brittle transition, (f) ab-initio calculation, (g) 
computational methodology for multi-scale analysis and others. 

We would like to thank all the contributors for making this Proceedings which 
should be a milestone of research of computational fracture mechanics and express 
our sincere appreciation to all of the persons and associations concerned in the 
Symposium: the members of the Scientific Committee who have given us 
appropriate advices concerning selection of the invited speakers and conduct of the 
Symposium, the members of Local Committee who assisted in the construction of 
the symposium plans which we holed and the dedicated staffs of the secretariat. 

Financial support to the Symposium was provided by the IUT AM by which we 
could invited a lot of active young scientists. In addition, generous supports are 
gratefully acknowledged for Graduate School of Engineering, Osaka University, 
Handai Frontier Research Center (FRC), Japan Society for the Promotion of Science 
(JSPS), Japan Society of Mechanical Engineers (JSME), the Japan Society of 
Materials Science (JSMS). 
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Finally, the cooperation of the Kluwer academic publishers for publication of the 
Proceeding is very much appreciated as well as the financial support. 

October 2003 
Editors Hiroshi Kitagawa, Yoji Shibutani 

We should like to express our deep appreciation for the great achievements of Prof. 
Kitagawa and his untiring contributions to the solid mechanics field over 35 years. 
All of the participants in this symposium would like to dedicate this volume to Prof. 
Kitagawa in celebration of his retirement. 

October 2003 
Yoji Shibutani 



Prof. Hiroshi Kitagawa 

Xlll 



SCIENTIFIC COMMITTEE 

H. Kitagawa, Co-Chair (Osaka University, Japan) 

Y. Shibutani, Co-Chair (Osaka University, Japan) 

P. Gumbsch (Fraunhofer Institute for Mechanics of Materials, Germany) 

L. P. Kubin (CNRS/ONERA, France) 

A. Needleman (Brown University, USA) 

S. Schmauder (University of Stuttgart, Germany) 

S. Yip (MIT, USA) 

L. B. Freund (Brown University, USA) 

LOCAL ORGANIZING COMMITIEE 

H. Kitagawa, Co-Chair (Osaka University, Japan) 

Y. Shibutani, Co-Chair (Osaka University, Japan) 

A.Nakatani, Secretary (Osaka university, Japan) 

Y.Tomita (Kobe University, Japan) 

S. Kubo (Osaka University, Japan) 

T. Ohno (Nagoya University, Japan) 

T. Kitamura (Kyoto University, Japan) 

K. Kishimoto (Tokyo Institute of Technology, Japan) 

S.Hashimoto (Osaka City University, Japan) 

T.Ohashi (Kitami Institute of Technology, Japan) 

K. Shizawa (Keio University, Japan) 

K. Higashida (Kyushu University, Japan) 

K. Saitoh (Kansai University, Japan) 

S. Ogata(Osaka University, Japan) 

Y. Higa (Osaka University, Japan) 

K. Nakatani (Osaka Prefecture University, Japan) 

XV 



xvi 

SPONSORS 

International Union of Theoretical and Applied Mechanics 

Graduate School of Engineering, Osaka University 

Handai Frontier Research Center (FRC) 

Japan Society for the Promotion of Science (JSPS) 

Japan Society of Mechanical Engineers (JSME) 

Japan Society of Materials Science (JSMS) 



xvu 

LIST OF PARTICIPANTS 

Yoshiteru Aoyagi Keio University, Graduate School of Science and Technol
ogy 
3-14-1 Hiyoshi, Kohoku-ku Yokohama, Kanagawa 223-8522, Japan 
Email: yoshiteru@shizawa.mech.keio.ac.jp 

David J. Bacon The University of Liverpool, Department of Engineering 
Brownlow Hill, Liverpool L69 3GH, U.K. 
Email: djbacon@liverpool.ac. uk 

Sandrine Brochard Lab. Metallurgie Physique, - Universite de Poitiers -
CNRS 
SP2MI-BP30179 Futuroscope Chasseneuil, Cedex 86962, France 
Email: sandrine. brochard@univ-poitiers.fr 

Wei Cai Lawrence Livermore National Laboratory 
L-353 7000 Est Ave Livermore, CA 94551, U.S.A. 
Email: caiwei@llnl.gov 

Benoit Devincre CNRS-ONERA, Laboratoire d'Etude des Microstructures 
(LEM) 
29 Av de Ia Division Leclerc, 92322 Chatillon Cedex, France Email: devin
cre@onera.fr 

Sergey V. Dmitriev Institute oflndustrial Science, The University of Tokyo 
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan 
Email: sergey@iis. u-tokyo.ac.jp 

Christophe Domain EDF R&D Departement MMC, Les Renardieres 
F-77250 Moret sur Loing, France 
Email: christophe.domain@edf.fr 

Peter Gumbsch Fraunhofer Institut fiir Werkstoffmechanik 
Woehlerstr. 11, 79194 Freiburg, Germany 
Email: Gumbsch@iwm.fhg.de 

Tadashi Hasebe Doshisha University, Dept. of Mechanical and Systems En
gineering 
1-3 Tatara Miyako-dai, Kyotanabe 610-321, Japan 
Email: thasebe@mail.doshisha.ac.jp 



xviii 

Yoshikazu Higa Osaka University, Department of Adaptive Machine Sys
tems, Graduate School of Engineering 
2-1 Yamadaoka Suita, Osaka 565-0871, Japan 
Email: higa@ams.eng.osaka-u.ac.jp 

Kenji Higashida Kyushu University, Dept. of Materials Science and Engi
neering 
6-10-1 Hakozaki, Higashi-ku Fukuoka 812-8581, Japan 
Email: higasida@zaiko.kyushu-u.ac.jp 

Satoshi Izumi The University of Tokyo, Department of Mechanical Engi
neering 
7-3-1 Hongo Tokyo 113-8656, Japan 
Email: izumi@fml. t. u-tokyo.ac.jp 

Yoshihisa Kaneko Osaka City University, Dept. of Intelligent Materials 
Engineering 
Faculty of Engineering 
Sugimoto 3-3-138, Sumiyoshi-ku, Japan 
Email: kaneko@imat.eng.osaka-cu.ac.jp 

Young-Suk Kim Kyungpook National University 

1370 Puk-Ku Taegu 702-701, Korea 
Email: caekim@knu.ac.kr 

Hajime Kimizuka The Japan Research Institute, Limited 
1-4-17, Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan 
Email: kimizuka.hajime@jri.co.jp 

Kikuo Kishimoto Tokyo Institute of Technology, Dept. of Mechanical and 
Control Engineering 
2-12-1, 0-okayama, Meguro-ku, Tokyo 152-8552, Japan 
Email: kkishimo@mep.titech.ac.jp 

Hiroshi Kitagawa Osaka University, Department of Adaptive Machine Sys
tems, Graduate School of Engineering 
2-1 Yamadaoka Suita, Osaka 565-0871, Japan 
Email: kitagawa@ams.eng.osaka-u.ac.jp 

Takayuki Kitamura Kyoto University, Dept. of Engineering Physics and 
Mechanics, Graduate School of Engineering 
Yoshida-hommachi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan 
Email: kitamura@kues.kyoto-u.ac.jp 



XlX 

Masanori Kohyama National Institute of Advanced Industrial Science and 
Technology, Special Division of Green Life Technology 
1-8-31, Midorigaoka Ikeda, Osaka 563-8577, Japan 
Email: m-kohyama@aist.go.jp 

Ladislas P. Kubin CNRS-ONERA, Laboratoire d'Etude des Microstructures 
(LEM) 
29, Av. de la Division Leclerc, BP 72, 92322 Chatillon Cedex, France 
Email: kubin@onera.fr 

Shiro Kubo Osaka University, Dept. of Mechanical Engineering and Sys
tems, Graduate School of Engineering 
2-1, Yamadaoka Suita, Osaka 565-0871, Japan 
Email: kubo@mech.eng.osaka-u.ac.jp 

Jeffrey Kysar Columbia University, Department of Mechanical Engineering 
500 West 120th Street, MC 4703, New York, NY 10027, U.S.A. 
Email: jk2079@columbia.edu 

Ryosuke Matsumoto Kyushu Institute of Technology, Department of Me
chanical Systems Engineering 
680-4 Kawazu, lizuka-City Fukuoka 820-8502, Japan 
Email: matsumoto@mse.kyutech.ac.jp 

Igor L. Maksimov Nizhny Novgorod University, Department of Theoretical 
Physics, Faculty of Physics, 23 Gagarin Ave. University 
Nizhny Novgorod 603000, Russia 
Email: ilmaks@phys.unn.ru 

Ronan Madec CEA DAM DPTA SPMC 
BP12 Bruyeres-le-Chiitel 91680, France 
Email: madec@bruyeres.cea.fr 

Yuji Nakasone Tokyo University of Science, Department of Mechanical En
gineering, Faculty of Engineering 
Kagurazaka 1-3, Shinjyuku-ku, Tokyo 162-8601 Japan 
Email: nakasone@rs.kagu. tus.ac.jp 

Akihiro Nakatani Osaka University, Department of Adaptive Machine Sys
tems, Graduate School of Engineering 
2-1 Yamadaoka Suita, Osaka 565-0871, Japan 
Email: nakatani@ams.eng.osaka-u.ac.jp 

Keiko Nakatani Osaka Prefecture University, Department of Aerospace En
gineering, College of Engineering 
1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan 
Email: nakatani@aero.osakafu-u.ac.jp 



XX 

Alan Needleman Brown University, Box D, Division of Engineering 
Providence, RI 02912, U.S.A. 
Email: needle@engin. brown.edu 

Shigenobu Ogata Osaka University, Dept. of Mechanical Engineering and 
Systems, Graduate School of Engineering 
2-1 Yamadaoka Suita, Osaka 565-0871, Japan 
Email: ogata@mech.eng.osaka-u.ac.jp 

Shuji Ogata Nagoya Institute of Technology 
Gokiso, Showa-ku, Nagoya, Aichi 466-8555, Japan 
Email: ogata@yamaguchi-u.ac.jp 

Tetsuya Ohashi Kitami Institute of Technology 
Koencho 165 Kitami, Hokkaido 090-8507, Japan 
Email: ohashi@newton.mech.kitami-it.ac.jp 

Yury N. Osetsky The University of Liverpool, Materials Science and Engi
neering, Department of Engineering 
Liverpool L69 3GH, UK 
Email: i.osetsky@liverpool.ac. uk 
Oak Ridge National Laboratory, Metals and ceramics 
Bldg. 4500S, MS-6138, P. 0. BOX 2008, Oak Ridge, TN 37831-6158, 
U.S.A. 
Email: osetskiyyn@email.cind.ornl.gov 

Pirouz Pirouz Case Western Reserve University 
10900 Euclid Avenue White, Room 510 Cleveland, Ohio 44106-7204, 
U.S.A. 
Email: pxp7@cwru.edu 

David Rodney INPG 101 rue de Ia Physique Domaine Universitaire 
BP 46 Saint Martin d'Heres F38402 France 
Email: david.rodney@gpm2.inpg.fr 

Ken-ichi Saitoh Kansai University, Department of Mechanical Engineering 
3-3-35 Yamate-cho, Suita-shi Osaka 564-8680, Japan 
Email: saitou@ipcku.kansai-u.ac.jp 

Tomotsugu Shimokawa Kanazawa University, Department of Mechanical 
Systems Engineering 
2-40-20 Kodatsuno Kanazawa, Ishikawa 920-8667 Japan 
Email: simokawa@t.kanazawa-u.ac.jp 

Kazuyuki Shizawa Keio University, Department of Mechanical Engineering 
3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522, Japan 
Email: shizawa@mech.keio.ac.jp 



Jakob Schiotz Technical University of Denmark 
DTU Building 307, Kongens Lyngby DK-2800 
Denmark 
Email: schiotz@fysik.dtu.dk 

XXI 

Siegfried Schmauder Universitiit Stuttgart, Staatliche Materialpriifungsanstalt 
(MPA) 
Pfaffenwaldring 32, D-70569 Stuttgart, Germany 
Email: Siegfried.Schmauder@mpa.uni-stuttgart.de 

Yoji Shibutani Osaka University, Dept. of Mechanical Engineering and Sys
tems, Graduate School of Engineering 
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan 
Email: sibutani@mech.eng.osaka-u.ac.jp 

Yoshihiro Tomita Kobe University, Graduate School of Science and Tech
nology 
Rokkodai 1-1, Nada-ku, Kobe 657-8501, Japan 
Email: tomita@mech.kobe-u.ac.jp 

Yoshitaka Umeno Kyoto University, Dept. of Engineering Physics and Me
chanics, Graduate School of Engineering 
Yoshida-hommachi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan 
Email:umeno@kues.kyoto-u.ac.jp 

Krystyn J. Van Vliet Massachusetts Institute of Technology (M.I.T.), Dept 
of Materials Science and Engineering 
Currently at the Department of Surgical Research, Children's Hospital, 
300 Longwood Avenue Boston, MA 02115, U.S.A. 
Email: krystyn@mit.edu 

Daniel Weygand University of Karlsruhe IZBS 
Kaiserstr. 12 Karlsruhe 76131, Germany 
Email: Daniel. Weygand@izbs. uni-karlsruhe.de 

Kisaragi Yashiro Kobe University, Department of Mechanical Engineering 
1-1, Rokkodai, Nada, Kobe, 657-8501, Japan 
Email: yashiro@mech.kobe-u.ac.jp 

Sidney Yip Massachusetts Institute of Technology (M.I.T.), Department of 
Nuclear Engineering and Department of Materials Science and Engineer
ing 
77 Mass Ave Cambridge, MA 02139, U.S.A. 
Email: syip@mit.edu 



xxii 

Hussein M. Zbib Washington State University, School of Mechanical & Ma
terials Engineering 
Pullman, WA 99164-2920, U.S.A. 
Email: zbib@wsu.edu 

Joey Crider U.S. Army NGIC 
6385 Midway Road, Charlottesville, VA 22903, U.S.A. 
Email: jfcrider@ceva.us 



IU
T

A
M

 S
ym

po
si

um
 o

n 
M

es
os

co
pi

c 
D

yn
am

ic
s 

o
f F

ra
ct

ur
e 

P
ro

ce
ss

 a
nd

 M
at

er
ia

ls
 S

tr
en

gt
h 

--~
~-
JJ

, 
Ju

ly
 2

00
3,

 H
ot

el
 O

sa
ka

 S
un

 P
al

ac
e 

;.<
 E: 



XXV 

SYMPOSIUM PROGRAM 

Sunday July 6 
17:00 Registration starts at the NORTH ENTRANCE LOBBY of 

Hotel Osaka Sun Palace 

18:00 Reception at the ORBIT HALL LOBBY of Hotel Osaka Sun 

Palace 

Monday July 7 

8:30 Registration at the Hotel Osaka Sun Palace 

9:00 Opening 

Session 1: ODD, Dislocation Patterning 

[Chairperson: K. Shizawa] 

9:30-10:00 Dislocation Patterning and Plasticity 

W. Cai, V. V. Bulatov, T. Pierce, M. Hiratani, M. Rhee and 

M. Bartelt 

10:00-10:30 Nondestructive Observation of Dislocation Structure Formed 

at Fatigued Copper and Stainless Steel Crystals 

Y. Kaneko and S. Hashimoto 

10:30-11:00 Coffee Break 

11:00-11:30 Plasticity in Small Samples: A Discrete Dislocation Dynamics 

Description 

D. Weygand 

11:30-12:00 A Dislocation Dynamics Study of Some Constitutive 

Parameters for Plastic Flow 

R. Madec 

12:00-14:00 Lunch 



XXVl 

Session 2: MD, DOD, Crystal Plasticity 

[Chairperson: W. Cai] 

14:00~14:30 Atomistic and DDD Studies of Inertial Effects on the 

Dynamics of Dislocations 

E. Bitzek, D. Weygand and P. Gumbsch 

14:30-15:00 Molecular Dynamics Study on the Characteristics of Edge 

and Screw Dislocations in Gamma/Gamma-Prime 

Microstructure in Ni-based Superalloy 

K. Yashiro, Y. Tabata and Y.Tomita 

15:00~15:30 Coffee Break 

15:30~16:00 Multiscale Modeling of fcc Single Crystal Plasticity 

L.P. Kubin 

16:00-16:30 Discrete Dislocation Modeling of Fatigue Crack Growth in 

Single Crystals 

V. S. Deshpande, A. Needleman and E. Vander Giessen 

16:30-17:00 A Crystal Plasticity Analysis for Accumulations of 

Geometrically Necessary Dislocations and Dipoles around 

Shear Band 

Y. Aoyagi and K. Shizawa 

17:00-17:30 A New Model of Scale Dependent Crystal Plasticity Analysis 

T. Ohashi 



Tuesday July 8 

8:30 Registration at the Hotel Osaka Sun Palace 

Session 3: MD, Amorphous, Silicon, Fracture 

[Chairperson: P. Gumbsch] 

xxvii 

9:00-9:30 Molecular Dynamics Study on Mechanisms of Deformation 

and Fracture near a Crack Tip in Amorphous Metal 

K. Nakatani, Y. Sugiyama and H. Kitagawa 

9:30-10:00 Elastic Properties of the Surfaces and Interfaces of Crystal 

and Amorphous Silicon 

S. Izumi, S. Hara, T. Kumagai and S. Sakai 

10:00-10:30 Coffee Break 

10:30-11:00 Atomistic Simulation of Dislocation Generation at Surface 

Defects in Metals and Silicon 

S. Brochard, J. Godet, L. Pizzagalli, P. Beauchamp and J. 
Grilhe 

11:00-11:30 On the Plasticity and Fracture of Semiconductors 

P. Pirouz 

11:30-12:00 HVEM/ AFM Studies on Crack Tip Plasticity in Si Crystals 

K. Higashida and M. Tanaka 

12:00-14:00 Lunch 

Session 4: MD, Dislocation, Obstacle, Indentation 

[Chairperson: T. Ohashi] 

14:00-14:30 Atomic and Mesoscopic Modeling of Irradiation Hardening 

in FCC Crystals 

D. Rodney 



XXVlll 

14:30~15:00 Dynamics of an Edge Dislocation Glide in the Presence of 

Substitutional Solute Atoms and Glissile Interstitial Clusters 

D.}. Bacon, Yu. N. Osetsky, Z. Rong and K. Tapassa 

15:00~15:30 Coffee Break 

15:30~16:00 Modeling the Dynamic Behavior of FCC Single Crystals 

under Shock Loading: Dislocation Dynamic Plasticity 

Analysis 

H. M. Zbib, Mu'tasem, A. Shehadeh, Tomas. D. de Ia Rubia 

and V. Bulatov 

16:00-16:30 Atomic-Level Interaction of an Edge Dislocation with 

Localized Obstacles in Fcc and Bee Metals 

Yu. N. Osetsky and D. J. Bacon 

16:30-17:00 Understanding Defect Nucleation through Nanoscale 

Experiments and Computations 

K. }. Van Vliet, J. Li, T. Zhu, S. Suresh and S. Yip 

17:00-17:30 Dislocation Emission and Prismatic Dislocation Loop 

Formation of Single Crystalline Aluminum under 

Nanoindentation 

T. Tsuru and Y. Shibutani 

WednesdayJuly 9 

8:30 Registration at the Hotel Osaka Sun Palace 

Session 5: Multiscale Modeling 

(Chairperson: T. Hasebe] 

9:00~9:30 Multiscale Modeling of Materials Strength and Deformation 

S.Yip 



XXIX 

9:30-10:00 Parameter Link as an Approach to Hierarchical Modelling of 

Toughness Decrease of Steels 

S. Schmauder, U. Weber, P. Binkele and P. Kizler 

10:00-10:30 Coffee Break 

10:30-11:00 Modelling Plasticity at Mesoscale with Dislocation Dynamics 

and Finite Elements Coupling 

B. Devincre 

11:00-11:30 Computational Evaluation of Micro- to Macroscopic 

Deformation Behavior of Amorphous Polymer with Slightly 

Heterogeneous Distribution of Molecular Chains 

Y. Tomita and M. Uchida 

11:30-12:00 Computational Modeling and Estimation of Materials with 

Periodic Microstructure Using Asymptotic Homogenization 

Method 

Y. Higa, H. Kitagawa andY. Tomita 

12:00-14:00 Lunch 

Session 6: Crack, DB Transition, Transformation 

[Chairperson: S. Schmauder] 

14:00-14:30 Critical Behavior near the Crack/Dislocation Depinning 

Threshold: Critical Indices and Landau-type Expansion 

I. L. Maksimov 

14:30-15:00 Domain wall and dislocation dynamics in media with 

microscopic rotations 

S. V. Dmitriev, N. Yoshikawa and A A. Vasiliev 

15:00-15:30 Coffee Break 



XXX 

15:30-16:00 Dependence of Ductile and Brittle Response on Initial Energy 

Dissipation Mechanism at Crack Tip 

J. W. Kysar 

16:00-16:30 A Cohesive Zone Model and Interfacial Crack Problems 

K. Kishimoto 

16:30-17:00 Molecular Dynamic Simulation of Influence of 

Crystallographic Orientation and Grain Boundary on 

Near-Threshold Fatigue Crack Growth in Iron 

S. Kubo and M. Misaki 

17:00-17:30 Plasticity-Induced Martensitic Transformation around 

Semi-elliptical Surface Cracks in Fatigue of an Austenitic 

Stainless Steel 

Y. Nakasone, S. Kasumi andY. Iwasaki 

Thursday July 10 
8:30 Registration at the Hotel Osaka Sun Palace 

Session 7: Nano-crystal, Poly-crystal 

[Chairperson: Y. Nakasone] 

9:00-9:30 An atomistic simulation of AFM-based nano lithography 

process for nano patterning 

Y.-S. Kim, C.-11 Kim and S.-S. Lee 

9:30-10:00 Molecular Dynamics Study on Morphology and Strength of 

Copper Atomic-cluster-assembled Structure 

K. Saitoh, S. Nagase, H. Kitagawa and N. Shinke 

10:00-10:30 Coffee Break 



xxxi 

10:30-11:00 The Strength of Nanocrystalline Metals: An Optimal Grain 

Size 

J. Schiotz 

11:00-11:30 An Atomistic Study of Ideal Strength of Polycrystalline 

Metals 

A. Nakatani, T. Shimokawa, R. Matsumoto and H. 

Kitagawa 

11:30-12:00 Continuum Description of Inhomogeneously Deforming 

Polycrystalline Aggregates based on Field Theory 

12:00-14:00 Lunch 

Session 8: Ab-initio Calculation, Mutiscale Modeling 

[Chairperson: Y. Shibutani] 

T. Hasebe 

14:00-14:30 Study on Strength of Microscopic Material by Simulations 

with Atom and Electron Models 

Y. Umeno and T. Kitamura 

14:30-15:00 Ab initio Study of Ideal Shear Strength 

S. Ogata, J. Li, Y. Shibutani and S. Yip 

15:00-15:30 Coffee Break 

15:30-16:00 Ab initio Atomic-scale Simulation Investigation of the 

Plasticity in Zirconium and Titanium - Influence of 

Hydrogen 

C. Domain and A. Legris 



xxxii 

16:00-16:30 Computational Study of the Mechanical Properties of 

Alumina-Copper Interfaces: Ab initio Calculations and 

Combination with Mesoscopic Simulations 

M. Kohyama, S. Tanaka and R. Yang 

16:30-17:00 A Hybrid Electronic-Density-Functional/Molecular 

Dynamics Simulation Scheme for Multiscale Simulation of 

Materials on Parallel Computers 

S. Ogata 

19:00 Banquet at Banpaku Memorial Guest House 

(Geihinkan) 

Friday July 11 

One-Day Tour to Himeji, Spectacular World Heritage 



Massively-Parallel Dislocation Dynamics Simulations 

Wei Cai, Vasily V. Bulatov, Tim G. Pierce, Masato Hiratani, Moono 
Rhee, Maria Bartelt and Meijie Tang 
Lawrence Livermore National Laborotory, University of California, 
Livermore, CA 94551 

Abstract. Prediction of the plastic strength of single crystals based on the collective 
dynamics of dislocations has been a challenge for computational materials science 
for a number of years. The difficulty lies in the inability of the existing dislocation 
dynamics (DD) codes to handle a sufficiently large number of dislocation lines, in 
order to be statistically representative and to reproduce experimentally observed 
microstructures. A new massively-parallel DD code is developed that is capable of 
modeling million-dislocation systems by employing thousands of processors. We dis
cuss the general aspects of this code that make such large scale simulations possible, 
as well as a few initial simulation results. 

Keywords: parallel computation, dislocation dynamics, plasticity 

1. Introduction 

It has been known for a long time that crystal plasticity is produced 
by the motion of many dislocation lines [1]. Consequently, a priori 
predictions of the strength of a single crystal against plastic deforma
tion must be possible, at least in principle, by modeling the dynamics 
of dislocation lines under the influence of external stress and mutual 
interactions. Such has been a dream of the computational materials 
scientists for several decades. Yet, it remains a grand challenge even to 
date. The major difficulty lies in the fact that, to have a representative 
model of crystal plasticity, the dynamics of a large enough number of 
dislocations needs to be followed for a long enough time interval. The 
length and time scales required have remained beyond the reach of the 
existing simulation codes. 

To understand why, let us consider a typical dislocation microstruc
ture spontaneously developed in copper during plastic deformation [2]. 
The structure exhibits patterns over the length scale of microns. To 
model this behavior, a simulation box of about L = 10J.tm would be nec
essary. Given that the experimental estimates of dislocation density in 
such conditions are around p = 1012m-2 , the total length of dislocation 
lines in the simulation box is about A= pL3 = 10-3m. In a dislocation 
dynamics (DD) simulation, dislocations are discretized into segments. 
If the average segment length is d = lnm, then the total number of 
segments in this simulation would beN= Ajd = 106 , i.e., simultaneous 
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treatment of a million segments is required. This is a rough estimate but 
serves to identify the order of magnitude of the complexity of simulation 
required to address the crystal plasticity problem. Here in this paper 
we refer to a simulation with million dislocation segments as our target 
problem. 

Because the interactions between dislocation segments are complex 
and long-ranged, dislocation dynamics codes, when running on a single 
processor, can only handle up to 104 segments. Beyond that size the 
simulation becomes very slow and no longer useful. Notice that this is 
two orders of magnitude away from the target size stated above. Yet 
another computational limit exists: when a reasonable initial disloca
tion density is used, the total plastic strain one can accumulate using 
the sequential DD codes is on the order of 0.1 %, another two orders 
of magnitudes below the levels of strain where dislocation patterning 
and strain hardening behaviors are observed (typically at around 10% 
plastic strain). 

To extend our simulation capability in both length and time scales 
by two orders of magnitude and to meet the requirements for faithful 
modeling of crystal plasticity, massively parallel computing appears to 
be a natural solution. For example, imagine a simulation where 10,000 
processors are used simultaneously, each handling on average only 100 
dislocation segments. Because the load on each processors is relatively 
light, a million dislocation segments can be simulated at a reasonable 
speed in order to accumulate large enough plastic strain. However, 
devloping a DD code that is scalable up to 103 - 104 processors is a 
highly nontrivial task. In this paper, we describe a few general features 
of our new massively-parallel DD code and present a few initial results 
from runs on up to 200 processors. 

2. Simulation Methodology 

The development of the DD3d code began at the Lawrence Livermore 
National Lab (LLNL) in 2001. To date (two years later) the first ver
sion is completed while further developments are still on-going, mainly 
focused on further enhancing the simulation efficiency and the accuracy 
of the physical models. The main objective for the DD3d code is to be 
able to take advantage of massively-parallel computers effectively. To 
achieve this goal, there are two basic design principles to which we have 
adhered during the entire development of DD3d. First, whenever pos
sible, we choose algorithms that are conceptually and logically simple. 
Second, we intend to make this code as generic as possible. Keeping 



these design principles in mind should be helpful in understanding the 
aspects of code development described below. 

The reason that we are only interested in conceptually simple al
gorithms is obvious. A complex algorithm with many ad hoc rules is 
not only aesthetically less appealing, but necessitates complex book
keeping that can be disastrous if one tries to implement (and debug) 
it in a massively parallel setting. On the other hand, dislocations are 
known to be peculiar objects: they are topological line defects with 
a singular elastic field. Not surprisingly, the algorithms for simulating 
dislocations are necessarily more complex than those for simulating 
point objects, such as atoms in molecular dynamics (MD). Therefore, 
our choice of algorithms in DD3d is usually a compromise between 
conceptual simplicity and computational efficiency. 

If the code is generic then it can be easily applied to simulate various 
materials after it is developed and fully tested for one test case. In 
our development work on DD3d we find that almost all elements of 
the algorithm deal with various generic issues that are independent of 
the specific physical system. These include, for example, meshing the 
dislocations into segments, computing driving forces, and communica
tion between the processors. The system specific parts, on the other 
hand, can be grouped into one place - the mobility module (details 
later) that specifies how individual dislocations move in response to the 
driving force it sees. The separation of the system-specific parts from 
generic parts is rather similar to that in the commercially available 
finite element (FEM) codes. This way the code will be able to model 
a new material once the user defines his/her own material module of 
interest. 

2.1. DATA STRUCTURE 

In DD3d dislocations are represented as a set of "nodes" connected with 
each other by straight line segments, as shown in Fig. 1. The position of 
nodes, together with their connectivity, is our fundamental degrees of 
freedom. If a node is connected with n other nodes, we call it an-node, 
or a node with n arms, or n neighbors. In Fig. 1, node 1, 2 and 3 are 
2-nodes, or "discretization" nodes, while node 0 is a "physical" -node, 
indicating the position where three dislocations meet. 

The Burgers vectors are defined on every arm emanating from the 
node, with the line direction always pointing away from the node. For 
example, bm is the Burgers vector of the arm going from node 0 to node 
1, and bw is the Burgers vector of the same arm going in the reverse 
direction. Therefore the sum rule bm + bw = 0 follows. Furthermore 
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Figure 1. Dislocation network represented as a set of "nodes" (empty circles) 
interconnected by straight segments (see text). 

the total Burgers vector of all arms going out of any given node is also 
zero, e.g., b01 + bo2 + bo3 = 0. 

Under this convention, an arbitrary dislocation network can be uniquely 
specified by a set of nodes {.Ni}, each described by its location fi, its 
connectivity and Burgers vectors of its arms, i.e., 

Ali= [ri; Iij, bij, (j = 1,- .. ,ni)J, (1) 

where Iij are the indices of the neighboring nodes of node i, and ni is 
its total number of neighbors. The node set {Ali} is the data the code 
deals with. 

2.2. GENERIC ALGORITHM 

In general, a DD3d computational cycle goes as the following. 

1. Compute driving force h on each node. 

2. Compute velocity Vi of each node based on hand local dislocation 
character. 

3. Determine suitable time step D.t. 

4. Evolve all dislocation nodes to time t + D.t, handling topological 
changes occurring during [t, t + D.t]. 

5. t := t + D.t. Go to 1. 

Except step 2, all the steps above are generic aspects of DD simula
tions that are not dependent on the material of interest. They will be 



discussed in this section. The mobility module (step 2) will be discussed 
in the following section. 

2.2.1. Nodal Force Calculation 
The driving force on any given node i can be rigorously defined as 
(minus) the derivative of the total elastic energy of the dislocation 
network E( {Ali}), with respect to a virtual displacement of the nodal 
position fi, i.e., 

f~ __ oE( {A/i}) 
t- a

ri 
(2) 

In the elasticity theory of dislocations [1], the total elastic energy can 
be written as the sum of self energies between each segment pairs, such 
as 

E( {Ali}) = Ws(Ol) + Ws(14) + Ws(02) + · · · 
+WI(Ol, 14) + WI(Ol, 02) + W1(02, 25) + · · · 

L Ws(ij) + ~ L W1(ij, kl) , (3) 
(i,j) (i,j);(k,l) 

where Ws(ij) is the self energy of segment (i,j), and W1(ij, kl) is 
the interaction energy between segments (i,j) and (k, l). Contrary to 
several earlier claims that the driving force could be infinite due to 
the existence of sharp corners at the nodes, it can be shown [3] that 
the driving force in Eq. (2) is well defined, well-behaved and numeri
cally converges to the known analytical solutions for smooth dislocation 
curves as the discretization becomes finer. It is also shown in [4] that 
the contributions to nodal driving force h due to segment interactions, 
such as W1(ij, kl) can be evaluated by numerically integrating the stress 
field of segment (k, l) on segment (i,j), with proper weights. The con
tributions from self energies (Ws(ij)) on the other hand, are obtained 
by analytical differentiation. Most of the computational time in DD3d 
is spent on nodal force calculations, most of which is the evaluation 
of stress field of one segment on another segment (assuming isotropic 
linear elasticity). Because periodic boundary condition [5] is used, for 
every segment the stress field due to an infinite array of its images 
is also included. The image stress contribution is pre-computed and 
stored in a table for interpolation during the simulation [6]. 

2.2.2. Moving the Nodes 
For simplicity, we integrate the first order equation of motion describing 
the over-damped motion of dislocations. This implies that there exists 
a mobility function (M), which determines the instantaneous velocity 
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(vi) of a node, given its instantaneous driving force and local geometry: 

(4) 

The mobility function M will be discussed in more detail in the next 
section. For now let us simply assume that M is available and can be 
used to compute all the nodal velocities vi. 

At this point, one can imagine the following simple algorithm for a 
DD simulation. With a pre-selected time step Llt, we can update the 
position of all nodes by (the forward Euler method), 

(5) 

However, in practice the velocities of the nodes could vary significantly 
during the simulation. For accuracy and numerical stability, it is better 
to use a variable Llt for each integration step. One approach is to put 
an upper bound (rmax) on the distance any node is allowed to travel 
during one simulation step. Let Vmax = maxi jvil be the maximum 
velocity of all nodes. Then the maximum allowed time step becomes 
Llt = Tmax/Vmax· 

One more complication still remains. Remember that our nodes are 
not simple point objects, instead they are interconnected by dislocation 
segments. If we simply update nodal positions according to Eq. (5), 
certain dislocation segments may pass through each other without 
notice, which would be an unphysical artifact. The segment-segment 
collisions are accounted for in DD3d in the following way. For every 
pair of segments, e.g., (1, 2) and (3, 4), given the positions of all four 
participating nodes at time t = 0 (f'1, f2, f3, f4), and assuming their 
respective velocities (vr, v2, v3, v4) remain constant, we developed an 
algorithm to predict whether or not these two segments will collide 
during period [0, Llt], and if they do, when and where will the collision 
occur. Let us call this algorithm, 

[col, tp, rp] = predictcollision(Llt; f'1, f2, f3, f4; VI, v2, v3, v4) (6) 

If there is a collision, col returns 1, and tp E [0, Llt] and rp are the 
predicted time and location of the collision, respectively. If there is no 
collision between the two segments, col returns zero. 

At every time step, after we compute the velocities of all nodes, we 
use the predictcollision algorithm to check for possible collisions 
between all segment pairs. If there are no collisions at all during [0, Llt], 
then we can safely update the positions of all nodes, and proceed to the 
next iteration. Otherwise, we have to perform a few sub-iterations to 
reach the desired time step Llt. Let 8t be the time of the first collision. 
We will move all the nodes to time 8t, (fi := fi +Vi· c5t), and perform 



the necessary topological changes (details below) at that time. Mter 
that, we increment the time once again to the next collision time. This 
procedure is then repeated until the desired time step llt is reached. 

6 6 

5 5 

(a) (b) 

6 

5 

(c) 

6 

5 

(d) 

Figure 2. A simple approach to handling the topological changes during dislocation 
collision by creating a new node at the collision point. (a) Initial state at time 0. 
(b) At collision time tp, we replace node 4 with a new node that connects to all four 
nodes 1- 3 and node 5. (c) At a later time segment 1-6 and 3-4 collide. Again we 
create a new node with 4 arms to replace node 1. At this time nodes 1 and 4 become 
doubly connected. (d) This is resolved by replacing the two arms connecting nodes 
1 and 4 with a single arm with Burgers vector equal to the sum of that of the two 
original arms. 

To take into account the topological changes when two dislocation 
lines meet each other, we adopt the following simple approach. A new 
node is created at the collision point that connects with all four nodes 
participating in the collision. Therefore, the new node has 4 arms, as 
shown in Fig. 2(b). It is interesting to note that by following this 
very simple algorithm, several different dislocation reaction scenario 
are reproduced naturally. To see this, let us follow this algorithm for a 
few more steps. 

As shown in Fig. 2(c), the second collision occurs at a later time, 
between segments 1-6 and 3-4. Following the above procedure, we in
troduce a new node with 4 arms to replace node 1. However, this would 
result in a double connection between nodes 1 and 4, which is obviously 
redundant. If the sum of the Burgers vectors of these two arms is non
zero, we replace them with one arm with the Burgers vector equal to the 
sum. This makes a new dislocation segment (a junction}, connecting 
two "physical" nodes - now each with three arms. If, on the other 
hand, the sum of the two Burgers vector is zero, nodes 1 and 4 are 
disconnected. Hence, dislocation annihilation occurs. 
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2.2.3. Parallelism 
The all important feature of DD3d is its capability to utilize a large 
number of processors efficiently in parallel. To date, an efficient usage 
of 1500 has been demonstrated. To make this possible, all processors 
are treated equally during the simulation, i.e. there is no distinction 
such as "master" versus "slaves" between the processors. The total 
simulation box is divided into rectangular "domains", each assigned to 
one processor, as shown in Fig. 3. This way, the communications are 
mostly local, that is, each processor can obtain most of the information 
it needs by communicating with its nearest neighbors. 

X 

Figure 3. Decomposition of total simulation space into 3 x 3 x 2 domains along x, 
y, z axes. 

Because dislocation microstructures can be highly inhomogeneous, 
dividing the total simulation box into equally sized domains may lead 
to severe load imbalance, since some processors may contain a lot more 
nodes than others. To reach a better load balance, we use the following 
data decomposition procedure. The total simulation box is first divided 
into Nx domains along the x direction such that each domain contains 
equal number of nodes. Each domain is then further divided along y 
direction by Ny times, and the resulting domains again divided along 
z direction by Nz times. In the end, we obtain Nx x Ny x Nz domains, 
all containing the same number of nodes, as shown in Fig. 3. How
ever, because the dislocation structure evolves during the simulation, 
we need to re-partition the problem among processors from time to 
time, in order to maintain a good load balance. It is found that the 
optimal number of nodes per domain is in the range from 200 to 1000. 
In this case, the computational load on each processor is relatively 
light, while most of the computing time is still spent on computation 
instead of communication. If and when the total number of dislocation 
segments increases significantly (e.g. due to dislocation multiplication), 
we stop and restart the simulation with more processors, to maintain 
a reasonable simulation speed. 



2.3. MOBILITY MODULE 

The mobility module is the only material specific part of the DD3d code. 
It specifies how fast a node should move in response to its driving force. 
The effects of crystallography and temperature on dislocation mobility 
are both accounted for here. It is expect that the users will develop 
their own (possibly very sophisticated) mobility modules to simulate 
materials of their interest. Here as an example, we describe a simple 
mobility module that mimics the generic behavior of dislocation in 
body-centered-cubic (BCC) metals at high temperatures. We call it 
"pencil-glide" mobility module and use it in the simulation described 
in the next section. 

The "pencil-glide" mobility module is specified by three parameters: 
the edge mobility Me, the screw mobility M8 , and a critical angle Be. 
For simplicity, we will only discuss "discretization" nodes here, i.e., 
nodes with only two neighbors. Let f 1 and f2 be the position of the two 
neighbors of node i, and let L = if2 - fll/2. Then h/ L is the average 
Peach-Koehler force around node i. Unit vector ( = (f2- f1)/lf2- f1l 
approximates the dislocation line direction. The dislocation character 
angle B is defined through cos B = I{ bl. If B < Be, the dislocation is 
locally "screw", otherwise it is "non-screw". The velocity of "screw" 
segments is simply vi = M8 f:/ L. Because it follows the direction of 
the driving force and is not confined to any plane, this mobility func
tion describes the well-known "pencil-glide" behavior observed in BCC 
metals at high temperatures. The velocity of "non-screw" segments, on 
the other hand, is confined within the glide plane, with normal vector 
n = b X Ulb X~- Let ~ = [Me sin2 B + Ms cos2 BJ!d L, the velocity for 
"non-screw" dislocation is simply vi=~- (~ · ii)ii. 

3. Results 

Here we describe the results of initial benchmark simulations using 
DD3d. The mobility law parameters chosen here are intended to mimic 
the behavior of BCC metal Mo. For example, screw dislocations have 
a lower mobility than edge dislocations. Specifically, Me = lOb· (s · 
Pa)-1, Ms = lb · (s · Pa)-1, Be= arccos(0.95), where b = 0.27nm is the 
magnitude of the smallest Burgers vector in BCC Mo. 

In these simulations, we used a cubic simulation box with edges 
along [100], [010] and [001] directions and lOJLm in length. The initial 
configuration consists of 8long screw dislocations (with Burgers vectors 
along ~(111} directions) randomly positioned in the simulation box. 
The initial dislocation density is around 1.2 x 1011m-2. A uniaxial 
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Figure 4. (a) Stress-strain curves produced by DD3d simulations of two uniaxial 
loading tests along [100] with strain rate f. = ls- 1 (see text for more details). The 
slope of the dashed line indicates the rate of strain hardening. (b) Dislocation density 
in these two simulations as a function of strain. 

tension is then applied along [100] direction under a constant strain 
rate of € = ls-1 . The thin lines in Fig. 4 are the results from a 12-
processor Linux Beowulf cluster after about 6 weeks of the wall-clock 
time. A total strain reaches about 0.4% at the end of this simulation, 
while the dislocation density has increased by more than 70 times. The 
stress-strain curve also exhibits three different behaviors. Initially the 
response is almost elastic and stress increases linearly. When the upper 
yield point around 120MPa is reached, the stress drops upon further 
loading, which indicates a strain softening behavior. Then, after a lower 
yield point around lOOMPa is reached, the stress starts to increase 
again, this time exhibiting a strain hardening behavior. The slope of 
the stress-strain curve in this region, i.e., the strain hardening rate 
do-/ df., as indicated by the dashed line, is around lOGPa. 

The thick lines in Fig. 4 correspond to a separate simulation of the 
same specimen, but with different loading history. After the original 
specimen was deformed to point A [in Fig. 4{a)], it was unloaded and 
relaxed under zero stress. We then reloaded it using the same strain rate 
and temperature, and run the new simulation on a 200-processor Linux 
cluster for 3 days. It is interesting to note that the new simulation does 
not follow the original trajectory. Instead, it develops its own upper 
and lower yield points. However, after the lower yield point, the new 
simulation enters a strain hardening regime with about the same strain 
hardening rate as before. This indicates the robustness of the strain 
hardening behavior observed here. 



4. Concluding Remarks 

In this paper, we give a brief overview of the new massively parallel 
dislocation dynamics simulation code DD3d. Our description here is 
intended to be brief, so that the reader can get a general apprecia
tion about the overall structure of the code, without being distracted 
by many technical details. To save the space, many general and im
portant aspects are left out, such as remeshing, fast-multipole stress 
calculations, realistic mobility laws, patterning analysis of simulated 
dislocation micro-structures, etc. Other issues, such as more efficient 
parallel collision handling and time-stepping algorithms on 104 or more 
processors, are not completely resolved yet: DD3d is constantly evolving 
to better address these challenging problems. We expect that DD3d will 
soon become powerful enough to provide a statistically representative 
model for dislocation patterning and crystal plasticity. We hope that 
by exercising this explicit, large scale model, one can obtain new in
sights that will help the development of more reliable physics-based 
continuum theories of crystal plasticity. 

This work was performed under the auspices of the U.S. Department 
of Energy by the University of California, Lawrence Livermore National 
Laboratory under Contract No. W-7405-Eng-48. Benchmark runs of 
DD3d on 200 to 1500 processors were performed on the MCR cluster of 
LLNL. 
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Abstract: Dislocation structures of fatigued metallic materials were investigated using 
electron channelling contrast imaging (ECCI) technique using a scanning 
electron microscope. By imaging electron channelling contrast resulting 
from dislocations, we could observe the dislocations lying close to crystal 
surface. At a fatigued copper single crystal of single slip orientation, the 
ECCI technique successfully imaged ladder-like dislocation structure 
peculiar to persistent slip band (PSB). In fatigue tests on copper bicrystals, 
effect of grain boundary on the PSB distribution was confirmed by the ECCI 
observation. This ECCl !echnique was attempted also to reveal the change 
in the dislocation structure of a stainless steel during fatigue. 

Key words: fatigue, dislocation structure, electron channelling contrast imaging, copper, 
stainless steel, single crystal, bicrystal 

1. INTRODUCTION 
Meso-scale structures of dislocations are associated closely with 

defonnation properties of fatigued metallic materials. Push-pull fatigue 
defonnation gives rise to to-and-fro dislocation motions. Such motions in 
annealed materials would cause increase in dislocation density due to 
occurrence of multiplication mechanisms such as activation of the 
Frank-Read source. When the dislocation density exceeds a certain value, 
mutual annihilations of dislocations become frequent, and the dislocation 
density is saturated. The fatigue defonnation affects not only the change in 
the dislocation density but also dislocation distribution which shift to be 
inhomogeneous. Resultant dislocation structures have been established by 
many fundamental works [ 1]. After the multiplication and annihilation 
processes are repeated sufficiently, the dislocations are self-organized into 
bundle structures called "vein" in crystals that have relatively high 
stacking-fault energy. The vein structure consists of high and low 
dislocation density regions of irregular shapes whose diameter is of a few 
micrometers. It has been recognized that evolution of this vein structure 
occurs during the cyclic hardening stage which is accompanied by an 
increase in dislocation density. Further fatigue cycling results in the 
fonnation of "persistent slip bands" (PSBs) in the vein structure if plastic 
strain amplitude is in a certain range. The morphology of the PSB 
dislocation structure is characterized by a ladder-like structure as shown 
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schematically in Fig.l. The ladder-like structure is composed from 
dislocation walls which are considered as collections of edge dislocation 
multipoles. The spacing between the dislocation walls is about l.31J.m. It 
has been found that production of the PSBs gives rise to a change in the 
hysteresis loop shape - the hysteresis loop tends to shifts from pointed 
shape to parallelogram - in several materials although the stress 
amplitude is almost unchanged [2-5]. In this way, the mechanical 
properties of fatigued materials are affected by the internal dislocation 
structures that are organized at a few micrometer scales. Hence, for a 
better understanding of fatigue phenomena, it seems important to clarify 
the evolution of the dislocation structures during fatigue. In addition, 
because slip activities are concentrated at the PSBs which can 
accommodate larger plastic strain than the matrix vein structure, 
pronounced extrusions and intrusions are generated at intersections of the 
PSBs with the crystal surface. It has been recognized that intragranular 
fatigue cracks are nucleated preferentially at the PSBs causing rough 
surface [6-8]. Because the PSB formation precedes the fatigue crack 
nucleation, the detection of the PSB formation can correspond to the 
prediction of the fatigue crack nucleation. Hence, it can be said that 
observation of the dislocation structure is also desirable for the 
investigation of fatigue cracking. 

The above-mentioned dislocation structures have been studied using 
transmission electron microscopy (TEM). However, conventional TEM 
observation has several disadvantages in studying the dislocation structure 
of fatigued materials. Since the TEM observation involves shaping of the 
material to a thin foil, the dislocation structure evolution throughout 
fatigue is impossible to be observed in one specimen. In addition, the TEM 
observation has a problem concerning viewable area of the thin foils. 

Figure 1: Schematic model of the dislocation structure of a fatigued copper 
crystal. The dislocation structure consists of the veins and the PSB having 
a ladder-like dislocation wall structure along slip planes. 



Since the viewable area of the TEM is considerably restricted in 
comparison with that of an optical microscope or a scanning electron 
microscope (SEM), one can miss formation of special structures such as 
PSBs if their volume fractions are very low. Accordingly, a new method to 
observe dislocation structure is desired instead of the TEM. 

Recently, a new technique called "electron channelling contrast 
imaging (ECCI)" has been developed to image dislocations (see review 
[9]). The ECCI has a characteristic feature that the dislocations lying near 
the crystal surface can be detected nondestructively using a SEM. In 1979, 
Morin et al [10] developed an SEM system with the field-emission gun 
and succeeded in imaging dislocations in a bulk silicon sample. Thereafter, 
the dislocations imaging by the ECCI have been reported in bulk samples 
of several materials [11-15]. The dislocation structures in several fatigued 
materials have also started to be observed by the ECCI [16-23]. The 
authors strongly expected that the ECCI technique is adequate to 
investigate the dislocation structure evolution during fatigue because the 
thinning process is avoided for the surface observation. Moreover, the 
ECCI technique using SEM enables us to the observe specimen surface at 
various magnifications compared to TEM observations. This must be 
convenient for the detection of unique dislocation structures which can be 
formed at special sites such as grain boundary vicinity. 

In the present study, in order to confirm the validity of the ECCI 
technique, the authors first attempted to observe dislocation structures of 
fatigued copper single crystals which have been investigated 
systematically using TEM. The effect of grain boundaries on the 
dislocation structures was also investigated in fatigued copper bicrystals 
by taking advantage of the ECCI technique which has large viewing area. 
In addition, fatigued stainless steels were examined to know whether the 
ECCI technique is applicable to engineering materials or not. 

2. EXPERIMENTAL PROCEDURE 

2.1 Electron Channelling Contrast Imaging 
By detecting intensity of the backscattered electrons in SEM, we could 

obtain several informations including electron channelling contrast. This 
electron channelling comes from a characteristic that the intensity of the 
backscattered electrons is sensitive to incident beam orientation relative to 
lattice planes as shown in Fig.2. It should be emphasized that the 
backscattered electron intensity changes rapidly in the vicinity of angles 
where the Bragg condition is satisfied. Booker et al [24] first suggested a 
possibility that dislocations are detectable in SEM by imaging the 
backscattered electron intensity. In the vicinity of the dislocation, lattice 
planes are slightly bent and their lattice spacings are also varied locally. 
This kind of lattice distortion gives rise to small changes in the Bragg 
condition around the dislocation. In order to observe the dislocations using 
the ECCI, crystal samples need to be tilted suitably such that the Bragg 
condition is satisfied between the incident beam and a certain set of lattice 
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planes. Because the backscattered electron intensity changes rapidly near 
the Bragg angle, the channelling contrast would arise around dislocations 
which induce local change in the Bragg condition. Accordingly, we can 
image the dislocations lying close to the crystal surface by scanning the 
incident beam tilted to satisfy the Bragg angle and by detecting the 
backscattered electrons that escape from the surface. 

In the present study, the ECCI observation was conducted in a JEOL 
JSM-6500F field-emission SEM at an acceleration voltage of 15kV and a 
probe current of about 3.5nA. In order to adjust the crystal orientation to 
achieve the Bragg condition, we utilized the electron-channelling pattern 
(ECP). Before the ECCI observation, specimens were electrolytically 
polished to obtain flat surface. 
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Angle between incident beam and lattice plane, B 

Figure 2: Schematic diagram ofbackscattered electron intensity as a function of 

beam angle relative to the Cl)'stal plane. The intensity changes rapidly near the 

Bragg angles. 

2.2 Fatigue Tests 
Copper single crystals having defined orientations were grown by the 

Brigdman technique from a copper material of 99.99% purity. The single 
crystals were shaped to strip specimens of 6rnm gage length and 4x4rnm2 

cross-section. We prepared four different stress axes along [123], [111], 
[100] and [211] directions. The stress axis of [123] corresponds to a 
single-slip orientation, and the others are multiple slip orientations. 

Two copper bicrystal specimens -- compatible and incompatible 
bicrystals -- with a grain boundary parallel to the stress axis were also 
fabricated to investigate the effect of grain boundary on the dislocation 
structures. Since the stress axes of the bicrystals were oriented to <123> 
direction as shown in Fig.3, all constituent grains would deform in the 
same manner if we neglect grain boundary effects. The compatible 
bicrystal had primary slip systems whose intersections with grain 



boundary plane are parallel. Primacy slip vectors of the constituent grains 
were oriented symmetrically towards the grain boundary. This kind of the 
bicrystal having such slip system geometry is regarded as plastically 
compatible. The intersections with grain boundary plane of the other 
bicrystal are not parallel each other. 

Low-cycle fatigue tests on the copper single- and bicrystals were 
carried out in air at room temperature. During the fatigue deformation, the 
plastic shear strain amplitude of the specimen was controlled to be 
2 X 10-3 • 

Specimens of an austenitic stainless steel (Fe-19wt.%Ni-11wt.%Cr 
alloy) were also prepared. The stainless steel was shaped to strip 
specimens with rectangle gage shape of 3 x 3 x 6 mm3 • The specimens 
were annealed at 1473K for 1 hour. The average grain size was about 
120J!m. High-cycle fatigue tests were carried out at stress amplitudes of 
11 OMPa and I 50MPa at 5Hz. Yield stress of the stainless steel obtained in 
a monotonic tensile test was about 90MPa. 

Stress axis 
<123> ( l23> 

grain boundary 

(a) compatible bicrystal 

Stress axis 
<123) (123> 

(b) incompatible bicrystal 

Figure 3: Primary slip systems of constituent grains of the copper 
bicrystals, where plastic strain is (a) compatible and (b) incompatible at the 
grain boundary. The stress axes of all constituent grains are along <123> 
direction. 

3. RESULTS AND DISCUSSION 

3.1 The Copper Single Crystals 

The ECC images of the specimens having [123], [211], [111] and [100] 
stress axes are presented in Fig.4. Band-like structures composed from 
regularly-spaced walls are visible in the ECC images of the fatigued [123] 
and [211] single crystals. The walls in the [123] single crystal were 
arranged perpendicular to the band at an average spacing of about 1.4J!m. 
This morphological feature is identical to the PSB of single-slip oriented 
crystals which have been observed using TEM [25,26] by taking account 
of contrast reversal in the ECCI. (Bright contrast corresponds to a region 
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Figure 4: Electron channelling contrast images showing orientation dependence of 
dislocation structures of the fatigued copper single crystals. Surface planes of the 
single crystals were parallel to (lll), (0 ll) (1 T 0) and (0 ll) for the [123], 
[112], [111] and [100] stress axes, respectively. 

of high dislocation density in the ECCI, as opposed to the TEM 
observation.) Hence, it can be concluded that the band-like structure in the 
[123] single crystal were the PSBs formed at near-surface layer. The 
surrounding matrix structure observed by the ECCI was also identical to 
the vein structure having an irregular shape. On the other hand, the 
dislocation structure inside the band in the [211] single crystal differed 
from that of the PSBs of the single-slip orientation: the walls in the [211] 
specimen were perpendicular to the stress axis. This kind of unique wall 
arrangement has not been reported as far as we know, even in TEM 
observation. 

The [ 111] and [ 1 00] specimens exhibited considerably different 
dislocation structures from the [123] crystal. In the [111] specimen, 
sinusoidal dislocation walls arranged perpendicular to the tensile axis are 
clearly visible. This structure is analogous to the TEM observation in the 
same orientation [27]. The dislocation structure of the [001] crystal 
observed by the ECCI is composed from two kinds of dislocation walls 
which intersect each other almost at right angle. This special structure has 
also been reported in TEM observations [28] and is called "labyrinth 
structure". 

3.2 The Copper Bicrystals 
At regions sufficiently distant from the grain boundaries, the dislocation 

structures observed by the ECCI consisted of PSB and vein structures which 
are common to the [123] single crystal. This is because all the constituent 
grains of both bicrystals were oriented to the < 123> direction. In the vicinity 



of the grain boundaries, the dislocation structures depended on the character 
of grain boundary. Figure 5 shows ECC images of the grain boundary 
vicinities of the compatible and incompatible bicrystals. At the compatible 
bicrystal, the PSBs along (l 11) and (1 T 1) primary slip planes of the 
respective grains reached the grain boundary. In this respect, the grain 
boundary of this bicrystal had no influence on self-organization of 
dislocations. On the other hand, complicated distribution of the PSBs 
appeared around the grain boundary of the incompatible bicrystal. Formation 
of PSBs along primary slip planes was limited to the regions that were more 
than 50~m distant from the grain boundary at both constituent grains. In the 
Grains A and B, the PSBs were formed along (1 T 1) and (11 T) planes at the 
region adjacent to the grain boundary instead of the primary systems. 

In order to discuss such difference in the PSB formation around the 
grain boundaries, the authors paid attention to plastic strain compatibility 
between constituent grains. It is known that plastic strain due to slip 
deformation at a certain grain must be compensated at the grain boundary 
by the occurrence of slip deformation of adjacent grain such that the 
continuity at the grain boundary is maintained [29]. If the plastic 
deformation at the grain boundary is not accommodated solely by the 

Figure 5: Electron channelling contrast images near grain boundaries of (a) 
compatible and (b) incompatible bicrystals. Because individual grains have different 
channelling conditions, each photograph was made by combining two images. 
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primary slip deformation of an adjacent grain, additional slip systems 
should be locally activated around the grain boundary. The plastic strain 
compatibility has usually been discussed by plastic strain components of 
slip shear, which are resolved on the grain boundary plane; i.e., y-z plane 
in Fig.3. At the grain boundary plane, the following relations between 
Grains A and B must be satisfied: 

A B A B A B 
&y = &y ' &z = &z ' Yyz = Yyz 

Table 1 presents the plastic strain components of the primary slip 
systems, which are resolved on the y-z grain boundary plane. In Grain A of 
the compatible bicrystal, if slip deformation of shear strain YA along 
primary plane occurs in the vicinity of grain boundary, the strain 
components resolved along the grain boundary plane become e/=0.47yA 
and ry/=0.25YA· According to the calculation listed in Table 1, both the &y 
and Yyz due to the primary slip in Grain A can be completely 
accommodated by the slip shear J1l in Grain B. On the other hand, if the 
primary slip systems ofboth grains are activated so as to equalize the axial 
strain component (&y A and ey8) at the incompatible bicrystal, the ryz A and 
Yyz 8 components due to both primary slips become opposite to each other. 
For this reason, additional slip systems are considered to be activated at 
the grain boundary vicinity to maintain the grain boundary continuity. 

Table 1. Plastic strain components of the primary slip systems resolved on the 
grain boundary plane, where YA and y8 mean plastic shear strains due to slip 
deformation along the primary slip system of each grain. 

grain 

compatible 
Grain A 

GrainB 

incompatible 
Grain A 
Grain B 

3.3 Stainless Steel 
The ECC image of the 

stainless steel fatigued at a 
stress amplitude of 
140MPa until 104 cycles is 
presented in Fig.6. The 
ladder-like dislocation 
structures of the PSBs are 
visible in the ECC images, 
similar to the copper single 
crystals. Shapes of the 
dislocation walls are 
somewhat irregular in 

Strain components resolved along GB plane 
e., A or &vB liz A or liz 8 y.,/ or YvzB 

0.47yA 0 0.25yA 

0.47ra 0 0.25/'B 

0.47yA 0 -0.25yA 

0.47l1'!_ 0 o.25ra 

Figure 6: ECC image of the stainless steel fatigued 
at stress amplitude of 140MPa for 104 cycles 



comparison with that of the copper. 
It is apparent that the most important advantage of the ECCI is the 

nondestructive observation of dislocation structure without the need for a 
thinning process. This observation enables us to depict the dislocation 
structure by interrupting mechanical tests. This kind of the evaluation 
helps one to understand the relationship between mechanical properties 
and dislocation processes, but has been impossible as long as the TEM is 
used. For this reason, the authors tried to reveal the change in dislocation 
structure of the same grain, by repeating fatigue interruption and the 
following ECCI observation. 

Figure 7 shows the changes in the dislocation structure during the 
fatigue tests at llOMPa and 140MPa stress amplitudes. At the fatigue test 
of II OMPa, no significant structures were generated even at 105 cycles. On 
the other hand, a ladder-like PSB structure was already generated at 104 

cycles of the 140MPa fatigue test. In the ECC image of the 3 x 10-4 cycles , 
appearance of a cell structure having slight misorientation is detectable. It 
is likely that formation of the cell structure is caused by the activation of 
additional systems due to the grain boundary incompatibility. 

Figure 7: Changes in the dislocation structure of the same region of a stainless steel 
samples fatigued at llOMPa and 140MPa stress amplitudes. 

4.SUMMARY 
The ECC images of fatigued copper single crystals were identical to 

the results of conventional TEM observation. Hence, we think the ECCI 
offers an alternative method to observe the dislocation structures. In 
addition, since the ECCI observation has a large viewing area, the 
distributions of the PSBs in the grain boundary vicinity could be revealed 
in the copper bicrystals. 

It was found that the ECCI technique was also applicable to the 
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stainless steel. Because no thinning processes are required for the ECCI 
technique, we could observe the changes in the dislocation structures of 
the same grain during fatigue experiments. For the stainless steel sample in 
fatigue, the formation of PSBs and subsequent cell structures were 
successfully detected using the ECCI technique. 
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Abstract The simulation of dislocation motion at small length scale by means of the dis
crete dislocation dynamics (DDD) method shows that the detailed and thorough 
study of dislocation interaction, leading to the formation of junction, is of im
portance. The present study revisits the Lomer (Lomer-Cottrell) lock in order to 

comment on the ability to generate rules for junction stability for DDD simula
tions, to improve and accelerate the modeL The present study finds some im
portant deviation from other dislocation dynamics simulations, including other 
DDD and simple line tension model calculations with respect to the range of 
stability of the Lomer lock. Furthermore, the actual loading path or effect of the 
dislocation mass might also play a role on the stability of a lock. 

Keywords: Lomer lock, Lomer-Cottrelllock, discrete dislocation dynamics simulation, sta
bility, inertial effect 

1. Introduction 
In classical continuum mechanics, the sample size is much larger than the 

size of structures that dislocation may form, which allows for averaging over 
the dislocation micro-structure. The mechanical response of small scale de
vices on mechanical loading is strongly influenced by individual dislocation
dislocation interactions, leading to the formation of locks and by the presence 
of interfaces or surfaces. 

The present investigation is revisiting the stability of the Lomer and the 
Lomer Cottrell lock, which has found quite some interest in the recent literature 
using different simulation methods ranging from atomistic ( quasicontinuum 
method), discrete dislocation dynamics and line tension descriptions [1-4], 
and is serving as a benchmark for dislocation calculations. The yield surface, 
indicating the stability range of this particular lock, is recalculated, and the 
findings are discussed in light of the literature results. Furthermore the loading 
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path for the calculation of the stability range of the Lomer lock is changed and 
the effect on the critical stress needed to break up a Lomer lock is discussed. It 
is demonstrated, that the usually neglected dynamic effect due to the mass of 
the dislocation has some effect on the critical stress needed to break a junction 
even at room temperature. 

In section 2 of the paper the discrete dislocation dynamics method is briefly 
recalled. A short description of the adaption of the original code is given, 
allowing for partial dislocations and junction formation. The basics on the in
troduction of the dislocation mass in this formulation is given in [5]. Some sup
plementary consideration needed for junction formation are mentioned here. 

In section 3 the configuration and loading conditions are described. In sec
tion 4 the results are presented and discussed. 

2. Simulation Method 
The discrete dislocation dynamics method as described in [6] is used for the 

study of the Lomer lock. In this model, the dislocation is discretised using 
straight lines, connected at nodal points. The degrees of freedom of the dislo
cation are the positions {RA} and the velocities {VA} of the N nodal points 
{A = 1, ... , N}. The equation of movement of the nodal points {A} are 
derived using the principle of virtual work. 

The DDD simulation method has been extended for this study to be able to 
handle partial dislocations and the corresponding stacking fault between dis
sociated dislocation. The stacking fault is accounted for by a stacking fault 
force term acting along the junction segment, which results in an contribution 
to the nodal force. From the topological point of view the formation of junc
tions using partial dislocation required some adaption in the junction forma
tion and dissolution scheme, which explicitly introduces the junction segment 
in the simulation coupling thus two dislocations [6]. For partial dislocations, 
this scheme is replaced by a scheme, uniquely based on the elastic interaction 
between the partial dislocations involved in the junction formation process, 
where independent nodes are sliding along the junction direction. The scheme 
has been validated on the behaviour of locks formed by perfect dislocation. 

The dislocation mass is introduced in the framework of the virtual work 
description for the derivation of the equations of movement. The derivation, 
valid for non intersecting dislocations, can be found in [5] in this volume. The 
handling of junctions in the used DDD framework, requires that the junction 
nodes have prescribed moving directions (sliding nodes), and therefore less 
degrees of freedom. The calculation of the nodal velocities including the in
ertial effect has to take this into account too. The velocity of the dislocation 
in the DDD simulation cannot exceed half of the transversal speed of sound. 
The dislocation-dislocation interaction is approximated by the stress fields of 
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(a) (b) 

Figure 1. Initial (a) and relaxed (b) configurations. The initial length of the dislocation bet· 
ween the two pinned endpoints is Lo. The vector 8; = t; x n; is shown for both dislocations 
(i = 1, 2). The resolved shear stress r; for dislocation i is in direction of 8;. 

static dislocations. Furthermore, a constant time step is chosen to improve the 
numerical accuracy for the calculation of the acceleration of the dislocation. 

3. Lomer-Lock and Lomer-Cottrelllock 
A particular dislocation junction is studied using both perfect dislocations 

(Lomer lock) and dissociated dislocations (Lomer-Cottrell lock). The initial 
configuration for the perfect dislocation is shown in Fig. I and the parameter 
for the dislocations are summarised in table 1. The distance L.J = 30nm and 
¢ = 60° is chosen as in the references [3]. The scaling of the yield surface 
is obtained by increasing 4J by more than one order of magnitude. For the 

Table 1. The initial dislocation geometry: n is the glide plane normal; b is the Burgers vector 
in units of the lattice spacing a; tis the dislocation line direction. The line directions given here 
correspond to ¢ = 60°. 

dislocation i 

2 

initial study of perfect and partial dislocations the parameters of AI are used 
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(J..L = 27GPa, v = 0.347, 'Ysf = 104mJ jm2), where J..L resp. v are the shear 
module resp. Poisson ratio and 'Ysf is the stacking fault energy. 

An external stress field is applied, leading to the resolved shear stress '1l 
resp. r 2 on the dislocation 1 resp. 2 

ao 
T1 = y'6 COS (} 

ao . (} 
r 2 = v'6sm 

(1) 

where the direction of the resolved shear stress 71 is given by Bi, (i: dislocation 
number as defined in Fig. l(a)). 

The first type of loading consists of a quasi-static calculation, where the 
stress ao is increased incrementally for a fixed loading direction (}, allowing 
for complete relaxation between the increments. The length of the junction is 
monitored and the breaking of the lock occurs for a junction length of about 
3b, where b is the length of the Burgers vector. 

The second type of loading consist in keeping the stress ~ constant during 
the whole simulation for fixed loading direction 8. The third loading conditions 
is equivalent to the previous case, but the mass of the dislocation is taken into 
account during the calculation. 

4. Result and Discussion 
The Lomer and the Lomer-Cottrell lock are studied using the quasi-static 

loading procedure. The corresponding yield surfaces are determined. The 
starting configuration consists of a relaxed lock under zero applied stress, as 
shown in Fig. l(b) for non-dissociated dislocations. 

Lomer lock 
Figures 2 (a) and (b) show the Lomer lock close to the breaking of the lock. 

In the configuration (a) with loading given by Eq. (1) for 8 = 45" the lock 
is un-zipping from both sides and the centre of the lock does not move. The 
curvature of the dislocation line is determined by the externally applied load. 
A different opening mechanism is observed for the configuration of Fig. 2(b) 
for 8 = 315°. The lock has moved from its centre position to the left side, 
where a zipping mechanism is working at the leading node of the junction and 
an un-zipping mechanism occurs at the trailing node. The lock breaks, as the 
leading node is stopped by the dislocation arms leaving the lock at the leading 
node. Note that the curvature of the dislocation arm on glide plane 1 leaving 
the lock at the trailing node changes its sign, when approaching the lock of the 
dislocation. Far away from the lock the curvature is given by the externally 
applied shear stress r 1. Close to the lock, the elastic interaction between the 
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(a) (b) 

Figure 2. The Lomer Lock is shown for two loading conditions at critical loading. (a) con
figuration (I) n = T2 (8 = 45° in Eq. (1) ). The centre of gravity of the Lomer lock has not 
moved. (b) configuration (11) n = -r2 (8 = 315°). The Lomer lock has considerably moved 
to the left side. 

dislocation arms is strong enough to overcome the externally applied shear 
stress, leading to an inversion of curvature. 

Figure 3 shows the yield surface of the Lomer lock. An interesting finding 
is that the configuration with(} = 45° (geometry shown in figure 2(a)) is less 
stable than the (} = 315° configuration. This is in contradiction to the DOD 
and line tensions results in [3, 2], where the opposite behaviour has been found. 
The reason for this discrepancy has not yet been found [7]. The results in [3] 
have been rationalised using the line tension model, which supports the higher 
stability of the (} = 45° compared to the (} = 315° loading condition. When 
comparing the dislocation geometries obtained by a line tension model [4] and 
the present DOD model for the Lomer lock, the most striking difference is 
in the shape of the dislocation arms. In the DOD model, a strong variation 
or even inversion of the curvature is found, whereas the line tension model 
dislocation geometry consists of sectors of an ellipses (anisotropic line tension 
model) which are connected to a straight junction line. There is no reason that 
these two dislocation configurations should lead to similar breaking stresses 
for the Lomer lock. 

In Fig. 3 the critical stress needed to activate a single Frank-Read source 
of arm length Lo on each glide plane is shown. Note that the strength of the 
Lomer lock under (} = 45° loading is identical within the numerical error 
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Figure 3. The yield surface of the Lomer lock is of elliptical shape. The point marked with 
(l:B = 45°) and (II:B = 315°) show two resolved shear stresses for the configurations shown 
in the previous figure. The dotted lines give the critical stress of a Frank-Read source with arm 
length Lo in glide plane I or 2. 

to the intersection of both dotted lines. Compared to a Frank-Read source, the 
Lomer lock (with¢ = 60°, see fig. l(a)) does not increase the global hardening 
under this particular loading and boundary condition (fixed endpoints for the 
dislocations). For the f) = 315° loading (Eq. (1)), the critical load exceeds the 
one of the individual Frank-Read sources by about 30%. This finding is again 
in contradiction to the results of [3], where a critical stress is found for the 
(I) : f) = 45° loading, which exceeds the critical stress of the FR source by a 
factor of about 2. This has been explained in (3], assuming that the free arm 
length is reduced by 2 due to the lock. The present simulation suggests that the 
junction nodes cannot be considered as "fixed" endpoints, but rather as sliding 
nodes. 

Lomer-Cottrelllock 

For sake of completeness a detailed study of this lock using partial disloca
tions is performed. The influence of the partial splitting on the yield-surface 
of the Lomer-Cottrell lock, when compared to the Lomer lock, is shown to be 
rather small. Both the partial dislocation configurations, as shown in Fig. 4, 
and the yield surface (Fig. 5) are very close to the results obtained for per
fect dislocations. For high stacking fault materials ODD simulations based on 
perfect dislocations are justified. 
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Figure 4. The Lomer-Cottrelllock is shown for two loading conditions close to the critical 
loading. (a) n = T2 (li = 45° inEq. (1) ); (b) n = -T2 (li = 315°). 
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Figure 5. The yield surface of the Lorner-Cottrell (dashed line) shows the same shape and 
almost same critical resolved shear stresses for all loading conditions (8) as the one for perfect 
dislocations (solid line). The point marked with (1:8 = 45°) and (11:8 = 315°) show two 
resolved shear stresses for the configurations of the previous figure. 
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Scaling of the yield surface 

A simple scaling relation for the yield surface with the arm length Io has 
been found 

b L0 
T ex -ln

Lo p 
(2) 

where p is the regularisation parameter for the self-interaction of the disloca
tion [6] (explored range: 4J = 30nm, ... , 600nm). The critical stress, needed 
to activate a Frank-Read source, has the same scaling properties [8, 6]. In [3] 
a T ex 1/ Lo scaling has been proposed. 

Influence of loading path 

In DDD simulation with many dislocation interactions, the loading con
ditions for individual dislocations and the resulting locks are quite different 
compared to the one used for calculating the yield surfaces of the Lomer lock 
shown in Figs. 3 and 5. More realistic loading conditions are probably bet
ter described by a constant externally applied shear stress and the dynamics 
process of lock formation has to be considered too. It has been found that 
on one side, for loading conditions, where the dislocations run into each other 
(B = 45°, large relative velocity of dislocations), the yield point remains within 
the range of numerical error of the static calculation. On the other side, for 
loading conditions where both dislocations are pushed in the same direction 
(relative velocity is approximately zero), the question whether or not the lock 
forms depends critically on the initial configuration. Once a lock has formed, 
the results are close to the one of the corresponding static calculation. 

Inertia effect on Lomer lock 

The importance of the mass per unit length of a dislocation on the stability 
of the Lomer lock is investigated for two particular loading conditions (B = 
45° leading to a high relative velocity between the dislocations and(} = 315' 
leading to a low relative dislocation velocity) for Ni, where the dislocation 
mass per unit length and the drag coefficient used in the DDD framework have 
been taken from MD simulations [5] (mass per unit length=l.l 10· 16 kg/m, 
at T = 300 K: drag coefficient B = 15 w-6 Pas; elastic properties: 11 = 
74.9 GPa, v = 0.36). The dislocation velocity in the DDD model is limited 
to half of the transversal speed of sound. Due to the mass of Ni atoms, it is 
expected that the effect of inertia even at room temperature is more pronounced 
than for instance in Al under the same conditions. 

The starting configuration consists of two circular dislocation sectors, where 
the fixed endpoints are located at the same position as shown in Fig. 1. This 
configuration increases the distance between the dislocations before lock for
mation occurs. The configuration is chosen such, that the dislocation can gain 
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some velocity and therefore kinetic energy and the interaction between the dis
location can change the shape of the dislocation line for the () = 45' loading. 
The dislocations move with a high relative velocity. For the second loading 
(0 = 315°), where both dislocations are pushed in the same direction, the ini
tial distance between the dislocation has been reduced such that lock formation 
at the beginning of the simulation occurs. This setup allows to evaluate the in-

(a) (b) 

Figure 6. A series of snapshots: (a) Lo = 30nm the applied shear stress is half of the static 
values. The configurations (1) to (6) show the evolution from the initial to the depinned stage. 
In the intennediate stage (5) an important overshooting due to the dislocation mass is obseiVed. 
(b) L = 300nm the applied shear stress are set to the static values. There is no overshooting 
visible, only some wave propagation on the dislocation due to inertia The thick arrows indicate 
the direction of time evolution. 

ertial effect in the yield surface, without aiming at a complete parameter study 
of the problem. The figures 6(a) and (b) show each a series of dislocation 
configuration (Lo = 30nm in (a) and Lo = 300nm in (b); loading for both 
configurations in direction()= 45°). The series (a) shows the overshooting of 
the dislocation leading to the breaking of the lock, where the applied resolved 
shear stresses on both glide planes are half of the static critical resolved shear 
stresses. The effect of the increasing the length 1.{) = 300nm on the pinning 
is shown in Fig. 6(b), where resolved shear stresses have to reach the static 
values, in order to break the lock. The inertial effect is only found for small 
L 0, which can be explained by equating the available kinetic energy and the 
energy supplied by the applied shear stress, both proportional to the length 4J, 
with the energy dissipated during the bowing out of the dislocation, which is 
approximately proportional to the swept area (::::::ex Iij) of the dislocation. As 
the dissipation scales with a higher exponent of 1.{) compared to the available 
energy the effect of inertia is less important for large .4J. 
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Table 2. The critical stresses To needed to break the lock are summarised for mo loading 
conditions: (i) 8 = 45° n = T2 = To; with increasing length Lo the inertial effect vanishes; 
(ii) 8 = 315° T1 = -T2 = ro; the lateral dislocation movement associated with this loading 
mode, damps out the inertial effect. 

static inertial static inertial 
Lo To [/1.) (8 = 45°) To [11.) To (/A) 8 = 315° TO (/l)(8 = 315°) 

30nrn 0.0065 0.0028 0.008 0.008 

150nrn 0.0016 0.0013 0.0018 0.0018 

300nrn 0.001 0.001 0.0011 0.0011 

Table 2 shows critical stresses for the studied configurations. With decreas
ing length £0 the inertial effect is gaining of importance for the 0 = 45' load
ing direction, whereas the loading with 0 = 315° is almost unaffected. In the 
second loading, both dislocations are moving into the same direction. The area 
swept by both dislocations is much larger than in the first case and the relative 
velocity of the dislocations is negligible. An oscillatory motion is superposed 
in the overall lateral movement of the dislocation. As the critical configuration 
is reached, the kinetic energy has been dissipated to a large extend. Therefore 
the critical shear stresses to break the lock are identical to the ones obtained by 
static calculations. 

5. Conclusion 
The Lomer lock has been studied using a discrete dislocation model using 

either the assumption of an overdamped dislocation motion or including the 
mass of dislocations. The results for the overdamped case are presented and 
compared to results from literature, where the following differences have been 
found: (i) the Lomer lock under loading, where both dislocations move in the 
same direction, is found to be stronger than the case, where the centre of the 
lock is not moving; (ii) the strength of the studied Lomer lock does not exceed 
by more than 30-400/o the critical resolved shears stress of the corresponding 
FR source of arm length Lo; (iii) the scaling 1/ Lo ln(Lo/ p) instead of 1/ Loof 
the yield surface has been found, similar to the results of the FR source. 

Furthermore the influence of loading path and inertia on the yield surface is 
shown. The loading path is found to play a minor role, as long as it allows for 
lock formation. The inertia is found to have a considerable effect on the stress 
needed to break the lock for small Lo and () = 45° loading conditions even at 
room temperature. Interpolating the results, one can state that the smaller half 
axis of the yield surface decreases whereas the larger half axis is unaffected, 



leading to a more needlelike yield surface. For future work the influence of the 
velocity on the dislocation stress fields should be included. 

The present results suggest that the development of rules to replace expen
sive calculations, due to the occurrence offormation and destruction oflocks is 
limited in the case of small structures and distances. According to this model, 
the stability is strongly determined by the full three dimensional interaction of 
the dislocation, forming the lock. A simple estimate, using line-tension models 
behaves quantitatively and qualitatively different. A possible way to solve this 
problem, consists of subdividing the calculation in DDD models in short range 
and long range interactions, where lock formation processes can be calculated 
in more detail, without compromising too much the overall performance of the 
simulation tool. 
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Abstract: The use of periodic boundary conditions in dislocation dynamics simulations 
results in spurious self-annihilation events. Solutions are presented for 
avoiding this artefact and obtaining realistic dislocation mean free-paths. 

Key words: dislocation dynamics simulation, periodic boundary conditions. 

1. INTRODUCTION 

The present work is dealing with periodic boundary conditions (PBCs) in 
dislocation dynamics (DD) simulations. For the so-called mass simulations, 
PBCs are needed in order to ensure the continuity of the dislocations lines 
and their associated fields through the boundaries of the simulation cell and 
to balance incoming and outgoing dislocation fluxes. Artificial dislocation 
losses due to free surfaces and undesirable size effects due to finite 
dimensions are then avoided. 

Bulatov, Rhee and Cai1 have discussed the application of PBCs to DD 
simulations. In short, dislocations glide in a periodic array formed by a 
simulation cell and its replicas. Every time a portion of dislocation line 
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crosses a boundary between two cells, which it does simultaneously in all 
cells, it emerges in all cells at the equivalent position on the opposite 
boundary. A balance of fluxes is then established through all the internal 
interfaces of the simulated volume. However, the application of PBCs to 
linear objects is known to lead to spurious self-interactions2• In the case of 
dislocations, portions of loops may self-annihilate with replicas having 
emerged after a certain number of boundary crossings. Self-annihilation may 
reduce the mean free-path of dislocations; this can have drastic 
consequences that have not been considered so far in the context of DD 
simulations. A too short effective mean free-path affects the density of 
mobile dislocations and their storage rate and, hence, both the arrangement 
of the microstructure and the strain hardening properties. The object of the 
present study is to discuss several methods that have been developed in order 
to control this artifact. These methods apply to DD simulations in which, 
like in real crystals, the slip plane spacings obey crystallographic relations. 

In part 2, a few definitions are given. For particular slip geometries, 
self-annihilation occurs after a single boundary crossing and two methods 
are proposed for dealing with such situations. In part 3, it is shown that self
annihilation distances can be controlled by adequately tailoring the 
dimensions of orthorhombic simulation cells. Two model situations of 
practical interest are considered, those of isotropic and strongly anisotropic 
dislocation loops. Concluding remarks are presented in part 4. 

2. DIRECT SELF -ANNIHILATION 

2.1. Self-Annihilation: Definitions 

Figure I shows a simple two-dimensional example of PBCs applied to a 
square cell of side L. Every dislocation line crossing the boundary of the 
simulation cell, enters the cell and all replicas at positions defined by 
translation vectors parallel to the cell sides, Lx or Ly (in what follows, bold 
face denotes a vector). These vectors are called modulo translations, as their 
linear combinations determine the respective positions of all the replicas. 
This method has several advantages 1• In particular, it fulfills the requirement 
of continuity of the dislocation lines at the cell boundaries. Then, the origin 
of the cells can be shifted in an arbitrary manner with respect to the 
dislocation microstructure. 

As the array of cells is periodic, its section by a slip plane is also periodic, 
albeit with a different period. A portion of dislocation loop, then, necessarily 
meets with a replica of the same loop after a certain free path. For instance in 
the square cell of Fig. 1-a and for a trajectory going along the second 
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diagonal, self-interaction occurs after two boundary crossings only. The 
simplest way to control these undesirable spatial correlations consists in 
introducing orthorhombic distortions of the simulation cells. 

(a) ; 
__ _lr---------~~--~ 

Figure 1. a - In a square cell, a trajectory along the direction parallel to the second diagonal 
meets with a replica after two modulo translations. b - Self-annihilation in three-dimensions 
and in a slip plane of normal n. 

We now consider the replicas of a three-dimensional trajectory in the 
primary cell ( cf. Fig. 1-b ). In what follows, the primary simulation cell has 
{ 100} faces and its dimensions are defined by the vectors (Lx, Ly, Lz). The 
slip plane normal is denoted n(h, k, /), and the position of a point along an 
expanding dislocation loop is defined by the vector OM. The origin of the 
expansion, 0, can be selected in an arbitrary manner, as mentioned above, 
and is taken at the origin of the cell. The vector OM can be decomposed into 
a sum of two components, one along the glide plane (g in Fig. 1-b) and the 
other along the slip plane normal. The last component allows distinguishing 
between slip planes of different heights in the simulation cell. For this 
purpose, we define a slip plane index, i, such that (Fig. 1-b): 

i= OM.n (1) 

Upon self-annihilation, the two interacting segments have same slip plane 
index, as they are in the same slip plane. In the case depicted in Fig. 1-b, 
self-annihilation occurs in a plane with non-zero index, which is not that of 
the loop expanding from the origin. It can also occur in the plane i = 0. 
Finally, we define the total translation, T, as the sum of the whole set of 
modulo translations upon self-annihilation: 

(2) 

In this expression, u, v, and w are integers counting the number of cell 
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boundary crossings before self-annihilation. The total translation T has a 
glide component and a component along the normal to the slip plane. Thus, a 
necessary condition for self-annihilation of a segment in a slip plane with 
index i is written T.n = i, or, in developed form: 

huL,+ kvL, + lwL, = i (3) 

Finally, all the slip plane indexes encountered after the successive 
boundary crossings are a linear combination of the quantities hLx, kLy and 
lLz. The greatest common divisor of these three quantities defines, along the 
normal n, a one-dimensional lattice that includes the intersections with all 
the possible slip planes available to the considered dislocation loop. This 
property is, actually, the only one that is needed to apply the general 
solutions developed below to three-dimensional DD simulations. It also 
defines the smallest dipole height that can be met in a given slip system. 

Before coming back to the general calculation, we examine particular slip 
geometries leading to very short annihilation distances. 

2.2 Direct Self-Annihilation 

In general, the modulo translations are not in a slip plane. This can, 
however, happen for particular slip geometries. As schematically depicted in 
Fig. 2-a, when a dislocation line propagates along a direction parallel to a 
modulo translation, self-annihilation occurs after one boundary crossing, 
irrespective of the cell shape, cubic or orthorhombic. This type of situation is 
not uncommon and is met typically with {I 00} and {II 0} slip planes in 
some crystallographic structures (bee structures in the last case), which 
contain respectively two and one modulo translations. 

A solution to this problem consists in shifting a set of parallel boundaries 
by a translation Oij (Fig. 2-a). The first index refers here to the shift direction 
and the second one to the boundary normal. The set of shift vectors must 
preserve the continuity of the simulated material, i.e., they should not 
introduce voids or matter overlaps. As a consequence, normal shifts 8ii are 
forbidden, as well as simultaneous symmetrical shears like 8ij and ~i and the 
three possible non-zero shears cannot be in three different faces. Thus, in 
three dimensions and for multiple slip conditions, another solution may be 
needed for one of the faces, depending upon the slip geometry. 

The alternative solution consists in tilting the crystallographic axes with 
respect to the primary cell (Fig. 2-b ), in order to tilt the slip planes away 
from the direction of the modulo translation. In cubic or orthorhombic 
structures, a convenient solution consists in rotating the crystallographic 
axes around simple crystallographic directions, for instance <00 1>. This 
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method can be employed alone, as one rotation can be applied along each 
<100> direction or in combination with shifts. The optimization of the cell 
dimensions presented below can be carried out in the presence of shifts and 
rotations ( cf. section 3 .5). 

(a) 

,-
1 

~~ 

~ r. 

(b) I 

Jl 

Figure 2. Two-dimensional sketches of direct self-annihilations after a single boundary 
crossing. a - A vertical slip direction is transformed into itself after one boundary crossing 
(single arrow). The problem is solved by shifting the neighboring cells with respect to each 
other (here by Oxy) so that the direction and its replica (double arrow) do not coincide. b
The same problem is solved by introducing a rotation a of the crystallographic axes with 
respect to the primary cell. 

3. CONTROLLING SELF-ANNIHILATIONS 

3.1. Isotropic and Anisotropic Dislocation Loops 

In this part, relations are established between the cell dimensions, slip 
geometry and self-annihilation distances, which allows controlling the 
spurious self-annihilations induced by PBCs. Two model situations are 
considered in what follows, which correspond to common configurations 
found in the practice. In fcc crystals, dislocation loops expand with rather 
isotropic shapes and mean-free paths of the order of a several tens of 
microns4• At low temperatures in bee crystals, and for prismatic slip in hcp 
crystals, screw dislocations experience a strong lattice friction and non
screw segments are comparatively highly mobile. Non-screw segments can 
have long mean-free paths, perhaps up to one hundred of microns or more in 
pure crystals; their propagation results in the formation of loops with very 
anisotropic shapes5. 
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3.2. Geometry in the Extended Slip Plane 

Figure 3. a - A circular dislocation loop expands from the origin 0 in a slip plane of normal 
n. Along a direction d, and for a certain radius It, the first self-annihilation occurs in A with a 
replica of the opposite portion of loop (see text for other details). b - Tiling of a (Ill) slip 
plane in the fcc structure by polygonal intersections with a periodic array of orthorhombic 
simulation cells. The latter have here dimensions proportional to the set of incommensurate 
numbers ( 40, 30, 31 ). Two supercells are shown, of which the boundaries were computed 
from the condition that each supercell only contains polygons with different indexes. 

Figure 3-a, schematically depicts the self-annihilation of an isotropic 
dislocation loop expanding by glide from the origin 0 of the primary cell 
(initial index io = 0). As indicated in section 2.1 the origin can be chosen in 
an arbitrary manner without loss of generality. The first self-annihilation 
event on the expanding loop occurs along a certain direction d(dx, dy, dz) that 
will be calculated below. It corresponds to a minimum critical glide distance 
as a function of orientation, A, which is called the self-annihilation radius. 

The intersections of a slip plane with the periodic array of simulation cells 
define a tiling of contiguous polygons with various indexes and shapes. This 
tiling is necessarily periodic since there is a finite number of possible 
indexes i , which corresponds to an equivalent number of distinct polygonal 
intersections. One can thus define in the slip plane a periodic array of two
dimensional supercells, of which the periodicity is defined by the periodicity 
of the indexes of the polygonal intersections. The supercells have complex 
shapes, as shown in the example given in Figure 3-b. This example also 
illustrates the problems met with non-optimal cell dimensions: the self
annihilation radius is rather small in this case (1.43 times a cell diagonal) 
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and the supercell is rather anisotropic, whereas one would prefer to have 
rather isotropic effective mean-free paths. 

In Fig. 3-a, self-annihilation occurs when a portion of the expanding loop 
meets in the same polygonal intersection with the replica of a portion 
propagating in the opposite direction. The two segments meet with a 
common tangent and a common normal parallel to the propagation direction 
d. Thus, the first self-annihilation event on the dislocation loop occurs along 
the direction of the shortest distance between the origins of the supercells, T0 

= 00' (cf. Fig. 3-b). The self-annihilation diameter is then 2A. = T0 , and the 
self-annihilation radius, A., is half this value (Fig. 3-a). As already 
mentioned, the two total translations T and T' (gray lines in Fig. 3-a) are not 
in the slip plane. They do not necessarily correspond to symmetrical 
sequences of modulo translations. For instance, a portion of loop expanding 
in the primary cell starts with a glide sequence, whereas its replicas start by 
crossing cell boundaries, which implies one additional modulo translation. 

The geometrical considerations developed in the previous sections are 
now used to calculate a relation between the self-annihilation radius and the 
cell dimensions. The practical applications are outlined in section 3.5. 

3.3 Self-Annihilation of Isotropic Loops 

The direction of first self-annihilation is that of the smallest vector 
connecting the centers of two neighboring supercells, T0 • Considering the 
total translations T and T', we see from Fig. 3-a that To = T- T' and, further, 
that To = 2M, so that the condition for first self-annihilation is written: 

2M= T0 • (4) 

In projection along the slip plane normal, we have To-n= 0 , or: 

huLx+ kvLx + lwLx = 0 (5) 

In this expression, the unknowns are the numbers of boundary crossings u, v 
and w. Linear equations, of which the solutions searched for are integer 
numbers, like Eq. (5), are known under the name of first-degree Diophantine 
equations (after Diophantes of Alexandria, cf. Bashmakova 1997); their 
solutions can be obtained with the help of various algorithms. The first self
annihilation corresponds to the set of integer numbers (u, v, w) leading to the 
smallest translation vector between supercell origins, T0 . The self
annihilation diameter is then obtained from Eq. (4): 

~ 2 2 2 2A= (uL.J +(v.ly) +(w4) (6) 
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3.4. Self-Annihilation of Anisotropic Loops 

The fast moving portions of the anisotropic loops are approximated by 
segments of infinitesimal length propagating along the direction ±d. In 
contrast with the previous case, the direction dis known and may differ from 
that of T0 , since it is fixed by a physical argument. Anisotropic loops or 
segments can, thus, cross several supercells before self-annihilating. As a 
consequence, their trajectories have one interesting property, which is not 
detailed here by lack of space. Every time the boundary of a supercell is 
crossed by a small segment, the latter emerges at another boundary of the 
supercell through the operation of the PBCs. The successive positions of 
these replicas are shifted by a constant amount, due to the fact that the 
propagation direction is not, in general, parallel to direction connecting the 
origins of neighboring supercells. It follows that the portions of the 
trajectories of anisotropic loops folded in a supercell are equidistant. Then, 
the condition for treating short segments as infinitesimal ones is that their 
length be smaller than the spacing between their trajectories in a supercell. 

We consider an anisotropic dislocation source, for instance in a bee 
crystal5• An edge segment is emitted along the screw direction and one of its 
replicas returns to the position of the source after some time interval. 
Different topological self-reactions can occur, depending upon whether the 
screw segments are sessile or not and whether, in the last case, another 
segment can be further emitted in the opposite direction. To simplify the 
geometry, we consider an expanding anisotropic loop and define, as above, 
its self-annihilation radius (A) and diameter (2A). Each segment starts from 
the origin (i = 0) and self-annihilates at another supercell origin with a 
replica of the opposite part of the loop. Equation (3) of section 2.1, taken 
with i = 0 applies to this situation. However, Eq. (3), which is also a first
order Diophantine equation, does not explicitly include the propagation 
direction d and yields solutions for all directions in a given slip plane. A 
more transparent solution can be derived as follows. 

The position of the self-annihilation event in the extended plane is 
brought back into the primary cell by subtracting the total translation from 
the self-annihilation radius. Then ( cf. section 2.1 and Fig. 1-b ): 

OM=M-T (7) 

Upon self-annihilation at the origin, we have OM= 0 and Eq. (7) reduces to 
M- T = 0, or, in developed form: 

(8) 
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Combining Eqs. (8) with the condition d.n = 0, which expresses that the 
direction d is in the slip plane of normal n, one recovers the more general 
Eq. (5). The set of integer numbers (u, v, w) is obtained from the three 
equations at the right-hand side ofEq. (8): 

(9) 

These two equation have an infinite number of solutions. The first self
annihilation is obtained through the additional condition that it corresponds 
to the total translation vector T of smallest magnitude, i.e., to the smallest 
distance between supercell origins along the direction d. The self
annihilation radius is then determined from the left-hand side ofEq. (8). 

3.5 Implementation 

In practice, several conditions are initially prescribed. The average 
dimension of the primary cell should be large with respect to the typical 
length scale of interest, for instance an average distance between dislocations 
or the wavelength of a dislocation pattern. This leads to average dimensions 
of typically 10 ~m for standard mass simulations. The value of the self
annihilation radius is then prescribed according to the physical situation 
considered. In general, one prefers to work with orthorhombic distortions 
that are not too large and the cell dimensions should then be proportional to 
a set of three incommensurate numbers centered around an average value. 

In the anisotropic case, several possible solutions can be obtained directly 
from Eqs. (8) and (9). In the isotropic case, the coupled equations (5) and (6) 
are solved numerically, which also leads to several possible solutions. In this 
last case, solutions yielding isotropic supercells are preferred in order to 
have isotropic annihilation radii. 

Several situations related to self-annihilation can also be treated via first
order Diophantine equations. This includes, in particular, close dipolar 
interactions, from either a single or a few dislocation sources, which can be 
troublesome during simulations of simple elementary configurations. The 
condition for self-annihilation is then replaced by a condition on the indexes 
of two segments forming a dipole inside a same cell. 

Finally, these solutions can easily be extended to the particular slip 
geometries examined in section 2. Rotations of the crystallographic lattice 
are cared of by carrying out calculations in the rotated lattice. Cell boundary 
shifts are accounted for by replacing in Eq. (2) the modulo translation L; by 
4 = (L;+~;), incorporating the shift on the boundary (i). 
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4. CONCLUDING REMARKS 

The self-annihilation of dislocation lines caused by the use of PBCs is an 
artifact that can be controlled. The methods outlined in the present work 
allow setting the values of the self-annihilation distances to values that are 
never smaller than the dislocation mean-free paths. This last length scale has 
a strong influence on the development of dislocation microstructures and its 
effective realization allows drawing quantitative estimates from DD 
simulations3'7• 

The two situations considered here, those of isotropic and anisotropic 
loops cover most of the cases of practical interest. To avoid severe artifacts 
occurring with particular slip geometries, two methods are proposed, which 
can be implemented in any DD simulation, discretized or not. The self
annihilation distances of dislocations are prescribed through a choice of the 
dimensions of an orthorhombic simulation cell, based on a quantitative 
analysis. To be implemented, the latter only involves the requirement that 
the slip planes available to the moving dislocations be located on a set of 
equidistant heights in the simulation cell. 
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ATOMISTIC STUDY OF EDGE DISLOCATIONS IN 
FCC METALS: DRAG AND INERTIAL EFFECTS 
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Abstract Atomistic simulations of an accelerating edge dislocation were carried out to 
study drag and inertial effects. Using an embedded atom potential for nickel the 
Peierls stress, the effective mass and the drag coefficient of an edge dislocation 
was determined for different temperatures and stresses in a simple slab geom
etry. A dislocation intersecting a void is used as a model to demonstrate the 
importance of inertial effects for dynamically overcoming short range obstacles. 
Significant effects are found even at room temperature. Including inertial effects 
in discrete dislocation dynamics simulations allows to reproduce the atomistic 
results. 

Keywords: Inertia; Obstacle; Atomistic Simulation; Dislocation Dynamics 

1. Introduction 
Understanding the motion of dislocations and their interaction with each 

other or with obstacles is essential for the description of plastic deformation of 
crystalline materials. The dynamics of the dislocations is of direct interest in 
high strain-rate deformation, dislocation interaction with short range obstacles, 
low temperature deformation or high frequency agitation. 

In most treatments, the inertia of the dislocations is not explicitly taken into 
account. It can, however, assist overcoming of obstacles [1-6], thus leading to 
a lower effective critical stress for obstacle passing. This notion of inertially 
overshooting dislocations was first proposed to explain the enhanced plasticity 
in superconductors [1, 2], but also used in the description of plastic deforma
tion of solid solutions [5] and precipitation hardened materials [4]. Compres
sion tests on copper-single crystals strengthened by cobalt precipitates, for ex
ample, showed a positive dependence of the CRSS on temperature below 200 K 
due to dynamic dislocation effects [4]. These results were in semi-quantitative 
agreement with the computer simulations of Schwarz and Labusch [3]. Various 
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other efforts where undertaken to include inertial effects and thermal activation 
in analytical models of dislocation motion through a random array of localized 
obstacles [6-9]. However, the direct observation of inertial effects in disloca
tion - obstacle interactions is only possible with atomistic simulations. 

Molecular dynamics (MD) simulations automatically include dynamic ef
fects in the dislocation motion. It is thus possible with MD simulations to de
termine the parameters governing the dynamics of dislocation motion. These 
parameters can then be used in discrete dislocation dynamics (DDD) simula
tions [ 10] which are often used to study plasticity at the mesoscale, but do not 
incorporate the dislocation mass so far. 

After introducing the theoretical background we present a method to deter
mine the effective mass and the drag coefficient of dislocations from atomistic 
simulations and show direct evidence for inertial effects in the interaction of 
dislocations with obstacles. These effects will be rationalized in a framework 
based on energetic considerations. DDD simulations including inertia are pre
sented as a tool to asses the importance of dynamic effects for different situa
tions that are not accessible to MD-simulations. 

1.1 Dynamics of dislocations 
The Peach-Koehler force Fa = rb that an applied shear stress r exerts on a 

dislocation with Burgers vector b leads to an acceleration of the dislocation if 
the resolved shear stress is larger than internal forces Fi arising from interac
tions with defects or from the intrinsic lattice resistance. The rate of acceler
ation is determined by the inertia (or effective mass) M of the dislocation. A 
deceleration comes from damping or drag effects which dissipate energy. They 
are characterized by the viscous drag coefficient B. For non-straight disloca
tions the dislocation self-interaction, which can for simplicity be regarded as a 
line tension r, acts in the way to minimize the line energy. One can therefore 
formulate the following equation of motion for a dislocation segment along the 
x-direction and moving with speed v = Wt along the y-direction: 

(1) 

The rest mass per unit length of a screw dislocation is given by [11] 

(2) 

where Ct = VJiTP is the transverse wave speed, 1-L is the shear modulus, p 
the mass density, b the Burgers vector, R the upper integration limit (crystal 
radius or half the typical distance between dislocations), and ro the core cut-
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off radius. The rest mass of an edge dislocation is given by [ 11] 

m~= (1+~)m0 . (3) 

The rest masses of edge and screw dislocations are very similar, since the lon

gitudinal wave speed q = /ffJi is usually about twice the transverse wave 

velocity Ct. Using the expressions for the energy of a screw dislocation (eq.2) 

and c~ = 11/ p, one can estimate the rest mass of a dislocation segment of 
length b to be m 0 ~ ! pb2, roughly one half atomic mass per Burgers vector. 

The velocity dependence of the effective mass of a screw dislocation is 
m8 (v) = m0 · (1 - v2 /cn-112 , the effective mass m..L(v) of fast moving 
edge dislocation is rather difficult to derive and was given by Sakamoto [12]. 
As displayed in fig. 1, the effective mass and the energy of moving dislocations 
are diverging at the transverse shear wave velocity Ct. 

m 
m(i 

Figure 1. Velocity dependence of the mass of screw and edge dislocations for Ni (after [12]). 

The drag coefficient B characterizes the drag forces on a moving disloca
tion which arise from its interaction with various elementary excitations like 
phonons and electrons [13]. In the intermediate temperature range, which 
will be of interest later, the dominating drag mechanism is the scattering of 
phonons. Leibfried [14] gave an estimation of the drag coefficient per unit 
length: 

3kTz 
Bph = 20ctb2 ' 

(4) 

where T is the temperature, k the Boltzmann factor and z the number of atoms 
per unit cell. It was later shown that a distinction should be made between 
different scattering mechanisms like the phonon wind, the slow-phonon vis
cosity, and the flutter effect. For a thorough treatment of these and other drag 
mechanisms the reader is referred to [13]. 
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The reaction of a dislocation upon an imposed shear stress is thus fully de
termined by Band mo. For small velocities v < ct/2 the dislocation mass 
stays nearly constant, and thus the uniform steady state velocity can be cal
culated as v00 = 1· After the relaxation time tr = mol B the velocity of a 
dislocation accelerating from rest differs from the steady state velocity v 00 by 
less then 1 I e. For typical values for B at room temperature, this time is in the 
range of several ps. 

1.2 Dislocation - obstacle interaction and inertial effects 
The resistance which a localized obstacle provides to dislocation motion 

can be represented by a point force F acting on the dislocation line. At an 
applied shear stress T the dislocation bows out between neighboring obstacles. 
Balance of forces between line tension r at the obstacle and the force acting 
on the dislocation F in the isotropic line tension approximation yields 

F = rb = 2r cos <I> • (5) 

The dislocation overcomes the obstacle if the maximal resisting (pinning) force 
Fp is reached. The obstacle strength is then characterized by the critical angle 
cl>c at which the breakaway occurs (see fig. 6). At lower applied stresses, the 
equilibrium configuration is characterized by cl>eq· 

Moving dislocations can overcome obstacles by inertial overshooting [I , 2]. 
The overshooting results in a smaller cusp angle cl>ct < cl>eq and thus in an ef
fective increase of the maximum dislocation force on the obstacle. Neglecting 
thermal activation, the obstacle is passed if the dislocation force is larger than 
the obstacle force, or cl>d :::; cl>c. Such a dynamic effect is expected when the 
dislocation carries significant kinetic energy and does not loose it to damping 
while bowing out between obstacles. In contrast, in the overdamped case any 
kinetic energy is dissipated during the bow out. 

The following expression was proposed by Nadgornyi [13, 6] for the critical 
drag coefficient above which the dislocation motion becomes overdamped: 

(6) 

Inserting typical values for fcc metals like Cu and AI at room temperature the 
above expression gives critical damping coefficients which are in the range 
or slightly above the measured damping coefficients [13]. Therefore, the as
sumption of overdamped, viscous dislocation motion, usually made in DOD 
simulations may only be valid in certain specific cases and must be critically 
looked at in others. 
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Figure 2. Sketch of the simulation box, the crysUillographic orientation, and of the arrange
ment of the vacancies creating the obstacle. Periodic boiDldary conditions (PBC) are applied 
in the line- and glide-direction, whereas 20-dynamic boundary conditions are applied in z
direction. Upon relaxation the edge dislocation splits in two partial dislocations D/3 + {3A. 

2. Simulation Methods 
To obtain the parameters governing the dynamics of dislocations, Peierls 

stress Tp, rest mass m~ and drag coefficient B, an infinitely long edge disloca
tion was simulated in a molecular dynamics (MD) simulation with 2D periodic 
boundary conditions. The dynamics of dislocation - obstacle interaction was 
studied using a small void cluster often found in irradiated materials [15]. 

Nickel, described by the embedded atom method (EAM) potential of An
gelo et al [16], was chosen as the model material for this study. A sketch of the 
simulation box and the boundary conditions is shown in fig. 2. Standard box 
sizes were x = 42 nm, l = 8 nm and h = 10 nm. The box dimensions were 
varied to assess the importance of finite size effects. Shear loading was ap
plied incrementally by combining force boundary conditions on the outermost 
(lii)-layers with corresponding deformation of the sample. 

The displacement field of a perfect edge dislocation was introduced in accor
dance with the boundary conditions. Upon relaxation the dislocation splits into 
two partial dislocations. A cluster of 6 vacancies (see fig. 2) was sometimes 
used as a localized attractive obstacle. The dislocation was always positioned 
at a distance of Xr=15 nm away from the obstacle. The obstacle spacing was 
also l=15 nm in this case. 

Energy minimization was performed with a global version of the damped 
Newtonian algorithm by Beeler [17]: if the scalar product of the global force 
and momentum vectors is negative, all momenta are reset to zero. All sys
tems were relaxed until the average force component of an atom was smaller 
then at least w-17 N. Dynamic simulations were performed on equilibrated 
samples with a Nose-Hoover thermostat [18]. The thermostat coupling was 
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optimized to produce canonical temperature fluctuations about the desired ther
mostat temperature. 

An inertia based equation of motion for dislocations is also implemented 
into the discrete dislocation dynamics model of Weygand et al. [19], which is 
based on a discretization of the dislocation line using straight segments con
nected at nodal points. The degrees of freedom of the dislocation are the posi
tions { RA} and the velocities {VA} of the nodal points {A = 1, ... , N}. The 
equation of motion of the nodal points are derived using the principle of virtual 
work. 

The equation of motion of a dislocation segment at point r(l) is given by 

(7) 

where mo is the rest mass of the dislocation, ft is the Peach-Koehler force in 
the glide plane of the dislocation and l is the curvilinear coordinate along the 
dislocation line. The velocity dependence of the dislocation mass is ignored. 
The equation of motion for the nodal points is obtained from the principle of 
virtual work [19]: 

t ft<Svidl = t Bvi6vi dl + t moili 6vidl. (8) 

As in [19], a linear interpolation scheme for the velocities v = v(l, t) = 

.L~=l NA(l)VA(t) is employed. The acceleration is expressed by fj(z, t) = 
lt(v(l, t) - v(l, t- ~t)), where ~tis the time increment used in the in
tegration scheme for the movement of the dislocation. After integration of 
equation (8) over the dislocation segments, the following linear system for the 
nodal velocities {VAi} has to be solved: 

N N 

L (KAE +MAE) VEi = FAi + L MAEVBi(t- ~t) (9) 
E=l E=l 

FAi = t ft(l, t)NA(l) dl (10) 

KAE B i NA(l)NE(l) dl (II) 

MAE = ~t t moNA(l)NE(l) dl (12) 

The interaction between dislocations is calculated using linear elasticity theory, 
neglecting relativistic effects. The maximum velocity of a dislocation segment 
(not a nodal point) must therefore be restricted to about ctf2. 

The obstacles in the atomistic simulation consist of vacancy clusters with 
a diameter of about 2 atoms. In the DDD simulation, these vacancy clusters 
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are translated into finite size obstacles of similar diameter. After detection of 
the pinning event, two pinned nodal points, representing the two intersection 
points of the dislocation with the vacancy cluster, are introduced on the dislo
cation line. The depinning event is controlled by a critical curvature/angle of 
the dislocation at the pinning center. Note that the minimum and maximum 
length of the dislocation segments has to be controlled such that the behavior 
is independent of the regularization scheme for the local self-interaction. 

3. Results 
The critical shear stress Tc for initiating dislocation motion at 0 K was de

termined to lie between 0.12 and 0.14 MPa. This critical stress corresponds to 
rf ~ w-6d44 . Dislocation motion starting from rest under an applied shear 
stress was studied in the temperature range from 30 - 700 K and for different 
sizes of the simulation box. Fig. 3 shows the velocity v(to) reached by the dis
location after a time to 2 100 ps under various loads and temperatures together 
with the Rayleigh wave velocity c R and the lower velocity of transverse waves 
Ct in the corresponding crystallographic orientation. Although the dislocation 
velocities were almost constant at the end of the simulation, the steady state 
velocities could not always be reached, especially in the case of relativistic 
dislocations which reach the limiting velocity only asymptotically. The damp
ing coefficient B can be estimated via B = v[t~ ) for different temperatures 
from the measured velocities (see fig. 4). 
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Figure 3. Velocities v(r, t ~ 100 ps) of the dislocations under applied shear stress Tat 
different temperatures as measured in MD simulations 

The system including a void formed by six vacancies is studied in static 
and dynamic simulations at different applied shear stresses and temperatures 
to determine the lower and upper bound of the critical shear stress T c required 
for the dislocation to pass the obstacle. Figure 5 shows the pinned dislocation 
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Figure 4. The damping coefficient B(T) as determined from the "steady state velocities'' 
v(t ;::: 100 ps) s ct/2 of fig. 3 (squares) and from the fits of the equation of motion to the 
dislocation position (crosses) at different temperatures together with the Debye temperature 8o. 
The line is for a linear fit corresponding to Leibfrieds estimation of the damping coefficient (eq. 
4). 

for the static case at a stress level just below the critical stress T c and snapshots 
from the dynamic simulation at I OOK. The results are summarized in table I. 
Even at temperatures of 300 - 500 K there is a very significant lowering of the 
critical stress and therefore a significant effect of the inertia of the dislocation. 

Table 1. Lower and upper bound for the stress required for the edge dislocation to pass an 
array of obstacles separated by L = 15 nm at different temperatures T. The obstacles in 
the MD simulations consist of 6 clustered vacancies (see fig. 2 ). For the DDD simulations 
a pinning center with similar diameter and critical angle was chosen (see text). Initially the 
distance between dislocation and obstacle was in both cases X r = 15 nm. 

Simulation T~[MPa] T~00 [MPaj 
static 75-80 75 ±2 
lOOK 15- 16 13 ±1 
300K 30 - 33 30± 2 
500K 40-45 45 ±2 

DDD Simulations are used to analyze the system simulated by the MD 
method. To mimic the atomistic results, the critical depinning angle used in 
the DDD simulation is set to q,c = 73.5° . The size of the pinning centers is 
set to be 2ao, where ao is the lattice parameter. Comparing the motion of the 
overdamped and underdamped dislocation for the same resolved shear stress 
Tc, the overshooting due to the mass of the dislocation is clearly visible in 
the figure 6. The thin black line corresponds to the critical configuration at 
Tc,od for the overdamped dislocation. Note that the critical configuration for 
overdamped and underdamped calculations are almost identical. A critical re-
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Figure 5. Left: Relaxed configuration of a edge dislocation pinned at 6 vacancy void at an 
applied shear stress of 75 MPa. Right: snapshots of the same configuration from the dynamic 
simulation at lOOK and 16 MPa. 

Figure 6. Results of the ODD simulations: three dislocation configurations are shown: the 
thick line corresponds to the configuration before unpinning of the underdarnped dislocation at 
rd; the dashed line represents the final configuration of an overdarnped dislocation at the same 
stress rd ; the thin black line represents the critical configuration at re > rd for the overdarnped 
dislocation. 

solved shear stress of Tc ~ 75 MPa for the overdamped situation is obtained. 
The same configuration, including the inertia and B = 15 · 10-6 Pa s taken 
from the MD simulation results for 300 K (see fig. 4) leads to dynamic passing 
stress of Td ~ 30 MPa. The results shown in table 1 are in excellent agreement 
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with the MD simulations, with respect to both, the absolute magnitude and the 
relative effect of the dislocation mass. 

4. Dynamics of Straight Dislocations 
The obstacle-free accelerated motion of the two partial dislocations in the 

MD simulations shall be regarded here in terms of the motion of one disloca
tions based on the following equation of motion 

.l f) 
mo · 0/(v)v-F+Bv=O. (13) 

Eq. 13 was solved numerically with the initial conditions x(t = 0) = x0 , 

v(t = 0) = vo. Here the dislocation mass was decomposed into the constant 
rest mass m~ and the velocity dependent term f ( v): m .l ( v) = m~ f ( v). 

The parameters mo, B, F and the starting positions and velocities x 0 , vo 
were adjusted by a least square fit to reproduce the positions of the dislocation 
in the MD simulations. With know mo the damping coefficient B can be de
termined for different temperatures. At high velocities additional dissipative 
mechanisms come into play [13], so that the drag resistance is no longer de
scribed by eq. 13. Therefore B is fitted only at velocities below ct/2. The force 
per unit length F is in principle known, but can also be used as fitting parame
ter. The results of the fitting procedure are shown in table 2 for two exemplary 
cases at low temperature and low stress. From these and other fits the rest mass 

Table 2. Parameter describing the dislocation motion as determined from the best fits of the 
numerical solution of the equation of motion (13) to the positions from the MD simulations of 
the dislocation at 30 K .~x is the mean deviation of each data point from the fit. 

System 
5MPa 
7MPa 

~x[A] 
0.425 
0.281 

1.094 
1.096 

0.1214 
0.1686 

1.086 
0.950 

of an edge dislocation is determined tom~ = 1.1 ± 0.02 pN · ps2 /A 2 ~ 0.28 
atoms/b. Using eqs. (2) and (3) with R = h, ro = band J1. = 74.6 GPa gives 
m 0 = 0.58 atoms/b. The theoretical estimate is roughly twice the value ob
tained from the simulations, which is most probably due to the splitting in two 
partial dislocations. 

The effective force F per unit length determined by the fits (see table 2) is 
slightly smaller than the applied force Fa = Tb. The amount of the reduction 
can be interpreted as a dynamic friction stress TJ· The value TJ = 0.15 ± 0.03 
MPa of this friction stress is similar to the Peierls stress determined by the 
static MD calculations. 
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The values of the damping coefficient as determined from the above men
tioned fitting procedure are included in fig. 4. Like the values determined di
rectly by the steady state velocity, they fall on a line with slopes = (0.0457 ± 
0.0008) · w-6 Pas K-1. This value is in excellent agreement with the pref
actor of Leibfried's estimation (eq. 4): B(T) = 0.0462 . w-6 Pa s K-1r 
as calculated with the corresponding values for Ni. This agreement with the 
rather crude estimation of Leibfried can be explained by the fact that within 
the temperature range studied here phonons with wavelengths of the order of 
ao dominate the phonon spectrum, which is the range of the scattering cross 
section assumed by Leibfried. 

5. Dislocation - Obstacle Interaction 

The stress Td needed for the dislocation to pass the void is significantly lower 
in the dynamic simulations than the critical stress Te in the static simulations 
(see table 1). The dynamical passing stress Td increases with increasing tem
perature, thus thermal activation can not account for this effect. In this section 
it will be shown how these inertial effects can be rationalized in a framework 
based on energetic considerations. 

Passing the obstacle requires to surmount an energy barrier of height flE. 
In the line tension model this energy barrier corresponds to the increase of line 
energy at the critical configuration. The critical configuration for breakaway 
in the static case is characterized by the displacement profile u(x, Te) at the 
critical stress Te· The critical angle is related to the displacement profile via 
cot4>c = u'(-L/2,re). In the static case, corresponding to the balance of 
forces (eq. 5) for 4>e the energy required to pass the barrier is provided by the 
work We done on the dislocation by the applied stress Te. 

If a fast moving dislocation has enough kinetic energy Ekin = ~m(v)v2 L 
to outweigh the energy Ediss which is dissipated during the process of the dis
location bow-out, the dislocation can overshoot its equilibrium position and 
eventually pass the energy barrier /lE dynamically. Dynamical obstacle pass
ing in a purely mechanical model is thus possible at stresses Td < Tc when 
the work wd done by this stress is larger than the dynamically lowered critical 
work: 

Wd > We - (Ekin - Ecliss) . (14) 

The contributions of the terms in eq. (14) are path dependent and not easily 
accessible. However, the DOD simulations show that the critical depinning 
configuration is the same for the dynamic case and the static case and is char
acterized by the critical angle 4> c· To reach this configuration the dislocation 
has to slide over the area Ae. The work done in the static case can thus be esti
mated to be w;st. = TebAe. In the dynamic case, the work done by the dynamic 
passing stress Td to reach the critical configuration is then w:t. = TdbAc. The 
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dissipated energy during bow-out can be estimated to Edf:~ = !viBAc, which, 
just like the kinetic energy, depends on the velocity vi( Td, B) at which the dis
location impinges on the obstacle. This velocity can directly be determined by 
solving the equation of motion (eq. (13)) with Td, mt, B. The critical area Ac, 
however has to be determined from atomistic or DDD simulations. 

Table 3. Estimated contributions to the energy necessary for the dislocation to pass the obsta
cle. In the static case the energy required to pass the energy barrier is provided by the work 
We done on the dislocation by the acting stress T. In the dynamic cases there is an additional 
contribution by the kinetic energy of the dislocation Ekln which is decreased by the dissipated 
energy Ediss during the bowout. 

Simulation Tc,d [MPa] west. [eV] Ekf~· [eV] -E:~ [eV] Len!l!iies [eV] 
static 75-80 2.19- 2.34 0 0 2.19- 2.34 
lOOK 15- 16 0.42-0.45 1.99-2.19 0.15-0.15 2.26-2.48 
300K 30-33 0.84-0.92 1.41 - 1.72 0.39-0.42 1.87- 2.23 
500K 40-45 l.l2- 1.26 0.98- 1.27 0.52-0.59 1.58 - 1.94 

The so estimated values of west. Ee~t. and Ee~t. are shown in table 3 The cd• kin diss • 
sum of the contributions is very similar to the work done in the static case and 
thus provide a very simple way to estimate the magnitude of inertial effects for 
dislocation - obstacle interaction. 

6. Conclusions 
It has been shown that the parameters which determine the dynamics of dis

locations (the dislocation rest mass mo and the damping coefficient B) can 
be extracted from atomistic simulations of accelerating straight dislocations. 
MD simulations of the interaction of edge dislocations with an array of va
cancy clusters showed pronounced inertial effects even at room temperature. 
This can be explained by a simple model based on energy arguments. With 
the input from atomistic simulations, DDD simulations which include inertial 
effects can reproduce all the dynamic effects. They thus provide a tool to asses 
the importance of inertial effects in a wide range of situations including dif
ferent temperatures, stress conditions, different obstacles arranged in various 
configurations. 
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Abstract Fundamental characteristics of edge and screw dislocations in the 1 h 1 

microstructure of Ni-based superalloys are investigated by using molec
ular dynamics simulations. Edge/screw dislocations are nucleated and 
glide in a slab cell of the Ni matrix involving an apex of a cuboidal 
NisAI precipitate, that mimics a part of the idealized 1 h 1 microstruc
ture. The edge dislocation decreases its velocity at the 1' precipitate, 
showing dislocation pinning there, then penetrates it under the force 
from following dislocations. The screw dislocation runs through the pre
cipitate without slowdown by shrinking the width between its Shockley 
partials. Detailed investigation of the stress distribution suggests that 
the constriction is due to interactions between the stress field around the 
precipitate and the partials: the stress causes a repulsive Peach-Koehler 
force on the leading partial and an attractive force on the trailing one 
since their edge components have opposite Burgers vectors. 

Keywords: Molecular Dynamics, Edge and Screw Dislocation, 1 /1' Microstructure, 
Ni-Based Superalloy, Embedded Atom Method 
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1. INTRODUCTION 
Ni-based superalloys possess the characteristic microstructure where 

Ni3Al-based phases ('y 1 phases) are precipitated with the size less than 
1~-tm in the Ni-based matrix ('y phase). The small lattice mismatch be
tween the 'Y and "( 1, fcc and 112 ordered alloy, makes the 'Y/'Y 1 interfaces 
coherent; however, dislocations are affected by the 'Y /'Y 1 interface and 
show complicated behavior depending on the morphology of the 'Y h 1 

microstructure. The dislocation behavior in the array of 'Y 1 precipitates 
has attracted intense interest with respect to the understanding of the 
deformation mechanism of superalloys. 

Numerous studies have been devoted to dislocations in the "fh 1 mi
crostructure from the viewpoint of their role in the rafting process, or 
the directional coarsening of the precipitates under creep deformation. 
Experimental observations by means such as transmission electron mi
croscopy have revealed that dislocation lines are bent along the 'Y 1 pre
cipitates [1-3]. Finite-element analyses based on the geometrically nec
essary dislocation theory have suggested that dislocations are required 
geometrically around the cuboidal precipitates [4-7] . It is difficult, how
ever, to explore further details of the interaction between the dislocation 
and the 'Y/'Y 1 interface by experimental observations or FEM analyses, 
since the scale of the phenomena is less than one micrometer and of a 
nanoscale. Dislocation behavior in the length scale would be strongly 
affected by the atom configuration at the interfaces, so that atomistic 
study is desired to clarify the mechanism. We have conducted a series 
of molecular dynamics simulations of the dislocation behavior at the 
"fh 1 interfaces, with more than one million atoms [8-10]. In the present 
study, edge and screw dislocations approaching the cuboidal precipitate 
are simulated with a slab cell of Ni containing a Ni3Al precipitate. The 
different behaviors of the edge and screw dislocations at the interface 
are investigated and the mechanisms are discussed. 

2. SIMULATION PROCEDURE 
The interatomic potential adopted is the embedded-atom method [12, 

13], in which parameters are fitted to the properties of the Ni, Al, and 
Ni-Al binary systems by Voter and Chen [14, 15]. The total energy, Etot, 

is evaluated by 

Etot = ~ "2:: "2:: <Ptatf3 (ra!3) + "2:: Ftc. (Pa) 
a {3(-fa) a 

(1) 
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with 
Pa = L Pt{J (raf3), (2) 

!3( 'fo.) 

where ro.f3 is the scalar distance between atom o: and atom (3, ¢ is the 
pairwise interaction between atoms, F(p) is the "embedding function" 
of the "density" at atom o:, fia, that is given by the superposition of 
another pairwise interaction, p(r), from neighboring atoms. to. and t13 
indicate the types of atoms o: and (3, respectively. The details of the 
functions and parameters are described in the original papers [14, 15] 
and our previous reports [8, 9]. 

The simulations are implemented with a slab cell that mimics a local 
part of an apex of cuboidal Ni3Al precipitate in a Ni matrix, as schemat
ically illustrated in Fig. 1. The cell has the size of 43.4nm x 40.1 nm x 
18.4 nm and the total number of atoms is 2,880,000. The precipitate is 
made by substituting Al for Ni in the matrix, thus there is no lattice 
mismatch between 'Y and 'Y 1 and the interfaces are coherent in the initial 
arrangement. The edges of the cubic are rounded off to have the radius 
of 3.5 nm. This initial configuration is relaxed by molecular dynamics 
calculation of 5000 fs in order to redistribute the internal strain around 
the precipitate. Here, the motion of atoms is restricted in the yz or xy 
planes at the x or z boundaries, respectively, while the periodic bound
ary condition is adopted along the y axis. The temperature is kept at 
300 K during the simulation by the velocity scaling. After the initial re
laxation, the cell is subjected to two different deformations, mode II type 
for edge dislocation and mode ill type for screw dislocation, respectively. 

Simulation of edge dislocation 

Mode II type deformation is applied by controlling the displacement in 
the region of x < 4.3 nm and z > 9.2 nm, which is represented by the 

Figure 1. Dimensions of the simulation cell. 
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.. r-lioc ........ .,_di_ 
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Figure 2. Displacement control and crystallographic orientation. 

light shaded region of the upper schematic in Fig. 2 (a). Atoms in this 
region are moved in the direction of b1 = Hl21] , the Burgers vector of a 
leading partial, then in the direction of b2 = HII2] of a trailing partial, 
resulting in the total migration of b = ![Oil] of a perfect dislocation, as 
shown in the lower schematic in Fig. 2 (a). The dislocation of Burgers 
vector b is not a pure edge but has a screw component. This condition is 
adopted in order to avoid the nucleation of two different leading partials, 
b1 and hi = i[211], simultaneously, with the displacement only in the 
x direction. A small displacement of bl/2500 or b2/2500 is applied 
at every step in order to nucleate a perfect dislocation with a relaxed 
core structure every 5000 fs. During the calculation, the atoms in the 
displacement control region are fixed in the x and y directions. The cell 
size is also controlled to keep the normal stress at zero. 
Simulation of screw dislocation 
The region of x<4.3 nm is subjected to the positive y-displacement in the 
upper half and the negative one in the lower half, as shown in the upper 
schematic of Fig. 2 {b). A perfect dislocation of the Burgers vector of 
b = ![liO] is nucleated every 5000fs by applying a small displacement 
of b/5000 at every step. The motion of atoms along the y direction 
is constrained in the displacement control region during the simulation, 
and the normal stress is kept at zero by changing the cell size. 

3. RESULTS AND DISCUSSION 
3.1 Dislocation Motion 

Stacking faults between leading and trailing partials can be visualized 
by means of the common neighbor analysis {CNA) [16]. Figure 3 shows 
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the motion of stacking faults, or extended dislocations, on the slip plane 
evaluated by the CNA in the simulation of edge dislocation. Ni atoms 
in the stacking faults are drawn with dark shade while Al atoms of the 
'Y 1 are indicated with light shade in the figure. An extended dislocation 
composed of a pair of leading and trailing partials is nucleated at t = 
5000 fs in Fig. 3 (a). This dislocation, referred to as "Dislocation 1" , 
has the width of about 2 nm or 6 b. Here, b is the magnitude of the 
Burgers vector or the average lattice length in the simulation cell. Then 
the second dislocation appears at t = 7000 fs of Fig. 3 (b) under the 
increase of the controlled displacement and pushes Dislocation 1 out. 
Dislocation 1 reaches the 'Y' precipitate at about t = 8000 fs and is bent 
along the interface during t = 8000 rv 9000 fs (Figs. 3 (c) and (d)). It 
begins to penetrate into the precipitate from the upper corner of the 
triangular cross section, or an edge of the 'Y 1 cubic, during t = 9500 ,...., 
10000 fs (Figs. 3 (e) and (f)). The distance between the Shockley partials 
becomes wider in the precipitate than in the matrix (Figs. 3 (g)rv(i)). 

The motion of the extended screw dislocations as evaluated by the 
CNA is illustrated in Fig. 4. The width of the first dislocation intro
duced at t = 5000 fs is about the same as that of the edge dislocation. 
The screw dislocation, however, decreases its width significantly as it ap
proaches the precipitate under the force from the following dislocation, 
and becomes less than 1 nm at t = 7000fs as shown in Figs. 4 (a),....,( c). 
The dislocation reaches the precipitate in Fig. 4 (d) oft = 8000fs and 
passes through the interface with no remarkable slowdown. The con-

Figure 3. Motion of edge dislocations on the slip plane. 
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Figure 4. Motion of screw dislocations on the slip plane. 

stricted dislocation expands again in the precipitate same as in the case 
of the edge dislocation. 

3.2 Details near the '"Y /'"Y' Interface 
Figure 5 shows the change in the position of each core of the leading 

and trailing partials, measured at Points @ and @ indicated in Figs. 3 
and 4, respectively, to clarify the difference between the edge and screw 
dislocations at the "Yh' interface. The position of the (001) face of 
the "' 1 cubic is also indicated with the solid line at x = 11.4 nm. The 
leading partial of the edge dislocation decreases its velocity at about 
t = 8000fs as shown in Fig. 5 (a). Here, the trailing partial shows the 
same deceleration while maintaining its distance to the leading partial. 
When the leading partial begins to penetrate into the precipitate and 
glide again during t = 9000 "' 9500 fs, the trailing partial also resumes 
its motion and passes through the interface without slowdown. Thus 
it is revealed that the Shockley pair of an edge dislocation behaves as 
a dislocation belt with a constant width, and is stopped just at the 
interface, and then cuts into the precipitate. 

In the case of the screw dislocation shown in Fig. 5 {b), the leading 
partial moves more slowly than the trailing one at t < 7000 fs, so that 
the latter catches up with the former and thus causes the extended 
dislocation to constrict. The trailing partial maintains a constant speed 
during the constriction. There is no distinct obstruction at the interface 
against either the leading or trailing partials when they cut into the 
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Figure 5. Change in the position of the leading and trailing partials. 

precipitate at t = 8000 "' 8500 fs. Then the Shockley partials extend 
again in the precipitate as in the case of the edge dislocation, due to the 
slight decrease of the velocity of the trailing partial. Thus the remote 
stress field around the precipitate might affect the motion of the leading 
partial and cause the width of the Shockley pair to narrow. 

3.3 Stress Field near the Interface 
In order to clarify the different mechanism near the interface, the local 

stress, Tzx for edge dislocations and Tyz for screw dislocations, respec
tively, is evaluated at every position of atoms. These stress components 
generate the Peach-Koehler force in the x direction. Here, the local 
stress is defined as the the first order differential of the internal en
ergy with regard to the virtual strain perturbation; its formulation in 
the EAM was presented in our previous papers [9, 11]. Figure 6 shows 
the distribution of the local stress of Tzx on the slip plane indicated in 
Fig. 3, by representing all atoms with gray scale color depending on their 
magnitude. In the figure at t = 5000 fs, intense positive and negative 
stresses can be seen at the front and back of the core of the leading and 
trailing partials, respectively, as expected on the basis of the dislocation 
theory. The stress in the 1' precipitate is nearly uniform, so that it is 
also consistent with the ellipsoidal inclusion [17] . It is noteworthy that 
there is negative stress in the Ni matrix at the front of the (001) face 
of the 1' cubic, while there is positive stress at the back of it, or at 
the edge between the (010) and (100) faces. The negative Tzx near the 
interface is expected to cause repulsive force on both the leading and 
trailing partial; however, the dislocation lines continue to glide toward 
the precipitates without significant resistance during t = 5000 "' 8000 fs. 
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Figure 6. Distribution of shear stress, r..,, on the slip plane (edge dislocation). 

This is because the negative Tzx of the interface is far smaller than the 
positive Tzx caused by the following dislocation, and because the repul
sive force between the partials is large in the case of edge dislocation. 
The dislocation is blocked and bent when the core of the leading partial 
reaches the interface at t = 8000 fs. It is therefore concluded that the 
edge dislocation is not affected by the internal stress around the pre
cipitate but stopped at the interface due to the difference of the atomic 
structure. 

The distribution of the local shear stress, ryz, in the simulation of 
the screw dislocation is shown in Fig. 7. The maximal and minimal 
magnitudes in the vicinity of the dislocation cores are nearly equal to 
those of Tzx in the edge dislocation. Positive and negative stresses can be 
recognized at the {010) and (100) faces of the precipitate, respectively. 
However, the contrast between 1 and 1 1 is less clear than that observed 
for the edge dislocation and there is no distinctive stress at the (001) 
face. The distribution shows negligible change even in the process of the 
dislocation constriction during t = 5000 "" 7000 fs. Thus it is deduced 
that the other stress component should give rise to the constriction. 

The leading partial of a screw dislocation has the edge component 
opposite to that of the trailing partial, so that the stress, Tzx , would 
generate the Peach-Koehler force on the leading and trailing partials 
in the opposite directions. Figure 8 illustrates the distribution of the 
local stress, Tzx, evaluated at t = 5000 fs in the simulation of screw 
dislocation. We can find the same negative stress at the front of the 
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Figure 7. Distribution of shear stress, r~., on the slip plane (screw dislocation). 
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Figure 8. Distribution of atomic shear stress, r.,, on the slip plane at t = 5000 fs 
(screw dislocation). 

(001) face of the precipitate as in the case of edge dislocation. Both 
the stress and the following dislocation generate pull-back force on the 
leading partial and push-out force on the trailing one, resulting in the 
dislocation constriction. 

The constricted screw dislocation does not lead to a line step on the 
front face of the precipitate but an atomic step on the side face in the 
penetration process. The screw dislocation also has a lower strain energy 
than that of the edge dislocation by the factor of 1/(1-v) [18] . Thus the 
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screw dislocation easily penetrates through the interface even though it 
forms the same antiphase boundary {APB) as the edge dislocation. 
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Abstract The symmetries of dislocation interactions in bee crystals are examined by dis
location dynamics simulations with emphasis on the collinear interaction. The 
focus is on repulsive barriers that oppose the formation of configurations of min
imum energy. An interaction matrix including the effect of these barriers is pro
posed. 

Keywords: Dislocation junction, collinear interaction, bee metals, interaction matrix. 

1. INTRODUCTION 

With the view of further establishing models for strain hardening, the aim of 
the present study is to determine the number of distinct types of mutual inter
actions of different strengths occurring between two slip systems in bee metals 
at high temperatures. The interacting slip systems considered are the twelve 
112<111>{ 110} slip systems and the twelve 1/2<111>{ 112} slip systems. For 
studies on strain hardening, it is convenient to construct an interaction matrix 
between these systems, in which each coefficient has a specific value repre
senting the strength of the interaction. The number of distinct coefficients to 
be investigated is less than 144, as it is reduced by various symmetries. It can 
be deduced from the consideration of the geometrical variables involved in the 
interaction between two dislocation segments. 

In the high temperature regime, above the so-called atherma1 temperature, 
the Peierls barriers are negligible and the dislocations achieve high mobilities, 
like in fcc crystals. The flow stress of bee crystals in multiple slip conditions is 
then controlled by reactions between non-coplanar dislocations, as described 
by the "forest model"[ I, 2]. 

Assuming, as is usually done, that the formation of these reactions is mainly 
a question of self-energy minimization [I, 3], the symmetries of the disloca
tion interactions depend only on the angles between the junction direction and 
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the three Burgers vectors involved, namely those of the parent dislocations and 
that of the junction. The latter is always of the <100> type [4]. 

There is a particular type of reaction called the collinear interaction, which 
deserves a particular attention. This reaction is related to the partial annihila
tion of two non-coplanar dislocations of same Burgers vector, i.e., such that 
each slip plane is the cross-slip plane of the other. These annihilations always 
reduce the total self-energy but their occurrence for initially repulsive disloca
tions is conditioned by the overcoming of an energy barrier. As a consequence, 
it will be shown that an additional geometrical variable is involved, which af
fects not only the smmetries of the collinear annihilation, but also those of one 
type of junction-forming interaction. 

In what follows, use is made of simplified elastic models to predict the num
ber of different types of interactions to be accounted for. These results are 
further examined with the help of dislocation dynamics (DD) simulations for 
both junctions and collinear interactions. The consequences regarding strain 
hardening properties are then prospectively discussed. 

2. SYMMETRIES RELATED TO SELF-ENERGY 
A very complete study on junctions in bee metals based on elastically aniso

tropic self-energies was performed by Piischl [ 4], who also introduced reaction 
mappings similar to those presented below. As was checked more recently by 
Wickham et al. from DD simulations on some interactions between 1/2<111> 
{ 110} slip systems [5], junction formation can be reasonably well predicted 
by a balance of self-energy. A simplified expression for the self-energy, E, is 
written: 

- j.Lb2 2 
E - ( ) ( 1 - v cos a), 

4rr 1- v 
(1) 

where a is the angle between the line direction and the Burgers vector. Us
ing simple geometrical considerations (see [6] for details), one can show that 
the balance in self-energies only depends on the angles ;31, ;32 and ;3j between 
the direction of intersection of the slip planes and the Burgers vectors of the 
two parent dislocations and of the junction. Considering only self-energies, 
there are thirteen distinct configurations for the twenty four 112< 111 >{ 110} 
and 1 /2< 111 >{ 112} slip systems. Ten of them correspond to junctions and the 
three others are related to self-hardening, the coplanar interaction (coplanar 
slip systems with different Burgers vectors) and the collinear annihilation. The 
results are reported in Table 1; they include another symmetry effect, which is 
discussed in the next section. Table 1-a shows the interaction matrix, which 
eventually contains seventeen distinct coefficients. The crystallography of the 
interacting slip systems is detailed in Table 1-b. Table 1-c details the different 
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Table I. Interaction matrix, slip systems and symmetries in bee crystals. 

a' I 2 3 4 t; 6 7 8 9 10 II 12 131415 161718 1920 2122 23 24 
I I 2 3 3 4 5 5 6 4 5 6 5 7 8 9 9 10 II 12 13 10 II 13 12 
2 2 I 3 3 5 4 6 5 5 4 5 6 8 7 9 9 II 10 13 12 II 10 12 13 
3 3 3 I 2 5 6 4 5 6 5 4 5 9 9 7 8 12 13 10 II 13 12 10 II 
4 3 3 2 I 6 5 5 4 5 6 5 4 9 9 8 7 13 12 II 10 12 13 II 10 
5 4 5 5 6 I 3 2 3 4 6 5 5 10 12 II 13 7 9 8 9 10 13 II 12 
6 5 4 6 5 3 I 3 2 6 4 5 5 12 10 13 II 9 7 9 8 13 10 12 II 
7 5 6 4 5 2 3 I 3 5 5 4 6 II 13 10 12 8 9 7 9 II 12 10 13 
8 6 5 5 4 3 2 3 I 5 5 6 4 13 II 12 10 9 8 9 7 12 II 13 10 
9 4 5 6 5 4 6 5 5 I 3 3 2 10 12 13 II 10 13 12 II 7 9 9 8 
10 5 4 5 6 6 4 5 5 3 I 2 3 12 10 II 13 13 10 II 12 9 7 8 9 

(a) 
II 6 5 4 5 5 5 4 6 3 2 I 3 13 II 10 12 12 II 10 13 9 8 7 9 
12 5 6 5 4 5 5 6 4 2 3 3 I II 13 12 10 II 12 13 10 8 9 9 7 
13 7 8 9 9 10 12 II 13 10 12 13 II I 14 15 15 4 16 16 17 4 16 17 16 
14 8 7 9 9 12 10 13 II 12 10 II 13 14 I 15 15 16 4 17 16 16 4 16 17 
15 9 9 7 8 II 13 10 12 13 II 10 12 15 15 I 14 16 17 4 16 17 16 4 16 
16 9 9 8 71311121011131210 15 15 14 I 17 16 16 4 16 17 16 4 
17 10 II 12 13 7 9 8 9 10 13 12 II 4 16 16 17 I 15 14 15 4 17 16 16 
18 II 10 13 12 9 7 9 8 13 10 II 12 16 4 17 16 15 I 15 14 17 4 16 16 
19 12 13 10 II 8 9 7 9 12 II 10 13 16 17 4 16 14 15 I 15 16 16 4 17 
20 131211109 8 9 711121310 17 16 16 4 15 14 15 I 16 16 17 4 
21 10 II 13 12 10 13 II 12 7 9 9 8 4 16 17 16 4 17 16 16 I 15 15 14 
22 II 10 12 13 13 10 12 II 9 7 8 9 16 4 16 17 17 4 16 16 15 I 14 15 
23 13 12 10 II II 12 10 13 9 8 7 9 17 16 4 16 16 16 4 17 15 14 I 15 
24 12 13 II 10 12 II 13 10 8 9 9 7 16 17 16 4 16 16 17 4 14 15 15 I 

Svstem number I 2 3 4 5 6 7 8 9 10 II 12 
Schmid and Boas B5 C5 06 A6 B4 C3 04 A3 B2 Cl 01 A2 

(b) 
Burgers vectors b 111 Ill 1Il1IT 111111 1Il1IT 111 lll 1Il1IT 
Slip plane n 1l0 110 110 110 lOT 101 lOT 101011011 011 011 
Svstem number 13 14 15 16 I 7 18 19 20 21 22 23 24 
Schmid and Boas B5' C5" 06" A6' B4' C3" 04" A3' B2" Cl' 01" A2' 
Burgers vectors b 111 111 1111IT 111111111 111111111 lllliT 
Slip plane n 112112 112 112 121121 121 121 2IT 211 211 211 

a I 2 3 4 5 6 7 8 9 
{3) - - 90.00 - 54.74 54.74 - 54.74 45.00 
/31 - - 54.74 0.00 70.53 70.53 0.00 70.53 35.26 
!32 - - 54.74 0.00 0.00 70.53 0.00 0.00 90.00 
!312 0.00 0.00 90.00 60.00 60.00 60.00 90.00 90.00 54.74 
inter self-hard dip june annihil june june an nihil june june 
self-ener I 2 3 4 5 6 4 5 7 

(c) mapping - - a fh b1 lc5 ?J h d 
a· 10 II 12 13 14 
{3) - 54.74 72.45 72.45 90.00 90.00 59.53 25.24 
{31 0.00 70.53 79.98 29.50 90.00 39.23 28.56 58.52 
!32 0.00 0.00 58.52 58.52 90.00 39.23 72.98 58.52 
!312 30.00 30.00 73.22 73.22 70.53 48.19 80.41 33.56 
inter annihil june june june june june june june 
self-ener 4 5 8 9 10 II 12 13 
mapping fh b3 e f g h i j 

Interaction matrix, slip systems and symmetries in bee crystals. (a):- The matrix coef

ficients represent the seventeen possible types of interactions between { 110} and { 112} slip 

planes (numbered from I to 12 and 13 to 24, respectively), of which thirteen are deduced from 

the consideration of the self-energy - (b): The indexes of all the slip systems and their de

nomination in the Schmid and Boas notation [7] are listed. - (c): For each coefficient of the 

interaction matrix, this Table gives the angles {3; (see text), the angle between interacting slip 

planes, {3; 3 and the nature of the interaction. The thirteen different configurations deduced from 

an energetic criterion and the fifteen types of reaction mappings shown in Fig. I are also listed. 
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possible reactions between dislocations in bee crystals. </>1 and </>z are the initial angles between 
the interacting segments and the direction of intersection of their slip planes. Only the central 
portion of the graphs is reproduced here. The label on each figure refers to Table I , where the 
interacting slip systems are defined. Black curves: reaction lobes determined from an ener&y 
balance criterion. Gray curves: lines of zero initial interaction force between the segments, 
as determined from Kroupa's formula (see text). The sign(+) indicates a domain where the 
interaction force is attractive. 
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types of interactions and the corresponding values of the angular parameters. 
For each reaction (i.e., omitting non-contact interactions like the self- and 

coplanar interactions), calculated angular reaction mappings are given in Fig. 
1. These mappings show, in addition to other features discussed below, the 
domain of occurrence of the reactions for straight parent segments of same 
length and crossing each other at their midpoints, as calculated from an energy 
balance criterion. Neutral lines are plotted, which yield the border between the 
domain of attractive, junction-forming, configurations and repulsive crossings. 
The results are plotted as a function of the angles <Pt and <1>2 between the par
ent dislocations and the direction of intersection of the slip planes. The angular 
conventions for these numerical investigations are detailed in [8]. With these 
conventions, two initially parallel segments with <Pt = </>2 = 0 are always attrac
tive. The domain of junction formation takes the form of a lobe encircling the 
origin, plus its periodic duplicates (thick lines in Fig. 1, where only the cen
tral portion is shown). Since changing simultaneously the circulation along the 
dislocation lines does not modify the nature of the interaction, the set of lobes 
is periodic with period 1r along the two diagonals. One may notice, for instance 
by comparing Figs. 1-h and 1-j, that lobes may strongly differ in shape; this 
is due to the orientation-dependence of the line tension of the parent segments 
and of the < 1 00> junction ( cf. Eq. 1 ). 

For the collinear interactions, the energy balance always favor annihilation, 
except along neutral lines along the two diagonals. 

3. INITIAL INTERACTION FORCE AND BARRIER 
EFFECT 

The intuitive notion that initially attractive dislocations make junctions and 
repulsive ones do not is sometimes in error. For instance, the so-called crossed
states, which were found by Wickham et al. [5] by DD simulations, are attrac
tive configurations for which junction formation is energetically unfavorable 
[2, 6]. Thus, in addition to the energy balance criterion, it is necessary to con
sider an additional criterion based on the sign of the initial interaction force 
between the two interacting segments. A simplified analytical formulation for 
the interaction force along the shortest approach distance of two straight and 
infinite segments was given by Kroupa [9]: 

JL R12 1 
F12 ~ I~ ~ 1-R { -(b1.6)(b2.~2)- (bl X b2).(6 X 6)+ 

1 X 2 12 2 

1 R12 R12 
-1 -[(bl X 6).-R ]((h2 X 6).-R ]}, (2) 

- v 12 12 

where the 6 are unit vectors along the dislocation lines of Burgers vectors hi 
and JL and v are, respectively, the shear modulus and the Poisson's coefficient. 
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R 12 is the vector along the shortest approach distance between the two dislo
cations. The condition of null interaction force, which is drawn as gray curves 
in Fig. 1 ), delimitates a border between initially repulsive domains on the one 
hand and attractive states leading or not (crossed-states) to junction formation. 

The self-energy balance and the initial interaction force are derived using 
different approximations and provide estimates for different quantities; the lat
ter only deals with the initial state, whereas the former depends on both the 
initial and final states. For example, inside a lobe, one can find both attractive 
and repulsive initial configurations ( cf. Fig. 1) and one cannot decide whether 
or not a junction can be formed. What is likely to happen is discussed in the 
next sections but, at this step, useful information can be drawn from this appar
ent indeterminacy. Since the force is the derivative of energy with respect to 
position, an initially repulsive interaction inside a junction lobe indicates the 
presence of a barrier to be overcome before reaching the final state of mini
mum energy. The physical origin of this barrier resides in the fact that the line 
tension opposes the bending of the dislocation lines under the effect of their in
teractions. With the collinear interaction, annihilation is predicted all through 
the reaction mapping because the self-energy balance is always favorable (ex
cept along the neutral lines). In contrast, as will be shown in Fig. 4 below, 
annihilation is not found to occur systematically. Thus, in this case, the effect 
of the repulsive barrier is the dominant one. In both cases, the calculations 
based on rigid dislocations cannot predict whether or not the elastic interac
tions are strong enough to overcome the line tension effects ( cf. Fig. 2 for the 
reaction of initially repulsive dislocations). 

Figure 2. Barrier overcomming for initially repulsive dislocations. Two repulsive dislocations 
are in presence. The strongest initial repulsion is at the center, where the lines are the closest. 
The lines tend to avoid each other. As they are pinned at their ends, the local rotations at 
the center can be sufficiently large to bring them locally into an attractive angular region and 
reaction becomes possible. Thus, the barrier to be overcome originates in the line tension, which 
opposes the bending of the lines. 
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According to Eq. (2), the barrier effect involves, like for the self-energy 
criterion, the angles (31 and (32 between the Burgers vectors of the two parent 
dislocations and the direction of intersection of their slip planes, but also the 
angle between the two slip planes (312• As a result, two configurations deter
mined from the self-energy criterion, the collinear interaction and one type of 
junction, become triply degenerate ( cf. Table 1 ). Then, the final number of pre
dicted configurations amounts to seventeen: twelve junctions, three collinear 
interactions, plus the self-hardening and dipolar interactions. 

4. DD SIMULATIONS OF JUNCTIONS AND 
COLLINEAR ANNIHILATIONS 

~2(rad) 

-1 

~I(rad) 
(b1) 

~2(rad) 

-I 

~l(rad) 
(b2) 

Figure 3. Simulation of the junction mappings b1 and 1}2, showing one period between -1r 
and +1r, for the two angles </J; between the dislocation lines and the intersection of the slip 
planes. Filled rectangles : junctions; crosses : crossed-states; empty circles : repulsive states. 
The predictions of the two simplified models ( cf. Fig. I) are superimposed to these results. 

Out of the ten types of junctions determined from an energetic argument, 
one, labeled 5 in the line "self-energy" of Table 1, is split into three config
urations corresponding to three different angles between the interacting slip 
planes (cf. the angles (312 associated with the matrix coefficients ai labeled 5, 
8 and 11). As shown in Fig. 1, the corresponding reaction mappings, b1 , b2 

and b3 , have identical junction lobes but different boundaries for neutral in
teraction force. These analytical results are now compared with those of DD 
simulations, which involve a rigorous treatment of the self-energy and self
interactions of the interacting segments, using the same methodology as in [8]. 
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The result is illustrated in Fig. 3 by two reaction mappings b1 (;312 = 1r / 3) and 
b2 (;312 = rr /2) for the matrix coefficients 5 and 8. 

For the mapping b1, the elastic models predict rather well the boundaries 
between (attractive) crossed-states and repulsive states. Inside the lobes, one 
can see that the repulsive barriers can in a few cases prevent junction forma
tion, whereas some junctions are found outside the lobes in attractive regions. 
For the mapping b2 , the simplified analytical approach yields only qualitative 
predictions. The reason is that, with slip planes making an angle f3I2 = rr /2, 
the interactions between the two dislocations are weak and the results become 
more sensitive to other effects, especially line tension effects. 

The collinear annihilation (energy case 4 in Table 1) is also split in three 
different cases (corresponding to ai = 4, 7 and 10 and to the mappings nl, n2 
and !13). Then, as mentioned above, the mappings are essentially driven by the 
barrier effect. The influence of the additional angle (312 is rather strong, as can 
be checked by comparing the two simulated mappings n1 (;312 = 7r /3) and n2 
((312 = rr /2) of Fig. 4. 

cj)2(rad) 

- I 

cj) l (rad) 
(!ll) 

cj)2(rad) 

Figure 4. Simulation of the collinear anihilation mappings 0 1 and 0 2 . Same conventions as 
in Fig. 3 

In addition to the periodicity common to all mappings ( cf. section 2), the 
collinear interactions have one additional symmetry, with respect to the two di
agonals, due to invariance with respect to an exchange between the two angles 
¢1 and ¢2 and because the Burgers vectors b1 and b2 are collinear (see Fig. 4). 
A similar symmetry, but with respect to one diagonal only, can also be found 
for junctions when {31 = {32 , as is the case for mappings (a), (c), (g), (h) and 
(j) in Fig. l. Finally, when the slip planes are perpendicular and one of the 
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two f3i is zero (cases b2 with (32 == 0), the other axis ¢>i is also a symmetry axis 
for the mapping. For the collinear annihilations Q 2 (with (31 == (32 == 0) there is 
symmetry with respect to the two axes. 

5. HIGH TEMPERATURE HARDENING 

DD simulations have now reached a stage where they are able to tackle 
such questions as dislocation microstructure and forest hardening in bulk single 
crystals [10, 11]. As far as forest hardening is concerned, however, to obtain a 
quantitative insight into this mechanism it is necessary to take into account the 
multiplicityofthe active slip systems and the variety of their interactions. This 
is formally achieved for fcc metals, as well as for bee metals above the athermal 
temperature, by first defining an interaction matrix for the pair interactions 
between slip planes. The coefficients of this matrix are, for bee metals, those 
given in Table 1-a. They are now written in the form asu, as they express the 
hardening of system (s) by a density of forest dislocations pu in system (u). In 
a second step, the critical stress for the onset of plastic flow in system ( s ), rg, 
is written [12]: 

(3) 

This relationship is valid only in conditions where forest interactions govern 
the flow stress. It does not apply to bee crystals in the low temperature domain, 
i.e., in the presence of a lattice friction. The effective connection between the 
mesoscopic scale and the continuum approaches of plasticity provided by Eq. 
(3) is now established for fcc crystals. Of the six coefficients needed to de
scribe forest hardening in fcc crystals, five were measured by DD simulations 
and found in good agreement with experimental results. The sixth one corre
sponds to the much less well-known collinear interaction. Actually, it is found 
to be, by far, the strongest of all and this may have several interesting conse
quences that are now under investigation [13]. 

Regarding bee metals, the current state of affairs is less advanced. A first 
step was carried out in the present work by defining the symmetries of the in
teraction matrix. The latter can be split into three sub-matrices, one for the in
teractions between 112<111>{ 110} systems, one for those of 112<111>{ 112} 
systems and the last one for the mixed interactions between the two sets of 
systems. The next step, which is under way, consists in measuring the seven
teen related matrix coefficients. Preliminary results on the interactions between 
1/2< 111 >{ 110} systems confirm, in this case too, the very large strength of the 
collinear interaction as compared to other reactions. As there are three types 
of collinear interactions in bee crystals, in contrast to fcc crystals where there 
is only one, their respective strengths remain to be checked. 
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6. CONCLUSION 

The present study establishes the symetries of the interaction matrix be
tween slip systems in bee crystals, assuming that slip takes place in { II 0} and 
{ II2} planes. Seventeen different types of interactions were determined, one 
for self-hardening, one for the dipolar interaction, twelve for junction forma
tion and three for the collinear interaction. In some cases, and notably for the 
collinear interaction, both elastic models and DD simulations show that rather 
different reaction mappings are obtained when the angle between the interact
ing slip planes is modified, all other geometrical parameters being fixed. This 
may entail different strengths for the corresponding interactions. Measuring 
the coefficients of the interaction matrix is now the next step leading to a phys
ical model for the strain hardening of bee crystals at high temperatures. 
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Abstract A framework for analysis of crack growth under cyclic loading conditions 
is discussed where plastic flow arises from the motion of large numbers 
of discrete dislocations and the fracture properties are embedded in a co
hesive surface constitutive relation. The formulation is the same as used 
to analyze crack growth under monotonic loading conditions, differing 
only in the remote loading being a cyclic function of time. Fatigue, i.e. 
crack growth in cyclic loading at a driving force for which the crack 
would have arrested under monotonic loading, emerges in the simula
tions as a consequence of the evolution of internal stresses associated 
with the irreversibility of the dislocation motion. The predictions for 
the qualitative features of fatigue crack growth are in remarkable accord 
with experimental observations. 

Keywords: Dislocations; mechanical properties, fatigue, plastic; computer simula
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1. INTRODUCTION 
The essence of fatigue crack growth is that it occurs even when the 

driving force for crack growth is much smaller than what is needed for 
the same crack to grow under monotonic loading conditions. Consider 
a cracked solid subject to loading corresponding to a stress intensity 
cycling between Kmin and Kmax, fatigue crack growth occurs even when 
K max is much smaller than the value of K needed for the same crack to 
grow under monotonic loading conditions. Typically, there is a threshold 
value of b.K1 = Kmax - Kmin below which cracks do not grow at a 
detectable rate. Above this threshold value, in the regime where the 
amount of crack growth per cycle, dajdN, is on the order of a few 
lattice spacings, there is a steep increase in daj dN with b.K1. For larger 
values of b.KI, the increase in dajdN becomes less steep and the Paris 
law regime [1] is entered where da/dN ex (b.K1)m, see [2]. 

Fatigue requires irreversibility. Fatigue cannot occur in an elastic 
system because the state of the system then only depends on the current 
value of the loading parameter and not on its history; crack growth in 
an elastic system either occurs in the first cycle or it does not occur 
at all. Dissipative mechanisms are key for fatigue. As a consequence, 
for crystalline metals, both the plastic flow mechanism and the process 
of material separation play important roles in determining the fatigue 
behavior. 

As noted by Cleveringa et al. [3], dislocations play a dual role in the 
fracture process under monotonic loading. On the one hand, plastic flow 
caused by the motion of dislocations delays crack initiation and increases 
the resistance to crack growth. On the other hand, it is the local stress 
concentrations associated with discrete dislocations in the vicinity of 
the crack tip that leads to stress levels of the magnitude of the cohesive 
~trength, causing the crack to propagate. This dual role is key for fatigue 
in crystalline metals - the dissipation from dislocation motion provides 
the irreversibility, while the high stresses associated with the dislocation 
structures that form near the crack tip precipitate crack growth. 

Here, we present results from our series of analyses of crack growth un
der cyclic loading conditions in Deshpande et al. [4, 5, 6, 7]. Plastic flow 
arises from the motion of large numbers of discrete dislocations, which 
are treated as singularities in an isotropic elastic solid. The material 
model is independent of the presence of a crack. The fracture properties 
of the material are embedded in a cohesive surface constitutive relation, 
[8], so that crack initiation and crack growth are stress as well as defor
mation driven. A key aspect of the formulation is that the plastic stress 
versus strain response and the evolution of the dislocation structure, as 
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well as crack initiation and growth are outcomes of the solution of the 
boundary value problem. Furthermore, the only distinction between an 
analysis of monotonic crack growth and fatigue crack growth is that in 
fatigue the remote loading is specified to be an oscillating function of 
time. 

2. THEORY 
A brief overview of the theoretical framework is presented; background 

and further descriptions are given in [4, 5, 6, 7] and references cited 
therein. Initially, the crystal is assumed to be free of mobile disloca
tions, but to contain a random distribution of dislocation sources and 
point obstacles. The rules for dislocation nucleation and motion are 
based on those proposed in [9] and use the Peach-Koehler force as the 
driving force. The sources mimic Frank-Read sources and generate a 
dislocation dipole when the magnitude of the Peach-Koehler force ex
ceeds a critical value for a specified period of time. The obstacles, which 
represent small precipitates or forest dislocations, pin dislocations and 
release them once the Peach-Koehler force attains a specified obstacle 
strength. Annihilation of two dislocations with opposite Burgers vec
tor occurs when they approach each other within a critical annihilation 
distance. Dislocation motion is assumed to occur only by glide with no 
cross slip. The magnitude of the glide velocity v(k) of dislocation k is 
taken to be linearly related to the Peach-Koehler force j(k) through the 
drag relation j(k) = Bv(k). There is no special dislocation nucleation 
from the crack tip. 

In [4, 5, 7], loading is prescribed in terms of displacements correspond
ing to the isotropic elastic mode I singular field remote from the crack 
tip while in [6] remote uniaxial tension is imposed. There is a single 
cohesive surface [8] that lies in front of the initial crack. At each time 
step, an increment of the remote loading (the mode I stress intensity fac
tor K1 b.t for small scale yielding) is prescribed. At the current instant, 
the stress and strain state of the body is known, and the Peach-Koehler 
forces on all dislocations can be calculated. On the basis of these forces 
the dislocation structure is updated, which involves the motion of dis
locations, the generation of new dislocations, their mutual annihilation, 
their pinning at obstacles, and their exit into the open crack. After this, 
the new stress and strain state can be determined. 

The field quantities, i.e. the displacement Ui, the strain Eij and the 
stress O"ij are determined using the superposition method in [10], 
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The C) fields are the superposition of the singular fields of the individual 
dislocations in their current configuration while the n fields represent 
image fields that correct for the actual boundary conditions. The sum 
of the n and the n fields in (1) gives the solution that satisfies all 
boundary conditions. Since the C) fields are smooth in the region of 
interest, the boundary value problem for them can conveniently be solved 
using a finite element method. 

Both reversible and irreversible cohesive traction-displacement rela
tions are used. As the cohesive surface ahead of the crack separates, 
the magnitude of the traction increases, reaches a maximum and then 
approaches zero with increasing separation. In a vacuum, there is no 
oxidation of the newly formed surface and it is expected that this rela
tion is followed in a reversible manner. When the newly formed surfaces 
oxidize, the cohesive relation will not be followed in a reversible manner. 
The effect of the formation of the oxide layer and the subsequent sur
face contact during unloading is modeled by specifying unloading from 
and reloading towards the monotonic cohesive law to occur according 
to a linear incremental unloading relation but with no degradation in 
strength with continued cycling. 

A reference stress intensity factor K 0 is introduced that provides a 
convenient normalization for the imposed stress intensity factor. It is 
defined in terms of the work of separation of the cohesive surface, ¢n, 
by 

K = J E¢n 
0 1 2 ' -v 

(2) 

Crack growth in an elastic solid with the given cohesive properties takes 
place at KI/ Ko = 1. 

3. DISCRETE DISLOCATION PREDICTIONS 
In the small scale yielding calculations in [4, 5, 7], the applied stress 

intensity is varied between Kmin and Kmax with a rather high loading 
rate to shorten the computation time. 

Fatigue threshold results from [4], summarized in Fig. 1. Crack growth 
under cyclic loading occurs if and only if (i) the cyclic amplitude !1K1 

exceeds a critical value !1K;h, and (ii) the maximum stress intensity 
Kmax exceeds a critical value K:Oax· 

With a reversible cohesive constitutive relation, which models condi
tions in a vacuum, this can be rationalized as follows: For sufficiently low 
Kmax, no dislocations are generated and the system is elastic. Therefore, 
for fatigue to occur with a reversible cohesive law, Kmax must exceed 
some minimum Kmax denoted by K:Oax· For Kmax > > K:Oax' interac-



Figure 1. 
From [4]. 
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Discrete dislocation predictions for the variation of D.Kth with Kma.x· 

tions within the now dense dislocation structure act to retard dislocation 
motion. Accordingly, a minimum cyclic stress intensity factor range 6.K r 
is needed to induce dislocation motion during unloading and reloading. 
Thus, in this regime, a critical 6.K;h is needed. For an irreversible co
hesive relation, which models conditions in an oxidizing environment, 
contact plays an important role [4]. 

da/dN (~.unicycle) 
10° 

10'1 da/dN V, dK~1 

""' 10'' -
• 

10'' 

• 
10~ 

•• aK'" r .. ' aK • .. ' 10 ' 

Figure 2. The cyclic crack growth rate da/dN versus !:.Kl/ Ko and t:.Krff / Ko for 
an interface crack. From [5] . 

The form of the log(dafdN) versus log(6.Kr) curve seen experimen
tally, with a threshold and a Paris law regime, is captured in Fig. 2. The 
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effective stress intensity range D.Keff responsible for crack growth is de
fined by Kmax - Kop where Kop is the stress intensity factor at which 
the crack faces first separate at the current location of the crack upon 
reloading. The effect of crack closure is more pronounced at the lower 
values of D.K1 so that D.Kth is sensitive to the load ratio R = Kmin/ Kmax 
and D.K:: is much less than D.Kth. 

(b) 
t'la..Jav 
0.8 
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0.4 

0.2 

10' 10' 
a().lm) 

a...,.fav 
1.2 
I 
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0.6 

0.4 

0.2 

10' 

Figure 3. The fatigue threshold, Lluth/ay, versus crack length a (corresponding 
values of Umax/oy are shown on the right axis). For long cracks !::.Kth ~ 0.86Ko with 
deviation from !::.K-governed behavior seen for crack lengths less than 300pm. From 
[6]. 

The results of fatigue threshold calculations carried out in [6] for ge
ometrically similar edge cracked specimens are shown in Fig. 3 which 
are identified by the edge crack length, a. For crack lengths less than 
300p.m, the deviation from D.K -governed fatigue increases with decreas
ing crack size, with the fatigue threshold for smaller cracks tending to 
be D. a rather than D.K -governed. A consequence is that crack growth 
under cyclic loading conditions occurs even when the remote applied 
Kmax is less than the stress intensity Ko at which the crack would grow 
in an elastic solid. However, values of Kmax/ Ko < 1 are consistent with 
a max/ ay < 1 for small cracks. To illustrate this, neglect constants of 
order unity and write the ratio Kmax./ Ko as 

Kmax ~ (amax) ~ = amax ~ . 
Ko ay jEacoh/a} ./Eacoh 

(3) 

Here, acoh is the cohesive strength, ay is the yield strength and dn 
is a cohesive characteristic length such that the work of separation is 
ex: acohdn. For a 10 micron crack size, the calculations give a value of the 



85 

fatigue threshold of amaxlay ~ 0.5. With Elay ~ 103 , acohlay ~ 10, 

and alon ~ 104, (3) implies Kmaxl Ko ~ amaxlay < 1. Given amax 1 the 
value of Kmaxl Ko in (3) is independent of the flow strength ay. Also, 
Kmaxl Ko in (3) only depends on acoh and On through their product, 
and the work of separation is of the order of 1 J 1m2 for a wide range of 
materials. 

10~ 

••• • 

.a. o,lb = 3 & ~,l<avbl = 68 

• 
• Fla...,= 140 & <11,/(ayb) = 68 

• 

e Fla..,. = 140 & li,lb = 3 (E = 70 GPa)) 

+ Fla..,.= 140 & 6,/b = 3 (av = 60 MPa) 

• 

0.0005 

<1/E 
0.001 0 0015 0.002 

Figure 4. Discrete dislocation predictions showing that similar to experiment, 

t.K:~ is relatively independent of the yield strength uy and scales approximately 

linearly with Young's modulus E. From [7] . 

At least in the near-threshold and Paris law regimes, fatigue crack 
growth rates are relatively independent of the yield strength of the ma
terial but scale with the elastic modulus. This rather surprising observa
tion has been borne out in experimental studies on a variety of metallic 
alloys. Results for IlK~~ from [7) are shown in Fig. 4. Consistent with 
experimental data, the calculations show that IlK~~ IE is rather inde
pendent of the normalized strength ay IE over approximately a decade. 
The results in [7] show that the observed relative lack of dependence of 
the fatigue threshold in ductile metals on yield strength emerges from a 
cohesive fracture model with the stress concentration arising from near 
crack tip organized dislocation structures. In contrast, conventional con
tinuum plasticity models predict that fatigue crack growth is sensitive 
to the value of the yield strength. 

4. CONCLUSIONS 
Results of plane strain analyses of crack growth under cyclic loading 

conditions have been discussed where plastic flow arises from the mo
tion of large numbers of dislocations. The only difference between the 
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analyses for monotonic and cyclic crack growth is in the specification of 
the applied loading. 

• Crack growth occurs under cyclic loading conditions when the driv
ing force is smaller than what is needed for the crack to grow under 
monotonic loading conditions. 

• The results in Refs. [4, 5, 6, 7] show that the fatigue threshold, 
Paris law behavior, striations, the accelerated growth of short 
cracks as well as the observed scaling of the fatigue threshold and 
of fatigue crack growth rates in the near-threshold regime emerge 
naturally from a unified framework where plastic flow arises from 
the motion of large numbers of discrete dislocations and the frac
ture properties are embedded in a cohesive surface constitutive 
relation. 
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A CRYSTAL PLASTICITY ANALYSIS FOR 
ACCUMULATIONS OF GEOMETRICALLY 
NECESSARY DISLOCATIONS AND DIPOLES 
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Abstract: In this paper, generalized geometrically necessary (GN) dislocation density 
and GN incompatibility are newly defined by extending Krliner's dislocation 
density and incompatibility tensors. A new model of dislocation-crystal 
plasticity coupling a deformation field with a dislocation field is developed by 
introducing these dislocation densities into the hardening modulus matrix of 
crystal plasticity through the Bailey-Hirsch relation. The corrected Seeger 
model for the dislocation mean free path is extended to the third stage of strain 
hardening. Moreover, a finite element simulation is carried out for an f.c.c. 
single crystal under plane strain tension. It is numerically predicted that the 
shear hand can be regarded as a subgrain. 

Key words: Dislocation-crystal plasticity, Geometrically necessary dislocation density, 
Incompatibility, Dipole, Geometrical nonlinearity, Dislocation mean free path, 
Finite element method, Shear band, Subgrain. 

1. INTRODUCTION 

From a microscopic viewpoint, plastic deformation and work-hardening 
of crystals are caused by dislocation motions and dislocation accumulations, 
respectively. Recently, crystal plasticity studies with the dislocation 
inforrnation have actively been done by many researchers [1]-[5]. However, 
in the conventional theories using geometrically necessary (GN) dislocation 
density, the GN dislocation generating long-range stress fields can not 
express other crystal defects such as dislocation pairs and so on. A method 
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adding statistically stored (SS) dislocation density to the GN dislocation 
density is proposed to represent these defects associated with short-range 
stress fields [6]. In this case, two kinds of quantities belonging to different 
categories, i.e., geometry and statistics are mixed in a hardening law of 
crystal plasticity. Therefore, when we use the GN dislocation density, it is 
desirable to express all defects as geometrical quantities in a uniform manner 
by introducing some geometrical quantity which plays a role of the 
dislocation density associated with short-range stress fields instead of the SS 
dislocation density. According to the differential geometry of crystal defects, 
dislocation density and incompatibility tensors correspond to the GN 
dislocation and the other crystal defects, respectively. Not only dislocation 
density but also incompatibility should be taken into account from the 
geometrical viewpoint of crystal defects. 

In this paper, a multiscale model of crystal plasticity is proposed by 
considering the GN dislocation density and incompatibility from a 
completely geometrical standpoint. Geometrical nonlinearities of these 
defects are introduced into Kroner's dislocation density and incompatibility 
tensors in order to predict large deformations of a crystal precisely, and the 
generalized GN dislocation density and GN incompatibility are newly 
defmed. A new model of dislocation-crystal plasticity coupling a 
deformation field with a dislocation field is developed by introducing these 
dislocation densities into the hardening modulus matrix of crystal plasticity 
through the Bailey-Hirsch relation. A transition of stress response to the 
third stage of the hardening curve of a single crystal is represented by 
increasing the dislocation mean free path after start of dynamic recovery. 
Furthermore, a finite element dislocation-crystal plasticity simulation for an 
f.c.c. single crystal under plane strain tension is carried out in order to verity 
the validity of this model. Distributions of GN dislocation density and GN 
incompatibility are visualized. It is numerically predicted that the shear band 
can be regarded as a subgrain. 

2. DEFINITIONS OF DISLOCATION DENSITIES 

2.1 Dislocation density and incompatibility 

Kroner [7] defines a dislocation density tensor aK and an incompatibility 
tensor 1J K , such that 

aK =-curlr 

1JK = -(curl~)s 

(1) 

(2) 



where ( )s denotes the symmetric part of a second order tensor and r the 
slip tensor. The incompatibility tensor implies almost all crystal defects other 
than dislocation, i.e., dipole, vacancy and disclination. When we compare 
the above theory with the theory of non-Riemannian plasticity [8], aK is 
equivalent to torsion of differential geometrical space, and expresses line 
defects such as a dislocation generating a long-range stress field due to 
isolated dislocations accumulating at an inclusion or on a grain boundary; 
while, Th corresponds to Riemann-Christoffel curvature, and expresses the 
other defects associated with the short-range stress field caused by latent 
obstacles such as forest dislocations. The following equations are obtained in 
consideration of geometrical nonlinearities originated in a large deformation 
of a crystal [9]. 

aK =-curly+2gradrxrs 

TJ K = -(curl a~ ) s + 2(grad «x X rs) s 

(3) 

(4) 

The second terms in the right side of Eq. (3) and Eq. (4) are geometrical 
nonlinearity terms. Usually, the dislocation density is defmed by the total 
length of dislocation line per unit volume. Although Krl>ner's dislocation 
density and incompatibility tensors express the crystal defects surely, it is 
not clear whether these can be directly treated as dislocation density or not. 
Then, in order to regard these tensors as two types of dislocation densities in 
the same dimension, we defme new dislocation density tensors, extending 
Krl>ner's dislocation density and incompatibility tensors so that these 
quantities are consistent with a concept of the "Geometrically Necessary 
quantities" proposed by Ashby [10]. 

2.2 Generalized GN dislocation density 

Figure 1 shows a local coordinate system (xPx2'x3) whose plane x1x3, 
axis x1 and unit basis coincide with a slip plane, a slip direction and crystal 
basis s<a) , m<al and t<a> = s<a> x m<a> , respectively. Ashby [ 1 0] defmes the 
edge and screw components of GN dislocation density as 

p)) ;:;arJax3 

p.f> ;:;....:arJax1 

(5) 

(6) 

where yand b denote the slip and the magnitude of the Burgers vector. In 
the local coordinate system, since nonzero component of slip tensor r is 
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Figure I. A local coordinate system and Figure 2. Distribution ofGN 
crystal bases dislocation density 

only r = rl2 ' two components of the dislocation density tensor remain, such 
that 

aKUHI ="dy!"dxJ 

aKU)tJ =-dy! "dx, 

From Eqs. (5)-(8), GN dislocation density can be extended to 

We may call a the generalized GN dislocation density. 

2.3 GN incompatibility 

(7) 

(8) 

(9) 

The number of edge dislocations n. piercing the plane x1x2 in length 
Llx1 on a slip plane is n, = I Ll.x1 a. , where I and a. are the distance of two 
adjacent slip planes and the density of edge dislocation, respectively. On the 
other hand, dislocation dipoles form a couple of positive and negative edge 
dislocations whose location is shown in Fig. 2(a). Therefore, the number of 
dipoles nd existing in domain Llx1Lix2 is equal to the number of dipolarized 
edge dislocations existing in domain /Lh;. Noting that the dipoles are 
formed in the region where the sign of the edge dislocation density changes 
from positive to negative as in Fig. 2(b ), we may write the positive edge 
dislocation density in the dipoles as Lla. I 2 because the difference of edge 
dislocation density Lla, implies the density of a pair of dipolarized edge 
dislocations. Hence, the number of dipolarized positive edge dislocation nd 
is expressed as 



-/A_Liae nd- "-"~--
2 

(10) 

In the same way, the dipole density in domain Llx1Llx2 is written in the 
following form by use ofEq. (10). 

(11) 

If we defme ad in the limit, the dipole density in infmitesimal volume 
element is defmed by 

(12) 

Component 1'JK33 of the incompatibility tensor in Eq. (4) coincides with 
aK 13 •2 in Eq. (12). Therefore, the incompatibility tensor is extended to the 
following form. 

(13) 

We may call 17 the geometrically necessary incompatibility (GN 
incompatibility), since 11 exists at a local point in a crystal at which the 
gradient of dislocation density exists. 

2.4 Component of dislocation densities for the plane 
strain condition 

Here, we assume that slip r is constant in direction x3 in Fig. 1 for the 
plane strain condition. Since the gradient of slip in direction x3 is always 
zero, the densities for a slip system in Eq. (9) and Eq. (13) are described as 

(14) 

(15) 

where ()<a> denotes a quantity for the slip system a. In Eq. (14), the 
component of edge dislocation density a! a> is given by 
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a(a) =_.;_,(a) _.;_,(a)_,(a) 
e b f.l b f,2 r (16) 

In Eq. (15), TJ~:> denotes the pair of positive and negative edge dislocations 
on a different slip plane (dipole). This component is expressed by 

I 
17(a) = -a(a) + za<a)ra) 

de 2 e,2 e.I (17) 

Additionally, we describe the norms of the generalized GN dislocation 
density and GN incompatibility as 

p~a) =llua)ll 
p~a) = 111](a) II 

3. DISLOCATION-CRYSTAL PLASTICITY 
THEORY 

(18) 

(19) 

A scheme of crystal plasticity theory is the same as from Peirce et al. [ 11]. 
The evolution equation of flow stress g<a> for a crystal plasticity theory is 
usually adopted by 

(20) 

where hap is the hardening modulus representing the interaction of slip 
systems. In the same fashion to Ohashi [1], we differentiate Bailey-Hirsch's 
relation extended to multislip systems with respect to time and use the 
Orowan equation. Comparing Eq. (20) with the result, we fmd the hardening 
moduli hap as 

(21) 

where a and c are the numerical factors of the order of 0.1 and 1, and /J is 
the elastic shear modulus. Matrix nafJ expresses the dislocation interaction 
between different slip systems [1]. The dislocation density p<P> and 
dislocation mean free path L<fJ> are introduced into the hardening moduli. 



We express dislocation density p<Pl by adding a norm of the GN 
incompatibility p~al instead of the SS dislocation density to the initial 
dislocation density p~/Jl and a norm of the generalized GN dislocation 
density p~al, such that 

(22) 

Note that p~a) is the first-order gradient of the slip and p~a) the second
order gradient of the slip, whereas higher-order gradients more than third
order are disregarded in the present paper. 

3.1 Dislocation mean free path 

Models of the dislocation mean free path L(a) are proposed variously. 
Ohashi [I] corrects the Seeger model in order to correspond to multislip. 
During single slip in the early stage of deformation, the mean free path is a 
constant and thus work-hardening curve is parabolic. This type of 
deformation arises in the first stage of hardening of a single crystal. After the 
onset of multislip, the mean free path decreases with increase of slip and the 
stress-slip curve becomes linear. This region is the second stage of the 
hardening curve. The transition from the first stage to the second stage is 
expressed by Ohashi [I]. However, this model cannot represent the three
stage hardening, namely the third stage in the large deformation is ignored. 
In the third stage, the dislocation mean free path should increase again due to 
dynamic recovery. In this paper, we attempt to extend the corrected Seeger 
model to the three-stage hardening model of the single crystal as 

A 

y-(y· -AIL<;'l) 

~a) +~(L~a) -~a)){l-cos( 2n r~:·· J }} 
L~al (y> r·· + r, I 2) 

:Stage I 

:Stage II 

:Stage Ill 

(23) 
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where L~al is the initial dislocation mean free path, r· the value of 
beginning of multislip, A a material constant, ~a) and r·· the values of 
L(a) and y when the third stage starts and y the summation of Ira) I· 
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4. NUMERICAL ANALYSIS 

In the present simulation, an f.c.c. single crystal of aluminium is assumed, 
and plane strain condition is employed. Asaro's 2-slip model is used in this 
analysis. The initial aspect ratio of the specimen is LIW=3, and the initial 
width is W=l.Omm. Material constants and numerical parameters used here 
are E=60.84GPa, v =0.3, p~a> =0.5Jm12, L~a> = 500J.UI1, A =l5Jlm, 
fj =25.6nm, 'fo =IMPa, m=0.005, Yo =0.00ls"1, r* =0, r*. =0.1, r, =0.3, 
a=0.3 and c=3. 

Figure 3 and Fig. 4 show the distributions of slip, GN dislocation density 
and GN incompatibility with the deformed meshes at u/L=0.2 where u 
denotes the end displacement of specimen. The shear band is observed in Fig. 
3. From Figs. 3(a), (b) and (c), the values of the slip, the GN dislocation 
density and the GN incompatibility are high along the shear band. Figures 
4(a), (b) and (c) represent the results calculated without the GN 
incompatibility, the geometrical nonlinearities and the dynamic recovery, 
respectively. We find that the shear band is not formed in these cases. The 
disappearance of shear band is considered to be due to the neglect of GN 
incompatibility. These results suggest that, in a large deformation analysis 
with strain localizations, it is necessary to introduce the three stage 
hardening into the mean free path model and the geometrical nonlinearities 
into the dislocation density and incompatibility. 

The resolved shear stress versus slip curves are shown in Fig. 5. Since the 
crystal orientation inducing double slip from the initial state is used, the first 
stage does not appear in the hardening curve. According to Fig. 5, work
hardening begins from the second stage first, and it changes to the third stage 
after that. In the curve (iii) of Fig. 5, the value of dislocation density 

-~ . ' 

(b) GN dislocation 

(c) GN incompatibil ity 

Figure 3. Distribution of slip and 
dislocation densities 

(a) Without GN incompatibility 

....... I • 

. ' 
' 

(b) Without geometrical nonlinearities 

(c) Without stage ill 

Figure 4. Distribution of slip 



becomes large and the resolved shear stress increases with the increase of 
slip. The other curves express a similar work-hardening although the value 
of slip is small. Comparing curve (i) with that of an experimental result in 
which the loading direction is almost the same as one of curve (i), we find 
that both results are well in agreement. Also, the other curves show 
hardening curves of the second and the third stages. 

Figure 6(a) describes schematic crystal orientations, in which the line 
segments correspond to the slip planes. The rotation angles of the crystal 
orientation are about 1 0" around the shear band, and in other domain where 
the strain localization is not observed are in the range of - 3" to 3" . These 
results predict that the small angle tile grain boundary is formed between the 
shear band and the domain apart from the shear band. Figure 6(b) shows the 
schematic accumulations of dislocations. The black and gray symbols denote 
the edge dislocations and the positive and negative dipoles, respectively. The 
positive and negative edge dislocations accumulate respectively on the upper 
and lower boundaries of the shear band. Therefore, the shear band can be 
regarded as an induced subgrain with a small angle tilt grain boundary 

0 
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caused by large strain. This indication is also supported by the following fact. 
The rotation angle of crystal orientation versus elongation curves are shown 
in Fig. 7. The rotation of the crystal orientation at the center of the shear 
band (iii) is larger than the other domain. Comparing curve (iii) with Fig. 8 
which shows the load versus elongation curve, the elongation percentage of 
the bifurcation point in Fig. 8 almost coincides with that of the point at 
which the rotation angle starts to increase in curve (iii) of Fig. 7. 

5. CONCLUSIONS 

We propose a new dislocation-crystal plasticity model by defming the 
generalized GN dislocation density and GN incompatibility. Finite element 
dislocation-crystal plasticity simulations for an £c.c. crystal are carried out. 
Distributions of dislocation densities are visualized and the validity of this 
model is discussed. The results obtained here are summarized as follows. 
(1) TheGN incompatibility is defined by use of the incompatibility tensor, 

the distance of two adjacent slip planes and the magnitude of Burgers 
vector. 

(2) In large deformation analyses with strain localizations, it is necessary to 
consider not only the GN dislocation density but also GN 
incompatibility, and to introduce geometrical nonlinearities into 
dislocation density and incompatibility. Moreover, the model of 
dislocation mean free path should be extended to the third stage of strain 
hardening. 

(3) The shear band is regarded as a subgrain induced by large strain. 
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A NEW MODEL OF SCALE DEPENDENT 
CRYSTAL PLASTICITY ANALYSIS 

Tetsuya Ohashi 
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Abstract: Crystal plasticity analysis of slip deformation in metal microstructure enables 
one to calculate densities for the statistically stored (SS) and the geometrically 
necessary (GN) dislocations, and such densities are utilized to evaluate the 
critical resolved shear stresses for slip systems. In this paper, we propose a 
new model, where the mean free path of moving dislocations is defined as a 
function of the densities for SS and also, GN dislocations, and the critical 
resolved shear stresses for slip systems are given only by SSDs. Scale 
dependent characteristics of GN dislocations is transmitted to the SSDs via the 
mean free path and finally, to the slip resistance of slip systems. Tensile 
deformations of six-grained multicrystal models whose average grain diameter, 
d, ranges from 0.1 to 500 f.-tiD, are analyzed with this new model and micro
and macroscopic aspects are examined. Plastic flow stresses increase almost 
linearly with J- 112 within the range, 500 > d > 1 J-Lm , showing the 
Haii-Petch relation, and this grain refinement effect is gradually reduced for 
finer microstructures. 

Key words: metal microstructure, crystal plasticity analysis, dislocations, scale dependent 
plasticity. 

1. INTRODUCTION 

Scale dependent characteristics of yield stress, plastic flow stress, or 
indentation hardeness of metal polycrystals are well known and they are 
summarized in the Hall-Petch type description: 
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where, a 0 and k are considered to be material constants, while d is a 

representative length of material's microstructure. A lot of efforts have 
been made to establish theoretical framework of solid mechanics that show 
material scale dependency and among them, a model by Fleck et al. (1994) 
induced a wider range of discussion. In their model, the critical resolved 
shear stresses of slip systems are modeled by the ordinary Taylor type 
expression but they introduced the geometrically necessary (GN) 
dislocations as well as the statistically stored (SS) ones into it. That is, 

(critical resolved shear stress) ex~ Ps + Pa 

where, p5 and Pc denote the densities of the SS and GN dislocations, 

respectively. Density increment of the SS dislocations is related to the 
increment of plastic shear strain and the mean free path of moving 
dislocations, while the density of the GN ones is related to the spatial 
gradient of the plastic shear strain on slip systems. The critical resolved 
shear stress reflects its scale dependent characteristics of the GN dislocations 
through the above expression. However, it is still open to discussion 
whether the above expression is valid and sufficient (for example, Weertman, 
2002, and Needleman and Gil Sevillano, 2003). 

In this paper, we propose a new model of scale dependent crystal 
plasticity analysis, where the mean free path of moving dislocations is 
defined as a function of the densities for SS and also, GN dislocations, and 
the critical resolved shear stresses for slip systems are given only by SS 
dislocations. Scale dependent characteristics of GN dislocations is 
transmitted to the SS dislocations via the mean free path and finally, to the 
slip resistance of slip systems. Tensile deformations of six-grained 
multicrystal models whose average grain diameter, d, ranges from 0.1 to 
500 11m, are analyzed with this new model and micro- and macroscopic 
aspects are examined. 

2. BASIC EQUATIONS 

Slip deformation is assumed to take place on { 111} crystal plane and 
in <110> crystal direction. The activation condition of the slip system n is 
given by the Schmid law; 

p<•lcr.. = o<•l, p<•l . iJ<•l 
,, '1 ij aiJ - , (n 1 ... 12) ' ' , (1) 

and, 
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(2) 

where, O"ij and e<•> denote the stress and the critical resolved shear stress on 

the slip system n, respectively. The slip plane normal v~n) and the slip 

direction b<"> define the Schmid tensor p<•> . Quantities with dot indicate 
I I} 

increments of them. Increment of the critical resolved shear stress is 
written as follows; 

(3) 
m 

Here, -y<m> denotes the increment of plastic shear strain on slip system m. If 
the deformation is small and rotation of the crystal orientation is neglected, 
the constitutive equation is written as follows (Hill, 1966), 

(4) 
m 

si;kl denotes elastic compliance. Summation is made over the active slip 

systems. 
Let us suppose that the critical resolved shear stress is given by the 

following equation (Ohashi, 1987, 1994); 

(5) 
m 

where, 80 denotes the lattice friction term, which is, in general, very small 

for fcc crystals, and p~m> denotes the density of SS dislocations that 

accumulate on the slip system m. Reaction between dislocations on slip 
systems n and m defines the magnitude of the interaction matrix o<•ml • 
Diagonal terms in o<nm> are unity and in the present study, we choose off 
diagonal terms to express pseudo-isotropic hardening character for every slip 
system1• p and b denote the elastic shear modulus and magnitude of 
Burgers' vector, respectively. a is a numerical factor, which is close to 0.1. 

1 To ensure the existence of the inverse of the hardening coefficient, which will be 
given in eq. (11 ), we also introduce a numerical "noise" of the order of 10"4 in 
n<•m). 
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Increment of the SS dislocations is given as follows; 

·(n) _ C/ ·(%) 
Ps - bL(n)' (6) 

where, c is a numerical coefficient of the order of 1. L<•l denotes the mean 
free path of dislocations on slip system n and, in this paper, we use the 
following model for it; 

c 
L(n) = -;========= (7) 

m~n 

where, c* is a material constant of the order of 10 - 100 (for detailed 
discussion, Kuhlmann-Wilsdorf, 1989) . Parameters s and g are introduced 
to control the analysis and 0:::; s:::; 1, 0:::; g :::; 1.2 

The edge and screw components of the geometrically necessary 
dislocations are obtained from the strain gradients (Ohashi, 1997); 

1 ()'V(n) 
(n) 1 

PG.edge = -b f)~(n) ' 
(n) 

PG,screw 

1 a1 <•> 
b ()((n) • 

(8) 

Here, ~<·> and (<•> denote directions parallel and perpendicular to the slip 
direction on the slip plane, respectively. Norm of two components defines 
the scalar density for the GN dislocations, 

( (n) )2 
PG,edge 

( (n) )2 + PG,screw (9) 

Evaluation of the edge and screw components for the GN dislocations 
enables one to calculate the tangent vector t<•> of the dislocation line 
segments (Ohashi, 1999); 

l(n) - _1_( (n) ' b(n) + (n) . b(n) X (n)) (10) - liP~) II PG,screw PG,edge V • 

2 A similar approach was made by Acharya and Beaudoin (2000). In their model, 
total dislocation density was given by geometrically and statistically determined 
densities; mean free paths for the former quantity was determined by the slip plane 
lattice incompatibility and the latter by density of the total forest dislocations. 
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Data for GN dislocations are obtained for each finite element and then, we 
can draw line segments of dislocations in three-dimensional space. We will 
draw one line segment at the center of each element. Direction of the line 
segment is given by eq. (10) and its length and thickness are determined by 

the density norm IIP~n) II· 
The strain hardening coefficient in equation (3) is given by the 

following equation; 

h<nm> = ~ac,u o<nm> I [ L<m> ~]' 

and by substituting eq. (7) into eq. (11), we have 

h(nm) = ac,u o<nm) 
2c· 

L(s· PYl + g·IIP2:lll) 
k.•m 

(11) 

(12) 

Table 1. Euler angles for crystal grain 1-6, and their Schmid factor for the 
primary and critical slip systems. 

grain 

I 
2 
3 
4 
5 
6 

Euler angle 
" e ¢ 

85.5 
80.0 
53.3 
88.5 
56.3 
68.1 

24.0 
16.0 
13.6 
35.6 
17.7 
5.71 

212.9 
101.4 
215.3 
182.9 
219.4 
213.1 

Schmid factor 
primary critical 

0.4968 
0.4881 
0.4632 
0.4665 
0.4747 
0.4426 

0.4862 
0.4775 
0.4416 
0.4593 
0.4397 
0.4398 

3. RESULTS AND DISCUSSION 

3.1 Microscopic aspects of slip deformation in 
six-grained multicrystals 

Figure l(a) shows the six-grained multicrystal model employed in this 
study. Ratio of the width (w), height (h), and thickness (d) of the specimen 
is w:h:d=5:15:1. We made nine specimens of similar shape but with 
different dimensions: the width w of the specimens are 0.1, 0.2, 0.5, 1, 2.5, 5, 
50, 100, and 500 f-tm. The average grain diameters d of the models are 
approximately equal tow. The models are divided into finite elements and 
their tensile deformations in y direction are analyzed by our crystal plasticity 
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(c) (d) 

Fig. I (a): Six-grained multicrystal model employed in this study and a thin foil 
region in the grain I. The foil is cut parallel to the primary slip plane. (b): 
crystal orientations. (c),( d): Development of GN dislocations on the primary 
system when the average tensile strain is 0.049 and 0.053 %, respectively. 

(a) (b) (c) (d) 
Fig.2 (a)- (d): Three-dimensional distribution of theGN dislocations on the 
primary system when the average tensile strain is 0.068 %. 

software code c/p 7. We use a fine mesh ( 4864 elements in total) for 
detailed study of microscopic aspects of slip at small strain range, and a 
coarse one (480 elements) to calculate macroscopic response of the whole 
specimen up to 20% strain. Elastic compliance data for Cu are used for the 
six grains and the initial dislocation densities for twelve slip systems are 
supposed to be lxl012 m-2 and c*=lOO in all the specimens. Crystal 
orientations are shown in Figure l(b) and Schmid factors for the primary and 
a secondary slip system are summarized in Table I. 

First, we examine slip deformation in detail by scale independent (s=l, 



(c) 

r 
i 

/ 

(d) 

Coarse mesh 

I r--__ 

(e) 

Fig.3 (a)- (d): Density distribution of theGN dislocations on the primary 
system when the average tensile strain is 0.08, 0.16, 0.32, and 0.4 %, 
respectively. The fine mesh is used. (e):Result obtained by the coarse mesh. 
The average tensile strain is 0.4%. 
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g=O) hypothesis. Figures l(c) and (d) show development of GN 
dislocations in a thin foil in the grain-1 at the very beginning of plastic slip 
deformation. The foil is parallel to the primary system and positioned as 
illustrated in Figure l(a). Viewing direction of Figs.l(c) and (d) is also 
given in Fig. I (a). When the average tensile strain is about 0.049%, slip 
deformation starts near a grain boundary triple junction. Segments of GN 
dislocations make up half loop shaped structures. As the deformation 
proceed (Figure l(d)), the loop shaped structure grows and dislocation 
pile-up is observed near the triple junction. The shape of GN dislocation 
segments in places far apart from the triple junction is rather straight. 
Figures 2(a)-( d) compare the structure of GN dislocations in different 
positions. Dislocation pile-ups at grain boundaries are commonly observed, 
but other features differ gradually from place to place. Figures 3(a)-(d) 
show growth of accumulation of GN dislocations when the average tensile 
strain is less than 0.4%. Not only grain boundary pile-ups, but also a 
formation of thin region of higher density growing straight from some grain 
boundary triple junctions are observed. The latter type of structure is 
supposed to be formed by many body interaction of crystal grains; 
interaction of at least three crystal grains contribute to the formation of this 
type of structure (Ohashi, 1989). Fig 3(e) shows the result obtained with 
the coarse finite element mesh, as a comparison to Fig. 3(d). Details of 
grain boundary pile-ups are not clear in the result by the coarse mesh, while 
densities at grain interior shows to be approximately equal to the ones 
obtained by the fine mesh. 

3.2 Scale dependent analysis 
We now analyze slip deformation with the scale dependent model by 

setting s=g=l in eq. (7). We use a coarse mesh, which enables us to 
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GN dislocations SS dislocations 

d = 5,tlm O.S,tl m d = 5,tJm 

(a) (b) (c) (d) 

Fig.4 (a),(b): Density distribution of theGN dislocations on the primary 
system when the average tensile strain is about 19%. The average grain 
diameter is 5 and 0.5 J..tm, respectively. (c),(d): Density distribution of the SS 
dislocations on the primary system when the average tensile strain is about 
19%. The average grain diameter is 5 and 0.5 J.tm, respectively. 

analyze the deformation up to 20% tensile strain in a realistic computer time. 
With this coarse mesh, some details of dislocation structure will be missing, 
on which we made a comparison in Figures 3(d) and (e). Effects of such a 
fine structure of dislocations on the macroscopic response of the specimen 
are not fully understood and a point of interest for further study. 

Figures 4(a)-(d) compare results for the GN and SS dislocations 
obtained for specimens with average grain sizes of 5 and 0.5 J..l.m. 
Specimens are deformed until the average tensile strain is about 19%. It 
should be noted that color bars used in these figures are different from each 
other and also from the one used in Figures 3. Densities of GN dislocations 

in the specimen of d =0.5 J..l.m is about 10 times as large as the ones in the 

d =5 J..l.m specimen, which is a logical consequence of the theory that we 
evaluate the GN dislocations. At the same time, densities of SS 

dislocations in the specimen of d =0.5 J..l.m is about 5 times as large as the 

ones in the d =5 J..l.m specimen and this cause higher flow stress for 
specimen with smaller grain size. 

Figure 5 shows nominal stress - strain curves for specimens with 
different mean grain diameters. Yield stresses for the all specimens are 
substantially the same, but the strain hardening is more significant for 
specimens with smaller grain size. Differences in strain hardening 

characteristics for specimens with d >50 J..l.m and scale independent models 
are negligibly small, while the strain hardening of the specimens with 
sub-micron grain diameter becomes remarkably high with the reduction of 
the mean grain diameter. Figure 6 shows the flow stress at 20% tensile 
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Fig.6 Hall-Petch plot of the flow stresses when the mean tensile strain is about 20%. 

strain plotted against 1 I .Jd . The flow stress increase almost linearly 

within the range d >I ~m , showing a Hall-Petch relation, and the slope 
gradually decreases when d is smaller than I ~m. If we apply the 
Hall-Petch relation for the flow stress data for the specimens of d >I ~m, 
the coefficient k is calculated as about 1.84 MPa-mm112 (=5.82xi0-2 

MPa-m 112). This is about a half of the data obtained by experiment for AI 
(Ono, et al., 2002). Number of crystal grains in the thickness direction is 
unity in the present multicrystal model, and mutual constraint of their 
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deformation is quasi two-dimensional. On the other hand, 
three-dimensional constraint of deformation will generally be taking place in 
polycrystals. This difference in mutual constraint between crystal grains 
will make a significant change in the strain hardening phenomenon and its 
scale dependency. This point should be explored in future work. Also, 
the parameter c* and the initial densities of SS dislocations will have effects 
on the strain hardening, as eq. (12) implies. Then, the effects of c* and the 
initial densities of SS dislocations and its non-uniform distribution on the 
strain hardening phenomenon are also issues of future studies. It is a well 
known phenomenon that the Hall-Petch relation fails for sub-micron and 
nanometer regions. A full understanding of its mechanism has not been 
obtained, although it is usually attributed to grain boundary sliding. It was 
shown in the present analysis that some mechanism other than grain 
boundary sliding can contribute to the decrease of the k value for the region 
d <1 f.A.m. Then, it seems to be interesting to examine how the strain 
hardening and the scale dependency occur in microstructures with 
sub-micron sizes. Scale dependent characteristics of the yield stress is 
another important point for further study. 

4. SUMMARY 

We made a new scale dependent crystal plasticity model, where not 
only the statistically stored but also the geometrically necessary dislocations 
contribute to the mean free path of moving dislocations. Obtained results 
showed an approximately linear relationship between the inverse of the 
square root of the mean grain diameter of multicrystal models and the flow 
stress for the range that the mean grain diameter was larger than 1 f.A.m. For 
smaller grain sizes, the grain refinement effect was gradually reduced. 
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Abstract A molecular dynamics simulation of mode I crack propagation is carried out. We 
propose a definition of the J integral in terms of atomistic information, i.e. site 
potential energy, atomic stress, gradient of displacement and so on, and call it 
J" parameter. The crack tip opening displacement, the crack extension, stress 
distribution and number density are evaluated in the vicinity of the crack tip. The 
relationship between the crack growth and J" parameter is discussed. 

Keywords: Computational mechanics, Fracture mechanics, Molecular dynamics, J integral, 
Amorphous iron, Mode I crack, Void nucleation, Crack propagation. 

1. INTRODUCTION 

Amorphous metals do not possess regular crystal structures. As a result, 
their fracture mechanisms are considered to proceed in completely different 
ways from the commonly accepted mechanism for crystals - i.e., arising from 
microscopic phenomena, such as the breaking of bonds between atoms, and 
the occurrence of dislocations near the crack tip, which are observed in the 
fracture processes of ordinary crystalline materials (Masumoto and Maddin, 
1975). 

In our previous studies on amorphous metal, we have demonstrated that the 
mechanical properties change significantly owing to damage from deformation 
(Nakatani et al., 1996b; Nakatani et al., 1997; Nakatani et al., 1998). The 
propagation of mode I crack was considered, and the characteristic manners of 
the fracture of amorphous metals were investigated (Nakatani et al., 2000a). 
Moreover, the quantitative evaluation of fracture near the crack tip was also 
studied (Nakatani et al., 2000b ). 

In this paper, for the first-step of the quantitative evaluation of fracture near 
the crack tip, an atomistic parameter Ja is proposed which corresponds to the 
conventional J integral. J integral is a representative mechanical parameter 
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commonly used as a criterion for crack propagation in continuum mechanics. 
It is shown that the mechanical state near the crack tip can be predicted quan
titatively using Ja. 

2. ANALYSIS MODEL AND METHODOLOGY 

2.1 Setting up for Cracked Model 
Molecular Dynamics (MD) method in which the behavior of atoms is as

sumed to be governed by classical mechanics based on the Newtonian equa
tions of motion, is applied to the problem of crack propagation in an amorphous 
metal. 

The cracked model is of a cylindrical region (radius r = 6.99 nm) , which 
consisted of22251 Fe atoms (Nakatani et al., 1996a). The displacements cor
responding to the field near a mode I crack tip are given to all atoms. A periodic 
boundary condition is applied along the crack front direction, z, with a periodic 
length of lz = 1. 76 run. The initial atomic arrangement of a cracked model is 
illustrated in Fig. 1. 

Propagation simulation is performed by letting the stress intensity factor, 
Kr, increase with time, where Kr is given by specifying the displacement of 
the boundary atoms. The initial stress intensity factor Kinit is 0.75 MPay'ill 
and it is updated by 0.0125 MPay'ill every 1000 steps. The time increment ~t 
is 2.0 X w- 15 s, the total step is 150000 (30.0 ps), and then the Kr is updated 
150 times from 0.75 to 2.625 MPay'ill. The values of the Ja parameter, crack 
tip opening displacement (CTOD) and number density are evaluated for each 
K1 level. The values are averaged using the values for the final 500 steps for 
each K1 level. 

2.2 Ja Parameter, CTOD, Crack Extension and Number 
Density 

Atomistic definition for Ja parameter, CTOD, crack extension and number 
density are given as following. (See also (Nakatani et al., 2000b).) 

2.2.1 Definition of Ja parameter. 
The J integral (Rice, 1968) is defined in a continuum as a line integral along 

a path r surrounding the crack tip as follows. 

(1) 

where W, Uij and Ui are the strain energy density, stress, and displacement, 
respectively. By introducing a function Q, of which values are 0 and 1 along 
r 1 and r 2 respectively, to area S* which is enclosed by a closed path f* as 



y 

X 

z 

Bgure 1. A schematic cracked model for 
analysis showing three layers. 

Figure 2. Summation region for J8 inte
gral of an atomic model of an amorphous 
metal 

shown in Fig. 2, another form of J integral can be considered as follows. 
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(2) 

It is originally introduced in (Li et al., 1985) and the equivalence between 
Eqs. (1) and (2) are proved. 

To estimate J, we propose a parameter Ja which can correspond to an atom
istic expression of Eq. (2). By assuming that W could be calculated by the 
change in the potential energy density w<a) , Ja is calculated as follows. 

Ja = ~ [(wC(a) - wo(a)) 6 - ( (J(a) - ?<a)) OUi] aQ v<a) _!_ 
L.J lJ a tJ a tJ !l !l . l ' 

ainS• uXl uXJ z 

(3) 
where v<a) denotes the volume occupied by the a-th atom, and u<a) means 
the atomic stress at a-th atom. For the simplicity, v <a) is assumed constant 
Va and the other variables with superscript (a) are smoothed by taking the 
weighted average over the neighbouring atoms. Variables with superscript C 
are evaluated for current cracked model that has a carck. The variables with 
superscript 0 denote the reference states, which were introduced to remove the 
influence of the initial stress and the increase in free surface energy from the 
introduction of the crack, and to evaluate the increase in pure stress and pure 
strain energy, and bulk model and surface model and surface models are used 
for calculation (Nakatani et al., 2000b). 

Within the linear elastic region and small scale yielding assumption, the 
value of the J integral, h E is equivalent to the rate of energy release under 
plane strain condition as follows. 

(4) 
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where Young's modulus E = 183.0 GPa and Poisson's ratio v = 0.26, ac
cording to uniaxial tensile simulations (Nakatani et al., 1996b; Nakatani et al., 
1997). 

2.2.2 Definition of CTOD and Crack Extension. 
The CTOD is defined as the minimum value ofthe y components of relative 

position (q~ - qe) among the atoms in the range -6x ~ q~, qe ~ 0. The 
extention 6a is defined as the minimum value of the x coordinates among the 
atoms in the range -fly/2 ~ qc; ~ fly/2. Here, flx = rc, 6y = rc/4. The 
rc = 0.357 nm means the cut off distance of the interatomic potential. 

2.2.3 Definition of the Number Density. 
The number density is defined by p( qa) at a certain position, qo:, as follows. 

p(qa) = L W (iq/3- qo:l) Va (5) 
{3 

Here, the normal distribution in which the standard deviation is rc, is adopted 
as weight function w. The number density is used for detecting defects- e.g., 
crack surfaces and voids. In this paper, if the value of p( qo:) is smaller than 
0.8, then we regard the atom as being a defect. 

3. RESULTS AND DISCUSSION 
3.1 Distribution of the Radial Stress 

Figure 3 shows the logarithmic relationships between the stress, ao, and the 
distance, r, from the crack tip along radial directions measured at 0, 30, 60, and 
90 degrees counter-clockwise from the direction of the crack propagation. The 
solid lines drawn in the figures indicate the linear elastic prediction. For small 
K1, the relationships agree with the linear elastic prediction, except for a very 
narrow region near the crack tip, in which the material is damaged inelastically. 
On increasing K1, the region that does not agree with an elastic body spreads 
out, which means that the material becomes damaged. 

3.2 Number Density 
Figure 4 shows the atomic configuration at some K1 levels. In the figure, 

the color of the atoms indicates the value of the number density, and the darker 
the atomic color, means relatively lower density around the atom, the closer 
the status of that atomic region to that of a void. Relatively low density region 
is expanded in front of the crack tip. As the load increasing, crack is blunted 
and it is extended. 
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Figure 3. Distribution of radial stress near the crack tip (log plots). 

Figure 4. Number density of atoms near a mode I crack tip. 

3.3 Distribution of Hydrostatic Stress near a Crack Tip 
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The distribution of hydrostatic stress is shown in Fig. 5. In the figure, the 
color of the atoms indicates the value of the hydrostatic stress. If an atom has 
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Figure 5. Distribution of hydrostatic stress and a void near a crack tip. 

a high stress value, then its atomic color is brighter. Perfectly black-colored 
atoms are judged as being voids (p < 0.8), using the number density criterion 
defined previously. High stress regions appear in front of the crack tip, and 
they extend as the load increases. In Fig. 5( d), a region of voids is seen to 
appear. 

3.4 Ja Parameter 

The dependence on the summation region for Ja parameter is shown in 
Fig. 6. 

The nominal J integral values based on the linear elastic prediction evaluated 
using Eq. ( 4) with given K 1 are shown as solid lines in the figure. In the cases 
where the Kr values are small, (Fig. 6(a)), the Ja value of different summation 
region agrees with hE, and the dependence on the Ja parameter summation 
region almost vanishes. Though the Ja values become smaller than the JLE 
values in Fig. 6(b), the values still have no dependence on the Ja parameter 
summation regions. However, when K1 becomes large (e.g., in Fig. 6(c)), the 
Kr value whose summation region approaches a crack tip (where Tmin = 1 
nm) shows a dependence on the summation region, and the K 1 value decreases 
remarkably. In Fig. 6( d), the Ja value whose summation region passes through 
the value of rmin = 2 nm also has dependence on the summation region. 

The dependence on the Ja parameter summation region of a few values 
is thus demonstrated, though the mechanical properties become changed near 
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Figure 6. Dependence of Ja on the summation region. 

113 

the crack tip, where material is damaged because of the high K1 value. We can 
predict the mechanical status surrounding the crack tip using the Ja parameter 
chosen using an summation region, avoiding the damaged zone. 

By comparing these results and those of Fig. 3, a remarkable decrease in 
the Ja parameter value can be seen in the case of a Ja parameter summa
tion region passing through the non-linear region, where r min is small. How
ever, even in the case where the region near the crack tip is non-linear, if the 
Ja parameter summation region is taken to be some distance away from the 
crack tip, then it has little dependence on the Ja parameter summation region. 
The Ja parameter value converges more, owing to the larger width of the sum
mation region, which is smaller than the nominal value predicted by Eq. (4) 
under large deformation. This means that the nominal value is no longer as 
large as the true value, because of the non-linearity caused by the deformation 
and damage near the crack tip. 

3.5 Change in CTOD and Crack Extension 
The relationship between K 1 and CTOD, crack extension ~a is shown in 

Fig. 7. The solid curve shows a CTOD based on the linear elastic predictions 
deduced from Eq. (6). 

Both the CTOD value and the crack growth extension ~a, increase with 
the value of K1. Some steps occur in the crack growth versus K1, and the 
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crack growth increases discontinuously. The discrepancy between MD result 
and theoretical prediction is not only due to the definition but it is due to the 
non-elastic deformation. 

3.6 Load Level Dependence of the Strain Energy 
Figure 8 shows the relationship between the stress intensity factor, Kr, and 

the J integral value. The J integral value based on the linear elastic prediction 
of Eq. ( 4) is also drawn as a solid curve. The plots in black indicate that the 
minimum radius of the summation region r min, is greater than or equal to 2 
nm. The plots in open symbol indicate that the minimum radius of the sum
mation region rmin, is greater than or equal to 1 nm. The error bars show the 
minimum and maximum values calculated for the summation regions shown in 
Fig. 6. In other words, if the length of the error bars is long, then the Ja value 
has a dependence on the summation region. When the value of K 1 is small, 
then the J integral values obtained by the MD simulation agree with the values 
predicted by the linear elastic prediction. However, as Kr increases, the Ja 

values become smaller than the value predicted by the linear elastic prediction. 
Comparing the data in Fig. 5 and Fig. 7 in detail, some characteristic loading 

levels concerning the data in the figure arise. According to Fig. 7, when Kr is 
nearly equal to 1.0, 1.5, 1.525, and 2.5 MPa0ll, the crack extents, and/or the 
CTOD value increases with the gap, which means that the crack tip becomes 
blunt. At that time, the rate of increase in the value of J begins to decrease. 
When Kr is nearly equal to 1. 75 MPa0ll in Fig. 8, the lower limit of error bars 
of the open symbols (for rmin 2:: 1 nm) suddenly decreased. From considering 
Figs. 3(b) and (c), the stress fields near 1 nm from the crack tip deviate from 
the linear elastic prediction for Kr ::::::: 1. 75MPa0ll. Moreover, the rate of 
increase in the J values for Kr around 2.5 MPa0ll decrease remarkably. From 
Fig. 5(d) for K 1 = 2.625MPa0ll, a region consisting of atoms that have a 
low number density, which we consider as being a void, appears in front of the 
crack tip. The negative rate of increasing J value is therefore related to the void 
nucleation near a crack tip. 

3. 7 Dugdale Model Estimation for J8 -CTOD Relation 
The relationship between Ja (rmin 2:: 2 nm) and CTOD are plotted in Fig. 9. 

There often seems to be expressed by Dugdale model (Dugdale, 1960) in which 
the CTOD value dt has a linear relationship with the J integral value as follows 
(Rice, 1968). 

(6) 

where the yield stress ay. Estimation by Eq. (6) with choosing ay = 6.5GPa 
is drawn on the Fig. 9 as a solid line. The MD result and theoretical linear 
relation of Dugdale model has good agreement. The value ay = 6.5GPa 
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Figure 8. Plots of the J integrals. The error bars denote the maximum and minimum values of 
J integrals passing through various summation regions for the same K 1 value. 
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Figure 9. The Relationship between the CTOD and J integral. 

is not so far from the yield stress obtained in a uniaxial tensile using same 
material model simulation (Nakatani et al., 1996b; Nakatani et al., 1997). 



116 

4. CONCLUSIONS 
The MD method was applied to a cracked amorphous structure with mode I 

loading, to evaluate the mechanical fields near the crack tip actually. 
The Ja parameter was proposed as a representative mechanical parameters 

near a crack tip for an atomistic model. By using the Ja value, the mechanical 
damage caused by the change of internal mechanical properties and the rela
tionship between the crack propagation and Ja parameter were evaluated in 
detail. 

The linear relationship between Ja and CTOD was seen and the property of 
crack blunting agrees well with using a Dugdale model. 
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Abstract We propose a method to calculate well-relaxed interface/surface proper
ties by using order-parameters to evaluate interface/surface microstruc
tures. Structural relaxation greatly influences the energies of the a/c 
interface and the surface. It is found that the interface energies are 
smaller than the surface energy and do not depend significantly on the 
crystal orientation. These findings agree very well with the experiments. 
The interface stress is also smaller than the surface stress and involves 
the scattering across a broad range. 

Keywords: Molecular dynamics, Interface, Amorphous silicon, Surface 

1. INTRODUCTION 
Polycrystalline and amorphous silicon have a number of technological 

applications as thin film semiconductors. In recent years, the thickness of 
such films has approached several nm and much effort has been devoted 
to control the size and shape of the crystal grain, since grain geometry 
greatly affects the electrical and mechanical properties of thin films. 
From this viewpoint, crystal nucleation in the amorphous phase has 
been the subject of intensive experimental and theoretical study[1][2]. 
The interface energy between the amorphous and crystal phases is a key 
parameter for detecting the critical radius of a nucleus. Interface energy 
and interface stress are also key parameters for predicting the intrinsic 
stress of thin films. The intrinsic stress, which introduces the problems 
such as the delamination between film and substrate and the generation 
of dislocation, depends on the microstructures and growth mode at the 
atomic level[3] [4] [5]. 
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In this study, we propose a method to calculate such interface/ surface 
properties by using classical molecular dynamics[6]. Unlike previous 
methods[7], the proposed method pay special attention to structural 
relaxation which has significant effects on surface/interface properties 
as well as on bulk properties. 

2. DEFINITIONS OF INTERFACE/SURFACE 
ENERGY AND INTERFACE/SURFACE 
STRESS 

2.1 Interface/surface model 
In order to define the interface in a molecular dynamics system, we 

prepared a amorphous-crystal interface model by sticking two phases 
as shown in Fig. 1. Periodic boundary conditions are applied in all 
three directions. The films must be thick enough to prevent those two 
interfaces from interfering with each other. In the case of a surface 
model, the crystal layer is replaced by a vacuum space. 

fret' IUrfiC't 

Unit cell 
Surface model Interface model 

Figure 1. Schematic illustration of a/c interface and surface model 

2.2 Definition of interface/surface energy 
Interface/surface is the energy variation per unit area resulting from 

the interface/surface creation as defined by Eq. (1). Einter and Econt are 
the energy of a system that includes the interface/surface and the energy 
defined by the continuum approximation, which ignores the effect of 
interface/surface, respectively. The latter must be calculated separately 
from the bulk values. In the case of interface energy, the atoms in the 
transition region must be assigned to either amorphous phase or the 
crystal phase. A is the area of two interfaces/surfaces. 
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Here, the strain 1J is defined so that the cell size in the zero-strain 
state is equal to that of the zero-stress state under the continuum ap
proximation. 

'YI (TJ) = _1_ (Einter(TJ) _ Econt(TJ)) = gyl (TJ) (1) 
A(TJ) A(TJ) 

2.3 Definition of interface/surface stress 
The interface/surface stress is the variation in interface/surface energy 

gl with respect to the strain T/ij. This variation corresponds to the 
stress generated by the creation of the interface/surface. 

(2) 

Applying this definition to molecular dynamics, Eq. (3) can be ob
tained by using gl. 

1 dE'YI I 
Ao drJiJ TJ'=O 

= J_ ( ()Einter(TJ) I _ aEcont(TJ) I ) 
Ao 01]ij 17, =O 01/ij 17, =O 

Jt;ter ( TJ) _ J{jont ( TJ) 

fr]ont ( 1J) must be calculated by the same procedure as in Econt. 

3. FABRICATION METHOD OF THE A/C 
INTERFACES AND AMORPHOUS 
SURFACES 

(3) 

The Tersoff potential[8](T3) is used for interatomic potential, which 
has been used in a broad range of studies of crystal and amorphous silicon 
and is known for its strong ability to express the physical properties of 
the bulk crystalline phase[9], the bulk amorphous phase[10][11], liquid 
phase[9][12] and surface structure[13]. Especially, unlike the Stillinger
Weber (SW) potential[14], T3 can describe the formation energy and 
bond length of bond defect that plays an important role in amorphization 
of silicon[15]. Therefore, we have chosen to use the Tersoff potential. The 
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iso-volume and iso-thermal ensemble is used, along with a time-step of 
1.08 fs. 

Before a well-relaxed interface/surface model is fabricated, a well
relaxed bulk amorphous model must be prepared. Such a structure is 
created by the melt-quenched method, followed by annealing for 10 ns 
at 1600 K under zero-stress condition. After annealing, almost all point 
defects such as void and interstitial have disappeared. The averaged 
coordination number, the ratio of the 4-coordination, and bond-angle 
deviation become 4.05, 95.1% and 11.7 °, respectively. Those values are 
in good agreement with experimental values. The details of the structure 
and related bulk properties of amorphous silicon are given in Ref. [11] 
and [16]. 

3.1 Amorphous-crystal interface 
The amorphous model with 1000 atoms and crystal model with 600 

atoms are stuck to each other in the (001) plane, as shown in Fig. 1. 
The in-plane cell sizes, Lx and Ly, must be set so as to minimize the 
misfit. The misfit strain of the a/c interface, C:m = (aA - ac)/ac, is 
about 0.005, where ac and aA are the lattice parameters of stress-free 
crystal structure and the lattice size of stress-free amorphous structure, 
respectively, with an equal number of atoms. In general, if the misfit is 
below 1 %, the effect can be ignored[17]. Therefore, we decide the cell 
size by using the averaged lattice size, aAc = (aA + ac)/2. 

Since the structure of an as-stuck interface is not sufficiently relaxed, 
relaxation must be advanced by thermal annealing at high temperature. 
We adopted an annealing temperature of 1600 K so that the temperature 
did not exceed the melting point (1900±50 K[18]). At 1600 K, the solid 
phase epitaxy (SPE) parallel to the ajc interface is observed at a slow 
growth rate (about 16cm/s), as shown in Fig. 2. For the analysis, 
we extract 30 snapshots per constant time interval. The analyses are 
performed after the system is cooled to OK and optimized by using the 
conjugate-gradient method. 

To clarify the effect of structural relaxation, a model annealed for 2 ns 
at 300 K is also prepared for comparison. We refer to it as the unrelaxed 
model. The SPE is not observed at that temperature. By using different 
initial conditions, three samples are prepared for each model; that is, the 
total of 3 samples are prepared for the unrelaxed model and the total of 
90 samples (30 x 3) are prepared for the well-relaxed model. The a/c 
( 111) interface models are prepared by using the same scheme as for the 
ajc (001) models. 
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S08ps 1004p< 15D lps 

Figure 2. Snapshots of a/ c (001) interface model during the solid phase epitaxy at 
1600 K. 

3.2 Amorphous surfaces 
The surfaces are formed by removing the periodic boundary condition 

of the z-direction. After the surfaces are created, the systems are relaxed 
by the conjugated gradient method (unrelaxed surface) or by thermal 
annealing for 4 ns at 1200 K and 2 us at 800 K (well-relaxed surface). 
This recipe is determined so that the state of the bulk does not change 
by annealing. Three samples are prepared. 

4. METHOD TO CALCULATE A/C 
INTERFACE ENERGY AND STRESS 

Since the interface would move due to the SPE during high-temperature 
annealing, the interface energy cannot be obtained simply from the en
ergy variation before and after annealing. Therefore, a method to detect 
the moving interface region (transition region) is newly proposed. After 
that, the assignment of atoms in the interface region to both phases is 
conducted. 

4.1 Detection method of a/c interface region 

We classify each atom into three kinds of region (crystal, amorphous 
and interface regions) by evaluating the order parameters. The interface 
region is further separated into several subregions according to order 
parameters of the interface atoms; this separation is required for the 
classification. The order parameters are the potential energy per atom, 
E e V /atom, bond angle deviation, fj.() 0 , and averaged coordination 
number, Nave· In the first step, the atoms of the crystal region (crystal 



122 

atoms) are detected by using several criteria: the potential energy is less 
than -4.60 eV /atom, the bond angle deviation is less than 3.0 ° and the 
coordination number is 4. In the second step, the atoms of the interface 
regions are detected step by step according to the criteria based on bond 
information as described below. A non-crystal atom that bonds with at 
least one crystal atom is classified into interface region 1. Next, a non
crystal atom that bonds with at least one atom in region 1 (previously
defined interface region) is classified into interface region 2. The second 
procedure is repeated until the order parameters of the newly defined 
interface region coincide with those of the remaining region. Finally, the 
remaining atoms are classified into the amorphous region. As a result, 
three interface regions are established. The number of interface regions 
depends on the broadness of the interface. 

A cross-sectional view of the classification is shown in Fig. 3 for the 
ajc (001) interface. In the interface region, both atoms and bonds are 
shown, whereas in the crystal and amorphous regions only bonds are 
shown. It is found that the interface regions are located on the region 
of transition from the ordered crystal to disordered amorphous regions, 
and that the width of interface region is about 6- atomic layers, which 
amounts to 0.8-D.9 nm. 

Interface 
Region 

Crys~l 
Regton 

Figure 3. Cross-sectional view of the afc (001) model after classification 

4.2 Assignment of atoms to the two phases 
To calculate the interface energy and interface stress, the interface 

atoms must be assigned between the two phases. Since this assignment 
includes arbitrariness, various criteria are proposed[7] [19]. We assign 
the atoms so that no excess volume is associated with the interface[20] . 
Although that scheme is based on the thermodynamics of equilibrium 
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interfaces, it is frequently used for nonequilibrium interfaces. In this 
system, the density of each interface region is very similar to those of 
the others. Therefore, this assignment is identical to the assignment 
in which region is divided equally between the amorphous and crystal 
phases, as shown in Eq. (4), where NA, Nc and Nint are the number of 
atoms in the amorphous, crystal and interface regions, respectively and 
cA and cc are the energy per atom in the bulk amorphous and crystal 
regions, respectively. 

(4) 

5. RESULTS AND DISCUSSIONS 

5.1 Surface energy and surface stress 
The surface energy r and surface stress f (in-plane f 11 and h 2 ) are 

shown in Table 1. 

Table 1. Surface energy 1 (J/m2) and surface stress f (N/m) of the surfaces of 
crystal silicon and amorphous silicon, each with an evaluation area of 14.6 nm2 • The 
x-direction of the (2x 1) surface model corresponds to the dimer-bonding direction. 

(100) 1x1 
(100) 2x 1 

a-Si ( unrelaxed) 
a-Si (well-relaxed) 

I /u,f22 
2.27 -0.88 
1.48 0.40, -1.34 

1.62±0.06 -0.50±0.19 
1.07±0.06 1.38±0.19 

The surface energy of the crystal decreases due to the 2 x 1 recon
struction. The compressive in-plane surface stress also decreases. The 
well-relaxed amorphous surface has the lowest surface energy and a large 
tensile surface stress. These variations are caused by a large reconstruc
tion of the amorphous surface. The coordination number and ring statis
tics are shown in the Tables 2 and 3, respectively. By comparing the 
unrelaxed amorphous surface with the well-relaxed one, we can see that 
annealing resulted in the disappearance of the 2-coordination N2 and the 
increase of the 4-coordination N4. Increases in the number of six- and 
seven-membered rings are also observed. It is thought that the strong 
structures of the bond network result from the surface reconstruction, 
and that those effects influence the surface properties greatly. 

While the coordination number of a well-relaxed amorphous surface is 
almost the same as that of a crystal silicon surface (001)(2xl), the ring 
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statistics show a different tendency; the amorphous surface has a larger 
number of five- and seven-membered rings. This reflects the difference 
in the bond network between amorphous and crystal surfaces. 

Table 2. The ratio of the coordination number within 5.5 nm from the surface. The 
standard deviation of amorphous results is in the range of 0 to 2 % 

N2 N3 N4 Ns Nave 
(100) 1x1 22.2 0 77.8 0 3.56 
(100) 2xl 0 22.2 77.8 0 3.78 

a-Si(unrelaxed) 8.8 20.7 65.9 3.8 3.63 
a-Si( well-relaxed) 0.0 22.6 74.8 2.5 3.79 

a-Si(Bulk) 0 0.1 96.2 3.7 4.03 

Table 3. Ring statistics within 5.5 nm from the surface 

R3 ~ Rs R6 R1 
(100) 1x1 0 0 0 1.33 0 
(100) 2xl 0 0 0.22 1.44 0.22 

a-Si ( unrelaxed) 0.00 0.03 0.32 0.69 0.66 
a-Si(well-relaxed) 0.00 0.03 0.40 0.81 0.80 

a-Si(Bulk) 0.00 0.03 0.40 1.03 1.03 

5.2 Interface energy and interface stress 

The interface energy '"'/ and interface stress f 1 of the unrelaxed and 
well-relaxed models are shown in Table 4. To increase the accuracy of 
calculation, the averaged energies of the atoms that belong in the crystal 
region and bond only with the atoms of the crystal region are used as 
the crystal energy cc, and the amorphous energy c A is detected in the 
same manner. The interface stress is also calculated by the same proce
dure. Experimental values are shown for comparison. Our calculation 
shows excellent agreement with the experimental values. However, care 
must be taken to use our calculated values. For quantitative evalua
tion, ab-initio scheme such as the DFT is needed for verification. Direct 
comparison with the result of TBMD[7] is difficult since we adopted the 
different strategies for the assignment with those of Ref. [7]. However, 
both values are closely similar with each other. 

The interface energy is lower in the well-relaxed model than in the 
unrelaxed model. A strong correlation can be said to exist between in
terface structure and interface energy. Only a small difference exists in 
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Table 4- Interface energy (J/m2 ) and interface stress (N/m) of ajc (001) and ajc 
(111) interfaces. The evaluation area is 7.5 nm2 • 

a/c(OOl)unrelaxed 
a/ c(001)well-relaxed 
a/ c( 111 )unrelaxed 

a/ c(lll)well-relaxed 
TBMD ajc(001)[7] 

Hand-built ajc(ll1)[19] 
Exp.[l] 
Exp.[2] 

1 (Jjm ) 
0.96 ± O.o7 
0.29 ± 0.08 
0.85 ± 0.02 
0.33 ±0.08 
0.49 ± 0.05 

0.31 
0.23 
0.25 

f (N/m) 
0.14 ± 0.01 
0.29 ± 0.24 
-0.29 ± 0.56 
0.21 ± 0.31 

the interface energy between afc (001) and a/c (111). This suggests that 
the dependence of the ajc interface energy on the crystal orientation is 
very weak. The scattering of the interface stress is much broader than 
that of the interface energy, as is the case with surface stress. As far 
as we know, there are no experimental values for a/c interface stress. 
Therefore, a quantitative comparison is impossible. However, from the 
comparison with the value of metal/metal interface stress (about ± 2 
N/m)[4], it can be said that the value of the a/c interface stress is com
paratively smaller. 

The structures of the unrelaxed and well-relaxed interface regions are 
then analyzed. The averaged order parameters of each region are shown 
in Fig. 4 in the case of the a/c (001) interface. The unrelaxed interface 
has higher energy and larger angle deviation, both resulting from insuf
ficient structural relaxation. On the other hand, the distribution of the 
order parameters of the well-relaxed interface varies smoothly from the 
crystal to the amorphous regions. 

Finally, in addition to the interface energy, the thermodynamic critical 
nucleus sizes are discussed. Piriolo et al.[1] and Kahn et al.[2] estimated 
them to be 0.57 nm (40 atoms) and 0.66 nm (61 atoms). Our calcula
tion, which was about 20 atoms, does not agree with the experimental 
values. This difference is attributable to the difference in excess free 
energy b..gac· Since the critical radius amounts to several tens of atoms, 
it is doubtful that the continuum theory can be applied to such a small 
region. In order to investigate the validity of the classical nucleation 
theory, we have simulated the homogeneous nucleus nucleation by using 
molecular dynamics. Well-relaxed amorphous silicon (no initial crys
tal nucleus is included, unlike the case in the previous researches[21]) 
are annealed for 10-20 ns at 1700K. The number of atoms is 4096 and 
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Figure 4- Averaged values of order parameters of each region; E (left) is the potential 
energy per atom and Jj.(J (right) is the bond angle deviation. 11, 12 and 13 indicate 
the number of interface regions. 

periodic boundary conditions are applied. The critical radius r* is esti
mated by the same criterion to calculate the interface energy. The size 
of the critical nucleus is estimated at 30"'50 atoms, which agrees with 
the experimental estimation very well but disagrees with the estimation 
obtained by using the calculated interface energy. This disagreement is 
attributed to the small size of the nucleus, which is comparable to the 
width of the interface region (0.8 "'0.9 nm). Modified nucleation theory, 
including the effect of interface width, must be developed. 

6. CONCLUSION 
We propose a method to calculate well-relaxed interface/surface prop

erties. Structural relaxation greatly influences the energies of the a/c 
interface and the surface. It is found that the interface energies are 
smaller than the surface energy, and that the dependence of the inter
face energy on the crystal orientation is small. These findings agree with 
the experiments very well. The critical nucleus size estimated by the cal
culated interface energy is smaller than that estimated by the direct MD 
simulation for homogeneous nucleation. 
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AND SILICON 

S. Brochard, J. Godet, L. Pizzagalli, P. Beauchamp 
Laboratoire de Metallurgie Physique, UMR 6630 Universite de Poitiers-CNRS, SP2MI, BP 
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Abstract Atomic scale simulations of a crystal with a free surface containing a surface 
step, submitted to a uniaxial stress have been performed using semi-empirical 
potentials representing metals (aluminum and copper) and silicon. In metals, 
different types of dislocations are nucleated for stresses well below the 
theoretical strength, according to the stress orientation, and the nucleation is 
preceded by a localization of shear confined into a single dense plane in-zone 
with the step. As expected, the behavior in silicon is very different from that of 
metals: besides complex plastic deformations appearing for large stresses, for 
those orientations where it has been possible to form dislocations, they have 
been found to glide in the shuffle set. 

Keywords Dislocation nucleation; Atomistic simulations; Surface and interface 

1. INTRODUCTION 

In nanostructures (thin films, nanograms ... ), the observed presence of 
dislocations cannot be explained by the Frank-Read source mechanism 
because of the reduced dimensions and I or the absence of pre-existing 
dislocation to activate the source. In such materials, the interface or surface 
defects, such as steps, are good candidates to act as dislocation sources. 

The mechanism of dislocation nucleation from a surface step being still 
out of reach of experiments, atomic scale simulations are expected to bring 
useful information. We have performed atomistic calculations of dislocation 
generation from a surface step under external applied stress. The first studies 
were conducted in metals, for which reliable interatomic potentials, well 
adapted for simulations at this length scale, exist. Afterwards, we studied 
silicon, as it is a prototype of semiconductor materials used in 
microelectronic devices, where the mechanisms under study are expected to 
occur frequently. 

The main geometrical difference between the diamond-like structure of 
silicon and the simple f.c.c. crystals lies in the presence of two atoms per 
unit cell in the diamond-like structure, yielding two kinds of { 111} plane 
sets, namely the shuffle set and the glide set [1]. 
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In silicon it is commonly accepted that, at least at high temperature, 
plastic deformation is mediated through dissociated dislocations located in 
glide set planes [2]. At low temperature, plastic deformation requires 
specific deformation conditions, as for example a confining pressure, to 
avoid fracture of the material. During recent experiments at low temperature 
perfect dislocations have been observed [3], which is consistent with gliding 
in the shuffle set plane, as predicted by calculations of the generalized 
stacking fault energies [4, 5, 6, 7]. In the study presented here, a particular 
attention will be paid to the type of plane, shuffie or glide, where the 
dislocations are nucleated in silicon, when they are. 

2. MODEL 

In this section, we briefly present the geometry and computational 
method used for this work. More detailed information can be found in 
references [8, 9] 

2.1 Geometry - application of stress 

In order to study the dislocation nucleation from a surface step, a crystal 
limited by a {100} free surface is constructed. In all the calculations 
presented here, the bulk crystal is simulated by freezing the opposite face; it 
has been ensured that releasing this constraint does not change the kind of 
dislocation nucleated, nor in a significant way the critical stress for 
dislocation nucleation. In the surface plane, the step lies along a <110> 
dense direction, intersection of a {111} glide plane and the surface. For the 
f.c.c. metals, this orientation determines in a unique way the resulting 
monoatomic step. In silicon, because of the 2x 1 surface reconstruction, and 
depending if a single or a double step is considered, four different steps can 
result from this orientation [10]. The most stable step configurations (SA and 
Da) have been studied, but systematic calculations have been conducted only 
for Ds steps, which step height corresponds to the Burgers vector of a perfect 
dislocation. In this configuration, the step line is parallel to the dimerization 
direction (figure 1). 

Figure -1. Orientation and geometry of the slab for silicon. 
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The uniaxial stress, whose orientation is contained in the surface plane, is 
applied through the displacements of all the atoms. These displacements are 
calculated using linear anisotropic elasticity (the elastic constants being 
determined for each potential). Both tensile and compressive stresses are 
studied. After the application of stress, the simulated box dimensions are 
maintained via two ft.xed buffers or through periodic boundary conditions 
along the direction perpendicular to the step line (in the latter case, two 
opposite steps are introduced on the surface). Along the step line direction, 
periodic boundary conditions are applied, with enough thickness to prevent 
spurious interaction between an atom and its image. However, the thickness 
along this direction, which is also the dislocation line direction when 
dislocations are nucleated, is too small to allow the formation of a half-loop: 
the nucleated dislocations are always straight. Different stress orientations 
have been studied. The stress direction is indicated by a (ft.gure 2), the angle 
between the normal to the step line and the stress direction (a = oo 
corresponds to a stress orientation normal to the step line). 

Figure -2. Geometry of the studied system. 

2.2 Algorithms - potentials 

For metals, simulations at 0 K were done, using a conjugate gradient 
algorithm for relaxation. For silicon, both relaxation at 0 K and molecular 
dynamics (MD) simulation [11] at fmite temperature (300 K) have been 
performed, in order to favor dislocation nucleation. The MD simulation 
lasted typically 50 ps, and was then followed by a quench to minimize the 
energy. In all cases, the minimum energy was assumed to be reached when 
the mean force on each atom was less than 10·7 eV/A. The interatomic 
interactions are derived from semi-empirical many-body potentials for the 
metals studied here (aluminum and copper) [12]. For silicon, we used three 
potentials that have proved their efficiency in different contexts, namely 
Stillinger-Weber potential (SW) [13], Tersoff potential (T) [14] and EDIP 
(Environment-Dependent Interatomic Potential) [15]. 
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3. METALS (ALUMINUM AND COPPER) 

Two different f.c.c. metals, aluminum and copper, have been studied. 
They differ in both their intrinsic stacking fault energy and elastic anisotropy 
coefficient, so that different behaviors are expected. With the potentials 
used, the intrinsic stacking fault energy for aluminum is 155 mJ/m2 and the 
anisotropy factor is 1.07; for copper the values are 29 mJ/m2 and 3.15. In the 
following, the results on metals are briefly described, emphasizing the main 
points for later comparison with the more complicated case of silicon. More 
details on metals can be found in [8, 16]. 

3.1 Results 

The results for metals are summarized in Table I, together with the type 
of leading and trailing dislocations resulting from the stacking of { 111 } 
planes, the Schmid factors on these dislocations, and the theoretical shear 
strengths. The stress orientations have been chosen so that the ratio between 
Schmid factors on the trailing and leading dislocations is 0.5 or 2 (ex= oo and 
ex= 45°) and I (ex= 18°). The main results are: 

(i) The dislocations are almost always formed at the step, and then glide 
in { 111 } planes in-zone with the step. 

(ii) When the nucleation event originates from the step, the stress 
threshold for dislocation nucleation is well below the theoretical shear 
strength. 

(iii) Except in few cases where technical constraints can be put forward, 
the type of dislocation formed is well explained by the stress orientation (see 
the Schmid factors) and the stacking of the {111} planes. For example, for 
ex= 0°, 90° Shockley partial dislocations are nucleated in traction, since they 
have the largest Schmid factor, and intrinsic stacking faults remain in the 
crystal after their formation. On the contrary, for the same orientation but in 
compression, the leading dislocation must be a 30° Shockley (a 90° would 
involve a prohibited stacking of the type ... ABCAABC ... ). But the Schmid 
factor on this partial dislocation is half the one for 90° Shockley, and no 
dislocation is nucleated until the theoretical strength is reached (aluminum) 
or a perfect 60° dislocation is nucleated for a quite large stress (copper). 

(iv) Although some differences can be noted, the stress thresholds and the 
type of defect formed in relation with the stress orientation, are comparable 
in aluminum and copper. 
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Table -1. Dislocations nucleated in aluminum and copper with the corresponding strain and 
stress. The type of leading and trailing partial dislocations, as well as the corresponding 
Schmid factors are indicated in the first column. The value of the theoretical shear strength is 
· r. t · · 1 th r g~ven or a s ress onentatwn norma to e step me. 

aluminum copper 
theoretical shear strength 13.7% (10.6 GPa) 7.3% (10.6 GPa) 

a = 00, traction two 90° Shockley partial one 90° Shockley partial 

leading: 90° -~:~ ~ dislocations at the step dislocation at the step 

trailing: 30° 2-/6 E = 8.4% (cr = 6.5 GPa) E=5.1%(cr=7.4GPa) 

a • 0', com~...,.;on 
one perfect 60° dislocation 

leading: 30° Ji./6 surface and bulk nucleation and one 30° Shockley partial 

trailing: 90° Ji. /3 J E = 13.0% (cr = 10 GPa) 
at the step 

E = 6.6% (cr = 9.6 GPa) 

a= 18°, traction one perfect 60° dislocation at one 90° Shockley partial 

leading: 90° t.Ji./30~ the step dislocation at the step 

trailing: 30° fi /30 E = 9.5% (cr = 7 GPa) E = 6% (cr = 6.5 GPa) 

one perfect 60° dislocation at 
a= 18°, compression one perfect 60° dislocation at the step and one 30° 

leading: 30° : Ji. /30 ~ the step Shockley partial at the 

trailing: 90° Ji. /30 E = 9.5% (cr = 7 GPa) 
surface 

E = 7.7% (cr = 8.5 GPa) 

a= 45°, traction one perfect 60° dislocation at 

leading: 90° ~;:1 the step 
I 

-
trailing: 30° 2/3 E."' 11% (cr = 8 GPa) --
a = 45°, compression three 30° Shockley partial 

leading: 30° ~;it dislocations at the step -
trailing: 90° 2/6 E = 9.5% (cr = 7 GPa) 

3.2 Localized shear prior to dislocation nucleation 

An important result of the calculations on metals is the presence, prior to 
any dislocation generation, of a shear localized in the { 111} glide plane 
where the first nucleation event will occur [ 16]. It has been shown that this 
localized shear is a precursor of the fully formed dislocation, the latter 
appearing when the shear reaches, locally, a critical value for which the 
crystal becomes mechanically unstable (the theoretical shear strength in 
Frenkel model [ 17]). This shear localization has been related, via a non 
linear tension-shear coupling, to the local stress field originating from the 
step when an external stress is applied. It may be worth seeking if such a 
localized shear appears in silicon, as in metals. 
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4. SILICON 

As mentioned in section 2, three different potentials were used to perform 
the calculations in silicon. In subsection 4.1 a comparative study of the three 
potentials is presented. Then, in subsection 4.2, we detail the results obtained 
with the SW potential, which proved to be the best suited for the problem 
studied here. 

4.1 Comparative study of Si potentials 

Preliminary tests indicated that the defects formed in strained samples 
were dependent on the potential used. In order to discriminate between the 
three potentials, their shear properties have been confronted to ab initio 
calculations. Two different types of tests have been conducted, the first 
involving homogeneous shear on { 111} planes, and the second, generalized 
stacking fault energy surfaces ("y-surfaces", as named by Vitek [18]) 
calculations on these planes. The criterion of choice for the potential is based 
on the description ofthe mechanism and energetics of bond switching which 
necessarily occurs at large enough strain. 

The study of large homogeneous shear properties, in addition to more 
generally considered y-surfaces, was partly motivated by the observation of a 
rather homogeneous strain field, even in the step region (absence of 
localized shear) in the case of silicon [9]. The results obtained with the three 
empirical potentials and an ab initio simulation [ 19] are detailed elsewhere 
(20]. They all agree on that, when the imposed shear is large, the mechanism 
of neighbor switching occurs by breaking the bonds across the shuffle set. In 
glide set planes, the deformation remains elastic, depending almost linearly 
on the internal shear stress. But the main point is that only the SW potential 
shows smooth energy variations and continuous internal shear stress, close to 
what is obtained with ab initio. 

Subsequently, y-surfaces have been computed for the three empirical 
potentials, and compared to first-principles results [4, 6]. Tersoff and EDIP 
potentials yield unstable stacking fault energy values closer to ab initio than 
the SW potential [20], but they show discontinuities that are not obtained 
with the SW potential, nor with ab initio techniques. This is particularly 
obvious on the curves derived from the r-surfaces in the directions 
corresponding to a perfect 60° dislocation ( < 11 0>) in the shuffle or the glide 
plane or a partial Shockley dislocation (<112>) in the glide plane, where the 
continuity and smoothness of the ab initio curves are reproduced only by the 
SW potential, and not by Tersoff and EDIP potentials. 

Consequently, the best potential for the problem studied here, that is 
formation of plastic defects under large stress, is clearly the SW potential. 
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4.2 Survey of the results with the SW potential 

The results obtained with the SW potential are summarized in Table 2. 
Here again, different stress directions have been analyzed, favoring 
orientations for which the Schmid factor is maximum on the 90° Shockley 
partial dislocation (a= 0°), on the 60° perfect dislocation (a= 22.5°), or on 
the screw dislocation (a= 45°). 

Table -2. Type of dislocations nucleated in silicon and corresponding strain. The type of 
leading and trailing partial dislocations, as well as the corresponding Schmid factors are 
indicated in the first column. The value of the theoretical shear strength is given for a stress 
orientation normal to the step line 

T=OK T=300K 
theoretical shear strength 32% (48 GPa) -
a = 0°, traction 

fracture fracture 
leading: 90° -}~ /: l 
trailing: 30° /i./6 £=25.1% £= 13.1% 

a = II". oomr··· formation of a microtwin at 
leading: 30° /i./61 the step -
trailing: 90° 2/3 £= 7.8% 

a = 22.5°, traction one perfect 60° dislocation at perfect 60° dislocations at the 
leading: 90° (0.40) the step step 

trailing: 30° (0.44) € = 18.7% e= 12.5% 

a= 22.5°, compression plastic deformation in { 111 } one perfect 60° dislocation at 
leading: 30° (0.44) planes the step 

' trailing: 90° (0.40) e= 10% e= 7.5% 

a = 45°, traction formation of microtwins 

leading: 90°. ~:~~ from surface and bulk -
trailing: 30° i /3 £=19.7% 

a = 45°, compression one perfect 60° dislocation at 

leading: 30° ~;i{ the step -
trailing: 90° i/6 e= 14.0% 

It must be pointed out first that for all orientations, and at 0 K as well as 
at 300 K, the plastic defects (dislocations, microtwins or more complicated 
defects) are nucleated and glide in { 111} planes of the shuffle set. 

It may then be noticed that dislocation nucleation is in general much 
more difficult than in metals, which is consistent with the high theoretical 
shear strength. Another characteristic is that the defects are more easily 
formed in compression than in traction, in the sense of lower critical 
deformations. Complementary studies are needed to clarify this point. For all 
stress orientations, the presence of the step and temperature reduce the yield 
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stress, but the type of defect formed is not as easily rationalized as in the 
case of f.c.c. metals. Except for the microtwins, which are a feature of the 
SW potential, the defects formed are perfect 60° dislocations. 

As a rule of thumb, dislocations are not nucleated in glide set planes for 
the relatively low temperatures studied here, in agreement with the usual 
explanation that it would involve the breaking of three covalent bonds 
(compared to only one in the shuffle set planes). As a result, 90° Shockley 
partial dislocations (for a= oo in traction) or 30° Shockley (for a = 45° in 
compression), which necessarily belong to a glide set plane (figure 3), are 
not nucleated, contrary to what happens in metals. For these stress 
orientations, in silicon, the applied deformation is accommodated via the 
propagation of a crack approximately normal to the surface for a = oo in 
traction, and via the nucleation of a perfect 60° dislocation for a= 45° in 
compression. 

Figure -3. Diamond-like structure with the different Burgers vectors projected along 

<Ill> (left) and along < 110> (right) . 

Regarding the two cases for which the trailing partial dislocations are 
favored by the Schmid factor against perfect dislocations or against the 
leading partial dislocations, i.e. a= oo in compression and a= 45° in 
traction, a particular type of microtwin has been obtained and found to be 
formed by glide events occurring in the shuffle set [21]. Once again, it is the 
impossibility of nucleating partial dislocations which leads to the formation 
of this probably unphysical plastic deformation. 

Finally, for a= 22.SO, perfect 60° dislocations are nucleated (figure 4). as 
expected, both in traction and in compression, and more easily with 
temperature than without. As a matter of fact, at 0 K in compression, no 
dislocation forms at the step, and plastic events hardly analyzable, but 
clearly originating from the step in { 111} planes are obtained. In traction the 
applied deformation must be increased up to 18.7% before the perfect 
dislocation forms from the step. 

An important point of these calculations is that the active planes for 
gliding are always {Ill} planes of the shuffle set, a result also obtained with 
the other potentials (I' ersoff and EDIP). The difficulty of breaking bonds 



seems to be a determinant factor in the process of dislocation nucleation in 
this covalent material. 

A: I AA A 
/{ l) 

free surface . .4" 1: A 
l. A X 

A X. 1: X ) 

VJ l. l. 
1:fl. l. 

{ l. l. X 
X X y 

~#x A 
A 

X X ) 

l "JJ.. ~ y 
X 

J..H/'f..-x AX 
1.. :7rL X AA X 

Jl ~l.A X 

11 ~~ diai~~ l: X 
.Jo.. Tf 

t-'.1: 

:1.. 

A 
XX.l.:1..:1.. . 

Figure -4. 60" dislocation nucleated for a = 22.5• and for an applied compression strain of 
7. 5% at 300 K. The solid line indicates the shuffle set plane where the dislocation has glided. 
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Furthermore, as mentioned previously, no precursory shear in the {111} 
glide planes in zone with the step is observed. An analysis based on a point 
force model has proved that the non-appearance of a localized shear is not 
due to the step geometry [9]. The non-appearance of the shear localization 
backs up once again the idea of a predominant role of the hard bond 
breaking in silicon. 

5. CONCLUSION 

Calculations of dislocation formation from an atomic surface step in a 
stressed crystal have been performed. Two f.c.c. metals, aluminum and 
copper, and a model semiconductor, silicon, have been studied. In both 
cases, the uniaxial stress orientation acts directly on the type of defect 
formed. But as expected, a different behavior is observed between metals 
and silicon. In silicon, dislocation formation is more difficult and requires 
higher stress. Perfect dislocations form in the shuffle set, and partial 
dislocations are never nucleated, which is quite different from what occurs in 
metals. In order to understand the mechanism of dislocation nucleation, the 
crystal structure just before nucleation has been analyzed. In metals, a 
localized shear in the glide plane where the first nucleation event will occur 
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is observed, which is not the case in silicon. The localized shear observed in 
metals has been analyzed in terms of a tension-shear coupling [16]. Such a 
coupling must play a determinant role in the mechanism of dislocation 
nucleation, as suggested by previous studies [22], and may be different for a 
covalent bond across a shuffle set plane and a metallic bond. 

For the particular case of silicon, the plastic deformations observed at the 
low temperatures studied here always occur in shuftle set planes. 
Nevertheless, the results for very high deformations depend on the type of 
empirical potential used. A comparative study between three potentials and 
ab initio calculations has proved that the SW potential is the best suited for 
the problem under study here. However, it would be safer to check the 
results obtained with the SW potential by performing an ab initio simulation 
of the whole mechanism of dislocation nucleation at a surface step. The 
feasibility of such a calculation is under consideration at present. 
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Abstract Extending the measurement of the flow stress 'l:y to low temperatures shows 
a transition in the deformation mode of a number of semiconductors. 

Instead of the 1:y{T} plot being an exponentially increasing curve with 
decreasing temperature, it actually consists of two branches intersecting at 
a critical temperature T.. Similarly a plot of ln(1:y) versus 1/T shows two 
straight lines with different slopes intersecting at liT.. In all these 
semiconductors, it appears that the critical temperature Tc is close to the 
brittle-to-ductile transition temperature TaoT of the crystal. In this paper, 

results of measurements on 1:y(7) for the wide bandgap semiconductor, 4H
SiC, are presented that show the transition point T •. Additionally, results 
of 4-point bend tests, performed to directly measure the brittle-to-ductile 
transition temperature TaDT of 4H-SiC and GaAs are shown. The results on 
SiC at four different strain rates confirm the identity of Tc and TaoT· Based 
on these results, and extensive TEM investigation of the microstructure of 
the crystals deformed at temperatures above and below Tc, a model has been 
developed to explain the brittle-to-ductile transition temperature as well as 
deformation of semiconductors at different temperatures. 

Keywords: Ill-Y semiconductors; Other semiconductors; Mechanical properties of 
solids; Deformation and plasticity; Fatigue, brittleness, fracture and crack 
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1. INTRODUCTION 

In the first half of the last century it became clear that both plastic and 
fracture properties of crystals are facilitated by imperfections in the 
crystal. Early theoretical estimations showed that huge stresses would be 
required to deform a perfect crystal, and this has since been verified by 
experiments on nearly defect-free crystals such as whiskers. Similarly, 
theoretical estimates showed that the fracture of a crystal, that ultimately 
depends on rupturing interatomic bonds, is a nearly impossible process were 
it not for the existence imperfections in the crystal. The type of defects 
for plastic deformation and fracture of a crystal are of course very 
different; at moderate temperatures yielding is primarily carried forward by 
linear defects, i.e. dislocations, while fracture is facilitated by the existence 
of microscopic bulk defects, e.g. voids or microcracks. 

Semiconductors are a class of materials which are primarily covalent 
although the compound semiconductors have a component of ionic 
bonding that can be quite large. In a covalent crystal, the motion of 
dislocations - through the elementary steps, kink nucleation and kink 
migration - involves breaking and re-forming interatomic bonds. Thus, 
because of their strong covalent/ionic bonds, semiconductors have very 
large lattice resistance that makes dislocation motion in them intrinsically 
difficult. However, kink nucleation and kink migration are both thermally 
activated processes and dislocation glide becomes easier at higher 
temperatures. Conversely, at low temperatures (say, less than half the 
absolute melting point), dislocation motion in semiconductors is very 
difficult and the stress required to move dislocations can be a large fraction 
of the elastic modulus Y, typically Y/100; this compares to Y/1000 or less 
for materials with a metallic bonding (e.g., Cu or Pb). The difficulty of 
moving dislocations in semiconductors translates to a high value of yield 
strength ay at low temperatures, of the order of a few GPa. 

In the fracture of a material, the relevant defects are microcracks where 
their role is to concentrate and magnify the applied stress at the crack 
front to values exceeding the ideal strength of the crystal, i.e. to values 
required to rupture the interatomic bonds. Quantitatively, the stress 
concentration raises the local stress aJ(r) at a distance r ahead of a sharp 
crack of length a to [ 1]: 

a 1 ... a+ a /a ... (1) 
~2r 

a value much larger than the average stress a applied to the sample. 
Clearly this relation cannot hold for all r since, otherwise, it would go to 
infinity as r-0. At some distance, ry, the local stress rises to a value 
reaching the yield stress ay of the material, giving rise to plastic flow. As 
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expected, the value of r y depends on the yield strength of the material, ay, 
and is given by: 

K2 

ry = 2na2 
y 

... (2) 

where K is the stress intensity factor given by K = Ca& with C a 
geometry-dependent constant with a value close to unity. A roughly 
hemispherical region of radius r y ahead of the crack front may be defined as 
the plastic zone. One effect of the plastic zone is to blunt the crack tip 
and decrease its effectiveness as a stress concentrator. Another effect is 
that, depending on its size, the plastic zone shields the crack and decreases 
the tensile stress on it. Thus we see that the ease of bond rupture and crack 
propagation depends on the size and effectiveness of the plastic zone. 
From Eq. (2), this in turn depends on the applied stress a and the crack 
length a (through the stress intensity factor K), and the yield strength of 
the material ay. In fracture mechanics, these conditions are expressed by 
saying that a crack can propagate in the solid only when K reaches a 
critical value /(,;, known as the critical stress intensity factor (or fracture 
toughness) of the material. Microscopically, I<.: is related to the rupture 
strength of the interatomic bonds; more macroscopically, it is related to 
material properties such as the elastic (Young's) modulus Y and the critical 
strain energy release rate Gc by Kc = ~YGc. 

Plastic flow within the zone defmed by r Y takes place by dislocation 
nucleation and motion, i.e., it depends on the yield strength of the material 
which is sensitively dependent on the test temperature. Thus, the effect of 
temperature on the fracture of the material comes through the manner in 
which the plastic zone affects crack propagation. At low temperatures, the 
yield strength of semiconductors is large and, according to equation (2), the 
plastic zone r Y is small, i.e. the zone is relatively ineffective in blunting and 
shielding the crack tip. As a result, the local stress ahead of the crack front 
exceeds the ideal strength of the crystal and the crack spreads rapidly 
between the pair of atomic planes that have the weakest bonding, a process 
called "cleavage". Because of the absence of local plastic deformation, this 
fracture surface, or "cleavage plane", is atomically flat and featureless. 
This is unlike the fracture surface of metals where appreciable local plastic 
deformation has occurred resulting in a rough surface. 

In brief then, at low temperatures, semiconductors are generally brittle 
and fracture easily. Conversely, at higher temperatures, where dislocation 
nucleation and glide becomes easier, the plastic zone ahead of the crack tip 
becomes large and its effectiveness to reduce the local stress concentration 
increases; this in turn makes interatomic bond rupture ahead of the crack 
front and crack propagation more difficult. In terms of equation (2), one 
can say that starting from low temperatures, where the material is brittle, 
an increase in temperature decreases the yield strength of the 
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semiconductor, thus decreasing its intrinsic lattice resistance. Dislocations 
can nucleate and move more easily resulting in an increase in the size of 
the plastic zone and causing the crack tip to become blunter. At a certain 
temperature, the tip is so blunt that fast cleavage can no longer occur. 
Thus, at high temperatures, semiconductors are generally ductile and their 
fracture resistance is high. 

We can show the transition from brittleness to ductility graphically by 
considering the temperature variation of the yield stress, ·z'y( 1), and the 
fracture stress, ap(1) [2]. In figure 1, the temperature dependence of yield 
stress is shown schematically, following the usual empirical relation for 
semiconductors [3-5]: 

ry(T) = At~exp( Mlj\T) ... (3) 

In this equation. A and n are constants (different for the upper iuy and 
lower r1y yield stresses), and /1H, is an energy parameter such that n/1H, is 
approximately the activation energy for dislocation glide Mfct. An 
increase in the strain rate t' say from tl to t2 ' shifts the iy( n curve t 0 

the right, i.e. to higher temperatures (Fig. 1 ). On the other hand, the 
normal stress to fracture the crystal is weakly temperature dependent and 
can be approximated as a constant, i.e.: 

an(I)•aF .... (4) 
The temperature at which the ry(1) and an(I)•aF curves intersect defines 
the transition from brittleness to ductility [2]; this is known as the brittle
to-ductile transition temperature, Tsor· 

Consider now the response of a crystal to an applied stress aapp· At low 
temperatures, the resolved normal component an(D of the applied stress 
a•PP is less than the resolved shear stress ry while at higher temperatures, 
the situation is reversed. The simultaneous solution of equations (3) and 
( 4) gives the intersection of the two curves at the brittle-to-ductile 
transition temperature and provides the following relationship (2]: 

TBDT - "a ~t~) · · · (5) 

In this equation, S is a geometric (Schmid) factor relating the resolved 
shear stress to the applied stress, r-=Saapp· From Fig. 1, it can be seen that 
for temperatures less than Tson as the stress a•PP applied to the crystal 
increases, its normal component (an) eventually reaches the normal stress 
curve for fracture an(I)=ap before its shear component ( r) reaches the 
yield stress curve ry(1). As a result, the crystal fractures and the interval 
O<Tsor<T defmes the brittle regime. On the other hand, for temperatures 
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above TaoT• the shear component ('r) of Oapp reaches Ty(T) before its 
normal component ( a 8 ) reaches the normal stress curve for fracture a8 (1) 
curve and the crystal yields, i.e. the interval T>TaoT defines the ductile 
regime of the crystal. 

J 
' .. 
" " " .. ,, ,, ,, .. .. 

' 

T-

Figure 1. Temperature dependence of the yield strength Ty(J) and normal stress to fracture 

q,(T)- OF at different strain rates t1 and t 2 (> t1 ). As the strain rate increases, the yield 

strength curve Ty( 1) shifts to the right. 

We have recently measured TaoT at different strain rates t for two 
materials, GaAs [6] and 4H-SiC [7]. In the remainder of this paper, we 
shall present a summary of the results for these two crystals (section 2). A 
discussion of the results is presented in section 3 together with some yield 
strength measurement of 4H-SiC [8-10], and a comparison of the latter 
with the TaoT measurement in the same material. 
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2. EXPERIMENTAL 

The BDT temperatures were measured by the 4-point bend technique -
a constant K experiment- first employed by Samuels [11] in her work on 
silicon and more recently used by Zhang et a/. [7] on 4H-SiC. For the 
measurements on undoped GaAs and 4H-SiC parallelepiped samples with 
dimensions 35x3x 1 mm3 (for GaAs) and 35x3x2 m m3 (for 4H-SiC) were 
oriented such that the tensile stress on the cleavage plane was maximized 
and there was a reasonable resolved shear stress on the primary slip planes. 
The details of the experiments for 4H-SiC have been reported in Ref. [7] 
and will not be repeated here. 

In the case of GaAs with a {II 0} cleavage plane, the orientation of the 

sample was such that the 35x3 m m2 top and bottom faces of the sample 
were parallel to the { 001) plane, the 3 5 x I m m2 side faces were parallel to 

the (II 0) plane, and the 3 x 1 m m2 end faces were parallel to the ( 110) 

plane. In the tests, the inner and outer points of the 4-point bend jig were 
placed on the opposite ( 001) faces of the sample; the bending arm d, given 
by the difference between the outer and inner points, was 10 mm. With 
this geometry, the normal stress a•PP (in Pa) applied to the ( 110) end faces 
of sample is given by: 

aapp = 3Pdlwh 2 

where Pis the applied load (in kg), and w (=3 mm) and h (=l mm) are 
respectively the width and thickness of the sample. Five pre-cracks were 
introduced in each sample by Knoop indentation prior to the deformation 
experiments. These pre-cracks were introduced along a line parallel to the 
3 mm edge at the center of the (OOI) face of each sample. In each case, 
the indent load was 50 g and, after indentation, the sample was annealed at 
-200°C to release the residual stresses. The 4-point bend jig was placed in a 
tube furnace and sample oxidation was prevented by flowing high purity 
argon gas over the sample during each experiment. The loading points in 
the 4-point bend jig were connected to the rod in an Instron machine. 
After heating up the sample to the desired temperature, the load was 
applied at a constant crosshead speed (i.e., a constant strain rate t) to 
either deform or fracture the sample. 

In the brittle regime, as the load rises, the stress intensity factor K 
increases until it eventually reaches I( whereby crack propagation starts 
from one of the pre-cracks in the sample and rapidly proceeds along the 
cleavage plane to break the sample in two. The crack surface (cleavage 
plane) in this case is flat and featureless. At higher temperatures (T>Taor), 
as the load increases, the crystal yield stress is reached and dislocations are 
nucleated and activated on their slip planes under the resolved shear stress 
to form a crack tip plastic zone which blunts the crack front and makes the 
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crystal ductile. The crystal then continues its plastic deformation by 
dislocation motion and further nucleation. 

In Fig. 2, the stress applied to fracture or plastically deform the sample 
is shown as a function of temperature for four different strain rates 
e=lx10"6, 2x10·6, Sxl0-6 and l.Sx10·5 s·1. 
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Figure 2. Temperature dependence of the applied stress o;,pp needed to irreversibly deform 
the 4-point bend samples of undoped GaAs at four different strain rates. At each strain rate, 
the peak in a•PP occurs at the brittle-to-ductile temperature Taor. Note the systematic 
increase of T aor with the strain rate £ . 

In such a plot, the BDT temperature TaDT at each strain rate is 
distinguished by a peak in the applied stress: for all temperatures T less than 
T80T, the sample is brittle and fractures on the cleavage plane at a nearly 
constant normal stress Oapp (•oF), whereas for all T>TaDT, the material is 
ductile and deforms plastically and bends. Figure 2 shows that, in the brittle 
regime (T<TsoT), irrespective of the strain rate employed, the normal 
tensile stress a 0 =op to fracture GaAs is about 100 MPa . In the ductile 
regime (T>TaoT), the applied stress Oapp is that required to yield the crystal 
and, when resolved along the slip system with the highest Schmid factor S, 
it gives the yield stress of GaAs, -ry=Saapp· In the present case, four slip 

systems, ~[ot1Jllt) , !..[w1}ut), ~[lo1J11t) and ~[o11J11t) , 
2 2 2 2 

each with S= y..J6, are equally activated. Also, as may be seen in Fig. 2, 

once passed the peak (i.e., at temperatures higher than TaoT), Oapp no 
longer remains constant but decreases with increasing temperature; this is 
consistent with the decrease of the yield stress with temperature. In the 
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ductile regime, if deformation is continued until the sample breaks, the 
fracture surface is rough and indicative of occurrence of appreciable 
localized plasticity. 

According to equation (5), a plot of ln(t) versus ~ should be a 
/ 1aDT 

straight line with a slope - nM/~ - l1H ~, i.e., the slope of this plot 

should give the activation energy for dislocation glide. This was first 
suggested by St. John [12] for silicon and has since been verified by a 
number of other researchers [11,13-17]. In figure 3, we use the results of 
figure 2 to plot In( t) versus ~ for GaAs. 

/ 1aDT 

15 16 17 18 

1 0000/T BOT (K) 

Figure 3. Plot of In{ t) versus J.f for undoped GaAs. Tile slope of the straight line 
/ 1aDT 

gives an activation enthalpy of 1.36%0.2 eV. 

As in Si and Ge, the plot is a straight line with a slope that gives an 
activation enthalpy of 1.36±0.2 e V. A number of researchers have 
determined the velocity of both a [i.e., As(g)] and f\ [i.e., Ga(g)] 
dislocations in GaAs crystals with different doping concentrations [18-22]. 
In general there is little consistency between these results except for the 
agreement that a-dislocations are much faster than f\-dislocations in both 
semi-insulating and n-type crystals while the trend reverses in p-type GaAs 
where f\-dislocations are faster than a-dislocations. Warren [23] who used 
semi-insulating GaAs crystals with a dopant concentration (5.0x I 015 cm-3), 

probably closest to our crystals (resistivity of more than 1 07 Q.cm, 
corresponding to a dopant concentration of Jess than 108 c m·\ determined 
the activation enthalpy for glide of a-dislocations to be 1.23±0.04 eV and 
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for (3-dislocations to be 1.35±0.02 e V. The close agreement between the 
value given by the slope of figure 3 (1.36±0.2 eV) and Warren's value [23] 
for (3-dislocations (1.35±0.02 eV) may be an indication that it is the slow f3 
dislocations that control the transition from brittleness to ductility in 
GaAs. 

Using the same 4-point bend technique, we have also measured T8or in 
4H-SiC for different strain rates [7]. The results are shown in Fig. 4 as a 
plot of In( t) versus 1~ . The slope of the straight line in this figure 

f 1BDT 
gives an activation enthalpy of 2.47±0.2 e V. Unfortunately there are no 
direct measurements of dislocation velocity in any of the SiC polytypes 
and we are unable to compare the activation enthalpy determined from 
direct dislocation velocity measurements with that determined from BOT 
determinations. 
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Figure 4. Plot of In{ t) versus I{ for 4H-SiC [7]. The slope of the straight line 
/ 1imr 

gives an activation enthalpy of 2.47±0.2eV. 

3. DISCUSSION 

According to Eq. (3), ry decreases exponentially with increasing 
temperature. Experimentally, the yield strength of many semiconductors 
has been measured and found to follow Eq. (3) pretty well (see, e.g. [5]). 
The results are usually shown as an Arrhenius plot of ln(ry) versus 1/T at a 
fixed value of the strain rate. Eq. (3) shows that the slope of the resulting 
straight line should be proportional to the activation enthalpy for 
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dislocation glide, llHct=nMI,. For practical reasons, most of the yield 
strength measurements in the literature pertain to the ductile regime of the 
semiconductor (T>T80r), where the samples undergo plastic deformation 
rather than fail by brittle fracture. It is possible to extend the 
measurements of Ty to lower temperatures (T<T80r) provided brittle 
fracture by crack propagation is suppressed. Indeed, plastic deformation of 
semiconductors can be performed by indentation at very low temperatures 
(in their brittle regime) because the hydrostatic component of the 
indentation stress field suppresses fracture while its shear component drives 
plastic deformation. Indentation studies, however, provide only very 
limited quantitative information on the plasticity of a material because the 
indentation stress field is very complex, the resulting strains are not easily 
measurable, and the strain rate is not a variable. Thus, provided bulk 
crystals of the semiconductors are available, uniaxial compression or 
tension tests are much more advantageous and provide considerably more 
useful data. Such an experiment was first performed by Castaing et a/. 
[24], who used a Griggs apparatus to deform silicon in the temperature 
range 300-600°C (i.e., in its brittle regime); with this apparatus, a 
hydrostatic pressure is superimposed during uniaxial compression of the 
crystal. Since then, many more tests have been performed on silicon [25-
27] and a few compound semiconductors including GaAs [28-32], InP [33-
35], InSb [34,35], GaP [34,35] and 4H-SiC [36). Uniaxial deformation 
studies have also been conducted on 6H- and 4H-SiC without the presence 
of a hydrostatic pressure [8-10,37). To succeed in the latter experiments, 
a few condition should generally be satisfied, e.g., presence of a low density 
of initial dislocations before the test, very careful alignment of sample in 
the deformation jig, and use of slow strain rates. Figure 5 shows the results 
of a series of compression tests on 4H-SiC, spanning a relatively large 
temperature range from the brittle to the ductile regime, at three different 
strain rates [ 1 0). The data are presented in the form of Arrhenius plots as 
ln(ry) versus liT. 

What is interesting in such plots is the presence of two straight lines 
with different slopes at each strain rate. The two lines intersect at a 
critical temperature Tc that shifts to a higher temperature with increasing 
values oft. The different slopes of the straight lines signify a change of 
deformation mode at Tc. Invariably, all the 4H-SiC crystals that were 
compressed at temperatures less than Tc contained one or more 
microcracks, while all crystals that were tested at higher temperatures (T> 
Tc) deformed much more readily in a ductile manner. Based on this 
observation, and the fact that Tc increases systematically with an increase 
in the strain rate, we speculated that the transition temperature Tc and the 
brittle-to-ductile transition temperature Tsor were actually identical [2,38-
40). A comparison of Tc (from Fig. 4) and TBor (from Fig. 5) shows that 
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there is indeed reasonably good agreement between the two transition 
temperatures. 

,, 
I~ 

I 

"e~--------~r~--------~s~--------~9~--~ 
1/T (1~ K·1) 

Figure 5. Temperature dependence of the yield stress of 4H-SiC at three different strain 

rates. At each£, the results are shown as plots of ln(ry) versus liT. There is a transition 

in the defonnation mode at a critical temperature Tc where the slope of the line changes. 

It should be noted that very similar curves of ln(ry) versus 1/T have been 
reported by Suzuki and coworkers for four other compound 
semiconductors, lnP, InSb, GaAs, and GaP [33-35]. We believe the 
existence of a critical temperature, associated with a change in the 
deformation mode, is actually a general feature of all tetrahedrally
coordinated semiconductors. However, in the -ry(D plots, or, equivalently, 
in the In[ -ry( liT)] plots, that have been determined in the presence of a 
superimposed hydrostatic pressure, the transition temperature Tc is very 
likely shifted to lower temperatures. The reasoning for this can be seen 
from Fig. 1. A superimposed hydrostatic pressure counteracts the tensile 
stress necessary for the fracture of the crystal. This means that the aF(D 
line in figure I will be shifted to a higher value and, consequently the 
intersection of the -ry(T) curve and the aF(T) line will occur at a lower 
temperature, i.e. the BDT temperature will be shifted to the left and the 
sample is effectively ductile over a larger temperature span. The degree of 
the shift of the OJ;-(T) line and the BDT temperature will of course depend 
on the magnitude of the superimposed hydrostatic pressure; for the 
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experiments in Refs. [33-35], where the hydrostatic pressure is -1.2 GPa, 
we think the shift in TsnT could be as much as a few hundred degrees. 

4. CONCLUSION 

The brittle-to-ductile transition temperature T BDT of two 
semiconductors with different structures and bandgaps have been measured 
at different strain rates by the technique of 4-point bending of pre-cracked 
samples. One material has a wide bandgap (-3.2 eV) with a rhombohedral 
structure, while the other, GaAs, has a moderate bandgap ( -1.4 e V) and a 
cubic sphalerite structure. In both cases, TsnT is sharp and a plot of In( t) 
versus i,f follows an Arrhenius relationship. From the slope of these 

/ 11mr 
plots, the activation enthalpy for glide of dislocations in undoped GaAs and 
4H-SiC have been determined. The value for GaAs, 1.36±0.02 e V, is in 
good agreement with the literature value as determined by direct dislocation 
velocity measurements. The much higher value of T80T ( -1000 versus 
-300°C at a strain rate of 1 o-6 s-1) and larger activation enthalpy for 
dislocation glide (2.47 versus 1.36 eV) in SiC compared to GaAs reflects the 
different bond strengths in the two crystals. In addition, the temperature 
dependence of the yield strength of 4H-SiC has been measured over a large 
temperature range at three different strain rates. At each strain rate, the 
ry(l) plot consists of two branches that intersect at a critical temperature 
Tc indicating that there is a change in the mode of plastic deformation. 
The same transition is more clearly observed in an Arrhenius plot of 
ln(ry) versus liT. It is found that the critical temperatures Tc in the yield 

stress measurements of 4H-SiC correspond very closely with the brittle-to
ductile transition temperatures TsnT of this material. 
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HVEM/ AFM Studies on Crack Tip Plasticity in Si 
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Abstract Crack tip plasticity in silicon crystals has been studied by both high voltage electron 
microscopy (HVEM) and atomic furce microscopy (AFM). Cracks were introduced into 
silicoo wafers at room temperature by Vickers indentation me1hod. Specimens indented 
were anmUed at temperatures higher than 773K to activate dislocation sources around a 
crack tip under the residual stress due to the indentation. In the p-esent mly, two types of 
pll9ic 200eS were examined: the 45° -shear-type in {001} wafers and hinge-type in 
{0 11} wafers. In AFM obselvatioo;, very fine and shaJp slip bmds were fourxl around 
crack tips in both types of plll'ltic zones, where the step heights in the slip OOnds were 
around a rew nanometers. In HVEM stlliy, characteristic dislocation configuration<; have 
been observed in each type of plastic ~- Contrast simulations :1ix- the dislocations 
revealed not only their slip systems but also the signs of their Burgers vectors. The 
dislocation structures characterizrd by HVEM carespond well with the slip bands found 
by AFM. lOOse dislocations were shielding-type, which cootn"butes to the iocrease of 
fucture touglmess to cause the shaJp brittle-to-ductile transition of silicon crystals. 

Keywords: dislocation, crack, fracture touglmess, britt.Je-to.<luctile transition, silicon 

1. INTRODUCTION 

Brittle-to-ductile transition (BDT) is one of the most important phenomena in 

the mechanical behavior of crystalline materials, which should be understood by 

dislocation theocy. To have a comprehensive tmderstanding of the BDT, it is 

essential to clarifY the detailed behavior of plastic deformation around a crack tip. In 

highly perfect silicon crystals, a sharp brittle-to-ductile transition appears, 1 so that 

they have been employed as a suitable model substance to investigate the BDT 

process, and some significant results have been obtained by using X-ray topography, 

etch pits and transmission electron microscopy (1EM).2-6 However, experimental 

studies on fundamental behavior of crack tip plasticity have been still limited, and 
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further investigations are required to clarifY the generation or multiplication process 
of crack tip dislocations which control the sharp BOT. 

In the present study, both high voltage electron microscopy (HVEM) and 

atomic force microscopy (AFM) have been employed to examine the crack tip 

plasticity in silicon crystals. Since HVEM is applicable to obsetve thick specimens 
(thickness>10-6m) in comparison with usual lEM, three dimensional aspects of 

crack and dislocations were easily examined by using HVEM In addition, 
nano-scale fine slip bands near a crack tip was also obsetved by AFM. On the basis 
of these observations, fimdamental aspects of crack tip plasticity is discussed 

2. EXPERIMENTAL 

Si single crystals of { 100} and { 110} p-type wafers commercially available 

were employed Cracks were introduced by indenting, with a Vickers hardness 
tester with a load of 1.96 N, on a wafer chip surface at room temperature (see 

Fig.l(a)). In order to introduce dislocations around the crack tip, the specimens 

indented were annealed at temperatures higher than 823K for a few minutes. This 
method enables us to seize the aspect of crack tip dislocations at the very beginning 
of multiplication process. For HVEM observation, a selected area around the tip of 

Figure 1. (a) Optical miaograph of an indent on the {100} plane. Cracks propagate from the 
edges of the indent along the <11 a> direction (b) Image of a scanning ion microscope (SIM) 
taken during the FIB filbrication. 
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a crack was thinned by focused ion beam (FIB), as shown in Fig.l (b). HVEM 

observations were canied out using JEM-1000 (JEOL) at the Research Laboratory 

for High Voltage Electron Microscopy, Kyushu University. Accelerating voltage 

was 1000 kV. In Older to characterize crack tip dislocations, computer simulations 

of the dislocation images were canied out using a program based on the 

Howie-Whelan formulation.7.s The Burgers vector of dislocations is defined by 

FSIRH (finish-start/right hand) rule where the closure fuilure is specified in the 

perfect crystal.9 According to this definition of Burgers vector b, the signs of screw 
dislocations are denoted by 

sign(b.u) > 0 for right-handed (R·H) screw dislocations 

< 0 for left-handed (L-H) screw dislocations (1), 

where u is the dislocation line vector. Fine slip bands fonned around the crack tip 

were observed using an atomic force microscope (AFM, SPI-400 (SIT)). 

3. RESULTS AND DISCUSSION 

3.1 AFM Observation of Slip Bands around a Crack Tip 

Figures 2 (a) and (d) show AFM images of slip bands fonned arow1d the crack 

tip in specimens of { 001} and { 011} wafers, respectively. Those slip bands were 

observed in specimens annealed at temperatures higher than 823K after the 

indentation Without the heat treatment, no slip bands were observed, indicating that 

dislocations were activated aroWld the crack tip at such high temperatures unda:' 

residual stresses due to the indentations. TEM study also showed that no 

dislocations were generated around a crack tip before anneling.6 

In Fig.2 (a), a crack is seen along the [110] direction on the (001) wafer surface. 

The crack plane is parallel to (11 0). Slip bands are observed along both the [11 0] 
and [11 0] directions being parallel to the traces of the { 111} slip planes. Note here 

-
that the slip bands along [110] are seen more prominent than those along [110], 
which indicates that the plastic zone observed in Fig.2 (a) is similar to the 45° 

shear-type plastic zone10 fonned by mode I tensile load, as illustrated in Fig.2 (c). 
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Figure 2 (b) shows a cross sectional profile along the [11 0] direction at the position 

of0.5 J.Ul1 behind the crack tip in Fig.2 (a). Steps with the height of 1-2 run are seen 
-

in the profile, corresponding to the slip bands along [110] formed by several 

Figure 2. (a)(b)(c)45°-shear-type plastic zone, (dXeXf)~type plastic zone. 
(a) and (d) are images of atomic furce microscopy around the crack tip. 
(b) and (e) are ~ sectional profiles of slip bands near the cracks. 
(c) and (f) are schematic dra~ of a 45°-shear-type plastic zone and a 
hinge-type one, respectively. 
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-

dislocations gliding on the (111) plane. Although a mode m displacement is seen 
along the crack, it is a minor component, and the major component of this crack is 

mode I opening (note the difference between the scale of vertical and horizontal 

directions). 

Fig. 2(d) shows a crack extending along the [011] direction on the (011) wafer 
surfuce. The crack plane is parallel to (100). Slip bands are fonned with regular 

spacing of a few microns in both sides of the crack. The traces of the slip bands 

mainly observed coincide with those of the (111) or (111) planes, indicating that the 
slip bands are those fonned in the hinge-type plastic zone as illustrated in Fig.2 (f). 

A cross sectional profile of the surfuce step due to one of the slip bands is shown in 

Fig.2 (e), which was obtained by sectioning along the dotted arrow indicated in Fig. 

2( d). A step with the height of2.7 nm is seen, which is considered to be formed by 

the motion of around 14 dislocations (step height due to one dislocation: 0.19 nm). 

In Fig.2 (d), other slip bands are also seen although the contrasts are not so sharp as 

those due to the hinge-type. The trace of those slip bands is parallel to that of the 
-

(Ill) or (111) planes, indicating that the 45° shear-type is also included as a minor 
component 

3.2 HVEM Observation of Crack Tip Dislocations 

Figure 3(a) shows an HVEM image (bright field: BF) of a crack and dislocations 

observed in a 45°-shear-type plastic zone, where both the foil normal and incident 

beam directions are parallel to the [00 1] direction. The diffraction vector g was 

taken to be [220]. The crack observed is extending along the [110] direction. 
Dislocations are generated not only in front of the crack tip but also behind the tip. 

Since the nwnber of the dislocations observed is very limited, the dislocation 

arrangement is considered to be that in the very early stage of dislocation generation 

process. To understand the relationship between the observed dislocations and the 

crack tip plasticity, we specified the slip system of the activated dislocations. First, 

the direction of Bmgers vector and the slip plane of the dislocations were 
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001 

-ro ~ 110 
LH RH 

Figure3. (a) Dislocations emitted from a crack tip in a 45°-slar-type plastic zore. Bright 

field image, incident beam direction was <001>, g=220. 
(b) Canputed irnagt-s, RH and LH screw dislocations. 
(c) Schematic drawing of the dislocations and the crack shown in Fig. (a). 

determined by using the usual method of the invisibility criterion As a result, the 

dislocations in Fig.3 (a) were found to be all lying on the (111) plane, and their 

Bmgers vectors were ahnost parallel to the dislocation lines: they are ahnost screw 
dislocations. Next, to determine the signs of their Burgers vectors, contrast 

simulations of dislocation images were carried out 5 Figures 3(b) shows computed 

bright field (BF) of the right-handed (R-H) and left-handed (L-H) screw 

dislocations. Each dislocation image is observed as bJack and white oscillating 
zig-zag contrasts, which corresponds to images of dislocations inclining to the foil 

surface. Note the black and white contrasts at both ends of each dislocation line. 
Here, ~ is defined as the contnm vector which goes from the center of a bJack 



159 

contrast to that of a white contrast at the point of emergence of the dislocations at 

the surface. When comparing the L-H with R-H, white and black contrasts appear 
conversely (i.e.,~ ofL-H is anti-parallel to that ofR-H). By using this criterion, 

dislocations labeled 1 and 2 in front of the crack tip were determined as L-H screw 

dislocations, and those labeled 3 and 4 behind the tip (wake dislocations) were 

determined as R-H Figure 3( c) shows a schematic illustration of the confi.gtn'ation, 

where dislocations ahead of the crack tip are L-H screw dislocations while the wake 

dislocations are R-H The dislocation configuration is understood by a model where 

dislocation loops are emitted from a source near the crack tip under a mode I tensile 

load Such dislocation behavior causes displacements in a 45° -shear-type plastic 

zone as illustrated in Fig.2(c). 

Figure 4 shows HVEM images (BF) of a crack and dislocations observed in a 

hinge-type plastic zone. In Fig.4 (a), both the foil nonnal and the incident beam 

directions are parallel to [011], and diffiaction vector g was taken to be [022]. A 
crack is seen in the right bottom of the figure, where the crack is extending along 

-
the [011] direction. In this figure, two prominent arrays of dislocations are seen 

- - -

almost horizontally, i.e., along the [211] direction: they are lying on the (111) plane 
which is parallel to the incident beam direction, i.e., [011 ], so that the dislocations 

-

lying on (111) are observed as a row ofline segments or dots. To observe the aspect 
of each dislocation line in the array, the specimen was tilted in the holder and the 

incident beam direction was taken to be [001]. Figures 4(b) and 4(c) show the 

images of the [00 1] incidence. Dislocations in each figure correspond to those 

encircled by the rectangles in Fig.4 (a). 
-

Diffiaction vector g of both figures was taken to be [220]. As is seen in the 
figures, each dislocation line in the arrays tends to lie along the [0 11] direction, 

although it is cUIVed and seems to be bowing out from the right to left. This 

suggests that the dislocation array was activated from a source on the crack to fonn 

a hinge-type plastic zone. To confinn this consideration, the directions and the signs 

of their Burgers vectors were determined by the same method as shown in Fig.3. 

It was fOtmd that all dislocations in the arrays had the same Burgers vector of 

a/2[1 01]. Since their dislocation lines tend to lie along [011 ], they are mainly 60° 
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(a) @[Oll] / g=oi2 

;--------- _(1? ) __ -----------

.............................. 

lf.lm 

b) 

Figure 4. (a) HVEM image of dislocation anays in a hinge-type plastic zooe. Incident beam directioo 
was parallel to [011]. Bright field image, g=022. (b) (c) Enlarged images of dislocatiom in the area 
SliiTOllllded by dotted rectangles in Fig.4 (a). BF image, g=220. (d) Scrematic dmwing of the dislocation 
array emitted trom the crack. 
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dislocations. The sign of their burgers vectors is shown in Fig.4 (d): extra-half 

planes of edge components are indicated in the figure, and the screw components 

are R-H. When dislocations of this type glide away from the crack, crack tip 

deformation occurs as shown in Fig.2 (f). Thus, the dislocation arrays observed in 

Figs.4 (a)-(c) exhibit the microscopic structure of slip bands in the hinge-type 

plastic zone. 

4 CONCLUSION 

Plastic zones associated with a crack under a mode I tensile load are 

macroscopically separated into two groups; the 45°-shear-type and the hinge-type. 

The former is well developed Wlder the plain stress condition, the latter Wlder the 

plane strain condition. In the present study, with the aim of ciareying the 

microscopic structure of such plastic zones, fine slip bands and dislocation 

structures near a crack tip in silicon crystals were examined by using AFM and 

HVEM. 

In {001} wafer specimens, the plastic zone of 45°-shear-type was observed 

around a crack tip. Very fine slip bands with step height of several Burgers vectors 

were fotmd by AFM. HVEM exhibited a dislocation structure which is fonned by 

dislocation loops emitted from a source near the tip of a crack. In { 011 } wafer 

specimens, hinge-type plastic zones were observed, where slip bands with the step 

height of a few nanometers were fonned with regular spacing of a few microns. In 

HVEM observation, sharp arrays of dislocations with the same Burgers vector were 

foWld, which correspond to the microscopic structure of slip bands in the 

hinge-type plastic zone 

The dislocation structures observed in the present study are considered to be 

closely related with the increase of fracture touglmess through the effect of crack tip 

shielding. 



162 

REFERENCES 

[1] c. St. John, Phil. Mag., 32(1975), 1193-1212. 

[2) M BtedearxlP. Hala:n,AcllaMelall.,36(1988)2003-2018. 

[3] A George arxl G Miclo, Mater. Sci. F..njp:1g., A164(1993) 11~134. 

[4] P.B. Hirsch arxl S.G Roberts, PhiL Tram. RSoc, Lord A, 35!(1997) 1991-2002. 

[5] K. Higa'lhida, N. Narita, M Tanaka, T. MOOkawa, Y. Miwa arxl R Omdera, 

Phi. Mag. A, 81(2002), 3263-3273 

[6] M Tanaka, K.Higashida, T. KishikawaarxlT. Morikawa, Mater. Trans..43(2002)2169-2172 

[7] P.B. Hirsch, A Howie RB. Nicholson, D. W. PEbley arxl MJ. Whelan: 

Electron Microscopy qf1hin Crystals, (London:~ 1965) 

[8] AK. Head, P. Humble, LM. Clarebrougb, AJ. Morton arxl C.T. Forwood: Computed 

Electron Mterographs and Defect /dentijicalion, (Amsterdam: North Holland, 1973) 

[9] J.P. Hirth and J. Lathe: Theoryc(Dislocations, (New York: McGraw-Hill, 1968) ppl9-22. 

[10] G. T. HalmarxlAR Ra!enfield,Acta.. Mdall., 13(1965), 293-306 



IRRADIATION HARDENING IN AUSTENITIC 
STEELS: EXPERIMENT AND SIMULATION 
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Abstract We present a study based on Transmission Electron Microscopy and Tensile 
tests of irradiated austenitic steels, completed by Molecular Dynamics 
simulations of screw dislocations interacting with interstitial Frank loops. 

Keywords: Electron Microscopic, Molecular Dynamics, Irradiation, Dislocation 

1. INTRODUCTION 

Austenitic steels are used as structural materials in nuclear Pressurized 
Water Reactor (PWR), where they are submitted to high neutron fluxes. The 
irradiation causes a degradation of the mechanical properties with an 
increase in the yield stress, a decrease in ductility and a localization of the 
deformation in clear bands. In order to better understand these phenomena, 
we performed a systematic study of the influence of temperature and pre
deformation on the microstructure and mechanical behavior of austenitic 
steels used in PWR, using Transmission Electron Microscopy (TEM) and 
post-irradiation tensile tests, in in-service temperature conditions. 

This study showed that, in the present irradiation conditions, the 
irradiation microstructure is dominated by interstitial Frank loops. However, 
it offered no microscopic detail on the dishcation/loop interaction 
mechanisms or on the pinning strength due to the defects. This information 
is nevertheless required for a detailed understanding of the irradiation effect 
on the macroscopic behavior of the austenitic steels. For that reason, we 

163 

H. Kitagawa andY. Shibutani ( eds.), IUTAM Symposium on Mesoscopic Dynamics of Fracture Process 
and Materials Strength, 163-172. 
© 2004 Kluwer Academic Publishers. 



164 

have undertaken a systematic investigation at the atomic scale, by Molecular 
Dynamics (MD), of all the possible configurations between edge and screw 
dislocations interacting with Frank loops. Since interatomic potentials for 
austenitic steels are not available, we use Nickel as a prototypical FCC 
material. We present here preliminary results concerning screw dislocations. 

2. EXPERIMENTAL STUDY 

2.1 Experimental procedure 

Three types of austenitic steels were irradiated: (1) a solution annealed 
304L steel (noted SA304); (2) a cold-worked 316 steel, deformed to about 
15% (noted CW316) and (3) a 20% cold-worked modified 316 steel 
containing Titanium (0.28 %wt) and Silicon (0.83 %wt) (noted CW316Tl). 

The SA304 and CW316 alloys are employed in PWR respectively for 
baffle plates and baffle bolts. They were chosen to study the influence of the 
initial dislocation network on the final microstructure after irradiation. The 
third Ti-rich material is a potential candidate for the replacement of the 
actual internal structural materials in PWR. The initial microstructure of the 
samples consisted of grains of a size of about 40 Jlm with, in the case of the 
cold-work materials, twins and a high density of dislocations organized in 
cells. 

Three reactors were employed in order to perform irradiations at a 
temperatures of 375°C, representative of the maximum temperature seen by 
internal components, and of 330°C which is the average temperature seen by 
these components. The dose ranged from 0.8 dpa to 40 dpa. The latter is 
about half of the end-of-conception-life irradiation dose. 

Two reactors used here are fast breeder reactors with li.gh fluxes: the 
American EBRII which produced irradiations at 375°C up to 10 dpa and the 
Russian BOR60 reactor which produced irradiations at 330°C with doses up 
to 40 dpa. The French mixed neutron spectrum OSIRIS reactor was also 
used to perform irradiations at 330°C at low doses (<3.4 dpa). In the 
experimental conditions considered here, the temperature plays a very 
important role while fluxes and spectrum have little influence. 

TEM observations were performed m an EM 430 Philips microscope. 
The faulted Frank loops were imaged using the Reciprocal Lattice Rod 
Technique. Cavities were quantified on bright field images out of contrast. 
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These characterizations provided defect size distributions, from which 
average defect sizes and densities were evaluated. 

The mechanical behavior was tested by uniaxial tensile tests at a 
deformation rate of 3 1 o-4 s· 1• The tests were performed post irradiation at the 
same temperature (300°C or 375°C). Irradiation hardening is characterized 
by the increase in 0.2% elastic limit: .:lcr."" O"eirradiated-O"enonirradiated· 

2.2 Microstructure and mechanical behavior evolutions 

The following general qualitative conclusions can be drawn from the 
TEM observations : 

1. The irradiation microstructure is dominated by a high density of 
interstitial Frank loops and black dots. The Frank loops are faulted, having 
a a/3<111> Burgers vector and a { 111} habit plane. They appear as 
ellipses in the TEM pictures. The black dots are defects too small to be 
identified with precision. From the present observations at low dose (0.8 
dpa), they were identified as very small interstitial Frank loops and Frank 
loops seen on their side with very small apparent sizes. 

2. The initial dislocation network disappears progressively as the irradiation 
dose is increased. At high temperature (375°C, 10 dpa), all initial 
dislocations have disappeared in SA304 and CW316 samples and some 
remain in CW316Ti samples. In CW316 samples, traces of the initial 
network are still visible in the form of zones where TEM contrast is 
different. Ths could be due to defect densities different in the regions 
where the cell walls used to be. At lower temperature (330°C), some 
initial dislocations remain, even for doses up to 40 dpa. 

3. The twils in the cold-worked samples are unaffected by the irradiations. 
4. No irradiation induced precipitation is observed. 
5. No cavity is observed at 330°C and a low density of the latter is observed 

at 375°C, especially in SA304 specimens. 

As shown in Figure L we extracted, for each material and irradiation 
condition, the average size of the Frank loops and their density as a function 
of temperature and dose. The main quantitative conclusions are: 

1. A saturation is observed for doses typically above 10 dpa for all materials 
and temperatures. Saturation levels depend on the temperature and 
saturation is more pronounced for the loop size than for their density. 

2. At low temperature (330°C), above 10 dpa, the diameter of the SA304 and 
CW316 samples is constant, close to 7 nm (Figure l.a). The loop densities 
continue to increase (Figure l.b), but slowly. 

3. At high temperature (375°C), the diameter is larger (- 12 nm) and the 
density lower (30 1021 m3) as compared to the values obtained at 330°C. 
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4. If we compare the SA304 and CW316 samples before saturation at 330°C, 
the former has smaller loops(- 6 nm compared to- 9 nm) but in higher 
density(- 60 I<i 1 m·3 compared to- 30 1021 rri3). 

5. Ti-rich samples have loops with larger diameters and lower densities as 
compared to the other materials: at 40 dpa, the diameter is 1 0 nm with a 
density of 50 Hi 1 m·3 , compared to 7 nm and between 60 and 80 1 <i 1 m-3 

for the other materials. 
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Figure I: Evolution of the average diameter (a) and density of Frank loops (b). 
Errors are within 2 nm for the diameter and I OZ2 m·3 for the density. Triangles refer to SA304, 

circles to CW316, squares to CW316Ti. Irradiation temperatures are noted on the figure. 

Irradiation hardening is characterized by the difference in yield stress after 
and before irradiation Figure 2 presents the resulting curves obtained at 
330°C with SA304 and CW316 samples. The main conclusions are: 

1. In all cases, hardening increases rapidly at low doses, then saturates. 
2. SA304 seems to saturate before CW316 (5 dpa compared to 10 dpa). 
3. Hardening depends on temperature and is lower at 375°C than at 300°C. 
4. The cold-worked 316 alloy hardens less than the solution annealed 304L 

alloy with saturation at about 500 MPa in the first case and 600 MPa in 
the second. This point is not fully understood from the present data and 
the influence of chemical composition and initial dislocation density can 
not be completely cleared 

2.3 Discussion 

The present results are in agreement with the literature [1). The particular 
interest of the present work is that it allows to study, on the same samples, 
the effect of the temperature and pre-deformation on both the microstructure 
and the mechanical behavior of austenitic steels. A cluster-dynamics 

40 
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modeling of the microstructure evolution and a micromechanical model of 
the elastic limit and work hardening have been developed based on the 
present observations. They are detailed elsewhere [2]. 
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Figure 2: Increase in 0.2% elastic limit as a function of dose for the SA304 (a) and 

CW316 (b) alloys irradiated and mechanically tested at 330°C. 

too 

Regarding the topic of the present article, the main observation is that the 
microstructure is dominated by interstitial-type defects, namely Frank loops 
and black dots. This situation is very different from, for example, Copper 
where the vast majority of the defects observed in TEM is vacancy-type 
Stacking Fault Tetrahedra (SFT) [3]. This implies that the mobility of the 
vacancies and interstitials and the nature and strength of the sinks are 
different in these two materials, although, to our knowledge, there is no 
precise explication for this phenomenon. 

Secondly, the microstructure saturates for doses typically above 10 dpa. 
There is a dynamical equilibrium between the production of new defects and 
their incorporation in the dislocation network The latter in turn causes 
dislocation climb which promotes annihilation between dislocations. 
Consequently, in agreement with the TEM observations, the density of loops 
in CW316 is smaller than in SA304 (because there are more dislocations to 
absorb the defects) and the inithl dislocation network disappears. The fact 
that the loops in CW316 are larger on average than in SA304 implies that the 
smaller loops are absorbed in the dislocation network and not the larger ones 
which have had enough time to develop. 

Regarding the temperature, the main conclusion is that a higher 
temperature leads to larger loops with smaller densities and a significantly 
lower hardening. 

Ti-modified 316 samples are characterized by larger Frank loops in lower 
density and an irradiation hardening which evolves more slowly as 
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compared to the two other materials , which is a definite advantage for this 
type of material. 

3. MOLECULAR DYNAMICS SIMULATIONS 

We present preliminary results concerning a screw dislocation interacting 
with an interstitil I Frank loop tlllt lies in a { 111 } plane which, either, is or is 
not a cross-slip plane for the dislocation. 

The classical dislocation/Frank loop interaction mechanism was analyzed 
in the case of a vacancy-type loop [4]. The latter is unfaulted and 
transformed into a perfect loop when its surface is swept by a single 
Shockley partial. In the case of interstitial Frank loops, the situation is more 
complicated because their fault is made of two stacking faults in adjacent 
{ 111} planes. Their removal requires sweeping by two Shockley partials. 
There is still a debate [ 5] as to whether these partials are separated or form a 
single core extended over two { 111} planes ~he so-called D-Shock.ley 
partial). We show below that the occurrence of one or the other type of 
partials depends on the configuration. 

3.1 Simulation technique 

Figure 3 shows the simulation cell with the initial dissociated dislocation. 

(b) 
8 

D<t>·Yo- ... . _ 
Z•[1it) C 
L••(110 ] 

~X•[tii"] A 

Figure 3: Simulation cell and associated Thompson tetrahedron 

We use boundary conditions that construct an infinite periodic glide 
plane for the dislocation. Periodicity in the Y direction is insured by the 
invariance of the dislocation displacement field in this direction. In the X 
direction, we use periodic conditions along with a shift of +b/2 in the Y 
direction for atoms leaving the cell from the left-hand negative surface and 
reintroduced on the right-hand positive surface, and an opposite shift of -b/2 
for atoms moving in the opposite direction. The reason is that the (110) 
planes perpendicular to the dislocation line tum around the latter with a shift 
close to b/2 between two opposite faces. This initial shift depends on the 
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atomic Z coordinates; there is an initial mismatch, which however is 
minimized by choosing a cell with a small LzfL. ratio and disappears with 
the initial energy minimization. 

In the Z direction, we apply modified free boundary conditions by 
allowing atomic displacements in the upper and lower Z surfaces only in the 
X and Y directions. A shear stress O"yz may be applied by superimposing 
constant and opposite forces in the Y direction to the forces felt by the atoms 
in the upper and lower Z surfaces. 

We employ the EAM potential developed by Angelo eta/. [6] to simulate 
dislocations in Nickel crystals. Time is integrated using V erlet algorithm 
(time step of2 10"15 ll'). The temperature is 100 K and no control is needed 
because the dislocation glides over limited distances. 

We consider hexagonal loops with edges aligned in <110> directions, 
with a diameter of 6 nm and, given the cell dimensions, a density is 80 1021 

m-3 , i.e. values close to the saturation values obtained in Section 2 We 
consider loops lying either in an ABC cross-glide plane or in an ABD plane. 
Given the symmetries of the crystallography, these are the only two 
configurations to be considered in the case of a screw dislocation 

3.2 Loop in a cross-glide plane of the dislocation 

Figure 4 shows a simulation with an applied stress of 300 MPa. 

Figure 4: Case of a loop in a cross-glide plane of the screw dislocation. The atoms shown 

have less than 12 first neighbors in FCC position. Their color scales with this number. 

The initial configuration (not shown here) was obtained using a conjugate 
gradient energy minimization with zero applied stress. It allowed the 
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dislocation to dissociate and come . into contact with loop surface. 
Application of a stress forces the section of the dislocation in contact with 
the loop to constrict. The dislocation cross-slips and redissociates in the 
plane of the loop. Atoms in the core of the two partials are visible in white in 
Figure 4.a. They sweep the loop surface and remove one of the two stacking 
faults. Thus, non-FCC atoms are visible between the partials in Figure 4.a. 

Once the partial:; have finished sweeping the loop, two other partials are 
spontaneously nucleated on the edges of the loop (Figure 4.b). They remove 
the second stacking fault, leading to complete unfaulting (Figure 4.c). The 
two halves of the loop have different Burgers vectors (CD for the upper half 
and AD for the lower one). They are weak obstacles to the moti::m of the 
dislocation. The latter drags both halves in the direction of their respective 
Burgers vectors. Consequently, they get separated (Figure 4.d). 

3.3 wop not in a cross-glide plane of the dislocation 

Figure 5: Case of a loop not in a cross-glide plane of the screw dislocation. 

In the initial configuration (Figure 5.a), the dislocation is in point-like 
contact with the loop. Application of a stress causes the dislocation to cross
slip spontaneously from its initial ACD plane to an ABC plane where it 
combines an edge of the loops (Figure 5b ), forming a partial dislocation 
with a yA Burgers vector (see Figure 3 for notations). This segment is a ]). 
Shockley partial since it is not dissociated and adjoins the interstitial fault. 

The yA segment is mobile and sweeps the loop surface, removing the 
fault. A oon-dissociated segment forms (Figure 5.c). It is a a/2<110>{001} 
dislocation (a special type of which is the edge Lomer dislocation). The final 
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structure (Figure 5.d) corresponds to a helical turn made of both dissociated 
a/2<110>{ 111} and non-dissociated a/2<110>{001} segments. It has 
inherited the hexagonal shape of the loop. 

The helical turn is sessile because its various parts have·an AC Burgers 
vector parallel to the dislocation line and can glide only in this direction. 
Unpinning involves an Orowan process shown in Figure 6. When the 
dislocation unpins , it leaves behind a perfect loop. 

By using cells with different widths in the Y direction, i.e. different 
lengths L for the screw dislocation, we measured the strength of this 
interaction and found -r c / J1 "" I .0 b/ L . This linear relation is approximate, 
presumably because the size of the obstacle varies during unpinning. 

ps) __ _ 

Figure 6: Unpinning reaction from a helical turn 

3.4 Discussion 

The present MD simulations show that atomic scale reactions between 
dislocations and irradiation defects can be performed with realistic sizes and 
densities. The boundary conditions presented here allow for the simulation 
of screw dislocations in an infinite glide plane without simulating a dipole 
and thus, with smaller simulation cells. With the corresponding edge 
boundary conditions [7], the influence of the dislocation character on atomic 
scale processes may be studied. 

Both configurations considered here lead to the unfaulting of the Frank 
loop, in the first case with the help of two Shockley partials, in the second 
case, of a single D-Shockley. Therefore, both types of partials are possible, 
their occurrence depending on the configuration. 

Unfaulting involves dislocation cross-slip events which occur 
spontaneously at low temperature. This point is important because cross-slip 
has been suggested as a dominant process in the formatDn, thickening and 
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branching of the clear bands. The present simulations show that these cross
slip events are promoted by the short-range core interactions between the 
dislocations and the Frank loops leading to local constrictions and athermal 
cross-slip. 

In simulations not shown here, we considered loops with edges along 
<121 > directions, a morphology also observed in irradiated FCC materials. 
This case is less favourable to cross-slip because the loop edges are not in 
{ 111} planes and, indeed, we observed that the loops are not unfaulted, but 
sheared. Therefore unfaulting is highly dependent on the shape of the loops. 

When the loop is in a cross-glide plane of the dislocation, the controlling 
reaction is loop unfaulting. Then, the half loops are easily dragged by the 
dislocation. By way of contrast, when the loop is not in a cross-glide plane, 
unpinning occurs at low stress (< 150 MPa) but the unfaulted loop, which 
has become an helical turn, is a strong obstacle. The unpinning stresses are 
high, which was expected since unpinning involves Orowan processes. 

4. CONCLUSION 

We have presented a TEM study of irradiated austenitic steels, completed 
by MD simulations. We are currently performing simulations in pure metals 
and model solid solutions to obtain a systematic understanding of the 
interaction; and of their strengths. The latter will then be introdoced in 
crystalline constitutive laws such as presented in [8] and in Dislocation 
Dynamics simulations to predict the macroscopic elastic limit and the 
dynamics of clear band formation from atomic scale information. 
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Abstract Atomic-scale computer simulation is used to investigate obstacle effects on the 
dynamics of glide of an edge dislocation in two situations. In one, a dislocation in 
a-iron encounters copper atoms in solution and it is found that the effect on 
dislocation velocity under constant stress below the static Peierls stress is strong. In 
the other, drag of glissile interstitial loops with the same Burgers vector as the 
dislocation is considered for iron and copper. The drag coefficient of a loop is 
determined for the first time, and is shown to be related to the diffusivity of clusters 
of interstitials via a model of dislocation drag of discrete pinning points. 

Keywords Atomic-scale modelling, dislocation dynamics, dislocation loop, drag, solute atom 

1. INTRODUCTION 

Plastic deformation in metals is strongly affected by the interaction of 
dislocations with obstacles on or near their glide planes. For example, fast
neutron irradiation creates point defects in displacement cascades and causes a 
substantial increase in yield stress and a reduction in ductility. These 
phenomena have been the subject of much research, but the mechanisms that 
control them are still not clear, although since a high proportion of defects 
form in clusters [ l ], dislocation-cluster interactions must be important. 
Molecular dynamics (MD) computer simulations have shown that self
interstitial atoms form platelets of closely-packed, parallel crowdions that are 
equivalent to small (nanometre-scale) interstitial dislocation loops with 
Burgers vector, b, parallel to the crowdion axis [1,2]. They can interact with 
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dislocations in two ways: either as obstacles that pin dislocations by 
intersecting their glide plane or, being glissile, by moving to decorate 
dislocations. Makin [3] calculated the long-range elastic interaction between 
a dislocation and loop and pointed out that loops lying close to the glide plane 
of a dislocation line with the same b can be swept along by it. This should 
reduce line mobility, although the effect is difficult to quantify without 
information on the force to move a loop. 

More recently, a model has been proposed, in which dislocation sources 
are locked by atmospheres of loops that glide to regions where they are 
attracted by the dislocation stress field [4]. A continuum-based dislocation 
dynamics method has been used to study how the critical stress for a flexible 
dislocation to break away from rows of loops depends on loop size, spacing 
and distance from the glide plane [5], and confirms the earlier estimates [4]. 
These treatments assume the loops do not glide with the dislocation, but this is 
by no means certain. Hence, in section 4 we consider loop drag effects by 
simulating dislocation glide in the presence of loops by atomic-scale computer 
simulation of Fe and Cu, two metals that offer a contrast of crystal structure 
and dislocation dissociation effects. This is a first step to establishing general 
rules on these phenomena for use in dislocation dynamics simulations. 

Solute atoms also influence yielding and subsequent plastic flow. An 
example of interest for assessing the mechanical properties of reactor pressure 
vessel steels is Cu in Fe. Precipitates of Cu nucleate during operation, but 
growth is limited under irradiation conditions and the population of nano
scale, coherent precipitates creates substantial hardening of the Fe matrix. 
Dislocation-precipitate interaction has been simulated recently by MD and the 
atomic-scale mechanisms of strengthening analysed [6], but less is known of 
the effects of Cu that remains in solution. We are undertaking a modelling 
study of this and preliminary results are presented in section 3. As a reference 
for sections 3 and 4, we describe dislocation behaviour under applied stress in 
pure Fe and Cu in section 2. 

Only an initially straight edge dislocation is considered here. The 
simulation method and the way in which quantitative information on stress
strain response and dislocation motion are obtained for static (T = OK) and 
dynamic (T >OK) loadings are described in [7]. The slip geometry for the Fe 
(BCC) and Cu (FCC) models is shown schematically in Fig. I. Periodicity 
was employed in the slip direction x as well as the line direction y. The 
models contained between 0.3 and 1.9M atoms. Interatomic potentials from 
[8,9] were used for the Cu and Fe-Cu systems, respectively. 

2. MOTION OF A SINGLE DISLOCATION 

The variation of shear stress, 't, when an increasing shear strain is applied 
to a model crystal at T = OK is plotted in Fig. 2 for both Cu and Fe. The onset 



BCC )-.11111 

fCC 11111 

1110) 

g1tss 18 loop 

Figure 1. Geometry of glide considered for Fe (BCC) and Cu (FCC). 
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Figure 2. Stress-strain response at T =OK of a model containing a single dislocation. 
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of plastic strain when the edge dislocation moves is clear: a plastic strain of 
0.1% corresponds to dislocation motion of about 1 0-15b for the model sizes 
used. The critical (Peierls) stress, tp, required to maintain dislocation glide is 
seen to be about 16MPa for Cu and 26MPa for Fe. The smaller value for Cu 
is not surprising because the dislocation dissociates into two Shockley partials 
with spacing -13ao, where ao is the FCC lattice parameter. 

The response of a dislocation to constant applied stress, t, depends on 
temperature, but here we only consider results for T = 300K. Glide of the 
edge line occurs at stress levels well below tp. This can be backwards as well 
as forwards, but stress imposes a drift on this movement, and when t rises 
above 't'p, the line glides uniformly. The dependence of dislocation velocity 
on applied shear stress is shown by the data plotted in Fig. 3(a). Although tp 
is higher for Fe than Cu, the velocity, v, at the same value of t is actually 
higher. The velocity is T-dependent, increasing as T decreases, showing that 
glide is affected by a phonon-related drag mechanism. Defining the drag 
coefficient, B, in the usual way [10], i.e. 't'b = Bv, results in the data plotted in 
Fig. 3(b). B is higher for Cu than Fe, and approximately independent oft, 
except for Cu at low 't' where it increases strongly. The cause of this increase 
is unknown. 
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Figure 3. (a) Velocity and (b) drag coefficient versus stress for an edge dislocation in 
either Fe or Cu at T = 300K. 

3. EFFECT OF COPPER SOLUTE IN IRON 

Copper is an oversized solute in the BCC Fe matrix, with a misfit of 8.8% 
for the interatomic potentials used here. For solute concentrations of interest, 
i.e. >O.lat%, the solute spacing is such that under no applied stress, a 
dislocation minimises its interaction energy with the solute atoms by adopting 
a shape with a radius of curvature much larger than the spacing [ 11 ]. In 
practical terms, the radius is much larger than the periodic MD cell length, L, 
and so the periodicity imposes an unrealistic, almost straight line shape. We 
have checked that the critical value of 't for an edge dislocation to glide in a 
0.5% solution at T = OK is strongly dependent on L up to L = 22nm, i.e. 89b. 
Hence, for the static study (T = OK), we have considered the effect of a single 
Cu atom on an edge dislocation. 

Fig. 4 shows the variation along the [Ill] direction of the interaction 
energy, E., between the dislocation and a copper atom occupying a site in 
either the ( ll 0) atomic plane that contains the lowest atom of the dislocation 
extra half-plane or one of the two adjacent planes, as shown schematically in 
the figures. The points labelled 'atomic' are the actual values for a fully 
relaxed model containing an edge dislocation with b = 112[111] and a Cu 
atom. They are independent of the length of periodicity L for the range 
considered (3.5-27nm). The line labelled p.:l V is an 'elastic' approximation 
obtained from the product of the pressure, p, at the equivalent atomic sites in a 
model of pure Fe times Ll V for a single substitutional copper atom in an 
otherwise perfect crystal, i.e. 0.0880. The p.:l V lines exhibit the forms of 
repulsion/attraction (E1 > 0/0) expected from elasticity theory for the change 
from compression to tension between positions above and below the glide 
plane of an edge dislocation. The 'atomic' data for Cu in sites on the highest 
plane considered are consistent with this (Fig. 4(a)). The values for the plane 
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Figure 4. E1 vs x for an edge dislocation and one Cu solute atom in Fe. 

immediately below the glide plane are partly consistent (Fig. 4(c)), but the 
minimum in E1 is so deep that the dislocation glides spontaneously over a 
distance of several b at T = OK to bind strongly with the Cu atom. 
Surprisingly, E1 for the plane coincident with the bottom of the extra half
plane is negative (Fig. 4(b)), despite the compressive nature of the stress. 

The effect of the single Cu solute in one of the three planes on the stress 
required to make the dislocation glide at T =OK is shown in Fig. 5 for L = 3.5 
and 11.2nm. The value of 'tp for the pure crystal is indicated by the horizontal 
line. The variation of 't above and below 'tp with strain reflects the attractive 
and repulsive variations of E1 as the dislocation moves towards and away from 
the solute. The maximum 't increases with decreasing L, as expected for a 
periodic row of localised obstacles, but not simply as L-1• A reduction in L 
results in a decrease in line flexibility and hence in the large values of't. 

The velocity of the edge dislocation gliding under constant 't in 0.5 and 
lat% solid solutions of Cu in Fe has been determined. The position of the 
dislocation line is plotted against time for several 't values at T = 300K in Fig. 
6 for a model with L = ll.2nm, together with results for pure Fe. Velocity 
values for each Cu concentration are shown for each stress. It is seen that v is 
only weakly affected by the solute at high 't (above 'tp) but the dislocation 
stopped moving after a short time at 20MPa in the 1% alloy and did not move 
at all in either alloy when 't = SMPa. 
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4. DRAG OF A GLISSILE INTERSTITIAL LOOP 

The geometry considered for the interaction and drag of an interstitial 
loop by an edge dislocation is shown schematically in Fig. l. We consider 
here only the case when the glissile loop contains 37 interstitials and has the 
same perfect Burgers vector as the line. The loop is hexagonal in shape with 
centre a distance H below the dislocation glide plane and sides along <112>. 
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To understand the results more readily, the interaction energy, E~, as a 
function of the distance, x, between the loop habit plane and the dislocation 
for H = 11, 22 or 33ao is plotted for Fe in Fig. 7 using two calculations. One 
labelled 'elastic' is simply that given by isotropic elasticity theory for an 
infinitesimal loop, i.e. crxxbA, where crxx is a normal stress component of the 
edge dislocation and A the loop area. In the elastic approximation, the loop is 
attracted to the positions X = ±0.58H where crxx is minimum. The data 
labelled 'atomic~ were obtained by energy minimisation in the atomic model 
with periodic length L = llnrn (Fe) or 9.3nrn (Cu). For H = llao the line-loop 
attraction is so strong that the loop glides to the energy minimum over -40ao 
<x<40ao, even in the static model. Overall, the curves indicate that a glissile 
loop should be dragged by a moving dislocation if the resistance to loop glide 
can be overcome by the maximum force exerted on it by the line, i.e. the 
maximum slope of the E1 vs x plot. Although E1 has longer range in the 
atomic calculation, because of the periodicity along the x axis, the 'atomic' 
and 'elastic' curves are similar in form, suggesting that it should be possible 
to interpret loop-dislocation forces using the elasticity analysis. 
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Figure 7. E1 vs distance for a loop and dislocation with the same b = 1/2[111]. 

Here, we present statics (T = OK) and dynamics (T = 300K) results for H 
= llao for Fe and 11.4ao for Cu. The dependence oft on strain in the statics 
simulation is presented in Fig 8, superimposed on the data from Fig. 2 for the 
dislocation alone. For the H value considered, the line moves when t is high 
enough and then drags the loop in both metals. The maximum stress, tmax, is 
28MPa for Fe and is only slightly higher than tp, but the value for Cu is twice 
as large as tp, i.e. 32MPa, and is preceded by small displacements of atoms in 
the loop that result in small displacements of the line. 

Results for the dynamics of dislocation glide at 300K in the presence of a 
glissile loop are presented in Fig. 9(a), together with the v vs t data from Fig. 
3(b) for the dislocation alone. The dislocation is able to drag the loop for t up 
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100-150MPa in Fe and 50-75MPa in Cu, as indicated by the 'breakaway' 
arrows. Drag results in a reduction in v, except at small t. (A reduction in v 
occurs beyond breakaway in the modelling because the moving line 
repeatedly interacts with the loop as a result of periodicity in the x direction.) 
It is striking that a loop velocity of over 800 and 200ms·' is achieved prior to 
breakaway in Fe and Cu, respectively. The effect of the loop on the drag 
coefficient, B, for the dislocation is shown in Fig. 9(b). The additional 
contribution is less than IOJ.l.Pas for Fe and about 30J.!Pas for Cu. 
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Figure 8. Stress vs strain at T =OK of (a) Fe and (b) Cu containing a 37-interstitialloop. 
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Figure 9. (a) Velocity and (b) drag coefficient for an edge dislocation in Fe and Cu at 300K 
with and without interaction with a loop. Arrows indicate dislocation breakaway. 

5. DISCUSSION 

The results demonstrate the quantitative, and sometimes unexpected, 
nature of the information that can be gained with the method used [7]. For 
example, although elasticity theory gives reasonable values for E1 between a 
substitutional Cu atom and an edge dislocation in Fe for solute positions on 
planes that are not adjacent to the glide plane, the results of Fig. 4 show that it 
significantly underestimates E1 for Cu for solute sites in the core just below 
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the extra half plane (Fig. 4(c)). Furthermore, the 'atomic' data for the plane 
coincident with the bottom of the extra half-plane are not consistent with the 
p~V data, even with regard to sign (Fig. 4(b)). This result does not seem to 
have a simple explanation, but presumably arises from the Fe-Cu part of the 
interatomic potential and may reflect the appeal for the Cu atom of sites 
adjacent to bond stretching in the Fe. 

Another unexpected result is that the dislocation drag coefficient, B, is 
higher in the model of Cu than Fe, although the static Peierls stress, tp, is 
lower. It is possible that phonon scattering is enhanced by the dissociated 
state of the dislocation core in Cu. However, we note that in an 
accompanying paper by Bitzek et al. [I 1 ], MD simulation of edge dislocation 
glide in Ni gave B = l51J.Pas at 300K, i.e. about one third of the value 
obtained here for Cu, and tp = 0.15MPa, i.e. two orders of magnitude smaller 
than our result. This difference between the metals is unexplained. Also, it is 
not clear why B for Cu exhibits such a strong increase when t falls below tp, 
in contrast to Fe. These effects require further consideration using models 
with different interatomic potentials. 

It was seen in Fig. 8 that for a 37-interstitial cluster a distance H = I lao 
(Fe) and 11.4ao (Cu) below the dislocation slip plane, the loop glides when t 
reaches tmax = 28MPa for Fe and 32MPa for Cu at T = OK, compared with tp 
values of 16 and 25MPa, respectively. Although tmax is different in the two 
cases, the force the dislocation requires to drag the loop is almost the same, 
i.e. tmaxbL -78pN, because of the difference in L. The loop is dragged at tmax 
because the force required to overcome its glide resistance is less than the 
maximum the dislocation can exert, i.e. I dE1/dx I max. which from the elastic 
line in Fig. 7 is -0.2eV/ao ::ll2pN. 

The plots for v and B in Fig. 9 show that under constant stress at 300K, 
the influence of loop drag in our models is larger in Cu than Fe. To pursue 
this further, let B = Bctisl + B1oop for a line dragging a loop, where Bctisl is the 
drag coefficient for the dislocation in the absence of interaction with a loop 
and B1oop is the additional effect due to loop drag, i.e. approximately 7 and 
351J.Pas for Fe and Cu, respectively. For a loop being dragged by a 
dislocation length Lunder stress t, the mobility, m, is 

velocity v 1 
m= =--=--. 

force tbL B100PL 
(1) 

The mobility for a diffusing defect drifting in an energy gradient is 
approximately DlkT, where D is the diffusivity and k is the Boltzmann 
constant. Hence, Bloop can be estimated if D is known. 

The thermally-activated motion of interstitial clusters in metals has been 
simulated by MD in recent years and detailed information is available for Fe 
and Cu [2). Clusters migrate one-dimensionally in the direction of b with 
high jump frequency, v, because the activation energy is small (-0.02eV). 
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The jumps are highly correlated at low T, i.e. there is a preference for a jump 
to be in the same direction as the previous one, and D may be written: 

D=f!b2v 
2 ' 

(2) 

where f is the correlation factor and b the length per elementary jump. Hence 

B _ 2kT 
loop- fb2vL (3) 

For a 37-interstitial cluster, f = 4 and 2.5, and v = 0.3 and 0.2THz for Fe and 
Cu at 300K, respectively [2]. Eq. (3) therefore predicts that Btoop is 
approximately 11 and 26j.LPas for Fe and Cu, respectively. 

This treatment is based on that for damping due to drag of discrete 
pinning points, e.g. point defects, by dislocations [12]. The fmding that the 
estimates for Btoop are close to the increase in B seen in Fig. 9(b) give weight 
to the validity of this model for the current problem. We are currently 
carrying out simulations for other T, H and b combinations to test this. If it 
proves to be applicable, it should be possible to create general rules for loop 
drag based on only a few parameters. 
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Abstract 

Keywords: 

The high strain-rate deformation in copper single crystals is investigated using 
a multiscale dislocation dynamics plasticity model. In this study, we examine 
the effects of crystal orientation and anisotropy on wave profiles, dislocation 
density histories, and dislocation microstructures. The morphologies of the 
relaxed configurations of dislocation microstructures show formation of 
deformation bands. The number and thickness of these bands are observed to 
be dependent on crystal orientations. 

Dislocation Dynamics, High Strain Rate, Dynamic Plasticity, Multiscale, 
Shock loading 

1 INTRODUCTION 

There are many parameters that affect the deformation process in metal 
single crystals in either quasi-static or high deformation rate processes. 
Among these parameters, crystal orientation exhibits a primary influence on 
the yield strength and flow stress (Driver et al., 1994, Follansbee and Gray 
1991, Horstemeyer et al., 2002). Advancements in experimental capabilities 
over the years have improved our understanding of the dynamic response of 
materials. The Hopkinson bar and plate impact techniques can now be used 
to study the dynamic inelastic response of materials over strain rates ranging 
from 102 s·1 to 5x 106 s·1 (Clifton, 2000, Nasser, 1992). Mogilevskii and 
Bushnev (1990) used the plate impact experiment to shock load copper and 
aluminum single crystals to pressures ranging from 50 to 100 GPa, and 
observed misorientation bands in both materials. The features of these bands 
were found to be dependent on the crystal orientation. Recently, laser based 
experiments have been used to study the plastic deformation in metals single 
crystals at different orientations. Short pulse duration (in the order of 
nanoseconds) was used to generate extremely strong pressure waves that 
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propagate through the samples (Loveridge-Smith, 2001, Kalanter et al., 2001, 
Kanel et al., 2001, Meyers et al., 2001, Meyers et al., 2003). 

Different dislocation microstructures were observed at different values 
of pressures. During shock or impact loading, plastic deformation (occurring 
as a result of fast moving dislocations) is often localized in narrow band like 
structure. These bands generally lie on the slip planes and contain a very high 
density of dislocations (Coffey, 1992), which arrange themselves in certain 
dislocation structures depending on the loading conditions. These dislocation 
structures form almost instantaneously up to 106 s-1 strain rate (Kuhlmann
Wilsdorf, 2001). The observed microstructures consist of dislocation cells, 
deformation micro bands and deformation twins (Rivas et al., 1995, 
Mogilevskii and Bushnev, 1990). 

Deformation physics at high strain rate is a complex multiscale dynamic 
problem. The level of pressure and temperature involved under extreme 
conditions may make it difficult to address the deformation process using 
physical experiments. In fact, current experimental capabilities cannot 
address material response at pressures larger than I 00 GPa. In addition the 
cost of full scale testing in this area of research is high and keeps escalating 
(Mayer, 1992). Therefore, computer simulations methodologies are used to 
study the dynamic deformation phenomena by attempting to bridge the 
length scales from atomistic to macroscopic scales. In the atomistic scale, 
molecular dynamic simulations are used to investigate the response of single 
crystals to high strain rate loading at different crystal orientations 
(Horstemeyer et al., 2001, 2002). Smirnova, et al. (1999) introduced a 
combined molecular dynamics and fmite element approach to simulate the 
propagation of laser induced pressure in a solid. In spite of all computational 
advances, current atomistic simulations can model no more than billions of 
atoms (Clifton and Bathe, 1999). 

In the microscale, discrete dislocation dynamics provides an efficient 
approach to investigate the collective behavior of a large number of 
interacting dislocations. Dislocation dynamics (DD) can simulate sizes much 
larger than the current atomistic simulation capabilities. Recently, dislocation 
dynamics based multiscale modeling, which couples the micro and macro 
length scales has emerged as an excellent numerical tool to simulate the 
collective behavior of dislocations in a bulk material. In this paper, we used a 
multiscale dislocation dynamics plasticity (MDDP) model to study the effect 
of crystal orientation and anisotropy on the interaction between stress waves 
and dislocations. 



2 MULTISCALE DISLOCATION DYNAMIC 
PLASTICITY MODEL 
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The MDDP model is based on fundamental physical laws that govern 
dislocations motion and their interactions with various defects and interfaces. 
The model merges two length scales; the nano-microscale where plasticity is 
determined by explicit 3D dislocation dynamics analysis providing the 
material length scale, and the continuum scale where energy transport is 
based on basic continuum mechanics laws, i.e. linear momentum balance and 
energy balance: 

divS=pv (1) 

p Ci =KV2T + S.i;P (2) 

where v = it is the particle velocity, u, p, Cv and K are the displacement 
vector field, mass density, specific heat and thermal conductivity, 
respectively. Then, the strain rate tensor i; is decomposed into an elastic part 

i;' and plastic part iP , which when combined with the classical Hooke's 

law yields: 

0 

where S is co-rotational Cauchy stress rate, C' is, in general, the anisotropic 
elastic stiffness tensor, m is the spin of the microstructure and it is given as 

the difference between the material spin W and plastic spin W P • The 
evaluation of the plastic strain increment is performed in the discrete 
dislocation dynamics component of the model, involving massive 
computations of dislocation-dislocation interaction, motion, multiplication, 
annihilation, etc. The reader is referred to various papers dedicated to the 
development of this model (Hirth et al., 1998, Zbib et al, 1998-2002, Rhee et 
al, 1998). The resulting system of equation is solved using the standard finite 
element (FE) method. 

3 MDDP SIMULATIONS 

The MDDP simulations are designed to mimic uniaxial strain loading of 
high strain (106 s'1) and short pulse durations of (2 nanoseconds). As 
illustrated in Figure 1, a computational cell, with dimensions 2.5 f.llTl x2.5 
Jlm x25 f.llTl is used. Velocity-controlled boundary condition was applied on 
the upper surface over a short period of time t* to generate the stress waves. 
In this case, the applied velocity corresponds to the average strain rate over 
the entire domain, whereas t* corresponds to the required pulse duration. 
The upper surface is then released and the simulation continues for the elastic 
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wave to interact with the existing dislocations. In order to achieve a uniaxial 
strain involved in shock loading, the four sides of the block are confined so 
that they can displace in the loading direction only. The bottom surface is 
rigidly fixed. In order to isolate the effect of the reflected wave, the length of 
the cell (25 J.lm) is chosen such that once the wave front reaches the bottom 
surface, the value of the stresses in the region where the dislocations are 
located is very small so that dislocation relaxation process can take place. 
Since metal single crystal exhibits cubic symmetry that leads to the 
anisotropy in their behavior, the FE stiffness matrix is modified to account 
for this effect. 

Velocity 
controlled B.C 

Confined 
BC 

Figure 1: Setup of the DD simulation cell and the FE mesh. 

Frank-Read loops randomly distributed on different slip planes are used 
as sources to generate dislocations as the wave interacts with these sources. 
The length of each source ranges from 2000b to 3000b (0.50-0.80 J.lm) where 
b is the magnitude of the Burgers vector. It is worthy mentioning that while 
in FE, the fours sides of the computational cell are constrained to displace 
only in the x and y direction so that confined state of stress is achieved, 
periodic boundary conditions are used in the DD part of the code in order to 
account for the periodicity of single crystals in infinite media. 
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4 RESULTS AND DISCUSSION 

The effect of crystal orientation on dislocation-stress wave interaction 
was studied by performing simulations for three different orientations such 
that the number of slip systems activated in each orientation is different. The 
computational cell is oriented with respect to the reference frame, i.e., 
(100, 010, 001). The orientations used for ftrst, second and third case are 

(100,010,001), (ll0,112,1Tl) and (121,l0l,lll), respectively. In 

all these three orientations, the crystal is loaded in the [00 I] direction. In 
this section we will discuss the effect on crystal orientation and anisotropy on 
the dislocation density history, dislocation microstructures and the wave 
profiles. 

4.1 Dislocation Density Histories 

Figure 2 shows the dislocation density histories for the three 
orientations. These curves suggest the existence of three distinct regimes of 
interaction between dislocations and the propagating elastic waves. These 
regimes are: A) no interaction regime, where the wave has not yet impacted 
the sources, B) the interaction regime, where the wave impacts the 
dislocation sources leading to an avalanche in the dislocation density, and C) 
the relaxation regime, in which, wave surpasses the region where the 
dislocations are located leading to saturation in the dislocation density. In 
addition, these curves show that the dislocation density histories are very 
sensitive to crystal orientation. This indicates that the type and number of 
activated slip systems and their interaction differ from one orientation to 
another. 
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- . .e- - . Flrst 

2.00E+11 ----11111!!!=--------~-_j 
0 2 3 4 5 6 7 
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Figure 2: The effect of crystal orientations and anisotropy on the dislocation history in 
copper shocked to I 06 s·1 for 2 nanoseconds 
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In FCC crystals there are 12 possible slip systems, which can contribute 
in the deformation process. Table 1 lists the 12 slip systems. The 
configurations of the slip systems before and after the load is applied are 
shown Figure 3a and 3b respectively. 

T. bl 1 SI' . FCC a e : 1p systems m meta s. 
Slip Burgers Slip Plane SUp 

System Vector System 
I [-1 I 01 (-1 -1 I) 7 
2 [-I I 0] (I I I) 8 
3 [0 I -1] (-1 I I) 9 
4 [0 1 - 1] (I 1 1) 10 
5 [-1 0 -I] (-111) 11 
6 [-1 0 -1] (-1 -1 1) 12 
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Figure 3: The configuration of dislocation density distribution on the slips systems at 
different orientations (a) b efore loading, (b) after loading. 
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4.2 Dislocation Microstructure 

The dislocation microstructures generated by shocks depend strongly on 
the level of pressure carried by the stress wave (Meyers 1994). We found 
previously that the dislocation microstructure at strain rates on the order of 
106 s·1 or higher, consists of deformation bands within which the dislocation 
densities are very high (Shehadeh et al., 2003). Morphologies of dislocations 
at different crystal orientations are illustrated in Figure 4, which shows the 
microstructure obtained from slices within the computational cell. It is clear 
that crystal orientaion does not change the main features of the micorstucture 
at the applied strain rate of 106 s·1 used in the present study. However, the 
number, thickess and the dislocation density in these these deformation 
bands differ from one orienatation to another. 

z 

.-t\, .1 
a) 

b) 

Figure 4: Dislocation microstructures at different orientations (a) first orientation (b) second 
orientation( c) third orientation. 

Profiles of the elastic and plastic strains spatial distributions as a 
wave propagates in copper are shown in Figure Sa and 5b respectively. 
Figure 5b shows that the local plastic strain begins to evolve when the stress 
wave reaches the region where the dislocations are located. It is seen that the 
values of the plastic strain keeps on increasing until the wave surpasses that 
region and relaxation takes place where the dislocation density saturates and 
so does the plastic strain. 
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Figure 5. (a) Profiles of &033 in copper single crystal and (b) profiles of eP33 at different times. 
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ATOMIC-LEVEL INTERACTION OF AN EDGE 
DISLOCATION WITH LOCALIZED OBSTACLES 
IN FCC AND BCC METALS. 
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Abstract Interaction between a moving dislocation and localized obstacles determines 
microstructure-induced hardening. The mechanisms and parameters of such 
interactions are necessary inputs to large scale dislocation dynamics modelling. 
We have developed a model to investigate these characteristics at the atomic 
level for dislocation-obstacle interactions under both static (T=OK) and 
dynamic (T>OK) conditions. We present results on hardening due to pinning of 
edge dislocations at obstacles such as voids, coherent precipitates and stacking 
fault tetrahedra in bee-iron and fcc-copper at temperatures from 0 to 600K. It 
is demonstrated that atomic-scale simulation is required to determine the 
effects of stress, strain rate and temperature and that such effects cannot always 
be rationalized within continuum theory. 

Keywords Atomic scale modelling, dislocation dynamics, dislocation-obstacle interaction, 
voids, coherent precipitates, stacking fault tetrahedra. 

1. INTRODUCTION 

Materials subjected to different treatments may suffer degradation of 
mechanical properties, e.g. hardening, loss of ductility and plastic instability. 
In many cases, for example under irradiation, the main reason is formation of 
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localised obstacles to dislocation motion. The typical radiation defects 
affecting mechanical properties are defect clusters of both vacancy and 
interstitial types and secondary phase precipitates. Three-dimensional 
dislocation dynamics (3DDD), as a part of multiscale materials modelling 
approach, can be used to predict mechanical properties on the basis of the 
microstructure present but suffers from lack of understanding of short-range 
interactions between moving dislocations and obstacles, which makes 3DDD 
approximate in some cases. This gap can be filled using atomic modelling 
techniques at large enough scale to overlap with the continuum approach, 
and hence provide mutual validation and parameterization of the mechanisms 
considered. Another essential advantage of the atomic modelling is the 
possibility for direct study of thermal effects, which is impossible by other 
techniques. Recent achievements in atomic-scale modelling of dislocation 
dynamics [ 1-5] have demonstrated the importance of this approach. In this 
paper we review new modelling where a variety of obstacles, such as 
vacancy voids, stacking fault tetrahedra (SFTs) and coherent precipitates, to 
the glide of edge dislocations was studied in Cu and Fe over a range of 
temperatures. We focus mainly on mechanisms of dislocation-obstacle 
interaction, differences observed for different metals and temperature effects. 

2.MODEL 

The model for simulating the dynamics of the edge dislocation is 
described in detail in [4]. It is based on the approach ofBaskes and Daw [1] 
using a periodic array of dislocations. An advantage of the model described 
in [4] is that is allows the stress-strain curve to be obtained under both statics 
(T=O) and dynamics (T>O) conditions. The results discussed here were 
obtained from bcc-Fe and fcc-Cu model crystals. Edge dislocations 
1;12<111><112> (Fe) and 1;12<110><112> (Cu) were simulated in crystallites 
having from -2,000,000 to -8,000,000 mobile atoms over the temperature 
range from 0 to 600K. Voids or coherent copper-precipitates in Fe and voids 
or SFTs in Cu were created in the vicinity of the previously relaxed 
dislocation, the crystal was relaxed again and then loaded by applying strain 
or stress. Two approaches were used. Static modelling provides information 
on equilibrium structure under a given strain, which can be compared 
directly with continuum modelling of dislocation line shape for example. 
Dynamic modelling by molecular dynamics (MD) allows temperature effects 
as well as kinetic properties of moving dislocations to be investigated. The 
stress-strain curve can be obtained with both approaches and its dependence 
on strain rate studied in dynamics. 
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3. RESULTS 

3.1 Voids and copper precipitates in iron 

An example of stress-strain curves obtained for an initially straight edge 
dislocation overcoming a periodic row of voids (diameter D, spacing L) in Fe 
at T=OK is presented in fig.l. According to [4] the total process of 
dislocation-void interaction can be divided into four stages of dislocation 
motion, first before it meets the void, second as it enters the void, third as it 
glides over the void surface and fourth after it breaks away. These stages can 
be seen clearly in fig.l for all the voids. The maximum stress for each void 
size gives the corresponding critical resolved shear stress (CRSS) at which 
the dislocation breaks away and, provided the strain is increasing, gives 
further plastic deformation in the fourth stage. Data on CRSS obtained for 
D=0.7-5nm and L=41-82nm versus harmonic mean (D.1+L·1r1 are presented 
in fig.2 (empty circles) together with the results of continuum dislocation 
dynamics modelling for voids and Orowan particles from [6,7]. It can be 
seen that atomic scale modelling data are qualitatively similar to the result 
for voids in the continuum treatment, suggesting that the dependence : 

Gb f,( _1 -1 )-1 ] 
'tvoid = --~D + L J + 1.52 

2nL 
(1) 

can be used for estimation of CRSS in higher level continuum modelling of 
void strengthening. 
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Figure /. Stress-strain curves obtained for dislocation-void interaction by static 
modelling in Fe. The number of mobile atoms in the simulated crystal, void spacing, L. 
and void diameter, D, are indicated. 
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Figure 2. Critical resolved shear stress obtained for different defects as function of 
harmonic mean of obstacle size D and spacing L. G is the shear modulus and b is the 
magnitude of the Burgers vector. Open circles - voids in Fe, dark circles - Cu
precipitates in Fe, triangles- voids in Cu. Dashed and solid lines are results obtained in 
{6. 7] by continuum modelling of an edge dislocation passing through a row of Orowan 
particles and voids respectively, dotted line is interpolation of precipitate results by the 
dependence Gb/1.3L[ln(D-1 +L-1)"1 -0.44]. 

However, the mechanism of dislocation-void interaction observed by 
atomic modelling in Fe has some differences from that expected from 
continuum modelling in [7]. The main difference is that at atomic level this 
interaction is accompanied by dislocation climb, to an extent that depends on 
the void size (see e.g. [5]). As a result of this climb, the effective size of a 
void decreases and it becomes a weaker obstacle for the following 
dislocation. 

MD modelling has demonstrated that stress-strain curves are strongly 
temperature dependent and the CRSS decreases as T rises. An example of 
CRSS temperature dependence for the 2nm void is presented in fig.3 by open 
circles. One can see that at T=600K the CRSS drops to 60% of its zero 
temperature value. 

The above data were obtained at strain rate e =5x106s-1 at which, for the 
model size used, the dislocation moves with the steady state velocity 
VdR~l5m/s, which is a rather low velocity for atomic scale modelling. It was 
found that the stress at which the dislocation cuts the void depends on its 
velocity. As an example, consider the following data for the same 2nm void 
in a crystal under different f; . At zero temperature the CRSS was found to 
be 207MPa and it drops to 179MPa at lOOK. However, if simulation at 
T= 1 OOK is made at constant applied stress equal to 1 OOMPa, at which 
VdR~900m/s, the dislocation cuts the void. Notice, this kinetic effect depends 
on temperature and crystal size, e.g. higher stress should be applied at high 
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Figure 3. Temperature dependence of the CRSS due to coherent Cu-precipitates of 
different size and 2nm voids in Fe at applied strain rate 5xUfs·1. 

temperature but lower stress is sufficient for the dislocation to cut the void in 
a larger crystal (i.e. lower dislocation density). This effect could be 
explained in terms of kinetic energy associated with a moving dislocation. 
More detailed discussion and explanation of kinetic effects can be found in 
[8]. We also note here that a fast dislocation climbs more than a slow one. 

3.2 Copper-precipitates 

Results for the CRSS at zero temperature due to a periodic row of 
coherent spherical Cu precipitates in Fe are presented in fig.2 by dark circles. 
The dependence of the CRSS on ln(D-1+L-1)"1 can be approximated by a 
linear function (indicated by dotted line) with a slope significantly steeper 
than that for voids, i.e. -1/1.3 compared with l/27t. However, the 
mechanism of dislocation-precipitate interaction depends on precipitate size. 
Thus small precipitates, D<3nm, suffer simple shear, whereas in the case of 
large precipitates partial transformation towards the more stable fcc structure 
inside precipitates and dislocation climb are observed. 

It is common to attempt to describe precipitate hardening on the basis of 
the constant line tension approximation. For this the critical angle, q>, 
between dislocation segments as they break away from a precipitate are 
required, e.g. it is estimated from the Cu-Fe modulus difference in [9]. It is 
obtained accurately in our modelling and is >0 for D::o;3nm and equal to zero 
for larger precipitates. This angle was used to estimate the corresponding 
stress in the line-tension treatment, and gave values up to twice the true value 
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estimated in atomic-scale modelling (see [5]). In other words, in order to 
give correct stresses, the line-tension model has to use incorrect angles. 

The temperature dependence of the CRSS due to Cu precipitates in Fe 
under a constant applied strain rate of 5xl06s·1 is presented in fig.3 by full 
circles. The dependence is strong relative to that of voids. Thus, a row of 
2nm voids is weaker at T=OK than 4nm precipitates, they have similar 
strength at T=300K and at higher temperature the voids are stronger 
obstacles. Another effect observed for precipitates is an increase of 
dislocation climb: the higher the temperature the more vacancies are left 
inside a precipitate. 

3.3 Voids and SFTs in copper 

Examples of stress-strain curves for dislocation-void interaction at T=OK 
in copper are presented in fig.4. It can be seen that the dependences are 
qualitatively different from those obtained for Fe (see fig.l). The 
explanation lies in the difference of the dislocation core structure in the two 
metals, for unlike that in Fe, the dislocation in Cu is dissociated into two 
Shockley partials linked by a stacking fault ribbon of width ~ 13a for the edge 
dislocation. As a result each partial dislocation interacts with an obstacle 
individually. The first stress peak at yield in fig.4 for voids of each size 
corresponds to the stress when the leading partial breaks away, whereas the 
second peak is related to the same process for the trailing dislocation. The 
corresponding partial dislocation line shapes for D=2nm are presented in 
fig.5. It is interesting to note that the relative height of the two stress peaks 
in fig.4 depends on void size. Thus, when the dislocation cuts small voids 
the stress at the first peak is lower than that at the second, whereas for the 
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Figure 4. Stress-strain dependence for dislocation-void interaction in Cu at T=OK. 
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Figure 5. Critical shape of partial dislocations interacting with a 2nm void in Cu at T=OK: (a) 
leading partial at shear stress 115MPa; (b) trailing partial at 118MPa. The core region of 
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largest void studied (D=3nm) the leading partial breaks away at maximum 
stress. This size-dependent effect is presumably related to the pulling force 
the leading partial can provide for the trailing one if the area of the stacking 
fault increases significantly at such a high stress. The assistance of the 
leading partial may also explain the overall weaker strengthening due to 
voids in Cu in comparison with Fe, as seen in fig.2 . Another feature of the 
dislocation-void interaction mechanism in Cu is the absence of climb and 
defect absorption, for only pure shear of voids has been found in all the cases 
studied. 

Temperature effects have been studied in dynamic modelling of 
interaction of a gliding dislocation with 2nm (369 vacancies) and 3nm (1205 
vacancies) voids and 2.5nm (45 vacancies) and 3.0nm (78 vacancies) SFTs in 
Cu. A significant drop in CRSS occurs when temperature is increased from 
0 to I OOK. Further increase of temperature gives only a weak additional 
decrease of CRSS, as shown by the data in fig.6. Note that the 2.5nm SFT 
demonstrates very similar strengthening to that of a 2nm void, despite the 
fact that it contains only 45 vacancies against 369 in the void. Moreover, the 
2.5 nm SFT is a stronger obstacle than the 3.0nm one. A detailed analysis of 
dislocation-SFT interaction sheds light on this paradox. The data presented 
in fig.6 were obtained when the dislocation glide plain cuts an SFT through 
the centre of mass. In this geometry the glide plane is closer to the parallel 
face for a smaller SFT than a larger one. By varying the position of the glide 
plane, we have found that maximum strengthening occurs when a dislocation 
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Figure 6. Temperature dependence of the CRSS of voids and SFTs in Cu obtained by 
molecular dynamics modelling at strain rate 5xUfs·1. Void diameter, SFT size and the 
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glide plain coincides with the stacking fault of one of the faces. 
The larger the distance between the face and the glide plane, the lower 

the CRSS. Moreover, when the larger SFT (3nrn) is cut though the centre of 
mass at all temperatures above T= 1 OK it recovers its regular structure via a 
thermally-activated propagation of a jog on the stair-rod partial dislocations 
of its edges. This recovery does not occur for the smaller SFT whose regular 
structure remained disturbed after being cut by the dislocation. Similar 
damage of a small SFT by a dissociated dislocation at T=OK was observed 
earlier [10]. 

4. CONCLUDING REMARKS 

Atomic-scale modelling with a choice of static (T=OK) and dynamic 
(T>OK) conditions, together with different types of crystal loading, i.e. 
applied strain increment or strain rate or applied stress, allows a wide range 
of features of dislocation-obstacle interactions to be studied. Static 
modelling reveals many general features which can be treated and 
understood within continuum dislocation theory. An example is presented in 
fig.2 where stress values for voids and precipitates in Fe are close to the 
linear dependence of CRSS on logarithm of harmonic mean of obstacle size 
and spacing found earlier in simulations based on elasticity theory [ 6 , 7]. The 
data for voids in Cu can be described as a linear dependence in principle, but 



201 

due to the dissociated character of the dislocation the mechanism is more 
complicated and void-size dependent: strengthening by small voids is 
controlled by breakaway of the trailing partial whereas that of large voids is 
controlled by the leading partial. Dissociation also reduces the total strength 
of these obstacles. Static modelling can also provide information on 
dislocation line shape in equilibrium at different stress levels (see e.g. [5]), 
and this can be used for fitting parameters required in continuum dislocation 
dynamics models. One of the conclusions on dislocation line shape revealed 
here and in [5] is that the simple constant line tension model widely used in 
estimations of CRSS (e.g. for hardening due to Cu precipitates in Fe [9]) 
provides an incorrect relationship between applied stress and line shape. 

Atomic-scale details of dislocation-obstacle interactions depend strongly 
on dislocation core structure, as demonstrated here by comparison of Fe and 
Cu. The low stacking fault energy in Cu causes wide separation of the partial 
dislocations and leads to absence of dislocation climb in interactions with 
obstacles of vacancy type. The perfect edge dislocation in Fe, in contrast, 
may climb and absorb defects in all the cases considered. 

Dynamic simulations reported here demonstrated a strong temperature 
effect in the stress-strain characteristics of all the obstacles studied. The 
nature of this is not yet fully understood. Based on the results presented, we 
can conclude that the temperature enhancement mechanisms may be different 
for different obstacles, e.g. stronger for coherent precipitates than voids in Fe 
(see fig.3), and for different metals, e.g. the temperature dependence of the 
CRSS for voids is different in Fe and Cu (see figs.3 and 6). 

Kinetic effects in dislocation-obstacle interactions have been observed in 
all the cases treated and this seems to be important for explanation of plastic 
instability and creation of cleared channels in irradiated metals [11]. In fact, 
we have demonstrated that a dislocation moving at high speed can cut and 
breakaway from an obstacle at a stress significantly lower than the CRSS. 
Moreover, the change in structure of the obstacle due to the fast dislocation is 
more significant. More studies are necessary to understand these effects and 
to reveal mechanisms suitable for incorporation in higher level dislocation 
dynamics applications. 
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DEFECT NUCLEATION 
Predictions through Nanoscale Experiments and Computations 
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Abstract: Nanoindentation--contact-induced deformation of nanoscale material 
volumes-provides the potential to access experimentally the true strength of 
materials and the conditions for the onset of plastic deformation mechanisms. 
Here, motivated by experimental observations from single crystal 
nanoindentation, we outline the parallel development of new experimental, 
analytical and computational approaches regarding homogeneous defect 
nucleation. Together, these studies have established a semi-quantitative 
experimental model, validated a general energetic criterion for defect 
nucleation, facilitated an atomistically informed computational platform for 
defect analysis, and elucidated the effects of certain time and length scales on 
the defect nucleation events that signal the onset of plastic deformation in 
crystalline materials. 

Key words: defect, nucleation, computational modeling, nanoindentation 
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1. INTRODUCTION 

Recent advances in techniques such as nanoindentation have enabled 
direct, experimental access to nanoscale material volumes under large 
mechanical strain. One important and general observation from such 
experiments on well-annealed face-centered cubic (fcc) metals is that, upon 
increasing applied load P, an instability occurs at the material surface such 
that the indentation depth h increases abruptly with no significant increase in 
P-a so-called displacement burst. Although other plausible explanations 
for this experimental observation exist, a hypothesis of great interest is that 
these displacement bursts represent discrete dislocation nucleation events, 
and thus signal the onset of plastic deformation in an otherwise defect-free 
material volume. Thus, such experiments may provide a means to probe 
directly the fundamental concepts of defect nucleation. 

In order to test this hypothesis and formulate predictions regarding the 
slip character of the nucleated defects, we applied an established, two
dimensional (2D) experimental model to the specific problem of localized 
mechanical contact: the Bragg-Nye soap bubble raft (Gouldstone et al., 
2001 ). As shown in Fig. 1a, this raft is a valid experimental analog to close
packed crystals insofar as the bubble interaction potential can be engineered 
to mimic the nearest neighbor interaction potential of fcc metals such as Cu 
and Ni, and can exhibit defects analogous to edge dislocations, vacancies, 
and grain boundaries. Nanoindentation of such initially defect-free, single 
crystalline rafts showed that defects indeed nucleate homogeneously beneath 
the indenter, at a depth z approximately equal to that predicted by 2D 
continuum elastic analysis (z = 0.78a, where a is the contact half-width). 

This surprisingly accurate application of continuum elasticity in the 
context of a nonlinear elastic instability, coupled with the inherent restriction 
that load P is not a well-defined quantity in 2D (displacement-controlled) 
contact, prompted the development of a computational model to verify and 
expand on these observations (Li et al., 2002). We chose to employ 
atomistic computations via molecular dynamics, and replicated the site and 
slip character of defects observed in the 2D experimental analog (Fig. 5-1). 
More importantly, we realized that the pairing of these experimental and 
computational models of nanoindentation enabled us to test analytical 
models regarding defect nucleation in both 2D and 3D. Thus, we formulated 
an existing, formal and energetic criterion for elastic instability (Hill, 1962; 
Rice, 1976) such that it could be implemented via current atomistic 
computations. Briefly, the elastic instability required for nucleation of a 
defect with slip direction g and slip plane normal n occurs when the 
energetic A-criterion vanishes. Validation of this criterion was illustrated 
initially through exact temporal correlation of the nanoindentation load-
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displacement instability and the vanishing of the A-criterion in MD 
simulations of the 2D bubble raft (Van Vliet, 2003). 

The parallel development of these tools has facilitated several new 
studies in the area of defect nucleation, particularly regarding how the onset 
of plastic deformation is affected by time and length scales. Below, we 
highlight the most recent developments that have stemmed from this 
collaboration. 

a b 

Figure 1. Pairing of(a) an experimental analog to fcc crystals, the soap bubble raft model, 
subject to nanoindentation; and (b) an atomistic computational approach, molecular dynamics, 

to quantify the load-displacement effect of defect nucleation. 

2. ATOMISTICALLY INFORMED FINITE ELEMENT 
MODEL 

As MD simulations are limited in length and time scales due to the 
atomistic detail inherent in such calculations, we developed in parallel a 
computational framework that could be informed by atomistic details such as 
interatomic potential and defect nucleation, yet simulate structural length 
scales much greater than the nanoscale volumes achievable with MD. In fact, 
we adapted a continuum-based finite element model (FEM) for this purpose, 
implementing the Cauchy-Born elasticity as a user subroutine within a 
commercially available software package. According to this elasticity 
description, deformation of a representative material volume can be 
considered an affine rotation of the crystallographic lattice vector r0: 
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r =Fro (1) 
where F is the rotation vector and r is the final crystallographic lattice vector. 
Energy and derivative quantities of stress and elastic constants can be 
calculated directly for a given set of F and r, down to atomistic material 
volumes. 

The implementation of this atomistically informed FEM is conceptually 
similar to the quasicontinuum method ofTadmor et al. (1996), and is in fact 
less general. Advantages of this approach in the present context, however, 
are that this is a fully continuum approach (i.e, no difficulties associated with 
a transition from a continuum to an atomistic description such as MD) and 
that this method is much simpler to design, execute and adapt, and that the 
A-criterion can be included explicitly and calculated at every time step to 
identify the position and slip character of defect nucleation sites. Direct 
comparison with MD results confirms that atomistically informed, fully 
continuum FEM achieves computational efficiency without sacrificing 
atomistic resolution (Zhu, 2003). 

a b 

Figure 2. Comparison of (a) Molecular dynamics; and (b) Atomistically informed finite 
element modeling based on Cauchy-Born elasticity and including the A-criterion. Dark blue 
indicates (a) imperfect bulk coordination number; and (b) A= 0, or attainment of the elastic 
instability required for defect nucleation. 

3. EFFECT OF MICROSTRUCTURE 

Modification of processing methods such as inert gas condensation, 
severe plastic deformation, and electrodeposition have made possible the 
synthesis of metals with average grain size d < 100 nm. Since 
nanocrystalline metals have thus far been produced only on an experimental 
bases in small quantities, indentation is the most commonly employed 
method to assess hardness H as a function of d; trends in yield strength Oy 

are usually assumed to be proportional to hardness according to the 



207 

approximation H = 3ay (fabor, 1951). Note that the empirical relationship 
between grain size and ay proposed by Hall and Petch for microcrystalline 
materials implies increased strength and hardness as grain size decreases to 
the nanocrystalline regime: 

k d-1/2 ay = ayo + Y (2) 

Experimentally, however, some data indicate an opposite relationship 
between ay and d for d < 10 nm (e.g., Koch, 2000), a so-called inverse Hall
Petch effect. Such behavior has been ascribed to possible difficulties in 
producing a uniformly fine distribution of nanocrystals, uncertainties in the 
determination of d, and the presence of internal defects (Fougere, 1992; 
Masumura, 1998). Atomistic computational modeling via both MD 
(Yamakov, 2002; VanSwygenhoven, 2001) and conjugate gradient (energy) 
minimization (Schiotz, 1998) indicated that nanocrystals under uniaxial 
compression may indeed exhibit a decrease in ay with decreasing d, but the 
length and timescales of these simulations were admittedly disparate from 
those used experimentally. In an attempt to reconcile these observations, we 
applied the bubble raft as a model nanocrystal to evaluate whether and how 
grain size and grain boundaries might affect the onset of yielding under 
nanoindentation. 

By constructing and nanoindenting rafts for which microstructural 
parameters including grain size d, in-plane grain boundary misorientation 
angle 8, and grain boundary position with respect to the indentation loading 
axis, we quantified the effects of certain microstructural length scales on the 
initiation of plastic deformation in nanocrystals. Here, plasticity onset was 
defined as the first observation of (heterogeneous) defect nucleation within 
the indented nanocrystalline raft, as parameterized by the in-plane 
coordinates (x, z) and contact half-width of the indenter a. This 
parameterization enabled us to calculate the critical pressure of indentation, 
which is proportional to the resolved shear stress that drives dislocation 
motion. We identified a transitional grain size of approximately 7 om, 
greater than which ay increased with decreasing d and less than which ay 
decreased with decreasing d. This result was in agreement with a range of 
recent experimental data obtained via nanoindentation in nanocrystalline Ni. 
Further, we observed that this transition in d was concomitant with a 
transiton in deformation mode: For d > 7 om, the onset of plastic 
deformation proceeded primarily via emission of individual dislocations 
from grain boundaries or grain triple junctions. For d < 7 nm, however, this 
onset proceeded primarily via migration of entire regions of a grain 
boundary (Van Vliet et al., 2003). 
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Further, as shown in Fig. 5-3, we found that although dislocation emission 
occurred over a wide range of e (5° < e < 32}, grain boundary migration 
occurred over a restricted range of grain boundary misorientation angles (14° 
< e < 22°) that define the transition from a high angle to a low angle grain 
boundary. Interestingly, for a given average grain boundary misorientation 
angle 8avg as defined over an entire nanocrystalline raft, the transition from 
emission to migration still occurred at a grain size d of approximately 7 nm. 
This result indicates that, at least in 2D, both e and d impact the mechanisms 
by which plastic deformation ensues, but d is the controlling microstructural 
factor. As defect nucleation proceeded primarily at grain triple junctions, 
regardless of the mode of deformation or other microstructural variables, we 
submit that the importance of dis that it indicates not just grain diameter, but 
also the proximity of triple junctions that define regions of decreased 
crystalline order and increased free volume. These 2D bubble raft 
experiments indicate that, as triple junctions increase in number per volume 
and decrease in spacing, grain boundary migration is favored and resistance 
to plastic deformation decreases. 

a b 
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Figure 3. Effect of microstructural length scales on plastic deformation mode in 
nanocrystalline bubble raft nanoindentation experiments. (a) Grain boundary misorientation 

angle e as a function of deformation mode; (b) Grain sized as a function of deformation 
mode, for a fixed raft-averaged misorientation angle 22° < eavg < 23°. 

4. EFFECT OF MACROSTRUCTURE 

The above experiments have shown that the fundamental length scales 
within a material can affect the strength and deformation mechanisms of that 
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material. It is also possible that the length scales that define the structure 
comprising this material may also impact on defect nucleation mechanisms. 
One interesting example of such macrostructural considerations is the 
patterned metal lines utilized in the microelectronics industry as interconnect 
pathways among circuit components. These lines are semi-infinite in one in
plane dimension, and approach 100 nm in the perpendicular in-plane 
direction. In order to determine whether and how this macrostructural aspect 
ratio affects strength and defect nucleation, nanoindentation experiments, 
bubble raft experiments, finite element simulations, and molecular dynamics 
simulations were employed (Choi et al., 2003). 

As shown in Table I, nanoindentation experiments on AI films of varying 
thickness indicated that the resistance to plastic deformation (i.e., were 
plastically "softening") decreased as film thickness increased, as quantified 
by the indentation depth h measured for a fixed indentation load P. The 
additional effect of line aspect ratio is shown clearly in Fig. 5-4, as the depth 
h also increases with decreasing line width w for a fixed load P. As the films 
and lines were processed on the same Si wafer, the microstructural length 
scales (grain size and texture) were essentially identical, and these sample 
sets differed chiefly in the macrostructural aspect ratio. Finite element 
simulations of these experiments did not corroborate such a dramatic plastic 
softening of the lines, indicating that a continuum analysis was insufficient 
to capture the effect of these macrostructural constraints on defect activity. 
Bubble raft experiments confirmed qualitatively that the observed plastic 
softening of the lines was due to the fact that dislocations nucleated within 
the line during nanoindentation proceeded to the free sidewalls of the line, 
relaxing the s tructure. In c ontrast, d islocations nucleated d uring 
nanoindentation of continuous films terminated motion at the film/substrate 
interface, presumably exerting a back stress that opposed the applied 
indentation stress and resulting in comparative hardening. Molecular 
dynamics simulations comparing film and line indentation responses 
confirmed the qualitative bubble raft observations (nucleated defects migrate 
to stress-free line sidewalls) and also the quantitative nanoindentation 
observations that this sidewall relaxation results in an increase in indentation 
depth for a given indentation load. 

Table 1. Effect of macrostructural film thickness on plastic indentation depth 
Film thickness [11m] havg at P = 200 mN 
1.0 88 
0.7 
0.3 

83 
70 
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Crystalline Aluminum under Nanoindentation 
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Abstract: Recent new finding of unstable displacement burst observed in the relation 
between the indent load and indent depth of nanoindentation is much possible 
to be related to the collective dislocation behavior. In the present paper, 
dislocation emission and the subsequent prismatic dislocation loop formation 
of a single crystalline aluminum under nano-scaled indentation are simulated 
by the molecular dynamics. The effect of the stress distribution due to two 
different types of indenters and that of the interatomic description by three 
different embedded atom type potentials are discussed with much emphasis. At 
a result, the dislocations are emitted from the severely damaged surface atomic 
layer due to the indenter. Afterwards, the prismatic dislocation loops, which 
have the same gliding direction but not on the same slip planes, are attained by 
both energetically unstable reaction between the shear loops emitted from the 
surface and the cross slip mechanism. 

Key words: Nanoindentation, Dislocation Emission, Prismatic Dislocation Loop, 
Molecular Dynamics, Interatomic Potential, Single Crystalline Aluminum 

1. INTRODUCTION 

Indentation technique has been put to a wide use in order to obtain the 
hardness and the elastic properties of materials even at the nanoscale. 
Recently, it is worthy of notice that indent load and depth curves provide an 
opportunity to investigate the early events of plasticity (nano-plasticity). The 
distinctive finding of an unstable displacement burst of indent depth 
observed in nanoindentation [1] is thought to be linked to the dislocation 
emission [2] caused when maximum shear stress generated under the 
indenter is of the order of the theoretical shear strength. In the present paper, 
in order to comprehend what kinds of crystallographic incidents happen in 
the near contact field with the indenter, the nanoindentation process in a 
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single crystalline aluminum is simulated by the molecular dynamics (MD). 
It has been shown that the MD simulations can provide a qualitative analysis 
of discrete and incipient plasticity events that are consistent with these 
experimental observations of the nanoindentation [3]. However, this 
atomistic methodology, dynamically solving the equation of motion, 
strongly depends on the individual movement of atoms prescribed by their 
intrinsic potential. Thus, three different embedded atom type potentials are 
employed in the present studies to elicit a distinction of the defect 
nucleation. The dislocation emission and the subsequent formation of the 
prismatic dislocation loop [4] are discussed in detail. 

2. ATOMISTIC MODEL 

Two atomistic models of the nanoindentation are given : 20nm wide by 
20om long by 20nm thick single crystalline aluminum containing about 
500,000 atoms and 30om wide by 30nm long by 20nm thick one containing 
about 1,125,000 atoms. The top and side surfaces are traction free and the 
bottom surface is held fixed. The fcc crystal is oriented such that the top 
surface is the (001) or (111) plane. Three different EAM type potentials are 
employed here, which have been proposed by Ackland et al. (FS) [5], 
Ercolessi et al. (ER) [6] and Mishin et al. (MS) [7]. The fundamental 
physical properties of lattice constant, cohesive energy, elastic constants and 
stacking fault (SF) energy, are summarized in Table 1. Generalized stacking 
fault (GSF) energy curves calculated by these potential are shown in Figure 
1. The FS potential yields too low SF energy and the unstable SF energy 
doesn't appear in the ER. Totally judging, the MS is likely to be best fitting 
to the aluminum among them. 

Two types of the indenter, 
the sphere punch and the 
Berkovich type, are 
atomistically modeled as the 
rigid carbon-based structures. 
The interaction between 
indenter and the aluminum 
substrate is determined by the 
simple Morse type potential, 
which parameters have been 
determined by averaging 
individual parameters of the 
carbon and the aluminum. 
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Figure 1. GSF energy curves obtained by EAMs, 
ab initio and experimental data. 



Table I. Physical Properties of Al predicted by three kinds of EAM potentials 

in comparison with experiment and ab initio data. 

FS ER MS ExP. or 

ab initio 

ao rAl 4.099 4.032 4.05 4.050 [K] 

Eo JeV/atom -3.246 -3.36 -3.36 -3.360 [9] 

Cu [GPa 114 118 114 ll4 flO] 

c12 [GPa 58.9 62.2 61.5 61.9 [10] 

c._. [GPa 30.2 36.7 31.6 31.6 (10] 

rsf [mJ/ml] 22.6 116.8 156.6 13S[IIJ, 166[!2] 

169.8[13) 

3. DISLOCATION BEHAVIORS 

3.1 Dislocation Emission 
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From the overviews of dislocation emission states achieved by the 
molecular dynamics with the three different potentials, outstanding 
characteristic shapes due to the different intrinsic SF energy can be found. 
Figures 2 and 3 indicate the dislocation emissions under the indentations by 
the Berkovich punch and by the spherical punch with a tip radius of 30nm, 
respectively. Only the atoms with higher energy than -3.22eV (in case of 
FS) or -3.33eV (in cases of ER and MS) are drawn in order to detect the 
defect nucleation. 

,' 
·/ <:..____ (2) t =20 ps (2) 1 =30 ps 

(a) FS (b)ER (c) MS 

Figure 2. Dislocation emissions under the indentation by Berkovich punch. 
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(I) t =12.5 ps 

• 
(2) 1 = 17.5 ps 

(a) FS 

(I) r=l8 ps 

(2) 1 =20 ps 

(b) ER 

• 
(2) t =35 ps 

(c) MS 

Figure 3. Dislocation emissions under the indentation by spherical punch. 

A lot of emitted partial dislocations using the FS potential with the 
unrealistic SF energy lead the high dislocation density state. On the other 
hand, a few accountable perfect dislocations are observed using the ER and 
MS potential due to the very narrow SF width. 

Figure 4 shows the indent loads obtained by the three EAM potentials 
and the two different indenters. These indent loads are calculated by 
summing the reacted forces from the AI substrate to the rigid indenter and 
are considerably fluctuated due to the attractive part of the Morse potential. 
We see that the indent load by FS potential is about four times greater than 
the other potentials. This suggests that the nano-plasticity triggered by 
defect generation is much sensitive to the potential employed. 
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Loading Holding 

Time (ps) Time [ps] 

Figure 4. Time evolutions of indent loads by two kinds of punches. 

3.2 Prismatic Dislocation Loops 

Studies concerned to the fonnation of prismatic dislocation loops have 
been perfonned experimentally in the past about fifty years. Many of those 
remarked about the presence of a spherical or a non-spherical precipitate 
inside a given crystalline matrix. Several quantitative analyses for the 
spherical particle geometry [ 4] and a few studies for the non-spherical 
geometry [15] exist. In the present simulations, the prismatic dislocation 
loops are fonned inside the single crystalline aluminum, and then penetrate 
on the side surface, leaving the rhombic steps. We show two cases of the 
fonnation of prismatic dislocation loop emitted from two kinds of surfaces: 
[Ill] as shown in Figure 5 and [00 1] in Figure 6, respectively. 
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(I) I = 15 ps 

(a) Case of FS potential -- ---

(I) 1 =20 ps (2) t =40 ps 
, (b) Case ofER ootential 

(I) I =20 ps (2) t =40 ps 

(c) Case of ER potential but with the different view point from (b) 

Figure 5. The formation of prismatic dislocation loop emitted from [ lll] surface. 
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(i)t=15ps (2) t = 20 ps 

(a) Case ofFS potential 

(3) t = 23.5 ps (4) t = 26 ps 

(b) Case of ER potential 

Figure 6. The formation of prismatic dislocation loop and rhombic step on the side surface 

emitted from [001] surface. 
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All of the obtained prismatic dislocation loops have the same family of 
crystallographic orientation. Therefore, the mechanism of formation of the 
prismatic loops can be summarized, as shown in Figure 7. As for the first 
mechanism (see Figure 7(a)); _(i) two _shear loops emitted on the two 
different slip planes such as (Ill) and (111) planes unstably interact on the 
<011> line of intersection of these two planes [16]. (ii) The screwsides of 
the dislocation segment on one slip plane move to the cross-slip plane that is 
parallel to the other slip plane. (iii) Then, two dislocation loops on the two 
cross-slip planes unstably interact on <011> line again. As for the second 
one (see Figure 7(b)); (i) an initial shear loop emits on the slip plane such as 
(lll) slip plane. (ii) The screwsides on both sides of that dislocation 
segment move to the each cross-slip plane that is parallel to each other. (iii) 
Then, a dislocation loop on the cross-slip plane moves to the next cross-slip 
plane that is parallel to the initial slip plane. The latter mechanism is 
concluded to correspond to the mechanism obtained in the case of the sphere 
precipitate embedded in the crystalline bulk [4]. 

Note that the interactions of two dislocation loops under the simple 

nanoindentation never produce Lomer-Cottrell barriers [16] and each two 

dislocations on the each parallel { 111} planes have opposite Burgers vector, 

as shown in Figure 8. Once the prismatic dislocation loop is formed, it 

moves through the crystal along its glide prism whose orientation is [0 11] 

direction without changing its loop diameter. 
X 

(i) 

y 

(iii) 

z (a) Formation I 

(i) ~ 

-----~-r--r·· .... 
y 

z (b) Formation 2 

Figure 7. Two kinds of prismatic dislocation formation. 
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Figure 8. Simple pattern diagrams of the formation of prismatic dislocation loop. 

4. CONCLUSION 

We discussed on the dislocation emission and the subsequent formation 
of the prismatic dislocation loop under nanoindentation by the molecular 
dynamics simulations. All of the dislocations were emitted from the severely 
damaged surface due to the attractive part of the mutual interaction between 
the indenter and the aluminum. And the following two patterns of 
mechanism of the prismatic dislocation loops are observed. One is that two 
shear loops emitted on the two different slip planes unstably interact on the 
<0 II> line of intersection of these two planes. The screws ides of the two 
dislocation segments cross-slip to the plane parallel to the other slip plane, 
respectively. Then, the two dislocation loops on the two cross-slip planes 
unstably interact on <011> line again. The other is that each screwsides of 
an initial shear loop emitted on the (Ill) slip plane cross-slip to the plane 
parallel to each other, respectively. Then, one dislocation loop on the cross
slip plane moves to the next cross-slip plane that is parallel to the initial slip 
plane. The latter mechanism is concluded to correspond to the mechanism 
obtained in the case of the sphere precipitate embedded in the crystalline 
bulk. 
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Abstract. Homogeneous nucleation of deformation twin in a metal and the reaction 
between a water molecule and silica are studied using classical 
interatomic potential and molecular-orbital theory respectively. They 
are examples of local (atomic-level) processes which involve the 
breaking and formation of chemical bonds, relevant in bulk solids as 
well as nanostructures. 

Keywords: Multiscale modeling, defect nucleation, water-silica reaction, 
nanostructures 

1. INTRODUCTION 
We cite recent theoretical, molecular dynamics and finite-element 

analyses of dislocation nucleation in nanoindentation [1-3] and electronic
structure calculations of ideal shear strength [ 4] to suggest that atomistic 
simulations in which interatomic bonds are broken and formed can provide 
mechanistic insights common to the mechanical failure and chemical 
reactivity of nanostructures. The critical information is the distribution of 
charge densities at saddle-point configurations, particular arrangements of 
ions and electrons where the system is on the verge of structural instability or 
chemical reaction. Here two additional studies are discussed to expand on 
our simple notion. Homogeneous nucleation of deformation twinning [ 5] 
shows bond-strain sensitivity in the shear response of a perfect lattice. 
Reaction of a water molecule with a silica nanorod shows the importance of 
charge transfer effects. Together they motivate an electron-explicit 
description of mechanical and chemical behavior appropriate for bulk solids 
as well as nanostructures. 

The aim of this contribution is to examine the common issues 
between the mechanics of large-strain deformation and the dynamics of 
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electrochemical reactions, in the context of modeling materials structures 
down to nanoscale. The connection we seek lies in the observation that 
materials failure and reaction kinetics are traditionally regarded as different 
physical phenomena, yet when analyzed at the atomic level they are both 
governed by the valence charge densities in the system. Multiscale modeling 
studies in the area of mechanics of materials have largely focused on linking 
atomistic simulations with mesoscale or continuum methods. Usually 
electronic degrees of freedom are not treated explicitly, except in first
principles calculations on perfect crystals where lattice symmetry can be 
exploited, or on small-scale defects involving only tens of atoms. Problems 
of kinetics and dynamics of chemical reactions, by and large, have not 
attracted much attention in the modeling and simulation community. Also, 
there seems to be little discussion of a common perspective for 
understanding soft materials on the same footing as metals, semiconductors, 
and ceramics. In view of this situation we feel that there are particular 
challenges at the interface of mechanics and chemistry that can be posed 
through a focus on the transition from bulk to nanostructures in atomistic 
simulation, realizing at the same time that this would also imply a transition 
from hard to soft matter. Combining mechanics and chemistry, bulk and 
nanostructures, hard and soft materials, can all fit within the unifying 
framework of multiscale modeling; broad visions of such synergies have 
been articulated in various versions [ 6-8]. 

2. DEFORMATION TWINNING 
Twinning and slip are the two primary plastic deformation 

mechanisms by which crystals can accommodate large strains. Deformation 
twins have long been identified in bee, hcp and lower symmetry metals and 
alloys; more recently they have been found in fcc metals and alloys, in 
ordered alloys and other inter-metallic compounds, in elemental 
semiconductors and compounds, in non-metallic compounds such as calcite, 
and even in complex minerals and crystalline polymers [9]. The deformation 
is often characterized by very rapid formation of twinned regions, and large 
load drops in the stress-strain response; it operates generally at low 
temperatures, high stress, high strain rate, and in crystals of lower symmetry 
where the number of slip systems is limited. Schematically one can contrast 
slip and twin as lattice responses to shear where there is only one relative 
displacement between two adjacent layers (slip), and where such 
displacements occur in a stack of at least two layers (twin), see Figure 1. 

Similar to most first-order lattice phase transformations, twinning is 
typically separated into nucleation and growth stages. A twin nucleus may 
be formed by the action of an applied stress in a region of near-perfect 
crystal (homogeneous nucleation), or formed from a pre-existing defect 
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configuration (heterogeneous nucleation). While the latter is more 
commonly observed, the former can occur in highly perfect specimens, e.g., 
in cadmium and zinc [1 0], where the stresses required are an order of 
magnitude higher. In the present study we are concerned with the molecular 
dynamics simulation of homogeneous nucleation of twinning in bee Mo 
using the EAM-potential of Finnis and Sinclair [ 11 ). 

(a) (b) (c) (d) 

Figure 1 Atomic configuration of a twinned region in a crystal lattice enclosed by the twin 
boundarie, atoms are color coded according to local strain (a). Schematics depicting an 

undeformed stack of crystal planes prior to shear in the direction indicated by the arrow (b), 
deformation by slip (c), and deformation by twinning of four layers (d). 

Our simulation cell with periodic boundary conditions is chosen with 
the X (horizontal), Y (normal to plane of paper) and Z (vertical) axes along 

[111], [l2 T], and [10 l] respectively. The corresponding dimensions are 
199A, 198.6A, and 192.7 A (500,000 atoms). Shear is applied at a constant 
rate of3 x106 s-1 on the xy plane in the [111] direction (twinning direction). 
At 10 K we observe homogeneous twin nucleation at a shear stress of 12.2 
GPa (7.84% strain). Once nucleation sets in, a sharp decrease in strain 
energy and shear stress is observed. From a sequence of the instantaneous 
atomic configurations, shown in Figure 2, the twinned region (nucleus), 
delineated by color coding according to local strain and coordination, is seen 
to evolve into an oblate ellipsoidal shape (disk like). The disk is thickest in 
the middle while its edges are as thin as one layer_ The defect can be 

described as a twinning dislocation loop with a burgers vector of b I 3, with 

b = (a I 2 )[111) _ From the MD results we estimate the velocity of the loop 
while the disk is expanding to be ~ 6000 rnls (sound speed is 6000-7000 m/s ). 
Expansion in the { 112} plane is much faster than the out-of-plane growth, 
the fact that the former is also anisotropic causes the shape projected on the 
plane to be elliptical. Across the twinned region, one can verify the relative 
displacements are distributed in the form of(O,._.,O, b/3, ·-·· b/3, 0, ... 0), 
which is in accordance with Figure l. 
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To interpret the simulation results we introduce a 1-D chain model to 
represent the essential structural characteristic of the twin defect. As shown 
in Figure 3, the defect is a chain of 'model atoms' specified by a set of 
coordinate xi, measured on the X-axis in direction [111]. Associated with a 

'model atom' i is a layer of physical atoms, the plane being perpendicular to 
the chain direction, with coordinates (xi' Y;, zJ . In the chain model the only 
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Figure 2. Growth of a disk-shape nucleus of a twinned region observed in MD simulation of 

shear deformation, top view (left) and side view (right). 

relevant degrees of freedom are the relative displacements in the ( 111] 
direction between adjacent layers, that is, t:ui = xi+ I - xi . If the twin 
structure is composed of N nonzero relative displacements of 'model atoms' 
(N planes of atoms are displaced successively), we would haveN primary 
degrees of freedom, !:uP i = 1, ... , N, specifying the defect. The other 

degrees of freedom, relative displacements in the Y and Z directions, liy; 

and liz; will be considered as secondary. In principle, the latter should be 
allowed to relax during deformation; however, one may anticipate that in a 
first approximation such relaxations can be neglected for the sake of 
computational simplicity. Whether these relaxations are actually ignored or 
not, our purpose is to investigate the structure-energy relation of the 1-D 
chain model by considering the variation of the system energy only with the 
primary degrees of freedom. In other words, for the system energy we would 



write E = E(O, ... o,&,, ... ,Lix,.N,O, ... O), with theN successively displaced 

planes starting at positionj and ending atj+N. 
The simplest case one can consider is the 1-layer shear, the rigid 

translation of the upper half of the lattice relative to the lower half. The 
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energy E(O, ... , Lixl' .. .Q) with relaxation in the other two directions taken into 
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Figure 3. Schematic of the 1-D chain model of twinning (9layers in this example). Variation 

of strain energy with relative displacement of the (fl2)[111] twin in a /-layer shear (the 

r -surface) with y and z relaxations. 

account is shown in Figure 3. This is just the conventional y -surface energy 
in the [111] direction. The energy barrier is 0.82eV. Critical stress in the 
positive direction is 33 GPa while in the negative direction it is 29 GPa, 
indicating an expected asymmetry at about Ax,= b / 2. One can discern a 

softening around Ax, = b I 3 , but this did not lead to a metastable state. 
However, the value of the relative displacement is close to the critical value 
for twin nucleation, as we will see in the case of2-layer shear below. We 
have checked that without relaxation the energy curve peaks at a slightly 
higher value, 0.84eV, and a lower displacement, which are not surprising. 
Also, repeating the calculation for (l10)[111] shear gives a symmetric curve 
with a much lower barrier, 0.42eV, at b/2, and a corresponding stress of 
15.13GPa, both reasonable since this is a primary slip system. 

For the 2-layer shear we show the energy surface in Figure 4 where a 
minimum is now seen around the displacements (b/3, b/3). Under positive 
shear the system can either twin or slip. The energy barrier for twinning is 
0.672eV with saddle point at (0.36b, 0.16b), while for slip the barrier is 
0.736eV with saddle point at (O.Sb, 0.09b). Under negative shear, only slip 
is allowed, at a barrier of0.808eV. It is also useful to display the energy 
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surface in the form of contour plot, see Figure 4. Knowing the energy 
contour one can trace out the minimum-energy path for the two deformations, 
twin and slip. In Figure 4 we see connections between starting configuration 
at the perfect lattice energy minimum (0,0) and the two ending 
configurations, an energy minimum corresponding to the 2-layer twin at (b/3, 
b/3), and another minimum corresponding to slip at (b, 0). The two paths 
bifurcates at (0.29b, 0.03b) before either of the saddle points is encountered. 
The system can either twin or slip after the bifurcation point; however, since 
the twinning path has a lower energy barrier, 0.672eV, than the slip path, 
with barrier of0.736eV, twinning will be favored. For comparison we have 
also performed energy surface calculations for the (llO)[lll] slip system. 
The only energy minima found are at (0,0), (b,O), (O,b), and (b,b), which 
means there is no twin minimum and the only system response to shear is 
slip. In this case 

0.3 

Figure 4. Strain energy surface (left) and energy contour plot (right) for the ( TI 2)[111] 
deformation, withY and Z relaxations, in a 2-layer analysis [5}. An energy minimum at 

relative displacements of b/3 for sliding between adjacent layers confirms the existence of 
twin defect in the present mode/for bee Mo. 

the energy surface is completely symmetric about (b/2, b/2). Comparing the 
energy barriers for the two (llO)[lll] and (ll2)[111] slip systems, we have 
0.422eV vs. 0.736eV. This is consistent with the fact that the former is the 
primary slip. 

3. WATER-SILICA REACTION IN A NANOROD 
The ability to probe the dynamics of bond breaking and formation 

and the influence of local chemical environments presents an opportunity 
to model properties of nanostructures under conditions of their synthesis 
and performance. We are currently investigating the chemical reactivity of 
a nano-rod of Si02 when it comes into contact with water. By following 
the reactions as kinetic events involving the redistribution of charge 



densities, we expect to gain insight into the question of how bond strain, 
induced by stress or thermal environment, can affect reactivity. 
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The silica nanorod consists of 144 atoms (48 Si02 molecules) in the 
form of a stack of Si60 18 rings capped at the two ends to eliminate any 
dangling bonds [12]. Using a potential description consisting of pair and 
Coulomb interactions (13], we have performed uniaxial tension and 
compression simulations on the nanorod and have observed the effects of 
temperature on the failure mechanism. The stress-strain responses of the 
nanorod, with and without a notch, as it is strained to rupture are shown in 
Figure 5. Also shown are the atomic configurations of the initial structure of 
the notched nanorod and the same rod in a highly deformed state just prior to 
rupture. It is notworthy that the rod thins down to a single chain of atoms 
before breaking. This appears to be a characteristic mode of failure that has 
been recently observed in gold nanojunctions by in situ, real time resolved 
high-resolution TEM [14]. 

.. 

.. ,._.., 

" \ 
' "' ' ' 

""' 
Figure 5. Tensile rupture of a quartz nanorod at 1 OOK, atomic configurations of initial 
notched structure and deformed rod prior to rupture, and stress-strain responses with and 
without the notch. 

To investigate the sensitivity to chemical reaction of a strained 
nanorod we consider the effect of water in contact at the surface of the rod. 
Our interest is probe the kinetic pathways of a water molecule reacting with a 
strained Si-0 bond. That the presence of water has a significant effect on 
strength of quartz, particularly at high temperature, is widely known as the 
problem of'hydrolytic weakening'. It was first proposed that the 
fundamental mechanism for this effect is the hydrolysis of a siloxane bond, 
which bridges two neighboring Si04 tetrahedra, to form two terminal SiOH 
silanol groups [15]. The silanol groups are believed to facilitate bond rupture 
and thus lower the strength of silica. Since the process involves bond 
breaking and formation, and significant effects of charge transfer, classical 
potential simulations will not be adequate. For initial exploration we focus 
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on the reaction between a water molecule and a silica nanorod which is held 
in various stages of uniaxial tension. Interaction energies and forces are 
obtained by a semi-empirical molecular orbital method as coded in a general
purpose package MOPAC [16]. 

To identify the transition state and reaction pathways we adopt the 
Nudged Elastic Band method [17] for locating the saddle point configuration 
and the associated energy barrier. We show in Figures 6 and 7 the reaction 
pathway at the stress level of 16.7 GPa and the corresponding minimum 
energy path. These results suggest a three-step mechanism for the hydrolysis 
process. (1) A metastable adsorbed state is first formed (Figure 6(b)) which 
corresponds to a local energy minimum, point bin Figure 7. (2) A proton is 
transferred to the bridging Obr atom to form a new bond between Obr and H 
which replaces the original bridging bond between H and Ow ; the saddle 
point configuration is shown in Figure 6( c). The maximum energy barrier on 
the minimum energy path occurs at c in Figure 7. (3) Rupture of the bond 
between bridging Obr and Si occurs to yield surface Si-0-H groups as shown 
in Figure 6( d). The system reaches a local energy minimum indicated by 
point din Figure 7. 

s 

a b c d 

Fig. 6. Reaction pathway for a nanorod, strained at 16. 7 GPa, being attacked by a water 
molecule. 
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Fig. 7. Minimum energy path from Nudged Elastic Band calculation. 
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From the minimum energy path calculation, an activation energy 
barrier of 1.6 eV is obtained at the present stress level (16.7 GPa). Work is 
on-going to evaluate the stress dependence of this barrier. 

4. MODELING FUNCTIONAL NANOSTRUCTURES 
As a result of current interest in nanoscience and technology, 

significant opportunities are being created for understanding the physical, 
chemical (and biological) properties of materials structures intermediate 
between isolated atoms and molecules and bulk matter. Novel structures 
displaying unusual phenomena and functional properties have been observed 
on the nanoscale (a fraction ofnm to 100 nm). An example is the electrical 
conductance across a molecular junction. Although the notion of a single 
organic molecule acting as an electronic rectifier had been discussed in 1974 
[18], it was only in the early '90s that the prospect of building electronic 
circuits at the level of single molecules was recognized [19]. More recently 
interests in the conductivity behavior of a molecular junction have intensified 
considerably when it was realized that thiol-terminated conjugated oligomers 
in the form of a self-assembled monolayer could exhibit such transport · 
behavior [20]. An unresolved issue is the mechanism of electron migration 
across a metal-molecule-metal interface, such as a junction consisting of a 
thiol terminated benzene ring in contact with a Au atom at each end, as 
shown in Figure 8. The theoretical determination of the current- voltage 
characteristics of this system is made all the more difficult by the contact 

Figure 8. A molecular junction model in the form of a Au-S-(p-C6H4)-S-Au system is shown 
on the left, while on the right hinge molecules (calix[4]arene) are connected to rigid rods of 

quarterthiophene to form a structure that can function as a molecular actuator. 

effects between metallic tips and single molecules. One approach being 
investigated is the Green's function scattering formalism combined with 
density functional theory (Kohn-Sham) Hamiltonian [21]. Another approach, 
which we are currently investigating, is to propagate a wave packet across 
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the junction by numerically solving the time-dependent 
Schrodinger equation. 

The molecular junction is just one example of a class of 
nanostructured conjugated polymers that are being synthesized and 
characterized for device applications. A somewhat more complicated 
structure is the thiophene-based conducting polymer, shown also in Figure 8, 
which is being considered as a candidate for molecular actuator [22]. In this 
case hinge molecules (cones of 4 six-member rings in various 
conformations) tie together rigid rods (chains of four 5 -member rings, 
including a sulfur atom) to form a polymer backbone that can contract or 
expand depending on the oxidation state (the rods attract each another in the 
oxidized state). Since the conductivity of this system is obviously also a 
property of interest, the need for an appropriate method to analyze electron 
transport in organic nanostructures is therefore quite general. One can go 
even further by noting that along with conductivity, such properties as 
modulus, mobility, strain, and response time are also essential to the 
understanding and development of nan ode vices. 
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Abstract A computing methodology is reported for modeling the plastic deformation of 
Metal Matrix Composites. Use is made of a discrete-continuum model based 
on a coupling between Dislocation Dynamics and Finite Element simulations, 
which provides a parameter-free quantitative description of the mechanical prop
erties. The model and the first simulation results on MMCs are presented and 
briefly discussed. 

Keywords: Metal Matrix Composite, Plastic deformation, Dislocation Dynamics simula
tion, Finite Element simulation 

1. INTRODUCTION 

The recent interest on materials with increasingly small characteristic length 
scales has clearly revealed some shortcomings in the modeling of size effects 
in materials plasticity. These effects, which are explicit in dislocation theory, 
are usually not reproduced by continuum approaches. For this reason, the pre
diction of the plastic properties of Metal Matrix Composites (MMCs) is some
times considered as a bench test for theoretical or numerical models. Indeed, 
in MMCs the stress-strain behavior is size-dependent for reinforcement sizes 
and volume fractions in the micrometer range. Further, the matrix stress-strain 
behavior that needs to be assumed to reproduce experimental results differs 
from the stress-strain behavior of the unreinforced material [1-3]. 

As theory and experiment often do not fit very well, some authors [ 4-6] 
proposed to validate the predictions of their own theory by comparison with 
a Dislocation Dynan1ics (DD) simulation by Cleveringa et al. [7, 8], on a 2D 
composite material with periodic rectangular reinforcements. Such exercises 
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were extremely instructive but, nevertheless, care should be exercized when 
extrapolating two-dimensional models to experiment. 

The simulation of dislocation dynamics in 3D MMCs is a challenging prob
lem, which goes much deeper than the usual question of CPU time limitation. 
One has, in addition, to define precisely the conditions for mechanical equilib
rium in such complex hetero-structures (see [9] for detail). Several solutions 
to this problem are now potentially available [9-14] and a critical comparison 
of these approaches can be found in ref. [15]. In the present work, use is made 
of the Discrete-Continuum Model (DCM) [10, 11]. The model and its specific 
implementation in the case of MMCs are shortly described in part 2. Parts 3 
and 4 are dedicated to a presentation of the simulation results and part 5 to 
concluding remarks. 

2. THE DISCRETE-CONTINUUM MODEL 
In essence, the DCM, is made up of an FE code (ZeBuLon), in which a DD 

simulation replaces the constitutive formulation for plastic properties. On the 
one hand, the FE code treats the boundary value problem and cares of the con
ditions of local equilibrium in a meshed volume element. On the other hand, 
the DD code cares of the topology and motion of the dislocation lines in the 
same volume element, hence of the plastic strain, f:.p· The coupling is realized 
with the help of two procedures that control the traffic between the "discrete" 
and "continuum" codes, a homogenization procedure for the calculation of fp 

and an interpolation procedure for the calculation of the stress tensor q_ at any 
point ofthe simulated volume (cf. [11, 15]). 

2.1 Dislocation Self-Stress Fields 
In agreement with Mura's Eigenstrain theory [16], the DCM can theoreti

cally capture all details of the dislocation stress fields in isotropic or anisotropic 
elasticity. It is then mainly a matter of computation to design a FE mesh for 
computing the complex stress field of a dislocation line close to its singularity. 
Unfortunately, for "mass" simulations involving many dislocations, this brute 
force approach is numerically untractable. 

For instance, considering the computational constraints discussed in part 4, 
the largest regular mesh that can be handled by a good workstation has ( 10 x 
16 x 6) quadratic cubic elements oflinear length 0.137J-Lm. The mesh length 
may then be larger than the mean distance between dislocations and the shape 
function used to interpolate the stress can only reproduce the smooth varia
tions of the dislocation stress fields far from their singularities. Indeed, the 
Eigenstrains associated to dislocations are homogenized in a small volume 
surrounding the lines, in order to remove stress singularities. For this rea-
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Figure I. Isotropic shear stress field of a rigid screw dislocation calculated along a direction 
normal to the line. For the sake of comparison, the distances in abscissa are plotted in units of the 
linear dimemion of the quadratic elements used in the present work. Dashed line: theoretical 
solution. Dotted line: solution yielded by the DCM. Continuous line: DCM solution with a 
short-distance correction. 

son, the previous version of the DCM was restricted to problems of plastic 
relaxation implying no short -distance reactions between dislocations (see for 
instance (17]). 

A simple solution is proposed to overcome this limitation. In the DD part 
of the DCM, the analytical (isotropic) self-stress field of a dislocation is super
imposed to the stress prediction yielded by the FE code within a small volume 
surrounding the singularity (see Fig. 1). This volume is limited to the homoge
nized core region, so that the homogenization volume in the DCM is identical 
to the volume where the stress correction is performed. Hence, in conformity 
with dislocation theory, we introduce in the DCM framework the equivalent of 
an "elastic core surface traction" [18]. which does not affect the total mechan
ical equilibrium (by construction the integral of the additional stress is zero), 
but improves the local description of dislocation interactions. In other terms, 
the amount of elastic energy lost in the homogenization procedure is locally re
stored in the DD code without affecting the consistency of the FE calculations. 
This correction is an essential one if one wishes to realistically reproduce the 
strength of dislocation reactions (cf. part 4). It must be noticed that whereas 
this improvement is easy to implement, it significantly increases the computa
tional burden. This is why the small discontinuity of the stress field generated 
at the border of the homogenization volume (see Fig. 1) has not been removed 
so far. This is feasible in technical terms, but does not appears to be critical. 
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2.2 Initial and Boundary Conditions 
The need to consider a reference cell as small as possible in order to op

timize computations strongly suggests applying periodic boundary conditions 
(PBCs) in the case ofMMCs simulations. Topological problems related to the 
use of these conditions, when applied with DD simulations, are discussed in 
[19]. Here, we restrict ourselves to the question of implementing PBCs in a FE 
code and to some related problems that may affect the simulation results. 

As shown in Fig. 2, the simulation cell used for the study of MMCs is a 
parallelepipedic volume of dimension (1.368 x 2.188 x 0.820) ~-tm3 including 
four half-fibers of square cross-section at the center of the vertical faces (the 
edges of the fibers are rounded off in the FE mesh to eliminate local stress con
centrations). Modifying the dimensions of the fibers allows obtaining various 
volume fractions in the simulated cell. By periodic three-dimensional replica
tion of the simulation cell, one obtains a composite material with an hexagonal 
arrangement of infinitely long fibers. The displacement (u) and strain (f) fields 
that verifY the periodic solution in the reference cell are as follows: 

~(u(r)) = f + ~(u'(r)) with u(r) = f · r + u'(r) (1) 

where f_ is the mean deformation expected if the material is homogeneous and 
~( u') is a fluctuating quantity that accounts for the presence of the periodic 
hetherogeneities (in the present case, the fibers). This last term derives from 
a displacement field u', i.e., whose values are periodically repeated at the cell 
boundaries in the directions of the translation vectors. Hence, the mechan
ical equilibrium in the simulated volume element must satisfY the following 
equations: 

(~(u'(r))) = Q and (~)=f. (2) 

(3) 

where r 1 and r2 are opposite points at the boundary of the simulation cell and 
n is the corresponding boundary translation vector. 

The main difficulty encountered when setting up proper initial conditions 
stems from the fulfillment of the above stress and strain conditions in the pres
ence of a dislocation microstructure. In order for the FE code to account for 
the elastic fields of dislocations, the latter must imperatively be generated by a 
Volterra process. This implies that the DCM can only deal with closed dislo
cation loops. To globally satisfY the equilibrium conditions, the solution that is 
implemented consists in expanding the initial dipolar loops from random po
sitions in the simulation cell (see Fig. 2-a). All the loops have same diameter, 
which is taken much larger than the mean distance between dislocations in or
der to avoid artificial screening effects. The total density is equally distributed 
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on the twelve slip systems of the fcc structure and the total plastic shear during 
the Volterra process is set to zero by balancing the signs of the Burgers vec
tors. In the case of the unreinforced material (cf. part 3), this type of initial 
microstructure induces a mechanical state very close to equilibrium and only 
a small relaxation is observed at the beginning of the simulations. The case 
of the MMCs simulations is more critical and particular attention must be paid 
to the displacement and strain fields associated to the initial configuration (see 
Fig. 2-b ), particularly with large volume fractions of fibers. Indeed, the fiber
matrix interfaces, which are assumed to be impenetrable barriers to dislocation 
glide, alter the symmetries of the initial dislocation microstructure. For this 
reason, it is necessary to check that the randomly generated configuration does 
not induce high internal stresses that could artificially modify the dynamics. In 
what follows, we only consider initial microstructures with an initial internal 
stress sufficiently small not to induce an artificial asymmetry between tension 
and compression tests. It is worth noting that it could be interesting in some 
cases to use alternative initial microstructures, for instance for reproducing the 
residual stresses generated during the processing ofMMCs [1]. 

[001] 
[100].,. t 
[010};>' 

-0.013 0. 0.013 

--.!O CJ • •••••• 

Figure 2. Initial conditions for the MMCs problem. A) A random distribution of dipolar 
dislocation loops generated by Volterra processes in a simulation cell. Whatever the loop posi
tions, the dislocation lines cannot penetrate the fibers (denoted F). B) Surface mapping of the 
component c-33 of the initial strain field (the mean value is close to zero, as can be seen from 
the gray scale). Notice that special elements are used at the fiber's edges to avoid local stress 
concentrations. 

Finally, whereas conventional DD simulations with PBCs make use of a cut
off distance for the stress field computations [20], the dislocation dynamics part 
of the DCM accounts for the totality of the periodic fields. The two types of 
simulations should then yield slightly different results when long-range elastic 
effects come into play. 
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3. VALIDATION TESTS 
In order to validate the short-distance stress correction discussed in Sec. 2.1, 

simulated tensile tests have been carried out on copper crystals. The flow stress 
of pure fcc metals being controlled by dislocation reactions [20], such tests 
should be critical ones. An equivalent simulation, not reproduced here, were 
performed on an aluminum crystal, to determine the plastic properties of un
reinforced matrix in Al203jAl MMCs. The results are very similar in both 
cases. 

14r----r----r----.----.----. 

5 

Figure 3. Tensile [100] stress-strain curves for a copper crystal, as obtained by DD (0 ) and 
DCM ( x) simulations with periodic boundary conditions. In both cases, the dimension of the 
reference cell is about (10J.tm)3 , the initial dislocation density is 1012 m - 2 and the simulated 
specimen is deformed with a total imposed strain rate of 20 s -l. The insets show thin foils 
extracted from the two simulations. One can check that the dislocation microstructures and the 
positions of the junctions at the end of the two simulations are nearly identical. 

Figure 3 shows the results of DD and DCM simulations on a copper crys
tal with same loading conditions. In both cases the yield stress is exactly the 
one experimentally measured for a dislocation density of 1012 m-2 [20]. As 
a result of the small differences between PBCs in the two simulations ( cf. 
Sec. 2.2), the two stress-strain curves slightly differ at low strains. This, ac
tually, results from the truncation of the long-range stresses in the DD simu
lations. Beyond the yield stress, these differences vanish and the very good 
agreement between the two computations is interpreted as follows. In fcc crys
tals, long range interactions do not significantly contribute to the flow stress. 
The latter is controlled by the dislocation line tension and the numerous dislo
cation reactions taking place at the intersections between active slip planes. 
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This well-known result is illustrated in Fig. 3 by two thin foils extracted 
from the two simulated stress-strain curves at the same strain value. The same 
junctions are found at the same places in the two simulated microstructures and 
one has to look closely to find differences in the detail. From this result, we 
conclude that the local stress correction discussed in Sec. 2-1 is efficient and al
lows reproducing in the DCM the short-range interactions of dislocations, i.e., 
essentially the zipping and unzipping of junctions and dipoles. In addition, we 
verify that the energetic and dynamic aspects of the DCM are now consistent 
with their equivalents in DD simulations. 

4. LONGITUDINAL TENSILE TEST IN Al2 0 3 / Al 

4.1 Simulation Conditions 
In the present study, an Al matrix with infinitely long Ah03 fibers is con

sidered as a generic model for MMCs with long reinforcements. The mechan
ical properties for this composite are well documented in the literature [3], 
which allows performing direct comparisons with experiment. To be consis
tent with the dislocation microstructures generated during the processing of 
such MMCs, the initial dislocation density is set, in all cases, to the rather 
large value of p0 ~ 0. 7 1014 m - 2 . Three different volume fractions of fibers 
are investigated, 5%, 20% and 45%, with respective fiber cross-sections of 
(0.274 x 0.274) J.Lm2, (0.547 x 0.547) J.Lm2 and (0.828 x 0.828) J.Lm2• The 
distances between the centers of the fibers is constant and equal 1.29 J.Lm, in 
order to check the possible occurrence of size effects. As most of the existing 
analyses of experimental results make use of isotropic elasticity, two isotropic 
matrices of elastic constants are used in the FE part ofthe DCM. The Young's 
moduli and Poisson's ratio for the two phases are, respectively, EAl = 71.3 
GPa, EAh03 = 373 GPa, VAl= 0.347 and VAbOa = 0.235. 

4.2 Results 
In a first step, the simulation results are compared with the simple rule of 

mixtures, which assimilates the material to a composition in series of two elas
tic phases stressed in uniaxial tension. Hence, along the tensile axis: 

(4) 

where V is the volume fraction of fibers. 
The composite behavior, as reproduced by the simulation, is in very good 

agreement with experiment on the same material [1, 3]. As shown in Fig. 4, 
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the composite material deformed in the longitudinal direction and with a large 
volume fraction of fibers deforms quasi-elastically. The rule of mixtures then 
provides a reasonable prediction of the stress-strain dependency. A smooth 
deviation from the purely elastic prediction is nevertheless recorded, even at 
very small strains. Such behavior, viz. the absence of an initial elastic stage, is 
commonly observed experimentally in Al20a/Al composites. In the present 
case, the Al matrix is soft, as it has the mechanical properties of a pure single 
crystal; thus, it starts plastically deforming at rather low applied stresses. As 
expected, this phenomenon manifests itself all the more as the volume fraction 
of fibers decreases. 

300 
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Figure 4. Longitudinal tensile stress-strain curves for Ab03/ Al MMCs with different fiber 
dimensions in a simulation cell of constant size. 1be volume fraction of fibers is V = 5%, 
20% and 45%. The dotted lines refer to elastic predictions from the rule of mixtures. The two 
simulated microstructures show [001] views of the composites parallel to the fiber axis at a strain 
e = 0.15%. The dislocation density is about 1.35 1014 m - 2 for V = 5% and 1.7 1014 m - 2 

for V = 45%. Notice the early departure from elastic behavior for the smallest volume fraction. 

When plastic deformation proceeds in the matrix, the dislocation density 
rapidly increases and a microstructure is formed, which contains many junc
tions (Fig. 4). The observed persistence of junctions at all the investigated 
strains is an indirect proof that the stresses developed in the matrix are still 
compatible with a mechanism afforest hardening. This result is again in agree
ment with experimental observation [1]. Nevertheless, as illustrated by Fig. 4, 
the differences in microstructure arrangement and dislocation density between 
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the two volume fractions V = 5% and V = 45% strongly suggest that there is 
an additional hardening process. By lack of space, the analysis of this effect, 
which is actually size-dependent, is postponed to a future publication where 
the in-situ properties of the Al matrix will be investigated in full detail. 

Finally, a careful observation of the simulation output reveals the progres
sive accumulation of a large dislocation density at the interfaces between the 
fibers and the matrix. In contrast with 20 simulations results, however, no 
pile-up of dislocation loops is formed aroWld the fibers. This result can be ex
plained in simple terms. In a 3D MMC structure, the dislocations can bow out 
between the fibers and by-pass then by an Orowan process. The critical stress 
for this process is inversely proportional to the distance between fibers, which 
is at the origin of a size effect. For topological reasons this process cannot be 
accoWlted for in two dimensions. Moreover, one should note that in 3D the 
mean free-path of the dislocations is large and a large amoWlt of plastic strain 
can be produced by each dislocation loop. As a consequence, the sources are 
much less active in 3D than in 2D. This is why in multislip conditions, but in 
single slip conditions too, the probability for finding at the interfaces disloca
tions emitted in the same plane by a dislocation source is rather low. 

5. CONCLUDING REMARKS 
An improvement to the DCM is proposed and tested, which gives access to 

"massive" simulations of dislocation dynamics accoWlting for complex boWld
ary value problems. The comparison between conventional DD simulations 
and the DCM in the case of pure fcc single crystals shows that the interactions 
of the dislocations at short distances, and especially their reactions, are now 
quantitatively reproduced. 

The first original calculations of this improved version of the DCM have 
been dedicated to the study of a MMC. It was checked that the DCM, which is a 
parameter-free simulation, reproduces well the tensile properties of Al20a/Al 
composites in the longitudinal direction. A simple comparison of 2D and 
3D simulation results makes it clear that the hardening processes involved in 
MMCs are, in essence, three-dimensional. 

This first study allows considering many future developments, which, glob
ally, aim at discriminating between dislocation or metallurgical effects and me
chanical effects through a coupled analysis of the simulated microstructures 
and of the stress and displacement fields. A detailed in situ investigation of 
the strain hardening of the aluminum matrix is Wlder way. Since, however, 
the stress-strain behavior of Al20 3 / Al composites deformed along the fiber 
direction is mainly elastic, size effects can more conveniently be examined by 
straining along the transverse direction. Lastly, experimental studies suggest 
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the existence of a significant Baushinger effect. Its examination by the DCM 
could be of interest with reference to kinematic hardening in MMCs. 
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Abstract: We investigate the characteristic deformation behavior of an amorphous 
polymer with a heterogeneous distribution of the initial shear strength (ISS). 
The deformation behavior of polymers under macroscopically uniform tension, 
and of plane strain polymer unit cell with a cylindrical void under combined 
straining were investigated by computational simulation with the nonaffine 
molecular chain network model. The results revealed the onset, evolution and 
interaction of microscopic shear bands emanating from slightly weak points, 
and the percolation of new shear bands. The micro- to macroscopic isotropy of 
the deformation response has been verified. Although the existence of 
distribution of ISS substantially affects the deformation, the effects of 
distribution patterns and standard deviation of ISS on the deformation were 
small. The interaction between the heterogeneity of ISS and voids 
substantially affects such micro- to macroscopic deformation behavior as onset 
and propagation of shear bands, mean stress distribution, and macroscopic 
stress vs strain relationship. 

Key words: Amorphous Polymer, Distribution oflnitial Shear Strength, Microscopic Shear 
Band, Void Containing Polymer, Molecular Chain Network Theory, 
Computational Simulation 
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1. INTRODUCTION 

The deformation behavior of polymeric materials under tension is very 
different from that of metallic materials. The plastic flow in an amorphous 
polymer due to the onset and growth of shear bands is initiated at a stress 
level lower than the macroscopic yielding point [ 1]. Such shear bands in an 
amorphous polymer are oriented along a direction very close to the direction 
of maximum shear stress. Subsequently, many shear bands form with the 
increase of deformation. Beyond the macroscopic yield point, shear bands 
are transformed into the macroscopically manifested neck and its 
propagation under the essentially steady state as often observed in 
experiments. These typical deformation behaviors are closely related to the 
heterogeneity of the microstructure of the amorphous polymer, nevertheless, 
the discussions associated with this evidence are few [2-4] and many issues 
are still unclear. 

In this paper, by employing a nonaffme molecular chain network model 
[5) and finite element simulation [6) we numerically specify the 
characteristic deformation behavior of amorphous polymers with a slightly 
heterogeneous chain distribution which was replaced by the heterogeneous 
initial shear strength (ISS). The isotropy of micro- to macroscopic responses 
of a unit cell, the effect of distribution patterns and standard deviation of ISS 
on the deformations are investigated. The effect of the interaction between 
the heterogeneity of ISS and voids on such micro- to macroscopic 
deformation behavior as onset and propagation of shear bands, mean stress, 
and stress vs. strain relationship is discussed. 

2. CONSTITUTIVE EQUATION 

The complete constitutive equation for a polymer employed in this 
investigation is given in references [5]. Here, we provide a brief explanation 
of the constitutive equation. The total strain rate is assumed to be 
decomposed into the elastic strain rate and the plastic strain rate. The elastic 
strain rate is expressed by Hooke's law and the plastic strain rate is modeled 
using a nonaffine eight-chain model [5]. The final constitutive equation that 
relates the rate of Kirchhoff stress sij to strain rate t*' becomes 

Sif = L,1*'t*'- P;, Lij*' = D;*'- F"*'' F,ikl =~(O''*bi, +O'"bi* + O'pb,k +O'i*6" ~ ( 1) 

yP 
PJ = D;*' .fir a~, 'f = (o-;o-; 12t2 , aij = aij -Bij, 
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where D~kl is the elastic stiffness tensor and uis the Cauchy stress. The 
lJ I) 

shear strain rate yP in Eq. ( 1) is given as [7] 

(2) 

where Yo and A are constants, r is the absolute temperature, 'f is the applied 
shear stress, s = s + ap indicates shear strength [8], s is the shear strength 
which changes, with plastic strain, from the athermal shear strength 
s0 = 0.077 f.J /(1- v) to a stable value s,, , p is the pressure, a is a pressure
dependent coefficient, f.J is the elastic shear modulus and v is Poisson's ratio. 
Since s depends on the temperature and strain rate, the evolution equation of 
s can be expressed as s = h{l- (s 1 s, )}yP, where h is the rate of resistance with 
respect to plastic strain. Furthermore, Bu in Eq. (1) is the back-stress tensor 
and the principal components are expressed by employing the eight-chain 
model [9], as 

l R r,; V/ - ;.,2 -I ( ;., ) l 12 1 2 2 2 (3) B; =-C vN--L r,; , L(x)=cothx--, 11. =-(v; +V2 +V3 ), 
3 A. vN x 3 

where v; is the principal plastic stretch, N is the average number of 
segments in a single chain, cR = nkT is a constant, n is the number of chains 
per unit volume, k is Boltzmann's constant, and L is the Langevin function. 
In the nonaffine eight-chain model [5], the change in the number of 
entangled points, in other words, the average number of segments N , may 
change depending on the distortion ; which represents the local deformation 
of a polymeric material [5). The simplest expression of the number of 
entangle points is m = m, exp{-c(1-~)} with ~ = 1 in the reference state and m, 
is the number of entangled points at reference state and c is a material 
constant [5). 

3. COMPUTATIONAL MODEL 

Here, we evaluate the detailed characteristics of micro- to macroscopic 
deformation of an amorphous polymer with heterogeneously distributed 
molecular chains, which is suggested by careful observation [ 10, 11] using 
an Atomic Force Microscope (AMF) under macroscopically uniform tension 
and shearing, and large scale Molecular Dynamic (MD) simulation [12). 
Nevertheless, the information associated with the concrete distributions of 
chain density or ISS is not available, therefore, we restrict our investigations 
to the effect of the distribution of ISS on the micro- to macroscopic 
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deformation behavior of amorphous polymer, and will employ the normal 
distribution of ISS. 

Figure l(a) shows the plane strain computational unit cell model for 
macroscopically uniform tension in which the heterogeneous distribution of 
ISS, s0 , is assumed. Figure l(c) shows the normal distribution of s0 with a 
mean value s0'" and three different standard deviations, o.05s0., (NDl), 0.10s0,. 

(ND2) and 0.15s0'" (ND3). The distribution of s0 is specified, such that, 
depending on the total number of fmite elements in a unit cell, a specific so 

value is allocated to a square element and the number of elements with 
specific so values exhibits a normal distribution, as shown in Fig. 1(c). Next, 
the effect of distribution pattern of ISS is considered. Figure 1(d) shows p 
distribution with mean value s0,. and the locations of the peaks of the 
distribution are -0.2L (BD1), o.OL (BD2) and o.2L (BD3) from the mean 
value as depicted in Fig. 1(d). L is the distribution width corresponding to 
that of ND2 of Fig. l(c). Furthermore, a distribution with two peaks as 
shown in Fig. 1 (e) is considered. The distribution is established by 
employing two p distributions with different peak distances; O.OL (DPO), 
0.2L (DP 1 ), 0.4L (DP2) and 0.6L (DP3). 

Figure 1(b) indicates the computational model for a plane strain unit cell 
with a cylindrical void, which is an approximate model of an amorphous 
polymer containing cavitated rubbery particles [13, 14]. The 
macroscopically homogeneous deformations shown in Figs. 1 (a) and (b) are 
applied. In all cases, shear-free conditions are applied to the surface of the 
boundary. 

Moreover, we defme the average strain rates £,, £2 or stress rates £,, I 2 

with respect to the coordinate directions x1, x2 , respectively, and 
macroscopic equivalent stress and strain are defined as 1:, = (31:):; 12)112 and 
E, = (2£;£; 13) 112 • For the model in Fig.1(a), a macroscopically homogeneous 
strain rate £. = t 0 = w-5 ; s is applied, whereas it is prescribed as 
£, = z£2 • £2 = £0 for the cases of Fig. 1 (b) . Here, we introduce a macroscopic 
strain triaxiality parameter, T = (E + E )13£ . r = o o 5 and 1.0 correspond to 

p 1 2 ~ p ' • 

z = -1.0, o.o and 1.0, respectively, which represent the pure shear, horizontally 
plane strain and biaxial strain conditions. Two different volume fractions of 
voids, 1o = o.05 and 0.20 , are considered. Since strain rate is sufficiently low, 
here we disregard the heat generation due to irreversible work. The material 
parameters for the polymer employed are E., 1 s0., = 23.7 , s •. .l s0., = 0. 79 , 

hi s0,. = 5.15 , As0 .. IT0 = 78.6, a =0.08 , Yo= 2.0xl015 Is , s0,. =97 MPa , T, = 296K , 
m, = 7.83x 10" and c = 0.33 [5], which are the modified versions of those for the 
affme eight-chain model [9]. Standard deviation (S.D.) for the normal 
distribution of ISS is specified as o.15s0., for the cases unless noted otherwise. 
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(a) Uniaxial tension of unit cell {b) Combined straining of unit cell 
with cylindrical void 

Figure I Computatinal Models 

4. RESULTS AND DISCUSSION 

4.1 Uniaxial Tension of Unit Cell 

We will ftrst discuss the effect of the heterogeneous distribution of ISS as 
shown in Fig. l(a) on micro- to macroscopic deformation behavior under 
uniform plane strain tension with different directions. Figures 2(a) and (b) 
indicate the macroscopic equivalent stress-strain relation for different 
directional tensions with angle B deftned in the inserted ftgure and the 
equivalent plastic strain rate distribution at the corresponding macroscopic 
equivalent strain in Fig. 2(a), respectively. Both ftgures suggest the micro
and macroscopically isotropic responses. For comparison, the result for the 
homogeneous distribution of s0 is also indicated in (a). The effects of 
heterogeneity of s 0 is substantial in the early stage of deformation. The 
yield due to heterogeneous distribution of s0 causes the nonlinear response 
prior to the macroscopic yield and suppresses 20% of the corresponding 
macroscopic yield stress in the homogeneous case. Furthermore, continuous 
yielding at different positions of the polymer results the rather moderate 
increase of average stress with deformation as compared with the 
homogeneous case. However, the critical stretch is assumed to be identical in 
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this investigation, therefore, the resistance of the deformation in the later 
stage asymptotically approaches that of the homogeneous case. 

I.Or-------r--~--- -·~~~__,__....,· e-oo' ;o.[]' o· ' D 0 D Ax. 9 ---·-· 9 •)0' ' .J ~ 9- &J' 

~ ·~-"' -- ·-~ 000000 
(1.0 

iii: ~ ·oi!YoOOO 
0.2 0.4 £.4 M Ill 12) l3l (<ll (S) 161 

(a) Macroscopic equivalent stress - strain (b) Equivalent ~1rain rate distribution 

Figure 2 Macroscopically Differnt Directional Uniform Tension 

Figure 2(b) indicates that the localized microscopic shear bands which 
connect the microscopically weak regions, appear at almost 45 degrees with 
respect to the tension direction. The macroscopic yield occurs at (2) on 
stress-strain curve in Fig. 2(a) where the microscopic shear bands cross the 
unit cell, which is responsible for lowering the yield stress as compared with 
the homogeneous case. Since the shear strength becomes s., in the region 
with a lower value of 50 , further softening may not occur. As a result, the 
strain rate in the initially formed shear bands possesses the maximum value 
at the macroscopic yielding point and it decreases with orientation hardening. 
The softening occurring in the subsequently generated microscopic shear 
band is compensated with hardening in the previously appearing shear band. 
Therefore, the stress vs. strain relation for the unit cell in Fig. 2(a) exhibits 
no softening. With additional macroscopic deformation, the percolation, 
intensification and propagation of shear bands along the direction normal to 
the shear bands are observed, accompanied by the rotation of shear bands. 
Subsequently, the increase of the number of shear bands in which the 
maximum stretch attains the critical value, results in a significant increase of 
the resistance of deformation. The corresponding strain rate distribution is 
seen in (6) of Fig. 2(b) which indicates almost uniform deformation. Thus, 
the unit cell model developed shows isotropic response in both the 
microscopic and macroscopic deformation processes. 

Furthermore, the micro- to macroscopic deformation behavior evaluated 
with different magnitude of the standard deviation and the profile of the 
distribution of ISS as indicated in Figs. l(c), (d) and (e) suggested that their 
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effect on the microscopic as well as macroscopic deformation is fairly small. 
Therefore, the investigation based on the normal distribution with a specific 
standard deviation of heterogeneity of ISS provides a general overview of 
the deformation behaviors of amorphous polymers. 

4.2 Interaction between the heterogeneous distribution 
of ISS and voids 

In order to clarify the effect of heterogeneity of ISS on the micro- to 
macroscopic deformation behavior of soft rubber blended polymers, the 
problems depicted in Fig. l(b) are investigated by the computational model 
presented in section 3. A typical rubber-blended amorphous polymer 
contains rubber particles which are spherical with J.l m length scale and are 
dispersed throughout the matrix. The mechanical characteristics of the 
blended material strongly depends on the initiation and propagation of the 
shear band in the matrix polymer and the cavitations of rubber particles, 
which are substantially affected by the volume fraction and size of the 
rubber particles. Although the distribution of the rubber particles is 
somewhat random, we assume that it is periodic and focus our attention on 
the essential feature of the effect of initial heterogeneous distribution of ISS 
on the micro- to macroscopic deformation behavior of polymers with voids. 
Related studies on homogeneous polymers can be seen in [13, 14] 

Figure 6 indicates (a) macroscopic true stress-strain relations and (b) 
equivalent plastic strain rate distributions at different macroscopic strains 
depicted in (a) for the void containing unit cell under plane strain 
deformation as shown in Fig.l (b). For comparison, a homogeneous case of 
ISS is also indicated. The macroscopic response is sensitive to the 
macroscopic strain triaxiality T . Decreasing T causes a reduction in the 
maximum macroscopic stress ';md in the stiffness in the early stage of 
deformation. The heterogeneous distribution of ISS promotes a nonlinear 
response in the very early deformation stage and suppresses the maximum 
stress substantially, as compared with the cases in section 4.1. Due to 
heterogeneity of ISS, the resistance to deformation of the material does not 
exhibit a significant drop that can be observed in the polymer with a 
homogeneous ISS. This is attributable to the contribution of heterogeneity of 
ISS to the promotion of orientation hardening successively in the ligament 
area. It has been also assured that the increasing of the volume fraction of 
void 1o causes the reduction of macroscopic yield stress and stiffness. 
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(a) Macroscopic true stress - strain (b) Equivalent strain rate distribution 

Figure 3 Defonnation of Unit Cell Containing Cylindrical Voids Under Combinatcd Strain 

For the case of heterogeneous ISS, microscopic shear bands emanating 
.from the weak points appear from the early stage of deformation, as in the 
case of macroscopically homogeneous deformation, which causes the 
nonlinear behavior in stress-strain relationships, and subsequently, 
continuous growth of microscopic shear bands. Their propagation and 
percolation cause the unified strong shear bands that connect the voids. Due 
to the random distribution of ISS, unified shear bands exhibit nonsymrnetric 
with respect to the symmetric axis of the unit cell. Upon the onset of such 
unified shear bands, macroscopic stress-strain relationships shows a local 
maximum and then the stress gradually decreases with further deformation. 
This is attributable to the continuous onset and propagation of the shear 
bands due to the heterogeneous distribution of ISS. 

To predict the onset of crazing, which affects the ductility and toughness 
of the polymer, the mean stress, particularly positive mean stress, is an 
essential parameter. Therefore, we will discuss the local distribution of the 
mean stress in the unit cell. Figure 4 shows (a) mean stress distribution and 
location of the maximum mean stress point at different deformation stages 
(1) to (6) in Fig. 3(a), (b) mean stress distribution along the void at 
deformation stage (6) and (c) mean stress and equivalent strain rate 
distribution near the surface of the void as indicated in (a). The onset and 
propagation of micro shear bands caused by the heterogeneous distribution 
of ISS promotes the occurrence of high maximum mean stress in the early 
stage of deformation. The effect of strain triaxiality on the local mean stress 
is remarkable. High triaxiality causes the high mean stress. Initially, a high 
positive mean stress appears near the cross points of microscopic shear 
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bands. As the deformation proceeds, the location of the high mean stress 
point moves to the surface of the void where the stretch approaches a critical 
value. 

A B c 

(b) Mean stress distribution 
along void surface at ( 6) 

0.0 l.O 
Contour Uae Eeq 
maximum value : 4.0c-04 
minimum value : l.Oe-04 
contour interval : l .Oe-04 

(c) Mean =~and equivalent strain rate distribution at A tn C in (a) 

Figure 4 Mean Stress and Equivalent Strain Rate Distribution (f0 = 0.05, T, = 1.0) 

Figure. 4(b) shows very complicated distribution of mean stress along the 
void surface. For the heterogeneous ISS case, the maximum mean stress 
value is 20% higher than that for the homogeneous case. It should be also 
noted that the mean stress possesses an anomalously lower value. The latter 
can be explained by examining the mean stress distribution near the void 
surface in Fig. 4( c). As can be seen in the deformation of the plane strain 
block with a free surface [ 15], the tensile strain applied to the unit cell 
promotes the onset and propagation of microscopic shear bands beneath the 
surface of voids, that causes the undulation on the void surface as can be 
clearly observed in Fig. 4(c). The mean stress value is very low at the 
convex part of the void surface. The effect of such undulation on the onset of 
cavitation in rubber blended polymer will be the subject of future work. 
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Abstract In order to clarify the micro- to macroscopic characteristic feature of 
two-phase single-crystalline materials, an asymptotic homogenization 
method has been developed for materials obeying the constitutive equa
tion based on the dislocation-density-dependent crystal plasticity the
ory. We focus our attention on nickel-based superalloy that is well 
used in practice and in which fine and hard (gamma-prime phase: r'
phase) precipitates are embedded in a soft (gamma phase: ~-phase) 

matrix. Assuming that the cuboidal r' -phase precipitates with a peri
odical distribution in the 1-phase matrix, a unit cell model consisting of 
two phases is established. Then, a series of computa-tional simulations 
adopting a constant r' -precipitate size has been performed for the alloy 
with the different volume fractions of r' -precipitates associated with the 
width of the 1-channel and the crystallographic orientations of the two 
phases. Results show that the effects of the r' -precipitate volume frac
tion and the applied loading direction relative to the crystallographic 
orientation on the macroscopic deformation behavior are considerable 
as compared with the strain-gradient-independent model. 

Keywords: Nickel-based Superalloy, Asymptotic Homogenization Method, Strain
Gradient Crystal Plasticity Theory, Characteristic Length Scale 
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1. INTRODUCTION 
Nickel-based single-crystal superalloys have excellent high-temperature 

strength and oxidation resistance and are therefore widely used for blades 
in aircraft gas turbines and for components of nuclear reactors[!]. The 
microstructure of these alloys consists of two phases: a high volume frac
tion of coherently precipitated 'Y' cubes (Ll2) separated by thin channels 
offace-centered-cubic (f.c.c.) "!-matrix, as shown in Fig.l[2). In order to 
take into account the microscopic deformation mechanisms associated 
with the dislocation motions, several analyses of the deformation behav
ior in these alloys, using the finite-element method, have been reported 
in the past. Fedelich[3,4] developed the constitutive model by intro
ducing the microscopic mechanical features and investigated the overall 
properties under cyclic loading. His method, however, cannot be used 
to obtain the local and global deformation behavior simultaneously or 
to estimate the precipitate size effects on two-phase single crystals. On 
the other hand, Ohashi(5] developed the constitutive model based on 
the crystal plasticity theory, which contains the first gradient of shear 
strain derived from the geometrically necessary dislocations[6) and in
vestigated the dislocation line profile in the "!-matrix. Busso et al.[7) 
and Meissonnier et al. [8] focused on the effects of precipitate size on the 
alloy; i.e. the effect of the relative length scale djl, where dis the width 
of the "j-phase channel and l is the /"-precipitate size, on the macro
scopic deformation behavior. However these works are restricted to the 
[OOl]loading direction because their boundary conditions are limited to 
a fixed loading direction with respect to the crystallographic orientation; 
Therefore, the macroscopic deformation behavior has not been clarified. 

Figure 1. SEM image of the typical Ni-based superalloy morphology. The "Y' pre-
cipitates appear in dark while "Y channels are white[2]. 
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In this study, we develop an asymptotic homogenization method for 
materials obeying the constitutive equation based on the dislocation
density-dependent crystal plasticity theory and the finite-element method. 
Then, a series of computational simulations for an alloy with character
istic length scales are carried out to clarify the effect of different morpho
logical parameters, such as volume fraction of precipitates and arbitrary 
crystallographic orientations of two phases, on the micro- to macroscopic 
deformation behavior. 

2. CONSTITUTIVE EQUATION BASED ON 
THE STRAIN-GRADIENT CRYSTAL 
PLASTICITY THEORY 

The strain- and strain-rate dependent crystal plasticity constitutive 
framework used in this study is based on the formulation proposed by 
Peirce et al.[9], which is expressed as . 

Sv _De d "R(a) . (a) R(a) def. De n(a) W(a) w<a) ( ) 
ij- ijkl kl-~ ij 'Y ' ij = ijkl .. kl + ik akj -aik kj 1 

a 

v 
where S is the Jaumann rate of Kirchhoff stress, De the tensor of elastic 
moduli, d the strain rate and u the Cauchy stress tensor. The slip 
plane normal s(a) and the slip direction m(a) define the symmetric and 
asymmetric parts of the Schmid tensor, p{a) and w<a), respectively. 

p(a) d~.! ( {a) (a)+ (a) (a)) w<a) d~.! ( (a) (a)- (a) (a)) 
ij - 2 si mj mi sj , ij - 2 si mj mi sj . (2) 

The relationship between the shear strain rate ..y<a) and the critical 
resolved shear stress r(a) on the slip system (a) is assumed to be given 
by the power law[lO,ll] 

..y(a) = ..y;:{sgn ( T(a)) lr(a) / g(a) 11/K {3) 

where ..y(a:) is the reference rate of shearing and ,.. is the strain rate 
sensitivity parameter. g{a) is the current value of the reference resolved 
shear stress. We assume that the reference-resolved shear stress is a 
Bailey-Hirsch type function[12] given by 

g{a) = rJa) +aJLbLwa(J{;Jf 
(3 

{4) 

where rJa) indicates a material constant such as yield stress. The second 
term represents the effect of accumulated dislocations in crystal. p~a) 
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denotes the total density of dislocations that accumulates on the slip 
system (a). wafJ is a matrix that takes into account various types of 
dislocation interactions[13]. b, m and a denote the magnitude of the 
Burgers vector, the elastic shear modulus and a material constant, re
spectively. The total dislocation density on the slip system (a) is given 
by 

(5) 

where p~a) and pr;) denote the densities of the statistically stored dis
locations (SSDs) and the geometrically necessary dislocations (GNDs), 
respectively. 

The incremental form of the SSDs is given by 

.(a) C ·(a) 
Ps = bL(a) 'Y (6) 

where c is a material constant and L(a) is the dislocation mean free 
path on the slip system (a). In this study, we consider the dislocation
dislocation interaction and introduce a power-law-type description of 
L(a}[14]: 

(7) 

where L~a) and p~a) are the reference value of the mean free path and 
the initial dislocation density, respectively. n is the material constant. 
The evolution of the density of SSDs during plastic slip is evaluated 
by integrating Eq.(6). On the other hand, the density of GNDs[5] is 
estimated by 

(a} _ 1 (a) (a) } 
PG,edge - - b 8 i 'Y,i 

(a) 1 (a) (a) (a) 
PG,screw = b eijk8j mk 'Y,i 

{8) 

where p~~ge and p~~crew denote the edge and screw components of 

the GNDs, respectively. eijk is the permutation tensor and ~~r) denotes 
the gradient of shear strain on the slip system (a). The norm of two 
components defines the scalar density for the GNDs, 

{9) 

The evolution equation g(a) obtained by the time derivative of Eq.(4) is 
taken to be 

g(a) = L hafJ 11-y(fJ) II ' 
fJ 

(10) 
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where ho:/3 is a matrix of the hardening moduli associated with the lo
cal strain hardening state. Diagonal components of this matrix corre
spond to self-hardening, while off-diagonal components describe cross
hardening effects. FromEqs.(4)-{6), (8)-(9) and (10) thehardeningmod
uli are derived as follows: 

(11) 

The evolution of the density of SSDs and GNDs is affected by shear strain 
and shear strain gradient as shown in Eqs.(6) and (8), respectively[6). 
Hence, the strain gradients are considered to be internal variables, as 
shown by Eq.(ll). Therefore we can practically estimate the dependence 
of the strain gradient, in other words, the characteristic length scale, on 
the macroscopic phenomena without introducing higher order stresses 
or additional boundary conditions. In the present work, in order to 
decrease the interval of time steps to achieve stable computation, the 
algorithm of the tangent modulus method[15) is adopted for estimating 
the shear strain increment. The constitutive relations are summarized 
as follows: 

sij= cijkldkl - r: R~Y) po:) , 
0: 

where 

3. HOMOGENIZATION METHOD FOR 
STRAIN- AND 
STRAIN-RATE-DEPENDENT 
CRYSTALLINE MATERIALS 

(12) 

(13) 

In order to estimate the macro/microscopic deformation behavior 
of Ni-based superalloy with periodically distributed "/'-precipitates, as 
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unit cell 

l: X ; 

Figure 2. Global and local problems with two spatial scales. 

shown in Fig.1, the formulation of an asymptotic homogenization method 
[16) for strain- and strain-rate-dependent crystalline materials is em
ployed[17,18) along the same lines as indicated for the viscoplastic case[19). 

Consider the problem shown in Fig.2, with domain 0 and boundary 
S subjected to surface force Pi on St and prescribed velocity on Su. 
The body is formed by the spatial repetition of a base cell Y made of 
different materials. Assuming that the base cell is very small, of the 
order TJ , compared with the dimensions of the entire body, the global 
coordinate is Xi for the entire body, and the local coordinate is Yi related 
to the single base cell, then Yi = xifry. Similar to the assumption used 
in the case of linear elastic materials[16], the velocity and its gradients 
are supposed to be expressed as an asymptotic expansion with respect to 
parameter TJ. By substituting these into the virtual work principle of the 
updated Lagrangian formulation[20), rearranging at the same order TJ 
and taking the limit of TJ -r 0, we can arrive at the virtual work principle 
for a macroscopic body: 

(14) 

(15) 
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(16) 

v 
s~ (x, y) = qjklE:2z (x, y)- L R~j) j(o:). (17) 

0: 

Equations (14)·-(17) are the governing equations for the macroscopic 
and microscopic scales, respectively. The notation E0 indicates the 
macroscopic strain rate and xkl and r/> are characteristic deformation 
functions which satisfy the so-called Y-periodic and are determined by 

(18) 

h [C.. ~ (8¢k 8¢z) . 8¢i] 88vi dY 
1Jkl2 a +a +amJJ:b,, a 

Y Yl Yk vym Y1 

= r L R~~) po:) aovi dY. r/> .•. y -periodic 
}y 0: IJ OYj 

(19) 

Thus, characteristic functions xkl and r/> for the unit cell depend solely 
on the material characteristics and configuration of microstructure of 
the unit cell, which are, in turn, obtained without interacting stress 
and strain of the macroscale. On the other hand, macroscopic govern
ing equation (14) can be solved independently because the macroscopic 
characteristic deformation functions indicated in Eqs.(15) are identified 
through Eqs.(18), (19). The details have been discussed in refs.[17,18]. 

4. COMPUTATIONAL MODEL 
Figure 3 shows the computational model for the Ni-based superalloy 

to be analyzed. Gray and white regions correspond to the--y-matrix and 
1-precipitate, respectively. A cube-shaped --y'-precipitate is periodically 
embedded in the softer --y-matrix and its size is considered to be constant 
at 0.5mm. Here, the geometry of the unit cell shown in Fig.3(c) is fully 
described by two parameters: the cuboidal --y'-precipitate size, l, and the 
--y-channel width, w. Therefore, the /''-precipitate volume fraction, v,, 
is related to the ratio w/l. The entire unit cell is divided into 864 eight
nodes cubic elements. The crystal orientations [100], [010] and [001] of 
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the 1 and 1' phases correspond to the Yl, Y2 and Y3 axes, respectively. 
The 1 and 1' phases are presumed to be elasto-viscoplastic and elastic 
materials, respectively. The elastic properties estimated on the basis of 
the experimental results for [001) loading are employed[2,17). Thereby, 
the elastic orthotropic parameters for the precipitate and the matrix 
are 0-yn =210, O-yl2=140 and O-y44=92, and 0-y'll =230, O-y'l2=155 and 
O-y'44=98GPa, respectively. The viscoplastic properties associated with 
the evolution of dislocation densities are given by choosing the following 
set of parameters: 

-r;:(=10-3s-1, ~~:=0.05, rJal=255.5MPa, a=0.2, ~-t=73GPa, 
b=0.2492nm, c=l0-3, L~a)=10-3mm, p~a)=109m-2 , n=2/3. 

t 

x~~ xl (b) Periodic Microstructure 

(a) Macroscopic region 
(c) Unit cell 

Figure 3. Computational model for Ni-based superalloy. 

Table 1. {111}(110) slip systems. 

1 
2 
3 

(11I)[101] 4 
( 11 I)[Oll] 5 
{lli)[IlO] 6 

(III)[Io 1] 
(III)[Oil] 
(III)[liO] 

7 (Ill)[Oli] 
s (Ill )[Ioi] 
9 (Ill )[IIo] 

10 
11 
12 

{lil)[OII] 
{lil)[lOI] 
(1I1)[110] 

Then, the twelve (octahedral) slip systems listed in Table 1 are con
sidered. The components of the dislocation interaction matrix wafJ, as 
defined in Fig.4, are also introduced where the diagonal component is 
unity and the off-diagonal ones are 0=1.0, H=l.1 and G=L=K=1.15. 

The boundary conditions on the macroscopic scale are, as indicated 
in Fig.3(a), such that the top and bottom surfaces are shear free with a 
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Figure 4- Indices of dislocation interaction matrix w"'f:J on Thompson's tetrahedron. 

constant velocity, u/ L=10-3s-1, whereas the other surfaces are assumed 
to be stress free. In order to investigate the deformation behavior under 
the condition of arbitrary applied stress, the direction of the unit cell is 
characterized by the angles 0 and ¢ corresponding to Euler angles[21] 
around the y2-axis and ya-axis, respectively. 

5. RESULTS AND DISCUSSION 
Figure 5 shows some results for the homogenized elastic constant 

EH / E~011 . Here E~011 indicates the homogenized elastic constant cor-
responding to 0=¢=0°. In the case of constant (), the value of EH is 
minimum at 0=0° and also becomes stiffer with increasing angle 0. The 
maximum value of EH obtained was at (0, ¢)=(54.7", 45° ), namely, the 
[111] loading direction. This result is consistent with experimentally 
observed evidence[22]. On the other hand, it could be seen that the ef
fect of different volume fraction of the 'y'-precipitate on the macroscopic 
elastic properties is not remarkable. 

Figure 6 shows the average stress a versus average strain uf L at 
the end of the macroscopic region that undergoes uniform deformation 
shown in Fig.3(a). An obvious increase of deformation resistance is seen 
when the volume fraction of the "('-precipitate is small, i.e., the "(-channel 
width is narrow. Furthermore, the results indicate a higher strength as 
compared with the strain-gradient-independent model[lB]. With regard 
to the (110] loading direction, the effect of the different volume frac
tion of the "('-precipitate on the macroscopic deformation resistance is 
considerable. To clarify such a characteristic macroscopic deformation 
resistance for different directional loading, further investigation associ
ated with the microscopic deformation was performed. In the case of 
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.>-
1:.1 1.5 ~ 

0 0 

(a)~= 50vol.% [w/1 = 0.260] (b) ~= ?Ovol.% [ w/1 = 0.128] 

Figure 5. Variation of homogenized elastic constants EH with 8 and¢>. (a) and (b) 
correspond to the volume fraction of 'Y' -precipitates of 50 and 70vol. %, respectively. 

--- v,=50vol.o/l , [w//=0.260] 
-.- v,==10vol.%, [w/1=0.128] 

Strain Gradient Independent Model [ 18] 

1000 

0 0.005 0.010 0.015 

[00 I) loading 

0.020 

u/L 

Figure 6. Effects of the different 'Y' -precipitate volume fraction and applied loading 
direction on average stress-strain relationship. 

[OOl]loading, eight slip systems, 2, 3, 5, 6, 8, 9, 11 and 12 listed in Table 
1, are markedly activated, which is identical to the case of the 1-matrix 
material without 1' -precipitate(17]. On the other hand, in the case of 
[llO]loading, four slip systems, 5, 6, 11 and 12, are predominantly ac
tivated, which contributes to the absorption of the deformation in the 
microscopic unit cell and results in the high strain gradient that causes 
the higher resistance to macroscopic deformation, as shown in Fig.6. 
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3.0 
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1.0 

A 
0 

A 

(i) v1 = SOvol.% [w/1 = 0.260] (ii) vf = 70vol.% [ w/1 = 0.128] 

Figure 7. The accumulated plastic shear strain rate normalized by reference shear 
strain rate .Yhr•f distributions in -y-channel for (a) [001) and (b) (110) loading di
rections and different volume fractions of -y' -precipitates (i) Vt=50vol.% [w / l=0.260) 
and (ii) Vt=70vol.% [w/1=0.128) over cross-sectional plane (110) at u/L=O.OlO. 

Figure 7 indicates the accumulated plastic shear strain rate normal

ized by reference shear strain rate "t href ( = L: "'(a) n::: "'!~{) distribu-
(l a 

tions over cross-sectional plane (110) at u/ L=O.OlO. The effect of the 
applied loading direction and the volume fraction of 'Y' -precipitates on 
the shear strain rate distribution is considerable. It can be observed that 
the high-strain-rate regions concentrate in the vertical (with respect to 
the applied loading direction) "{-channel, and the high gradient of "t href 

associated with the presence of GNDs across the channel arises appears 
in the vicinity of the 'Y h' interface. 

Finally, we will discuss the effect of the variation of dislocation den
sities related to the microscopic hardening state on the macroscopic de
formation behavior of the alloy. The accumulated SSDs and GNDs den
sities normalized by the total dislocation density are presented in Fig.8, 
where these dislocation densities are plotted versus average strain u/ L 
at the nodal point 'A' shown in Fig.7. Note that Pi (i=T, S, G) is the 



266 

V1= 50 vol.% , 70 vol.% 
[w/1=0.260] , [w/1=0.128] 
--- , ---- [DOl] loading 
•••••••• , -·-· [llO]loading 
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uiL 

Figure 8. The accumulated SSDs and GNDs at nodal point 'A' in Fig.7 versus 
average strain uf L. 

accumulated sum of slip systems. In this computation, the dislocation 
mean free path expressed by Eq.(8) is very small since the total dislo
cation density becomes larger with increasing GNDs density. Therefore, 
the macroscopic deformation resistance dependent on the local strain 
hardening state becomes higher with increasing /''-precipitate volume 
fraction associated with the !'-channel width. With regard to the case 
of [llO]loading, however, the dislocation mean free path is smaller than 
that in the case of [001] loading because the density of the SSDs, as 
well as of the GNDs, contributed to the local strain hardening state, 
as shown in Fig.6. Hence, the macroscopic characteristic feature of the 
alloy is high deformation resistance. 

6. CONCLUSION 
In this study, to elucidate the micro- to macroscopic characteristic 

feature of Ni-based superalloy with /"-precipitates, an asymptotic ho
mogenization method employing the constitutive equation based on the 
strain-gradient crystal plasticity theory was developed. Assuming that 
the cuboidal 1'-phase precipitates with periodical distribution in the 
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')'-phase matrix, a unit cell model consisting of two phases was estab
lished. Then, a series of computational simulations with a constant 
')''-precipitate size was performed for alloys with different volume frac
tions of')''-precipitate with respect to the width of the ')'-channel and the 
crystallographic orientations of two phases. Results show that the effect 
of the ')''-precipitate volume fraction and applied loading direction rela
tive to the crystallographic orientation on the macroscopic deformation 
behavior is significant compared with the case of the strain-gradient
independent model. 

The proposed method can be used for the evaluation of the effects of 
not only an arbitrary applied loading direction relative to the crystallo
graphic orientation, but also microstructural characteristic length scales, 
on the macroscopic deformation behavior of two-phase single-crystalline 
materials. Hence, the present computational strategy may provide useful 
data for the development of high-performance, high-strength superalloy. 
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Abstract The crack I dislocation depinning problem is studied theoretically on the basis 
of the exactly solvable Frenkel-Kontorova-type models of the crystal containing 
microcrack or dislocation. By employing a self-consistent phonon approach the 
system Gibbs-free energy G is calculated for a finite temperature T at a fixed 
external force I stress P. It is found that the Gibbs energy G(T, P, u), as a func
tion of the crack-opening/dislocation-core displacement u, suffers a fold-type 
catastrophe, characterized by the loss of saddle-point configuration at the de
pinning line Tc(P) . A remarkable scaling behavior of the Gibbs-free energy 
barrier t:..G(T,P) oc [1- TITc]q, (q =>< 1.5) has been discovered for both sys
tems, characterized by the Morse-type atomic interaction potential. A nontrivial 
set of critical indices, corresponding to the Landau-type mean-field approach is 
obtained. 

Keywords: crack, dislocation, depinning, critical behaviour, critical indices 

1. INTRODUCTION 
Depinning problem of topological defects (TD) in solid state systems has 

deserved at present a significant attention. Quite many efforts were made in 
order to determine the conditions of the so-called crack trapping (or pinning) 
by the lattice discreteness [1] or to find the dislocation mobility threshold [2]. 
To predict the conditions at which the crack or individual dislocation depins 
(i.e. advances or retreats) being driven from the equilibrium by external force 
and I or thermal fluctuations would be important both from fundamental and 
applications viewpoint. In majority of previous research this problem is anal
ysed for the over-threshold conditions, at which TD moves in a barrier-less 
regime. Meanwhile, the study of the system response below the depinning 
threshold (DT) may provide valuable information on the specifics of the topo
logical defect depinning mechanism in nanocrystals. 

2. MODELS 
Let us describe briefly main characteristics of two models under study, which 

are generically close to the well-known Frenkel - Kontorova (FK) model. 
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2.1 Tensile Crack: An Atomistic Model 
Consider one-dimensional system with a crack-like structure shown in Fig. 1. 

It consists of a semi-infinite chain of point atoms 'bonded' longitudinally by 

p 

p 

Figure 1. One-dimensional model of a crack 

linear bendable elements and transversely (ahead of the crack tip) by linear 
stretchable elements, with the spacing ao and spring constants a and f3, respec
tively. The only element assumed to be in the nonlinear force range is the 1-th 
stretchable bond at the crack tip. Opening forces Pare localized at the free 
ends. 

The Hamiltonian of the system may be written as a function of the atoms 
momentum p 1 and of transversal displacement u 1 with respect to the chain 
(j=O,J, ... oo) 

H = ~ 2~ i: PJJ X 2 + Ur(u1). 
J=l 

Total potential energy of the system reads 

00 

Ur = Us + UB(ul) + 2/3 .L: u7 
J=l+l 

00 

+a .L:<uJ+I- 2ui + Uj-d- 2Puo. 
J=l 

In the expression (2) we include: 

(1) 

(2) 

surface energy Us ::::. 2aors I , Ys being the crack-surface tension, sup
plemented by the contribution of the nonlinear (l-th) bond U B(u/) ; here 
UB(uj) is the standard atomic interaction potential energy, 
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2 strain energy of stretchable and flexural bonds (third and forth terms in 
eqn.(2)), 

3 potential energy of the external loading system, described by the last 
term in eqn.(2). 

A relatively simple, quadratic in displacement Uj (j ;f:. /)makes the model (1) 
analytically tractable, as it will be seen below. With the help of the equilibrium
displacement set u j,O. which is expressed through u1 in accordance with the 
exact zero-temperature solution (see e.g. [3]), one may reduce the total zero
temperature potential energy Ur to an explicit function of the crack-tip opening 
displacement u1 which is a key variable in our analysis 

Ur(ui) = UB(UJ) + [Us+ /3(K- l)uf- 2P(l + 1/K)ul]. (3) 

The function U B(u) is characterized by the curvature change from positive (at 
u < Um ) to negative (at u > Um , Um being the inflexion point of the func
tion U B(u) ), which results in the existence of a pronounced maximum in the 
restoring force-displacement dependence. The analysis of the expression (3) 
shows that in the force range P _ < P < P + the function Ur(ui) possesses two 
minima separated by one maximum, representing the apparent barrier for the 
crack advance. Such a bistabilty manifests the existence of the nontrivial phe
nomenon coined as the crack trapping by the discrete lattice (crack-lattice trap
ping, CLT) [1]. Simple calculation shows that the barrier height as a function 
of force P when approaching the upper stability limit P c = P + is of power-law 
type: 

D.U(P) oc [1- P/Pc]l.5. 

It is worth noting that the above power exponent does not depend on the spe
cific shape of the function UB(u). 

2.2 Edge Dislocation 
According to the Frenkel - Kontorova model the energy of a dislocation in 

a field of external force F is written in the form U = L:i=1[Uo(x1)- Fxj] 
representing a superposition of periodic and elastic components [ 4] 

Uo(xj) = Uo[l - cos(2n'xj/ao)] + O.SQ(xj+I- xi- ao)2, (4) 

here Uo is the magnitude of the periodic component and Q being an effective 
stiffness constant. As it is known, two cases are possible, depending on the 
force F magnitude: 

i) Force is not extremely large (F < Fe), so that potential energy pro
file possesses a series of local minima in which a dislocation may be 
trapped. In this case two regimes of a dislocation propagation are pos
sible: either thermally-activated jumping over the barrier or quantum
mechanical tunneling through the barrier. 
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ii) The value of force exceeds the critical value F = F c• so that local minima 
of potential energy vanish. In this case dislocations become free to move 
as a result of the action of this force thus exhibiting the viscous-drag 
propagation regime. 

At T = 0 the equilibrium positions of the dislocation core x~±), satisfying 
equation f = sin(2Jrxj/ao)- 2ny (Xj+l - 2xj + Xj+t)fao in the limit of weak 
elasticity ( y = Qa2 /(2n2 Uo « 1 ; y being nondimensional elastic constant) 
are expressed as follows: 

x~-) ~ 0.5ao[n- sin-1 f]/n. 

Here we introduced a dimensionless force variable f = a0F/(2nU0), and for 
simplicity ignored the elastic term corrections. The barrier separating stable 
and saddle-point configuration takes the form 

11U(f) = Uo(f(2 sin-1 f -n) + 2(1 - j 2)o.s] . 

When approaching the limit f = 1, corresponding to the zero-temperature 
critical force at which dislocation depins, the barrier height decreases as !1U oc 

[1 - /]1.5. 
Simple comparison of both systems (crack and dislocation) leads to the con

clusion that the height of the topological-defect pinning barrier near the depin
ning threshold decreases in accord with a universal power-law dependence, 
characterized by the unique power exponent. This circumstance reveals a uni
versal feature of both system response to the force/stress driven depinning tran
sition. Moreover, in virtue of low depinning barrier thermal fluctuations will 
affect not only the depinning dynamics but the depinning threshold itself, as 
well. To describe the latter effect quantitatively hereafter we resort to the finite 
temperature analysis. 

3. FINITE TEMPERATURE ANAYSIS 
To extend the zero-temperature scheme to the case T * 0 one should per

form statistical averaging with the help of the Gibbs canonical probability func
tion W{H} = z-l exp(-H/ksT) where the canonical partition function 

Z =I I exp(-H/ksT) Ii dxjdp1 
j=l 

(5) 

should be calculated employing the non-local hamiltonian H of the specific 
system. Unfortunately, such a nonlocality prevents obtaining closed-form re
sults, which makes problem practically untractable. To avoid this circumstance 
we employ a self-consistent phonon approach suggested by Matsubara [5]. 
Specifically, we employ an Einstein-type hamiltonian ~ which is character
ized by a quadratic energy dependence upon the displacement WJ = Xj- Xj,O 
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from equilibrium atom position x j,O and permits an analytical study of both 
nonlinear and nonlocal systems. 

3.1 Trial Gibbs Free Energy 
Being unable to calculate exact Gibbs free energy G of the original system 

we should resort to a trial one, Gt = G0 + (H- ~)0, here the brackets ( )o 

mean the statistical average over canonical ensemble described by the Einstein 
hamiltonian ~ . In what follows we demonstrate analytical properties of Gt 
of specific systems at finite temperatures. 

3.1.1 Crack. 
For the case of a crack we employ an Einstein-type hamiltonian ~ in the 

form: 

( 
1 00 l 1-1 00 

Il!:rack = 2m #P} X 2 + +2 # CfjW} + 2 f;;ftjw}, (6) 

where parameters aj and ftj describe the effective stiffness coefficients of the 
Einstein oscillators which are characterized by a quadratic energy dependence 
upon the displacement w j = x j- x j,O of the j-th atom from its equilibrium posi
tion Xj,O· After performing standard calculations with the help ofthe Gaussian
type distribution WO = W{~rack} in accord with the variational method (for 

details see e.g. [3, 6]) we get the trial Gibbs-free energy G!rack' Minimization 

of G!rack with respect to a j and ftj brings simple relations: 

a j ""' 3a ( 1 ~ j ~ I - 1 ), 

ftj ==< ft + 3a (I+ 1 ~ j) (7) 

for j * I, and nonlinear integral equation to find nonlinear stiffness ft1 

ft1 + [ q2U(q)exp[iq(2ul,O + ao)] exp[-q~;~]dq = 3a. (8) 

After numerically solving Eq. (8), one finds the function ftL(uL). and finally the 
expression for the G!rack in the form 

G!rack ~ G0 + 21-ys(T, P) ao + (UB{ul})o, (9) 

where second term represents the crack surface energy (see [3]). From the con
dition ad k/ou1 = 0 one finds both Gt mink and Gt makx and thus the depinning crac crac crac 
b · h · h flG Gt max Gt min arner etg t crack = crack - crack' 

While solving the minimization equations above we discovered that phys-
ically meaningful (i.e. positive) solution for ft1 exists only within a certain 
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temperature (or force) interval T < Tc(P) (or P < Pc(T)) ; for T > Tc(P) 
(or P > Pc(T)) no solution is available for a fixed-length crack configura
tion (for concreteness, in our calculations we selected I = 20). Physically 
Tc(P) means the lattice softening temperature beyond which system contain
ing a larger crack-like defect with I > 20, is energetically more favourable. A 
remarkable scaling behavior of !J.Gcrack(T, P) 

!J.Gcrack(T, P) oc [Tc(P)- T]q oc [Pc(T)- P]q, (q ~ 1.5) (10) 

has been discovered for the tensile crack near the depinning threshold (see 
also [6]). 

3.1.2 Dislocation. 
The expression for the ~isl in the case of a FK model is more simple, and 

is characterized by a set of arbitrary elastic constants k j 

00 

~is/= L [PJ/(2m) + 0.5kjw;] 
j=l 

(11) 

to be defined from variational procedure. Trial Gibbs energy of a dislocation 
G~isl takes the form 

G!isl = G? + Uo[l - cos(21Txt/a)] exp[ -2tr2kBT j(a2k1)] 

+0.5Q[xT + kBT/k1]- Fx1 + 0.5kBTlnkl, (12) 

where x = Xf defines the dislocation-core location and k1 denotes effective 
stiffness. From the minimization conditions iJG~is/ak1 = 0 and aG~istfaxz = 0 
one finds both the dislocation depinning barrier height !J.G dist = G~/':x- G~i~in 
and the depinning threshold. 

For the most simple case Q = 0 (negligible interatomic stiffness) the depen
dence of a reduced force fc(r) is described parametrically as 

r = cos3 { exp(- cos2 {) ; f = sin { exp(- cos2 {) (13) 

by means of a non-dimensional parameter{ (0 ~ { ~ tr/2); herer = k8 T /(2Uo). 
Asymptotical expressions for the function fc(T) are as follows: fc(T) ~ I -
(ri13 , forT ~ 0, and fc(T) ~ [2rc(Tc- r)] 112, forT ~ Tc, where Tc = 
exp( -1) ~ 0.37 . 

For the case Q -:t 0 analytical results are not available; nevertheless the series 
of curves fc(T), obtained numerically for different values of a non-dimensional 
parameter y = Qa2 /(2tr2 Uo) is presented in Fig. 2. 

In the reduced units f = f/Jc(O,y), f = r/rc(O,y) all curves coincide in 
one universal dependence /(f) shown in Fig. 3. 
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Figure 2. Temperature dependence of a dislocation mobility threshold; 1- y = 0 ; 2- y = 0.05 ; 
3 -'Y = 0.1 ; 4 -'Y = 0.15 ; 5 - 'Y = 0.2 ; 6 -'Y = 0.25 ; 7 -'Y = 0.27 ; 

7 ' 
.. 
.. 
.. 

. .. 
Figure 3. Universal temperature dependence of a dislocation mobility threshold 

As regards barrier behaviour we find the following asymptotical expressions 
for flGaisl 

(14) 

4. DISCUSSION 
The results obtained above demonstrate several important features of both 

systems response to the effect of external force I temperature: 
i) the change of the Gibbs-free energy (GFE) profile at the depinning thresh

old, 
ii) the existence of the universal power exponent q = 1.5 (see Eq.(lO) for 

the crack case and Eq.(l4) for the dislocation case) governing force I 
temperature dependence of the depinning barrier. 
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Let discuss peculiarities of the GFE in more detail. To be specific, hereafter 
we refer to the crack problem mainly. 

As it was revealed earlier, below the depinning line (DL) (T < Tc(P)) the 
GFE G(P, T, u) as a function of the displacement u possesses two minima sep
arated by the barrier. On the contrary, above DL (T > Tc(P)) the barrier dis
appears, which ultimately drives the system from metastable state to a more 
stable one. Thus, the topography of the Gibbs-free energy G(P, T, u) in the 
temperature(force)- displacement space suffers a dramatic change, which, ac
cording to the Arnold-Thorn scheme [7], belongs to the fold-type catastrophe 
class. 

The universal behaviour of the Gibbs-free energy near DL determines quite 
nontrivial system response to both temperature and force. For example, Figs. 4 
and 5 demonstrate the behaviour of the mechanical "order parameter" defined 
as the width of the equilibrium displacement region D.u(T, P) = u+ - u_, which 
is constructed according to the conventional Maxwell suggestion, between the 
lowest u_ and the highest u+ equilibrium displacement of the nonlinear bond. 
Square-root scaling of D.u(T, P): 11u(T, P) oc [1 - T /Tc]0·5 (see Fig. 4), and 
D.u(T, P) oc [1 - P/ Pc]0·5 (see Fig. 5), revealed by means of data fitting near 
depinning threshold, suggests the validity of the Landau-type mean-field rela
tions. However, the differential compliance (DC) of the trapped crack, being 
second derivative of the GFE over force P, diverges near the depinning thresh
old (see Fig. 6): 

DC= I oD.u(T, P)/oP I oc [1- P/Pcr0·5 • (15) 

Similar behaviour, albeit with respect to temperature, demonstrates heat capac
ity cp: 

(16) 

The occurrence of a square-root singularity of both response functions ( 15) and 
(16), signifies extremely high system sensitivity to external force I temperature 
near the depinning threshold. Such a diverging susceptibility is a generical 
feature of the so-called structural transitions during which the system configu
ration suffers a dramatical change. Indeed, when P > Pc(T) (T > Tc(P)) crack 
jumps forward by one lattice unit in accordance with the analysis of Section 
2.1. The latter event represents an abrupt change of the crack length and, con
sequently, of the crack structure. Similar conclusions may be formulated with 
respect to the dislocation response characteristics near depinning threshold, as 
well. 

The reported above results demonstrate universal behavior of both the order 
parameters (equilibrium displacement, equilibrium entropy) and the response 
functions (such as heat capacity and differential compliance) of two apparently 
different systems (crack, dislocation) near depinning line. Employing standard 
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identification scheme effective in the equilibrium phase transition theory [8] 
one derives a nontrivial set of critical indices 

a = f3 = y = E = 0.5 ; b = 2, (17) 

which describes critical behaviour of an individual topological defect near de
pinning threshold. We expect that this set of critical indices is generical for a 
wide class of different physical systems, which are distinguished by the pres
ence of a definite process-initiation (depinning) threshold. Among the candi
date processes we could name, for example, the dislocation emission from the 
crack tip or the indentation dislocation emergence. 
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Abstract. Microscopic rotations can play a very important role in the molecular 
crystals or in some dielectric crystals where atoms are joined in comparatively rigid 
clusters and the inter-cluster interactions are comparatively weak. The range of 
unusual phenomena observed in such materials is fascinating, from incommensurate 
phase to negative Poisson ratio. Here we focus on the topological soliton dynamics 
in such materials and describe a number of effects, such as the trigger off and 
propagation of autowaves, soliton multiplication in the metastable media, soliton 
collisions and annihilations. All these phenomena are addressed in frame of the 
elastically hinged mo lecule (EHM) model having microscopic particles with 
rotational degrees of freedom. For this model we construct various continuum 
approximations. New important features of the continuum models for media with 
microscopic rotations are the increase in number of equations of motion due to the 
increase in number of degrees of freedom and the appearance of the higher gradient 
terms in the resulting equations. We also construct the trulti-field continuum 
approximation capable of description not only long but also short waves. 

Keywords. Finite size particles, microscopic rotations, discrete model, continuum 
model, topological solitons. 

1. INTRODUCTION 

The present paper is concerned with a class of crystalline materials for which, 
in many practical problems, the constituting microscopic units (atomic 
clusters) cannot be reduced to point-wise particles, e.g., molecular crystals, 
liquid crystals, some dielectric crystals like silica polymorphs (Si02), etc. In 
the simplest modek for such crystals, the rigid finite size microscopic 
particles have not only translational but also rotational degrees of freedom 
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and they interact via central forces and torques. We focus on the peculiarities 
of topological soliton dynamics in such materials. 

First successful attempt to describe some basic properties of a dislocation 
in frame of 10 model has been done by Frenkel and Kontorova (see the 
review [1]). Their model describes a chain of point-wise particles elastically 
coupled to their neighbours and subjected to a periodic on-site potential. In 
the continuum limit, the Frenkel-Kontorova model reduces to the exactly 
integrable sine-Gordon equation for which the exact solutions of the form of 
topological solitons (kinks) and dynamical solitons (breathers) are known. It 
is true that some important effects, e.g., Peierls-Nabarro potential, excitation 
of soliton internal modes, energy exchange in soliton collisions, and radiation 
are lost in the continuum approximation, but the exact solutions give a very 
useful hint to the dislocation dynamics in the discrete model [ 1]. There exist 
a number of similar discrete modek, the one closely related to the present 
discussion is the discrete <p4 model with the next-nearest interaction, which 
can also be presented in the form of the OIFFOUR model [2]. The second
neighbour bonding gives rise to the high-order gradient terms in the 
continuum analogue of this model. These terms are introduced in the 
phenomenological gradient elasticity which brings the singularity-free 
dislocation solutions [3]. To study the soliton dynamics in crystals with finite 
size particles, the elastically hinged molecule (EliM) model has been 
proposed by the present authors f:l,S]. In its simplest 10 version, he EHM 
model was shown to be mathematically identical to the <p4 model with the 
next-nearest interaction and thus, to the OIFFOUR model In continuum 
approximations constructed for the EHM model the higher gradient terms 
also appear though the physical meaning of these terms is different. It 
appears that the EHM model is closely related to the Cosserat-type 
generalized continua. 

The 10 discrete model we consider here has been extensively studied by 
Slot and Janssen [2], Hlinka, Orihara, and Ishibashi [6], and others (see our 
recent review [7]). In these works, the constant amplitude approximation 
(CAA) has been employed to obtain the solitary wave solutions propagating 
in different commensurate periodic phases. Later we have demonstrated the 
importance of the so-called multi-field approximations [8,9] in constructing 
the soliton solutions [5,10]. 

The goal of this paper is to demonstrate that the media with microscopic 
rotations, simulated here by the EHM model, shows a number of new 
interesting effects in soliton dynamics. 

In Section 2, the 10 EHM model is described and then, the properties of 
the topological solitons and the autowave dynamics are discussed in Sec. 3. 
Section 4 concludes the paper. 

2. EHM MODEL OF CRYSTAL 

The 10 EHMmodel (see Fig. 1) has the following equations of motion [4] 



u. +F(u._2 -4u._1 +6u. -4u.+1 +u.+2) 

+ P(u._1 - 2u. + u.+1) + u. +u; = 0. 

n-2 n-1 n n+1 n+2 
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(1) 

Fig. 1. One-dimensional EHM model Rigid particles of unit length and unit mass 
are connected in a chain by the elastic hinges with the elastic constant F and 
subjected to the compressive force P. The fourth-order polynomial background 
potential is shown by the vertical nonlinear springs. u. is the transversal 
displacement of nth hinge. 

F 

Trivial solution 

I 
I 

I ---- _..,_..,. , , 
I , , 

,' Four-periodi 
~ solution 

p 

Figure 2. Phase diagram of EHM model in the vicinity of the point (P,F)=( I, 1/4) 
(schematic). To the left of curve 1 (4F>r) the trivial solution is stable. To the right 
of curve 2 defined by Eq. (3) the four-periodic solution is stable. 

The model describes a chain of rigid particles of unit length and unit mass 
connected to each other by the elastic linges with the elastic constant F and 
subjected to the compressive force P, acting along the chain. Hinges are in 
the fourth-order polynomial background potential. Each hinge has one degree 
of freedom, transversal displacement u11 , assuming that u,<<l. The role of 
the elastic hinges is to keep the chain as a straight line because, if the 
angle between axis of two neighboring molecules is nor zero, the hinge 
produces a moment which tends to decrease the angle. On the other 
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hand, the external force P plays a ~structive role. The competition 
between F and P gives rise to modulational instability in the model. 
The background potential is to simulate the interaction of the 
considered molecule chain with the rest part of the crystal. 

(a)----------
(b) 

(c) 

Figure 3. Transformation of the structure upon increase of P at a constant F close to 
114. (a) External force Pis small and the trivial solution is stable. (b) Modulational 
instability with the wave vector close to 1/4. Amplitude of the modulation wave (one 
period is shown) increases with increase in P. (c) For a large P, the periodic set of 
topological solitons separating the domains of four-periodic structure is formed. 

Equation (1) supports various modulated structures [10). Here, for the 
sake of illustration, we discuss the topological solitons in the four-periodic 
structure, 

un =Acos[n(n+m)l2+nl4], A=.J4P-8F-2, (2) 
where m={O,l,2,3}. 
The four-periodic solution Eq. (2) is stable when 

144F 2 + 3P2 -72FP+ 24F < 0. (3) 
Phase diagram of the EHM model is schematically shown in Fig. 2. To 

the left of curve 1 (4F>P'-) the trivial solution is stable. To the right of curve 
2, defined by Eq. (3), the four-periodic solution is stable. The curve 1 is 
tangent to the curve 2 at the point (P,F)=(1, 1/4). If one starts from the region 
of stability of the trivial solution and moves along a line F=const to the right 
then the structural transformations presented in Fig. 3 will be observed. If F 
is exactly equal to 1/4, the trivial solution will be transformed into the fwr
periodic one as the result of modulational instability. In a general situation, 
when F is close but not equal to 1/4 (dashed arrows in Fig. 2), the modulated 
phase with the wave-vector k-114 will be formed upon crossing curve 1 (see 
Fig. 3b) since there is a gap between stability regions of the trivial and four
periodic solutions. The amplitude of the modulated structure increases with 
increase in P and, upon crossing curve 2, the domains of the four-periodic 
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structure separated by the spatially localized topological solitons appear (Fig. 
3c ). The larger is P the narrower are the solitons. The chain of structural 
transformations presented in Fig. 3 simulates the phase transition into 
incommensurate phase [2,4,5,10]. 

3. TOPOLOGICAL SOLITONS IN EHM MODEL 

With the help of CAA, the problem of the modulated four-periodic structure 
can be reduced to the sine-Gorgon equation with respect to the slowly 
changing phase [10]. Then the soliton depicted in Fig. 3c can be expressed in 
the following form 

u,(t) =A cos{~ (n +m) +: + arctanexp [S(n -x0 - ct)]}. (4) 

where m={0,1,2,3}, cis the velocity of the soliton, and the inverse width is 

A s =+ (5) 
-J4F -c2 

Note that S can be positive or negative. Positive S corresponds to an extended 
soliton (kink) and negative S to a compressed one (antikink). Kink is 
obtained by introducing one extra node (hinge) in the ideal four-periodic 
structure while antikink by removal of a node. Integer parameter m specifies 
the choice of a node to add/remove from a period 

Potential energy of the soliton is 

A4 A2 
U=±-±[n(4F-P)+2FS]-. (6) 

8S 4 
From Eq. (4) it is clear that the soliton solution is just a phase kink. An 
unusual point is that the potential energy of the soliton can be positive or 
negative depending on P, F, and on the sign of S. This is the consequence of 
the fact that the four-periodic structure carrying the soliton can be metastable. 
Negative energy soliton can be regarded as a nucleus of a lower energy 
structure in the four-periodic structure. This point is important for the 
discussion in below. 

There exists an alternative approach to describe the soliton in the four-

periodic Structure. Introducing VII = U4 11 = ~4n+2 and W 11 = U4n+l = -U4n+3' 

the following equations of motion for the two nearest hinges can be derived 
from Eq. (1) 

il, -F(v,_2 -4w,_1 -6v, +4wn+l +v,+2 ) 

-P(w,_1 +2v, -w,+1)+v, +v! =0, 

w, -F(w,_2 +4v,_1 -6w, -4vn+l +w,.+2 ) 

+ P(v,_1 -2w, -v,+1 )+ w, + w! = 0. 

(7) 

(8) 
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If Vn and Wn vary slowly with n, one can consider the two unknown fields, 
v(x,t), w(x,t), and write the following muhi-field continuum approximation 

3V11 +(P-4F)w= -12Fv.a +6(P-4F)wx 

+ 3(1-2P+ 4F)v+ 3v3 = 0, 
(9) 

3w - (P- 4F)v -12Fw - 6(P- 4F)v tt .O:X .\X X 

+3(1-2P+4F)w+3w3 =0. 
(10) 

If the terms v= and w= are neglected in Eq. (9) and Eq. (10) then the 
following multi-field soliton solution can be derived [5] 

A s 2[s J u4n =± J2- AJ2(P-4F)cosh- 2 (n+x0 -ct), 

U 4n+l =~tanh[~ (n + X 0 -ct) J (11) 

u4n+2 = -u4n ' u4n+3 = -u4n+l • 

There exist eight different solitons. To describe the four kinks, it is necessary 
to choose sign ( +) in the first line of Eq. ( 11) and to shift the indices by unity 
sequentially. Four antikinks correspond to sing(-). In the solution Eq. (4) and 
Eq. (5), a particular soliton is chosen by m and particular sign of S. 

~D 
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,,.. .. '::. I • 6 t6o I z6o I 36o 46o 0 100 200 300 400 
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Figure 4. Collision of solitons moving in the same (a) and different (b) sublattices. 
Since P=4F, odd nodes do not interact with even nodes. In (a), colliding solitons can 
annihilate in principle but in (b) they cannot. 

One can see that, compared to the sine-Gordon kinks, the topological 
solitons in systems supporting periodic structures show a greater variety. 

Different '(I"Operties of the solitons become very clear in their collisions. 
In Fig. 4, for example, we compare collisions between solitons moving in the 
same (a) and different (b) sublattices. In this and in the following figures, 
nodes with numbers 4'1 and 4'1+2 are connected by thin and thick solid lines 
while nodes 4'1+ 1 and 41+3 by thin and thick dashed lines, respectively. We 
set F=0.251 and P=4F. Note that at P=4F, Eqs. (7), (8) and consequently 
Eqs. (9), (10) become independent, that is odd and even hinges move 
independently. In Fig. 4a, collision is similar to the kink-antikink collision in 
sine-Gordon equation, but in Fig. 4b, solitons pass through each other even 
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without phase shift. If P? 4F then some interaction between solitons mowing 
in different sublattices appears but still there is a qualitative difference 
compared to the case of solitons moving in the same sublattices because in 
the former case solitons cannot annihilate in principe but in the latter case 
they can. 

In Fig. 5 we show how the shape of compressed soliton (antikink) 
changes if one moves along the line P=2F+0.502, schematically shown by 
the dashed line AB in Fig. 2. In (a), parameters P and Fare chosen to be 
close to the point B, in (b) P=4F, i.e., somewhere in the middle between 
points A and B, and in (c), they are close to the point A. One can see that 
the shape of the soliton changes from the convex to the concave. For the 
extended solitons (kink) the evolution of the shape is opposite, i.e., near the 
point B it is concave and near the point A convex. It is worth noting that 
CAA solution Eq. (4) cannot reproduce the concave shape of the soliton and 
in this case the multi-field solution Eq. (11) gives a much better resuh [10]. 
The terms v= and w= in Eqs. (9), (10) were neglected in deriving the soliton 
profile Eq. (11), but they become important for convex solitons. 

4n+3 
- ~-

F=0.296 4n >·:-4n+2 (a) . ... .. .... 
4n+l 

F=0.251 -- ... :-::.c.-:·-----... ... .... (b) 

F=0.238 ~ ....,.:'..:..... (c) 

0 100 200 
n 

Figure 5. Displacements of hinges near compressive soliton (antikink) at different 
points of the dashed line AB, P=2F+0.502, shown in Fig. 2. (a) Structure close to the 
point B, (b)structure at P=4F, i.e., somewhere in the middle between points A and B, 
and (c) structure close to the point A. 

Note that we cannot approach the points A and B very closely because 
the carrying four-periodic phase itself becomes unstable at these points. The 
solitons play a role of imperfections and their instability takes place before 
the collapse of the ideal four-periodic structure. 

In Fig. 6 and Fig. 7, we present the transformation of unstable concave 
and convex solitons respectively. The results were obtained by numerical 
integration of Eq. ( 1) with the initial conditions specified from Eq. ( 11 ). We 
also introduced a viscosity term to damp the radiation emitted in course of 
structure transformations. Parameters here are chosen in a way that the four
periodic structure is still stable but the solitons are not. 
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Figure 6. Transformation of an unstable concave soliton in to three stable convex 
solitons. 
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Figure 7. Toy model for the martensitic transformation. An unstable convex soliton 
triggers off a pair of autowaves propagating in opposite directions and transforming 
the metastable four-periodic structure into a lower energy structure. 

The concave soliton in Fig. 6 transforms into three convex mutually 
repulsive solitons. Even more interesting is the structural transformation due 
to the instability of a convex soliton in Fig. 7. Here energy of the soliton is 
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negative which means that the four-periodic structure is metastable and a 
soliton plays a role of nucleus of a lower energy phase. When soliton 
becomes unstable, it triggers off a pair of autowaves propagating in opposite 
directions and transforming the metastable four-periodic structure into a 
lower energy structure. The autowaves move with a constant velocity in the 
presence of the viscosity term and the driving force for the motion is the 
energy released in transformation of the four-period structure into a lower 
energy structure. This model can be used as a toy model for the martensitic 
transformation. 

4. DISCUSSION AND CONCLUSIONS 

In this paper, the peculiarities of structure and dynamics of topological 
solitons in crystalline media with microscopic particles having rotational 
degrees of freedom were discussed in frame of the one-dimensional EHM 
model. 

Finite size particles with rotational degrees of freedom may favour the 
appearance of modulated structures and the latter may support a ~ety of 
topological defects with a rich phenomenology. Our simple analysis has 
revealed the following new effects. 
- In the four-periodic structure, the topological solitons may propagate in the 

same sublattice or in different sublattices. In the former atse they can 
annihilate when colliding while in the letter case they cannot annihilate in 
principle. 

- There exists a line in the space of model parameters, P=4F, where the 
crystal splits into two embedded sub-crystals with no interaction between 
them. Any dynamics of one of the sub-crystal has no effect on the other 
one. 

- An unstable soliton with positive energy (convex soliton in our example) 
can generate a few stable solitons with opposite topological charge. 

- An unstable soliton with negative energy (concave soliton in our example) 
can initiate a dynamic structural transformation by means of propagating 
autowaves. This transformation simulates the martensitic phase transition. 

- The EHM model reproduces incommensurate structural transformations. 
Continuum analogues for the model with rotational degrees of freedom 

contain the high gradient terms due to the existence of extra degrees of 
freedom. Similar terms are introduced in the phenomenological gradient 
theories or they can appear under the assumption of non-locality. 

For the sake of brevity and simplicity, here we restricted ourselves to the 
one-dimensional problem and only to the four-periodic structure. Treatment 
of the tw~dimensional variants of the EHM model can be fuund in [11,12]. 
The CAA soliton solutions for various modulated structures have been given 
in [10,13]. Propagation of autowaves in tw~ and three-periodic structures 
has also been simulated [5,14]. 
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Dependence of Ductile and Brittle Response on Initial 
Energy Dissipation Mechanism at Crack Tip 
From the Atomic Scale to the Mesoscale 

Jeffrey W. Kysar 
Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA 

Abstract: The criteria which determire the initial energy dissipation mechanism that is 
activated at or rear a crack tip are derived. The possible mechanisms considered 
are cleavage, crack tip dislocation nucleation and also Frank-Read source 
activation near the tip. The criteria can be succinctly expressed in graphical form. 
It is suggested that a change in the initial erergy dissipation mechanism may 
determine the conditions under which the brittle to ductile transition occurs. The 
criteria compare favourably to several experiments in the literature which address 
the competition between the various energy dissipation mechanisms. 

Keywords: Fracture, dislocation, crack tip dislocation nucleation, Frank-Read dislocation 
source, ductile to brittle transition 

1. INTRODUCTION 

The brittle to ductile transition of a crystalline material that contains a 
crack is typically defined as an abrupt change in the overall capacity of the 
material to dissipate energy by means of irreversible deformation processes. 
It is thought that the transition is triggered by a change, at or near the crack 
tip, from one type of irreversible deformation mechanism to another. 
Traditionally two distinct competitions between deformation mechanisms 
have been considered in an attempt to explain the brittle to ductile transition. 
One approach invokes the competition between dislocation nucleation from 
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a crack tip and cleavage failure. The second approach assumes that the 
mobility of dislocations plays the key role, which sets up a competition 
between cleavage failure and plastic deformation due to pre-existing 
dislocations in the material near a crack tip. 

A recent analysis (Kysar, 2003) has reconciled the two approaches by 
considering the energetic competitions among the following three energy 
dissipation mechanisms: cleavage, dislocation nucleation from a crack tip, 
and dislocation nucleation from a Frank-Read source near a crack tip (which 
requires dislocation mobility). The result of the analysis is a set of three 
criteria involving dimensionless parameters which determine whether 
cleavage, crack tip dislocation nucleation or Frank-Read dislocation 
nucleation is the initial energy dissipation mechanism that is activated at or 
near a crack tip upon the commencement loading. Thus, the brittle-ductile 
behaviour of a material can be grouped into three classifications. If 
dislocation nucleation from a Frank-Read source is predicted to occur at a 
lower load level than either cleavage or crack tip dislocation, the material is 
said to possess extrinsic ductility. The condition for this to occur is stated 

succinctly in the form of two ranges of the dimensionless parameter bp~~~ 

(where b is the Burgers vector and pdi•t is the dislocation density). One of 
the ranges addresses the condition for which Frank-Read dislocation 
nucleation is predicted to occur prior to cleavage failure, and the other range 
addresses the condition for which Frank-Read dislocation nucleation is 

predicted to occur prior to crack tip dislocation nucleation. If bp~;1 is 
smaller than the upper bound of each range, Frank-Read dislocation 
nucleation is expected to occur at a lower load level than either cleavage or 
crack tip dislocation nucleation. If bp~;1 exceeds the lower bound of each 
range, the pre-existing dislocation that comprises the Frank-Read source is 
ensured to be mobile, which is a necessary condition for Frank-Read 
dislocation nucleation. The Peierls stress, T P, which is the minimum stress 

necessary to move a dislocation through an otherwise perfect crystal lattice 
at absolute zero plays an important role in establishing the lower bound. 

Thus a material for which bp~;1 lies within both ranges is predicted to 
exhibit extrinsic ductility, irrespective of the competition between cleavage 
and crack tip dislocation nucleation. 

If the material does not possess extrinsic ductility, the competition 
between cleavage and crack tip dislocation nucleation must be addressed. 
This has been the subject of many studies, most notably by Rice and 
Thomson (1974) and Rice (1992) in which the dimensionless quantity 
Ys/ f.Lb, or similarly, r./Yus, is used to predict which of the two mechanisms 
occurs at a lower load level ( Ys is surface free energy, IL is elastic shear 



modulus, and Yus is unstable stacking energy). If cleavage occurs at a lower 
load level than crack tip dislocation nucleation, the material is said to 
possess intrinsic brittleness. If crack tip dislocation nucleation occurs prior to 
cleavage, the material is intrinsically ductile. 

The conditions for extrinsic ductility in Kysar (2003) assume that a 
Frank-Read (FR) dislocation source exists in a crystalline material a 
characteristic distance away from a crack tip. The derivation equates the 
Peach-Koehler (PK) force on the pre-existing dislocation of the Frank-Read 
source with the PK force necessary to activate the source. As in Rice and 
Thomson (1974), the PK force on the pre-existing dislocation includes 
contributions from the crack tip stress field as well as the image force due to 
the presence of the free surface. The PK force necessary to activate the FR 
source is determined by the increase in dislocation line energy as the pre
existing dislocation bows out past its impediments (e.g. McClintock and 
Argon, 1966). The result of equating the two forces is an estimate of the 
crack tip loading at which FR sources are expected to be activated. This 
crack tip loading can then be compared against the crack tip loading required 
for cleavage and also for crack tip dislocation nucleation. Lattice friction is 
accounted for by requiring that the PK force on the pre-existing dislocation 
be larger than the Peierls stress, which ensures that the dislocation is mobile. 

Strictly speaking, this method of formulating the problem is valid only 
when the lattice friction contribution is either much less or much greater than 
the contribution due to the increase in elastic line energy of the pre-existing 
dislocation (this statement will be defined more precisely in what follows). 
When this condition does not hold, it is necessary to sum the two 
contributions in order to determine the critical PK force at which the source 
is expected to be activated. 

In the present paper, the analysis to estimate the crack tip loading at 
which FR dislocation source activation near a crack tip occurs is modified to 
account for the case where the contributions from Peierls stress and increase 
of elastic line energy are approximately equal. The resulting predictions are 
amenable to graphical representation, which in the appropriate limits reduces 

to the aforementioned ranges of the dimensionless parameter bp~;1 • 

2. ENERGETIC COMPETITIONS 

The goal of what follows is to determine the initial energy dissipation 
mechanism activated at or near a crack tip upon the commencement of 
mechanical loading. The energy dissipation mechanisms considered are: 
cleavage, crack tip dislocation nucleation, as well as dislocation nucleation 
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from a Frank-Read source near a crack tip. The strategy to deduce the 
criteria is to determine the applied energy release rate at which the three 
energy dissipation mechanisms are activated. Then the competition between 
any two of the energy dissipation mechanisms can be expressed in terms of 
the dimensionless ratio of the respective critical energy release rates. 

2.1 Energy Dissipation Mechanisms 

The fracture criterion most commonly used for materials in which a 
significant amount of plastic deformation occurs is G = 2y, + rP, where G 

is the applied energy release rate available to effect fracture, r, is the free 

energy of the newly created surface, and rP is the energy dissipated through 

various irreversible processes in the near crack tip region. The magnitude of 
rP often exceeds r, by orders of magnitude, nevertheless it is known that 

rp = yp(Ys), so the energetic contribution of the newly created surfaces can 

not be neglected. 
We consider in a dimensional analysis the effect that other variables have 

on rP . It is assumed that an atomically sharp crack exists in an elastic-

plastic material within which plastic deformation occurs via the motion and 
creations of dislocations on discrete slip planes and in discrete directions at a 
critical resolved shear stress. In addition to Ys , other important variables 
include: f.J the elastic shear modulus, /J.;j the so-called Schmid factor that 

contains information about orientations of the plastic slip systems relative to 
the crack tip, and O"max , the maximum theoretical tensile stress that the 
material can support in the absence of any defect. Yield stress, O"Y, is also a 

critical parameter. However since O"Y is a phenomenological and ill-defined 

quantity, we instead appeal to the physics-based variables which determine 
yield stress: b the Burgers vector, pdisl the density of mobile dislocations, 
and TP the Peierls stress. Performing a straightforward dimensional analysis 

yields 

(1) 

The physical significance of each of these terms is discussed in Kysar 
(2003 ). It should be noted that the unstable stacking energy, Yus , introduced 
by Rice (1992) scales as ph , so that the dimensionless parameter r, /ph in 



Eq.(l) can be expressed equivalently as Ys!Yus. Given the nature of 
dimensional analysis, it is expected that the criteria for the various energy 
dissipation mechanisms will consist of only these dimensionless parameters. 

2.2 ENERGY RELEASE RATE FOR FRANK-READ 
DISLOCATION NUCLEATION 

The applied crack tip energy release rate to activate the Frank-Read (FR) 
sources nearest the tip is now derived. The derivation is elementary and 
necessarily approximate, but nevertheless suffices to obtain, at least, an order 
of magnitude estimate of the critical applied load. It is well-known that the 
resolved shear stress necessary to activate a FR dislocation source, 'r FR, 

scales as r FR = apb/ L, where L is considered to be the mean distance 

between impediments to motion of the pre-existing dislocation and a is a 
dimensionless constant with magnitude I/ 4 <a< I 0, depending upon the 

density of pre-existing dislocations (see Beltz, et a/., 1996, for a succinct 
discussion of appropriate choice of a). In pure single crystals, the distance 

between impediments scales as L ==Pi;~/, which corresponds to the mean 

distance between dislocations. Thus, r FR = apbp~;1 , which is dimensionally 

consistent with the overall macroscopic yield stress of face-centred cubic 
single crystals (Taylor, 1934). This expression accounts only for the 
contribution of elastic energy due to increase in dislocation line length as the 
dislocation bows past the impediments, which is appropriate for materials 
with a very small Peierls stress, r P. However for classes of materials for 

which the Peierls stress is not sufficiently small, the effect of the Peierls 
stress must be taken into account. Under such conditions, it is appropriate to 
express the critical resolved shear stress for FR source activation as the sum 
of the contributions from both the increase in dislocation line length as well 
as the Peierls stress, which yields 

(2) 

It is not possible to define a priori the precise position ofFR sources near 
the crack tip. Nevertheless, it is well-accepted that the distance between 

dislocations, and hence between FR dislocation sources, scales as Pi;~/. 
Therefore we assume that a FR dislocation source exists at a radial distance 

r == p;J;~12 from a crack tip. The source consists of a pre-existing edge 
dislocation that spans two impediments and is parallel to the crack front. The 
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spacing between the two impediments also scales as L ""Pi;%2 • We assume 
the material to be fully annealed so that the Burgers vectors of all other 
surrounding pre-existing dislocations do not have any preferred orientation. 
Thus the net stress due to all other surroWtding dislocations at any particular 
position is, on average, zero. Likewise the net image stress on a dislocation 
at any particular position due to all surrounding dislocations is, on average, 
zero. 

Therefore the dislocation of the FR source interacts only with the stress 
field of the crack tip and with its own image force. The interactions can be 
quantified in terms of the Peach-Koehler (PK) force, f , defined as f = 1h, 

where r is the resolved shear stress on the dislocation slip plane in the 
direction parallel to the Burgers vector. The FR source is activated once the 
sum of the PK forces from the crack tip and image force equals the force 
necessary to overcome T FRb from Eq.(2). Finally for simplicity we assume 
that the dislocation exists on a slip plane which intersects the crack tip (this 
assumption is not necessary, and does not affect the order of magnitude of 
the result). Rice and Thomson (1974) discussed the PK forces on a 
dislocation due to a crack tip and its image force under the same conditions 
assumed here. Setting the sum of the PK force from the crack tip and from 
the image force equal to r FRb yields 

Kib ,s.2 ,,~,2 
f'U _""'f'U_ + 't' b 

&- 4a(l-v)r L P 
(3) 

where K 1 is the Mode-l stress intensity factor, v is Poisson's ratio and r is 

the radial position of the dislocation relative to the crack tip. The first term 
on the left side ofEq.(3) is from the singular stress field of the crack tip and 
the second term represents the image force. It should be noted that the 
trigonometric functions normally associated with the crack tip term are 
approximated as unity, which does not affect the order of magnitude of the 

result. Substituting r ""Pi;~2 and L ""Pi;~2 and solving for K1 yields 

(4) 

where K{R is the order of magnitude of the applied energy release rate in 
pure Mode I at which the FR source is expected to be activated, and 

a* = .JS,i{a + 1/[4a(l- v )]}. The term containing v in ak is due to the 
image force term and will be about an order of magnitude smaller than a, 



which indicates that the image force plays a minor role in determining the 
activation criterion for the FR sources. Nevertheless, its contribution is 
maintained in what follows for completeness. 

It is straightforward to express the condition for FR source activation 
near a crack tip in terms of applied energy release rate, G, through Irwin's 

relationship, G = (1- v )KJ /2J.L, to yield 

G = {1- v )aJ 11J.2 112 [l J8i ('"P )(-1 Jl2 
FR 2 f<U PdJS/ + b 1/2 

ak f1 Pdisl 
(5) 

It is now possible to state with precision the conditions under which 

K{R and G FR are dominated by either elastic line energy effects or by 
Peierls stress. A cursory glance at Eq.(4) and Eq.(5) shows that the FR 
activation criterion is dominated by elastic line energy effects if 

r PI f1 « bp~;, . On the other hand, if r PI f1 » bp~;, , the activation 

criterion is dominated by the Peierls stress. It will become evident that the 
interplay between rP I f1 and bpdisl plays a major role in determining the 

transition from one energy dissipation mechanism to another. 

2.3 COMPETITIONS TO DETERMINE INITIAL 
ENERGY DISSIPATION MECHANISM 

Now that we have obtained a quantitative criterion for the activation of 
the FR sources nearest a crack tip, we can address the competition between 
FR source activation and both cleavage and crack tip dislocation nucleation. 
The competitions will be expressed in terms of various ratios of the 
activation criteria of the three energy dissipation mechanisms under 
consideration. To that end, it is known that, GCL, the applied energy release 

rate at which cleavage occurs is GeL =2r,. Similarly, Rice (1992) showed 
that the applied energy release rate at which crack tip dislocation nucleation, 
Gcr, occurs is Gcr = flrus, where fJ is a dimensionless constant which 
contains the crystallographic details of the slip system of an incipient 
dislocation relative to the orientation of the crack in the crystal, and is thus 
related to f.Lij • 

If the condition GFR /Gcr <I holds, energy dissipation via FR source 
activation is expected to occur at a lower applied load level than that 
necessary for crack tip dislocation nucleation. From Eq.(5), this can be 
expressed as 
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Likewise, if the condition GFR/GCL < l holds, energy dissipation via FR 
source activation is expected to occur at a lower applied load level than that 
necessary for cleavage, which can be expressed as 

It is evident that if both Eq.(6) and Eq.(7) are satisfied, FR sources are 
expected to be activated prior to both cleavage and crack tip dislocation 
nucleation, irrespective of the competition between cleavage and crack tip 
dislocation nucleation. It should be emphasized that GFR is an order of 
magnitude approximation, however as discussed in Kysar (2003), this type 
of approximate criterion will often suffice to successfully predict the 
outcome of the energetic competitions. 

3. DISCUSSION 

The criteria for extrinsic ductility are amenable to graphical 
interpretation. There are only three dimensionless parameters in Eq.(6) and 

Eq.(7): Ys/J.ih, bp~;1 and '<p/11· Two ofthese, bp~;1 and rpj/1, range 

over many orders of magnitude as materials and deformation states vary. 
The other variable, Ys /ph , changes by about one order of magnitude, at 
most, among different classes of materials. This suggests that it is 
advantageous to plot Eq.(6) and Eq.(7) in bpdist vs. '<p lp space. 

The two criteria are plotted in Fig.(l) as heavy lines. Since Eq.(6) and 
Eq.(7) are identical algebraic forms, both lines share the same general 
features. For the sake of argument, we can assign the solid heavy line to 
represent the competition between FR source activation and crack tip 
dislocation nucleation, GFR /Gcr < l, embodied in Eq.(6). The dashed heavy 
line then represents the competition between FR source activation and 
cleavage, GFR /GCL < 1, in Eq.(7). 

We now consider the properties of the heavy lines. If the values of bp~;1 
and r P /11 for a particular material lie below the dashed line, the inequality 

in Eq.(7) is satisfied so that FR source activation occurs prior to cleavage. In 



addition, since the dashed line itself is below the solid line, the inequality in 
Eq.(6) is also satisfied, so that FR source activation also occurs before crack 
tip dislocation nucleation. Therefore, FR source activation is expected to be 
the initial energy dissipation mechanism, rendering the material extrinsically 
ductile (Kysar, 2003). 

On the other hand, what happens when the values of bp~;, and rPI J.L for 

a particular material lie between the dashed line and the solid line? In that 
case, we would expect cleavage to occur prior to FR source activation, yet 
FR source activation would be expected to occur prior to crack tip 
dislocation nucleation. Therefore, cleavage would unambiguously be 
expected as the initial energy dissipation mechanism at or near the crack tip, 
so that the material would be intrinsically brittle. 

Finally, what is predicted when the values of bp~;, and r PI J.L for a 

particular material lie above both the dashed line and also the solid line? 
Under those conditions, crack tip dislocation nucleation as well as cleavage 
would be expected to occur prior to FR source action. Thus the energetic 
competition reduces to that between crack tip dislocation and cleavage, 
GCL/Gcr, which can be expressed by taking the ratio ofEq.(6) to Eq.(7) to 
yield the condition for an intrinsically brittle material (Rice, 1992) 

(8) 

It is readily observed that this condition holds if the dashed line in Fig.(l) 
lies below the solid line. Such a material, too, is predicted to be intrinsically 
brittle. 

To summarize, if the combination of bp~;, and rPI J.L lies below the 

dashed line, the material is predicted to be extrinsically ductile. If it lies 
anywhere above the dashed line, the material is predicted to be intrinsically 
brittle. This naturally suggests a transition in overall brittleness and ductility, 

which would be triggered as bp~;, and r PI J.L for a given material cross 

over the dashed line,. 
We now consider the case in which the dashed line of Fig.(l) would lie 

above the solid line. This would occur whenever the inequality in Eq.(8) is 

reversed. If the combination of bpy;, and r PI J.L for a material would lie 

below the solid (and interior) line, the material would again be extrinsically 
ductile. If it would lie anywhere above the solid (and interior) line, the 
material would be intrinsically ductile. 
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The heavy lines in Fig.( I) have two asymptotes each. It can be shown that 
that the left asymptote of each curve corresponds to the lower limit of the 

respective range of the variable bp~;1 in the criteria for extrinsic ductility by 

Kysar (2003), which can be derived by assuming that 'f PIp» bp~;1 in 

each ofEq.(6) and Eq.(7). Likewise, the right asymptote corresponds to the 

respective upper range of the variable bp~;1 , which is strictly valid for 

T PIp« bp~;1 . Therefore, the extrinsic ductility criteria of Kysar (2003) 

are represented by the thin dashed and thin solid asymptotes in Fig. (I), 
which have an identical graphical interpretation as the more general criteria 
presented herein. As one would expect, the two sets of criteria agree quite 

closely except for the case where T P j p and bp~;1 are approximately equal. 
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Figure I: Initial Energy Dissipation Mechanism Map 

The theory predicts the conditions under which a transition in initial 
energy dissipation mechanism occurs. It is suggested that this transition 
serves as a trigger for the overall ductile to brittle transition. Experiments by 
Michot and Loyola de Oliveira (2001), Argon and Gaily (2001), Gurnbsch, 



et a/. ( 1998), as well as Qiao and Argon (2003) quantify the transitions 
between the three energy dissipation mechanisms in materials such as Si, W, 
and Fe-3wt.%Si. A common theme among the experiments is that cleavage 
is the initial energy dissipation mechanism at low temperatures. However as 
the temperature increases, a transition to crack tip dislocation nucleation 
occurs accompanied by a moderate increase in the overall fracture 
toughness. Eventually at an even higher temperature, dislocation motion 
away from the crack tip is reported, which signals the transition to FR source 
activation as the energy dissipation mechanism. This transition is 
accompanied by a very significant increase in fracture toughness. 

The progression in the transition of energy dissipation mechanisms can be 
explained qualitatively by the criteria derived herein. The initial transition, 
from intrinsic brittle to intrinsic ductile behaviour, is governed (Rice, 1992) 
by the relationship in Eq.(8). This transition is sensitive to temperature 
because of thermal activation of crack tip dislocation nucleation. The 
subsequent transition to FR source activation occurs as the temperature 
increases further, which causes the effective Peierls stress to decrease. Once 
it reaches a critical level defined by Eq.(6) and Eq.(7), the transition to FR 
source activation occurs, which is known experimentally to lead to a 
dramatic increase of fracture toughness. 

The elementary model used to derive the criteria has many deficiencies 
and there is much room for its improvement. However it is worthwhile to 
keep in mind that the model is intended to address only the transitions in 
energy dissipation mechanisms which apparently act as a trigger for the 
overall ductile to brittle transition. The detailed behaviour of the material 
once the transitions occur can not be predicted by the present model, and 
should be topic of future research. 

4. CONCLUSIONS 

The competitions between various energy dissipation mechanisms at or 
near a crack tip are considered. A set of criteria is derived which predicts the 
conditions under which Frank-Read sources near a crack tip are the initial 
energy dissipation mechanism. Such a material is said to be extrinsically 
ductile. If the criteria are not satisfied, the material is either intrinsically 
brittle or intrinsically ductile. The various criteria are amenable' to 
straightforward graphical interpretation. Comparison with experiment 
suggests that this set of criteria can be used to address the conditions which 
determine the transition from a ductile to a brittle behaviour. 
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A COHESIVE ZONE MODEL AND 
INTERFACIAL CRACK PROBLEMS 

Kikuo KISHIMOTO and Masaki OMIY A 
Department of Mechanical and Intelligent Systems Engineering, Tokyo Institute oj 
Technology, 2-12-1, 0-okayama, Meguro-ku, Tokyo 152-8552, Japan 

Abstract: Based on the internal variable theory of thermodynamics, a continuum 
interface constitutive model relating the interface traction with interface 
separation is developed. The interface damage variable is introduced, and the 
evaluation equation is derived to characterize the degradation of interface 
rigidity with interface debonding. The cohesive law is formulated by taking 
into account of the anisotropy of interface debonding. The present constitutive 
model is applied to the interfacial crack problems.Finite element computation 
is performed in which the cohesive model is embedded along the line 
extending ahead of the crack tip. The critical stress intensity factors at the 
crack initiation and propagation are evaluated for a wide range of bimaterial 
constant and the fracture boundary curves are obtained. Numerical simulation 
on peeling test is also presented. 

Key words: Cohesive Zone Model, Interface Crack, Fracture Criterion, Peel Test 

1. INTRODUCTION 

Recently, bimaterial systems and composite materials are widely used. 
Typical examples include fiber reinforced materials, adhesive joints, 
microelectronic devices and so on. The performance of these systems 
strongly depends on the strength of weak interfaces. Therefore, it is 
important to evaluate the interface strength precisely. In homogeneous 
materials, the fracture criterion under tensile loading can be well 
characterized by a material property, the fracture toughness. However in 
dissimilar materials, it is necessary to specify the loading phase angle, 
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because the tensile and in-plane shear is inherently coupled at the tip of an 
interface crack. The interface does not have a unique fracture energy, but 
instead, the toughness of the interface depends on the loading phase angle 
(Hutchinson and Suo[ 1 ]). 

In order to investigate the material parameters which govern the fracture 
phenomenon of an interface, it is important to model an interface itself. 
Needleman[2] introduced an interface potential that specified the 
dependence of the interface traction upon the interface separation. Tvergaard 
and Hutchinson[3] used a traction-separation law to model the fracture 
process ahead of the crack tip and they computed the crack growth resistance 
in homogeneous solids and along interfaces. Ma and Kishimoto[4] proposed 
the interface model based on the internal variable theory of thermodynamics 
and the continuum constitutive relation between interface traction and 
interface separation has been developed. Chaboche et al.[5] extended 
Tvergaard's model (Tvergaard[6]) to keep the continuity and monotonicity 
in the tangential stiffness degradation and introduced the Coulomb friction 
criterion. 

The intent of this paper is to investigate the mixed mode fracture 
toughness of an interface by numerical simulation and obtain the mixed 
mode fracture criteria for the interface crack. A cohesive zone model can 
give the interfacial mechanical properties and makes it possible to describe 
the fracture process on the interface. The present work adopts the cohesive 
zone model proposed by Ma and Kishimoto[4] with minor modifications[?]. 
This cohesive zone model is embedded at the crack tip of the interface and 
the propagation of the interface crack is simulated by fmite element analyses. 
Interface fracture criteria based on the stress intensity factors and the fracture 
toughness are discussed. To show the application of this cohesive zone 
model, a numerical simulations of peel test is also presented. 

2. COHESIVE ZONE MODEL 

The mechanical properties of an interface are complicated and exhibit 
inhomogeneity, since there may be many microdefects, cracks and various 
phases exist in fracture process zone(Figure l(a)). From the idea of 
continuum mechanics, the mechanical response of the interface can be 
equivalently modeled by distributed nonlinear springs as shown in Figure 
l(b). The displacement of an interface can be scaled by the components, U, 
U, and Ub. We use u, = V, I o,, un = Vn I on and ub = Vb I ob as normalized 
scales for interface deformation, where 8,' 8, and ob are the critical 
interfacial separation for each direction. 
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Crack. Tip 

- ----a~·~ 
Fracture process zone Cohesive zone model 

(a) (b) 

Figure 1: The representation of an interface crack tip and the equivalent spring model. 

An equivalent interface separation is defined by: 

A.= (I) 

Here, normal displacement of interface is confined to Un ;;:: 0 The 
components of the interfacial traction can be related to the interface 
separations by the interfacial rigidity, in the normal and tangential directions 
as follows: 

P, = K,u,, P, = Knun, 11 = Khuh, (2) 

where K, , K. and K h are the interfacial rigidities for each direction. Since the 

interfacial rigidities decrease with interface separation, we introduce three 
damage parameters, D,, D. and Db , to characterize the degradation of the 

normal and tangential interfacial rigidities, respectively. Without the 
occurrence of damage, the interfacial rigidities take their initial values, 
K,0 , K~ and K:, respectively. Restrictions on the interface damage processes 

are developed based on standard methods of irreversible thermodynamics. 
The interfacial separation energy density as the Helmholtz free energy, 
which satisfies the thermodynamic restrictions and the interfacial potential of 
dissipation due to the damage evolution are assumed as in Ma and 
Kishimoto[4]. In this paper, interface is assumed to be monotonically loaded, 
that is, no unloading and cyclic loading occurred. Then, the damage 
parameters can be related to the interfacial separation as, 

D, = p, (A-A,o}-(A2 -(A,of) 

nn =Pn(A.-An-(A.2-(An2) , 

Db = ph (A -A~)- (A 2 - (A~) 2 
) 

(4) 

where A.,0 , A.~ and ~are the damage thresholds of the interfacial rigidities in 
pure normal or tangential separation. From Equations (2)-( 4), the 
constitutive equation of the interface can be described as, 
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~ =K~0 (1-P~(2-2n+(22 -(2n2 ))u~ 

~ = K~ ( 1- Pn (2-2~)+( 22 -(2~ f) )un 

~ = K~ (1- Pb (2-ln+( 22 -(2~r) )ub 

(5) 

When the bearing capacity of the interface is lost at a critical value 
A= Ac, the interface parameters become, 

t+(..tcr -(..t,or 1+(..tcf -(..t~f 1+(..tcf -(..t~f 
P,= Ac-AO 'Pn= Ac-AO ,ph= Ac_10 (6) 

t n "'b 

When A c = 1 and A.~ = A,0 = A~ = 0 , the interface parameters are 
P, = P. = pb = 2 . In this special case, when in-plane deformation is 
considered, the explicit decohesion energy can be expressed as, 

Ko 
1+-n tan2 "-Ko 'I' 

r( ¢) = r o I 2 (7) 

1+ 5; {K~} tanz"' , 
52 Ko 'I' 

I t 

where r/J is the phase angle which is defined by the ratio of the normal and 
tangential stress at the crack tip ( r/J = tan-1 ( o-12 I o-22 ) ) and r 0 is the 
decohesion energy in pure normal interfacial separation, 

1 0 2 
fo = UK"o" . (8) 

3. FRACTURE CRITERIA OF INTERFACE CRACK 

3.1 Computational model 

The interface crack propagation is simulated for several material pairs 
under various mixed mode loadings by the Finite Element Method. For the 
Finite Element Analysis, ABAQUS(Ver.5.6) was used. Figure 2 shows the 
configuration of the compact tension shear(CTS) specimen for the mixed 
mode fracture test[8]. Here, P is the resultant force and a is the loading 
direction. The interface crack is introduced along the interface and it's length 
is a=0.5 W. The specimen is attached by a special jig that makes it possible to 
change the loading direction. By changing the loading direction, several 
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kinds of mixed mode loadings can be applied to the interface crack tip. In the 
calculation model, 1164 two dimensional eight-node isoparametric elements 
and 3625 nodes are used. The width of the smallest elements( L1 ) are 
L1 I W = 1.25 x l 0-2 • Young's modulus of each material is denoted as E 1 and 

E2 and Poisson's ration is v1 = v2 = 0.3. The ratio between £ 1 and £ 2 is 
changed variously. The interface constitutive relation is embedded at the 
crack tip. In this paper, we assume that the interfacial debonding induces 
identical degradation in the normal and tangential directions. The isotropic 
degradation model given by p = p, = Pn = ph is used under plane stress 
conditions. 

~ 
0 lt 

"' 0 

n p 

0.8 
-6 0.6 

X 10 0.4 
Ut[m]0.2 U,.[m] 

Figure 2: Numerical model and the mechanical properties of the interface cohesive zone 

model (A0 = A.0 = 0 t5 = t5 = 5L12K 0 = K 0 ). 
n t ' n t ' n t 

The critical interface separation of each direction is also identical 
( 8, = 8n) and only the initial rigidities in Equation (5) are changed. The 
variation of interface traction with interface separation is presented in Figure 
2 for the orthotropic interface model ( 2K~ = K,0 ) • 

The initiation of interfacial crack growth can be defined by using the 
interface constitutive relation in Equation (5). When the interface separation 
comes to a critical value, the interface traction becomes zero and crack 
growth initiates. In this paper, we assume that crack initiation occurs at 
X = 1 . At that time, the )-integral is calculated and this value will be 
termed as interface fracture. In order to know the mixed mode condition at 
an interface crack tip, the stress intensity factors are computed by the M 1 -

integral method. 
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3.2 Numerical results 

In the computation, the initial rigidity of tangential direction is assume to 
be twice as that of normal direction ( 2K: = K,0 ) as shown in Figure 2. Figure 
3 represents the fracture boundary curves for the orthotropic interface model. 
The characteristic length of the interface stress intensity factors is assumed 
to be L = 2a . When £ 1 I E2 = l , the shape of fracture boundary curve is 
elliptical and K1 and K 2 correspond to the stress intensity factors for mode I 
and mode II, respectively. The fracture toughness of a shear (mode II) type 
fracture is about 1.5 times that of the opening (mode I) type fracture. 
However, in the case of £ 1 I E2 = 10,100 , the fracture boundary curves rotate 
around the origin and K1 and K 2 do not correspond to the stress intensity 
factors for each fracture mode. This is due to the definition of the 
characteristic length included in the interface stress intensity factors and will 
be discussed in the next section. 

K,[MPa,fiii ) K,[Ml'a,fiii) K,[MI'a,fiii] 
2 2 2 

.. 

K,[MPafril I K.(MPa.lm) K,[MPa,fiii] 

-1 ~-~ -2 ·2 -I ' 

-I -I 
··-

·2 ·2 ·l 

(•) (b) (c) 

Figure 3: Fracture boundary curves for the orthotropic interface model 

(2K~ = K,0 , L = 2a): (a) EJ E2 =I. (b) E1 I E2 = 10 (c) £ 1 I E2 = 100 . 

3.3 Interfacial fracture criterion 

Stress intensity factors for an interface crack depend on the characteristic 
length. When this length is changed from L to L', the stress intensity factors 
are also changed as, 

{K~} = [c~sO -sinO]{K1}, 

K 2 smO cosO K2 

(9) 

e = cln( ~} (10) 

In Figures 3(b)(c), the fracture boundary curves are rotated around the origin 
when Young's moduli of the two materials are different. This is due to the 
definition of the characteristic length. By using Equations (9) and (I 0) with 
L' = 1.8 x 1 0_. W , which is considered to be the length of the fracture process 
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zone, the fracture boundary curves are transformed. Then, K1 and K 2 

correspond to the stress intensity factors for each fracture mode. By 
normalizing K1 and K2 with the critical stress intensity factors of each 
fracture mode( K1cL'' K2cL' ), the intrinsic fracture boundary curve can be 
obtained as shown in Figure 4. Therefore, the fracture criterion based on the 
stress intensity factors could be expressed as, 

_!S_ + ~ = 1 ( )2 ( )2 
K ICL' K 2CL' . 

(11) 

• li , lli , - 1 

• f: , tf:,-10 

• ~; I 1/,-l • 100 

·2 

Figure 4: Intrinsic fracture boundaly curve for orthotropic interface model 

(2K~ =K~, L'=l8_um). 

A-A' 

I 
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. 112\vmdl~ \ I 
Pre-crack Adhelive 

Figure 5: The schematic representations of specimen and testing apparatus. 

In order to investigate the applicability of Equation( II) for mixed mode 
fracture criteria of an interface, mixed fracture tests of adhesively bond 
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materials were carried out. Figure 5 shows schematic representations of the 
specimen and testing apparatus. One material used in this test is Aluminum 
and the others are Steel or ABS resin. These materials are bonded by an 
epoxy adhesive. In the experiment, the fracture loads and loading directions 
can be obtained. From these experimental results, the stress intensity factors 
were obtained by finite element analyses. 

Figure 6 shows the fracture boundary curves for these two cases. When 
we take 2a as the characteristic length, the fracture boundary curves turn 
around the origin as shown in Figure 6(a). On the other hand, by choosing 
the characteristic length as the order of plastic zone size on the interface[9], 
the stress intensity factors are corresponding to each fracture mode and the 
fracture boundaries become as shown in Figure 6(b). It is found that 
Equation( 11) well describes the fracture initiation of interface cracks. 
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Figure 6: (a) The fracture boundary curves (L=2a). (b)The fracture boundary curves 

(L '=O.Ido). 

4. MULTI-STAGES PEEL TEST 

The peel test is widely used to evaluate interfacial strength, since it is 
simple and easy to do the experiments. However, it is difficult to obtain the 
interfacial strength precisely due to the plastic dissipation wp ' residual 
stresses a,es and mixed mode effect during the peel test. Recently, we 
developed a new device for peel test(in Figure 7), which make it possible to 
change the peel angles, i.e. mixed mode conditions at the peeling front, by 
introducing the tangential load P;, . The results of peel tests for Cu thin 
film(thickness h=lO, 20~) plated on PI/Si substrate are shown in Figure 8. 
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Figure 7: Multi-stages Peel Test Figure 8: Peel load and peel length relationships. 

When the delamination of Cu film begins, the peel load P becomes constant 
and the steady state peeling attained. During the steady state peeling, the 
energy balance may be expressed as[10], 

Eh3 2 1-v2 {P2 h 2 } P-Pn=f(¢)+WP+ ( 2 )Kcoil+-- -±r a,...,(t)dt .(12) 
24 1-v E h Jo 

where Kco;r is the coiling curvature at the end of the film when it is released 
from the peeling grip. From this equation, the interfacial decohesion energy 
r(¢) can be evaluated. Using the present cohesive zone model, we carried 
out the simulations of peel tests, in which the parameters of the cohesive 
zone model were identified from Equation (7) by comparing with the 
experimental result of h= 1 OJ.Lm. Figure 9 shows the numerical model of 
Multi-stages peel test. Cu and PI layers are assumed to be elastic-plastic 
material and Si layer is assumed to be rigid. Cohesive zone model is 
embedded along the interface. The deformation at the peel front is shown in 
Figure 10. As shown in Figure 11, the peel load becomes constant after the 
delamination commences. This tendency is similar to experimental results. 
When thermal stresses induced 
during fabrication process are taken 
into account, the peel load decreases 
and comes to agree well with the , 
experiments. F~~~~~~~~~~~~ 

" ._liDII_ Co~Joo; .. .,.,. model 

ii I j ,., i ,. I --~' 
Figure 9: Numerical model. Figure 10: Deformation at the peeling front. 
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Figure II: Results of Multi-stages peel test by using the cohesive zone model. 

5. CONCLUSION 

A continuum interface constitutive model has been developed and 
applied to fracture problems of hi-materials and the peel test. It was shown 
that the present mode is useful to examine interface crack problems. 
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Abstract In the near-threshold region of the fatigue crack growth, the amount of crack growth per cycle 
is in atomistic scale. This may suggest that the near-threshold fatigue crack growth is 
controlled by atomistic scale events. In previous papers the molecular dynamics was applied 
to the simulation of near-threshold fatigue crack growth. In this study, the influence of grain 
boundary on the near-threshold mode I fatigue crack growth behavior in BCC-iron was 
investigated using the molecular dynamics method. When the grain boundary existed 
perpendicular to the crack plane, the grain b01.mdary served as an obstacle to crack growth. 
When dislocations got through the grain boundary, grain boundary had small influence. 

Keywords: Near-threshold fatigue crack growth, BCC iron, Molecular dynamics, Fracture mechanics, 
Grain boundary 

1. INTRODUCTION 

Increasing number of plants require life evaluation for their safety assessment. 

For assessing their residual lives and strengths, fatigue is one of major issues to be 

considered For structures in long tenn service the evaluation of very slow fatigue 
crack growth in the near-threshold regime and fatigue threshold is indispensable. 

For explaining the mechanism of fatigue crack growth many models have been 
proposed. One of the well-known models for the fatigue crack growth is the 
Laird-Smith model1-2• In this model crack grows in every cycle of repeated 

loadings as a result of crack tip blunting and resharpening. This mechanism can 
explain the striation found on fracture smfaces when the amount of crack growth per 
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cycle is in the order of around 10-6 (m). 

In the near-threshold region the amount of crack growth per cycle is in the order 
of 10-9 to 10"10(m) or smaller, which is comparable with the atomistic scale. This 

suggests that the macroscopic near-threshold fatigue crack growth in materials is 

determined by events in the atomistic scale. The existence of the threshold itself 

may be closely related to the discrete nature of atoms. Calculations taking account 

of the discrete nature of materials at the crack tip have advantages over the 

continuum mechanics approaches in naturally simulating the fracture events in the 

near-threshold region. 

To simulate the defonnation and fracture of materials in the atomistic scale 
under monotonic loadings, the molecular dynamics method and Monte Carlo 
method have been applied. Many investigations on the growth of cracks under 
monotonic loadings:l-14 have found that the molecular dynamics can be successfully 

applied to simulate the crack growth under monotonic loading. 

The molecular dynamics method can therefore be a promising approach for 
understanding the fatigue crack growth in the near-threshold region. There are 

several reports on the application of the molecular dynamics to the fatigue 

damage1s.17, but no studies except ours1s.19 are available on its application to fatigue 

crack growth. The previous papers1s.19 showed the usefulness of the molecular 

dynamics approach in simulating the near-threshold fatigue crack growth in the 

BCC (body-centered cubic) iron 
It has been reported that grain boundary has significant effect on strength under 

monotonic loading. In the present study the effect of grain boundary on the 
near -threshold fatigue crack growth in the BCC iron is studied by using the 

molecular dynamics method 

2. PROCEDURE OF ANALYSIS 

2.1 Models Used in the Analyses 

It has been reported that fatigue crack propagates predominantly in Mode I 

(opening mode), although it propagates in the mode II or mode ill microscopically. 
A macroscopic crack under the mode I loading in the BCC iron at 600 (K) was 
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considered. Due to the limitation of nwnber of atoms treated in the simulation 

only a computational cell in the vicinity of the crack tip was modeled with atoms. 

Slip system 

~l_l_U<tU> 

Figure 1: Slip system ofBCC lattice and observation plane. 

-
t [110) 

Figure 2: 9 model in observation 
plane of(110). 

Figure 3: 9-9' gram bounda!y 

model. 

As is seen in Fig. 1, (110) plane is a close-packed plane for the BCC crystal, 

and the slip plane and the slip direction of the crystal are expressed by { 112} plane 

and <111> direction. Considering that the slip system plays an important role in 

the fracture behavior, the close-packed plane ( 11 0), which contains the slip direction, 

is used as the observation plane. It has been reported that the fatigue crack 

preferred to propagate macroscopically in <1 00> direction with the crack plane of 

the close-packed plane { 110} in experiments20• Then the crack expressed by the 

close-packed plane (110) is used as a reference model of the crack plane. 

The coordinate with coordinates in [001] and [llO] directions in (110) plane 



314 

was taken as the reference coordinates. For investigating the effect of orientation 

of ctystal, the 9 model was defined by rotating the reference coordinates by angle 9 
as shown in Fig. 2. The model consists of about 6500 atoms within a square 
region of -68.25 A< x < 68.25 A, -68.55 A< y < 68.55 A. 

To examine the effect of grain boundary, coincidence site lattice was employed 

As is shown in Fig. 3, the 9 model and the 9' model constituting the coincidence site 

lattice, were combined to construct a grain boundary model called 9-9' model. 
The grain botmdary in the model was set to be petpendicular to the crack plane. 

The effect of angle between the grain boundary and the crack was examined 

elsewhere24• In this study 0°-50.48° model and 50.48° - 0° model, which 

correspond to Lll coincidence site lattice, were used as large angle grain boundary 
models. As small angle grain boundary models 0° - 168.46° model and 

168.46°-0° model corresponding to L99 coincidence site lattice were used 

2.2. Molecular Dynamics 

In the molecular dynamics, force acting at an atom is calculated by summing up 
forces exerted from other atoms. In this study the equation of motion was 

constructed and integrated to calculate the location and velocity after a vety small 

time step of 10'15 (s). The Verlet algorithm21 was used to update the location and 

velocity of atoms. 

2.3 Potential Describing Forces between Atoms 

The atoms are allowed to interact with one another in accord with a force law 

between atoms. For modeling the force between atoms of the BCC iron, pair 

potentials are introduced The force is determined by differentiating the potential 
expressed in tenns of the distance between atoms with distance. Among various 

empirical pair potential functions describing the force between atoms, the Johnson 
potential22 has been widely used and have demonstrated the usefulness and 
reliability in several studies22.3.S.9. In this study the Johnson potential was used 

The lattice constant was set at 2.873 A, which was determined in such a way 
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that the stress obtained from the molecular dynamics simulation at 600 (K) is close 

to 0. The cut-off distance of the Jolmson potential was 3.44 (A). To reduce the 

computation time, the book-keeping method21 was used The book-keeping 

distance was set at 6 (A) in this study. Two layers of atoms were considered in the 

computational cell of the observations plane, and periodic boundary conditions were 

applied in the z direction, which was perpendicular to the observation plane. The 

dimension in the thickness direction is then about 4.06 (A). Assuming the plane 

strain condition, the out-of-plane motion of atoms in the z direction was constrained. 

2.4 Fatigue Loading 

Cyclic load with stress ratio of R = 0 was applied to the model. The stress 

intensity range M was set at 1.8 MPa • m1a. The atoms within the computational 

cell are smrounded by a boundary region, where displacements are given in accord 

with the linear elastic fracture mechanics. The Cartesian coordinates x, y, z are 

taken with the origin and the xy plane coinciding with the crack tip in the 

observation plane. The crack plane is parallel to the x axis. The displacements u 

and v in the x andy directions on the boundary of the computational cell under the 

plane strain condition are given by the near-tip fields expressed in terms of the stress 

intensity factor based on the fracture mechanic~. Initial crack was introduced by 

inactivating attractive forces for -68.95A < x < -48.95A, across the crack line. 

Irreversibility plays an important role in the fatigue crack growth. The forces 

between atoms departed from each other on the newly created fracture surface may 

be weakened by oxidation or deposition of foreign atoms on the surface. To 

introduce irreversibility due to oxidation, the attracting force was inactivated 

between atoms departed further than the cut-off distance 6.5 (A) 19• 

The current crack is defined by the surface, across which distance between atoms 

is larger than the cut-off distance 3.44 (A). The displacement boundary conditions 

are updated by using the current crack tip19• The initial distribution of velocity of 

atoms were given in accord with the Maxwell distribution. 

Quasi-static simulations with the temperature control were made. To conduct 

an isothermal computation, velocity of all atoms was scaled by a factor to fit the 

prescribed temperature of 600 (K). Initial relaxation of 1000 steps was introduced 
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in the first place before loading. To realize the load increment, small amount of 

displacement change was given on the boundary of computational cell. Relaxation 

of 99 steps followed every step of the load increment. The set ofloading of 1 step 

and relaxation of 99 steps is called I term The increment of displacement in 1 

tenn is equivalent to change of one-thousandth of the stress intensity range M<. 

3. FATIGUE CRACK GROWTH BEHAVIOR 

The crack growth behavior with cyclic loading was investigated using the 

molecular dynamics for the large angle grain boundary models of :E 11 coincident 
site lattice, i.e. 0°-50.48° model and 50.48° - 0° model. The locations of 

atoms at Krmx were examined. The crack ceased to propagate in the 7th cycle for 

0°-50.48° model and in the 4th cycle for 50.48° -0° model before the crack 

penetrate the grain boundary. The locations of atoms at Kmrx. in the 3rd cycle for 
0°-50.48° model are shown in Fig. 4, and those in the 4th cycle for 50.48° -0° 

model are shown in Fig. 5. In these figures the atoms, which are originally in the 
-

same plane perpendicular to [11 0] direction, are interconnected by lines. 

..... ..---~-~--~----. 
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Figure 4: Locations of atoms at Krrex 
in the 3rd cycle for oo- 50.48° large 

angle grain boundary model, which 

has :E 11 coincident site lattice. 
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Figure 5: Locations of atoms at Kmrx. 
in the 4th cycle for 50.48° -0° large 

angle grain boundary model, which 

has :Ell coincident site lattice. 
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It is seen in Fig. 4 that the crack in the oo- 50.48° model ceased to propagate 

before it reaches the grain bmmdary and dislocations are trapped on cavities formed 

on the grain bmmdary. Figure 5 shows that the crack in 50.48° - 0° model 

ceased to propagate when it reaches the grain boundary. 

Molecular dynamics simulations were also made for the small angle grain 

boundary models of :E99 coincident site lattice, i.e. 0° -168.46° model and 
168.46° - 0° model. The locations of atoms at KmJX in the 6th cycle for 
oo -168.46° model are shown in Fig. 6, and those in the 3rd cycle for 

168.46°-0° model are shown in Fig. 7. It is seen in Fig. 6 that the crack tip grew 

beyond the grain boundary. 

~· 

Figure 6: Locations of atoms at KmJX 
in the 6th cycle for 0°-168.46° 

small angle grain boundary model, 

which has :E99 coincident site lattice. 

-.ra.~~ . • -
...... ...n •• -

Figure 7: Locations of atoms at KmJX 
in the 3rd cycle for 168.46° - 0° 

small angle grain boundary model, 

which has :E99 coincident site lattice 

The amount of crack growth obtained in the simulations are plotted against the 

number of cycles in Fig. 8 for the large angle grain boundary model (Lll, 
0°-50.48° and 50.48° -0° models). For comparison pwpose the results for 

0° model and 50.48° model without grain boundaries are shown in the figure. 
It is seen that the amount of crack growth decreases when the crack approaches the 

grain boundary and ceases to propagate. 

Figure 9 shows the amount of crack growth obtained in the simulations against 

the number of cycles for the small angle grain boundary model (L99, 0°-168.46° 
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and 168.46°- 0° models). For comparison purpose the results for 0° model 

and 168.46° model are shown. It is seen that the amount of crack growth per 

cycle decreases when the crack approaches and eventually the crack goes through 

the grain boundary. When dislocations or the crack got through the grain boundary, 

grain boundary had little influence on the crack growth behavior. 

Since the present simulations were made only for limited conditions with small 
nwnber of atoms, further researches are required 
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Figure 8: Amount of crack growth 
against nwnber of cycles for 
0°-50.48° and 50.48° - 0° small 
angle grain boundary models, which 

has :Ell coincident site lattice. 

4. CONCLUSIONS 
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The effect of grain boundaty on the near-threshold mode I fatigue crack growth 

behavior in BCC iron was investigated using the molecular dynamics method. 

The observation plane was set at (110), and the crack plane was assumed to be 

perpendicular to the observation plane. When the grain boundary existed 

perpendicular to the crack plane, the grain boundary served as an obstacle to crack 
growth. The effect of the grain boundary as a barrier was larger for the large angle 
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grain lxnmdaty than for the small angle grain boundary. When dislocations got 

through the grain boundary, however, grain boundary had little influence on the 

crack growth behavior. 
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Abstract: The present study investigates plasticity-induced martensitic transformation 
around semi-elliptical cracks in an austenitic stainless steel SUS304 fatigued at 
room temperature. Distributions of the volume fraction of a' martensitic phase 
around semi-elliptical fatigue cracks were measured by ferrite scope. The re
sults were compared with vertical magnetic flux density B, distributions above 
and below the cracks in specimens magnetized by a strong electromagnet. It 
was revealed that the distance between the outermost peaks of the B, distribu
tions 21 showed good linear correlations with surface crack length 2a. The 
maximum and the minimum values of B,, Bzmax and Brmin• also showed linear 
relations with maximum stress intensity factors at the surface tip Kamax and at 
the depth position Kbmox· These results imply that not only 2a but Kamax and 
Kbmax values can be estimated in an electromagnetic non-destructive way. 

Key words: Martensitic Transformation, Semi-elliptical Crack, Stress Intensity Factor, 
Fatigue, Leakage Magnetic Flux Density, Non-Destructive Evaluation 

1. INTRODUCTION 

Type SUS304 stainless steel (equivalent of AISI304 stainless steel) is 
known as an austenitic stainless steel that has unstable y austenitic phase 

321 

H. Kitagawa andY. Shibutani ( eds.), IUTAM Symposium on Mesoscopic Dynamics of Fracture Process 
and Materials Strength, 321-330. 
© 2004 Kluwer Academic Publishers. 



322 

around and below room temperature [l-7]. The stainless steel usually shows 
ductile and non-ferromagnetic nature, whereas the steel becomes brittle and 
ferromagnetic after it undergoes high stress or strain since y austenitic phase 
in the steel is transformed into a.' martensite. 

In the present study, the volume fraction of a' martensitic phase induced 
in SUS304 plate specimens subjected to uniform tensile stress at room tem
perature was measured by three types of equipments; i.e., vibrating sample 
magnetometer (VSM), X-ray diffractometer and ferrite scope (FS) in order 
to obtain the applied strain level dependence of the volume fraction of the a.' 
phase transformed. The distributions of a' volume fraction in the plastic 
wake regions produced around semi-elliptical cracks in fatigued SUS304 
plates were then electromagnetically measured by flux gate (FG) sensor. The 
fatigued specimens were magnetized by a strong permanent magnet and the 
induced magnetic flux density Bz distributions above and below the surface 
cracks were measured by FG sensor in order to be correlated to the surface 
crack length and to the applied stress intensity factors at the depth position as 
well as at surface. 

2. EXPERIMENTS 

2.1 Fatigue crack propagation experiments 

Table 1 shows the chemical composition of Type SUS304 stainless steel 
tested in the present study. Figure 1 shows the geometry of plate specimens 
used in this study. A part-through notch having a surface length of 2a=2.5 
mm and a depth of b=2 mm was made at the center of each specimen by 
electric discharge machining. Fatigue crack propagation tests were con
ducted on this type of specimens at maximum applied stress levels of 

Table 1. Chemical composition ofSUS304 stainless steel the material tested (mass%). 
Material C Si Mn P S Ni Cr 
SUS304 0.06 0.50 0.87 0.01 0.037 8.10 18.21 

Figure 1. Specimen geometry (unit: mm). 
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crmax=222-300MPa and at stress ratios of R=crmin1crmax=0.1-0.4 under load 
control condition. Fatigue propagation tests were intermitted at an surface 
crack length increment of .&1=0.5-1 mm and beach mark patterns were pro
duced by changing the R-ratios with the maximum applied stress level kept 
constant in order to determine the profile of the part-through fatigue cracks. 

2.2 Measurement of a.' volume fraction by ferrite scope 

a.' volume fraction ~a· around the growing fatigue cracks was measured 
by ferrite scope (FS). The measurements of ~a· were made at grid points of 
approximately 1 mm by 1 mm in rectangular regions of 6 mm in the 
longitudinal direction by 21 mm in the width direction of the specimen with 
the crack placed at the center of the measurement regions on the front and 
the back surface sides of each specimen. The results of the measurements 
were calibrated by those obtained by a vibrating sample magnetometer 
(VSM) and by X-ray diffractometer [1]. y austenitic phase was transformed 
into a.' martensitic phase due to plasticity-induced martensitic 
transformation in the plastic wakes along the peripheries of surface cracks 
where stress was so high that severe plastic deformation took place. 

2.3 Magnetic flux density distributions above and below 
semi-elliptical cracks in fatigue 

Fatigued specimens were demagnetized intermittently during fatigue tests 
by a demagnetizer that applies ac magnetic field to the specimens by gradu
ally reducing the amplitude of the magnetic field to zero. The demagnetized 
specimens were then magnetized by a high-field de electromagnet of 0.6 T 
or higher in the directions of the x- and the z-axes, i.e., in the direction paral
lel to semi-elliptical cracks and that perpendicular to the specimen surface, 
respectively. A magnetic field of 0.5 T induced by electromagnet is consid
ered sufficient to put fatigued specimens in a saturation magnetization state. 

After the magnetization treatment, the magnetic flux leakage was meas
ured by scanning a flux gate (FG) sensor supplied by Shirnadzu Co., Ltd. 
above and below the part-through fatigue cracks with lift-offs of 3 mm and 4 
mm for the x- and the z-direction magnetization, respectively. The magnetic 
flux leakage measurements were conducted in a magnetic shielding box cov
ered with aluminum foil for the purpose of preventing environmental mag
netic fields from disturbing the magnetic flux leakage measurements. The 
measurements were automatically made on the front and the back surface 
sides of the specimens by the use of a computer-controlled x-y table at grid 
points of 1 mm by 1 mm in rectangular regions of 23 mm in the longitudinal 
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direction by 37 nun in the width direction of the specimens with semi
elliptical cracks placed at the center of the measurement regions. 

3. RESULTS AND DISCUSSION 

3.1 Martensitic phase transformation in Type SUS304 
stainless steel 

Figure 2 shows the nominal stress vs. nominal strain diagram of the pre
sent SUS304 steel at room temperature and the variation of the volume frac
tion of a' martensite ~a· with the applied strain level 8, indicating that higher 
a' phase content brings about higher work hardening ratio at s=20 % and 
higher. The value of ~a· is determined by the ratio of the saturation magneti
zation of a deformed specimen to that of a fully transformed specimen of the 
present SUS304 steel whose chemical composition is shown in Table I . The 
~a· value of the fully transformed SUS304 specimen is theoretically calcu
lated by the Slater-Pauling diagram [1, 7, 8). y austenite becomes so unstable 
that it is transformed into a' martensite above the yield stress level even at 
room temperature [1-4]. The volume fraction of a' martensite transformed is 
increased exponentially with the applied strain level 8 in the plastic deforma
tion region as shown by the solid line in Fig. 2. The ~a· vs. 8 diagram indi
cated by the solid line can be expressed by the following equation: 

Strain, &, % 

Figure 2. Comparison of the stress-strain diagram with the ~a· vs. strain diagrams for the pre
sent SUS304 showing that higher a.' phase content brings about higher work hardening ratio. 

Figure 3. Crack morphology imprinted on a fracture surface. 
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j: = 100- 100 
'='a' [ 40] exp {(e+Z0.0)/97.9} · 

(1) 

The value of ~a· remains small for strain levels lower than 20%, but it 
reaches as high as 15.5% or higher for G-43.2% at room temperature. 

3.2 Part-through crack profiles 

Figure 3 shows part-through crack profiles imprinted on the fracture sur
face by the beach mark method, showing the shape of the crack was semi
elliptical. The value of the aspect ratio b/a, the ratio of the crack depth b to 
the half surface length a varied from 1.61 to 0.87 during the experiments, i.e., 
the crack grew shallower and shallower. 

3.3 a' martensitic phase distributions around a part
through fatigue crack 

Figures 4(a) through (f) show the spatial distributions of the volume frac
tion of a' martensitic phase transformed around a growing semi-elliptical 
crack on the front and the back surfaces of a specimen fatigued at a constant 
stress range of ~cr=240MPa with R=O.l and at different values of Kamax and 
Kbmax where Karnax and Kbmax are the values of the stress intensity factor (SIF) 
at the front surface tip and at the maximum point at depth, respectively. The 
semi-elliptical crack broke through the specimen back surface at the number 
of load cycles N=95,240, when 2a=r 11.0 mm. The length of the crack on the 
back surface at the time of penetration was approximately 5.2 mm. 

Figures 4 (a) through (c) and (d) to (f) illustrate contour maps of the volume 
fraction ~a· of a' phase transformed on the front and the back surfaces of the 
specimen respectively at different stages of the fatigue crack propagation proc
ess. Figure 4(a) is the ~a· distribution around the crack at N=51,000 when 
2a=7.8 mm and b=3.5 mm (70% of the specimen thickness), showing that the 
transformation region was small and the value of ~a· was as low as 3 %. As the 
crack grew larger as shown in Figs. 4(b) and (c), the ~a· value around the surface 
crack tips became larger and the plastic wakes or the transformation region de
veloped wider. Figure 4(b) illustrates the ~a· distribution around at N=56,000 
when 2a=l0.5 mm and b=4.3 mm (86% of the specimen thickness) where the 
value of ~a· reached a maximum value of about 8 % near the crack tips at sur
face and became lower away from the crack tips. 

On the back surface, however, a' transformation had not become appar
ent until crack depth breached 3.9 mm or 78 %of the specimen thickness. 
Figure 4(d) illustrates this situation. No indication of the transformation was 



326 

(d) = 5.1><104 b = 3.5mm. Kbmax 

~ r-
~~ 
~~ 5~ 

Figure 4. Evolution of contour maps of a.' martensite volume fraction ~,.· around a semi
elliptical crack on the front and back surfaces of a specimen: O"max=300 MPa and R=0.2. 

observed in the contour diagrams of ~a·; i.e., the ~a' value remained about 
0.3 %. A volume fraction of this amount is considered as that of retained o
ferrite introduced during the production of this material. For a= 10.5 mm and 
b=4.3 mm, a steep contour map of ~a' suddenly appeared on the back surface 
below the part-through crack (Fig. 4(e)). Due to severe plastic deformation 
in the uncracked ligament of the specimen, the ~a· value reached as high as 
18 % and was much higher on the back surface than on the front, although 
the maximum value of the elastic SIF at depth KIJmax calculated by the New
man-Raju formula [9] was lower than that at surface Kaou.x. 

3.4 Magnetic flux density distribution above and below a 
part-through fatigue crack 

Figure 5(a) shows a representative 3D distribution of vertical magnetic 
flux density Bz, i.e., the component of leakage magnetic flux density B nor
mal to specimen surface, above a semi-elliptical fatigue crack at Kaou.x=33.0 
MPa.Jiii and Kbmax=24.9MPa.Jiii for R=O.l. The figure shows a Bz distribu
tion measured on the front surface side for the case of the x-direction mag
netization. The Bz distribution looks similar to those of the through-thickness 
crack cases [2-4]. The minimum negative peak was observed above the left 
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crack tip near the north pole of a magnetizing electromagnet, whereas the 
maximum positive one above the right crack tip. A magnetized plastic wake 
is considered to play a role as a composite of permanent magnets having dif
ferent magnetization properties which vary according to the volume fraction 
of a' phase transformed. 

Bz distributions on the back surface sides are completely reversed but 
look similar in shape to those above through-thickness cracks for the x
direction magnetization in contrast to the contour maps of ~a· obtained by 
ferrite scope as shown in Figs. 4(d) to (f). Two small peaks in the middle are 
small compared to those observed above through-thickness cracks. 

For the z-direction magnetization, Bz distributions look completely differ
ent from those for the x-direction magnetization as shown in Fig. S(b ). Two 
positive peaks of about the same height were detected on the front surface 
side, whereas two negative peaks on the back surface side when the north 
pole of the magnetizing electromagnet was placed facing against the front 
surface of a specimen and the south pole against the back surface. The rea
son for a pair of two peaks having almost the same height is that the SIF dis
tribution along the crack periphery should be symmetric. 

3.5 Surface crack length 2a vs. peak distance 2/ relations 

As indicated in Figs. S(a) and (b), the vertical leakage magnetic flux den
sity Bz reflects the distribution of the volume fraction of a ' martensite trans
formed in the plastic wakes produced around two fatigue crack tips on the 
front surface side, thus the distance 2/ between the outermost minimum and 
maximum peaks for the x-direction magnetization or the two maximum 
peaks for the z-direction magnetization can be correlated with real crack 
length 2a. Figures 6(a) and (b) show relations between the real surface crack 

.---7------Verncal mag. 1 

--· ------ flux deosity 1 
Bz, G 

DOG0-080 
. 040- 080 

ID0~040 
• o.oo-o20 
0-{)20-{)00 

D '1140-Q20 
7 • -oOO-Q40 

Ia -{)OO-Q60 

(a) x-direction magnetization (b) z-direction magnetization 
Figure 5. 3D distributions of vertical magnetic flux density B, above a semi-elliptical fatigue 
crack for 2a=9.8 mm, b=4.4 nun, K;,.,.=33.0 MPa.Ji.il , Kbmax=24.9 MPa .Ji.ii , and R=O.l. 
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length 2a and the peak distance 21 obtained by FG sensor measurements for 
the x- and the z-direction magnetizations, respectively. Solid symbols in Figs. 
6(a) and (b) indicate the 2a vs. 2/ relations obtained for different values of 
the R-ratio from the front surface sides of fatigued specimens magnetized in 
the x- and z-directions, respectively. Good linear correlations can be found 
between 2a and 2/ data obtained on the front surface side of the specimens 
for the two types of magnetization, and each relation can be represented by a 
single straight line irrespective of the R-ratio. The 2a vs. 2/ relations canes
timate real surface crack length 2a in service by measuring the peak distance 
2/. Even from the back sides of the specimens, the 2a vs. 2/ relation can es
timate real surface crack length 2a, although the 2a vs. 2/ plots measured on 
the back surface scatter as shown in Fig. 6(a). 

For the z-direction magnetization, however, only a single negative peak 
was observed on the back surface side before crack penetration and the value 
of 2/ cannot be obtained. Thus, it is concluded that surface crack estimation 
is difficult to make by the use of the 2a vs. 2/ relations for the case of the z
direction magnetization from the back sides of the specimens. 

3.6 Maximum or minimum peak value Bzmax or Bzmin vs. 
maximum stress intensity factor Kamax or Kbmax 

The magnitude of the peaks varies according to the amount of plasticity
induced martensitic transformation, or fatigue damage specimens have suf
fered, in the plastic wakes around growing fatigue cracks. Figures 7(a) and 
(b) show the relations between the peak values of the vertical leakage mag
netic flux density Bzmax and Bzmin and the values of Kamax and Kbmax for the 
case of the x-direction magnetization. Figures 7(a) and (b) were measured by 
FG sensor on the front and back surface sides, respectively. Open symbols in 
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Figure 6. Relations between 2a and 2/ measured before crack penetration through back sur
face by FG sensor on the front and back surface sides of specimens fatigued. 
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the figures indicate the Bzma:[ and Bzm;0 -Kamax diagrams and solid ones the 
Bzmax- and Bzmin-Kbmax diagrams. The values of Kamax and Kbmax can be linearly 
correlated with the peak values Bzmax and Bzmin irrespective of the R-ratio 
both on the front and the back surface sides. The data points obtained for 
different crack sizes but for the same values of Kamax or Kbmax fall on the 
same points on respective straight lines with positive and negative slopes. 

Figures 8 (a) and (b) show the Bzmax-Kamax and -Kbmax relations for the z
direction magnetization obtained on the front and back surface sides, respec
tively. The results are the same as those obtained for the x-direction mag
netization except that the Bz distributions show positive slopes only. 

These results imply that the damage introduced in the plastic wake re
gions around fatigue cracks is controlled by maximum values of the SIFs 
and that the measurement of the leakage magnetic flux density can estimate 

Maximum stress intensity factor, K~'ll. or K,mu:• MPrrr;;. Maximum stress intensity factor, K_,. or Kmr.,'ll. , MPaJffi 

(a) Front surface side (b) Back surface side 
Figure 7. Relations between Bzmax or Bzmin and Karnax or Kbmu obtained from FG sensor meas
urements on the front and the back surface sides of a fatigued specimen after the x-direction 
magnetization. 
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Figure 8. Relations between Bzmax or Bzmin and Kamax or Kbmax obtained from FG sensor meas
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magnetization. 



330 

Kamax and Kbmax from the back surface as well as from the front surface. 

4. CONCLUSIONS 

The present study investigates plasticity-induced martensitic transforma
tion around semi-elliptical cracks in an austenitic stainless steel SUS304 fa
tigued at room temperature in air. Volume fraction ~a· of a' martensite trans
formed in uniformly stretched SUS304 plates was measured by VSM, X-ray 
diffractometer and ferrite scope, and expressed as a function of the applied 
strain level e. Then, the spatial distributions of ~a· in the plastic wake regions 
around semi-elliptical cracks in fatigued SUS304 specimens were measured 
by ferrite scope. The results were compared with vertical magnetic flux den
sity Bz distributions induced above and below surface cracks in the speci
mens magnetized by a strong electromagnet in the directions parallel to and 
perpendicular to the cracks, i.e., the x- and z-directions, respectively. It was 
revealed that the Bz distributions reflected the ~a· distributions in the wake 
regions; i.e., the distance 2/ between outermost minimum and maximum 
peaks for the x-direction magnetization or that between two peaks of almost 
the same height and the same sign for the z-direction magnetization showed 
good linear relations with surface crack length 2a. The magnitude of the 
maximum and/or the minimum peaks of Bz also showed good linear relations 
with the maximum values of the stress intensity factors at the surface tips 
Kamax and the depth position Kbmax· These results imply that not only 2a but 
Kamax and Kbmax can be estimated in an electromagnetic non-destructive way. 
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Abstract The atomic force microscopy (AFM)-based nano lithographic technique is 
currently used to directly machine material surfaces and fabricate nano 
patterning for MEMS devices. In this study, three-dimensional molecular 
dynamic (MD) simulations were conducted to evaluate the effect of 
crystallographic factors on the forming characteristics of the nano lithography 
process of monocrystalline copper. The simulation results revealed that the 
crystal orientation and ploughing direction had a significant influence on the 
ploughing force as well as the nature of the nano deformation and surface 
quality of the machined material. 

Keywords: AFM, Molecular Dynamics Simulation, Nano Lithography, MEMS 

1. INTRODUCTIONS 
The rapid improvements in micro-electro-mechanical systems (MEMS) 

and micro-opto-electro-mechanical systems (MOEMS) in the last few 
decades have given rise to a wide variety applications, including 
mechanical elements, sensors, actuators, and electronics. In particular, 
MEMS devices, which are mostly manufactured through surface or bulk 
micromachining such as photolithography, electro-beam lithography or 
the LIGA process etc. on a silicon wafer, have many potential applications 
in the automotive industry, displays, printers, fluidics, optics, analytical 
instruments, communications and information, biomedical industry, and 
aerospace industry.1"3 

As part of scanning probe microscope (SPM) technology, atomic force 
microscopy (AFM) has been used to evaluate and measure the mechanical 
and structural properties of various materials on a nanometer scale. When 
an AFM probe attached to the end of a flexible cantilever beam with a 
very low rigidity traces the surface of a material in a contact mode, deep 
scratching and several regimes, ranging from frictionless sliding to 
permanent wear, can be observed, depending on the applied load. In this 
way, AFM has been successfully used to characterize nano wear processes 
in materials of technological interest, such as the use of silicon for 
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magnetic head sliders and polymers for electronic packaging and liquid 
crystals displays. 

Recently, AFM-based nano lithography using the principle of 
ploughing has been proposed for machining material surfaces and 
fabricating nano structure components, such as nano patterning and nano 
wire.4-6 AFM-based lithography is a technique that directly machines the 
surface of a material using a nano-sized hard probe (i.e. ploughing tool) 
attached to a rigid cantilever beam and can pattern nanometer structures, 
like holes and grooves. There, the material is removed from the substrate 
in a well-defined way, leaving behind deep trenches with the 
characteristic shape of the tool used. The advantages of the AFM-based 
lithographic technique are obviously the fabrication resolution, 7-9 the 
nondamaging process compared to conventional photolithography and 
electron-beam lithography, and the absence of additional processing steps, 
such as etching the substrate. 

This process was recently adopted as a photomask repair tool to remove 
defects in mask pattern in semiconductor industrl where it is called 
atomic force microscopy guided nanomachining (AGN). To analyze the 
machining process and its characteristics on an atomistic scale, since it 
cannot be confirmed experimentally, numerical virtual simulation, such as 
molecular dynamic (MD) simulation, 10 is a very useful tool. 

MD simulation has already been applied to a wide range of fields, 
including crystal growth, nano-indentation, tribology, fracture, and laser 
interactions etc, in order to simulate the atomic scale motion of the 
material.11 -14 Also the related studies by Ueda and Iwata, 15 Shimada et 
al, 16 Konig and Senrath, 17 Komanduri et al, 18 and Fang et a/19 are 
particularly noteworthy. Ueda and Iwata15 investigated the mechanism of 
chip formation, the variation in the cutting forces, and the shear angle 
relative to the crystallographic orientation during the diamond cutting of 
~-brass, and reported on the formation of a discontinuous chip within a 
particular range of crystal orientations. Konig and Senrath17 conducted 
cutting experiments using a monocrystalline copper OFHC substrate with 
{100}, {110}, and {111 }-oriented crystals along different cutting 
directions, and observed a significant dynamic component in the cutting 
force along the <100> cutting direction, which was used to attribute the 
resulting poor surface quality of the machined surface. Recently, Fang et 
azl9 utilized a 3-dimensional MD simulation to study the effects of the 
scribing feed on the atomic-scale lithography process, and compared the 
MD simulation results with AFM experiments on a micro scale. 

In this study, three-dimensional MD simulations for AFM-based nano 
lithography process of monocrystalline copper were conducted. The 
characteristics of the plastic deformation, dislocation generation with slip 
direction, chip formation, and force components (cutting force, thrust 
force, and width-direction force) as well as the surface quality of the 
machined material were then examined. The effects of crystallographic 
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factors (crystal orientation and ploughing direction) for the AFM -based 
lithography process were also investigated. 

2. SYNOPSIS OF MOLECULAR DYNAMICS 
Based on the assumption that the behavior of every particle (atom or 

molecule) follows Newton's equation of motion, Molecular Dynamics is 
an analytical method that can identify the position vector r;(t), velocity 
vector v;(t), and other physical properties of every particle at each time 
step using the potential energy and force acting on each particle. The 
current study uses the Morse potential20, which is known to effectively 
depict the interacting energy between two molecules combined by 
covalent bonding. The Morse potential has been used successfully in 
several s imilar studies14'19 because it is simple, computationally 
inexpensive. The potential energy if>(r;j) and force F(rj), calculated from 
the gradient( derivative) of the potential energy relative to a change in the 
atomic position r;j (=lr;-rA) between molecular i and j, are represented by 
Eq. 1 and Eq. 2, respectively. 

<l>(r;) _ D[e -2a(rij-ro) _ 2e -a(r,1-r0 )] ( 1) 

~N dzr,(t) 
F(r;) =- V;<I>(r;) =m;a; , a; = ----;}i2 

)• 

(2) 

where F; is the force on atom i resulting from the interaction of all other 
atoms, mi is the mass of atom i, r; is the position of atom i, and N is the 
total number of atoms. 

Figure 1 shows the pair potential energies of the Morse potentials, while 
Table 1 shows the Morse potential parameters (D,a,ro) used in the current 
study.20 

The modified(velocity) Verlet scheme,10 a numerical integration algorithm 
for Newton's equation of motion, Eq. 2, is used to trace the position of 
each atom throughout a specified period of time (typically in the order of 
picoseconds). There, position r(t), velocity v(t) and acceleration a(t) at 
time t+At are obtained from the same quantities at timet and t + M I 2. 

~ I 1 

I 0 

I -1 

I 
·2 

. // 

\;1=~1 
-•o.oL------,-LO,--~:z.o,----------c,:":c.o--'== ... ==='cJ .. o 

Atomic Distance [AnglltrOm) 

Figure 1. Pair potential energy of Morse 
potential for Cu-Cu, Cu-C, and 
C-C atoms 

Table 1. Parameters used for Morse 
potentiaf0 

Lattice 

Pair 
D a To 

Constant 
[eV] [ []] [C] [CJ] 

Cu-Cu 0.343 1.359 2.626 3.6153 

Cu-CO. 100 1.700 2.200 
C-C 2.423 2.555 2.522 3.5680 

--·-~·-----·· 
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The initial velocities are assigned based on Maxwell-Boltzmann's 
distribution, where the direction of the initial velocity is assigned by 
uniformly random numbers and the magnitude of the initial velocity is 
chosen such that the average of the kinetic energy (mv2/2) in each atom is 
equal to 3Nk8 T/2, where k8 is Boltzmann's constant (=1.38x10-23JK1) and 
N is total number of atoms. To reduce the tremendous calculation time, 
the bookkeeping method is used. Furthermore, in the MD simulation of 
the AFM-based nano lithography process, since the temperature of the 
system tends to increase continuously, the velocity scale method, which 
rescales the velocities of the atoms during the simulation, is adopted to 
suppress the temperature at a specified temperature in the canonical 
system. The MD simulations are performed in the microcanonical 
ensemble or NVT ensembles: the number of molecules, the volume and 
the temperature are constant quantities. 

3. MD SIMULATION PROCEDURE 
MD simulations of the AFM-based nano lithography process were 

conducted on monocrystalline copper, an face-centered cubic (FCC) 
structure, to study the effect of crystallographic parameters on the nature 
of the material deformation during ploughing process. The tool as a AFM 
probe was modeled with a rigid cone-shape diamond with a hemispherical 
tip. The work material, as shown in Figure 2, was divided into three 
different zones, namely, the Newtonian atoms, thermostat atoms10, and 
boundary atoms. 

Figure 3 shows the various crystal orientations and corresponding 
cutting directions for the monocrystalline copper used in the current 
investigation. Table 2 summarizes the computational parameters used in 
MD simulation; tool and work material dimensions, simulation condition 
(crystal orientation and ploughing direction, ploughing speed, undeformed 
chip thickness (ploughing depth)). The size of the work material is a 
201.6.Ax201.6.Ax39.6.A in width, length, and depth. The diamond tool has 
a 600 tool angle with a tip radius of lOA. For example in Table 2, MD 
simulation for the the crystal setup A:(OOl )[100] indicates that the nano 
lithography was performed in ploughing direction [100] on ploughing 
plane (001) in crystallographic expression, where ploughing plane (001) 
becomes the top surface of the work material. 

Figure 2. MD simulation model for AFM
based nano lithography 

001 lXII 

JOD 010 

... 

Figure 3. Crystal orientation and the 
ploughing directions 



Table 2. Computational parameters used in MD simulation 
Conti ration 3-dimensional MD simulation conditions 
Work-material dimensions 56ax56axlla; a(= lattice constant)= 3.6153 
Tool dimension Tip radius: lOA, Tool angle: 60° 

No. of atoms in work material 
[Crystal setup/No. of atoms] 

Plougliing(cutting) speed 
Bulk temperature 
Undeformed chip thickness 
Cutoff length 
Time step 

A:(001 )[ 100]/129370, B:(001 )[ -110]/129332 
C:(110)[001 ]/126420, 0:(110)[ -110]/126420 
E:(111 )[ -211]/127638, F:(111 )[ -110]/127638 
200m/sec 
300 K 
10.8A 
Rc = 10.8459A 
lfs (= 10"15sec) 
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Thermal relaxation was performed on the model before the tool was 
advanced towards the work material. The model shown in Figure 2 is in 
thermal equilibrium when the initial temperature is set at 300K. The 
boundary atoms of the two layers on all sides except the top side are fixed, 
whereas the atoms in the three layers adjacent to the boundary atoms act 
as thermostat atoms, where the velocities of the atoms are adjusted for 
every specific time step of the computation in order to stabilize the 
average temperature of the thermostat layers at 300K. Moreover, the MD 
simulations were carried out under a ploughing speed of 200m/s. Even 
though this high cutting speed is unrealistic in comparison with AFM 
experiments, it was selected because previous studies12'13'19 confirmed a 
little difference on deformation characteristics such as the surface quality 
between the effect of a 20m/s and 200m/s cutting speed. Also, Mehrez and 
Ciraci21 supported this validity in that the MD simulation carried out with 
relatively higher speed could reveal the main features of the atomic 
rearrangements. 

4. RESULTS AND DISCUSSIONS 
The representative deformation behavior of the work material 

molecules during the AFM-based nano lithography process is shown in 
Figs. 4(a)-(c) for a crystal setup of A:(OOl)[lOO] with a tool travel 
(ploughing length) of 2nm, 6nm, and lOnm, respectively. 

(a) tool travel: 2nm (b) tool travel: 6nm (c) tool travel: 10nm 
Figure 4. Deformation behavior of molecules during AFM-based nano-lithography 

process at different tool travel distances for crystal setup A:(OOl)[lOO], 
where the ploughing operation conducted at crystal orientation of (001) and 
ploughing direction of [100] 

All the simulations were conducted using a til' radius of lOA, tool angle 
of 60°, and undeformed chip thickness of 1 0.8A unless otherwise stated. 
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The figures were created using a special MD post program developed at 
the Nano/Micro Mechanics Laboratory, Kyungpook National University. 
It is clear that the range of plastic deformation was at most limited to the 
work material molecules surrounding the tool. Also, there was a clear 
accumulation and pileup of amorphous structural molecules ahead of the 
tool and a remarkable side-flow on the left and right sides of the tool as 
the tool moved forward. Since this inevitable side-flow of molecules in 
AFM-based nano lithography can deteriorate the surface quality, it should 
be removed by an additional operation such as surface cleaning if the 
pattern obtained is assumed to be used as MEMS device. 

Figures 5(a)-(f) show the effects of crystallographic factors (crystal 
orientation and ploughing direction) on deformation characteristics of 
work material. MD simulation for various combinations of crystal 
orientation and ploughing direction at (001), (110), and (111) and the 
ploughing direction at [100], [-110], [001], and [-211] were conducted. 
Each figure shows cross-sectional views (upper figures) of the zx plane 
and plane views (lower figures) of the xy plan~ when the tool travelled 
12nm along the ploughing direction. As shown in the upper figures, for 
each crystal setup, a clear accumulation and pile-up of atoms ahead of the 
tool were observed as the tool ploughed the work material. Moreover, the 
crystal orientation and ploughing direction were found to have a 
significant effect on the nano patterning deformation characteristic and 
machined surface quality. As such, the surface roughness, as a means of 
assessing the machined surface quality, plays a key role in determining 
whether nano components fabricated by AFM-based nano lithography 
have a fine surface quality suitable for MEMS applications. 

The lower figures in each crystal setup show the slip direction of the 
work material molecules during the ploughing process. More rigorous 
speaking, the lower figures showed the atoms that have largely displaced 
and disordered from its original position. Of course, these atoms include 
both the amorphous structured atoms and the largely slipped atoms caused 
by the dislocation movement on the slip plane by the ploughing process. 
Even though the classification of each atom has not been identified in this 
figure, we can say that the atoms marked by the systematic pattern are 
those with large slip displacement resulted from the dislocation movement 
on the slip plane. In this sense, the patterned line corresponds to the slip 
direction of the work material. 

Figure 5(a) with a crystal setup of A:(001)[100] shows that the 
molecules ahead of the tool sheared at about 45° to the ploughing 
direction, which is similar to conventional machining.17 However, Figure 
5(b) with a crystal setup of B:(001)[-110] shows that the dislocation 
propagated in parallel or perpendicular to the ploughing direction. For the 
crystal setup ofE:(l11)[-211] in Figure 5(e), the dislocation generated and 
propagated at about 60° to the ploughing direction, whereas the 
dislocation propagated along the ploughing direction for the crystal setup 
of D:(ll0)[-110] as shown in Figure 5(d). 
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The shear angle for F:(111 )[ -11 0] is for below the shear angle as 
observed with the case of £:(111)[-211]. In the case of crystal setup of 
0:(110)[-110], the dislocations are generated along the ploughing 
direction. Consequently, there is very little sub-surface Gust beneath area 
of the top surface of the specimen) deformation. On the other hand, the 
secondary dislocations created perpendicular into the work material do 
result in some degree of subsurface deformation. The secondary 
dislocations are different from the primary dislocations created at the front 
and both side area of the tool. 

In contrast, in the crystal setup of C:(110)[001 ], the dislocations are 
generated perpendicular to the cutting direction. This difference for the 
direction of the dislocation generation and propagation could also be 
explained in terms of the angle relation between the ploughing direction 
and the family of slip directions <110> for an FCC crystal of copper. 

From the simulations, the dislocations in the case of A:(001)[100] seem 
to propagate at 45° to the ploughing direction as shown in Figure 5(a). In 

(a) A:(OOl)[lOO] 

' i ,_- .- I 

.:;.~ 
':~;~· 

... - .. ~. 

(b) B:(OOl)[-110] (c) C:(110)[001] 

(d) 0 :(110)[-110] (e) E:(lll)[-211) (f) F:(lll)[-110] 
Figure 5. MD simulation results showing cross sectional views (upper figures) of zx plane 

and plane views (lower figures) of xy plane for various crystal setups at tool 
travel of 12nm along ploughing direction, where tip radius is lOA, tool angle is 
60°, and undeformed chip thickness is 10.8A 

the case of C:(110)[001 ], the dislocations seem to propagate perpendicular 
90° to the ploughing direction as shown in Figure 5(c). In both these 
crystal setups, the ploughing direction corresponds to the <100> family. 

In the case of ploughing direction of <110> family, the angle between 
the ploughing direction and the slip direction can be oo, 60°, or 90°.22 
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Consequently, p laughing a long t his particular direction p roduces 
dislocations either parallel to (as shown in Figure S(d)) or both parallel 
and perpendicular to (as shown in Figure S(b)) the ploughing direction. 
Also, the angle between [ -211] ploughing direction and the slip direction 
can be 30°, 54°, 73°, or 90°.22 In the current study, the dislocations in the 
crystal setup of E:(lll)[-211) were observed to propagate at an angle of 
60° to the ploughing direction. 

Figure 6 presents the force-ploughing distance curves during the AFM
based lithography process for the crystal setup of A:(OOl)[lOO]. Mter a 
rapid rise in the forces (cutting force and thrust force) until the tool 
travelled almost 2.0nm, large fluctuations in each force were then shown 
as the tool travelled further. These short-time scale fluctuations were due 
to the rapid approaching and separating motion of the work-material 
molecules surrounding the tool. 

Cutttng Dl.,..nce [nm] 

Figure 6. Force-ploughing distance curves in the case of A:(OOl )[ 100] simulation 

Table 3 shows the averaged forces calculated for the tool travel distance 
from 4nm to 12nm, at where the fluctuation of each force component 
became saturated at an almost constant value and the nano lithography 
process is considered to be in a steady-state. The resultant force, i.e. 
vector sum of each force, was found to vary cyclically with the orientation 
of the crystal and ploughing direction. As shown in Table 3, the minimum 
value for the resultant force occurred with the crystal setup of 
C:(llO)[OOl ]. This is not in total agreement with the argument that the 
minimum cutting force for an FCC material should be along the most 
favourable slip system, i.e. in the crystal setup of F:(lll)[-110]. Because 
the AFM tip used in this study has a negative rake angle and 
hemispherical tip-end shape, the slip system denoting the minimum 
cutting force does not match with that of the theoretical prediction based 
on crystal plasticity.22 The differences in the results once again highlight 
the influence of the tool geometry on the resultant force system. However, 
the maximum value obtained with the crystal setup of E:(lll )( -211 ]. 

This estimation of the forces exerted on the tool can be used when 
designing the strength and shape of the AFM cantilever beam.23 Surface 
roughness of machined surface plays a key role in AFM-based lithography 
for MEMS devices with good finished surface. 
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To evaluate the surface quality of the machined surface, the height 
difference between the molecules at the lowest valley point and those at 
the highest side-flowing point of the machined surface was measured, as 
shown in Table 4. Table 4 includes cross-sectional views of the yz plane 
denoting the surface profile and elastic recovery of the molecules after the 
ploughing process for two only typical cases of the crystal setup of 
A:(001)[100] and 0:(110)[-110]. The results for other cases are omitted 
due to space limitation. The figures of the first row show cross-sectional 
views of AA section after the ploughing distance of 10om, where the tool 
is still on ploughing, whereas those of the second row show residual 
cross-sectional views of BB section at the ploughing distance of 5nm, 
where the tool has already passed. 

Table 3. Calculated averaged forces for various crystal setups 
Crystal setup Cutting force [ nN] Thrust force [ nN] 
A: (001)[100] 85.20 50.10 
B: (001 )[ -110] 80.37 58.98 
C: (110)[001] 78.15 51.70 
D: (110)[-110] 79.87 61.98 
E: (111)[-211] 89.04 61.83 
F: (111)[-110] 88.27 62.98 

Resultant force [ nN] 
99.79 
100.66 
94.55 
101.90 
109.34 
109.21 

As shown in Table 4, the ploughed surface underwent a relaxation 
process, whereby the pile-up and side-flowed molecules on the machined 
surface became stabilized and elastically recovered. The results indicated 
that the ploughing process for the crystal setup of 0:(110)[-110] had the 
minimum roughness and least pile-up of molecules after the passage of 
the tool. 

Table 4. Surface profile and elastic recovery of ploughed surface (cross section view in 
z lane 

Max. side-flow: 10.175A Max. side-flow: 8.236A 
Max. valley depth: 12.186A Max. valley depth: 11.619A 

Max. side-flow: 2.959A Max. side-flow: 2.392A 
Max. valley depth: 9.041A Max. valley depth: 7.822A 

In this study, we have used the Morse potential function to represent the 
interacting force between the atoms of the simulation, but any other type 
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of potential based on embedded atom method (EAM) 24 could be used as 
well. Using EAM potential would slightly affect the results. 

5. CONCLUSIONS 
The 3-dimensional molecular dynamic simulations for AFM-based 

nano lithography were performed to evaluate how crystallographic factors 
(crystal orientation and ploughing direction) influenced the nature of 
plastic deformation, dislocation generation relative to the slip direction, 
the resultant force, and surface quality. From this study, MD simulation 
for the AFM-based lithography of nanocrystalline copper revealed that 
different crystal orientations and ploughing directions have a significant 
impact on the ploughing force and nano deformation characteristics. For 
example, with the crystal setup of A:(001)[100], an extensive dislocation 
motion was found at about 45° to the ploughing direction, whereas with 
the crystal setup of E:(111)[-211], an extensive dislocation was 
propagated at about 60° to the ploughing direction. The resultant force 
varied with the orientation of the crystal and cutting direction. The 
maximum resultant force was with the crystal setup of E:(lll )[-211], 
while the minimum was with the crystal setup of C:(110)[001]. 
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Abstract Mechanical properties of unique-shaped nano materials called "atomic
cluster-assembled" structure are studied by using molecular dynamics 
(MD} simulation and adopting effective medium theory (EMT} poten
tial function. First, copper clusters with stable globular shape are com
putationally arranged on 1-D, 2-D, or 3-D regular array in artificial 
manner and then their gathering behavior is observed. Piled-up clus
ters become one specimen, which is sometimes left with internal voids. 
It is found that morphology of the product is largely dependent on initial 
kinetic energy attached to clusters. Secondly, strength of the "atomic
cluster-assembled" structures is evaluated by tensile loading test. Anal
ysis of tensile strength and strain energy shows that defects introduced 
at the generating process markedly alter the behavior of the structure 
in the breakage. Brittle fracture tends to occur when the specimen 
includes initial imperfection such as void structure between clusters. 

Keywords: Molecular dynamics, Atomic cluster, Copper, Tensile strength, Strain 
energy, Void, Sintering, Nanotechnology 

1. Introduction 
An atomic cluster (sometimes called an ultra-fine particle) is a very 

tiny substance composed of less than a million copper atoms, holding a 
spherical shape with high symmetry. It is generated with relative ease by 
the gas condensation method or liquid phase condensation with present 
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nanotechnology. From a nano-scale engineering point of view, atomic 
clusters can hopefully be recognized as nano-size building blocks for 
constructing nano-scale machines or materials. Nanocrystalline materi
als synthesized from these clusters are proposed and they are expected to 
possess favorable properties, but their mechanical properties are still in 
puzzle. Besides, numerous generating processes under various different 
conditions request consideration of strength from their morphological as
pect. Sometimes clusters connect to each other jointlessly (that is, close
packing clusters with dense structure), and sometimes they are built up 
with hollows and voids, as often observed in zeolites. These materials 
obtained from atomic clusters can be generally called "atomic-cluster
assembled" (ACA) structures, even though their utility value has not 
been confirmed yet. Nowadays, computational mechanics can help us to 
study such materials with sub-nano-scale resolution. Here the molecular 
dynamics (MD) method is utilized to predict morphology, strength, or 
function of "ACA" structure. 

MD simulations are conducted using an interatomic interaction based 
on effective medium theory (EMT}, which is recognized as a precise 
many-body potential function. First, copper clusters (made up of 683 
atoms) are arranged on 1-D, 2-D, or 3-D regular arrays in an artificial 
manner and then their gathering behavior and consequence thereof are 
investigated. The piled-up clusters become one specimen in which the 
ruggedness of cluster surface and internal voids often remain. Based on 
this morphological consideration, tensile strength and strain energy of 
the specimens are analyzed. It is found that inherent defects greatly 
influence the strength of the structure. Brittle fracture tends to occur 
when the specimen includes initial imperfection such as void structure or 
grain boundaries between clusters. Furthermore, broadening and thin
ning of grains are detected during deformation. This is largely due to 
grain rotation promoted by generation and motion of stacking faults. It 
is expected that grain rotation, grain migration, or GB migration plays 
dominant role when "ACA" structure deforms as similarly observed in 
the deformation mechanism of nanocrystalline structure (Schi0tz,J. et 
al., 1998) (Shimokawa, 2001) (Hasnaoui,A. et al., 2002) (Yamakov,V. et 
al., 2002) . It may be a novelty of this study that the strength of nano
size substance is checked up from its generating stage. It is discussed 
and concluded that the strength of atomic-cluster-assembled structures 
is tremendously dependent on their initial conformation (i.e. on the 
morphological aspect of the" ACA" structure). 



345 

2. Method 
2.1 Preparation of atomic clusters 

Copper atomic clusters are scrutinized in this study. Fig.1(a) shows 
a procedure to prepare stable atomic clusters. First, a spherical region 
with the required diameter is cut from a face-centered cubic (f.c.c.) bulk 
crystal which has been constructed with normal lattice constant at 0 K 
( =0.3466nm). Then, it experiences annealing process of MD up to 10 K 
to stabilize imbalances appearing mainly in surface region. 

An interatomic potential derived from effective medium theory (EMT) 
(Jacobsen,K.W. et al., 1987) for copper crystal is adopted throughout 
this study. Fig.l(b) shows the relation between surface atom ratio and 
surface energy for several clusters (N is the number of atoms in one 
cluster). Surface atoms are determined by coordination number anal
ysis, namely, by excluding twelve-coordinated atoms. They all have a 
spherical shape, except for very small cluster of less than a few hundreds 
of atoms. The 683 cluster, which is used as building blocks here, has 
46% surface atoms and relatively low surface energy and its diameter is 
approximately 2.4 nm. 

f.c.c. llnlcture 
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Figure 1. Procedure for making stable copper atomic cluster (a) and relation between 
surface atom ratio and surface energy for single atomic clusters (b) 
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2.2 Generation of atomic-cluster-assembled 
structure 

Conceptually, "ACA" structures are able to be designed and be manu
factured controllably as you like. Because of the inherent surface reactiv
ity, clusters also show spontaneous gathering. We have only to prepare a 

(a) 

radiu : about 1.2nm 

an c:xample: 
8 clusler.< system 
(in2-DBITIIy) 

y 

X 

I : length of 
spec 1m en 
£ :strain 

lllillllilli._J - t : time 
cluster J} 

v=~l m1 2 dt s 
(b) 

Figure 2. Computational generating process of atomic-cluster-assembled materials 
(an example) (a) and schematic of tensile test by MD (b) 

multiple of equivalent clusters and give them a regular arrangement and 
initial velocity to get close to each other. "ACA" materials are supposed 
to be categorized into one-dimensional(l-D), two-dimensional{2-D), or 
three-dimensional(3-D) according to structural dimension (Siegel,R.W., 
1993). The magnitude of the approaching velocity (its components are 
vx, vy, and Vz) must be below a few hundreds m/s, because allowable 
value is estimated to be about 700 m/s in order to prevent heavy lattice 
imperfection in the structure (Saitoh, 2002). The initial temperature 
of each cluster is 0 K, that is, there is no initial vibration in it before 
interacting. Limited arrangements to be examined are tabulated in Ta
ble 1 together with computation conditions. Probably cluster's size, the 
way of arrangement, or compatibility of crystalline direction will be also 
an important factor, but it is not unreasonable that the first discus
sion is done on these cluster systems of a single size with quite uniform 
arrangement. 



2.3 Tensile testing procedure by molecular 
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Tensile testing of" ACA" materials is carried out as follows. Fig.2(b) 
shows the schematic of tensile loading by MD method. Rigid regions of 
each 0.98nm width (twice the cut-off distance of the potential function) 
are pulled to the opposite side with the relative velocity of 100 mfs. 
Temperature rise in MD loading is not restricted artificially, because it 
might be important in fracture process though it is small quantity. 

Table 1. MD calculation conditions 

2.4 Analysis method 
Most defects appearing in" ACA" structure are either "under-coordinated 

atoms" (i.e. the coordination number Nc < 12) or stacking faults. The 
existence of these defects is detected by atom-by-atom topological anal
ysis of bonding states (Honeycutt,J.D. and Andersen,H.C., 1987) , of
ten referred to as topological medium-range order analysis or common 
neighbor analysis. Although this local atomic rearrangement is vital for 
fracture process, it is not a direct objective in the present treatise but 
will be treated in another one (Saitoh, 2002). 

The tensile strength of "ACA" structure is evaluated from stress
strain curves obtained when elongation of the specimen occurs in the 
course of MD simulations. Each component of the stress tensor cr is 
calculated by averaging over the atomic stress tensors O'i expressed as 
(Born,M. and Huang,K., 1954) 

1 " 1 " 1 " 1 rijrij cr=- L...... cri=- L...... -L...,..¢(rij)--, 
Nin ·e" Nin . " 20i .4 . rij 

I Yin zE Yin Jy-1 

(1) 

where ¢'(r) is the derivative of the effective potential for the EMT po
tential, rij is the difference vector directing from the i-th atom to the 
j-th atom, Tij is the magnitude of ri1, and ni is the atomic volume at
tributed to the i-th atom. Regional volume and the number of atoms to 
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be averaged are defined by Vln and Nin respectively, which are selected 
for all region and atoms in this study. In the coordinate system of Fig.2, 
tensile stress is estimated from they component, ay = a22· 

3. Results & Discussions 

3.1 Morphological Aspect 
Fig.3 shows examples of united atomic lumps (" ACA" structures). 

Partly because of the low temperature, the clusters' arrangement in the 
original regular array is almost preserved. 1-D structures (Fig.3(a)) 
become like a wire. 3-D structures (Fig.3(b)) contain a lot of boundaries 
between clusters. On the other hand, 2-D structure is tremendously 
dependent on conditions of approaching velocity. In other words, the 
kinetic energy attributed to all clusters determines the morphology of 
"ACA" structures. 

2-D structures arranged in 2 x 4 x 1 (each integer corresponds to the 
number of clusters in x, y, or z directions, respectively) are divided into 
two major kinds of structure, as shown in Fig.3(c) and (d). One is a 
porous structure, which seems to be materialized with weak bondings 
in interface region. It includes voids inside of the structure and shows 
surface ruggedness originated from natural cluster's curvature. Another 
structure is a fully compact structure. We distinguish these two mor
phologically different structures by naming (A)void model (with internal 
void structure) and (B)compact model (in which void vanishes). 

Generally speaking, as shown in Fig.4, surface atom ratio is closely 
related to initial kinetic energy as well as the structural dimension. Data 
obtained for all the structures from 1-D to 3-D are plotted in the figure. 
A single raw 683 cluster (so to speak, 0-D structure) has the surface 
atom ratio of 46% which is upper limit of the surface atom ratio. The 
border in surface atom ratio for distinguishing void model from compact 
one is roughly estimated at 30% in 2-D structure from this distribution 
map. 

3.2 Aspect of Mechanical Properties (Strength) 
Among possible numerous "ACA" structures, two types of 2-D spec

imen again show clear contrast in response to an external force. Fig.5 
shows the transition of atomic configuration under tensile loading. Breakage 
occurs when total strain reaches 0.25 for model( A) and 0.45 for model(B). 
The specimen of model(B) presents large elongation and necking in 
the middle before breakage, whereas the model(A) shows inter-granular 
breakage not in the middle region. Ductile behavior of model(B) accom-



(a) 1-D (1 X 4 X 1) (b) 3-D (2 X 4 X 2) (c) 2-D (2 X 4 X 1) 
(v.-=10.0) (vx=v,=10.0, (vx=5.0,vr=10.0) 

Vv=20.0) -t(A)void model 

(d) 2-D (2 X 4 X 1) 
(vx=vv=IO.O) 

-t(B)compact model 
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Figure :J. Atomic configuration of united clusters (" ACA" structures) obtained by 
MD simulation (different shading is used for distinguishing belongings to initial clus
ters; unit of initial velocity is (m/s].) 

36 

34 

Cl) 30 
u 

~ , 28 -- ' ·-!:!_ • 
' 13, 

.. 

1-D A 

2-D (no void) [!] 

2-D (w~h void) • -
3-0 (no void~ 0 

3-0 (with void • 

------
~- --- 2-Dimensiona: 

• K 
• Clt:l [;] '\ 

t:d'l : 
[!] ....... / 

26 
' : 

24 
' ' 

22 

_ .. _ .. _·,:_, __ 
--~- -~---,::.-:;_:;-- 3-Dimensional 

• • o_',\ --· . ---------.-r------· 

:' -- ---~- - -~ ! -Dimensional 

. 
',A 

' ... ' • >·-~~:: :;----.------
'#. / • ~ • 
o 32 i • I [!] 

~ . . 
\ 0 ~ • • • 

0 • If 

0.001 0.01 0.1 10 100 1000 10000 
initial kinetic energy per atom x w-22 J 

Figure .f. Relation between surface atom ratio and initial kinetic energy 



350 

e~ = 0.346 
(B)compact model 

Figure 5. Transition of atomic configuration of atomic-cluster-assembled structure 
under tensile loading 
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panies unrecoverable thinning of the grain (originally, cluster), which is 
supposed to be caused by many intra-granular slips. On the other hand, 
model( A) presents a kind of brittle cleavage and its grains preserve ini
tial spherical shape after the disassembly. It is also found that grain 
motion actively occurs in model(A). 

Fig.6 shows the stress-strain curves for (A) and (B) specimens. Detachment 

5 

4 

0 

-1 L---~~~~--~--~--~---L---L---L--~ 
0 0.05 0.1 0., 5 0.2 0.25 0.3 0.35 0.4 0 .45 0.5 

strain 

Figure 6. Stress-strain curves obtained by MD tensile testing for two kinds of 2-D 
structures ((A)void model and (B)compact model) 

of the structure is found when full relaxation of stress is observed. Strain 
energy accumulated during loading are corresponding to the area sur
rounded by stress-strain curve and horizontal axis, so we can estimate 
strain energy from Fig.6. This quantity becomes an evaluation measure 
of ductility. It is obvious that strain energy of model(B) surpasses that 
of model(A). 

We attempt to summarize general tendency about mechanical proper
ties as follows. Fig. 7 shows the relation between tensile strength (max
imum stress appearing in stress-strain curves) and strain energy stored 
into the specimen, for all cases calculated. Tensile strength varies from 
4 GPa to 7.5 GPa (except for 0-D structure or 1-D structure in latitu
dinal tension having an exceptional value such as 16 GPa). Dependence 
on morphology are described as following two points based on Fig. 7. 
(1)3-D structure generally shows large ductility (plots of solid and open 
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circles}, (2}ductility of 2-D structure is sensitive to void structure (plots 
of solid(=void model} and open(=compact model} squares}. 
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Figure 7. Relation between tensile strength and strain energy 

4. Conclusion 
We perform molecular dynamics simulation of copper atomic-cluster

assembled (ACA) materials. Points of view are on possible structural 
configuration and on their strength. The following observations are done. 

• By adjusting approaching velocities between clusters, both dense 
and sparse structures are obtained. Surface atom ratio is one of 
deciding factors of the structure and has a certain relation with 
initial energy of clusters. 

• A specimen without void structure possesses extremely higher tough
ness and exhibits ductile failure. On the other hand, a specimen 
with void transforms its shape retaining original cluster's geomet
rical feature and shows brittle breakage. Their difference is also 
understood by analysis of strain energy. 
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COMPETING DEFORMATION MECHANISMS IN 
NANOCRYSTALLINE METALS 

Jakob Schi0tz and Smen L. Frederiksen 
Center for Atomic-scale Materials Physics (CAMP), Department of Physics, 
Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark 

Abstract: The deformation of nanocrystalline copper and molybdenum has 
been simulated using molecular dynamics. Competing deformation 
mechanisms are observed in the simulations, including grain bound
ary sliding, dislocation motion, twinning and intergranular fracture. 
The balance between these mechanisms depends on the grain size 
and the material, the most dramatic difference being that fracture is 
dominating in molybdenum while not observed in copper. 

Keywords: Nanocrystalline metals, computer simulations, copper, molybdenum, 
deformation mechanism, dislocations, ductility, fracture. 

1 INTRODUCTION 

The properties of metals and alloys depend strongly on the grain size of the 
material, giving unusual properties to materials with unusual grain sizes. One 
example of this it the very high hardness of nanocrystalline metals, even metals 
such as copper which are normally rather soft become very hard when the grain 
size is reduced to the nanometer regime. This makes nanocrystalline metals 
interesting both from a practical and theoretical point of view - the materials 
may not only have (technologically) interesting properties, studying them as 
an extremal case of polycrystalline metals may reveal information about the 
behavior of metals which would otherwise be difficult to obtain. 

The mechanical properties of nanocrystalline metals have been studied 
thoroughly both experimentally (see e.g. [1--6]) and with computer simulations 
[7 -14]. In most experiments, the hardness and yield stress of nanocrystalline 
metals is seen to increase with decreasing grain size, roughly following the so
called Hall-Petch relation [15, 16] stating that the yield stress increases with 
the inverse of the square root of the grain size 

k 
ay = ay,oo + ...(d 
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(1) 

H. Kitagawa andY. Shibutani ( eds. ), JUT AM Symposium on Mesoscopic Dynamics of Fracture Process 
and Materials Strength, 355-363. 
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Here ay is the yield stress, dis the grain size and k is called the Hall-Petch 
slope. The hardness and flow stress obey similar relations. In some cases, 
the Hall-Petch relation is observed to break down for the smallest grain sizes, 
leading to approximately constant or even decreasing hardness as the grain size 
is reduced sufficiently. Unfortunately, many of the measurements are probably 
dominated by defects such as nanovoids and impurities in the grain boundaries, 
especially for the smallest grain sizes [1, 4]. 

Most computer simulations give a different result: the flow stress (and thus 
the hardness) decrease with decreasing grain size [7-9]. This occurs because 
most computer simulations are limited to grain sizes slightly smaller than the 
range of grain sizes investigated experimentally. At these grain sizes (below 
approximately 10 nm), the large density of grain boundaries suppresses dislo
cation motion and favors grain boundary sliding as an alternative deformation 
mechanism. This shift in deformation mechanism results in a change in how 
the mechanical properties depend on grain size. Recently, this shift and the 
resulting maximum in flow stress for intermediate grain sizes was directly ob
served in computer simulations [12, 17]. 

Just as varying the grain size may cause a shift in deformation, so may 
varying the material. Metals with face-centered cubic (fcc) crystal structure 
typically show a ductile behavior, whereas metals with a body-centered cubic 
(bee) structure often show a more brittle behavior, in particular at lower tem
peratures, and often show a brittle to ductile transition when the temperature is 
increased. This difference between fcc and bee metals is generally attributed 
to different dislocation properties. 

It is thus clear that many different factors may influence the deformation 
mechanism in polycrystalline metals, and that different deformation mecha
nisms may be dominating in different situations. Atomic-scale computer simu
lations are an excellent tool to study this, since the access to all atomic degrees 
of freedom in principle makes it possible to determine which mechanisms are 
active under which circumstances. 

Molecular dynamics simulations of nanocrystalline copper and molybde
num were performed to investigate if different deformation mechanisms were 
active in different materials and for different grain sizes; and to investigate 
what effect such shifts in deformation mechanism may have on the mechanical 
properties. 
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2 METHODS 

Polycrystalline "samples" are generated using a Voronoi construction [18], 
where a set of grain centers is chosen randomly, and the part of space nearer one 
center than any other center is filled with a randomly oriented crystal lattice. 
The resulting nanocrystalline sample is then briefly annealed by performing 
a molecular dynamics simulation at 300K for 50 ps, while allowing the sys
tem size to relax. The details of the generation procedure have been published 
elsewhere [8]. 

2.1 Molecular dynamics 

The forces on the atoms are calculated using the Effective Medium Theory 
[19, 20] for copper, and a newly developed potential for molybdenum [21]. The 
Effective Medium Theory normally underestimates the stacking fault energy, 
but as the stacking fault energy is important for dislocation properties such as 
the splitting width of dislocations, we used a new set of potential parameters 
that reproduce the correct stacking fault energy [22]. The molybdenum po
tential is inspired by the Effective Medium Theory, but it is more complicated 
and includes effects of directional bonding. The parameters of the potential are 
optimized using the force matching procedure: the forces on all the atoms in 
a few representative systems are calculated using Density Functional Theory, 
and the potential parameters are adjusted to reproduce these forces as closely 
as possible. The details are described elsewhere [21]. 

The simulations are performed at constant temperature (T = 300 K) and 
zero transverse stress (axx = ayy = axy = 0) while applying a constant 
strain rate (izz) along the tensile axis. A combination of Parrinello-Rahman 
and Nose-Hoover dynamics are used to obtain this [23, 24]; however izz is ex
cluded from the usual dynamics and remains a constant. Full periodic boundary 
conditions are applied both during the sample generation and during the simu
lations. 

2.2 Parallel molecular dynamics 

Due to the large system sizes, the molecular dynamics is performed on parallel 
computers. Molecular dynamics is usually parallelized by assigning a region of 
space to each processor. In the case of metallic systems, where the interactions 
are relatively short ranged, and where the density does not vary much, a simple 
decomposition of space into equally sized boxes can be very efficient. It is 
illustrated in Figure 1. 
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Each processor is responsible for all 
. . . . 

Zone of imerest of CPU (i,J) 

calculations pertaining to atoms in its re- ---t------t-1,------l---+

gion of space. To calculate the forces on 
these atoms, it needs information about 
all atoms in a slightly larger region of -- -I------Z7 

space (called the "zone of interest" in 
Figure 1 ). At the beginning of each time 

CPU (l.j-

step, these positions must be received -- -t-------)1;,. 

from the neighboring processors, requir-
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zone of rR<non<ibilitv 

sors. Furthermore, with the potentials ---+----f-----'---.-:.:.::-.-+-
used here it is advantageous to conunu-
nicate some intermediate quantities used 
in the force calculations. Occasionally, 

Figure I: Spatial decomposition in two 
atoms move between regions of space dimensions. 
assigned to different processors, and in-
formation pertaining to these atoms then needs to be moved between proces
sors. 

The large amounts of data generated by parallel simulations can be prob
lematic. The positions and velocities of all atoms can only rarely be stored on 
disk. In order to be able to store configurations sufficiently often for the later 
analysis of the simulations, configurations are saved in a format where only 
information about "interesting" atoms are saved. Conunon Neighbor Analy
sis [25] can be used to decide which atoms are in a perfect crystal lattice, and 
which are near defects, and only atoms near defects are then saved. 

The program used is available on the Internet under an Open Source license 
[26]. 

3 RESULTS 

Simulations of nanocrystalline copper show a gradual shift in deformation 
mechanism as the grain size is varied. When the grain size is below 10 nanome
ters, grain boundary sliding is dominating; above 15 nrn dislocation motion 
dominates. This is clearly seen in Figure 2, showing deformation maps from 
simulations with varying grain sizes. It is important to note that there is no 
sharp change in deformation mechanism as the grain size is increased; the shift 
from grain boundary mediated to dislocation-mediated plasticity is quite grad
ual. 

The gradual shift in deformation mechanism as the grain size is varied re-
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Figure 2: The deformation mode changes as the average grain diameter is increased 
from 7.5 nm (A) over 12 nm (B) and 24 nm (C) to 49 nm (D). The greyscale indicates 
the local strain as the global strain of the system is increased from 1 0% to 11 %; lighter 
colors indicate higher strains. As the grain size is increased, the deformation moves 
from the grain boundaries into the grains. The simulations contain 0.38, 1.6, 12.7 and 
102 million atoms, respectively. 

suits in a maximum in the flow stress of the material when the grain size is 
around 10-15 nm [12]. When the grain size is reduced below 10 run, increased 
grain boundary sliding softens the material, whereas above 15 nm the larger 

grains makes dislocation motion easier. 
In the regime where the main deformation mechanism is dislocation mo

tion, the small grain size still dominates the behavior of the dislocations. As 

there is barely space for dislocation tangles and Frank-Read sources inside the 
grains, the vast majority of the dislocations are nucleated at the grain bound
aries. The dislocations thus nucleated eventually move through the grains and 

are absorbed by the grain boundary on the opposite side of the grain. On their 

way, many interactions with other dislocations occur. The elastic interactions 

between the dislocations are strong, and cause the formation of dislocation 

structures such as pile-ups (see Figure 3). Other types of interactions are also 
seen. Occasionally, two Shockley partial dislocations collide and form a stair
rod dislocation. Although the stair-rod dislocations are sessile, they do not sig
nificantly hinder dislocation motion, as they are short-lived and quickly split 

into two mobile Shockley partials. 
In molybdenum, the deformation mechanism is completely different [21]. 

Although both grain boundary sliding and dislocation motion are observed, the 
imposed strain is mainly accommodated through intergranular fracture (See 
Figure 4). Dislocation motion is known to be more difficult in bee metals than 

in fcc metals due to different structures of the dislocation cores. Grain bound
ary sliding also appears to be less important in nanocrystalline molybdenum 

than in nanocrystalline copper. In spite of the much larger stresses, less grain 
boundary sliding is observed in the molybdenum simulations, this may be due 
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Figure 3: Dislocation structure fonned on a glide plane in a large grain. The figure 
shows a thin slice of the grain, containing the slip planes where a dislocation pile-up 
has fonned. The dislocations were nucleated in the grain boundary in the upper left 
comer, and are moving towards the lower right comer. The elastic repulsion between 
the dislocations keep them apart and prevent them from moving into the grain bound
ary, the dislocation thus fonn a pile-up. A few other dislocation on nearby slip planes 
are also seen, some of them appear to end where they move out of the slice included 
in the figure. 

to the directional bonding in molybdenum. In copper the grain boundaries slide 
through a large number of small shuffling events where a few atoms move with 
respect to each other. Directional bonding is likely to make this less favorable. 

Although dislocation motion and twinning are seen both in copper and in 
molybdenum, there are significant differences due to the different crystallogra
phy. In fcc metals dislocations split into two Shockley partials separated by a 
stacking fault [27], and simulations often show the emission of only one par
tial. The core structure is extended on the glide plane, making it difficult for 
screw dislocations to move onto other glide planes (cross-slip). This is seen in 
the simulations, where even for the largest grain sizes single Shockley partials 
often travel through the grain before a second one is nucleated. In the molyb
denum simulations screw dislocations are not bound to a specific glide plane, 
as can be seen by the trace left by the dislocation in Figure 4. 
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Figure 4: Competing deformation mechanisms In nanocrystalllne molybdenum. The 
main defonnation mechanism is intergranular fracture, but twinning, dislocation mo
tion and grain boundary sliding are also observed. The large plot shows the local 
strain during the simulation, the inset shows the crystal structure, white atoms are in 
bee structure, dark atoms are in other structures. Adapted from Ref. [21). 

Twinning is seen in both copper and molybdenum, but the mechanism is 
quite different. In the simulations of copper (and in other simulations of fcc 
metals) twinning typically starts by a single Shockley partial traveling through 
a grain, leaving a stacking fault behind. Instead of the matching trailing partial, 
a second leading partial is later nucleated at an adjacent slip plane, presumably 
because the resolved shear stress is larger on the leading than on the trailing 
partial. This process can then be repeated, creating a narrow twin. The twins 
created by this process are only a few layers wide. Their role as barriers for 
dislocation motion is reduced by the fact that the twin planes are parallel to 
the primary slip plane of the grains. Several other twinning mechanisms have 
been observed in nanocrystalline aluminum with a columnar grain structures 
[13, 14]. although it should be noted that the quasi-two-dimensional nature of 
the simulations might have increased the tendency to form twins [28]. 

In the simulations of molybdenum, twinning is also seen, but here wider 
twins are created as arrays of dislocations are nucleated on adjacent glide 
planes. The Burgers vector of these dislocations do not correspond to a lat
tice vector of the bee lattice, they therefore transform the lattice [27]. As the 
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motion of a single such dislocation does not result in a low-energy planar fault, 
they must be nucleated in a sufficiently large number to create a twin. Their 
nucleation is favored by their much small burgers vector, reducing their energy 
to approximately 11% of the energy of a normal lattice dislocation. 

4 CONCLUSIONS 

The deformation mechanisms in nanocrystalline copper and molybdenum were 
studied using molecular dynamics on parallel computers. The simulations 
show several competing deformation mechanism. In both metals, we observed 
grain boundary sliding, dislocation motion and twinning. Furthermore, inter
granular fracture was observed in molybdenum. In copper, grain boundary 
sliding was the dominant deformation mechanism when the grain size is be
low approximately 10 nm, and dislocation motion was dominating for grain 
sizes from approximately 15 nm up to 49 nm, which was the largest grain 
size studied. In molybdenum, intergranular fracture was the most important 
deformation mechanism, but the effect of varying the grain size has not yet 
been studied. Nanocrystalline molybdenum is thus brittle, whereas we find 
that nanocrystalline copper is intrinsically ductile, i.e. large plastic strains can 
be obtained locally. This does not mean that macroscopic samples of nanocrys
talline copper will be ductile, as the lack of work hardening will cause failure 
by strain localization, unless special techniques are used to prevent it [29]. 
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Abstract Molecular dynamics simulations are carried out to obtain fundamental knowl
edge of the mechanical properties of nanocrystalline metal and mechanisms of 
grain refinement. First, tensile tests of aluminum nanocrystals with different 
grain sizes are conducted. As the result, an ideally high flow strength is shown in 
the case of 40 nm grain size. The deformation mechanisms are discussed based 
on the detail investigation of atomic configuration and the ideal grain size cor
responds to the threshold, at which the deformation mode is switched from the 
dislocation controlled deformation to the grain boundary controlled deformation 
and vice versa. Second, single- and poly-crystalline iron nanowires in torsion 
are examined by using twisted periodic boundary condition (TPBC) which is 
newly proposed. Various mechanical properties of nanowires, e.g. anisotropy, 
grain size dependence, and specimen size effect, are studied through torque ver
sus twist relationship, and the process of polycrystallization from single crystal 
and internal structural change of nanocrystals are clarified. Third, an tensile test 
of double-notched test-piece of amorphous iron is examined for the deformation 
induced crystallization mechanism. 

Keywords: Atomistic simulation, Nanocrystal, Amorphous, Tensile deformation, Torsion, 
Twisted periodic boundary condition, Grain boundary, Dislocation, Stacking 
fault 

1. INTRODUCTION 
Grain refinement of poly crystalline metals is a promising process for strength

ening, since it has the advantage of recycling. Above all, severe plastic defor
mation (SPD, or intense straining) processes are expected for obtaining the 
ultrafine grained structure. However, the mechanisms of grain subdivision of 
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single crystal and grain refinement in such process have not necessarily been 
clarified. In addition, there seems to be no decisive answer to the question what 
structure shows ideally high strength and high ductility. In the present study, 
to obtain the essential knowledge for structure and deformation of polycrys
talline metals, molecular dynamics simulations are carried out. We deal with 
three topics in the present paper. 

First, the mechanical property of aluminum nanocrystals with different grain 
size under tensile loading is examined. There are lots of studies dealing with 
the deformation of nanocrystalline materials from atomistic point of view (Schi!1}tz 
et al., 1998; Van Swygenhoven et al., 1999; Yamakov et al., 2001; Shimokawa 
et al., 2002). Here, we will focus on the grain size dependency of strength and 
mechanical properties by using an idealized model as simple as possible. 

Second, the mechanical properties and structural changes of iron nanowire 
in torsion are investigated. Various practical-use-oriented SPD processes have 
been invented so far, such as the equal-channel angular pressing (ECAP), high 
pressure torsion (HPT), accumulative roll-bonding (ARB) (Saito et al., 1999) 
and so on. A characteristic common to above all is that the process succeeds in 
giving large deformation to materials, keeping the macroscopic shape during 
the process. In such meaning, torsion is promising and it is also convenient 
to exclude the shape change of the test-piece in atomistic simulation carried 
out under a limited size. We consider the deformation in both single crystals 
and polycrystals and discuss the polycrystalization and nanostructural changes 
occurring during torsion. 

Third, deformation induced crystallization in amorphous iron under tensile 
loading is considered. There are some reports regarding experimental obser
vation for nano-sized particles at the severe plastic zone in amorphous metal 
(Nieh et al., 2001; Tarumi et al., 2000). Both temperature field caused by 
heating by plastic deformation and mechanical field affect the process, and 
there is some possibility that controlling them is applicable to new production 
methodology. Here, we discuss the structural changes in severely deformed 
double-edge-notched specimen and nanocrystallization. 

2. MODELS AND METHODOLOGIES 
2.1 Aluminum Nanocrystal in Tension 

The embedded atom method potential proposed by Mishin et al. ( 1999) is 
adopted as the interatomic potential for the aluminum nanocrystals. A unit 
structure composed of 8 regular hexagonal column-shape grain is considered. 
Size of the unit structure is determined uniquely by grain size d nm, and whole 
analysis model consists of M and N arrangements of this unit structure in x 
and y directions, respectively. The periodic boundary condition is applied in 
the direction of all three Cartesian axes. Each grain has perfect fcc structure 
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of which the lattice is rotated in xy-plane around ( 11 0) direction oriented to z 
axis. 

z 

(a) (b) • 2Rc 1 

I 

:i 

Z" 0 X 

4,648,036 ate ms 
To - 300 K 

104 rvn 
• Vo=50m/s 

(c) 

Figure 1. (a) Model for the uniaxial tensile simulation of aluminum nanocrystal. (b) Cylindri
cal iron nano-wire model for torsion simulation using twisted periodic boundary condition. (c) 
Double-edge-notch amorphous iron model for tensile simulation. 

In Figure 1 (a), figures described in each grain show the rotation angle and 
the figures on the grain boundary show the misorientation angle between grains 
composing the grain boundary. Since the unit cell length in z direction Lz = 1.1 
nm is very small, the periodic boundary condition brings an artifact, i.e. active 
slip systems are limited to only two 60° dislocations on A (111) and B (111) 
planes. Moreover, we should take into consideration the fact that the stable 
width of extended dislocation core under external force depends on crystallo
graphic orientation of each grain using this model, since Schmid factors of 2 
Shockley partial dislocations decomposed from each 60° dislocations are dif
ferent from each other. 

Specimens with different grain size (d= 5, 10, 20, 40, 60,80 nm) are investi
gated as shown in Table 1, in which the numbers of unit structures and atoms 
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are shown. After a relaxation calculation which is carried out during 20 ps, 
tensile deformation is realized with a nominal strain increment 0.0004 which 
is given to unit cell length in y direction Ly every 0.5 ps, then the atomic system 
is relaxed under the fixed 4 condition. Consequently, the nominal strain rate 
is 8x108 s-1 and unit cell length in x direction Lx is changed under a pressure 
free condition during the relaxation. The temperature of whole atomic system 
is controlled to a room temperature 300 K 

Table I. Summary of information with respect to specimen geometries 

Grain size d, nm 5 10 20 40 60 80 

Numberofbasicunit(M,N) (12,12) (6,6) (4,4) (2,2) (1,1) (1,1) 
Number of atoms 1,683,1201,699,632 1,711,236 3,049,6801,717,768 3,055,716 

2.2 Iron N anowire in Torsion 
The material models for the torsion problem of nanowire are single- and 

poly-crystalline iron in which interatomic interaction is introduced by Finnis
Sinclair type potential (Finnis and Sinclair, 1984; Finnis and Sinclair, 1986). 
Solid cylindrical wire with radius R is modeled as shown in Figure 1 (b). 
Twisted periodic boundary condition (TPBC) which is newly proposed here 
is employed. The lateral dimensions Lx and Ly of the unit cell are taken to be 
sufficiently bigger than the diameter 2R of the wire, so that periodic boundary 
condition is actually assumed only in z direction with dimension Lz of the unit 
cell. 

Summary of TPBC is shown as following. A coordinates transformation 
between natural coordinates component (QCal/ and twisted coordinates com
ponent (q<ali is considered for an atom a. The canonically conjugate momenta 
(p<al)1 and (p<al); with coordinates (Q<ali and (q<al)i are introduced as follows. 

(q(a)i = hiiQ(a))l, {p(a)); = [(h-I)TJ{(P(a))J, (1) 

When we assume a Cartesian coordinates and Q(a) and a specific twist an
gle (} along the z axis are taken into account, the transformation matrix h is 
expressed as follows, 

[ 
cos((}Lz(Q(a))Z) - sin(OLz(QCaly) 0 l [ Lx 0 0 l 

h = sin(OLz(Q(a))z) cos(OLz(Q(a))Z) 0 0 Ly 0 . 
0 0 1 0 OLz 

(2) 

Note the metric gf1 = (hTikhk1 specifies the macroscopic deformation. 
Implementation to the numerical code is as follows. The natural coordinate 

Q(a) is transformed to real coordinate q<al as the contravariant manner. The 
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interaction force p<al at atomic site a is calculated, at which the contribution 
of atoms in image cell is correctly taken into account. The acceleration q<al = 
p<al /m(a) is transformed to acceleration Q(a) as the covariant manner. Q(a) is 
updated using the velocity version of Verlet scheme. 

In the present study, the specimen having the dimensions R = 10 nm and 
Lz = 20 nm is mainly considered. Two single crystal models are examined, 
in which (00 1) and (111) are set as a twist axis (z direction), respectively. 
Poly crystal models, which consist of average grain size is d = 5 nm and 10 
nm, are also examined. In addition, polycrystal models with grain size d = 5 
nm with geometry R = 20 nm, Lz = 10 nm and with grain size d = 10 nm with 
geometry R = 20 nm, Lz = 40 nm are considered in order to study size effect. 

The wire is twisted monotonically by the increment of specific twist angle 
118= 1.25 x 106 [deg/m] which is added to the specific twist angle e every 0.5 
ps. The nominal surface shear strain y0 = R8 is used to express the strain level. 
The system temperature is set as 300 K during the calculation. 

2.3 Amorphous Iron in Tension 

The simulation of amorphous iron in the tensile loading is carried out us
ing the Finnis-Sinclair potential which is the same one used in nanowire tor
sion mentioned above. Beforehand, an amorphous block, which is composed 
of 1,555,200 atoms with dimensions of 104.6 nm xl04.6 nm x1.74 nm, is 
produced by simulation of heating-rapid quenching process (Nakatani et al., 
2000). The heating-rapid quenching simulation is carried out under full peri
odic boundary conditions and the obtained amorphous block, which is called 
as unit block, can cover the whole space without any gaps. 

A specimen is cut out as shown in Figure 1 (c). The periodic boundary 
condition is applied in z direction and the unit cell length Lz of the specimen is 
as same as that of the original unit block. As shown in Figure 1 (c), the shape of 
notch-bottom is an arc with radius ro = 3.5 nm and the initial notch-depth is ao = 
20 nm. The number of atoms is 4, 648, 036, but the displacement component of 
atoms within boundary regions are specified during the simulation. As shown 
in Figure 1 (c), the boundary region, in which the displacement component 
of atoms is specified during the simulation, corresponds to the shaded areas 
within 2Rc (where Rc is the cut-off length: 0.357 nm) from the head or bottom. 

The calculation for relaxation is performed during 12 ps under 300 K. Then, 
the tensile deformation is given by specifying they-component of displacement 
corresponding to the opposite constant velocities ±50 [m/s] to the boundary 
regions, while x and z components are specified as zero. The nominal average 
strain rate is e = 6. 7 X 108 S-l. The loading test is performed until t = 1200 ps 
and the final nominal strain (average strain) e is 0.800 at the final stage. The 
initial temperature is set as To= 300 K, but the temperature is not controlled 



370 

during the loading test. As the influence of the periodic boundary condition 
which is applied in the thickness-direction (z-direction), the deformation is 
restricted under plane-strain condition in a broad sense (ez =0). 

3. RESULTS AND DISCUSSIONS 
3.1 Aluminum Nanocrystal in Tension 
3.1.1 Grain Size dependency of Strength. 

Stress versus strain curves of each aluminum specimen under the uniaxial 
tensile deformation are shown in Figure 2 (a). The stress is estimated as the 
average normal component of atomic stress (u<a>)yy. The curve for all speci
mens is composed of the linear elastic region, the overshoot region including 
maximum stress point, and the constant flow stress region. We characterize 
the curves by three strength parameters, i.e. u max: the strength the maximum 
stress, uo.oz: the stress at strain e = 0.02, and O"flow: the flow stress that is 
evaluated as the average value in an flat region (e>0.09). 

Figure 2 (b) shows the strength parameters as functions of inverse square 
root of grain size d-I/2. Proportion of grain boundary parts which are distin
guished from crystal parts by using the CNA is also shown with open triangles 
in Figure 2 (b). The broken curve in the figure indicates the grain boundary 
proportion estimated under an ideal assumption that the polycrystal consists 
of perfectly regular hexagonal grains and that all grain boundaries have a con
stant thickness baa = 0.7 nm. It is clearly found that the plots are lying on 
the curve and grain size dependence of them is closely related with the inverse 
Hall-Petch relation. 

According to Figure 2 (a), tangent modulus in elastic regime below max
imum stress point decreases with decrease of the grain size. This can be 
straightforwardly understood from the fact that the proportion of grain bound
ary region increases with decrease ofthe grain size. That is to say, the apparent 
modulus, which can be estimated approximately based on the law of mixture, 
decreases with increase of the volume fraction of grain boundary in which the 
stiffness is less than that in perfect crystal region. It is also easier in the model 
with smaller grain size that irreversible deformation mechanisms, such as grain 
boundary diffusion, grain boundary sliding and grain boundary migration, are 
thermally activated. 

The maximum stress increases with increase of grain size. Since there is 
no lattice defect within the grains at initial state, grain boundaries behave as 
a dislocation source in the present models, so the result about the grain size 
dependence of maximum stress means that the much energy is required to yield 
plastic deformation. 

Next, relation between the flow stress and grain size is discussed. When 
grain size decreases from 80 nm to 40 nm, the flow stress level increases. On 
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Figure 2. (a) Stress-strain curves under tensile deformation for different grain sizes. (b) Stress 
and proportion of grain boundary region versus grain size d- ~ . Closed triangles, discs and 
squares are the stress value at s = 0.02, maximum stress and flow stress evaluated as average 
over s ~ 0.09, respectively. Open triangles which mean the proportion of GB region are lying 
on a theoretical curve, estimated with the assumption of constant GB thickness. 
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Figure 3. Internal structure of nanocrystalline metals with different grain sizes. Light gray 
atoms and dark gray atoms show atoms with defect and hcp local structure, respectively. (a) 
d=80 nm. (b) d=40 nm. (c) d=5 nm. 

the contrary, when grain size further decreases from 20 nm to 5 nm, the corre
sponding flow stress decreases. That is to say, the result implies that there is an 
optimal grain size between 20 nm and 40 nm, at which the nanocrystal shows 
the maximum flow stress. 

3.1.2 Deformation Mechanisms. 
Figures 3 (a), (b) and (c) show the atomic configurations in the cases of d= 

80 nm, 40 nm and 5 nm at nominal strain &=0.12, respectively. Development 
of stacking faults and deformation twins are remarkably observed in grains 3 
and 6 in both cases of d = 80 nm and d = 40 nm, although it is well known that 
the stacking fault energy of aluminum is relatively large and deformation twins 
are hardly observed in coarse grain aluminum. It is fact that the deformation 
mode depends on the orientation of grain and it is due to an artifact at the 
present model i.e. the resolved shear stress contributed on the leading partial 
dislocation is different from that on the trailing dislocation. However, recent 
experimental observation has insisted the possibility of deformation twin in an 
aluminum nanocrystal (Chen et al., 2003). As another reason why the stacking 
faults are found, it is deduced that the partial dislocations prefer to exist on the 
grain boundary in a nanocrystal, in a meaning of energetics. 

In the case of grain size d = 80 nm, the plural dislocations can exist simulta
neously in a grain (Grain 5 in Figure 3 (a)). However, in the case of small grain 
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size d = 5 nm, the probability to find some lattice defects within a grain (Fig
ure 3 (c)) is relatively low. A grain boundary behaves as a barrier against the 
dislocation motion and the mean free path of dislocation in d = 80 nm is larger 
than that in d = 40 nm grain. When a dislocation crosses a grain boundary, the 
dislocation disappears at a point on the grain boundary and a new dislocation 
has to be nucleated at the point. This is just one of the reasons of strengthening 
by grain refinement. 

Figure 3 (a), it is found that some dislocations are piled up and interact each 
other near a boundary within grain 5. In the case of d = 5 nm, local deformation 
in grain boundary region strongly affects the global deformation. As we see in 
Figure 2 (b), the proportion of grain boundary region remarkably increases as 
the grain size decreases, hence, the distance between junctions at which grain 
boundaries meet become short, so intergranular deformation is much easier 
than intragranular deformation. 

Consequently, in the case of small grain size, grain boundary migration and 
grain boundary sliding become main mechanism. According to Figure 3 (c), 
it can be found that the regular hexagonal profile of grain at the initial set-up 
model is lost after the deformation. 

3.2 Iron Nanowire in Torsion 

3.2.1 Grain Refinement of Single Crystal by Torsion. 
To investigate the deformed internal structure in detail, unloading process 

is simulated, in which the starting point of the unloading is ro = 1 and the 
process is realized by the reverse twist up to torque free state. Figures 4 and 5 
show cross-section views after the unloading. The common neighbor analysis 
(CNA) is employed and atomic sites are regarded as belonging to bee when 
more than 10 bee-characteristic atoms are found among the 8 first neighbors 
and the 6 second neighbors. 

In Figure 4, undetermined orientation atoms and lattice defect atoms except 
for the bee atoms are indicated in dark color and coloring for bee atoms means 
the crystallographic orientation of the twist axis, which is determined by using 
the second neighbor atoms, in the unit triangle of the reverse stereo graphic pole 
figure. In Figure 5, lattice defect atoms are shown in dark color and coloring for 
bee atoms shows the distribution of cylindrical shear component TfJz of residual 
stress. 

In Figure 4, the difference of colors at arbitrary two different sites implies 
the misorientation between them. It is observed that a polycrystal structure 
is developed near the surface in the cases of twisted single crystal (Figures 4 
(a) and (b)). Defect atoms are highly concentrated around the center of twist 
axis in the case of (00 1) torsion, but the elastic core which drags in some 
dislocations remains around the twist axis in the case of ( 111) torsion. Twin 
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Figure 4. Cross-section views after unloading. Defect atoms are colored by black, and colors 
correspond to the crystallographic orientation of twist axis in the unit triangle of the reverse 
stereographic pole figure. (a) single crystal in (001) torsion. (b) single crystal in (111) torsion. 
(c) nanocrystal with d=5 nm (R= 10 nm). (d) nanocrystal with d= 10 nm (R= 10 nm). 

(a) (b) 

(c) (d) 

Figure 5. Cross-section views after unloading. Defect atoms are colored by black, and gray 
scale corresponds to atomic shear stress value. (a) single crystal in (001) torsion. (b) single 
crystal in (111) torsion. (c) nanocrystal with d =5 nm (R = 10 nm). (d) nanocrystal with d = 10 
nm (R= lOnm). 
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Figure 6. Torque versus twist curves for (a) single crystals and (b) nanocrystals. Torque value 
is converted to a representative value having the dimension of stress with multiplication by 
factor of 2/trR3 and twist is expressed by nominal surface strain y0 = RO. 

boundaries and low angle grain boundaries which consist of grain boundary 
dislocation array are also observed. On the other hand, in the case of polycrys
talline case (Figures 4 (c) and (d)), remarkable difference between surface and 
interior is not recognized and there is no significant enlargement or refinement 
of grains. 

According to Figures 5 (a) and (b), large gradient of stress is observed 
around the dislocations. So many dislocations are not observed within the 
grains in the polycrystal cases (Figures 5 (c) and (d)), but high stress gradient 
regions are spreading near grain boundary and this means the grain boundaries 
have some dislocation character. 

3.2.2 Torque versus Twist Curves. 
Figures 6 (a) and (b) show the torque versus twist curves for single crystals 

and for nanocrystals, respectively. The torque is calculated as the resultant 
moment of the transverse shear component of atomic stress (r<a>)Bz around the 
torsion axis. Anisotropy in the maximum torque is significant in the cases of 
single crystal and the maximum torque in (00 I) torsion is twice and half as 
large as in (Ill) torsion. The torque in (00 I) torsion monotonically decrease 
after the ro = 0.2, but an oscillation is observed in ( 111) torsion. In both cases, 
the torque is almost constant within the range ro > 0.5 and the value of torque 
standardized by a factor of 1rR3 /2 is about 4 GPa. 

In the polycrystal cases, it is clear that the elastic modulus of nanocrystal 
with d = 5 nm is smaller than d = 10 nm, but the elastic modulus does not 
hardly depend on the radius of specimen R. According to comparison between 
radius R = 10 nm models, the peak value of torque in d = 5 nm model is about 
80 percent of that in d = 10 nm model. Comparing the peak stress between 
different radius R models for same grain size models, peak stress in R = 20 nm 
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model is slightly bigger than that in R = 10 nm model. This result is discrepant 
with well known size effect that is observed by experiment and is explained by 
the strain gradient theory (Fleck and Hutchinson, 2001 ). 

One reason for the discrepancy is concerning the strain rate effect caused by 
the analysis condition in the present simulation, i.e. surface strain rate in R = 20 
nm model is twice as big as R = 10 nm. Another reason is that the deformation 
mechanism of nanocrystal may be different from the coarse grain polycrystals. 
As we mentioned in the previous section for aluminum case, the global de
formation behavior of nanocrystal with small grain size is mainly subjected to 
the deformation on grain boundary rather than dislocation behavior which is 
important in the coarse grain polycrystals (Weertman, 2002). 

3.2.3 Shear Stress Distribution. 
Average shear stress TBz in an annular ring is shown as a function of twist in 

Figures 7 (a), (b) and (c). In elastic deformation range, shear stress monoton
ically increases as radial coordinates r increases, except for the value in a few 
layers from outer surface, in which the stress value almost does not depend on 
r. Since inelastic deformation occurs near the surface and it evolves toward 
interior, the peak stress of interior annular ring is smaller than outer ring. The 
average stress distribution in the annular rings with different radial coordinates 
r becomes uniform and the value is almost constant as 3 GPa during the defor
mation after Yo= 0.4 in every model. 

Figure 7 (d) shows the distribution of cylindrical shear component Toz of 
residual stress which is averaged in the annular rings after unloading. The 
stress component is positive in inside rings and is negative in outside rings and 
this trend agrees qualitatively with the conventional continuum prediction. 

3.3 Nanocrystallization in Amorphous Iron 
3.3.1 Macroscopic Deformation. 

The distribution of the atomic site, at which the atomic equivalent strain e~ 
is greater than 3.38 at strain level e = 0.2 (300 ps), is shown in Figure 8. Here, 
S:q is evaluated using relative displacement of neighboring atoms (Nakatani 
et al., 1998) with assuming a normal distribution function as the weight func
tion. The distribution of the macroscopic band-like deformation zones which 
grow from the notch-bottoms and the four comers are almost symmetry to x
axis andy-axis. Micro-shear-bands are formed to the two conjugate directions 
of maximum shear stress in deformation zones, and lattice like shear-band
structures are formed. Similar micro-shear-bands are recognized in the result 
of Falk ( 1999) . 

3.3.2 N anocrystallization Process. 
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Figure 7. Shear stress versus twist curves for (a) nanocrystal d = 5 nm (R = 10 nm), (b) 
nanocrystal d= 10 nm (R= 10 nm) and (c) single crystal in (001) torsion. (d) Residual stress 
distribution 

Figure 8. Distribution of the severe 
deformed atomic sites where the local 
equivalent strain e'eq <::: 3.38 at nominal 
strain 6=0.2 (time t=300 ps). 
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Figure 9. The number of total atoms and bee
structure atoms having (0, 6, 0, 8) Voronoi's polyhe
dron, and percentage of bee-structure atoms during 
the total atoms. These numbers are investigated in a 
center region of the specimen ( -1.25 nm :;; y :;; 1.25 
nm) 
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Figure 10. Distribution of the bee-structural atoms having (0, 6, 0, 8) Voronoi's polyhedron in 
a center region of the specimen. Atomic colors correspond to the crystallographic orientation 
of tensile axis in the unit triangle of the reverse stereographic pole figure. (a) e = 0.53 (t = 800 
ps). (b) t=0.60 (t=900 ps). (c) t=0.67 (t= 1000 ps). (d) t=0.80 (t= 1200 ps). 

Figure 9 show the time evolution of proportion of bee-structure in the center 
region ( -1.25 nm ~ y ~ 1.25 nm). According to the Figure 9, the crystal
lization process proceeds between 600 ps and 800 ps by the time when the 
amorphous phase is completely replaced by polycrystal phase. 

Figure 10 shows snapshots regarding distributions of bee-structure. Voronoi' s 
polyhedra which are calculated from snapshots of coordinate are used to dis
tinguish bee-structure from others. In order to distinguish each grain, all dis
played atoms are colored by the position of tensile axis in the inverse stereo
graphic pole figure. A lot of crystalline clusters has been nucleated in front of 
the notches and notch-bottom regions are occupied by poly crystal phase by the 
time 800 ps. 

After the nanocrystallization, some hollows appear around grain bound
aries and the fracture process of specimen starts with nucleation and growth 
of voids and cracks in the grain boundaries. Similar crystal nucleation and 
crystal growth is observed using the plate specimen without notches in tensile 
(Matsumoto et al., 2003). 

Both of the geometrical structure of localized severe plastic zone, which 
corresponds to a heat source, and stress distribution affect this polycrystalliza
tion process. If the pattern of localized deformation can be controlled, we can 
design the ultrafine grain texture answering a purpose. 

4. CONCLUSIONS 
In this paper, aluminum nanocrystals with different grain sizes in tension, 

single- and poly-crystalline iron nanowire in torsion, and amorphous iron in 
tension have been studied by employing molecular dynamics method, for the 
aim of understanding the basic knowledge concerning what the optimal mi
crostructure is and how we obtain it. 
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As the result of aluminum nanopolycrystal in tension, the existence of opti
mal grain size for the highest flow stress has been shown. Around the optimal 
grain size, the dominant deformation mechanisms interchange, i.e. the optimal 
grain size seems to correspond to transition size between dislocation dominant 
and grain boundary dominant behaviors. It should be specially interesting that 
the limited idealized model, which has only two active slip-systems, shows 
such differences in mechanisms. 

Twisted periodic boundary condition is proposed and it was applied to tor
sion problem of microscopic iron specimen and initial internal structure de
pendence of the grain refinement has been found by identifying the atomistic 
structure. 

Deformation induced nanocrystallization of amorphous iron has been ob
served and it has been found that the nanocrystalization process depends on 
the localized deformation pattern and stress state. There is possibility that 
the texture of nanocrystals up to our aims can be obtained by controlling the 
deformation in amorphous structure. Further studying the internal structural 
changes obtained by atomistic simulations can clarify the mechanism of grain 
refinement and can make quite a few proposals for material design. 

Acknowledgments 

AN thanks Nobuhiro Tsuji for fruitful discussions and appreciates support 
by Grant-in-Aid for Scientific Research from Ministry of Education, Culture, 
Sports, Science and Technology, Japan. TS is supported by Grant-in-Aid from 
the Japan Society for the Promotion of Science. AN and HK gratefully appreci
ate support from New Energy and Industrial Technology Development Organi
zation (NEDO) of Japan and support from the Strategic Research Base, Handai 
Frontier Research Center supported by the Japanese Government's Special Co
ordination Fund for Promoting Science and Technology. 

References 
Chen, M., Kevin, E. M., Hemker, J., Sheng, H., Wang, Y., and Cheng, X. (2003). Deformation 

twinning in nanocrystalline aluminum. Science, 300:1275-1277. 
Falk, M. L. ( 1999). Molecular-dynamics study of ductile and brittle fracture in model noncrys

talline solids. Phys. Rev., B, 60(10):7062-7070. 
Finnis, M. W. and Sinclair, J. E. (1984). A simple empirical n-body potential for transition 

metals. Philos. Mag., A, 50(653):45-55. 
Finnis, M. W. and Sinclair, J. E. (1986). Erratum. Philos. Mag., A, 53(1):161. 
Fleck, N. A. and Hutchinson, J. W. (2001). A reformulation of strain gradient plasticity. J. Mech. 

Phys. Solids, 49:2245-2271. 
Matsumoto, R., Kitagawa, H., and Nakatani, A. (2003). Molecular dynamics simulation of 

deformation-induced nanocrystallization in an amorphous metal. J. Soc. Mat. Sci., Japan, 
52(3):235-240 (in Japanese). 



380 

Mishin, Y., Farkas, D., Mehl, M. J., and Papaconstantopoulos, D. A. (1999). Interatomic poten
tials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B, 
59(5):3393-3407. 

Nakatani, K., Nakatani, A., and Kitagawa, H. (1998). Molecular dynamics study on fracture 
mechanism of fe-amorphous metal (j integral near mode i crack tip in amorphous metal). 
Adv. Mat. Res., l :88. 

Nakatani, K., Nakatani, A., Sugiyama, Y., and Kitagawa, H. (2000). Molecular dynamics study 
on mechanical properties and fracture in amorphous metal. AIAA Journal, 38(4):695-701. 

Nieh, T. G., Wadsworth, J., Liu, C. T., Ohkubo, T., and Hirotsu, Y. (2001). Plasticity and struc
tural instability in a bulk metallic glass deformed in the supercooled liquid region. Acta 
Mater., 49:2887. 

Saito, Y., Utsunomiya, H., Tsuji, N., and Sakai, T. (1999). Novel ultra-high straining process 
for bulk materials- development of the accumulative roll-bonding (arb) process-. Acta 
Mater., 47:579-583. 

Schi~tz, J., Di Tolla, F. D., and Jacobsen, K. W. (1998). Softening of nanocrystalline metals at 
very small grain size. Nature, 391:561-563. 

Shimokawa, T., Nakatani, A., and Kitagawa, H. (2002). Mechanical properties depending on 
grain sizes of fcc nanocrystalline metals by using molecular dynamics simulation (inves
tigation of stacking fault energy's influence). Trans. JSME, Ser. A, 68(676):1708-1715 (in 
Japanese). 

Tarumi, A., Ogura, A., Shimojo, M., Takashima, K., and Higo, Y. (2000). Molecular dynamics 
simulation of crystallization in an amorphous metal during shear deformation. Jpn. J. Appl. 
Phys., 39(6):L6ll-L613. 

Van Swygenhoven, H., Spaczer, M., and Caro, A. (1999). Microscopic description of plasticity 
in computer generated metallic nanophase samples: A comparison between cu and ni. Acta 
Mater., 47(10):3117-3126. 

Weertman, J. (2002). Anomalous work hardening, non-redundant screw dislocations in a circu
lar bar deformed in torsion, and non-redundant edge dislocations ina bent foil. Acta Mater., 
50:673-689. 

Yamakov, V., Wolf, D., Salazar, M., Phillpot, S. R., and Gleiter, H. (200 I). Length-scale effects 
in the nucleation of extended dislocations in nanocrystalline AI by molecular-dynamics sim
ulation. Acta Mater., 49:2713-2722. 



CONTINUUM DESCRIPTION OF 
INHOMOGENEOUSLY DEFORMING 
POLYCRYSTALLINE AGGREGATE BASED ON 
FIELD THEORY 

Tadashi Hasebe 
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Abstract This paper presents a field theoretical approach toward a continuum description of 
polycrystalline media. Collective behavior of the composing grains is shown to 
produce large stress fluctuation which can be an essential feature of 
polycrystalline aggregates. Stress function tensor is proposed as a new mechanical 
parameter describing such fluctuated fields. Implementation to the constitutive 
model based on crystal plasticity is extensively discussed. 

Keywords: Polycrystal, Crystal Pla~ticity, Field Theory, Strain Gradient Plasticity 

1. INTRODUCTION 

One of the ultimate goals of the multiscale modeling in plasticity would 
be to predict ductility (i.e., uniform and total elongations) as well as 
hardening properties of a material concerned (e.g., yield stress, hardening 
coefficient, tensile strength, etc.) under given loading conditions from their 
fundamental or microscopic properties transcending the hierarchy of scales. 
This, however, has not been satisfactorily accomplished to date partially 
because of the absence of rational theoretical framework describing 
evolutions of multi-level inhomogeneous fields relating to substructure 
evolution, intra-grain deformation, etc. 

On the other hand, FEM-based simulations have been widely conducted 
on polycrystalline plasticity even with Voronoi tessellation models having 
realistic grain morphology. But they are rather limited to discussing 
macroscopic (averaged) responses with limited number of grains. Fujita, et 
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al.[l] reported a series of implicative experimental findings for 
polycrystalline metals demonstrating a number effect of grains on 
macroscopic response as well as the existence of an affected zone (AZ) 
beyond the grain size. This evidently means deficiencies of the frequently 
used "coarse-grain" models in simulating the real behavior ofpolycrystals. 

This paper presents a field theoretical approach toward a continuum 
description of polycrystalline aggregates based on the field theory of 
plasticity advocated recently by the author[2,3]. In order to examine the 
collective effect of a large number of composing grains on meso- and 
macroscopic deformation behavior of polycrystals, finite element 
simulations are conducted on systematically designed polycrystalline models. 
A new parameter for describing the inhomogeneous field as a result of the 
collective behavior is proposed based on the simulation results. The 
theoretical background and a constitutive modeling incorporating the above 
parameter are extensively discussed. 

2. FIELD THEORY OF PLASTICITY 

The field theory of plasticity, advocated by the author[2,3], is roughly 
composed of two aspects, i.e., (A)continuum description of inhomogeneous 
fields including dislocations and defects based on the differential 
geometrical field theory, often referred to as "non-Riemannian plasticity," 
and (B)field theoretical descriptions of collective behavior of interacting 
dislocations, defects and crystal grains. The (A) covers all the aspects of the 
strain gradient plasticity accommodating "scale effects" of the fields, while 
the (B) describes "evolution" of the fields. In the (B), the method of 
quantum field theory (QFT), which is equivalent to classical statistical 
mechanics, has been successfully applied to construct a model for 
dislocation cell structure formation. In there, rigorous derivation of the 
effective theory yielding cellular patterning from a microscopic description 
of dislocation interaction through systematic "coarse-graining" and 
renormalization of scales is achieved. The theory-based simulation results 
are exemplified in Figure I, where gem measures the magnitude of internal 
stress in the cell interior region. The findings obtained there are, e.g., (1 )the 
collective effect of the key process (pair annihilation) results in a singularity 
of the system to be emerged leading to a modulation of dislocation 
distribution rather than uniform distribution, and (2)existence of long range 
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gem""0.50 

Figure I Examples of simulated results for 3D cell formation 
based on field theory-based effective model. 

internal stress tleld in the cell intenor reg1on is responsible tor both the cell 
size and its morphology to be evolved, without which "far-from-cell" 
structures will possibly result. Note that the long range internal stress field 
has been confirmed to exist both by experiment and dislocation dynamics 
simulation. 

3. SSS HYPERTHESIS 

A large number of crystal grains comprising a polycrystalline medium is 
expected to yield a certain collective behavior ultimately controlling its 
mechanical behavior. As a candidate of the collective effect, the evolution of 

Figure 2 Schematics of mesoscopic structure as a result of collective behavior 
of crystal grains, together with "role sharing" of grains. 
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a mesoscopic structure through which the applied force and the deformation 
are transmitted is hypothesized as schematically shown in Figure 2. This 
meso-structure will be organized so as to support the externally applied 
stress, implying a "role sharing" of composing grains between load 
transmission and deformation transmission relating to enhanced hardening 
and softening, respectively. The former is called stress supporting structure 
(SSS) whose wavelength will correspond to the affected zone and it will be 
responsible for the "remote effect." One possible realization of the SSS 
would be the evolution of "surface roughness" during plastic deformation, 
where its wavelength is reported to be basically unchanged during 
deformation implying the SSS is constructed relatively in the early stage of 
deformation as far as the deformation mode is unaltered. The morphology as 
well as the characteristics of the SSS cannot be determined simply by the 
number of composing grains but will be greatly affected by the absolute 
grain size and the materials properties such as stacking fault energy (SFE). 
This is why the "multiscale" viewpoint is indispensable 

Note, in this case, the direct application of the method of QFT is 
inappropriate because the "grains" are distinguishable and deformable as 
well different from dislocations. 

4. ANALYTICAL RESULTS AND DISCUSSION 

To identifY the key factor of modeling polycrystalline aggregate, 
especially the collective effect of a large number of composing grains on the 
mesoscopic deformation behavior including the SSS formation, 
systematically designed finite element (FE) simulations are made (Figure 3 ). 
This is a part of a recent collaboration in Research Group on Multiscale 
Crystal Plasticity, Kansai 1• 

The FE polycrystalline models (Fig.3(a)) have a common representative 
area, containing grains having a same orientation distribution, surrounded by 
different numbers of grains. All the grains here are assumed to have the same 
shape (i.e., hexagonal) and size to eliminate additional factors (e.g., size 
distribution and morphology) than the "number" effect at this stage. The total 
numbers of grains are 23, 77, 168,613 and 2328, where each grain is divided 

1 Co-organized with Prof. Y. Tomita's group in Kobe University and Dr. Y. Higa in Osaka 
University, Japan since 2002. 
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Figure 3 Schematic polycrystal behavior obtained in recent 
crystal plasticity FE analysis. 
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into 576, 256, 256 and 64 triangular elements, respectively. Plane stress or 
plane strain condition is assumed to take into account the in-plane 
heterogeneity only. 

Figure 3(b) schematically illustrates the obtained results showing 
stress-strain curves for the individual grains together with the averaged 
response. There observed a large scatter of the stress response for the 
individual grains, which increases greatly with increasing number of grains 
while the macroscopic stress-strain curve stays unchanged. Also 
demonstrated (Figure 3(c)) is that even with the same combination of 
neighboring grains in the common area, stress response of a grain in it tends 
to show different trend depending on the number of surrounding grains and 
its randomness, meaning that the stress response of a grain is not determined 
only by its immediate neighbors but is greatly affected by the grains in the 
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distances. This implies that there exists a "remote effect" activated through 
the SSS. Therefore, the representative region or volume on which every 
mesoscale simulation puts its basis cannot be determined so easily as 
expected and is substantially controlled by the macroscopic information. 

The above results also show that even for the constant-size isotropic 
grain model eliminating morphological effects, still it naturally have the 
number effect leading to the large fluctuation of the stress field. Therefore, 
the existence of the stress fluctuation is considered to be an essential feature 
of the polycrystal plasticity. The effect of the morphological features on the 
fluctuation needs to be examined in the next step. 

The macro stress is thus expressed formally as, 

U macro(X} = (u micro(x}) + OU m1cro(x} 

where < > represents spatial average and ou expresses the stress fluctuation. 
Since the fluctuation tends to vanish under spatial average, (t5um""'(x))"" 0, 
we have, 

(u macm(X)) = ( U m1cm (x)) 

This means that, as far as the macroscopic response like overall hardening 
behavior is concerned, the fluctuation does not always have to be considered. 

5. DESCRIPTION OF FLUCTUATED FIELDS 

For a continuum description of the fluctuated fields, use is made of the 
graph theory. Figure 4 illustrates schematics of a particle and a void graphs 
based on the graph theory, responsible for force and deformation 
transmissions, respectively. A particle in the particle graph should be 
regarded, in the present context, as an aggregate of hardened grains rather 
than an individual grain, whereas a void as that of softened grains. For more 
details about the graph theory, refer to [4]. Void force F, and void 
displacement U, are, respectively, related with particle force F" and 
particle displacement up through the fundamental matrices; 

Fp=- (Dpclcv )Fv = 0, Uv=- <lvcDCP)Up= 0 

which express balance of force and compatibility of displacement, 
respectively. Here Drn leT respectively indicate incidence and loop 
matrices[4]. There is a mathematical correspondence between the 
fundamental matrices in the graph theory and the differential operators, 
motivating us to introduce incompatibility tensor and stress function tensor 
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for the continuum description of the inhomogeneous fields. The 
corresponding relationships to the above equations are, 

u='Vx'V x z, 1J=-'Vx'V x &P 

The stress function tensor, corresponding to Fv , characterizes the deviation 
of the stress field from its equilibrium. The fluctuated stress, to be vanished 
macroscopically, can be regarded as this sort. Therefore, this can be a 
suitable mechanical parameter describing why and how the stress fluctuation 

Figure 4 Graph theoretical representation of crystal grain aggregates 
(particle graph) and its dual (void graph). 

evolves. The incompatibility tensor, on the other hand, is given as a second 
derivative (more precisely, double curl) of strain tensor, defining, as it stands, 
degree of breaking the strain compatibility. 

The quality as well as the quantity of the stress fluctuation can be 
discussed in terms of correlation function of ou ; 

G(ou(x)) = _!_ J (ou(x)ou(x + x')'"v' V t.v· F 

The correlation length~ will be used in explicitly evaluating z to be 
discussed in the following section. Here ~ is expected to be coincide with 
the "affected zone" and is determined as a result of micro-macro interactions 
through the collective behavior. 

Further decomposition of 8u into the deviatoric and the hydrostatic 
components can clarify the roles for "local plasticity" and the SSS evolution, 
respectively. 

ou=o(u'+ _!_u /) =ou'+!_ou d m d m 
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6. NEW PARAMETER FOR INHOMOGENIOUS FIELDS 

As discussed above, macroscopically vanishing stress fluctuation can be 
the essential feature of polycrystal plasticity e.g., dominating transition from 
macroscopically uniform deformation field to the non-uniform one leading 
to instability and, ultimately, fracture. The stress tensor is given by double 
curl of the stress function, as in the conventional definition; 

a=VxVxz 

= v (V·z)-Az 

In the present case, the stress tensor should be replaced by the fluctuation 
ba . With the additional condition V· z = 0, for the stress components to be 
uniquely determined, the above equations is reduced to the Poisson's 
equation, i.e., 5a(x)=- Ax(x). The special solution of this is given by, 

(x) = _1 r 5a(x 1
) dV I 

X 4JT J~v· Jx- xiJ 
where AV I should be specified by¢ based on simulated results. Thus the 
stress function tensor can be explicitly evaluated from a distribution of the 
stress fluctuation under given stress boundary conditions. 

The above discussion makes the rational continuum description of such 
multi-level fluctuated fields based on the field theory possible. The evolution 
of the stress function field is expected to be responsible for the onset of 
instability of plastic deformation and, ultimately, transition from deformation 
to fracture. This motivates us to investigate, as a next step, the evolution of a 
singularity from the fluctuated fields 

The evolution of the singularity of the underlying field can be detected 
by evaluating the energy-momentum (E-M) tensor. Three singularities 
corresponding to the elastic, dislocation and defect fields in terms of the E-M 
tensor can be defined based on the field theory of plasticity. Note, in this 
case, the transition from the singularity due to dislocated or defected fields to 
that due to the existence of a crack must be separately discussed. 

7. CRYSTAL PLASTICITY AS A TENTATIVE 
FRAMWORK 

Three scales relating to inhomogeneous fields are considered to be 
essential in polycrystal plasticity, i.e., orders of ( 1 )dislocation substructures, 



389 

(2)individual grain and (3)aggregate of grains (or apecimen). The orders of 
(I) and (3) are related to "collective behavior" of individual elements 
composing the system, i.e., dislocations and grains. 

The author[5,6] has proposed a constitutive model in crystal plasticity 
applicable to wide ranges of strain rate and strain history, which also 
accommodates scale effects through effective cell size reflecting dislocation 
substructure evolutions depending on loading histories. General form of the 
microscopic constitutive equation can be written as, 

(r'",-Q'",) '{a) f 
r = K'"' 

where K'"' and Q'"' are drag stress and back stress, respectively. The drag 
stress is further equated as 

K'"'= QapH(r)lr''''l, 

where H(y) is a referential hardening modulus. Here Qap=liap+ frnS~~:fJ 
represents hardening ratio, responsible for the hardening characteristics, 
expressing the substructure-order inhomogeneity. Anisotropic evolutions of 
the history is expressed by taking account of the anisotropy of the 
dislocation-dislocation interactions expressed by the interaction matrix 
!afl specifying kinds and strengths of interactions between arbitrary two slip 
systems, further given as a function of SFE. Their contributions to the 
hardening characteristics are determined by the history of the underlying 
system expressed by history matrix safl given as a function of plastic work 
for FCC metals and slip strain for BCC metals. Since all the information 
concerning the evolved dislocation substructures during deformation is 
incorporated in QafJ, the effective cell size is assumed to be given as a 
function of a quadratic in variance of QafJ, e.g., as, 

dee// can be regarded as mean free path of dislocations. Other two 
inhomogeneous fields can be taking into account by simply adding their 
contributions to Qafl, i.e., 

Qap= Oap+ faii:SKfl+ (if Fk(a'"', rt') 
k 

where ~(a'"', r7"'') gives functions describing the inhomogeneous effects of 
grain-size order (k=Gr) and specimen order (k=Sp). The explicit form of 



390 

~(a'"', '7'"') can be obtained by simple considerations based on the 
differential geometrical field theory in terms of length as, 

a<">=_!_. t-.r1"1 (al=_l_. (_!_. t-.ri"1) .f 
k b d ' 'lk d(2) b d(l) k 

k k k 

where ai"1, 11!" 1 are dislocation density and incompatibility tensors of the 
underlying orders k. Therefore, for the two levels of inhomogeneous fields, 

Here sgn(!Jt') indicates the sign of 'lt' accommodating not only 
additional hardening but also softening. All the effects of the inhomogeneous 
fields are embodied as the effective cell size dcell , without using ill-defined 
dislocation density as in the conventional models. Note, in this case, 
a<a> n<a> should be the resolved components i.e. a'"'=P'"'a n'"'=P'"'n 

k ' 'lk ' ' I) I)' 'I If '/ij' 

where P'"' is the Schmid tensor. ,, 
Thus evaluated dcell is also used to express the back stress evolution, i.e., 

where x'(t is mean moving distance of dislocations evaluated from the slip 
strain x~'' = f'. i"' with J' being a free flying distance of dislocations. 
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MODELS 
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Abstract 

Keywords: 

The "ideal strength" or the "theoretical strength" is originally defined as the 
stress at which a perfect crystal becomes mechanically unstable, and is a fun
damental mechanical parameter of material. The definition can be extended 
to the mechanical instability of inhomogeneous structures. This paper re
views the simulations on the "ideal strength" conducted by our groups based 
on quantum mechanics, and three cases are presented. (l)The ideal shear 
strength of silicon is precisely evaluated by ab initio calculations. (2)The 
ideal deformation of carbon nanotubes and its relationship with the electric 
conductivity are examined by semi-empirical band calculation. (3)The struc
ture and strength of interface between aluminum and silicon are investigated 
by ab initio molecular dynamics simulations. 

Ideal strength, Inhomogeneous structure, Deformation, Ab initio, Quantum 
mechanics, Atomic simulation 

1 INTRODUCTION 

The "ideal strength" or "theoretical strength" of materials is a fundamental 
mechanical parameter of material behavior[1,2]. It is necessary to evaluate the 
strength of the materials based on the atom and electron model in order to 
understand the property in detail from the atomic scale. Therefore, atomic sim
ulations on the mechanical behavior of the materials have been carried out[3--5]. 
In this paper, simulations conducted by our groups on the "ideal strength" based 
on quantum mechanics are presented. 

2 SIMULATION METHODS 

2.1 Ab Initio (First Principles) Calculation 

Among ab initio calculations, which non-empirically simulate the electron 
structure of the materials, without experimental data, the norm-conserving 
pseudopotential method[6] based on the density functional theory (DFT)[7] is 
appropriate for the evaluation of the mechanical property because the inter
atomic force can be precisely evaluated. According the theory, the total energy 
of a system, E, is expressed as a functional of the charge density, p, 

E[p] = T[p] + J V..xt(r)p(r)dr + ~ J J p~~~~~) dr'dr + Exc[p]. (1) 

Here, r indicates the coordinate vector in the real space and the terms in the 
right hand are the kinetic energy of electrons, the potential energy of elec
trons induced by nuclei, the coulomb interaction between electrons, and the 
exchange-correlation energy of electrons, respectively. Under the local density 
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approximation, the solution of Eq.(l) is obtained by solving the one-electron 
Schrodinger equation (the Kahn-Sham equation) [8], 

(2) 

where i indicates the electron state, 1/J is the wave function, and H = - ~ \72 + V. 
Since V includes the potential acting on the electron, which is a functional of 
the charge density, p, 

(3) 

where the sum runs over all the occupied states, the above equations should 
be solved self-consistently. It is able to obtain not only mechanical but also 
electronic properties with high accuracy by means of the ab initio method. 

2.2 Semi-Empirical Band Calculation 

Although the ab initio method has high accuracy and transferability, it re
quires enormous computational time and resources. Therefore, semi-empirical 
band calculation methods, where the Schrodinger equation is approximately 
solved under some assumptions, have been developed. The tight-binding (TB) 
method is one of the semi-empirical methods and is recently used for molecular 
dynamics simulations. In the method, the hamiltonian is constructed with the 
effective potential, V, 

1 2 H=--\7 +V, 
2 

(4) 

where the first term in the right hand means the kinetic energy, and V is ob
tained by simple functions with parameters (TB potential). The wave functions 
are expressed as linear combination of atomic orbitals (LCA0)[9,10]. The hamil
tonian is solved once and no self-consistent iteration is performed. Although the 
semi-empirical band calculations have less transferability than the ab initio ones, 
they are still reliable because they take into account electron on the basis of the 
Schrodinger equation. Moreover, electron structures can be simulated so that 
the electron properties of the materials is evaluated. 

2.3 Atomic Simulaion with Potential Function 

In conventional procedures for atomic simulations, atomic interactions are 
calculated with the functions of the coordinate vectors of the atoms (potential 
functions)[ll]. Thus, the total energy of the atomic system, E, is expressed as 

E = E(R), (5) 

where rr denotes the coordinate vector of the J-th atom. In general, the ex
pression is in the form, 

E(R) = L<P}~ + L <P}1K + ... ' (6) 
l,J l,J,K 
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where the first term in the right hand is for two-body interactions and the second 
one is for three-body, and so on. Two-body (pair) potentials have been widely 
used due to their simplicity, but they have low transferability. Many-body 
potentials such as EAM (Embedded Atom Method)[12] and EMT (Effective 
Medium Theory)[13], which take into account effect of electron density, have 
been suggested for better transferability. However, their transferability still 
need to be examined because they are not versatile[14]. Moreover, in case that 
there is no interatomic potential available for the simulation object, development 
of an interatomic potential is needed[15,16]. 

3 STRENGTH OF MATERIALS 

The ideal strength of a crystal is defined as the stress at which the crystal 
lattice becomes mechanically unstable under uniform deformation, and is a fun
damental mechanical property[!]. Atomic simulations using interatomic poten
tial functions for evaluating the ideal strength of crystals have been carried out 
for a long time[1,2,17-19]. On the other hand, since it is important to evaluate 
the ideal strength with high accuracy, precise evaluations on the ideal strength 
with ab initio calculations have started in recent years[14,20-26]. Moreover, not 
only the mechanical property but also its relationships with other properties, 
e.g. electric conductivity, are of interest and they have been investigated[22,27]. 

Materials in general include inhomogeneous structures, which strongly affects 
the strength of the whole system. For example, surfaces and grain boundaries 
are the typical inhomogeneous structures and they have significant influence in 
the strength of microscopic materials. This means that it is essential to elu
cidate the strength at which the structure becomes mechanically unstable. It 
can be termed "ideal strength" or "theoretical strength" of a material with a 
surface (grain boundary). Atomic models for simulations on such inhomoge
neous structures usually contain many atoms so that it is difficult to employ 
the ab initio method. The mechanical instability criterion of atomic structures 
is derived taking into account the freedom of the system[28]. Simulation proce
dures using interatomic potential functions are adopted in such cases. Attention 
should be paid on the validity of the potential functions for the object system 
as mentioned above. 

While the surface and the grain boundary are the inhomogeneous struc
ture consisting of identical crystals, interfaces between dissimilar materials have 
more complicated properties. For example, extremely high stress and strain can 
emerge in the region near the interfaces due to deformation mismatch. In order 
to simulate atomic behavior at the interfaces, ab initio non-empirical calculation 
methods is inevitable because there are few valid potential functions for inter
actions between dissimilar materials. Although the calculations are extremely 
time consuming because of complexity of the systems, they are becoming feasible 
with the use of the parallel computation and the development of the calculation 
algorithm[29]. 
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Figure 1 Stress-strain curves in ideal shear deformation of silicon single crystal. 

4 SIMULATION RESULTS 

4.1 Ideal Strength of Single Crystal 

Because the silicon single crystal has the diamond structure, which is highly 
anisotropic and causes large internal displacement during deformation, it is nec
essary to carefully evaluate the ideal strength of the crystal. We have conducted 
ab initio calculations on the ideal shear strength of silicon[22] . The shear di
rection is [IOl]. The shear stress-strain curves are shown in Fig.l. In the shear 
deformation, the normal stresses are controlled to be zero by adjusting the cell 
size. In the figure, simulation results with and without the internal relaxation 
are plotted. It is obvious that the effect of the internal displacement is large and 
it should not be ignored. The ideal shear strength is evaluated about lOGPa 
at the shear strain of 0.3. The result corresponds well with an extrapolation 
from the critical shear stresses of dislocation nucleations at high temperatures 
evaluated with experiments by Ohta et al[30] . Change in the bond structure 
during the shear is depicted in Fig.2. The bond breaking at /' > 0.3 corresponds 
to the decrease of the shear stress. 

4.2 Deformation of Carbon Nanotube 

Carbon nanotubes (CNTs) have been attracting attention because of their 
characteristic properties . We have carried out tight-binding simulations on the 
axial tensile deformation of CNTs. Figure 3 shows relationships between the 
tensile load and the strain in (8,8) armchair and (14,0) zigzag CNTs. Ideal 
strengths of the CNTs are almost the same but the strain at the fracture dif
fers . This indicates that the atomic structure in the CNT affects its mechanical 
property. Changes in the electronic conductivity of various CNT structures are 
examined[27]. Figure 4 shows the changes obtained by evaluating the band gap 
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Figure 2 Change in bond of silicon single crystal during shear deformation. 

Tensile strain £ z 

Figure 3 Relationships between tensile load and strain in (8,8) armchair and 
(14,0) zigzag CNTs. 
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energy of the CNTs during the axial tension. CNTs show various patterns of 
transition between metallic and semiconducting properties depending on the 
structure. 
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Figure 5 Atom configuration and bond structure after precipitation of Al 
atoms onto (001) Si surface. 

4.3 Structure and Strength of Interface 
between Dissimilar Materials 

The atom and electron structures at an interface between dissimilar materi
als which have different bond structures in bulk have to be clarified by a non
empirical method because interact ions at the interface are complicated. We 
have conducted ab initio molecular dynamics simulations on the structure and 
the adhesive strength of aluminum on a (001) surface of silicon[31]. After repro
ducing the (001) silicon surface by relaxation with the ab initio MD, aluminum 
atoms are precipitated from above the surface as shown in Fig.5. Figure 6 shows 
the atom configuration and the bond structure after the precipitation, where the 
Al atoms are arranged in a line between Si dimers. The Al atoms are in dimer 
pairs with strong bonds and construct weak bonds with the Si dimers. The 
adhesive strength is evaluated by pulling an Al atom from the surface. Only 
the atom pulled is detached from the surface and the strength obtained is about 
1.3nN. Further simulations should be performed to elucidate the structure and 
the strength in detail. 

5 SUMMARY 

With the aim to understand the mechanical property of materials in de
tail from the atomic scale, we have conducted simulations based on quantum 
mechanics to investigate the "ideal strength" as a fundamental mechanical pa
rameter, which can be defined not only for perfect crystals but also for materials 
with inhomogeneous structures. 
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Figure 6 Load-displacement curve of AI atom detached from Si surface. 

1) The ideal strength of a crystal, which is a fundamental mechanical property, 
is precisely evaluated by ab initio calculations. 

2) Relationships between the mechanical property and other ones, e.g. elec
tronic one, can be investigated by simulations with the atom and electron 
model such as ab initio and semi-empirical band calculations. 

3) Due to the complexity of the structures, the ideal strength of typical inho
mogeneous structures with surface or grain boundary is evaluated by conven
tional simulations with interatomic potential functions, the validity of which 
is examined based on ab initio calculations beforehand. 

4) For an arbitrary inhomogeneous structure, the criterion of the mechanical 
instability is derived taking into account the freedom of the system. 

5) The structure and strength of interfaces between dissimilar materials have 
to be examined by ab initio calculations because the atomic interactions are 
complicated. This becomes feasible with parallel computation and efficient 
algorithm. 
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Abstract Ideal strength, which can be defined as the stress necessary to induce permanent 
deformation in a material without prior imperfections, is one of the important 
materials characterizations. In this study we calculate the ideal pure shear and 
simple shear strengths of fcc (AI, Cu, Ni, Ag) and bee (Fe, Mo, W) metals in 
their common slip systems using density functional theory. We find the criti
cal shear strains (/m) of bee metals are narrowly distributed ("-'0.18), and are 
higher than fcc metals except AI. In contrast, the "Ym of fcc metals spread over 
a wide range (0.13"'0.2), with AI having an extremely high "Ym (0.2). As a re
sult, although AI has smaller moduli than Cu in {111 }(112} shear, its ideal pure 
shear and simple shear strengths are higher than Cu. By comparative analyses of 
the generalized stacking fault energy and valence charge distribution in AI, Ag 
and Cu, we conclude that the large intrinsic stacking fault energy, "Ym and ideal 
shear strengths of AI are all related to directional bonding. Cu and Ag do not 
have strong directional bonding. Bee metals have stronger directional bonding 
than the fcc metals except AI. By turning off spin polarization in the calcula
tions, we find magnetism is a main source of bond directionality in Ni and Fe. 

Keywords: Ideal shear strength, density functional theory, directional bonding, fcc metals, 
bee metals, magnetism 
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1. INTRODUCTION 
The minimum shear stress to destabilize a crystal lattice without imperfec

tions is fundamental to our concept of materials strength and its theoretical 
limits under large strains [Wang et al. (1995); Morris and Krenn (2000)]. With 
the possible exception of recent nanoindentation measurements [Gouldstone et 
al. (2000); Li et al. (2002); Van Vliet et al. (2003)], it has not been feasible to 
directly measure the ideal shear strength of materials. The demonstration that 
this property can be reliably determined by first-principles calculations[Ogata 
et al. (2002)] therefore would have significant implications for the understand
ing of behavior of solids at the limit of structural stability or mechanical failure. 

Here we report and substantiate our findings by probing in detail the energet
ics of shear deformation and valence charge redistribution during deformation 
for several fcc and bee metals. 

2. METHOD 
We perform density functional theory (OFT) calculations on the following 

systems: fcc Ag, Cu, ferromagnetic (FM) Ni, Al and bee W, Mo, Fe (FM), 
using the Vienna Ab-initio Simulation Package (VASP) [Kresse and Hafuer 
(1993); Kresse and Furthmuller (1996)]. The exchange-correlation density 
functional adopted is the Perdew-Wang generalized gradient approximation 
(GGA) [Perdew and Wang (1992)]; except for Ag, where the Ceperley-Alder 
local density approximation (LOA) [Ceperley and Alder (1980); Perdew and 
Zunger (1981)] is used. Basically, the ultrasoft pseudopotentials [Vander
bilt (1990)] are used, but we switch to the projector augmented-wave (PAW) 
method [Kresse and Joubert (1999)] for the difficult system of Fe. Brillouin 
zone k-point sampling is performed using the Monkhorst - Pack algorithm 
[Monkhorst and Pack (1976)], and integration follows the Methfessel-Paxton 
scheme [Methfessel and Paxton (1989)] with the smearing width chosen so 
the entropic free energy ("-TS" term) is less than 0.5 meV/atom. Incremental 
affine shear strains are imposed on each crystal along the experimentally deter
mined common slip systems to obtain the corresponding unrelaxed and relaxed 
energies and stresses. The unrelax and relax conditions are defined by Eij=O 
excluding 'Y = x /do (do is the equilibrium separation between two adjacent 
atomic planes and x is the shear displacement along the Burgers vector) and 
lTij=O excluding the resolved shear stress, respectively. 

3. RESULTS AND DISCUSSIONS 
fcc metals 

At equilibrium, Ag has a stifihess comparable to AI in {111}(112) shear, 
and Cu is considerably stiffer, with simple and pure shear moduli greater by 
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Table 1. Ideal {111}(112) shear strains and stresses of fcc metals. 

relaxed unr~;:laxed 

material r 
a~n a';,./Gr ~~l a" a.;~;c1l I'm m 

GPa GPa 
AI 0.200 2.84 0.110 0.210 3.73 0.147 
Ni 0.140 5.05 0.084 0.160 6.29 0.079 
Cu 0.137 2.16 0.070 0.157 3.45 0.084 
Ag 0.145 1.65 0.066 0.156 2.57 0.079 

6 r-------~------~------~----~ 

Nl 
5 .. ··"' .. ·+·-..... ·. 

'+. 
.-¥-· 

0.2 0.3 
Engineering Strain 

Figure 1. Resolved {111} (ll2) shear stress vs. strain curves of fcc metals (relaxed). 

65% and 25%, respectively, than AI. However, AI ends up with 70% and 32% 
larger ideal pure shear strength 17~ than Ag and Cu, respectively, because it 
has a longer range of strain before softening (see Fig. I): lm=0.200 in AI, 
lm=O.l45 in Ag and lm=O.l37 in Cu. The 17~/G~~ ratio shows a similar trend 
the two are in fact almost linearly correlated (see Table 1 ). 

Fig. 2 shows the iso-surfaces of valence charge density (h = Vcel!Pv, Vcell 
and Pv are the supercell volume and valence charge density, respectively). We 
select two h-contour values for each metal, and for Ni (FM) the difference be
tween spin-up and -down densities (hdif!' = Vceu(Pv T -pv 1)) is also shown. 
At the octahedral interstice in AI (Fig.2(a)), the pocket of charge density has 
cubic symmetry and is angular in shape, with a volume comparable to the 
pocket centered on every ion. In contrast, Figs. 2(c), 2(d), 2(e), 2(f) show 
that in Cu and Ag there is no such interstitial charge pocket, the charge density 
being nearly spherical about each ion. AI has an inhomogeneous charge distri-
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bution in the interstitial region because ofbond covalency [Feibelman (1990)] 
and directional bonding [Grossman et al. (1999)], while Cu and Ag have rel
atively homogeneous charge distributions and little bond directionality. For 
Ni, the total charge density (spin-up plus -down) shows a spherical distribution 
(Fig.2(g),2(h)). However, the difference between spin-up and -down (2(j)), 
which results in magnetization, shows a cube-shaped distribution centered on 
the ion, similar to that in AI (Fig.2(b )), even though the volume is smaller. This 
suggests that magnetization promotes directional bonding and causes the "fm, 
a~IG~ values ofNi to deviate from those ofCu and Ag. 

The generalized stacking fault (GSF) energy, the energy increase when two 
adjacent atomic planes in the crystal are sheared relative to each other, is known 
to play an important role in the structure and energetics of dislocations. While 
it is known experimentally that the intrinsic stacking fault energy is much 
larger in AI than in Ag and Cu, this fact has not been related to their ideal 
shear strengths. For this purpose, we introduce a general function (Fig. 3), 

_ En(x) 
'Yn(x) = -S-, n=1,2, ... 

n o 
(1) 

where x is the relative displacement in the slip direction between two adjacent 
atomic planes (we focus on {111}(112) slip here), En(x) is the increase in to
tal energy relative to its value at x = 0, with n + 1 being the number of planes 
involved in the shearing and 80 being the cross-sectional area at x = 0. The 
series of functions 'Yl (x), "/2(x ), ... , "f00 (x), may be called the multi-plane gen
eralized stacking fault energy, with "(1 ( x) being the conventional GSF [Zim
merman et al. (2000)], and 'Yoo(x) being the affine strain energy. The intrinsic 
stacking fault energy 'Ysf is "/1 (bp), where bp=[112]aol6 is the partial Burg
ers vector. The unstable stacking energy "'us• an important material parameter 
in the analysis of dislocation nucleation, [Rice and Beltz (1994)], is "/1 (xo), 
where d"ftfdx(xo < bp)=O. It is instructive to compare different 'Yn(x) for the 
same slip system as n varies. The difference should be relatively small from a 
local "glue" (shaded region in Fig. 3) point of view where we take the valence 
electron cloud to be the glue. We also have the asymptotic behavior at large n, 

2"(twin(x) ( _2) 
"fn(x) = "f00 (x) + n + 0 n , (2) 

where 'Ytwin(bp) is the unrelaxed twin boundary energy. The rate of conver
gence to (2) reflects the localization range of metallic bonding in a highly de
formed bulk environment. 

Unrelaxed d"f1 (x)ldx and d"f00 (x)ldx are compared in Fig. 4. First we 
note that for Ag and Cu, d"(1 ( x) I dx and d'Yoo ( x) I dx are not very different 
across the entire range of shear. The fact that the sliding of a layer is effec
tively decoupled from that of adjacent layers indicates that bonding in Ag and 
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Figure 3. Multi-plane generalized stacking fault energy 

Cu has nearly no bond-angle dependence. On the other hand, the same func
tions behave very differently in AI, especially for x > Xm. where the stress 
(generalized force) reaches its maximum. This is because of the coupling be
tween two or more interlayer regions through directional bonding. Note also 
that d"Yl ( x) I dx for AI stays positive for an extended range, whereas it becomes 
for of Ag and Cu negative sooner and goes to lower value. Thus, while AI, Ag 
and Cu all have approximately the same "Yus. when x reaches bp and the con
figuration becomes an intrinsic stacking fault, Ag and Cu have recovered most 
of their losses in the sense of a low value of "Ysf (the area under the curve of 
d)'1 ( x) I dx) . On the other hand, AI has recovered very little as its "Ysf remains 
close to "Yus· The implication is that when a directional bond is broken, it is 
more difficult for the electrons to re-adapt. In contrast, in non-directionally 
bonded systems, the electrons can redistribute well and the system does not 
incur a large energy penalty even if the bond angles are wrong, as long as the 
volumes fit as in the case of the intrinsic stacking fault. 

To isolate the effects of magnetization, we compare the stress-displacement 
functions for paramagnetic and ferromagnetic Ni (Fig. 4(d) and Fig. 4(c)). 
In paramagnetic Ni, d)'t(x)ldx and d"Yoo(x)ldx are similar. whereas in fer
romagnetic Ni relatively large differences can be seen. In other words, spin
polarization promotes directional bonding in Ni. 

bee metals 
Bee metals have three common slip systems which are almost equally likely 

(pencil glide) . We performed the same shear deformation calculations in the 
three slip systems as for fcc metals. The ideal shear strains are rather narrowly 
distributed (rv 0.18)[Paxton et al. (1991)] and in good agreement with the 
previous Mo result [Luo et al. (2002)]. Moreover, the values of o-~IG~ for the 



.. \\ 
~ 0 __________________ , -----------------

~{l \ 
-1 \ 

-2 ·\. __ ./ 
.......... < 

·3 L--~-~-~~---_J 
0 0.2 0.4 0.6 0.8 

rib, 

(a) Ag 

·, 
·,\""· ..... 

\ ------------------\- ----------------•. 
\ 

\\_ 

-6 
· ............. 

-8L--~-~-~------
o 0.2 0.4 0.6 0.8 

rib, 

(c) Ni (FM) 

!. 
<!> 0 

~{l-1 

-2 

-3 

!. 
<!> 0 

~{l-2 

--4 

-6 

\, 

AJ (n=oo) -········ 
Al(n•l)-

---------- ~------ -'"t----- ------------

xlh, 

(b) AI 

· .. , __ 

·, 

0.6 0.8 

NI(NM)(n-) -·-······· 
NI(NM)(n•l)-

--------------- __ ':· ..... ; ----------------
·•. _ ... 

\.,. __ 

-... _,.../-
·-.... .....•.. --

-8 '---~-~---~--~-__.J 
0 0.2 0.4 0.6 0.8 

xlb, 

(d)Ni (NM) 

Cu (ntoc) ---···--
·...... Cu(n""l}-

·\-.. 
\\ 

!. 
<!> 0 

\ ------------------\ -----------------
~{l-1 \ 

\\ 

-2 ., __ '. 

-3 ,,___ --~ 

--4L-------~-~----~--_J 
0 0.2 0.4 06 0.8 

x!h, 

(e) Cu 

Figure 4. d-n(x)fdx vs. d')'oo(x)fdx (unrelaxed) in {111 }(112) shear of fcc metals. 

407 

three metals are almost equal("-' 0.11) and are also close to that of Al (Fig. 5, 
Table. 2). This confirms that bee metals have more bond directionality than fcc 
metals except Al. Fig. 6 shows the valence charge density iso-surfaces. In W 
and Mo, we see cuboidal distortions of the ion-centered charge density which 
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Table 2. Ideal shear strains and stresses ofbcc metals. 

relaxed unrelaxed 
material ,:;, u"' m u:;,;c,. , ;::. u" m 

GPa GPa 
w {110}(111) 0.179 17.52 0.114 0.196 17.63 
w {211}(111) 0.176 I 7.37 0.113 0.175 17.28 
w {321}(111} 0.176 17.33 0.113 0.175 17.27 
Mo {110}(111} 0.190 15.18 0.120 0.192 16.52 
Mo {211}(II1} 0.175 14.84 0.117 0.177 15.99 
Mo {321}(H1} 0.176 14.87 0.117 0.175 15.93 
Fe {110}(111} 0.178 8.14 0.106 0.234 11.43 
Fe {211}(Hl} 0.184 7.51 0.099 0.236 9.95 
Fe {321}(111} 0.181 7.57 0.100 0.197 9.43 
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Figure 5. Resolved shear stress vs. strain curves ofbcc metals in {21l}(Hl) shear for Mo 
and Fe and {321}(111) shear for W, respectively (relaxed). 

can be used to explain the bond directionality. In Fe, the total charge density 
(spin-up plus spin-down) is almost spherical. However, the difference between 
spin-up and spin-down (Fig. 6(h)) clearly shows angular distortion as well. 
So in Fe, like in Ni, magnetism promotes directional bonding. This agrees 
with the general observation that magnetism is important for phase stability 
and elasticity [Cohen et al. (2002)]; it is responsible for stabilizing the bee 
phase of Fe at ambient conditions which would otherwise take a close-packed 
structure. 
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(a) W (h = 5.64) (b) w (h = 7.63) 

(c) Mo (h = 5.80) (d) Mo (h = 8.60) 

(e) Fe (h = 5.00) (I) Fe (h = 18.00) 

(g) Fe (hditr = 5.00) (h) Fe (hditr = 18.00) 

Figure 6. Valence charge density iso-surfaces in bee metals. 
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Abstract: In this work we present ab initio atomic-scale simulations based on the density 
functional theory of stacking faults and of the structure of the (a) screw 
dislocation core in hexagonal Zr and Ti. The basal, prismatic, pyramidal 1t1 

and 1t2 gamma-surfaces were investigated and the energy profiles along (a) and 
(c+a) Burgers vectors were determined. The results clearly indicate 
preferential prismatic spreading of screw dislocation cores suggesting a 
primary prismatic glide. The ab initio simulations are in an overall good 
agreement with previous tight binding ones1 although differences concerning 
the atomic relaxation around prismatic faults have been observed. Some 
environment effects on dislocation glide properties have been investigated 
through the study of the hydrogen effect on the stacking fault excess energies. 
Hydrogen in solid solution induces significant reductions of the stacking fault 
energy and should promote enhanced planar prismatic glide. 

Key words: zirconium, titanium, hydrogen embrittlement, ab initio, screw dislocation core, 
stacking faults 
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1. INTRODUCTION 

The hexagonal transition metals of the IVB column (Ti, Zr, Ht) have 
glide properties at low temperature that remind those of bee metals: below 
room temperature, the lattice friction is significant, and the deformation is 
controlled by the movement of screw dislocations2• These metals have a 
prismatic principal slip system and the basal, pyramidal 1t1 and 1tz systems 
have been observed as secondary ones. The pyramidal (a)-1t1 is the main 
secondary slip system in Zr, the basal slip being the less active one for all 
kinds of loadings. The observed (c+a)-1t1 dislocations, which accommodate 
deformation components along the (c) direction, have most often a mixed 
character3• 

There are still open questions concerning elementary glide mechanisms 
in these materials, and the determination of the equilibrium structure of the 
screw dislocation core may provide a first step towards a better 
understanding of them. A direct observation of the screw dislocation cores 
using atomic-scale resolution techniques such as High Resolution 
Transmission Electron Microscopy is not possible in this case since the main 
atomic displacements are parallel to the electron beam. The only available 
experimental observation concerns the(a) edge dislocation in Ti4 for which 
HRTEM indicates a prismatic spreading of 12 A. Accurate atomic-scale 
simulation should therefore be very useful to elucidate the core structure and 
elementary glide mechanisms. Most of the available empirical potentials for 
Zr and Ti do not reproduce correctly the stacking fault excess energies and 
therefore should give poor results regarding the screw dislocation core 
structure, that was analyzed by Legrand5 using a tight binding scheme. Here 
we present results obtained using ab initio calculations based on the density 
functional theory. We evaluated the gamma-surface profiles along (a) and 
(c+a) directions corresponding to the Burgers vector in principal (prismatic) 
and secondary (basal, 1tt and 1tz pyramidal) slip planes in a Zr and a Ti. In 
addition, a simulation of the screw dislocation core structure was performed 
using up to 127 atoms. These last results should be considered as qualitative 
owing the reduced number of atoms and the boundary conditions applied. 

The DFT -based methods being able to treat on a equal footing different 
atomic species, we investigated the effect of hydrogen in solid solution on 
the stacking fault excess energy in order to asses its influence on the 
dislocations mobility. In transition metals, hydrogen in solid solution entails 
an increase of the dislocation mobility6 either by interacting with the core or 
by a modification of the long-range elastic interactions between dislocations 
(shielding effect). In addition, Ferreira et az.7 have shown that hydrogen 
hinders cross slip in AI. 
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2. METHODS 

The calculations were performed using the Vienna ab initio Simulation 
Package (VASPl based on the density functional theory. The ionic Zr (Ti) 
cores are modelled by ultra soft pseudopotentials of the Vanderbilt type9• 10 

that explicitly consider the valence electrons 5s2 ( 4s2) and 4d2 (3d2). Since it 
has been shown11 that the semi-core 4p6 (3p6) electrons have to be taken into 
account to reproduce the correct phase stability for the pure metals and their 
oxides, the 4p6 (3p6) electrons were included in the calculations except when 
mentioned (Zrnp and Tinp results). The cut-off energy for the plane waves is 
225 e V and we used the exchange-correlation functional developed by 
Perdew and Wang (PW91) 12 in the framework of the Generalised Gradient 
Approximation (GGA). Further details can be found in 13 • 

To calculate the excess stacking fault energy for given fault plane and 
vector, a rigid translation of two crystal blocks surrounding the fault plane is 
applied. The atoms are relaxed only in the direction perpendicular to the 
fault plane until the forces are smaller than 0.02 eV/A. Free surfaces parallel 
to the fault plane and periodic boundary conditions in the remaining 
directions were used in order to investigate all possible fault planes and 
vectors. 

To simulate a screw (a) dislocation, the line is placed at the center of a 
supercell containing a stacking of two t2no) atomic planes. An initial atomic 
displacement field derived from linear isotropic elasticity is then applied. 
The atoms are then relaxed except those located far from the line that are 
kept fixed, surrounded by a vacuum ribbon (see Figure 1). A periodic 
boundary condition is applied along the dislocation line. The relaxed 
dislocation core is analyzed using the arrow method developed by Vitek14• 

The influence of hydrogen on the stacking fault excess energy at 0 K was 
evaluated by subtracting to the energy of a supercell containing H in the fault 
plane the energy of a supercell containing the same number and type of 
atoms and no fault. The amount of H in the fault is measured by the 
coverage ratio 8 = Iloc!Ilav, where 11oc and Ilav are the occupied and available 
number of tetrahedral sites in between the atomic planes surrounding the 
fault plane before the fault vector is applied. 
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Figure -I. Schematics ofthe supercell used to simulate screw dislocation cores. 

3. RESULTS 

In this section we present and discuss the results starting with the pure 
elements. The influence of H on the stacking fault energy is then exposed 
and discussed. 

3.1 Stacking faults excess energy for pure Zr and Ti 

The pseudopotentials used satisfactory reproduce the structural 
equilibrium parameters of hcp Zr and Ti, results closer to the experimental 
values are obtained when the semi-core electrons are taken into account. A 
similar remark can be made concerning the calculated shear constants (see 
Tables 1 and 2). 

Table -1. Lattice parameters of hexagonal Zr and Ti 
a(A) c (A) c/a 

Zr 3.239 5.163 1.594 
Zr~ 3.204 5.141 1.605 

Zrexp 3.232 5.149 1.593 
Ti 2.940 4.672 1.589 
Ti~ 2.926 4.641 1.586 

Ti exp 2.95 4.68 1.586 

The calculated values of the basal and prismatic stacking fault excess 
energies (Table 2) are in qualitative agreement with the tight binding 
calculations, the basal stacking fault energy (Zr: 200 mJ/m2, Ti: 291 mJ/m2) 

being larger than the prismatic one (Zr: 145 mJ/m2, Ti: 174 mJ/m2). Both 
types (with or without p electrons) of pseudopotential give results within 
10% and 20% for basal and prismatic faults respectively, which means that 
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despite their deficiency the "ligther" pseudopotentials are accurate enough to 
model the dislocation cores. Atomic relaxations are essential to obtain the 
'Ypris value while their effect is less pronounced to obtain 'Ybas (they account for 
only 15% of the value). 

Our results are in agreement with the only available experimental value 
150 mJ/m2 obtained for Ti4• Assuming a dislocation core dissociation in two 
partials, the previous results entail a preferential prismatic spreading. 

Table -2. Zr and Ti excess stacking fault energies, shear elastic constants and Legrand ratio. 
(in Qarenthesis values of the stacking fault energ~ without atomic relaxations). 

'Ybas 
(mJ/m2) 

'Yprism (mJ/m2) C44 (GPa) C66 (GPa) R 

Zr GGA 200 (237) 145 (455) 29 39 1.9 
Zrn GGA 216 Ill 21.3 43.3 

TBS 340 150 42 42 2.3 
exp. IS 36.3 44 prismatic 

Ti GGA 291 174 43 45 1.8 
Tin GGA 322 142 36.6 50.8 

p 

TB 5 290 110 45 43 2.5 
exp. 15 150 4 46.7 35 Qrismatic 

Beside the stable stacking fault energy, we calculated the gamma-surface 
excess energy path along the Burgers vectors (a) (for the prismatic, basal and 
pyramidal1t1 planes) and (c+a) (for the pyramidal1t1 and 1t2 planes). For both 
Ti and Zr, the profile corresponding to the prismatic plane has a local 
minimum for a translation vector of (a)/2, which corresponds to the stable 
prismatic fault configuration. This minimum is obtained neither by existing 
empirical potentials16 nor by the TB model used by Legrand5 or that of 
Girshick et a/. 16• 

The analysis of the evolution of the reticular distance between the two 
planes surrounding the fault plane as a function of the fault distance along 
the (a) vector (Figure 2 d) shows an inward relaxation close to the prismatic 
fault configuration. This behavior may be related to the existence of a local 
energy minimum. Previous calculations always lead to outward relaxation as 
well as to a local maximum. The sign of the relaxation cannot be easily 
predicted using simple arguments based on local coordination. For example, 
in hcp Zr, each Zr atom has 12 nearest neighbor (nn) atoms located at -3.2 
A, and 6 second nn atoms at -4.5 A. For the configuration corresponding to 
the prismatic fault, a Zr atom close to the fault plane as one nn at -2.95 A, 8 
second nn at -3.2 A and 4 third nn at -3.45 A. 
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For translations along (a), the basal and 7tt profiles have a similar shape, 
and the values obtained for the excess energy are of the same order of 
magnitude. 

Basal plane Prismatic plane 
EiOO ... 
:.00 

~ --- - _g_ ""' N' N' I '--/ \ ..§ 400 

77 \.\ i :g 150 

!/ o"~ 
JOO 

#lQ:~ J I 100 
200 .. I/ t%l 
100 j .... ~ lJ' '\ -

0 0 
0 0.> o• (a) 06 08 1 • 02 •·• (a) o.a o.a 1 

1t1 pyramidal plane lnterplane relaxallon 

""' 02 
~ J--llbnal 

'"' ~ @ 0.1~ r J-::-llpnsm•c 
' 

fO' 
..., 

7~\ 
01 

/ ' ..§ "" 77 '-.\ ~ 0.05 

] ... J ~ (a) ~ 
- I I I '\\ 0 

02 "\... 0.6 .../ O.i I 0.4 

71 \\ <I 0.05 

t%l ""' 7 ,:.. ~ '\ I .0.1 

'\ ./ ""7 ... ' .0.1S 

• • 02 ... (a) ... . .. 1 .02 

Figure -2. Gamma-surface e xcess energy (In m.J/m2) profile along (a) In the basal, prismatic 
and pyramidal1t1 slip planes for Zr aoo Ti. The relaxation of the distance between the atomic 
planes surrounding the fault plane (in A.) is plotted In Zr for the basal and prismatic planes. 

The excess energy profile along the (c+a) vector for the 1t1 and 1tz 
pyramidal planes look similar (Figure 3). Both profiles have a local 
minimum close to (c+a)/2, the excess energy being nevertheless high enough 
to revent from a si niflcant dislocation core dissociation. 
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Figure -3. Excess energy profile along (c+a) in pyramidal planes 1t1 and 1t2 for Zr and Tl. 
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According to Legrand5, the stacking fault excess energy values are 
determined by the filling of the d band and are well described by a simple 
tight binding model. In spite of a qualitative agreement between the TB 
results and those presented here, there are at least two discrepancies: 

i- the TB results predict a decreasing value of "{prls along the series 
(from Ti to Ht) and the contrary is observed here (f pris > yr1prJ 

ii- inner (see Figure 2) relaxations (decrease of the distance between 
the atomic planes surrounding the fault) are necessary to obtain 
the "{prts values in our case while the contrary is obtained by 
Legrand. 

These differences may be due either to the level of description of the 
electronic interactions (DFT vs. TB) and/or to s electrons effects not 
considered by Legrand. 

3.2 Screw dislocation core structure in pure Zr and Ti 

The structure of the screw dislocation cores was determined for Zr and Ti 
using the same simulation conditions. Whatever the cell simulation size and 
pseudopotential used (Figure 4 to 6), both Zr and Ti present similar trends: 
the core has a marked prismatic spreading with screw character while a 
secondary spreading with and edge component is observed along the basal 
planes. 

Zr . . . . . . . . . 
, • , • I ... ··-·-·-· .. . . • \l\ 1\ .. 

. ~ .",·~f ...... • • • • • • • •• 
• • ' . · \ · ' • \ I , - • • ~ • • , ~ • . 

·•· · •. ·•· ·L'.' ·•· ·•· ·•· 
\ o \ I '\ I \ • ' • ' 0 0 ·····-· .... . . . . . I \ I \ I • , . . . . . -..... . . . . . . . . . 

Tt . - . -. - . . . . ··-·. ·-·-· • \1 • / \1 \•• \ ·-·-· ··-· ··-· I · • · I , • \ ' I ' • • ·-·-·-·-· -·-·-· •••\• • 1\l\ ·• · \ ·• . .- ,• ,-.· .-,· ,-~ . .-,· ,-.· .-,· 
• • • • • • • . , . . . . . ' , ' , ' , . . . . ~ .. . 

. ' ' I \ I\ . ... . . . . -. -. . . . . . . . . . . . . . 
Figure -4. Screw dislocation cores for Zr and Ti (61 atoms) 

Starting from the geometrical configuration, the fully relaxed structure 
depicted in Figures 4 to 6 is obtained only if the atoms are allowed to move 
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along and perpendicularly to the dislocation line. The sole relaxation parallel 
to the line does not entail significant modifications with respect to the 
geometric configuration. This fact illustrates the importance of the edge 
character atomic relaxation to obtain a correct core structure. As illustrated 
by Figure 5 (b), the strongest edge relaxation component is parallel to the c 
axis. Both types of pseudopotentials give very similar core structures as can 
be seen comparing Figure 5 (a) (Zrnp) and 6 (a) (Zr). 

These trends are almost independent on the cell size for cells containing 
between 61 to 127 atoms. The prismatic spreading, of the order of 3c, is 
quite well converged even using a 61-atom supercell. The secondary basal 
spreading, smaller than the primary prismatic one, seems to be long-range as 
shown by Figure 5 (b) obtained using the larger cells. It is important to point 
out that the previously mentioned discrepancies between atomic scale 
potentials concerning the atomic relaxations around the prismatic fault may 
induce significant differences in the secondary spreading, modifying not 
only the core structure but also the dislocation mobility. 
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Figure -5. Zr screw dislocation core, screw component (on the right) and edge component (on 
the left) of the displacement (127 atoms. Zrnp). 

3.3 Effect of hydrogen. 

The hydrogen influence on dislocation mobility has been investigated on 
an indirect way, placing H atoms at the stacking fault plane using different 
coverage ratios17• For both Zr and Ti, in basal and prismatic fault planes, the 
presence of H induces a significant fault energy decrease (see Table 3) 
enhanced by the H coverage. In some cases. the stacking fault energy may 
become negative, a result that has been associated to the existence of 
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hydrides with high formation enthalpy17• Since the screw dislocation core 
may be seen as an "incipient" prismatic fault, it is likely that H atoms should 
segregate to the dislocation core (in this case the driving force is purely 
chemical since there is no first order elastic interaction between screw 
dislocations and H atoms). Due to the H-induced stacking fault energy 
reduction the prismatic spreading will increase leading to an enhanced planar 
glide. 
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Figure -6. Screw dislocation core of Zr and Ti (screw component of the displacement, 127 
atoms, Zr and Ti pseudopotentials) 

Table -3. Effect of hydrogen on basal and prismatic stacking fault energy In Zr and Ti (in 
m]lm 

e Basal plane Prismatic plane 
Zr Ti Zr Ti 

0 200 291 145 174 
0.25 80 102 73 72 
0.5 - 60 - 105 67 66 
1 -14 -54 -90 -190 

4. CONCLUSIONS 

From an experimental point of view Zr and Ti have a similar behavior 
regarding plasticity. Our ab initio determination of the stacking fault 
energies, elastic constants and structure of the screw dislocation core support 
these observations. The prismatic stacking fault energy is lower than the 
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basal one and the prismatic fault configuration is located at a local minimum 
of the gamma-surface excess energy. 

The excess stacking fault energy is always larger for Ti than for Zr, the 
differences are more significant for profiles along the (a) vector than along 
the (c+a) one. 

Despite the limited supercell size and approximate boundary conditions 
used, screw dislocation cores in Ti and Zr show a clear spreading in the 
prismatic plane. The secondary spreading of edge character along the basal 
planes should control the lattice friction at low temperature. 

Hydrogen reduces the stacking fault energy in Ti and Zr, and should 
induce a larger prismatic spreading of the screw dislocation cores favoring 
planar glide and hindering cross slip . 
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1. INTRODUCTION 

Ceramic/metal interfaces are important in various applications such 

as thermal-barrier coating, corrosion or wear-resistance coating, compos

ites, electronic packaging, electrode and catalysts. It is of great scientific 

and technological importance to understand the basic properties of ce

ramic/metal interfaces, such as bonding nature, origins of adhesion, and 
structural, mechanical, thermal, electronic and chemical properties. Re

cently, ab initio calculations based on the density-functional theory have 

been applied to ceramic/metal interfaces[l-7]. It has been shown that 
the behavior of electrons dominates the bonding between dissimilar ma

terials. Atomic bonding between ceramics and metals has features like 

chemical bonds as well as peculiar features of image interactions [1]. 

In order to understand the mechanical behavior of cetamic/metal 

interfaces, it is desirable to deal with large-scale regions including the 

behavior of interface cracks or interface dislocations. A b initio calcula

tions can deal with only narrow and simple configurations because of 

huge computational efforts. Therefore, multi-scale modeling should be 
applied to ceramic/metal systems. At the microjnano scales, atomic 
bonding between ceramics and metals should be dealt with accurately, 

ideally through the behavior of electrons by using the ab initio scheme. 

At the nano/meso scales, atomistic simulations such as classical molec
ular dynamics are desirable so as to deal with the dynamics of cracks or 

dislocations. And at the meso/macro scales, continuum models such as 

the finite element method can deal with practical macroscopic distribu

tions of stresses and strains. Of course, the technique to link different 

length scales is essential. For the link between the molecular-dynamics 

method and the finite element method, the quasicontinuum method can 

be used, for example. However, the link between the ab initio scheme 

and the classical molecular dynamics is not so easy. 
In this paper, we consider the link between the latter two schemes. 

We adopt an indirect link. Namely, we consider the possibility to de

velop reliable interatomic potentials between ceramics and metals for 
classical molecular dynamics using the data from ab initio calculations. 
There have been several attempts to develop the interatomic potentials 

for ceramic/metal interfaces based on the data from ab initio calcula-
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tions [8-10]. However, there seems to exist only few successful examples. 

This seems to be caused by rather complex interfacial interactions and 

no general functional forms of potentials between ceramics and metals 

theoretically [ 1]. 
In this paper, we deal with the Al203(0001)/Cu(111) interface. 

This is a typcal ceramic/metal system frequently observed in structural 

and electronic applications. We perform ab initio calculations of this 

interface and provide ab initio data for the development of interfacial 
interatomic potentials. First, we obtain the stable configurations of 

the coherent interface by ab initio calculations. We examine the inter

faces with different stoichiometry, namely 0-terminated (0-rich) and 

Al-terminated (stoichiometric) interfaces. Second, we perform the ab 
initio tensile test of rigid type, where total-energy calculations are iter

ated by stretching a selected interlayer distance in a small increment. 

This can clarify the effective interlayer potentials. Interfacial interatomic 

potentials should be constructed so as to reproduce such ab initio results 

of stable configurations and interlayer potentials. 

2. THEORETICAL METHOD 

2.1. Ab Initio Method 

Ab initio calculations are perfomrd by using the plane-wave pse
dopotential method [11] based on the density-functional theory with 

the local density approximation [12,13]. We use the TM-type opti

mized pseudopotentials [14] with the plane-wave cut-off energy of 80 Ry. 

The RMM-DIIS (residual minimization/direct inversion in the iterative 

subspace) scheme [15] is used for the electronic optimization. By this 

scheme, we can perform parallel computations with respect to each band 
very efficiently [16], because the optimization of each wave function can 
be performed almost independently in each processor with minimum ex

ecution of mutual orthogonalization. We use the Kerker or Pulay charge 

mixing scheme [17,18]. 
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2.2. Atomic Models 

We deal with coherent Al203(0001)/Cu(111) interfaces, where two

dimensional periodicity is attained by expanding Cu layers along the 

interface. About the position of the Cu(111) layer on the Al203(0001) 

surface, we deal with three kinds of models, Al-site, 0-site, and hollow

site models [6,7], where the Cu atoms are located above the Al sites, 

0 sites and hollow sites of the hexagonal unit cell of the Al203 sur

face, respectively. These configurations should correspond to the en

ergy extrema. We deal with both Al-terminated (stoichiometric) and 

0-terminated (0-rich) interfaces [6,7]. In the former case, the stoichio

metricAl-terminated (0001) surface of alumina forms the interface, and 

in the latter case, the 0-terminated surface without the surface Al atoms 

forms the interface. 

We have constructed the supercell configurations of the models, 

which contain the Al203 (0001) slab consisting of 4 0 layers and 8(6) 

Allayers for the stoichiometric (0-rich) case with 5 or 7 Cu (111) layers 

on both surfaces. There exist no vacuum regions in the supercells. Each 

supercell has the c3i symmetry, and the two interfaces in the cell are 

symmetrically equivalent to each other. 

3. RESULTS AND DISCUSSION 

3.1. Stable Configurations 

Fig. 1 shows the most stable configurations for the 0-terminated 

(0-rich) and Al-terminated (stoichiometric) interfaces. The hollow-site 

model is the most stable for the 0-terminated interface, and the 0-

site model is the most stable for the Al-terminated one. These points 

are consistent with other ab initio results [7]. The adhesive energy de

fined from the relaxed surfaces is 6.8 Jm - 2 for the 0-terminated one, 

and is 0.9Jm-2 for the Al-terminated one. The 0-terminated interface 

has very large adhesive energy, and the Cu-0 distance is rather small 

(2.06A). There exists substantial charge transfer between the interfacial 

Cu and 0 layers, and seems to exist strong Cu-0 orbital hybridization. 
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This kind of covalent and ionic interactions should be the origin of the 
strong adhesion [19]. On the other hand, for the Al-terminated interface, 

there is no significant charge transfer between alumina and Cu layers. 

However, the charge redistribution by the interface formation from the 
surfaces shows the electron accumulation at the interstitial sites of the 

1st Cu layer near the surface Al atoms, in contrast to the decrease of 
electrons at the Cu-atom sites near the surface 0 atoms. This kind of 

charge redistribution is similar to that observed in MgO /metal interfaces 

[2] and is consistent with the image model [20]. In addition, we have 

found the interactions between the Al surface orbitals and Cu orbitals. 

Thus the origin of adhesion for the At-terminated case seems to be the 
electrostatic effect and the Al-Cu orbital hybridization (21]. 

Figure 1. Stable configurations of the Ah 03 {0001}/Cu{111) interface. 0-terminated 

{left) and Al-terminated {right) interfaces. 

The relative stability between the Al-terminated and 0-terminated 

interfaces can be theoretically analysed by calculating the free energy 

containing the atomic chemical potentials. Recently, such an analysis 

has been performed for the same system [7], which indicates the rela

tive stability of the 0-terminated interface in usual atmosphere in air. 
And recent electron microscopy observation [22] as well as the compar
ison with our ab initio results [19] indicates the real presence of the 
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0-terminated interface. Therefore, we deal with the mechanical proper

ties of the 0-terminated interface in this paper. 

3.2. Ab Initio Tensile Tests 

We have performed the ab initio tensile test of the 0-terminated in
terface. This is an ideal cleavage simulation, where ab initio total-energy 

calculations are iterated for the increase of a selected interlayer or in

terface distance in a small increment. We call this a rigid-type tensile 

test in contrast to a relaxed-type tensile test with full atomic relaxation 

[23]. Of course, the realistic mechanical behavior is obtained by the 

relaxed-type test, although such a test only reveals the weakest point 

originating failure. The rigid-type test can clarify the local strength of 
each selected interlayer or interface, which provides rich information for 
the development of interatomic potentials. In the rigid-type test, the size 
of the supercell is stretched in accordance with the cleavage of selected 

two symmetrical interlayers in the cell. 

~ g-6 ... 
£ 
.s -8 

interlayer potential 

-10~--~----~----~----~--~----~--~ 
I 2 3 4 5 6 7 8 

Distance (A) 

Figure 2. Energy changes in the rigid-type tensile tests for the Cu-0 interface and 

for the Cu-Cu interlayer. 
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We have performed the tensile tests for the Cu-0 interface and 
for the interlayer between the 1st and 2nd Cu layers at the interface. 

Fig. 2 shows the energy changes in the tensile tests, which correspond 
to effective interlayer potential curves. In Fig. 2, the energy gain is 
plotted against the energy of cleaved (unrelaxed) two surfaces. The 
bottom value of each curve corresponds to the ideal fracture energy of 
each interface or interlayer, although the relaxation of the two surfaces 
should decrease the practical fracure-energy value. The energy value is 

8.4 e V for the Cu-0 interface and is 4.5 e V for the Cu-Cu interlayer. And 
the maximum gradient of each curve corresponds to the ideal strength of 
each interface or interlayer. The strength is about 50 GPa for the Cu-0 
interface and is about 26 GPa for the Cu-Cu interlayer. It can be said 

that the Cu-0 interface is twice as strong as the Cu-Cu interlayer. It 

can be said that the failure occurs in the Cu side for the 0-terminated 
interface. 

Fig. 3 shows the changes of the valence-charge density distribution 
during the tensile test of the Cu-0 interface. It is clear that the bond 
charge between the Cu and 0 atoms disappears after the distance of the 
maximum gradient point of the curve in Fig. 2. 

R=l.S 

Figure 3. Charye distribution in the tensile test of the Cu-0 interface. R means the 

cleavage distance in unit of A. 
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3.3. Construction of Effective Interatomic Potentials 

About the development of the interfacial interatomic potentials for 

the 0-terminated interface, the necessary conditions are, first, to repro

duce the configuration in Fig. 1 as the most stable one, and second, to 

reproduce the interlayer potential curves in Fig. 2. Of course, there eixst 
a lot of selections for the potential forms such as pair-wise or many-body 
ones, ranges of interations, functional forms and so on. And it is desir

able to prepare much more ab initio data. Here, we would like to show 

a simple example of the potentials. From the curves in Fig. 2, we can 

construct effective interfacial Cu-0 and Cu-Cu interatomic potentials 
as shown in Fig. 4. These potentials can be constructed by convert

ing the interlayer potential curves in Fig. 2 into the contributions of 

the interfacial first-neighbor Cu-0 pairs and of t he first-neighbor Cu-Cu 

pairs at the 1st and 2nd Cu layers. This can be performed because of 

the simple symmetric configuration of the hollow-site model. Of course, 

if we include the second-neighbor interactions, the potential forms are 
changed. And it is necessary to complement repulsive potential forms 
for shorter distances. 

~.2 
........ 
(ij 

·E-.4 
£ 
0 
0. 
o -.6 

.~ g 
~-.8 
0 

effective interatomic potential 

CuCuO 

-)~--~----~----~----~----~----------~ 
I 2 3 4 5 6 7 8 

Distance (A) 

Figure 4. Effective Cu-0 and Cu-Cu interatomic potentials constructed from the ef

fective interlayer potentials in Fig. 2. 
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The trial potentials in Fig. 4 can be used as the guideline so as 

to develop better potentials satisfying all the necessary conditions in 

the near future. It is interesting to construct this kind of effective inter

atomic potentials from results of ab initio tensile tests of other interfacial 

configurations such as the 0-site or Al-site models of the 0-terminated 

interface. And of course, it is quite interesting to perform similar anal

ysis for the Al-terminated interface in the near future. 

4. Summary 

Adhesive and mechanical properties of the Al203(0001)/Cu(lll) 
interface have been examined by using the ab initio calculations based 

on the density-functional theory, and the development of effective in

teratomic potentials at the interface has been discussed. First, stable 

configurations for the Al-terminated (stoichiometric) and 0-terminated 

(0-rich) interfaces have been obtained. The 0-terminated interface has 

quite larger adhesive energy than that of the Al-terminated one, and 
the origins of adhesion are quite different for the two kinds of interfaces. 
Second, the mechanical properties of the 0-terminated interface have 
been examined through the rigid-type tensile test, which can clarify the 
local strength of each interface or interlayer. It has been shown that the 

Cu-0 interface is twice as strong as the Cu-Cu interlayer. Third, the 

effective interatomic potentials at the interface have been constructed 

by converting the interlayer potential curves in the tensile test into the 
contribution of each atomic pair, which can be used as the guideline for 

the future development of reliable potentials. 
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DEVELOPMENT OF HYBRID ELECTRONIC
DENSITY-FUNCTIONAL/MOLECULAR
DYNAMICS SIMULATION SCHEMES FOR 
CERAMICSANDSEMICONDUCTORS 

Shoji Ogata 
Graduate School of Engineering, Nagoya Institute of Technology 

Gokiso, Showa-ku, Nagoya 466-8555, Japan 

Abstract Recent development in hybrid elecronic-density-functionallmolecular-dynamics 

simulation schemes is reviewed. In the hybrid scheme, a total system is 

partitioned into the quantum-mechanical (QM) region treated by the electronic

density-functional theory and the molecular dynamics (MD) region in which 

atoms are interacting through the empirical inter-atomic potential. In the former 

hybrid scheme [Ogata et at., Comp. Phys. Comm. 149 (2002) 30], appropriate 

selection of QM atoms for seamless coupling between the QM and MD regions 

is limited. Novel hybrid scheme that is free from the limitation is presented. 

Keywords: hybrid simulation, density-functional theory, molecular dynamics, multiscale 

simulation 

1. INTRODUCTION 

Various engineering processes in materials, such as oxidation and 

fracture, involve chemical reactions between constituent atoms [ 1 ,2]. 

Empirical inter-atomic potentials used in molecular dynamics (MD) 

simulations often fail to describe such processes. Inter-atomic interaction 

in the reactive region needs to be calculated by a quantum mechanical (QM) 

method that can describe breaking and formation of bonds. Furthermore 

heat produced in the QM region by reactions should be correctly transferred 

to surrounding regions. Large-scale atomistic simulations are therefore 
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required, in which reacting atoms are described by a reliable QM method. 
There have been growing interests in developing hybrid QM/MD simulation 
schemes, in which a reactive region treated by a QM method is embedded in 
a classical system of atoms interacting via an empirical inter-atomic potential 
[3]. 

During the past decade, computationally efficient QM approaches 

based on the density-functional theory (DFT) [4,5] have been advanced. 

Recently a hybrid QM/MD simulation scheme [6] employing the DFT for 
the QM calculation has been developed for simulations of biological 

molecules in complex solvent. In this scheme, plane waves are used as the 

basis to solve the Kohn-Sham equations for a QM cluster. 

Ogata et al. [7] have proposed an improved hybrid QM/MD scheme 

(hereafter referred to 002 scheme) for materials simulation by employing 

real-space DFT [8] in which wave functions and pseudopotentials are 
represented on uniform real-space mesh points in Cartesian coordinates. Its 
parallel implementation based on spatial decomposition is straightforward, 
and a few thousand atoms can be simulated quantum mechanically using 

100-1000 processors [7,9,10]. Ogata et a/. [11] successfully applied the 
hybrid QM/MD scheme to a Si system with environmental water molecules 

to study moisture effects on fracture initiation in Si. A ( 11 0) crack under 

tension (mode-l opening) was simulated with multiple H20 molecules 
around the crack front. 

calculated with the DFT. 
Electronic structure near the crack front was 

The DFT description was embedded in a large 

classical MD simulation. The hybrid simulation results showed that the 

reaction of H20 molecules at a silicon crack tip is sensitive to the stress 
intensity factor. 

In Sec. 2, we explain 002 scheme and its limitation in appropriate 
selection of the QM region. A novel hybrid scheme that overcomes the 
limitation and is applicable to a wide range of semiconductors and ceramics 
is introduced in Sec. 3. Concluding remarks are given in Sec. 4. 

2. 002 SCHEME: FORMULATION AND LIMITATION 

To partition a total system into the cluster and its environmental regions, 

Ogata eta/. [7,9] followed the modular approach by Svensson et al. [12] and 
Eichler et al. [13] that is based on a linear combination of QM and MD 
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potential energies. Dynamics of all atoms are determined by the following 
hamiltonian: 

H=H~tem(Rall,dRall/dt)+ L(E~~ter -E~~ter). (1) 
cluster 

Here Ran represents a set of all atoms. The H :J~em in Eq. ( 1) is the MD 

hamiltonian of the total system. The last two terms on the right hand side 

of Eq. (l) represent the QM correction by the DFT to the MD potential 

energy for the cluster of atoms in the QM region. 
All the atoms in the total system are grouped into MD and QM atoms. 

Positions of the MD and QM atoms are denoted as {rM0} and {rQM}, 

respectively. The MD atoms contain handshake (HS) atoms, which are the 

nearest neighbor MD atoms of the surface atoms of the QM cluster. Their 

positions are denoted as {rcf~MD}. In 002, the last two terms in the right 

hand side of Eq. (1) are functions of both { r QM} and { r <f~MD} : 

£ cluster _£cluster({- }·{-HS }) 
QM - QM rQM ' rQMIMD • (2) 

(3) 

Termination atoms are introduced for dangling bonds of the cluster in 

both QM and MD calculations: H atoms, for the QM calculation; 

constituting atoms, for the MD calculation. Positions of the termination-H 

atoms are determined from those of the HS atoms and their bonding QM
atoms as follows. Let rQM(j;i) be the positions of the QM atoms bonding 

to a HS atom at rQ~(i); depending on selection of QM atoms multiple 

numbers of different j may exist for each i. A termination H is placed at 

xH-p;:Q~(i)+(l-p)rQM(j;i) for each (i,j) pair with a scaling 

parameter f3 = 0.6. In the case of MD cluster, termination-Si atoms are set 

at the positions of the HS atoms, i.e., ;si = rQ~MD(i). Hence the MD and 

QM regions interact each other through {ref~}. The gradient of H with 
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respect to the position of the i-th atom r(i) gives the corresponding force F; 

as a summation of three partial forces corresponding to the three terms of H 

in Eq. (l): F- -oH I or(i) - F,system + ft.c!uster- F,ciuster. 
I MD,I QM,I MD.I 

Figure 1. An example of inappropriate selection of QM atoms in bulk Si in 002 scheme. 
(a) The QM atoms are depicted as black spheres, the MD atoms, as white spheres. (b) 
The QM cluster used in the DFI' calculation for the QM region in (a). (c) The MD 
atoms in the MD calculation for the QM region in (a). 

We find that appropriate selection of QM atoms for seamless coupling 

of the QM and MD regions is limited in 002 scheme. When one selects an 
inappropriate set of QM atoms in the total system, QM configuration at the 
ground state is highly distorted from the initial one. An example of such an 
inappropriate selection is depicted in Fig. 1 for bulk Si. Figure 1 (a) shows 
a set of QM Si-atoms (black spheres) surrounded by MD Si-atoms (white 

spheres) in bulk Si. The cluster configurations used to calculate EQ~ter and 

E~1erin Eq. (I) are shown in Fig. l(b) and Fig. l(c), respectively. After 
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relaxing positions of all the atoms to minimize the total energy H, the QM 

cluster distorts significantly. Since the total system is bulk-Si, such 

distorting is undesirable in the hybrid scheme. We have tried with various 

selections of the QM cluster and find that such undesirable distortion may 

occur if a HS atom relates to multiple numbers of termination-H atoms in the 

DFT calculation, that is, those H atoms reside at close proximately as seen in 

Fig. l(b). For instance, if we minimize the potential energy of an atomic 

cluster in Fig. l (b) through the DFT calculation, we obtain highly distorted 

atomic cluster as depicted in Fig. 2. Some of the Si-Si distances at the 

peripheral in Fig. 2 are larger than 3 .5A; clearly, no bonding between the two 

Si atoms exists. 

<010> 

\-+<101> 
<10l> 

Figure 2. Atomic configuration of the QM cluster obtained through the DFT calculation 
after minimizing its potential energy. Initial configuration is same with that in Fig. 
l(b) . 

3. A NOVEL HYBRID SCHEME 

We here propose a novel hybrid scheme, which requires no HS atoms 

and therefore free from such contacting termination-H atoms in the DFT 

calculation. The present scheme is applicable to virtually any selection of 

the QM cluster in bulk Si including the case in Fig. 1. We find that the 

present scheme is not limited to Si in which empirical inter-atomic potential 

is short-ranged. It is applicable also to alumina in which semi-empirical 

inter-atomic potential is long-ranged. 
In the present scheme, the cluster terms in the right hand side ofEq. (l) 

are functions of {ibM}: 

£cluster _ £cluster ({f. }) 
QM-QM QM• (4) 
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£cluster _ £cluster({'- }) 
MD-MD QM' 

<010> 

~<101> 
<101> 

(5) 

£ cluster . 
Figure 3. The QM cluster used in the DFT calculation to obtain QM m the present 

scheme. 

Positions of the termination-Si atoms in the MD cluster calculation are 

determined dynamically to minimize the potential energy of the cluster in the 

present scheme, while in 002 scheme positions of the termination-Si atoms 

. h f -HS are same Wit those o the handshake atoms rQMIMD. In the DFf 

calculation, the QM cluster is terminated by either H or Si atoms as shown in 
Fig. 3 for the case of the QM cluster in Fig. l(a). If the coordination 

number of a termination-Si in the corresponding MD cluster is one, such a 

termination-Si relates to a terrnination-H with the scaling factor f3 - 0.6 in 

the DFf calculation; if the coordination number of a terrnination-Si is equal 

or larger than two, its position is used as that of a termination-Si in the DFf 

calculation. Therefore the QM atoms interact with the MD atoms through 

the MD potentials in the present scheme. 

Degrees of coupling between the QM and the MD regions are analyzed 

through spatial variation of recoil forces felt by an atom when the atom is 

shifted from its equilibrium position by a same amount. We select QM 

atoms in bulk Si as shown in Fig. 4(a). Atoms-1, 2, and 3 in Fig. 4(a) are 

equivalent in crystal periodicity. Atom-1 is located at the center of the QM 

region; atom-2, at the QM/MD boundary; atom-3, in the MD region. 

Figure 4(b) shows the recoil force F; of atom-i as a function of displacement 
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tlr; from its equilibrium position. As we observe in Fig. 4(b), the recoil 
forces are similar between the atoms-1, 2, and 3 when dr; sO.l a.u. When 
dr; >0.2 a.u., the recoil forces differ by about 10%. Such differences are 
reasonable since the Stillinger-Weber intet -atomic potential [ 14] that we use 
in the present analyses is constructed to reproduce the elastic behaviors of Si 
and therefore limited to small atomic displacements. 

(b) 0.15 
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t~ 
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Figure 4 . (a) The QM atoms (black spheres) selected in bulk Si. The atoms-! , 2, and 3 

are equivalent in crystalline periodicity. (b) Recoil forces F; felt by atom-i as a 

function of its displacement dr; from its equilibrium position. 
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Figure 5. Energy levels obtained in DFf calculation to obtain QM for the QM 

cluster shown in Fig. 4(a). 
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In the present hybrid scheme, the OFT calculation in Fig. 4 is 
performed for the atomic cluster that contain dangling bonds of termination
Si atoms. Therefore eigenstates relating to such dangling bonds appear 
near the Fermi level as shown in Fig. 5. Detailed analyses show that those 
states near the Fermi level are localized at the peripheral region of the cluster, 
i.e., surface states. We expect that those surface states do not cause any 
significant effects on the eigenstates localized around the central of the QM 
region. 

To confmn conservation of the hamiltonian H during a simulation run, 

we shift atom-2 by 1.0 a.u. toward [010]-direction at the initial and observe 

subsequent evolution of H. Figure 6 depicts time evolutions of E~tem and 

H. While H~tem IN oscillate by about 0.005eV, variation of HI N is as 

small as 0 .000 1 e V. 
The present scheme is applicable also to a-Al20 3 system. Variable

charge potential [15] is used for MD calculations, in which atomic charges 
vary dynamically following the generalized electro-negativity equalization 
principles. We find that seamless coupling between the QM and MD 
regions in a-Al20 3 requires that (i) the outermost QM atoms i.e., connecting 

to MD atoms, should be AI, and (ii) the QM atoms should be surrounded by 
the first neighboring 0 atoms and the second neighboring AI or "virtual" 

atom with its core charge Zcore = 0.5 I e I as shown in Fig. 7. 
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Figure 6 . Time evolutions of H~tem IN and HI N after shifting atom-2 by 1.0 a.u. 

to [0 10] direction at time = 0. 
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Figure?. (a) A selection of QM atoms in bulk a-Al20 3• The QM-0 atoms are depicted 

as black spheres, QM-Al atoms as white spheres, MD-0 atoms as black dots, MD-AI 

atoms as gray dots. (b) The QM cluster used in OFf calculation. The QM-0 atoms 

are depicted as black spheres, QM-Al atoms as white spheres, surrounding 0 atoms as 

black dots, surrounding AI atoms as gray dots 

4. CONCLUDING REMARKS 

Reactive region moves as simulation proceeds in practical hybrid 

simulations, and hence re-selection of QM atoms to trace the reactive region 

is required. There exists virtually no limitation in selection of QM atoms in 

the present hybrid scheme. Therefore the present scheme is well suited to 

automatic, adaptive re-selection of QM atoms. Further development is in 

progress to install such adaptive features in the hybrid scheme. 
It is well known experimentally that a-A120 3 shows the stress corrosion 

cracking when it is exposed to moisture environment. There exists no 

microscopic theory to explain its mechanisms. We are now performing 

hybrid QMIMD simulations to study environmental effects of water 

molecules on fracture initiation of a-Al20 3 • 
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