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Abstract

This book is an encapsulation of a myriad of topics of interest to engineers working in the structural
analysis, design, and rehabilitation fields. It is a comprehensive reference work and resource book written
for advanced students and practicing engineers who wish to review standard practices as well as to keep
abreast of new techniques and practices in the field of structural engineering. The Handbook stresses
professional applications and includes materials that are presented in an easy-to-read and ready-to-use
form. It contains many formulas, tables, and charts that give immediate answers to questions arising
from practical work. The book covers not only traditional but also novel and innovative approaches to
analysis, design, and rehabilitation problems.



Preface

The primary objective of this new edition of the CRC Handbook of Structural Engineering is to provide
advanced students and practicing engineers with a useful reference to gain knowledge from and seek
solutions to a broad spectrum of structural engineering problems. The myriad of topics covered in this
handbook will serve as a good resource for readers to review standard practice and to keep abreast of new
developments in the field.

Since the publication of the first edition, a number of new and exciting developments have
emerged in the field of structural engineering. Advanced analysis for structural design, performance-
based design of earthquake resistant structures, life cycle evaluation, and condition assessment of
existing structures, the use of high-performance materials for construction, and design for fire safety
are some examples. Likewise, a number of design specifications and codes have been revised by the
respective codification committees to reflect our increased understanding of structural behavior. All
these developments and changes have been implemented in this new edition. In addition to
updating, expanding, and rearranging some of the existing chapters to make the book more
informative and cohesive, the following topics have been added to the new edition: fundamental
theories of structural dynamics; advanced analysis; wind and earthquake resistant design; design of
prestressed concrete, masonry, timber, and glass structures; properties, behavior, and use of high-
performance steel, concrete, and fiber-reinforced polymers; semirigid frame structures; life cycle
evaluation and condition assessment of existing structures; structural bracing; and structural design
for fire safety. The inclusion of these new chapters should enhance the comprehensiveness of the
handbook.

For ease of reading, the chapters are divided into six sections. Section I presents fundamental prin-
ciples of structural analysis for static and dynamic loads. Section II addresses deterministic and prob-
abilistic design theories and describes their applications for the design of structures using different
construction materials. Section III discusses high-performance materials and their applications for
structural design and rehabilitation. Section IV introduces the principles and practice of seismic and
performance-based design of buildings and bridges. Section V is a collection of chapters that address the
behavior, analysis, and design of various special structures such as multistory rigid and semirigid frames,
short- and long-span bridges, cooling towers, as well as tunnel and glass structures. Section VI is
a miscellany of topics of interest to structural engineers. In this section are included materials related to
connections, effective length factors, bracing, floor system, fatigue, fracture, passive and active control,
life cycle evaluation, condition assessment, and fire safety.

Like its previous edition, this handbook stresses practical applications and emphasizes easy
implementations of the materials presented. To avoid lengthy and tedious derivations, many
equations, tables, and charts are given in passing without much substantiation. Nevertheless, a
succinct discussion of the essential elements is often given to allow readers to gain a better
understanding of the underlying theory, and many chapters have extensive reference and reading
lists and websites appended at the end for engineers and designers who seek additional or more
in-depth information. While all chapters in this handbook are meant to be sufficiently independent
of one another, and can be perused without first having proficiency in the materials presented
in other chapters, some prerequisite knowledge of the fundamentals of structures is presupposed.

This handbook is the product of a cumulative effort from an international group of academicians and
practitioners, who are authorities in their fields, graciously sharing their extensive knowledge and
invaluable expertise with the structural engineering profession. The authors of the various chapters in



this handbook hail from North America, Europe, and Asia. Their scientific thinking and engineering
practice are reflective of the global nature of engineering in general, and structural engineering in
particular. Their participation in this project is greatly appreciated. Thanks are also due to Cindy Carelli
(acquisitions editor), Jessica Vakili (project coordinator), and the entire production staff of CRC Press
for making the process of producing this handbook more enjoyable.

Wai-Fah Chen
Honolulu, HI

Eric M. Lui
Syracuse, NY
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1.1.1 Stress Components and Tractions

Consider an infinitesimal parallelepiped element shown in Figure 1.1. The state of stress of this element
is defined by nine stress components or tensors (g1, 012, 013, G215 022, 23, 031, 032, and a33), of which six
(011, G225 T33, 012 =021, 023 =03y, and 013 =03;) are independent. The stress components that act
normal to the planes of the parallelepiped (0, 02, 033) are called normal stresses, and the stress
components that act tangential to the planes of the parallelepiped (01, = 0,;, 023 =03, 013 =03,) are

called shear stresses. The first subscript of each stress component refers to the face on which the stress
acts, and the second subscript refers to the direction in which the stress acts. Thus, ¢;; represents a stress
acting on the i face in the j direction. A face is considered positive if a unit vector drawn perpendicular to
the face directing outward from the inside of the element is pointing in the positive direction as defined

1-1
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FIGURE 1.1 Stress components acting on the positive faces of a parallelepiped element.
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FIGURE 1.2 Tractions acting on the positive faces of a parallelepiped element.

by the Cartesian coordinate system (x;, X, x3). A stress is considered positive if it acts on a positive
face in the positive direction or if it acts on a negative face in the negative direction. It is considered
negative if it acts on a positive face in the negative direction or if it acts on a negative face in the positive
direction.
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X3

FIGURE 1.3 Traction and stresses acting on an arbitrary plane.

The vectorial sum of the three stress components acting on each face of the parallelepiped produces a
traction T. Thus, the tractions acting on the three positive faces of the element shown in Figure 1.2 are
given by

Ti = o11€1 + 012€z + 01363
Tz = 0721€1 +02282+023C3 (11)

T3 = 03181 + 0328, + 03383

where ey, e,, and e are unit vectors corresponding to the x|, x,, and x; axes, respectively.
Equations 1.1 can be written in tensor or indicial notation as

Ti = 0ii€j (1.2)

Note that both indices (i and j) range from 1 to 3. The dummy index (j in the above equation) denotes
summation.

Using Cauchy’s definition (Bathe 1982), traction is regarded as the intensity of a force resultant acting
on an infinitesimal area. Mathematically, it is expressed as

dF;
T; = 1.3
e (13)

1.1.2 Stress on an Arbitrary Surface

If the tractions acting on three orthogonal faces of a volume element are known, or calculated using
Equations 1.1, the traction T, acting on any arbitrary surface as defined by a unit normal vector n
(= nyey + nye, + nse;) as shown in Figure 1.3 can be written as

Tn = T161 + Tzez + T3e3 (14)
where T), T, and T are the components of T,, acting in the 1, 2, and 3 directions, respectively, of the
Cartesian coordinate system shown. They can be calculated using Cauchy’s formulas:

Ty = onum + o + 03113
T, = ot + 0t + 0313 (1.5)

T3 = o131 + 031y + 033113
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or using indicial notation:
Ti = 0jin; (1.6)

Once T, is known, the normal stress 7 ,,, and shear stress o, acting on the arbitrary plane as defined by
the unit vector n can be calculated using the equations

O n :Tn~n: Tini:T1n1+T2n2+T3n3 (17)
Ow = (TiT; — 02,)" > = (T2 + T3 + T3 — 62,) ' (1.8)

EXAMPLE 1.1

If the state of stress at a point in Cartesian coordinates is given by

200 —-80 20
—80 150 40 |MPa
20 40  —100

Determine:

1. The traction that acts on a plane with unit normal vector n = %el +sey + \/iie3
2. The normal stress and shear stress that act on this plane

Solution

1. The components of traction that act on the specified plane can be calculated using Equation 1.6:

Ty =o0nm+oum+0o3m

= (200)() + (—80) (%) + (20) (%)
= 74.1 MPa
T, = opm +opmy + o3n;

= (=80)(3) + (150) (3) + (40) ()
= 63.3 MPa
T3 = o3m + 031y + 033113

= (20)() + (40)(}) + (~100) ()
= —40.7 MPa

From Equation 1.4, the traction acting on the specified plane is

Tn = 74.161 + 63.382 — 40.763

2. The normal and shear stresses acting on the plane can be calculated from Equations 1.7 and 1.8,
respectively,

Oyn — Tli’ll + Tzﬂz + T31’Z3

= (74.1)(3) + (63.3) (1) + (—40.7) (&)
= 40 MPa
— (TP + T+ T2 —a2)"?

= \/(74.1)2 + (63.3)% + (—40.7)* — (40)°
= 97.7 MPa
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1.1.3 Stress Transformation

If the state of stress acting on an infinitesimal volume element corresponding to a Cartesian
coordinate system (x; — x, — x3) as shown in Figure 1.1 is known, the state of stress on the element with
respect to another Cartesian coordinate system (x| — x, — x3) can be calculated using the tensor
equation

G;j = likljlakl (1.9)

where [ is the direction cosine of two axes (one corresponding to the new and the other corresponding
to the original). For instance,

lix = cos(i, k), Iy = cos(f, 1) (1.10)

represent the cosine of the angle formed by the new (i’ or j/) and the original (k or I) axes.

1.1.4 Principal Stresses and Principal Planes

Principal stresses are normal stresses that act on planes where the shear stresses are zero. Principal planes
are planes on which principal stresses act. Principal stresses are calculated from the equation

011 — 0 012 g13
det 012 0y — 0 073 (111)
J13 023 033 — 0

which, upon expansion, gives a cubic equation in o:
0 —NLo*—Lo—15=0 (1.12)

where Iy, I, and I; are the first, second, and third stress invariants (their magnitudes remain unchanged
regardless of the choice of the Cartesian coordinate axes) given by

L =01 +0n+03

011 012 t0'11 g13 0 023

L = —det — det

012 022 013 033 023 033

(1.13)
011 012 013
13 = det 012 022 0723
013 023 033
The three roots of Equation 1.12, herein denoted as op, 0p,, and ops, are the principal stresses acting on
the three orthogonal planes. The components of a unit vector that defines the principal plane (i.e., #;p;
1ypi> M3p;) corresponding to a specific principal stress op; (with i=1, 2, 3) can be evaluated using any two
of the following equations:

mpi(011 — Opi) + MpiG12 + M3pio13 =0
mpio12 + mpi(022 — 0pi) + n3pioa3 = 0 (1.14)
mpi013 + Mopi0a3 + n3pi(033 — opi) = 0
and
2 2 2
tip; + Myp; + n3p; =1 (1.15)

The unit vector calculated for each value of gp; represents the direction of a principal axis. Thus, three
principal axes that correspond to the three principal planes can be identified.
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Note that the three stress invariants in Equations 1.13 can also be written in terms of the principal
stresses:
Iy = op1 + 0p2 + 0p3
I, = —0op10p2 — Gp20p3 — OP10P3 (1.16)

I3 = op10p20p3

EXAMPLE 1.2

Suppose a plane stress condition exists, derive the equations for (1) stress transformation, (2) principal
stresses, and (3) principal planes for this condition.

Solution

1. Stress transformation. With reference to Figure 1.4, a direct application of Equation 1.9, with the
condition ¢33 =0,3=0;3=0 applying to a plane stress condition, gives the following stress
transformation equations:

0, =011 08>0+ a2, cos? (90° — 0) + 61, c0s0cos(90° — 0) + 721 c0s(90° — 0) cos 0
oh,=0on cos? (90°+0)+ 02 cos’0+a1, €0s(90° +0) cos 0+ ) cosOcos(90° +0)
), =011 c080c08(90° +0) + 635 c0s(90° — 0) cos O+ 71, c0s*0 + 751 cos(90° — 0) cos(90° +0)
Using the trigonometric identities
c0s(90° — 0) = sin 6, cos(90° + 0) = —sin6,

1 — cos20 1+ cos20 . sin 20
— =—F sinfcosf =

the stress transformation equations can be expressed as

o +o g1 — O .
0'/11 :( L 5 22) +( 1 3 22) cos 20 + a1, sin 260

o1 +0 g1 — O .
0/22:( 1 5 22)—( = 5 22) cos 20 — 05 sin 20

11— 0
0’12 — 7(¥) sin 20 + 61, cos 20

sin%0 = , cos’0

which are the familiar two-dimensional (2-D) stress transformation equations found in a number
of introductory mechanics of materials books (see, e.g., Beer et al. 2001; Gere 2004).

(@) X (b)
T"zz
— >
012
l T 11
- —> —> X

l 0
FIGURE 1.4 Two-dimensional (2-D) stress transformation: (a) original state of stress acting on a 2-D
infinitesimal element and (b) transformed state of stress acting on a 2-D infinitesimal element.
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T (01p)
A

Tl'l‘l&X

op2 C op|

FIGURE 1.5 Mohr’s circle.

2. Principal stresses. For plane stress condition, Equation 1.11 becomes

011 — 0 012
012 0 — 0

det

which, upon expansion, gives the quadratic equation
2 2
o° — (011 + 02)o + (01102 — 07,) =0
The two solutions to the above equation give the two principal stresses as

o +o o011 — 0\ 2
opy = 112 22+ (112 22) "‘U%z

o on+0on (011 *022)2+62
P2 = -
> 2 12

Note that these stresses represent the rightmost and leftmost points on a Mohr circle (Beer et al.
2001), shown in Figure 1.5, with OC= (0, +02,)/2 and R=/[((o1, — 622)/2)" + a3,].
(Although not asked for in this example, it can readily be seen that the maximum shear
stress is the uppermost point on the Mohr circle given by Tmax = (012),, = R=

VI((on = 02)/2) +03,])
3. Principal planes. Substituting the equation for gp; into

mip1(011 — 0) + mp1012 = 0
and recognizing that
2 2
Mpy + 1op = 1

it can be shown that the principal plane on which op; acts forms an angle 0p; = tan™ ' (nap1/11p1)
with the x; (or x—) axis and is given by

o o012
0})1 = Ztan |:7( :|

o1 —02)/2
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Following the same procedure for op, or, more conveniently, by realizing that the two principal
planes are orthogonal to each other, we have

n
Op2 = Op1 + 5
(Note that the planes on which the maximum shear stress acts make an angle of £45° with the
principal planes, that is, 051 = 0p; — (n/4), Oy, = Opy — (n/4) = Op1 + (1/4).)
1.1.5 Octahedral, Mean, and Deviatoric Stresses

Octahedral normal and shear stresses are stresses that act on planes with direction indices satisfying the
condition n} = n3 = nj = 1 with respect to the three principal axes of an infinitesimal volume element.
Since there are eight such planes, which together form an octahedron, the stresses acting on these planes
are referred to as octahedral stresses. The equations for the octahedral normal and shear stresses are

given by
(1.17)

where I; and L are the first and second stress invariants defined in Equations 1.13 or in Equations 1.16.
Octahedral stresses are used to define certain failure criteria (e.g., von Mises) for ductile materials.

Mean stress is obtained as the arithmetic average of three normal stresses (or the three principal
stresses):

Om = 3011 + 022 + 033) = L(0p1 + 0p2 + 0p3) =33 (1.18)
Deviatoric stress is defined by the stress tensor

2011 — 0y — 033

012 013
3 2
022 — 011 — 033
g12 —3 023 (1.19)
2033 — 011 —O0n
013 023 -

3

The deviatoric stress tensor represents a state of pure shear. It is obtained by subtracting the mean stress
from the three normal stresses (01, 055, and 033) in a stress tensor. It is important from the viewpoint of
inelastic analysis because experiments have shown that inelastic behavior of most ductile materials is
independent of the mean normal stress, but is related primarily to the deviatoric stress.

If the indicial notation s; is used to represent the nine deviatoric stress components given in
Equation 1.19, the maximum deviatoric stress acting on each of the three orthogonal planes (which are
the same as the principal planes) can be computed from the cubic equation

S —hs—J=0 (1.20)
where ]}, 5, and J; are the first, second, and third deviatoric stress invariants given by
h=si=sn+s2+s=0
b = 3sisi = 3(s1) + 55, + 535+ 25, + 2555 + 2573)
s Sz si3 (1.21)
Js = 3sisiksk = det| si; s 53

513 523 533
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Alternatively, if the principal stresses are known, the three maximum deviatoric stresses can be calculated
using the equations

(op1 — 0p3) + (0p1 — Op2)

Sp1 =

3
oy — (op2 — 0p3) -;‘ (op2 — op1) (1.22)
(o3 —0ap1) + (9p3 — 0p2)
Sp3 = 3

Note that ]}, J,, and J5 can also be expressed in terms of I, L,, and I, or the three maximum deviatoric
stresses, as follows:

Ji = sp1+spp +sp3 =0
L=5L+ %Ilz = %(5}2)1 + S1232 + 5}273) (1.23)

— 1 2713 _1(2 2 2\
]3 = I3 + 511[2 + 2—711 = §(SP1 + SPZ + SP3) = Sp15p25p3

1.1.6 Maximum Shear Stresses

If the principal stresses are known, the maximum shear stresses that act on each of the three ortho-
gonal planes, which bisect the angle between the principal planes with direction indices (1; = +1/v/2,
m==41/v2, 15=0), (m =0, my==+1/v2, ns==+1/v2), (m==x1/v/2, n,=0, n;==+1/y/2) with
respect to the principal axes, are given by
Tmax1 — %|O'P1 - O-PZ‘
Tmax2 = %|0'P2 - O-P3‘ (1.24)
Tmax3 = %|0P1 - Jpa\
Note that the planes (called principal shear planes) on which these stresses act are not pure shear planes.

The corresponding normal stresses that act on these principal shear planes are (op;+ 0py)/2,
(op2+ 0p3)/2, and (op; + 0p3)/2, respectively.

1.2 Strains

1.2.1 Strain Components

Corresponding to the six stress components described in the preceding section are six strain compo-
nents. With reference to a Cartesian coordinate system with axes labeled 1, 2, and 3 as in Figure 1.1, these
strains are denoted as &1, €2, £33, Y12 = 2812, Y23 = 2&23, and Y31 = 231 €11, €22, and &35 are called normal
strains and 7,5, 7,3, and y3; are called shear strains. Using the definitions for engineering strains (Bathe
1982), normal strain is defined as the ratio of the change in length to the original length of a straight line
element, and shear strain is defined as the change in angle (when the element is in a strained state) from
an originally right angle (when the element is in an unstrained state).

1.2.2 Strain-Displacement Relationships

If we denote u, v, and w as the translational displacements in the 1, 2, and 3 (or x, y, and z) directions,
respectively, then according to the small-displacement theory the six engineering strain components can
be written in terms of these displacements as

ou ov ow
P & = =< & = = >
ax’ Py P ez

& =
(1.25)

5 6u+6v 5 6v+@w 5 ©w+6u

= 2¢ = — _— q = & = — _—, q = 2¢ _ _

Y12 12 3y ox V23 B =3, 3y 731 1= 5 T g
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1.2.3 Strain Analysis

Like stresses, strains can be transformed from one Cartesian coordinate system to another. This can be
done by replacing ¢ by ¢ in Equation 1.9. In addition, one can calculate the three principal strains (¢py,
epa, and ¢p3) and the maximum shear strains (€max 1> €max2> and &max3) acting on the three orthogonal
planes by following the same procedure outlined in the preceding section for stresses simply by replacing
all occurrences of ¢ by ¢ in Equations 1.12 and 1.24. However, it should be noted that except for isotropic
elastic materials, principal planes for stresses and principal planes for strains do not necessarily coincide,
nor do the planes of maximum shear stresses and maximum shear strains.

1.3 Equilibrium and Compatibility

By using an infinitesimal parallelepiped element subject to a system of positive three-dimensional
stresses, equilibrium of the element requires that the following three equations relating the stresses be
satisfied (Wang 1953; Timoshenko and Goodier 1970):

0 0 0
ou Qo Qou oo

Ox Oy 0z
60'12 60'22 60'23

=4+ =4 B, = .
ox oy +5, tB (1.26)

0o S 0o

Ox Oy 0z
where B,, B,, and B, are the body forces per unit volume acting in the 1, 2, and 3 (or x, y, and 2)
directions, respectively.

According to Equations 1.25, the six strain components can be expressed in terms of just three
displacement variables (u, v, and w). To obtain a unique solution for the displacements for a given
loading condition, these strains must be related. By manipulating Equations 1.25, it can be shown (Wang
1953; Timoshenko and Goodier 1970) that the strains are related by the following compatibility
equations:

%1 Oem e,

0y? + o 0x0y

0%cy  O%ess B 0%ey3

0z2  0y? 0y0z

Q%ey  O%ess B %13

022 Ox? 0x0z (127)
% %y 0’3 O%epn

0y0z  0x*  0xdy 0x0z
62822 - 82823 _ 62813 62812
0x0z 0xdy 0y*  0ydz
62833 o 62823 62813 62812
0x0y 0x0z 0ydz 0z

Since Equations 1.27 were derived from Equations 1.25, they should not be regarded as an independent
set of equations. The six stress components (011, 022, 033, 012, 023, and 713), the six strain components
(&11> €22> €33> €125 €23, and &13), and the three displacement components (u, v, and w) constitute a total of
15 unknowns, which cannot be solved using the three equilibrium equations (Equations 1.26) and the
six compatibility equations (Equations 1.27). To do so, six additional equations are needed. These
equations, which relate stresses with strains, are described in the next section.
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1.4 Stress-Strain Relationship

Stress—strain (or constitutive) relationship defines how a material behaves when subjected to applied
loads. Depending on the type of material and the magnitude of the applied loads, a material may behave
elastically or inelastically. A material is said to behave elastically when loading and unloading follow the
same path and no permanent deformation occurs upon full unloading (see Figure 1.6, Paths 1 and 2).
A material is said to behave inelastically when loading and unloading do not follow the same path and
permanent deformation results upon full unloading (see Figure 1.6, Paths 1 and 3). A material that
behaves elastically may be further classified as linear or nonlinear, depending on whether Paths 1 and 2 in
Figure 1.6 are linear or nonlinear. If the properties of a material are independent of location in the
material, the material is said to be homogenous. Moreover, depending on the directional effect of the
mechanical properties exhibited by a material, terms such as isotropic, orthotropic, monoclinic, or
anisotropic can also be used to describe a material.

1.4.1 Linear Elastic Behavior

If the material is anisotropic (i.e., no plane of symmetry exists for the material properties), the six stress
components are related to the six strain components by 21 independent material constants (D;; in the
following matrix equation):

011 Dy Dy, D3 Dy Dis D &1
02 Dy, Dys Dy Dys Dy €2
033 Ds3 Dsy Dss Dsg €33

= 1.28
o1 Dy Dys  Dys 3P (1.28)
023 sym. Dss  Dsg €3
013 Dss €13

If the material is monoclinic (i.e., material properties are symmetric about one plane), the number of
independent material constants reduces to 13. For instance, if the plane defined by the x,—x; (or y-z)

Stress, o
A
/
002 |---mmmmmmm-
Path1 //
A/
/
/
// /_Path 3
/
Path24+—//
I/
l/
/
! -
0'002—> |<— Strain, &
&P e®

FIGURE 1.6 Uniaxial stress—strain curve.
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axes is the plane of symmetry, the stress—strain relationship takes the form

011 Dy Dy, Dy 0 Dis 0 &1l
022 Dy Dy 0 Dy 0 €2
033 Di; 0 Dss O €33

= 1.29
012 Dyy 0 Dy &12 ( )
0723 sym. D55 0 €23
013 Dss €13

If the material is orthotropic (i.e., material properties are symmetric about two planes), the number
of independent material constants further reduces to 9, and the stress—strain relationship takes
the form

o1 Dy D Diz 0 0 0 &1
022 Dy Dy 0 0 0 &2
033 D33 0 0 0 €33

= 1.30
o1 Dy O 0 €12 (1.30)
023 sym. Dss 0 €23
013 Des €13

If the material is isotropic (i.e., material properties are independent of the direction), the number of
independent material constants becomes 2:

o1 2+ A A A o 0 O en

0 2u+ 2 A 0 0 0 £

033 _ 2/1-1—)» 0 0 0 €33 (1 31)
012 2u 0 0 &12 '
023 sym. 2u 0 €3

013 2u €13

where p and / are called Lamé constants. They are related to the elastic modulus E and Poisson’s ratio v
of the material by the following equations:

(1.32)

vE
A= m (1.33)

Note that y = G, the shear modulus of the material.

Regardless of the material type, experimental means are often needed to determine the material
constants that relate the stresses and strains in Equations 1.28 to 1.31. Because of the difficulty in
determining a large number of constants, analyses are often performed by assuming the material is either
isotropic or orthotropic.

If we denote any of the above equations relating stresses and strains symbolically as

o =De (1.34)

where o is the 6 x 1 vector of stresses, € is the 6 x 1 vector of strains, and D is the 6 x 6 material stiffness
matrix, it can be shown that

e=D"'o=Co (1.35)
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where C is the material compliance matrix. For an orthotropic material, the expanded form of
Equation 1.35 is

1=y v 0 0
En Elzz Es;
—y
. — 2 0 0 0 .
11 E»» Ef3 11
£22 — 0 o o ||
&3 | _ Es3 033 (1.36)
&1 1 012
— 0 0
€23 2Gp; 023
€13 sym. 2C1;23 013
1
L 2 G13 |

where Ej;, E,,, and Es;; denote the orthotropic moduli of elasticity measured in three orthogonal
directions, Gy, G,3, and G;3 denote the orthotropic shear moduli, and v;; denotes the Poisson’s ratio
obtained by dividing the negative value of the strain induced in the j direction by the strain produced in
the i direction by a stress applied in the i direction.

For an isotropic material, the expanded form of Equation 1.35 is

1 -V =V

- = — 0 0 0

E E E

1 —v
€11 E E 0 0 0 o1l
€22 1 022
é3 | _ E 0 0 0 033 (1.37)
812 (1+v) 0 0 012
&3 E 023
€13 sym. (1+v) 0 013
E
(I4+v)
L E |

where the first three of the above matrix equation are often referred to as generalized Hooke’s Law for
linear elastic, homogeneous, and isotropic materials, respectively.

EXAMPLE 1.3

Determine the stress—strain relationship for a homogeneous isotropic material assuming (1) plane stress
condition and (2) plane strain condition.

Solution

1. Plane stress condition. If the stresses are acting on the x;—x, (or x—y) plane, plane stress condition
implies that 633 = 0,3 =03 =0. Substituting this condition into Equation 1.37, we have

1 —y

E £
&1l 1 011 v
&n p = i 0 022 and  e33 = *E(O'n +02)
&12 1+ g12
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or
E vE 0
— 2 2
o 1—v 1—v en _
E v
on = 0 &2 and 33 = (611 +€22)
1—2 1—v
013 E &12
sym.
Y 14+v

Note that &35 # 0 even though o33 =0 (i.e., a biaxial state of stress gives rise to a triaxial state of
strain) because of the Poisson’s effect.

2. Plane strain condition. If the strain is negligible in the x; (or z) direction, plane strain condition
implies that €33 = &3 = &;3 = 0. Substituting this condition into Equation 1.31, we have

(1—v)E vE
o1 1—v—2v? 1—1\1—2]:3)2 e E
Zy v
oy b= 7)2 0 £ and 03 = ————— (&1 + &)
o 1—v—2v e l—v—2v
12 E 12
sym T+
or
1—v2 —v(1+4v) 0
én E lfvz o1
£n p = 0 () and 033 = v(o1 +0n)
E12 E 1+v 012
sym
4 E

Note that 033 # 0 even though ;3 =0.

1.4.2 Nonlinear Elastic Behavior

If an elastic material exhibits nonlinear behavior, the stress—strain relationship is often cast in
incremental form relating some increments of strains to stress, or vice versa

do = Dy de (1.38)
or

de = C do (1.39)

where do is the incremental vector of stresses, de is the incremental vector of strains, Dy is the incre-
mental material stiffness matrix, and Cj is the incremental material compliance matrix. If the experi-
mental stress—strain curves of a material are known, the terms in these matrices can be taken as the values
of the tangential or secant slopes of these curves. The analysis of structures made of materials that exhibit
nonlinear elastic behavior has to be performed numerically in incremental steps as well.

Alternatively, if the nonlinear relationship between any given components of stress (or strain)
can be expressed as a mathematical function of strains (or stresses) and material constants k;, k,,
ks, etc., as follows:

ojj = ﬁj(sll)822> €33, €12 €23, €13, k1, ko, sy ) (1.40)

&ij = &ij(011, 022, 033, 012, 023, 013, ki, ko, ks, .. ) (1.41)

such relationships can be incorporated directly into the analysis to obtain closed-form solutions.
However, this type of analysis can be performed only if both the structure and the loading conditions are
very simple.
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EXAMPLE 1.4

Derive the load—deflection equation for the axially loaded member shown in Figure 1.7. The member
is made from a material with a uniaxial stress—strain relationship described by the equation
&= B(a/BnE,)", where B and n are material constants and E, is the initial slope of the stress—strain curve
(i.e., the slope at ¢ =0).

The deflection (which for this problem is equal to the elongation) of the axially loaded member can be
obtained by integrating the strain over the length of the member; that is,

n

L L o n L P
5:/(; fdx:A B(BnEO) dx:/(; B W dx
oo (1-77)
~(am) (=)
I”IEQA() n—1

1.4.3 Inelastic Behavior

For structures subject to uniaxial loading, inelastic behavior occurs once the stress in the structure
exceeds the yield stress, oy, of the material. The yield stress is defined as the stress beyond which inelastic
or permanent strain is induced, as shown in Figure 1.6. While some materials (e.g., structural steel)
exhibit a definitive yield point on the uniaxial stress—strain curve, others do not. For such cases, the yield
stress is often determined graphically using the 0.2% offset method. In this method, a line parallel to the
initial slope of the uniaxial stress—strain curve is drawn from the 0.2% strain point. The 0.2% yield stress
is obtained as the stress at which this line intersects the stress—strain curve.

For structures subject to biaxial or triaxial loading, inelastic behavior is assumed to occur when some
combined stress state reaches a yield envelope (for a 2-D problem) or a yield surface (for a 3-D problem).
Mathematically, the yield condition can be expressed as

f(O'i]', kl, kz, k3,...) =0 (142)

where ki, ks, k3, ... are (experimentally determined) material constants.

[ [ /][] ]/

Ay
X
L
A2
0
\
P

FIGURE 1.7 Tapered axially loaded member.
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Opver the years, various yield functions fhave been proposed to describe the yield condition of a variety
of materials (see, e.g., Chen 1982; Chen and Baladi 1985; Chakrabarty 1987; Chen and Han 1988). For
ductile materials (e.g., most metals), the Tresca and von Mises yield criteria are often used. A brief
discussion of these two criteria is given below:

1. Tresca criterion. According to the Tresca yield criterion, yielding occurs when the maximum shear
stress at a point calculated using Equations 1.24 reaches a critical value equal to ¢,/2, where oy, is
the yield stress of the material obtained from a simple tension test. Mathematically, the Tresca
yield criterion is expressed as

%|6P1 —0P2|
1 Oy

max E'UPZ —0p3| :7 (143)
%|O'P1 —GP3|

2. von Mises criterion. Despite its simplicity, one drawback of the Tresca yield criterion is that it
does not take into consideration the effect of the intermediate principal stress. One method
to include the effect of this principal stress in the yield function is to use the octahedral shearing
stress (or the strain energy of distortion) as the key parameter to describe yielding in
the materials. The von Mises yield criterion is one example. The von Mises yield criterion has
the form

1/2
(op1 — 0P2)2 + (op2 — UP3)2 + (op1 — UPa)z

6

(1.44)

Sie

where oy is the yield stress obtained from a simple tension test.

It should be noted that both the Tresca and the von Mises yield criteria are independent of hydrostatic
pressure effect. As a result, they should be used only for materials that are pressure insensitive. For
pressure dependent materials (e.g., soils), other yield (or failure) criteria should be used. A few of these
criteria are given below:

1. Rankine criterion. This criterion is often used to describe the tensile (fracture) failure of a brittle
material. It has the form

Opy = Oy, Opy = 0Oy, Op3 = Oy (1.45)

where o, is the ultimate (or tensile) strength of the material. For materials that exhibit brittle
behavior in tension, but ductile behavior in confined compression (e.g., concrete, rocks, and
soils), the Rankine criterion is sometimes combined with the Tresca or von Mises criterion to
describe the failure behavior of the materials. If used in this context, the criterion is referred to as
the Tresca or von Mises criterion with a tension cut-off.

2. Mohr—Coulomb criterion. This criterion is often used to describe the shear failure of soil. Failure is
said to occur when a limiting shear stress reaches a value as defined by an envelope, which is
expressed as a function of normal stress, soil cohesion, and friction angle. If the principal stresses
are such that op; > op, > gp3, the Mohr—Coulomb criterion can be written as

1 1 opy — Op3 .
E(O‘P] — gp3)COS P = ¢ — E(O’P] + op3) —&—%smqﬁ tan ¢ (1.46)

where c is the cohesion and ¢ is the angle of internal friction.
3. Drucker—Prager criterion. This criterion is an extension of the von Mises criterion, where
the influence of hydrostatic stress on failure is incorporated by the addition of the term «I;, where
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I, is the first stress invariant as defined in Equations 1.13 (note that o, + 02, + 033 =0p; +

Op2+ 0p3)
2 2 212
(op1 — op2)" + (0p2 — 0p3)” + (0p1 — 0p3)

6

O((O'pl +Gp2+O'P3) =+ = k (147)
where o and k are material constants to be determined by curve-fitting of the above equation to
experimental data.

If yielding does not signify failure of a material (which is often the case for ductile materials), the
postyield behavior of the material is described by the use of a flow rule. A flow rule establishes the relative
magnitudes of the components of plastic strain increment dsg and the direction of the plastic strain
increment in the strain space. It is written as

P , 0g
dej; = d 305 (1.48)
where d/ is a positive scalar factor of proportionality, g is a plastic potential in stress space, and 0g/0c;
is the gradient, which represents the direction of a normal vector to the surface defined by the plastic
potential at point ¢;; Equation 1.48 implies that dsg is directed along the normal to the surface of the
plastic potential. If the plastic potential g is equal to the yield function f, Equation 1.48 is called the
associated flow rule. Otherwise, it is called the nonassociated flow rule.
Using the elastic stress—strain relationship expressed in Equation 1.39, the flow rule expressed in
Equation 1.48 with ¢g=f (i.e., associated flow rule), the consistency condition for an elastic—perfectly
plastic material given by

_Of 4

and the following relationship among total, elastic, and inelastic (plastic) strains,
P
dejj = dej; + dej; (1.50)
it has been shown (Chen and Han 1988) that an incremental stress—strain relationship for an elastic—
perfectly plastic material that follows the associated flow rule can be written as

doy; = Djjy dex (1.51)

where iji, is the incremental elastic—perfectly plastic material stiffness matrix given by

Dijinn(Of /00 1n) (Of /00 pg) Dpgua
(0f /00 +5) Dystu(0f /00 1)

where Djj (0f Djjuy Dpgis etc.) is the indicial form of Dy given in Equation 1.38.

Djjyy = Dij — (1.52)

1.4.4 Hardening Rules

If a material exhibits work-hardening behavior in which a state of stress beyond yield can exist, then in
addition to the initial yield surface fa new yield surface, called subsequent yield or loading surface F,
needs to be defined. Like the initial yield surface, the loading surface demarcates elastic behavior from
inelastic behavior. If the stress point moves on or within the loading surface, no additional plastic strain
will be induced. If the stress point is on the loading surface and the loading condition is such that it
pushes the stress point out of the loading surface, additional plastic deformations will occur. When this
happens, the configuration of the loading surface will change. The condition of loading and unloading
for a multiaxial stress state is mathematically defined as follows.
If the stress point is on the loading surface (i.e., if F=0), loading occurs if

nj; dayi >0 (1.53)
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and unloading occurs if
ngdo,‘j <0 (1.54)

where nf; represents a component of a unit vector that is normal to the loading surface F, that is,

;= OF /0o (1.55)
\/(0F /001)(OF [dok)
For the special case when nfjdaij = 0, that is, the loading vector do;is perpendicular to the corresponding
component of the unit normal vector ng,
additional plastic strain is induced only during loading, but not during neutral loading or unloading.
According to the incremental or flow theory of plasticity, the configuration of the loading surface
when loading occurs can be described by the use of a hardening rule. A hardening rule establishes a

relationship between the subsequent yield stress of a material and the inelastic deformation accumulated

a state of neutral loading is said to have occurred. Note that

during prior excursion into the inelastic regime. A number of hardening rules have been proposed over
the years. They can often be classified into or associated with one of the following:

1. Isotropic hardening. This hardening rule assumes that during plastic deformations, the loading
surface is merely an expansion, without distortion, of the initial yield surface. Mathematically, this
surface is represented by the equation

F(oyj) = K*(¢p) (1.56)

where k is a constant, which is a function of the total (i.e., cumulated) plastic strain ;. Although
this is one of the simplest hardening rules, it has a serious drawback in that it cannot be used
to account for the Bauschinger effect, which states that the occurrence of an initial plastic defor-
mation in one direction (e.g., in tension) will cause a reduction in material resistance to
a subsequent plastic deformation in the opposite direction (e.g., in compression). Since
the Bauschinger effect is present in most structural materials, the use of isotropic hardening should
be limited to problems that involve only monotonic loading in which no stress reversals will occur.

2. Kinematic hardening. This hardening rule (Prager 1955, 1956) assumes that during plastic
deformation, the loading surface is formed by a simple rigid body translation (with no change in
size, shape, and orientation) of the initial yield surface in stress space. Thus, the equation of the
loading surface takes the form

F(oj; — ’11']') =K (1.57)

where k is a constant to be determined experimentally and #;; are the coordinates of the centroid
of the loading surface, which changes continuously throughout plastic deformation. It should
be noted that contrary to isotropic hardening, kinematic hardening takes full account of the
Bauschinger effect, so much so that the amount of “loss” of material resistance in one direction
during subsequent plastic deformation is exactly equal to the amount of initial plastic defor-
mation the material experiences in the opposite direction, which may or may not be truly
reflective of real material behavior.

3. Mixed hardening. As the name implies, this hardening rule (Hodge 1957) contains features of
both the isotropic and the kinematic hardening rules described above. It has the form

F(oij —ny) = K (ep) (1.58)

where 17;;and k are as defined in Equations 1.56 and 1.57. In mixed hardening, the loading surface
is defined by a translation (as described by the term #;;) and expansion (as measured by the term
k(ep)), but no change in shape, of the initial yield surface. The advantage of using the mixed
hardening rule is that one can conveniently simulate different degrees of the Bauschinger effect by
adjusting the two hardening parameters (17;; and k) of the model.
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1.4.5 Effective Stress and Effective Plastic Strain

Effective stress and effective plastic strain are variables that allow the hardening parameters contained in
the above hardening models to be correlated with an experimentally obtained uniaxial stress—strain
curve of the material. The effective stress has unit of stress, and it should reduce to the stress ¢;; in a
uniaxial stress condition. Table 1.1 summarizes the equations for the effective stress and hardening
parameter for two materials modeled using the isotropic hardening rule. The equations shown in
Table 1.1 can also be used for materials modeled using the kinematic or mixed hardening rule provided
that the effective stress g, is replaced by a reduced effective stress ., computed using a reduced stress
tensor given by

O'Z-:Uij—}’]ij (1.59)
Effective plastic strain increment defcan be defined in the context of plastic work per unit volume in
the form

dW, = g. def (1.60)

By using Equation 1.48 in conjunction with a material model, it can be shown (Chen and Han 1988) that

for a von Mises material
def = |/3de}; def; (1.61)

and for a Drucker—Prager material

» 2+ (1/V3)
de = NerEaoh /def; def; (1.62)

The effective stress and effective plastic strain are related by the incremental stress—strain equation
do. = H, de? (1.63)

where H, is the plastic modulus, which is obtained as the slope of the uniaxial stress—plastic strain curve
at the current value of o..

Using the concept of effective plastic strain, flow rule, consistency condition, relationship between
total, elastic, and plastic strains, elastic stress—strain relationship, and a hardening rule, it can be shown
(Chen and Han 1988) that an incremental stress—strain relationship for an elastic-work-hardening
material can be written in the form of Equation 1.51 with

Dijonn(08 /06 1un) (OF /06 pg) Dy
K + (OF /06 5) Dys1u (08 /06 1)

Dzil = Dju — (1.64)

TABLE 1.1 Effective Stress

Material model Effective stress, 0. Hardening parameter, k
von Mises V3h cre/\/§
Drucker—Prager (\/?:od] +3h )/(1 + \/ga) (a + (1/\5))6e

Note: ], is the second deviatoric stress invariant defined in Equations 1.21, I is the first stress invariant
defined in Equations 1.13, and o is a material constant defined in Equation 1.47.
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OF 0g OF dk O0g Og
= T 3235 okd® "\ o500 1.
K= o0, okdd “\/30; 00, (1.65)

where C is a material constant, which is equal to

where

2
for a von Mises material and
*+ (1/V3) (1.66b)

302 + (1/2)

for a Drucker—Prager material. From Equation 1.64 it can be seen that D;l,’d is not necessarily symmetric
unless the associated flow rule (i.e., g=F) is used in the formulation.

1.5 Stress Resultants

Structural analysis can be performed and results represented in terms of stresses and strains, or forces
and displacements. For skeletal structures (i.e., structures that are made up of line elements such as
trusses, beams, frames, arches, grillages, etc.), the internal forces and moments, or stress resultants,
acting on a given cross-section as shown in Figure 1.8 are related to the stresses acting over the cross-
section by the following equations:

Fx:/alldA, Fy:/alsz, FZ:/O'13CIA
A A A

(1.67)
M, = /(—0122+013)’) da, M, =/ansz, M, = —/auydA
A A A

where F, is the axial force, F, and F, are the shear forces, M, is the torque, and M, and M, are the bending
moments about the y (or x,) and z (or x3) axes, respectively. Note that the value of some of these terms

FIGURE 1.8 Stress resultants.
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is 0 depending on the structure and the assumptions used in the modeling. For instance, in a truss
analysis, it is often assumed that F, = F,= M= M, = M,=0. In a 2-D beam—frame analysis in which the
structure is modeled on the x-y (or x;—x,) plane, it is often assumed that F,=M,= M, =0. In a 2-D
grillage analysis in which the structure is modeled on the x-z (or x;—x3) plane, it is often assumed that
F.=F,= M,=0.

1.6 Types of Analyses

Depending on the magnitude of the applied loads, the type of structure under consideration, the purpose
of performing the analysis, and the degree of accuracy desired, different types of analyses can be
performed to determine the force—displacement or stress—strain response of a structural system. Given
below is a succinct discussion of some salient features associated with several types of analyses that one
can perform depending on the objectives of the analysis and the expectations of the analyst. A more
detailed discussion of some of these methods of analysis can be found in later chapters of this handbook.

1.6.1 First-Order versus Second-Order Analysis

A first-order analysis is one in which all equilibrium and kinematic equations are written with respect
to the initial or undeformed configuration of the structure. A second-order analysis is one in which
equilibrium and kinematic equations are written with respect to the current or deformed geometry of
the structure. Because all structures deform under loads, a method of analysis that takes into con-
sideration structural deformation in its formulation will provide a more realistic representation of the
structure. However, because of its simplicity, a first-order analysis is often performed in lieu of a
second-order analysis. Although the results obtained lack the precision of a second-order analysis, they
are sufficiently accurate for design purpose if deflections or deformations of the structure are small.

1.6.2 Elastic versus Inelastic Analysis

An elastic analysis is one in which the effect of yielding is ignored in the analysis. Thus, the stress—
strain relationships discussed in Section 1.4.1 (for linear elastic material behavior) or Section 1.4.2
(for nonlinear elastic material behavior) will be used in the analysis. Because all strains (and
deformations) are recoverable in an elastic analysis, no consideration is given to the loading history
or loading path dependent effect (which is very important in an inelastic analysis) during the analysis.
Elastic analysis is therefore much easier to perform than inelastic analysis. However, if yielding does
occur, a behavioral model that is capable of capturing the inelastic response of the structure should
be used.

1.6.3 Plastic Hinge versus Plastic Zone Analysis

For framed structures, if the applied loads are proportional and monotonic, the loading history effect is
inconsequential, and a plastic hinge (also called concentrated plasticity) or plastic zone (also called
distributed plasticity) analysis can be performed to capture the inelastic behavior of the system. In the
plastic hinge method (ASCE-WRC 1971) of analysis, inelasticity is assumed to concentrate in regions
of plastic hinges. A plastic hinge is a zero-length element where the moment is equal to the cross-section
plastic moment capacity M,,. If the effects of shear and axial force are ignored, M, is given by

M, = Za, (1.68)

where Z is the plastic section modulus (AISC 2001) and oy is the material yield stress.

In a simple plastic hinge analysis, once the moment in a cross-section reaches M, a hinge is
inserted at that location and no additional moment is assumed to be carried by that cross-section.
Cross-sections that have moments below M,, are assumed to behave elastically. Because the formation
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of a plastic hinge is a gradual process in which yielding spreads slowly from the neutral axis toward
the extreme fiber of the cross-section (i.e., cross-section plastification effect) as well as along the
length of the member (i.e., member plastification effect) as the applied load increases, more realistic
models such as the modified plastic hinge approach (White and Chen 1993) and the plastic zone
approach (Vogel 1984, 1985; Lui and Zhang 1990; Clarke et al. 1992) have been proposed to capture
this spread of plasticity effect. While the modified plastic hinge approach only accounts for cross-
section plastification, the plastic zone approach accounts for both cross-section and member plas-
tification as well as for the effect of residual stresses, and is therefore considered the most accurate
method of frame analysis. Unfortunately, to achieve this high degree of accuracy, very careful and
detailed modeling is required. For practical reasons, plastic zone analysis is rarely performed on a
routine basis. It is mostly used as a research tool to calibrate or verify the accuracy of advanced
in-house structural analysis programs.

1.6.4 Stability Analysis

Stability analysis is a special type of second-order analysis in which the system under consideration is
subjected to compressive force or stress (Allen and Bulson 1980; Chen and Lui 1987, 1991; Bazant and
Cedolin 1991). If the force or stress is high enough, a phenomenon known as instability or buckling may
occur. At the buckling or critical load, the structural system loses it stiffness, changes its deformation
pattern, and loses its ability to carry the applied loads. The mathematics used for the computation of this
critical load is called an eigenvalue problem. The system critical load and buckled mode shape are
obtained as the lowest eigenvalue and the corresponding eigenvector of the equation

KU = JKqU (1.69)

where K is the first-order system stiffness matrix, Kg is the system geometrical stiffness matrix, 4 is the
eigenvalue of the system, and U is the system displacement vector.

Stability analysis can be elastic or inelastic, depending on whether the stiffness matrices in
Equation 1.69 are formulated assuming elastic or inelastic material behavior (McGuire et al. 2000). In
addition, it should be noted that not all systems experience instability in the form of sudden buckling.
Structural systems that are geometrically imperfect (which is often the case for real structures) undergo
deformations that may resemble the buckled mode shapes at the outset of loading. The critical load for
these geometrically imperfect systems is called the limit load. It is obtained as the peak point of the
load—deflection curve generated using a second-order analysis.

1.6.5 Static versus Dynamics Analysis

A static analysis is one in which the effects of damping and inertia are not important and are therefore
ignored. It is used when the loads acting on the structure are stationary or applied very slowly over time.
A dynamic analysis is performed if the applied loads are time dependent, or if the effects of damping and

k
C
=
L=

)4 (Static)
p() (Dynamic)

£ [0 ]

FIGURE 1.9 A simple spring—mass—damper system.
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inertia are important. As shown in Figure 1.9, if a static analysis is used, the equilibrium equation has
the form

ku=p (1.70)

where k is the spring stiffness, u is the horizontal displacement of the mass, and p is the applied force.
However, if a dynamic analysis is used, the equilibrium equation has the form

mit + cit + ku = p(t) (1.71)

where m is the mass, ¢ is the damping coefficient, k is the spring stiffness, u is the displacement, # is the
velocity, i is the acceleration of the mass, and p(¢) is the time-varying applied load. mii is called the
inertia force, cit is the damping force from a viscous damper, and ku is the spring force. Note that inertia
force and damping force are not present in the static equation, but they are present in the dynamic
equation. It is also noteworthy to observe that the static equation is an algebraic equation, but the
dynamic equation is a differential equation. A dynamic analysis is therefore more difficult and time
consuming to perform than a static analysis, and depending on the form and complexity of the exci-
tation function p(#), recourse to numerical methods is often needed (Cheng 2001; Chopra 2001).

The system shown in Figure 1.9 is referred to as a single degree-of-freedom (dof) system because one
displacement variable u is all that is needed to define the displaced configuration of the system. For
a multiple dof system, Equations 1.70 and 1.71 need to be written in matrix form as

KU =P (1.72)
MU + CU + KU = P(t) (1.73)

where K, M, and C are the system stiffness, system mass, and system damping matrices, respectively, U,
U, and U are the system displacement, velocity, and acceleration vectors, respectively, and P(t) is the
time dependent system excitation force vector.

1.7 Structural Analysis and Design

Structural analysis refers to the computation of internal forces, displacements, stresses, and strains of
a structure with known geometry, arrangement of components as well as component and material
properties under a set of applied loads. Structural design refers to the determination of the proper
material, geometry, arrangement of components and component properties to carry a predefined set of
applied loads. In general, analysis and design are intertwined, and have to be performed iteratively in
sequence. Using a preliminary set of structural and component geometry determined based on
experience or the use of simplified behavioral models, an analysis is performed from which internal
forces, displacements, stresses, and strains are calculated. These computed quantities are then used
(often in conjunction with a design specification) to modify the preliminary design. The basic condition
to satisfy in a strength based design is that

capacity > demand (1.74)

Another analysis (called reanalysis) is then performed to obtain a more refined set of design quantities.
The process is repeated until Equation 1.74 is satisfied in every part of the structure. Very often, different
load combinations and different patterns of load applications have to be investigated to identify the
worst possible scenario for design. As a result, the use of computers becomes indispensable for the design
of complex structures.

Glossary

Mohr’s circle — When plotted in a Cartesian coordinate system with the normal stress ¢ as the abscissa
and the shear stress 7 as the ordinate, a Mohr circle is a graphical representation of the state of
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stress at a point. Each pair of coordinates on a Mohr circle represents the magnitude of a pair of
normal and shear stresses that exist on a plane with a certain orientation.

Monotonic loading — A loading that does not change direction during the course of the load history.

Poisson’s effect — An effect in which an increase (or decrease) of strain in one direction causes a
decrease (or increase) of strains in other directions. It is quantified by what is referred to as
Poisson’s ratio v, which is defined as the ratio of the minus value of the lateral strain to the
longitudinal strain. Most materials have Poisson’s ratios that fall in the range 0 <v < 0.5.

Principal axes — The three orthogonal axes that are collinear with the unit vectors used to define the
three principal planes of a parallelepiped volume element. Principal axes can also be defined as
axes about which the product of inertia I;; (when i# j) vanishes.
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2.1 Fundamental Principles

The main purpose of structural analysis is to determine forces and deformations of the structure due to
applied loads. Structural design involves form finding, determination of loadings, and proportioning of
structural members and components in such a way that the assembled structure is capable of supporting
the loads within the design limit states. The analytical model is an idealization of the actual structure.
The structural model should relate the actual behavior to material properties, structural details, and
loading and boundary conditions as accurately as is practicable.

Structures often appear in three-dimensional form. It is possible to idealize structures that have a
regular layout, are rectangular in shape, and are subjected to symmetric loads into two-dimensional
frames arranged in orthogonal directions. A structure is said to be two-dimensional or planar if all the
members lie in the same plane. Joints in a structure are those points where two or more members are
connected. Beams are members subjected to loading acting transverse to their longitudinal axis and
creating flexural bending only. Ties are members that are subjected to axial tension only, while struts
(columns or posts) are members subjected to axial compression only. A truss is a structural system
consisting of members that are designed to resist only axial forces. A structural system in which joints are
capable of transferring end moments is called a frame. Members in this system are assumed to be capable
of resisting bending moments, axial force, and shear force.

2.1.1 Boundary Conditions

A hinge or pinned joint does not allow translational movements (Figure 2.1a). It is assumed to be
frictionless and to allow rotation of a member with respect to the others. A roller permits the attached
structural part to rotate freely with respect to the rigid surface and to translate freely in the direction
parallel to the surface (Figure 2.1b). Translational movement in any other direction is not allowed.
A fixed support (Figure 2.1c) does not allow rotation or translation in any direction. A rotational spring
provides some rotational restraint but does not provide any translational restraint (Figure 2.1d).
A translational spring can provide partial restraints along the direction of deformation (Figure 2.1e).
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FIGURE 2.1 Various boundary conditions: (a) hinge support, (b) roller support, (c) fixed support, (d) rotational
support, and (e) translational spring.

2.1.2 Loads and Reactions

Loads that are of constant magnitude and remain in the original position are called permanent loads.
They are also referred to as dead loads, which may include the self weight of the structure and other
loads such as walls, floors, roof, plumbing, and fixtures that are permanently attached to the structure.
Loads that may change in position and magnitude are called variable loads. They are commonly referred
to as live or imposed loads, which may include those caused by construction operations, wind, rain,
earthquakes, snow, blasts, and temperature changes in addition to those objects that are movable, such as
furniture and warehouse materials.

Ponding loads are due to water or snow on a flat roof that accumulates faster than it runs off. Wind
loads act as pressures on windward surfaces and pressures or suctions on leeward surfaces. Impact loads
are caused by suddenly applied loads or by the vibration of moving or movable loads. They are usually
taken as a fraction of the live loads. Earthquake loads are those forces caused by the acceleration of the
ground surface during an earthquake.

A structure that is initially at rest and remains at rest when acted upon by applied loads is said to be in
a state of equilibrium. The resultant of the external loads on the body and the supporting forces or
reactions is zero. If a structure is to be in equilibrium under the action of a system of loads, it must satisfy
the six static equilibrium equations:

> Fe=0, Y FE,=0, Y FE=0
> My=0, > M,=0, Y M,=0

The summation in these equations is for all the components of the forces (F) and of the moments (M)

(2.1)

about each of the three axes x, y, and z. If a structure is subjected to forces that lie in one plane, say x-y,
the above equations are reduced to

> E=0, Y F=0 > M.,=0 (2.2)

Consider a beam under the action of the applied loads as shown in Figure 2.2a. The reaction at support
B must act perpendicular to the surface on which the rollers are constrained to roll. The support
reactions and the applied loads, which are resolved in vertical and horizontal directions, are shown in
Figure 2.2b.

With geometry, it can be calculated that B, = v/3B,. Equation 2.2 can be used to determine the
magnitude of the support reactions. Taking the moment about B gives

104, —346.4x5=10
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FIGURE 2.2 Beam in equilibrium: (a) applied load and (b) support reactions.

from which we get

A, =1732 kN

Equating the sum of vertical forces, > _F,, to 0 gives
173.2 4+ B, — 346.4 = 0

and hence we get

B, =173.2 kN
Therefore,

B, = B,/v/3 = 100 kN
Equilibrium in the horizontal direction, Y F, =0, gives
A, —200—-100=0

and hence,

A, = 300 kN

There are three unknown reaction components at a fixed end, two at a hinge, and one at a roller. If, for
a particular structure, the total number of unknown reaction components equals the number of
equations available, the unknowns may be calculated from the equilibrium equations, and the structure
is then said to be statically determinate externally. Should the number of unknowns be greater than the
number of equations available, the structure is statically indeterminate externally; if less, it is unstable
externally. The ability of a structure to support adequately the loads applied to it is dependent not only
on the number of reaction components but also on the arrangement of those components. It is possible
for a structure to have as many or more reaction components than there are equations available and yet
be unstable. This condition is referred to as geometric instability.

2.1.3 Principle of Superposition

The principle states that if the structural behavior is linearly elastic, the forces acting on a structure may
be separated or divided in any convenient fashion and the structure analyzed for the separate cases. The
final results can be obtained by adding up the individual results. This is applicable to the computation of
structural responses such as moment, shear, and deflection.

However, there are two situations where the principle of superposition cannot be applied. The first
case is associated with instances where the geometry of the structure is appreciably altered under load.
The second case is in situations where the structure is composed of a material in which the stress is not
linearly related to the strain.
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2.2 Beams

One of the most common structural elements is a beam; it bends when subjected to loads acting
transverse to its centroidal axis or sometimes to loads acting both transverse and parallel to this axis. The
discussions in the following subsections are limited to straight beams in which the centroidal axis is a
straight line with shear center coinciding with the centroid of the cross-section. It is also assumed that all
the loads and reactions lie in a simple plane that also contains the centroidal axis of the flexural member
and the principal axis of every cross-section. If these conditions are satisfied, the beam will simply bend
in the plane of loading without twisting.

2.2.1 Relation among Load, Shear Force, and Bending Moment

Shear force at any transverse cross-section of a straight beam is the algebraic sum of the components
acting transverse to the axis of the beam of all the loads and reactions applied to the portion of the beam
on either side of the cross-section. Bending moment at any transverse cross-section of a straight beam is
the algebraic sum of the moments, taken about an axis passing through the centroid of the cross-section.
The axis about which the moments are taken is normal to the plane of loading.

When a beam is subjected to transverse loads, there exist certain relationships among load, shear force,
and bending moment. Let us consider the beam shown in Figure 2.3 subjected to some arbitrary loading,
p. Let S and M be the shear and bending moment, respectively, for any point m at a distance x, which is
measured from A, being positive when measured to the right. Corresponding values of shear and
bending moment at point # at a differential distance dx to the right of m are S+dS and M+ dM,
respectively. It can be shown, neglecting the second-order quantities, that

ds
P=1 (2.3)
and
dM
= 2.4
$=1 (24)

Equation 2.3 shows that the rate of change of shear at any point is equal to the intensity of load applied
to the beam at that point. Therefore, the difference in shear at two cross-sections C and D is

Sp — Sc = / pdx (2.5)

X

We can write this in the same way for moment as

Mp — MC = / Sdx (26)

Xc

p/unit length

A B

FIGURE 2.3 A beam under arbitrary loading.
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2.2.2 Shear Force and Bending Moment Diagrams

To plot the shear force and bending moment diagrams it is necessary to adopt a sign convention for
these responses. A shear force is considered to be positive if it produces a clockwise moment about a
point in the free body on which it acts. A negative shear force produces a counterclockwise moment
about the point. The bending moment is taken as positive if it causes compression in the upper fibers of
the beam and tension in the lower fiber. In other words, a sagging moment is positive and a hogging
moment negative. The construction of these diagrams is explained with an example given in Figure 2.4.

The section at E of the beam is in equilibrium under the action of applied loads and internal forces
acting at E as shown in Figure 2.5. There must be an internal vertical force and internal bending moment
to maintain equilibrium at section E. The vertical force or the moment can be obtained as the algebraic
sum of all forces or the algebraic sum of the moment of all forces that lie on either side of the section E.

The shear on a cross-section — an infinitesimal distance to the right of point A is +55 and therefore
the shear diagram rises abruptly from 0 to +55 at this point. In the portion AC, since there is no
additional load, the shear remains at 455 on any cross-section throughout this interval, and the diagram
is a horizontal as shown in Figure 2.4. At an infinitesimal distance to the left of C the shear is +55, but at
an infinitesimal distance to the right of this point the concentrated load of magnitude 30 has caused the
shear to be reduced to +25. Therefore, at point C, there is an abrupt change in the shear force from +55
to +25. In the same manner, the shear force diagram for the portion CD of the beam remains a rectangle.
In the portion DE, the shear on any cross-section a distance x from point D is

§=55—-30—4x=25—4x
which indicates that the shear diagram in this portion is a straight line decreasing from an ordinate of
+25 at D to +1 at E. The remainder of the shear force diagram can easily be verified in the same way.

It should be noted that, in effect, a concentrated load is assumed to be applied at a point, and hence at
such a point the ordinate to the shear diagram changes abruptly by an amount equal to the load.

|—>x

30k 4 k/ft 40k
/_
A JILIT] B
C D E F
55K faSmat 6 8 El 39k
30°
55
+ |25
1 1
39
343 351
265
165 —"1
FIGURE 2.4 Bending moment and shear force diagrams.
l 4 K/t c
E
AT c b T v
— - T
S5k 3 | .4 |, 6
T T

FIGURE 2.5 Internal forces.
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In the portion AC, the bending moment at a cross-section a distance x from point A is M= 55x.
Therefore, the bending moment diagram starts at 0 at A and increases along a straight line to an ordinate
of 4165 at point C. In the portion CD, the bending moment at any point a distance x from C is
M=55(x+3) — 30x. Hence, the bending moment diagram in this portion is a straight line increasing
from 4165 at C to 4265 at D. In the portion DE, the bending moment at any point a distance x from D
is M=55(x+7) — 30(x+4) — 4x%/22. Hence, the bending moment diagram in this portion is a curve
with an ordinate of +265 at D and +343 at E. In an analogous manner, the remainder of the bending
moment diagram can easily be constructed.

Bending moment and shear force diagrams for beams with simple boundary conditions and subjected
to some selected load cases are given in Figure 2.6.

2.2.3 Fixed-Ended Beams

When the ends of a beam are held so firmly that they are not free to rotate under the action of applied
loads, the beam is known as a built-in or fixed-ended beam and it is statically indeterminate. The
bending moment diagram for such a beam can be considered to consist of two parts, namely, the
free bending moment diagram obtained by treating the beam as if the ends are simply supported and
the fixing moment diagram resulting from the restraints imposed at the ends of the beam. The solution
of a fixed beam is greatly simplified by considering Mohr’s principles, which state that

1. The area of the fixing bending moment diagram is equal to that of the free bending moment
diagram.

2. The centers of gravity of the two diagrams lie in the same vertical line; that is, they are equidistant
from a given end of the beam.

The construction of the bending moment diagram for a fixed beam is explained with an example
shown in Figure 2.7. PQUT is the free bending moment diagram, M, and PQRS is the fixing moment
diagram, M. The net bending moment diagram, M, is shown shaded. If A; is the area of the free bending
moment diagram and A; the area of the fixing moment diagram then, from the first Mohr principle we
have A,= A; and

1 Wab 1
—XTXL:—(MA+MB) XL
2 . (2.7)
My + Mg = ——
L
From the second principle, equating the moment about A of A and A;, we have
Wab
My + 2My = — (2a* + 3ab + b*) (2.8)
Solving Equations 2.7 and 2.8 for M, and Mj, we get
Wab?
My =1
Wa?b
My =1

Shear force can be determined once the bending moment is known. The shear force at the ends of the
beam, that is, at A and B, will be

My — My Wb
Sp=—A B
A I 1L

MB—MA Wa
Sp =0 ALY
B I I

Bending moment and shear force diagrams for fixed-ended beams subjected to some typical loading
cases are shown in Figure 2.8.
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FIGURE 2.6 Shear force and bending moment diagrams for beams with simple boundary conditions subjected to
selected loading cases.
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FIGURE 2.6 Continued.

2.2.4 Continuous Beams

Continuous beams like fixed-ended beams are statically indeterminate. Bending moments in these
beams are functions of the geometry, moments of inertia, and modulus of elasticity of individual
members besides the load and span. They may be determined by Clapeyron’s theorem of three moments,
the moment distribution method, or the slope deflection method.

An example of a two-span continuous beam is solved by Clapeyron’s theorem of three moments.
The theorem is applied to two adjacent spans at a time and the resulting equations in terms of unknown
support moments are solved. The theorem states that

A] X1 AzXz) (2 9)

MLy + 2Mg(Ly + L) + McL, =6 —+
Ly L,

where My, Mg, and M are the hogging moments at the supports A, B, and C, respectively, of two
adjacent spans of lengths L, and L, (Figure 2.9); A, and A, are the areas of the bending moment diagrams
produced by the vertical loads on the simple spans AB and BC, respectively; x; is the centroid of A, from
A, and x; is the distance of the centroid of A, from C. If the beam section is constant within a span but
remains different for each of the spans Equation 2.9 can be written as

M L] +2M L] T Lz +M Lz -6 A1X1 +A2X2 (2 10)
AT B\1 "L °L \LnI "L '

where I} and I, are the moments of inertia of the beam section in spans L; and L,, respectively.
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FIGURE 2.7 Fixed-ended beam.

EXAMPLE 2.1

The example in Figure 2.10 shows the application of this theorem.
For spans AC and BC

(1/2) X 500 X 10 x 5 (2/3) x 250 x 10 x 5

My x 10 +2Mc(10 4 10) + My x 10 = 6 0 "

Since the support at A is simply supported, M, = 0. Therefore,
4Mc + Mg = 1250 (2.11)

Considering an imaginary span BD on the right side of B and applying the theorem for spans CB
and BD,

2/3 10 x5
(2/3)x 105

Mc x 10 + 2Mg(10) + Mp x 10 = 6 x
(10) 10 (2.12)

Mc + 2Mg =500 (because Mc = Mp)

Solving Equations 2.11 and 2.12, we get

Mg = 107.2 kN m
Mc = 285.7 kN m

Shear force at A is

My - M

Sa + 100 = —28.6 + 100 = 71.4 kN

Shear force at C is

Mc — M, Mc — M,
Sc = <%+ 100> + (%Jr 100)

= (28.6 + 100) + (17.9 4 100) = 246.5 kN

Shear force at B is

Mg — M,
S5 = <BTC T 100) = —17.9 4+ 100 = 82.1 kN

The bending moment and shear force diagrams are shown in Figure 2.10.
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FIGURE 2.8 Shear force and bending moment diagrams for built-up beams subjected to typical loading cases.
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FIGURE 2.9 Continuous beams.

2.2.5 Beam Deflection

There are several methods for determining beam deflections: (i) moment area method, (ii) conjugate-

beam method, (iii) virtual work, and (iv) Castigliano’s second theorem, among others.

The elastic curve of a member is the shape the neutral axis takes when the member deflects under a

load. The inverse of the radius of curvature at any point of this curve is obtained as

1 M
R EI

(2.13)
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FIGURE 2.10 Example — continuous beam.

where M is the bending moment at the point and EI is the flexural rigidity of the beam section. Since the
deflection is small, 1/R is approximately taken as d*y/dx’, and Equation 2.13 may be rewritten as

d’y

M = El—= 2.14
0 (2.14)
In Equation 2.14, y is the deflection of the beam at distance x measured from the origin of the

coordinate. The change in slope in a distance dx can be expressed as M dx/EI and hence the slope in a
beam is obtained as

M
QB—GA— R de (215)
Equation 2.15 may be stated as follows: the change in slope between the tangents to the elastic curve at
two points is equal to the area of the M/EI diagram between the two points.

Once the change in slope between the tangents to the elastic curve is determined, the deflection can be
obtained by integrating further the slope equation. In a distance dx the neutral axis changes in direction
by an amount df. The deflection of one point on the beam with respect to the tangent at another point
due to this angle change is dd = x d0, where x is the distance from the point at which deflection is desired
to the particular differential distance.

To determine the total deflection from the tangent at one point A to the tangent at another point B on
the beam, it is necessary to obtain a summation of the products of each df angle (from A to B) times the
distance to the point where deflection is desired or

B Mx dx
) :/ 2.16
o= [ (216)

The deflection of a tangent to the elastic curve of a beam with respect to a tangent at another point is
equal to the moment of M/EI diagram between the two points, taken about the point at which deflection
is desired.

2.2.5.1 Moment Area Method

The moment area method is most conveniently used for determining slopes and deflections for beams in
which the direction of the tangent to the elastic curve at one or more points is known, such as cantilever
beams, where the tangent at the fixed end does not change in slope. The method is applied easily to
beams loaded with concentrated loads, because the moment diagrams consist of straight lines. These
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FIGURE 2.11 Typical M/EI diagram.

diagrams can be broken down into single triangles and rectangles. Beams supporting uniform loads or
uniformly varying loads may be handled by integration. Properties of some of the shapes of M/EI
diagrams that designers usually come across are given in Figure 2.11.

It should be understood that the slopes and deflections that are obtained using the moment area
theorems are with respect to tangents to the elastic curve at the points being considered. The theorems
do not directly give the slope or deflection at a point in the beam as compared to the horizontal axis
(except in one or two special cases); they give the change in slope of the elastic curve from one point
to another or the deflection of the tangent at one point with respect to the tangent at another point.
There are some special cases in which beams are subjected to several concentrated loads or the combined
action of concentrated and uniformly distributed loads. In such cases it is advisable to separate the
concentrated loads and uniformly distributed loads and the moment area method can be applied
separately to each of these loads. The final responses are obtained by the principle of superposition.

For example, consider a simply supported beam subjected to a uniformly distributed load g as
shown in Figure 2.12. The tangents to the elastic curve at each end of the beam are inclined. The
deflection &, of the tangent at the left end from the tangent at the right end is found to be gl*/24EL
The distance from the original chord between the supports and the tangent at the right end, ,, can be
computed as ql*/48EL The deflection of a tangent at the center from a tangent at the right end, Js, is
determined in this step as qI*/128EL The difference between d, and J5 gives the centerline deflection
as (5/384)(ql*/ED).

2.2.6 Curved Beams

The beam formulas derived in the previous section are based on the assumption that the member to
which a bending moment is applied is initially straight. Many members, however, are curved before
a bending moment is applied to them. Such members are called curved beams. In the following
discussion all the conditions applicable to the straight-beam formula are assumed valid except that the
beam is initially curved.
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FIGURE 2.12 Deflection — simply supported beam under uniformly distributed load.

(b)

FIGURE 2.13 Bending of curved beams.

Let the curved beam DOE shown in Figure 2.13 be subjected to the loads Q. The surface in which the
fibers do not change in length is called the neutral surface. The total deformations of the fibers between
two normal sections such as AB and A;B; are assumed to vary proportionally with the distances of the
fibers from the neutral surface. The top fibers are compressed while those at the bottom are stretched;
that is, the plane section before bending remains a plane after bending.

In Figure 2.13 the two lines AB and A,B, are two normal sections of the beam before the loads are
applied. The change in the length of any fiber between these two normal sections after bending is
represented by the distance along the fiber between the lines A;B; and A’B’; the neutral surface is
represented by NN, and the stretch of fiber PP, is P, P}, etc. For convenience, it will be assumed that
the line AB is a line of symmetry and does not change direction.

The total deformations of the fibers in the curved beam are proportional to the distances of the fibers
from the neutral surface. However, the strains of the fibers are not proportional to these distances
because the fibers are not of equal length. Within the elastic limit the stress on any fiber in the beam is
proportional to the strain in the fiber, and hence the elastic stresses on the fibers of a curved beam are not
proportional to the distances of the fibers from the neutral surface. The resisting moment in a curved
beam, therefore, is not given by the expression o/c. Hence, the neutral axis in a curved beam does not
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pass through the centroid of the section. The distribution of stress over the section and the relative
position of the neutral axis are shown in Figure 2.13b; if the beam were straight, the stress would be zero
at the centroidal axis and would vary proportionally with the distance from the centroidal axis as
indicated by the dot—dash line in the figure. The stress on a normal section such as AB is called the
circumferential stress.

2.2.6.1 Sign Conventions

The bending moment M is positive when it decreases the radius of curvature and negative when it
increases the radius of curvature; y is positive when measured toward the convex side of the beam and
negative when measured toward the concave side, that is, toward the center of curvature. With these
sign conventions, ¢ is positive when it is a tensile stress.

2.2.6.2 Circumferential Stresses

Figure 2.14 shows a free-body diagram of the portion of the body on one side of the section; the
equations of equilibrium are applied to the forces acting on this portion. The equations obtained are

ZFZ:O or /odazo (2.17)
> M.=0 or M:/y(ida (2.18)

Figure 2.15 represents the part ABB;A; of Figure 2.13a enlarged; the angle between the two sections
AB and AB, is d0. The bending moment causes the plane A;B, to rotate through an angle Ad0, thereby
changing the angle this plane makes with the plane BAC from df to (d6 + Ad#); the center of curvature
is changed from C to C/, and the distance of the centroidal axis from the center of curvature is changed
from R to p. It should be noted that y, R, and p at any section are measured from the centroidal axis and
not from the neutral axis.

It can be shown that the bending stress ¢ is given by the relation

M 1 vy
=—1|14+=-— 2.19
4 aR<+ZR+y> (2.19)
where
17
Z=—-|-2 da
aJ R+y

g is the tensile or compressive (circumferential) stress at a point at a distance y from the centroidal axis of
a transverse section at which the bending moment is M; R is the distance from the centroidal axis of the
section to the center of curvature of the central axis of the unstressed beam; a is the area of the cross-
section; Zis a property of the cross-section, the values of which can be obtained from the expressions for
various areas given in Table 2.1. (Detailed information can be obtained from Seely and Smith 1952.)

Fﬂ‘

FIGURE 2.14 Free-body diagram of a curved beam segment.
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FIGURE 2.15 Curvature in a curved beam.

EXAMPLE 2.2

The bent bar shown in Figure 2.16 is subjected to a load P=1780 N. Calculate the circumferential stress

at A and B assuming that the elastic strength of the material is not exceeded.
We know from Equation 2.19,

where

a =area of rectangular section =40 x 12 =480 mm”

R =40 mm
ya=—20
yg =420
P =1780 N

M= —1780 x 120 = —213,600 N mm

From Table 2.1, for rectangular section

R R
Z:—l—i—z[logeR—i—j, h=40 mm, c¢=20 mm
Hence,
40 40 4 20
Z=—-1+—]1 = 0.0986
AT { 840 - 20]
Therefore,
1780 —213,600 1 —20 .
oA = + =105.4 N/mm’ (tensile)
480 480 x 40 0.0986 40 — 20
1780 213,600 (| 1 20 45 N/mm® ive)
Op = = — mm compressive
B 480 480 x 40 0.0986 40 + 20 P
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TABLE 2.1 Analytical Expressions for Z

22770,

2R —

|
Db

€L O

-
S
—~

UL e

R R+c¢
Z_71+E{loge<R—c>}

Z=—1 +£{[b1h+ (R+a)(b— hl)]loge(ﬁfZD — (b hl)h}

Z——1+ (bf;)h{ {bl +h_hb1 (R+c1)]1oge<§f:> (b bl)}

- R R+¢
Z = 1+2h2 |:(R+Cl)loge(R7£2> h}

7= (@@ e @ @)
" 4\R/ "8\R/ '64\R 128 \R

a0

2R
Z:71+c27c2 [szfcff\/szcZz}
24

e O RONO
-ua (2N}

R
Z=-1 +;[h1 log.(R+ c1) + (r — b)) log.(R+ )

+ (b—t)log,(R—¢c3) — b log,(R— )]

The value of Z for each of these three sections may be
found from the expression above by making
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TABLE 2.1 Continued

by=b, o=c, and g=q

R R+Cz R+C1
Z=—-1+—|bl t—b)l
+a|: Oge<R—C2> +( ) Oge<R_Cl>:|

Area=a=2[(t— b)c;+bc]

In the expression for the unequal I given above make
c¢s=c; and b, =t, then

R
Z=-1 +;[tloge(R +a)+ (b—t)log,(R— ) — blog,(R — )]
Area=a=tc, — (b—t)cs+ bey

_ R b—b R+ ¢
Z= 71+E{{b1 + n (R+c1)} logR

v —b

o

Source: From Seely, F.B. and Smith, J.O., Advanced Mechanics of Materials, John Wiley & Sons, New York, 1952. With
permission.

_*_ 40 mm

12@4_

Section A-B

FIGURE 2.16 Bent bar.
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2.3 Trusses

A structure that is composed of a number of members pin-connected at their ends to form a stable
framework is called a truss. If all the members lie in a plane, it is a planar truss. It is generally assumed
that loads and reactions are applied to the truss only at the joints. The centroidal axis of each member is
straight, coincides with the line connecting the joint centers at each end of the member, and lies in
a plane that also contains the lines of action of all the loads and reactions. Many truss structures are
three-dimensional in nature. However, in many cases, such as bridge structures and simple roof systems,
the three-dimensional framework can be subdivided into planar components for analysis as planar
trusses without seriously compromising the accuracy of the results. Figure 2.17 shows some typical
idealized planar truss structures.

There exists a relation among the number of members, m, number of joints, j, and reaction com-
ponents, r. The expression is

m=2j—r (2.20)

which must be satisfied if it is to be statically determinate internally. r is the least number of reaction
components required for external stability. If m exceeds (2j— r), then the excess members are called
redundant members and the truss is said to be statically indeterminate.

For a statically determinate truss, member forces can be found by using the method of equilibrium.
The process requires repeated use of free-body diagrams from which individual member forces are
determined. The method of joints is a technique of truss analysis in which the member forces are
determined by the sequential isolation of joints — the unknown member forces at one joint are solved
and become known for the subsequent joints. The other method is known as the method of sections in
which equilibrium of a part of the truss is considered.

2.3.1 Method of Joints

An imaginary section may be completely passed around a joint in a truss. The joint has become a free
body in equilibrium under the forces applied to it. The equations Y H=0 and ) V=0 may be applied
to the joint to determine the unknown forces in members meeting there. It is evident that no more than
two unknowns can be determined at a joint with these two equations.

AN

Warren truss Pratt truss
Howe truss Fink truss
Warren truss Pratt truss

PN

Bowstring truss

FIGURE 2.17 Typical planar trusses.
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EXAMPLE 2.3

A truss shown in Figure 2.18 is symmetrically loaded, and it is sufficient to solve half the truss by
considering the joints 1 to 5. At joint 1, there are two unknown forces. Summation of the vertical
components of all forces at joint 1 gives

135 — Fj, sin45° = 0

which in turn gives the force in the member 1-2, F;, =190 kN (compressive). Similarly, summation of
the horizontal components gives

F13 — F12 c0s45° =0
Substituting for F;, gives the force in the member 1-3 as
Fi3 = 135 kKN (tensile)

Now, joint 2 is cut completely and it is found that there are two unknown forces, F,5 and F,;. Sum-
mation of the vertical components gives

F12 cos45° — F23 =0
Therefore,
F,; = 135 kN (tensile)

Summation of the horizontal components gives
F12 sin 45° — F25 =0
and hence,

F5 = 135 KN (compressive)

@ "O© ©®

. |

7 @) @ @ 5
135 kN4 ¢9OkNiA igokN ¢90kN iaskn
| | T | |
l 6m l 6m l 6m l 6m l

©)
F25
45°
F12 F23
Fys Fis Fis
450
Fi l@ Fay Fy @ Fe
90 kN 90 kN

FIGURE 2.18 Example — method of joints, planar truss.
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After solving for joints 1 and 2 one proceeds to take a section around joint 3 at which there are now two
unknown forces, namely, F54 and F;5. Summation of the vertical components at joint 3 gives

F23 — F35 sin45° —90 =0

Substituting for F,3, one obtains F35 = 63.6 kN (compressive). Summing the horizontal components and
substituting for F;; one gets

13545+ F3, = 0
Therefore,
F34 = 180 kKN (tensile)

The next joint involving two unknowns is joint 4. When we consider a section around it, the summation
of the vertical components at joint 4 gives

F4;s =90 kN (tensile)

Now, the forces in all the members on the left half of the truss are known and by symmetry the forces in
the remaining members can be determined. The forces in all the members of a truss can also be
determined by making use of the method of sections.

2.3.2 Method of Sections

In this method, an imaginary cutting line called a section is drawn through a stable and determinate truss.
Thus, a section subdivides the truss into two separate parts. Since the entire truss is in equilibrium, any part
of it must also be in equilibrium. Either of the two parts of the truss can be considered and the three
equations of equilibrium, » F,=0, Y _F,=0, and ) M =0, can be applied to solve for member forces.

The example considered in Section 2.3.1 is once again considered (Figure 2.19). To calculate the force
in the member 3-5, F;s, a section AA should be run to cut the member 3-5 as shown in the figure. It is
only required to consider the equilibrium of one of the two parts of the truss. In this case, the portion of
the truss on the left of the section is considered. The left portion of the truss as shown in Figure 2.19 is in
equilibrium under the action of the forces namely, the external and internal forces. Considering the
equilibrium of forces in the vertical direction one can obtain

135 — 90 + Fs55in45° = 0
Therefore, F;5 is obtained as
F35 == 745\/5 kN

The negative sign indicates that the member force is compressive. The other member forces cut by the
section can be obtained by considering the other equilibrium equations, namely, Y M =0. More sec-
tions can be taken in the same way to solve for other member forces in the truss. The most important
advantage of this method is that one can obtain the required member force without solving for the other
member forces.

45°
AN 'a

Y 90 kN

135 kN

FIGURE 2.19 Example — method of sections, planar truss.
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FIGURE 2.20 Compound trusses: (a) compound roof truss, (b) compound bridge truss, and (c) cantilevered
construction.

2.3.3 Compound Trusses

A compound truss is formed by interconnecting two or more simple trusses. Examples of compound
trusses are shown in Figure 2.20. A typical compound roof truss is shown in Figure 2.20a in which two
simple trusses are interconnected by means of a single member and a common joint. The compound
truss shown in Figure 2.20b is commonly used in bridge construction and, in this case, three members
are used to interconnect two simple trusses at a common joint. There are three simple trusses inter-
connected at their common joints as shown in Figure 2.20c.

The method of sections may be used to determine the member forces in the interconnecting members
of compound trusses similar to those shown in Figure 2.20a and Figure 2.20b. However, in the case of a
cantilevered truss the middle simple truss is isolated as a free-body diagram to find its reactions. These
reactions are reversed and applied to the interconnecting joints of the other two simple trusses. After the
interconnecting forces between the simple trusses are found, the simple trusses are analyzed by the
method of joints or the method of sections.

2.4 Frames

Frames are statically indeterminate in general; special methods are required for their analysis.
The slope deflection and moment distribution methods are two such methods commonly employed.
Slope deflection is a method that takes into account the flexural displacements such as rotations and
deflections and involves solutions of simultaneous equations. Moment distribution on the other
hand involves successive cycles of computation, each cycle drawing closer to the “exact” answers. The
method is more labor intensive but yields accuracy equivalent to that obtained from the exact methods.

2.4.1 Slope Deflection Method

This method is a special case of the stiffness method of analysis. It is a convenient method for performing
hand analysis of small structures.

Let us consider that a prismatic frame member AB with undeformed position along the x axis is
deformed into the configuration P as shown in Figure 2.21. Moments at the ends of frame members are
expressed in terms of the rotations and deflections of the joints. It is assumed that the joints in a
structure may rotate or deflect, but the angles between the members meeting at a joint remain
unchanged. The positive axes, along with the positive member end force components and displacement
components, are shown in the figure.



Structural Analysis 2-25

VAB

;jfd

FIGURE 2.21 Deformed configuration of a beam.

The equations for end moments may be written as

2EI
Mg = e (20 + 0 — 3 ap) + Mas

2EI
)

where Mgap and Mg, are fixed-end moments at supports A and B, respectively, due to the applied load.
Y ap is the rotation as a result of the relative displacement between the member ends A and B given as

(2.21)

Mgy = (208 + 0a — 3 p) + Mepa

Az yatom
V=T =T

where A, is the relative deflection of the beam ends and y, and yg are the vertical displacements at ends
A and B. Fixed-end moments for some loading cases may be obtained from Figure 2.8. The slope
deflection equations (Equations 2.21) show that the moment at the end of a member is dependent on
member properties EI, length I, and displacement quantities. The fixed-end moments reflect the
transverse loading on the member.

(2.22)

2.4.2 Frame Analysis Using Slope Deflection Method

The slope deflection equations may be applied to statically indeterminate frames with or without
side sway. A frame may be subjected to side sway if the loads, member properties, and dimensions of the
frame are not symmetrical about the centerline. Application of the slope deflection method can be
illustrated with the following example.

EXAMPLE 2.4

Consider the frame shown in Figure 2.22 subjected to side sway A to the right of the frame. Equations 2.21
can be applied to each of the members of the frame as follows:
Member AB:

My =2 (20, 1 05— 22) 4
AB — 6 A B 20 FAB
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40kip
L 10ft 20 ft ,
B! C |
EI — same for
20 ft all members
30 ft
A
L
D
FIGURE 2.22 Example — slope deflection method.
Hence,
2EI
Myp = ?(GB —3y) (2.23)
2EI
where y = A/6.
Member BC:
2EI
Mpzc :7(203—%9@ —3 X 0)+MFBC
2EI
MCB :?(ZOC‘FOB —3 X 0)+MFCB
180 x 3 x 6°
Mpc=———5——=-240kNm
180 x 32 x 6
Mgcg = e =120 kN m
Hence,
2EI
2EI
Mcg = 5 (20c + 0p) + 120 (2.26)
Member CD:

2EI 3A
Mcp = o5 (29c +0p — 7) + Mecp
2EI 3A
MDC:T 20D+0c*? + Mgpc

0p =0, Mgcp = Mppc =0
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Hence,
o =25 (0 w) 2E’( e~ 2) 229)

Considering the moment equilibrium at joint B,

ZMB = Mg + Mpc =0

Substituting for Mps and Mpc one obtains

EI 2160
5 (1005 +20c —9y) =240 or 11005 +20c — 9 === (2.29)

Considering the moment equilibrium at joint C,
ZMC = Mcg + Mcp =0

Substituting for Mg and Mcp we get

2EI 540
5 Z (40c + 05 — 20) = —120 or O +40c — 2 = -2 (2.30)

If summation of the base shear equals zero, we have

ZH:HA+HD:0

or
Map + Mpa | Mcp + Mpc
+ =0
6 9
Substituting for Mg, Mpa, Mcp, and Mpc and simplifying
270 + 120c — 70[ﬁ =0 (2.31)
solution of Equations 2.29 to 2.31 results in
342.7
Op = ——
EI
—169.1
0c = 2.32
=" (2.32)
103.2
Y=—"

Substituting for 05, O, and ¥ from Equations 2.32 into Equations 2.23 to 2.28, we get

Mup=11.03 kN m
Mgy =1253 kN m
Mpc= —1253 kN m
Mcp=121 kN m
Mep= —121 kN m
Mpc= —83 kN m

2.4.3 Moment Distribution Method

The moment distribution method involves successive cycles of computation, each cycle drawing closer to
the exact answers. The calculations may be stopped after two or three cycles, giving a very good
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approximate analysis, or they may be carried on to whatever degree of accuracy is desired. Moment
distribution remains the most important hand-calculation method for the analysis of continuous beams
and frames and it may be solely used for the analysis of small structures. Unlike the slope deflection
method, this method does require the solution to simultaneous equations.

The terms constantly used in moment distribution are fixed-end moment, unbalanced moment,
distributed moment, and carry-over moment. When all of the joints of a structure are clamped to prevent
any joint rotation, the external loads produce certain moments at the ends of the members to which they
are applied. These moments are referred to as fixed-end moments. Initially, the joints in a structure are
considered to be clamped. When the joint is released, it rotates if the sum of the fixed-end moments at
the joint is not equal to zero. The difference between zero and the actual sum of the end moments is the
unbalanced moment. The unbalanced moment causes the joint to rotate. The rotation twists the ends of
the members at the joint and changes their moments. In other words, rotation of the joint is resisted by
the members and resisting moments are built up in the members as they are twisted. Rotation continues
until equilibrium is reached — when the resisting moments equal the unbalanced moment — at which
time the sum of the moments at the joint is equal to zero. The moments developed in the members
resisting rotation are the distributed moments. The distributed moments in the ends of the member cause
moments in the other ends, which are assumed to be fixed, and these are the carry-over moments.

2.4.3.1 Sign Convention

The moments at the end of a member are assumed to be positive when they tend to rotate the member
clockwise about the joint. This implies that the resisting moment of the joint would be counterclockwise.
Accordingly, under gravity loading conditions the fixed-end moment at the left end is assumed to be
counterclockwise (negative) and at the right end, clockwise (positive).

2.4.3.2 Fixed-End Moments

Fixed-end moments for several cases of loading may be found in Figure 2.8. Application of moment
distribution may be explained with reference to a continuous beam example as shown in Figure 2.23.
Fixed-end moments are computed for each of the three spans. At joint B the unbalanced moment is
obtained and the clamp is removed. The joint rotates, thus distributing the unbalanced moment to the

ro kip 2 kip/ft
T TTATTTTI T T AT T T NI T T T T NI T T T T T
A EI A EI AYE EI b
| 10ft | 10ft | 30t | 25t |
I T T T 1
0.6/ 0.4 045 0.55
50 50[ —150 150 | -104 104
60| 40 207|253
30 -104 20 T127
+6.2| +4.2 -9.0(-11.0
3.1 —45 2.1 55
+27] +18 ~09]-1.2
14 ~05 09 ~06
+0.3] +0.2 -04(-0.5
~155 119.2] -119.2 +142 | 142 85.2

FIGURE 2.23 Example — continuous beam by moment distribution.
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B-ends of spans BA and BC in proportion to their distribution factors. The values of these distributed
moments are carried over at one-half rate to the other ends of the members. When equilibrium is
reached, joint B is clamped in its new rotated position and joint C is released afterward. Joint C rotates
under its unbalanced moment until it reaches equilibrium, the rotation causing distributed moments
in the C-ends of members CB and CD and the resulting carry-over moments. Joint C is now clamped
and joint B is released. This procedure is repeated again and again for joints B and C, the amount
of unbalanced moments quickly diminishing, until the release of a joint causes negligible rotation. This
process is called moment distribution.
The stiffness factors and distribution factors are computed as follows:

Kia 1/20

DFgy = — —0.6
SSK 1/20+1/30
K 1/30

DFpc = —2¢ — / =04
SSK 120+ 1/30
K, 1/30

DFcp = —2 — / = 0.45
SSK I/30+1/25
K. 1/25

DFcp = =2 — / =0.55

S K I/30+1/25

The fixed-end moments are as follows:
Mgpg = =50,  Mgpc = —150, Mgcp = —104
Mgpa = 50, Mgcp = 150, Mgpc = 104

When a clockwise couple is applied at the near end of a beam, a clockwise couple of half the magnitude
is set up at the far end of the beam. The ratio of the moments at the far and near ends is defined as the
carry-over factor and it is 0.5 in the case of a straight prismatic member. The carry-over factor was
developed for carrying over to fixed ends, but it is applicable to simply supported ends, which must have
final moments of zero. It can be shown that the beam simply supported at the far end is only three
fourths as stiff as the one that is fixed. If the stiffness factors for end spans that are simply supported are
modified by three fourths, the simple end is initially balanced to zero, no carry-overs are made to the end
afterward. This simplifies the moment distribution process significantly.

2.4.3.3 Moment Distribution for Frames

Moment distribution for frames without side sway is similar to that for continuous beams. The
example shown in Figure 2.24 illustrates the applications of moment distribution for a frame without
side sway:

DFgy = E1/20 —0.25
(EI/20) + (EI/20) + (2EI]20)
Similarly,
DFg; = 0.5, DFgc = 0.25
Mgpc = —100, Mgcg = 100
Mg = 50, Mggg = —50

Structural frames are usually subjected to side sway in one direction or the other due to asymmetry of
the structure and eccentricity of loading. The sway deflections affect the moments, resulting in an
unbalanced moment. These moments could be obtained for the deflections computed and added to the
originally distributed fixed-end moments. The sway moments are distributed to columns. Should a
frame have columns all of the same length and the same stiffness, the side sway moments will be the same
for each column. However, should the columns have differing lengths and stiffness, this will not be the
case. The side sway moments should vary from column to column in proportion to their I/* values.
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FIGURE 2.24 Example — nonsway frame by moment distribution.

The frame in Figure 2.25 shows a frame subjected to sway. The process of obtaining the final moments
is illustrated for this frame.

The frame sways to the right and the side sway moment can be assumed in the ratio

400 300

20% " 202

Final moments are obtained by adding distributed fixed-end moments and 13.06/2.99 times the
distributed assumed side sway moments.

1:0.75

2.4.4 Method of Consistent Deformations

This method makes use of the principle of deformation compatibility to analyze indeterminate struc-
tures. It employs equations that relate the forces acting on the structure to the deformations of the
structure. These relations are formed so that the deformations are expressed in terms of the forces and
the forces become the unknowns in the analysis.

Let us consider the beam shown in Figure 2.26a. The first step in this method is to determine the
degree of indeterminacy or the number of redundants that the structure possesses. As shown in the
figure, the beam has three unknown reactions, Ra, Rc, and M,. Since there are only two equations of
equilibrium available for calculating the reactio ns, the beam is said to be indeterminate to the first
degree. Restraints that can be removed without impairing the load-supporting capacity of the structure
are referred to as redundants.

Once the number of redundants is known, the next step is to decide which reaction is to be removed in
order to form a determinate structure. Any one of the reactions may be chosen to be the redundant
provided that a stable structure remains after the removal of that reaction. For example, let us take the



Structural Analysis 2-31

reaction Rc as the redundant. The determinate structure obtained by removing this restraint is the
cantilever beam shown in Figure 2.26b. We denote the deflection at end C of this beam, due to P, by Acp.
The first subscript indicates that the deflection is measured at C and the second subscript that the
deflection is due to the applied load P. Using the moment—area method, it can be shown that
Acp=5PL’/48EI The redundant Rc is then applied to the determinate cantilever beam, as shown in
Figure 2.26¢. This gives rise to a deflection Acg at point C the magnitude of which can be shown to be
RcL*/3EL

In the actual indeterminate structure, which is subjected to the combined effects of the load P and the
redundant R¢ the deflection at C is zero. Hence, the algebraic sum of the deflection Acp in Figure 2.26b
and the deflection Acp in Figure 2.26¢ must vanish. Assuming downward deflections to be positive,
we write

Acp — Acg =0 (2.33)
or

SPL' Rl _

48FI  3EI
1.5 kip/ft
_B Iy ¢
A
101t
20kip ~ 20 ft
101t
X A D X
T777 TT7T77
| 301t |
I 1
48.8
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+21
+72
< 0.57 +112.5 0.64 o 13.06 kip
S| -1125 el ol ] S
~ 36 AN B
2w + 42 21717
=} Nl =, O HHEel fl o
— o qa v - 6.7
Hi+l+l+ w4 5
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FIGURE 2.25 Example — sway frame by moment distribution.
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FIGURE 2.26 Beam with one redundant reaction: (a) actual structure; (b) determinate structure subject to actual
loads; (c) determinate structure subject to redundant; and (d) beam with all the forces acting on it.
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from which

Rc—5P
16

Equation 2.33, which is used to solve for the redundant, is referred to as an equation of consistent
deformations.

Once the redundant R¢ has been evaluated, the remaining reactions can be determined by applying the
equations of equilibrium to the structure in Figure 2.26a. Thus, ) "F,=0 leads to

5 11
Ry=P—>Pp=—pP
16 16
and > M, =0 gives
M, _ P 5PL— 3F’L
T2 16 16

A free body of the beam, showing all the forces acting on it, is shown in Figure 2.26d.
The steps involved in the method of consistent deformations are

1. The number of redundants in the structure is determined.

2. The redundants required to form a determinate structure are removed.

3. The displacements that the applied loads cause in the determinate structure at the points where
the redundants have been removed are then calculated.

4. The displacements at these points in the determinate structure due to the redundants are obtained.

5. At each point where a redundant has been removed, the sum of the displacements calculated
in steps (3) and (4) must be equal to the displacement that exists at that point in the actual
indeterminate structure. The redundants are evaluated using these relationships.

6. Once the redundants are known the remaining reactions are determined using the equations of
equilibrium.

2.4.4.1 Structures with Several Redundants

The method of consistent deformations can be applied to structures with two or more redundants.
For example, the beam in Figure 2.27a is indeterminate to the second degree and has two redundant
reactions. If the reactions at B and C are selected to be the redundants, then the determinate structure
obtained by removing these supports is the cantilever beam shown in Figure 2.27b. To this determinate
structure we apply separately the given load (Figure 2.27¢) and the redundants Rg and R¢ one at a time
(Figure 2.27d and e).

Since the deflections at B and C in the original beam are zero, the algebraic sum of the deflections in
Figure 2.27¢, d, and e at the same points must also vanish. Thus,

App — Agg — Agc =0

(2.34)
Acp —Acg —Acc =0

It is useful in the case of complex structures to write the equations of consistent deformations in
the form

App — 6pgRp — OpcRc =0

(2.35)
Acp — dcBRp — OccRc =0

where dpc, for example, denotes the deflection at B due to a unit load at C in the direction of Rc.
Solution of Equations 2.35 gives the redundant reactions Rg and Rc.
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FIGURE 2.27 Beam with two redundant reactions.

EXAMPLE 2.5

Determine the reactions for the beam shown in Figure 2.28 and draw its shear force and bending

moment diagrams.

It can be seen from the figure that there are three reactions, namely, My, Ry, and R¢, one more than
that required for a stable structure. The reaction Rc can be removed to make the structure determinate.
We know that the deflection at support C of the beam is zero. One can determine the deflection dcp at
C due to the applied load on the cantilever in Figure 2.28b. In the same way the deflection ¢y at C due
to the redundant reaction on the cantilever (Figure 2.28c) can be determined. The compatibility

equation gives

By moment area method,

1 4R 2
deR==-X—X4X=-X4=
2 EI 3

dcp —Ocr =10

Substituting for dcp and dcp in the compatibility equation, one obtains

o —20><2><1+1><20><2><2><2+40><2><3+1><60><2>< 2><2+2 _ 1520
PR 2" FI 3 EI 2 EI 3 T 3E
64Rc
3EI
1520 64Rc_0
3EI  3EI

from which

Rc = 23.75 kN |
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FIGURE 2.28 Example 2.5.

By using statical equilibrium equations we get

Ry =6.25kNT

and
MA =5kN m

The shear force and bending moment diagrams are shown in Figure 2.28d.

1. Solutions to fix-based portal frames subjected to various types of loading. Figure 2.29 shows the
bending moment diagram and reaction forces of fix-based portal frames subjected to loading
typically encountered in practice. Closed form solutions are provided for moments and end forces
to facilitate a quick solution to the simple frame problem.

2. Solutions to pin-based portal frames subjected to various types of loading. Figure 2.30 shows the
bending moment diagram and reaction forces of pin-based portal frames subjected to loading
typically encountered in practice. Closed form solutions are provided for moments and end forces
to facilitate a quick solution to the simple frame problem.
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FIGURE 2.29 Rigid frames with fixed supports.
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2.5 Plates
2.5.1 Bending of Thin Plates

A plate whose thickness is small compared to the other dimensions is called a thin plate. The plane
parallel to the faces of the plate and bisecting the thickness of the plate, in the undeformed state, is called
the middle plane of the plate. When the deflection of the middle plane is small compared with the
thickness h, it can be assumed that

1. There is no deformation in the middle plane.

2. The normals of the middle plane before bending are deformed into the normals of the middle
plane after bending.

3. The normal stresses in the direction transverse to the plate can be neglected.

Based on these assumptions, all stress components can be expressed by deflection w of the plate. wis a
function of the two coordinates (x, y) in the plane of the plate. This function has to satisfy a linear partial
differential equation, which, together with the boundary conditions, completely defines w.

Figure 2.31a shows a plate element cut from a plate whose middle plane coincides with the xy plane.
The middle plane of the plate subjected to a lateral load of intensity g is shown in Figure 2.31b. It can be
shown, by considering the equilibrium of the plate element, that the stress resultants are

M D 62w+ w
i =-D|i5+vs>
0x2 0y?

(a) dy dx
M, [ .
M+ 5—;dy -~ ! - M+ bg/[" dx
1o ) x
oM ____j~7_/;
M. o+ —22dy ---[E==% o oM,
x dy / . M+ 5 dx
00, ___ [ S S Lo~ 00,
Q.v+5_ydy [ aaknhls Ot 57 dx

j Zxd
h /6 S
MX‘V(?/ L \\M + 5Mxy dx
Ay \ Xy ox
oM, o~ N » g
My+5d Myt 54y
(b) 0,
. |
X
%
|
\
50,
50 o+ Q < dx
0.+ —2dy ox
y 5y

Z

FIGURE 2.31 (a) Plate element and (b) stress resultants.
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M,=-D aZ—WJrvaZ—W (2.36)
re 0y? Ox? '
*w
My, = —M,, = D(1 —v) axdy
*w O*w
V,=—5+ (12— 2.37
r oyl +2-) 0y 0x2 (2:37)
Ow Ow
V=t (2= ) 2.38
0x3 +2-) 0x 0y? (2.38)
o (O*w O'w
— _po (¥ YW 2.39
@ dy <@x2 " W) (239)
2
R=2D(1 - 2.40
(1-gs (2.40)
where
M,, M, =bending moments per unit length in the x and y directions, respectively
M,,, M, = twisting moments per unit length
Q. Q, =shearing forces per unit length in the x and y directions, respectively
V.V, =supplementary shear forces in the x and y directions, respectively
R = corner force
D = El’/(12(1 —v?)), flexural rigidity of the plate per unit length
v = Poisson’s ratio
The governing equation for the plate is obtained as
ot ot ot
id v v_4 (2.41)

o oy oA T D

Any plate problem should satisfy the governing Equation 2.41 and boundary conditions of the plate.

2.5.2 Boundary Conditions

There are three basic boundary conditions for plates. These are the clamped edge, simply supported
edge, and free edge.

2.5.2.1 Clamped Edge

For this boundary condition, the edge is restrained such that the deflection and slope are zero along the
edge. If we consider the edge x=a to be clamped, we have

(W)y—g =0, @—D = 0 (2.42)

2.5.2.2 Simply Supported Edge

If the edge x= a of the plate is simply supported, the deflection w along this edge must be zero. At the
same time this edge can rotate freely with respect to the edge line. This means that

Fw

(W) =0, (W) = 0 (2.43)
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2.5.2.3 Free Edge

If the edge x= a of the plate is entirely free, there are no bending and twisting moments and also vertical
shearing forces. This can be written in terms of w, the deflection, as

AN S

o),
Ow +(2-v) Dw —0
0x? oxoy?) _,

2.5.3 Bending of Rectangular Plates

(2.44)

A plate bending problem may be solved by referring to the differential Equation 2.41. The solution,

however, depends on the loading and boundary conditions. Consider a simply supported plate subjected

to a sinusoidal loading as shown in Figure 2.32. The differential Equation 2.41 in this case becomes
o'w o'w otw Qo . mX . Wy

WJrzaxz—aszra—y‘i_BS‘n?m? (2.45)

The boundary conditions for the simply supported edges are

aZ
w =0, a—f:o, forx=0 and x=a
N (2.46)
0o, Vo § 0and y=b
w=0, =0, fory=0 and y=
0y?
The deflection function becomes
. X . Ty
= — = 2.47
w = wosin—sin— (2.47)

which satisfies the boundary conditions in Equations 2.46. w, must be chosen to satisfy Equation 2.45.
Substitution of Equation 2.47 into Equation 2.45 gives

af 1 1Y _ 9
@ e)" "o
The deflection surface for the plate can, therefore, be found to be
Ty

o qo . X
w= ZD(1/@) + (/7)) sin—=sin (2.48)

X
: 90
! sin 2 gin 2
b do a b

i

/ ]

y

FIGURE 2.32 Rectangular plate under sinusoidal loading.
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Using Equations 2.48 and 2.36 we find expression for moments as

M, = D <1 v> smnxsmny
Tom((1/a) + (1/1)) b b
o v 1\ . nx . my
M, = — 4+ — | sin—sin— 2.49
= ey ) (2:49)
1 —_
Mxy = QO( V) cosgcosy

w((1/a?) + (1/0%)%ab a b

Maximum deflection and maximum bending moments that occur at the center of the plate can be
written by substituting x=a/2 and y=b/2 in Equations 2.49 as

qo
wtD((1/a?) + (1/6%))*

Wmax =

- U 1.
(M = 7 ST () (2350

L1
b?

Mhoax = (1) + (72)) ¢

Rl =

If the plate is square, then a= b and Equations 2.50 become

_ qa*
max = 44
T (1) (2.51)
(Mx)max = ( J’)max = 472 q0a2

If the simply supported rectangular plate is subjected to any kind of loading given by
q=4q(xy) (2.52)

the function q(x, y) should be represented in the form of a double trigonometric series as

o0 o]
= Z Z Gmn sin " sin n—Zy (2.53)

m=1 n=1

5 [

From Equations 2.45 and 2.52 to 2.54 we can obtain the expression for deflection as

I & & . mmx . nmy
_ mix in ™Y 2.55
n4DZZ mz/az nZ/bZ))z s a st b ( )

m=1 n=1

where g,,,,, is given by

* sin ydxd (2.54)

If the applied load is uniformly distributed with intensity go, we have

q(x,y) = @

and from Equation 2.54 we obtain

4q0 [ [° . mnx . nmy 16qy
o = 10 dxdy = 2.56
q o /0 /0 sin— sin—= , dxdy=——"— (2.56)
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where m and #n are odd integers. g,,,,,= 0 if m or n or both are even numbers. Finally, the deflection of
a simply supported plate subjected to uniformly distributed load can be expressed as

164 i i sin(mnx/a) sin(nny/b) (2.57)

D S 1= mn((m?/a?) + (n2/1%))?

where m=1,3,5,...and n=1, 3, 5,....
The maximum deflection occurs at the center. Its magnitude can be evaluated by substituting x= a/2
and y= b/2 in Equation 2.57 as

w :% o~ N (71)<m+ﬂ)/271
max = 6 ZZ n((mz/a2)+(n2/b2))2 (2.58)

Equation 2.58 is a rapid converging series. A satisfactory approximation can be obtained by taking only
the first term of the series; for example, in the case of a square plate,

4 4 4
Winax = 22 _ 000416 2L
7D D

Assuming v =0.3, the maximum deflection can be calculated as
Ba’
EW?

The expressions for bending and twisting moments can be obtained by substituting Equation 2.57 into
Equations 2.36. Figure 2.33 shows some loading cases and the corresponding loading functions.

If the opposite edges at x=0 and x = a of a rectangular plate are simply supported, the solution taking
the deflection function as

Wmax = 0.0454 ——

o mnx

Y sm— (2.59)

can be adopted. Equation 2.59 satisfies the boundary conditions w=0 and 9*w/dx*=0 on the two

simply supported edges. Y,, should be determined such that it satisfies the boundary conditions along

the edges y==£(b/2) of the plate shown in Figure 2.34 and also the equation of the deflection surface
o*w ot'w  'w g

Py Tor D (260)

qo being the intensity of uniformly distributed load.
The solution for Equation 2.60 can be taken in the form

w=w +wm (2.61)

for a uniformly loaded simply supported plate. w; can be taken in the form

o

wy =
24D

(x* — 2ax’ + a’x) (2.62)
representing the deflection of a uniformly loaded strip parallel to the x axis. It satisfies Equation 2.60 and
also the boundary conditions along x=0 and x=a.
The expression w, has to satisfy the equation
64 wy 64 wy 64 Wy

e ooy T o 0 (2.63)
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FIGURE 2.33 Typical loading on plates a
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FIGURE 2.34 Rectangular plate.

and must be chosen such that Equation 2.61 satisfies all boundary conditions of the plate.
Taking w, in the form of series given in Equation 2.59 it can be shown that the deflection surface takes
the form

do
= -2
w= 24D(x ax’ + a’x)
qoa* & mmy
—Q—mg (A cosh—+B p h——l—C 1nh7
+ Dmﬂcosh @) sin (2.64)
a a

Observing that the deflection surface of the plate is symmetrical with respect to the x axis we
keep in Equation 2.65 only the even function of y; therefore, C,,= D,,= 0. The deflection surface takes
the form

w—zz(})(x —2ax’ + a’x)
qu4 > mny . mny\ . mnx
Z(A cosh 77 —=sin h —) sin— (2.65)
24D — a a a

Developing the expression in Equation 2.62 into a trigonometric series, the deflection surface in
Equation 2.65 is written as

4
w=D% Z( =+ Ay cos h By, 2aN mny) sin 7% (2.66)
=\ a a a
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Substituting Equation 2.66 in the boundary conditions
o, %_g (2.67)
w=0 —= .
0y?

one obtains the constants of integration A,, and B,, and the expression for deflection may be written as

4qoat & 1 oy tanhoy, + 2 20,y
w= Z o 1-— cosh

D s 2cosha,, b
U 2y . 20,y . mux
——— “sinh e 2.68
2cosho, b s b s a ( )

where o, = (mnb)/2a. Maximum deflection occurs at the middle of the plate, x=a/2, y=0, and is
given by

Wmax -

4qpat
D

) _1\((m=1)/2)
Z (-1) (1 _ amtanha, + 2) (2.69)

5
3. m 2coshoa,,

Solution of plates with arbitrary boundary conditions is complicated. It is possible to make some
simplifying assumptions for plates with the same boundary conditions along two parallel edges to obtain
the desired solution. Alternatively, energy method can be applied more efficiently to solve plates with
complex boundary conditions. However, it should be noted that the accuracy of results depends on the
deflection function chosen. These functions must be so chosen that they satisfy at least the kinematics
boundary conditions.

Figure 2.35 gives the formulas for deflection and bending moments of rectangular plates with typical
boundary and loading conditions.

2.5.4 Bending of Circular Plates

In the case of a symmetrically loaded circular plate, the loading is distributed symmetrically about the
axis perpendicular to the plate through its center. In such cases, the deflection surface to which the
middle plane of the plate is bent will also be symmetrical. The solution of circular plates can be
conveniently carried out by using polar coordinates.

Stress resultants in a circular plate element are shown in Figure 2.36. The governing differential
equation is expressed in polar coordinates as

1df dfid/ dw _1 (2.70)
rdr ) dr |rdr \"dr "D ’

where g is the intensity of loading.
In the case of a uniformly loaded circular plate Equation 2.70 can be integrated successively and the

deflection at any point at a distance r from the center can be expressed as
qQrt  Cr?

Y=eap T 4

r
+ Cz log;—l- C3 (2.71)

where ¢ is the intensity of loading and a is the radius of the plate. C;, C,, and C; are constants of
integration to be determined using the boundary conditions.
For a plate with clamped edges under uniformly distributed load gy the deflection surface reduces to

_ 4o 2 22
W764D(a %) (2.72)

The maximum deflection occurs at the center where r=0 and is given by

_ qoa’

= 2.73
"= 64D (2.73)
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FIGURE 2.35 Typical loading and boundary conditions for rectangular plates.

Bending moments in the radial and tangential directions are given by

M, = 2@ (149) = (34 )
(2.74)
Mo =R (14v) - (14 3v)]

respectively.



Structural Analysis 2-47

(a) Y

(b) Middle surface
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FIGURE 2.36 (a) Circular plate and (b) stress resultants.

The method of superposition can be applied in calculating the deflections for circular plates with
simply supported edges. The expressions for deflection and bending moment are given as follows:

2 _ 2 5
qo(a ”)( +va2—r2)

w =
64D I+v (2.75)
5+v goat '
Winaxy = ——————
" 64(1+v) D
_ 4 2_ 2
Mr—1—6(3+v)(a —r)
(2.76)

M, = %[az(s +v) = (1 +3v)]

This solution can be used to deal with plates with a circular hole at the center and subjected to concentric
moment and shearing forces. Plates subjected to concentric loading and concentrated loading also can be
solved by this method. More rigorous solutions are available to deal with irregular loading on circular
plates. Once again, the energy method can be employed advantageously to solve circular plate problems.
Figure 2.37 gives deflection and bending moment expressions for typical cases of loading and boundary
conditions on circular plates.
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FIGURE 2.37 Typical loading and boundary conditions for circular plates.
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FIGURE 2.37 Continued.

2.5.5 Strain Energy of Simple Plates

The strain energy expression for a simple rectangular plate is given by

o ff (@ ey
- area axz y

I Fwdw w\’
—2(1 =) | === — dxd
(1=v) {69@ 0y? (axay) ahed
A suitable deflection function w(x, y) satisfying the boundary conditions of the given plate may be
chosen. The strain energy U and the work done by the given load, g(x, y),

W=-— / / q(x,y)w(x, y) dxdy

can be calculated. The total potential energy is, therefore, given as V= U+W. Minimizing the total
potential energy the plate problem can be solved:

Cwdw ()’
0x2 0y? 0x 0y

The term 18 is known as the Gaussian curvature.

(2.77)
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If the function w(x, y) = flx)f(y) (product of a function of x only and a function of y only) and w=0 at
the boundary are assumed, then the integral of the Gaussian curvature over the entire plate equals zero.

Under these conditions
o? iw
St / (a;’ ) dxdy (2.78)

If polar coordinates instead of rectangular coordinates are used and axial symmetry of loading and
deformation is assumed, the equation for strain energy, U, takes the form

*w 10w 2(1 —v) ow O*w
"2 /m{<ar2 r@r) T o o (Fdrdo (2.79)

and the work done, W, is written as
— // qwrdrdf (2.80)

Detailed treatment of Plate Theory can be found in Timoshenko and Woinowsky-Krieger (1959).

2.5.6 Plates of Various Shapes and Boundary Conditions

2.5.6.1 Simply Supported Isosceles Triangular Plate Subjected to a Concentrated Load

Plates of shapes other than circular and rectangular are used in some situations. A rigorous solution of
the deflection for a plate with a more complicated shape is likely to be very difficult. Consider, for
example, the bending of an isosceles triangular plate with simply supported edges under concentrated
load P acting at an arbitrary point (Figure 2.38). A solution can be obtained for this plate by considering
a mirror image of the plate as shown in the figure. The deflection of OBC of the square plate is
identical with that of a simply supported triangular plate OBC. The deflection owing to the force P
can be written as

_4pa’ i i sin(mmnx; /a) 51n(121ny1/a) i X 1y (2.81)
TE4D m=1 n=1 le + nz) a a

Upon substitution of —P for P, (a— y,) for x; and (a—x;) for y, in Equation 2.81 we obtain the
deflection due to the force —P at A;:

4Pg>? S & minsin(mnx, /a) sin(nny, /a) . mnx | nn
Wy =——; Z(—l) +nsin(imm /a) (2 n/ )sm—sm—y (2.82)
D m=1 n=1 (mZ + ﬂ2) a a
The deflection surface of the triangular plate is then
w=w +w (2.83)

2.5.6.2 Equilateral Triangular Plates

The deflection surface of a simply supported plate loaded by uniform moment M, along its boundary
and the surface of a uniformly loaded membrane, uniformly stretched over the same triangular
boundary, are identical. The deflection surface for such a case can be obtained as

M, 4
—3xy? — a’ 2.84
w= 5|2 =32 — a4+ 57) + a (2.84)
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FIGURE 2.38 Isosceles triangular plate.
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FIGURE 2.39 Equilateral triangular plate with coordinate axes.

If the simply supported plate is subjected to uniform load p, the deflection surface takes the form

4 4
w= 6451) X = 3xt — a(x* + %) +ﬁa3] (§ at —x* — y2) (2.85)
For the equilateral triangular plate (Figure 2.39) subjected to uniform load and supported at the corners,
approximate solutions based on the assumption that the total bending moment along each side of the
triangle vanishes were obtained by Vijakkhna et al. (1973), who derived the equation for deflection
surface as

(8}

w:ﬁ[%(7+v)(2—v)—(7+v)(1—v)<x;+%

(5v)(1+v)<X3 3’W2)+Z(1v2)<’;+2x21’2+y4)] (2.86)

a’ a’
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The errors introduced by the approximate boundary condition, that is, the total bending moment along
each side of the triangle vanishes, are not significant since its influence on the maximum deflection
and stress resultants is small for practical design purposes. The value of the twisting moment on the
edge at the corner given by this solution is found to be exact.

The details of the mathematical treatment may be found in Vijakkhna (1973).

2.5.6.3 Rectangular Plate Supported at the Corners

Approximate solutions for rectangular plates supported at the corners and subjected to uniformly
distributed load were obtained by Lee and Ballesteros (1960). The approximate deflection surface is
given as

4 4 2 2
qa ) b b b ) X
bZ y2 x4_|_y4 x2y2
+2((1+5v)7(6+va2);>;+(2+v7v2) o 76(1+V)7:|
(2.87)

The details of the mathematical treatment may be found in Lee and Ballesteros (1960).

2.5.7 Orthotropic Plates

Plates of anisotropic materials have important applications owing to their exceptionally high bending
stiffness. A nonisotropic or anisotropic material displays direction-dependent properties. Simplest
among them are those in which the material properties differ in two mutually perpendicular directions.
A material so described is orthotropic, for example, wood. A number of manufactured materials are
approximated as orthotropic. Examples include corrugated and rolled metal sheets, fillers in sandwich
plate construction, plywood, fiber reinforced composites, reinforced concrete, and gridwork. The last
example consists of two systems of equally spaced parallel ribs (beams), mutually perpendicular, and
attached rigidly at the points of intersection.

The governing equation for orthotropic plate similar to that of isotropic plate (Equation 2.87) takes
the form

tw tw tw
DY g 2 W pf¥_ 2.88
oxt + 0x20y? + 5 oy 1 (2:88)
where
IPE, iE, E, BG
D, = > Dy:—) H:ny+2ny> Dy =—=, Gy=—
12 12 12 12

The expressions for D, D,, D,,, and G, represent the flexural rigidities and the torsional rigidity of an
orthotropic plate, respectively. E,, E,, and G are the orthotropic plate moduli. Practical considerations
often lead to assumptions, with regard to material properties, resulting in approximate expressions for
elastic constants. The accuracy of these approximations is generally the most significant factor in the
orthotropic plate problem. Approximate rigidities for some cases that are commonly encountered in
practice are given in Figure 2.40.

General solution procedures applicable to the case of isotropic plates are equally applicable to
orthotropic plates. Deflections and stress resultants can thus be obtained for orthotropic plates of
different shapes with different support and loading conditions. These problems have been researched
extensively and solutions concerning plates of various shapes under different boundary and loading
conditions may be found in Timoshenko and Woinowsky-Krieger (1959), Tsai and Cheron (1968), Lee
et al. (1971), and Shanmugam et al. (1988, 1989).
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Geometry Rigidities
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directed reinforcement steel bars D, 2 I, +(FC7 l]st] D, )2 IC)-+(FC - l)lsy]
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Gy=—¢/D,D, H=|D,D, D,=v.(D.D,

v.: Poisson’s ratio for concrete

E., E: Elastic modulus of concrete and steel, respectively

1.1, I,(I;,): Moment of inertia of the slab (steel bars) about
neutral axis in the section, x =constant and
y=constant, respectively

B. Plate reinforced by equidistant EB

3 /
stiffeners D.=H Et E'l

E, E': Elastic modulus of plating and stiffeners, respectively
v: Poisson’s ratio of plating
s: Spacing between centerlines of stiffeners
I: Moment of inertia of the stiffener cross-section with respect to

s
|‘_’| t midplane of plating
C. Plate reinforced by a set of equidistant Est® EI
ribs D= AT 4. 31 D =—
12[s—h+h(t t))°] pAREKY
r , C -
H=2G, += D,,=0
ey v .
[ L A C: Torsional rigidity of one rib
Tt I: Moment of inertia about neutral axis of a T =section of width s
h s (shown as shaded)
G;yi Torsional rigidity of the plating

E: Elastic modulus of the plating

D. Corrugated plate 3 3
gated p D,C=1E—t2 D,=ElI, A _EC D,,=0
A 12(1-vh) . a 12(1+v)
where
20 0.81
=51+ ) 1=0.5K [1——]
g s(” 452 1+2.5(1125)

FIGURE 2.40 Various orthotropic plates.

2.6 Shells

2.6.1 Stress Resultants in the Shell Element

A thin shell is defined as a shell with a thickness relatively small compared with its other dimensions. The
primary difference between a shell and a plate is that the former has a curvature in the unstressed state,
whereas the latter is assumed to be initially flat. The presence of initial curvature is of little consequence
as far as flexural behavior is concerned. The membrane behavior, however, is affected significantly by
the curvature. Membrane action in a surface is caused by in-plane forces. These forces may be primary
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forces caused by applied edge loads or edge deformations, or they may be secondary forces resulting
from flexural deformations.

In the case of the flat plates, secondary in-plane forces do not give rise to appreciable membrane action
unless the bending deformations are large. Membrane action due to secondary forces is, therefore, neglected
in small deflection theory. In the case of a shell that has an initial curvature, membrane action caused by
secondary in-plane forces will be significant regardless of the magnitude of the bending deformations.

A plate is likened to a two-dimensional beam and resists transverse loads by two-dimensional bending
and shear. A membrane is likened to a two-dimensional equivalent of the cable and resists loads through
tensile stresses. Imagine a membrane with large deflections (Figure 2.41a), reverse the load and the
membrane, and we have the structural shell (Figure 2.41b), provided that the shell is stable for the type of
load shown. The membrane resists the load through tensile stresses but the ideal thin shell must be
capable of developing both tension and compression.

Consider an infinitely small shell element formed by two pairs of adjacent planes that are normal to the
middle surface of the shell and contain its principal curvatures as shown in Figure 2.42a. The thickness of the
shell is denoted as h. Coordinate axes xand y are taken as tangent at 0 to the lines of principal curvature and
the axis znormal to the middle surface. 7, and r, are the principal radii of curvature lying in the xzand yz
planes, respectively. The resultant forces per unit length of the normal sections are given as

h/2 h/2
N, = / < - —) dz, N, = / ( ) dz
/2 h/2
h/2 2 h/2 2
Ny, = / Tyy <1 — —) dz, N, = / Tyx (1 — —) dz (2.89)
—h/2 Ty —h/2 T
h/2 . hy2
Qx:/ fxz<1——>dz, Q= / ( >dz
—h/2 Ty h/z

The bending and twisting moments per unit length of the normal sections are given by
h/2 h/2
M, = axz< — —) dz, M, = / <1 — —) dz
—h/2 h/2
h/2 2 h/2
M,, = —/ rxyz(l - —> dz, M, = / 'nyz( )dz
—h/2 Ty —h/2 Tx

It is assumed, in bending of the shell, that linear elements as AD and BC (Figure 2.42), which are
normal to the middle surface of the shell, remain straight and become normal to the deformed middle
surface of the shell. If the conditions of a shell are such that bending can be neglected, the problem of
stress analysis is greatly simplified since the resultant moments (Equations 2.90) vanish along with
shearing forces Q, and Q, in Equations 2.89. Thus, the only unknowns are N,, N,, and N,,= N, and
these are called membrane forces.

(2.90)

(@ (b)

Reactions V f/ V V V V

L A0
AN

Load

FIGURE 2.41 Membranes with large deflection.
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(b)

FIGURE 2.42 A shell element.

2.6.2 Shells of Revolution

Shells having the form of surfaces of revolution find extensive application in various kinds of containers,
tanks, and domes. Consider an element of a shell cut by two adjacent meridians and two parallel circles
as shown in Figure 2.43. There will be no shearing forces on the sides of the element because of the
symmetry of loading. By considering the equilibrium in the direction of the tangent to the meridian and
z, two equations of equilibrium are written, respectively, as

d
@ (Npro) — Norycos ¢ + Yrirng =0

Nyt + Nyprising + Znrg =0

(2.91)

The forces Ny and N,, can be calculated from Equations 2.91 if the radii 7, and r; and the components
Y and Z of the intensity of the external load are given.
2.6.3 Spherical Dome

The spherical shell shown in Figure 2.44 is assumed to be subjected to its own weight; the intensity of
the self weight is assumed as a constant value g, per unit area. Considering an element of the shell at an
angle ¢, the self weight of the portion of the shell above this element is obtained as

¢
R= Zn/ a*qo sin @ do
0
=27na’qy(1 — cos @)

Considering the equilibrium of the portion of the shell above the parallel circle defined by the angle ¢,
we can write

211y Nysing + R=0 (2.92)
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FIGURE 2.44 Spherical dome.
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We can write from Equations 2.91

N :_aqo(l—cosq)):_ aqo
¢ sin’o 1+ cos ¢
N, N
2 N 5 (2.93)
n L]

Substituting for N, and z= R into Equation 2.93

1
Ny = — -
0 aqo(1 ey cow)

It is seen that the forces N, are always negative. There is thus a compression along the meridians that
increases as the angle ¢ increases. The forces Nj are also negative for a small angle ¢. The stresses as
calculated above will represent the actual stresses in the shell with great accuracy if the supports are of
such a type that the reactions are tangent to meridians as shown in the figure.
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FIGURE 2.45 Conical shell.

FIGURE 2.46 Inverted conical tank.

2.6.4 Conical Shells

If a force P is applied in the direction of the axis of the cone as shown in Figure 2.45 the stress
distribution is symmetrical and we obtain

P

Ny=———"—
¢ 27 1y COS

From Equation 2.93, one obtains Ny =0.

In the case of a conical surface in which the lateral forces are symmetrically distributed, the membrane
stresses can be obtained by using Equations 2.92 and 2.93. The curvature of the meridian in the case of
a cone is zero and hence r; = co; Equations 2.92 and 2.93 can therefore be written as

N — R
¢ T 7o sin ¢
and
ZT()
Ny =—nZ=-—
0 " sin ¢

If the load distribution is given, Ny and Nj can be calculated independently.
For example, a conical tank filled with a liquid of specific weight y is considered as shown in Figure 2.46
The pressure at any parallel circle mn is

p=-Z=yd-y)
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For the tank, ¢ =a + (n/2) 19 and ry =y tan a. Therefore,

Np — y(d — y)ytano
cos o
Ny is maximum when y=d/2 and hence,
v d? tan o
Np) =t 2
(N0 4cosa

The term R in the expression for N, is equal to the weight of the liquid in the conical part mn0 and
the cylindrical part must be as shown in Figure 2.45. Therefore,

R = —[imy’ tan’a + my? tan’a(d — y) |y
= —myy*(d — 2y) tan’a
Hence,

7y(d —3y)tano

N, =
¢ 2cosa
N, is maximum when y=2d and
3 d*ytana
Ny), =t 22
(NG )max 16 cos a

The horizontal component of N, is taken by the reinforcing ring provided along the upper edge of the
tank. The vertical components constitute the reactions supporting the tank.

2.6.5 Shells of Revolution Subjected to Unsymmetrical Loading

Consider an element cut from a shell by two adjacent meridians and two parallel circles as shown in
Figure 2.47. In the general cases shear forces N,y = Ny, and normal forces N, and Ny will act on the sides of
the element. Projecting the forces on the element in the y direction, we obtain the governing equation as

0 0Ny,
@ (Npro) + 20 " Nyricosp + Yrirg=20 (2.94)
Similarly, the forces in the x direction can be summed up to give
0 0Ny
@ (roNyo) + 0 11 + Nypri cos ¢ + Xrorp = 0 (2.95)

Since the projection of shearing forces on the z axis vanishes, the third equation is the same as
Equation 2.93. The problem of determining membrane stresses under unsymmetrical loading reduces to
the solution of Equations 2.93 to 2.95 for given values of the components X, Y, and Z of the intensity of
the external load.

2.6.6 Cylindrical Shells

It is assumed that the generator of the shell is horizontal and parallel to the x axis. An element is cut from
the shell by two adjacent generators and two cross-sections perpendicular to the x axis, and its position is
defined by the coordinate x and the angle ¢. The forces acting on the sides of the element are shown in
Figure 2.48Db.

The components of the distributed load over the surface of the element are denoted as X, Y, and Z.
Considering the equilibrium of the element and summing up the forces in the x direction, we obtain

ON, ON,x
rdedx 4+ —2
Ox

dpdx+ Xrdepdx =0
op
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(b)

Nyt ——

FIGURE 2.48 Membrane forces on a cylindrical shell element.

The corresponding equations of equilibrium in the y and z directions are given, respectively, as

N, ON,
?rdopdx +—2dodx+ Yrdedx =0
Ox 0o

N,dpdx+ Zrdpdx =0

The three equations of equilibrium can be simplified and represented in the following form

ONy 10Ny, X

ox ' r d¢p

ONy, 10N,

——F———=-Y 2.96
ox r 0¢ (2.96)

Ny = —Zr
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In each case we readily find the value of N,,. Substituting this value in the second of the equations, we
then obtain N, by integration. Using the value of N, thus obtained we find N, by integrating the first
equation.

2.6.7 Symmetrically Loaded Circular Cylindrical Shells

To establish the equations required for the solution of a symmetrically loaded circular cylinder shell,
we consider an element, as shown in Figure 2.48a and Figure 2.49. From symmetry, the membrane
shearing forces N,,=N,, vanish in this case; forces N, are constant along the circumference.
From symmetry, only the forces Q, do not vanish. Considering the moments acting on the element in
Figure 2.49, from symmetry it can be concluded that the twisting moments M., = M, vanish and that
the bending moments M,, are constant along the circumference. Under such conditions of symmetry
three of the six equations of equilibrium of the element are identically satisfied. We have to consider
only the equations obtained by projecting the forces on the x and z axes and by taking the moment of the
forces about the y axis. For example, consider a case in which external forces consist only of a pressure
normal to the surface. The three equations of equilibrium are

dN

—adxdp =0

dx

dQ

d adxdg + N, dxdy + Zadxdp =0 (2.97)
x

%adxd(p— Qiadxdp =0
dx

The first equation indicates that the forces N, are constant, and they are taken as equal to zero in the
further discussion. If they are different from zero, the deformation and stress corresponding to such
constant forces can be easily calculated and superposed on stresses and deformations produced by lateral
load. The remaining two equations are written in the simplified form

dQ, 1

N, = -2
dx +a ?

dM,
dx

(2.98)
- Qx =0

These two equations contain three unknown quantities: N,,, Q,, and M,. We need, therefore, to consider
the displacements of points in the middle surface of the shell.

FIGURE 2.49 Stress resultants in a cylindrical shell element.
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The component v of the displacement in the circumferential direction vanishes because of symmetry.
Only the components u and w in the x and z directions, respectively, are to be considered. The
expressions for the strain components then become

o
T dx]

S

By Hooke’s law, we obtain

Eh Eh (du w
N, = (x+vey) =——|——v—=] =0

1—? 1 —v? \dx a
(2.100)
N — Eh (60 + Vi) = Eh w+vdu “o
P T e T dx)
From the first of these equation it follows that
du  w
dx a
and the second equation gives
Eh
N, = -2 (2.101)
a

Considering the bending moments, we conclude from symmetry that there is no change in curvature in
the circumferential direction. The curvature in the x direction is equal to —d*w/dx’. Using the same
equations as for plates, we obtain

M, = vM,
Ew (2.102)

M,=—-D——
dux?

where

ER®

D=——"—
12(1 —2)

is the flexural rigidity per unit length of the shell.
Eliminating Q, from Equations 2.98 we obtain

&M, 1
—-N, =—Z
dx? +11 ?

from which, by using Equations 2.101 and 2.102, we obtain

& [ &w\ Eh
—(D W>+—w:z (2.103)

dx? dx? a?

All problems of symmetrical deformation of circular cylindrical shells thus reduce to the integration of
Equation 2.103.

The simplest application of this equation is obtained when the thickness of the shell is constant. Under
such conditions Equation 2.103 becomes

d*w Eh
PR
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Using the notation

2
b= 4aE2hD - % (2.104)
Equation 2.104 can be represented in the simplified form
j%’ + 4p'w = % (2.105)
The general solution of this equation is
w = eP*(Cy cos fx + Cy sin fx) + e P*(C; cos fx + Cysin fx) + f(x) (2.106)

Detailed treatment of shell theory can be obtained from Timoshenko and Woinowsky-Krieger
(1959).

2.7 Influence Lines

Bridges, industrial buildings with traveling cranes, and frames supporting conveyer belts are often
subjected to moving loads. Each member of these structures must be designed for the most severe
conditions that can possibly be developed in that member. Live loads should be placed at the positions
where they will produce these severe conditions. The critical positions for placing live loads will not be
the same for every member. On some occasions it is possible by inspection to determine where to place
the loads to give the most critical forces, but on many other occasions it is necessary to resort to certain
criteria to find the locations. The most useful of these methods is the influence line.

Aninfluenceline for a particular response, such as reaction, shear force, bending moment, and axial force,
is defined as a diagram, the ordinate to which at any point equals the value of that response attributable to
a unit load acting at that point on the structure. Influence lines provide a systematic procedure for
determining how the force in a given part of a structure varies as the applied load moves about on the
structure. Influence lines of responses of statically determinate structures consist only of straight lines
whereas they are curves for statically indeterminate structures. They are primarily used to determine where
to place live loads to cause maximum force and to compute the magnitude of those forces. Knowledge of
influence lines helps one to study the structural response under different moving load conditions.

2.7.1 Influence Lines for Shear in Simple Beams

Figure 2.50 shows influence lines for shear at two sections of a simply supported beam. It is assumed that
positive shear occurs when the sum of the transverse forces to the left of a section is in the upward
direction or when the sum of the forces to the right of the section is in the downward direction. A unit
force is placed at various locations and the shear force at sections 1-1 and 2-2 are obtained for each
position of the unit load. These values give the ordinate of influence line with which the influence
line diagrams for shear force at sections 1-1 and 2-2 can be constructed. Note that the slope of the
influence line for shear on the left of the section is equal to the slope of the influence line on the right
of the section. This information is useful in drawing the shear force influence line in other cases.

2.7.2 Influence Lines for Bending Moment in Simple Beams

Influence lines for bending moment at the same sections 1-1 and 2-2 of the simple beam considered in
Figure 2.50 are plotted as shown in Figure 2.51. For a section, when the sum of the moments of all the
forces to the left is clockwise or when the sum to the right is counterclockwise, the moment is taken as
positive. The values of bending moment at sections 1-1 and 2-2 are obtained for various positions of
unit load and plotted as shown in the figure.
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FIGURE 2.50 Influence line for shear force.
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FIGURE 2.51 Influence line for bending moment.

It should be understood that a shear or bending moment diagram shows the variation of shear or
moment across an entire structure for loads fixed in one position. On the other hand, an influence line
for shear or moment shows the variation of that response at one particular section in the structure
caused by the movement of a unit load from one end of the structure to the other.

Influence lines can be used to obtain the value of a particular response for which it is drawn when the
beam is subjected to any particular type of loading. If, for example, a uniform load of intensity g, per unit
length is acting over the entire length of the simple beam shown in Figure 2.50, the shear force at section 1-1
is given by the product of the load intensity, go, and the net area under the influence line diagram. The net
area is equal to 0.3 and the shear force at section 1-1 is therefore equal to 0.3¢q,. In the same way, the
bending moment at the section can be found as the area of the corresponding influence line diagram times
the intensity of loading, go. The bending moment at the section is equal to 0.084o1”.

2.7.3 Influence Lines for Trusses

Influence lines for support reactions and member forces may be constructed in the same manner as those
for various beam functions. They are useful to determine the maximum load that can be applied to the
truss. The unit load moves across the truss, and the ordinates for the responses under consideration may
be computed for the load at each panel point. Member force, in most cases, need not be calculated for
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FIGURE 2.52 Influence line for truss.

every panel point, because certain portions of influence lines can readily be seen to consist of straight
lines for several panels. One method used for calculating the forces in a chord member of a truss is by the
method of sections discussed earlier.

The truss shown in Figure 2.52 is considered for illustrating the construction of influence lines for
trusses.

The member forces in U,U,, L;L,, and U;L, are determined by passing a section 1-1 and considering
the equilibrium of the free-body diagram of one of the truss segments. Unit load is placed at L, first and
the force in U, U, is obtained by taking the moment about L, of all the forces acting on the right-hand
segment of the truss and dividing the resulting moment by the lever arm (the perpendicular distance of the
force in U,U, from L,). The value thus obtained gives the ordinate of the influence diagram at L, in
the truss. The ordinate at L, obtained similarly represents the force in U, U, for unit load placed at L,. The
influence line can be completed with two other points, one at each of the supports. The force in the member
L,L, due to unit load placed at L; and L, can be obtained in the same manner and the corresponding
influence line diagram can be completed. By considering the horizontal component of force in the diagonal
of the panel the influence line for force in U,L, can be constructed. Figure 2.52 shows the respective
influence diagram for member forces in U,U,, L,L,, and U,L,. Influence line ordinates for the force in a
chord member of a “curved-chord” truss may be determined by passing a vertical section through the
panel and taking moments at the intersection of the diagonal and the other chord.

2.7.4 Qualitative Influence Lines

One of the most effective methods of obtaining influence lines is the use of Miiller-Breslau’s principle,
which states that the ordinates of the influence line for any response in a structure are equal to those of
the deflection curve obtaining by releasing the restraint corresponding to this response and introducing
a corresponding unit displacement in the remaining structure. In this way, the shape of the influence
lines for both statically determinate and indeterminate structures can be easily obtained, especially for
beams.
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FIGURE 2.53 Influence line for support reaction.
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FIGURE 2.54 Influence line for midspan shear force.
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FIGURE 2.55 Influence line for midspan bending moment.

To draw the influence lines of

1. Support reaction. Remove the support and introduce a unit displacement in the direction of the
corresponding reaction to the remaining structure as shown in Figure 2.53 for a symmetrical
overhang beam.

2. Shear. Make a cut at the section and introduce a unit relative translation (in the direction of
positive shear) without relative rotation of the two ends at the section as shown in Figure 2.54.

3. Bending moment. Introduce a hinge at the section (releasing the bending moment) and apply
bending (in the direction corresponding to positive moment) to produce a unit relative rotation
of the two beam ends at the hinged section as shown in Figure 2.55.

2.7.5 Influence Lines for Continuous Beams

Using Miiller-Breslau’s principle, the shape of the influence line of any response of a continuous
beam can be sketched easily. One of the methods for beam deflection can then be used for determining
the ordinates of the influence line at critical points. Figure 2.56 to Figure 2.58 show the influence lines
of the bending moment at various points of two-, three-, and four-span continuous beams.

2.8 Energy Methods

Energy methods are a powerful tool in obtaining numerical solutions of statically indeterminate problems.
The basic quantity required is the strain energy, or work stored due to deformations, of the structure.

2.8.1 Strain Energy Due to Uniaxial Stress

In an axially loaded bar with constant cross-section, the applied load causes normal stress ¢, as shown
in Figure 2.59. The tensile stress ¢, increases from 0 to a value o, as the load is gradually applied.
The original, unstrained position of any section such as C—C will be displaced by an amount dv.
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FIGURE 2.58 Influence line for bending moment — four-span beam.

A section D-D located a differential length below C-C will be displaced by an amount v + (0v/0y) dy.
As ¢, varies with the applied load, from 0 to 7, the work done by the forces external to the element can
be shown to be

1 1
dv = ﬁoiA dy = EoysyA dy (2.107)

where A is the area of cross-section of the bar and ¢, is the strain in the direction of g,,.
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FIGURE 2.59 Axially loaded bar.

2.8.2 Strain Energy in Bending

It can be shown that the strain energy of a differential volume dxdydz stressed in tension or compression
in the x direction only by a normal stress ¢, will be

dv = —a 2dxdydz = laxsx dxdydz (2.108)

When o, is the bending stress given by o, = (My)/I (see Figure 2.60), then dV =
(1/2E)(M?*y*)/1* dx dy dz, where I is the moment of inertia of the cross-sectional area about the neutral
axis.

The total strain energy of bending of a beam is obtained as

///1 2E Izy dzdydx

where
1= / / yzdz dy
area
Therefore,
MZ
V= —dx (2.109)
length 2E]

2.8.3 Strain Energy in Shear

Figure 2.61 shows an element of volume dx dy dz subjected to shear stress t,, and 7,,. For static
equilibrium, it can readily be shown that

Tay = Tyx
The shear strain, 7, is defined as AB/AC. For small deformations, it follows that
AB
yxy = E
Hence, the angle of deformation y,, is a measure of the shear strain. The strain energy for this differential
volume is obtained as

dV =3 (1 dzdx)y,, dy = 3147, dxdydz (2.110)

Hooke’s Law for shear stress and strain is

=T (2.111)
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FIGURE 2.61 Shear loading.

where G is the shear modulus of elasticity of the material. The expression for strain energy in shear
reduces to

L,
dv :Erxydxdydz (2.112)

2.8.4 Energy Relations in Structural Analysis

The energy relations or laws such as (i) Law of Conservation of Energy, (ii) Theorem of Virtual Work,
(iii) Theorem of Minimum Potential Energy, and (iv) Theorem of Complementary Energy are of fun-
damental importance in structural engineering and are used in various ways in structural analysis.

2.8.4.1 The Law of Conservation of Energy

The Law of Conservation of Energy states that “if a structure and the external loads acting on it are isolated
so that these neither receive nor give out energy, then the total energy of this system remains constant.”
A typical application of the Law of Conservation of Energy can be made by referring to Figure 2.62,
which shows a cantilever beam of constant cross-sections subjected to a concentrated load at its end. If
only bending strain energy is considered,
external work = internal work

Po b m?

—= [ —dx

2 ), 2EI
Substituting M = —Px and integrating along the length gives

PL?
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FIGURE 2.63 Equilibrium of a simple supported beam under loading.

2.8.4.2 The Theorem of Virtual Work

The Theorem of Virtual Work can be derived by considering the beam shown in Figure 2.63. The full
curved line represents the equilibrium position of the beam under the given loads. Assume the beam to
be given an additional small deformation consistent with the boundary conditions. This is called a
virtual deformation and corresponds to increments of deflection Ayy, Ay,, ..., Ay, at loads Py, P, ...,
P, as shown by the dashed line.

The change in potential energy of the loads is given by

A(PE) = PiAy; (2.114)
i=1

By the Law of Conservation of Energy this must be equal to the internal strain energy stored in the beam.
Hence, we may state the Theorem of Virtual Work as: “if a body in equilibrium under the action of a
system of external loads is given any small (virtual) deformation, then the work done by the external
loads during this deformation is equal to the increase in internal strain energy stored in the body.”

2.8.4.3 The Theorem of Minimum Potential Energy

Let us consider the beam shown in Figure 2.64. The beam is in equilibrium under the action of loads, P,
P,, Ps,..., P,..., P,. The curve ACB defines the equilibrium positions of the loads and reactions. Now
apply by some means an additional small displacement to the curve so that it is defined by AC'B. Let y; be
the original equilibrium displacement of the curve beneath a particular load P;. The additional small
displacement is called Jy;. The potential energy of the system while it is in the equilibrium configuration
is found by comparing the potential energy of the beam and loads in equilibrium and in the undeflected
position. If the change in potential energy of the loads is W and the strain energy of the beam is V, the
total energy of the system is

U=W4+V (2.115)
If we neglect the second-order terms, then
U=0(W+V)=0 (2.116)

The above is expressed as the Principle or Theorem of Minimum Potential Energy, which can be
stated as, “if all displacements satisfy the given boundary conditions, those that satisfy the equilibrium
conditions make the potential energy a minimum.”
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FIGURE 2.64 Simply supported beam under point loading.

2.8.4.4 Castigliano’s Theorem
This theorem applies only to structures stressed within the elastic limit and all deformations must be

linear homogeneous functions of the loads.
For a beam in equilibrium as in Figure 2.63, the total potential energy is

U=—Pip+Poypr+-+Pyj+-+Pys +V (2.117)

For an elastic system, the strain energy, V, turns out to be one half the change in the potential energy of
the loads:

117”
v==N Py 2.118
2; y (2.118)

Castigliano’s Theorem results from studying the variation in the strain energy, V, produced by
a differential change in one of the loads, say P;.

If the load P; is changed by a differential amount 6P; and if the deflections y are linear functions of
the loads, then

oV 1A oy 1
—’+5yj=y,- (2.119)

ADp. A~ i
0P, 24~ 'op,

Castigliano’s Theorem states that “the partial derivatives of the total strain energy of any structure with
respect to any one of the applied forces is equal to the displacement of the point of application of the
force in the direction of the force.”

To find the deflection of a point in a beam that is not the point of application of a concentrated load,
one should apply a load P=0 at that point and carry the term P into the strain energy equation. Finally,
introduce the true value of P=0 into the expression for the answer.

EXAMPLE 2.6

It is required to determine the bending deflection at the free end of a cantilever loaded as shown in
Figure 2.65.

Solution
L 2
M
V:/ —dx
o 2EI
ov Imom
== ——dx
oW, J, EIow,
M = Wix 0<x<L/2
=Wix+ Wy(x—1/2) L/2<x<L
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FIGURE 2.65 Example 2.6.
12 1/l p
A:— Wix X xdx +— Wix+ W[ x—=)|xdx
EI EI )i, 2

B Wll3 TWiP 5W,P
" 24EI © 24EI ' 48FI
WP 5wW,P
= 3E T asEl

Castigliano’s Theorem can be applied to determine deflection of trusses as follows.
We know that the increment of strain energy for an axially loaded bar is given as
2
dv = ﬁ o,Ady
Substituting o, = S/A, where S is the axial load in the bar, and integrating over the length of the bar, the
total strain energy of the bar is given as
_SL
 2AE
The deflection component A; of the point of application of a load P; in the direction of P; is given as

oV S(3S/0P;)L
Ai= oP; GPZZAE Z AE

(2.120)

EXAMPLE 2.7

Determine the vertical deflection at g of the truss subjected to three-point load as shown in Figure 2.66.
Let us first replace a 20-unit load at g by P and carry out the calculations in terms of P. At the end, P will
be replaced by the actual load of 20 units.

Member A L S 0S/0P n nS(0S/0P)(L/A)

ab 2 25 —(33.340.83P) —0.83 2 (691+17.2P)

af 2 20 (26.7 +0.67P) 0.67 2 (358 +9P)

fg 2 20 (26.7 +0.67P) 0.67 2 (358 +9P)

bf 1 15 20 0 2 0

bg 1 25 0.83P 0.83 2 34.4P

bc 2 20 —26.7—1.33P —-1.33 2 (710 +35.4P)

cg 1 15 0 0 1 0
S(6S/0P)L

“n” indicates the number of similar members > S(S/9P)L 2117 4 105P

A
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FIGURE 2.66 Example 2.7.

With

P=20

S(6S/6P)L (2117 + 105 x 20) x 12
- - =1.69
& Z AE 30 x 103

2.8.5 Unit Load Method

The unit load method is a versatile tool in the solution of deflections of both trusses and beams. Consider
an elastic body in equilibrium under loads Py, P,, Ps, P, . . ., P,,and aload p applied at point O, as shown
in Figure 2.67. By Castigliano’s Theorem, the component of the deflection of point O in the direction of
the applied force p is

av

b0, =5,

(2.121)

where Vis the strain energy of the body. It has been shown in Equation 2.109, that the strain energy of a
beam, neglecting shear effects, is given by
Ly
M
V= / —dx
o 2EI

Also, it was shown that if the elastic body is a truss, from Equation 2.120

_ S’L
- £—<2AE
For a beam, therefore, from Equation 2.121
M(©OM/0p)dx
= - 2.122
do, = [ (2122
and for a truss
S(6S/op)L
So, = Z% (2.123)

The bending moments M and the axial forces S are functions of the load p as well as of the loads Py,
P,,...,P,. Let a unit load be applied at O on the elastic body and the corresponding moment be m
if the body is a beam, and the forces in the members of the body be u if the body is a truss. For the
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FIGURE 2.67 Elastic body in equilibrium under load.

body in Figure 2.67 the moments M and the forces S due to the system of forces P, P, ..., P,and pat O
applied separately can be obtained by superposition as

M = My + pm (2.124)
S =S+ pu (2.125)
where Mp and Sp are, respectively, moments and forces produced by Py, P, ..., P,.
Then

oM .

3 = m = moments produced by a unit load at O (2.126)
N .

6_p = u = stresses produced by a unit load at O (2.127)

Using Equations 2.126 and 2.127 in Equations 2.122 and 2.123, respectively,
Mmdx

0o, = 2.128
0= | 5 (2.128)
SuL

EXAMPLE 2.8

Determine, using the unit load method, the deflection at C of a simple beam of constant cross-section
loaded as shown in Figure 2.68a.

Solution

The bending moment diagram for the beam due to the applied loading is shown in Figure 2.68b. A unit
load is applied at C where it is required to determine the deflection as shown in Figure 2.68c and
the corresponding bending moment diagram is shown in Figure 2.68d. Now, using Equation 2.128,

we have
L Mmdx
oc =
o EI
1 U 3 IR EANAT/AN!
=— (Wx) | =x der—/ — ) - (L—x)dx
EI J, 4 El 14 4 /4
A Wi o
— —x)-(L—x)dx
EI J31/4 4
_wr?
"~ 48FI

Further details on energy methods in structural analysis may be found in Borg and Gennaro (1959).
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FIGURE 2.68 Example 2.8.

2.9 Matrix Methods

In this method, a set of simultaneous equations that describe the load—deformation characteristics of the
structure under consideration are formed. These equations are solved using the matrix algebra to obtain
the load—deformation characteristics of discrete or finite elements into which the structure has been
subdivided. The matrix method is ideally suited for performing structural analysis using a computer. In
general, there are two approaches for structural analysis using the matrix analysis. The first is called the
flexibility method in which forces are used as independent variables and the second is called the stiffness
method, which employs deformations as the independent variables. The two methods are also called the
force method and the displacement method, respectively.

2.9.1 Flexibility Method

In the flexibility method, the forces and displacements are related to one another by using stiffness
influence coefficients. Let us consider, for example, a simple beam in which three concentrated loads W1,
W,, and W; are applied at sections 1, 2, and 3, respectively, as shown in Figure 2.69. The deflection at
section 1, A}, can be expressed as

Ay = Fu Wy + Fp W, + Fis W

where Fy;, Fy,, and Fy; are the flexibility coefficients, defined as the deflection at section 1 due to
unit loads applied at sections 1, 2, and 3, respectively. Deflections at sections 2 and 3 are similarly
given as

A2 = F21 W] + F22 W2 + F23 W3 (2130)
and

Az = B Wy + Fpo W, + B3 W
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FIGURE 2.70 Cantilever beam.

These expressions are written in the matrix form as

A F1 F» F; 14
Ay p=|Fn Fn Fp W,
Az Fs1 Fs, Fs W;
or
{A} = [F{W} (2.131)

The matrix [F] is called the flexibility matrix. It can be shown, by applying Maxwell’s reciprocal theorem
(Borg and Gennaro 1959), that the matrix [F] is a symmetric matrix.

Let us consider a cantilever beam loaded as shown in Figure 2.70a. The first column in the flexibility
matrix can be generated by applying a unit vertical load at the free end of the cantilever as shown in
Figure 2.70b and making use of the moment—area method. We get

g8 a2l 5P 3D

n=gpp =g =g M=o
Columns 2, 3, and 4 are similarly generated by applying unit moment at the free end and unit force
and unit moment at the midspan as shown in Figure 2.70c, Figure 2.70d, and Figure 2.70e, respectively.
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Combining the results, the flexibility matrix can be formed as

r8L? 503 3177

= 2 = =

3 6 2
A L? W,
! 212 2L = L !
I 2 W (2.132)
Az EI |51 12 [* [? W3 '
Ay 6 2 3 2 W,

312 I?

= L = L

L 2 2 d

For a given structure, it is necessary to subdivide the structure into several elements and to form the
flexibility matrix for each of the elements. The flexibility matrix for the entire structure is then obtained
by combining the flexibility matrices of the individual elements.

Force transformation matrix relates what occurs in these elements to the behavior of the entire
structure. Using the conditions of equilibrium, it relates the element forces to the structure forces. The
principle of conservation of energy may be used to generate transformation matrices.

2.9.2 Stiffness Method

In this method, forces and deformations in a structure are related to one another by means of stiffness
influence coefficients. Let us consider a simply supported beam subjected to end moments W, and W,
applied at supports 1 and 2 and let the respective rotations be denoted as A; and A, as shown in
Figure 2.71. We can now write the expressions for end moments W; and W, as

Wi = Ki 1Ay + KA,

(2.133)
W, = Ky Ay 4+ KpA,

where K}, and K, are the stiffness influence coefficients, defined as moments at 1 due to unit rotation at
1 and 2, respectively. The above equations can be written in matrix form as

Wil _ [Kn KoffA
W, Ky Ky | Az

{w} = [K){A} (2.134)

or

The matrix [K] is referred to as stiffness matrix. It can be shown that the flexibility matrix of a
structure is the inverse of the stiffness matrix and vice versa. The stiffness matrix of the whole structure
is formed by the stiffness matrices of the individual elements that make up the structure.

(@ W,

(4N 2y

FIGURE 2.71 Simply supported beam.
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2.9.3 Element Stiffness Matrix
2.9.3.1 Axially Loaded Member

Figure 2.72 shows an axially loaded member of constant cross-sectional area with element forces g; and

q> and displacements 0; and J,. They are shown in their respective positive directions. With unit

displacement ¢; =1 at node 1, as shown in Figure 2.72, axial forces at nodes 1 and 2 are obtained as
EA EA

Kn=—, Ky=-—
11 L 21 L

In the same way, by setting 0, =1 as shown in Figure 2.72 the corresponding forces are obtained as
EA EA

Kp=——, Kp=-—
12 L 22 L

{fh} _ {Kn K12:| {51}
[5¥] Ky Ky 0,
i o % 1 —1 (51
ISR, a1
2.9.3.2 Flexural Member

The stiffness matrix for the flexural element can be constructed by referring to Figure 2.73. The forces
and the corresponding displacements, namely, the moments, the shears, and the corresponding rotations
and translations at the ends of the member, are defined in the figure. The matrix equation that relates

The stiffness matrix is written as

or

these forces and displacements can be written in the form

i K Ko Kz K ) 1
[7¢) _ Ky Ky Ky Ky 52
a3 Ky Ki Kzz Ki | |63
qs Ky Ky Kis Ky 54

The terms in the first column consist of the element forces g; through g, that result from displacement
0,=1 when J, =03 =3J,=0. This means that a unit vertical displacement is imposed at the left end
of the member while translation at the right end and rotation at both ends are prevented as shown in
Figure 2.73. The four member forces corresponding to this deformation can be obtained using the
moment area method.

(a) Axially loaded element
q1.01 1 2 492 (32
— ] ——-
]
b Ky 1 2 Ky
— C= ———
0,=1
=l - 5720
(©) K 1 2 K>
- 1] =D —
(;14270 _>| |<_ ()2_ 1

FIGURE 2.72 Axially loaded member.
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FIGURE 2.73 Beam element — stiffness matrix.

The change in slope between the two ends of the member is zero and the area of the M/EI diagram
between these points must therefore vanish. Hence,

KoL Kyl
2EI  2EI
and
K21 = K41 (2136)

The moment of the M/EI diagram about the left end of the member is equal to unity. Hence,
KiL (2L\ KL (L\ _
2EI \ 3 2EI \3)

6EI
Ky =Ky = 2

and in view of Equation 2.136,

Finally, moment equilibrium of the member about the right end leads to

Ky + Ky 12EI
Kn=="7—"="]

and from equilibrium in the vertical direction we obtain

12EI

K5 =Ky = IE
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The forces act in the directions indicated in Figure 2.73b. To obtain the correct signs, one must
compare the forces with the positive directions defined in Figure 2.73a. Thus,

6EI

12EI
F) 31 =

L3 > 21 —

6EI
I 41

T
The second column of the stiffness matrix is obtained by letting d, = 1 and setting the remaining three

displacements equal to zero as indicated in Figure 2.73c. The area of the M/EI diagram between the
ends of the member for this case is equal to unity, and hence,

KnL KpL
2EI  2EI

The moment of the M/EI diagram about the left end is zero, so that

KnL (L\ Kpl (2L .
2FI \3 2T \ 3 )

Therefore, one obtains

I'e 4EI e 2EI
n=—7> Ko=-
From vertical equilibrium of the member,
Ki, = Ks,

and moment equilibrium about the right end of the member leads to

Ky, =

L

Kp + Ky 6EI
L

Comparison of the forces in Figure 2.73c with the positive directions defined in Figure 2.73a indicates
that all the influence coefficients except K, are positive. Thus,

12 = —

6EI
1’

22 =

4E]

L’

32 =

6EI
»’

2EI
L

42 —

Using Figure 2.73d and Figure 2.73e, the influence coefficients for the third and fourth
columns can be obtained. The results of these calculations lead to the following element stiffness
matrix:

q
%0}
q3
qs

r 12EI
L3

6EI
iz

12EI
L3

6EI
”

6EI
iz

4E]
L

6EI
2
2EI

L

12EI

6EI
I
6El 2Kl
12 L
12EI  6EI
3 2
6El  4AEI
12 L

0
0,
03
04

(2.137)

Note that Equation 2.136 defines the element stiffness matrix for a flexural member with constant
flexural rigidity EL
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FIGURE 2.74 Beam element with axial force.

If axial load in a frame member is also considered the general form of an element stiffness matrix for an
element shown in Figure 2.74 becomes

r EA EA 7]
— 0 0 - — 0 0
L L
12EI 6EI 12EI 6EI 50
o -— 0 - 2| [
it 3 12 3 12 5
%@ 6EI  AEI 6EI  2FI :
0 —-— = 0 = =
4| 12 L 12 L 03
EI EI o
o = 0 — 0 0 4
QS L L 55
L g6 | 12EI  6EI 12EI 6EI
o == == o == = ||
I3 I2 I3 I2 L 96 |
0 6EI 2EI 0 6EI 4E]
L 12 L 12 L
or
[a] = [kc][0] (2.138)
The member stiffness matrix can be written as
- G G -
J 0 0 — J 0 0
L L
12EI, 6EI, 12EI, 6EI,
I3 I2 0 NE I2
6EI, 4EI, 0 6EI, 2EI,
12 L 12 L
K=ol o (2.139)
— —] 0 0 —] 0 0
L L
12EI, 6EI, 12EIL, 6EI,
1 12
0 6EL 2B GEL 4EL
L 12 L 12 L A

2.9.4 Structure Stiffness Matrix

Equation 2.138 has been expressed in terms of the coordinate system of the individual members. In a
structure consisting of many members there would be as many systems of coordinates as the number of
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members. Before the internal actions in the members of the structure can be related, all forces and
deflections must be stated in terms of one single system of axes common to all — the global axes. The
transformation from element to global coordinates is carried out separately for each element and the
resulting matrices are then combined to form the structure stiffness matrix. A separate transformation
matrix [T] is written for each element and a relation of the form

(2.140)

is written in which [T], defines the matrix relating the element deformations of element n to the
structure deformations at the ends of that particular element. The element and structure forces are
related in the same way as the corresponding deformations as

4], = [T],[W],, (2.141)

where [q], contains the element forces for element n and [W],, contains the structure forces at the
extremities of the element. The transformation matrix [T], can be used to transform element n from
its local coordinates to structure coordinates. We know, for an element 7, the force—deformation
relation is given as

lal,, = [K],,[6],
Substituting for [g], and [J], from Equations 2.140 and 2.141 one obtains
(T],[W],, = [K,[T],[A],

or

= [T],[K],[T], (2.142)

[K], is the stiffness matrix that transforms any element n from its local coordinate to structure
coordinates. In this way, each element is transformed individually from element coordinate to
structure coordinate and the resulting matrices are combined to form the stiffness matrix for the
entire structure.

The member stiffness matrix [K],, in global coordinates for a truss member shown in Figure 2.75, for
example, is given as

Pu dp = =i
AE | 4 S T

K], =25 oo (2.143)
Loy -2 o 22 ok

T TR S
where 42 =cos ¢ and y=sin ¢.
To construct [K], for a given member it is necessary to have the values of 4 and pu for the member.
In addition, the structure coordinates i, j, k, and [ at the extremities of the member must be known.
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FIGURE 2.76

A flexural member in global coordinate.

The member stiffness matrix [K],, in structural coordinates for a flexural member shown in Figure 2.76

can be written as

LAE  ,12E
YT TR
(AE 12EI JAE | 1260
T S AR5
GEI GEL
= e
K], =0
LAE L, 12E J(AE_ 126
I "D T ~
(AE 12EI JAE | 12EI
—pA— — =+
M\T ~ T i
6EI 6EL,
E e

where 2 =cos ¢ and u=sin ¢

EXAMPLE 2.9

)

symmetric

4EI

0
I
6EI\  ,AE, 128 . .
M [
L(SET\ (AE 1280 AL, 12H
= — - —+2
) "\T T kT JE
2EI GEI GEI AEI
2E (22 _; 88 4EI
I 2 2 L
(2.144)

Determine the displacement at the loaded point of the truss shown in Figure 2.77a. Both members have
the same area of cross-section A=3 and E=30 x 10°.
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FIGURE 2.77 Example 2.9.

The details required to form the element stiffness matrix with reference to structure coordinate axes
are listed below (see Figure 2.77b):

Member Length ¢ A u i j k 1
1 10 90° 0 1 1 2 3 4
2 18.9 32° 0.85 0.53 1 2 5 6

We now use these data in Equation 2.143 to form [K],, for the two elements.
For member 1

AE 3 x 30 x 10

=750
L 120
1 2 3 4
0 0 0 0 1
[Kl,=|0 750 0 —750|2
0 0 0 0 3
0 —750 0 750 |4
For member 2
AE 3 x30x10°
I T 397
L 18.9 x 12
1 2 5 6
286 179 —-286 —179

1
K], =1 179 111 -179 —111|2
—286 —179 286 179 | 5
-179 —111 179 111 16

Combining the element stiffness matrices, [K]; and [K],, one obtains the structure stiffness matrix as
follows:

"W,7 (286 179 0 0  —286 —1797 A,
W, 179 861 0 —750 —179 —111] | A,
W, 0 0 0 o0 0 o |]a,
wel | o =750 0 750 0 0o ||A
Wi 286 179 0 0 286 179 | | As
Wl L-179 —111 0 0 179 111 | [ Ael
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FIGURE 2.78 Example 2.10.

The stiffness matrix can now be subdivided to determine the unknowns. Let us consider A; and A,, the
deflections at joint 2, which can be determined in view of A; =A,=A5;=A4=0 as follows:

[AI}_{Z% 179}‘1[—9}
Al [179 861 7

A, = 0.042

or

A, = 0.0169
EXAMPLE 2.10

A simple triangular frame is loaded at the tip by 20 units of force as shown in Figure 2.78. Assemble the
structure stiffness matrix and determine the displacements at the loaded node.

Member Length A I ¢ A u
1 72 2.4 1037 0 1 0
2 101.8 3.4 2933 45° 0.707 0.707

For members 1 and 2 the stiffness matrices in structure coordinates can be written by making use of
Equation 2.144:

1 3 4 5 6
1 0 0 —1 0 0 1
0 1 36 0 —1 36 | 2
[Kl,=10*x | 0 36 1728 0 —36 864 |3
-1 0 0 1 0 0 4
0 -1 =36 O 1 —36 |5
I 36 864 0 —36 17286
and
1 3 7 9
-36 -1 0 —36
0 36 0 1 36

K], =10>x | =36 36 3457 36 —36 1728
2
-1 0 36 1 0 36

O 0 N W N =

—36 36 1728 36 —36 3457 |
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Combining the element stiffness matrices [K]; and [K], one obtains the structure stiffness matrix as
follows:

2 0 -3 -1 0 0 -1 0 -36]1

o 2 72 0 -1 3 0 1 36 |2

36 72 518 0 —36 864 36 —36 17283

-1 0 0 1 0 0 0 0 0 |4

K]=10°x| 0 -1 -3 0 1 -3 0 0 0 |5
0 3 84 0 -3 1728 0 0 0 |6

-1 0 3 0 0 1000 0 36 |7

0 1 -3 0 0 0 1 -36(8

| —36 36 1728 0 0 36 36 34579

The deformations at joints 2 and 3 corresponding to As to Ay are zero since joints 2 and 4 are restrained
in all directions. Cancelling the rows and columns corresponding to zero deformations in the structure
stiffness matrix, one obtains the force—deformation relation for the structure:

F, 20 -—36 A
El=|0 2 72 |x10°|A,
F —36 72 5185 A;

Substituting for the applied load F, = —20 the deformations are given as

1

A 20 -367" 0
Al=]l0 2 72 x10° | =20
As —36 72 5185 0
or
A 6.66
A, | = | =23.334 | x 10°
As 0.370

2.9.5 Loading between Nodes

The problems discussed so far have involved concentrated forces and moments applied to nodes only.
But real structures are subjected to distributed or concentrated loading between nodes, as shown in
Figure 2.79. Loading may range from a few concentrated loads to an infinite variety of uniform or
nonuniformly distributed loads. The solution method of matrix analysis must be modified to account
for such load cases.

One way to treat such loads in the matrix analysis is to insert artificial nodes, such as p and g as shown
in Figure 2.79. The degrees of freedom corresponding to the additional nodes are added to the total
structure and the necessary additional equations are written by considering the requirements of equi-
librium at these nodes. The internal member forces on each side of nodes p and g must equilibrate the

41 llﬂ%m
1 & 1 oom o

l m _‘@,‘_

FIGURE 2.79 Loading between nodes.



2-86 Handbook of Structural Engineering

external loads applied at these points. In the case of distributed loads, suitable nodes, such as I, m, n
shown in Figure 2.79, are selected arbitrarily and the distributed loads are lumped as concentrated loads
at these nodes. The degrees of freedom corresponding to the arbitrary and real nodes are treated as
unknowns of the problem. There are different ways of obtaining equivalence between the lumped and
the distributed loading. In all cases the lumped loads must be statically equivalent to the distributed
loads they replace.

The method of introducing arbitrary nodes is not a very elegant procedure because the number of
unknown degrees of freedom makes the solution procedure laborious. The approach that is of most
general use with the displacement method is one employing the related concepts of artificial joint
restraint, fixed-end forces, and equivalent nodal loads.

2.9.6 Semirigid End Connection

A rigid connection holds unchanged the original angles between interesting members; a simple
connection allows the member end to rotate freely; a semirigid connection possesses a moment
resistance intermediate between the simple and the rigid. A simplified linear relationship between
the moment M acting on the connection and the resulting connection rotation ¥ in the direction of M
is assumed giving

EI
M =Ry (2.145)

where EI and L are the flexural rigidity and length of the member, respectively. The nondimensional
quantity R, which is a measure of the degree of rigidity of the connection, is called the rigidity index. For
a simple connection, R is zero and for a rigid connection, R is infinity. Considering the semirigidity of
joints, the member flexibility matrix for flexure is derived as

1 1 1
¢, _ L §+R_1 6 M,
ME=I 11 ue) (2:146)
6 3 R
[¢] = [F][M] (2.147)

where ¢; and ¢, are as shown in Figure 2.80.
For convenience, two parameters are introduced as follows:

1
P G/R)
and
1
P =1 6/R)

where p; and p, are the fixity factors. For hinged connections, both the fixity factors, p, and the rigidity
index, R, are zero; but for rigid connections, the fixity factor is 1 and the rigidity index is infinity. Since
the fixity factor can only vary from 0 to 1.0, it is more convenient to use in the analyses of structures with
semirigid connections.

Equation 2.146 can be rewritten to give

1 1
[F] = E 1 1 (2.148)
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1

FIGURE 2.80 A flexural member with semirigid end connections.

From Equation 2.148, the modified member stiffness matrix [K] for a member with semirigid end
connections expresses the member end moments, M; and M,, in terms of the member end rotations, ¢,

and ¢,, as

K K
K| =EI 2.149
K=e ] (2.1490)
Expressions for K;; and Kj, = K;; and K,, may be obtained by inverting the [F] matrix, thus
12
K- 2P (2.149b)
4/(prp2) — 1
K =K 6 (2.149¢)
= _— .149¢
12 21 Hpups) — 1
12
/P (2.149d)

Ky — — —/F1
274/ (pipr) — 1

The modified member stiffness matrix [K], as expressed by Equations 2.149a to d, will be needed in the
stiffness method of analysis of frames in which there are semirigid member end connections.

2.10 The Finite Element Method

For problems involving complex material properties and boundary conditions, numerical methods are
employed to provide approximate but acceptable solutions. Of the many numerical methods developed
before and after the advent of computers, the finite element method has proven to be a powerful tool.
This method can be regarded as a natural extension of the matrix methods of structural analysis. It can
accommodate complex and difficult problems such as nonhomogeneity, nonlinear stress—strain beha-
vior, and complicated boundary conditions. The finite element method is applicable to a wide range of
boundary value problems in engineering and it dates back to the mid-1950s with the pioneering work of
Argyris (1960), Clough (1993), and others. The method was first applied to the solution of plane stress
problems and extended subsequently to the solution of plates, shells, and axisymmetric solids.

2.10.1 Basic Principle

The finite element method is based on the representation of a body or a structure by an assemblage of
subdivisions called finite elements, as shown in Figure 2.81. These elements are considered to be con-
nected at nodes. Displacement functions are chosen to approximate the variation of displacements over
each finite element. Polynomials functions are commonly employed to approximate these displace-
ments. Equilibrium equations for each element are obtained by means of the principle of minimum
potential energy. These equations are formulated for the entire body by combining the equations for the
individual elements so that the continuity of displacements is preserved at the nodes. The resulting
equations are solved by satisfying the boundary conditions to obtain the unknown displacements.
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FIGURE 2.81 Assemblage of subdivisions.

The entire procedure of the finite element method involves the following steps:

1. The given body is subdivided into an equivalent system of finite elements.

2. A suitable displacement function is chosen.

3. The element stiffness matrix is derived using a variational principle of mechanics such as the
principle of minimum potential energy.

4. The global stiffness matrix for the entire body is formulated.

. The algebraic equations thus obtained are solved to determine unknown displacements.

6. Element strains and stresses are computed from the nodal displacements.

ul

2.10.2 Elastic Formulation

Figure 2.82 shows the state of stress in an elemental volume of a body under aload. It is defined in terms of
three normal stress components o, 7, and ¢, and three shear stress components 7y, 1,,, and 7,,. The
corresponding strain components are three normal strains ¢, ¢,, and &, and three shear strains ., y,,, and
72x- These strain components are related to the displacement components u, v, and w at a point as follows:

ou ~  Ov Qu
T T a Gy
ov. _dw Ov
&y v Vye = B3 T
ow ou ow
a2 T e
The relations given in Equation 2.150 are valid in the case of the body experiencing small deformations.
If the body undergoes large or finite deformations, higher-order terms must be retained.

The stress—strain equations for isotropic materials may be written in terms of Young’s modulus and
Poisson’s ratio as

(2.150)

&, =

E
Ox = 1T— ex + v(ey + &2)]

o, = ley + v(ez + &)

1— 2 (2.151)

E
0: =13 le; +v(ex + )]

Ty = Gy Tpz = GYpps Tox = Gy,

2.10.3 Plane Stress

When the elastic body is very thin and there are no loads applied in the direction parallel to the thickness,
the state of stress in the body is said to be plane stress. A thin plate subjected to in-plane loading as
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FIGURE 2.82 State of stress in an elemental volume.

y

FIGURE 2.83 Plane stress problem.

shown in Figure 2.83 is an example of a plane stress problem. In this case, 6,=1,,=1,,=0 and the
constitutive relation for an isotropic continuum is expressed as

Oy E 1 v Ex
o | =1—=|" 1 0 & (2.152)
Oy 0 0 (1=v)/2] |7y

2.10.4 Plane Strain

The state of plane strain occurs in members that are not free to expand in the direction perpendicular
to the plane of the applied loads. Examples of some plane strain problems are retaining walls, dams,
long cylinder, and tunnels, as shown in Figure 2.84. In these problems &, 7., and y,, will vanish
and hence,

o, =v(ox+0,)

The constitutive relation for an isotropic material is written as

Ox E (1-v) v 0 &x

= 1— 0 e 2.153
G)’ (1+V)(1—2V) v ( V) NJ’ ( )
Txy 0 0 (1—2v)/2] 7w
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FIGURE 2.84 Practical examples of plane strain problems.

2.10.5 Choice of Element Shapes and Sizes

A finite element generally has a simple one-, two-, or three-dimensional configuration. The boundaries
of elements are often straight lines and the elements can be one-dimensional, two-dimensional, or
three-dimensional, as shown in Figure 2.85. While subdividing the continuum, one has to decide the
number, shape, size, and configuration of the elements in such a way that the original body is simulated
as closely as possible. Nodes must be located in locations where abrupt changes in geometry, loading,
and material properties occur. A node must be placed at the point of application of a concentrated load
because all loads are converted into equivalent nodal-point loads.

It is easy to subdivide a continuum into a completely regular one having the same shape and size.
But problems encountered in practice do not involve regular shape; they may have regions of steep
gradients of stresses. A finer subdivision may be necessary in regions where stress concentrations are
expected to obtain a useful approximate solution. Typical examples of mesh selection are shown in
Figure 2.86.

2.10.6 Choice of Displacement Function

Selection of displacement function is an important step in finite element analysis, since it determines the
performance of the element in the analysis. Attention must be paid to select a displacement function that

1. Has the number of unknown constants as the total number of degrees of freedom of the element
2. Does not have any preferred directions

3. Allows the element to undergo rigid-body movement without any internal strain

4. Is able to represent states of constant stress or strain

5. Satisfies the compatibility of displacements along the boundaries with adjacent elements

Elements that meet both requirements 3 and 4 are known as complete elements

A polynomial is the most common form of displacement function. Mathematics of polynomials
are easy to handle in formulating the desired equations for various elements and are convenient in
digital computation. The degree of approximation is governed by the stage at which the function is
truncated. Solutions closer to exact solutions can be obtained by including a greater number of terms.
The polynomials are of the general form

w(x) = a; + ayx + asx® + - + @, x" (2.154)

The coefficient a is known as a generalized displacement amplitude. The general polynomial form for a
two-dimensional problem can be given as

u(x,y) = ay + ayx + azy + ayx’ + asxy + agy* + - + apy"

V(x> }’) = A1 T Ami2X + Amy3y + am+4x2 + Amysxy + am+6}’2 + T+ azm)’"
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FIGURE 2.85 (a) One-dimensional element, (b) two-dimensional element, and (c) three-dimensional element.

where
m=>y i (2.155)

These polynomials can be truncated at any desired degree to give constant, linear, quadratic, or
higher-order functions. For example, a linear model in the case of a two-dimensional problem
can be given as

u=a + ax+ay (2 156)
V=a4+ dsx+ agy .

A quadratic function is given by

u=a +aox+ay+ a4x2 + asxy + a6y2
(2.157)
Vv =a; +agx + agy + alox2 + anxy + a12y2
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FIGURE 2.86 Typical examples of finite element mesh.

The Pascal triangle shown below can be used for the purpose of achieving isotropy, that is, to avoid
displacement shapes that change with a change in the local coordinate system.

1 Constant
x y Linear
x? xy »? Quadratic
% xy xy? ¥ Cubic
xt Oy x2y? xy? y* Quantic
x° xty x°y? x*y? xyt ¥y’ Quintic

2.10.7 Nodal Degrees of Freedom

The deformation of the finite element is specified completely by the nodal displacement, rotations, or
strains, which are referred to as degrees of freedom. Convergence, geometric isotropy, and potential energy
function are the factors that determine the minimum number of degrees of freedom necessary for a given
element. Additional degrees of freedom beyond the minimum number may be included for any element by
adding secondary external nodes and such elements with additional degrees of freedom are called higher-
order elements. The elements with more additional degrees of freedom become more flexible.

2.10.8 Isoparametric Elements

The scope of finite element analysis is also measured by the variety of element geometries that can be
constructed. Formulation of element-stiffness equations requires the selection of displacement expres-
sions with as many parameters as there are node-point displacements. In practice, for planar conditions,
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only the four-sided (quadrilateral) element finds as wide an application as the triangular element. The
simplest form of quadrilateral, the rectangle, has four node points and involves two displacement
components at each point for a total of eight degrees of freedom. In this case one would choose four-
term expressions for both u and v displacement fields. If the description of the element is expanded to
include nodes at the midpoints of the sides, an eight-term expression would be chosen for each dis-
placement component.

The triangle and rectangle can approximate the curved boundaries only as a series of straight line
segments. A closer approximation can be achieved by means of isoparametric coordinates. These are
nondimensionalized curvilinear coordinates whose description is given by the same coefficients as are
employed in the displacement expressions. The displacement expressions are chosen to ensure con-
tinuity across element interfaces and along supported boundaries, so that geometric continuity is
ensured when the same forms of expressions are used as the basis of description of the element
boundaries. The elements in which the geometry and displacements are described in terms of the same
parameters and are of the same order are called isoparametric elements. The isoparametric concept
enables one to formulate elements of any order that satisfy the completeness and compatibility
requirements and that have isotropic displacement functions.

2.10.9 Isoparametric Families of Elements

2.10.9.1 Definitions and Justifications

For example, let u; represent nodal displacements and x; represent nodal x coordinates. The interpolation
formulas are

m n
u= E Niui, x= E Nix;
i=1 i=1

where N; and N/ are shape functions written in terms of the intrinsic coordinates. The value of u and
the value of x at a point within the element are obtained in terms of nodal values of u; and x;, from the
above equations when the (intrinsic) coordinates of the internal point are given. Displacement com-
ponents v and w in the y and z directions are treated in a similar manner.

The element is isoparametric if m = n, N; = N/, and the same nodal points are used to define both
element geometry and element displacement (Figure 2.87a); the element is subparametric if m > n, the
order of N; higher than that of N/ (Figure 2.87b); the element is superparametric if m < n, the order of N;
lower than that of N/ (Figure 2.87c). The isoparametric elements can correctly display rigid-body and
constant-strain modes.

2.10.10 Element Shape Functions

The finite element method is not restricted to the use of linear elements. Most finite element codes,
commercially available, allow the user to select between elements with linear or quadratic interpolation
functions. In the case of quadratic elements fewer elements are needed to obtain the same degree of
accuracy in the nodal values. Also, the two-dimensional quadratic elements can be shaped to model a
curved boundary. Shape functions can be developed based on the following properties: (i) each shape
function has a value of 1 at its own node and is 0 at each of the other nodes, (ii) the shape functions for
two-dimensional elements are zero along each side that the node does not touch, and (iii) each shape

(a) (b) S & ©)
o) )
S @

FIGURE 2.87 (a) Isoparametric element, (b) subparametric element, and (c) superparametric element.
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function is a polynomial of the same degree as the interpolation equation. Shape functions for typical
elements are given in Figure 2.88a and b.

2.10.11 Formulation of Stiffness Matrix

It is possible to obtain all the strains and stresses within the element and to formulate the stiffness
matrix and a consistent load matrix once the displacement function has been determined. This
consistent load matrix represents the equivalent nodal forces that replace the action of external
distributed loads.

As an example, let us consider a linearly elastic element of any of the types shown in Figure 2.89. The
displacement function may be written in the form

{f} = [P{A} (2.158)

@ Element
name Configuration DOF Shape functions
Two-node .
linear n | N i=1,2
element 1
i S
S ____ 2 &
1 2
(-1,0) (1,0
Three- X o
node n + Nizif()(l +60)’ 1_1,3
parabolic '
element ___1____ N,-=(l—§2); i=2
L 1 P
T/
2 3
(-1.0) (1,0)
Egg; n + | Ni= 1l6(1 +E)(9-1); i=1,4
cubic
element Ni= 126(1 +95)(1-8Y; =23
qF‘il\;inCOde + | Ni= 11—6(1+§o) @EW(1-E) 43¢y i=1,5
element n
Ni=4&(1-E)(1+4&); i=2,4
s : Ny=(1-42)(1- &)
1 2 3 4 5
(-1,0) (1,0)

FIGURE 2.88a Shape functions for typical elements.
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(b)

1 1
3D G-D

Element Configuration DOF Shape functions
name
Four-node n u, v .
ohane Ni:%(l +E)(L+ny); i=1,2,3,4
quadrilateral
Eight-node u, v =L+ +179—1);
o Ny=71+&)(L+10) Cot o= 1)
quadrilateral i=1,3,5,7
Ni=%(1—52)(1+’lo); i=2,6
N=2 A=A +&): i=4.8
Twelve-node v | Ny==L (1+E)(1+n0) (10 +9(E+72)
plane 32
quadrilateral i=1,4,7,10
Ny=22 (1+E) (1 +1?) (1+970)
T30 0
1 1
C3-DGE.-D i=5,6,11,12
Ny=5 (1 +m0)(1= &) (1+9&)
=30 0
i=2,3,8,9
Six-node n v _%
linear Ni= T(l +o+m0
quadrilateral i=1,3,4,6
Ny=2(1=E)(1+1p)
i=2,5
s ohto n
Eight-node v N.=-L(1 +E)=1+9EH(1 +1p)
plane (_l 1) (l 1) 32
quadrilateral 3 ’ i=1,4,5,8
=11 1,-1) U
2
¢ Ni:39_2(] —E)(1+9&) (1 +19)
i=2,3,6,7
1,-Do——o—"b(1,-1)

FIGURE 2.88b Continued.
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El t
na;n;en Configuration DOF Shape functions
- n .
D node SV N=ta-aa-m aven
quadrilateral Ny % Aon)(1-&)

Ny= 41+ 1)

Ny= 2+ +0)

Ns=Z(1+m)(1-&)

Ne==(1=O(1+n) (1+&-1)

Ny= 21+ -1

FIGURE 2.88b Continued.

where {f} may have two components {u, v} or simply be equal to w, [P] is a function of x and y only, and
{A} is the vector of undetermined constants. If Equation 2.158 is applied repeatedly to the nodes of the
element one after the other, we obtain a set of equations of the form

[} = [Cl{A)} (2.159)

where {D"} refers to the nodal parameters and [C] to the relevant nodal coordinates. The undetermined
constants {A} can be expressed in terms of the nodal parameters {D"} as

{A} = [C]"{D"} (2.160)
Substituting Equation 2.160 into Equation 2.158
{f} = [Pllc] (D"} (2.161)
Constructing the displacement function directly in terms of the nodal parameters, one obtains
{f} =L{p’} (2.162)
where [L] is a function of both (x, ) and (x, ); ;. given by

L = [P (2.163)
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FIGURE 2.89 Degrees of freedom: (a) triangular plane-stress element and (b) triangular bending element.

The various components of strain can be obtained by appropriate differentiation of the displacement
function. Thus,

{e} = [B{D"} (2.164)

[B] is derived by differentiating appropriately the elements of [L] with respect to x and y. The stresses {c}
in a linearly elastic element are given by the product of the strain and a symmetrical elasticity matrix [E].
Thus,

{0} = [El{e}
{o} = [E|[B{D"} (2.165)

The stiffness and the consistent load matrices of an element can be obtained using the principle of
minimum total potential energy. The potential energy of the external load in the deformed configuration
of the element is written as

W =—{D}{Q"} - /{f}T{q} da (2.166)

In Equation 2.166 {Q"} represents concentrated loads at nodes and {g} the distributed loads per unit
area. Substituting for {f}" from Equation 2.162 one obtains

W= —{D")"{Q"} - {D'}" / 1] {4} da (2.167)

Note that the integral is taken over the area a of the element. The strain energy of the element
integrated over the entire volume v, is given as

Y ACAUL:
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Substituting for {¢} and {o} from Equations 2.164 and 2.165, respectively,

v oy ( [ eI v ) 10)

The total potential energy of the element is
V=U+W
or

V= %{D*}T </ (B]"[E][B] dv) (D'} = {D"}{Q} - {D*}T/u [L]"{q}da

v

Using the principle of minimum total potential energy, we obtain

([ mee) o) = @)+ [ da

v

K|{D"} = {F'}
where
K] = / (B [E][B] dv
and

(F}={Q} + / [1]"{q} da

2.10.12 Plates Subjected to In-Plane Forces

(2.168)

(2.169)

(2.170)

(2.171)

(2.172)

The simplest element available in two-dimensional stress analysis is the triangular element. The stiffness
and consistent load matrices of such an element will now be obtained by applying the equation derived

in the previous section.

Consider the triangular element shown in Figure 2.89a. There are two degrees of freedom per node and

a total of six degrees of freedom for the entire element. We can write
u=A + Ayx+ Asy

and
v = A4+ Asx + Agy

expressed as

{f}:{z}:[l x 7y 0 0 0] 4

00 0 1 x y]]| A
As
Ag

(2.173)
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or

{f} = [P{A} (2.174)
Once the displacement function is available, the strains for a plane problem are obtained from

ou ov
L ==
Ox 7 dy

Ex =

and

_ udy
" = 3y ox

The matrix [B] relating the strains to the nodal displacement {D"} is thus given as

bi 0 b 0 b, 0

1
0 ¢ 0 ¢ 0 cp (2.175)

[B] =%A

Ci bj Cj bj Cm bm

b, ¢, etc., are constants related to the nodal coordinates only. The strains inside the element must all be
constant and hence the name of the element.

For derivation of the strain matrix, only isotropic material is considered. The plane stress and plane
strain cases can be combined to give the following elasticity matrix, which relates the stresses to the

strains:
C C G 0
[E]=|CGC G 0 (2.176)
0 0 Cia
where

C=E/(1-V) and G =v
for plane stress and

E(1—v) and G — v

=y 1—v)

for plane strain and for both cases
C12 = C1(1 — Cz)/z

and E is the modulus of elasticity.
The stiffness matrix can now be formulated according to Equation 2.171a

Cy C G 0 b; 0 bj 0 b, O

1
[EHB} = E C1C2 C1 0 0 Ci 0 Cj 0 Cm
0 0 Cu Ci bi Cj b] Cimn bm

where A is the area of the element.
The stiffness matrix is given by Equation 2.177a as

[m:[memm (2.1772)
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The stiffness matrix has been worked out algebraically to be

G b?
+Ciac?
C,Cbic; Cc?
+Cibic;  +Cpb? symmetrical

C1 b,‘bj C1 Cz bjCi C1 b]2

h | +Cuacici  +Ciabic +Cpp 2
K] = — e e 2 (2.177b)

4A C] CzbiCj C] CiC]' C] CzbjCj C1 CJ2

+Cibjc;  +Cibib;  +Ciabjc; +C1zbf
Cibibn  CiCbuci  Cibiby  CiGibne;  GE,
+Ciacicm  +Cnbicw +Ciacjcw  +Ciabjcy +Cpc2,
CGbicy  Cicicw  CGbjcy  Cicjen CCbycm C

_+C12mei +C12bibm +C12bmcj +C12b]bm +C12bmcm 'i_chb2

m |

2.10.13 Beam Element

The stiffness matrix for a beam element with two degrees of freedom (one deflection and one rotation)
can be derived in the same manner as for other finite elements using Equation 2.171.

The beam element has two nodes, one at each end, and two degrees of freedom at each node, giving it a
total of four degrees of freedom. The displacement function can be assumed as

f:W:A1+A2x+A3x2+A4x3

that is,
A
Ay
=1 x x* x°
f=1 I8
Ay
or

f=[P{A}
With the origin of the x and y axis at the left-hand end of the beam, we can express the nodal-
displacement parameters as

D} = (w),_q = A + A2(0) + A3(0)° + A4(0)°

d
D; = (—2’) = Ay + 245(0) + 3A4(0)?
x=0

Dj = (w),_y = A+ A () + A (D) + Au(1)’
D = (d—: = Ay +2A5(1) + 3A4(1)°
{0} = [C{A}
where

{a} =[] {D}
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and
[ 1 0 0 0 ]
0 1 0 0
[C}—l _ 3 2 3 1
I2 I I? 1
1 2 1
L 2 P P

Using Equation 2.163, we obtain

L) = [PI[C]™

- . 3x? N 2x° 2x? N S\ |/3x2 2x° x? N x°
= - — X —— 4+ — - _— 4 —
I? B I I? I? & I I

Neglecting shear deformation

dy
ey =-ga
Substituting Equation 2.178 into Equation 2.163 and the result into Equation 2.179
6 12x/4 6x| 6 12x|2 6x
= |- = |—=+ == |2 - Z| D"
{z} [12 FlT R R Iz}{ }
or
¢ = [B{D"}

Moment—curvature relationship is given by

_ d? y
M=EI|--2
(&)
where E is the modulus of elasticity.
We know that {¢} = [E]{¢}, so we have for the beam element
[E] = EI

The stiffness matrix can now be obtained from Equation 2.171a written in the form

[M:Aufwmm

with the integration over the length of the beam. Substituting for [B] and [E], we obtain

[ 36 144x  144x° al
BT + 5 symmetrica
24  84x N 72x° 16 48x N 36x°
[k]l_ﬂ/l ERN T E PR
0o | —36 144x 144x* —24 84x 72x> 36 144x 144x°
I R e Ty R T R O
12 60x 72x7 8 36x 36x2 —12 60x 72x* 4 24x
R T T A T R

36x°

14

2-101

(2.178)

(2.179)

dx
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or
12 N
7 symmetrical
6 4
= I 7
K=er| L, Lo, (2.180)
B BB
62 6 4
L P I ol

2.10.14 Plate Flement

For the rectangular bending element shown in Figure 2.90 with three degrees of freedom (one deflection
and two rotations) at each node the displacement function can be chosen as a polynomial with 12
undetermined constants as
{f} =W = A1 + Azx + A3}/ + A4X2 + A5xy + A(,yz + A7JC3
+ Agxy 4 Agxy® + Apy® + AnxX’y + Apxy? (2.181)
or
{f} = {PHA}
The displacement parameter vector is defined as
{D*} - {Wi> Gxi; 0y1|W]) ij) Qyj‘wk) ka) ka‘wl) 0xl) Gyl}
where
ow ow
0}( = 5 and 0)/ = — a
As in the case of beam it is possible to derive from Equation 2.181 a system of 12 equations relating
{D"} to constants {A}. The last equation is

w = (LWL} (L2, [ D} (2.182)
The curvatures of the plate element at any point (x, y) are given by
—0'w
Ox?
—0*w

{s} =

FIGURE 2.90 Rectangular bending element.
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By differentiating of Equation 2.182, we obtain

o} = [[BL1B) (B8], {D"} (2.183)
or
{e}= > [B,{D7}, (2.184)
r=i,j,k,1
where
PSS -
7@[ }r
B, = | 05[] 2.185
[ ]r - ayz r ( . )
62
| 250y M |
and
{D*}r = {Wr> 9xr> Hyr} (2186)
For an isotropic slab, the moment—curvature relationship is given by
{o} = {M. M, M} (2.187)
I v 0
[Ej=N|V 1 0 (2.188)
1—v
0 0
2
and
N = B (2.189)
S 12(1—0?) '

For orthotropic plates with the principal directions of orthotropy coinciding with the x and y axes, no
additional difficulty is experienced. In this case, we have

D, D 0
[Ej=|D D, © (2.190)
0 0 D,

where D,, D;, D,, and Dj, are the orthotropic constants used by Timoshenko and Woinowsky-Krieger
(1959), and

E.}W
Dy=—
12(1 — vyvy)
E W
Dy=——"——
12(1 — vyvy) (2.191)
_ wER  wER
TR0 —vey,) 12(1— v,y
_Gw
Yo

where E,, E,, v,, v,, and G are the orthotropic material constants and # is the plate thickness.



2-104 Handbook of Structural Engineering

Unlike the strain matrix for the plane stress triangle (see Equation 2.175), the stress and strain in the
present element vary with x and y. In general, we calculate the stresses (moments) at the four corners.
These can be expressed in terms of the nodal displacements by Equation 2.165 which, for an isotropic
element, takes the form

{c};
{U}j
{o}k
{o},
f6p~'+6vp  4vc —4b  —6vp 2ve 0 —6p~! 0 —2b 0 0 0
6p+6vp™t  4c —4vb  —6p 2¢ 0 —6vp~! 0 —2vp 0 0 0
—(1—=v) —(1=v)b(1—=v)c (1-v) 0 —(1=v)e (1-v) (1-v)b 0 —(1-v) 0 0
—6vp —2ve 0 6pl+6vp —dvc —4b 0 0 0 —6p! 0 —2b
—6p —2c 0 6p+6vp™!  —4c —4vb 0 0 0 —6vp~! 0 —2vb
N| —(1-v) 0 (1-v)e (1-v) —(1-v)b (1-v) 0 0 —(1-v) (1-v)b 0 0
T —6p~! 0 2b 0 0 0 6p'+6vp dvc 4b —6vp  2vc 0
—6vp~! 0 2b 0 0 0  6p+6up~t  4c b —6p 2¢ 0
—(1—=v) =(1=v)b 0 (1-v) 0 0 (I=v) (1=v)b (1=v)c —(1—v) 0 —(1-v)c
0 0 0 —6p~! 0 2b —6vp  —2vc 0  6p'4+6up —4dvc  4b
0 0 0 —6vp! 0 2vb —6p —2c 0 6pt+6up ! —4c  4vb
L —(1—v) 0 0 (I—=v) —(1-=v)b 0 (1—v) 0 (I-v)e —(1—=v) (1=v)b—(1—v)c/]
{D}
{Dv*}f (2.192)
{D }
{0},

The stiffness matrix corresponding to the 12 nodal coordinates can be calculated by

b/2 c/2
= "[E][B] dxd :
K=, [ Emy (2193

b/2

For an isotropic element, this gives

K] = oo [TIRT] (2.194)
where
[(T:]
[T] = [T ts (submatrices not shown are zero) (2.195)
i [T
(1 0 0
T]=10 b 0 (2.196)
L0 0 ¢

and
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If the element is subjected to a uniform load in the z direction of intensity g, the consistent load
vector becomes

b/2  pc/2
@} =4 / / ()" dxdy (2.198)
—b/2J—c/2
where {Q;} are 12 forces corresponding to the nodal-displacement parameters.

Evaluating the integrals in this equation gives

1/4
b/24
—c/24

1/4
—b/24
—c/24
{Q} = acb / (2.199)
1/4
b/24
c/24

1/4
—b/24
c/24

More details on the finite element method can be found in Desai and Abel (1972) and Ghali and
Neville (1978).

2.11 Inelastic Analysis
2.11.1 An Overall View

Inelastic analyses can be generalized into two main approaches. The first approach is known as plastic
hinge analysis. The analysis assumes that structural elements remain elastic except at critical regions
where plastic hinges are allowed to form. The second approach is known as spread of plasticity analysis.
This analysis follows explicitly the gradual spread of yielding throughout the structure. Material yielding
in the member is modeled by discretization of members into several line elements and subdivision of the
cross-sections into many “fibers.” Although the spread of plasticity analysis can predict accurately the
inelastic response of the structure, the plastic hinge analysis is considered to be computationally more
efficient and less expensive to execute.

If geometric nonlinear effect is not considered, the plastic hinge analysis predicts the maximum load of
the structure corresponding to the formation of a plastic collapse mechanism (Chen and Sohal 1994).
First-order plastic analysis has considerable application in continuous beams and low-rise building frames
where members are loaded primarily in flexure. For tall building frames and for frames with slender
columns subjected to side sway, the interaction between yielding and instability may lead to collapse prior
to the formation of a plastic mechanism (SSRC 1988). If an incremental analysis is carried out based on the
updated deformed geometry of the structure, the analysis is termed second order. The need for a second-
order analysis of steel frame is increasing in view of the modern codes and standards that give explicit
permission for the engineer to compute load effects from a direct second-order analysis.

This section presents the virtual work principle to explain the fundamental theorems of plastic hinge
analysis. Simple and approximate techniques of practical plastic analysis methods are then introduced.
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The concept of hinge-by-hinge analysis is presented. The more advanced topics such as second-order
elastic-plastic hinge, refined plastic hinge analysis, and spread of plasticity analysis are covered in
Section 2.12.

2.11.2 Ductility

Plastic analysis is strictly applicable for materials that can undergo large deformation without
fracture. Steel is one such material with an idealized stress—strain curve as shown in Figure 2.91. When
steel is subjected to tensile force, it will elongate elastically until the yield stress is reached. This is followed
by an increase in strain without much increase in stress. Fracture will occur at very large deformation.
This material idealization is generally known as elastic—perfectly plastic behavior. For a compact section,
the attainment of initial yielding does not result in failure of the section. The compact section will have
reserved plastic strength that depends on the shape of the cross-section. The capability of the material to
deform under constant load without decrease in strength is the ductility characteristic of the material.

2.11.3 Redistribution of Forces

The benefit of using a ductile material can be demonstrated from an example of a three-bar system
shown in Figure 2.92. From the equilibrium condition of the system

2Ty + Ty =P (2.200)
Assuming elastic stress—strain law, the displacement and force relationship of the bars may be written as

_ T] L] Tz L2

5= - 2.201
AE AE ( )
Since L, = L,/2 = L/2, Equation 2.201 can be written as
T
T, = 72 (2.202)

where T; and T, are the tensile forces in the rods, L; and L, are lengths of the rods, A is the cross-section
area, and E is the elastic modulus. Solving Equations 2.201 and 2.202 for T,

= (2.203)

The load at which the structure reaches the first yield (in Figure 2.92b) is determined by letting T, = 5,A.
From Equations 2.203

P, = 2T, = 20,A (2.204)
Perfectly plastic
o, fF-----

: I

I

i

- \
» Ei
172} I
o I
3 Lo
I

I

Elalstic
&y
Strain

FIGURE 2.91 Idealized stress—strain curve.
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FIGURE 2.92 Force redistribution in a three-bar system: (a) elastic, (b) partially yielded, (c) fully plastic, and
(d) load—deflection curve.

The corresponding displacement at first yield is

ayL
5)/ = SyL = E (2205)
After bar 2 is yielded, the system continues to take additional load until all the three bars reach
their maximum strength of 6,4, as shown in Figure 2.92c. The plastic limit load of the system is thus

written as
PL =30,A (2.206)

The process of successive yielding of bars in this system is known as inelastic redistribution of forces. The
displacement at the incipient of collapse is
o,L
o =¢L=-"2" (2.207)
E
Figure 2.92d shows the load—displacement behavior of the system when subjected to increasing
force. As load increases, bar 2 will reach its maximum strength first. As it is yielded, the force in the
member remains constant, and additional loads on the system are taken by the less critical bars. The
system will eventually fail when all three bars are fully yielded. This is based on an assumption that
material strain hardening does not take place.

2.11.4 Concept of Plastic Hinge

A plastic hinge is said to form in a structural member when the cross-section is fully yielded. If material
strain hardening is not considered in the analysis, a fully yielded cross-section can undergo indefinite
rotation at a constant restraining plastic moment M,,.

Most of the plastic analyses assume that plastic hinges are concentrated at zero-length plasticity. In
reality, the yield zone is developed over a certain length, normally called the plastic hinge length, depending
on the loading, boundary conditions, and geometry of the section. The hinge lengths of beams (AL) with
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FIGURE 2.93 Hinge lengths of beams with different support and loading conditions.

different support and loading conditions are shown in Figure 2.93. Plastic hinges are developed first at the
sections subjected to the greatest moment. The possible locations for plastic hinges to develop are at
the points of concentrated loads, at the intersections of members involving a change in geometry, and
at the point of zero shear for a member under uniform distributed load.

2.11.5 Plastic Moment Capacity

A knowledge of full plastic moment capacity of a section is important in plastic analysis. It forms the
basis for limit load analysis of the system. Plastic moment is the moment resistance of a fully yielded
cross-section. The cross-section must be fully compact to develop its plastic strength. The component
plates of a section must not buckle prior to the attainment of full moment capacity.

The plastic moment capacity, M, of a cross-section depends on the material yield stress and the section
geometry. The procedure for the calculation of M, may be summarized in the following two steps:

1. The plastic neutral axis of a cross-section is located by considering the equilibrium of forces
normal to the cross-section. Figure 2.94a shows a cross-section of arbitrary shape subjected to
increasing moment. The plastic neutral axis is determined by equating the force in compression
(O) to that in tension (T'). If the entire cross-section is made of same material, the plastic neutral
axis can be determined by dividing the cross-sectional area into two equal parts. If the cross-
section is made of more than one type of material, the plastic neutral axis must be determined by
summing the normal force and letting the force equal zero.

2. The plastic moment capacity is determined by obtaining the moment generated by the tensile and
compressive forces.

Consider an arbitrary section with area 2A and one axis of symmetry, which is strengthened by a cover
plate of area a as shown in Figure 2.94b. Further, assume that the yield strengths of the original section
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FIGURE 2.94 Cross-section of arbitrary shape subjected to bending.

and the cover plate are g,, and o, respectively. At the full plastic state, the total axial force acting on the
cover plate is ag,.. To maintain equilibrium of force in the axial direction, the plastic neutral axis must
shift down from its original position by @', that is,

d =20 (2.208)
20y,
The resulting plastic capacity of the “built-up” section may be obtained by summing the full plastic
moment of the original section and the moment contribution by the cover plate. The additional capacity
is equal to the moment caused by the cover plate force ac,. and a force due to the fictitious stress 27,
acting on the area a’ resulting from the shifting of plastic neutral axis from tension zone to compression
zone as shown in Figure 2.94c.

Figure 2.95 shows the computation of plastic moment capacity of several shapes of cross-section.
Based on the principle developed in this section, the plastic moment capacities of typical cross-sections
may be generated. Additional information on sections subjected to combined bending, torsion, shear,
and axial load can be found in Mrazik et al. (1987).

2.11.6 Theory of Plastic Analysis

There are two main assumptions for first-order plastic analysis:

1. The structure is made of ductile material that can undergo large deformations beyond the elastic
limit without fracture or buckling.

2. The deflections of the structure under loading are small so that second-order effects can be
ignored.

An “exact” plastic analysis solution must satisfy three basic conditions. They are equilibrium,
mechanism, and plastic moment conditions. The plastic analysis disregards the continuity condition as
required by the elastic analysis of indeterminate structures. The formation of plastic hinge in members
leads to discontinuity of slope. If sufficient plastic hinges are formed to allow the structure to deform
into a mechanism, it could constitute a mechanism condition. Since plastic analysis utilizes the limit of
resistance of a member’s plastic strength, the plastic moment condition is required to ensure that the
resistance of the cross-sections is not violated anywhere in the structure. Lastly, the equilibrium
condition, which is the same condition to be satisfied in elastic analysis, requires that the sum of all
applied forces and reactions be equal to zero and all internal forces be self-balanced.

When all the three conditions are satisfied, the resulting plastic analysis for limiting load is the
“correct” limit load. The collapse loads for simple structures such as beams and portal frames can be
solved easily using a direct approach or through visualization of the formation of a “correct” collapse
mechanism. However, for more complex structures, the exact solution satisfying all the three conditions
may be difficult to predict. Thus, simple techniques using approximate methods of analysis are often
used to assess these solutions. These techniques, named equilibrium and mechanism methods, will be
discussed in the subsequent sections.



Structural Analysis 2-111

Cross-section Stress distribution Plastic moment, Mp

— bday
2d d bd’s,

b
|- Ty
Ir -
o — bT(Zd—T)ay
—-T)to _
2d t B y d-T|2d-T +(d—T)2tqv
-— e
bTa,
Y o
y 2
T
g
] lD30'
4D Y
- 3
t [
t<<D > Dt
y
] IDZO'}_
2D
T
o

h
h 2 ] 0.0975ak’s,
| 0.394 y

A

| I
a
B b >
t H—Hj_T 4
B A, EAf g T<d
[ TP > -t g D
L—
7 d T 77

Log 1o d & oD*
(ZTB + 4dt )ay 4(Aw+4Af)Gy 35% B a,

FIGURE 2.95 Plastic moment capacities of sections.

2.11.6.1 Principle of Virtual Work

The virtual work principle may be applied to relate a system of forces in equilibrium to a system of
compatible displacements. For example, if a structure in equilibrium is given a set of small compatible
displacements, then the work done by the external loads on these external displacements is equal to the
work done by the internal forces on the internal deformation. In plastic analysis, internal deformations
are assumed to be concentrated at plastic hinges. The virtual work equation for hinged structures can be
written in explicit form as

> Ry =" Mo, (2.209)
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where P, is an external load and M,; is the internal moment at a hinge location. Both P; and M; constitute
an equilibrium set and they must be in equilibrium. J; are the displacements under the point loads P;
and in the direction of the loads. 0; are the plastic hinge rotations under the moment M;. Both d; and 0
constitute a displacement set and they must be compatible with each other.

2.11.6.2 Lower Bound Theorem

For a given structure, if there exists any distribution of bending moments in the structure that satisfies
both the equilibrium and the plastic moment conditions, then the load factor, Ay, computed from this
moment diagram must be equal to or less than the collapse load factor, 4., of the structure. The lower
bound theorem provides a safe estimate of the collapse limit load, that is, 4; < /..

2.11.6.3 Upper Bound Theorem

For a given structure subjected to a set of applied loads, a load factor, 4,, computed based on an assumed
collapse mechanism must be greater than or equal to the true collapse load factor, A.. The upper bound
theorem, which uses only the mechanism condition, estimates correctly or overestimates the collapse
limit load, that is, A, > A..

2.11.6.4 Uniqueness Theorem

A structure at collapse has to satisfy three conditions. First, a sufficient number of plastic hinges must be
formed to turn the structure, or part of it, into a mechanism; this is called the mechanism condition.
Second, the structure must be in equilibrium, that is, the bending moment distribution must satisfy
equilibrium with the applied loads. Finally, the bending moment at any cross-section must not exceed
the full plastic value of that cross-section; this is called the plastic moment condition. The theorem
simply implies that the collapse load factor, A, obtained from the three basic conditions (mechanism,
equilibrium, and plastic moment) has a unique value.

The proof of the three theorems can be found in Chen and Sohal (1994). A useful corollary of the lower
bound theorem is that if at a load factor, /, it is possible to find a bending moment diagram that satisfies
both the equilibrium and the moment conditions but not necessarily the mechanism condition, then the
structure will not collapse at that load factor, unless the load happens to be the collapse load. A corollary of
the upper bound theorem is that the true load factor at collapse is the smallest possible one that can be
determined from a consideration of all possible mechanisms of collapse. This concept is very useful in
finding the collapse load of the system from various combinations of mechanisms. From these theorems, it
can be seen that the lower bound theorem is based on equilibrium approach while the upper bound
technique is based on mechanism approach. These two alternative approaches to an exact solution, called
the equilibrium method and mechanism method, will be discussed in the sections that follow.

2.11.7 Equilibrium Method

The equilibrium method, which employs the lower bound theorem, is suitable for the analysis of
continuous beams and frames in which the structural redundancies do not exceed two. The procedures
for obtaining the equilibrium equations of a statically indeterminate structure and evaluating its plastic
limit load are as follows:

To obtain the equilibrium equations of a statically indeterminate structure

1. Select the redundant(s).

2. Free the redundants and draw a moment diagram for the determinate structure under the applied
loads.

3. Draw a moment diagram for the structure due to the redundant forces.

4. Superimpose the moment diagrams in steps 2 and 3.

5. Obtain maximum moment at critical sections of the structure utilizing the moment diagram in
step 4.
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FIGURE 2.96 Analysis of a two-span continuous beam using equilibrium method.
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To evaluate the plastic limit load of the structure

6. Select the value(s) of redundant(s) such that the plastic moment condition is not violated at any
section in the structure.

7. Determine the load corresponding to the selected redundant(s).

8. Check for the formation of a mechanism. If a collapse mechanism condition is met, then the
computed load is the exact plastic limit load. Otherwise, it is a lower bound solution.

9. Adjust the redundant(s) and repeat steps 6 to 9 until the exact plastic limit load is obtained.

EXAMPLE 2.11

Continuous Beam

Figure 2.96a shows a two-span continuous beam analyzed using the equilibrium method. The plastic
limit load of the beam is calculated based on the step-by-step procedure described in the previous
section as follows:

1. Select the redundant force as M; which is the bending moment at the intermediate support, as
shown in Figure 2.96b.

2. Free the redundants and draw a moment diagram for the determinate structure under the applied
loads, as shown in Figure 2.96c¢.

3. Draw a moment diagram for the structure due to the redundant moment M;, as shown in Figure 2.96d.

4. Superimpose the moment diagrams in Figure 2.96c and d and the results are shown in
Figure 2.96e.

5. The moment diagram in Figure 2.96¢ is redrawn on a single straight base line. The critical moment
in the beam is

Pa(L —a) Ma

L L

The maximum moment at critical sections of the structure is obtained by using the moment diagram

in Figure 2.96e. By letting M. = M,,, the resulting moment distribution is shown in Figure 2.96f.

My = (2.210)

6. A lower bound solution may be obtained by selecting a value of redundant moment M,.

For example, if M; =0 is selected, the moment diagram is reduced to that shown in Figure 2.96c¢.
By equating the maximum moment in the diagram to the plastic moment, M, we have

Pa(L —
M, = M =M, (2.211)
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FIGURE 2.97 Analysis of portal frame using equilibrium method.

which gives P=P; as
M,L

P, =

(2.212)

A pin-

Figure

a(L—a)

The moment diagram in Figure 2.96¢ shows a plastic hinge formed at each span. Since two plastic
hinges in each span are required to form a plastic mechanism, the load P; is a lower bound solution.
However, if the redundant moment M, is set equal to the plastic moment M,, and by letting the
maximum moment in Figure 2.96f equal the plastic moment, we have

_ Pa(L—a) Mya

M, = M, 2.21
which gives P=P, as
M, (L
p, = Mp(L+a) (2.214)
a(L—a)

. Since a sufficient number of plastic hinges have formed in the beams (Figure 2.96g) to arrive at

a collapse mechanism, the computed load, P,, is the exact plastic limit load.

EXAMPLE 2.12
Portal Frame

based rectangular frame is subjected to a vertical load V and a horizontal load H as shown in
2.97a. All the members of the frame are made of the same section with moment capacity M,,. The

objective is to determine the limit value of H if the frame’s width-to-height ratio L/h is 1.0.
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Procedure

The frame has one degree of redundancy. The redundancy for this structure can be chosen as the
horizontal reaction at E. Figure 2.97b and ¢ show the resulting determinate frame loaded by the
applied loads and redundant force. The moment diagrams corresponding to these two loading condi-
tions are shown in Figure 2.97d and e.

The horizontal reaction S should be chosen in such a manner that all three conditions, equilibrium,
plastic moment, and mechanism, are satisfied. Formation of two plastic hinges is necessary to form
a mechanism. The plastic hinges may be formed at B, C, and D. Assuming that a plastic hinge is formed
at D as shown in Figure 2.97e, we have

M,
§==2 (2.215)
h
Corresponding to this value of S, the moments at B and C can be expressed as
Mg = Hh— M, (2.216)
Hh VL
Me ===+~ M, (2.217)

The condition for the second plastic hinge to form at B is | M| > |Mc|. From Equations 2.216 and 2.217
we have

Hh VL
Hh—Mp> T—i_T_Mp (2.218)

and

<

=~ s

(2.219)

T <

The condition for the second plastic hinge to form at C is |Mc| > |Mg|. From Equations 2.216 and 2.217
we have

Hh VL

Hh— My < ==+~ = M, (2.220)
and
V _h
— > = 2.221
071 (2.221)
For a particular combination of V, H, L, and h, the collapse load for H can be calculated.
1. When L/h=1 and V/H=1, we have
Mg = Hh— M, (2.222)
Mo =B B T (2.223)
T2 T2 TP » '
Since |Mg| > |Mc]|, the second plastic hinge will form at B and the corresponding value for H is
2M,
= T" (2.224)
2. When I/h=1 and V/H =3, we have
Mg = Hh — M, (2.225)
Hh 3 5
Mc ===+ Hh— M, = Hh— M, (2.226)

Since |Mc| > | Mg/, the second plastic hinge will form at C and the corresponding value for H is
_ 1.6M,
ok

(2.227)
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2.11.8 Mechanism Method

This method, which is based on the upper bound theorem, states that the load computed on the basis of an
assumed failure mechanism is never less than the exact plastic limit load of a structure. Thus, it always
predicts the upper bound solution of the collapse limit load. It can also be shown that the minimum
upper bound is the limit load itself. The procedure of using the mechanism method has the following two
steps:

1. Assume a failure mechanism and form the corresponding work equation from which an upper
bound value of the plastic limit load can be estimated.

2. Write the equilibrium equations for the assumed mechanism and check the moments to see
whether the plastic moment condition is met everywhere in the structure.

To obtain the true limit load using the mechanism method, it is necessary to determine every possible
collapse mechanism of which some are the combinations of a certain number of independent
mechanisms. Once the independent mechanisms have been identified, a work equation may be estab-
lished for each combination and the corresponding collapse load is determined. The lowest load among
those obtained by considering all the possible combinations of independent mechanisms is the correct
plastic limit load.

2.11.8.1 Independent Mechanisms

The number of possible independent mechanisms, n, for a structure can be determined from the
following equation:

n=N-R (2.228)

where N is the number of critical sections at which plastic hinges might form and R indicates the degrees
of redundancy of the structure.

Critical sections generally occur at the points of concentrated loads, at joints where two or more
members meet at different angles, and at sections where there is an abrupt change in section geometries
or properties. To determine the number of redundancies (R) of a structure, it is necessary to free
sufficient supports or restraining forces in structural members so that the structure becomes an assembly
of several determinate substructures.

Figure 2.98 shows two examples. The cuts that are made in each structure reduce the structural members
to either cantilevers or simply supported beams. The fixed-end beam requires a shear force and a moment
to restore continuity at the cut section, and thus R = 2. For the two-store frame, an axial force, shear, and
moment are required at each cut section for full continuity and thus R=12.

2.11.8.2 Types of Mechanism

Figure 2.99a shows a frame structure subjected to a set of loading. The frame may fail by different
types of collapse mechanisms dependent on the magnitude of loading and the frame’s configurations.
The collapse mechanisms are

1. Beam mechanism. Possible mechanisms of this type are shown in Figure 2.99b.

2. Panel mechanism. The collapse mode is associated with side sway, as shown in Figure 2.99c.

3. Gable mechanism. The collapse mode is associated with the spreading of column tops with respect
to the column bases, as shown in Figure 2.99d.

4. Joint mechanism. The collapse mode is associated with the rotation of joints of which the
adjoining members developed plastic hinges and deformed under an applied moment, as shown in
Figure 2.99.

5. Combined mechanism. It can be a partial collapse mechanism as shown in Figure 2.99f or it may
be a complete collapse mechanism as shown in Figure 2.99g.
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FIGURE 2.99 Typical plastic mechanisms.

The principal rule for combining independent mechanisms is to obtain a lower value of collapse load.
The combinations are selected in such a way that the external work becomes a maximum and the
internal work becomes a minimum. Thus, the work equation would require that the mechanism involve
as many applied loads as possible and at the same time eliminate as many plastic hinges as possible. This
procedure will be illustrated in the following example.
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EXAMPLE 2.13

Rectangular frame

A fixed-end rectangular frame has a uniform section with M, =20 and carries the load shown in
Figure 2.100. Determine the value of load ratio 4 at collapse.

Solution

Number of possible plastic hinges N=5
Number of redundancies R=3
Number of independent mechanisms N—-R=2

The two independent mechanisms are shown in Figure 2.100b and ¢ and the corresponding work

equations are

20A=4(20)=80 = =4
304 =4(20)=80 = 1=2.67

Panel mechanism
Beam mechanism

The combined mechanisms are now examined to see whether they will produce a lower A value.
It is observed that only one combined mechanism is possible. The mechanism is shown in Figure 2.100c
involving cancellation of plastic hinge at B. The calculation of the limit load is described below:

FIGURE 2.100

Panel mechanism 20 =4(20)
Beam mechanism 30/.=4(20)
Addition 504 = 8(20)
Cancellation of plastic hinge —2(20)
Combined mechanism 504 =6(20)
=.=24

()

10

(b)

20

——|100|<— (©
0 0

bt
T

A

D

0

Collapse mechanisms of a fixed-base portal frame.

22
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The combined mechanism results in a smaller value for 4 and no other possible mechanism can produce
a lower load. Thus, 4 =2.4 is the collapse load.

EXAMPLE 2.14

Frame subjected to distributed load

When a frame is subjected to distributed loads, the maximum moment and hence the plastic hinge
location are not known in advance. The exact location of the plastic hinge may be determined by writing
the work equation in terms of the unknown distance and then maximizing the plastic moment by formal
differentiation.

Consider the frame shown in Figure 2.101a. The side sway collapse mode in Figure 2.101b leads to the
following work equation:

4M, = 24(100)
which gives
M, = 60

The beam mechanism of Figure 2.101c gives

1
4My0 = (100)32
which gives

M, = 40

In fact the correct mechanism is shown in Figure 2.101d, in which the distance Z from the plastic hinge
location is unknown. The work equation is

24(100)—#—%(1.6)(20)(29):Mp<2+2( 20 ))e

20—z
which gives

M, — (240 4 162)(20 — z)
80 — 2z

To maximize M, the derivative of M, is set to zero, that is,
(80 — 22)(80 — 32z) + (4800 + 80z — 1622)(2) = 0

which gives
z =40 — +/1100 = 6.83
and
M, = 69.34

In practice, uniform load is often approximated by applying several equivalent point loads to the
member under consideration. Plastic hinges thus can be assumed to form only at the concentrated load
points, and the calculations become simpler when the structural system becomes more complex.
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FIGURE 2.101 A portal frame subjected to combined uniform distributed load and horizontal load.

2.11.9 Gable Frames

The mechanism method is used to determine the plastic limit load of the gable frame shown in
Figure 2.102. The frame is composed of members with plastic moment capacity of 270 kip ft.
The column bases are fixed. The frame is loaded by a horizontal load H and a vertical concentrated load
V. A graph from which V and H cause the collapse of the frame is to be produced.

Solution
Consider the three modes of collapse as follows.

2.11.9.1 Plastic Hinges Form at A, C, D, and E

The mechanism is shown in Figure 2.102b. The instantaneous center O for member CD is located at
the intersection of AC and ED extended. From similar triangles ACC1 and OCC2, we have

0C, _ CiA
CC, C,C
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FIGURE 2.102

(®)

(d

Collapse mechanisms of a fixed-base gable frame.

M=270kip ft

18 ft

9 ft

13.5 ft

0 |11.25ft

4.5 ft

9 ft

V)
13.5 ft

13.5 ft

2-121



2-122 Handbook of Structural Engineering

which gives

CiA 22.5(9)
0C, =—CCy, = ————+=11.25ft
RGO T
From triangles ACC' and CC'O, we have
AC(¢) = OC(0)
which gives
OC CGC, 9 1
B P 7 By
¢ AC C,C 8 2

Similarly, from triangles ODD’ and EDDY, the rotation at E is given as
DE(¥) = OD(6)
which gives

w =220 150
DE

From the hinge rotations and displacements, the work equation for this mechanism can be written as
V(90) + H(13.5¥) = My[ + (¢ + 0) + (0 + V) + V]
Substituting values for ¥ and ¢ and simplifying, we have
V +2.25H = 180

2.11.9.2 Mechanism with Hinges at B, C, D, and E

Figure 2.102c shows the mechanism in which the plastic hinge rotations and displacements at the load
points can be expressed in terms of the rotation of member CD about the instantaneous center O.
From similar triangles BCC; and OCC,, we have

0C; _ BCG:
CC, C,C
which gives
BC, 9
0C, =—Lcc, = 2 (9) =45
P e 18( )

From triangles BCC' and CC'O, we have
BC(¢) = OC(0)
which gives

(0]

d):_

C oC 4.5 1
)=—20=2"
BC BC; 9

0=-0
2
Similarly, from triangles ODD’ and EDDY, the rotation at E is given as
DE(¥) = OD(0)
which gives
D
Y= 0—8 =0
DE

The work equation for this mechanism can be written as

V(90) + H(13.5%) = Mp[¢p + (¢ + 0) + (0 + V) + ¥]
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FIGURE 2.103 Vertical load and horizontal force interaction curve for collapse analysis of gable frame.

Substituting values of ¥ and ¢ and simplifying, we have
V +1.5H = 150

2.11.9.3 Mechanism with Hinges at A, B, D, and E

The hinge rotations and displacements corresponding to this mechanism are shown in Figure 2.102d.
The rotation of all hinges is 0. The horizontal load moves by 13.50 but the horizontal load has no vertical
displacement. The work equation becomes

H(13.50) = M, (0 + 0+ 0+ 0)
or
H =280
The interaction equations corresponding to the three mechanisms are plotted in Figure 2.103. By

carrying out moment checks, it can be shown that mechanism 1 is valid for the portion AB of the curve,
mechanism 2 for portion BC, and mechanism 3 is valid only when V=0.

2.11.10 Analysis Aids for Gable Frames

2.11.10.1 Pin-Based Gable Frames

Figure 2.104a shows a pinned-end gable frame subjected to a uniform gravity load AwL and a horizontal
load A,H at the column top. The collapse mechanism is shown in Figure 2.104b. The work equation is
used to determine the plastic limit load. First, the instantaneous center of rotation, O, is determined by
considering similar triangles:

OE L OE  OE
-~ and —=——"1" (2.229)
CF L CE I+ 2xh

and
OD = OF _ hy = (L= )M +2xh (2.230)

x
From the horizontal displacement of D

Oh, = $OD (2.231)
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FIGURE 2.104 Pinned-base gable frame subjected to combined uniform distributed load and horizontal load.

where
x
=——¥0
¢ (1 —x)+ 2xk
where k= h,/h;. From the vertical displacement at C,
1—x
b= (1—x)+2xk

The work equation for the assumed mechanism is
Jwl?
2

JHR B+ 222 (1= %) = My( + 2¢ +0)

which gives

(1 — x)A1Hhy + (1 — x)xAwl? /2
2(1 + kx)

M, =

(2.232)

(2.233)

(2.234)

(2.235)
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Differentiating M,, in Equation 2.235 with respect to x and solving for x,

A-1
=— 2.236
x=— (2.236)
where
2/1Hhy

A=/(1+k)(1—Uk) and U= Tl (2.237)

Substituting for x in the expression for M, gives

Jwl? U2+ U)
M, = 2.2

Poos {A2+2A—Uk2+1] (2.238)

In the absence of horizontal loading, the gable mechanism, as shown in Figure 2.104c, is the failure
mode. In this case, letting H=0 and U=0 gives (Horne 1964)

M —’IWLZ{ ! ] (2.239)
P8 [1+k+VIFk '

Equation 2.238 can be used to produce a chart as shown in Figure 2.105 by which the value of M,
can be determined quickly by knowing the values of

k = @ and U = 2/ Hhy

T == (2.240)

2.11.10.2 Fixed-Base Gable Frames

A similar chart can be generated for a fixed-base gable frame as shown in Figure 2.106. Thus, if the values
of loading, Aw and 4,H and frame geometry, hy, h,, and L, are known, the parameters k and U can be

0.16

0.6 Sway mechanism

0.14

0.12

0.10

0.08

0.06

0.04

0.02 Gable mechanism

1 L 1 |
k=01 02 03 04 05 06 07 08 09 10

FIGURE 2.105 Analysis chart for pinned-base gable frame.
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FIGURE 2.106 Analysis chart for fixed-base gable frame.

FIGURE 2.107 Two-beam grillage system.

evaluated and the corresponding value of M,/ (AwL?) can be read directly from the appropriate chart.
The required value of M, is obtained by multiplying the value of M,/(ZwL?) by AwL’.

2.11.11 Grillages

A grillage is a type of structure consisting of straight beams lying on the same plane, subjected to loads
acting perpendicular to the plane. An example of such a structure is shown in Figure 2.107. The
grillage consists of two equal simply supported beams of span length 2L and full plastic moment M,
The two beams are connected rigidly at their centers where a concentrated load W is carried.

The collapse mechanism consists of four plastic hinges formed at the beams adjacent to the point load
as shown in Figure 2.107. The work equation is

WLO = 4M,0
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where the collapse load is

2.11.11.1 Six-Beam Grillage

A grillage consisting of six beams of span length 4L each and full plastic moment M, is shown in
Figure 2.108. A total load of 9W acts on the grillage, splitting into concentrated loads W at the nine
nodes. Three collapse mechanisms are possible. Ignoring member twisting due to torsional forces, the
work equations associated with the three collapse mechanisms are computed as follows:

Mechanism 1 (Figure 2.109a)

Work equation:

IwLO = 12M,0

where

12M,  4M,

w =
9 L 3L

Mechanism 2 (Figure 2.109b)

Work equation:

wLi = 8M,0
where
8M,
w=—2
L

Mechanism 3 (Figure 2.109c)

Work equation:

w2120 + 4 x w210 = M, (40 + 86)

where

FIGURE 2.108 Six-beam grillage system.
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FIGURE 2.109 Six-beam grillage system: (a) mechanism 1, (b) mechanism 2, and (c) mechanism 3.

The lowest upper bound load corresponds to mechanism 3. This can be confirmed by conducting
a moment check to ensure that bending moments anywhere are not violating the plastic moment

condition. Additional discussion of plastic analysis of grillages can be found in Baker and Heyman
(1969) and Heyman (1971).

2.11.12 Vierendeel Girders

Figure 2.110 shows a simply supported girder in which all members are rigidly joined and have the same
plastic moment M, It is assumed that axial loads in the members do not cause member instability.

Two possible collapse mechanisms are considered as shown in Figure 2.110b and c. The work equation
for mechanism 1 is

W30L = 20M,0
so that

20M,
3L

w
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()

FIGURE 2.110 Collapse mechanism of a Vierendeel girder.

The work equation for mechanism 2 is
W30L = 16M,0

or

_16M,
3L

It can be easily proved that the collapse load associated with mechanism 2 is the correct limit load. This
is done by constructing an equilibrium set of bending moments and checking that they are not violat-
ing the plastic moment condition.

2.11.13 Hinge-by-Hinge Analysis

Instead of finding the collapse load of the frame, it may be useful to obtain information about the
distribution and redistribution of forces prior to reaching the collapse load. Elastic—plastic hinge
analysis (also known as hinge-by-hinge analysis) determines the order of plastic hinge formation, the
load factor associated with each plastic hinge formation, and member forces in the frame between
each hinge formation. Thus, the state of the frame can be defined at any load factor rather than
only at the state of collapse. This allows a more accurate determination of member forces at the design
load level.

Educational and commercial software are now available for elastic—plastic hinge analysis (Chen and
Sohal 1994). The computations of deflections for simple beams and multistorey frames can be done
using the virtual work method (Knudsen et al. 1933; Beedle 1958; ASCE 1971; Chen and Sohal 1994).
The basic assumption of first-order elastic—plastic hinge analysis is that the deformations of the
structure are insufficient to alter radically the equilibrium equations. This assumption ceases
to be true for slender members and structures, and the method gives unsafe predictions of limit
loads.
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2.12 Structural Stability
2.12.1 Stability Analysis Methods

Several stability analysis methods have been utilized in research and practice. Figure 2.111 shows
schematic representations of the load—displacement results of a sway frame obtained from each type of

analysis to be considered.

2.12.1.1 Elastic Buckling Analysis

The elastic buckling load is calculated by linear buckling or bifurcation (or eigenvalue) analysis. The
buckling loads are obtained from the solutions of idealized elastic frames subjected to loads that do not
produce direct bending in the structure. The only displacements that occur before buckling occurs are
those in the directions of the applied loads. When buckling (bifurcation) occurs, the displacements
increase without bound, assuming linearized theory of elasticity and small displacement as shown by the
horizontal straight line in Figure 2.111. The load at which these displacements occur is known as the
buckling load, or is commonly referred to as bifurcation load. For structural models that actually exhibit
a bifurcation from the primary load path, the elastic buckling load is the largest load that the model can
sustain, at least within the vicinity of the bifurcation point, provided that the postbuckling path is in
unstable equilibrium. If the secondary path is in stable equilibrium, the load can still increase beyond the
critical load value.

Buckling analysis is a common tool for calculations of column effective lengths. The effective length
factor of a column member can be calculated using the procedure described in Section 2.12.2.5. The
buckling analysis provides useful indices of the stability behavior of structures; however, it does not
predict actual behavior of all but idealized structures with gravity loads applied only at the joints.

2.12.1.2 Second-Order Elastic Analysis

The analysis is formulated based on the deformed configuration of the structure. When derived
rigorously, a second-order analysis can include both the member curvature (P-§) and the side sway

Linear elastic analysis

Load
factor . Elastic buckling load

- B
Second-order elastic analysis

I Rigid plastic load
- g — - -

First-order elastic—plastic analysis
V Second-order inelastic analysis

11—

H{—=

W,
Hy—»

w3
Hy—»

AN ANNNNY
Deflection, A

FIGURE 2.111 Categorization of stability analysis methods.
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FIGURE 2.112 Behavior of frame in compression and tension.

(P-A) stability effects. The P-J effect is associated with the influence of the axial force acting through
the member displacement with respect to the rotated chord, whereas the P-A effect is the influence
of axial force acting through the relative side sway displacements of the member ends. A structural
system will become stiffer when its members are subjected to tension. Conversely, the structure will
become softer when its members are in compression. Such a behavior can be illustrated by a simple
model shown in Figure 2.112. There is a clear advantage for a designer in making use of the
stiffer behavior of tension structures. However, the detrimental effects associated with second-order
deformations due to compression forces must be considered in designing structures subjected to
predominant gravity loads.

Unlike first-order analysis in which solutions can be obtained in a rather simple and direct manner,
a second-order analysis often requires an iterative procedure to obtain solutions. The load—displacement
curve generated from a second-order elastic analysis will gradually approach the horizontal straight line
that represents the buckling load obtained from the elastic buckling analysis, as shown in Figure 2.111.
Differences in the two limit loads may arise from the fact that the elastic stability limit is calculated
for equilibrium based on the deformed configuration whereas the elastic critical load is calculated as
a bifurcation from equilibrium on the undeformed geometry of the frame.

The load—displacement response of many practical structures usually does not involve any bifurcation
of equilibrium path. In some cases, the second-order elastic incremental response may not have yielded
any limit. The reader is referred to Chen and Lui (1987) for a basic discussion of these behavioral issues.

Recent work on second-order elastic analysis have been reported by Chen and Lui (1991), Liew et al.
(1991), White and Hajjar (1991), and Chen and Toma (1994), among others. Second-order analysis
programs that can take into consideration connection flexibility are also available (Chen et al. 1996;
Chen and Kim 1997; Faella et al. 2000).

2.12.1.3 Second-Order Inelastic Analysis

Second-order inelastic analysis refers to methods of analysis that can capture geometrical and material
nonlinearities of the structures. The most rigorous inelastic analysis method is called spread-of-plasticity
analysis. It involves discretization of a member into many line segments and the cross-section of each
segment into a number of finite elements. Inelasticity is captured within the cross-sections and along the
member length. The calculation of forces and deformations in the structure after yielding requires
iterative trial-and-error processes because of the nonlinearity of the load—deformation response, and the
change in the effective stiffness of the cross-section at inelastic regions associated with the increase in the
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FIGURE 2.113  Stability equations of a column segment.

applied loads and the change in structural geometry. Although most of the spread-of-plasticity analysis
methods have been developed for planar analysis (White 1985; Vogel 1985), three-dimensional spread-
of-plasticity techniques are also available involving various degrees of refinements (Chen and Atsuta
1977; Clark 1994; Wang 1988; White 1988; Jiang et al. 2002).

The simplest second-order inelastic analysis is the elastic—plastic hinge approach. The analysis assumes
that the element remains elastic except at its ends where zero-length plastic hinges are allowed to form.
Plastic hinge analysis of planar frames can be found in Orbison 1982; Ziemian et al. 1992a,b; Liew et al.
1993; White et al. 1993; Chen and Toma 1994; Chen and Sohal 1994; Chen et al. 1996, among
others. Advanced analyses of three-dimensional frames are reported in Chen et al. (2000) and Liew et al.
(2000). Second-order plastic hinge analysis allows efficient analysis of large-scale building frames. This is
particularly true for structures in which the axial forces in the component members are small and the
behavior is predominated by bending actions. Although elastic—plastic hinge approaches can provide
essentially the same load—displacement predictions as second-order plastic-zone methods for many
frame problems, they cannot be classified as advanced analysis for use in frame design. Some mod-
ifications to the elastic—plastic hinge are required to qualify the methods as advanced analysis, and they
are discussed in Section 2.12.7.

Figure 2.111 shows the load—displacement curve (a smooth curve with a descending branch) obtained
from the second-order inelastic analysis. The computed limit load should be close to that obtained from
the plastic-zone analysis.

2.12.2 Column Stability
2.12.2.1 Stability Equations

The stability equation of a column can be obtained by considering an infinitesimal deformed segment of
the column as shown in Figure 2.113. Considering the moment equilibrium about point b, we obtain

M
Qdx+Pdy+ M — (M+(ii—xdx> =0

or upon simplification

dM d
_dM L dy

= Pax

(2.241)
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Summing force horizontally, we can write

—-Q+ (Q—l—d—de) =0
dx

or upon simplification,

dQ

== 2.242
a0 (2.242)

Differentiating Equation 2.241 with respect to x, we obtain

2 2
dQ _d'm _ &y

—=———-P—= 2.243
dx  d«? dx? ( )
which, when compared with Equation 2.242, gives
d*M d’y
——-P—==0 2.244
dx? dx? ( )
Since moment M = —EI(d*y/dx?) = 0, Equation 2.244 can be written as
d'y dy
El—=+P—==0 2.245
dx? + dx? ( )
or
YW+ Ky =0 (2.246)

Equation 2.246 is the general fourth-order differential equation that is valid for all support conditions.
The general solution to this equation is

y = Asinkx + Bcoskx + Cx+ D (2.247)

To determine the critical load, it is necessary to have four boundary conditions, two at each end of the
column. In some cases, both geometric and force boundary conditions are required to eliminate the
unknown coefficients (A, B, C, D) in Equation 2.247.

2.12.2.2 Column with Pinned Ends

For a column pinned at both ends, as shown in Figure 2.114a, the four boundary conditions are

y(x=0)=0, M(x=0)=0 (2.248)
y(x=L)=0, M(x=L)=0 (2.249)

Since M= —EIy”, the moment conditions can be written as
y"(0)=0 and y"(x=1L1L)=0 (2.250)

Using the these conditions, we have
B=D=0 (2.251)
The deflection function (Equation 2.247) reduces to
y = AsinKx + Cx (2.252)
Using the conditions y(L) =y” (L) = 0, Equation 2.252 gives
AsinKL+ CL=10 (2.253)
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FIGURE 2.114 Column with (a) pinned ends, (b) fixed ends, and (c) fixed—free ends.
and
—AK?*sinkL = 0 (2.254)
sin kL Li|A 0
. = 2.255
[—kzska 0}[C} {0] ( )

If A= C=0, the solution is trivial. Therefore, to obtain a nontrivial solution, the determinant of the
coefficient matrix of Equation 2.255 must be zero, that is,

det’ _zinsﬁlLkL é ' =0 (2.256)
or
K*Lsin kL = 0 (2.257)
Since K°L cannot be zero, we must have
sinkL =0 (2.258)
or
kL=nn, n=1273,... (2.259)

The lowest buckling load corresponds to the first mode obtained by setting n=1

n?El
2.12.2.3 Column with Fixed Ends
The four boundary conditions for a fixed end column are (Figure 2.114b)
y(x=0)=y(x=0)=0 (2.261)

yx=L)=y"(x=L)=0 (2.262)
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Using the first two boundary conditions, we obtain
D=-B, C=-Ak (2.263)
The deflection function (Equation 2.247) becomes
y = A(sin kx — kx) + B(cos kx — 1) (2.264)

Using the last two boundary conditions, we have

sinkL — kL coskL—1||A 0
[ coskL—1  —sinkL } [B] - [0] (2.265)

For a nontrivial solution, we must have

sinkL — kL coskL — 1
d { coskL—1  —sinkL ] =0 (2.266)
or after expanding
kLsinkL +2coskL—2=0 (2.267)

Using trigonometrical identities, sin kL = 2sin(kL/2) cos(kL/2) and coskL = 1 — 2sin*(kL/2),
Equation 2.267 can be written as

kL (kL kL kL

sin— [ —cos— —sin— | =0 (2.268)
2\ 2 2 2

The critical load for the symmetric buckling mode is P, = 4n°EI/L* by letting sin(kL/2) =0. The
buckling load for the antisymmetric buckling mode is P.. = 80.8EI/L* by letting the bracket term in
Equation 2.268 equal zero.

2.12.2.4 Column with One End Fixed and One End Free

The boundary conditions for a fixed—free column are (Figure 2.114c¢): at the fixed end
y(x=0)=y'(x=0)=0 (2.269)
and at the free end the moment M= EIy” is equal to zero
y'"(x=1L)=0 (2.270)

and the shear force V= —dM/dx= —EIy’" is equal to Py’, which is the transverse component of P
acting at the free end of the column.

V =—El" =py’ (2.271)
It follows that the shear force condition at the free end has the form
y'+ky =0 (2.272)
Using the boundary conditions at the fixed end, we have
B+D=0 and Ak+C=0 (2.273)
The boundary conditions at the free end give
AsinkL+ BcoskL=0 and C=0 (2.274)

In matrix form, Equations 2.273 and 2.274 can be written as

0 1 1 A 0
k 0o of[B|l=]o0 (2.275)
sinkL coskL O C 0
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TABLE 2.2 Boundary Conditions for Various End Conditions

End conditions Boundary conditions
Pinned y=0, y"=0

Fixed y=0, y'=

Guided y'=0, y"=0

Free y'=0, y'+ky’ =0

For a nontrivial solution, we must have

0 1 1
det| k 0 0/=0 (2.276)
sinkL coskL 0

The characteristic equation becomes
kcoskL =0 (2.277)

Since k cannot be zero, we must have cos kL =0 or

kL:%, n=135,... (2.278)

The smallest root (n=1) gives the lowest critical load of the column
_ mEl
o4

(2.279)

cr

The boundary conditions for columns with various end conditions are summarized in Table 2.2.

2.12.2.5 Column Effective Length Factor

The effective length factor, K, of columns with different end boundary conditions can be obtained by
equating the P, load obtained from the buckling analysis with the Euler load of a pinned-end column of
effective length KL

n2El
(KL)*

The effective length factor can be obtained as

[w2E1 /12
K = | EEL (2.280)
Py

The K factor can be multiplied to the actual length of the end-restrained column to give the length of an
equivalent pinned-ended column whose buckling load is the same as that of the end-restrained column.
Table 2.3 (AISC 1993) summarizes the theoretical K factors for columns with different boundary
conditions. Also shown in the table are the recommended K factors for design applications. The
recommended values for design are equal or higher than the theoretical values to account for semirigid
effects of the connections used in practice.

2.12.3 Stability of Beam-Columns

Figure 2.115a shows a beam—column subjected to an axial compressive force P at the ends, a lateral load
w along the entire length, and end moments M, and Mjg. The stability equation can be derived by
considering the equilibrium of an infinitesimal element of length ds as shown in Figure 2.115b. The
cross-section forces S and H act in the vertical and horizontal directions.
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TABLE 2.3 Comparison of Theoretical and Design K Factors
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FIGURE 2.115 Basic differential equation of a beam—column.

Considering equilibrium of forces:

1. Horizontal equilibrium

H+d—Hds—H:0
ds

(2.281)
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2. Vertical equilibrium

ds

S
+ds

ds—S+wds=0 (2.282)

3. Moment equilibrium

dMm ds ds dH . ds
M—i—zds— M — (S+E+ S> cos 9(7> + (H—I—Eds—i-H) sin 9(;) =0 (2.283)

Since (dS/ds)ds and (dH/ds)ds are negligibly small compared to S and H, the above equilibrium
equations can be reduced to

dH
=0

= (2.284a)
% +w=0 (2.284b)
d(i—l\s/[fScosO+Hsin0:O (2.284c¢)
For small deflections and neglecting shear deformations
ds>~dx, cosO0==1, sin0x~0x % (2.285)

where y is the lateral displacement of the member. Using the above approximations, Equation 2.280 can
be written as

dM dy
—_—— H-—-==0 2.286
dx S+ dx ( )

Differentiating Equation 2.286 and substituting Equations 2.284a and 2.284b into the resulting
equation, we have

d*M d?
W—i—w—i—Hd—x)z}:O (2.287)

From elementary mechanics of materials, it can easily be shown that

d2
M= fEId—x); (2.288)

Upon substitution of Equation 2.288 into Equation 2.287 and realizing that H= —P, we obtain

d4y dzy
El—=-+P—== 2.28
dx* + dax? v ( )

The general solution to this differential equation has the form
y = Asinkx + Bcoskx + Cx + D + f(x) (2.290)
where
k= /P/E

and f(x) is a particular solution satisfying the differential equation. The constants A, B, C, and D can be
determined from the boundary conditions of the beam—column under investigation.
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FIGURE 2.116 Beam-column subjected to uniform loading.

2.12.3.1 Beam-Column Subjected to Transverse Loading

Figure 2.116 shows a fixed-ended beam—column with uniformly distributed load w.
The general solution to Equation 2.289 is

LA

= Asinkx + Bcoskx 4+ Cx+ D 2.291
y sinkx + Bcoskx + Cx+ D + SEe ( )
Using the boundary conditions
Y0 =0, V. o=0, ye1=0, y._, =0 (2.292)
where the prime denotes differentiation with respect to x, it can be shown that
wL
A= 2.293
2EIK (2.293a)
B= L (2.293b)
" 2EIK3 tan(kL/2) '
wL
C=——= 2.293
21K (2.295¢)
wL
D=—-—— = (2.293d)

~ 2EIK® tan(kL/2)

Upon substitution of these constants into Equation 2.291, the deflection function can be written as

wL | . o . <95 kx ke 1 n kx? (2.294)
=—— |sinkx — kx — — .
YIS tan(kL/2) tan(kL/2) | L
The maximum moment for this beam—column occurs at the fixed ends and is equal to
L% [3(tan u — u)
My = —Ely" |y = —Ely" | ,_ = — o |22 21 2.295
o = — Bl |y =~ | (2295)

where u=kL/2.

Since wL?/12 is the maximum first-order moment at the fixed ends, the term in the brackets represents
the theoretical moment amplification factor due to the P-J effect.

For beam—columns with other transverse loading and boundary conditions, a similar approach
can be followed to determine the moment amplification factor. Table 2.4 summarizes the expres-
sions for the theoretical and design moment amplification factors for some loading conditions
(AISC 1989).
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TABLE 2.4 Theoretical and Design Moment Amplification Factor (u = kL/2 =1/PL?/EI')

Boundary conditions Pc, Location of M,y Moment amplification factor
Hinged-hinged (n*ED/L? Midspan (2(sec u—1))/1?

Hinged—fixed (P°ED/(0.7L) End (2(tan u— u))/(u*(1/2u — 1/tan 2u))
Fixed—fixed (n?ED/(0.5L)* End (3(tan u — u))/(1/’tan u)

Hinged-hinged (n*ED/L? Midspan (tan u)/u

Hinged—fixed (7®ED/(0.7L)* End (4u(1 — cos u))/ (31 cos u(1/2u— 1/tan 2u))
Fixed—fixed (n?ED/(0.5L)? Midspan and end (2(1 — cos u))/(u sin u)

A /;,;\ s
. _J

El=constant

: |

+ 1
y

FIGURE 2.117 Beam—column subjected to end moments.

2.12.3.2 Beam-Column Subjected to End Moments

Consider the beam—column shown in Figure 2.117. The member is subjected to an axial force of P and
end moments M, and Mg. The differential equation for this beam-column can be obtained from

Equation 2.289 by setting w=0:

d4y d? y
El— P =0 2.296
ot (2.296)
The general solution is
y = Asinkx + Bcoskx+ Cx+ D (2.297)
The constants A, B, C, and D are determined by enforcing the four boundary conditions
MA _MB
Va0 =00 Yoo = Yael = Yoo, = i (2.298)
to give
My cos kL + Mg
_ 2.299
EIK? sin kL (229%)
Ma
= —— 2.299b
EIk? ( )
My + Mg
C=———— 2.299
( EIRL > (2.299¢)
My
= 2.299d
EIK? ( )

Substituting Equations 2.299a to d into the deflection function Equation 2.297 and rearranging gives

1 [coskL

- —Z+1|M
y= T Skasmkx cos kx +} N =

1 1 X
EIk? L i SR E} Ms

(2.300)
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The maximum moment can be obtained by first locating its position by setting dM/dx=0 and sub-
stituting the result into M= —EIy"” to give

M V(M2 + 2MyMg cos kL + MZ)

2.301
sin kL ( )
Assuming that Mj is the larger of the two end moments, Equation 2.301 can be expressed as
\/{(MA/MB)2 +2(Ma/Mg) cos kL + 1}
Maax = Mg (2.302)

sin kL

Since My is the maximum first-order moment, the expression in brackets is therefore the theoretical
moment amplification factor. In Equation 2.302, the ratio (M,/Mj) is positive if the member is bent in
double (or reverse) curvature and negative if the member is bent in single curvature. A special case arises
when the end moments are equal and opposite (i.e., M= —M,). By setting My=—M, =M, in
Equation 2.302, we get

{2(1 — cos kL)}} (2.303)

me:M B
. 0[ sin kL

For this special case, the maximum moment always occurs at midspan.

2.12.4 Slope Deflection Equations

The slope deflection equations of a beam—column can be derived by considering the beam-
column shown in Figure 2.117. The deflection function for this beam—column can be obtained from
Equation 2.300 in terms of M, and My as

1 [coskL 1 1 x
kx — kx ——+1|M, nkx ——| M, 2.304
e Lm g S R — cos + } At e [sm ko L} B (2:304)
from which
, 1 [coskL 1 [coskx 1
= k. kx — M, —— | M, 2.305
Y T Ek [sm o 08 e - sin kL AV e [sinkr k)™ (2.305)

The end rotations 0, and 0 can be obtained from Equation 2.305 as

1 [coskL 1 1 1 1
0 = ! =0)==—|———| M, _——— M
A =7 (=00 =g [sin kL kL} Ak Lin kL kL} B

L | kLcos kL — sin kL L |kL —sinkL
_ L |Meoskl—sinkl|, L |K—sinkl|, (2.306)
EI (kL)” sin kL ET | (kL)" sin kL

and

0y = '( 7L)7L 1 7LM +i COSkL,iM
BV S T Ek [sinkl kL] T EIK |sinklL  kL|T P

L | kL —sinkL L
_L [ } (2.307)

I | (kL)?sin kL EI

KL cos kL — sin kL
(kL)? sin kL b
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The moment-rotation relationship can be obtained from Equations 2.306 and 2.307 by arranging
M, and Mg in terms of 6, and 0 as

where

and

EI
MA = T (S,‘,‘ GA + S,‘]‘ GB) (2308)

EI
Mg = T (sji Oa + 55 0B) (2.309)

kL sin kL — (kL) cos kL
T
72 —2coskL — kLsin kL

sii = (2.310)

(kL)* — kLsin kL
2 — 2cos kL — kL sin kL

5 =i = (2.311)

are referred to as the stability functions.

Equations 2.308 and 2.309 are the slope deflection equations for a beam—column that is not subjected
to transverse loading and relative joint translation. When P approaches zero, kL = (y/P/EI)L
approaches zero, and by using L’Hopital’s rule, it can be shown that s;;= 4 and s;;= 2. Values for s;; and s;;
for various values of kL are plotted as shown in Figure 2.118.

Equations 2.309 and 2.310 are valid if the following conditions are satisfied.

1. The beam is prismatic.

2. There is no relative joint displacement between the two ends of the member.

3. The member is continuous, that is, there is no internal hinge or discontinuity in the member.
4. There is no in-span transverse loading on the member.

5. The axial force in the member is compressive.

If these conditions are not satisfied, some modifications to the slope deflection equations are

necessary.

Stability functions

12

-12

Compressive axial force

- - - - Tensile axial force

FIGURE 2.118 Plot of stability functions.
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FIGURE 2.119 Beam-column subjected to end moments and side sway.

2.12.4.1 Member Subjected to Side Sway

If there is a relative joint translation, A, between the member ends, as shown in Figure 2.119, the
slope—deflection equations are modified as

EI A A 1 A

My=— {Sii <9A - f) + sij <93 - f)} =T {5ii9A + 508 — (si + 51‘1‘)1} (2.312)
EI A A EI A

Mg = _L |:5ij (HA — z) + sii (93 — z):| = —L |:51'ng + 5,’{9]3 - (51';' + Sij) I:| (2313)

2.12.4.2 Member with a Hinge at One End

If a hinge is present at the B-end of the member, the end moment there is zero, that is,
EI
Mg = T(sijQA + Si,‘QB) =0 (2.314)
from which

0p = —%GA (2.315)

Upon substituting Equation 2.315 into Equation 2.312, we have

EI st
M=% (Sii _ _J) 0, (2.316)

If the member is hinged at A rather than at B, Equation 2.316 is still valid provided that the subscript
A is changed to B.

2.12.4.3 Member with End Restraints

If the member ends are connected by two linear elastic springs, as in Figure 2.120, with spring constants,
Rya and Ryp at the A and B ends, respectively, the end rotations of the linear springs are Ma/Rya
and Mg/Ry. If we denote the total end rotations at joints A and B by 0, and 0y, respectively, then
the corresponding member end rotations, with respect to its chord, will be (0, — Ma/Rya) and (05 —
Mg/Ryp). As a result, the slope deflection equations are modified to

EI My Mg
My =— |[si| 04 — — il 0p —— 2.31
A I [S (OA RkA) + 5] (OB RkB>:| ( 3 7)

_E (o~ Ma) g (g, - Mo
= 2 s (002 g 0 2] a
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FIGURE 2.120 Beam-—column with end springs.

Solving Equations 2.317 and 2.318 simultaneously for M, and My gives

EI EIss  EIs;

My =—— | | si i 0 + 50 2.319
A LR* |:<511 + IRy  LRu A+ 5ij UB ( )

EI EIs2  EIs?
My = = |50 e Nl R ) 2.320
B= IR [Si0AT (S’ T IRa IR ® (2.320)

where
R — (1 n EISii> (1 + EISii) <E1>2 S%i (2.321)
LRya LR;s L) RiaRgs '

In writing Equations 2.319 and 2.320, the equality s;= s;; has been used. Note that as Rys and Ry
approach infinity, Equations 2.319 and 2.320 reduce to Equations 2.308 and 2.309, respectively.

2.12.4.4 Member with Transverse Loading

For members subjected to transverse loading, the slope deflection Equations 2.308 and 2.309 can be
modified by adding an extra term for the fixed-ended moment of the member:

EI

My = T (5ii0A + 5,']'0]3) + Mga (2322)
EI

MB = T (SijeA + SJjGB) + MFB (2323)

Table 2.5 gives the expressions for the fixed-end moments of five commonly encountered cases of
transverse loading. Readers are referred to Chen and Lui (1987, 1991) for more details.

2.12.4.5 Member with Tensile Axial Force

For members subjected to tensile force, Equations 2.308 and 2.309 can be used provided that the stability
functions are redefined as

(kL) cosh kL — kL sinh kL
2 — 2 cosh kL + kL sinh kL

Sii = Sjj = (2.324)

kL sinh kL — (kL)
2 — 2 cosh kL + kL sinh kL

5= 5= (2.325)
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TABLE 2.5 Beam—Column Fixed-End Moments (Chen and Lui 1991) (u = kL/2 = (L/2)\/P/EI)

Case Fixed-end moments
0 QL [2(1 — cosu)
1 l 4 Mea = 8 usin u
e =X
e Mip = = Mpa
I
L

w
P_G:i ***ﬁ**ﬁE:aP 12 | @tanu
1 ¥ - _
Mpp = —Mga
Mea Mgg
I L |
I |
L [2ub 2ub
lQ Mpp = % {% cos2u —2u cosl —sin2u
- g 5:9_13 +sin2ﬂ+sin2—uh+%}
Mey | b Mg L L L
| QL [2ua 2ua .
L Mrp = vy TcosZu - 2ucosT— sin2u
L Zuh+ . 2ua+2uh
sin——+sin— i
where
d=2u(2 — 2cos2u — 2usin2u)
s M, wL? (2ucosec2u — 1) 2ub s'nzuh
= 2 _sin2™
Pei \BE IR IE:BP AT e | " L L
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2.12.4.6 Member Bent in Single Curvature with g = —0,

For the member bent in single curvature in which Og= —0,, the slope deflection equations
reduce to
EI
MA = T (S,‘i — si,-)GA (2.326)
My = —M, (2.327)

2.12.4.7 Member Bent in Double Curvature with 05 =60,

For the member bent in double curvature such that 0y = 0,, the slope deflection equations become

EI
MA = T (Si,' — 5ij)9A (2328)
Mg = M, (2.329)

2.12.5 Second-Order Elastic Analysis

There are two methods for incorporating second-order effects, the stability function approach and the
geometric stiffness (or finite element) approach. The stability function approach is based on the gov-
erning differential equations of the problem as described in Section 2.12.4, whereas the stiffness
approach is based on an assumed cubic polynomial variation of the transverse displacement along the
element length. Therefore, the stability function approach is more exact in terms of representing the
member stability behavior. However, the geometric stiffness approach is easier to implement for matrix
analysis.

For either of these approaches, the linearized element stiffness equations may be expressed in either
incremental or total force and displacement forms as

[K|{d} + {re} = {r} (2.330)

where [K] is the element stiffness matrix, {d} ={d), d>, ..., dg} is the element nodal-displacement
vector, {1t ={rq1, 7o, ..., 15} is the element fixed-end force vector due to the presence of in-span

loading, and {r} ={r, r, ..., 11T is the nodal force vector as shown in Figure 1.121. If the stability

Ts

Deflected position
/ d6 ’

r

F
rl\r:

d] { d
Original position |<—4>

FIGURE 2.121 Nodal displacements and forces of a beam—column element.
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function approach is employed, the stiffness matrix of a two-dimensional beam—column element
may be written as

-A B _
= 0 0 A . )
I I
Z(Sii + Sij) — (kL)Z Si + Sij 0 _2(81.’. + Sij) + (kL)z S;i + S,’j
L? L 2 7
E M .
L
A 0 .
1
symmet 2(8i + i) — (kL) —(Si + Si)
Y’ ry L2 .
) Sii ]

where S;; and S;; are the member stiffness coefficients obtained from the elastic beam—column stability
functions (Chen and Lui 1987). These coefficients may be expressed as

kL sin(kL) — (kL)* cos(kL)

.22 cos(kL) — kL sin(kL) for <0 (2.332)
! (kL) cosh(kL) — kL sinh(kL) P 0 '
22 cosh(KL) + KL sinh(kL) O~
(kL)* — kLsin(kL)
2 —2cos(kL) — p sin(kL) for P<0 5333
v kL sinh(kL) — (kL)? (2:333)
for P>0

2 — 2 cosh(kL) + p sinh(kL)

where kL = L/P/EI and P is positive in compression and negative in tension.

The fixed-end force vector r¢is a 6 x 1 matrix that can be computed from the in-span loading in the
beam—column. If curvature shortening is ignored, 1 = 74 =0, 153 = Mga, and 1 = Mgp. Mpa and Mg
can be obtained from Table 2.5 for different in-span loading conditions. ry, and rg can be obtained from
the equilibrium of forces.

If the axial force in the member is small, Equation 2.331 can be simplified by ignoring the higher-order
terms of the power series expansion of the trigonometric functions. The resulting element stiffness
matrix becomes

B T R o] 0 0 0 0 0 0]

! 12 6 ! -122 6 o1 0 o 1

o7 0 7 L 5L 10 5L 10

K] = E 40— 2| ,p 15 10 30

L A 0 0 0

7 0 0 6 -1

symmetry 1—2 _—6 mmetny 5L 10

L2 L 2L
I 4 | I 15 |

(2.334)

The first term on the right is the first-order elastic stiffness matrix and the second term is the geometric
stiffness matrix, which accounts for the effect of axial force on the bending stiffness of the member.
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Detailed discussions on the limitation of the geometric stiffness approach versus the stability function
approach are given in Liew et al. (2000).

2.12.6 Modifications to Account for Plastic Hinge Effects

There are two commonly used approaches for representing plastic hinge behavior in a second-order
elastic—plastic hinge formulation (Chen et al. 1996). The most basic approach is to model the plastic
hinge behavior as “real hinge” for the purpose of calculating the element stiffness. The change in moment
capacity due to the change in axial force can be accommodated directly in the numerical formulation.
The change in moment is determined in the force recovery at each solution step such that, for continued
plastic loading, the new force point is positioned at the strength surface at the current value of axial force.
A detailed description of these procedures is given by Lee and Basu (1989), Chen and Lui (1991), and
Chen et al. (1996), among others.

Alternatively, the elastic—plastic hinge model may be formulated based on the “extending and con-
tracting” plastic hinge model. The plastic hinge can rotate and extend and contract for plastic loading
and axial force. The formulation can follow the force—space plasticity concept using the normality flow
rule relative to the cross-section surface strength (Chen and Han 1988). Formal derivations of the beam—
column element based on this approach have been presented by Porter and Powell (1971), Orbison
(1982), and Liew et al. (2000), among others.

2.12.7 Modification for End Connections

The moment-rotation relationship of the beam—column with end connections at both ends can be
expressed as Equations 2.319 and 2.320

EI
My = T |:5;'9A + 5293} (2.335)
EI * *
Mg = T [SijeA + SijB:| (2'336)
where
N EIS:  EIS;
il T rp
s; = LRe LRp (2.337)
EIS;; EIS;; EI* S;
1+ 12— || =
LRia LRy L] ReaRis
N EIS:  EIS;
il Ty
St — LRa IR (2.338)
’ EIS;; EIS; EI* S
1+ 1+ =2 - |—| =—%—
LRya LRy L] RiaRis
and
S;
St — J (2.339)

J EIS; EIS;1 [EI* S;
1+ 1+ - =
LRya LRs L] RiaRs
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ry,dy T V6> Ao
T EI=constant //@ 14, dy
ry,d; A
/\\9
r3, ds |

FIGURE 2.122 Nodal displacements and forces of a beam—column with end connections.

The member stiffness relationship can be written in terms of the six degrees of freedom of the beam—
column element shown in Figure 2.122 as

A A _
— 0 0 — 0 0
1 I
% * s sk % — * * * 2 % *
Si+28;+S;— (KL)* S;+ Si 0 (Sii +285+ SJ’J’) +(kL) Si+ S
" 12 L 12 L d,
1 — (sf + S’.‘.) d,
13 _ g S; 0 # S:’;‘ d3
7] L A L dy
Ts ds
76 T 0 0 ds
. S;+28;+ S5 — (kL)* —(S?,-+S}})
symmetry P i
I S

(2.340)

2.12.8 Second-Order Refined Plastic Hinge Analysis

The main limitation of the conventional elastic—plastic hinge approach is that it overpredicts the
strength of columns that fail by inelastic flexural buckling. The key reason for this limitation is the
modeling of the member by a perfect elastic element between the plastic hinge locations. Furthermore,
the elastic—plastic hinge model assumes that material behavior changes abruptly from the elastic state to
the fully yielded state. The element under consideration exhibits a sudden stiffness reduction upon
formation of a plastic hinge. This approach, therefore, overestimates the stiffness of a member loaded
into the inelastic range (White et al. 1991, 1993; Liew et al. 1993). This leads to further research and
development of an alternative method called the refined plastic hinge approach. This approach is based on
the following improvements to the elastic—plastic hinge model:

1. A column tangent modulus model E; is used in place of the elastic modulus E to represent the
distributed plasticity due to axial force effects along the length of a member. The member inelastic
stiffness, represented by the member axial and bending rigidities E.A and E, is assumed to be the
function of axial load only. In other words, E,A and EI can be thought of as the properties of an
effective core of the section, considering column action only. The tangent modulus captures the
effect of early yielding in the cross-section due to residual stresses, which was believed to be the
cause for the low strength of inelastic column buckling. The tangent modulus approach also has
been utilized in previous work by Orbison (1982), Liew (1992), and White et al. (1993) to improve
the accuracy of the elastic—plastic hinge approach for structures in which members are subjected
to large axial forces.
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2. Distributed plasticity effects associated with flexure are captured by gradually degrading the
member stiffness at the plastic hinge locations as yielding progresses under increasing load as the
cross-section strength is approached. Several models of this type have been proposed in recent
literature based on extensions to the elastic—plastic hinge approach (Powell and Chen 1986) as well
as the tangent modulus inelastic hinge approach (Liew et al. 1993; White et al. 1994). The rationale
of modeling stiffness degradation associated with both axial and flexural actions is that the tangent
modulus model represents the column strength behavior in the limit of pure axial compression,
and the plastic hinge stiffness degradation model represents the beam behavior in pure bending,
thus the combined effects of these two approaches should also satisfy the cases in which the
member is subjected to combined axial compression and bending.

It has been shown that with the above two improvements, the refined plastic hinge model can be used
with sufficient accuracy to provide a quantitative assessment of a member’s performance up to failure.
Detailed descriptions of the method and discussion of results generated by the method are given in
White et al. (1993) and Chen et al. (1996). Significant works have been done to implement the refined
plastic hinge methods for the design of three-dimensional real-size structures (Al-Bermani 1995; Liew
et al. 2000).

2.12.9 Second-Order Spread of Plasticity Analysis

Spread of plasticity analyses can be classified into two main types, namely three-dimensional
shell element and two-dimensional beam—column approaches. In the three-dimensional spread of
plasticity analysis, the structure is modeled using a large number of finite three-dimensional shell
elements, and the elastic constitutive matrix, in the usual incremental stress—strain relations, is replaced
by an elastic—plastic constitutive matrix once yielding is detected. This analysis approach typically
requires numerical integration for the evaluation of the stiffness matrix. Based on a deformation theory
of plasticity, the combined effects of normal and shear stresses may be accounted for. The three-
dimensional spread-of-plasticity analysis is computational intensive and best suited for analyzing
small-scale structures.

The second approach for plastic-zone analysis is based on the use of beam—column theory, in which
the member is discretized into many beam—column segments, and the cross-section of each segment is
further subdivided into a number of fibers. Inelasticity is typically modeled by the consideration of
normal stress only. When the computed stresses at the centroid of any fibers reach the uniaxial normal
strength of the material, the fiber is considered as yielded. Compatibility is treated by assuming that full
continuity is retained throughout the volume of the structure in the same manner as for elastic range
calculations. Most of the plastic-zone analysis methods developed are meant for planar (2-D) analysis
(Vogel 1985; White 1985; Chen and Toma 1994) Three-dimensional plastic-zone techniques are also
available involving various degrees of refinements (Wang 1988; White 1988).

A plastic-zone analysis, which includes the spread of plasticity, residual stresses, initial geometric
imperfections, and any other significant second-order behavioral effects, is often considered to be an
exact analysis method. Therefore, when this type of analysis is employed, the checking of member
interaction equations is not required. However, in reality, some significant behavioral effects such as the
performances of joints and connections tend to defy precise numerical and analytical modeling. In such
cases, a simpler method of analysis that adequately captures the inelastic behavior would be sufficient for
engineering application. Second-order plastic hinge based analysis is still the preferred method for
advanced analysis of large-scale steel frames.

2.12.10 Three-Dimensional Frame Element

The two-dimensional beam—column formulation can be extended to a three-dimensional space frame
element by including additional terms due to shear force, bending moment, and torsion. The following
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FIGURE 2.123 Three-dimensional frame element: (a) nodal degrees of freedom and (b) nodal forces.

stiffness equation for a space frame element has been derived by Yang and Kuo (1994) by referring to
Figure 2.123:

keJ{d} + [kJ{d} = £} — {'f} (2.341)
where
{7 ={d,d,....d;)} (2.342)

is the displacement vector, which consists of three translations and three rotations at each node and

' ={h k) i=12 (2.343)

are the force vectors, which consist of the corresponding nodal forces at configurations i=1 and i=2,
respectively.

The physical interpretation of Equation 2.341 is as follows. By increasing the nodal forces acting on
the element from {! f} to {2f }, further deformations {d} may occur with the element, resulting in the
motion of the element from the configuration associated with the forces {'f } to the new configuration
associated with {zf }. During this process of deformation, the increments in the nodal forces, that is,
2 f1— {* £}, will be resisted not only by the elastic actions generated by the elastic stiffness matrix [k.]
but also by the forces induced by the change in geometry as represented by the geometric stiffness
matrix [k].

The only assumption with the incremental stiffness equation is that the strains occurring with each
incremental step should be small so that the approximations implied by the incremental constitutive law
are not violated.
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The elastic stiffness matrix [K.] for the space frame element, which has a 12 x 12 dimension, can be

derived as follows:

k] [k
kK = 2.344
4= 22
where the submatrices are
“EA i
T 0 0 0 0 0
12EL, 6EL
0 0 0
L3 12
12EI 6EI
0 L3y ,sz 0
(k] = (2.345)
GJ
0 0 [ —— 0 0
L
4EI,
0 0 0 o — 0
L
4EI,
0 0 0 0 0
L L
- _
-0 0 0 0 0 0
12EL 6EL
B 0 0 0 T
12EI 6EIL
0 0 - 24 -2 9
L3 12
k] = G (2.346)
0 0 0 —-= 0 0
L
6EI 2EI
0 0 —i 0 = 0
12 L
6EI, 2EL
0 - 0 0 0
L I2 L J
EA i
T 0 0 0 0 0
12EL, 6EL
0 B 0 0 -0
12EL 6EI
0 0 LSy 0 —Lzy 0
[ks] = (2.347)
GJ
0 0 0 —= 0 0
L
4EI,
0 0 0 o —~Z 0
L
4EI,
0 0 0 0 0 =
L L U

where I, I,, and I, are the moments of inertia about the x, y, and z axes, respectively, L is the member
length, E is the modulus of elasticity, A is the cross-sectional area, G is the shear modulus, and J is the

torsional stiffness.
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The geometric stiffness matrix for a three-dimensional space frame element can be given as follows:

[a 0 00 -d —e —a 0 0 0 -n —o]
b 0d g kK 0 —-b 0 n -—-g k
c e h g 0 0 —c o —-h —g
f i I 0 —-d —e —f —i -I
j 0 d —-¢g h —i p —q
m e -k —g -1 ¢ r
ko] = 2.348
k] a 0 0 0 n 0 ( )
b 0 -n g —k
c —o h ¢
f i )
sym* j 0
L m_
where
PR (k. C e I
I? 5L L? L L AL
g:@) h:_f_7, l:f6+ﬁ2’ ]:2‘)‘.—71" k:_f5+f11’ l:&
L 10 6 15 6 L
e Bl e
L 30 2

Further details can be obtained from Yang and Kuo (1994).

2.12.11 Buckling of Thin Plates
2.12.11.1 Rectangular Plates

The main difference between columns and plates is that quantities such as deflections and bending
moments that are functions of a single independent variable in columns become functions of two inde-
pendent variables in plates. Consequently, the behavior of plates is described by partial differential
equations, whereas ordinary differential equations suffice for describing the behavior of columns. The
main difference between column and plate buckling is that column buckling terminates the ability of
the member to resist axial load; the same is, however, not true for plates. Upon reaching the critical load,
the plate continues to resist increasing axial force, and it does not fail until a load considerably in excess
of the elastic buckling load is reached. The critical load of a plate is, therefore, not its failure load. Instead,
one must determine the load-carrying capacity of a plate by considering its postbuckling strength.

To determine the critical in-plane loading of a plate, a governing equation in terms of biaxial com-
pressive forces N, and N, and constant shear force N, as shown in Figure 2.124 can be derived as

D 54w+2 otw +54w n 52W+N 52W+2N ’Fw _o (2.349)
ox* 0x20y% oyt T ox? 7 5y2 Voxdy ’
The critical load for uniaxial compression can be determined from the differential equation
D 54w+2 otw +54w N 52w_ 0 (2.350)
Oxt 0x20y2 oyt Tox? '

*The word “sym” in the matrix [k;] implies symmetrical matrix in future occurrences.
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Y N

FIGURE 2.124 Plate subjected to in-plane forces.

which is obtained by setting N,= N,;,=0 in Equation 2.349. For example, in the case of a simply
supported plate Equation 2.350 can be solved to give

@D (m?  \°
N=T (¥+ﬁ) (2.351)

The critical value of N, (i.e., the smallest value) can be obtained by taking # equal to 1. The physical
meaning of this is that a plate buckles in such a way that there can be several half-waves in the direction
of compression but only one half-wave in the perpendicular direction. Thus, the expression for the
critical value of the compressive force becomes

2D 12\’

The first factor in this expression represents the Euler load for a strip of unit width and of length a.
The second factor indicates in what proportion the stability of the continuous plate is greater than the
stability of an isolated strip. The magnitude of this factor depends on the magnitude of the ratio a/b
and also on m, which is the number of half-waves into which the plate buckles. If a is smaller than b,
the second term in the parantheses in Equation 2.347 is always smaller than the first and the minimum
value of the expression is obtained by taking m =1, that is, by assuming that the plate buckles in one
half-wave. The critical value of N, can be expressed as

N, = kD (2.353)
cr b2 .
The factor k depends on the aspect ratio a/b of the plate and m. The variation of k with a/b for different
values of m can be plotted as shown in Figure 2.125. The critical value of N, is the smallest value that is
obtained for m =1 and the corresponding value of k is equal to 4.0. This formula is analogous to Euler’s
formula for buckling of a column.
In the case where the normal forces N, and N, and the shearing forces N, are acting on the boundary
of the plate, the same general method can be used. The critical stress for the case of a uniaxially
compressed simply supported plate can be written as

_47I27E ﬁ ’ (2 354)
Te = 0 - ) \b '

The critical stress values for different loading and support conditions can be expressed in the form

mE n\’
Ja = km (Z) (2.355)
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FIGURE 2.125 Buckling stress coefficients for uniaxially compressed plate.

Values of k for plates with several different boundary and loading conditions are given in
Figure 2.126.

2.12.11.2 Circular Plates

The critical value of the compressive forces N, uniformly distributed around the edge of a circular plate
of radius r, clamped along the edge (Figure 2.127) can be determined by

2 2
rzﬁJrr%, :,Qir

2.
dr? dr D (2.356)

where ¢ is the angle between the axis of revolution of the plate surface and any normal to the plate, r is
the distance of any point from the center of the plate, and Q is the shearing force per unit of length.
When there are no lateral forces acting on the plate, the solution of Equation 2.356 involves Bessel function
of the first order of the first and second kinds and the resulting critical value of N, is obtained as

_ 14.68D

(NP = 5 (2.357)

The critical value of N, for the plate when the edge is simply supported can be obtained in the same
way as
~4.20D

(Na =~ (2.358)

2.12.12 Buckling of Shells

If a circular cylindrical shell is uniformly compressed in the axial direction, buckling symmetrical with
respect to the axis of the cylinder (Figure 2.128) may occur at a certain value of the compressive load.
The critical value of the compressive force N, per unit length of the edge of the shell can be obtained by
solving the differential equation
pdw N &L g (2.359)
dxt dx? at '

where a is the radius of the cylinder and h is the wall thickness.

Alternatively, the critical force per unit length may also be obtained by using the energy method. For
a cylinder of length L, simply supported at both ends, one obtains

m*n? EhL?
Na =D ' Danin (2.360)
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Case Boundary condition Type of Value of k for
stress long plate
L S.S. | —|
(a) S-S s.8 Compression 4.0
™ S.S. ]
= Fixed |ea—7
(b) —|s.S. S.S. [+ Compression 6.97
™ Fixed [* ]
) S.S ]
(©) —s.s. S.S. f+— Compression 0.425
™ Free [*]
—» Fixed |e—
(d) —s.s. s.S. [+ Compression 1.277
™ Free [*]
] Fixed |<]
(e) —{s.S. S.S. [— Compression 5.42
™ S.S ]
S-S
® 1 S.S. S.S. l Shear 5.34
S.S.
Fixed
() 1 Fixed Fixed Shear 8.98
Fixed
S.S.
(h) S.S. S.S. Bending 23.9
S.S.
Fixed
) Fixed Fixed Bending 41.8
Fixed

FIGURE 2.126 Values of K for plate with different boundary and loading conditions.

FIGURE 2.127 Circular plate under compressive loading.
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FIGURE 2.128 Buckling of a cylindrical shell.

For each value of m there is a unique buckling mode shape and a unique buckling load. The lowest value
is of greatest interest and is thus found by setting the derivative of N, with respect to L equal to zero for
m=1. With Poisson’s ratio = 0.3, the buckling load is obtained as

ER?
N, = 0.605— (2.361)
a

It is possible for a cylindrical shell to be subjected to uniform external pressure or to the combined
action of axial and uniform lateral pressure. More detailed treatment of such a case may be found in
Timoshenko and Gere (1963).

2.13 Structural Dynamic

2.13.1 Equation of Motion

The essential physical properties of a linearly elastic structural system subjected to external dynamic
loading are its mass, stiffness properties, and energy absorption capability or damping. The principle
of dynamic analysis may be illustrated by considering a simple single-storey structure as shown in
Figure 2.129. The structure is subjected to a time-varying force f(f). kis the spring constant that relates the
lateral storey deflection x to the storey shear force, and the dash pot relates the damping force to
the velocity by a damping coefficient c. If the mass, m, is assumed to concentrate at the beam, the structure
becomes a single-degree-of-freedom (SDOF) system. The equation of motion of the system may be
written as

mix + cx + kx = f(t) (2.362)

Various solutions to Equation 2.362 can give an insight into the behavior of the structure under dynamic
situation.

(a) (W)

f(;)—» ! —_— - mX

FIGURE 2.129 (a) One DOF structure and (b) forces applied to structures.
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2.13.2 Free Vibration

In this case the system is set to motion and allowed to vibrate in the absence of applied force f(¢). Letting
f(#) =0, Equation 2.362 becomes

mx+cx+kx=0 (2.363)
Dividing Equation 2.363 by the mass 1, we have
%+ 28wk + 0*x =0 (2.364)

where
k
2Zw=" and =" (2.365)
m m
The solution to Equation 2.364 depends on whether the vibration is damped or undamped.

2.13.2.1 Case 1: Undamped Free Vibration

In this case, c=0, and the solution to the equation of motion may be written as

x = Asinwt + Bcos ot (2.366)

where @ = \/k/m is the circular frequency. A and B are constants that can be determined by the initial
boundary conditions. In the absence of external forces and damping the system will vibrate indefinitely
in a repeated cycle of vibration with an amplitude of

X=VA B (2.367)
and a natural frequency of

f= (2.368)

)
2n
The corresponding natural period is

w1
T="2" (2.369)
o f

The undamped free vibration motion as described by Equation 2.366 is shown in Figure 2.130.

2.13.2.2 Case 2: Damped Free Vibration

If the system is not subjected to applied force and damping is presented, the corresponding solution
becomes

x = Aexp(4it) + Bexp(4at) (2.370)

X(0
x(0) -

o X
t

FIGURE 2.130 Response of undamped free vibration.
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where

h=o[-t+/2 1]
}Q:w[—é—\/&jzi—l]

The solution of Equation 2.370 changes its form with the value of £ defined as

and

If £ < 1, the equation of motion becomes
x = exp(—¢wt)(Acoswgt + Bsin wgt)

where w4 is the damped angular frequency defined as

wg=1/(1-w

2-159

(2.371)

(2.372)

(2.373)

(2.374)

(2.375)

For most building structures & is very small (about 0.01) and therefore w4~ ®. The system oscillates
about the neutral position at the amplitude decays with time t. Figure 2.131 illustrates an example of

such motion. The rate of decay is governed by the amount of damping present.

If the damping is great, then oscillation will be prevented. This happens when &> > 1 and the behavior

is referred to as overdamped. The motion of such behavior is shown in Figure 2.132.

Damping with &* = 1 is called critical damping. This is the case where minimum damping is required

to prevent oscillation and the critical damping coefficient is given as
Cx = 2V km

where k and m are the stiffness and the mass of the system respectively.

(2.376)

The degree of damping in the structure is often expressed as a proportion of the critical damping value.

Referring to Equations 2.373 and 2.376, we have

c
f=—
Ccr
where £ is called the critical damping ratio.
X()
o IRRRES
KO (eedm
l [ox e
2n ' 4n >
[ON oD -7 7wy

FIGURE 2.131 Response of damped free vibration.

(2.377)
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FIGURE 2.132 Response of free vibration with critical damping.

x(0)

2.13.3 Forced Vibration

If a structure is subjected to a sinusoidal motion such as a ground acceleration of X = F sin wst, it will
oscillate and after some time the motion of the structure will reach a steady state. For example, the
equation of motion due to the ground acceleration (from Equation 2.364) is

%+ 28wk + w*x = —Fsinwgt (2.378)

The solution to the above equation consists of two parts: the complementary solution given by
Equation 2.366 and the particular solution. If the system is damped, oscillation corresponding to the
complementary solution will decay with time. After some time the motion will reach a steady state, and
the system will vibrate at a constant amplitude and frequency. This motion, which is called force
vibration, is described by the particular solution expressed as

x = C; sinwst + C, cos wet (2.379)

It can be observed that the steady force vibration occurs at the frequency of the excited force, ¢, not the
natural frequency of the structure, .
Substituting Equation 2.379 into Equation 2.378, the displacement amplitude can be shown to be

F 1
X=—-— (2.380)

> \/[{1 - (wf/w)z}er(szf/w)z]

The term —F/w? is the static displacement caused by the force due to the inertia force. The ratio of the
response amplitude relative to the static displacement —F/w® is called the dynamic displacement
amplification factor, D, given as

1
D= (2.381)

1= o)} +2z0r/07]

The variation of the magnification factor with the frequency ratio w¢® and damping ratio & is shown in
Figure 2.133.

When the dynamic force is applied at a frequency much lower than the natural frequency of the system
(g < 1), the response is quasi-static. The response is proportional to the stiffness of the structure,
and the displacement amplitude is close to the static deflection.

When the force is applied at a frequency much higher than the natural frequency (wdw > 1), the
response is proportional to the mass of the structure. The displacement amplitude is less than the static
deflection (D < 1).

When the force is applied at a frequency close to the natural frequency, the displacement amplitude
increases significantly. The condition at which w¢/@w =1 is known as resonance.
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¢l

FIGURE 2.133 Vibration of dynamic amplification factor with frequency ratio.

Similarly, the ratio of the acceleration response relative to the ground acceleration may be
expressed as

D, = (2.382)

x—l—xg‘ _ 1+ (2¢wt/w)
% 10 @rory eeoror]

D, is called the dynamic acceleration magnification factor.

2.13.4 Response to Suddenly Applied Load

Consider the spring-mass damper system where a load P, is applied suddenly. The differential equation
is given by

M3 + cx+kx = P, (2.383)
If the system is started at rest, the equation of motion is
Py .
x == [1 —exp(—éwt){coswdt+§—ws1nwdtH (2.384)
W4

If the system is undamped, then & =0 and w4 =, we have
B,
x== [1 — coswyt] (2.385)

The maximum displacement is 2(P,/k) corresponding to cos wgt= —1. Since P,/k is the maximum
static displacement, the dynamic amplification factor is equal to 2. The presence of damping would
naturally reduce the dynamic amplification factor and the force in the system.

2.13.5 Response to Time-Varying Loads

Some forces and ground motions that are encountered in practice are rather complex. In general,
numerical analysis is required to predict the response of such effects, and the finite element method is
one of the most common techniques to be employed in solving such problems.

The evaluation of responses due to time-varying loads can be carried out using the piecewise exact
method. In using this method, the loading history is divided into small time intervals. Between these
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points, it is assumed that the slope of the load curve remains constant. The entire load history is
represented by piecewise linear curve, and the error of this approach can be minimized by reducing the
length of the time steps. Description of this procedure is given in Clough and Penzien (1993).

Other techniques employed include Fourier analysis of the forcing function followed by solution for
Fourier components in the frequency domain. For random forces, random vibration theory and spec-
trum analysis may be used (Warburton 1976; Dowrick 1988).

2.13.6 Multiple Degree Systems

In multiple degree systems, an independent differential equation of motion can be written for each
degree of freedom. The nodal equations of a multiple degree system consisting of #n degrees of freedom
may be written as

[ml{&} + [e[{x} + [Kl{x} = {F(1)} (2.386)

where [m] is a symmetrical n X n matrix of mass, [c] is a symmetrical # X n matrix of damping coef-
ficient, and {F(¢)} is the force vector, which is zero in the case of free vibration.

Consider a system under free vibration without damping. The general solution of Equation 2.386 is
assumed in the form

X1 cos(wt — ¢) 0 0 0 G
X 0 cos(wt — @) 0 0 G

= : : : . : (2.387)
Xn 0 0 0 cos(wt — ¢) C

where angular frequency w and phase angle ¢ are common to all values of x. In this assumed solution, ¢
and C;, G,,..., C, are the constants to be determined from the initial boundary conditions of the
motion and o is a characteristic value (eigenvalue) of the system.

Substituting Equation 2.387 into Equation 2.386 yields

k]] — mnwz k12 — m12(02 e k]n — ml,,wz Cl
k21 — 77121(1)2 k22 — m22w2 RN k2n — m2na)2 C2
cos(wt —¢p) =< . (2.388)
ko — mpua?  kp — mpe? ok — M,0? Cn 0
or
[[K] — w*[m]]{C} = {0} (2.389)

where [k] and [m] are the n x n matrices, @* and cos(wt— ¢) are scalars, and {C} is the amplitude
vector. For nontrivial solution, cos(wt— ¢)# 0, thus solution to Equation 2.389 requires the deter-
minant of [[k] — w?[m]] =0. The expansion of the determinant yields a polynomial of nth degree as a
function of w?, the n roots of which are the eigenvalues wy, W, ..., O,

If the eigenvalue w for a normal mode is substituted in Equation 2.389, the amplitude vector {C} for
that mode can be obtained. {Ci}, {G,}, {Cs},. .., {C,} are therefore called the eigenvectors, the absolute
values of which must be determined through initial boundary conditions. The resulting motion is a sum
of n harmonic motions, each governed by the respective natural frequency w, written as

{x} = i{Ci} cos(w;t — ¢;) (2.390)
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FIGURE 2.134 (a) Beam in flexural vibration and (b) equilibrium of beam segment in vibration.

2.13.7 Distributed Mass Systems

Although many structures may be approximated by lumped mass systems, in practice, all structures are
distributed mass systems consisting of an infinite number of particles. Consequently, if the motion is
repetitive, the structure has an infinite number of natural frequency and mode shapes. The analysis of a
distributed-parameter system is entirely equivalent to that of a discrete system once the mode shapes and
frequencies have been determined, because in both cases the amplitudes of the modal response com-
ponents are used as generalized coordinates in defining the response of the structure.

In principle, an infinite number of these coordinates are available for a distributed-parameter system,
but in practice, only a few modes, usually those of lower frequencies, will make a significant contribution
to the overall response. Thus, the problem of a distributed-parameter system can be converted to a discrete
system form in which only a limited number of modal coordinates are used to describe the response.

2.13.7.1 Flexural Vibration of Beams

The motion of the distributed mass system is best illustrated by a classical example of a uniform
beam with of span length L and flexural rigidity EI and a self-weight of m per unit length, as shown in
Figure 2.134a. The beam is free to vibrate under its self-weight. From Figure 2.134b, dynamic equili-
brium of a small beam segment of length dx requires that

aa—::dx = mdxzz—t}; (2.391)
where
2
27)2’ = % (2.392)
and
MV M (2.393)

T’ x o

Substituting these equations into Equation 2.391 gives the equation of motion of the flexural beam:
oty mdly

—~+—==5=0 2.394

o | EIor (2.394)

Equation 2.394 can be solved for beams with given sets of boundary conditions. The solution consists of
a family of vibration mode with corresponding natural frequencies. Standard results are available in
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TABLE 2.6 Frequencies and Mode Shapes of Beams in Flexural Vibration

kn EI
=.J—H
b 2n \ mL* z

L=length (m)
EI=flexural rigidity (N m?)

n=1,23, ... M =mass per unit length (kg/m)
Boundary condition K, n=1,2,3 Mode shape, y, (%) A, n=1,2,3 ...
Pinned—pinned (nm)? sin ?
i — 7
l 1
o |
y
VEKx v EKqx
Fixed—fixed 22.37 cosh L" — cos L" 0.98250
61.67 1.00078
:i E 120.90 — A, (sin h—vfz”x — sin %) 0.99997
—X 199.86 1.00000
l L { 298.55 0.99999
2
y (2n+1)%, 1.0, n>5
n>>5
VK, VK,
Fixed—pinned 15.42 cosh L”x - cosT”x 1.00078
49.96 1.00000
;- 2 104.25 B 1.0, n>3
L | 178.27 L L
L | 272.03
2
y (4n+172%,
n>>5
VK,x VvV K,x
Cantilever 3.52 cosh [ s 0.73410
22.03 1.01847
?i ) 61.69 — A, (sinh VX _ g VX 0.99922
— L L
| L | 120.90 1.00003
L | 199.86 1.0, n>4
y .
2n—1)7°"=,
@n—=1)"7
n>>5

Table 2.6 to compute the natural frequencies of uniform flexural beams with different supporting
conditions. Methods are also available for dynamic analysis of continuous beams (Clough and Penzien
1993).

2.13.7.2 Shear Vibration of Beams

Beams can deform by flexure or shear. Flexural deformation normally dominates the deformation of
slender beams. Shear deformation is important for short beams or in higher modes of slender beams.
Table 2.7 gives the natural frequencies of uniform beams in shear, neglecting flexural deformation.
The natural frequencies of these beams are inversely proportional to the beam length L rather than L7,
and the frequencies increase linearly with the mode number.
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TABLE 2.7 Frequencies and Mode Shapes of Beams in Shear Vibration

L =length
K= shear coefficient (Cowper 1966)
e & E Hz G =shear modulus = F/[2(1+V)]
" om\ pl2 p =mass density
Boundary condition K,n=1,2,3,... Mode shape, y, (%)
Fixed—free
nnx
nt, n=1,2,3, ... cos—, n=12,3,...
L L
X
y
Fixed—fixed
L Ll
. Nmx
nmt,n=1,2,3, ... smT, n=123 ...
X L

2.13.7.3 Combined Shear and Flexure

The transverse deformation of real beams is the sum of flexure and shear deformations. In general,
numerical solutions are required to incorporate both the shear and flexural deformations in the pre-
diction of natural frequency of beams. For beams with comparable shear and flexural deformations, the
following simplified formula may be used to estimate the beam’s frequency:

111
f2 ff"z ](;2

where f is the fundamental frequency of the beam, and f; and f; are the fundamental frequencies

(2.395)

predicted by the flexure and shear beam theories, respectively (Rutenberg 1975).

2.13.7.4 Natural Frequency of Multistory Building Frames

Tall building frames often deform more in the shear mode than in flexure. The fundamental frequencies
of many multistory building frameworks can be approximated by (Rinne 1952; Housner 1963)

f=a~= (2.396)
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where o is approximately equal to 11 v/m/s, B is the building width in the direction of vibration, and H
is the building height. This empirical formula suggests that a shear beam model with f inversely pro-
portional to H is more appropriate than flexural beam for predicting natural frequencies of buildings.

2.13.8 Portal Frames

A portal frame consists of a cap beam rigidly connected to two vertical columns. The natural frequencies
of portal frames vibrating in the fundamental symmetric and asymmetric modes are shown in Table 2.8

TABLE 2.8 Fundamental Frequencies of Portal Frames in Asymmetrical Mode of Vibration

First asymmetric in—plane mode

52 1/2
E L
f 4 < 1 1> Hz

LA

E=modulus of elasticity

L, I=area moment of inertia
m=mass per unit length
A value
Pinned bases Clamped bases
m L,/L, L/L,
m,  EL/EL 025 0.75 1.5 3.0 6.0 0.25 0.75 1.5 3.0 6.0
0.25 0.25 0.6964  0.9520 1.1124 1.2583 1.3759  0.9953 1.3617 1.6003 1.8270  2.0193
0.75 0.6108 0.8961 1.0764 1.2375 1.3649 0.9030 1.2948 1.5544 1.7999 2.0051
1.5 0.5414  0.8355 1.0315 1.2093 1.3491 0.8448 1.2323 1.5023 1.7649 1.9853
3.0 0.4695 0.7562 0.9635 1.1610 1.3201 0.7968 1.1648 1.4329 1.7096 1.9504
6.0 0.4014  0.6663 0.8737 1.0870 1.2702  0.7547 1.1056 1.3573 1.6350 1.8946
0.75  0.25 0.8947 1.1740 1.3168 1.4210 1.4882 1.2873 1.7014 1.9262 2.0994  2.2156
0.75 0.7867 1.1088 1.2776 1.3998 1.4773 1.1715 1.6242 1.8779 2.0733 2.2026
1.5 0.6983 1.0368 1.2281 1.3707 1.4617 1.0979 1.5507 1.8218 2.0390 2.1843
3.0 0.6061 0.9413 1.1516 1.3203 1.4327 1.0373 1.4698 1.7454 1.9838 2.1516
6.0 0.5186  0.8314 1.0485 1.2414 1.3822  0.9851 1.3981 1.6601 1.9072  2.0983
1.5 0.25 1.0300 1.2964 1.4103 1.4826 1.5243 1.4941 1.9006 2.0860 2.2090 2.2819
0.75 0.9085 1.2280 1.3707 1.4616 1.5136 1.3652 1.8214  2.0390  2.1842  2.2695
1.5 0.8079 1.1514 1.3203 1.4326 1.4982 1.2823 1.7444 1.9837 2.1515 2.2521
3.0 0.7021 1.0482 1.2414 1.3821 1.4694 1.2141 1.6583 1.9070  2.0983  2.2206
6.0 0.6011 0.9279 1.1335 1.3024 1.4191 1.1570 1.5808 1.8198 2.0234 2.1693
3.0 0.25 1.1597 1.3898 1.4719 1.5189 1.5442 1.7022 2.0612 2.1963 2.2756 2.3190
0.75 1.0275 1.3202 1.4326 1.4981 1.5336 1.5649 1.9834  2.1515 2.2520  2.3070
1.5 0.9161 1.2412 1.3821 1.4694 1.5182 1.4752 1.9063 2.0982 2.2206 2.2899
3.0 0.7977 1.1333 1.3024 1.4191 1.4896 1.4015 1.8185  2.0233 2.1693  2.2595
6.0 0.6838 1.0058 1.1921 1.3391 1.4395 1.3425 1.7382 1.9366 2.0964 2.2094
6.0 0.25 1.2691 1.4516 1.5083 1.5388 1.5545 1.8889 2.1727 2.2635 2.3228 2.3385
0.75 1.1304 1.3821 1.4694 1.5181 1.5440 1.7501 2.0980  2.2206  2.2899  2.3268
1.5 1.0112 1.3023 1.4191 1.4896 1.5287 1.6576 2.0228 2.1693 2.2595 2.3101
3.0 0.8827 1.1919 1.3391 1.4395 1.5002 1.5817 1.9358  2.0963 22095  2.2802

6.0 0.7578  1.0601 1.2277  1.3595  1.4502  1.5244  1.8550  2.0110  2.1380  2.2309
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and Table 2.9, respectively. The beams in these frames are assumed to be uniform and sufficiently
slender so that shear, axial, and torsional deformations can be neglected. The method of analysis of
these frames is given in Yang and Sun (1973). The vibration is assumed to be in the plane of the frame,
and the results are presented for portal frames with pinned and fixed bases.

If the beam is rigid and the columns are slender and uniform, but not necessarily identical, the
natural fundamental frequency of the frame can be approximated using the following formula of Robert
(1979):

1 125" Ei, 12

S H 2.397
2 [B(M+ 037y M) “ (2:397)

f

where M is the mass of the beam, M; is the mass of the ith column, and EJ; is the flexural rigidity of the
ith column. The summation refers to the sum of all columns, and i must be greater than or equal to 2.
Additional results for frames with inclined members are discussed in Chang (1978).

TABLE 2.9 Fundamental Frequencies of Portal Frames in Symmetrical Mode of Vibration

First symmetric in-plane mode

Exly, my 2 (EL\“?
1 =5 Cm )
1

i
’ | E=modulus of elasticity
I

I=area moment of inertia

L ‘\ i

/ m=mass per unit length

|
— L \J
| |
I L, |
A value
<Elll m2> 4,
(m2> 1/4 <E212>3/4 EL m L
m E L 8.0 4.0 2.0 1.0 0.8 0.4 0.2

Pinned bases
8.0 0.4637 0.8735 1.6676 3.1416 3.5954 3.8355 3.8802
4.0 0.4958 0.9270 1.7394 3.1416 3.4997 3.7637 3.8390
2.0 0.5273 0.9911 1.8411 3.1416 3.4003 3.6578 3.7690
1.0 0.5525 1.0540 1.9633 3.1416 3.3110 3.5275 3.6642
0.8 0.5589 1.0720 2.0037 3.1416 3.2864 3.4845 3.6240
0.4 0.5735 1.1173 2.1214 3.1416 3.2259 3.3622 3.4903
0.2 0.5819 1.1466 2.2150 3.1416 3.1877 3.2706 3.3663
Clamped bases
8.0 0.4767 0.8941 1.6973 3.2408 3.9269 4.6167 4.6745
4.0 0.5093 0.9532 1.7847 3.3166 3.9268 4.5321 4.6260
2.0 0.5388 1.0185 1.9008 3.4258 3.9268 4.4138 4.5454
1.0 0.5606 1.0773 2.0295 3.5564 3.9267 4.2779 4.4293
0.8 0.5659 1.0932 2.0696 3.5988 3.9267 4.2351 4.3861
0.4 0.5776 1.1316 2.1790 3.7176 3.9267 4.1186 4.2481
0.2 0.5842 1.1551 2.2575 3.8052 3.9266 4.0361 4.1276
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2.13.9 Damping

Damping is found to increase with the increasing amplitude of vibration. It arises from the dissipation
of energy during vibration. The mechanisms that contribute to energy dissipation are material
damping, friction at interfaces between components, and energy dissipation due to the foundation
interacting with soil, among others. Material damping arises from the friction at bolted connections
and the frictional interaction between structural and nonstructural elements such as partitions and
cladding.

The amount of damping in a building can never be predicted precisely, and design values are generally
derived based on dynamic measurements of structures of a corresponding type. Damping can be
measured based on the rate of decay of free vibration following an impact, by spectral methods based on
analysis of response to wind loading, or by force excitation by mechanical vibrator at varying frequency
to establish the shape of the steady state resonance curve. However, these methods may not be easily
carried out if several modes of vibration close in frequency are presented.

Table 2.10 gives the values of modal damping that are appropriate for use when amplitudes are low.
Higher values are appropriate at larger amplitudes where local yielding may develop, for example, in
seismic analysis.

2.13.10 Numerical Analysis

Many less complex dynamic problems can be solved without much difficulty by hand methods. More
complex problems, such as determination of natural frequencies of complex structures, calculation of
response due to time-varying loads, and response spectrum analysis to determine seismic forces, may
require numerical analysis. Finite element method has been shown to be a versatile technique for this
purpose.

The global equations of an undamped force-vibration motion, in matrix form, may be written as

[MJ{5} + [K[{x} = {F(1)} (2.398)

where

n n

n

K=Y (M= (ml, [F=Y [ (2:399)
=1 =1 i1

are the global stiffness, mass, and force matrices, respectively. [k;], [#1;], and {f;} are the stiffness, mass,

and force of the ith element, respectively. The elements are assembled using the direct stiffness method to

obtain the global equations such that intermediate continuity of displacements is satisfied at common

nodes and, in addition, interelement continuity of acceleration is also satisfied.

Equation 2.398 is the matrix equations discretized in space. To obtain the solution of the equation,
discretization in time is also necessary. The general method used is called direct integration. There are
two methods for direct integration: implicit or explicit. The first, and simplest, is an explicit method
known as the central difference method (Biggs 1964). The second, more sophisticated but more versatile,
is an implicit method known as the Newmark method (Newmark 1959). Other integration methods are
also available in Bathe (1982).

TABLE 2.10 Typical Structural Damping Values

Structural type Damping value, & (%)
Unclad welded steel structures 0.3

Unclad bolted steel structures 0.5

Floor, composite and noncomposite 1.5-3.0

Clad buildings subjected to side sway 1
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The natural frequencies are determined by solving Equation 2.398 in the absence of force F(t) as
[M{x} + [K]{x} =0 (2.400)
The standard solution for x(¢) is given by the harmonic equation in time

{x(1)} = {X}e" (2.401)

where {X} refers to the part of the nodal displacement matrix called natural modes that are assumed to
be independent of time, i is the imaginary number, and w is the natural frequency.
Differentiating Equation 2.401 twice with respect to time, we have

%(t) = {X}(—w?)e (2.402)
Substituting Equations 2.401 and 2.402 into Equation 2.400 yields

e ([K] — 0’ MD){X} =0 (2.403)

. it -« .
Since €'’ is not zero, we obtain

(K] = *M]){X} =0 (2.404)

Equation 2.404 is a set of linear homogenous equations in terms of displacement mode {X}. It has a
nontrivial solution if the determinant of the coefficient matrix {X} is nonzero, that is,

K} — o*[M] =0 (2.405)

In general, Equation 2.405 is a set of n algebraic equations, where # is the number of degrees of
freedom associated with the problem.
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3.1 Dynamic Forces and Structural Models

3.1.1 Characteristics of Dynamic Forces

The subject presented herein deals with the response of structures subjected to dynamic forces or loads,
whose magnitude varies with time. Generally, most of the forces applied to a structure involve, in some
manner, time variation; static force may be viewed as a special dynamic case when the force applied is
slow enough without causing structural vibration. As structural materials, construction methods, and
computer technology rapidly advance, constructed facilities of building structures and nonbuilding
structures become taller and slender. Therefore, dynamic behavior of such structures must be included
in their design.

The dynamic forces acting on a structure can be categorized in different ways according to (1) the
original sources causing vibration, (2) the characteristics of vibration, whether periodic, nonperiodic,
or random, or (3) the definite function of time as deterministic or nondeterministic. Rotating
machinery, blast, wind, and earthquake are in the first category. Dynamic force due to unbalanced
machinery varied repeatedly in magnitude with time is called periodic force. Earthquake, wind, and
blast, however, do not have any periodicity and are hence called nonperiodic or random forces.
A deterministic force is one where its time function can be specified in regular or irregular variation;
for instance, the time variation of rotating machinery can be represented by a mathematical function,
blast and impulse may be specified by mathematical curves or lines, and an earthquake may be specified
by accelerograms in magnitude with time intervals. These forces may be classified as deterministic. On
the contrary, nondeterministic forces cannot be specified as definite functions of time because of the
inherent uncertainty in their magnitude and in their variation with time. These types of load should
be described through a statistical approach. Wind is in this category and earthquake is also non-
deterministic because the magnitude and frequency distribution of any future earthquake cannot be
predicted with certainty but can be estimated only in a probabilistic sense. The classification of loading
is shown in Figure 3.1. This chapter deals with both deterministic and nondeterministic loadings or
forces for which the response analysis methods are presented. Stochastic analysis is illustrated with
seismic response.

3.1.2 Mathematical Models of Structural Systems

Analytical accuracy and computational efficiency of dynamics problems depends on several key features:
structural modeling, material property idealization, loading assumptions, and numerical techniques.
This chapter covers three well-known models:

¢ Lumped-mass system
¢ Continuous-mass system
e Finite element system

In fact, the lumped-mass system and the finite element system are similar in modeling and therefore
are sometimes classified into one group known as the discrete system.

Static o
Periodic

Loading Deterministic

(prescribed)
. Nonperiodic
Dynamic

Nondeterministic
(random)

FIGURE 3.1 Loading classification.
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3.2 Response Analysis of Single d.o.f. Systems
3.2.1 Definition of d.o.f.

The degree of freedom (d.o.f.) of a structure may be first explained from the nature of loading as
statically applied load or dynamic excitation to a structure. In general, d.o.f. represents the independent

movement of structural nodes for a static case, but the independent movements of lumped masses for
a dynamic case. The number of structural nodes can be more than the number of lumped masses.
Furthermore, each lumped mass may have more than one independent motion. For instance, the plane
frame shown in Figure 3.2 should have three d.o.f. (x, x,, x3) for a static case. However, the lumped-
mass model may have one (x3), two (x3 and x,), or three (x3, x4, and xs) d.o.f. corresponding to the
response analysis of lateral motion (x3) only, lateral and vertical motions (x3, x4) only, or lateral, vertical,
and rocking (s, x4, x5) motions. Therefore, the number of masses and the dynamic d.o.f. are determined
by the structural analyst based on the structural configuration and the interest of the analytical results.
Note that x; and x, in Figure 3.2b are not dynamic d.o.f,, but they must be given in order to allow the
structural joints to rotate during vibration.

3.2.2 Undamped and Damped Free Vibration
3.2.2.1 Undamped with Initial Conditions

Consider the spring-mass model shown in Figure 3.3. This model, which consists of a mass of weight, W,
suspended by means of a spring with stiffness, K, is idealized from the accompanying unsymmetrical
rigid frame where L and I signify the member’s length and its cross-sectional moment of inertia,
respectively. The spring stiffness, K, is defined as the force necessary to stretch or compress the spring

(@) ()

X2 X2
X~ . Xy \ >
’ L.L, A ’ T/ x3
X4
1, L
1L I Ly
77 Ve
FIGURE 3.2 Plane unsymmetric rigid frame: (a) static d.o.f. and (b) dynamic d.o.f.
Xyt x
W -
i I=oo
Il 1
I 1
! !
// /I
K K \
1.1, L, L, Equil%b.rium
position Equilibrium
position
T7 77
Rigid frame

FIGURE 3.3 Structures and spring-mass model.
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one unit of length, which, in fact, is the force caused by a unit side sway of the frame. The mass is in
equilibrium under the action of two equal and opposite forces: the weight, W, acts downward and the
spring force, Kxy, upward. The term x, denotes static deflection, which is the amount of movement from
the undeformed position to the equilibrium position where the displacement of the mass is measured
during the vibration.

The motion equation of the structure is

Mx+ Kx =0 (3.1a)
or
¥+p'x=0 (3.1b)

in which p =/K/M, where p is the angular frequency with the unit of rad/s; M= W/g; and g is the
gravity of acceleration. Note that the units of K and M must be consistent. The relationships between
frequency and period may be expressed as

2
p= ?71 =2nf (angular frequency,rad/s)

I _p
f= =5 (natural frequency, cycle/s)
1 2nm
T=-=—  (natural period,s)
for

The solution of Equation 3.1 is
x = Asin pt + Bcos pt (3.2)

where the integration constants A and B should be determined by using the information of motion as
the known displacement, x, and velocity, %, at any time, . The displacement and velocity may be given at
the same time, say x; and X, or at a different time, x, at f and %;; at #;. Let us assume that x and x are
given as x; and X, at f, then Equation 3.2 becomes

x = xpcos p(t — ty) + %sinp(t — 1) (3.3)

When the original time is measured from the instant that the mass is in one of the extreme positions,
the initial displacement x, is X (X denotes amplitude) and the initial velocity is zero (as the physical
condition should be). When time is measured from the instant that the mass is in the neutral position, the
initial conditions are x=0 and x= %,. If the origin is located at £, units of time after the mass passes the
neutral position with the initial conditions of x= x,y. The general expression becomes

X = xp cos(pt —y) + %Sin(pt -7) (3.4a)
or
X 2
x=1/x%+ (7?)) cos(pt —y — ) (3.4b)
in which
o = tan™! Fo/p and 7 = pty
Xt0

Note that the amplitude of a motion depends on the given initial conditions and that all the motions
are in the same manner except they are displaced relative to each other along time ¢ The relative
magnitude in radians between x, X, and % is called the phase angle.
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3.2.2.2 Damped Vibration with Initial Conditions

In the previous discussion, we assumed an ideal vibrating system free from internal and external
damping. Damping may be defined as a force that resists motion at all times. Therefore, a free undamped
vibration continues in motion indefinitely without its amplitude diminishing or its frequency changing.
Real systems, however, do not possess perfectly elastic springs nor are they surrounded by a frictionless
medium. Various damping agents — such as the frictional forces of structural joints and bearing
supports, the resistance of surrounding air, and the internal friction between molecules of the structural
materials — always exist.

It is difficult, if not impossible, to derive a mathematical formula for damping resistance that
represents the actual behavior of a physical system. A simple yet realistic damping model for
mathematical analysis is that the damping force is proportional to velocity. This model can
represent structural damping of which the force is produced by the viscous friction and is therefore
called viscous damping. Figure 3.4 shows a vibration model consisting of an ideal spring and dashpot
in parallel. The dashpot exerts a damping force, cx, proportional to the relative velocity, in which
c is a proportionality and is called the coefficient of viscous damping. The governing differential
equation is

Mx+cx+Kx=0 (3.5)
of which the standard solution is

x = Cre"! + Cye™! (3.6)
where C; and G, are integration constants, and «; and o, may be expressed as

TK
€ . (3.7)

nE T Ve T M

c c? K

o Vo M (3.8)

Oy =

After substituting Equations 3.7 and 3.8 for the corresponding terms in Equation 3.6, possible solutions
can be obtained for three cases of Z/4M? = KIM, &Z/4M* > K/M, and &/4M? < K/ M, corresponding to
critical damping, overdamping, and underdamping, respectively.

When #/4M? = K/ M, the value of ¢ is called critical damping and takes the form

2K
¢ = 2VKM = 2Mp = N (3.9)
The ratio of c/c, is called viscous damping factor or simply damping factor, p, and may be expressed as

_c__°c__ ¢ _@ (3.10)
P 2Mp 2 (kM) 2K '

In most structural and mechanical systems, the assumption of underdamping is justified, that is, p < 1.
For this case, the motion equation is

%+ 2ppx +p'x =0 (3.11)
The displacement response may be obtained from

x=¢e "P"(A cos\/1— p2pt+ Bsiny/1— p?pt) (3.12a)

or

x = Ce " cos(/1— p?pt —a) (3.12b)
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Kx<— Mx  force
. — -— —
X = Damping force
FIGURE 3.4 Spring-mass and viscous damping model.
A
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P=0.05
0.10
0.25
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A A /\ i
i 2n 3n 4n Sn § 7 6m n

FIGURE 3.5 Motion with underdamping. (Reprinted from Ref. [1, p. 11] by courtesy of Marcel Dekker, Inc.)

Note that the oscillatory motion has the frequency, damped frequency, and the associated period, damped
period, which may be expressed as

pr=pV1-p° (3.13)

2 T
T n (3.14)

pVI-p 1-p?
Actually, the difference between p*, T* and p, T is slight. The terms p and T may be used instead of
p* and T* in damped vibrations without introducing a serious error.
If the given initial conditions of xy =0 and x= p at t=0 are inserted into Equation 3.12b, we obtain

xz%pzefm” cos(\/l —p? pt—g) (3.15)
which is plotted in Figure 3.5 for various damping factors of 0.05, 0.10, 0.25, and 0.35. It can be seen that
the amplitudes of successive cycles are different and the periods of successive cycles are the same; strictly
speaking, the motion is not regarded as being periodic but as time-periodic. In most engineering
structures, p may vary from 0.02 to 0.08. Of course, the damping factor for some buildings may be as
high as 0.15, depending on the nature of the material used in their construction and the degree of
looseness in their connections.

3.2.3 Undamped and Damped Forced Vibration

3.2.3.1 Undamped Forced Vibration with Harmonic Force (Steady-State Response)

Consider the spring-mass model shown in Figure 3.3 where the mass is subjected to a harmonic force
F sin wt with forced frequency . Let F sin ot be considered positive to the right of the equilibrium
position from which displacement, x, is measured. The differential equation of motion is

MXx + Kx = Fsin ot (3.16a)
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or
X+ pPx = pxy sinot (3.16b)

in which x,; = F/K as static displacement. The homogeneous solution is x, = A sin pt+ Bcos pt; the term,
p = +/(K/M), is independent of the forced frequency, w. The particular solution may be obtained by
trying the following:

x, = Cysinwt + G, cos wt (3.17)

Substituting x, and %, in Equation 3.17 for C; and GC,, we then obtain the following complete
solution:

F
x:thrxP:Asinpt+Bcospt+msinwt (3.18a)
in which A and B should be determined by using the initial conditions of free vibration. When the force
Fsin wt is applied from a position of rest, ignore x;, (free vibration due to x, and X). The response of
forced vibration corresponding to the third term of Equation 3.18a is

_ FK
1= (?/p?)
which indicates that the motion is periodic with the same frequency as that of the force and may endure

as long as the force remains on the mass; this is called steady-state vibration. Note that F/K is static
displacement xy; when sin ot =1, the displacement x is the amplitude X. In general, the application of

X sin ot (3.18b)

a disturbing force can produce an additional motion superimposed on steady-state motion. This
additional motion is from the homogeneous solution of the free vibration. Consider the initial condi-
tions of xy =0 and %, =0 at t=0 in Equation 3.18a. The result is

X =-————|sinwt ——sinpt (3.19)
(K — Mw?) p

Comparing Equation 3.18b with Equation 3.19 reveals that there is another term associated with sin pt.
This is due to the fact that the application of a disturbing force produces some free vibrations of the
system. Thus, the actual motion is a superposition of two harmonic motions with different frequencies,
amplitudes, and phase angles. In practical engineering, there is always some damping. So, free vibration
is eventually damped out and only forced vibration remains. The early part of a motion consisting of
a forced vibration and a few cycles of free vibration is called transient vibration, which can be important
in aircraft design for landing and for gust loading.

3.2.3.2 Undamped Forced Vibration with Impulses (Shock Spectra)

When the structure is subjected to impulses of duration {, the maximum response can be defined
in terms of amplification factor, A, expressed in terms of amplitude (X) and static displacement (xy) as

Am = X 2(1 — cos 2—;;) (3.20)

The variation of amplitude in terms of force duration and structural natural period ({/T) is expressed in
the shock spectrum shown in Figure 3.6a. The shock spectra for three other types of impulses are similarly
sketched in Figure 3.6b. Note that maximum amplification factor is twice the static displacement and
that the amplification factor can be higher after the impulse than that during the impulse (see the case of
triangular impulse in sine function shape).
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FIGURE 3.6 Shock spectra of impulses. (Reprinted from Ref. [1, pp. 21 and 22] by courtesy of Marcel Dekker, Inc.)

3.2.3.3 Damped Forced Vibration with Harmonic Force (Steady-State Response)

Assuming that the structure is subjected to a harmonic force F sin wt, the motion equation is
MXx + cx + Kx = Fsinwt (3.21a)
Following Equations 3.11 and 3.16b, the motion equation can be rewritten as
5&+2pp5c+p2x:]\—lj[sinwt = pxy sinwt (3.21b)

Similar to Equation 3.18b, the amplification factor for forced damped vibration may be expressed as

X 1
A =X (3.22)

S = /p) + (2p0/p)

Equation 3.22 is plotted in Figure 3.7, Ay, versus /p, for various values of p. It is seen that the peak
amplitude, defined as the amplitude at d(A,,)/d(w/p) =0, is greater than the resonant amplitude, defined
as the amplitude at w/p = 1. Because they occur practically at the same frequency and it is easy to find the
resonant frequency, engineers usually overlook peak amplitude.

3.2.3.4 Damped Forced Vibration with Harmonic Force or Foundation
Movement (Transmissibility)

When a harmonic force F cos wt is acting on the mass, the ratio between the amplitude of the force (Af)
transmitted to the foundation and the amplitude of the driving force F is called transmissibility and is
expressed as follows:

n=&:¢ 1+ (20p/p)’ (3.23)

[1— (o/p)]" + (200p/p)°

When the foundation is subjected to X, cos wt, the structural mass is induced to vibrate. The ratio of the
amplitude of the mass motion, X;, to the amplitude of the support motion, Xj, is also the transmissibility
shown in Equation 3.23.

The transmissibility versus w/p for various ps is shown in Figure 3.8. A few interesting features of
vibration isolation can be observed from the figure: T, is always less than one when w/p is greater than
V2, regardless of the damping ratio; when w/p is less than v/2, T;, depending on the damping ratio, is
always equal to or greater than one; and T; is equal to one when w/p equals /2 regardless of the amount
of damping.
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FIGURE 3.7 A, versus w/p for various values of p. (Reprinted from Ref. [1, p. 31] by courtesy of Marcel Dekker, Inc.)
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FIGURE 3.8 T, versus o/p for various damping factors. (Reprinted from Ref. [1, p. 38] by courtesy of Marcel
Dekker, Inc.)

3.2.3.5 Damped Forced Vibration with General Forcing Function or Earthquakes
(Duhamel’s Integral)

For general forcing function, F(t), the displacement may be obtained from Equation 3.21 by using

Duhamel’s integral (also convolution integral) as

PP =M E(A) sin p*(t — A) dA (3.24a)

=
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which can be derived with wunit impulse. For practical structural engineering problems, the
damping factors are usually small (p < 15%). p* and p* may be replaced by p and p, respectively. Thus,
Equation 3.24a becomes

t
x= % / e PPN F(A) sinp(t — A) dA (3.24b)
1]

When the structure is subjected to ground acceleration X, the motion equation is
MXx + cx + Kx = —MX, (3.25)

The displacement response is similar to Equation 3.24b in which F(A) is replaced by M. To find the
maximum displacement over the entire or partial record of the earthquake, the integration must be
carried for that record in order to determine the largest displacement corresponding to a given frequency
and damping factor. The integration is shown in Equation 3.26 with consideration of the nature of
ground motion, the negative sign has no real significance and can be ignored:

t
/ e PPN sin p(t — A) dA (3.26)
0

max

1
Sa=-—
p

from which the displacement response spectrum can be established. Spectra for velocities, S, and
accelerations, S,, are then obtained from

Sy = pS (3.27)

Sa = pS, = p*S4 (3.28)

Response spectra computed for the N-S component of El Centro Earthquake, May 18, 1940, are given in
a tripartite logarithmic plot as shown in Figure 3.9. Note that when the frequency is large, the relative
displacement is small and the acceleration is large, but when the frequency is small, the displacement is
large and the acceleration is relatively small; the velocity is always large around the region of inter-
mediate frequencies. Since the response does not reflect the real time-history response but a maximum
value, the response is called pseudo-response such as pseudo-displacement, pseudo-velocity, and pseudo-
acceleration. Note that curves are jagged at different frequencies due to randomness of seismic input.
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FIGURE 3.9 Response spectra for the N-S component of El Centro Earthquake, May 18, 1940. (Reprinted from
Ref. [1, p. 37] by courtesy of Marcel Dekker, Inc.)
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FIGURE 3.10 Elastic and inelastic design spectra. (Reprinted from Ref. [1, p. 376] by courtesy of Marcel Dekker, Inc.)

Smooth design spectra for elastic and inelastic responses are available with consideration of various damping
ratios, soil profiles, and earthquake records [1, pp. 366—379]. Sample elastic and inelastic design spectra are
shown in Figure 3.10 for p = 0.05. The inelastic spectra given are only for ductility 1 =4 and 8. Ductility
factor is designed as the ratio of the maximum displacement to yielding displacement.

3.3 Response Analysis of Multiple d.o.f. Systems —
Lumped-Mass Formulation

3.3.1 Nature of Spring-Mass Model

A structure that is assumed to be a discrete parameter (lumped mass) system must be conceived of as a
model consisting of a finite number of masses connected by massless springs. The spring-mass model,
depending on the characteristics of the structure, can be established in different ways. An example is
shown in Figure 3.11, where M; and M, are masses lumped from girders and columns, and k; and k,
represent column stiffnesses. When the girder is infinitely rigid, the structure has no joint rotations; this
spring-mass model is shown in Figure 3.11b. When the girders are flexible and structural joint rotations
exist, the spring-mass model differs as shown in Figure 3.11c. Note the reason for the difference: if x; is
displaced and the girders are rigid, no force is transmitted to the support. However, with flexible girders,
the joints at the first floor rotate, the column below is distorted, and force is transmitted to the support.

3.3.2 Normal Modes, Modal Matrix, and Characteristics of Orthogonality

The motion equations associated with free undamped vibration of a spring-mass system can be
expressed in matrix form as

[M]{%} + [K{x} =0 (3.29)

where [M] and [K] are called the mass matrix and structural stiffness matrix, respectively. Let the
displacement vector be {x} = (cos pt){X}; then, Equation 3.29 may be expressed as (since cos pt#0)

—pP’[MI{X} + [K{X} =0 (3.30)
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FIGURE 3.11 Spring-mass models for rigid frame: (a) rigid frame; (b) spring-mass model for rigid girders; and
(c) spring-mass model for flexible girders.

which has the following orthogonality characteristics:
{(XIVK{X}, =0, {X}IM]{X}, =0, foru##v (3.31a)
DOIKIXY, £0, {X0MI{X}, £0,  foru=v (3.31b)

In Equation 3.30, p is the eigenvalue (also angular frequency) and X is the eigenvector (also normal
modes). u and v in Equation 3.31 represent uth and vth modes associated with frequencies p, and p,,
respectively. Note that normal modes (or mode shapes) have significant meaning in displacement
response, which in fact, results from a combination of the modes of a system.

Let {®}, and {®}, be modal displacements corresponding to uth and vth modes, respectively, such that

{0}, [M]{®}, =1 (3:32)

When the modal vectors are collected in a single square matrix of order n, corresponding to # modes,
the resulting matrix is called modal matrix, [®]. Using [®] in Equation 3.31 yields Equation 3.33

[@"K][@] = ['p], (@] [M][®] = [1] (3.33)

Note that Equations 3.31 and 3.33 are derived on the basis that [M] = [M]%, [K] =[K]", and DPuF Dy
The orthogonality condition for the unsymmetrical case as well as for zero and repeating eigenvalues
is available [1, pp. 98-106].

3.3.3 Response Analysis and Relevant Parameters

3.3.3.1 Response Analysis and Participation Factor

This section covers both undamped and damped vibration analyses. Mathematical formulations are first
established in general form with viscous damping and then simplified to the undamped case. Consider
the shear building shown in Figure 3.12 subjected to applied force F(f) and viscous damping force
expressed as cxy. Using the free-body diagrams, the motion equations may be written as

Ml.;Cl + k1X1 + Clel — kzXz + kle — C25€2 + C25C] = F](t) (3343)
M25C2 + k2X2 - kle + Cz.ﬁ'Cz - CzJ'Cl = Fz(t) (334b)

and in matrix notation as

[M]{3} + [CH{x} + [K]{x} = {F(1)} (3.34¢)
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FIGURE 3.12  Structural model with viscous damping.
where the damping matrix is
[c] = [Cl Ta ‘CZ} (3.35)
—Q (%)

The force matrix is {F(#)} = {F}f(). For earthquake excitation, {F(#)} = — [M{I,}%, {I,} =[1 1" is
the influence factor to specify the force induced by X, at each floor. By using the modal matrix [®]
or normal mode matrix [X] with the orthogonality conditions, Equation 3.34c may be decoupled as
Equation 3.36 or 3.37.

{#} + [@"[Cl@{{#'} + ['p{x} = [ {F(1)} (3.36)
(M} + (X)X Y + [pt] [ ('} = [X]T{E()} (3.37)
in which, [\M,] = [X]"[M][X], let
{0}/ [CH{®Y,; = 2,p:; (3.38)
{X}; [CHX}; = 2p,piMi5 (3.39)

where 6;; is the Kronnecker delta. Note that for given damping coefficients based on physical condition,
[®]T[C][®] need not necessarily be a diagonal matrix. However, one must use the diagonal elements in
Equation 3.36 or 3.37 to carry out simple calculations using Duhamel’s integral. Consequently, any row
of Equation 3.36 or 3.37 is identical to the displacement response equation of the single d.o.f. system as
shown in Equation 3.21. For instance, the ith row of Equation 3.36 is

&+ 2p,pi%; + pix; = {@}{F(1)} (3.40)
Thus following Equations 3.12a and 3.24b with p= p*, the complete solution of Equation 3.40 is

/ —p;pit : {(D}T{F} ' —pipi(t—A) :
x; = e PPt (Acos pit + Bsin p;t) Jréi e PIPUALE(A) } sinp;(t — A) dA (3.41a)
i 0
Similarly, the complete ith row of Equation 3.37 is

T t
x; = e PP (Acos p;it + Bsinp;t) + % e PR IF(A)} sinpi(t — A) dA (3.41b)
ipiJo

Considering the forced vibration due to an earthquake, we may express Equations 3.41a and 3.41b as
Equations 3.42a and 3.42b, respectively

1

T t
X, = {@},-;w / pie PPN g, sinpi(t — A) dA (3.42a)
i 0
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X :%/ pie e Pipit= Axgsmp(t‘— A)dA (3.42b)

Equations 3.42a, and 3.42b can be rewritten as
xi = xS (3.42c)

in which x/; is equivalent to static displacement and S,; is the velocity response spectrum corres-

ponding to the ith mode. For undamped vibration, we simply let e *#" and e *#{'~*) be a unity in
Equations 3.40 to 3.42. The actual displacement response is obtained from

{x} = [@H{x} (3.43a)

or

{x} = [X){x} (3.43b)
As mentioned before, [@] and [X] have significant physical meaning because they show how much
contribution is made from each mode to the total displacement.

For example, the structure shown in Figure 3.13 has p; =2.218 rad/s, p,=10.781 rad/s, and the
applied forces F,(t) = F,f(1), F,(t) = F,f (t), where F; =20 k, F, =30k, and f(#) =1 — (#/{) are given in
the accompanying figure. Find the displacement contributed from each individual mode and the total
response. Assume initial conditions are zero. [®;; ®,;] =[0.340 0.293], [®}, Dy,] =[—-0.293 0.340].
Based on Equations 3.41 and 3.43a, the displacement response is

{x}=[0 }/t[ sinp(r — A)\['p\] 7' [®]'{F(A)} dA

(D”F/f sin p;(t — A)dA

Dyx) + Dy,

r=1

Oy %1 + D

x;(due to the first mode) + x;(due to the second mode)

= { (3.44)

x(due to the first mode) + x,(due to the second mode)

The results obtained from Equation 3.44 are illustrated in Figure 3.14 and Figure 3.15. This example
reveals how the individual modes contribute to the total response. In this case, the first mode is indeed
contributing the most. For tall buildings, in general, the first several fundamental modes are essential in
affecting response behavior and are practically needed in design. This example also reveals that @;F,
is measuring how much of the applied force contributing to the rth mode. Thus ®;F,, X,;F,, ®,;M,, and
X,;M, in Equations 3.41a, 3.41b and 3.42a, 3.41b are all measuring how much the rth mode participates

Fi(t) — X
[=e f@
1 1
Fy(t) — X
[ =00
I I
777 777

{=04s

FIGURE 3.13 Undamped forced vibration of a shear building.
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FIGURE 3.14 x; and x, influenced by individual modes. (Reprinted from Ref. [1, p. 62] by courtesy of Marcel
Dekker, Inc.)
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FIGURE 3.15 Displacements x; and x,. (Reprinted from Ref. [1, p. 63] by courtesy of Marcel Dekker, Inc.)

in synthesizing the structure’s total load and are called participation factor(s). Note that the time function
f(#) in Equations 3.41a, 3.41b and 3.42a, 3.42b is supposed to be the same for all the exciting forces.
When f(¢) differs among individual forces, the modal matrix equation can be solved by using numerical
integration.

3.3.3.2 Modal Combination Methods

For using response spectra, solutions obtained from Equation 3.42c are always the maximum for
each mode during the vibration. The displacements are apparently overestimated and conservative. One
technique to level off the overestimated response is called the root-mean-square method or square-
root-of-the-sum-of-the-squares (SRSS) and can be expressed as follows:

N
Z (xk)2; N = number of modes considered (3.45)

n=1

in which superscript krepresents the kth d.o.f. of the structural system. This method of combination is known
to give a good approximation of the response for frequencies distinctly separated in neighboring modes.
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In general, the complete-quadratic-combination (CQC) method may offer a significant improvement in
estimating maximum structural response [2]. The CQC combination is expressed as

where o is called cross-correlation coefficient indicating the cross-correlation between modes i and j.

o is a function of model frequency and damping factor of a structure, and can be expressed as
8 2 1 3/2
2 = Pt g (3.47a)
(1= ¢*)" +4p*q(1 + q)
and
q= pj/pi (3.47b)

The correlation coefficient diminishes when g is small, that is, p;and p; are distinctly separate, particularly
when damping is small, such as p =0.05 or less. The CQC method is significant only for a narrow range
of g. Note that when o;; is small, the second term of Equation 3.46 can be neglected; consequently, CQC
is reduced to SRSS given in Equation 3.45. A computer program for CQC is available [1, pp. 871-874].

3.3.3.3 Multicomponent Seismic Component Input

The modal analysis presented so far is for one horizontal ground motion. Actually, earthquakes can
induce three translational and three rotational motions. Since most strong motion seismographs are
designed to record three translational motions only, no actual record of rotational earthquakes is
available. In general, rotational components have not been part of dynamic structural analysis. But if
their effect is significant, then the rotational response of critical structures such as nuclear power plants
should be considered for safety. For the reader’s convenience, a sample case is shown of how to generate
seismic rotational records from translational ones, how to compute torsional response spectra from
rotational records, and how to find the total response due to translations and rotations [1, pp. 383—414].

3.3.4 Proportional and Nonproportional Damping

There are several kinds of damping, namely, structural damping, coulumb damping, and viscous damping.
Structural damping results from internal friction within the material or at connections of a structure.
Coulumb damping is due to a body moving on a dry surface. Viscous damping results from a system
vibrating in air or liquid, of which examples are shock absorbers, hydraulic dashpots, and a body sliding
on a lubricated surface. Viscous damping is commonly used in structural dynamics and is therefore
presented in this chapter. The damping matrix can be symmetric or nonsymmetric, proportional or
nonproportional. For general structural dynamics, a damping matrix can be treated as symmetric
and proportional. To identify whether a damping formulation is proportional or not, one may use
Equation 3.10, p = ¢/(2Mp) = ¢/[2+/(KM)] = ¢p/(2K), which indicates that the damping factor, p,
can be expressed in terms of mass, stiffness, or a combination of both. For a general expression, let

(€] = ofM] + BIK] (3.48)
which is substituted in Equation 3.38 with consideration of orthogonality condition; then
o+ Bp; = 2pipi (3.49)
Thus, the damping factor can be determined for a given set of o and f as

b

TR (3.50a)

Pi



Structural Dynamics 3-17

Examining o and f reveals the physical sense of p. If o =0, then

(3.50b)

which means that p; is proportional to p;. For higher modes of larger p;, p; will be larger; then, the higher
modes of a system will be damped faster than the lower modes. Since [C] = f[K], the damping is
proportional to stiffness and is called relative damping because it is associated with relative velocities of
displacement coordinates.
Let f =0; then

o
2
which means that p; is inversely proportional to p;. Therefore, lower modes will be damped out more
quickly than higher modes. Since [C] = o[ M], which is associated with absolute velocity of displacement
coordinates, the damping is called absolute damping. Damping expressed in Equation 3.48 is called
proportional damping, from which [®]"[C][®] is always diagonal. Nonproportional damping can be due
to different damping factors assigned to different d.o.f. of a system. For instance, engineers may use
different construction materials at various floors of a building, employ a concentrated damper (such as a

0; (3.50¢)

control system) at a certain structural level, or assign larger damping coefficients for the foundation than
for the superstructure when foundation—structure interaction is encountered. For response analysis with
nonproportional damping, detailed analysis procedures are available including calculation of complex
eigenvalues [1, pp. 128-159].

3.3.5 Various Eigensolution Techniques

The methods used in finding natural frequencies and normal modes are referred here as eigensolution
techniques. Calculation of eigensolution is time consuming and expensive in computation. Most of the
computer programs have a few eigensolution subroutines for the user to choose; therefore, a under-
standing of the numerical procedures of the techniques is essential to use the computer program properly
and to interpret the results with confidence. Thus, a few well-known eigensolution techniques along with
numerical examples may be found in Ref. [1], including (1) the determinant method, (2) the iteration
method, (3) Choleski’s decomposition method, (4) the generalized Jacobi method, and (5) the Sturm
sequence method. Since formulations and numerical procedures are given in detail in Ref. [1, pp. 72-98],
brief comments on the methods’ characteristics are presented to facilitate the user’s choice:

1. Determinant method. The method is convenient for longhand solution of a matrix with small
dimension. However, if a singular matrix is modified to a triangular matrix then the method
can be used for a larger matrix dimension and can be applied to various eigen formulations
(1, pp. 186-187, 225-229].

2. Iteration method. The method is convenient for longhand or computer solution. If the stiffness
matrix [K] is used in iteration, then the first eigenvalue corresponds to the highest mode, and the
subsequent solution is the second highest. However, if the inversion of the stiffness matrix, [K] ",
is used in the iteration, then the first solution is the fundamental mode. Since only the first several
lower modes are essential in a tall building design, inversion of [K] is necessary. The method is
proved to be a converging procedure and can be applied to unsymmetrix matrix as well as
complex eigensolution formulation [1, pp. 72-80, 98—-105, 137-149].

3. Choleski’s decomposition method. The method is based on the aforementioned iteration approach.
Since the iteration method requires time-consuming stiffness matrix inversion in order to find the
fundamental modes, Choleski’s decomposition method avoids the matrix inversion and therefore
is significant for a structural formulation with large dimension [1, pp. 81-86].

4. Generalized Jocobi method. The Jacobi method has several versions. The method presented herein
is applicable to a symmetric matrix and is capable of solving negative, zero, or positive eigenvalues.
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However, it must solve simultaneously for all the eigenvalues and corresponding eigenvectors.
For a large structural system, if only some eigenpairs are needed, this method can be inefficient
[1, pp. 87-95].

5. Sturm sequence method. The method is suitable for calculating a limited number of eigenpairs.
For large structural systems, only several fundamental modes are of practical use; the method is
therefore very useful. The method is also useful for determining eigenpairs at a given range of
frequencies. Thus, starting from the fundamental mode is not required. The method can
be applied to a structure having rigid body motion; that is, [K] can be singular but must be
symmetric [1, pp. 95-98].

3.4 Response Analysis of Continuous Systems —
Dynamic-Stiffness Formulation

3.4.1 Characteristics and Formulation of the Model

The dynamic-stiffness formulation presented in this section is for the structures composed of prismatic
members with and without superimposed masses. It is focused on flexural vibration based on Bernoulli—
Euler theory and Timoshenko theory as well as coupling vibration of axial and flexural. The model,
however, has been extensively developed for torsional and flexural vibrations with elastic media and P-A
effect. Coupling vibration was also presented for a structure vibrating in torsional and flexural modes,
and longitudinal, torsional, and flexural modes. The method may be considered to be exact because the
dynamic stiffness is formulated on the basis of a partial differential equation and consequently yields a
lower bound, in comparison with those obtained by using other methods. Note that the model has been
used in transport matrix formulation for some special structures [3].

3.4.2 Derivation of Dynamic Stiffness Based on Bernoulli-Euler Equation

3.4.2.1 Bernoulli-Euler Equation

Let the typical prismatic beam shown in Figure 3.16 be subjected to a time-dependent load, w(x, ), that
is, the magnitude of the load varies continuously from section to section, and the direction varies with
time. This load will cause motions of deflection, y(x;, f) (assume positive downward), velocity, 0y(x, t)/0t,
and acceleration, azy(x, 1)/0F, as well as internal forces of moment, M(x, f) and shear, V(x,t). The
equilibrium condition of the free-body diagram yields
2 2

6 Aé[)(;c, 2 = ma y@(t);’ H_ w(x, 1) (3.51)
where m is the mass per unit length. Considering uniform moment of inertia, I and small deflection, one
then obtains

My(xr) Dyt
Ox* ot?
where E is the modulus of elasticity. Equation 3.52 is a partial differential equation for which the

EI

= w(x 1) (3.52)

w(x, t)

wi(x, 1)
TF L DETag) Moo N\ g S0,
= @ T l

y L - V(x, 1) I.L,|

aV (x, 1)
Vix, 0+ T dx

FIGURE 3.16 Prismatic beam.
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FIGURE 3.17 Typical deformed member: (a) end deformation and (b) end force. (Reprinted from Ref. [1, p. 166]
by courtesy of Marcel Dekker, Inc.)

separation of variable technique should be employed for solution. Thus

Y% ) = Y(x)-¢(t) (3.53)

where Y(x) is called the shape function, which is expressed in terms of x along a member and g(¢) is the
time function, which is related to the variable time of motion. The shape function is

Y = Asin Ax + Bcos Ax + Csinh Ax + D cosh Ax (3.54)
where
2
PR i (3.55)
EI

p is a constant independent of time and has unit of rad/s; A, B, C, and D are arbitrary constants and can
be determined by using the boundary conditions of a member. The derivation is based on Bernoulli—
Euler theory with consideration of bending deformation.

3.4.2.2 Dynamic-Stiffness Coefficients

For the arbitrary member, “ij,” of a framework shown in Figure 3.17, let the end moments, M;, M;, the
end shears, V;, Vj, and their associated end deflections, Y;, Yj, as well as the end slopes, 0;, 0;, be
considered positive. According to the shape function derived in Table 3.1, the following boundary
conditions can be established. Let {Q.}=[M; M; V; V]-]T and {g.}=[0; 0; Y; Y]-]T, then the flexural
dynamic-stiffness coefficients can be expressed as

{Q} = [Ke[{q} (3.56)

[sinh ¢ cosp—cosh ¢psing sin ¢p—sinh ¢ sinh¢sinh ¢ [ ¢ coshgp—cos ¢ (¢ T
G G G L G L
sinh ¢ cosp—cosh ¢psing coshp—cos¢p (¢ sinh¢sinh ¢ (¢
G G L G L

[Ke] = 2 2
(—cos ¢ sinh ¢p—cosh ¢sin¢p) (Q) —sinh ¢—sin ¢ (g)
G L G L
. . 2
— h ¢—cosh
i sym. (—cos ¢ sin d)G cosh ¢sin) (%) ]

(3.57)
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TABLE 3.1 Boundary Conditions

End forces End deformations

_ dy_ M dy _ .

_ gy _ M dvy _ g
x=1L dxz = EI dx — 0]

_ dy__ v N
x=0 = i Y=-Y

_ dy__ Y —_y,
x=1L dx3 - EI Y= Y]

where ¢ = AL, G=[(cosh ¢ cos ¢ — 1)L]/¢pEL When ¢ approaches zero, which implies that p must be
zero in Equation 3.55, Equation 3.57 becomes

_ 6 —61
4 2 P F
4 =6 =6 £
L L
K] = 2 12|T (3.58)
2 I?
12
| Sym. 1z

which represents static stiffness coefficients.

3.4.3 Dynamic System Matrix and Eigensolutions

Let a rigid frame have joint rotations {Xy}, sideways {X;}, and concentrated masses [ M] (associated with
sideways such as floor masses), then the dynamic system matrix without externally applied force may be

expressed as [1, pp. 175-186]
K11K12_200 XH,
(& &l-rle w))B = 63

If the structure has rotations only, the terms corresponding to {X;} should not be included. Eigenvalues
can be calculated from the nontrivial solution of Equation 3.59 by making the determinant of the

coefficients equal to zero as
Ky K 210 0 || _
’ {KH Kn] Plo ml||=0° (3.60)

The eigen vector of any mode can be determined from the singular matrix in Equation 3.59 after zero
determinant [1, pp. 187-194].

3.4.4 Response Analysis

3.4.4.1 Formulation

The dynamic deflection of a member at any point x and time t can be represented as the summation of
modal components as

Yo t) = 3 Vi(0)at) (3.61)

where Y;(x) is the shape function of the member, g;(t) are generalized coordinates (similar to x; in the
lumped-mass model), and i=1,2,..., n, the number of normal modes.
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The uncoupled motion equation for the kth mode is

(1) Jy F(x) Yy dx

Gk + 2Pk + Prqr = 3.62
q Prgr + P4 TEmy? dx (3.62)
Let
~ L
M = / mY} dx (3.63)
0
L
Fk = / F(x) Yk dx (364)
0
Then, Equation 3.62 becomes
Fy 2 Fu
QG = —=——Ak(t) or qi=—"—Ak(t) (3.65)
M;p; P My
where NM is the total number of members of a structure and
1 L
A(t) = \/1_‘3/ e’ P =N sin p*(t — A)F(A) dA (3.66)
02 Jo

Note that Fy is a general expression, which can represent dynamic force or ground excitation. A(#) can
be simplified not to include the effect of damping on frequency, then

t
A(t) = / ¢ P08 6in p(r — A)F(A) dA (3.67)
0
Let
F M
Yok == o Yy = }:’:TlM’il (3.68)
Mipy P 21— Mu

Then, the total response is obtained by superimposing the modes shown in Equation 3.68
y(xt) =D YarAr(t) V(%) (3.69)

The moment and shear at time ¢ are

M(x,t) = EIy(x,t) = EI 2”: Yok Ax(1) Y (x) (3.70)

V(x, t) = EIY" (x,t) = Elzn: YAk (1) Y (x) (3.71)

Note that Ay is the amplification factor or dynamic load factor for the kth mode, Yy is the pseudo-static
displacement at the kth mode, and Fy is the participation factor.

3.4.4.2 Numerical Example

A two-span continuous beam shown in Figure 3.18 is subjected to a uniform impulse within the left span
as F(x, 1) =3000[1 — (#0.1)] Ib/in. (5.25 x 10*[1 — (#0.1)] kKN/m). Structural properties are L= 150 in.
(3.81 m), EI=6x 10’ Ib/in.> (4.1 x 10" kN/m?), and m=0.2 Ibs*/in.” (1378.9 Ns’/m®). Find the
moments at support B and check the equilibrium condition.
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FIGURE 3.18 Two-span continuous beam: (a) given beam and (b) d.o.f,, internal moments.
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FIGURE 3.19 Normal modes. (Reprinted from Ref. [1, p. 209] by courtesy of Marcel Dekker, Inc.)

Since the beam has rotational d.o.f., Equation 3.60 becomes det(K;;) = 0, which yields ¢; (also 4;). The
eigen vector {X}; is then calculated. The results are

¢, =3.14160; 4 = % =0.020940; p; = 7597625 rad/s; {X}, =[1 —1 1]"

¢, =3.92660; 4, = % =0.026177;  p, = 118.68938 rad/s; {X}, =[-1 0 1]"

¢s = 628318 =7 =0.041887% p;=303.905 rad/s;  {X};=[11 1"
¢, =7.06858; Ay = % =0.0471239; p, =384.6268 rad/s; {X},=[-10 1]
The normal modes are shown in Figure 3.19. Substituting {X}; in Equation 3.54, one can calculate

the constants A, B, C, and D for each mode. Consequently, the shape function of these members

are obtained as

Y]] =47.74648 sin ).1.x
Y, = —47.74648 sin A, x



Structural Dynamics 3-23

TABLE 3.2 Calculated Results

Fu My
k =1 =2 =1 1=2 Yo A(t)
1 13,678,350 0 34,195.8 34,195.8 0.034648 1.62095
2 —10,166,310 0 20,702.6 20,702.6 —0.017429 0.75110
3 0 0 8,549.0 8,549.0 0 0.09350
4 558,594 0 6,771.0 7,771.0 0.000279 1.07073

Source: Reprinted from Ref. [1, p. 210], by courtesy of Marcel Dekker, Inc.

Y,, = —37.16499 sin A,x — 1.035983 sinh A,x

Y,, = —26.28982 sin A,x + 26.26940 cos A,x + 26.28982 sinh A,x — 26.26940 cosh A,x
Y3, =23.87324 sin Asx

Y3, =23.87324 sin A3x

Y, = —21.24624 sin A,x + 0.025582 sinh J,x

Y, = 15.02337 sin A4x — 15.02335 cos A4x — 15.02337 sinh A,x+ 15.02335 cosh A4x

Then, from Equation 3.65

qk _ Z?:l Fkl A
= T
PE> e Mi

in which the amplification factor of impulse load, for t<{, {=0.1s, is

W(6), k=1,2,3,4 (3.72)

sinpet ¢t
Ax(t) =1 — cospxt + —— = 3.73
) nl < 37)
The maximum displacement of the first mode occurs during the pulse at 0.0379's, which is used for the
response of other modes. The calculations are summarized in Table 3.2. Substituting the results from
Table 3.2 into Equation 3.70 yields the moments at B for t=0.0379 s associated with the first, second,
and fourth modes as

M, = —Ely"(L) = —EI[Ys A1 Y[} (L) + Yeu A2 Yy (L) + YsaAs Yy, (L)]
= —EI[0.034648(1.62093)(0) + (—0.017429(0.75101)(—0.036))
+0.000279(1.070783)(0.06672)] = —4.912053(10*)EI (3.74)
M; = EIy" (0) = EI[Yqq A1 Y]5(0) + YsaAs Y3y(0) + YiaAs Y5 (0)]
= EI[0.034648(1.62093)(0) + (—0.017429(0.75101)(—0.036))
+0.000279(1.070728)(0.06672)] = 4.912053(10™*)EI (3.75)

Note that the third mode does not contribute to the structural response because Y3 =0. Note also that
the equilibrium check on moments is satisfied at the joint because > M =0.

3.4.5 Effects of Rotatory Inertia as well as Bending and
Shear Deformation on Frequencies

Bernoulli-Euler theory is derived based on bending deformation only. In fact, a flexural vibration can
include bending and shear deformation as well as rotatory inertia as derived in Timoshenko theory.
Consider an element shown in Figure 3.20. Let z be the distance measured at any point from the neutral
axis; then the displacement of a fiber located at z is

0
Y= —zé (3.76)
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FIGURE 3.20 Element of Timoshenko beam.
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FIGURE 3.21 Three-span beam.

Since y varies with time and distance, y*-must also vary with time and distance along the axis. Thus, for
every dx length of a beam, the cross-section dA has an inertia force

g(dA)(dx)j}“ (3.77)

Also shown in the figure, the total slope 0y/Ox is a combination of the bending slope, i and the shear
slope, f8

)% B
el A (3.78)

Using the bending and shear slopes, one can write

M= —EI% and V = uAGp = uAG _ 1/ (3.79)
0x Ox

where G is the shear modulus, 11 is a constant called the shear coefficient, defined as the ratio of average
shear stress on a section to the product of shear modulus and shear strain at the neutral axis of the
member.

Using the Timoshenko theory, one can derive dynamic-stiffness coefficients and system matrix for
eigensolution and response analysis [1, pp. 240-253]. The presentation focused here is to show the
significant effect of Timoshenko theory on natural frequencies. The three-span, continuous, uniform
beam shown in Figure 3.21 is analyzed for illustration. The given conditions are g=9.8m/s’
E=2.1x 10" kN/m?, y (beam unit weight) = 77 kN/m’, and G=8.27 x 10® kN/m”. Let the slenderness
ratio, L/R, of span AB vary from 20, 30, 40, 50, to 60; then find the first five natural frequencies by
considering: (A) bending deformation only and (B) bending and shear deformation as well as rotatory
inertia. In Case B, the values of y are assumed to be 0.833 and 2 for showing the effect of the shear factor
on natural frequencies.

Let p be frequencies of Bernoulli-Euler theory and p* be frequencies of Timoshenko theory; then, the
ratio of frequencies, p*/p, of the first five modes for various slenderness ratios of Cases A and B are shown
in Figure 3.22. Observation reveals that (1) Timoshenko theory yields lower frequencies than Bernoulli—
Euler theory; (2) reduction is more pronounced for higher modes and lower slenderness ratios; and
(3) shear factor has a greater effect on higher modes while smaller y reduces frequency more than larger p.
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FIGURE 3.22 Comparison of natural frequencies. (Reprinted from Ref. [1, p. 253] by courtesy of Marcel Dekker, Inc.)
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FIGURE 3.23 Longitudinal vibration: (a) element and (b) force—deformation relationship.

3.4.6 Coupling of Longitudinal and Flexural Vibration

3.4.6.1 Longitudinal Vibration and Stiffness Coefficients

Consider element dx of a longitudinal bar shown in Figure 3.23a; the equilibrium equation of the
element is

(mdx)u=N+dN - N (3.80)

where u is the longitudinal displacement and N is the axial force in tension. Since the axial force can be
expressed in terms of area, as N= AEe = AEQu/ Ox, Equation 3.80 becomes

o%u o%u

where a* = AE/m. Using the separation of variables and substituting u = X(x)g(#) into Equation 3.81

X p? 0’g
St P x—; hat-f
+ a? 0t?

i +p'g=0 (3.82)

of which the solutions are

X = C sinkx + G, cos kx; g = dy sin pt + d, cos pt (3.83)
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where

2
k=4/ET (3.84)

AE
X and g are the shape function and time function, respectively. Based on the following boundary
conditions shown in Figure 3.23b, the dynamic-stiffness coefficient can be derived as [1, pp. 213-214]

[coskL —csc kL}

[K.] = EAk (3.85a)

sym.  cotkL

Note that when k approaches zero (i.e., p=0) as the static case, the stiffness coefficients become

r AE —AE
Kl=| " 5 (3.85b)
| sym.

3.4.6.2 Coupling Vibration

When a plane structure is subjected to dynamic excitations, its constituent members may have long-
itudinal and flexural vibrations. The vibration modes and frequencies may be coupled. Coupling
vibration means that when a structural system is in vibration, all the constituent members vibrate in the
same frequency for both the longitudinal and flexural motions. On the other hand, uncoupling vibration
implies that longitudinal and flexural motions are independent of each other so the vibration mode of
a system depends on whether the mode is associated with longitudinal or flexural frequency but not
affected by both. Whether a structure is in coupling or uncoupling motion depends on the structural
configuration, distribution of the structure’s mass and stiffness, and modeling.

The structure is analyzed as rigid frame with one d.o.f. in rotation shown in Figure 3.24b and
then analyzed as an elastic frame with three d.o.f. shown in Figure 3.24c. The two-bar frame shown
in Figure 3.24a is used for illustration. Member properties are A=232.26 cm’, E=206.84 GN/m”,
y=76.973 kN/m?, I=10114.423 cm*, and h=28.6196 m.

(A) Find the natural frequencies of flexure only, p, and of coupling effect, p/, for the first five modes by
considering a wide range of slenderness ratios for the two identical members: L/R = 20, 40, 60, and 80;
where the radius of gyration, R, is constant based on the given cross-section and L is changed. (B) Study
the influence of longitudinal frequency parameter on the coupling frequencies by letting the longitudinal
dynamic stiffness be replaced by static stiffness as AE/L; find the pseudo-coupling frequencies p”, and
compare them with p’ obtained in A. p'/p, p"/p/, and p”/p versus L/R are plotted in Figure 3.25 to 3.27,
respectively. These three figures reveal that (1) p and p/ are, respectively, upper and lower bounds of the
frequencies; (2) the coupling effect on frequencies becomes more significant for higher modes and
smaller slenderness ratios; and (3) the pseudo-coupling approach may be used for lower modes.

3.4.7 Effects of Elastic Media, Torsion, and Axial Force on Vibration

The dynamic-stiffness formulation is also developed for investigating the effect of elastic media on
longitudinal and flexural vibrations, axial force on flexural vibration for both Bernoulli-Euler and

(a) (b) ©
B B
i B
45°
A I h I h I c A C A C

FIGURE 3.24 Coupling vibration: (a) given frame; (b) rigid frame; and (c) elastic frame.
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FIGURE 3.25 p//p versus L/R. (Reprinted from Ref. [1, p. 228] by courtesy of Marcel Dekker, Inc.)
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FIGURE 3.26 p"/p/ versus L/R. (Reprinted from Ref. [1, p. 228] by courtesy of Marcel Dekker, Inc.)
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FIGURE 3.27 p"/p versus L/R. (Reprinted from Ref. [1, p. 229] by courtesy of Marcel Dekker, Inc.)
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FIGURE 3.28 Discretized elements: (a) flat plate and (b) framework.

Timoshenko theories with and without elastic media, and coupling torsional and flexural vibrations of
gird systems [1, pp. 214-221, 229-258].

3.5 Response Analysis of Finite Element
Systems — Consistent-Mass Formulation

3.5.1 Introduction

Mathematical models for structural dynamic analysis may be generally classified into three approaches:
lumped mass, dynamic stiffness (frequency-dependent stiffness), and consistent mass (finite element). For
computer application, all these are formulated by using the displacement (stiffness) matrix method.
Lumped-mass and dynamic-stiffness approaches were presented in previous sections. The characteristics
of these two approaches differ in that the motion equation for lumped-mass model consists of inde-
pendent mass and stiffness matrices while the dynamic stiffness model has mass implicitly combined
with stiffness. The lumped-mass and consistent-mass approaches are similar in terms of motion
equation: both of them have independent mass and stiffness matrices; their mass matrices, however, are
not the same.

Consistent mass may be considered as an alliance of finite elements normally used in continuum
mechanics. This method is often used for frameworks as well as plate and shell structures.
The fundamental concept of finite elements is able to model a structure or continuum by dividing
it into a number of regions. Each region behaves as a structural member with nodes compatible
to the nodes of neighboring regions. These regions are called finite elements. A plate shown in
Figure 3.28 represents a continuum where two regions are sketched with nodes 1,2,...,9. the
boundaries of neighboring elements at node 5 are compatible at the node but not necessarily
compatible along the edges such as 4-5 or 5-8 and so on. Framed structures, however, are
automatically discretized by the nature of their members and connections. One may say that finite
element analysis dominates structural matrix methods, and frameworks are special cases of finite
elements.

3.5.2 Formulation of Stiffness and Mass Matrices

Let y(x, t) be the transverse displacement of each point in the direction perpendicular to the axis of
a structural element where x denotes the points of the coordinates. If N;(x) is chosen as coordinate
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functions of the element and g.(f) represents the element’s coordinates, then the dynamic deflection of
the element can be expressed as

ymo:i)mmmn (3.86)

where 7n is the number of generalized coordinates. For a typical element shown in Figure 3.17,
Equation 3.86 may be expressed without time variable as

Y(x)=[Ni N» N5 Ngl{ge} (3.87)
in which the shape functions are
N 2x2 N X3 N x? N X3
=X - — —; e —
! L L2 2 L Lz (3.88)
3 2x0 322 2x°
No=-l+p - NM=p-7
and the stiffness and mass coefficients of the element can be obtained from
d*N; &°N;
ki — / B Sy ) dx (6.89)
iy = / p(x)N:N; dv (3.90)

where moment inertia I(x) and mass density p(x), expressed as the function of x, signify that the
formulation is applicable to a member with nonuniform cross-section. Equation 3.90 is integration with
respect volume dv.

For a prismatic bar, Equations 3.89 and 3.90, respectively, yield Equations 3.91 and 3.92

41> 21* —6L —6L

EI 41> —6L —6L
K] =13 L b (3.91)
sym. 12
[ 12 > _11L 13L T
ﬁ 71% 210 420
I? 130 _11L
105 2 21
[M.] = pAL 105 12 90 (3.92)
35 70
sym. 13
L 35

Note that Equation 3.91 is identical to Equation 3.58 when ¢ (or p) approaches zero. The motion
equation of a system may be expressed as

[M]{3} + [Cl{x} + [K]{x} = {F(1)} (3.93)

where [M] is the mass matrix, [ C] is the damping matrix, [K] is the stiffness matrix, and {F()} represents
the matrix involving externally applied forces or ground motion.

Note that Equation 3.93 is identical to Equation 3.34c of lumped-mass formulation. The major
difference is that the mass matrix of the lumped-mass model is mostly a diagonal matrix associated with
d.o.f. of side sway (the inertia force due to structural joint rotation is relatively small and thus negligible).
However, the mass matrix of the consistent-mass model is a full matrix associated with joint rotations
and side sways as shown in Equations 3.92 of a typical constituent member of a system. Thus, the
computation effort for the lumped-mass model is much less than that for consistent mass because the
dimension of the mass and stiffness matrices of a lumped-mass system can be significantly reduced
through matrix condensation by eliminating rotational d.o.f.
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3.5.3 Frequency Comparison for Lumped-Mass, Dynamic-Stiffness,
and Consistent-Mass Models

In general, the computation efforts associated with response analysis for the lumped-mass, consistent-
mass, and dynamic-stiffness models are reduced in the order of the individual models for a given
problem, and the solution accuracy, however, may also be reduced, respectively. The accuracy sensitivity
is illustrated by frequency comparison of a rigid frame shown in Figure 3.29a using these mathematical
models: (A) the lumped-mass method, (B) the consistent-mass method, and (C) the dynamic-stiffness
method (based on Bernoulli-Euler theory). For “A” and “B” the structural members are divided into
three, six, and nine elements, respectively, and the masses of “A” are lumped at the center of the divided
segments. Dynamic-stiffness, lumped-mass, and consistent-mass models are shown in Figure 3.29b,c,
and d, respectively. Assume that all members are identical with m =0.04837 kgs*/m’ I=0.00286 cm*,
E=20684.27 kN/cm?, and L=10.2413 m.

Eigenvalues of the first three modes are shown in Table 3.3 for comparison with the accurate solution
by the dynamic stiffness method. Observation of the solutions reveals that the lumped-mass method
needs six elements for the first two modes and nine for the third mode, while the consistent-mass
method needs three elements for the first mode and six for the second and third modes. The lumped-
mass model can give eigenvalues higher or lower than the dynamic stiffness’s solution depending on
how much mass is lumped at each node of the structure. The consistent-mass model always gives
frequencies higher than the dynamic stiffness.

The consistent-mass model does not yield accurate solutions for higher modes because the shape
functions, which are based on four generalized coordinates (see Equation 3.87) in deriving the mass and
stiffness coefficients of a typical member, cannot be flexible enough to represent the deformed shape of

(@ B C (b) ~
) ’
L
A D
SO
(©
¥ % » ad ? ¥ }—'
_17—> L _?_>
Bl e
? ia—r
Three elements Six elements Nine elements
® L4
’ ’ » V » J # »
Vi
a—r a-»
Three elements ” Six elements ” Nine elements ”

FIGURE 3.29 Modeling for three analysis methods: (a) given structure; (b) dynamic stiffness model; (c) lumped-
mass model; and (d) consistent-mass model. (Reprinted from Ref. [1, p. 284] by courtesy of Marcel Dekker, Inc.)
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TABLE 3.3 Comparison of Eigenvalues by Lumped-Mass, Consistent-Mass, and Dynamic Stiffness

Methods Number of elements First mode (rad/s) Second mode (rad/s) Third mode (rad/s)
Lumped-mass 3 210.5 531.2 0840.0

6 195.8 762.5 1323.6

9 194.5 765.7 1265.0
Consistent-mass 3 194.5 891.7 1988.6

6 194.3 771.7 1264.9

9 194.3 767.8 1254.2
Dynamic stiffness 3 194.3 766.8 1250.7

Source: Reprinted from Ref. [1, p. 284], by courtesy of Marcel Dekker, Inc.

higher modes. For the same reason, the lumped-mass method also yields larger rigidity in structural
modeling. It is worthwhile to mention that for large structural systems, such as tall buildings, only the
first several fundamental modes are essential for design. Thus, the eigenvalue inaccuracy resulting from
the lumped-mass model can be ignored.

3.5.4 Axial, Torsional Vibration, and Flexural Vibration with
Timoshenko Theory

Equations 3.86, 3.89, and 3.90 are basics for vibration of finite element systems and frameworks with
Timoshenko theory in flexural vibration, axial as well as torsional vibrations. Equation 3.93 can be used
for system response analysis. Detailed results are available [1, pp. 265-270, 285-317].

3.5.5 Dynamic Motion Equation with P-A Effect

When a member is subjected to a compressive force, P, the force times the member’s deflection, A, yields
an additional moment that is called second-order moment due to the P-A effect. For the dynamic-
stiffness method, the P-A is implicitly expressed in the stiffness coefficient [1, pp. 238-240, 253-258].
For consistent-mass and lumped-mass methods, the P-A effect is formulated separately from stiffness in
a geometric matrix. A geometric matrix is important in response analysis for tall buildings because heavy
floor load transmitted to supporting columns can affect the vibrating frequencies significantly. The
dynamic motion equation is similar to Equations 3.93 with additional term [K,]{g} as follows:

[M]{3} + [CH{&} + [K){x} — [Kgl{x} = {F(1)} (3.94)

where [Kj] is called geometric matrix in a consistent-mass model but string matrix in a lumped-mass model
[1, pp. 303-306, 317-318]. The former involves both rotational and side sway d.o.f. and the latter involves
side sway d.o.f. only. The negative sign corresponds to the axial force in compression. If the force in a member
is in tension, then the [ké] should have a positive sign. Then, the system matrix is [K,] = > [kg.
It worthwhile to point out that compression reduces the stiffness that consequently reduces natural fre-
quencies. It is also worthwhile to note that when the compressive force is a harmonic excitation, such as
machinery vibration, then the structural response can be a dynamic instability problem. The instability beha-

vior depends on the ratio of the structure’s natural frequency to the forcing frequency of the axial force [4].

3.6 Elastic and Inelastic Response Analysis Methods Based on
Nature of Exciting Forces

3.6.1 Nature of Exciting Forces

The nature of exciting forces and their categories were discussed in Section 3.1.1. Various response
analysis methods are summarized herein for deterministic forces as well as nondeterministic forces.
Earthquakes are treated for both deterministic and nondeterministic cases.
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3.6.2 Modal Analysis

The method was presented in Sections 3.3.2 and 3.3.3 from which the response analysis can be obtained
by using Duhamel’s integral or response spectra. Note that this approach is only for an elastic system
because it requires natural frequencies and mode shapes.

3.6.3 Direct Integration Methods

Direct integrations are of paramount importance in dynamic response analysis for many reasons
including (1) they can be used for structural response at various deformation stages from elastic to
inelastic and (2) they can be applied to motion equations for various irregular forcing functions such
as earthquake accelerations in digital data. There are a number of numerical integration methods such as
Newmark method, Wilson-0 method, Runge—Kutta fourth-order method, constant acceleration
method, linear acceleration method, and average acceleration method. These methods have general basic
characteristics: (1) determination of response involves computation of displacement, velocity, and
acceleration; (2) at the beginning of integration, response parameter values must be given or have been
calculated at one or more points proceeding with the specific time intervals of the integration;
(3) truncation errors due to finite number of terms in Taylor series expansion for replacing the dif-
ferential equation by a finite difference equivalent; and (4) propagation error resulting from tendency of
error growth from the integration step to the next, wherein the solution can become unbounded and
unstable. Two well-known methods are selected to outline integration procedures and their associated
truncation as well as propagation errors.

3.6.3.1 Newmark Method (Linear Acceleration Version)

Newmark originally derived a general integration in which two parameters can be modified to change
the integration to three cases:

1. Average acceleration method. The acceleration of the system remains constant over the time
interval At and its value is equal to the average values of acceleration at the beginning and end of
the interval.

2. Constant acceleration method. The acceleration of the system is constant and is equal to its value at
the beginning of the time interval.

3. Linear acceleration method. The acceleration of the system varies linearly over the time interval.

Without detailed derivation, the end results of the linear acceleration method are expressed as

(M1 + 30+ 1K)+ A) = (Pl -+ 80} - MIEA) - (OB} (399)
where
6 6 . .
(A = — 1 )} — 2 ()} — 2(500) (3964
and

. At . 3
{B) = —2(x(0)} - 5-(()} — - {x(0)) (3.96b)
Note that X(f), x(f), and x(f) are supposed to be given or calculated at time f, thus the response

parameters are unknown for the next step calculation at t + At. Thus, Equation 3.95 can be simplified to
the following expression:

[K]{x(t + At)} = {F(t + At)} (3.97)
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After {x(t+ At)} is calculated, acceleration and velocity are then obtained as

((r + A1)} :Aitz{x(t—FAt)} +{A) (3.98)
(&(r + A1)} :Ait{x(t+At)} +{B) (3.99)

It is important to note that Equation 3.97 has the matrix form for static load; therefore, some
computation algorithms such as Gauss elimination for finite element systems of static case can be
applied, and the static and dynamic analysis can share the same computer subroutines [1, pp. 329-332,
855-862].

3.6.3.2 Wilson- Method

Wilson-0 method is similar to the linear acceleration method with the assumption that acceleration
varies linearly over the time interval At where 0 is always greater than 1 and is selected by the analyst
to give the desired accuracy and stability. The final form of Wilson’s integration has the following form
(1, pp. 332-334, 863-870]:

[K){Axp} = {AF} (3.100)
where Aty = 0At, Axy is an incremental displacement
- 6 3
(K] = [K] +W[M] +A—t6[C] (3.101a)
[AF] = {AF,} + [M[{Q} + [C[{R} (3.101b)
in which
{AFy} = 0[{F(r + At)} — {F(t)}] (3.102a)
1Q) = 5 {x(0)} + 3{x(0) (3.1020)
0
(R} =3(x(0)} + S (3(1)) (3.1020
After solving {Axy} from Equation 3.100 as
{Ax)} = [K]"'{AF} (3.103)

{Ax} is determined by the following formula:
A%} = 5 (A}
The incremental velocity vector, {Ax}, and displacement vector, {Ax}, are obtained from
{Ax} = {x(t)}At + % {Ax}

{Ax} = Ar{x(1)} + Ath {%(0)} + A%z (A%}

Total displacement, velocity, and acceleration vectors are then determined from

{x(t + A0} = {x(1)} + {Ax} (3.104)
{(x(t + A0} = {x(1)} + {Ax} (3.105)

(%(t + AD)} = {x(0)} + {A%} (3.106)
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3.6.4 Stability Condition and Selection of Time Interval
3.6.4.1 Stability

Stability of a numerical integration method requires that any error in displacement, velocity, and
acceleration at time t does not grow for different incremental time intervals used in the integration.
Therefore, the response of an undamped system subjected to an initial condition should be a harmonic
motion with constant amplitude that must not be amplified when different Ats are employed in the
analysis. Stability of an integration method can thus be determined by examining the behavior of the
numerical solution for arbitrary initial conditions based on the following recursive relationship of a
single d.o.f. motion:

{X(t+ A1)} = [A{X (1)} (3.107a)
[2(t + At), x(t + At), x(t + Ar)]" = [A][x(t), x(1), x(¢)]" (3.107b)

where [A] is an integration approximation matrix. If we start at time f, and take » time steps,
Equation 3.107 may be expressed as

{X(t + nAt)} = [A]"{X(£)} (3.108)

To investigate the stability of an integration method, we use the decomposed form of matrix [A] in
Equation 3.108 as

[A]" = [@][2"][@] (3.109)

where [4"] is a diagonal matrix with eigenvalues A}, 43, 3 in the diagonal position; and is a modal
matrix with eigenvectors @y, @,, and @;. Now, define the spectral radius of matrix [A] as

r(A) = max|A; i=1,2,3 (3.110)
from which we must have
r(A) <1 (3.111)

in order to keep [A]"” in Equation 3.108 from growing without bound. The condition of Equation 3.111
is known as the stability criterion for a given method.

Numerical results for the Newmark method (linear acceleration and constant acceleration) and the
Wilson-0 method from A#/T=0.001 to At#/T=100 are plotted in Figure 3.30. It can be seen that the
spectral radius for linear acceleration is stable (r7(A) <1) at approximately A#/T < 0.55 and becomes
unstable (7(A) > 1) at A/ T > 0.55. The stability of this method depends on the magnitude of At, and is
called the conditional stability method. However, the spectral radii for the constant acceleration method
in the range of A#/T=0.001 to 100 are all less than or equal to 1 (r(A) <1); this case is called the
unconditional stability because it does not depend on the magnitude of At. The Wilson-0 method with
0= 1.4 is unconditionally stable and it becomes conditionally stable with § = 1.36. For unconditional
stability, the solution is not divergent even if time increment At is large.

3.6.4.2 Selection of At

Numerical error, sometimes referred to as computational error, is due to the incremental time-step
expressed in terms of At/T. Such errors result not from the stability behavior from two other sources:
(1) externally applied force or excitation and (2) number of d.o.f. assigned to a vibrating system.
A forcing function, particularly an irregular one such as earthquake ground motion, is composed of
a number of forcing periods (or frequencies). A larger At may exclude a significant part of a forcing
function. That part is associated with smaller periods, a forcing function’s higher modes. This error
may occur for both single- and multiple-d.o.f. vibrating systems. Therefore, At must be selected small
enough to ensure solution accuracy by including the first several significant vibrating modes in the
analysis.
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FIGURE 3.30 Spectral radii for Newmark method and Wilson-¢ method. (Reprinted from Ref. [1, p. 357] by
courtesy of Marcel Dekker, Inc.)

For reasonable accuracy, At/T=0.1 is recommended, where T is the natural period of highest mode
considered in the analysis. Properly selecting the number of modes depends on an individual problem.
For the direct integration approach, frequency analysis is not needed. Therefore, the periods of desired
methods are not available. A suggested approach is to follow the building code that stipulates the
number of modes, and the lower bound of period should be considered. Generally, we can use one At
and another slightly smaller At to find solutions continuously, until two successive solutions are rea-
sonably close. We can also inspect the exciting function to select approximate At (for instance, At should
not be greater than the intervals of the earthquake records).

3.6.5 Nondeterministic Analysis

3.6.5.1 Introduction to Stochastic Seismic Response Analysis

As discussed in Section 3.6.1, when a force cannot be specified as a definite function by time, the
response analysis should be determined through a stochastic approach. Earthquake force is a typical
example that has inherent uncertainty in magnitude and in time variation. For brief presentation,
the seismic response is chosen for discussion in this section. For a structure subjected to an earthquake,
the motion equation is similar to Equation 3.94 and is expressed as

[MJ{%} + [Cl{x} + [K[{x} = [M]{L,} % (3.112)

where X, is the ground motion acceleration and {I,} is the influence coefficient factor. By the
modal analysis method, the motion equation is decomposed to N (d.o.f. of the system) independent
second-order differential equations

X+ 20 4 pixg = 1%y i=1,2...,N (3.113)

where x/ is the modal displacement for the ith modes and has the relation with the floor displacement
as {x} = [@'|{x'} and [®@'] is the normalized modal matrix. p; and p; are damping coefficient and
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angle frequency for the ith mode. r; = {®'}; {I,} is called a participation factor, which implies how
much the ith mode participates in synthesizing the structural total load. In random analysis, the weakly
stationary input to a linear system leads to a weakly stationary output. For the weakly stationary sto-
chastic process X, the autocorrelation function Rx(t) and the spectral density function Sx() are a Fourier
transform pair and with the following relationship:

1 +00 )
Sx(@) = — / Ry (t)e—" dr (3.114a)
2n J_ o
+00 .
Ry() = / Sx(@)e” do (3.114b)
By setting time difference 7 =0, Equation 3.114b becomes
+00
Ry(0) = E[X2(8)] = o2, = / Sx(o) do (3.115)

where 6% is called variance of X or mean square. The square root of the mean square is gx, known as
the root-mean-square (RMS). For a zero mean stochastic process E(X(f)) =0, RMS represents the
magnitude of the response. Let the design value be

X| = Uoy, (3.116)

where I represents Ith d.o.f. and p is the coefficient related to the probability of the safety. By the sum of
the modal contribution, the mean square value of the lth d.o.f. can be obtained as

N +00
7 =Y 0pr [ H)s () do (.17

o0

i=1

where @, is the Ith element in the ith modal vector, r;is the participation factor of the ith mode, S,»C»g(w) is
the spectral density function for the ground acceleration input, and H;(w) is the frequency response
function for the ith mode

1

Hi(w) = 5——5——;
(@) P} — @ +2jpipiw

j=—1 (3.118)
in which p;, p; are structural frequencies and damping coefficient of the ith mode, respectively. The
spectral density function for a stationary ground acceleration is
b+ amipie?
2 2)2 22002 0
(P — @*)" +4pip;o

Si, (0) = (3.119)

which was proposed by Kanai and Tajimi [5,6] based on the study of the frequency content from ground
motion records. In Equation 3.119, p and p, are prevailing frequency and damping ratio describing soil
layer characteristics, Sy is the intensity of the excitation and can be determined by the strength of the
ground motion. By setting the ground acceleration RMS as o_on the left-hand side of Equation 3.115
and substituting Sy (w) of Equation 3.119 into the right-hand side of that equation, Sy can be obtained
after integration as

2
2pg<75-cg

5 — 3.120
"= 2@ (3.120)

The integral in Equation 3.117 can be found after the substitution of Equation 3.119 by the theorem of
residue [7], and the results are

+o0 N
/ |Hi(0) S5, (0) do> = “TSO%D—% (3.121a)
—00 i qi
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Ny = (144p2)p; + 4p, (07 + pg)s + 4pgpis” + pgss s = pg/pi (3.121b)
Dy, = papi + 4papis + 2040 (20, + 207 — 1) + 4pipis’ + pyp;st (3.121c)

Substituting Equation 3.121a into Equation 3.117 yields

N
2 :”SO ” 2&Nq,

o (e (3.122)
X 2 — 171 pi in
Similar to Equation 3.117, the mean square of the velocity X; can be expressed as
N +o00
2 =S op / | Hi()2S;, (o) doo (3.123)
i=1 —00
in which the integral is
+0o 3
2 2 _ TSPy Ny,
Ny = 4p; + p;(1 + 4pp)s + pis’ (3.124b)
Dy, = slpgp; + 4p3p7s + 200,205 + 207 — 1)5° + 4papis’ + pyp;s'] (3.124c¢)
Thus, Equation 3.123 becomes
s N 3N
2 _ S0 N™ g 2 Pe Ny (3.125)

9% = 5 2 li 0D,
After the RMS values of the response are obtained, one can calculate the probability of safety in
duration 7 by
Py(t) = P{X(0) e D} exp(—vp1) (3.126)
where D is the safety range assigned for the response X and P{X(0) € D} is the probability of the initial X
value in the range D. vp, is called the D-outcrossing rate, expressing the rate of response X going out of
range D
vp=vi+v, (3.127)

which is the sum of up-crossing rate v, as upper limit, a and down-crossing rate v, as bottom limit, b,
for the safety range D={[a b]. For the stationary Gaussian process with mean m and variance %, the
up-crossing and down-crossing rate for £a are

2
N o (a—m)
vi=v_ = 2n§x exp [ - W} (3.128)

If the probability of the initial value X in range D is 1, Equation 3.126 becomes

Py(t) = exp(—vp1) (3.129a)
The probability of safety for the range D=[a —a] can be obtained by substituting Equations 3.127 and
3.128 into Equation 3.129a as

|

3.129b
20% ( )

05T
Py(t) = exp [f%exp[f

In summary, one can determine the RMS value of the response x; from Equations 3.122 and 3.125 with
a given RMS value of the ground acceleration in Equation 3.120, in which the soil layer property is
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considered with p; and p;. Finally, the probability of safety can be calculated from Equation 3.129b after
the response variance is determined.

3.6.5.2 Numerical Example

Consider the three-story shear building shown in Figure 3.31 with mass M; = M, = M5 = 12,304 N s2/m;
1=42672m; I, =198168x10 *m*  L=14601x10"*m* and 1;=9.9229x10 > m%
E=206842.8 x 10° N/m”. Let the structure be located on the medium firm soil and the ground
acceleration be a zero mean stationary process with RMS o5 =0.1g. Assume the damping factor
p;=0.02 for each mode, find the RMS of the floor response and the probability of safety of the third-
floor displacement within three times of its RMS.

After performing eigensolution calculation, the structural frequencies are

[p1 P ps]=1[12.82 3211 48.79] rad/s

and the normalized modal matrix is

0.2545 —0.5777 0.7756
[@] = | 0.5449 —0.5769 —0.6085
0.7989 0.5775  0.1680

For horizontal ground motion input, the participation factors are

{r}" = [@)"{1,} = [—1.5984 0.5771 —0.3350]

where {I,} = —[1 1 1]". Since the structure is located on medium firm soil, the prevailing frequency is
Pz =15.6 rad/s and the damping factor is ps = 0.60. From Equations 3.121b, 3.121c and 3.124b and
3.124c

[N, N, N,]=[02318 05449 0.3478]

(D, D, D,;]=[0.0303 0.0114 0.0116]

[Nj Nj Ng]=[18146 1.0295 0.9409]

2

[Dy, Dy Dg]=[0.0369 0.0056 0.0037]

For the ground acceleration RMS value assumed as o = 0.1¢, Equation 3.120 yields S, = 9.6 x 10 “m?s’.
Then, from Equations 3.122 and 3.125, the RMS values for each floor’s displacement and velocity are
calculated as

[0y, 0y 0x]=1[0.0104 0.0222 0.0325] m

[0y 0x, 04]=[0.1366 02842 0.4150] m/s

For the third-floor displacement, the range of safety is D= [30,, —30,] = [0.097 —0.097] m, then the
probability of safety can be determined from Equation 3.129b with m=0, ¢, =0.0325 m, and
04, =0.4150 m/s as

95.6% for durationt=1s
Py(t) =< 79.8% for duration 1 =5 s
63.6% for duration T =10 s

which implies that the probability of safety for the third-floor displacement within +0.097 m is 95.6%
in1s,79.8% in 5 s, and 63.6% in 10 s.
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FIGURE 3.31 Three-story shear building.

3.6.5.3 Comments on Nonlinear Systems

The stochastic response of nonlinear structures cannot be obtained by the aforementioned method
because of the requirement of superposition. One of the approaches is to generate an ensemble of
ground motion accelerograms by the techniques based on filtered white noise and then determine
deterministically the time-history response of the nonlinear structure to each input accelerogram, and
finally examine the output response process using Monte Carlo methods. Usually, one is interested
primarily in the mean and standard deviation values of the extreme response [8].

3.6.6 Comments on Wave Propagation Analysis

Theoretically, mode superposition is an effective method of obtaining the free or forced vibration
response of a continuous system of finite extent. In practice, several difficulties may arise in application
of the method. For instance, it may not be possible to determine the mode shapes and frequencies of the
continuous system being analyzed. A system of infinite extent has a continuous band of frequencies,
and the term “mode shape” loses its meaning. Obviously, modal analysis is not possible in such a case.
However, an alternative method known as wave propagation analysis may prove to be quite effective in
obtaining the response of the system [9].

3.7 Hysteresis Models and Nonlinear Response Analysis

3.7.1 Introduction

The previous sections focused on elastic structures with emphasis on mathematical models, analytical
methodologies, and response characteristics. When a structure is subjected to dynamic force or ground
motion, its constituent members may deform beyond their elastic limit, such as yielding stress of steel or
crack stress of concrete. If we assume that the members continue to behave elastically, then their
response behavior is based on linear or elastic analysis as presented previously. When the stress—strain
relationship beyond the elastic stage is considered, the response then results from nonlinear or inelastic
analysis. Naturally, nonlinear analysis always encompasses linear analysis because of elastic material
behavior at the early loading stage. When inelastic material behavior is considered in formulating the
force—deformation relationship of a structural member, the relationship is called hysteresis model.
A typical stress—strain relationship of structural steel is shown in Figure 3.32. The linear relationship
between O and A is defined as elastic behavior. After initial yielding, oy, the slope of the stress—strain
curve is not constant and material behavior becomes inelastic. Unloading path B—C and reloading path
D-E are elastic and form straight lines parallel to the initial elastic path O—A. Absolute values of the
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FIGURE 3.32 Material nonlinearity.
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FIGURE 3.33 Simplified stress—strain models: (a) elasto-plastic; (b) bilinear; (c) curvilinear; and (d) Ramberg—
Osgood.

initial yield points in tension A and in compression A’ are the same, but the values change for subsequent
points B and C or D and E. A stress magnitude of 25, is observed for H, BC, and, DE which is known as
Bauschinger effect. For practical purposes, some well-known simplified models are often used. Most
typical are these shown in Figure 3.33 as elasto-plastic, bilinear, curvilinear, and Ramberg—Osgood. For
dynamic nonlinear analysis, the main task is the derivation of incremental stiffness coefficients of
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a typical member. The motion equation is still expressed as Equation 3.34 or 3.93 but in incremental
form. The direct integration methods presented in Section 3.6.3 are then employed for response analysis.
The incremental stiffness coefficients of elasto-plastic and bilinear models are given in Sections 3.7.2 and
3.7.3, respectively. The derivations of incremental stiffness coefficients of curvilinear and Ramberg—
Osgood models are lengthy and are not included here [1, pp. 555-578].

3.7.2 Elasto-Plastic Stiffness Formulation

The elasto-plastic model in Figure 3.34 shows that when the moment reaches the ultimate moment
capacity of a member, the plastic moment cannot increase but the rotation of the plastic hinge at the
cross-section can increase. A plastic hinge develops at the member’s end where the magnitude of the
moment is greater than at other locations as in the case of dynamic response. The member end behaves
like a real center hinge with a constant ultimate moment, M,. When the member end rotates in reverse,
the moment decreases elastically and the plastic hinge disappears. Elastic behavior remains unchanged
until the moment reaches ultimate moment capacity. Consequently, a plastic hinge forms again. Plastic
hinge formation in a member has three possibilities: a hinge at the i-end, the j-end, or both ends (see
i and j in Figure 3.35). Force—deformation relationships associated with elastic state and the three states
of yield condition are given as follows [1, pp. 529-534].

Moment (M) 4

FIGURE 3.34 Elasto-plastic moment—curvature relationship.

M; Possible plastic hinge locations
d—
o !
v, .
; J
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h~_)
! M;
|l < L >l

|

FIGURE 3.35 Elasto-plastic member.
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1. Both ends linear

AM; 1/L 1/2L —3/21* —3/21*] [ AO;
AMi\ o 1/L  =3/21* —3/2L*| | AO;
AVi( 3/1° 3/13 AY;
AV; sym. 3/1° | | AY;

2. i-end nonlinear and j-end linear

AM; 0 0 0 0 AO;
AM;| 3EI 1/L —1/I* —1/I*| | A0;
AV (— 1/ 1/ AY;
AV; sym. 3/1 | | AY;

3. i-end linear and j-end nonlinear

AM; /L 0o —1/1* —1/1*] [ A0;
AM;| 0 0 0 A
Av; (=3 1y || Ay
AV sym. /13 AY;

4. Both ends nonlinear

AM, A0
aM;| | Ao
Avi( =0y
AV, AY,

3.7.3 Bilinear Stiffness Formulation

(3.130)

(3.131)

(3.132)

(3.133)

The moment-rotation relationship of a member can be idealized as a bilinear model, as shown in
Figure 3.36. Initial elastic slope and subsequent inelastic slope of the bilinear moment—curvature curve
are El and EI,, respectively; I; can be in terms of I. The Bauschinger effect on the moment magnitude of
2M,, also exists between two subsequent plastic hinges as signified by points B and C. The moment—
rotation relationship of a member is composed of two imaginary components as linear component and
elasto-plastic component sketched in Figure 3.36b,c respectively. Initial stiffness of the hysteresis loop
and of the elastic, elasto-plastic components is 4, a;, a,, respectively, where a= a, + a,, a, = pa, a, = qa,

(a) (b) (©)

1 =T _1a1=pa
i

My

a,=qa

0

FIGURE 3.36 Bilinear moment-rotation: (a) bilinear hysteresis loop; (b) linear component; and (c) elasto-plastic

component.
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FIGURE 3.37 Bilinear member: (a) nonlinear beam; (b) linear component; and (c) elasto-plastic component.

and p+ g=1. p is the fraction of stiffness apportioned to the linear component and q is the fraction of
stiffness apportioned to the elasto-plastic component. The second slope a; of the hysteresis loop is the
same as the initial slope of the linear component. The incremental stiffness coefficients are given as
follows [1, pp. 534-538].

1. Both ends linear

AM,‘ a b —Cc —C AQ,
AM;| a —c —c|| A0
AV (= i dllay (3.134)
AV; sym. d AY;

in which a=4EI/L, b=2EI/L, c=6EIl/L?, and d = 12E/L’.
2. i-end nonlinear and j-end linear

AM,; pa pb —pc —pc AO;

AM’ — pa+qe _pc_qf _pc_qf AQJ (3 135)
AV; pd+aqg pd+agg | |AY; '
AV; sym. pd+qg AY;

in which e=3EI/L, f=3EI/L* and g=3El/L’.
3. i-end linear and j-end nonlinear

AM; pa+qe pb —pc—qf —pc—qf] [ A0;
AM; pa —pc —pc A0;
= 3.136
AV; pd+4qg  pd+qg | | AY; (3.136)
AV; sym. pd+aqg | [AY
4. Both ends nonlinear
AM,‘ a b —Cc —C A@,
AM;| a —c —c|| A
AV (= p i d AY, (3.137)
AV; sym. d AY;

which are actually the incremental forces of the linear component. Note that when p=0, g=1,
the bilinear model presented above becomes the elasto-plastic model.

3.7.4 Elasto-Plastic and Bilinear Response Comparisons

The effects of various ps on response behavior are shown for the rigid frame shown in Figure 3.38.
Assume EI= 1000 kip in.? (2.8697 kN m?), M=2 x 10~* ks¥/in. (35.0236 Ns?/m), h=10 ft (3.048 m),
I=20 ft (6.096m), F(t)=0.02sin(nf)k (88.96sin(nt)N), p=0.05, and ultimate moment capacity
M,=0.2 kin. (22.59584 N'm). The initial conditions are x) = % = X = 0. The effect of ps on x
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FIGURE 3.38 Response behavior illustration: (a) given structure and (b) rigid frame with joint rotation and side sway.
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FIGURE 3.39 Effect of ps on x, versus time. (Reprinted from Ref. [1, p. 547] by courtesy of Marcel Dekker, Inc.)

versus time are shown in Figure 3.39. Note that p=1 is corresponding to elastic response and p=0.001
is close to elasto-plastic case, more decreases in ps and more increases in deflections.

3.7.5 Effects of P-A, Material Nonlinearity, and
Large Deformation on Response

The material nonlinear behavior was presented in Sections 3.7.2 to 3.7.4, and the P-A effect was
introduced in Section 3.5.5. Linear and nonlinear analyses can be conducted with consideration of small
or large deflection. Large deflection implies that structural configuration deforms markedly, which results
in change of originally assumed directions of forces and displacements. The direction of members’
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internal forces in a structure after large deformation is not the same as that used in formulation for this
structure with small deformation. Consequently, equilibrium equations between internal forces (shears,
axial forces, etc.) and external loads (applied force, inertia force, etc.) and the compatibility condition
between internal deformations and external displacements at each structural node should be modified at
various loading stages. Large deflection formulation is generally considered in inelastic analysis but
sometimes used in elastic cases for a material with a small modulus of elasticity. Note that the geometric
stiffness matrix or string stiffness matrix due to the P-A effect presented previously can be included in
either small or large deflection formulation. Naturally, the P-A effect becomes more pronounced for
large deflections.

The rigid frame given in Figure 3.38 is used to show various P-A effects and the influences of material
as well as geometric nonlinearities on the displacement response. This study involves the following. First
assume each column is subjected to a compression, P, and then formulate [K,] using the string stiffness
model. The buckling load is then determined by finding the singular solution of ([K] — [Kg]){X} =0.
The response analyses are finally conducted for the following cases:

1. Linear analysis (LA) without P-A effect or geometric and material nonlinearities.

2. Nonlinear analysis (NA) having material nonlinearity of bilinear model with p=0.05 but not P-A
effect or large deflection.

3. Nonlinear analysis with p=0.05 combined with 4% of buckling load (NA; 0.04P.) but not
including large deflection.

4. Same as (3) except 20% of buckling load (NA; 0.2P,,).

5. Nonlinear analysis with p=0.05, 4% of critical load, and large deflection (NA; 0.04P_; LgD).

The displacements versus time are shown in Figure 3.40. Note that material and geometric non-
linearity causes large deflection, and the P-A effect can induce the structure to be unstable.

40 5
E «— NA;0.2P,,
30 3
20 3 [N
. 3 /'l \\ ,/-“\
g 3 \ 4 y
£ 10 3 \
Q -1 kY
=) 3 \
g E TN, 3
N N e » 5
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FIGURE 3.40 Lateral displacement versus time. (Reprinted from Ref. [1, p. 588] by courtesy of Marcel Dekker, Inc.)
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3.7.6 Hysteresis Models and Stiffnesses for Steel Bracings and for
RC Beams, Columns, and Walls of Building Systems

3.7.6.1 Building Systems

Civil engineering building structures usually have beams, beam-columns, bracing elements, shear walls,
floor slabs, and rigid zones at structural joints. The three-dimensional building configuration and rigid
zone of structural connection are shown in Figure 3.41 and Figure 3.42, respectively.

3.7.6.2 Hysteresis Models

Four hysteresis models are sketched in Figure 3.43 to Figure 3.46. Since the stiffness formulations of
these models are too long to list, computer programs are provided from which readers can find detailed
calculation procedures [1, pp. 875-977]. Figure 3.43 is for steel bracing (pinned-end truss member)
based on the work of Goel and co-workers [10]. Figure 3.44, based on the Takeda model, is for slender
RC members in bending such as beams and columns [11]. Figure 3.45 is the Cheng—Mertz model for RC
shear walls with consideration of axial deformation, coupling bending, and shear deformation for both

Beam 2

Beam-column 2

F—————
Yg
Beam-column 1 Shear-wall
FIGURE 3.41 Three-dimensional building configuration.
@ | Member 2 (b)
/1\/ Member 2
I | ~ Rigid
I gid zone
v
.
= S - ~ St -
Member 3 ! Member 4
y, Member3 Member 4 |
Y, !
7 Member 1 ,*/ Member 1
(0] X,

FIGURE 3.42 Rigid zones of structural connection: (a) structural connection and (b) rigid zones in XY, plane.
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FIGURE 3.43 Jain-Goel-Hanson steel-bracing hysteresis model.
Marcel Dekker, Inc.)

(Reprinted from Ref. [1, p. 875] by courtesy of
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Takeda model for RC columns and beams. (Reprinted from Ref. [1, p.

895] by courtesy of Marcel
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Cheng—Mertz model for bending coupling with shear of low-rise shear walls: (a) bending; (b) shear;

and (c) axial. (Reprinted from Ref. [1, pp. 913, 932, and 952] by courtesy of Marcel Dekker, Inc.)
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FIGURE 3.46 Cheng-Lou axial hysteresis model for RC members: (a) concrete under cyclic loading and
(b) reinforcement under cyclic loading. (Reprinted from Ref. [1, p. 967] by courtesy of Marcel Dekker, Inc.)

low- and high-rise shear walls [12]. Figure 3.46 is the Cheng—Lou model for axial deformation of
columns and walls. These models can be used on system analysis. For example, a braced steel frame needs
hysteresis models of beams, columns, and bracings. If the steel structure is also composed of trusses, the
hysteresis model of trusses must be employed. The latest version of INRESB-3D-II includes the afore-
mentioned models for both PC and supercomputer [13,14]. The program has been used for case studies
to verify different instances of building damage and collapse induced by strong ground motion [15].

3.8 Concluding Remarks

This chapter has composed most of the essential analytical techniques in structural dynamics. However,
some special topics are currently in vogue but not included herein. The reader may find them from the
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references in the areas of structural optimization subjected to dynamic forces or earthquake excitation
and the soil-structure interaction on seismic resistant structures with and without control. In the current
engineering design community, major efforts are based on the development of sophisticated computer
programs for the analysis of complex structures. When these programs are applied to design, the relative
stiffnesses of a structure’s constituent members must be assumed. If the preliminary stiffnesses are
misjudged, then repeated analyses, regardless of a program’s sophistication, will usually not yield an
improved design. Programs presently in use are actually based on conventional designs, and their
application in reality is an art rather than a science. The optimum design concept has been recognized as
being more rational and reliable than those that require the conventional trial and error process. This is
because, for a given set of constraints, such as allowable stresses, displacements, drifts, frequencies, upper
and lower bounds of member sizes, and given loading conditions, the stiffnesses of members are
automatically selected through the mathematical logic (structural synthesis) written in the computer
program. Consequently, the strength of constituent members is uniformly distributed, and the rigidity of
every component can uniquely satisfy the demands of external loads and code requirements. The
objective function may be composed of initial cost of a structure and damage cost over the life of a
structure including repair cost of the structure, loss of contents, economic impact of structural damage,
and cost of injuries caused by the structural damage [16-22].

Dynamic structures analyzed with fixed support are based on the assumption that the structures are
built on rock or are not subjected to ground motion such as wind forces or mechanical vibration. It is
well known that ground motion induces soil-structure interaction (SSI) which can significantly influ-
ence response of a superstructure built on soft soil. Thus consideration of the SSI effect on a structure
with and without control is very essential. Structural control implies that performance and serviceability
of a structure are controlled to maintain prescribed limits during the application of environmental loads.
Structural control is achieved in several ways: with passive or active control devices or with semiactive or
hybrid systems. The number of actuators and sensors is usually limited by cost and system complexity.
Effectiveness of control devices depends on their optimal placement in a building. Some sample studies
of SSI and optimal placement of controllers are available [23-25].

The materials presented in this chapter are mainly selected from various parts of the author’s book
listed as Ref. [1]. For the reader’s convenience, the citations of these parts are given with page number(s).
Because of page limit, the author has not cited many original publications, which, however, were listed in
the bibliographies of the book’s individual chapters. The author acknowledges the original contribution
with gratitude.

Glossary

Continuous system — Structures having constituent members with distributed mass for dynamic
stiffness or finite element formulation.

Deterministic — A force’s time function can be specified in regular or irregular variation.

Damping factor — Ratio of damping coefficient to the critical damping coefficient.

Ductility factor — Ratio of maximum displacement (or rotation) to the yielding displacement (or
rotation).

Eigensolution — Figenvalues and eigenvectors of a singular matrix that are usually referred to angular
frequencies and normal modes in structural dynamics.

Finite element — A continuum is divided into a number of regions; each region behaves as a structural
member with nodes compatible to the nodes of neighboring regions.

Hysteresis model — An inelastic force—deformation relationship of a structural member subjected to
cyclic loading.

Influence factor — An vector matrix to specify the force induced by ground accelerations at each floor
of a building.

Multicomponent seismic components — Earthquake accelerations expressed in more than one
direction such as three translations and three rotations.
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Participation factor — A factor for measuring how much a given vibrating mode participates in
synthesizing the structural total load.

Periodic motion — A motion repeats itself in a certain period. Harmonic motion is periodic but
periodic motion is not harmonic. A combination of two harmonic motions is always a periodic
motion.

Pseudo-response — The response (displacement, velocity, or acceleration) dose not reflect real time-
history response but a maximum value.

Stability criterion — The numerical integration results can be conditionally stable and unconditionally
stable. For unconditionally stability, the solution is not divergent even if time increment used
in the integration method is large. Conditional stability, however, depends on the time
increment.

Transmissibility — A ratio between the amplitude of the force transmitted to the foundation to the
amplitude of the driving harmonic force.
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4.1 Materials

4.1.1 Stress—Strain Behavior of Structural Steel

Structural steel is a construction material that possesses attributes such as strength, stiffness, toughness,
and ductility that are desirable in modern constructions. Strength is the ability of a material to resist
stress. It is measured in terms of the material’s yield strength F, and ultimate or tensile strength F,. Steel
used in ordinary constructions normally have values of F, and F, that range from 36 to 50 ksi (248 to
345 MPa) and from 58 to 70 ksi (400 to 483 MPa), respectively, although higher-strength steels are
becoming more common. Stiffness is the ability of a material to resist deformation. It is measured in
terms of the modulus of elasticity E and modulus of rigidity G. With reference to Figure 4.1, in which
several uniaxial engineering stress—strain curves obtained from coupon tests for various grades of steels
are shown, it is seen that the modulus of elasticity E does not vary appreciably for the different steel
grades. Therefore, a value of 29,000 ksi (200 GPa) is often used for design. Toughness is the ability of a
material to absorb energy before failure. It is measured as the area under the material’s stress—strain
curve. As shown in Figure 4.1, most (especially the lower grade) steels possess high toughness that made
them suitable for both static and seismic applications. Ductility is the ability of a material to undergo
large inelastic (or plastic) deformation before failure. It is measured in terms of percent elongation or
percent reduction in area of the specimen tested in uniaxial tension. For steel, percent elongation ranges
from around 10 to 40 for a 2-in. (5-cm) gage length specimen. Ductility generally decreases with
increasing steel strength. Ductility is a very important attribute of steel. The ability of structural steel to
deform considerably before failure by fracture allows an indeterminate structure to undergo stress
redistribution. Ductility also enhances the energy absorption characteristic of the structure, which is
extremely important in seismic design.

4.1.2 Types of Steel

Structural steels used for construction are designated by the American Society of Testing and Materials
(ASTM) as follows:

ASTM designation® Steel type

A36/A36M Carbon structural steel

A131/A131M Structural steel for ships

A242/A242M High-strength low-alloy structural steel

A283/A283M Low and intermediate tensile strength carbon steel plates

A328/A328M Steel sheet piling

A514/A514M High-yield strength, quenched and tempered alloy steel plate
suitable for welding

A529/A529M High-strength carbon—manganese steel of structural quality

A572/A572M High-strength low-alloy columbium—vanadium steel

A573/A573M Structural carbon steel plates of improved toughness

A588/A588M High-strength low-alloy structural steel with 50 ksi (345 MPa)
minimum yield point to 4 in. [100 mm] thick

A633/A633M Normalized high-strength low-alloy structural steel plates

A656/A656M Hot-rolled structural steel, high-strength low-alloy
plate with improved formability

A678/A678M Quenched and tempered carbon and high-strength
low-alloy structural steel plates

A690/A690M High-strength low-alloy steel H-Piles and sheet piling for
use in marine environments

A709/A709M Carbon and high-strength low-alloy structural steel shapes,

plates, and bars and quenched and tempered alloy structural
steel plates for bridges
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ASTM designation*® Steel type

A710/A710M Age-hardening low-carbon nickel-copper—chromium—
molybdenum-columbium alloy structural steel plates

A769/A769M Carbon and high-strength electric resistance welded
steel structural shapes

A786/A786M Rolled steel floor plates

A808/A808M High-strength low-alloy carbon, manganese, columbium,

vanadium steel of structural quality with
improved notch toughness

A827/A827M Plates, carbon steel, for forging and similar applications
A829/A829M Plates, alloy steel, structural quality
A830/A830M Plates, carbon steel, structural quality, furnished to

chemical composition requirements

A852/A852M Quenched and tempered low-alloy structural steel plate with

70 ksi [485 MPa] minimum yield
strength to 4 in. [100 mm] thick

A857/A857M Steel sheet piling, cold formed, light gage
A871/A871M High-strength low-alloy structural steel plate with

atmospheric corrosion resistance

A913/A913M High-strength low-alloy steel shapes of structural quality,

produced by quenching and self-tempering process (QST)

A945/A945M High-strength low-alloy structural steel plate with low

carbon and restricted sulfur for improved weldability,
formability, and toughness

A992/A992M Steel for structural shapes (W-sections) for use in

building framing

*

100

80
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The letter M in the designation stands for Metric.

Quenched and tempered alloy steel
(e.g., A514, A709, A852)

T 0.2% offset

~F,=100 ksi
(0.2% offset yield strength)

High-strength low-alloy steel
_____ F (e.g., A572, A588, A992)

| Carbon steel
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Fy=36ksi £
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Strain, in./in.

Uniaxial stress—strain behavior of steel.
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TABLE 4.1 Steel Types and General Usages

Plate
ASTM designation Fy (ksi)® F, (ksi)? thickness (in.)® General usages
A36/A36M 36 58—80 To 8 Riveted, bolted, and welded buildings and
bridges
A529/A529M 50 65-100 To 2.5 Similar to A36. The higher yield stress for
55 70-100 To 1.5 A529 steel allows for savings in weight.
A529 supersedes A441
A572/A572M Grades 60 and 65 not suitable for welded
Grade 42 42 60 To 6 bridges
Grade 50 50 65 To 4
Grade 55 55 70 To 2
Grade 60 60 75 To 1.25
Grade 65 65 80 To 1.25
A242/A242M 42 63 1.5-5 Riveted, bolted, and welded buildings and
46 67 0.75-1.5 bridges. Used when weight savings
50 70 0.5-0.75 and enhanced atmospheric corrosion
resistance are desired. Specific
instructions must be provided
for welding
A588/A588M 42 63 5-8 Similar to A242. Atmospheric corrosion
46 67 4-5 resistance is about four times that of
50 70 To 4 A36 steel
A709/A709M Primarily for use in bridges
Grade 36 36 58-80 To 4
Grade 50 50 65 To 4
Grade 50W 50 70 To 4
Grade 70W 70 90-110 To 4
Grade 100 and 100W 90 100-130 2.5-4
Grade 100 and 100W 100 110-130 To 2.5
A852/A852M 70 90-110 To 4 Plates for welded and bolted construction
where atmospheric corrosion resistance is
desired
A514/A514M 90-100 100-130 2.5-6 Primarily for welded bridges. Avoid usage if
110-130 ductility is important
A913/A913M 50-65 65 To 4 Used for seismic applications
(Max. F,/F,=0.85)
A992/A992M 50-65 65 To 4 Hot-rolled wide flange shapes for use in
(Max. F,/F,=0.85) building frames

2 1 ksi = 6.895 MPa.
® 1 in.=25.4 mm.

A summary of the specified minimum yield stresses F,, the specified minimum tensile strengths F,
and general usages for some commonly used steels are given in Table 4.1.

4.1.3 High-Performance Steel

High-performance steel (HPS) is a name given to a group of high-strength low-alloy (HSLA) steels that
exhibit high strength, higher yvield to tensile strength ratio, enhanced toughness, and improved weld-
ability. Although research is still underway to develop and quantify the properties of a number of HPS,
one HPS that is currently in use especially for bridge construction is HPS70W. HPS70W is a derivative of
ASTM A709 Grade 70W steel (see Table 4.1). Compared to ASTM A709 Grade 70W, HPS70W has
improved mechanical properties and is more resistant to postweld cracking even without preheating
before welding.
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4.1.4 Fireproofing of Steel

Although steel is an incombustible material, its strength (F, F,) and stiffness (E) reduce quite
noticeably at temperatures normally reached in fires when other materials in a building burn.
Exposed steel members that may be subjected to high temperature in a fire should be fireproofed to
conform to the fire ratings set forth in city codes. Fire ratings are expressed in units of time (usually
hours) beyond which the structural members under a standard ASTM Specification (E119) fire test
will fail under a specific set of criteria. Various approaches are available for fireproofing steel
members. Steel members can be fireproofed by encasement in concrete if a minimum cover of 2 in.
(5.1 mm) of concrete is provided. If the use of concrete is undesirable (because it adds weight to the
structure), a lath and plaster (gypsum) ceiling placed underneath the structural members supporting
the floor deck of an upper story can be used. In lieu of such a ceiling, spray-on materials, such as
mineral fibers, perlite, vermiculite, gypsum, etc., can also be used for fireproofing. Other means of
fireproofing include placing steel members away from the source of heat, circulating liquid coolant
inside box or tubular members, and the use of insulative paints. These special paints foam and
expand when heated, thus forming a shield for the members (Rains 1976). For a more detailed
discussion of structural steel design for fire protection, refer to the latest edition of AISI publication
No. FS3, Fire-Safe Structural Steel — A Design Guide. Additional information on fire-resistant
standards and fire protection can be found in the AISI booklets on Fire Resistant Steel Frame
Construction, Designing Fire Protection for Steel Columns, and Designing Fire Protection for Steel Trusses
as well as in the Uniform Building Code.

4.1.5 Corrosion Protection of Steel

Atmospheric corrosion occurs when steel is exposed to a continuous supply of water and oxygen.
The rate of corrosion can be reduced if a barrier is used to keep water and oxygen from contact
with the surface of bare steel. Painting is a practical and cost-effective way to protect steel from
corrosion. The Steel Structures Painting Council issues specifications for the surface preparation and
the painting of steel structures for corrosion protection of steel. In lieu of painting, the use of other
coating materials such as epoxies or other mineral and polymeric compounds can be considered.
The use of corrosion resistance steels such as ASTM A242, A588 steel, or galvanized or stainless
steel is another alternative. Corrosion resistant steels such as A588 retard corrosion by the
formation of a layer of deep reddish-brown to black patina (an oxidized metallic film) on the steel
surface after a few wetting—drying cycles, which usually take place within 1 to 3 years. Galvanized
steel has a zinc coating. In addition to acting as a protective cover, zinc is anodic to steel. The steel,
being cathodic, is therefore protected from corrosion. Stainless steel is more resistant to rusting
and staining than ordinary steel primarily because of the presence of chromium as an alloying
element.

4.1.6 Structural Steel Shapes

Steel sections used for construction are available in a variety of shapes and sizes. In general, there
are three procedures by which steel shapes can be formed: hot rolled, cold formed, and welded. All
steel shapes must be manufactured to meet ASTM standards. Commonly used steel shapes include
the wide flange (W) sections, the American Standard beam (S) sections, bearing pile (HP) sections,
American Standard channel (C) sections, angle (L) sections, tee (WT) sections, as well as bars,
plates, pipes, and hollow structural sections (HSS). Sections that, by dimensions, cannot be classified
as W or S shapes are designated as miscellaneous (M) sections and C sections that, by dimensions,
cannot be classified as American Standard channels are designated as miscellaneous channel (MC)
sections.

Hot-rolled shapes are classified in accordance with their tensile property into five size groups by the
American Society of Steel Construction (AISC). The groupings are given in the AISC Manuals (1989,
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2001). Groups 4 and 5 shapes and group 3 shapes with flange thickness exceeding 15 in. are generally
used for application as compression members. When weldings are used, care must be exercised to
minimize the possibility of cracking in regions at the vicinity of the welds by carefully reviewing the
material specification and fabrication procedures of the pieces to be joined.

4.1.7 Structural Fasteners

Steel sections can be fastened together by rivets, bolts, and welds. While rivets were used quite extensively
in the past, their use in modern steel construction has become almost obsolete. Bolts have essentially
replaced rivets as the primary means to connect nonwelded structural components.

4.1.7.1 Bolts

Four basic types of bolts are commonly in use. They are designated by ASTM as A307, A325, A490, and
A449 (ASTM 2001a—d). A307 bolts are called common, unfinished, machine, or rough. They are made
from low-carbon steel. Two grades (A and B) are available. They are available in diameters from 1 to 4 in.
(6.4 to 102 mm) in % in. (3.2 mm) increments. They are used primarily for low-stress connections and
for secondary members. A325 and A490 bolts are called high-strength bolts. A325 bolts are made from
a heat-treated medium-carbon steels. They are available in two types: Type 1 — bolts made of medium-
carbon steel. Type 3 — bolts having atmospheric corrosion resistance and weathering characteristics
comparable to A242 and A588 steels. A490 bolts are made from quenched and tempered alloy steel and
thus have higher strength than A325 bolts. Like A325 bolts, two types (Types 1 and 3) are available. Both
A325 and A490 bolts are available in diameters from  to 1} in. (13 to 38 mm) in § in. (3.2 mm)
increments. They are used for general construction purposes. A449 bolts are made from quenched
and tempered steels. They are available in diameters from i to 3 in. (6.4 to 76 mm). Because A449 bolts
are not produced to the same quality requirements nor have the same heavy-hex head and nut
dimensions as A325 or A490 bolts, they are not to be used for slip critical connections. A449 bolts are
used primarily when diameters over 11 in. (38 mm) are needed. They are also used for anchor bolts and
threaded rod.

High-strength bolts can be tightened to two conditions of tightness: snug tight and fully tight. The
snug-tight condition can be attained by a few impacts of an impact wrench or the full effort of a
worker using an ordinary spud wrench. The snug-tight condition must be clearly identified in the
design drawing and is permitted in bearing-type connections where slip is permitted, or in tension or
combined shear and tension applications where loosening or fatigue due to vibration or load fluc-
tuations are not design considerations. Bolts used in slip-critical conditions (i.e., conditions for which
the integrity of the connected parts is dependent on the frictional force developed between the
interfaces of the joint) and in conditions where the bolts are subjected to direct tension are required
to be tightened to develop a pretension force equal to about 70% of the minimum tensile stress F, of
the material from which the bolts are made. This can be accomplished by using the turn-of-the-nut
method, the calibrated wrench method, or by the use of alternate design fasteners or direct tension
indicator (RCSC 2000).

4.1.7.2 Welds

Welding is a very effective means to connect two or more pieces of materials together. The four most
commonly used welding processes are shielded metal arc welding (SMAW), submerged arc welding
(SAW), gas metal arc welding (GMAW), and flux core arc welding (FCAW) (AWS 2000). Welding can
be done with or without filler materials although most weldings used for construction utilize
filler materials. The filler materials used in modern-day welding processes are electrodes. Table 4.2
summarizes the electrode designations used for the aforementioned four most commonly used welding
processes. In general, the strength of the electrode used should equal or exceed the strength of the steel
being welded (AWS 2000).
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TABLE 4.2 Electrode Designations

Electrode

Welding processes designations Remarks

Shielded metal arc welding (SMAW) E60XX The “E” denotes electrode. The first two digits indicate
E70XX tensile strength in ksi." The two “X”s represent numbers
E80XX indicating the electrode usage
E100XX
E110XX

Submerged arc welding (SAW) F6X-EXXX The “F” designates a granular flux material. The
F7X-EXXX digit(s) following the “F” indicate the tensile strength
F8X-EXXX in ksi (6 means 60 ksi, 10 means 100 ksi, etc.). The
F10X-EXXX digit before the hyphen gives the Charpy V-notched
F11X-EXXX impact strength. The “E” and the “X”s that follow

represent numbers relating to the electrode usage

Gas metal arc welding (GMAW) ER70S-X The digits following the letters “ER” represent the tensile
ER80S strength of the electrode in ksi
ER100S
ER110S

Flux cored arc welding (FCAW) E6XT-X The digit(s) following the letter “E” represent the tensile
E7XT-X strength of the electrode in ksi (6 means 60 ksi, 10 means
E8XT 100 ksi, etc.)
E10XT
E11XT

# 1 ksi=6.895 MPa.

Finished welds should be inspected to ensure their quality. Inspection should be performed by
qualified welding inspectors. A number of inspection methods are available for weld inspections,
including visual inspection, the use of liquid penetrants, magnetic particles, ultrasonic equipment, and
radiographic methods. Discussion of these and other welding inspection techniques can be found in the
Welding Handbook (AWS 1987).

4.1.8 Weldability of Steel

Weldability is the capacity of a material to be welded under a specific set of fabrication and design
conditions and to perform as expected during its service life. Generally, weldability is considered
very good for low-carbon steel (carbon level < 0.15% by weight), good for mild steel (carbon levels
0.15 to 0.30%), fair for medium-carbon steel (carbon levels 0.30 to 0.50%), and questionable for
high-carbon steel (carbon levels 0.50 to 1.00%). Because weldability normally decreases with
increasing carbon content, special precautions such as preheating, controlling heat input, and post-
weld heat treating are normally required for steel with carbon content reaching 0.30%. In addition to
carbon content, the presence of other alloying elements will have an effect on weldability. Instead of
more accurate data, the table below can be used as a guide to determine the weldability of steel
(Blodgett, undated).

Element Range for satisfactory weldability Level requiring special care (%)
Carbon 0.06-0.25% 0.35

Manganese 0.35-0.80% 1.40

Silicon 0.10% max. 0.30

Sulfur 0.035% max. 0.050

Phosphorus 0.030% max. 0.040
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A quantitative approach for determining weldability of steel is to calculate its carbon equivalent value.
One definition of the carbon equivalent value Cq is

(manganese + silicon)  (copper + nickel)

6 15
(chromium + molybdenum + vanadium + columbium)

5 (4.1)

A steel is considered weldable if C.q < 0.50% for steel in which the carbon content does not exceed
0.12% and if C.q < 0.45% for steel in which the carbon content exceeds 0.12%.

Equation 4.1 indicates that the presence of alloying elements decreases the weldability of steel. An

example of high-alloy steels is stainless steel. There are three types of stainless steel: austenitic, mar-

Ceq = Carbon +

tensitic, or ferritic. Austenitic stainless steel is the most weldable, but care must be exercised to prevent
thermal distortion because heat dissipation is only about one third as fast as in plain carbon steel.
Martensitic steel is also weldable but prone to cracking because of its high hardenability. Preheating and
maintaining interpass temperature are often needed, especially when the carbon content is above 0.10%.
Ferritic steel is weldable but decreased ductility and toughness in the weld area can present a problem.
Preheating and postweld annealing may be required to minimize these undesirable effects.

4.2 Design Philosophy and Design Formats
4.2.1 Design Philosophy

Structural design should be performed to satisfy the criteria for strength, serviceability, and economy.
Strength pertains to the general integrity and safety of the structure under extreme load conditions. The
structure is expected to withstand occasional overloads without severe distress and damage during its
lifetime. Serviceability refers to the proper functioning of the structure as related to its appearance,
maintainability, and durability under normal, or service load, conditions. Deflection, vibration, per-
manent deformation, cracking, and corrosion are some design considerations associated with service-
ability. Economy concerns with the overall material, construction, and labor costs required for the design,
fabrication, erection, and maintenance processes of the structure.

4.2.2 Design Formats

At present, steel design in the United States is being performed in accordance with one of the following
three formats.

4.2.2.1 Allowable Stress Design (ASD)

ASD has been in use for decades for steel design of buildings and bridges. It continues to enjoy
popularity among structural engineers engaged in steel building design. In allowable stress (or working
stress) design, member stresses computed under service (or working) loads are compared to some
predesignated stresses called allowable stresses. The allowable stresses are often expressed as a function of
the yield stress (F,) or tensile stress (F,) of the material divided by a factor of safety. The factor of safety is
introduced to account for the effects of overload, understrength, and approximations used in structural
analysis. The general format for an allowable stress design has the form

R, i
2> i 42
FS_;Q (4.2)

where R, is the nominal resistance of the structural component expressed in unit of stress (i.e., the
allowable stress), Q,; is the service or working stresses computed from the applied working load of type i,
FS is the factor of safety; i is the load type (dead, live, wind, etc.), and m is the number of load types
considered in the design.
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4.2.2.2 Plastic Design (PD)

PD makes use of the fact that steel sections have reserved strength beyond the first yield condition. When
a section is under flexure, yielding of the cross-section occurs in a progressive manner, commencing with
the fibers farthest away from the neutral axis and ending with the fibers nearest the neutral axis. This
phenomenon of progressive yielding, referred to as plastification, means that the cross-section does not
fail at first yield. The additional moment that a cross-section can carry in excess of the moment that
corresponds to first yield varies depending on the shape of the cross-section. To quantify such reserved
capacity, a quantity called shape factor, defined as the ratio of the plastic moment (moment that causes
the entire cross-section to yield, resulting in the formation of a plastic hinge) to the yield moment
(moment that causes yielding of the extreme fibers only) is used. The shape factor for hot-rolled
I-shaped sections bent about the strong axes has a value of about 1.15. The value is about 1.50 when these
sections are bent about their weak axes.

For an indeterminate structure, failure of the structure will not occur after the formation of a plastic
hinge. After complete yielding of a cross-section, force (or, more precisely, moment) redistribution will
occur in which the unyielded portion of the structure continues to carry some additional loadings.
Failure will occur only when enough cross-sections have yielded rendering the structure unstable,
resulting in the formation of a plastic collapse mechanism.

In PD, the factor of safety is applied to the applied loads to obtain factored loads. A design is said to have
satisfied the strength criterion if the load effects (i.e., forces, shears, and moments) computed using these
factored loads do not exceed the nominal plastic strength of the structural component. PD has the form

Rn > Y Z Qni (43)
i=1

where R, is the nominal plastic strength of the member, Q,; is the nominal load effect from loads of
type i, y is the load factor, i is the load type, and m is the number of load types.

In steel building design, the load factor is given by the AISC Specification as 1.7 if Q, consists of dead
and live gravity loads only, and as 1.3 if Q, consists of dead and live gravity loads acting in conjunction
with wind or earthquake loads.

4.2.2.3 Load and Resistance Factor Design (LRFD)

LRFD is a probability-based limit state design procedure. A limit state is defined as a condition in
which a structure or structural component becomes unsafe (i.e., a violation of the strength limit state)
or unsuitable for its intended function (i.e., a violation of the serviceability limit state). In a limit state
design, the structure or structural component is designed in accordance to its limits of usefulness,
which may be strength related or serviceability related. In developing the LRFD method, both load
effects and resistance are treated as random variables. Their variabilities and uncertainties are repre-
sented by frequency distribution curves. A design is considered satisfactory according to the strength
criterion if the resistance exceeds the load effects by a comfortable margin. The concept of safety is
represented schematically in Figure 4.2. Theoretically, the structure will not fail unless the load effect Q
exceeds the resistance R as shown by the shaded portion in the figure. The smaller this shaded area, the
less likely that the structure will fail. In actual design, a resistance factor ¢ is applied to the nominal
resistance of the structural component to account for any uncertainties associated with the determi-
nation of its strength and a load factor y is applied to each load type to account for the uncertainties
and difficulties associated with determining its actual load magnitude. Different load factors are used
for different load types to reflect the varying degree of uncertainties associated with the determination
of load magnitudes. In general, a lower load factor is used for a load that is more predicable and
a higher load factor is used for a load that is less predicable. Mathematically, the LRFD format takes
the form

GRy > > 7,Qui (4.4)
i=1
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FIGURE 4.2 Frequency distribution of load effect and resistance.

TABLE 4.3 Load Factors and Load Combinations

1.4(D+F)

1.2(D4+F+T)+1.6(L+ H)+0.5(L, or S or R)
12D+ 1.6(L, or Sor R)+ (L or 0.8W)

12D+ 1.6W+ L+ 0.5(L, or S or R)

12D+ 1.0E4+ L+0.2S

09D+ 1.6W+ 1.6H

09D+ 1.0E + 1.6H

Notes: D is the dead load, E is the earthquake load, F is the load due to fluids with
well-defined pressures and maximum heights, H is the load due to the weight and lateral
pressure of soil and water in soil, L is the live load, L; is the roof live load, R is the rain
load, S is the snow load, T is the self-straining force, and W is the wind load.

The load factor on L in the third, fourth, and fifth load combinations shown above
can be set to 0.5 for all occupancies (except for garages or areas occupied as places of
public assembly) in which the design live load per square foot of area is less than or
equal to 100 psf (4.79kN/m?). The load factor on H in the sixth and seventh load
combinations shall be set to zero if the structural action due to H counteracts that due
to Wor E.

where ¢R,, represents the design (or usable) strength and > y;Q,; represents the required strength or
load effect for a given load combination. Table 4.3 shows examples of load combinations (ASCE 2002) to
be used on the right-hand side of Equation 4.4. For a safe design, all load combinations should be
investigated and the design is based on the worst-case scenario.

4.3 Tension Members

Tension members are designed to resist tensile forces. Examples of tension members are hangers, truss
members, and bracing members that are in tension. Cross-sections that are used most often for tension
members are solid and hollow circular rods, bundled bars and cables, rectangular plates, single and
double angles, channels, WT- and W-sections, and a variety of built-up shapes.

4.3.1 Tension Member Design

Tension members are to be designed to preclude the following possible failure modes under normal load
conditions: yielding in gross section, fracture in effective net section, block shear, shear rupture along
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plane through the fasteners, bearing on fastener holes, prying (for lap- or hanger-type joints). In addition,
the fasteners’ strength must be adequate to prevent failure in the fasteners. Also, except for rods in
tension, the slenderness of the tension member obtained by dividing the length of the member by its least
radius of gyration should preferably not exceed 300.

4.3.1.1 Allowable Stress Design

The computed tensile stress f; in a tension member shall not exceed the allowable stress for tension, F,
given by 0.60F, for yielding on the gross area and by 0.50F, for fracture on the effective net area. While
the gross area is just the nominal cross-sectional area of the member, the effective net area is the smallest
cross-sectional area accounting for the presence of fastener holes and the effect of shear lag. It is
calculated using the equation

Ac=UA, =U

m k 2
s
n- a2 ()] 9
i=1 j=1 J
where U is a reduction coefficient given by (Munse and Chesson 1963)

U=1- ’—lc <0.90 (4.6)
in which [ is the length of the connection and X is the larger of the distance measured from the centroid
of the cross-section to the contact plane of the connected pieces or to the fastener lines. In the event that
the cross-section has two symmetrically located planes of connection, x is measured from the centroid of
the nearest one-half the area (Figure 4.3). This reduction coefficient is introduced to account for the shear
lag effect that arises when some component elements of the cross-section in a joint are not connected,
rendering the connection less effective in transmitting the applied load. The terms in brackets in
Equation 4.5 constitute the so-called net section A,,. The various terms are defined as follows: A, is the gross
cross-sectional area, d,, is the nominal diameter of the hole (bolt cutout) taken as the nominal bolt diameter
plus § in. (3.2 mm), ¢ is the thickness of the component element, s is the longitudinal center-to-center
spacing (pitch) of any two consecutive fasteners in a chain of staggered holes, and g is the transverse
center-to-center spacing (gage) between two adjacent fasteners gage lines in a chain of staggered holes.

The second term inside the brackets of Equation 4.5 accounts for loss of material due to bolt cutouts;
the summation is carried for all bolt cutouts lying on the failure line. The last term inside the brackets of
Equation 4.5 indirectly accounts for the effect of the existence of a combined stress state (tensile and
shear) along an inclined failure path associated with staggered holes; the summation is carried for all
staggered paths along the failure line. This term vanishes if the holes are not staggered. Normally, it is
necessary to investigate different failure paths that may occur in a connection; the critical failure path is
the one giving the smallest value for A..

To prevent block shear failure and shear rupture, the allowable strengths for block shear and shear
rupture are specified as follows:

Block shear:
Res = 0.30A, F, + 0.50AF, (4.7)
Shear rupture:
F, = 0.30F, (4.8)

where A, is the net area in shear, A, is the net area in tension, and F, is the specified minimum tensile
strength.

The tension member should also be designed to possess adequate thickness and the fasteners should be
placed within a specific range of spacings and edge distances to prevent failure due to bearing and failure
by prying action (see Section 4.11).
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FIGURE 4.3 Definition of X for selected cross-sections.

4.3.1.2 Load and Resistance Factor Design

According to the LRFD Specification (AISC 1999), tension members designed to resist a factored axial
force of P, calculated using the load combinations shown in Table 4.3 must satisfy the condition of

P> Py (4.9)
The design strength ¢ P, is evaluated as follows:
Yielding in gross section:
¢ Pa = 0.90[F,A] (4.10)

where 0.90 is the resistance factor for tension, F, is the specified minimum yield stress of the material,
and A, is the gross cross-sectional area of the member.

Fracture in effective net section:

$ Py = 0.75[F, Al (4.11)
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where 0.75 is the resistance factor for fracture in tension, F, is the specified minimum tensile strength,
and A, is the effective net area given in Equation 4.5.
Block shear: If F,An > 0.6F,A,, (i.e., shear yield—tension fracture)

¢ Pa = 0.75[0.60F, Ag, + FyAn] < 0.75[0.6F,Any + FuyAn] (4.12a)
and if F A, < 0.6F,A,, (i.e., shear fracture—tension yield)
¢ P = 0.75[0.60F, Any + FyAg] < 0.75[0.60F, Any + FyAy] (4.12b)

where 0.75 is the resistance factor for block shear, F,, F, are the specified minimum yield stress and
tensile strength, respectively, A,y is the gross shear area, Ay, is the net tension area, A,, is the net shear
area, and Ay is the gross tension area.

EXAMPLE 4.1

Using LRFD, select a double-channel tension member shown in Figure 4.4a to carry a dead load D of
40 kip and a live load L of 100 kip. The member is 15 ft long. Six 1-in. diameter A325 bolts in standard
size holes are used to connect the member to a %—in. gusset plate. Use A36 steel (F, = 36 ksi, F, = 58 ksi)
for all the connected parts.
Load combinations: From Table 4.3, the applicable load combinations are
1.4D = 1.4(40) = 56 kip
1.2D + 1.6L = 1.2(40) + 1.6(100) = 208 kip

The design of the tension member is to be based on the larger of the two, that is, 208 kip and so each
channel is expected to carry 104 kip.

(a) 2-in. thick
gusset plate

=N
k

3in.

———J \ 1-in. diameter
3in.[3 in3 in| A325 bolts

|

(b) Most probable ©
fracture path

3in. — P, 3in.

|

3in.|3 in)3 in. 3in.[3 in/|3 in.

FIGURE 4.4 Design of (a) double-channel tension member (1 in.=25.4 mm); (b) fracture failure; and (c) block
shear failure.
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Yielding in gross section: Using Equations 4.9 and 4.10, the gross area required to prevent cross-section
yielding is
0.90[F,Ag] > P,
0.90[(36)(Ag)] > 104 kip
(Ag)reqa = 321 in?

From the section properties table contained in the AISC-LRFD Manual, one can select the following trial
sections: C8 x 11.5 (A, =3.38 in.?), C9 x 13.4 (A, =3.94 in.%), and C8 x 13.75 (A, =4.04 in.”).

Check for the limit state of fracture on effective net area: The above sections are checked for the limiting
state of fracture in the following table:

Section Ag (in?) t, (in.) % (in.) U® Ab (in?) ¢ P, (kip)
C8x 115 3.38 0.220 0.571 0.90 2.6 113.1
C9 x 13.4 3.94 0.233 0.601 0.90 3.07 133.5
C8 x 13.75 4.04 0.303 0.553 0.90 3.02 131.4

? Equation 4.6.

b

Equation 4.5, Figure 4.4b.

From the last column of the above table, it can be seen that fracture is not a problem for any of the
trial sections.

Check for the limit state of block shear: Figure 4.4c shows a possible block shear failure mode. To avoid
block shear failure the required strength of P, =104 kip should not exceed the design strength, ¢.P,,
calculated using Equations 4.12a or 4.12b, whichever is applicable.

For the C8 x 11.5 section:

Agy = 2(9)(0.220) = 3.96 in.?
1 . 9
Any = Ag, — 5(1 + g) (0.220) = 2.72 in.
Ag = (3)(0.220) = 0.66 in.”
1 . 2
An = Ag — 1<1 + §> (0.220) = 0.41 in.
Substituting the above into Equation 4.12b, since (F,A,=23.8 kip) is smaller than (0.6F,A,, =
94.7 kip), we obtain ¢P,, = 88.8 kip, which is less than P, =104 kip. The C8 x 11.5 section is therefore
not adequate. A significant increase in block shear strength is not expected from the C9 x 13.4 section
because its web thickness t, is just slightly over that of the C8 x 11.5 section. As a result, we shall check

the adequacy of the C8 x 13.75 section instead.
For the C8 x 13.75 section:

Ag, =2(9)(0.303) = 5.45in.

1
Ay = Agy — 5 (1 + g) (0.303) = 3.75in.?
Ag = (3)(0.303) = 0.91in.

1 .
An = Ay = 1{ 1+)(0.303) = 0.57in.

Substituting the above into Equation 4.12b, since (F,A, =33.1 kip) is smaller than (0.6F,A,, =
130.5 kip), we obtain ¢P, = 122 kip, which exceeds the required strength P, of 104 kip. Therefore, block
shear will not be a problem for the C8 x 13.75 section.
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Check for the limiting slenderness ratio: Using parallel axis theorem, the least radius of gyration of
the double-channel cross-section is calculated to be 0.96 in. Therefore, L/r=(15 ft)(12 in./ft)/
0.96 in. = 187.5, which is less than the recommended maximum value of 300.

Check for the adequacy of the connection: The calculations are shown in an example in Section 4.11.
Longitudinal spacing of connectors: According to Section J3.5 of the LRFD Specification, the
maximum spacing of connectors in built-up tension members shall not exceed:

¢ Twenty-four times the thickness of the thinner plate or 12 in. (305 mm) for painted members or
unpainted members not subject to corrosion.

¢ Fourteen times the thickness of the thinner plate or 7 in. (180 mm) for unpainted members of
weathering steel subject to atmospheric corrosion.

Assuming the first condition applies, a spacing of 6 in. is to be used. Use 2C8 x 13.75 connected
intermittently at 6-in. interval.

4.3.2 Pin-Connected Members
Pin-connected members shall be designed to preclude the following failure modes:

e Tension yielding in the gross section

e Tension fracture on the effective net area

¢ Longitudinal shear on the effective area

e Bearing on the projected pin area (Figure 4.5)

4.3.2.1 Allowable Stress Design

The allowable stresses for tension yield, tension fracture, and shear rupture are 0.60F,, 0.45F,, and
0.30F,, respectively. The allowable stresses for bearing are given in Section 4.11.

4.3.2.2 Load and Resistance Factor Design

The design tensile strength ¢ P, for a pin-connected member are given as follows:

Tension on gross area: see Equation 4.10.
Tension on effective net area:

¢ Py = 0.75[2tbeffFu] (4.13)
Shear on effective area:

dPn = 0.75[0.6A¢F,] (4.14)

Bearing on projected pin area: see Section 4.11.

The terms in Figure 4.5 and the above equations are defined as follows: a is the shortest
distance from the edge of the pin hole to the edge of the member measured in the direction of
the force, Ay, is the projected bearing area = dt, A= 2t (a+ d/2), begr=2t+ 0.63, in. (or, 2t + 16, mm)
but not more than the actual distance from the edge of the hole to the edge of the part measured in
the direction normal to the applied force, d is the pin diameter, and t is the plate thickness.
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FIGURE 4.5 Failure modes of pin-connected members.

4.3.3 Threaded Rods
4.3.3.1 Allowable Stress Design

Threaded rods under tension are treated as bolts subject to tension in allowable stress design. These
allowable stresses are given in Section 4.11.

4.3.3.2 Load and Resistance Factor Design

Threaded rods designed as tension members shall have an gross area A, given by
P,

Ap > m (4.15)

where Ay, is the gross area of the rod computed using a diameter measured to the outer extremity of the

thread, P, is the factored tensile load, ¢ is the resistance factor given as 0.75, and F, is the specified
minimum tensile strength.

4.4 Compression Members

Members under compression can fail by yielding, inelastic buckling, or elastic buckling depending on
the slenderness ratio of the members. Members with low slenderness ratios tend to fail by yielding
while members with high slenderness ratio tend to fail by elastic buckling. Most compression
members used in construction have intermediate slenderness ratios and so the predominant mode of
failure is inelastic buckling. Overall member buckling can occur in one of three different modes:
flexural, torsional, and flexural-torsional. Flexural buckling occurs in members with doubly sym-
metric or doubly antisymmetric cross-sections (e.g., I or Z sections) and in members with singly
symmetric sections (e.g., channel, tee, equal-legged angle, double-angle sections) when such sections
are buckled about an axis that is perpendicular to the axis of symmetry. Torsional buckling occurs in
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members with doubly symmetric sections such as cruciform or built-up shapes with very thin walls.
Flexural-torsional buckling occurs in members with singly symmetric cross-sections (e.g., channel,
tee, equal-legged angle, double-angle sections) when such sections are buckled about the axis of
symmetry and in members with unsymmetric cross-sections (e.g., unequal-legged L). Normally,
torsional buckling of symmetric shapes is not particularly important in the design of hot-rolled
compression members. It either does not govern or its buckling strength does not differ significantly
from the corresponding weak axis flexural buckling strengths. However, torsional buckling may
become important for open sections with relatively thin component plates. It should be noted that
for a given cross-sectional area, a closed section is much stiffer torsionally than an open section.
Therefore, if torsional deformation is of concern, a closed section should be used. Regardless of the
mode of buckling, the governing effective slenderness ratio (KiI/r) of the compression member
preferably should not exceed 200.

In addition to the slenderness ratio and cross-sectional shape, the behavior of compression members is
affected by the relative thickness of the component elements that constitute the cross-section. The
relative thickness of a component element is quantified by the width—thickness ratio (/1) of the element.
The width—thickness ratios of some selected steel shapes are shown in Figure 4.6. If the width—thickness
ratio falls within a limiting value [denoted by the LRFD specification (AISC 1999) as A,] as shown in
Table 4.4, the section will not experience local buckling prior to overall buckling of the member.
However, if the width—thickness ratio exceeds this limiting width—thickness value, consideration of local
buckling in the design of the compression member is required.
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FIGURE 4.6 Definition of width—thickness ratio of selected cross-sections.
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TABLE 4.4 Limiting Width-Thickness Ratios for Compression Elements Under Pure Compression

Component element Width—thickness ratio Limiting value, A,

Flanges of I-shaped sections; plates projecting b/t 0.56/E/F,
from compression elements; outstanding legs

of pairs of angles in continuous contact;

flanges of channels

Flanges of square and rectangular box and HSS b/t 1.40/E/F,
of uniform thickness; flange cover plates and

diaphragm plates between lines of fasteners or

welds

Unsupported width of cover plates perforated b/t 1.86\/E/F,
with a succession of access holes

Legs of single-angle struts; legs of double-angle b/t 0.45,/E/F,
struts with separators; unstiffened elements
(i.e., elements supported along one edge)

Flanges projecting from built-up members b/t 0.64/E/(F,/k)
Stems of tees d/t 0.75\/E/F,
All other uniformly compressed stiffened b/t 1.49/E/F,
elements (i.e., elements supported along h/t,

two edges)

Circular hollow sections D/t 0.11E/F,

D is the outside diameter
and ¢ is the wall thickness

Note: Eis the modulus of elasticity, F, is the specified minimum yield stress, k. =4/+/(h/t,), and 0.35 < k. < 0.763 for
I-shaped sections, k. is equal to 0.763 for other sections, where / is the web depth and ¢, is the web thickness.

To facilitate the design of compression members, column tables for W, tee, double angle,
square/rectangular tubular, and circular pipe sections are available in the AISC Manuals for both
allowable stress design (AISC 1989) and load and resistance factor design (AISC 2001).

4.4.1 Compression Member Design
4.4.1.1 Allowable Stress Design

The computed compressive stress f, in a compression member shall not exceed its allowable value
given by

[1— ((Kl/r)?/2C2)]F,

gyt if KI/r < C.
F, = ) (5/3) + (K1) /8C) — ((KI/r)"/8CY) (4.16)
12n°E :
T if Kl/r> C,
23(Kijr)

where Kl/r is the slenderness ratio, K is the effective length factor of the compression member in
the plane of buckling, / is the unbraced member length in the plane of buckling, r is the radius of
gyration of the cross-section about the axis of buckling, E is the modulus of elasticity, and
G. = \/(2n?E/F,) is the slenderness ratio that demarcates between inelastic member buckling from
elastic member buckling. KI/r should be evaluated for both buckling axes, and the larger value used in
Equation 4.16 to compute F,.

The first part of Equation 4.16 is the allowable stress for inelastic buckling and the second part is the
allowable stress for elastic buckling. In ASD, no distinction is made between flexural, torsional, and
flexural-torsional buckling.



Steel Structures 4-19

4.4.1.2 Load and Resistance Design

Compression members are to be designed so that the design compressive strength ¢ P, will exceed the
required compressive strength P,. ¢ P, is to be calculated as follows for the different types of overall
buckling modes.

Flexural buckling (with width—thickness ratio <A,):

0.85[44(0.658")F,],  if A < 1.5

0.877
Ag —7»3 F,

where A, = (KL/rn)\/(F,/E) is the slenderness parameter, A, is the gross cross-sectional area, F, is the

¢an = (4'17)

0.85 . ifA>15

specified minimum vyield stress, E is the modulus of elasticity, K is the effective length factor, [ is the
unbraced member length in the plane of buckling, and r is the radius of gyration of the cross-section
about the axis of buckling.

The first part of Equation 4.17 is the design strength for inelastic buckling and the second part is the
design strength for elastic buckling. The slenderness parameter A, = 1.5 is the slenderness parameter that
demarcates between inelastic behavior from elastic behavior.

Torsional buckling (with width—thickness ratio < A,): ¢ P, is to be calculated from Equation 4.17, but
with A, replaced by A. and given by

F
he =] (4.18)
where
’E 1
= | TS (4.19)
(K.L) L+,

in which C,, is the warping constant, G is the shear modulus = 11,200 ksi (77,200 MPa), I, I, are the
moments of inertia about the major and minor principal axes, respectively, J is the torsional constant,
and K, is the effective length factor for torsional buckling.

The warping constant C,, and the torsional constant J are tabulated for various steel shapes in the
AISC-LRFD Manual (AISC 2001). Equations for calculating approximate values for these constants for
some commonly used steel shapes are shown in Table 4.5.

Flexural—torsional buckling (with width—thickness ratio <A,): Same as for torsional buckling except F,.
is now given by

For singly symmetric sections:

(Fes T Fez)z (4.20)

4F F.,H }

where

F.;=F., if the x-axis is the axis of symmetry of the cross-section, or
F.,=F,, if the y-axis is the axis of symmetry of the cross-section
F..=7"E/(Kl/1)}

F.,=n’E/(Kl/n);

H =1—(x>+y})ir?

in which K, K, are the effective length factors for buckling about the x and y axes, respectively, [ is the
unbraced member length in the plane of buckling, r,, r, are the radii of gyration about the x and y axes,
respectively, x,, y, are shear center coordinates with respect to the centroid (Figure 4.7), and
L o I e S S o
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TABLE 4.5 Approximate Equations for C, and J

Structural shape Warping constant, C,, Torsional constant, J

I WL/ I+ 1) > Cibit} /3)

c (b —3E)h2b%t/6 + E, I, where
where b;=width of component element i
Ey=0"t/Q2bt;+ ht,/3) t;= thickness of component element i

C; = correction factor for component element i
(see values below)

(b1} /4 + H">12)/36 (=0 for small 1) b/t C;

L (Bt 4+ B13)/36 (=0 for small #) 1.00 0.423
1.20 0.500

1.50 0.588

1.75 0.642

2.00 0.687

2.50 0.747

3.00 0.789

4.00 0.843

5.00 0.873

6.00 0.894

8.00 0.921

10.00 0.936

0 1.000

Note: ' is the distance measured from toe of flange to centerline of web, # is the distance between centerline lines of
flanges, " is the distance from centerline of flange to tip of stem, I}, , are the length of the legs of the angle, t,, t, are the
thickness of the legs of the angle, b is the flange width, # is the average thickness of flange, t, is the thickness of web, I is
the moment of inertia of compression flange taken about the axis of the web, I; is the moment of inertia of tension flange
taken about the axis of the web, and I, is the moment of inertia of the cross-section taken about the major principal axis.

Numerical values for 7, and H are given for hot-rolled W, channel, tee, single-angle, and double-angle
sections in the AISC-LRFD Manual (AISC 2001).
For unsymmetric sections: F, is to be solved from the cubic equation

(Fo= Fu) (B~ Fo)(Fo— Fo) = E(R = F) (2) — B2 — R (2) =0 a2

The definitions of the terms in the above equation are as in Equation 4.20.
Local Buckling (with width—thickness ratio > A,): local buckling in the component element of the
cross-section is accounted for in design by introducing a reduction factor Q in Equation 4.17 as follows:

0.85[4,Q(0.658%)F,], if A/Q < 1.5

0.877) (4.22)

d)an =
0.85[Ag(T El,  if m/Q>15

where A=A for flexural buckling and A =\, for flexural-torsional buckling.
The Q factor is given by

Q=QQ (4.23)

where Qs is the reduction factor for unstiffened compression elements of the cross-section (see Table 4.6)
and Q, is the reduction factor for stiffened compression elements of the cross-section (see Table 4.7).

4.4.2 Built-Up Compression Members

Built-up members are members made by bolting and/or welding together two or more standard
structural shapes. For a built-up member to be fully effective (i.e., if all component structural
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FIGURE 4.7 Location of shear center for selected cross-sections.

TABLE 4.6 Formulas for Q

Structural element Range of b/t or d/t Q

Single-angles 0.45\/(E/F,) < b/t<0.91\/(E/F,) 1.340 — 0.76(b/1)\/(Fy/E)
b/t>0.91./(E/F,) 0.53E/[F,(b/1)*]

Flanges, angles, and plates projecting 0.56\/(E/F,) < b/t < 1.03\/(E/F,) 1.415 — 0.74(b/1)\/(Fy/E)

from columns or other compression b/t>1.03\/(E/F,) 0,69E/[Fy(b/t)z]

members

Flanges, angles, and plates projecting 0.64y/[E/(F,/k)] < b/t< 1.17\/[E/(F,/k)] 1.415 — 0.65(b/1)/(F,/k.E)

from built-up columns or other b/t>1.17/[E/(Fy/k.)] 0.90Ekc/[Fy(b/t)2]

compression members

Stems of tees 0.75y/(E/F,) < d/t<1.03,/(E/F,) 1.908 — 1.22(b/1)\/(F,/E)
d/t>1.03,/(E/F,) 0.69E/[F,(b/1)]

Notes: k. is defined in the footnote of Table 4.4, E is the modulus of elasticity, F, is the specified minimum yield stress,
b is the width of the component element, and ¢ is the thickness of the component element.
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TABLE 4.7 Formula for Q,

effective area
=
actual area

The effective area is equal to the summation of the effective areas of the stiffened elements of the cross-section. The effective
area of a stiffened element is equal to the product of its thickness t and its effective width b, given by

For flanges of square and rectangular sections of uniform thickness, when b/t>1.40/(E/f)*

E 038 |E
be = 1.91¢ f[l(b/t)\/;} <b

For other noncircular uniformly compressed elements, when b/t>1.49./(E/f)*

E 034 |E
be—1.91t\/;[l—m ]—(}gb

For axially loaded circular sections with 0.11E/F, < D/t < 0.45E/F,

~ 0.038E L2
T E(D/t) 3

Q

where b is the actual width of the stiffened element, ¢ is the wall thickness, E is the modulus of elasticity, fis the computed
elastic compressive stress in the stiffened elements, and D is the outside diameter of circular sections.

? b.= b otherwise.

shapes are to act as one unit rather than as individual units), the following conditions must be
satisfied:

1. Slippage of component elements near the ends of the built-up member must be prevented.
2. Adequate fasteners must be provided along the length of the member.
3. The fasteners must be able to provide sufficient gripping force on all component elements.

Condition 1 is satisfied if all component elements in contact near the ends of the built-up member are
connected by a weld having a length not less than the maximum width of the member or by bolts spaced
longitudinally not more than four diameters apart for a distance equal to one and a half times the
maximum width of the member. Condition 2 is satisfied if continuous welds are used throughout the
length of the built-up compression member. Condition 3 is satisfied if either welds or fully tightened
bolts are used as the fasteners. While condition 1 is mandatory, conditions 2 and 3 can be violated in
design. If condition 2 or 3 is violated, the built-up member is not fully effective and slight slippage
among component elements may occur. To account for the decrease in capacity due to slippage, a
modified slenderness ratio is used to compute the design compressive strength when buckling of the
built-up member is about an axis coinciding or parallel to at least one plane of contact for the component
shapes. The modified slenderness ratio (KL/r)y, is given as follows:

() (e
GRIGRE)

In the above equations, (KL/r), = (KL/r), if the buckling axis is the x-axis and at least one plane of
contact between component elements is parallel to that axis; (KL/r), = (KL/ r), if the buckling axis is the

If condition 2 is violated

If condition 3 is violated
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FIGURE 4.8 Design of cover plates for a compression member.

y-axis and at least one plane of contact is parallel to that axis. a is the longitudinal spacing of the
fasteners, r; is the minimum radius of gyration of any component element of the built-up cross-section,
1y, 1s the radius of gyration of individual component relative to its centroidal axis parallel to the axis of
buckling of the member, and h is the distance between centroids of components 